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PREFACE

Upon seeing this book, the reader's first reaction might be, "Another book on
geostatistics?" This reaction is natural, for there are excellent texts on the subject,
ranging from the seminal works of Matheron (1967) and Journel and Huijbregts (1978)
through the more recent works of Agterberg (1974), Isaaks and Srivastava (1989), Cressie
(1991), Hardy and Beier (1994), and Carr (1995). Some books come complete with
software (Davis, 1973; Deutsch and Journel, 1992). The more general statistical literature
also contains numerous excellent works (e.g., Hald, 1952; Kendall and Stuart, 1977; Box
et al., 1978).

Yet there are several important aspects that are not treated together in the currently
available material. We write for academic engineering audiences, specifically for upper-
level or graduate classes, and for practicing engineers and geoscientists. This means that
most of the material and examples are based on engineering quantities, specifically
involving flow through permeable media and, even more specifically, permeability. Our
experience suggests that, while most engineers are adept at the mathematics of statistics,
they are less adept at understanding its potential and its limitations. Consequently, we
write from the basics of statistics but we cover only those topics that are needed for the
two goals of the text: to exhibit the diagnostic potential of statistics and to introduce the
important features of statistical modeling. The reader must look elsewhere for broad
coverage on probability, hypothesis testing, properties of distributions, and estimation
theory. Likewise, we will direct the reader to other papers or books that treat issues in
more detail than we think necessary here.

The role of geology is emphasized in our presentation. For many engineers, statistics
is the method of last resort, when no deterministic method can be found to make sense of
the geological complexities. In our experience, however, statistics and geology form a
very powerful partnership that aids geosystem diagnosis and modeling. We aim to show
that the data and the geology often have a story to tell and analysis of one informs us
about the other. When heard, this story will provide information about further sampling
and the model formulation needed to emulate the important features. The alternative to
reconciling the geology and petrophysical properties is to grasp any model on the shelf
and let the statistical realizations cover our ignorance. Unfortunately, this latter approach
only partially meets engineering needs.

About half of the book is devoted to the diagnostic, or "listening" topics. This
includes the usual tools such as histograms and measures of variability, along with some
newer concepts, such as using geology to guide sampling and the role of variable
additivity. The other half is then aimed at methods for model development, once the
important aspects of the geosystem behavior have been detected and quantified. Here, we

Xix



XX Preface

present a variety of modeling methods, including linear regression. We devote two
chapters to linear regression because it is so common and has considerable utility; we
think even experienced users will find a few surprises here. The final chapter centers on
several field modeling studies that range from the highly deterministic to the strongly
random. In all cases, the statistical diagnosis and geology were essential to the choice of
the modeling method.

The term geostatistics was intended to reflect the quantification of geologic principles
and the reconciliation of the disciplines of geology and statistics. Matheron (Journel and
Huijbregts, 1978, p. v) points out that "geo" was intended to reflect the structure while
"statistics" signified the random aspect of assessing and modeling ore deposits. However,
geostatistics has more commonly come to refer to a small part of statistical analysis and
modeling. We have abandoned the term "geostatistics" in this text in favor of the older,
and more appropriate, usage of Matheron (1967) of regionalized or autocorrelated
variables.  This frees us to cover all types of statistics that might be of benefit to the
geopractitioner. Pedagogically, this allows us to show the progression of statistics from
probability through correlation to autocorrelation using the same terminology and
notation. :

As a collaborative effort, this book has afforded all the authors many opportunities to
learn from each other and expand their interests. A book written by one or two authors
would have been easier to produce, keeping the logistical problems to a minimum. The
result, however, would have suffered by being either much more geological or statistical.
We hope the reader will also benefit from this interplay of views and agree that "life on
the rocks" is not so painful as it sounds.

No work of this kind succeeds without help from others. We are especially indebted to
Joanna Castillo, Mary Pettengill, Samiha Ragab, and Manmath Panda for their help.
Heidi Epp, Sylvia Romero and Dr. I. H. Silberberg are to be specially commended for
their copy-editing and technical diligence in dealing with the multiple revisions and
random errors that are the way of life in producing camera-ready books.

LWL acknowledges the patience of Carole and the kids, Leslie and Jeffrey, for allowing
him to hog the computer for so long. JLJ would like to express thanks for the patience
and support of his wife, Jane, and his daughters Cathy and Leanne; the latter two have
waited for that tree-house long enough! PWMC expresses thanks to Kate, William,
Jessica and Hugo for their support over the years that led to this contribution. PWMC
and JLJ both wish to acknowledge the support of the Edinburgh Reservoir Description
Group members. JLJ particularly thanks Heriot-Watt University for a sabbatical leave to
work on this book and his colleagues in the Department of Petroleum Engineering for
covering for him during that absence. PWMC would also like to acknowledge Kingston
University for the opportunity for practicing geologists to get an appreciation of
statistical methods -- an opportunity that led, many years later, to his involvement in this
book. His current post is funded by the EIf Geoscience Research Center. DJG expresses
his love and thanks to Janet, the "mom", and Amanda and Holly, the "soccer dudettes",
for their patience during the never-ending crunch times. DJG also thanks Chevron
Petroleum Technology Co. (formerly Chevron Oil Field Research Co.) for support of
reservoir characterization research, and his many friends and colleagues on the
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INTRODUCTION

The modern study of reservoir characterization began in the early 1980's, driven by the
realization that deficiencies in advanced oil recovery techniques frequently had their origin
in an inadequate reservoir description. The litany of problems became commonplace:
wells drilled between existing wells did not have the interpolated characteristics, chemicals
injected in wells appeared (when they appeared at all) in unforeseen locations, displacing
agents broke through to producing wells too early, and, above all, oil recovery was
disappointing. Each of these problems can be traced to a lack of understanding of the
nature of the distribution of properties between wells.

It is surprising that inferring the nature of interwell property distributions is not firmly
rooted in petroleum technology, despite the maturity of the discipline. Engineers
generally constructed a too-simple picture of the interwell distribution, and geologists
generally worked on a much larger scale. Consequently, both disciplines were unfamiliar
with working in the interwell region at a level of detail sufficient for making predictions.
Into this gap has come the discipline of geological statistics, the subject of this book.

Geological statistics has many desirable properties. As we shall see, it is extremely
flexible, fairly easy to use, and can be made to assess and explore geological properties
easily. But it flies in the face of many geologic traditions in its reliance on quantitative
descriptions, and its statistical background is unfamiliar to many engineers. This
statement, then, epitomizes the overall objectives of this book: to familiarize you with
the basics of statistics as applied to subsurface problems and to provide, as much as is
possible, a connection between geological phenomena and statistical description.



2 ‘ Chap. 1 Introduction

1-1 THE ROLE OF STATISTICS IN ENGINEERING AND
GEOLOGY

The complexity of natural phenomena forces us to rely on statistics. This reliance brings
most of us, both engineers and geologists, into a realm of definitions and points-of-view
that are unfamiliar and frequently uncomfortable. Therefore, the basic idea of this section
is to lay some general groundwork by explaining why we need statistics.

We take statistics to be the study of summaries of numbers; a statistic, therefore, is
any such summary. There are many summaries: the mean, standard deviation, and
variance, to name only a few. A statistic is quite analogous to an abstract or executive
summary to a written report that exists to convey the main features of a document
without giving all the details. A statistic gives the main feature(s) of a set of numbers
without actually citing the numbers. Unlike abstracts, however, the specific statistic
needed depends on the application. For example, the mean and standard deviation of a card
deck have no relevance compared to the ordering, a measure of which is also a statistic.

In a broader sense, statistics is the process of analyzing and exploring data. This
process leads to the determination of certain summary values (statistics) but, more
importantly, it also leads to an understanding of how the data relate to the geological
character of the measured rock. This last point is quite important but often overlooked.
‘Without it, the data are "boiled down" to a few numbers, and we have no idea whether
these numbers are representative or how significant they are. As we shall see below, the
essence of statistics is to infer effects from a set of numbers without knowing why the
numbers are like they are. With exploration, the data can "tell their story,” and we are in
a position to hear, understand, and relate it to the geological character. The geology then
allows us to understand how to interpret the statistics and how significant the results are.

As we will see numerous times in this book, statistical analysis on its own may
produce misleading or nonsensical results. For example, the statistical procedures can
predict a negative porosity at a location. This is often because the statistical analysis and
procedures do not incorporate any information about the geological and physical laws
governing the properties we are assessing and their measurement. It is up to the analyst
to understand these laws and incorporate them into the study. Statistics is a powerful
method to augment and inform geological assessment. It is a poor substitute for physics
and geological assessment.

Definitions

Let us begin by considering two extreme cases of determinism and randomness.
Borrowing from systems language, a system is deterministic if it yields the same output
when stimulated several times with the same input. It is random if it yields a different



Statistics for Petroleum Engineers and Geoscientists 3

output (unrelated to each other) from the same input. Stochastic describes a system that is
part deterministic and part random, a hybrid system. The essential feature here is that the
descriptors apply to the system, although, since knowledge about the system is limited,
we frequently use them to apply to the output. Stochastic implies that there is some
unpredictability in the description of a set of numbers or in a statistic; random implies
complete unpredictability.

On this basis, reservoirs can be placed into one of three categories. The first is strictly
deterministic, having a recognizable, correlateable element at the interwell (km) scale with
a well-understood internal architecture. The second is mixed deterministic and random
(i.e., stochastic), having a recognizable, correlateable element at the interwell (km) scale
with a well-understood gross internal architecture but local random variability, noise, or
uncertainty. Finally, there is the purely random, with no readily identifiable geological
control on the distribution of properties in a heterogeneous flow unit. We will see
examples of all three types.

Some types of statistical operations are quite deterministic because repeated application
of the same input to the same problem will give the same estimate. These procedures
include both regression and Kriging. By saying that a variable is stochastic, we are not
implying that there is no determinism in it at all—merely that there is at least some
unpredictability associated with it. In later chapters, we shall produce several sets of
numbers that are all different but that have the same statistic; each set is called a
stochastic realization.

Deterministic Versus Stochastic Systems

In general, deterministic predictions are superior to stochastic predictions. After all,
deterministic predictions have no uncertainty and usually contain significant information
about the nature of the system. Consequently, if the system under consideration is
perfectly understood (in our case, if the nature of interwell property distribution is
perfectly known), then determinism is the preferred prediction method. But if we are
honest, we recognize that there rarely is such a thing as a perfectly deterministic system—
certainly no system that can predict permeable media property distributions. In fact,
exactly the opposite is true; a great many properties seem to be random, even when their
underlying physical cause is understood.

Randomness has always been an unsettling concept for physical scientists who are
used to solving precise, well-defined equations for well-defined answers. Einstein himself
said that "God does not play dice" with the universe (quoted by Hoffman, 1972). We
know that all physical measurements entail some random error; nevertheless, only a
cursory look at the real world reveals an incredible amount of unexplained complexity and
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apparent randomness—randomness that usually exceeds any conceivable measurement
error. .

Causes for Randomness

How can there be randomness when nature follows well-established, highly deterministic
physical laws such as the conservation of mass, energy, and momentum? Curiously, this
dilemma, which is the origin of a breach between physical scientists and statisticians, has
only recently been resolved. We try to illustrate this resolution here.
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Figure 1-1.  The outcome of a flipped coin. The shaded dark regions
indicate where the coin will come up "heads"; the light where
it will be "tails." From MacKean (1987).
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Consider the epitome of a random event: the flipping of a two-sided, unbiased coin.
The rise and fall of the coin are governed by Newton's second law and the rate of spin by
the conservation of angular momentum—both well-defined physical laws. The first
requires as input (initial condition) the initial velocity at which the coin is tossed. This
is equivalent to the height of the toss. The second law requires the initial angular
momentum or the rate of spin. With both the height and rate of spin specified, we can
plot the results of the deterministic solution as in Fig. 1-1, where the shading indicates
regions having a common outcome, heads or tails.

At the origin, the regions are large and it should be easy to predict the outcome of a
flip. But as the height and rate of spin increase, the regions become small and, in fact,
become quite small for values that are likely to be attained for a true coin flip. If we
imagine that there is some small error in the height and/or rate of spin (such uncertainty
always exists), then it is apparent that we can no longer predict the outcome of the flip
and the coin toss is random.

Randomness, then, is the manifestation of extreme sensitivity of the solution of an
equation (or a physical law) to small uncertainties in initial conditions. From this point
of view, then, few systems are truly random but a great many are apparently random.

There are two requirements for this sensitivity to exist: a nonlinear physical law and a
recursive process. Both are present in nature in abundant quantities (e.g., Middleton,
1991). However, it's surprising just how simple an equation can be and still exhibit
apparent randomness.

May's equation (Crutchfield et al., 1986) is one of many that will generate apparent
randomness:

xiv1 = A xi(1 - x;)

for x; between 0 and 1. Even though this equation is very simple, it exhibits the two
requirements of randomness. The parameter A controls the extent of the nonlinearity. If
we generate various x;41 starting with xg = 0.5 we find that the behavior of the x; for i
greater than about 20 depends strongly on the value of A. For small 4, the x; settle down
to one of two values. But, as Fig. 1-2 shows, for large A, x; can take on several values.

In fact, for A between 3.800 and 3.995, there are so many values that the x; begin to
take on the character of an experimental data set. Furthermore, an entirely different set of
numbers would result for xg = 0.51 instead of xg = 0 50; therefore, this equation is also
very sensitive to initial conditions.

Remember that this behavior emanates from the completely deterministic May's
equation, from which (and from several like it) we learn the following:
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1. The sensitivity to initial conditions means we cannot infer the initial conditions
(that is, tell the difference between xg = 0.50 and xg = 0.51) from the data set
alone. Thus, while geologists can classify a given medium with the help of
modern analogues and facies models (e.g., Walker, 1984), they cannot specify the
initial and boundary conditions.

2. The sensitivity also means that it is difficult (if not impossible) to infer the
nature of the physical law (in this case, May's equation) from the data. The latter
is one of the main frustrations of statistics—the inability to associate physical
laws with observations. It also means that the techniques and procedures of
statistics are radically different from traditional science and engineering approaches.
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Figure 1-2.  Bifurcation diagram for May's equation. From
Crutchfield et al. (1986).

The latter point is especially significant for earth scientists. It seems that if we cannot
infer a physical law for sedimentology, how then can we make sedimentologically based
predictions? The answer lies at the heart of statistics. We must take the best and most
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complete physical measurements possible, make sure that sampling is adequate, derive the
best statistical estimates from the data, and then use these to make predictions (in some
‘fashion) that are consistent with the inferred statistics. Each of these points is touched
upon at various places in this book.

1-2 THE MEASUREMENTS

Statistical analysis commonly begins after data have been collected. Unfortunately, for
two reasons this is often a very late stage to assess data. First, measurements will already
have been made that could be inappropriate and, therefore, represent wasted time and
money. Second, if the analysis indicates further measurements are needed, the
opportunity to take more data may be lost because of changed circumstances (e.g., the
wellbore being cased off or the core having deteriorated). Therefore, it is more effective to
perform statistical analysis before or while measurements are made.

How can we analyze and calculate statistics before we have numbers to manipulate?
The answer lies largely in the fact that geology is a study of similarities in rock features.
If a formation property is being measured for a particular rock type, similar rock types can
be assessed beforehand to guide the present collection scheme. In that way, we will have
some idea of the magnitude of the property, how variable it may be, and the scale of its
variation. This information can then guide the sampling scheme to make sufficient
measurements at an appropriate scale where the rock property is most variable.

While it may appear obvious, it is important to make more measurements where the
property varies much than where it varies little. This procedure conflicts with common
practice, which is to collect samples at fixed times or spacings. The result of the latter
approach is that estimates of reservoir properties and their variation are poorest where they
vary most.

It is less obvious that the scale of the measurement is important, too, because
variations in rock properties often occur at fairly well-defined scales (see below for further
discussion of this). Any measurement, representing the effective value on the
measurement volume, may not correspond to any of the geological scales. This
mismatch between the scales of measurement and geology often leads to poor assessment
and predictions. The assessments of properties are poor because the measurements are
representing the values and variabilities of multiples of the geological units, not of the
unit properties Predictions are degraded because knowledge of the geometries of
variations can no longer be incorporated into the process When information is ignored,
the quality of predictions detenorates

There is also often an uncertainty in the measurement values arising from
interpretation and sampling bias. Each measurement represents an experiment for a
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process having a model and a given set of boundary conditions. The instrumentation then
interprets the rock response using the model to determine the constitutive property for the
volume of rock sampled. Two examples of volumes and models are well-test and core-
plug permeability measurements. The well test has poorly defined boundary conditions
and the predicted permeability depends on solutions to radial flow equations. A core plug
fits in a rubber sleeve, ensuring a no-flow boundary, and the end faces have constant
pressures applied. This simplifies the geometry so that Darcy's law can be invoked to
obtain a permeability. The well test has a large, poorly defined volume of investigation
while the plug has a very specific volume. Any errors in the assumed boundary
conditions or interpretative model will lead to imprecise estimates of the rock properties.

Sampling bias does not necessarily produce imprecise data. It may instead produce data
that do not represent the actual rock property values. For example, the mechanical
considerations of taking core plugs means that the shalier, more friable regions are not
sampled. Similarly, samples with permeabilities below the limit of the measuring device
will not be well-represented. During coring, some regions may become rubblized, leading
to uncertainties in the locations of recovered rock and their orientations.

Thus, measurements have many failings that may mislead statistical analysis. The
approach advocated in this book emphasizes the exploratory power of statistics in the
knowledge of the geology and measurements. Through examples and discussion, we
illustrate how dependence solely on statistical manipulations may mislead. At first, this
lessens the confidence of the neophyte, but with practice and understanding, we have
found that the models and analyses produced are more robust and consistent with the
geological character of the reservoir.

1-3 THE MEDIUM

The majority of reservoirs that are encountered by petroleum geoscientists and engineers
are sedimentary in origin. Sedimentary rocks comprise clastics (i.e., those composed of
detrital particles, predominantly sand, silt, and clay) and carbonates (i.e., those whose
composition is primarily carbonate, predominantly limestones and dolomites). Both
clastic and carbonate reservoirs have different characteristics that determine the variability
of petrophysical properties.

Variability in Geological Media

Clastic rocks are deposited in the subariel and subaqueous environments by a variety of
depositional processes. The accumulation of detrital sediments depends on sediment
transport (Allen, 1985). When the transport rate changes, erosion or deposition occur.
Sediment transport is a periodic phenomenon; however, for all preserved sequences,
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deposition prevailed in the long term. Petrophysical properties are controlled at the pore
scale by textural properties (grain size, grain sorting), regardless of depositional
environment (Pettijohn et al., 1987). Texture is controlled by many primary parameters:
the provenance (source of sediments) characteristics, the energy of deposition, climate,
etc., and their rates of change. Secondary phenomena such as compaction and diagenesis
can also modify the petrophysical properties. Nevertheless, the influence of primary
depositional texture usually remains a strong determining factor in the petrophysical .
variability in clastic reservoirs.

In carbonate rocks, primary structure is also important. Carbonate sediments are
biogenic or evaporitic in origin. Primary structure can be relatively uniform (e.g.,
pelagic oozes, oolitic grainstones) or extremely variable (coralline framestones).
Carbonates, particularly aragonite and calcite, are relatively unstable in the subsurface.
Pervasive diagenetic phenomena can lead to large-scale change of the pore structure. The
change from calcite to dolomite (dolomitization) leads to a major reduction in matrix
volume and development of (micro)porosity. = Selective dolomitization of different
elements of the carbonate can preserve the primary depositional control. More often the
effective reservoir in carbonates derives entirely from diagenetic modification, through
dissolution (stylolites), leaching (karst), or fracturing. As a result of these phenomena
(often occuring together), carbonates have very complex petrophysical properties and pose
different challenges to the geoscientist, petrophysicist, or engineer.

As we have outlined, the fundamental controls on petrophysical properties in clastic
reservoirs (textural) are generally quite different from those in a carbonate (diagenetic or
tectonic). Itis to be expected that different statistical techniques and measures are needed
to address the petrophysical description of the reservoir medium. Other rock types
occuring less commonly as reservoirs, such as fractured igneous rocks and volcanics,
might require different combinations of the statistical techniques. However, the approach
to statistical analysis is similar to that presented in this book: prior to statistical
analysis, attempt to identify the controlling phenomena for the significant petrophysical
parameters.

Structure in Geological Media

We noted in the previous section that the controls on petrophysical properties are different
in clastics and carbonates. These differences manifest themselves in different large-scale
performance of the medium to an engineered project.

In clastic media, the textural variability is arranged into characteristic structures. These
(sedimentary) structures are hierarchical, and the elements are variously described as stratal
elements, genetic units, and architectural elements for various depo-systems (Miall, 1988;
van Wagoner et al., 1990). These elements are essentially repetitive within a single
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reservoir, characteristic of the depositional process, and their association forms the basis
of sedimentological and environmental interpretations. Distinctive elements are lamina,
beds, and parasequences in the marine envronment at the centimeter, meter, and decameter
scales, respectively (Fig. 1-3). Groups of these elements are generally called sets.

At the larger scale the stacking of these elements (the architecture) controls the
characteristics of reservoir flow units (Hearn et al., 1988; Weber and van Geuns, 1990).
The geometries of elements can be measured in outcrop (e.g., the laminaset elements in
various shallow marine outcrops in Corbett et al., 1994). The repetitive nature of the
elements results from cyclical processes such as the passing of waves, seasons, or longer-
term climatic cycles because of orbital variations (House, 1995).

In carbonate media, similar depositional changes can also introduce an element of
repetitive structure. Often, however, the permeability appears to be highly variable, lacks
distinctive structure, and appears random,

The degree of structure and the degree of randomness often require careful measurement
and statistical analysis. Clastic reservoirs comprise a blend of structure (depositionally
controlled) overprinted by a random component (because of natural "noise" or
postdepositional modification). Clastics tend to be dominated by the former, and
carbonates by the latter. This is by no means a rigorous classification, as a very
diagenetically altered clastic might exhibit a random permeability structure, and,
alternatively, a carbonate may exhibit clear structure. The degree of structure, however, is
one that must be assessed to predict the performance of the medium (Jensen et al., 1996).

Assessing Geological Media

There are various methods for assessing the variability and structure of geological media.
Variability can be assessed by measurements at various increasing scales (Fig. 1-4): thin-
section, probe or plug permeameter, wireline tool, drill-stem test, and seismic. The
comparison of measurements across the scales is compounded by the various geological
elements that are being assessed, the different measurement conditions, and the
interpretation by various experts and disciplines. In general, the cost of the measurements
increases with scale, as does the volume of investigation. As a result, the variability
decreases but representativeness becomes more of an issue.
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Figure 1-3.  Lamination, bed, and bedset scales of sedimentary structure with schematic
permeability variations. After Ringrose et al. (1993). .

Structure is usually assessed by statistical analysis of series of measurements.
Geometrical and photogeological data are also used to assess structure at outcrop (Martino
and Sanderson, 1993; Corbett et al., 1994). In recent years, these structure assessments
have become increasingly quantitative. This approach has raised awareness of the
techniques and issues addressed in this book.
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Figure 1-4.  Shallow marine stratal elements and measurement scales. After
van Wagoner et al. (1990). Reprinted by permission.

1-4 THE PHYSICS OF FLOW

Much of the discussion in this book is aimed at developing credible petrophysical models
for numerical reservoir simulators. There are excellent texts on petrophysics and reservoir
simulation (Aziz and Settari, 1979; Peaceman, 1978), so we give only a rudimentary
discussion here of those aspects that will be needed in the ensuing chapters of this book.

Simulators solve conservation equations for the amount of a chemical species at each
point in a reservoir. In some cases, an energy balance is additionally solved, in which
case temperature is a variable to be determined. The conservation equations are relatively
simple differential equations (Lake, 1989), but complexity arises because each component
can exist in more than one phase; the degree of the distribution among the phases as well
as fluid properties themselves are specified functions of pressure. Pressure is itself a
variable because of a requirement on overall conservation of mass. In fact, each phase can
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manifest a separate pressure, which leads to additional input in the form of capillary
pressure relations. Some simulators can model 20 or more species in up to four separate
phases; the most common type of simulator is the black oil simulator that consists of
three phases (oleic, gaseous, and aqueous) and three components (oil, gas, and water).

The power of numerical simulation lies in its generality. The previous paragraph
spoke of this generality in the types of fluids and their properties. But there is immense
generality otherwise. Most simulators are three-dimensional, have arbitrary well
placements (both vertical and horizontal), can represent arbitrary shapes, and offer an
exceedingly wide range of operating options. Many simulators, such as dual porosity and
enhanced oil recovery simulators, have physical mechanisms for specialized applications.

* There is no limit to the size of the field being simulated except those imposed by the
computer upon which the simulation is run.

The combination of all of these into one computer program leads to substantial
complexity, so much complexity, in fact, that numerous approximations are necessary.
The most important of these is that the original conservation equations must be
discretized in some fashion before they are solved. Discretization involves dividing the
reservoir being modeled into regions—cells or gridblocks—that are usually rectanguloid
and usually of equal size. The number of such cells determines the ultimate size of the
simulation; modern computers are capable of handling upwards of one million cells.

The discretization, though necessary, introduces errors into a simulation. These are of
three types.

Numerical Errors

These arise simply from the approximation of the originally continuous conservation
equations with discrete analogues. Numerical errors can be overcome with specialized
discretization techniques (e.g., finite-elements vs. finite-differences), grid refinement, and
advanced approximation techniques.

Scale-up Errors

Even with modern computers, the gridblocks in a large simulation are still quite large—as
much as several meters vertically and several 10's of meters areally. (The term grzdblock
really should be grid pancake.) This introduces an additional scale to those discussed in
the previous section, except this scale is artificial, being introduced by the simulation
user. Unfortunately, the typical measurement scales are usually smaller than the
gridblock scale; thus some adjustment of the measurement is necessary. This process
called scalingup, is the subject of active research.
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Input Errors

Each gridblock in a simulation requires several data to initialize and run a simulator. In a
large simulation, nearly all of these are unmeasurable away from wells. The potential for
erroneous values then is quite large. The point of view of this book is that input errors
are the largest of the three; many of the techniques to be discussed are aimed at reducing
these errors.

The conservation equations alone must be agumented by several constitutitive
relationships. These relationships deserve special mention because they contain
petrophysical quantities whose discussion will occur repeatedly throughout this book.

Porosity is the ratio of the interconnected pore space of a permeable medium to the
total volume. As such, porosity, usually given the symbol ¢, represents the extent to
which a medium can store fluid. Porosity is often approximately normally distributed,
but it must be between 0 and 1. In the laboratory, porosity can be measured through gas-
expansion methods on plugs taken from cores (¢pyye) or inferred from electrical-log
measurements. Each has its own sources of error .

Like all petrophysical properties, porosity depends on the local textural properties of
the medium. If the medium is well-sorted, it depends primarily on packing. As the
sorting becomes poorer, porosity begins to depend on grain size as well as sorting.

The most frequently discussed petrophysical quantity in this book is permeabzlzty
This is defined from a form of Darcy's law:

-k AP

u =
where u is the interstitial velocity of a fluid flowing through a one-dimensional medium
of length L, AP is the pressure difference between the inlet and outlet, u is the fluid
viscosity, and k is the permeability. Permeability has units of (length)2, usually in ym?
or Darcys (D); conventionally 10-12 m2 = 1 ym?2 = 10-3 mD. mD means milliDarcies.
The superficial velocity is u = Q/A¢, where Q is the volumetric flow rate and A is the
cross-sectional area perpendicular to the flow.

Equation (1-1), in which k is a scalar, is the simplest form of Darcy's law. Simulators
use a more general form:

=-2- (VP + pg) (1-2)

where u is a vector, p the fluid density and VP the vector gradient of pressure. A in this
equation is the fluid mobility defined as
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Permeability -in this representation is now a tensor that requires nine scalar
components to represent it in three Cartesian dimensions.
kxx kx y kxz
ke=| kyx kyy kyz
kyx kg ¥ kzz
where each of the terms on the right side are scalars. The tensorial representation is

present so that u and its driving force (VP + pg) need not be colinear. Most simulators
use a diagonal version of the permeability tensor:

kxy 0 0
k=| 0 ky 0 (1-3)
0 0 k&

ky, ky are the x- and y- direction permeabilities; k; is usually the vertical permeability
and is frequently expressed as a ratio kyy of the x-direction permeability. kyy is
commonly less than one, usually much less than one in a typical gridblock. Unless
otherwise stated, when we say permeability, we mean the scalar quantities on the right of
Eq. (1-3).

Permeability is among the most important petrophysical properties and one of the
most difficult to measure. On a very small scale, it can be measured with the probe
permeameter. The most common measurement is on plugs extracted from the subsurface;
on certain types of media, larger pieces of the core may be used—the so-called whole-core
measurements. All of these measurements are quite small-scale. Far larger volumes—of
the order of several cubic meters—of a reservoir may be sampled through well testing,

All techniques are fraught with difficulties. Consequently, we inevitably see
correlations of permeability with other petrophysical quantities. The primary correlant
here is porosity; the reader will see numerous references to log(k) vs. ¢ throughout this
book. Permeability has also been correlated with resistivity, gamma ray response, and
sonic velocity. :
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Permeability varies much more dramatically within a reservoir than does porosity; it
tends to be log-normally distributed. Permeability depends locally on porosity, and most
specifically on grain size (see Chap. 5). It also depends on sorting and strongly on the
mineral content of the medium (Panda and Lake, 1995).

The version of Darcy's law appropriate for multiphase immiscible flow is
uj=- )Lj.(VP + pjg) (1-4)

where the terms are analogous to those in Eq. (1-2) except that they refer to a specific
phase j. The mobility term is now

Again the terms &k and u are analogous to those in the previous definition of mobility.
The new term ky; is the relative permeability of phase j. Although there is some evidence
for the tensorial nature of ky;, this book treats it as a scalar function.

Relative permeability is a nonlinear function of the saturation of phase j, §;j. This
relationship depends primarily on the wetting state of the medium and less strongly on
textural properties. Under some circumstances, k;; also depends on interfacial tension,
fluid viscosity, and velocity. It is difficult to measure; all techniques involve some
variant of conducting floods through core plugs, which raises issues of restoration, in-situ
wettability, experimental artifacts, and data handling.

Relative permeability is among the most important petrophysical quantitites in
describing immiscible flow. Some measure of this importance is seen in the fractional
flow of a phase j. The fractional flow of a phase is the flow rate of the phase divided by
the total flow rate. With suitable manipulations (Lake, 1989), the fractional flow of
water in two-phase oil-water flow is, in the absence of gravity,

Lw kro Y1
Mo krw

fw=(1 +

fw is, therefore, a nonlinear function of k,, and k,,,, which are themselves nonlinear
functions of saturation. This relationship between saturation and flow is perhaps the
most basic representation of multiphase flow there is.

