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PREFACE 

Upon seeing this book, the reader's first reaction might be, "Another book on 
geostatistics?" This reaction is natural, for there are excellent texts on the subject, 
ranging from the seminal works of Matheron (1967) and Journel and Huijbregts (1978) 
through the more recent works of Agterberg (1974), Isaaks and Srivastava (1989), Cressie 
(1991), Hardy and Beier (1994), and Carr (1995). Some books come complete with 
software (Davis, 1973; Deutsch and Joumel, 1992). The more general statistical literature 
also containsnume;rous excellent works (e.g., Raid, 1952; Kendall and Stuart, 1977; Box 
et al., 1978). 

Yet there are several important aspects that are not treated together in the currently 
available material. We write for academic engineering audiences, specifically for upper
level or graduate classes, and for practicing engineers and geoscientists. This means that 
most of the material and examples are based on engineering quantities, specifically 
involving flow through permeable media and, even more specifically, permeability. Our 
experience suggests that, while most engineers are adept at the mathematics of statistics, 
they are less adept at understanding its potential and its limitations. Consequently, we 
write from the basics of statistics but we cover only those topics that are needed for the 
two goals of the text: to exhibit the diagnostic potential of statistics and to introduce the 
important features of statistical modeling. The reader must look elsewhere for broad 
coverage on probability, hypothesis testing, properties of distributions, and estimation 

·theory. Likewise, we will direct the reader to other papers or books that treat issues in 
more detail than we think necessary here. 

The role of geology is emphasized in our presentation. For many engineers, statistics 
is the method of last resort, when no deterministic method can be found to make sense of 
the geological complexities. In our experience, however, statistics and geology form a 
very powerful partnership that aids geosystem diagnosis and modeling. We aim to show 
that the data and the geology often have a story to tell and analysis of one informs us 
about the other. When heard, this story will provide information about further sampling 
and the model formulation needed to emulate the important features. The alternative to 
reconciling the geology and petrophysical properties is to grasp any model on the shelf 
and let the statistical realizations cover our ignorance. Unfortunately, this latter approach 
only partially meets engineering needs. 

About half of the book is devoted to the diagnostic, or "listening" topics. This 
includes the usual tools such as histograms and measures of variability, along with some 
newer concepts, such as using geology to guide sampling and the role of variable 
additivity. The other half is then aimed at methods for model development, once the 
important aspects of the geosystem behavior have been detected and quantified. Here, we 

xix 



XX Preface 

present a variety of modeling methods, including linear regression. We devote two 
chapters to linear regression because it is so common and has considerable utility; we 
think even experienced users will find a few surprises here. The final chapter centers on 
several field modeling studies that range from the highly deterministic to the strongly 
random. In all cases, the statistical diagnosis and geology were essential to the choice of 
the modeling method. 

The term geostatistics was intended to reflect the quantification of geologic principles 
and the reconciliation of the disciplines of geology and statistics. Matheron (J ournel and 
Huijbregts, 1978, p. v) points out that "geo" was intended to reflect the structure while 
"statistics" signified the random aspect of assessing and modeling ore deposits. However, 
geostatistics has more commonly come to refer to a small part of statistical analysis and 
modeling. We have abandoned the term "geostatistics" in this text in favor of the older, 
and more appropriate, usage of Matheron (1967) of regionalized or autocorrelated 
variables. This frees us to cover all types of statistics that might be of benefit to the 
geopractitioner. Pedagogically, this allows us to show the progression of statistics from 
probability through correlation to autocorrelation using the same terminology and 
notation. 

As a collaborative effort, this book has afforded all the authors many opportunities to 
learn from each other and expand their interests. A book written by one or two authors 
would have been easier to produce, keeping the logistical problems to a minimum. The 
result, however, would have suffered by being either much more geological or statistical. 
We hope the reader will also benefit from this interplay of views and agree that "life on 
the rocks" is not so painful as it sounds. 

No work of this kind succeeds without help from others. We are especially indebted to 
Joanna Castillo, Mary Pettengill, Samiha Ragab, and Manmath Panda for their help. 
Heidi Epp, Sylvia Romero and Dr. I. H. Silberberg are to be specially commended for 
their copy-editing and technical diligence in dealing with the multiple revisions and 
random errors that are the way of life in producing camera-ready books. 

L WL acknowledges the patience of Carole and the kids, Leslie and Jeffrey, for allowing 
him to hog the computer for so long. JLJ would like to express thanks for the patience 
and support of his wife, Jane, and his daughters Cathy and Leanne; the latter two have 
waited for that tree-house long enough! PWMC expresses thanks to Kate, William, 
Jessica and Hugo for their support over the years that led to this contribution. PWMC 
and JLJ both wish to acknowledge the support of the Edinburgh Reservoir Description 
Group members. JLJ particularly thanks Heriot-Watt University for a sabbatical leave to 
work on this book and his colleagues in the Department of Petroleum Engineering for 
covering for him during that absence. PWMC would also like to acknowledge Kingston 
University for the opportunity for practicing geologists to get an appreciation of 
statistical methods -- an opportunity that led, many years later, to his involvement in this 
book. His current post is funded by the Elf Geoscience Research Center. DJG expresses 
his love and thanks to Janet, the "mom", and Amanda and Holly, the "soccer dudettes", 
for their patience during the never-ending crunch times. DJG also thanks Chevron 
Petroleum Technology Co. (formerly Chevron Oil Field Research Co;) for support of 
reservoir characterization research, and his many friends and colleagues on the 
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1 

INTRODUCTION 

The modern study of reservoir characterization began in the early 1980's, driven by the 
realization that deficiencies in advanced oil recovery techniques frequently ha9 their origin 
in an inadequate reservoir description. The litany of problems became commonplace: 
wells drilled between existing wells did not have the interpolated characteristics, chemicals 
injected in wells appeared (when they appeared at all) in unforeseen locations, displacing 
agents broke through to producing wells too early, and, above all, oil recovery was 
disappointing. Each of these problems can be traced to a lack of understanding of the 
nature of the distribution of properties between wells. 

It is surprising that inferring the nature of interwell property distributions is not firmly 
rooted in petroleum technology, despite the maturity of the discipline. Engineers 
generally constructed a too-simple picture of the interwell distribution, and geologists 
generally worked on a much larger scale. Consequently, both disciplines were unfamiliar 
with working in the interwell region at a level of detail sufficient for making predictions. 
Into this gap has come the discipline of geological statistics, the subject of this book. 

Geological statistics has many desirable properties. As we shall see, it is extremely 
flexible, fairly easy to use, and can be made to assess and explore geological properties 
easily. But itflies in the face of many geologic traditions in its reliance on quantitative 
descriptions, and its statistical background is unfamiliar to many engineers. This 
statement, then, epitomizes the overall objectives of this book: to familiarize you with 
the basics of statistics as applied to subsurface problems and to provide, as much as is 
possible, a connection between geological phenomena and. statistical description. 



2 Chap. 1 Introduction 

1·1 THE ROLE OF STATISTICS IN ENGINEERING AND 
GEOLOGY 

The complexity of natural phenomena forces us to rely on statistics. This reliance brings 
most of us, both engineers and geologists, into a realm of definitions and points-of-view 
that are unfamiliar and frequently uncomfortable. Therefore, the basic idea of this section 
is to lay some general groundwork by explaining why we need statistics. 

We take statistics to be the study of summaries of numbers; a statistic, therefore, is 
any such summary. There are many summaries: the mean, standard deviation, and 
variance, to name only a few. A statistic is quite analogous to an abstract or executive 
summary to a written report that exists to convey the main features of a document 
without giving all the details. A statistic gives the main feature(s) of a set of numbers 
without actually citing the numbers. Unlike abstracts, however, the specific statistic 
needed depends on the application. For example, the mean and standard deviation of a card 
deck have no relevance compared to the ordering, a measure of which is also a statistic. 

In a broader sense, statistics is the process of analyzing and exploring data. This 
process leads to the determination of certain summary values (stati~tics) but, more 
importantly, it alsoleads to an understanding of how the data relate to the geological 
character of the measured rock. This last point is quite important but often overlooked. 
Without it, the data are "boiled down" to a few numbers, and we have no idea whether 
these numbers are representative or how significant they are. As we shall see below, the 
essence of statistics is to infer effects from a set of numbers without knowing why the 
numbers are like they are. With exploration, the data can "tell their story," and we are in 
a position to hear, understand, and relate it to the geological character. The geology then 
allows us to understand how to interpret the statistics and how significantthe results are. 

As we will see numerous times in this book, statistical analysis on its own may 
produce misleading or nonsensical results. For example, the statistical procedures can 
predict a negative porosity at a location. This is often because the statistical analysis and 
procedures do not incorporate any information about the geological and physical laws 
governing the properties we are assessing and their measurement. It 1s up to the analyst 
to understand these laws and incorporate them into the study. Statistics is a powerful 
method to augment and inform geological assessment. It is a poor substitute for physics 
and geological assessment. 

Definitions 

Let us begin by considering two extreme cases of determinism and randomness. 
Borrowing from systems language, a system is deterministic if it yields the same output 
when stimulated several times with the same input. It is random if it yields a different 
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output (unrelated to each other) from the same input. Stochastic describes a system that is 
part deterministic and part random, a hybrid system. The essential feature here is that the 
descriptors apply to the system, although, since knowledge about the system is limited, 
we frequently use them to apply to the output. Stochastic implies that there is some 
unpredictability in the description of a set of numbers or in a statistic; random implies 
complete unpredictability. 

On this basis, reservoirs can be placed into one of three categories. The first is strictly 
deterministic, having a recognizable, correlateable element at the interwell (km) scale with 
a well-understood internal architecture. The second is mixed deterministic and random 
(i.e., stochastic), having a recognizable, correlateable element at the interwell (km) scale 
with a well-understood gross internal architecture but local random variability, noise, or 
uncertainty. Finally, there is the purely random, with no readily identifiable geological 
control on the distribution of properties in a heterogeneous flow unit. We will see 
examples of all three types. 

Some types of statistical operations are quite deterministic because repeated application 
of the same input to the same problem will give the same estimate. These procedures 
include both regression and Kriging. By saying that a variable is stochastic, we are not 
implying that there is no determinism in it at all-merely that there is at least some 
unpredictability associated with it. In later chapters, we shall produce several sets of 
numbers that are all different but that have the same §tatistic; each set is called a 
stochastic realization. 

Deterministic Versus Stochastic Systems 

In general, deterministic predictions are superior to stochastic predictions. After all, 
deterministic predictions have no uncertainty and usually contain significant information 
about the nature of the system. Consequently, if the system under consideration is 
perfectly understood (in our case, if the nature of interwell property distribution is 
perfectly known), then determinism is the preferred prediction method. But if we are 
honest, we recognize that there rarely is such a thing as a perfectly deterministic system
certainly no system that can predict permeable media property distributions. In fact, 
exactly the opposite is true; a great many properties seem to be random, even when their 
underlying physical cause is understood. 

Randomness has always been an unsettling concept for physical scientists who are 
used to solving precise, well-defined equations for well-defined answers. Einstein himself 
said that "God does not play dice" with the universe (quoted by Hoffman, 1972). We 
know that all physical measurements entail some random error; nevertheless, only a 
cursory look at the real world reveals an incredible amount of unexplained complexity and 
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apparent randomness-randomness that usually exceeds any conceivable measurement 
error. 

Causes for Randomness 

How can there be randomness when nature follows well-established, highly deterministic 
physical laws such as the conservation of mass, energy, and momentum? Curiously, this 
dilemma, which is the origin of a breach between physical scientists and statisticians, has 
only recently been resolved. We try to illustrate this resolution here. 
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Figure 1-1. The outcome of a flipped coin. The shaded dark regions 
indicate where the coin will come up "heads"; the light where 
it will be "tails." From MacKean (1987). 
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Consider the epitome of a random event: the flipping of a two-sided, unbiased coin. 
The rise and fall of the coin are governed by Newton's second law and the rate of spin by 
the conservation of angular momentum-both well-defined physical laws. The first 
requires as input (initial condition) the initial velocity at which the coin is tossed. This 
is equivalent to the height of the toss. The second law requires the initial angular 
momentum or the rate of spin. With both the height and rate of spin specified, we can 
plot the results of the deterministic solution as in Fig. 1-1, where the shading indicates 
regions having a common outcome, heads or tails. 

At the origin, the regions are large and it should be easy to predict the outcome of a 
flip. But as the height and rate of spin increase, the regions become small and, in fact, 
become quite small for values that are likely to be attained for a true coin flip. If we 
imagine that there is some small error in the height and/or rate of spin (such uncertainty 
always exists), then it is apparent that we can no longer predict the outcome of the flip 
and the coin toss is random. 

Randomness, then, is the manifestation of extreme sensitivity of the solution of an 
equation (or a physical law) to small uncertainties in initial conditions. From this point 
of view, then, few systems are truly random but a great many are apparently random. 

There are two requirements for this sensitivity to exist: a nonlinear physical law and a 
recursive process. Both are present in nature in abundant quantities (e.g., Middleton, 
1991). However, it's surprising just how simple an equation can be and still exhibit 
apparent randomness. 