In addition to the ones mentioned above,——porosity, permeability, and relative
permeability—there are a host of other petrophysical properties that are important to
specific applications. In miscible displacements, diffusion and dispersivity are important;
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in immiscible displacements, capillary pressure plays a strong role in determining
ultimate recovery efficiency. Here again, though, the disparateness of scales manifests
itself; capillary pressure is exceedingly important on the grain-to-grain scale, but this
scale is so small that we represent its effects through the residual saturations in the ky;
functions. For this reason also, capillary pressure is an excellent characterization tool for
the small scale.

1-5 ESTIMATION AND UNCERTAINTY

The basic motivation for analyzing and exploring data must be to predict properties of the
formation being sampled. This requirement thus necessitates the production of estimates
(statistics) that amount to some guess about the value of properties at unsampled
locations in the reservoir. These estimates are often the sole focus of attention for many
users of statistics.

Because estimates are guesses, they also have an uncertainty associated with them.
This is because each estimate is the product of the analysis of a limited set of data and
information. The limited nature of this information implies that our assessment is
incomplete and that, with further information, we could supply a "better” estimate. Two
aspects of statistical analysis help the user to be aware of and to mitigate this uncertainty.

The first aspect is that, to every estimate we produce, we can also produce an estimate
of its associated uncertainty. This gives us a powerful method for assessing the impact of
the limited nature of our data sets. We will find that many of the statistics used in
reservoir characterization have uncertainties related to two features of the data. The first is
the number of data in the analysis. Clearly, data represent information and, the more data
~ we have, the less uncertain we expect our estimates to be. The second is the variability
of the property under study. This is a parameter over which we have no control but, with
geological information and experience, we may have some notion of its magnitude. For
example, the arithmetic average has an accuracy that is related to the ratio
(data variability)/ \/ number of data. Such expressions are very helpful in
understanding what is causing estimates to vary from the "right value" and what we gain
by increasing the number of samples. Since information (i.e., number of data) is
expensive, we can find how much an improved estimate will cost. In the case of the
arithmetic average, doubling the accuracy requires quadrupling the number of samples.

The second aspect is that we can guide the analysis according to the measurement
physics and geological subdivisions of the reservoir. This affords the ability to
incorporate into the analysis at every possible opportunity the geological and physical
knowledge of the reservoir. The inclusion of such information is less quantifiable,
unfortunately, than the effects of data numbers and variability, but is nonetheless
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important in producing statistically relevant estimates. As an extreme example, we can
take the average of the temperature and porosity of a rock sample, 20°C and 0.20, to give
~a result of 10.1. The mathematics does not know any different but the result is
uninterpretable. 'We have no confidence in being able to apply the result elsewhere.
Ridiculous? Yes, but it is extremely easy to ignore information and suppose that the
statistical procedures will iron out the inconsistencies. The result will be poor estimates
of quantities that are only weakly related to the reservoir.

Interpretability and accuracy of estimates also helps in another common engineering
function, comparison of estimates obtained from different kinds of measurements.
Comparisons and the comparability of estimates will be discussed in this book, but the
subject can be very complex. Estimates of average permeability from, for example, well-
test and core-plug data are often only weakly comparable. For well tests, the statistical
uncertainties of these measurements is only a small part of the total uncertainties, which
include the domain of investigation, well-bore effects, and model uncertainty. Yet, these
latter aspects are not well-quantified and, therefore, cannot be easily translated into an
uncertainty of the estimated permeability. Nonetheless, error bands for estimates can at
least convey the statistical causes of uncertainty. These can then assist careful, geo-
engineering judgments to compare estimates.

1-6 SUMMARY

Statistics is a powerful tool that can supply estimates and their uncertainties for a large
number of reservoir properties. The discipline also provides important exploratory
methods to investigate data and allow them to "tell their story." This tool is best used in
concert with the geological and physical information we have about the reservoir.

Measurements are a vital part of statistical analysis. While providing a "window" to
examine system response, they have several shortcomings. These shortcomings should
be understood to gain the most from the data. Statistical analysis should parallel data
collection to guide the choice of sample numbers and measurement type. Geological
information concerning the scale and magnitude of variability can improve the
measurement process:

Sedimentary systems are the primary subject for reservoir characterization. Both
clastic and carbonate systems often exhibit regularities that can be exploited during
measurement and prediction. These features appear at several scales and, therefore,
measurements with differing volumes of investigation will respond differently to the rock.
These scales and the structure thus need to be understood, and the understanding will help
the statistical analysis during both the data-collection and analysis phases.



BASIC CONCEPTS

Up to this point, we have relied on your intuitive grasp of what probability means to
make the case for the roles for probability in reservoir description. Before we give details
of methods and applications that use probability, however, we must agree on what
probability is. Therefore, we will devote some space to defining probability and
introducing terms used in its definition.

Central to the concept of probability is the notion of an experiment and its result
(outcome).

Experiment 3 - The operation of establishing certain conditions that may produce
one of several possible outcomes or results.

Sample Space €2 - The collection of all possible outcomes of 3.
,Event E - A collection of some of the possible outcomes of 3. E is a subset of £2.

These definitions are very general. In many statistical texts, they are illustrated with
cards or balls and urns. We attempt to make our illustrations consistent with the basic
theme of this book, reservoir description. An experiment 3 could be the act of taking a
rock sample from a reservoir or aquifer and measuring its porosity. The sample space £
is the collection of all porosities of such specimens in the reservoir. Figure 2-1
illustrates that the event E may be the value of porosity (¢) that is actually observed in a
core plug.

19
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Figure 2-1.  Sketch of an experiment, measuring the porosity (¢) of a core-
plug rock sample. .

Some books call the sample space the population. .An individual outcome (a single
porosity) is an elementary event, sometime just called an element. The null set, & (no
outcomes), may also be regarded as an event.

An experiment is always conducted to determine if a particular result is realized. If the
desired result is obtained, then it has occurred.

Occurrence of E - An event E has occurred if the outcome of an experiment belongs
to E.

Example la - Defining Events. Suppose there are two wells with the
measured core-plug porosities in Table 2-1.

This reservoir has had 14 experiments performed on it. If we take the event
E to be all porosities between 0.20 and 0.25, then the event has occurred four
times in Well 1 and four times in Well 2. We denote the event as E = [0.20,
0.25]. Square brackets [ ] represent intervals that include the extremes.

The frequency of these occurrences is important because below we will
associate probability with frequency. The event must be well-defined before
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Table 2-1. Core-plug porosities for Example 1.

Well 1 Well 2
0.19 0.25
0.15 0.20
0.21 0.26
0.17 0.23
0.24 0.19
0.22 0.21
0.23
0.17

the frequencies can be calculated. Slight changes in the event definition can
greatly alter its frequency. To see this, recalculate the frequencies in the
above data when the event definition has been changed to be E = [0.19, 0.25].

2-1 COMBINATIONS OF EVENTS

Consider the case of two events, E1 and E2. Both represent some outcomes of the
experiment 8. We can combine these events in two important ways to produce new
events. The first combination includes all the elements of E1 and E7 and is called the

union of E1 and E».

Union of Two Events - E1 U E9 is the set of outcomes that belong to either E1 or
Ej.

The second combination involves only the elements common to E1 and E9. This is
called the intersection of E1 and E3.

Intersection of Two Events - E1 N E7 is the set of outcomes that belong to both E
and Ej.

Both union and intersection are themselves events. Thus, the union of two events Eq
and E7 occurs whenever Eq or E9 occurs. The intersection of two events Eq and Eo
occurs when both Eq and E3 occur.

Example 1b - Illustrating Union and Intersection. Referring to Table 2-1 of
core-plug porosities, if E1 = [0.15, 0.19] and E9 = [0.18, 0.24], then

Eq1 v Ey = [0.15, 0.24] contains eight elements from Well 1 and four
elements from Well 2. E1 n Ey = [0.18, 0.19] contains one element from
each well.
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Of course, both definitions can be extended to an indefinite number of events.

Example 2 - Facies Detection by Combining Events. Suppose that core
description and wireline log analysis produced the diagram in Fig. 2-2 for a
reservoir. We can label events associated with the three lithofacies through
their gamma ray and porosity values: Ej = [GR3, GR4], E9 = [GR1, GR2],
E3 =[¢1, ¢»], and E4 = [¢3, ¢4]. The three facies can be distinctly
identified using both GR and ¢ data: E1 n E3 = Facies 3, Ey N E3 = Facies
1, and E9 N E4 = Facies 2. If only Facies 2 and 3 are present in portions of
the reservoir, then either measurement would be sufficient to discriminate
these facies since E1 U E3 = Facies 3 and E9 U E4 = Facies 2.

Facies 3

Facies 1 Facies 2

Gamma Ray, API

Porosity
Figure 2-2.  Hypothetical wireline measurement patterns for three reservoir
facies. Gamma ray response in API units.

The notions of intersection and union lead to one highly useful concept, mutual
exclusivity, and a rather trivial one, exhaustive events.

Mutually exclusive events - Events E1 and E7 are mutually exclusive if both E£1 and
E cannot occur simultaneously; that is, if E1 N Ey = &

Exhaustive sequence of events - The sequence E1, E2,...,E, accounts for all possible
outcomes such that E1 UEq U ... UE, = Q.
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For mutually exclusive events, the intersection contains no outcomes. For example,
E1 N E4 in Fig. 2-2 is mutually exclusive, since the intersection of these two events has
no outcomes (i.e., no lithofacies identified) and can only be the null event &, If all the
lithofacies in the reservoir have been identified, £y n E4 = &. If, during the analysis of
well data, there were portions of the reservoir satisfying both E1 and E4, then there may
be a previously unrecognized facies present or the measurements may be in error (e.g.,
poor borehole conditions).

- In an exhaustive sequence, one of the constituitive events must occur. The term
exhaustive sequence refers to the sample space and not the experiment. This is the reason
that it is trivial; if we knew the exhaustive sequence of events of all the porosities in the
reservoir (the sample space), there would be no need of estimation or statistics, and the
reservoir would be completely described.

Compleméntary event 3 - The subset of 2 that contains all the outcomes that do not
belong to E.

The complementary event for £ in Exafnple 2 is all of the gamma ray values below
GR3 or above GR4, i.e., 31 = (0, GR3) U (GR4, «). This definition also applies to the
sample space. the parentheses ( ) indicate intervals that do not contain the extremes.

2-2 PROBABILITY

We are now equipped to consider a working definition of probability. It also involves the
connection between statistics and probability.

Probability - Let E be an event associated with an experiment 3. Perform 3 n times
and let m denote the number of times E occurs in these n trials. The ratio m/n is
called the relative frequency of occurrence of E. If, as n becomes large, m/n
approaches a limiting value, then we set p = lim m/n. The quantity p is called the
probability of the event E, or Prob(E) =p. "

The relative frequency of occurrence of the event E is a statistic of the experiment 3.
The ratio m/n is obtained by conducting »n experiments. Also associated with the event E
is the notion that, as n approaches infinity, the statistic m/n will approach a certain
value, p. The statistic m/n only tells us about things that have happened, whereas the
probability allows us to make predictions about future outcomes (i.e., other times and/or
other places). The link between the two occurs when we say "we know what m/n is, but
we will never know what p is, so let us assume that p is about equal to m/n." In effect,
we assume that future performance replicates past experience while recognizing that, as n
increases, the statistic m/n may still vary somewhat.
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Example 3a - Frequencies and Probabilities. Table 2-2 lists the grain
densities (pg) measured from 17 core plugs.

Table 2-2. Core-plug grain densities for Example 3.

Plug no. pg, glem3 Plug no. pg, g/cm3

1 2.68 10 2.60
2 2.68 11 2.70
3 2.68 12 2.74
4 2.69 13 2.69
5 2.69 14 2.68
6 2.70 15 , 2.68
7 2.69 16 2.68
8 2.70 17 2.70
9 2.68

Estimate the relative frequencies of these events:

Eq1: 2.65 < pg <2.68;
Ey: 2.68 < pg < 2.71;
1 2.65 < pg <2.71;
E4: 0< pg <oo; and
Es: -0 < pg < 0.

kW=
(]
w

First, the experiment 3 consists of taking a core plug and measuring its
grain density. So, in this case, 17 experiments (n = 17) have been performed
and their outcomes listed. The sample space, £2, consists of all possible
values of grain density. We now consider the relative frequencies of these
events.

1. E71=1[2.65,2.68] occurred for plugs 1, 2, 3,9, 14, 15, and 16. m=7
so Prob(E1) = 7/17 = 0.412; ‘

2. Ep=12.68,2.71] occurred for plugs 4, 5, 6, 7, 8, 10, 11, 13, and 17.
m =9 so Prob(E7) = 9/17 = 0.529;

3. E3 =[2.65, 2.71] occurred for plugs 1, 2, 3,4, 5,6,7, 8,9, 10, 11, 13,
14, 15, 16, and 17. m = 16 so Prob(E3) = 16/17 = 0.941;

4. E4 =0, %) occurred for all the plugs. m =17 and Prob(E4) = 17/17 =
1.0; and ’

5. Es5=(-o0, 0] occurred for none of the plugs. m =0 and Prob(Es) = 0/17=0.

‘While we have labeled these frequencies as probabilities, this may not be
accurate. All five of these frequencies are computed from the data obtained by
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conducting only 17 experiments. How accurate are they? That is, assuming
that the experimental procedure for grain-density determinations is accurate,
how representative are these frequencies of the whole reservoir? If we
obtained more data, would the ratio m/n change for any of the listed events?
For example, observing that other names for E4 and E5 are €2 and &,
respectively, we would claim that Prob(E4) = 1 and Prob(Es) = O are exactly
the same values as their relative frequencies. This observation, however,
requires knowledge that is not based solely upon the data set.

The probability definition encompasses what we believe to be true about any kind of
modelling. If we can quantify and understand the performance of any set of observations
(here these are the relative frequencies), then we assume that we can estimate, to some
extent, the future performance.

Assessing probabilities is relatively simple by most modelling standards because the
observations do not need to be interpreted, just recorded. This is both the bane and the
strength of statistical analysis. It is a weakness because all subsequent analyses will be
largely unrelated to a physical cause. For example, we will not be able to say what
caused the grain densities in Example 3; statistics does not distinguish between
Si02 (pg = 2.65 g/cm3) and CaCO3 (pg =271 g/cm3). It is a strength, however,
when we realize that a very large number of observations, especially those of geological
origin, simply defy quantitative analysis because of their complexity (Chap. 1).

The association of probabilities with frequencies is by no means agreed upon even
among statisticians. This is because it is entirely possible for future events to take a
direction different from that in the past, particularly if there is an outside stimulus. To
proceed, of course, we must accept the hypothesis given by the definition. However,
with further data, it can be tested to determine if the hypothesis still holds. Chapters 5
and 7 treat this topic further.

2-3 PROBABILITY LAWS

The above definitions lead directly to probability axioms or laws. In most cases, they are
rather obvious, as in the following:

Axiom I: For every event E, 0 <Prob(E) <1
Axiom 2: For the special case E = €2, Prob(E) = 1
Axiom 1 says that the ‘probability of any event must be between 0 (no chance of

happening) and 1 (certainty of happening). Axiom 2 says that some event must occur
from the experiment.
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The addition laws involve mutual exclusivity.
Axiom 3 (Addition Law): Let Eq and E2 be two events, then

Prob(E7 U E9) = Prob(E1) + Prob(E2) - Prob(E1 m E9)

This is sometimes known as the fundamental law of addition. It simply says that the
probability of E1 or E9 is the sum of the individual probabilities less the probability of
E1 and E5. We use the law most in the following special cases.

Axiom 3" If Eq and E7 are two mutually exclusive events (i.e., E1 N Eq = &), then
Prob(E1 v E2) = Prob(E1) + Prob(E2)

Axiom 3". IfE1, Eo,..., E;,... is a mutually exclusive sequence of events, then

Prob (E1 W E9 UE3 ... U Ex) = Z Prob(E))

i=1
Axiom 3" is simply a generalization of Axiom 3'.

Example 3b - Illustrating the Basic Axioms. Let's reconsider the grain
density events E1, E9, and E3 defined in Example 3a. Recall that

Eqp = [2.65,2.68], Ep = (2.68, 2.71], and E3 = [2.65, 2.71]. Ej and E; are
mutually exclusive events since there is no value of pg that will satisfy both
Eq and Ep (i.e., E1 N Eg = ©). E3 is the combination of both the events E1
and E5. From the data, we obtained Prob(E1) = 7/17 and Prob(E>p) = 9/17.

If we apply Axiom 3', we must have Prob(E1 U E9) = 16/17, which is pre-
cisely the same value we obtained for Prob(E3).

‘We note also that the null set may be written as the complement of the sample space,
since .
Prob(2) =1 - Prob(£2) =0

The null set is often called the impossible event.
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2-4 CONDITIONAL PROBABILITIES

When £ contains a finite number of outcomes, calculation of event probabilities is
straightforward, if tedious. It is easiest for cases involving a finite number of equally
likely outcomes, such as throwing dice, flipping coins, or drawing balls from the
proverbial urn or cards from a deck. Even such cases require care in conducting the
experiment, however, to avoid influencing the outcomes of later experiments. We first
consider a simple card example.

Example 4a - Conditional Probabilities. Calculate the probability of
selecting two spades in two draws from a normal 52-card deck. Each card is
returned to the deck and the deck thoroughly shuffled before the next draw.

The sample space consists of all pairs of cards: 2= {(Av, Av), (Av,2¥9),
..., (A®,K¥), (Av, As),...}. Since each draw could produce any one of 52
cards, the total number of outcomes is N = 5252 = 2704. Remember that
each card could be any one of 52 and that 2704 is just the number of ways to
take 52 things, two at a time (with replacement).

The event E is the drawing of two spades and the number of outcomes
favorable to the event is 13+13 = 169, since there are 13 spades in the deck
and the second draw is with replacement. Therefore the probability of E is
169/2704 = 0.0625, a surprisingly small number.

The experiment is more complicated when the card is not replaced after each
draw. This is because withholding the first card alters the probability in the
second draw. Such changes lead to the notion of conditional probability.
For two events, Ey and E9, the conditional probability of E9 given that £
has occurred is defined to be

_ Prob(E1 n E9)
Prob(Ey | Ey) = __——Prob(El)
provided that the Prob(E1) > 0. (The vertical bar between E1 and E on the

left of this definition means "given that.”) Actually, we would not be inter-
ested in the probability of Eo given that £ never occurs because

Prob(E7 | E1) would not make sense. If E1 and E9 are mutually exclusive,
then if 7 has occurred, Eo cannot occur and we have Prob(Eq | E1) = 0.

Usually, we use the above definition to estimate Prob(E1 n E) as is illustrated in the
next example. '



28 Chap. 2 Basic Concepts

Example 4b - Conditional Probabilities Revisited. We repeat the task
considered in Example 4a of calculating the probability of selecting two
spades in two draws from a normal 52-card deck. This time, however, the
first card is held out before the second draw.

The sample space now consists of fewer pairs of cards: Q2= {(Av, 2%),...,
(Av,Kv), (Av, A),...}. Pairs with identical cards, such as (Av, A¥)
and (34, 34), are no longer possible. ~ :

We also define the events differently from Example 4a. Let E1 = {drawing a
spade on the first card} and E7 | E7 = {drawing a spade on the second card
given that the first card is a spade}. What we seek is Prob(E2 N E1). From
the definition of probability,

Prob(E1) = 13/52 = 1/4 because there are 13 spades in 52 cards,
and

Prob(Ey | E1) = 12/51 = 4/17 because there are now 12 spades in 51 cards.

The second probability differs from the probability of drawing a spade in
Example 4a (E3 = 13/52) because the lack of replacement changes both the
number of cards in the deck and the spades available to be chosen.
Rearranging the definition of conditional probability, we have

Prob(E1 N E3) = Prob(E3 | E1) Prob(E1) = 1/17 = 0.059
or a slight decrease in probability caused by the lack of replacement.

The definition of conditional probability can be easily generalized to provide a 5
multiplication rule for the intersection of several dependent events. Let A, B, and C be .
three events. In terms of conditional probabilities, the probability of all three events
happening is

Prob(A N B N C) = Prob(A | BC) Prob(B | C) Prob(C)

where BC indicates the occurrence of B and C. The reader should compare this to the
addition law for the union of events above, where sums, rather than products, are
involved.

Example 5 - Shale Detection in a Core. A probe permeameter is set to take a
measurement every 3 cm along a 10 cm section of core. The formation
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consists of 1-cm shale and sand layers interspersed at random, with 80% sand
in total (i.e., a net-to-gross ratio of 0.8). What is the probability that only
sand will be measured? Assume the probe falls either on a sand or shale, not

a boundary.

Because of the 3-cm spacing, only three measurements are made over the
interval. Define the following events and their respective probabilities:

C = probe measures a layer of sand, Prob(C) = 8/10;

B = probe measures sand given first layer is sand, Prob(B | C) = 7/9; and

A = probe measures sand given first two layers are sand, Prob(A | BC) = 6/8.

We seek Prob(A m B n C). From the definition of conditional probability,
Prob(A N B N C) = (8/10)(7/9)(6/8) = 0.47

So, with three measurements, there is a one-in-two chance of shale layers

going undetected over a 10-cm sample.

2-5 INDEPENDENCE
We can now define what is meant by independent events.
Independent Events - Two events, E1 and E», are independent if
Prob(E1 r\ E2) = Prob(E1) Prob(Ep)

This result is known as the multiplication law for independent events. When this is
true, the conditional probability of Eq is exactly the same as the unconditional
probability of E1. That is, E9 provides no information about E1, and we have from the
above

- Prob(E1 N Ep)

Prob(E1 | E) = Prob(E2)

= Prob(E7)

The two-card draws in Example 4a were independent events because of the replacement
and thorough reshuffle. We now apply the independence law to a geological situation.
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Example 6 - Independence in Facies Sequences. Suppose there are three
different facies, A, B, and C, in a reservoir. In five wells, the sequence in
Table 2-3 is observed. -

Table 2-3. Facies sequences for five wells.

Position Well 1 Well 2 Weli 3 Well 4 Well 5

Top C B A B A
Middle A A B A B
Bottom B C C C C

Let event E1 = {A is the middle facies} and E; = {C is the bottom facies}.
Based on all five wells, are E] and E7 independent? If Well 1 had not been
drilled, are E7 and E7 independent?

For all five wells, Prob(E1) = 3/5, Prob(E2) = 4/5, and Prob(E1 N Ep) =
2/5. Since Prob(E1) Prob(Es) = 3/5¢4/5 = 0.48 # Prob(E1 m E3), E1 and Ep
are dependent.

Excluding Well 1, Prob(E1) = 2/4, Prob(E7) = 1, and Prob(E1 N Ep) = 2/4.
Prob(E1) Prob(E7) = 0.5 = Prob(E] N E3), so Eq and E; are independent.

Clearly, the data in Well 1 are important in assessing the independence of
these two events.

Statistical independence may or may not coincide with geological independence. There

may be a good geological explanation why facies C should be lower in the sequence than
either A or B. In that case, the results of Well 1 are aberrant and indicate, perhaps, an
overturned formation, an incorrect facies assessment, or a different formation.

Example 7 - Probability Laws and Exploration. Exploration drilling
provides a good example of the application of the probability laws and their
combinations.

You are about to embark on a small exploration program consisting of
drilling only four wells. The budget for this is such that at least two of these
wells must be producers for the program to be profitable. Based on previous
experience, you know the probability of success on a single well is 0.1.
However, drilling does not proceed in a vacuum. The probability of success
on a given well doubles if any previous well was a success. Estimate the
probability that at least two wells will become producers.
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One way to illustrate the various combinations here is through a probability
tree (Fig. 2-3).

0.9 Start 0.1
l \
Fy Sy
V4 AN Vd AN
0.9 0.1 0.8 0.2
I I | I
Fao Sp ) S2
r— — T r—
0.1 0.8 0.2 0.8 0.2 0.6 0.4
| | | | | | | |

09 01 g 02 o0g 02 06 04 08 02 06 04 06 04 02 08

F, S4 Fa Sa F4 S4 Fy S4 Fy Sqg Fy Sa Fy S4 Fy 8y
Prob(22 successes)X10 4162 144 108 72 - 128 g 64 72 48 16 64

Figure 2-3. Probability tree for Example 7.

The different levels of the tree represent the various wells drilled (e.g., S
indicates success on the second well and F4 is a failure on the fourth well),
and each branch is one outcome of the drilling program. The probabilities,
corrected for the success or failure of the previous well, are listed on the
segments connecting the various outcomes. Because of the multiplication
law, the probability of a given outcome (a branch of the tree) is the product
of the individual outcomes; these are tabulated at the end of each branch.
Because each branch is mutually exclusive, the probabilities of having a
given number of successful wells is simply the sum of the probabilities of
the corresponding branches. The probabilities shown are those with two or
more successful wells; their sum is 0.0974. The drilling program has less
than a 10% chance of being successful, probably a cause for re-evaluation of
the whole enterprise.

You can verify that this value is nearly twice what it would be if each well
were an independent event, thus illustrating the benefits of prior knowledge.
It is also possible to evaluate the effect of drilling more wells, or banking on
improved technology by taking the single-well success probability to be
larger than 0.1.
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Example 7 provides some fairly realistic probabilities compared to historic success
rates in exploration. More modern procedures factor in more data along the way (more
seismic traces, more core and log data, reinterpretations, etc.), so that the probability of
success in the next well can be more than doubled. For this reason, it is possible that
the probability of success will increase even after a failed well. On the other hand, a
single failed exploration well may lead to the termination of the entire program.
Typically, an exploration lead becomes a prospect when the overall probability of success
approaches 50%.

2-6 BAYES’ THEOREM

We now take the idea of conditional probabilities a step farther. From the definition of
conditional probability,

Prob(E7 | E2) Prob(E2) = Prob(E1 N EZ)
nd Prob(E; | E1) Prob(E1) = Prob(E1 N E3)
The right sides éf these expressions are equal, so

Prob(E1 | E2) Prob(E2) = Prob(E2 1. E1) Prob(E1)

~ We can solve for one conditional probability in terms the other: -

Prob(E3 | E1) Prob(E1)
Prob(Ep)

Prob(Eq | Ep) =

This relationship is called Bayes’ Theorem after the 18th century English mathematician
and clergyman, Thomas Bayes. It can be extended to I events to give

Prob(E | E;) Prob(E;)
1
Y. Prob(E | E;)Prob(E;)

i=1

Prob(E; |E) =

where E is any event associated with the (mutually exclusive and exhaustive) events E7,

Ej,...,Ey. It provides a way of incorporating previous experience into probability
assessments for a current situation.
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Example 8 - Geologic Information and Bayes' Theorem. Consider a problem
where we have some geological information from an outcrop study and we
want to apply these data to a current prospect. Suppose that we have drilled a
well into a previously unexplored sandstone horizon. From regional studies
and the wireline logs, we think we have hit a channel in a distal fluvial
system, but we do not have enough information to suggest whether the well
is in a channel-fill (low-sinuosity) or meander-loop (high-sinuosity) sand
body. Outcrop studies of a similar setting, however, have produced Table 2-4
of thickness probabilities that could help us make an assessment.

Table 2-4. Outcrop data for Example 8 (based on Cuevas et al., 1993).

Thickness less than Low-Sinuosity High-Sinuosity
m : Probability Probability
1 0.26 ‘ 0.03
2 0.38 0.22
3 0.56 0.60
4 0.68 0.70

If we drill a well and observe x meters of sand, what are the probabilities that
the reservoir is a low- or high-sinuosity channel? The difference could have
implications for reserves and well placement. In outcrop, high-sinuosity
channels were observed to be generally wider and have higher connectivity
than the low-sinuosity variety (Cuevas et al., 1993).

We define E1 = {low sinuosity} and E9 = {high sinuosity}. Before any well
is drilled, we have no way of preferring one over the other, so Prob(E7) =
Prob(E3) = 0.50. After one well is drilled, the probabilities will change
according to whether the observed sand thickness is less than 1 m, 2 m, etc.

Let's suppose x = 2.5 m. This is event E. From Table 2-3, we observe that
x falls between two rows of thickness-less-than entries, x >2 and x<3. Since
the event E falls within an interval (2 < x < 3), we can more precisely
estimate the occurrence of E by calculating the interval probability of E as
the difference in interval bound probabilities. In this example, we calculate
conditional interval probabilities as Prob(E | E1) = Prob(E7 at upper bound) -
Prob(E; at lower bound). From Table 2-3, Prob(E | E1) = 0.56 - 0.38 =
0.18, while Prob(E | E7) = 0.60 - 0.22 = 0.38.

Applying Bayes' Theorem with E associated to two mutually exclusive
events E1 and E9, we obtain for the revised probabilities,
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_ Prob(E | Eq) Prob(E1)
Prob(E1 | E) = 5 o (E 1E ) Prob(E ) + Prob(E | E2) Prob(Es)

~ 0.18:0.50
=0.18+0.50 + 0.38:0.50

= 0.32

and Prob(E, | E) = 1 - Prob(E1 | E) = 0.68. So the outcrop information has
tipped the balance considerably in favor of the high-sinuosity type channel.

We used the maximum information from the thickness measured in the
previous solution. That is, we knew the thickness was less than 3 m and
more than 2 m. If we only knew the thickness was less than 3 m, the
probabilities would be

B Prob(E | E1) * Prob(E1)
Prob(Ey | E) = 5 (ETE7) « Prob(Ey) + Prob(E | E7) < Prob(E4)

_ 0.56°0.50
= 0.56+0.50 + 0.60+0.50

= 048

and Prob(Ey | E) = 0.52. Thus, the change in probabilities is not nearly so
large because less prior information has been added to the assessment.

In Example 8, the probability values for E1 and E, before measuring the formation

thickness, are called a priori probabilities. Prob(E; | E) and Prob(E7 | E) are called a
posteriori probabilities. If there were further information with associated probabilities
available (e.g., transient test data showing minimum sand body width), the a posteriori
probabilities could be amended still further.

Example 8 has a feature that makes it appropriate for Bayes' Theorem: the result of

the experiment (measuring the reservoir thickness) did not uniquely determine which of
the two possible scenarios existed. Now consider the following example, where Bayes'
Theorem may not be suitable.

Example 9 - Bayes’ Theorem and Precise Quantities. We want to know the

-average reservoir porosity, ¢, and some measure of possible variations of

¢, for the Dead Snake reservoir. From well data, we measure porosity to be
¢m = 0.22 for this reservoir. We also have available Table 2-5 of average
porosities for eight reservoirs having a depositional environment and a
diagenetic history similar to those of the Dead Snake. Can we use the
information in Table 2-5 to provide a more appropriate estimate for ¢q?
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Table 2-5. Porosity ranges for Example 9.

Average Reservoir Porosity Number of Reservoirs
0.00 £¢< 0.20 0
020 <9< 0.24 2
0.24 < ¢ < 0.28 4
028 <9< 0.32 2
032 <9< 1.00 0

The answer depends upon how we view ¢y,. If we view ¢, as being
representative and error-free, then we have to set ¢g = ¢y, = 0.22 and any
other information is irrelevant. On the other hand, we have Table 2-5, which
suggests that ¢ could be higher. That is, ¢g = 0.22 might not be
representative for Dead Snake. In order to use the information in Table 2-5,
however, we have to admit to the possibility that our estimate (0.22) may
not be correct and quantify that uncertainty. If we can give some
probabilities of error for ¢y, then Table 2-5 can help amend the a priori
probabilities by use of Bayes' Theorem.