May's equation (Crutchfield et al., 1986) is one of many that will generate apparent 
randomness: 

for Xi between 0 and l. Even though this equation is very simple, it exhibits the two 
requirements of randomness. The parameter A controls the extent of the nonlinearity. If 
we generate various Xi+ 1 starting with xo = 0.5 we find that the behavior of the Xi for i 
greater than about 20 depends strongly on the value of A. For small A, the Xi settle down 
to one of two values. But, as Fig. 1-2 shows, for large A, Xi can take on several values. 

In fact, for A between 3.800 and 3.995, there are so many values that the Xi begin to 
take on the character of an experimental data set. Furthermore, an entirely different set of 
numbers would result for xo = 0.51 instead of xo = 0.50; therefore, this equation is also 
very sensitive to initial conditions. 

Remember that this behavior emanates from the completely deterministic May's 
equation, from which (and from several like it) we learn the following: 
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1. The sensitivity to initial conditions means we cannot infer the initial conditions 
(that is, tell the difference between xo = 0.50 and xo = 0.51) from the data set 
alone. Thus, while geologists can classify a given medium with the help of 
modem analogues and facies models (e.g., Walker, 1984), they cannot specify the 
initial and boundary conditions. 

2. The sensitivity also means that it is difficult (if not impossible) to infer the 
nature of the physical law (in this case, May's equation) from the data. The latter 
is one of the main frustrations of statistics-the inability to associate physical 
laws with observations. It also means that the techniques and procedures of 
statistics are radically different from traditional science and engineering approaches. 
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Figure 1-2. Bifurcation diagram for May's equation. From 
Crutchfield et al. (1986). 

The latter point is especially significant for earth scientists. It seems that if we cannot 
infer a physical law for sedimentology, how then can we make sedimentologically based 
predictions? The answer lies at the heart of statistics. We must take the best and most 
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complete physical measurements possible, make sure that sampling is adequate, derive the 
best statistical estimates from the data, and then use these to make predictions (in some 
fashion) that are consistent with the inferred statistics. Each of these points is touched 
upon at various places in this book. 

1-2 THE MEASUREMENTS 

Statistical analysis commonly begins after data have been collected. Unfortunately, for 
two reasons this is often a very late stage to assess data. First, measurements will already 
have been made that could be inappropriate and, therefore, represent wasted time and 
money. Second, if the analysis indicates further measurements are needed, the 
opportunity to take more data may be lost because of changed circumstances (e.g., the 
wellbore being cased off or the cote having deteriorated). Therefore, it is more effective to 
perform statistical analysis before or while measurements are made. 

How can we analyze and calculate statistics before we have numbers to manipulate? 
The answer lies largely in the fact that geology is a study of similarities in rock features. 
If a formation property is being measured for a particular rock type, similar rock types can 
be assessed beforehand to guide the present collection scheme. In that way, we will have 
some idea of the magnitude of the property, how variable it may be, and the scale of its 
variation. This information can then guide the sampling scheme to make sufficient 
measurements at an appropriate scale where the rock property is most variable. 

While it may appear obvious, it is important to make more measurements where the 
property varies much than where it varies little. This procedure conflicts with common 
practice, which is to collect samples at fixed times or spacings. The result of the latter 
approach is that estimates of reservoir properties and their variation are poorest where they 
vary most. 

It is less obvious that the scale of the measurement is important, too, because 
variations in rock properties often occur at fairly well-defined scales (see below for further 
discussion of this). Any measurement, representing the effective value on the 
measurement volume, may not correspond to any of the geological scales. This 
mismatch between the scales of measurement and geology often leads to poor assessment 
and predictions. The assessments of properties are poor because the measurements are 
representing the values and variabilities of multiples of the geological units, not of the 
unit properties. Predictions are degraded because knowledge of the geometries of 
variations can no longer be incorporated into the process. When information is ignored, 
the quality of predictions deteriorates. 

There is also often an uncertainty in the measurement values ansmg from 
interpretation and sampling bias. Each measurement represents an experiment for a 
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process having a model and a given set of boundary conditiQns. The instrumentation then 
interprets the rock response using the model to determine the constitutive property for the 
volume of rock sampled. Two examples of volumes and models are well-test and core
plug permeability measurements. The well test has poorly defined boundary conditions 
and the predicted permeability depends on solutions to radial flow equations. A core plug 
fits in a rubber sleeve, ensuring a no-flow boundary, and the end faces have constant 
pressures applied. This simplifies the geometry so that Darcy's law can be invoked to 
obtain a permeability. The well test has a large, poorly defined volume of investigation 
while the plug has a very specific volume. Any errors in the assumed boundary 
conditions or interpretative model will lead to imprecise estimates of the rock properties. 

Sampling bias does not necessarily produce imprecise data. It may instead produce data 
that do not represent the actual rock property values. For example, the. mechanical 
considerations of taking core plugs means that the shalier, more friable regions are not 
sampled. Similarly, samples with permeabilities below the limit of the measuring device 
will not be well-represented. During coring, some regions may become rubblized, leading 
to uncertainties in the locations of recovered rock and their orientations. 

Thus, measurements have many failings that may mislead statistical analysis. The 
approach advocated in this book emphasizes the exploratory power of statistics in the 
knowledge of the geology and measurements. Through examples and discussion, we 
illustrate how dependence solely on statistical manipulations may mislead. At first, this 
lessens th~ confidence of. the neophyte, but with practice and understanding, we have 
found that the models and analyses produced are more robust and consistent with the 
geological character of the reservoir. 

1-3 THE MEDIUM 

The majority of reservoirs that are encountered by petroleum geoscientists and engineers 
are sedimentary in origin. Sedimentary rocks comprise clastics (i.e., those composed of 
detrital particles, predominantly sand, silt, and clay) and carbonates (i.e., those whose 
composition is primarily carbonate, predominantly limestones and dolomites). Both 
clastic and carbonate reservoirs have different characteristics that determine the variability 
of petrophysical properties. 

Variability in Geological Media 

Clastic rocks ~e deposited in the subariel and subaqueous environments by a variety of 
depositional processes. The accumulation of detrital sediments depends on sediment 
transport (Allen, 1985). When the transport rate changes, erosion or deposition occur. 
Sediment transport is a periodic phenomenon; however, for all preserved sequences, 
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deposition prevailed in the long term. Petrophysical properties are controlled at the pore 
scale by textural properties (grain size, grain sorting), regardless of depositional 
environment (Pettijohn et al., 1987). Texture is controlled by many primary parameters: 
the provenance (source of sediments) characteristics, the energy of deposition, climate, 
etc., and their rates of change. Secondary phenomena such as compaction and diagenesis 
can also modify the petrophysical properties. Nevertheless, the influence of primary 
depositional texture usually remains a strong determining factor in the petrophysical 
variability in clastic reservoirs. 

In carbonate rocks, primary structure is also important. Carbonate sediments are 
biogenic or evaporitic in origin. Primary structure can be relatively uniform (e.g., 
pelagic oozes, oolitic grainstones) or extremely variable (coralline framestones). 
Carbonates, particularly aragonite and calcite, are relatively unstable in the subsurface. 
Pervasive diagenetic phenomena can lead to large-scale change of the pore structure. The 
change from calcite to dolomite (dolomitization) leads to a major reduction in matrix 
volume and development of (micro)porosity. · Selective dolomitization of different 
elements of the carbonate can preserve the primary depositional control. More often the 
effective reservoir in carbonates derives entirely from diagenetic modification, through 
dissolution (stylolites), leaching (karst), or fracturing. As a result of these phenomena 
(often occuring together), carbonates have very complex petrophysical properties and pose 
different challenges to the geoscientist, petrophysicist, or engineer. 

As we have outlined, the fundamental controls on petrophysical properties in clastic 
reservoirs (textural) are generally quite different from those in a carbonate (diagenetic or 
tectonic). It is to be expected that different statistical techniques and measures are needed 
to address the petrophysical description of the reservoir medium. Other rock types 
occuring less commonly as reservoirs, such as fractured igneous rocks and volcanics, 
might require different combinations of the statistical techniques. However, the approach 
to statistical analysis is similar to that presented in this book: prior to statistical 
analysis, attempt to identify the controlling phenomena for the significant petrophysical 
parameters. 

Structure in Geological Media 

We noted in the previous section that the controls on petrophysical properties are different 
in clastics and carbonates. These differences manifest themselves in different large-scale 
performance of the medium to an engineered project. 

In clastic media, the textural variability is arranged into characteristic structures. These 
(sedimentary) structures are hierarchical, and the elements are variously described as stratal 
elements, genetic units, and architectural elements for various depo-systems (Miall, 1988; 
van Wagoner et al., 1990). These elements are essentially repetitive within a single 
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reservoir, characteristic of the depositional process, and their association forms the basis 
of sedimentological and environmental interpretations. Distinctive elements are lamina, 
beds, and parasequences in the marine envronment at the centimeter, meter, and decameter 
scales, respectively (Fig. 1-3). Groups of these elements are generally called sets. 

At the larger scale the stacking of these elements (the architecture) controls the 
characteristics of reservoir flow units (Hearn et al., 1988; Weber and van Geuns, 1990). 
The geometries of elements can be measured in outcrop (e.g., the laminaset elements in 
various shallow marine outcrops in Corbett et al., 1994). The repetitive nature of the 
elements results from cyclical processes such as the passing of waves, seasons, or longer
term climatic cycles because of orbital variations (House, 1995). 

In carbonate media, similar depositional changes can also introduce an element of 
repetitive structure. Often, however, the permeability appears to be highly variable, lacks 
distinctive structure, and appears random. 

The degree of structure and the degree of randomness often require careful measurement 
and statistical analysis. Clastic reservoirs comprise a blend of structure (depositionally 
controlled) overprinted by a random component (because of natural "noise" or 
postdepositional modification). Clastics tend to be dominated by the former, and 
carbonates by the latter. This is by no means a rigorous classification, as a very 
diagenetically altered clastic might exhibit a random permeability structure, and, 
alternatively, a carbonate may exhibit clear structure. The degree of structure, however, is 
one that must be assessed to predict the performance of the medium (Jensen et al., 1996). 

Assessing Geological Media 

There are various methods for assessing the variability and structure of geological media. 
Variability can be assessed by measurements at various increasing scales (Fig. 1-4): thin
section, probe or plug permeameter, wireline tool, drill-stem test, and seismic. The 
comparison of measurements across the scales is compounded by the various geological 
elements that are being assessed, the different measurement conditions, and the 
interpretation by various experts and disciplines. In general, the cost of the measurements 
increases with scale, as does the volume of investigation. As a result, the variability 
decreases but representativeness becomes more of an issue. 
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Figure 1-3. 

Formation-scale (m tolOO's m 
__../__.,/~ __../__.,/~ 

~.&~ ..--!.,&~ 

Lamination, bed, and bedset scales of sedimentary structure with schematic 
permeability variations. After Ringrose et al. (1993). 

Structure is usually assessed by statistical analysis of series of measurements. 
Geometrical and photo geological data are also used to assess structure at outcrop (Martino 
and Sanderson, 1993; Corbett et al., 1994). In recent years, these structure assessments 
have become increasingly quantitative. This approach has raised awareness of the 
techniques and issues addressed in this book. 
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Figure 1-4. Shallow marine stratal elements and measurement scales. After 
van Wagoner et al. (1990). Reprinted by permission. 

1-4 THE PHYSICS OF FLOW 

Much of the discussion in this book is aimed at developing credible petrophysical models 
for numerical reservoir simulators. There are excellent texts on petrophysics .and reservoir 
simulation (Aziz and Settari, 1979; Peaceman, 1978), so we give only a rudimentary 
discussion here of those aspects that will be needed in the ensuing chapters of this book. 

Simulators solve conservation equations for the amount of a chemical species at each 
poil)t in a reservoir. In some cases, an energy balance is additionally solved, inwhich 
case temperature is a variable to be determined. The conservation equations are relatively 
simple differential equations (Lake, 1989), but complexity arises because each component 
can exist in more than one phase; the degree of the distribution among the phases as well 
as fluid properties themselves are specified functions of pressure. Pressure is itself a 
variable because of a requirement on overall conservation of mass. In fact, each phase can 
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manifest a separate pressure, which leads to additional input in the form of capillary 
pressure relations. Some simulators can model 20 or more species in up to four separate 
phases; the most common type of simulator is the black oil simulator that consists of 
three phases (oleic, gaseous, and aqueous) and three components (oil, gas, and water). 

The power of numerical simulation lies in its generality. The previous paragraph 
spoke of this generality in the types of fluids and their properties. But there is immense 
generality otherwise. Most simulators are three-dimensional, have arbitrary well 
placements (both vertical and horizontal), can represent arbitrary shapes, and offer an 
exceedingly wide range of operating options. Many simulators, such as dual porosity and 
enhanced oil recovery simulators, have physical mechanisms for specialized applications. 
There is no limit to the size of the field being simulated except those imposed by the 
computer upon which the simulation is run. 

The combination of all of these into one computer program leads to substantial 
complexity, so much complexity, in fact, that numerous approximations are necessary. 
The most important of these is that the original conservation equations must be 
discretized in some fashion before they are solved. Discretization involves dividing the 
reservoir being modeled into regions-cells or gridblocks-that are usually rectanguloid 
and usually of equal size. The number of such cells determines the ultimate size of the 
simulation; modern computers are capable of handling upwards of one million cells. 

The discretization, though necessary, introduces errors into a simulation. These are of 
three types. 

Numerical Errors 

These arise simply from the approximation of the originally continuous conservation 
equations with discrete analogues. Numerical errors can be overcome with specialized 
discretization techniques (e.g., finite-elements vs. finite-differences), grid refinement, and 
advanced approximation techniques. 

Scale-up Errors 

Even with modern computers~ the gridblocks in a large simulation are still quite large-as 
much as several meters vertically and several 1 O's of meters areally. (The term gridblock 
really should be grid pancake.) This introduces an additional scale to those discussed in 
the previous section, except this scale is artificial, being introduced by the simulation 
user. Unfortunately, the typical measurement scales are usually smaller than the 
gridblock scale; thus some adjustment of the measurement is necessary. This process, 
called scalingup, is the subject of active research. 
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fnput Errors 

Each gridblock in a simulation requires several data to initialize and run a simulator. In a 
large simulation, nearly all of these are unmeasurable away from wells. The potential for 
erroneous values then is quite large. The point of view of this book is that input errors 
are the largest of the three; many of the techniques to be discussed are aimed at reducing 
these errors. 

The conservation equations alone must be agumented by several constitutitlve 
relationships. These relationships deserve special mention because they contain 
petrophysical quantities whose discussion will occur repeatedly throughout this book. 

Porosity is the ratio of the interconnected pore space of a permeable medium to the 
total volume. As such, porosity, usually given the symbol ¢!, represents the extent to 
which a medium can store fluid. Porosity is often approximately normally distributed, 
but it must be between 0 and 1. In the laboratory, porosity can be measured through gas
expansion methods on plugs taken from cores (¢!plug) or inferred from electrical-log 
measurements. Each has its own sources of error . 

Like all petrophysical properties, porosity depends on the local textural properties of 
the medium. If the medium is well-sorted, it depends primarily on packing. As the 
sorting becomes poorer, porosity begins to depend on grain size as well as sorting. 

The most frequently discussed petrophysical quantity in this book is permeability. 
This is defined from a form of Darcy's law: 

-k flP 
u=--

JlL 
(1-1) 

where u is the interstitial velocity of a fluid flowing through a one-dimensional medium 
of length L, !1P is the pressure difference between the inlet and outlet, J1 is the fluid 
viscosity, and k is the permeability. Permeability has units of (length)2, usually in Jlm2 
or Darcys (D); conventionally w-12 m2 = 1 Jlm2 = w-3 mD. mD means milliDarcies. 
The superficial velocity is u = Q/A¢1, where Q is the volumetric flow rate and A is the 
cross-sectional area perpendicular to the flow. 

Equation (1-1), in which k is a scalar, is the simplest form of Darcy's law. Simulators 
use a more general form: 

u=-J.·(VP+pg) (1-2) 

where u is a vector, p the fluid density and V P the vector gradient of pressure. A, in this 
equation is the fluid mobility defined as 
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Permeability in this representation is now a tensor that requires nine scalar 
components to represent it in three Cartesian dimensions. 

[ 
kxx kxy kxz ] 

k = kyx kyy kyz 

kzx kzy kzz 

where each of the terms on the right side are scalars. The tensorial representation is 
present so that u and its driving force ('VP + pg) need not be colinear. Most simulators 
use a diagonal version of the permeability tensor: 

[ 
kx 0 0 ] 

k = 0 ky 0 

0 0 kz 

(1-3) 

kx, ky are the x- andy- direction permeabilities; kz is usually the vertical permeability 
and is frequently expressed as a ratio kvh of the x-direction permeability. kvh is 
commonly less than one, usually much less than one in a typical gridblock. Unless 
otherwise stated, when we say permeability, we mean the scalar quantities on the right of 
Eq. (1-3). 

Permeability is among the most important petrophysical properties and· one of the 
most difficult to measure. On a very small scale, it can be measured with the probe 
permeameter. The most common measurement is on plugs extracted from the subsurface; 
on certain types of media, larger pieces of the core may be used-the so-called whole-core 
measurements. All of these measurements are quite small-scale. Far larger volumes--of 
the order of several cubic meters--of a reservoir may be sampled through well testing. 

All techniques are fraught with difficulties. Consequently, we inevitably see 
correlations of permeability with other petrophysical quantities. The primary correlant 
here is porosity; the reader will see numerous references to log(k) vs. cp throughout this 
book. Permeability has also been correlated with resistivity, gamma ray response, and 
sonic velocity. 
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Permeability varies much more dramatically within a reservoir than does porosity; it 
tends to be log-normally distributed. Permeability depends locally on porosity, and most 
specifically on grain size (see Chap. 5). It also depends on sorting and strongly on the 
mineral content of the medium (Panda and Lake, 1995). 

The version of Darcy's law appropriate for multi phase immiscible flow is 

(1-4) 

where the terms are analogous to those in Eq. (1-2) except that they refer to a specific 
phase j. The mobility term is now 

Again the terms k and J.1. are analogous to those in the previous definition of mobility. 
The new term krj is the relative permeability of phase j. Although there is some evidence 
for the tensorial nature of krj. this book treats it as a scalar function. 

Relative permeability is a nonlinear function of the saturation of phase j,Sj. This 
relationship depends primarily on the wetting state of the medium and less strongly on 
textural propertie~. Under some circumstances, krj also depends on interfacial tension, 
fluid viscosity, and velocity. It is difficult to measure; all techniques involve some 
variant of conducting floods through core plugs, which raises issues of restoration, in-situ 
wettability, experimental artifacts, and data handling. 

Relative permeability is among the most important petrophysical quantitites in 
describing immiscible flow. Some measure of this importance is seen in the fractional 
flow of a phase j. The fractional flow of a phase is the flow rate of the phase divided by 
the total flow rate. With suitable manipulations (Lake, 1989), the fractional flow of 
water in two-phase oil-water flow is, in the absence of gravity, 

fw = (1 + J.l.w kro )-1 
J.l.o krw 

fw is, therefore, a nonlinear function of kro and krw. which are themselves nonlinear 
functions of saturation. This relationship between saturation and flow is perhaps the 
most basic representation of multiphase flow there is. 

In addition to the ones mentioned above-porosity, permeability, and relative 
permeability-there are a host of other petrophysical properties that are important to 
specific applications. In miscible displacements, diffusion and dispersivity are important; 
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in immiscible displacements, capillary pressure plays a strong role in determining 
ultimate recovery efficiency. Here again, though, the disparateness of scales manifests 
itself; capillary pressure is exceedingly important on the grain-to-grain scale, but this 
scale is so small that we represent its ·effects through the residual saturations in the krj 
functions. For this reason also, capillary pressure is an excellent characterization tool for 
the small scale. 

1-5 ESTIMATION AND UNCERTAINTY 

The basic motivation for analyzing and exploring data must be to predict properties of the 
formation being sampled. This requirement thus necessitates the production of estimates 
(statistics) that amount to some guess about the value of properties at unsampled 
locations in the reservoir. These estimates are often the sole focus of attention for many 
users of statistics. 

Because estimates are guesses, they also have an uncertainty associated with them. 
This is because each estimate is the product of the analysis of a limited set of data and 
information. The limited nature of this information implies that our assessment is 
incomplete and that, with further information, we could supply a "better" estimate. Two 
aspects of statistical analysis help the user to be aware of and to mitigate this uncertainty. 

The first aspect is that, to every estimate we produce, we can also produce an estimate 
of its associated uncertainty. This gives us a powerful method for assessing the impact of 
the limited nature of our data sets. We will find that many of the statistics used in 
reservoir characterization have uncertainties related to two features of the data. The first is 
the number of data in the analysis. Clearly, data represent information and, the more data 
we have, the less uncertain we expect our estimates to be. The second is the variability 
of the property under study. This is a parameter over which we have no control but, with 
geological information and experience, we may have some notion ofits magnitude. For 
example, the arithmetic average has an accuracy that is related to the ratio 
(data variability)/ ..Jnumber of data. Such expressions are very helpful in 
understanding what is causing estimates to vary from the "right value" and what we gain 
by increasing the number of samples. Since information (i.e., number of data) is 
expensive, we can find how much an improved estimate will cost. In the case of the 
arithmetic average, doubling the accuracy requires quadrupling the number of samples. 

The second aspect is that we can guide the analysis according to the measurement 
physics and geological subdivisions of the reservoir. This affords the ability to 
incorporate into the analysis at every possible opportunity the geological and physical 
knowledge of the reservoir. The inclusion of such information is less quantifiable, 
unfortunately, than the effects of data numbers and variability, but is nonetheless 
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important in producing statistically relevant estimates. As an extreme example, we can 
take the average of the temperature and porosity of a rock sample, 20"C and 0.20, to give 
a result of 10.1. The mathematics does not know any different but the result is 
uninterpretable. We have no confidence in being able to apply the result elsewhere. 
Ridiculous? Yes, but it is extremely easy to ignore information and suppose that the 
statistical procedures will iron out the inconsistencies. The result will be poor estimates 
of quantities that are only weakly related to the reservoir. 

Interpretability and accuracy of estimates also helps in another common engineering 
function, comparison of estimates obtained from different kinds of measurements. 
Comparisons and the comparability of estimates will be discussed in this book, but the 
subject can be very complex. Estimates of average permeability from, for example, well
test and core-plug data are often only weakly comparable. For well tests, the statistical 
uncertainties of these measurements is only a small part of the total uncertainties, which 
include the domain of investigation, well-bore effects, and model uncertainty. Yet, these 
latter aspects are not well-quantified and, therefore, cannot be easily translated into an 
uncertainty of the estimated permeability. Nonetheless, error bands for estimates can at 
least convey the statistical causes of uncertainty. These can then assist careful, geo
engineering judgments to compare estimates. 

1 m6 SUMMARY 

Statistics is a powerful tool that can supply estimates and their uncertainties for a large 
number of reservoir properties. The discipline also provides important exploratory 
methods to investigate data and allow them to "tell their story." This tool is best used in 
concert with the geological and physical information we have about the reservoir. 

Measurements are a vital part of statistical analysis. While providing a "window" to 
examine system response, they have several shortcomings. These shortcomings should 
be understood to gain the most from the data. Statistical analysis should parallel data 
collection to guide the choice of sample numbers and measurement type. Geological 
information concerning the scale and magnitude of variability can improve the 
measurement process; 

Sedimentary systems are the primary subject for reservoir characterization. Both 
clastic and carbonate systems often exhibit regularities that can be exploited during 
measurement and prediction. These features appear at several scales and, therefore, 
measurements with differing volumes of investigation will respond differently to the rock. 
These scales and the structure thus need to be understood, and the understanding will help 
the statistical analysis during both the data-collection and analysis phases. 
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c BASIC CONCEPTS 

Up to this point, we have relied on your intuitive grasp of what probability means to 
make the case for the roles for probability in reservoir description. Before we give details 
of methods and applications that use probability, however, we must agree on what 
probability is. Therefore, we will devote some space to defining probability and 
introducing terms used in its definition. 

Central to the concept of probability is the notion of an experiment and its result 
(outcome). 

Experiment .S - The operation of establishing certain conditions that may produce 
one of several possible outcomes or results. 

Sample Space n- The collection of all possible outcomes of .S . 

. Event E - A collection of some of the possible outcomes of .S. E is a subset of n. 
These defmitions are very general. In many statistical texts, they are illustrated with 
cards or balls and urns. We attempt to make our illustrations consistent with the basic 
theme of this book, reservoir description. An experiment .S could be the act of taking a 
rock sample from a reservoir or aquifer and measuring its porosity. The sample space n 
is the collection of all porosities of such specimens in the reservoir. Figure 2-1 
illustrates that the eventE may be the value of porosity (cjJ) that is actually observed in a 
core plug. 

19 
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(L[) 
Event 

Figure 2-1. Sketch of an experiment, measuring the porosity ( ¢) of a core
plug rock sample. 

Some books call the sample space the population. An individual outcome (a single 
porosity) is an elementary event, sometime just called an element. The null set, 0 (no 
outcomes), may also be regarded as an event. 

An experiment is always conducted to determine if a particular result is realized. If the 
desired result is obtained, then it has occurred. 

Occurrence of E - An event E has occurred if the outcome of an experiment belongs 
toE. 

Example 1 a - Defining Events. Suppose there are two wells with the 
measured core-plug porosities in Table 2-1. 

This reservoir has had 14 experiments performed on it. If we take the event 
E to be all porosities between 0.20 and 0.25, then the event has occurred four 
times in Weill and four times in Well2. We denote the event as E = [0.20, 
0.25]. Square brackets []represent intervals that include the extremes. 

The frequency of these occurrences is important because below we will 
associate probability with frequency. The event must be well-defined before 
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Table 2-1. Core-plug porosities for Example L 

Welll 
0.19 
0.15 
0.21 
0.17 
0.24 
0.22 
0.23 
0.17 

We112 
0.25 
0.20 
0.26 
0.23 
0.19 
0.21 

the frequencies can be calculated. Slight changes in the event definition can 
greatly alter its frequency. To see this, recalculate the frequencies in the 
above data when the event definition has been changed to beE= [0.19, 0.25]. 