For example, suppose we determine from seismic data that the well is in a
representative location but the measurement ¢, is prone to error. From previous
experience, that error is Prob(0.20 < ¢, < 0.24 1 0.20 < ¢y < 0.24) = 0.7 and
Prob(0.20 < ¢,, < 0.24 10.24 < ¢g < 0.28) = 0.3. That is, there is a 30% chance
we have ¢y, = 0.22 while the reservoir actually has porosity between 0.24 and
0.28. (For simplicity, we assume that the probabilities of other outcomes are
zero.) Using Bayes' Theorem, we can calculate the probabilities for ¢g as follows,
using P for Prob:

Prob(0.20 < ¢g < 0.24 | ¢y, = 0.22) =

P(0.20<,,<0.2410.20<¢3<0.24)P(0.20<¢<0.24)
P(0.20<¢,,<0.2410.20=$<0.24)P(0.20<6(<0.24 )+ P(0.20=0,,<0.2410.24< $<0.28)P(0.24<$(<0.28)

07025
=0.7:0.25 + 0.3:0.5

= 0.54

and Prob(0.24 < ¢9 < 0.28 | ¢, = 0.22) = 1 - 0.54 = 0.46. There are no
other possible porosities for the Dead Snake that are both compatible with
the measured ¢, = 0.22 and the data in Table 2-5. This table provided the
values for Prob(0.20 < ¢g < 0.24) and Prob(0.24 < ¢g < 0.28). Thus, while
there is a 54% chance the Dead Snake does have a porosity as low as 0.22,
there is a 46% chance that ¢g > 0.24.
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This problem could be made more realistic with more intervals, but the
principle remains the same. Without an error assessment for ¢y,, Bayes'
Theorem cannot be applied because we are strictly dealing with mutually
exclusive events: the average porosity for a reservoir can only be one value
and we claim to know that value to be 0.22 without error. We can derive
error estimates for ¢y, using methods in Chap. 5 (see, in particular,

Examples 6 and 7).

2-7 SUMMARY

We have now covered several important foundation concepts regarding probability.
Probability is defined in terms of a large number of experiments performed under identical
conditions; it is the ratio of successful outcomes to the number of trials. Conditional
probability allows the experimental conditions to be varied in stipulated ways. Bayes'
Theorem permits additional information to be incorporated into probabilistic
assessments. All these concepts will be exercised in the chapters to come.




UNIVARIATE
DISTRIBUTIONS

A random variable is the link or rule that allows us to assign numbers to events using the
concepts in Chap. 2 by assigning a number—any real number—to each outcome of the
sample space. We call the rule X, each outcome is called @, and the result of applying
the rule to an outcome is denoted X(w). More formally, a random variable is defined as
follows (Kendall and Stuart, 1977).

A random variable X(+) is a mapping from the sample space £2 onto the real line (9t1)
such that to each element @ € £2 there corresponds a unique real number X(w) with all
of the associated probabilistic features of @ in Q.

Sometimes X(w) is called a stochastic variable. We can illustrate what the definition
means using Fig. 3-1.

The idea this should convey is one of uncertainty, not about the rule X but about the
outcome of the experiment. The random variable incorporates the notion that (1) certain
values will occur more frequently than others, (2) the values may be ordered from smallest
to largest, and (3) although it may take any value in a given range, each value is
associated with its frequency of occurrence through a distribution function.

The value X(w) associated with each element (@) may not necessarily have any

relationship to @'s intrinsic value. Examples 1 and 2 concern two properties of three
reservoir rock samples.

37
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Real Number Line
~

| e

T | T
X(m1) X(w3) X(0)4) X(w,) X(ws)

Figure 3-1.  The random variable X assigns a real number to each possible
outcome @.

Example 1 - Rock Sample Porosities. We measure (with no error) the
porosities of the rock samples and call the measured values ¢q, ¢, and ¢s.
The sample space (£2) is all values in the range 0 to 1 (i.e., 2 = [0, 1]).
Each outcome, ¢, has a numerical value corresponding to the porosity of the
rock sample. In this case, it makes sense to have X be the identity function.
So the event "the porosity of sample one is @" is assigned the value @. We
can order the values (e.g., #3 < ¢; < ¢,) and establish that some samples

have a larger fraction of pore volume than others.

Example 1 deals with continuous data. Such variables have a distinct ordering because
they relate to a property that can be "sized.” That is, one sample can have a larger or
smaller amount of that property. If the ordering is on a scale that has a well-defined zero
point, where there is none of the property, and the variable can always be meaningfully
added or multiplied, then the variable is on a ratio scale, and it is called a ratiometric
variable. Length falls nicely into this category, along with other extensive properties
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such as volume, mass, and energy. For example, the combined volume of two
incompressible systems is the sum of the system volumes. Porosity is a ratio of
volumes so it has a well-defined zero point, but only under conditions where the
associated rock volumes are known can porosities be added meaningfully.

A second type of continuous variable (on an interval scale) is the one that has an
arbitrary zero point or cannot always be meaningfully added. Temperature, time,
position, density, pressure, porosity, permeability, resistivity, gamma ray API, and
spontaneous potential deflection are some examples. Intensive variables are interval
types. Sums, differences, and multiplication/division of such variables may or may not
be meaningful. For example, consider the temperatures of two samples of similar
material. Let Ty = 30°C and T = 10°C, so AT =T - T5 = 20°C. Sample 1 is hotter

than sample 2 by 20°C, but sample 2 may have more energy than sample 1 because
sample 2 may have greater thermal mass than sample 1. Combining the two samples
would not give T =40°C. Similarly, let ¢; = 0.10 and ¢, = 0.20 for two rock samples.
If these porosities refer to identical volumes of rock, we can deduce that sample 1 has less
void volume than sample 2. In general, if we merge the two samples, the total porosity
¢r is not equal to ¢; + ¢, but to some weighted average of ¢y and ¢: ¢y =21,¢; +
Aydy, with A1 + Ap =1 and 4; 20..

Example 2 - Rock Sample Depositional Environments. We identify the
depositional environments of three samples: sabkha, dune, and interdune.
The sample space (£2) consists of all depositional environments, including
lacustrine, aeolian, fluvial, and shoreface deposits among others. Here, we
choose X to be X(sabkha) = 0, X(dune) = 1, and X(interdune) = 2. While we
can order the numbers 0, 1, and 2, as we did in Example 1, the ordering has
no significance and the differences (1 - 0) or (2 - 1) have no significance.
Furthermore, we may even have trouble differentiating some cases where
sands might have features of two or more environments.

Example 2 deals with categorical or discrete data on a nominal (or "name") scale.
There is no quantitative meaning to the numbers attached to the events (categories); dune
is not twice as much of anything as the interdune and there is no natural zero. Similarly,
ordinal scale data, such as bit wear, hardness, and color lack the proportion information
of continuous data. Ordinal data, however, do have an order to the data because the
variable has a size associated with it; sample A is harder than sample B, for example, but
we cannot say that it is twice as hard.

All types of data occur in petroleum problems, and we have to be aware of the ways
that we can use the information they contain. ‘Ratiometric variables contain the most
information (highest level), and nominal variables contain the least information (lowest
level). A wide variety of statistical methods is available for continuous variables, while a
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more restricted range exists for categorical variables. Categorical variables can still give
us vital information about a system, however, so that conditional probabilities may be
useful. Recall, for example, the implications for reserves potential if a fluvial reservoir is
from a low- or high-sinuousity part of the system (Chap. 2). There are many examples
in this text where categorical geological information is incorporated, either explicitly or
implicitly, as a conditional probability to help improve assessments.

Higher-level variables can also be changed into lower-level variables if information is
ignored. For example, indicator variables can be generated from ratiometric or interval
variables by setting cutoff values. An ordinal variable, P, might be defined as

P = 0k<1mD
" " Wlkz1mD
based on the permeability k, an interval variable. P contains less information than k, but
it is still useful: Prob(P = 1) is the formation net-to-gross ratio and P is the net-pay
indicator. Recall that net pay is that portion of the formation thought to have sufficient
permeability that it will contribute to economic production.

For the methods in this book to apply, variables should be one of the four types just
discussed, else they are deterministic. There are other types of variable, however, and care
should be taken to ensure that methods discussed in this book are appropriate for the
variables being considered. Fuzzy variables, for example, are one type that is not suitable
for the methods described here. Fuzzy variables have values that may partly belong to a
set, whereas the variables we use definitely either belong or do not belong to a set. For
probabilities of events to be defined, outcomes of experiments have to be distinct and
recognizable as either having occurred or not. See Klir and Fogler (1988) for further
details. :

It would be nice to distinguish by notation between random variables, which have
uncertain values, and deterministic variables. For example, random variables might be
denoted by capital letters while deterministic variables could be denoted by lower case
letters. We shall use this convention for generic variables (e.g., x and X). However, the
common usage of certain symbols for particular reservoir properties, e.g., k for
permeability, R for resistivity, ¢ for porosity, and T for transmissivity, does not obey
any particular rule of this kind. Therefore, we will not strictly adhere to using notation to
make clear the distinction between random and deterministic variables; we will expect the
reader to understand from the context of the problem which variable is which.

The definitions we have introduced do not rule out dependencies between variables in
different sample spaces or between values within the same sample space. We now
consider how the concept of a random variable provides the essential link between
probabilities and distributions.
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3-1 THE CUMULATIVE DISTRIBUTION FUNCTION

The most common of generic distribution types is the cumulative distribution function
(CDF). Given a random variable X, the cumulative distribution function F(x) is defined
as

Cumulative Distribution Function (CDF): F(x) = Prob( X < x).

In words, F(x) is the probability of finding a value of a random variable X that is less
than or equal to x. The argument of F is x, the bounding value, not X the random
variable. Thus, F says something only about the probability of X being less than a
certain value, but says nothing precisely about what X is. Sometimes we find the CDF
defined as the probability of a random variable greater than or equal to x, but this is just
one minus the definition given above because of Axiom 3 (Chap. 2): F°(x) =1 - F(x) is
the complement of F.

The CDF uniquely defines all of the probabilistic properties of a random variable.
This might seem to rob X of some of its randomness because X must now conform to a
deterministic function, namely F(x). Remember that the adjective random refers to X, not
F(x). The form of the CDF can range from cases where there are an infinite set of X's, to
a finite set of discrete X's, to where there is only one X. The latter is the degenerate case
where the random variable becomes deterministic.

CDF's have the following properties:
1. 0< F(x) <1 for all x since F(x) is a probability.

2. lm Fx)=0 and lm F(x)=1.
X—> 400

X—> —o0

3. F(x) is a nondecreasing function: F(x+h) > F(x) for any 2 >0 and all x.

4. F(x) is a continuous function from the right for all x: L _l-l)n‘(l) +F(x+h) = F(x),
where & — 0+ means & approaches 0 through positive values.

An important use of the CDF is that it can be used to find out how often events
within a given range of values will occur (i.e., interval probabilities). Suppose we wish
to investigate the random variable X and its frequency of occurrence between a lower
bound a and an upper bound b (a<b). If we let the events E{ = (-o0, a] and E; = [a, b],

then clearly Eq and E, are mutually exclusive. Axiom 3' (Chap. 2) applies and gives

Prob(Eq U E3) = Prob(E1) + Prob(E5)
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or ‘ :
Prob(X < b) = Prob(X < a) + Prob(a <X < b)

which becomes, upon rearrangement,
Prob(a < X £ b) = Prob(X < b) - Prob(X < a) = F(b) - F(a)

In words, the probability of a random variable having a value between a and b is given by
the difference between the values of the CDF evaluated at the bounds.

All of statistics exhibits a dichotomy between discrete and continuous mathematics.
The former is far more practical than the latter, but continuous statistics are usually more
theoretically tractable.

Discrete CDF's

These are defined by a function F(x) with a set of jumps of magnitude p; at points x; for
i=1,2,3,...,1 such that

ProbX =x;) = p; = F(x;) - lim F(x)
x—)xl--

1

S pi=1

=1
The former statement implies that, if we take any two values a and b (a £ b) such that the
interval (a, b) does not contain any of the jump points x;, then

Prob(a<X<bh)=F(®)-F(b)=0

Thus, a random variable X cannot fall within the flat segments of the CDF (Fig. 3-2).
This means that X can take on only values at the jump points. In this case, X is a purely
discrete or categorical random variable. Nominal or ordinal data have this sort of CDF.

If the difference between adjacent x;'s (i.e., x;,1 - x;) is the same for all i, this

difference is called the class size. If we connect the upper corners of this plot with
straight-line segments, the resulting curve is called a frequency polygon.
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X1 Xo x3 0 X4 X5 Xg

Figure 3-2.  An example CDF for a discrete random variable.

Continuous CDF's

If we consider a CDF for a random variable that is absolutely continuous and
differentiable (this rules out the frequency polygon) for all x, a continuous CDF F(x) will
be defined mathematically as

X
F(x)= If(u) du

with
+o0

Fleo)= [fluydu=1

A typical shape is sketched in Fig. 3-3.

The random variable X pertaining to this CDF is a purely continuous random variable.
Continuous CDF's lend themselves readily to analysis, but they cannot be developed
directly from experimental observations. What we usually end up doing is fitting a
theoretically smooth curve to the frequency polygon or to the data themselves.
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= Y

Figure 3-3.  An example CDF for a continuous random variable.

The function f(u) in the definition of F(x) is the probability distribution function
(PDF) whose properties we consider below. But let us first consider an example of how
CDF's can be used to quantitatively convey geologic information.

Example 3 - Stochastic Shales. Shales can influence several aspects of
reservoir performance, including coning retardation, gravity drainage, and
waterflood sweep. In these cases, it is important to know the locations and
areal extent of shales in a reservoir.

The simpleét case is when a shale extends over an entire reservoir interval. It
is observed in every well, and its effect on the reservoir flow can be simply
modeled in a reservoir simulator. Such shales are often called deterministic
shales. '

The stochastic shale, on the other hand, might appear only in one or two
wells, and its areal extent between wells is unknown. It may not even be the
same shale that appears in several wells. Its effects on reservoir performance
might be quite small or significant. If a number of such shales are dispersed
throughout the reservoir, their impact can be quite large. To simulate the
effects of such shales, some idea must be obtained about their locations and
sizes. This is where the CDF can help out.




Statistics for Petroleum Engineers and Geoscientists 45

It has been recognized (e.g., Weber, 1982) that shale dimensions vary with
the environment of deposition. In general, the areal extent of shales is greater
in low-energy environments. The exact size of any particular shale will be
determined by a large number of factors governed by the circumstances under
which deposition occurred. With the aid of CDF's such as Fig. 3-4, we can
begin to quantify the observed size-environment relationship. Each curve in
Fig. 3-4 is a CDF and, because the probabilities vary with depositional
environment, these curves are conditional CDF’s. If D is a discrete variable
identifying the environment and X is the shale length, each curve can be
represented as F(x | d;) = Prob(X < x| D = d;) where dy, dy,...,d are the
depositional environments.

Such CDF's can be used in a qualitative sense, giving the chances that it is
the same shale that appears at two wells.

For example, suppose the d; = deltaic or barrier and the distance between two

vertical wells is 1500 ft. There is observed a single shale in each. In the
absence of other information, there is approximately a 50% chance that shales
observed in these two wells are the same. CDF's can be used in a more
quantitative manner, using the Monte Carlo simulation method (Haldorsen
and Lake, 1982). '

Stochastic simulation based on Monte Carlo methods involves using a random number
generator to "scatter” a number of shales within a reservoir simulator model and calculate
the performance. The locations of the shales are picked randomly subject to certain
constraints. The sizes of the shales are chosen from the shale-size CDF. The calculated
performance will, of course, depend on the shale distribution in the model. Consequently,
a number of runs-all with different shale distributions-are usually needed to determine how
variable the performance might be. Each new shale distribution is an equiprobable
realization, one possible outcome of the infinite possible number of realizations
(stochastic experiments). Given computer resource limitations, only a finite number of
realizations are possible. The variability in reservoir performance from these realizations
is claimed to be representative of outcomes from the underlying population. Monte Carlo
simulation will be discussed in more detail later in this chapter and Chap. 12.
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Figure 3-4.  Shale size CDF's based on outcrop data. After Weber (1982).
The lines are curve fits to data. Points shown are from Zeito
(1965).

Producing CDF's From Data

For some random variables, we may know from theory what the CDF is. Some common
distributions will be considered in Chap. 4. There are times, however, when we will not
know what the CDF of a variable is. If we can obtain some sample values of the
variable, we can produce an approximate CDF based on those data. Such a CDF is called
an empirical or a sample CDF.

Empirical CDF's are usually produced for non-nominal variables where there is some
natural ordering to the data. If there is no natural size to the variable, the empirical CDF
might change shape, depending upon the number assigned (i.e., the random variable) to
each category. For variables with ordering, we produce an empirical CDF as follows.
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1. Order the data so that X; <X, < X3 <-+» <X; where I is the number of data.

2. Assign a probability, p;, to the event Prob(X < X;). Here we have to make some
assumptions about the assignment. If X is a continuous variable or is discrete and
the uppermost categories may not have been sampled, p; = (i - 0.5)/I is usually
adequate. We make the assumption here, without any evidence to the contrary,
that each sample value has an equiprobable chance of occurring. If X is discrete
and all categories have been sampled, p; =i/l .

3. Plot X; versus p; and, depending on whether the random variable is continuous or

discrete, either connect the lines with stair-steps (e.g., Fig. 3-2) or a continuous
curve (e.g., Fig. 3-4).

Clearly, this estimated CDF is better—more like the actual CDF-the more data we have.

The first probability assignment formula given above in Step 2 differs from the naive
assumption that Prob(X < X;) = 1/, Prob(X < X5) = 2/T , -+, Prob(X < X;) = 1. This
is because the second probability assignment formula, p; = i/l , forces Prob(X > Xy = 0.
It does not allow for the possibility that, if we are dealing with a continuous variable,
there may be unsampled regions of the reservoir where X > Xy . A similar argument
holds if X is discrete with possible unsampled upper categories. Each step in p,p; .1 -p;,
is still 1/7 but all the p;'s have been reduced by //2 so that Prob(X > X)) = I/2. Clearly,
this is still an approximation without data to justify it. There are other formulas for
assigning probabilities, such as p;=i/(I +1), which give different values to
Prob(X > Xj). If the population CDF is known, the optimal probability assignment can
be computed.

Example 4a - Producing Empirical CDF’s. Draw empirical CDF's for the
following data (X) and their logarithm X* = In(X)): 900, 591, 381, 450,
430, 1212, 730, 565, 407, 440, 283, 650, 315, 500, 420, 714, and 324.

" 'We first rank the data. One ranking suffices for both variables, X and X*,
since In(X) is a monotomc function. We then define a probability for each

value (x=£ X; and x = In(X;)), using the formula p; = Prob(X < x;) =

Prob(X; < x; ) (z - )I for the I = 17 points. Table 3-1 shows the

calculatlons

Figure 3-5 shows the empirical CDF's. The untransformed CDF (left) is
more curved than the logarithmic CDF (right), which is closer to a straight
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line. This is because the data set has mostly moderate but a few large values,
whereas taking the logarithm has evened out the spread of the variable with
probability.

Table 3-1. Data for Example 4a.
No.- X; - Prob. p; No. x; Py Prob. p;
3 L
1 283 5.65 0.029 10 500 6.21 0.559
2 315 5.75 0.088 11 565 6.34 0.618
3 324 5.78 0.147 12 591 6.38 0.676
4 381 5.94 0.206 13 650 6.48 0.735
5 407 6.01 0.265 14 714 6.57 0.794
6 420 6.04 0.324 15 730 6.59 0.853
7 430 6.06 0.382 16 900 6.80 0912
8 440 6.09 0.441 17 1212 7.10 0.971
9 450 6.11 0.500
1.00 1.00

. 075 = 0754

> ]
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Figure 3-5.  Empirical CDF's for the data of Example 4a.
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3-2 ORDER STATISTICS

Some values of x for the CDF F(x) have special names. x; 5q is the value where
x = F-1(0.50) = x 50 and is called the median. xq 95 and xq 75 are the first and third
quartiles, respectively, of the CDF F(x). The difference x( 75 - x( o5 is sometimes used
as a measure of the variability of X and is called the interquartile range.

A quantile of the CDF F(x) is any value Xp such that F-1(p) = Xp- If we do not know

the population CDF and only have the empirical CDF, we can only provide estimates of
the actual x,'s. These estimated values are termed order statistics. For the data in

Example 4a, xq 50 is approximately 450.

Probability Distribution Functions

Probability distribution functions (PDF's) are a very common statistical tool. They
represent exactly the same information as contained in the CDF, but it is displayed
differently. The CDF takes a "global" view of X, conveying the probability of X being
less than some stipulated value x, The PDF takes a "local” view and describes how the
probability of occurrence of X changes with x. As with CDF's, there is the distinction
between discrete and continuous properties.

Discrete PDF's

~ Consider the discrete CDF F(x) discussed previously. For each "jump" i and any small
h> 0,

Prob(x; - h<X<x;+ h)=F(x;+ h)— F(x; - h) = p;
If we let & — 0, we get Prob(X = x;) = p;.

Thus the jump at the end of each interval represents the probability that X has the
value x;. The set of numbers (py, py, p3,...) plotted against (xy, X7, x3,...) is called the
discrete PDF of the random variable X (Fig. 3-6).

If a horizontal line is drawn through the top of each vertical line to a mid-point

between the neighboring vertical lines, or their extension, on the right (left), the plot is a
bar chart or a histogram.
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Figure 3-6.  Example of a PDF for a discrete random variable.

Continuous PDF's

Consider a small interval (x, x + 8x) from the x axis of a purely continuous random
number X with CDF F(x). Then we have

x+6x

Prob(x >< X<x+x)=F(x+ x) - Fx) = ff(u) du = f(x) ox

This forms the basis for interpreting f(x) as a probability: f(x) represents the frequency of
occurrence of a value of x in the neighborhood of x. The best physical interpretation of
fx) is as a derivative of F(x), because we see from above that f(x) = dF (x)/dx: A typical
continuous PDF is shown in Fig. 3-7.

The basic properties of continuous PDF's are

1. f(x) =0 for all x since F(x) is nondecreasing
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2. Jfwydu=1

b
3. forany a, b (@< b), Prob(a <X <b) = [ f(u) du.
a

f(x) 4

0

Figure 3-7.  Example of a PDF for a continuous random variable.

A rather curious offshoot of the last property is that the probability that X takes a
particular value x is zero. If we let b approach a, then we have

a

Prob(X =x) = f fx)dx =0
a

This is a bit disquieting but entirely consistent with the notion of a random variable.
Recall that we should be able to say nothing about a specific value of a random variable.

Both continuous and discrete PDF's will have peaks and troughs. Those values of x
where a peak occurs are called modes. A PDF with one mode is unimodal; a PDF with
two modes is bimodal, etc.
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Empirical PDF's

Otherwise known as histograms, these PDF's are based on samples. They are a very
common method for assessing data behavior but, as we will see in Example 5, they can
mislead. \

Empirical PDF's can be produced for any type of variable. The way we produce an
empirical PDF is as follows.

1. If the variable is not nominal, order the data so that X; <X, < X3 << X;
where I is the number of data. ’

2. For continuous variables, divide the interval X; - X; into convenient intervals.

We call these intervals bins or classes. Usually the bins are all of equal size, Ax,
so the height of each interval is proportional to the probability. If we choose too
few bins, the histogram has little character; if we choose too many bins, the
histogram is too bumpy. A rule of thumb is Ax = 5(X; - X;)/I. For categorical

variables, each bin is one category.

3. Count the number of data in the " bin, I;, and set Prob(x; <X <x;+ Ax) =p; =
I;/IforI=1t0l-1.

4. Plot p; versus x; <X < x; +4x for/=1to/l-1.

As with the empirical CDF, the empirical PDF more closely approaches the population
PDF as I increases. If unequal-sized classes are used, the height of each interval has to be
determined so that its area (not just the height) is proportional to the probability. This is
because the area of the histogram must be unity.

Example 4b - Drawing PDF's. Draw empirical PDF's for the data (X) and
their logarithm (X* = In(X)) given in Example 4a: 900, 591, 381, 450, 430,
1212, 730, 565, 407, 440, 283, 650, 315, 500, 420, 714, 324.

By ordering the data, we find that Xy = 283, In(X) = 5.65, X7 = 1212,
In(X17) = 7.10. The bin size, using the rule of thumb, is about 250 for the

untransformed data while it is 0.40 for the logarithmic data. Table 3-2 shows
the probabilities.
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Table 3-2. Data for Example 4b.

53

No. Value Freq. D; No. Value Freq. Di
1 250-499 9 0.53 1 5.60-5.99 4 0.23
2 500-749 6 0.35 2 6.00-6.39 8 0.47
3 750-999 1 0.06 3 6.40-6.79 3 0.18
4 1000-1249 1 0.06 4 6.80-7.19 2 0.12

The histograms are shown in Fig. 3-8.
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Figure 3-8.  PDF's for the data and log-transformed data of Example 4b.

The untransformed data have a few large values (2 out of 17) whereas the
logarithmic histogram has a more even spread across the range. Both data
sets have only one peak (unimodal PDF's), and the untransformed data have
the more strongly negatively (right) skewed PDF.

For some applications we would like to draw a smooth curve through the ‘empirical
PDF's. In these cases, nonlinear transforms, as the In in Example 4b, could cause

difficulties since the area under the smooth curve drifts away from one.

Example 5 - Detecting Modes with PDF’s. We now experiment with two
empirical PDF's using the same data set. The data are 6.5, 7.5, 10.5, 12.5,
13.5, 20.5, 25.5, 26.5, 27.5, 29.5, and 37.0. We violate the rule of thumb
for bin size and set Ax = 10. One histogram will begin at x = 0 while the
second will begin at x = 5. Figure 3-9 shows the results.
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Figure 3-9.  Example histograms for identical data sets with different class sizes.

Note how the shift in histogram starting value changes the apparent shape of
each PDF (from unimodal to bimodal) and their skewness. Part of the
problem is the small bin size. A bin size of Ax = 15 would give a more
stable histogram, so the shape would not change so drastically when the
starting point was changed. This example shows that even something as
simple as a histogram can be deceptive and care should be exercised when
interpreting them. The problems with empirical PDF's, as illustrated in this
example, mean that they are rather difficult to deal with in practice. For this
reason, the CDF is the more practical tool, even though the PDF is
conceptually more familiar and more easily understood.

Why Are CDF's and PDF's Important?

There are several reasons why we want to know the distribution of a reservoir property.
They are:

(1) Modeling. Knowing the CDF/PDF, we can produce models of how the property
varies within the reservoir. ‘For example, using stochastic shale models as input to
reservoir simulation permits the presence of shales to be evaluated for their impact upon
reservoir performance. Reserves distributions are often modeled using the CDF's of
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several reservoir properties. See Examples 7 and 8 in this chapter and Chap. 12 for more
details.

(2) Estimation. Chapter 5 is largely devoted to estimating certain parameters based on
their CDF/PDF. We can make better use of the available data when we know the
population PDF. An example is when we want to estimate the average formation
permeability. An estimate using the PDF may easily have one-half or less of the
variability of an estimate that is calculated ignoring the PDF.

(3) Diagnosis. We can test data to determine whether they are "good" or "bad" by
comparing the sample PDF with other sample PDF's or some theoretical reference PDF.
PDF's have been used to assess the accuracy of core measurements (Thomas and Pugh,
1989). Significant changes of facies throughout a reservoir may also be detected by
comparing permeability PDF's from within a well or between different wells. This next
example illustrates this use, along with pointing out some limitations to PDF's.

Example 6 - PDF’ s and Geological Elements - The Lower Brent Group
(Middle Jurassic) is a major North Sea oil-producing interval and commonly
comprises a thick sand-dominated reservoir, without significant shale breaks
(Corbett and Jensen, 1992b). As a single reservoir group, the shape of its
porosity and permeability histograms (sample PDF's) can be used to help
diagnose the presence of units (e.g., facies) and confirm their geological
identification.

The core porosities for this interval (Fig. 3-10) show a predominantly
unimodal, negatively skewed distribution (i.e., most of the data values lie to
the high end of the data range) clustering at 27%. A second cluster at 3%
suggests the presence of a second, minor grouping. Core-plug horizontal
permeabilities, in contrast, are strongly positively skewed. A logarithmic
transformation of the permeabilities results in a more symmetrical
distribution that is clearly multimodal, suggesting the presence of several
different groups. That is, each peak represents a substantial number of
permeability data near that value, and the peaks could represent different
geological units.

Geologically, there are good reasons for splitting the Lower Brent into two
parts, known as the Etive and Rannoch Formations. These geological
elements (formations) are defined on the basis of wireline log characteristics
(e.g., gamma ray) and descriptions of cores. They are correlateable at
interwell (km) distances. The Etive is a characteristically medium- to coarse-
grained, cross-bedded, stacked channel sandstone. The Rannoch is a fine-
grained, highly micaceous, cross-laminated, shoreface sandstone. The grain-
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size difference produces the contrasting permeabilities, even though these
units have similar porosities.
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Figure 3-10. Geological section and histograms of core porosity and
permeability for the Lower Brent Group.

A plot of permeability versus depth (Fig. 3-11) shows the distinction between
formations. The spatial association of the permeability is an important
geological factor. Most of the high permeability values are in the Etive and
low values are from the Rannoch. This information is not readily apparent.
from the PDF's because they ignore the sample locations.
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The high-permeability Etive is clearly a separate population from the low-
permeability Rannoch. The Etive is characterized by unimodal, slightly
negatively skewed porosity and permeability distributions. The Rannoch,
which still has bimodal PDF's, could be further subdivided into carbonate-
cemented and carbonate-free populations. The low-porosity and low-
permeability intervals are discrete carbonate-cemented concretions (often
known as "doggers"). A stratigraphic breakdown on this basis results in two
flow units with approximately symmetrical porosity and log-permeability
distributions.

The Etive, uncemented Rannoch, and cemented Rannoch are thus "sub-
populations” of the Lower Brent population. The histograms and plots of the
petrophysical data versus depth can be used to distinguish and separate the
geological units. In this example, the permeability data are a more powerful
discriminator than the porosity. This means that, while hydrocarbon reserves
might be similar, the elements will have different flow and recovery
characteristics.
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" Figure 3-11. Porosity and permeability histograms for the Etive and
Rannoch formations in the Lower Brent.
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Within the Rannoch sequence, with the help of a series of very fine-scale
probe-permeameter measurements (Corbett and Jensen, 1992), a further
breakdown of the permeability distribution can be made. Some details of this
analysis will be discussed in Chap. 13.