2-1 COMBINATIONS OF EVENTS 

21 

Consider the case of two events, E1 and E2. Both represent some outcomes of the 
experiment 5. We can combine these events in two important ways to produce new 
events. The first combination includes all the elements of E1 and E2 and is called the 
union of E1 and E2. 

Union of Two Events- E1 u E2 is the set of outcomes that belong to either E1 or 
E2. 

The second combination involves only the elements common to E1 and E2. This is 
called the intersection of E1 and E2. 

Intersection of Two Events· E1 n E2 is the set of outcomes that belong to both E1 
andE2. 

Both union and intersection are themselves events. Thus, the union of two events E1 
and E2 occurs whenever E1 or E2 occurs. The intersection of two events E1 and E2 
occurs when bo.th E1 and E2 occur. 

Example 1 b- Illustrating Union and Intersection. Referring to Table 2-1 of 
core-plug porosities, if E1 = [0.15, 0.19] and E2 = [0.18, 0.24], then 
E1 u E2 = [0.15, 0.24] contains eight elements from Well 1 and four 
elements from Well2. E1 n E2 = [0.18, 0.19] contains one element from 
each well. 
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Of course, both definitions can be extended to an indefinite number of events. 

Example 2 -Facies Detection by Combining Events. Suppose that core 
description and wireline log analysis produced the diagram in Fig. 2-2 for a 
reservoir. We can label events associated with the three lithofacies through 
their gamma ray and porosity values: E1 = [GR3, GR4], E2 = [GR1. GR2], 
E3 = [4'1. 4>:2], and E4 = [4'3, 4'4]. The three facies can be distinctly 
identified using both GR and 4> data: E1 n E3 =Facies 3, E2 n E3 =Facies 
1, and E2 n E4 = Facies 2. If only Facies 2 and 3 are present in portions of 
the reservoir, then either measurement would be sufficient to discriminate 
these facies since E1 u E3 =Facies 3 and E2 u E4 =Facies 2. 

Facies 3 

~ 

GR4 
0.. El < 
~ GR3 
~ 
ro 

Facies 1 
~ GR2 

8 Cj E2 

GR1 

Facies 2 

<1>1 <1>2 

E3 

Porosity 
Figure 2-2. Hypothetical wireline measurement patterns for three reservoir 

facies. Gamma ray response in API units. 

The notions of intersection and union lead to one highly useful concept, mutual 
exclusivity, and a rather trivial one, exhaustive events. 

Mutually exclusive events· Events E1 and E2 are ri:mtually exclusive if both E1 and 
E2 cannot occur simultaneously; that is, if E1 n E2 = 0. 

Exhaustive sequence of events- The sequence E1, E2, ... ,En accounts for all possible 
outcomes such that E1 u E2 u ... u En= Q. 
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For mutually exclusive events, the intersection contains no outcomes. For example, 
E1 n E4 in Fig. 2-2 is mutually exclusive, since the intersection of these two events has 
no outcomes (i.e., no lithofacies identified) and can only be the null event 0. If all the 
lithofacies in the reservoir have been identified, E1 n E4 = 0. If, during the analysis of 
well data, there were portions of the reservoir satisfying both E1 and E4, then there may 
be a previously unrecognized facies present or the measurements may be in error (e.g., 
poor borehole conditions). · 

In an exhaustive sequence, one of the constituitive events must occur. The term 
exhaustive sequence refers to the sample space and not the experiment. This is the reason 
that it is trivial; if we knew the exhaustive sequence of events of all.the porosities in the 
reservoir (the sample space), there. would be no need of estimation or statistics, and the 
reservoir would be completely described. 

Complementary event 3- The subset of Q that contains all the outcomes that do not 
belong to E. 

The complementary event for E1 in Example 2 is all of the gamma ray values below 
GR3 or above GR4, i.e., 31 = (0, GR3) u (GR4, oo). This definition also applies to the 
sample space. the parentheses ( ) indicate intervals that do not contain the extremes. 

2-2 PROBABILITY 

We are now equipped to consider a working definition of probability. It also involves the 
connection between statistics and probability. 

Probability- Let E be an event associated with an experimentS. PerformS n times 
and let m denote the number of times E occurs in these n trials. The ratio m/n is 
called the relative frequency of occurrence of E. If, as n becomes large, m/n 
approaches a limiting value, then we set p = lim m/n. The quantity p is called the 
probability of the event E, or Prob(E) = p. n~oo 

The relative frequency of occurrence of the event Eisa statistic of the experimentS. 
The ratio m/n is obtained by conducting n experiments. Also associated with the event E 
is the notion that, as n approaches infinity, the statistic m/n will approach a certain 
value, p. The statistic m/n only tells us about things that have happened, whereas the 
probability allows us to make predictions about future outcomes (i.e., other times and/or 
other places). The link between the two occurs when we say "we know what m/n is, but 
we will never know what p is, so let us assume that p is about equal to m/n." In effect, 
we assume that future performance replicates past experience while recognizing that, as n 
increases, the statistic m/n may still vary somewhat. 
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Example 3a - Frequencies and Probabilities. Table 2-2 lists the grain 
densities (pg) measured from 17 core plugs. 

Table 2-2. Core-plug grain densities for Example 3. 

Plug no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

2.68 
·2.68 
2.68 
2.69 
2.69 
2.70 
2.69 
2.70 
2.68 

Plug no. 

10 
11 
12 
13 
14 
15 
16 
17 

Estimate the relative frequencies of these events: 

1. E1: 2.65 ~ Pg ~ 2.68; 
2. E2: 2.68 < Pg ~ 2.71; 
3. E3: 2.65 ~ Pg ~ 2.71; 
4. E4: 0 ~ Pg < oo; and 
5. Es: -oo < Pg < 0. 

2.69 
2.70 
2.74 
2.69 
2.68 
2.68 
2.68 
2.70 

First, the experiment .S consists of taking a core plug and measuring its 
grain density. So, in this case, 17 experiments (n = 17) have been performed 
and their outcomes listed. The sample space, Q, consists of all possible 
values of grain density. We now consider the relative frequencies of these 
events. 

1. E1 = [2.65, 2.68] occurred for plugs 1, 2, 3, 9, 14, 15, and 16. m = 7 
so Prob(E1) = 7/17 = 0.412; 

2. E2 = [2.68, 2.71] occurred for plugs 4, 5, 6, 7, 8, 10, 11, 13, and 17. 
m = 9 so Prob(E2) = 9/17 = 0.529; 

3. E3 = [2.65, 2.71] occurred for plugs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ll, 13, 
14, 15, 16, and 17. m = 16 so Prob(£3) = 16/17 = 0.941; 

4. E4 = [0, oo) occurred for all the plugs. m = 17 and Prob(£4) = 17/17 = 
1.0; and 

5. Es = (-oo, 0] occurred for none of the plugs. m = 0 and Prob(Es) = 0/17 = 0. 

While we have labeled these frequencies as probabilities, this may not be 
accurate. All five of these frequencies are computed from the data obtained by 
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conducting only 17 experiments. How accurate are they? That is, assuming 
that the experimental procedure for grain-density determinations is accurate, 
how representative are these frequencies of the whole reservoir? If we 
obtained more data, would the ratio 1r1fn change for any of the listed events? 
For example, observing that other names for E4 andEs are Q and 0, 
respectively, we would claim that Prob(£4) = 1 and Prob(Es) = 0 are exactly 
the same values as their relative frequencies. This observation, however, 
requires knowledge that is not based solely upon the data set. 

25 

The probability definition encompasses what we believe to be true about any kind of 
modelling. If we can quantify and understand the performance of any set of observations 
(here these are the relative frequencies), then we assume that we can estimate, to some 
extent, the future performance. 

Assessing probabilities is relatively simple by most modelling standards because the 
observations do not need to be interpreted, just recorded. This is both the bane and the 
strength of statistical analysis. It is a weakness because all subsequent analyses· will be 
largely unrelated to a physical cause. For example, we will not be able to say what 
caused the grain densities in Example 3; statistics does not distinguish between 
Si02 (pg = 2.65 g/cm3) and CaC03 (Pg = 2.71 g/cm3). It is a strength, however, 
when we realize that a very large number of observations, especially those of geological 
origin, simply defy quantitative analysis because of their complexity (Chap. 1). 

The association of probabilities with frequencies is by no means agreed upon even 
among statisticians. This is because it is entirely possible for future events to take a 
direction different from that in the past, particularly if there is an outside stimulus. To 
proceed, of course, we must accept the hypothesis given by the definition. However, 
with further data, it can be tested to determine if the hypothesis still holds. Chapters 5 
and 7 treat this topic further. 

2-3 PROBABILITY LAWS 

The above definitions lead directly to probability axioms or laws. In most cases, they are 
rather obvious, as in the following: 

Axiom 1: For every event E, 0 ~ Prob(E) ~ 1 

Axiom 2: For the special case E = Q, Prob(E) = 1 

Axiom 1 says that the probability of any event must be between 0 (no chance of 
happening) and 1 (certainty of happening). Axiom 2 says that some event must occur 
from the experiment. 
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The addition laws involve mutual exclusivity. 

Axiom 3 {Addition Law): Let£1 andE2 be two events, then 

This is sometimes known as the fundamental law of addition. It simply says that the 
probability of E 1 or E2 is the sum of the individual probabilities less the probability of 
E1 and E2. We use the law most in the following special cases. 

Axiom 3': If E1 and E2 are two mutually exclusive events (i.e., E1 r1 E2 = 0), then 

Axiom 3": If E1, E2, .. . , Ei,··· is a mutually exclusive sequence of events, then 

Prob (E1 u E2 uE3 ... u Eoo) = I, Prob(Ei) 
i=l 

Axiom 3" is simply a generalization of Axiom 3'. 

Example 3b- Illustrating the Basic Axioms. Let's reconsider the grain 
density events E1, E2, and £3 defined in Example 3a. Recall that 
E1 = [2.65, 2.68], E2 = (2.68, 2.71], and £3 = [2.65, 2.71]. Et and E2 are 
mutually exclusive events since there is no value of Pg that will satisfy both 
E1 and Ez (i.e., E1 r1 Ez = 0). E3 is the combination of both the events E1 
and Ez. From the data, we obtained Prob(El) = 7/17 and Prob(E2) = 9/17. 
If we apply Axiom 3', we must have Prob(£1 u E2) = 16/17, which is pre
cisely the same value we obtained for Prob(£3). 

We note also that the null set may be written as the complement of the sample space, 
since 

Prob(0) = 1 - Prob(.Q) = 0 

The null set is often called the impossible event. 
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2-4 CONDITIONAl PROBABIUTIES 

When Q contains a finite number of outcomes, calculation of event probabilities is 
straightforward, if tedious. It is easiest for cases involving a finite number of equally 
likely outcomes, such as throwing dice, flipping coins, or drawing balls from the 
proverbial urn or cards from a deck. Even such cases require care in conducting the 
experiment, however, to avoid influencing the outcomes of later experiments. We first 
consider a simple card example. 

Example 4a - Conditional Probabilities. Calculate the probability of 
selecting two spades in two draws from a normal 52-card deck. Each card is 
returned to the deck and the deck thoroughly shuffled before the next draw. 

The sample space consists of all pairs of cards: Q = {(A"l', A'¥), (A'¥, 2"l'), 
... , (A", K '¥), (A", A4-), ... ) . Since each draw could produce any one of 52 
cards, the total number of outcomes is N = 52• 52 = 2704. Remember that 
each card could be any one of 52 and that 2704 is just the number of ways to 
take 52 things, two at a time (with replacement). 

The event E is the drawing of two spades and the number of outcomes 
favorable to the event is 13•13 = 169, since there are 13 spades in the deck 
and the second draw is with replacement. Therefore the probability of E is 
169/2704 = 0.0625, a surprisingly small number. 

The experiment is more complicated when the card is not replaced after each 
draw. This is because withholding the first card alters the probability in the 
second draw. Such changes lead to the notion of conditional probability. 
For two events, £1 and Ez, the conditional probability of Ez given that £1 
has occurred is defined to be 

Prob(Et n Ez) 
Prob(£1) 

provided that the Prob(E 1) > 0. (The vertical bar between E 1 and Ez on the 
left of this definition means "given that.") Actually, we would not be inter
ested in the probability of Ez given that E 1 never occurs because 
Prob(Ez I E1) would not make sense. If E1 and E2 are mutually exclusive, 
then if E1 has occurred, E2 cannot occur and we have Prob(Ezl E1) = 0. 

Usually, we use the above definition to estimate Prob(£1 n E2) as is illustrated in the 
next example. 
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Example 4b- Conditional Probabilities Revisited. We repeat the task 
considered in Example 4a of calculating the probability of selecting two 
spades in two draws from a normal 52-card deck. This time, however, the 
first card is held out before the second draw. 

The sample space now consists of fewer pairs of cards: Q ={(A"', 2¥), ... , 
(A¥, Kif), (A¥, Ae\!o), ... }. Pairs with identical cards, such as (A¥, A¥) 
and (3 * , 3 *), are no longer possible. 