It is possible to determine the basic elements of geological architecture (the laminae),
which tend to have unimodal PDF characteristics (Goggin et al., 1988; Corbett and
Jensen, 1993b). Much of the reservoir characterization effort in recent years is driven by
the need to identify and provide petrophysical PDF’s for the basic geological elements
(Dreyer et al., 1990; Lewis et al., 1990).

The PDF alone may be limited in the determination of effective flow properties,
however. For example, well tests in a braided fluvial reservoir having a symmetrical log-
permeability PDF with an arithmetic average of approximately 500 mD showed the
effective permeability to be approximately 1000 mD in one well and approximately 50
mD in a second (Toro-Rivera et al., 1994). These differences have been explained by the
geological organization of the system into large, flow-dominating channels and small
channel, "matrix"- dominated flow, respectively. The differences in effective permeability
are a function of the spatial distribution of the permeability and cannot be ascertained
from the PDF alone. The petrophysical PDF’s are, however, good descriptors and help to
confirm geological assessments.

" Consequently, the PDF and CDF can be powerful devices for making better models
and estimates. For example, if PDF and CDF of porosity and/or permeability are
multimodal, more geologic analysis may be required to further subdivide the medium into
flow units with unimodal petrophysical properties. Carefully defined flow units at early
development stages help earth scientists and engineers optimize and manage production
throughout the life of a reservoir. Empirical PDF's and CDF's are the first step towards
exploring and assessing the geological/flow units that make up a reservoir zone. This
process can also highlight aspects of the reservoir that might otherwise be overlooked.

Transforming CDF's

During the statistical modeling of reservoir properties, random variables with several
different CDF's may need to be simulated. Random-number generators in calculators and
computers often have only one fixed CDF (e.g., uniform random over [0, 1]), so that a
method is needed to transform the computer random variable to one with the desired CDF.

Let X be the continuous random variable, with CDF Fy(x), produced by the computer
and let Y be the reservoir random variable with desired CDF Fy(y). For the moment, we
will assume that Fy(x) and Fy(y) are known functions; they are invertable by virtue of
the general properties of the CDF. The equation y = FY [Fx(x)] will convert the
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computer variable to one with the desired CDF. The reasoning behind this relationship
can best be explained using Fig. 3-12.

The key concept in changing one CDF for another is that the probabilities should be
the same (Fy = Fy). The value of y should correspond to the x with the same
probability. Hence, given an x, Fy(x) = Fy(y) for the suitable y. We then apply the
inverse transformation F I}to both sides of the equality to obtain y = Fy [F v(x)]. This
relationship applies also to random variables, since X < x is satisfied when x has the
same value as X.

1.00

0.75

Fy(y)

Fx(x)

0.50 —w == == =

§
' E,(0.25) = 0.25
]
§

. /?
Ix=025 0- :0.43 .

0.00 T T T 1
-1.0 0.0 1.0 2.0 3.0 -2.0 -1.0 0.0 1.0 2.0

Xorx Yory
Figure 3-12. Transformation from random variable X to Y with change in CDF.
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Computer random-number generators often have the CDF of Fig. 3-12 (left). There
are also tables of four- or five-digit uniformly distributed random numbers in many
statistics books and mathematical handbooks (e.g., Abramowitz and Stegun, 1965) with

this CDF.

Since the PDF and CDF contain the same information, the PDF's of the supplied and
desired variables could be specified instead of their CDF's. The conversion procedure,
however, requires converting the PDF's to CDF's first.

Example 7 - Reservoir Property Distributions. A reservoir property has the
following PDF:

V IAA
[— -
A
p—

0 'y
fyo) = {Zy 0
-0 y

Three numbers, x = 0.33, 0.54, and 0.89, were generated on a computer with
the PDF
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0 x<0
=491 0<x<1
0 x>1
Transform the x's to y's.
We first convert the PDF's to CDF's.
0 y<0
Yy y
Fyo)= [fradu=q [2udu=y> 0<ys<1
-0 0 '
1 y>1
and
0 x<0
x x
Fy@= [fxwdu=y[1du=x 0sxs1
oo 0
1 x> 1
These CDF's are shown in Fig. 3-13.
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Figure 3-13. Transformation for first random number in Example 7.

X is called a uniformly distributed random variable because its PDF is
constant over the interval [0, 1]. Since Fy(x) = x, Fx(0.33) = 0.33,
Fx(0.54) = 0.54, and Fx(0.89) = 0.89. Fy(y) = y2 s0 F‘}(y) = \/; Thus,
Y =0.57, 0.73, and 0.94, respectively.

s
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3-3 FUNCTIONS OF RANDOM VARIABLES

So far, we have only dealt with "simple" random variables. There are instances, however,
when a random variable is presented as a transformed quantity. For example, permeability
and resistivity are often plotted on a logarithmic scale, so that we are actually seeing a
plot of log(k) or log(R). It is evident that, since k and R are random variables and
logarithm is a monotonic function, log(k) and log(R) are random variables. What is the
PDF of k or R, given that we know the PDF of log(k) or log(R)?

If Y = h(X) is a monotonic function of X and has a known PDF, g(y), then the PDF
of X is given by (Papoulis, 1965)

7 =50) [2]

This expression can be rearranged to determine g(y) if f(x) is known. If Y = A(X) is
not. monotonic, then X has to be broken up into intervals in which 2(X) is monotonic.
Papoutlis, (1965, Chap. 5) has the details with a number of examples.

Determining the PDF when a variable is a function of two or more random variables,
e.g.. Z(X,Y), is quite complicated. For example, if Z =X + Y, where f(x) and g(y) are
the PDF's: of two independent random variables, X and Y, then A(z), the PDF of Z, is
given by

he)= [ flz - y)80)dy = [ fx)g(z - x)dx

These integrals represent: the convolution of the PDF's of X and Y. Papoulis (1965,
Chap. 7) proves this result and considers a number of examples. It is clear that
determining the PDF of a function of two or more random variables is not, in general, a
simple task. There are some results that are useful when f(x) and g(y) have certain forms,
e.g., have Gaussian PDF's, and these will be discussed in Chap. 4.

3-4 THE MONTE CARLO METHOD

There exists a powerful numerical technique, the Monte Carlo method, for using random
variables in computer programs. If we know the CDF's of the variables, the method
enables us to examine the effects of randomness upon the predieted outcome of numerical
models. Monte Carlo requires that we have a model defined that relates the input
variables (e.g., reservoir properties) to the feature of interest (e.g., oil recovery,
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breakthrough time, water cut, or dispersion). The model is not random, only the input
variables are random. The distribution (CDF) of the output quantity and, in particular, its
variability are used to make decisions about economic viability, data acquisition, and
exploitation strategy.

Monte Carlo methods can be quite numerically demanding. If many input variables are
random and they all have large variabilities, a large number of runs or iterations of the
model may be needed to appreciate the range of model responses. For example, an input
numerical model for a waterflood flow simulation could require massive amounts of
computer time if all the input parameters, including porosity, permeability, capillary
pressure, and other properties, are considered to be random variables.

Example 8 - Reserves Estimates Using Monte Carlo. In petroleum
economics, by far the most frequent use of Monte Carlo is in reserves
calculations. The stock-tank oil initially in place (STOIIP) is given by

¢(1-8,)Ah

STOIIP = B

oi

where A# is the net reservoir volume, B,; is the initial oil formation volume
factor, S,,, is the interstitial water saturation, and ¢ is the porosity. In this
case, this equation is the model and we are interested in the STOIIP CDF (or
PDF) as ¢, S,,,, and Az may all be considered as independent random
variables. In particular, ¢ and S, can have meaning as independent random

variables only if they represent average values over a given net reservoir
volume, A#.

A random-number generator in the computer generates random numbers for all
the variables in the STOIIP equation for which the user specifies a CDF or
PDF (Fig. 3-14). For each value of ¢, Aa., and S,,,, the STOIIP is
computed. This process is repeated several hundred times. The outputis a
series of STOIIP values that, using the empirical CDF procedure described
earlier, can give the STOIIP CDF. From that CDF, summary statistics such
as the average or median can be calculated.

To use the Monte Carlo method, the distributions for all the input variables
have to be determined. Experience from other fields, data from the field under
study, and geological knowledge all contribute to the selection of the CDF for
each variable. Interdependence between the variables (e.g., low ¢ and high
S,») can be accommodated if it is known how the variables are interrelated.
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The use of Monte Carlo results in reserve estimation varies from company to
company. Some governments require Monte Carlo simulation results to be
reported when a company wants to develop a prospect.

While Monte Carlo may seem like an easy option to theoretical approaches, it should
be recognized that the results are sensitive to the input CDF's and consequently variability
in the input data will affect the results. For example, in reserves estimation, if ¢ and §,,

do not vary much while the rock volume A# varies considerably, the STOIIP PDF will
be virtually identical to the A2 PDF. In Chap. 6, we will discuss further the effects of
variabilities of the arguments upon the resultant variation.

3-5 SAMPLING AND STATISTICS

In closing this chapter, there are two philosophical issues to be considered: measurement
volumes and the role of geology.

Our view of the reservoir is entirely from probability distributions of the random
variable X (Fig. 3-15), representing some property. We imagine that this property, e.g.,
permeability, porosity, or grain size, exists as a random variable in a physical region.
Each point in the region has associated with it several PDF's: one for each random
variable of interest. When we take samples and measure them, the properties are no
longer random at the sampled locations. We have specific values of the reservoir
properties obtained over a certain volume of the region. For example, the volume of a
core plug is about 10 cm3, whereas the volume investigated by a well-logging device
may be 0.05 m3. In any case, our measurements are averages of the random variables
over a given volume and they cannot reflect the point-to-point variation of the properties.

By measuring samples of nonzero volume, our characterization of the reservoir is based
on averages of the random variable, not the variable itself. When we estimate a parameter
at a point, we are estimating the most likely value of the parameters average. In the
range of scales of the geological variability present in the reservoir, some scales may be
contained within the measurement volume and, thus, not be recognized in the result. For
example, core plugs might contain several laminations and, therefore, may not represent
the lamination-scale variation present.
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X measured locations
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Figure 3-15. Reservoir property distributions at sampled and unsampled locations.

This point of view has two implications. The first is that all physical measurements
are now actually averages, and that when we in turn average these, we are taking averages
of averages. Thus, it is possible to have measurements over different volumes of material
(e.g., core-plug permeability and transient-test permeability). Trying to reconcile
measurements made on two different volumes can be very difficult, especially since the
character of the PDF's and CDF's will change for different volume scales. This is
especially true when comparing the statistics of porosity averages derived from core/log
data with porosity estimates derived from seismic attributes, even when they are samples
over common depth intervals.

The second implication lies in regarding the original variable as being random. Many
geological processes—sedimentation or diagenesis—are very well-known and quite
deterministic; thus, it is counter-intuitive to think that the result of these processes—the
variable under consideration—is random. We are not saying that the process is random,
however, just that the detailed knowledge of the result of the process is random. This is
almost always the case in physics: the fundamental law is quite deterministic but, as
discussed in Chap. 1, the detailed knowledge of the result of the process (or processes) is
imprecise.






FEATURES OF SINGLE-
VARIABLE DISTRIBUTIONS

~ The probability distribution function (PDF) of a random variable tells quite a bit about the
values the variable takes. For one thing, it says how frequently some values occur
relative to other values. We can also extract "summary" information about the behavior
of the random variable to determine, for instance, an "average" value, or just how variable
the values are (e.g., the variance).

This chapter begins with definitions of the basic statistical operators, principally
moments and their functions, and then moves on to a brief exposition of some of the more
common PDF’s. The operators are important because they allow description of any
random variable, regardless of its PDF, but mainly because much of the subsequent
development rests on the properties of these operators.

4-1 NONCENTERED MOMENTS

With the probability distribution function f(x) known for a continuous random variable X,
we can define the 7# moment as ‘

+o0
b= [ X7 o
where 7 is a nonnegative integer. In making this definition, we have presumed that f{x) is
integrable.

67
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The Expectation

By far the most important is the first (i.e., 7=1) moment,
+oo

EX)= [xflx)dx @-1)

referred to as the expected value or expectation of X. E(X) is the mean for a continuous
PDF.

A discrete random variable X can take on one of a series of values: X1, X»,...,.X7 with
corresponding probabilities p1, p2, ... py That s, p; = Prob(X = X; ). The expected value
of X is defined to be

E(X)= z X;p

So E(X) is the sum of the possible values of X weighted by their respectlve probabilities
M‘L@E& It is related to, but not necessanly the same as, the arithmetic average.
The arithmetic average, X, is computed from M samples X1, X5, ....X)s taken from the

parent population, which has possible values xq, xy, ..., Xp

£k
m=1

Comparing the equations for X and E(X), we see that the arithmetic average appears
to equate p; with 1/M. This is only partly correct, however, since X = X; may appear
several times among the samples. For example, several samples might all have the value
Xg. When this happens, p; = k/M for the arithmetic average, where k is the number of
times X; appeared. Because of the sample size and sampling variation, the sample values
X; may not represent all the I possible values of the parent population. For example, if
M < I, all possible values of X could not have been sampled. Hence, )? and EX)
may not be equal. However, for a finite sample there is no other alternative than to
regard X as an estimate of E(X).

For discrete variables, E(X) need not be one of the values X;.  For example, we have
all seen newspaper reports stating that the average number of children per household is
2.6, or some such number. While no household has a fraction of a child, the expected-
value computation does not account for the fact that X is a discrete variable in this case
and treats children like lengths of cloth.
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Since there are two definitions for the expectation, corresponding to continuous and
discrete PDF's, we should probably have two symbols. Conventional usage does not
make this distinction, probably because the properties of the two are essentially identical.

Properties of the Expectation

Most of the properties follow from the properties of the PDF in Chap. 3 (which in turn
followed from the Axioms in Chap. 2), or the properties of a sum or integral.

Expectation of a constant ¢: El)=c

Expectation of a constant ¢ : '
plus (minus) a random variable: EX *tc)=EX)xc

An immediate consequence of this property is that the expectation of a random
variable with zero mean is zero. Let [X-E(X)] be such a variable, then

E[X - EX)]=EX) - E[EX)] =EX) - EX)=0
Such transformations are common in statistical manipulations. Other properties are

Expectation of a constant ¢
times a random variable: E(cX)=cEX)

Expectation of the sum (difference)

_ of two random variables: EXtY)=EX)LEQ®)

The last two properties can be generalized to multiple random variables and their sums
or differences: '

E|Y aX;£Yb¥;|=) a;EX;) £ bj EQY))
i J i j

As intuitive as these formulas seem, the last actually involve some subtlety. When the
expectation deals with more than one random variable, the definition involves the joint
probability distribution function for X and ¥, f(x, y):

+4oo 400
EX+Y)= [ [@x+yfix,ydxdy

-00 -0O
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+oo - +ootoo
= [ (% oo xfx, D dy) + [ [y fx, y)dx dy

.00 oo

= [xfdx+ [yfo)dy=EX) +E®)

+oo +oo
where j flx,Ydx = f(y) and I fx, y) dy )= f(x) are the marginal PDF’sfor Y and X ,
respectively.

The properties described above carry over to more general functions of random
variables, but the sum/difference property is all that is needed here. Discussion of the
properties of f{x, y) falls under the subject of bivariate distributions, covered in Chap. 8.

There is, however, a final property that requires a further restriction on the random
variables.

Expectation of the product
of two independent random variables: E(XY) = E(X)E(Y)

For this to be true we must be able to write the joint PDF as f(x, y) = f(x)g(y). You will

no doubt recognize this property of the PDF and the definition of independence of
random variables from the Multiplication Axiom in Chap. 2.

~00  -00

+oo o0 ‘ +oo oo
EXY)= [ [xyf(x)g()dxdy= { | Xf(x)dX} { [y8®) dy} = E(X)E(Y)

We defer further discussion of dependent random variables until Chap. 8.
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4-2 CENTERED MOMENTS
The 7™ centered moment of a random variable is

~+co

w, = E(IX-EGV) = [[x- EQOY f)dx

The expectation inside the integral raises the possibility of several ways to estimate u'r.
For example, the integral may be approximated as a finite sum and the E(X) from a
continuous PDF. In practice, we will almost always be estimating both expectations from
a finite data set. Of course, 1, must satisfy all of the properties of E(X) with respect to
the PDF.

Variance

One of the central concepts in all of statistics is the second (r = 2) centered moment,
known as the variance and denoted specifically by Var(X).

“+oo
VarX) = [[x- EX)12 f(x)dx

Using the properties of the expectation, Var(X) can be written as the difference between
the expectation of X2 and the square of the expectation, of X, E(X)z:

Var(X) = E{[X - EX)12)} = E(X2) - E(X)2 4-2)

without loss of generality. (In this formula and elsewhere, we adopt the convention that

E(X)2 means that the expection is squared.) This form is actually more common than the
original definition. The discrete version of Var(X) for / values is

' 1
Var(X) =y [x; - EGO1? p;
i=1

Compare this with the formula for estimating the variance from M samples X1, X,,...,. X3
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1 M
=M X - E(X)]2

m=1

which requires that the mean of X be known. Observations similar to those about the
discrete expectation also apply to this estimation formula.

The variance is a measure of the dispersion or spread of a random variable about its
mean. Other measures exist, such as the mean deviation, E [IX - E(X)|]. The variance,
however, is the most fundamental such measure and, as we shall see, most other measures
of variability are derived from it.

Properties of the Variance

Many of the variance's properties follow directly from those of the expectation operator.
However, its most important property is that it is nonnegative.

Intrinsic property: Var(X) 20

The reason this is so (the equality holds only in the degenerate case of no variability)
follows directly from the basic definition wherein only squares of differences are used
inside an integral and f(x) = 0. Of course, an absolute value or any even r will yield a
nonnegative moment, but these are too complex mathematically. The reason that this
seemingly small observation is so important is that when we minimize the variance in the
following chapters, we can be assured that our search will have a lower bound. The
following example illustrates this.

Example 1 - Minimizing Properties of the Variance. You might ask why the
centering point for the variance is the mean instead of some other point, say
the median. We now show that using the mean will make the variance a
minimal measure of dispersion.

For this exercise only, let us define the variance as

Var(X) = E[(X - a)?]

where a is some arbitrary constant. To find the minimum in Var(X), take its
derivative with respect to @ and set it to zero.
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oo
4\'—‘1%0—(1:-2 [ (- a) fx)de=0

noting that the differentiation is not with respect to the integration variable.
But using the definition for E( ), we find that the minimum variance occurs
when

EX)=a
or that the variance, as originally defined, is itself minimized. -

To expose the remainder of the variance's properties, we parallel those of the
expectation.

Variance of a constant c: Var(c)=0

Variance of a random variable
plus (minus) a constant c: Var(X+ ¢) = Var(X)

These properties are consistent with the idea of the variance being a measure of spread,
independent of translations. Ther¢ is, of course, no spread in a constant.

Variance of a random variable
times a constant c: Var(cX) = E[(cX)?] — E(cX)?

= c2E(X2) —c2E(X)?
= c2Var(X)

Unlike the analogous property for the expectation, this is not intuitive. However, since
the constant can be negative, it is entirely consistent with the idea of a nonnegative
variance, since Var(cX) = 0.

Variance of the sum (difference)
of two independent random variables:
Var(X 1Y) =E[(X£Y)2] - EX )2
= E[X2 + 2XY + Y2] - EX)2 + 2ECOE(Y) -E(Y)2
= E(X2) - E(X)% + E(Y2) - (Y )2 = Var(X) + Var(?)

since E(X Y) =EX)E®)
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The last two properties can be combined into
var(y® 4;X;) = Y a?Var(X;) @-3)
i i

Remember that this property is valid for independent X; only.

Example 2 - Variance of the Sample Mean. We can use Eq. (4-3) to derive a
traditional result that has far-reaching consequences. Consider the drawing of
I samples from a population containing independent X;. The variance of the

X;iso 2.

The variance of the sample mean X is

I
Var( %) = Var(% 3 x;)
i=1

Since the X; are independent, we can use Eq. (4-3) directly as
1 1
Var( X) =7 Y VarX;)
i=1

But, since Var(X; ) = o2,

2
Var( X) = 12 c ="T @-4)

Equation (4-4) says that the variance of the sample means decreases as the
number of samples increases. This makes sense in the limit of 7 approaching
infinity, since the variance must then approach zero, each draw now
containing all of the elements in the population. Of course, the variance of
the mean is o2 when I = 1.

Equation (4-4) also suggests that a log-log plot of the square root of the
variance (the standard deviation) of the sample mean versus / will yield a
straight line with slope of -1/2. Such a plot is the precursor of the rescaled
range plot used to detect spatial correlation in geologic data sets.
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The procedure used in Example 2-manipulating a sum until the term inside the
summation contains no subscripts—is a common statistical approach. This operation
changes a summation into a multiplication to yield a result that is substantially simpler
than the original equation.

Properties beyond this, for example the product of two random variables, are even

more complicated but are not necessary for this text. We will revisit many of these
properties in the discussion of correlated random variables in Chaps. 8 and 11.

4-3 COMBINATIONS AND OTHER MOMENTS

There are a few other related functions of these moments.

Standard Deviation

The standard deviation is the positive square root of the variance

SD = +\ Var(X)

The standard deviation is a very familiar quantity. While Var(X) has the units of X2, the
SD has units of X, making it more comparable to the mean.

Coefficient of Variation

The coefficient of variation is the standard deviation divided by the mean:

SD
Cv=Ex)

Cy is one of the most attractive measures of variability. It is dimensionless, being

normalized by the mean, and varies between zero and infinity. See Chap. 6 for more
discussion.

Coefficient of Skewness

The coefficient of skewness is the third centered moment divided by the second centered
moment:
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Hs
, "= Var(x)32

7, is a measure of the skewness of a PDF. 7y < 0 indicates a PDF skewed to the right
(i.e., positively skewed) and y; > O’ indicates a PDF skewed to the left (i.e., negatively
skewed). 71 = 0 indicates a symmetrical PDF.

Coefficient of Kurtosis

The coefficient of kurtosis is the ratio of the fourth to second moments:

'

Hy

8 DR
2 (up)?2-3

%, is a measure of the peakedness of a PDF. The normal distribution (y, = 0) is

mesokurtic. A PDF flatter than the normal (7, > 0) is platykurtic; one more peaked than

the normal distribution (¥, < 0) is called leptokurtic.

These last three definitions are more for terminology than usage. They are rarely used
and not used at all in the remainder of this text. But the expectation and variance
properties will recur frequently.

4-4 COMMON PDF'S

Let us now look at a few common PDF's and some of their properties. We will begin
with a discrete variable.

The Binomial Distribution

Consider an experiment with only two possible outcomes: E; = a "success" with
Prob(Ey) = p and E, = a "failure" with Prob(Ey) = 1 - p. E; and E, are obviously
mutually exclusive in a single experiment, but several repetitions of the experiment

would produce combinations of successes and failures. We also take the experiments to
be mutually exclusive.
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Consider the probability of getting s successes in I trials for a given p. Put another
way, we calculate Prob(R = s) where R = 2X;, i=1, ...,J, and ProbX ;=1)=p and
Prob(X; = 0) = 1 - p. This sort of problem might arise, for example, when estimating net-
to-gross ratios for a sand-shale sequence (X; = 1 for sand and X; = 0 for shale).

To answer this, we consider all possible ways of getting s successes in [ trials with
each combination multiplied by its appropriate probability p.

Il :
ProbR =) =ps = =rp* (L-p)s 4-5)
The symbol I! is read "I factorial” and it means I(/-1)(-2)-+1. This function is available
!
on scientific calculators. Another way of writing [m] is jCg, the number of

combinations of I things taken s at a time.

Equation (4-5) is the binomial distribution, an important result in statistics. Each term
in the equation has physical significance: the first term is the number of ways in which
there can be exactly s successful outcomes, the second is the aggregate probability of s
successes, and the third is the aggregate probability of (/ - s) failures.

Example 3 - Using the Binomial Distribution for Thin-Section Porosity
Estimation. Consider a point count on a vugular carbonate thin-section that
has 50% porosity. The microscope cross hairs will fall either on the matrix
(X = 0) or on an opening (X = 1). What is the estimated porosity based on

the number of samples we take?

If I is the total number of samples taken and R the number of times we draw
¢ = 1, then the observed or estimated sample porosity is

—_ RX1+(I-R)X0 R
¢= 1 =1

Because the thin-section has 50% porosity, Prob(¢ = 1) = 1/2. Hence, the
probability of R points out of / samples falling on vugs is

Ny
p=Prob® =) =2 (5)

For I =2 we can have R = 0, 1, 2. From the binomial distribution the various
probabilities can be plotted as in Fig. 4-1 (left). We can replace R on the
abscissa with the ratio R/ (= ¢) to get Fig. 4-1 (right).
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Pr 4 %A
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Figure 4-1.  Probability distribution functions for R and ¢ for I = 2 samples and
Prob(¢p=1)=0.5.

This is a very simple discrete PDF for ¢. Clearly, we could repeat this for
any 1. For example, if I = 6 we have Fig. 4-2 (left) forR=0,1,2,3,4,5,6
and the ¢ PDF (Fig. 4-2, right).

®A A

i

03T 03
02T 02T
017 0.1
p
0 1» 2 3 4 5 6 0 0.5 1

Figure 4-2.  Probability distribution functions for R and ¢ for I = 6 samples and
Prob(¢=1) =0.5.

Apart from showing an application of the binomial distribution, this example
illustrates an important issue: the variability of estimated quantities ( ¢ in
this case) that depend upon data. We always estimate quantities based on
some number of samples and those estimates are just that: estimated
quantities that are themselves random variables.
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Unless we counted an extremely large number of points, ¢ would always be
subject to some variability. We can get some idea of the variability by
looking at the probabilities of the extreme events Prob (¢ = 0) and

Prob (¢p=1). Forl =2, Prob (¢ =0)="Prob (¢ = 1) =0.25, whereas when
I=6,Prob ( ¢=0)=Prob( ¢ =1)=0.016. By tripling the sample size, the
probabilities of the extremes have dropped considerably.

The mean value of R for 7 trials is

1
ER=Y i C; p' (1-pli=Ip

i=0

This result follows from substituting Eq. (4-5) and using the identity

1
> Ci Xi= (%)
i=0

By a similar process, the variance is given by Var(R) = Ip(1 - p). These results are used
in the following example.

Example 4 - Mixtures of Random Variables in Geological Sediments.
Consider a formation unit consisting of two elements, 1 and 2, which
interfinger in proportions p and (1 - p), respectively. If each element has a
random value of permeability, £y and ky with means E(kq) =ty and

E(ky) = iy and variances Var(k; ) =0 12 and Var(ky) =0'§, respectively, what

are the mean and variance of samples taken from the combination? Assume
that each measurement consists only of material from one of the two elements
and that k¢ and k, are independent.

Let k be the sample permeability, so that
k=Xky + (1-X)ky

where X is a binomially distributed variable. If X = 0, the sample is entirely
from element 2; if X = 1, it is from element 1. Since the proportion p of the
unit consists of element 1, Prob(X = 1) = p. We want E(k) and Var(k) in

terms of p, Yy, Uy, and cg. The mean value is
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E(k) = E[Xky + (1 - X)kp] = E(Xkq) + E[(1 - X)kp]
= E(X)E(ky) + E(1 - X)E(ky)

because the variables X, k1, and k; are all independent. Thus,

E®)=ppy + (1-piip.
This result agrees with what we would expect. Similar reasoning gives

Var(k) = E[Xk; + (1 - X)ky12 - E[Xk; + (1 - X)kq)2
= EGB(E) + 2Bk )EUkp) ERX) - EX2)] + E()
- 2B(2)EX) + EGDEX?) - [py + (1 - prig)?

2 2
=po] +(1-p)oy+p(l-p)uy - 1)?

The total variability of k arises from three factors: the variability of element
1 multiplied by the amount of 1 present; the variability of 2 also weighted by
the amount present; and the additional variability arising because the mean
permeabilities of the elements are different. The third factor is maximized
when p = 1/2.

Realistic sediments that conform to this example include eolian deposits.
Dune slip face sediments consist of grain fall and grain flow deposits. Each
deposit has different grain size and sorting and, hence, will have a distinctly
different permeability from the other deposit. Probe or plug measurements
may be taken in a number of slip face deposits, and the apparent variability
could be quite different from the variability of either element.

Mixtures of random variables cause the resulting PDF to be a combination of the
component PDF's. Such PDF's are called heterogeneous or compound distributions.
Multimodal PDF's often arise because the measurements were taken in sediments with
distinctly different properties.
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The Central Limit Theorem

It takes considerable mathematics (Hald, 1952), but much less intuition, to see where the
binomial PDF is going as I approaches infinity. The discrete PDF above becomes
continuous and the PDF itself approaches a normal distribution, that bell-shaped curve we
all have come to know and love. Actually, the approach to normality is quite close after
only about / = 20 when p = 0.5. It takes considerably more points when p is closer to O or
1, but the normal distribution results as Fig. 4-3 illustrates. You can also see the
progression of the mean and variance of the binomial distribution in Fig. 4-3.

According to a fundamental result of applied probability known as the Central Limit
Theorem (CLT), a random variable X, generated by adding together a large number of
independent random variables, will usually have an approximate normal distribution
irrespective of the PDF's of the component variables. This remarkable theorem says that
a normal distribution will result from the binomial distribution as I approaches infinity
regardless of the value of p. Conversely, when we observe a normal distribution in
practice, we assume these attributes are satisfied.

0.40 !\
-10
0.35 n=1

PR 0.30

0.25

0.20 20

0.15
50 100

0.10 '
0.05 J ,
- I =

0.00

0 20 40 60 80 100
R

Figure 4-3.  The progression of a binomial PDF to a normal distribution for p = 0.9.

An example of the CLT is core-plug porosity. Each plug consists of numerous pores
that each contribute a small amount to the plug pore volume. Hence, the total porosity of
plugs is likely to be nearly normally distributed. Indeed, in many clastic reservoirs,
porosity is nearly normally distributed. The binomial distribution is not even necessary
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for this argument (we used it mainly as an illustration). As long as the underlying events
are independent and additive and there are a large number of them, the PDF will be
normal (Blank, 1989). The CLT is as close as we get to a physical basis for statistics and
it accounts, in part, for the popularity of the normal distribution in analysis. Many of the
simulation techniques and tools (to be discussed in Chap. 12) require normally distributed
random variables.

In light of this result, we can also see how errors resulting from the measurement of a
physical quantity could have a distribution close to normal. Typically, errors arise as a
combined effect of a large number of independent sources of error. These errors,
however, may not perturb the measurement very much, depending on the relative
magnitude of the property and the associated noise. In addition, we would like the
deviations (residuals) of a measurement away from a model to be normal, since this
means that the model accounts for all of the features of the measurements, apart from
unquantifiable influences.

The Normal (Gaussian) Distribution
In addition to the CLT, the normal distribution is hoary with statistical import.

If a random variable X has a normal distribution, its PDF is uniquely determined by
two parameters (4 and ¢ ) according to

. 2
fx, o, u)=\/§1——2-exp[-% (X—G‘-‘) :I -0 < X <oo (4-62)
o

which graphs as shown in Fig. 4-4.

You can easily show that E(X) = ¢ and Var(X) = 2. We will represent the normal
distribution with the short-hand notation N(mean, variance). So X ~ N(3, 9) means X is
normally distributed with a mean value of 3 and a variance of 9. The normal CDF is

X
Fx 0, 10) = \/_2_1.!? Jexp[—% (’—G-‘i )2] at  (4-6b)

00

The integral function above is called the probability integral.
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Both the normal distribution and the probability integral can be made parameter-free
by redefining the variable as Z = (x - &) / o, known as the standardized normal variate.
Thus E(Z) = 0 and Var(Z) = 1, and we say that Z ~ N(0, 1) so that

Z
F@o) = L\/z_ J exp(-% z2) dr (4-6¢)
/(4

—00

Extensive tables for N(0,1) are printed in many statistics books; see Abramowitz and
Stegun (1965).

F(x) or f(x)
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Figure 4-4.  The continuous normal PDF and CDF.

The normal distribution occurs anywhere there are observations of processes that
depend on additive random errors. A good example is in diffusion theory, where
assuming a random walk - of particles will lead to a concentration distribution having a
normal shape (Lake, 1989, p. 157). In this case, the relevant function is the error
function, defined as
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0
erf(x) = 2 Je'tzdt
TX

which is related to Eq. (4-6¢) as

DO [

F (?) =

[1 + erf(\/z—.i)] (4-64)

Probability Paper
How do we know when a variable is normally distributed? There are several fairly

sophisticated means of testing data, but the most direct is to plot them on probability
paper. We can invert the standard normal CDF given in Eq. (4-6d) to

z = N2erfl[1 - 2F(z)] (4-6¢)

The quantity on the right of this equation is the inverse error function. A plot with the
inverse error function on one axis is a probability plot (Fig. 4-5).

10 20 30 40 50 60 70 80 90 95 99
Probability (%)

Figure 4-5.  Probability coordinates.
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There is a one-to-one relationship between the value of the normalized variable Z and
the probability that some value less than or equal to Z will occur (i.e., F(2)).
Consequently, we can talk in terms of variable values (z) or their associated probabilities
F(z). InFig. 4-5, we mark off the horizontal axis in terms of F, expressed as a percent. If
data from a normal CDF are plotted on the vertical axis, then a straight line will result
with this type of paper. A log-normal distribution will similarly plot as a straight line if
the vertical axis is logarithmic. Either Z or the original X may be plotted, since the
transforms involve simple arithmetic. Plotting X is a commonly accepted way of testing a
set of data for normality and for determining the variability of a set of data.

Probability plotting facilities based on the normal distribution are often found in
statistical packages for computers. Smaller systems, however, may lack this feature. In
order to produce a probability plot, use the following steps:

1. Order the I data points according to magnitude (either increasing or decreasing) s¢
thatXISX2S- . _<_XI.

2. Assign a probability to each datum. A convenient formula is P(X; ) = (i-1/2)/I.
This assignment is consistent with the idea that the data are equally probable.

3. Calculate the Z; value for each probability P(X;). This may be done using
Eq. (4-6e) or using a rational approximation to the probability integral given by

230753 + 0.27061 ¢ BN ey
i =1 04099229 1+ 0.04481 2 Where =N 2P

for 0 < P(X;) < 0.5. This and a more accurate approximation are listed in

Abramowitz and Stegun (1965, p. 933). For P(X;) > 0.5, use ¢ = \ -2In[P(X i)
and -Z; in the above formula (the Z's will be symmetrical about the point Z = 0).

4. Plot the X; versus the Z;. The points will fall approximately on a straight line if
they come from a normally distributed population.

This procedure should sound faintly familiar (Chap. 3); steps 1 and 2 are the same as
for computing the empirical CDF. That is because we are actually comparing the
empirical CDF with the normal CDF when we use a probability plot.

How far points on a probability plot may deviate from a straight line and still be
considered coming from a normal population is dealt with by Hald (1952, pp. 138-140).
Clearly, however, if there are few (e.g., fewer than 15) points, the variation can be quite
large while the underlying population PDF can still be considered normal. On the other
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hand, 100 or 200 points should fall quite closely on a straight line for the population to be
considered normally distributed.

The Log-Normal Distribution

If errors multiply rather than add, the logarithms of the errors are additive. Since the
logarithm of a random variable is a random variable, the CLT may apply to the sum of
the logarithms to give a normal distribution. When this happens, the PDF of the sum is
said to have a log-normal distribution.

Example 5 - An Implausible Reason for Permeability To Be Log-Normally
Distributed. One of the most consistent assumptions regarding the
distribution of permeability in a naturally occurring permeable medium is that
it is log-normally distributed. One possible explanation for this is the theory
of breakage.

Suppose we start with a grain of diameter Do, which fragments to a smaller
grain in proportion f to yield a grain of diameter Dpl' Repeating this
process obviously leads to an immense tree of possibilities for the ultimate
grain diameter. However, if we follow one branch of this tree, its grain
diameter Dp 7 will be

I
Dpr=] ] /i Dpi
i=0

which yields an additive process upon taking a logarithm. Thus, we should
expect In(D ) to be normally distributed from the CLT. Since permeability

is proportional to grain size squared, it is also log-normally distributed.

The log-normal PDF can be derived from the basic definition of the PDF and the
standard log-normal variate: :

In x - piyn 5
Oln x

Z

Substituting this into Eq. (4-6¢) gives the following for the CDF:

G
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1 X 2
F(x;0 = | exp| ———=—(Inz — d - 47
(% Otz Hinx) = o g xp{ 6&x< uln,a} (4-7a)

and using y = In X in the transformation given in Chap. 3, we have for the PDF
1 1/Inx - tyy 0\ 2
£ Ot 5, Hin ) = — = €xD [(—) ] (*-70)
* XOjy N 27 2\ Ox

The mean and variance of the log-normal distribution are given by

EX) = exp(, + 0.50’3)
and

Var(X) = exp(2, + 203)

The coefficient of variation is independent of £4;, ,:
2 2
Cy=exp(c)-1

The PDF for the log-normal distribution is shown in Fig. 4-6. The significant features
of the PDF are the skewness to the left and the long tail to the right. Thus, we see that
most of the values in a log-normal PDF are small, but that there are a small number of
large values. Of course, the random variable X in the log-normal distribution cannot be
less than zero. Log-normal distributions appear to be at least as common in nature as
normal distributions.

The case of the logarithmic transformation is a common and interesting example of
how averages and nonlinear transforms can combine to produce nonintuitive results. If

the random variable, X, is log-normally distributed, then In X ~ N(i,, o ch). Therefore,
E(In x) = 1,. We might be tempted to assume that E(X) = exp[E(In x)] = exp(t,). But, as
we saw above, the variability of In x  also contributes to the mean:
EX)= exp(,ux)exp(d /2) This second term in the product can be significantly larger

than 1 for highly vanable properties such as permeability, where a 0'12n x of around 4 is

commonly observed (see Example 2 of Chap. 10.)
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The logarithmic transformation case is just one example of how we must be careful
about using random variables in algebraic expressions. We will see later, especially in
the chapters on estimation and regression, that the deterministic manipulation of variables
that most of us learned in school is a special case. It is only in the special case that the
effects of variability can be ignored.

F(x)

or f(x)

F(x)

0 2 4 6 8 10 12

Figure 4-6.  PDF and CDF for a log-normal distribution.

p-Normal Distribution

We can go one step farther and define a more general power transformation of the form
(Box and Cox, 1964)

[X+cP)-11/p p=#0
Y=
In(X +¢) p=0

which will render a wide range of sample spaces normal with the appropriate selection of
p and c¢. It is obvious that p = 1 is the normal distribution and p = 0 is log-normal.
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Commonly, ¢ is taken to be zero. The skewness of the distributions, intermediate
between normal and log-normal, corresponds to a value of p between O and 1. Figure 4-7
illustrates the shapes of the p-normal PDF,

Table 4-1 shows a few p-values estimated from permeability data from various media
types. There are also various types or measurements, and each data set has varying
number of data in it.

0.5
] p=10 (normal PDF)
041 A
f(x) 1
0.3 p = 0.5 (root-normal PDF)
0.2 p = 0 (log-normal PDF)
0.1
0.07
0 5 10 15 20
X

Figure 4-7.  PDF shapes for various p.

Table 4-1. Estimates of p from various data sources. From Jensen (1986).

Number
Data Set Label Data Type of Data Media Type p estimate, AQ
Law plug 48 sandstone 1.0
Sims Sand plug 167 sandstone 0.5
Admire Sand plug 330 sandstone 0.5
Lower San Andres dst 112 dolomite 0.1
Pennsylvanian : dst 145 limestone 0.0
Nugget Sand - plug 163 sandstone -0.3

drill stem test
core plug

dst
plug
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We see from this that p can be quite variable, especially in sandstone sediments. For
the carbonates in this table, the estimated p is always near zero. This reflects the greater
variability and/or lower average permeability in these sediments. Note also that p < 0 is
also possible, even though this does not fall within the range envisioned by the original
transform.

Besides the binomial, normal, and log-normal distributions, other PDF's are sometimes
used in reservoir characterization. For example, the exponential, Pareto, and gamma
distributions have all been used to estimate the number of small fields in mature
provinces (Davis and Chang, 1989). We will also meet the ¢-distribution in a later
chapter. It is clear that there are a large number of possible PDF's.

Uniform Distribution

This distribution is the simplest of all the’ commonly used CDF's and PDF's. It consists of
three straight lines (Fig. 4-8).

f(x) or F(x)

1.0 |
F(x)

(a-b)

R

f(x)

X
Figure 4-8.  PDF and CDF for a uniform distribution.

The equation for the CDF is
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0 X<a
F(x;a,b)= ﬁ a<X<bh (4-82)
1 b<X
and, consequently, for the PDF is
0 X<a
fo a, b) = E%Zz a<X<b (4-8b)
0 a<X

The uniform distribution is a two-parameter (a and b) distribution.The mean of this
distribution is E(X) = (a + b)/2 and the variance is Var(X) = (b - a)2/12. The popularity of
the uniform distribution arises from its simplicity and also from its finite bounds, X = a
and X = b. It is to be used when there is no a priori knowledge of the distribution type
but there are physical reasons to believe that the variable cannot take values outside a
certain range.

Triangular Distribution

The triangular distribution is the next step up in complex1ty from the uniform distribution.
Its PDF and CDF are shown in Fig. 4-9.

The mangular distribution is a three-parameter d15tr1but1on (a, b, and c¢). The equation
for the PDF is

0 X<a
) ’g'—‘; a<X<h
fx; a, b, c)=(—~) i 4-9)
¢-a c-X b<X<c
c-b
0 c<X

with mean E(X) = (@ + b + ¢)/3. The variance of this distribution is (McCray, 1975)

2
Var(X) = (C 'a) - gbg' @(C 'b)
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As for the uniform distribution, the triangular distribution is useful when there is reason
to confine the variable to a finite range. However, it frequently occurs that there is a most
likely value within this range, but still no a priori knowledge of the distribution form. In
these cases, the triangular distribution is appropriate. As Fig. 4-9 suggests, the triangular
distribution can be used as an approximation to both the normal and log-normal
distributions.

F(x) or f(x)

Figure 4-9.  PDF and CDF for a triangular distribution.

Exponential (Boltzmann) Distribution

The exponential distribution is shown in Fig. 4-10. This distribution is a one-parameter
function with the following form for the CDF:

F(x; A) =1 - exp(-x/A), x>0, A>0 (4-10a)

and for the PDF

fx, ) =}1exp(-xfx), (4-10b)

The mean and variance are  and A2, respectively. Despite its simplicity, the exponential
distribution is rarely used in reservoir characterization. However, its slightly more
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complicated cousin, the Gibbs or Boltzmann distribution, is used extensively in
combinatorial optimization schemes (Chap. 12). The feature desired in these applications
is that the mode of the exponential distributions occurs at the smallest value of the
random variable.

F(x)
X
Y
3
L.
f(x)
0
0 X

Figure 4-10. PDF and CDF for an exponential distribution.

4-5 TRUNCATED DATA SETS -

A truncated sample occurs when data values beyond some limit are unsampled or
unmeasurable. Truncation can be the result of restrictive sampling, deficient sampling, or
limitations in the measuring device. For example, some apparatus for measuring
permeability cannot measure values less than 0.1 mD. A data set that is missing large-
valued samples is top-truncated; if it is missing small-valued samples it is bottom-
truncated. The upper plot in Fig. 4-11 illustrates these concepts with the random variable
mapping outside of a limiting value, X;,,, .

Before proceeding, a word is in order about terminology. A data set is truncated if the
number of unmeasured values is unknown; it is censored if they are known. Truncation
in this section applies only to data; when applied to theoretical (population) CDF's,
truncation can mean that a portion of the variable range is not attainable on physical
grounds (porosities less than zero, for example).
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As always in statistical manipulations, we cannot infer the underlying reason for the
truncation (at least not from the statistics alone); we can only detect its occurrence and
then attempt to correct for it. The correction itself is based on an application of the
definition of conditional probabilities given in Chap. 3. See Sinclair (1976) for more
details.

Truncation

Top

R

i, Bottom
Xlim +

Mixed
Populations

Figure 4-11. Schematic plots of truncation (upper) and mixed populations (lower).

The basic tool is the CDF, F(x), or the complementary CDF, F°(x). We assume that
the untruncated sample CDF is normal or can be transformed to be normal; the data sets
are log-normal here. Recall that the horizontal axes in both plots are probabilities;
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Prob(X < x) in the CDF and Prob(X > x) in the complementary CDF. We use F and F° in
percent in this section.

Figure 4-12 shows the effects of bottom and top truncation on a sample CDF.
Omitting the data points, we show only lines in this figure.

10000
25% bottom truncated //
o 100 ' 7
{ Y,
5 Z QS
s \’},,4 §
= A
L Untruncated
A
1 v/
Z8h
,/ 25% top truncated
e T
o0 NN
. 10 ,,, 30 70 90 99.99
01 1 1 5 2075 8 o o 99.9

Cumulative Percent Smaller than Value
Figure 4-12. Schematic of the effects of truncation on a log-normal CDF,

Truncation evidently flattens out the CDF in the region of the truncation. In fact, it is
relatively easy to see the truncated value (xj;, in Fig. 4-11) by simply estimating on the

value axis where the leveling out takes place. What is not so easy to see is what
percentage of the data values are truncated, but two observations are pertinent.

1. The slope of the CDF (related to the variance) at the extreme away from the
truncated region is essentially the same as for the untruncated sample.

2. The probability coordinate F€ where the leveling occurs is roughly the percentage
of the data points that are omitted by the truncation.

In order to correct for truncation, we must somehow determine the untruncated CDF.
For the CDF, this process is accomplished by the following manipulations:

Top trunc'ation , F=F(1-f) (4-11a)

Bottom truncation F=f+F(1-f) ' (4-11b)
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In these equations, F is the untruncated CDF, F, the truncated (apparent) or original
CDF, and f}, and f; are the fraction of data points bottom- and top-truncated, respectively.
From Eq. (4-12a), we have F < F, and from Eq. (4-12b) F > F, As mentioned above, f},
(or f;) can be approximated by simple inspection of where the CDF flattens out.
However, to be more certain several 3, (or f;) values should be chosen and F vs. X plotted;
the correct degree of truncation fp (or f;) is that which gives the best straight line. The

similar relations for the complementary CDF apply and are left to the reader as an
exercise.

Despite the trial-and-error nature of the process, determining the amount of truncation
is fairly quick, especially on spreadsheet programs. Figure 4-13 illustrates a bottom-
truncated data set of original oil in place from a region in the Western U.S.
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Figure 4-13. CDF for original oil in place showing f, in percent.

For this case, the reason for the truncation is apparent: reservoirs smaller than about
0.5 billion barrels were simply uneconomical at the time of survey. However, the value
of fp, from Eq. (4-12b) required to straighten out the data indicates that approximately
40% of the reservoirs are of this size or smaller. The corrections leave the untruncated
portion of the curves unaffected. The following example indicates how a truncation
correction can affect measures of central tendency.

Example 6 - Top Truncation of Core Permeability Data. A waterflood in a
particular reservoir invariably exhibits greater injectivity than is indicated by
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the average core permeability data. Among the many possible causes for this
disagreement is top truncation in the core data.

The first column of Table 4-2 below shows an abridged (for ease of
illustration in this exercise) set of permeability data from this reservoir. The
second column shows the F,= 100[(i - %)/I] values, where i = 1,...,Jis an

index of the data values and [ is the total number of data points. The set is
clearly top truncated, as shown in Fig. 4-14.

Table 4-2. Data for Example 6. Columns 3 and 4 show F valués that have
been corrected for f; = 0.2 and 0.6 using Eq. (4-12a).

* Permeability F, F F
mD Original fir=02 fi=06
0.056 3.570 2.857 1.429
0.268 10.714 8.571 4.286
0.637 17.857 14.286 7.143
1.217 25.000 20.000 10.000
2.083 32.143 25.714 12.857
3.343 - 39.286 31.429 15.714
5.149 46.429 37.143 18.571
7.722 : 53.571 42.857 21.429
11.389 60.714 48.571 24.286
16.641 67.857 54.286 27.143
24.243 75.000 60.000 30.000
35423 82.143 65.714 32.857
52.244 89.286 71.429 35.714
78.358 96.429 77.143 38.571

The f; = 0.6 curve (60%) has been overcorrected, as evidenced by the upward
curvature. The best correction is slightly less than f; = 0.2 (20%). But, taking
f:=0.2 to be best, the geometric mean of this data set (the median) has been

increased from around 6.5 mD to about 12 mD. This correction may be
sufficient to explain the greater-than-expected injectivities. We should seek
other causes to explain why more than 20% of the data are missing from the
set.

A data set may be both top- and bottom-truncated. In this case we have
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F=fy+Fo(1-fp-f) (4-12)

Using Eq. (4-13) requires a two-step trial and error to determine both f; and f;. The
reader may verify the analogous expression for F°.
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Figure 4-14. CDF illustrating correction for top truncation.

4-6 PARTITIONING DATA SETS

Nature is not always so kind as to give us data sets from only single PDF's. See the lower
plot in Fig. 4-11 for a schematic illustration. In fact, many times each reservoir contains
mixtures of materials with different parent distributions. The aggregate distribution is
what we see when the reservoir is sampled. When this happens, the power of the PDF
and the CDF gets distinctly blurred, but we can still gain some insight from them.

Partitioning is the separating of a mixed distribution function into its component
(parent) parts. Partitioning is most efficient when the data values separate naturally into
groups on the basis of variables other than the variable in the CDF. This is one of the
primary roles geology serves in reservoir characterization.

When we partition, we obtain more homogeneous elements that we expect to be able
to understand better. For example, in Example 4 we showed how combining two
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elements increases variability. If we know the variability of each element and its
probability of occurrence, we can develop a model of the total variation that is more
realistic than one that is based only on the mean and variance of the aggregate.

‘In the absence of geological information, partitioning is usually difficult, especially
when the CDF consists of more than two parent populations. For these reasons, we limit
the treatment here to partitioning into only two CDF's. Many of the basic assumptions
here are the same as in the discussion on truncation: the parent populations are log-
normally distributed and all operations will be on the cumulative distribution function
(CDF) or its complement. We further assume that the parent populations are themselves
untruncated. '

Let the sample CDF of parent distributions A and B be Fj4(x) and Fp(x), respectively.
Then the probability coordinate of the mixed CDF is given by

F=fAFA+fBFB (4-13)

where f4 and fp are the fractions of the samples (data values) taken from populations A
and B. This intuitive rule is actually a consequence of both the additive and
multiplication rules for probabilities. It implies that data are selected for incorporation
into F without regard to their value (independence) and a sample cannot be in both
distribution A and distribution B (mutually exclusive). Of course, we must have
fa+fp=1

Equation (4-13) is also a rule for combining the F's on the horizontal axis of the CDF.
For example, if F4 = 0.9 and Fg = 0.3 for a particular value of x (recall X < x) and the
mixture is 30% A and 70% B, then F = 0.48 of the samples in the mixed CDF are less
than x. Of course, this mixing is not linear on the probability axis of the CDF. The
essence of partitioning is actually the reverse of this: determine f4 and fp given F(x) and
some means to infer F 4 and Fp. Following Sinclair (1976), there are two basic ways to
partition based on whether populations A and B are nonintersecting or intersecting.

Nonintersecting Parents
Nonintersecting means that the parent populations overlap very little. Figure 4-15 shows
three mixed CDF's for parents A and B (A has the smaller variance) as a function of

various proportions of A.

The mixed CDF has the following attributes:
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1. The central portion of the curve is the steepest. This observation is what
distinguishes nonintersecting and intersecting CDF's. The steepness increases as
the overlap in X values between A and B decreases.

2. The F value of the inflection points roughly corresponds to fg = 1 -f4.

3. The extremes (F approaching zero or one) become parallel to the CDF's for the

parent samples.
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Figure 4-15. CDF's for nonintersecting parent populations.

These observations suggest the following graphical procedure for partitioning a
sample drawn from two nonintersecting populations:

1. Plot the data points F vs. X and draw a smooth line through the points on
probability coordinates. The smooth line represents the mixed population CDF.

2. Draw in straight lines corresponding to the parent populations as suggested in
Fig. 4-15. The parent population with the smallest variance (slope) will be nearly
tangent to the mixed CDF at one of the extremes. This will also be true of the
parent population with the largest variance, but less so.

3. Estimate the partitioning fraction from the inflection point on the smooth line.

4. The f, and fp are now known from step 3; Fyand Fp from step 2. Use Eq. (4-14)
to reconstruct F.
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If this F(X) agrees with the original data, all inferred values are correct; if not, adjust
the partitioning fraction and return to step 3. If it appears that a satisfactory match cannot
be attained, it may be necessary to adjust F 4 and/or Fp In general, convergence is

attained in three to five trials as the following example shows.

Example 7 - Partitioning into Two Populations. The data set of 30
permeability values in Table 4-3 is believed to come from two parent
populations.

The first column contains the permeability values, and the third and fourth
columns the Fyand Fgvalues. These are the X coordinates of the two

population lines in Fig. 4-16 corresponding to the permeability values in
column one. Columns five and six contain F' for two estimates of f4.

‘The shape of the original experimental CDF in Fig. 4-16 clearly indicates a
mixed population.

Even though the X coordinate of the inflection point suggests f; = 0.7, we use
f4 = 0.5 and 0.8 for further illustration. However, neither f4 value yields a
particularly good fit to the data (the solid line in Fig. 4-16), probably because
the line for Fp is too low (mean is too small). For accurate work, Fg should
be redrawn and the procedure repeated. However, the procedure is suffi-
ciently illustrated so that we may proceed to the second type of mixed

populations.
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Figure 4-16. Experimental CDF for Example 7.
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Table 4-3. Data for Example 7.

Permeability F Fy Fp F F
mD original estimated estimated f4=0.5  f4=0.8
1.70 1.67 3.00 0.80 1.90 2.56
1.75 5.00 6.00 0.90 3.45 4.98
1.80 8.33 9.00 1.00 5.00 7.40
1.90 11.67 12.00 1.00 6.50 9.80
1.95 15.00 15.00 1.00 8.00 12.20
195 18.33 45.00 1.00 23.00 36.20
1.95 21.67 46.00 1.00 23.50 37.00
2.00 25.00 51.00 1.00 26.00 41.00
2.10 28.33 54.00 1.50 27.75 43.50
2.10 31.67 57.00 1.50 29.25 45.90
2.10 35.00 60.00 1.50 30.75 48.30
2.15 38.33 63.00 2.00 3250  50.80
2.15 . 41.67 66.00 2.00 34.00 53.20
2.15 45.00 69.00 2.00 35.50 55.60
220 48.33 72.00 3.00 37.50 58.20
225 51.67 78.00 3.40 40.70 63.08
2.30 55.00 85.00 3.50 44.25 68.70
2.50 58.33 91.00 3.90 4745 73.58
2.60 61.67 94.00 4.00 49.00 76.00
2.70 65.00 96.00 4.00 50.00 77.60
2.70 68.33 99.00 4.50 51.75 80.10
3.50 71.67 99.99 8.00 54.00 81.59
4.95 75.00 99.99 20.00 60.00 83.99
8.10 78.33 99.99 50.00 74.99 89.99 .
11.50 81.67 99.99 70.00 84.99 93.99
14.50 85.00 99.99 80.00 89.99 95.99
15.50 88.33 99.99 85.00 92.49 96.99
16.50 91.67 99.99 86.00 92.99 97.19
22.50 95.00 99.99 95.00 97.49 98.99

28.00 98.33 99.99 98.00 98.99 99.59
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Intersecting Parents

Here the parent populations overlap to a significant degree. The signature for intersecting
parents is not as clear as for nonintersecting parents; however, the differences in their
respective CDF’s is dramatic. Compare Figs. 4-15 and 4-17.

Just as for ndnintersecting parents, partitioning these CDF's requires a trial-and-error
procedure using Eq. (4-13). However, there is no longer an inflection point to guide the
initial selection of f4. Instead, the central portion of the curve is flatter than the extremes,
a factor that makes partitioning of this type of mixture more involved. Nevertheless,
following Sinclair (1976), there are some general observations possible from Fig. 4-17.

1. The central portion of the mixed CDF is flatter than the extremes; all three mixed
curves intersect each other within this region. This is what makes the inflection
point difficult to identify.

2. The value range (on the vertical axis) of the central segment is greater than the
range of the parent population having the smallest range (sample A in Fig. 4-17).

3. The F range (on the horizontal axis) of the flat central segment is a coarse
estimate of the proportion of the small-range population in the mixture (f4 in

Fig. 4-17).
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Figure 4-17. CDF's for intersecting populations.
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Observation 2 helps in drawing the CDF's for one of the parent populations;
observation 3 gives an estimate of f4. However, estimating the properties of the second

parent CDF adds another level to the trial-and-error procedure.

Although the corrections outlined above are based on probability laws, the lack of a
physical base limits the insights to be derived from these procedures. In particular, it may
not be clear if corrections are needed—deviations from a straight line might be caused by
sampling error. Furthermore, deciding when a given degree of correction is enough is a
matter of judgment. Sinclair (1976) recommends that, once a given CDF is partitioned,
the practitioner should look elsewhere (more or other types of data, usually) for an
explanation. For example, suppose that two sources of sediment feed a river that later
deposits sand downstream. If the two distributions of, say grain size, are each normally
distributed with the same variance but different means, then the deposited sand may have
a sample PDF that has two peaks. Generally speaking, we can expect that mixtures of
material will originate from parents having distributions with neither the same means nor
variances.

Another uncertainty is the underlying assumption that the untruncated or parent
populations are themselves transformed Gaussian distributions. As we have seen, there is
little physical base for a given distribution type to prevail. As in most statistical issues,
these types of decisions depend to a great extent on the end use.

Finally, neither the CDF nor the PDF say anything about the relationship of one
sample space to another or about the spatial arrangement of the parameters. This is
because both treat the observations as being ordered (sorted) without regard to where they
came from. We will have something to say about such relations in Chaps. 8 to 11 that
deal with correlation and autocorrelation.

Given these limitations, simply plotting the sample CDF's often gives diagnostic
information without further analysis. For example, Fig. 4-18 gives schematic plots that
represent various "type" curves for some common complications. Many data sets can be
quickly classified according to this figure and such classification may prove to be
sufficient for the problem under consideration.
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Bottom truncated Top truncated
X X
F F
Non-normal x Top and bottom truncated
X X
F F
Two parents— Two parents—
Non-intersection Intersecting
X X
F F

Figure 4-18. "Thumbprint” CDF's for truncated and mixed populations.

4-7 CLOSING COMMENT

Distribution functions provide the bridge between probability and statistics. The ideas of
distribution functions and, in particular, the ways of summarizing them through the
expectation and variance operations will recur in many places, as will the Central Limit
Theorem. The most important ideas deal with the manipulations of the expectation, as
these are central to the notions of covariance and correlation. However, the reader should
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be reminded from the last few example PDF's that, even though statistics is a flexible and
powerful tool, its benefit is greatly enhanced with an understanding of underlying
mechanisms.




Estimators and Their
Assessment

Since defining probability in Chap. 2, we have begun to appreciate the difference between
the population and the sample. The population represents the entire body from which we
could draw examples and make measurements. The sample is a limited series of
measurements and represents the best we can do, given the physical and fiscal constraints
of acquiring data.

We sample to assess the properties of the population. The assessment procedure is
called estimation; there is a deliberately implied uncertainty in the name. The ultimate
would be to obtain the population PDF; then we could calculate whichever parameters we
sought. We have only a sample, however, and parameters must be estimated from this
set of data based on the results of a limited number of experiments (Chap. 2). We also
want to know, once we have an estimate in hand, how well it represents the true
population value. This is where confidence limits are helpful.

A simple example may help to highlight the issues in estimation. Suppose that we
decide to calculate the arithmetic average of five porosity values from similar rock
volumes: 21.1,22.7, 264, 24.5, and 20.9. Since the formula for the arithmetic average
is \
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where I is the number of data, we obtain ¢ = 23.1. We have a number. But, what does
the value 23.1 represent? What have we calculated and what does it represent? Is 23.1
any "better" than 21.1, 24.5, or any of the other numbers? At least 21.1, 22.7, etc. are
measured values, whereas there may not be any part of the reservoir with ¢ = 23.1. As
we shall soon see, this procedure has several assumptions that have gone unstated.
Consequently, the value 23.1 may or may not be suitable for our purposes.

5-1 THE ELEMENTS OF ESTIMATION

Estimation involves four important elements:

1. The population quantity to be estimated, 6, (e.g., arithmetic mean, standard
deviation, geometric mean) from-a set of data. 0 can represent one or more
parameters. If it represents more than one parameter, we can consider it to be a
vector instead of a scalar.

2. The estimator, W. This is the method by which the data values will be combined

to produce the estimated or sample quantity.

The estimate, @ probably the most familiar component to the reader.

4. The confidence interval or standard error, [Var(@)]l/ 2, This allows us to judge

how precise is the estimate 0.

w

In the porosity example, we chose the arithmetic average for the one-parameter

estimator W and 23.1 = 8. No confidence interval was calculated. Furthermore, the most
important step—choosing 8-—was completely ignored.

The number of parameters required depends on the form of the PDF and the needs of
the user. Recall from Chap. 4 that the binomial distribution has a two-parameter PDF:
namely, p and n, the probability of success in each trial and the total number of trials,
respectively. In many experimental situations, it is advantageous to estimate p from a
limited number of experiments with » trials each and then use this estimate to characterize
all future experiments. In that sense, p, the estimate of the population value p, is an
average probability of success for a particular type of experiment against which other
similar experiments may be judged. On the other hand, we may have an application
where we only need the variance of the distribution, which is np(1-p), without explicitly
needing to know what p is. In this case, we may decide to estimate p—a parameter of the
PDF-or we may decide to estimate the quantity p(1-p) directly.