We also define the events differently from Example 4a. Let E1 = {drawing a 
spade on the first card} and Ez I E 1 = {drawing a spade on the second card 
given that the first card is a spade}. What we seek is Prob(Ez n E1). From 
the definition of probability, 

Prob(E1) = 13/52 = l/4 because there are 13 spades in 52 cards, 

and 

Prob(Ez I E1) = 12/51 = 4/17 because there are now 12 spades in 51 cards. 

The second probability differs from the probability of drawing a spade in 
Example 4a (Ez = 13/52) because the lack of replacement changes both the 
number of cards in the deck and the spades available to be chosen. 
Rearranging the definition of conditional probability, we have 

or a slight decrease in probability caused by the lack of replacement. 

The definition of conditional probability can be easily generalized to provide a 
multiplication rule for the intersection of several dependent events. Let A, B, and C be 
three events. In terms of conditional probabilities, the probability of all three events 
happening is 

Prob(A n B n C) = Prob(A I BC) Prob(B I C) Prob(C) 

where BC indicates the occurrence of B and C. The reader should compare this to the 
addition law for the union of events above, where sums, rather than products, are 
involved. 

Example 5 - Shale Detection in a Core. A probe permeameter is set to take a 
measurement every 3 em along a 10 em section of core. The formation 
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consists of 1-cm shale and sand layers interspersed at random, with 80% sand 
in total (i.e., a net-to-gross ratio of 0.8). What is the probability that only 
sand will be measured? Assume the probe falls either on a sand or shale, not 
a boundary. 

Because of the 3-cm spacing, only three measurements are made over the 
interval. Define the following events and their respective probabilities: 

C =probe measures a layer of sand, Prob(C) = 8/10; 

B =probe measures sand given first layer is sand, Prob(B I C)= 7 /9; and 

A = probe measures sand given first two layers are sand, Prob(A I BC) = 6/8. 

We seek Prob(A n B n C). From the definition of conditional probability, 

Prob(A nB n C)= (8/10)(7/9)(6/8) = 0.47 

So, with three measurements, there is a one-in-two chance of shale layers 
going undetected over a 10-cm sample. 

2a5 INDEPENDENCE 

We can now define what is meant by independent events. 

Independent Events- Two events, E1 and E2, are independent if 
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This result is known as the multiplication law for independent events. When this is 
true, the conditional probability of E 1 is exactly the same as the unconditional 
probability of E1. That is, Ez provides no information about E1. and we have from the 
above 

The two-card draws in Example 4a were independent events because of the replacement 
and thorough reshuffle. We now apply the independence law to a geological situation. 
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Example 6- Independence in Facies Sequences. Suppose there are three 
different facies, A, B, and C, in a reservoir. In five wells, the sequence in 
Table 2-3 is observed. 

Table 2-3. Facies sequences for five wells. 

Position Welll Well2 Well3 Well4 WellS 
Top c B A B A 

Middle A A B A B 
Bottom B c c c c 

Let event E1 = {A is the middle facies} and E2 = {Cis the bottom facies}. 
Based on all five wells, are E1 and E2 independent? If Weill had not been 
drilled, areE1 andE2 independent? 

For all five wells, Prob(EI) = 3/5, Prob(E2) = 4/5, and Prob(E1 n E2) = 
2/5. Since Prob(E1) Prob(E2) = 3/5•4/5 = 0.48 -:1- Prob(E1 n E2), E1 and E2 
are dependent. 

Excluding Weill, Prob(E1) = 2/4, Prob(E2) = 1, and Prob(E1 n E2) = 2/4. 
Prob(El) Prob(E2) = 0.5 = Prob(E1 n E2), so E1 and E2 are independent. 

Clearly, the data in Weill are important in assessing the independence of 
these two events. 

Statistical independence may or may not coincide with geological independence. There 
may be a good geological explanation why facies C should be lower in the sequence than 
either A orB. In that case, the results of Well 1 are aberrant and indicate, perhaps, an 
overturned formation, an incorrect facies assessment, or a different formation. 

Example 7 -Probability Laws and Exploration. Exploration drilling 
provides a good example of the application of the probability laws and their 
combinations. 

You are about to embark on a small exploration program consisting of 
drilling only four wells. The budget for this is such that at least two of these 
wells must be producers for the program to be profitable. Based on previous 
experience, you know the probability of success on a single well is 0.1. 
However, drilling does not proceed in a vacuum. The probability of success 
on a given well doubles if any previous well was a success. Estimate the 
probability that at least two wells will become producers. 
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The different levels of the tree represent the various wells drilled (e.g., S2 
indicates success on the second well and F 4 is a failure on the fourth well), 
and each branch is one outcome of the drilling program. The probabilities, 
corrected for the success or failure of the previous well, are listed on the 
segments connecting the various outcomes. Because of the multiplication 
law, the probability of a given outcome (a branch of the tree) is the product 
of the individual outcomes; these are tabulated at the end of each branch. 
Because each branch is mutually exclusive, the probabilities of having a 
given number of successful wells is simply the sum of the probabilities of 
the corresponding branches. The probabilities shown are those with two or 
more successful wells; their sum is 0.0974. The drilling program has less 
than a 10% chance of being successful, probably a cause for re-evaluation of 
the whole enterprise. 

You can verify that this value is nearly twice what it would be if each well 
were an independent event, thus illustrating the benefits of prior knowledge. 
It is also possible to evaluate the effect of drilling more wells, or banking on 
improved technology by taking the single-well success probability to be 
larger than 0.1. 

31 
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Example 7 provides some fairly realistic probabilities compared to historic success 
rates in exploration. More modem procedures factor in more data along the way (more 
seismic traces, more core and log data, reinterpretations, etc.), so that the probability of 
success in the next well can be more than doubled. For this reason, it is possible that 
the probability of success will increase even after a failed well. On the other hand, a 
single failed exploration well may lead to the termination of the entire program. 
Typically, an exploration lead becomes a prospect when the overall probability of success 
approaches 50%. 

2-6 BAYES' THEOREM 

We now take the idea of conditional probabilities a step farther. From the definition of 
conditional probability, 

and 
Prob(E1I E2) Prob(E2) = Prob(E1 n E2) 

Prob(E2I E1) Prob(E1) = Prob(E1 n E2) 

The right sides of these expressions are equal, so 

Prob(E1 I E2) Prob(E2) = Prob(E2 I E1) Prob(E1) 

We can solve for one conditional probability in terms the other: ~ 

b( I ) . Prob(E2 I E1) Prob(E1) 
Pro E 1 E2 = Prob(E2) 

This relationship is called Bayes' Theorem after the 18th century English mathematiCian 
and clergyman, Thomas Bayes. It can be extended to I events to give 

Prob(Ei IE)= Prob(E I Ei) Prob(Ei) 
I 
I, Prob(E I Ei)Prob(Ei) 
i=l 

where E is any event associated with the (mutually exclusive and exhaustive) events E1. 
E2, .. . ,EJ. It provides a way of incorporating previous experience into probability 
assessments for a current situation. 
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Example 8- Geologic Information and Bayes' Theorem. Consider a problem 
where we have some geological information from an outcrop study and we 
want to apply these data to a current prospect. Suppose that we have drilled a 
well into a previously unexplored sandstone horizon. From regional studies 
and the wireline logs, we think we have hit a channel in a distal fluvial 
system, but we do not have enough information to suggest whether the well 
is in a channel-fill (low-sinuosity) or meander-loop (high-sinuosity) sand 
body. Outcrop studies of a similar setting, however, have produced Table 2-4 
of thickness probabilities that could help us make an assessment. 

Table 2-4. Outcrop data for Example 8 (based on Cuevas et al., 1993). 

Thickness less than 
m 
1 
2 
3 
4 

Low -Sinuosity 
Probability 

0.26 
0.38 
0.56 
0.68 

High-Sinuosity 
Probability 

0.03 
0.22 
0.60 
0.70 

If we drill a well and observe x meters of sand, what are the probabilities that 
the reservoir is a low- or high-sinuosity channel? The difference could have 
implications for reserves and well placement. In outcrop, high-sinuosity 
channels were observed to be generally wider and have higher connectivity 
than the low-sinuosity variety (Cuevas et al., 1993). 

We define E1 = {low sinuosity} andE2 = {high sinuosity}. Before any well 
is drilled, we have no way of preferring one over the other, so Prob(El) = 
Prob(E2) = 0.50. After one well is drilled, the probabilities will change 
according to whether the observed sand thickness is less than l m, 2 m, etc. 

Let's suppose x = 2.5 m. This is event E. From Table 2-3, we observe that 
x falls between two rows of thickness-less-than entries, x :2:2 and x<3. Since 
the event E falls within an interval (2 ::;; x < 3), we can more precisely 
estimate the occurrence of E by calculating the interval probability of E as 
the difference in interval bound probabilities. In this example, we calculate 
conditional interval probabilities as Prob(E I E1) = Prob(E1 at upper bound)
Prob(£1 at lower bound). From Table 2-3, Prob(E I £1) = 0.56- 0.38 = 
0.18, while Prob(E I E2) = 0.60- 0.22 = 0.38. 

Applying Bayes' Theorem withE associated to two mutually exclusive 
events E1 and E2, we obtain for the revised probabilities, 

33 
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_________ P_ro~b~(E __ I~E~l)~P_r~ob~(~E~l~) ______ __ 
Prob(E1 I E)= Prob(E I E1) Prob(E1) + Prob(E I E2) Prob(E2) 

= 0.18•0.50 = 0.32 
0.18•0.50 + 0.38•0.50 

and Prob(E2I E)= 1- Prob{E1I E)= 0.68. So the outcrop information has 
tipped the balance considerably in favor of the high-sinuosity type channel. 

We used the maximum information from the thickness measured in the 
previous solution. That is, we knew the thickness was less than 3 m and 
more than 2 m. If we only knew the thickness was less than 3 m, the 
probabilities would be 

_________ P_r~o~b~(E __ IE~I~)_•_P_ro~b~(_E~l)~--------
Prob(Ell E)= Prob(E I E1) • Prob(El) + Prob(E I E2) • Prob(E2) 

= 0.56•0.50 = 0.48 
0.56•0.50 + 0.60•0.50 

and Prob(E2 I E) = 0.52. Thus, the change in probabilities is not nearly so 
large because less prior information has been added to the assessment. 

In Example 8, the probability values for E1 and E2, before measuring the formation 
thickness, are called a priori probabilities. Prob(E1 I E) and Prob(E2 I E) are called a 
posteriori probabilities. If there were further information with associated probabilities 
available (e.g., transient test data showing minimum sand body width), the a posteriori 
probabilities could be amended still further. 

Example 8 has a feature that makes it appropriate for Bayes' Theorem: the result of 
the experiment (measuring the reservoir thickness) did not uniquely determine which of 
the two possible scenarios existed. Now consider the following example, where Bayes' 
Theorem may not be suitable. 

Example 9- Bayes' Theorem and Precise Quantities. We want to know the 
. average reservoir porosity, l/Jo, and some measure of possible variations of 
¢o, for the Dead Snake reservoir. From well data, we measure porosity to be 
l/Jm = 0.22 for this reservoir. We also have available Table 2-5 of average 
porosities for eight reservoirs having a depositional environment and a 
diagenetic history similar to those of the Dead Snake. Can we use the 
information in Table 2-5 to provide a more appropriate estimate for l/JQ? 
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Table 2-5. Porosity ranges for Example 9. 

Average Reservoir Porosity 
0.00 ~ cp < 0.20 
0.20 ~ cp < 0.24 
0.24 ~ cp < 0.28 
0.28 ~ cp < 0.32 
0.32 ~ cp < 1.00 

Number of Reservoirs 
0 
2 
4 
2 
0 

The answer depends upon how we view c/Jm· If we view c/Jm as being 
representative and error-free, then we have to set ifJo = c/Jm = 0.22 and any 
other information is irrelevant. On the other hand, we have Table 2-5, which 
suggests that cfJo could be higher. That is, cfJo = 0.22 might not be 
representative for Dead Snake. In order to use the information in Table 2-5, 
however, we have to admit to the possibility that our estimate (0.22) may 
not be correct and quantify that uncertainty. If we can give some 
probabilities of error for c/Jm; then Table 2-5 can help amend the a priori 
probabilities by use of Bayes' Theorem. 

35 

For example, suppose we determine from seismic data that the well is in a 
representative location but the measurement c/Jm is prone to error. From previous 
~xperience, that error is Prob(0.20 ~ c/Jm < 0.24 I 0.20 ~ ifJo < 0.24) = 0.7 and 
Prob(0.20 ~ c/Jm < 0.24 I 0.24 ~ c/Jo < 0.28) = 0.3. That is, there is a 30% chance 
we have c/Jm = 0.22 while the reservoir actually has porosity between 0.24 and 
0.28. (For simplicity, we assume that the probabilities of other outcomes are 
zero.) Using Bayes' Theorem, we can calculate the probabilities for ifJo as follows, 
using P for Prob: 

Prob(0.20 ~ cfJo < 0.24 I cfJm = 0.22) = 
P(0.20::>¢m<0.2410.20::>¢o<0.24)P(0.20::>¢o<0.24) 

P(0.20~t/lm<0.2410.20~t/lo<0.24)P(0.20~t/IQ<0.24)+P(0.20~t/lm<0.2410.24$t/IQ<0.28)P(0.24~t/lo<0.28) 

= 0.7•0.25 = 0.54 
0.7•0.25 + 0.3•0.5 

and Prob(0.24 ~ ifJo < 0.28 I c/Jm = 0.22) = 1 - 0.54 = 0.46. Th~re are no 
other possible porosities for the Dead Snake that are .both compatible with 
the measured cfJm = 0.22 and the data in Table 2-5. This table provided the 
values for Prob(0.20 ~ c/Jo <0.24) and Prob(0.24 ~ ifJo < 0.28). Thus, while 
there is a 54% chance the Dead Snake does have a porosity as low as 0.22, 
there is a 46% chance that ifJo ~ 0.24. 
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This problem could be made more realistic with more intervals, but the 
principle remains the same. Without an error assessment for t/Jm, Bayes' 
Theorem cannot be applied because we are strictly dealing with mutually 
exclusive events: the average porosity for a reservoir can only be one value 
and we claim to know that value to be 0.22 without error. We can derive 
error estimates for f/Jm using methods in Chap. 5 (see, in particular, 
Examples 6 and 7). 

2·7 SUMMARY 

We have now covered several important foundation concepts regarding probability. 
Probability is defmed in terms of a large number of experiments performed under identical 
conditions; it is the ratio of successful outcomes to the number of trials. Conditional 
probability allows the experimental conditions to be varied in stipulated ways. Bayes' 
Theorem permits additional information to be incorpor~ted into probabilistic 
assessments. All these concepts will be exercised in the chapters to come. 
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UN/VA /ATE 
1ST /BUT/ S 

A random variable is the link or rule that allows us to assign numbers to events using the 
concepts in Chap. 2 by assigning a number-any real number-to each outcome of the 
sample space. We call the rule X, each outcome is called ro, and the result of applying 
the rule to an outcome is denoted X(ro). More formally, a random variable is defined as 
follows (Kendall and Stuart, 1977). 

A random variable X(•) is a mapping from the sample space ,Q onto the real line (911) 
such that to each element co E ,Q there corresponds a unique real number X(ro) with all 
of the associated probabilistic features of co in n. 

Sometimes X(ro) is called a stochastic variable. We can illustrate what the definition 
means using Fig. 3-1. 

The idea this should convey is one of uncertainty, not about the rule X but about the 
outcome of the experiment. The random variable incorporates the notion that (1) certain 
values will occur more frequently than others, (2) the values may be ordered from smallest 
to largest, and (3) although it may take any value in a given range, each value is 
associated with its frequency of occurrence through a distribution function. 

The value X(ro) associated with each element (ro) may not necessarily have any 
relationship to co's intrinsic value. Examples 1 and 2 concern two properties of three 
reservoir rock samples. 

37 
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Real Number Line 

Figure 3-1. The random variable X assigns a real number to each possible 
outcome co. 

Example 1 -Rock Sample Porosities. We measure (with no error) the 
porosities of the rock samples and call the measured values cp1, cf!2, and cf!3. 
The sample space (Q) is all values in the range 0 to 1 (Le., Q = .[0, 1]). 
Each outcome, cp, has a numerical value corresponding to the porosity of the 
rock sample. ·In this case, it makes sense to have X be the identity function. 
So the event "the porosity of sample one is co" is assigned the value co. We 
can order the values (e.g., cfJ3 ~ cp1 ~ cf!2) and establish that some samples 
have a larger fraction of pore volume than others. 

Example 1 deals with continuous data. Such variables have a distinct ordering because 
they relate to a property that can be "sized." That is, one sample can have a larger or 
smaller amount of that property. If the ordering is on a scale that has a well-defined zero 
point, where there is none of the property, and the variable can always be meaningfully 
added or multiplied, then the variable is on a ratio scale, and it is called a ratiometric 
variable. Length falls nicely into this category, along with other extensive properties 
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such as volume, mass, and energy. For example, the combined volume of two 
incompressible systems is the sum of the system volumes. Porosity is a ratio of 
volumes so it has a well-defined zero point, but only under conditions where the 
associated rock volumes are known can porosities be added meaningfully. 

A second type of continuous variable (on an interval scale) is the one that has an 
arbitrary zero point or cannot always be meaningfully added. Temperature, time, 
position, density, pressure, porosity, permeability, resistivity, gamma ray API, and 
spontaneous potential deflection are some examples. Intensive variables are interval 
types. Sums, differences, and multiplication/division of such variables may or may not 
be meaningful. For example, consider the temperatures of two samples of similar 
material. Let T 1 = 3o·c and T 2 = 1o·c. so AT= T 1 - T 2 = 2o·c. Sample 1 is hotter 
than sample 2 by 20"C, but sample 2 may have more energy than sample 1 because 
sample 2 may have greater thermal mass than sample 1. Combining the two samples 
would not give T = 4o·c. Similarly, let q,1 = 0.10 and~= 0.20 for two rock samples. 
If these porosities refer to identical volumes of rock, we can deduce that sample 1 has less 
void volume than sample 2. ·In general, if we merge the two samples, the total porosity 
cjJy is not equal to q,1 + cp2 but to some weighted average of· cp1 and cft2: cjJy = ll1 cp1 + 
A.2cfJ2, with A.1 + A.2 = 1 and ).i ;e:: 0 .. 

Example 2 -Rock Sample Depositional Environments. We identify the 
depositional environments of three samples: sabkha, dune, and interdune. 
The sample space (.Q) consists of all depositional environments, including 
lacustrine, aeolian, fluvial,- and shoreface deposits among others. Here, we 
choose X to beX(sabkha) = O,X(dune) = 1, andX(interdune) = 2. While we 
can order the numbers 0, 1, and 2, as we did in Example 1, the ordering has 
no significance and the differences (1- 0) or (2- 1) have no significance. 
Furthermore, we may even have trouble differentiating some cases where 
sands might have features of two or more environments. 

Example 2 deals with categorical or discrete data on a nominal (or "name") scale. 
There is no quantitative meaning to the numbers attached to the events (categories); dune 
is not twice as much of anything as the interdune and there is no natural zero. Similarly, 
ordinal scale data, such as bit wear, hardness, and color lack the proportion information 
of continuous data. Ordinal data, however, do have an order to the data because the 
variable has a size associated with it; sample A is harder thaq sample B, for example, but 
we cannot say that it is twice as hard. 

All types of data occur in petroleum problems, and we have to be aware of the ways 
that we can use the information they contain. · Ratiometric variables contain the most 
information (highest level), and nominal variables contain the least information (lowest 
level). A wide variety of statistical methods is available for continuous variables, while a 
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more restricted range exists for categorical variables. Categorical variables can still give 
us vital information about a system, however, so that conditional probabilities may be 
useful. Recall, for example, the implications for reserves potential if a fluvial reservoir is 
from a low- or high-sinuousity part of the system (Chap. 2). There are many examples 
in this text where categorical geological information is incorporated, either explicitly or 
implicitly, as a conditional probability to help improve assessments. 

Higher-level variables can also be changed into lower-level variables if information is 
ignored. For example, indicator variables can be generated from ratiometric or interval 
variables by setting cutoff values. An ordinal variable, P, might be defined as 

P-{Ok<lmD 
- 1 k ;?: 1 mD 

based on the permeability k, an interval variable. P contains less information than k, but 
it is still useful: Prob(P = 1) is the formation net-to-gross ratio and P is the net-pay 
indicator. Recall that net pay is that portion of the formation thought to have sufficient 
permeability that it will contribute to economic production. 

For the methods in this book to apply, variables should be one of the four types just 
discussed, else they are deterministic. There are other types of variable, however, and care 
should be taken to ensure that methods discussed in this book are appropriate for the 
variables being considered. Fuzzy variables, for example, are one type that is not suitable 
for the methods described here. Fuzzy variables have values that may partly belong to a 
set, whereas the variables we use definitely either belong or do not belong to a set. For 
probabilities of events to be defined, outcomes of experiments have to be distinct and 
recognizable as either having occurred or not. See Klir and Fogler (1988) for further 
details. 

It would be nice to distinguish by notation between random variables, which have 
uncertain values, and deterministic variables. For example, random variables might be 
denoted by capital letters while deterministic variables could be denoted by lower case 
letters. We shall use this convention for generic variables (e.g., x and X). However, the 
common usage of certain symbols for particular reservoir properties, e.g., k for 
permeability, R for resistivity, cp for porosity, and T for transmissivity, does not obey 
any particular rule of this kind. Therefore, we will not strictly adhere to using notation to 
make clear the distinction between random and deterministic variables; we will expect the 
reader to understand from the context of the problem which variable is which. 

The definitions we have introduced do not rule out dependencies between variables in 
different sample spaces or between values within the same sample space. We now 
consider how the concept of a random variable provides the essential link between 
probabilities and distributions. 
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3-1 THE CUMULATIVE DISTRIBUTION FUNCTION 

The most common of generic distribution types is the cumulative distribution function 
(CDF). Given a random variable X, the cumulative distribution function F(x) is defined 
as 

Cumulative Distribution Function (CDF): F(x) = Prob( X$; x). 

In words, F(x) is the probability of finding a value of a random variable X that is less 
.than or equal to x. The argument ofF is x, the bounding value, not X the random 
variable. Thus, F says something only about the probability of X being less than a 
certain value, but says nothing precisely about what X is. Sometimes we find the CDF 
defined as the probability of a random variable greater than or equal to x, but this is just 
one minus the definition given above because of Axiom 3 (Chap. 2): pC(x) = 1 - F(x) is 
the complement of F. 

The CDF uniquely defines all of the probabilistic properties of a random variable. 
This might seem to rob X of some of its randomness because X must now conform to a 
deterministic function, namely F(x). Remember that the adjective random refers to X, not 
F(x). The form of the CDF can range from cases where there are an infinite set of X's, to 
a finite set of discreteX's, to where there is only one X. The latter is the degenerate case 
where the random variable becomes deterministic. 

CDF's have the following properties: 

1. 0 $; F(x)::;; 1 for all x since F(x) is a probability. 

2. lim F(x) = 0 and lim F(x) = 1. 
X~--«> X~ -too 

3. F(x) is a nondecreasing function: F(x+h) ?.: F(x) for any h ?.: 0 and all x. 

4. F(x) is a continuous function from the right for all x: lim F(x+h) = F(x), 
h~ 0+ 

where h ~ 0+ means h approaches 0 through positive values. 

An important use of the CDF is that it can be used to find out how often events 
within a given range of values will occur (i.e., interval probabilities). Suppose we wish 
to investigate the random variable X and its frequency of occurrence between a lower 
bound a and an upper bound b (a$;b). If we let the events E1 = (-oo, a] and E2 =[a, b], 
then clearly E1 and Ez are mutually exclusive. Axiom 3' (Chap. 2) applies and gives 
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or 
Prob(X~ b)= Prob(X ~a)+ Prob(a <X~ b) 

which becomes, upon rearrangement, 

Prob(a <X~ b)= Prob(X ~b)- Prob(X ~a)= F(b)- F(a) 

In words, the probability of a random variable having a value between a and b is given by 
the difference between the values of the CDF evaluated at the bounds. 

All of statistics exhibits a dichotomy between discrete and continuous mathematics. 
The former is far more practical than the latter, but continuous statistics are usually more 
theoretically tractable. 

Discrete CDF's 

These are defined by a function F(x) with a set of jumps of magnitude Pi at points xi for 
i = 1, 2, 3, ... ,/ such that 

Prob(X =xi) =Pi = F(xi) - lim F(x) 
X~Xt 

The former statement implies that, if we take any two values a and b (a~ b) such that the 
interval (a, b) does not contain any of the jump points xi, then 

Prob(a ~X~ b)= F(b)- F(b) = 0 

Thus, a random variable X cannot fall within the flat segments of the CDF (Fig. 3-2). 
This means that X can take on only values at the jump points. In this case, X is a purely 
discrete or categorical random variable. Nominal or ordinal data have this sort of CD F. 

If the difference between adjacent xj's (i.e., xi+l -xi) is the same for all i, this 
difference is called the class size. If we connect the upper comers of this plot with 
straight-line segments, the resulting curve is called a frequency polygon. 
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1 

F(x) 

0 
X 

Figure 3-2. An example CDF for a discrete random variable. 

Continuous CDF's 

If we consider a CDF for a random variable that is absolutely continuous and 
differentiable (this rules out the frequency polygon) for all x, a continuous CDF F(x) will 
be defined mathematically as 

X 

F(x) = J f(u) du 
-oo 

with 

F(oo) = J f(u) du = 1 
-oo 

A typical shape is sketched in Fig. 3-3. 

The random variable X pertaining to this CDF is a purely continuous random variable. 
Continuous CDF's lend themselves readily to analysis, but they cannot be developed 
directly from experimental observations. What we usually end up doing is fitting a 
theoretically smooth curve to the frequency polygon or to the data themselves. 
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F(x) 

X 

Figure 3-3. An example CDF for a continuous random variable. 

The function f(u) in the definition of F(x) is the probability distribution function 
(PDF) whose properties we consider below. But let us first consider an example of how 
CDF's can be used to quantitatively convey geologic information. 

Example 3 - Stochastic Shales. Shales can influence several aspects of 
reservoir performance, including coning retardation, gravity drainage, and 
waterflood sweep. In these cases, it is important to know the locations and 
areal extent of shales in a reservoir. 