Similarly, the normal distribution has two parameters, the mean and variance, which
may be estimated to characterize a random variable suspected of being normally distributed
(e.g., porosity). If a physical process is normally distributed, the mean and variance
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precisely describe the PDF. Other distributions may require more (or fewer) parameters o
statistics. ‘

Recall that a statistic is any function of the measured values of a random variable
(Chap. 2). It is an estimate of a parameter that could be computed exactly if the PDF
were known. To distinguish between the estimate and the estimated quantity, the
estimate is often prefixed with the terms empirical or sample. For example, some
common statistics are measures of central tendency (e.g., averages or sample means) and
measures of dispersion (e.g., sample variance or interquartile range), but they are by no
means limited to these. As we will see, there may be several ways to estimate a
parameter.

5-2 DESIRABLE PROPERTIES OF ESTIMATORS

Since any given statistic (parameter estimate) is a function of the data, then it too is a
random variable whose behavior is described by a PDF. That is, given an estimator W
and a set of data {X1, X9,...,XJ} taken from a population with parameter value 8, W

produces an estimate fbased on the data: 8= W(X1, X2,..,X). Knowing this, there are
several features that a good estimator will have: small bias, good efficiency, robustness,
and consistency. In addition, it should produce physically meaningful results.

5-3 ESTIMATOR BIAS

The PDF of an estimate 8 should be centered about the population parameter 8 we wish
to estimate (Fig. 5-1). If this is not true, the estimator W will produce estimates that
tend to over- or underestimate 6, and the estimator is said to be biased. Bias is given by
the expression

b=E®) -0

Bias is generally undesirable, but sometimes an estimator can be corrected for it. Bias has
two principal sources, measurement resolution and sampling, as the following example
illustrates.

Example 1 - Biased Sampling. Data from core-plug samples are sometimes
misleading because of preferential sampling. The samples may not be
representative for a variety of reasons: incomplete core recovery (nonexistent
samples), plug breakage in friable or poorly consolidated rock (failed
samples), and operator error (selective sampling)..
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Estimator W

Prob(§)

A
0
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E(6) 0
| b |

Figure 5-1.  Estimator bias (b) depends upon the PDF of )

An interval of core has two lithologies, siltstone and sandstone, in the
proportions 30% siltstone and 70% sandstone. ¢g;;r = 0.10 and
Osand = 0.20. If the siltstone is not sampled, what is the bias in the

average porosity obtained from plug samples?
The true mean porosity is given by

¢r =030+ 0.10 + 0.70 - 0.20 = 0.17

All samples are sandstone with one porosity value. Therefore, ignoring
measurement error, the apparent formation porosity is given by

6z=1.0°020=0.20
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The bias is by = ¢4 - ¢1 = +0.03, or about 18% too high.

5-4 ESTIMATOR EFFICIENCY

The second property of a good estimator is that the variability of its estimates should be
as small as possible. An estimator with a small variance is said to be precise or efficient.
Do not mistake the variance of the sample space for the variance of the estimator. The
former is a property of the physical variable and the latter is a property of the data and the

estimation technique (Fig. 5-2).

Estimator W

Prob(§)

Estimate Variability

>

Figure 5-2.  Estimator efficiency is based on how variable the estimates Bare.

[Var(@)]m, the standard deviation of the estimates, is called the standard error. There
are theoretical statements such as the Cramer-Rao Inequality (Rice, 1988, p. 252) about
the minimum variance an estimator can attain. When an estimator has no bias and this
minimum variance, it is said to be an MVUE (minimum variance, unbiased estimator).

Example 2a - Determining Uniform PDF Endpoints (Method 1). Monte
Carlo reserves estimation often assumes a uniform PDF for one or more
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variables (Chap. 4). How do we obtain the lower and upper limits?
Obviously, we must depend on the data to reveal these endpoint values.

In this example, two methods for estimating endpoint values are presented and
compared for bias and efficiency. Rohatgi (1984, pp. 495-496) presents a
third method. To simplify the discussion, we assume that the upper endpoint
is unknown and the lower endpoint is zero. In the context of the previous
discussion on estimators, 8 is the upper endpoint and the parameter to be
estimated (Fig. 5-3).

For the uniform PDF, the mean value of the random variable X is given by

oo 4
EX)= [xflx) dx= [(x16)dx = 612
—o00 0 :

That is, the arithmetic mean is exactly one-half the upper limit 8 when the
lower limit is zero (Fig. 5-3).

We use this result to provide an estimator for 6.

f(x)

& x

(<]
2

Figure 5-3.  Uniform PDF with lower limit 0, upper limit 6, and mean 6/2.

Given I samples of X, X1, X9, ...,X], taken from a uniform distribution, the
above suggests that twice the arithmetic average should give an estimator for 6:
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@1=2)?= X;

~I
M~

-
1l

1

Let W1 be this estimator (the subscript 1 on 8, W, and b below refers to the
first estimator). The bias of this estimator is as follows:

, I
b1=E(91)-9=E(-I- ZX,-J-G
i=1
I
2 2 0
= -I—EIE(X,‘)-9=7(I '2‘)-9

b =0
Since b is zero, the estimator W1 is unbiased. The variance of W is
Var(9y) = E[B1 - ) 21 = E(812) - 62

= 4[E( X)? - E( X)) = 4Var( X)

= 1
Since (see Eq. (4-4)) Var( X) = T Var(X) for I independent samples X;,

Var(By) = Vartx) = § 562 - EG0?)

6
=% { [(x216 )dx - (92/4)] = 02/3]
0

The variability of the estimates @1 depends upon 8 and 7, the number of data.

Var(@) oc I'! is a very common dependence, i.e., the standard error is halved with a
four-fold increase in data-set size. This suggests that overly stringent specifications for
estimates can be quite costly. Var(@) o< 62 is reasonable since, with lower limit fixed at
0, the upper limit 8 will control the variability of X. ’

Example 2b - Determining Uniform PDF Endpoints (Method 2). A more
obvious estimator than W1 for the upper limit of a PDF is to take the
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maximum value in the data set: &) = X, max- L€t W2 be defined as
@2 =max{X1,X2,...X1}.

From theory based on order statistics (Cox and Hinkley, 1974, p. 467),

s (1)

Hence, W is a biased estimator with by = -1/(I+1). As we might expect,
Xymax never quite reaches 6, no matter how many data we have. We can
correct for this bias by redefining W5 as [(/+1)/I] max{X1, X2, .., Xs}. This

estimator is unbiased because E(@z) = 0. It has variance
Var(®y) = 02/ I7+2)

If we compare the variances of Wy and W5, we conclude that W5 is more
efficient than W1 because Wo has a a lower variance than Wy. Their relative
efficiencies are

Var®) _1+2
var®y) 3

21forf=1

A similar procedure could be used to find an estimator for the lower limit a of
a uniform PDF: 8 = [I/(I+1)] min{X1, X2,..,XJ).

The estimator, Wo, in Example 2b was biased but more efficient. Efficiency is
evidently not an intuitively obvious property. W7 explicitly used all the data in the
estimator, whereas Wo only used the values to order the data and explicitly used only the
maximum. It may appear that W, made less use of the information contained in the data,
but that is not the case. ‘

There are several methods to develop estimators (Rice, 1988, Chap. 8). The methods
of moments and of maximum likelihood are two examples. Maximum likelihood
requires that the population PDF be known (or assumed). This additional information
helps to make likelihood estimators efficient.

Combining the properties of estimator bias and variability introduces an important
property known as consistency. An estimator W is consistent if, as the number of data,

I, becomes large, (2 approaches 6 (asymptotically unbiased) and the variance of 9
approaches zero.
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5-5 ESTIMATOR ROBUSTNESS

Estimator robustness is the ability of the estimator to be relatively uninfluenced by errors
in a small proportion of the data set. We appreciate that errors can occur in the
measurement and recording of data; a decimal point could get moved or a specimen could
be improperly tested. If the unrepresentative values have a large influence on the estimate
produced, then the estimator is not robust. We will always have problems trying to find
an estimator that is responsive to meaningful data values but is insensitive to wild,
unrepresentative data.

Consider, for example, the following set of porosity data: 8.3, 9.6, 7.4, 8.9, and 9.1.
For this set, X = 8.7 and 5?0_50 = 8.9, which are in good agreement (within 2%). What
happer/l\s if one of the data values, 9.1, were misrecorded as 19.1? In that case, X = 10.7
while Xg.50 = 8.9, a disagreement of 18%, which can be significant.

Substantial work has been done concerning robust estimators. Barnett and Lewis
(1984, Chap. 3) discuss some quantitative assessments for robustness A simple example
is using the median to estimate the mean. The sample median (X 0.50) is the middle
value in a set of I data:

Xa+1)2 for I odd

A
X0.50 = 1 v
5 X172 + X(1+2)/2] for I even

where X1 < X9 < X3 <+ <Xy is an ordered data set. If the data come from a normally
distributed population with mean L, 20_50 is an unbiased estimate of y, but it is about
25% less efficient than the arithmetic average, X (Kendall and Stuart, 1977, pp. 349-
350). Frequently, the most efficient estimator is less robust than other estimators. The
more efficient estimators use all information, including knowledge of the population
PDF, but they can deteriorate quickly with small deviations from the underlying
assumptions.

We will not dwell further on robust estimators because there are excellent treatments
elsewhere (e.g., Hoaglin et al., 1983; Barnett and Lewis, 1984). We will, however,
sometimes refer to an estimator as robust or nonrobust. In reservoir description, we must
examine the robustness issue from two perspectives: choosing a robust estimator when
we have a choice and, when we do not have a choice, assessing the estimator sensitivity.
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5-6 ASSESSING THE SENSITIVITIES OF
ESTIMATORS TO ERRONEOUS DATA

Quantification of estimator robustness is often difficult. We can, however, make some
progress by looking at the differential sensitivities for some estimators. If we have an
analytic expression for the estimator W, then we can calculate the sensitivities based on

the relation 8 = wWX1, X2,...X]):
aw
AB; = ox; AXi

where A@,‘ is the error in the estimate arising from the error AX; in the measurement of
the i datum. This expression comes from the truncated Taylor series expansion of W
about the true data values X1, X9,...,X], so it may only be useful for small errors (less
than 20% or so) in the X's. The expression also assumes the AX;'s are independent.
Given that this approach has its limitations, it is often still useful to examine the
estimator sensitivities to measurement errors. Knowing these sensitivities, resources of
data acquisition can be better applied to give the least erroneous estimates possible.

Example 3 - Archie’s Law Sensitivity Study. We want to assess hydrocarbon
saturation in a formation by measuring formation porosity and resistivity
with wireline logs and cementation and saturation exponents in the
laboratory. We use a model, Archie's law,

o _ Ry

w ¢m R P

to predict water saturation, where a is a constant, m and » are the cementation
and saturation exponents, respectively, and Ry, and R; are the water and
formation resistivities (Archie, 1943). In this case, our estimator—Archie's
law—is fixed, but we want to know whether to pay for the expensive logging
suite (accurate to £5%) or spend extra money acquiring better laboratory data.

We assess the impact of measurement errors in a, ¢, m, n, R,,, and Ry upon
the water saturation S,,. Taking partial derivatives of sums and differences is
easier than differentiating products and quotients. Since Archie's law consists
only of products, quotients, and exponents, we can simplify things by taking
logarithms of both sides before calculating the partial derivatives:

In($,) =+ (In(@) + In(Ry) ~ min(g) ~ In(R,)]
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Hence, in the case of the saturation exponent n, for example, we have,
assuming that a, ¢, m, n, Ry, and R; are independent,

d lrgrzSW) = - n2 [In(a) + In(Ry) — min($) — In(R)] = — % In(S,,)
o 35—,,”= —Sn—wlncsw>
Sw
Hence, ASy =— Py In(Syw)An

A similar approach for the other variables gives the following expression for
the total error in S,, arising from errors in all the measured variables:

AR AR
AS,, =S7W[— In(S,p)an + =% - =t 4a

Ry R ' a

mA—q)Q - 1n(¢)Am:l

The proportional change in water saturation is

A4S, 1 ARy AR; Aa_ _A¢

?‘;—':;[— ln(Sw)An+ “Ii‘w“—— Rt, + 7 m ¢ - ln(¢)Am]

Thus, Ry, R;, a, and ¢ all contribute proportionately to the total error AS,,.
If m = 2, porosity errors are twice as significant as resistivity errors. On the
other hand, m and » contribute directly according to the porosity and water
saturation of the material under consideration. Errors in n could lead to
significant errors in Sy, at low water saturations, while errors in m can be
important for low-porosity media. Thus, extra money expended to make
careful laboratory measurements may be worthwhile.
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Unlike Archie's law, which deals with static quantities, there are also instances where
measurements can influence the predicted flow properties of the reservoir. Relative
permeability measurements are a good example of this situation. They are required for
immiscible multiphase flow. They are a laboratory-determined property and are usually
based on results from a few, small rock samples. Thus, these data are susceptible to

errors and those errors may be important, as described in the next example.
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Example 4 - Assessing the Effects of Relative Permeability Errors. In a
common case of one spatial dimension and two phases (oil and water), the
frontal advance solution (Willhite, 1986, pp. 59-64) of Buckley and Leverett
shows that the fractional flow is the important quantity that relates the
relative permeabilities to flooding performance. It is not the relative
permeability measurement errors per se that matter, but the effects of these
errors upon the fractional flow. If we ignore gravitational effects and assume
negligible capillary pressure, the water fractional flow is

1
fw=
! 1 +k—'°‘£i
krw Ho

where k, is the relative permeability, 1 is the fluid viscosity, and the
subscripts o and w refer to oil and water. By definition f,,, < 1 for this case.
An analysis similar to that of Example 3 shows that

M _ ey (Brw  Bkro
fW _(1 fW) (krw kro)

Thus, errors in fiy are less than errors in the relative permeabilities, since

0 < (1- fyw)< 1. If a shock front develops, only f;, values exceeding the
breakthrough value, fi,p;, exist (see Lake, 1989, Chap. 5). This further
mitigates the impact of relative permeability errors. The errors in &y, which
can be large when k,, is small, produce smaller changes in fy.

5-7 SENSITIVITY COEFFICIENTS

The sensitivity analysis approach just presented can be developed further using the
properties of the logarithm and the variance operator. This can lead to some to some
interesting insights into the sources of variability and data error. This process is
sometimes called first-order or linearized error analysis.

Suppose we have an estimator of the form
Y = Y(X1, X2,....X])

where Y is some quantity to be estimated that depends on the values of the X1, X»,...,
X7, all independent quantities. We treat the X; as random variables even though the
relationship is deterministic; this makes Y a random variable also. In general, the




Statistics for Petroleum Engineers and Geoscientists 119

function Y is known (usually it is a physical law) and is nonlinear. As discussed in
Chap. 1, statistics cannot help in determining the form of Y, but, once it is determined,
statistics can determine the sources of its variability. We could actually treat a system of
equations of the above form but will not for mathematical brevity.

As in Section 5-6, we linearize Y by first writing its differential expansion:

Y Y

Y = o dX1+ o

dXq + - +55-dXg

8
o'?X
Upon multiplying and dividing each term on the right side by the respective Xj,

multiplying the entire expression by Y, and recognizing the differential properties of
natural logarithms, this equation becomes

din(Y)=a1dInX1) + ap d In(X9) + -+ + ard In(X)) 5-1)
where the coefficients a; are sensitivity coefficients defined as (Hirasaki, 1975)

_dIn(¥)
%= 9 1n(X;)

These coefficients are not, at this point, constants since they depend on the values of the
entire set of X;. The g; are the relative change in Y caused by a relative change in the
respective X;. The relative part of this statement, which arises in the derivation because
of the use of the logarithms, is important because the X; can be different from each other
by several factors of ten. Of course, since Y is known, the sensitivity coefficients can be
easily calculated.

Equation (5-1) is thus far without approximation. We now replace the differential
changes by discrete changes away from some base set of values (denoted by ©):

d In(X;) = In(X;) - In(X?) = In(X; / X?)

The resulting equation is now only an approximation, being dependent on the selection of
the base values. It is a good approximation only in some neighborhood of the base
values. If we, in addition, evaluate the g; at the base values, the estimator becomes linear
with constant coefficients.
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I
In(Y/Y°) =2 a; In(X/X?)

i=1

This linearized estimator is now in a suitable form for application of the variance
operator,

1
Var(Y) = z af Var(X;)

i=1

from the properties Var(aX) = a?Var(X), Var(X+ constant) = Var(X), and Var(constant) = 0.
The signs of the a; no longer matter since they appear squared. This expression assumes’
that the X; are independent.

Example 5 - Sensitivities in the Carman-Kozeny Equation. We can use the
above procedure on a fairly simple equation to make inferences about the
origin of permeability heterogeneity. The application also illustrates other
ways to linearize estimators.

Let us view a reservoir as consisting of equal-sized patches, each composed of
spherical particles of constant diameter. (The facies-driven explanation of
heterogeneity discussed in Chap. 11 suggests that this picture is not too far
from reality, although we invoke it here mainly for mathematical
convenience.) The Carman-Kozeny (CK) equation

_ 1 2
k"72¢(1 - ¢)2Dp

now gives the permeability within each patch. Dp is the particle diameter, ¢
the porosity, and 7 the tortuousity in this equation.

The CK equation is a mix of multiplications and subtractions. It can be
partially linearized simply by taking logarithms.

In(k) = 2 In(Dp) — In(7) + 1{;%] ~1n(72)
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From inspection, the sensitivity coefficients for D and 7 are aDp = 2 and
at=-1. These coefficients are constant because of the logarithms. By
differentiating this expression, the sensitivity coefficient for porosity is

3-2¢
a¢=1_¢

This requires a base value, which we take to be ¢ = 0.2 from which
ar=3.25. Note that the CK permeability estimate is most sensitive to
porosity, followed by particle size, then tortuousity (lagl > IaDpl > laq).

The variance of In(k) is

M-~

Varlln(®)] = ) a> Var(X) =-a]3 Var[ln(f)] + af)p Var(In(D,)] + af Var{ln(7)]

=1

Estimating this variability requires estimates of the variabilities of In(f),
In(Dp), and In(7). We note in passing that porosity, particle size, and
tortuousity are independent according to the patches model originally invoked.

Reasonable values for the variances are Var[In(¢)] = 0.26, Var[ln(Dp)] =2.3,
and Var[In(7)] = 0.69. These values are taken from typical core data. The
variance of In(k) is now 13.08, but perhaps the most insight comes from
apportioning this variance among the terms. From this we find that 24% of
Var([In(k)] comes from In(¢), 70% from In(Dp) and 6% from In(7). Sub-
stantially more of the variability in permeability comes from variability in
particle size, even though the estimate is more sensitive to porosity.
Additional calculations of this sort, that do not regard ¢, Dp, and 7 as
independent, are to be found in Panda (1994).

Although simple, Example 5 illustrates some profound truths about the origin of
reservoir heterogeneity—namely that most heterogeneity arises because of particle size
variations. This observation accounts, in part, for the commonly poor quality of
permeability-porosity correlations. . Similar analysis on other estimators could infer the
source of measurement errors.  We conclude with the following three points.

1.

The procedure outlined above is the most general with respect to estimator
linearization. However, as the example shows, there are other means of
linearization, many of which do not involve approximation. These should be used
if the form of the estimator allows it. For example, logarithms are not needed if
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the estimator is originally linear. In such cases, the entire development should be
done with variables scaled to a standard normal distribution.

2. The restriction to small changes away from a set of base values is unnecessarily
limiting in many cases. When the small change approximation is not acceptable,
the general nonlinear estimator ¥ = W (X1, X2,...,X]) can be used in Monte

Carlo algorithms that do not require the estimator to be linear (e.g., Tarantola,
1987). Many such algorithms also allow for the X; to be dependent.

3. Perhaps most important is the fact that the procedure allows a distinction between
sensitivity and variability (or error). Sensitivity, as manifest through the
sensitivity coefficients, is merely a function of estimator form; variability is a
combination of sensitivity and the variability of quantities constituting the
estimator. In most engineering applications, variability is the most interesting

property.

5-8 CONFIDENCE INTERVALS

During estimation, the information conveyed by the data is "boiled down" by the
estimator W to produce the estimate 8. There usually is information in the data that is
unused. Since 8 is a random variable (e.g., Fig. 5-2), the additional information can be
used to estimate 's variability. This variability assessment, s§. = [Var(@)] 12, provides a
confidence interval for 8.

Example 2 showed that estimator W1 produced unbiased estimates with
Var(8 1) = 6% /31 while W gave bias-corrected estimates with Var(@z) oI (I+2) for I
data. If we assume that the 9 's are normally distributed, then @1~ N[o, 62 /31] and
@1~ N6, 62 /I(I+2)]. These results permit us to say, at any given level of probability,
how close our estimates 91 and @2 are to the true value @ (Fig. 5-4). For any number of
data and value of 6, W7 will give estimates more closely centered about 6.

An alternative to showing estimated PDF's is to give the standard error s§. along with
the estimate, usually written as 9+ 5. $9. is an estimate of [Var(@)]lf2 because we
(again) have to depend on the data. For example, in the case of Wy in Example 2a, we
have @1 + (é)2 /3DY2, Clearly, if we are estimating 6, we do not know 8 for the standard
error of @1 either. We do the next best thing, however, and use the estimate @1 again:
0 + 92/31)1/2 In essence, we are giving our best estimate of 6 along with our best
estimate of its standard deviation,
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Figure 5-4. PDF'sof @1 and @2 with the x axis scaled in units of (8/31)1/2, centered at 6.

We often assume that unbiased estimates are normally distributed. This is not always
true, particularly when [ is small (e.g., less than 20), and theory exists for standard errors
of some estimators (e.g., the arithmetic average and the correlation coefficient). However,
as a working practice for / 2 20, it is often safe to assume 8 is normally distributed. We
can then use the properties of the normal PDF to state how often 8 will be within a given
range of b. Hence, there is a 68% chance that (@ -59. )< (@< 0+ s9.) and a 95% chance
that (o(".8) - 2s8.)< (8 < B + 258.) (Fig. 5-5).

95%
< >|
97 . e, 9 |
i \\\‘ Ai f Ai\ t /|\ lAl = A|>
0 G-ZS@ G-Sé (3] e+S© 9+2$©
|~
68%

Figure 5-5.  The true value for 8 is not known. The size of interval where it may be
located depends on the probability assignment.
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To use standard errors to define and interpret confidence intervals requires, strictly
speaking, that the variable be additive (ratiometric, Chap. 3). For this type of variable,
we can add and subtract multiples of the standard error without difficulty. We do reach a
limit, however, because we might, for example, produce a reservoir thickness such as
h=22m+ 15 m. The 95% confidence limits would be -8 m < 4 < 52 m, and we know
that lower extreme of -8 m cannot be correct. This is because the assumption of a normal
PDF is no longer valid and we are seeing it break down. But there is also the more
difficult area where we want to use standard errors with interval-type variables, which may
not be additive. These are very common in reservoir characterization (e.g., permeability,
density, and resistivity).

The role of additivity in statistical analysis requires further research. Here, we will
take a pragmatic approach that does not demand unconditional additivity of the variables
to be analyzed. That is, if X is the reservoir property being considered, we will not
require that Y, o;X; be a physically meaningful quantity for all o's and X's. We will
only require "local" additivity, so that X + AX, where AX is a "small" change in the
value X (say, 14X1 < 0.20X), is still physically meaningful. By assuming local
additivity, we can continue to interpret standard errors in the conventional way. Large
changes, however, may lead to nonphysical values. For example, porosity is clearly
nonadditive because it cannot exceed unity. It is, however, a ratio of additive quantities:
void volume Vy + total volume Vp, where Vy < V1. For VT constant, a Vy
perturbation, AVy, is directly proportional to the change in porosity: A¢ = AVy/VT.
Hence, as long as Vy + AVy < V7 and V7 is constant, porosity is locally additive, If
porosities with different measurement volumes are being added, they can be put on a
comparable basis by adjusting for V7.

The traditional definition of confidence intervals is tied to Var(@). Confidence intervals
are also just one type of statistical interval that could be considered. Others exist and are
discussed at length in Hahn and Meeker (1991). We will confine discussion here to the
traditional usage.

5-9 COMPUTATIONAL METHODS TO OBTAIN
CONFIDENCE INTERVALS

While a very useful tool for conveying uncertainty, confidence intervals in many
situations may be difficult to obtain or inaccurate, depending upon the exact
circumstances of the problem. In particular, small data sets from non-normal populations
can give rise to biased estimates and produce erroneous confidence regions if the usual
normal-theory assessments are used. Two procedures, called the jackknife and the
bootstrap, address these problems. The idea of these methods is to assess the variability
of estimates using incomplete data sets. That is, if we have / samples in a data set, we
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can generate 2 number of smaller-size data sets from it. The jackknife and bootstrap
methods then use these subsets to assess the variability of the estimate.

Consider, for example, the jackknife technique on a data set of size [ using an
estimator W. It is possible to generate I subsets of size I-1 by dropping a different datum
for each subset. Then, using W, we can produce an estimate for each of the I subsets.
Let @i represent the estimate based on the i subset, i = 1, 2,...,I and let arepresem the
estimate based on the full set of size I. An unbiased estimate of 6 is given by

D
*
]
b~y
>
)
Py
T~
>

A variance estimate for 6*, which we need to obtain a confidence interval, is given by
[-1 1 ¢
2 -1 LS
Sge=T1 2, (8:- 7 Z )2
=1

We can then apply the usual confidence interval techniques previously discussed to
indicate the variability in 8*. Clearly, if I exceeds 5 or 10, the jackknife becomes
cumbersome, making it a perfect task for a computer. Some of the newer data-analysis
packages have this feature available.

The bootstrap is even more computationally intensive than the jackknife but similar in
approach. The bootstrap generates subsets allowing replication of data, however. Hence,
a much larger number of subsets can be generated. As for the jackknife, W is used to
produce an estimate 9 forj=1,2,...,J, where J usually exceeds I. The estimate D for
the complete data set is given by

with a variance of
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The jackknife or bootstrap are useful not only for obtaining confidence intervals of X.
For example, these methods may be very useful for analyzing output from stochastic
simulations, where each run can be very costly and, hence, there are very few runs to
analyze. Many of the results are likely to come from non-normal distributions (e.g.,
produced quantities, time to breakthrough, and water cut). Hence, the "average"
performance may be hard to assess without the jackknife or bootstrap. Similar arguments
can apply to geologic analyses, too. For example, calculation of R2 estimates from
small numbers of core-plug porosity and permeability data may be analyzed using the
jackknife or bootstrap. The reader is referred to Schiffelbein (1987) and Lewis and Orav
(1989) for further details and references.

Example 6 - Jackknifing the Median. We compute the jackknife estimate of
the median from ten wireline porosity measurements, X1,...,X1¢, shown in

Table 5-1. R0.50 = (0.191 + 0.206)/2 = 0.199. X 50,; is the sample
median of the data set without the i point in it.

Table 5-1. Example 5 jackknife analysis.

i Xi Ro.50.i
1 0.114 0.206
3 0.146 0.206
3 0.178 0.206
4 0.181 0.206
5 0.191 0.206
6 0.206 0.191
7 0.207 0.191
g 0208 0.191
9 0.218 0.191
10 0542 0.191

Figure 5-6 is a probability plot of the data, suggesting they appear to come
from a normal PDF. Because the data appear to have a normal PDF, b 0.50
is unbiased. Hence, we do not expect the jackknife to produce an estimate
different from £ 0.50 and that is the case:

1
* I-1 9
Xoso=1R050- "7 ; 0.50,i = 10:0.199 = 75 (5 + 0.206 + 5 + 0.191)
=0.199

o ]
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Note that we are maintaining three-figure accuracy, in keeping with the
original data.

Porosity
0.250

- 0225
0.200
0.175= *
0.150— .

0.125+

0.100 g ; ; - /
-3 -2 -1 0 1 2 3

Normal Quantiles

Figure 5-6.  Porosity data probability plot showing approximately normal PDF.

The jackknife, however, also provides a confidence interval estimate of the sample
median:

I I
I-1 1 2

Sonx =0 R0.50,i - =3.90.50,)

XO.SO I : ( g IJ:l j)

i=1
=19—0 [5 (0.206 - 0.199)2+ 5 (0.191 - 0.199)2]

= 0.000509
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or . Sax = 0.0225
‘ Xo.50 '

Thus, at 95% probability, the confidence interval for X} s, is
from (X 5, - 251 ) to(R5 5o + 2540 ) or 0.154 < X3, < 0.244,

Clearly, there is a large possible range for 5? oso- Theoretical results,

assuming X; is normally distributed, give Spe = 0.020 (Kendall and Stuart,
0.50

1977, p. 351), which agrees well with the jackknife value.

The jackknife procedure is not restricted to subdividing / data into subsets of size I-1. The
procedure is more general. Lewis and Orav (1989, Chap. 9) have the details.

5-10 PROPERTIES OF THE SAMPLE MEAN

The arithmetic average is a very common measure of central tendency. It has been
extensively studied and we give some results here. Let X; be a random sample of I

observations from a distribution for which the populanon mean 4 and variance o2 exist.
The arithmetic average or sample mean is

From the Central Limit Theorem (Chap. 4), one can show (Cramér, 1946, Chap. 28) that
X has the following properties:

62
X ~N(u, 7) for large 1

_ o2 _
X ~N(u, ) exactly, if X; = N(u, o?)

where E(X;) = ¢t and Var(X;) = o2, The first result is independent of the PDF of the
random variable; it says that X is an unbiased estimate of y or, on average, X over all
samples is equal to the "true" sample space mean. In some cases, X approaches
normality for surprisingly small /. Papoulis (1965, pp. 267-268) gives an example of
independent, uniformly distributed X and 7 = 3.
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One of the interesting features of the arithmetic average is how its variability depends
on the number of samples, I. The variability of X decreases as I increases, which is
what we would expect; the more information we put in, the better the estimate ought to
be. In particular, the standard deviation of X is proportional to I- 12 a property
common to many estimators (e.g., Example 2a).

Before we consider further the sampling properties of X, we first discuss variance
estimation.

5-11 PROPERTIES OF THE SAMPLE VARIANCE

The sample variance is a measure of dispersion. It is defined as

Z X;- X)?

Nl'—'

52 is biased since we can show (Meyer, 1966, p. 254) that
I
However, just as in Example 2b, we can formulate an unbiased estimate of 02 by using

L 2
=1-1°%

I
% o 0

i=1

This result has a more general concept embedded in the use of (I - 1) instead of I in the
denominator. Since the sample mean is required to compute the sample variance, we have
effectively reduced the number of independent pieces of information about the sample
variance by one, leaving (I - 1) "degrees of freedom."” Therefore, (I - 1) is a "natural”
denominator for a sum of squared deviations from the sample mean. Using (/ - 1) instead
of I to estimate the variance is not very important for large samples, but we should
always use it for small data sets (I < 20).
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If X ~ N(u, 62), then the Var(s2) = 62/2I (Kendall and Stuart, 1977, p. 249). More
generally, the variability of 52 is approximately

E{[X - EX)1*4) - Var(X)?
4d - HVar(X)

Var(s?) =

where E{[X - E(X)]4} is the fourth centered moment of X. This result follows the general
pattern that the estimate variability for the £ moment depends upon the 2k** moment of
the PDF.