The simplest case is when a shale extends over an entire reservoir interval. It 
is observed in every well, and its effect on the reservoir flow can be simply 
modeled in a reservoir simulator. Such shales are often called deterministic 
shales. 

The stochastic shale, on the other hand, might appear only in one or two 
wells, and its areal extent between wells is unknown. It may not even be the 
same shale that appears in several wells. Its effects on reservoir performance 
might be quite small or significant. If a number of such shales are dispersed 
throughout the reservoir, their impact can be quite large. To simulate the 
effects of such shales, some idea must be obtained about their locations and 
sizes. This is where the CDF can help out. 
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It has been recognized (e.g., Weber, 1982) that shale dimensions vary with 
the environment of deposition. In general, the areal extent of shales is greater 
in low-energy environments. The exact size of any particular shale will be 
determined by a large number of factors governed by the circumstances under 
which deposition occurred. With the aid of CDF's such as Fig. 3-4, we can 
begin to quantify the observed size-environment relationship. Each curve in 
Fig. 3-4 is a CDF and, because the probabilities vary with depositional 
environment, these curves are conditional CDF's. If Dis a discrete variable 
identifying the environment and X is the shale length, each curve can be 
represented as F(x I di) = Prob(X ~xI D = di) where d1, d2, .. . , d1 are the 
depositional environments. 

Such CDF's can be used in a qualitative sense, giving the chances that it is 
the same shale that appears at two wells. 

For example, suppose the di = deltaic or barrier and the distance between two 
vertical wells is 1500 ft. There is observed a single shale in each. In the 
absence of other information, there is approximately a 50% chance that shales 
observed in these two wells are the same. CDF's can be used in a more 
quantitative manner, using the Monte Carlo simulation method (Haldorsen 
and Lake, 1982). 
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Stochastic simulation based on Monte Carlo methods involves using a random number 
generator to "scatter" a number of shales within a reservoir simulator model and calculate 
the performance. The locations of the shales are picked randomly subject to certain 
constraints. The sizes of the shales are chosen from the shale-size CDF. The calculated 
performance will, of course, depend on the shale distribution in the model. Consequently, 
a number of runs-all with different shale distributions-are usually needed to determine how 
variable the performance might be. Each new shale distribution is an equiprobable 
realization, one possible outcome of the infinite possible number of realizations 
(stochastic experiments). Given computer resource limitations, only a finite number of 
realizations are possible. The variability in reservoir performance from these realizations 
is claimed to be representative of outcomes from the underlying population. Monte Carlo 
simulation will be discussed in more detail later in this chapter and Chap. 12. 
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deltaic, barrier 

marine 

0 500 1000 1500 2000 
Shale Intercalation Length, ft. 

Figure 3-4. Shale size CDF's based on outcrop data. After Weber (1982). 
The lines are curve fits to data. Points shown are from Zeito 
(1965). 

Producing CDF's From Data 

For some random variables, we may know from theory what the CDF is. Some common 
distributions will be considered in Chap. 4. There are times, however, when we will not 
know what the CDF of a variable is. If we can obtain some sample values of the 
variable, we can produce an approximate CDF based on those data. Such a CDF is called 
an empirical or a sample CDF. 

Empirical CDF's are usually produced for non-nominal variables where there is some 
natural ordering to the data. If there is no natural size to the variable, the empirical CDF 
might change shape, depending upon the number assigned (i.e., the random variable) to 
each category. For variables with ordering, we produce an empirical CDF as follows. 
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1. Order the data so that X 1 :-::; X2 :-::;X 3 :-::; · · · :-::;XI where I is the number of data. 

2. Assign a probability, Pi• to the event Prob(X :-::; XJ Here we have to make some 
assumptions about the assignment. If X is a continuous variable or is discrete and 
the uppermost categories may not have been sampled, Pi= (i- 0.5)/I is usually 
adequate. We make the assumption here, without any evidence to the contrary, 
that each sample value has an equiprobable chance of occurring. If X is discrete 
and all categories have been sampled, Pi= iii . 

3. Plot Xi versus Pi and, depending on whether the random variable is continuous or 
discrete, either connect the lines with stair-steps (e.g., Fig. 3-2) or a continuous 
curve (e.g., Fig. 3-4). 

Clearly, this estimated CDF is better-more like the actual CDF-the more data we have. 

The first probability assignment formula given above in Step 2 differs from the naive 
assumption that Prob(X :-::; X1) = 1/I, Prob(X :-::; X2) = 2/I, · · ·, Prob(X :-::;XI)= 1. This 
is because the second probability assignment formula, Pi= iii, forces Prob(X >XI= 0. 
It does not allow for the possibility that, if we are dealing with a continuous variable, 
there may be unsampled regions of the reservoir where X> XI . A similar argument 
holds if X is discrete with possible unsampled upper categories. Each step in p,pi +1 -Pi• 
is still 1/I but all the pj's have been reduced by I/2 so that Prob(X > Xn) = I/2. Clearly, 
this is still an approximation without data to justify it. There are other formulas for 
assigning probabilities, such as Pi= i/(I +1), which give different values to 
Prob(X >XI). If the population CDF is known, the optimal probability assignment can 
be computed. 

Example 4a -Producing Empirical CDF's. Draw empirical CDF's for the 
following data (X) and their logarithm (X*= ln(X)): 900, 591, 381, 450, 
430, 1212, 730, 565, 407, 440, 283, 650, 315, 500, 420, 714, and 324. 

We first rank the data. One ranking suffices for both variables, X and x*, 
since ln(X) is a monotonic function. We then define a probability for each 
value (xi= Xi and x; = ln(Xi)), using the formula Pi= Prob(X :-::;xi)= 
Prob( Xi :-::; x~) = (i -~)I for the I= 17 points. Table 3-1 shows the 
calculations. 

Figure 3-5 shows the empirical CDF's. The untransformed CDF (left) is 
more curved than the logarithmic CDF (right), which is closer to a straight 
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line. This is because the data set has mostly moderate but a few large values, 
whereas taking the logarithm has evened out the spread of the variable with 
probability. 

Table 3-1. Data for Example 4a. 

Xi * Prob. Pi X· 
No. X· * Prob. Pi I X· 

I I 

283 5.65 0.029 10 500 6.21 0.559 
315 5.75 O.OJt~ 
324 5.78 0.147 

11 565 6.34 0.618 
12 591 6.38 0.676 

381 5.94 0.206 13 650 6.48 0.735 
407 6.01 0.265 14 714 6.57 0.794 
420 6.04 0.324 15 730 6.59 0.853 
430 6.06 0.382 16 900 6.80 0.912 
440 6.09 0.441 17 1212 7.10 0.971 
450 6.11 0.500 

1.00 1.00 

0.75 ,....._ 0.75 * I>< 

VI 
0.50 * 0.50 

~ 
'-' 
,.Q 
Q 

0.25 loo 0.25 ~ 

0.00 0.00 
250 500 750 1000 1250 5.6 6.0 6.4 6.8 7.2 

X x* 

Figure 3-5. Empirical CDF's for the data of Example 4a. 
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3-2 ORDER STATISTICS 

Some values of x for the CDF F(x) have special names. xo.so is the value where 

x = F-1(0.50) = xo.so and is called the median. xo.25 and xo.75 are the first and third 
quartiles, respectively, of the CDF F(x). The difference xo.?5 - x0.2s is sometimes used 
as a measure of the variability of X and is called the interquartile range. 

A quantile of the CDF F(x) is any value xp such that p-l(p) = xP" If we do not know 
the population CDF and only have the empirical CDF, we can only provide estimates of 
the actual xp's. These estimated values are termed order statistics. For the data in 
Example 4a, xo.so is approximately 450. 

P~obability Distribution Functions 

Probability distribution functions (PDF's) are a very common statistical tool. They 
represent exactly the same information as contained in the CDF, but it is displayed 
differently. The CDF takes a "global" view of X, conveying the probability of X being 
less than some stipulated value x, The PDF takes a "local" view and describes how the 
probability of occurrence of X changes with x. As with CDF's, there is the distinction 
between discrete and continuous properties. 

Discrete PDF's 

Consider the discrete CDF F(x) discussed previously. For each "jump" i and any small 
h > 0, 

Prob(xi - h <X~ Xi + h) = F(xi + h) - F(xi - h) =Pi 

If we let h ~ 0, we get Prob(X =xi)= Pi· 

Thus the jump at the end of each interval represents the probability that X has the 
value xi. The set of numbers (pl, P2• P3· ... )plotted against (xl, x2, x3, ... ) is called the 
discrete PDF of the random variable X (Fig. 3-6). 

If a horizontal line is drawn through the top of each vertical line to a mid-point 
between the neighboring vertical lines, or their extension, on the right (left), the plot is a 
bar chart or a histogram. 
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Figure 3-6. Example of a PDF for a discrete random variable. 

Continuous PDF's 

Consider a small interval (x, x + ox) from the x axis of a purely continuous random 
number X with CDF F(x). Then we have 

x+8x 

Prob(x <X~ x + ox) = F(x + ox) - F(x) = f f(u) du = f(x) ox 
X 

This forms the basis for interpretingf(x) as a probability:f(x) represents the frequency of 
occurrence of a value of x in the neighborhood of x. The best physical interpretation of 
f(x) is as a derivative of F(x), because we see from above thatf(x) = dF(x)/dx. A typical 
continuous PDF is shown in Fig. 3-7. 

The basic properties of continuous PDF's are 

1. f(x) ~ 0 for all x since F(x) is nondecreasing 
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2. Jf(u) du == 1 

b 

3. for any a, b (a::;; b), Prob(a <X$ b)= J f(u) du. 
a 

f(x) 

0 X 

Figure 3-7. Example of a PDF for a continuous random variable. 

A rather curious offshoot of the last property is that the probability that X takes a 
particular value x is zero. If we let b approach a, then we have 

a 

Prob(X ::::: x) = J f(x) dx :::: 0 
a 

This is a bit disquieting but entirely consistent with the notion of a random variable. 
Recall that we should be able to say nothing about a specific value of a random variable. 

Both continuous and discrete PDF's will have peaks and troughs. Those values of x 
where a peak occurs are called modes. A PDF with one mode is unimodal; a PDF with 
two modes is bimodal, etc. 
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·Empirical PDF's 

Otherwise known as histograms, these PDF's are based on samples. They are a very 
common method for assessing data behavior but, as we will see in Example 5, they can 
mislead. 

Empirical PDF's can be produced for any type of variable. The way we produce an 
empirical PDF is as follows. 

1. If the variable is not nominal, order the data so that X1 ~ x2 ~ X3 ~ ··· ~ x1 
where I is the number of data. 

2. For continuous variables, divide the interval x1 - x1 into convenient intervals. 
We call these intervals bins or classes. Usually the bins are all of equal size, Ax, 
so the height of each interval is proportional to the probability. If we choose too 
few bins, the histogram has little character; if we choose too many bins, the 
histogram is too bumpy. A rule of thumb is Ax"" 5(X1 - X1)//. For categorical 
variables, each bin is one category. 

3. Count the number of data in the ith bin, Ii, and set Prob(xi ~X< xi+ L1x) =Pi= 

IiI !for I = 1 to I -1. 

4. Plot Pi versus xi~ X< xi +L1x for I= 1 to I-1. 

As with the empirical CDF, the empirical PDF more closely approaches the population 
PDF as I increases. If unequal-sized classes are used, the height of each interval has to be 
determined so that its area (not just the height) is proportional to the probability. This is 
because the area of the histogram must be unity. 

Example 4b- Drawing PDF's. Draw empirical PDF's for the data (X) and 
their logarithm (X*= ln(X)) given in Example 4a: 900, 591, 381, 450, 430, 
1212, 730, 565,407, 440, 283, 650, 315, 500, 420, 714, 324 .. 

By ordering the data, we find thatX1 = 283,ln(X1) = 5.65,X17 = 1212, 
ln(X17) = 7.10. The bin size, using the rule of thumb, is about 250 for the 
untransformed data while it is 0.40 for the logarithmic data. Table 3-2 shows 
the probabilities. 
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Table 3-2. Data for Example 4b. 

Value Freq. Pi No. Value Freq. Pi 
250-499 9 0.53 1 5.60-5.99 4 0.23 
500-749 6 0.35 2 6.00-6.39 8 0.47 
750-999 1 0.06 

1000-1249 1 0.06 

The histograms are shown in Fig. 3-8. 
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Figure 3-8. PDF's for the data and log-transformed data of Example 4b. 

The untransformed data have a few large values (2 out of 17) whereas the 
logarithmic histogram has a more even spread across the range. Both data 
sets have only one peak (unimodal PDF's), and the untransformed data have 
the more strongly negatively (right) skewed PDF. 

7.2 

For some applications we would like to draw a smooth curve through the empirical 
PDF's. In these cases, nonlinear transforms, as the ln in Example 4b, could cause 
difficulties since the area under the smooth curve drifts away from one. 

Example 5 -Detecting Modes with PDF's. We now experiment with two 
empirical PDF's using the same data set. The data are 6.5, 7.5, 10.5, 12.5, 
13.5, 20.5, 25.5, 26.5, 27.5, 29.5, and 37.0. We violate the rule of thumb 
for bin size and set Lh: = 10. One histogram will begin at x = 0 while the 
second will begin at x = 5. Figure 3-9 shows the results. 
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Figure 3-9. Example histograms for identical data sets with different class sizes. 