To estimate the standard deviation, one may usually take the square root of the
variance. For very small data sets ( < 5), however, another effect comes in. The square
root is a nonlinear function and causes the estimated standard deviation to be too small.
When 7 <5, multiply @by 1+ (1/4I) (Johnson and Kotz, 1970, pp. 62-63).

5-12 CONFIDENCE INTERVALS FOR THE SAMPLE
MEAN

The arithmetic average, X, is often used to estimate E(X). There are some theoretical
results for the confidence limits of X when the samples come from a normally
distributed population. If we know the population variance, 62 = Var(X), we would

know that (,u-zO'/\E) < X< (u+z0'/\/7) for a fraction [1 - P(2)]/2 of the time. (Recall P
is the standard normal CDF.) Usually, however, we do not know o but can estimate it
from the same samples we used to calculate X. If that is the case, we have to introduce
a different term that acknowledges that § is also subject to statistical variation:

p= X=+af2, db SNT

where #(0./2, df) is the "¢ value" from Student's distribution (Fig. 5-7) with confidence
level a, df =1 - 1 degrees of freedom, and % is the sample standard deviation.

Values of the function #(&/2, df) are widely tabulated (e.g., Table 5-2). o« is the
complement of the fractional confidence limit (e.g., if we want 95% confidence limits,
then o = 0.05). As df (i.e., the sample size) becomes large, the ¢ value approaches the
normal PDF value for the same confidence level. For a given value of ¢ = tg, the
symmetrical form of Student's distribution implies that any random variable T with this
PDF is just as likely to exceed some value ¢ as it is to be less than -£g. Consequently,
when we set a confidence level o for T, we usually want #(a/2, df) because T can be
either positive or negative with equal probability. For example, if our confidence level is
(1-a)=0.95, we find 1(0.025, df). This situation is called a double-sided confidence
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interval. If we knew, however, that T could only have one sign or we were interested
only in excursions in one direction, then we would use #(«, df) for a single-sided
confidence interval.

Table 5-2. t values.

Tail area probability, o
df '0.05 0.025 0.005
1 6.314 12,706 63.657
2 2.920 4303 9.925
3 2.353 3,182 5.841
4 2.132 2.776 4.604
5 2.015 2.571 4.032
6 1.943 2.447 3.707
7 1.895 2.365 3.499
8 1.860 2.306 3.355
9 1.833 2.262 3,250
10 1.812 2228 3.169
11 1.796 2.201 3.106
12 1,782 2.179 3.055
13 1.771 2.160 3,012
14 1.761 2.145 2.977
15 1.753 2,131 2.947
16 1.746 2.120 2.921
18 1.734 2.101 2.878
20 1.725 2.086 2.845
22 1.717 2.074 2.819
24 1,711 2.064 2.797
26 1.706 2.056 2.779
28 1.701 2.048 2.763
30 1.697 2.042 2.750
40 1.684 2.021 2.704
60 1.671 2.000 2.660
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Figure 5-7.  The Student's distributions change shape with the degrees of freedom (df).
t is the value for which the tail area is o at the stipulated df value.

Example 7 - Estimating the Mean Value. Suppose we wish to specify the
95% (o= 0.05) confidence interval for the population mean from a sample of

25 data points (df = 24) with X =30 and 3 = 3. The ¢ value from the above
table is 2.064 and the above formula yields

=130+ (2.064) 325

or

Le (28.76,31.23)

Thus, we can be 95% certain that the population mean is within the stated
limits (Fig. 5-8).

<4 95% &
? 9 ?
1 N | H i
| \N\—— | n —1
0 28.76 30.00 31.23

Figure 5-8.  Confidence limits for X. There is a 2.5% chance that i >
31.23 and a similar chance that u < 28.76.
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Had we used the z value instead of the ¢ value (i.e., if we ignored the fact that
we have estimated the standard deviation from the data as well as the mean),
the factor would be 1.960 (from normal table, Chap. 4) instead of 2.064.

Despite its considerable attractions, there are some problems with the sample mean. It
can be inefficient when the X; are coming from skewed populations, such as the log-
normal PDF. Consequently, we can expect that the arithmetic averages of quantities like
permeability and grain size may be inaccurate. Agterberg (1974, pp. 235 ff) discusses an -
efficient method for estimating the mean for log-normal populations.

5-13 PROPERTIES OF THE SAMPLE MEDIAN

Besides the sample mean, the sample median 20,50 is another measure of central
tendency. We have already observed that & 0.50 is more robust than X. b'e 0.50,
however, does not have the nice distributional properties obtained through the central
limit effect that X has.

The exact PDF and properties of 520,50 are discussed by Kendall and Stuart (1977,
pp. 252, 348-351). When X ~ N(u, 0'2),.5?0,50 is unbiased and its standard error is
approximated by

VVarRo.50) = oV sl
for I data. Since Var( X) = o2 we find that, for large I,

Var( X) - o/l
Var(R0.50) mo2/2l

=2/

Hence,'\, 2 X-Qo 50- So, for the normal PDF, where X¢ 50 = E(X), estimation of

the mean using 5?0 50 18 less efficient (i.e., needs about 60% more data) than using X.

5-14 PROPERTIES OF THE INTERQUARTILE RANGE

The interquartile range (IQR) is the difference (Xo.75 - X0.25) and is another measure of

dispersion. It has been used as a robust substitute for the standard deviation, v Var(X).
Apart from robustness, the sample IQR, (5? 0.75 - 20_25),.has several other features in
common with the median. Both are based on order statistics, which are sample quantiles.
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For X ~N(u, 02), (X0.75 - X0.25) = 1.350. Hence, besides the sample variance, an
estimator for o is SIQR = (5? 0.75 - 520,25)/1 .35 when X is normally distributed. For
large I, the sample IQR is unbiased and has the ampling variability
Var(R0.75 - R0.25) = 36%/2I (Kendall and Stuart, 1977, p. 350). O[QR is less efficient
than 52 at estimating 62. Depending upon I, Var(61QR) is between 30% (I = 6) and 65%
(I large) higher than Var(s2). This puts GIQR at about the same efficiency as the sample
median for estimating their respective quantities when X is normally distributed.

5-15 ESTIMATOR FOR NONARITHMETIC MEANS

There are other means besides the arithmetic mean, X4 = E(X), that arise in reservoir
evaluation. The geometric and harmonic means of X are defined as X = exp{E[In(X)]}
and Xy = [E(X"1)]1, respectively. All three means are specific instances of a more
general situation (Kendall and Stuart, 1977, pp. 37-38), the power mean:

CEERPIP pzo0
XP =

exp{E[In(X)]} p=20

Xp is the case when p = -1, X when p =0, and X4 corresponds to p = 1. X, can be
viewed as being the arithmetic mean of X raised to the 1/p power. As long as the
reservoir property X is nonnegative, X, <Xp, if p; <py (Kendall and Stuart,
1977, p. 38). Hence, Xy < X < X4 for many reservoir properties.

We have already considered estimation of X4. Compared to X4, the properties of X
and Xz estimators have received little attention. Two common estimators for X and
Xy are

Xg = exp[% > In(X i)} (geometric average)
i=1
I -1
Xy=1I z OR: (harmonic average)
i=1
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Neither of these is unbiased. For example X overestimates X¢ if In(X) ~ N(u, o?):
E( Xg) = Xg exp(c2/2I), so X is consistent. Under similar conditions,
E( Xp) =Xyl + [exp(oz) 1/1}. Xg and Xp are not especially robust, either.
These two estimators are sensitive to small, uncertain data values. One way to avoid this

problem is to use the sample median: If Y = XP, choose h'e p= [?0_50]1/" . Another
approach is to use a trimmed or Winsorized mean of Y, which is discussed below.

5-16 FLOW ASSOCIATIONS FOR MEAN VALUES

As we pointed out at the beginning of this chapter, an important element of the
estimation procedure is to decide on the quantity to be estimated, 6. Sometimes the
decision is fairly obvious. For example, E(¢) is often a useful measure for porosity in
many applications because it represents a central value for a physically interpretable
quantity. Permeability, on the other hand, is usually a more difficult property for which
to find a representative value, and only a few systematic guidelines are available.

Why is permeability so troublesome? Since it pertains to flow, permeability is clearly
an important property. But, permeability is an intensive variable (Chap. 3). Depending
upon the situation, it may not be additive. The flow transmitted by any given region
depends upon the permeabilities of surrounding regions. For example, consider a highly
permeable region of a reservoir encased in shale (e.g., lenticular bedding). No matter how
permeable is the center, the outer "shell" of low-permeability material prevents flow.
This is not the case for porosity, for example, where the pore volume of fluids in a lens
contributes to the total amount of fluid in a region without regard to whether the fluids
can move or not. There are a few cases, however, where it is clear what the additive
properties of permeability are.

In the case of linear flow parallel to a stratified medium, typical of shallow marine
sheet sands, of I layers (Fig. 5-9), the aggregate permeability (k;) of the region is the
expected value of the layer permeabilities. To see this, we take the expression for k; and
rearrange it:

1
kt= 1 = ki [ = Zk:pz E(k)
. ; Zhj i=1
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since p; is the probability that the permeability is k;. Clearly, permeability is additive in
this case. :

k, h1¢
FLOW

ky h1¢

Figure 5-9.  Effective permeability for layér-parallel flow.

When linear flow is orthogonal to the layers (e.g., dune crossbeds), permeability is no
longer additive. Its inverse, however, is additive. The aggregate resistance to flow, k—tl,
is given by the expected value of the layer resistances to flow (Fig. 5-10):

I

:ihi/ki I h; I 1
a1 = -1 -

- D Wil

i=1 =1

Consequently, here are two situations for which we know the quantity to be estimated,
6, when the aggregate permeability is desired:

ke = E(k) for linear flow parallel to layers
k_t1 =E(k1) for linear flow normal to layers
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FLOW T

Figure 5-10. Effective permeability for layer-transverse flow.

Many geological systems, while containing some degree of ordered permeability
variation, do not meet the layered situations described above (e.g., turbidites, braided
deposits). What are the expressions for k; in those cases? The best general answer comes
from Matheron (1967): E(k) = k; = [E(k~1)]-1. In other words, k; appears to be the
power mean of permeability for some exponent p, -1 < p < 1. The work of Desbarats
(1987) has supported this result, but it is not clear how to select p a priori.

There is one other situation for which theoretical results exist (Matheron, 1967).
When In(k)~N(u, 02), o is small, and the flow is two-dimensional (2D),
In(ky) = Elln(k)]. Hence, the geometric mean is appropriate. Various simulation studies
(e.g., Warren and Price, 1961) have extended this result to less-restrictive situations with
some success. This result does not require that the system be totally disordered. As long
as the scale of the ordered or structured element is small compared to the region for which
k; is sought, the geometric mean will apply, given that k is log-normally distributed and
exhibits only moderate variation.

In summary, then, there are three definite results—all assuming linear 2D flow—for
determining k;.

1. Layered system, flow parallel to layers: arithmetic mean.

2. Layered system, flow normal to layers: harmonic mean.

3. Random system, log—nbrmal k, small variation: geometric mean.
Otherwise, E(k) > k; > [E(k"1)]-1 is the best that can be said. The three definitive results

suggest that some function of permeability may always be additive, but the precise form
of the function changes with the flow geometry.
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5-17 PHYSICAL INTERPRETABILITY IN ESTIMATION

Any estimator will manipulate data in some way to produce an estimate. Despite the
large amount written on estimation, it appears very few have considered whether the
estimator combines variable values in a physically meaningful manner. For example, to
obtain an arithmetic average, sample values that are physically meaningful have to be

" added together. To add values and produce something that is still physically meaningful
requires that the variable be ratiometric (Chap. 3), i.e., additive. We have just observed
that permeability may not be additive, so calculating the average permeability may give a
nonsensical result.

A still more questionable estimator is the sample variance. Differences of sample
values are taken, squared, and summed. This suggests that the variable and its square are
both additive, a situation that would apply, for example, with length because area is also
additive. In this light, the sample IQR might be preferable because it does not take
squares. Unfortunately, we cannot simply take the local additivity approach with
estimators that we took with their standard errors. Some estimators, such as the
arithmetic average or sample variance, add or subtract quantities of similar magnitude and
manipulate them further. It is not clear what effect the lack of additivity has on results
and further research is needed.

In this respect, PDF's could play an interesting role. It is well-known that two
variables with normal PDF's give a normally distributed sum (Cramér, 1946, p. 212).
The squares of normal PDF variables are also additive, giving the X-squared PDF
(Cramér, 1946, p. 233). Hence, statistical additivity (preservation of the PDF when
variables are added or subtracted) is satisfied for the average or variance when normal PDF
variables are involved. It may be that the effects of physical nonadditivity are mitigated
when variables have normal PDF's prior to use in estimators. For example, for sound
statistical reasons, X 50 # X4 when X is log-normally distributed (Chap. 4).

If In(X) ~N(u, 0'2) and ¢ > 0, then X¢.50 = e* compared to E(X) = X4 =
et +0.56% X 5 does not involve a summation of X (recall that Xg 50 is defined as
0.5 = f f(x)dx), but only summation of X's PDF, f(x). Compare this with X4 that
does involve a summation of all possible values of X: X4 = jxf(x)dx. Could it be that
the difference between X4 and X 5¢ is also a reflection of X's nonadditivity? -

Until this issue is resolved, it would appear that two approaches might be taken:
(1) use the median and IQR instead of the mean and standard deviation for central
tendency, dispersion, and variability measures, or (2) continue to use both the arithmetic
average and standard deviation, but also calculate the sample median and IQR to compare

and diagnose nonadditivity. For example, use ( X4 - b 0.50) # 0 as a diagnostic tool.
When variable PDF's are near-normal, the median and mean are similar in value; they can
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differ substantially for non-normal PDF's. In the latter case, transform the variable to
normal (see Chap. 4) before applying estimators or re-express (if possible) the variable in
terms of quantities that are additive.

5-18 WEIGHTED ESTIMATORS

Every estimator implicitly weights each data point upon which it operates. X4, for
example, weights all the data equally. Many other estimators give equal influence or
weight to the data points. This need not necessarily be the case, however.

There are several reasons for weighting some data more heavily than others. First,
some data may be more prone to errors than others. Particularly small or large values
may be poorly measured, and we do not want especially inaccurate data to have as much
influence as the more precisely measured values. Second, all the data may not be equally
representative. In Fig. 5-11, for example, a representative reservoir porosity would

probably not be given by i—E ¢; because ¢1, ¢, and ¢3 represent similar portions of
i=1

the reservoir, the crest, while ¢4 represents only a portion of the flank-region porosity.
In other words, the four measurements do not represent equal amounts of information
concerning the large-scale reservoir porosity. Sampling points are seldom chosen at
random. Third, the data may represent different portions of the whole. Measurements
may be made on different volumes of rock and, therefore, need a weight that reflects the
amount of material sampled.

o ¢ 0 0

BEE &

n

water

Figure 5-11. Porosity measurements from four locations in a reservoir.
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If WX1,X2,...,X]) is an estimator, then W(X1, X2,....X], a1, 02,...,q)) is the
: 1

weighted estimator, where the ¢/s are the weights and Y ¢; = 1 is a condition to ensure
i=1

unbiasedness. For example, if X4 =W, then X is the weighted sample mean given

by (Hald, 1952, pp. 243-245)

— 1z
XY =72 oiX;
i=1

Weighted averages occur in the Kriging estimator to be discussed in Chap. 12. The
weighted sample variance is

I
2 1 =
Sw= 7 2 oiXi- X)?
i=1
When a1 = ap =---= a7 = 1, we have the unweighted version. If we further assume
that X1 < Xp <..-< X, then letting &1 = @2 = = @ = Q([r+1) = Q-r+2) =+ =
or= 0 and 0(r+1) = O(r+2) = *++= 0(Ir) = I/(I - 2r) gives the r-fold symmetrically

trimmed estimator. In other words, the trimmed estimator ignores the » lowest and r
highest values in the data set. A variation on trimming is to Winsorize the data set:
Q1= 0 == 0 = O[.1+1) = O(J-r+2) = *--= o = 0 (as with rimming), but (r+1) =
oql.ry =7+ 1 and @42y = - = oqIr-1) = 1. Winsorizing still ignores the r lowest and
highest data, but it replaces them with r values of X, and X(7.,). Asymmetrical trimming
is also possible, but it is usually reserved for cases where the PDF is asymmetrical.
Barnett and Lewis (1984, Chap. 3) discuss these methods further.

Trimming or Winsorizing is useful when data sets are censored and the proportions of
lost data are known or when some data at the extremes are particularly corrupted. If the
variances of the corrupting factors are known, the weights can be modified so that all data
are included. For example, suppose data points 1, 2,..., r are obtained using an

. e . 2 .
instrument with normal measurement errors of variance o] while r+1, r+2,..., n have

variability o‘%. A set of weights is

2
no,
o1 =02

E&G=ETT T
roy + (n-r)oy
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2

ncrl

Qr41) = O(r42) = = QI = B

rc, + (n-r)o'1

More sophisticated approaches are available, depending upon the information available
about the measurement properties (Fuller, 1987).

5-19 SUMMARY REMARKS

Estimation is an important aspect of data analysis. It is important to understand what the
estimator properties are so that the most appropriate estimator is used for the analysis at
hand. The uncertainties of estimates can be assessed using confidence intervals.

Confidence-interval size is a strong function of data variability; a highly variable
material produces estimates with large confidence intervals. Since the geological medium
has variability that cannot be changed, the only methods for reducing the size of
confidence intervals is to collect more data or apply an estimator that uses the data more
efficiently. Chapter 6 presents a method for gauging the number of samples needed, based
on the geological characterization and heterogeneity of the rock.






MEASURES OF
HETEROGENEITY

The most common statistics of a random variable are measures of central tendency,
dispersion, and correlation. Chapter 5 dealt with measures of central tendency and their
associated uses, along with introducing some simple measures of dispersion. This
chapter further discusses measures of dispersion or variation with a special emphasis on
measures used in assessing their impact on flow performance.

A measure of variability can, of course, be applied to any reservoir property.
However, permeability varies far more than other properties that affect flow and
displacement. Hence, in the petroleum sciences, measures of heterogeneity are almost
exclusively applied to permeability data.

Heterogeneity measures are useful for a number of purposes. Since heterogeneity
influences the performance of many flow processes, it is helpful to have a single statistic
that will convey the permeability variation. Variabilities can be compared for
geologically similar units and sampling schemes can be adjusted for the variability
present. Performance models have been developed that show how permeability
heterogeneity will influence a particular recovery process (e.g., Lake, 1989, pp. 411-416).
Heterogeneity measures are also helpful when comparing performance for two or more
fields. It should be kept in mind, however, that in summarizing variability, a
considerable amount of information is lost.

143
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Heterogeneity measures are not a substitute for detailed geological study,
measurements, and reservoir analysis. They are simply one way of beginning to assess a
formation unit. Most measures do not include any information about spatial arrangement
and, even when they do, they tend to ignore most of the structure present.

6-1 DEFINITION OF HETEROGENEITY

Informally, we use heterogeneity and variability interchangeably. In reservoir
characterization, however, heterogeneity specifically applies to variability that affects.
flow. Consider a high-rate displacement using matched mobility and density and
chemically inert, miscible fluids. Heterogeneity is the property of the medium that
causes the flood front, the boundary between the displacing and displaced fluids, to distort
and spread as the displacement proceeds. Permeability variation is usually the prime
cause of flood-front spread and distortion; for a displacement in a hypothetical
homogeneous medium, the rate of distortion and spreading is zero. As the permeability
variability increases, both distortion and spreading increase. Of course, the arrangement
of the permeability is also important since this governs the number and size of interwell
pathways. We discuss ways to measure spatial arrangement in Chap. 11.

Whatever the reservoir properties involved, heterogeneity measures can be classified
into two groups, static and dynamic. Static measures are based on measured samples
from the formation and require some flow model to be used to interpret the effect of
variability on flow. Dynamic measures use a flow experiment and are, therefore, a direct
measure of how the heterogeneity affects the flow.

Each measure type has advantages and disadvantages. For example, an advantage to
dynamic measures is that, if the process used during the flow experiment closely parallels
the process that is expected to be applied to the reservoir, the results are most directly
applicable with a minimum of interpretation. Disadvantages include the cost, the
complexity, and the selection of "representative” elements of the reservoir for conducting
the flow experiments at the appropriate scale.

6-2 STATIC MEASURES

We discuss four types of static heterogeneity measures and a few of their properties.

The Coefficient of Variation

A static measure often used in describing the amount of variation in a population is the
coefficient of variation,
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va® <~
Va2

Cy =

This dimensionless measure of sample variability or dispersion, introduced in Chap. 4,
expresses the standard deviation as a fraction of the mean. For data from different
populations or sources, the mean and standard deviation often tend to change together such
that Cy, remains relatively constant. Any large changes in Cy, between two samples
would indicate a dramatic difference in the populations associated with those samples.

A Cy estimator, based on the sample mean and standard dev1at10n is CV = sIk A
The statistical properties of CV are not easily determined in general. Hald (1952, pp.
301-302) gives results for samples from a normal population and Koopmans et al. (1964)
give results for the log-normal case. Figure 6-1 shows these results for a sample size
I=25. For Cy < 0.5, the sampling variabilities from the two distributions are quite
similar. When Cy > 0.5, where a normal PDF is not possible for a nonnegative
vanable, the lower and upper limits become increasingly asymmetrical about the line
CV Cy. For I samples, CV \/I 1 (Kendall and Stuart, 1977, p. 48), which is
achieved when (7 -1) samples are one value and one sample is another value.

Estimators other than ?/IE 4 may be used, if the PDF is known, with some increase in
efficiency. For example, if In(k) ~ N(u, o?), kalky = exp(az), where ky and ky are the
arithmetic and harmonic means (Johnson and Kotz, 1970, p. 115). Hence,

Cy=I(ky flegp)- 1112

studies as an assessment of permeability heterogeneity. Cy has been used in a study of
the effects of heterogeneity and structure upon unstable miscible displacements (Moissis
and Wheeler, 1990). It is also useful when comparing variabilities of different facies,
particularly when there can be competing causes for permeability variation. Corbett and
Jensen (1991) for example, used Cy to assess the relative effects of grain-size variation
and mica content upon permeability variation. Comparisons of geologically similar
elements in outcrop and subsurface showed that, despite large changes in the average
permeability, the Cy/'s remained similar (Goggin et al., 1992; Kittridge et al., 1990).
These and other studies (e.g., Corbett and Jensen, 1992a) suggest that Cy's may be
transportable for elements with similar geologies. Cy/'s and scale may also be linked as

shown in the following example.

;ﬁl gigi ~The coefficient of variation is being increasingly applied in geological and engineering
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Figure 6-1. CA'V variability ( = 25 samples) for normal and log-normal populations.

Example 1 - Geological Variation and Scale. Cy, as a measure of relative
permeability variation, can be used to compare and contrast facies and
formations. The smaller stratal elements appear to have the most uniform
properties. The larger the element, the more opportunity for variability

(Fig. 6-2).

In Fig. 6-2, we have not highlighted the scale (i.e., grid size) associated with
each measurement, We prefer to note lamina or subfacies (e.g., grainfall,
grainflow), bedform or facies (e.g., trough crossbedding), or formation (e.g.,
Etive, Rannoch, Rotliegendes) terminology in preference to specific ‘
dimensions. If a bedform consists of a single lamina type, or a formation
consists of a single bedform type, then it is reasonable to expect similar
variabilities with increasing scale (e.g., low-contrast lamination and SCS,
HCS, and Rannoch). The occurrence of a rock type with a certain Cy (e.g.,
fluvial trough crossbeds) does not mean that they always occur with this level
of heterogeneity, as has been pointed out by Martinus and Nieuwenhuijs
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(1995). The interesting point to note in Fig. 6-2 is that the two samples of
fluvial trough crossbeds (from the same formation) have similar Cy,’s and,

measured by different geologists, this suggests a certain transportability.

With the combination of several subfacies or bedforms, the variability
increases. For example, bedforms are composed of numerous laminations. In
the aecolian environment, dune bedforms are composed of wind-ripple and
grainflow components, each of which has an intrinsic variability. Goggin et
al. (1988) found that Cy, = 0.26 for wind ripple (unimodal PDF) and 0.21 for

grainflow (unimodal PDF) in a unit of the Page Sandstone. The combination
for the dune (bimodal PDF) produced Cy, = 0.45, approximately the sum of

the grainflow and wind-ripple Cy/s.

Carbonate (mixed pore type) (4)
S.North Sea Rotliegendes Fm (6)
Crevasse splay sst (5)
Shallow marine rippled micaceous sst
Fluvial lateral accretion sst (5)
Distributary/tidal channel Etive ssts
Beach/stacked tidal Etive Fm.
Heterolithic channel fill
Shallow marine HCS
Shallow marine high contrast lamination
Shallow marine Lochaline Sst (3)
Shallow marine Rannoch Fm
Aeolian interdune (1)
Shallow marine SCS
Large scale cross-bed channel (5)
Mixed aeolian wind ripple/grainflow(1)
Fluvial trough-cross beds (5)
Fluvial trough-cross beds (2)
Shallow marine low contrast lamination
Aeolian grainflow (1)
Aeolian wind ripple (1)
Homogeneous core plugs
Synthetic core plugs

~ Very heterogeneous

Heterogeneous

Homogeneous

0

2 3 4

Cy

Figure 6-2. Variation of Cy with scale and depositional environment. SCS =
swaley cross-stratification and HCS = hummocky cross-stratification.
Homogeneous region is taken as Gy < 05, 05 < Gy £ 1 is
heterogeneous; and Cy, > 1 is very heterogeneous. Sources of data for
this plot are (1) Goggin et al. (1988); (2) Dreyer et al. (1990); (3)
Lewis and Lowden (1990); (4) Kittridge et al. (1990); (5) Jacobsen and
Rendall (1991); and (6) Rosvoll, personal communication (1991).
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Corbett and Jensen (1993b) observed that an HCS bedform in the shallow
marine environment has the following facies variabilities: Cy =0.2 to 0.7
for the low-contrast (low-mica) laminations; Cy = 1.0 to 1.3 for the high-
contrast (high-mica) laminations; and Cy = 1.0 to 1.3 for the rippled

laminations. The HCS bedform is approximately composed of 60% low-
contrast rock, 35% high-contrast rock, and 5% rippled material. The weighted
sum of the component Cy/'s gives 0.60 0.6 +0.35°12+0.05-1.2 =

0.84. This agrees well with the overall HCS Cy, of 0.86.

Despite the evidence of this example, Cy/'s are not, in general, additive. For example,

consider a formation unit composed of two elements (a mixture), each having independent
random permeabilities, k1 and &, and present in proportions p and 1-p, respectively. For

this mixture of random variables, let E(k1) = ty, Var(ky) = 0'%, E(ky) = ugy, and
Var(ky) = 0‘;, The Cy of the unit is given by (Chap. 4, Example 4)

\ P + p)E + p(1p)(py - 1)?
piy + (1-p)y

CVtotal

which is not the sum of the constituent Cy's. If we let yy = rul for some factor r,
Cy,, Can be expressed as

2 2
\pee + (1-p)r2Cy, + p(1-p)(1-1)°
CVtatal = p+ r(l-p)

When the component means are identical, 7 = 1, and

2 2
CVtotal = '\/‘DCVl + (1-p)CV2

so the total is the root mean square of the weighted individual component variabilities.
Thus, Cy, ., is guaranteed only to be the minimum of Cy, and Cy,. In most geological

situations, 7 # 1 because the elements have differences in the energies, source materials,
and other factors that produced them. Whenr>>landp <1,
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2
o 2\ St?
Vtotal - 1 - D

so the variability of the larger mean population dominates and is amplified by
(1-p)1/2. For these cases, Cyy,  may be near Cy + Cy,.

One case where Cy/'s are additive concerns the sensitivity analysis of estimators to

errors in the data (Chap. 5). We saw that random variables that are products of other
random variables give an especially simple form to the sensitivity equation. For
example, if m and » in Archie's law (Chap. 5) are constant, the sensitivity of S,,, to errors

inR,,, R;, a, and ¢ is

AS,, 1/4AR,\ AR; Aq A¢
S L (8), O

w

If we interpret the A's as being the standard deviations of these variables, we can recast the
above as

Each term has the form of a variability over a true value, giving it the same form as a
coefficient of variation. Hence, we can express the variability of S,, in the following

manner:

1
CVSW=; (CVRW + CVR, + CVa +m CV¢)

Consequently, we can see at a glance which measurement(s) will contribute the most to
the uncertainty in S,,. A similar treatment can be made for other equations, such as the

STOIIP expression discussed in Chap. 3.

The above expression for the total Cy, is an approximation that works best for small
Cy's (i.e., Cy < 0.5). It will show the relative contributions of each component of
variability. A better approximation applies if the variables are all log-normally

distributed in a product. Recall from Chap. 4 that if In(X) ~ N(u,, q;z), then ze =
2
In(1 + Gy_). Hence, if In(¥) ~ N(iy, @2) and Z = XY, then
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N

2 2 2 2 2 2
0, =0,+0, and In(1 + Cvz) =In(1 + CVx) + In(1 + va)
. 2
Solving for C{/z gives

2 2., 2 2 2 2.2
CV = (1 + CV )(1 +‘Cv)- 1= CVx + va + CVxCVy
z x y

Neglecting cross terms and extending to products of I terms, we obtain the
approximation
1
2 E 2
SVt ™ - Cv,
1=

We also note that, because Cy = [exp(c2) - 111/2 for In(k) ~ N(u, 62), Cy is an
estimator for the standard deviation o when ¢ is small (e.g., 0 < 0.5).

Cy can also be used to guide sampling density. The so-called "N-zero method,"
discussed by Hurst and Rosvoll (1990), is based on two results of statistical theory:

1.  The Central Limit Theorem states that, if I; independent samples are drawn from

a population (not necessarily normal) with mean g and standard deviation o, then
the distribution of their arithmetic average will be approximately normal.

2.  The sample average will have mean u and standard error G/\/Z.

See Chap. 5 for more details. From these two points, the probability that the sample

average (k ) of I observations lies within a certain range of the population mean (1) can
be determined for a given confidence interval.

For a 95% confidence level, the range of the average is given by + ¢ » SE, where the

standard error (SE) is approximated by sA /\/-1—3. The larger the sample number /, the more

confident we can be about estimates of the mean. SE is the standard deviation of the
sample mean, drawn from a parent population, and is a measure of the difference between
sample and population means.

The student’s ¢ is a measure of the difference between the estimated mean, for a single
sample, and the population mean, normalized by the SE. For normal distributions, the ¢
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value varies with size of sample and confidence level (Chap. 5). The above statement can
be expressed mathematically as

A A
Prob|(p -t —=|< k, < u+t-—§—]=95%
[ R O

Consider now another sample of size /,such that k,* P% tolerance satisfies the
predetermined confidence interval:

Pk — Pk
Prob[(u - T&O)—) <k,< (u+ IE)%)] = 95%

This time, we have expressed the permissible error in terms of a percentage of k,. When
both conditions are satisfied, Ig=1,and

Rearranging this gives an expression for the appropriate number of specimens, I,
N \2
100t s
Io—( Pk, ) ©1)

where the nearest integer value for the right side is taken for I,,. For /¢ > 30,¢=2 and
with a 20% tolerance (i.e., the sample mean will be within +20% of the parent mean for

95% of all possible samples, which we consider to be an acceptable limitation), this
expression reduces to

ZOOC,'\V 2 A OA—
I,= 20 where Cy = s/k,,

or )
1,=(10&)

This rule of thumb is a simple way of determining sample sufficiency. Of course, since
n :

Cy is a random variable, I, is also random in the above expression. [ o Will change
because of sampling variability. The above is called the I ,-sampling approach.
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Although derived for the estimate of the arithmetic mean from uncorrelated samples by
normal theory, we have found it useful in designing sample programs in a range of core
and outcrop studies. Having determined the appropriate number of samples, the domain
length (d) will determine the sample spacing (d,) as d,=d /I,

An initial sample of 25 measurements, evenly spaced over the domain, which can be a

JAY
lamina, bedform, formation, outcrop, etc., is recommended. If Cy, estimated from this
sample, is less than 0.5, sufficient samples have been collected. If more are required,

infilling the original with 1, 2, or J samples will give 50, 75, or 25J samples. In this
way, sufficient samples can be collected.

Example 2 - Variability and Sample Size. In a 9-ft interval of wavy bedded
material (Fig. 6-3), the performance of core plugs is compared with the probe
permeameter for the estimate of the mean permeability of the interval. Based
on the core plugs, é\v = 0.74, giving I, = 55 and d,, =2 in., well below the
customary 1-ft sample spacing. The probe data give /, =98 and d, = 1 in.
For such variability, about 100 probe-permeameter measurements are needed
for estimates within +20% but, because of the way core plugs are taken
(Chap. 1), plugs are an impractical method for adequately sampling this
interval. Nine plugs, taken one per foot over the 9-ft interval, are clearly
insufficient even if they are not biased towards the high-permeability
intervals.

Comparing the sample means, the plug estimate is 2.3 times the probe value.
Why are they so different? Equation (6-1) can be r/\earranged to solve for P for
both data sets. In the case of the nine plug data, Cyy=0.74 and ¢ = 2.3, so
that P = 57%. The true mean is within 390 mD + 57% about 95% of the
time. A similar calculation for the probe data shows the mean to be in the
range 172 mD + 12%. Thus, the estimates are not statistically different.
That is, the difference between the estimated means can be explained by
sampling variability. No preferential sampling by the plugs in the better,
higher-permeability material is indicated. The plugs have simply
undersampled this highly variable interval.

Corbett and Jensen (1992a) have suggested that Cy/'s in clastic sediments could have
sufficient predictability that sample numbers could be estimated by using the geological
description. While further data are needed, there are indications that stratal elements of
similar depositional environments have similar variabilities. For example, the two
fluvial trough crossbed data sets of Fig. 6-2, obtained at different locations of the same
outcrop, show very similar Cy's. Thus, applying the I ,-sampling approach, sample




»
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numbers could be predicted on the basis of the geological element (e.g., acolian dune
foreset, fluvial trough crossbed, fluvio-marine tidal channel).

-xx50f"
B O Core plug
xx521 * Probe permeameter
& N
<
2 -xx54[ 'PLUGS: I1=9 data
A
b - Cv = 0.74, Arith. av. = 390mD
Sy
S -xx56 PROBE: I = 274 data
- &v =099, Arith. av. = 172mD
-xx58 T
10 100 1000

Permeability, mD

Figure 6-3.  Core-plug and probe-permeameter data in a Rannoch formation interval.

Dykstra-Parsons Coefficient

The most common measure of permeability variation used in the petroleum industry is
Vpp. the Dykstra-Parsons coefficient (Dykstra and Parsons, 1950):

_ k050 - k0.16
Vpp = ko.s50 ©2

where kj 50 is the median permeability and kg ¢ is the permeability one standard

deviation below kg 50 on a log-probability plot (Fig. 6-4). Vpp is zero for homogeneous
reservoirs and one for the hypothetical "infinitely" heterogeneous reservoir. The latter is a
layered reservoir having one layer of infinite permeability and nonzero thickness. Vpp
has also been called the coefficient of permeability variation, the variance, or the
variation. Other definitions of Vpp involving permeability-porosity ratios and/or variable
sample sizes are possible (Lake, 1989, p. 196).
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The Dykstra-Parsons coefficient is computed from a set of permeability data ordered in
increasing value. The probability associated with each data point is the thickness of the
interval represented by that data point. Dykstra and Parsons (1950) state that the values
to be used in the definition are taken from a "best fit" line through the data when they are
plotted on a log-probability plot (Fig. 6-4). Some later published work, however, does
not mention the line and depends directly on the data to estimate kg 1 and kg 5o (Jensen

and Currie, 1990).

-

A A
4 kos0 -Ko.16
DP= A

\ kos0

"Best-fit" line

0.50

Permeability (log scale)

"‘ﬁo.m

0.02 - 0.16 0.
Probabili

I 1
50 0.84 0.98
ty Scale P

Figure 6-4.  Dykstra-Parsons plot.

There are several drawbacks in using the "best fit" approach, especially if the data set is
not log-normally distributed. Jensen and Lake (1988) demonstrate the nonunique
properties of Vpp in light of an entire family of p-normal distributions. Although

Dykstra and Parsons were able to correlate Vyp with expected waterflood performance,
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caution should be exercised in the universal application of Vpp for data sets that are not
log-normal. See, for example, Willhite's (1986) Example 5.6. '

From the definition for Vpp (Eq. (6-2)), Vpp =1 - ¢-% when ln(k)\; N(u, c?). Th}s
relation between Vpp and o provides an alternative Vpyp estimator: Vpp = 1 - exp(-s),
where s is the sample standard deviation of In(k). Vpp is about twice as efficient as

N .
Vpp (Jensen and Currie, 1990).

A study by Lambert (1981) shows that Vpp estimated from vertical wells ranges
between 0.65 and 0.99. Vpp's measured areally (from arithmetically averaged well
permeabilities) range from 0.12 to 0.93. Both the areal and vertical Vpp's are normally

distributed, even though most of the permeability values themselves are not normally
distributed. Of greater significance, however, is the observation that Vpp did not

apparently differentiate between formation type.  This observation suggests that either
Vpp is, by itself, insufficient to characterize the spatial distribution of permeability

and/or the estimator itself is suspect. Probably both suggestions are correct; we elaborate
on the latter theme in the next few paragraphs.

The simplicity of Vpp means that analytical formulas may be derived for the bias and

standard error (Jensen and Lake, 1988), assuming In(k) is normally distributed. The bias
is given by

by = - 0.749[In(1 - Vpp)12 (1 - Vpp) /T
and the standard error is

sy=-1.490n(1 - Vpp)I(1 - Vpp) /NT

where I is the number of data in the sample. The bias is always negative (‘I/\DP

underestimates the heterogeneity), is inversely proportional to 7, and reaches a maximum
in absolute value when Vpp = 0.87. However, the bias is generally small. For example,
when Vpp = 0.87, only I = 40 data are required to obtain by, = - 0.009.

The variability of X;'\D p, on the other hand, can be significant (Fig. 6-5). The standard
error decreases as the inverse of the square root of I and sy, attains a maximum at
Vpp =0.63. The number of data needed to keep sy small is quite large for moderately
heterogeneous formations. For example, at Vpp = 0.6, 120 samples are required to attain
a precision of sy = 0.05. From the definition of standard error, this value means that
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Vpp has a 68% (+ one standard deviation) chance of being between 0.55 and 0.65,

ignoring the small bias.
m

1000

Number of data in sample

100
0.05
m
10 T T T i
0.2 0.4 0.6 0.8 1
Vpp

Figure 6-5.  Variability performance of Vpp estimator. From Jensen and Lake (1988).

Example 3 - Estimating Vpp for a Data Set. Estimate Vpp for the data set
in Example 4, Chap. 3: 900, 591, 381, 450, 430, 1212, 730, 565, 407,
440, 283, 650, 315, 500, 420, 714, 324. Assume each datum represents thf
same volume of the reservoir. The ordered data set (x;) and its logarithm (x; )
are shown in the table below, repeated from Example 4.

Figure 6-6 shows theA probability plot for x*. From the "best fit" line
established by eye, Vpp = (493 - 308) /493 = 0.3§. These data representa
fairly homogeneous reservoir. If we assume that Vpp = Vpp, then by, = -0.006
a/{ld sy = 0.11. While by is negligible, sy is sufficiently large that rounding
Vpp to 0.4 is appropriate.

As we have stated before, statistics such as Vpp can gloss over a number of
details. Even in this example, with very few data, this is true. The CDF
presented above manifests evidence of two populations; a small-value sample
that is even more homogeneous than Vpp = 0.4, and a large-value portion
that is about as homogeneous as the entire sample.
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No. X; x; Prob., Pi No. X; x; Prob., Pi
1 283 5.65 0.029 10 500 6.21 0.559
2 315 5.75 0.088 11 565 6.34 0.618
3 324 5.78 0.147 12 591 6.38 0.676
4 381 5.94 -0.206 13 650 6.48 0.735
5 407 6.01 0.265 14 714 6.57 0.794

6 420 6.04 0.324 15 730 6.59 0.853
7 430 6.06 0.382 16 900 6.80 0.912
8 440 6.09 0.441 17 1212¢ 7.10 0.971
9 450 6.11 0.500 ’ )

7.0 v
"Best fit" line
B
|
6.5
A A
&0 493 = k 0.50
a3 , -
= =]
6.0 o
A
308 =ko.16
-}
5.5 I I | I I

-3 2 - 0 1 2 3
Normal Quantiles

0.1 23 16 50 84 977 99.9
Probability (%)

Figure 6-6.  Probability plot for ‘?D p in Example 3.
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A number of investigators have used Vpp to correlate oil recovery from core-scale

waterfloods (see Lake and Jensen, 1991, for examples). A significant feature of many
studies is the small sensitivity of models to variations in Vpp when Vpp < 0.5 while,

for the large-heterogeneity cases, there is a large sensitivity. This behavior reflects, in
part, that Vpp, with a finite range of 0 to 1, poorly discerns large-heterogeneity

situations.

Lorenz Coefficient

A less well-known but more general static measure of variability is the Lorenz
coefficient, Lc. To compute this coefficient, first arrange the permeability values in

decreasing order of k/¢ and then calculate the partial sums.

- J - J
Dt 2.0hi
Fy=i=l— C;=t=l—

T T
> ki D gii
i=1 i=1

where 1 < J <7 and there are I data. We then plot F versus C on a linear graph (Fig. 6-7)
and connect the points to form the Lorenz curve BCD. The curve must pass through (0,
0) and (1, 1). If A is the area between the curve and the diagonal (shaded region in Fig. 6-
7). the Lorenz coefficient is defined as L = 2A. Using the trapezoidal integration rule,

we have (Lake and Jensen, 1991)

L_ 53
VRN ==
(-2 3 5=l

i=1%i

LA

fes o 9;

Just as for Vpp, L¢ is 0 for homogeneous reservoirs and 1 for infinitely heterogeneous
reservoirs, and field-measured values of L appear to range from 0.6 to 0.9. However, in
general, Vpp # L.

The Lorenz coefficient has several advantages over the Dykstra-Parsons coefficient.
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Figure 6-7.  Lorenz plot for heterogeneity.

1. It can be calculated with good accuracy for any distribution. However, for the
family of p-normal distributions, L is still not a unique measure of variability.

2. Tt does not rely on best-fit procedures. In fact, being essentially a numerical
integration, there is typically less calculation error in L than in Vpp.

3. Its evaluation includes porosity heterogeneity and (explicitly) variable thickness
layers. ‘

L is, however, somewhat harder to calculate than Vpp and has not, as yet, been
directly related to oil recovery. For a reservoir consisting of I uniformly stratified
elements between wells through which is flowing a single-phase fluid, the F-C curve has
a physical interpretation, one of the few such instances of a physical meaning for a CDF.
F represents the fraction of the total flow passing a fraction C of the reservoir volume.
For example, in Fig. 6-7, approximately 80% (F = 0.8) of the flow is passing through
50% (C = 0.5) of the reservoir. This curve, therefore, plays the same role, at a large
scale, that a water-oil fractional flow curve does on a small scale, which accounts for its
use in the same fashion as the Buckley-Leverett theory (Lake, 1989, Chap. 5).
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For In(k) ~N(u, o?), L¢, Vpp, Cy , and o are related by the following expressions (if
porosity is constant): ' :

Lo=erf (o‘/2)=erf[-%ln( 1 -VDP)] = erf [%\/ In(1 + ¢, ]

where erf() is the error function discussed in Chap. 4. L is also known as Gini’s
coefficient of concentration in statistical texts (Kendall and Stuart, 1977, p. 48).

A A
It is more difficult to develop estimates of bias and precision for L than for Vpp.

Using numerical methods, however, we can still present the results graphically if we
assume In(k) is normally distributed. Figure 6-8 presents the bias as a fraction of the true
value in L. The x axis gives the number of data in the sample, and each curve is for
different values of L beginning at 0.3 (topmost curve) down to 0.9 (lowest curve). The
bias can be pronounced, particularly at high L~ and small sample sizes. For example, for
I'=40 data in the sample and a true L = 0.80, repeated measurements will actually yield

AN
an estimated L of 0.72 (since the bias is -0.08). L is, on average, lower than the true
value; thus, we are again underestimating the heterogeneity.
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Figure 6-8.  Bias performance of the Lorenz coefficient estimator. Lines are best-fit
curves for Lo = 0.3 and 0.9. From Jensen and Lake (1988).
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Figure 6-9 gives the error sy, (standard error in L) for L\C- For example, when
Lo = 0.8 (neglecting the correction for bias), about 140 data values are required to
determine L to within a standard error of 0.05. Do not try to compare this figure with
the similar figure for Vpp, because sy, is a measure of the error in the Lorenz estimate in
units of L¢ and sy measures error in units of Vpp. Since Vpp #L; in general, the
units are not the same. For an equivalent situation, it turns out that L usually has a
lower error than the Vpp estimate. See Jensen and Lake (1988) for further details.

-
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Figure 6-9.  Variability of Lorenz coefficient estimates. After Jensen and Lake (1988).

Gelhar-Axness Coefficient

A combined static measure of heterogeneity and spatial correlation is the Gelhar-Axness
coefficient (Gelhar and Axness, 1979), defined as

2
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where °'12n(k) = Var[In(k)] and A, is the autocorrelation length in the main direction along

which flow is taking place, expressed as a fraction of the inlet to outlet spacing. Ap is a
measure of the distance over which similar permeability values exist. We discuss Ap in
more detail in Chap. 11.

Iy has the great advantage of combining both hetérogeneity and structure in a quite
compact form. Cy, Vpp, and L all ignore how the permeability varies in the rock;

regions of high and low permeability could be far apart or quite close and yet have the
same Cy, Vpp, and Lo, As we have discussed, however, Cy, with the geological

description does appear to have potential for guiding sampling strategies. Iy; begins to

incorporate a numerical measure of the geological organization present in the rock. As
with Vpp, Iy asumes In(k) is normally distributed.

Numerical simulation work by Waggoner et al. (1992) and Kempers (1990) indicates
that I is a much improved indicator of flow performance compared to Vpp. However, it

cannot be satisfactory for all cases since, in the limit of A, —eo (uniform, continuous
layers), the flow must again be governed by Vpp. Sorbie et al. (1994) discuss some
limitations of Iy, particularly as it relates to prediction of flow regimes for small Ap,.

6-3 DYNAMIC MEASURES

In principle, these measures should be superior to static measures since they most directly
characterize flow. In practice, dynamic measures are difficult to infer and, like the static
measures, are unclear as to their translation to other systems and scales.

The measures we discuss are based on end-member displacements. A displacement that
has an uneven front is called channeling and its progress is to be characterized by a Koval
factor. If it has an even front it is dispersive and is characterized by a dispersion
coefficient. See Chap. 13 and Waggoner et al. (1992) for more details.

Koval Factor

The Koval heterogeneity factor Hg is used in miscible flooding to empirically incorporate

the effect of heterogeneity on viscous fingering (Koval, 1963). It is defined as the
reciprocal of the dimensionless breakthrough time in a unit-mobility-ratio displacement:

HK = 1/tDbreakthrough
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It follows from this that the maximum oil recovery has been obtained when Hy pore’
volumes of fluid have been injected:

D geepous = 1K

In these equations, ¢ is the volume of displacing fluid injected divided by the pore
volume of the medium. Breakthrough means when the displacing fluid first arrives at the
outlet and sweepout means that the originally resident fluid is no longer being produced.
For a homogeneous medium, both occur at ¢, = 1 and Hg = 1, but there is no upper limit
on Hg. Obviously, large values of Hy are detrimental to recovery. '

If we interpret the above response as occurring in a uniformly layered medium with a
log-normal permeability distribution, then Hy and Vp are empirically related by

logyo(Hg )= Vpp/(1 - Vpp)0-2

which plots as Fig. 6-10.

257 Hk

20 logyo(Hg) = Vpp(1-Vpp) 2
, Calculated

157

107

5—1
Koval's Fig. 20
0 T T 1 T 1
0 0.2 0.4 0.6 0.8 1
Vop

Figure 6-10. Koval factor and Dykstra-Parsons coefficient for a uniformly layered
medium. From Paul et al. (1982).
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Hy has many of the same problems as Vpp and L, but it is a far more linear measure

of performance, being bounded between zero and infinity. If the medium is not uniformly
layered, H can be related to /g , the Gelhar-Axness coefficient, as in Fig. 6-11.

10 [
| Koval Factor, Hy

=

1

0.0001 0.001 0.01 0.1 1 10
Heterogeneity Index, Iy

Figure 6-11. Relationship between Koval factor and Gelhar-Axness coefficient. From
Datta Gupta et al. (1992).

Dispersion

If a miscible displacement proceeds through a one-dimensional "homogeneous™ permeable
medium, its concentration at any position x and time ¢ is given by

C(x, 1) =%[1 - erf (ﬁt—)]
It

where v is the mean interstitial velocity of the displacement. The most important
parameter in this expression is K, the longitudinal dispersion coefficient. Kjhas been
found to be proportional to v according to
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Kl= opv

where ¢ is the longitudinal dispersivity, an intrinsic property of the medium. Clearly,
the degree of spreading depends on the dispersivity; the larger ¢, the more spreading
occurs.

The derivation and implications of the equation for C(x,?) are too numerous to discuss
here (Lake, 1989, pp. 157-168). However, both Hy and ¢ are clearly manifestations of
heterogeneity in the medium because there would be no spreading of the displacement
front if the medium were truly homogeneous. Indeed, several attempts have been made
to relate ¢; to the statistical properties of the medium. In the limiting case of small
autocorrelation and heterogeneity, ¢ divided by the length of the medium is proportional
to Iy (Arya et al., 1988). This should come as no surprise if we view such dispersion as
a series of uncorrelated particle jumps during the displacement. In such circumstances,
the average particle position, now being the result of a series of such jumps, should take
on a Gaussian character as required by the Central Limit Theorem (Chap. 4) and suggested
by the error function in the C(x,f) equation.

Unfortunately, a substantial amount of data collected in the field suggests that o;
depends on the scale of the measurement. Such behavior is called non-Fickian dispersion.
In such cases, o can still be related to the statistical properties of the medium (Dagan,
1989, Chap. 4; Gelhar, 1993), but the connection is much more involved and its utility
in subsequent applications is reduced.

Datta Gupta et al. (1992) have shown that the concentration profile of miscible
displacements through a correlated medium behaves as a truncated Gaussian distribution,
becoming more Gaussian as the scale of correlation decreases with respect to the length of
the medium. Adopting this point of view, the dispersion relation (with constant ¢) and
Koval approach (with constant Hg) represent the extremes of small and large spatial

correlation, respectively. (If we applied the Koval approach to uncorrelated media, we
would find that Hg depends on scale.) Nevertheless, both approaches give material

properties (o or Hy) that are related to the heterogeneity of the medium.

6-4 SUMMARY REMARKS

The progression of this chapter mimics the progress of the entire book in a way. We
have begun by discussing heterogeneity measures and their properties. But during the
dynamic measure discussion, we could not avoid speaking about autocorrelation or spatial
arrangement. This is a subject we will return to later in the book. But we must depart
this chapter with a bit of foreshadowing.
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The subject of autocorrelation (and its existence in permeable media properties) means
that measures of heterogeneity must be scale-dependent. Indeed, laborious measurements
in the field have shown this to be the case (Goggin et al., 1988). There are entire
statistical tools devoted to such measurements, and these tools frequently combine spatial
arrangement and heterogeneity. Chapter 11 contains a discussion of these, along with the
implications for the geological character.

Spatial arrangement implies some force or causality behind the observation. Since we
are dealing with naturally occurring media, a study and understanding of this causality
must deal with the geologic reasons behind the observations. Indeed, we shall find that
geologic insight can frequently unravel a statistical conundrum, allow us to fill in
missing data, or even indicate that a statistical approach is not necessary. Such a
combination is most powerful and forms an underlying theme for this book.




HYPOTHESIS TESTS

Every computation produces an estimate of some formation property. Given unlimited
resources and time, we could very accurately establish the exact value of that property
using the entire volume of material we wish to assess. Since resources and time are
limited, the values we calculate use modest sample numbers and sample volumes and may
differ from the exact value because of sampling variability. That is, if we could obtain
several sets of measurements, the estimates would vary from set to set because each
estimate is a function of the data in that set. An estimate will have an associated error
range, the standard error, which gives an idea of the precision of the estimate attributable
to sampling fluctuation. The standard error is a number based on the number and
variability of the measurements and does not take into account biased sampling procedures
or other inadequacies in the sampling program. Chapter 5 described some methods for
determining standard errors.

In this chapter, the central theme is making comparisons involving one or more
random variables. A hypothesis test (or a confidence test) is a formal procedure to judge
whether some estimate is different in a statistical sense from some other quantity. That
latter quantity can be a second estimate or some number ("truth") obtained by another
method. We will use several methods for comparing estimates. Whatever the technique
used, the comparison is made to answer the question: can the difference in value between
the two quantities be explained by sampling variability? If the answer is yes, then we say
the two quantities are not statistically different.

In many cases, hypothesis tests may be unnecessary because they do not answer the
appropriate question or they only formalize what we already knew. For example, suppose
we have two laterally extensive facies, f) and f,, with f; above f,. For the purposes of
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developing a flow-simulation model, we want to know whether they can be combined or
if they should be separately distinguished. Assuming that the arithmetic average is the
appropriate average for flow in each of these facies, we calculate the average
permeabilities and standard errors from core samples and obtain the results

facies f;: k = 30+ 10 mD

facies f,: k, = 100 £ 20 mD

Do we need a hypothesis test to establish that f; and £, are statistically different? No! A
simple sketch shows us that the 95% confidence intervals do not intersect (Fig. 7-1).

< 95% B - _95% .
. g v % 0019
| NN ] ] 1 I [ i > k
0 k=30 k,=100

Figure 7-1.  Two arithmetic averages and their 95% confidence intervals (twice their
standard errors).

So the statistical significance of the averages is clear: fi and f, have average
permeabilities that are different at the 95% level. What is less evident is whether, under
the desired flow process, separating the facies into two strata will improve the predictions
made by the simulator model. This issue is beyond the ability of hypothesis testing to
answer.

Hypothesis tests are also unsuitable for analyzing noncomparable quantities. One
indicator of comparability is whether the two quantities have the same units (dimensions),
but this test is incomplete. The quantities should be additive (see Chaps. 3 and 5)
because hypothesis tests assume that differences in estimates are meaningful. For
example, consider the two regions shown in Fig. 7-2. If they have equal areas of the
front and back faces-for injection or production and no-flow boundaries otherwise, they
have identical abilities to transmit a single phase. Thus, while a hypothesis test may
indicate that the permeabilities of the two regions are statistically different, their
transmissibilities are equal. This problem arises because permeability is an intensive
property and, therefore, is not additive. Flow resistance or conductance, however, may be
additive (Muskat, 1938, pp. 403-404) so that, with similar boundary conditions, the
sample statistics of these variables may be comparable. It is easy to overlook this aspect
of hypothesis testing in the heat of the statistical battle.
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No-flow surfaces

ko= 100

10t

Figure 7-2. Two samples with differing average permeabilities but similar flow
properties.

Statisticians have implicitly recognized the need for additivity in hypothesis testing.
Their concern, however, usually focuses on knowing the PDF of the difference of the
quantities to be compared. For example, problems are often expressed so that two
normally distributed variables are compared because the difference of two uncorrelated
normal variables is also normal. Besides the normal, the ¢2 and the Poisson distributions
also have this property (see Cramér, 1946, and Johnson and Kotz, 1970, for more), but
most other PDF's do not. Because the ¢2 PDF is additive and variances of independent
variables are additive, hypothesis tests on variabilities compare sample variances rather
than standard deviations. Here, we will take the approach discussed in Chap. 5 and require
only local additivity (i.e., small perturbations are additive even though large perturbations
may not be additive).

Hypothesis tests are similar in some ways to the judicial process that exists in many
countries. When someone is accused of committing a crime, a trial is held to determine
the guilt or innocence of the accused. The accused is assumed to be innocent until a jury
decides. At the conclusion of the trial, there are usually four possible results to this
process:

1. the accused is actually guilty and is found guilty;

2. the accused is actually innocent and is found innocent;
3. the accused is actually innocent but is found guilty; and
4. the accused is actually guilty but is found innocent.

In the first result, the assumption (innocence) was wrong and was found to be wrong. In
the second result, the assumption was right and was confirmed. In both cases, the
outcomes reflected the true status of the accused and justice was served. In the last two
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possibilities, however, mistakes were made and the outcomes were wrong. Different
countries handle these errors differently. The judicial process may be adjusted to
minimize outcome 3 at the expense of increasing the occurrences of outcome 4 by, for
example, increasing the burden of proof required for a conviction.

For hypothesis tests, we start with an assumption that is called the null hypothesis.
Sampling variability alone often can explain the difference between two estimates. For
example, facies f and f, have the same mean permeability and kq # ky because of
sampling variation. In this case, the alternative hypothesis is that the difference cannot
be explained by sampling variability and some other cause (unspecified) must be in effect.
We then apply the hypothesis test and obtain a result that either upholds the null
hypothesis or shows that the alternative is indicated. Just as in the judicial process,
mistakes may result. We may decide the difference in two quantities cannot be explained
by sampling variability when, if the truth could be known, it could be so explained
(judicial outcome 3). This type of mistaken conclusion is called a type-1 error. A type-2
error occurs when the null hypothesis is accepted when, in fact, the alternative applies
(judicial outcome 4). Before we apply a hypothesis test, we usually stipulate the
probability of avoiding a type-1 error, and this probability is called the confidence level of
the test.

Depending on the hypothesis test used, the number of errors will vary. Different tests
may give different outcomes. The choice of test depends upon the information available,
the estimates to be tested, and the consequences of making errors. We will only consider
a few hypothesis tests and their properties that are commonly used to analyze
geoscientific and geoengineering data. We will assume that, when comparisons are made
between different sample statistics, the statistics are based on independent samples.
Extensive treatments are given by Rohatgi (1984), Snedecor and Cochrane (1980), and
Rock (1988). Cox and Hinkley (1974) discuss the theoretical underpinnings of
hypothesis tests.

7-1 PARAMETRIC HYPOTHESIS TESTS

These tests depend on a knowledge of the form of the PDF from which the data come.
Common tests involve the normal, binomial, Poisson, and uniform distributions. The ¢
and F tests are particularly common and assume the data come from normal PDF's.

The t Test

Populations A and B will be assum%d nogmal “zzith means and variances (L4, oi) and
(up. 0p). We begin with the case o, = 0p = ¢ and deal later with the case oy % 0p.
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From the data sets having /4 and I data, respectively, we compute ( X4, f§ '4) and
( X, B) and make the null hypothesis H(y that the two population means are equal,

null hypothesis, Hy: py = Up
with the alternative hypothesis H 4 that the two means are not equal,

alternative hypothesis, Hy: g # Up

If we can demonstrate statistically that, at some predetermined confidence level o, the
null hypothesis is false, then we have found a "significant difference” in the sample
means ( X4 - Xpg). That is, it is a difference that, at the given level of probability,
cannot be explained by sampling variability alone. The roles of the hypotheses and
confidence level are quite important because they govern what question the test will
answer and with what probability type-1 errors will occur. ( X A" X B Yhasat
distribution with (I4 +Ip - 2) degrees of freedom and a variance of o2 Al +1, B ) Since
H 4 is satisfied if either pq > pup or ug < g, we have to consider both possibilities
when choosing the desired confidence level. That is, there is a probability of o/2 that fi4
> pup and a probability of ¢/2 that 4 < tig. Such a situation requires a "two-tailed" ¢
test.

The appropriate statistic is

where

(I4-1)8% + (15-1) 62
B IA+IB -2

We reject Hyy if

Prob[ld > t(0/2, I +Ig - 2)1> &
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and we accept Hy if
Probl Il > (/2,14 +Ig-2) 1< @

In terms of confidence intervals, Hy, is accepted if

1 1 = = 1 1
- A2 [ = —_ - 2 = —
to V Ky (IA + IB) <( X4 XB)< +t s (IA + IB)

where tg = |t((0/2,14 +Ip - 2)|. If the alternative H, had admitted only one inequality
(e.g., 4y > Up), then the critical ¢ value would be fg = #(Q, I4 +Ip - 2).

Example 1a - Comparing Two Averages (Equal Variances Assumed).

Consider the following data:
%, =50 2= I, =25
Xp =48 =3 Iz=30

For o= 0.05 (95% confidence level), 1(0/2, df) = 2.006 from a table of ¢
values (Table 5-2).

42 o 2475 + 293

=25 +30-2 1

[ = 50 - 48
1 1
'\/3.91 (Eg + 30

Since the absolute value of t is greater than 2.006, we reject H in favor of
H , and conclude with 95% confidence that the means are not equal. Recall
from Chap. 5, u= X + #(a/2, df)s/\/z and this situation can be represented
as in Fig. 7-3.

=3.74

Unfortunately, errors are the inevitable byproduct of hypothesis testing. No matter
how careful we are in selecting the form of the null hypothesis and associated confidence
level, we always run the risk of rejecting Hy when it is true or accepting Hy when Hy is
true. Once an inference is made, there is no way of knowing whether an error was
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committed. However, it is possible to compute the probability of committing such an
error using the ¢ distribution. In fact, since probabilities and frequencies are equivalent,
we can sa