Note how the shift in histogram starting value changes the apparent shape of 
each PDF (from unimodal to bimodal) and their skewness. Part of the 
problem is the small bin size. A bin size of L1x = 15 would give a more 
stable histogram, so the shape would not change so drastically when the 
starting point was changed. This example shows that even something as 
simple as a histogram can be deceptive and care should be exercised when 
interpreting them. The problems with empirical PDF's, as illustrated in this 
example, mean that they are rather difficult to deal with in practice. For this 
reason, the CDF is the more practical tool, even though the PDF is 
conceptually more familiar and more easily understood. 

Why Are CDF's and PDF's Important? 

There are several reasons why we want to know the distribution of a reservoir property. 
They are: 

(1) Modeling. Knowing the CDF/PDF, we can produce models of how the property 
varies within the reservoir. ·For example, using stochastic shale models as input to 
reservoir simulation permits the presence of shales to be evaluated for their impact upon 
reservoir performance. Reserves distributions are often modeled using the CDF's of 



Statistics for Petroleum Engineers and Geoscientists 55 

several reservoir properties. See Examples 7 and 8 in this chapter and Chap. 12 for more 
details. 

(2) Estimation. Chapter 5 is largely devoted to estimating certain parameters based on 
their CDF/PDF. We can make better use of the available data when we know the 
population PDF. An example is when we want to estimate the average formation 
permeability. An estimate using the PDF may easily have one-half or less of the 
variability of an estimate that is calculated ignoring the PDF. 

(3) Diagnosis. We can test data to determine whether they are "good" or "bad" by 
comparing the sample PDF with other sample PDF's or some theoretical reference PDF. 
PDF's have been used .to assess the accuracy of core measurements (Thomas and Pugh, 
1989). Significant changes of facies throughout a reservoir may also be detected by 
comparing permeability PDF's from within a well or between different wells. This next 
example illustrates this use, along with pointing out some limitations to PDF's. 

Example 6- PDF's and Geological Elements- The Lower Brent Group 
(Middle Jurassic) is a major North· Sea oil-producing interval and commonly 
comprises a thick sand-dominated reservoir, without significant shale breaks 
(Corbett and Jensen, 1992b). As a single reservoir group, the shape of its 
porosity and permeability histograms (sample PDF's) can be used to help 
diagnose the presence of units (e.g., facies) and confirm their geological 
identification. 

The core porosities for this interval (Fig. 3-10) show a predominantly 
unimodal, negatively skewed distribution (i.e., most of the data values lie to 
the-high end of the data range) clustering at 27%. A second cluster at 3% 
suggests the presence of a second, minor grouping. Core-plug horizontal 
permeabilities, in contrast, are strongly positively skewed. A logarithmic 
transformation of the permeabilities results in a more symmetrical 
distribution that is clearly multimodal, suggesting the presence of several 
different groups. That is, each peak represents a substantial number of 
permeability data near that value, and the peaks could represent different 
geological units. · 

Geologically, there are good reasons for splitting the Lower Brent into two 
parts, known as the Etive and Rannoch Formations. These geological 
elements (formations) are defined on the basis ofwireline log characteristics 
(e.g., gamma ray) and descriptions of cores. They are correlateable at 
interwell (km) distances. The Etive is a characteristically medium- to coarse
grained, cross-bedded, stacked channel sandstone .. The Rannoch is a fine
grained, highly micaceous, cross-laminated, shoreface sandstone. The grain-
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size difference produces the contrasting wermeabilities, even though these 
units have similar porosities~ 
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Figure 3-10. Geological section and histograms of core porosity and 
permeability for the Lower Brent Group. 

A plot of permeability versus depth (Fig. 3-11) shows the distinction between 
formations. The spatial association of the permeability :is an important 
geological factor. Most of the high permeability values are in the Etive and 
low values are from the Rannoch. This information is not readily appru-ent 
from the PDF's because they ignore the sample locations. 
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The high-permeability Etive is clearly a separate population from the low
permeability Rannach. The Etive is characterized by unimodal, slightly 
negatively skewed porosity and permeability distributions. The Rannach, 
which still has bimodal PDF's, could be further subdivided into carbonate
cemented and carbonate-free populations. The low-porosity and low
permeability intervals are discrete carbonate-cemented concretions (often 
known as "daggers"). A stratigraphic breakdown on this basis results in two 
flow units with approximately symmetrical porosity and log-permeability 
distributions. 

The Etive, uncemented Rannach, and cemented Rannach are thus "sub
populations" of the Lower Brent population. The histograms and plots of the 
petrophysical data versus depth can be used to distinguish and separate the 
geological units. In this example, the permeability data are a more powerful 
discriminator than the porosity. This means that, while hydrocarbon reserves 
might be similar, the elements will have different flow and recovery 
characteristics. 

0 102030 
0 5 10 15 

Porosity (%) Log (k) 

Figure 3-11. Porosity and permeability histograms for the Etive and 
Rannach formations in the Lower Brent. 
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Within the Rannoch sequence, with the help of a series of very fine-scale 
probe"permeameter measurements (Corbett and Jensen, 1992), a further 
breakdown of the permeability distribution can be made. Some details of this 
analysis will be discussed in Chap. 13. 

It is possible to determine the basic elements of geological architecture (the laminae), 
which tend. to have unimodal PDF characteristics (Goggin et al., 1988; Corbett and 
Jensen, 1993b). Much of the reservoir characterization effort in recent years is driven by 
the need to identify and provide petrophysical PDF's for the basic geological elements 
(Dreyer et al., 1990; Lewis et al., 1990). 

The PDF alone may be limited in the determination of effective flow properties, 
however. For example, well tests in a braided fluvial reservoir having a symmetrical log
permeability PDF with an arithmetic average of approximately 500 mD showed the 
effective permeability to be approximately 1000 mD in one well and approximately 50 
mD in a second (Tom-Rivera et al., 1994). These differences have been explained by the 
geological organization of the system into large, flow-dominating channels and small 
channel, "matrix"- dominated flow, respectively. The differences in effective permeability 
are a function of the spatial distribution of the permeability and cannot be ascertained 
from the PDF alone. The petrophysical PDF's are, however, good descriptors and help to 
confirm geological assessments. ' 

Consequently, the PDF and CDF can be powerful devices for making better models 
and estimates. For example, if PDF and CDF of porosity and/or permeability are 
multimodal, more geologic analysis may be required to further subdivide the medium into 
flow units with unimodal petrophysical properties. Carefully defined flow units at early 
development stages help earth scientists and engineers optimize and manage production 
throughout the life of a reservoir. Empirical PDF's and CDF's are the first step towards 
exploring and assessing the geological/flow units that make up a reservoir zone. This 
process can also highlight aspects of the reservoir that might otherwise be overlooked. 

Transforming CDF's 

During the statistical modeling of reservoir properties,,random variables with several 
different CDF's may need to be simulated. Random-number generators in calculators and 
computers often have only one fixed CDF (e.g., uniform random over [0, 1]), so that a 
method is needed to transform the computer random variable to one with the desired CD F. 

Let X be the continuous random variable, with CDF F x(x), produced by the computer 
and let Y be the reservoir random variable with desired CDF Fy(y). For the moment, we 
will assume that Fx(x) and Fy(y) are known functions; they are invertable by virtue of 
the general properties of the CDF. The equation y = rf[Fx(x)] will convert the 
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computer variable to one with the desired CDF. The reasoning behind this relationship 
can best be explained using Fig. 3-12. 

The key concept in changing one CDF for another is that the probabilities should be 
the same (Fy = Fx). The value of y should correspond to the x with the same 
probability. Hence, given an x, Fx(x) = Fy(y) for the suitable y. We then apply the 
inverse transformation Fjfoto both sides of the equality to obtain y = Vf [F x(x)]. This 
relationship applies also to random variables, since X ::::; x is satisfied when x has the 
same value as X. 

LOO l 
0.75 ->. - ......... 

>< >-- 0.50 ------ u... 
X 

u... 

0.25 
F (0.25) = 0.25 

0.00 0 
-1.0 0.0 1.0 2.0 3.0 -2.0 -1.0 0.0 1.0 2.0 

X or x Y or y 

Figure 3-12. Transformation from random variable X toY with change in CDF. 

Computer random-number generators often have the CDF of Fig. 3-12 (left). There 
are also tables of four- or five-digit uniformly distributed random numbers in many 
statistics books and mathematical handbooks (e.g., Abramowitz and Stegun, 1965) with 
this CDF. 

Since the PDF and CDF contain the same information, the PDF's of the supplied and 
desired variables could be specified instead of their CDF's. The conversion procedure, 
however, requires converting the PDF's to CDF's first. 

Example 7- Reservoir Property Distributions. A reservoir property has the 
following PDF: 

y < 0 
0 :::; y :::; 1 
y > 1 

Three numbers, x = 0.33, 0.54, and 0.89, were generated on a computer with 
the PDF 
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We first convert the PDF's to CDF's. 
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These CDF's are shown in Fig. 3-13. 
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y < 0 

O~y~ 1 

y > 1 

X< 0 
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Figure 3-13. Transformation for first random number in Example 7. 

X is called a uniformly distributed random variable because its PDF is 
constant over the interval [0, 1]. Since F x(x) == x, Fx(0.33) == 0.33, 
Fx(0.54) == 0.54, and Fx(0.89) == 0.89. Fy(y) == y2 so Fy(y) = ..JY. Thus, 
Y = 0.57, 0.73, and 0.94, respectively. 
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3-3 FUNCTIONS OF RANDOM VARIABLES 

So far, we have only dealt with "simple" random variables. There are instances, however, 
when a random variable is presented as a transformed quantity. For example, permeability 
and resistivity are often plotted on a logarithmic scale, so that we are actually seeing a 
plot of log(k) or log(R). It is evident that, since k and R are random variables and 
logarithm is a monotonic function, log(k) and log(R) are random variables. What is the 
PDF of k orR, given that we know the PDF of log(k) or log(R)? 

If Y = h(X) is a monotonic function of X and has a known PDF, g(y), then the PDF 
of X is given by (Papoulis, 1965) 

f(x) = g(y) 11;1 

This expression can be rearranged to determine g(y) ifj(x) is known. If Y = h(X) is 
not ll11."£111QtOI!Iic, then X has to be broken up into intervals in which h(X) is monotonic. 
P!:lpoul.is,(1965, Chap. 5) has the details with a number of examples. 

Detetmlliniag the PDF when a variable is a function of two or more random variables, 
e.g., Z(X, Y}~, is; quite complicated. For example, if Z =X+ Y, where f(x) and g(y) are 
the PDF's of two independent random variables, X and Y, then h(z), the PDF of Z, is 
given by 

h(z) = J f(z - y)g(y)dy = J f(x)g(z - x)dx 

These integliaills represelilll the convolution of the PDF's of X md Y. Papoulis (1965, 
Chap·. 7) pmves· tllciis result and considers a number of e':lfamples. It is clear that 
detetmtimll)g tFJ:e PDF o:f a function of two or more random variables is not, in general, a 
simple task.. There are Solilile results that are useful whenf(x) an<ill g(y) have certain forms, 
e.g., have Gawssiu PDF's, and these will be discussed in Chap. 4. 

3-4 THE. MONTE CARLO METHOD 

There exists, a powerful numerical technique, the Monte Carlo ~thod, for using random 
variables in computer p!!Ograms~. If we know the CDF's of the variables, the method 
enables us to examme the effects of randomness upon the predicted outcome of numerical 
models. Monte Cad~J requii~res: that we have a model defined that relates the input 
variables {e.g .. , rese~rvoir p;rope:Fties) to the feature of interest (e.g., oil recovery, 
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breakthrough time, water cut, or dispersion). The model is not random, only the input 
variables are random. The distribution (CDF) of the output quantity and, in particular, its 
variability are used to make decisions about economic viability, data acquisition, and 
exploitation strategy. 

Monte Carlo methods can be quite numerically demanding. If many input variables are 
random and they all have large variabilities, a large number of runs or iterations of the 
model may be needed to appreciate the range of model responses. For example, an input 
numerical model for a waterflood flow simulation could require massive amounts of 
computer time if all the input parameters, including porosity, permeability, capillary 
pressure, and other properties, are considered to be random variables. 

Example 8- Reserves Estimates Using Monte Carlo. In petroleum 
economics, by far the most frequent use of Monte Carlo is in reserves 
calculations. The stock-tank oil initially in place (STOIIP) is given by 

STOIIP = ¢ (1- Sw) Ah 
Boi 

where Ah is the net reservoir volume, B oi is the initial oil formation volume 
factor, Sw is the interstitial water saturation, and ¢is the porosity. In this 
case, this equation is the model and we are interested in the STOIIP CDF (or 
PDF) as ¢, Sw, and Ah may all be considered as independent random 
variables. In particular,¢ and Sw can have meaning as independent random 
variables only if they represent average values over a given net reservoir 
volume, Ah. 

A random-number generator in the computer generates random numbers for all 
the variables in the STOIIP equation for which the user specifies a CDF or 
PDF (Fig. 3-14). For each value of¢, Ah., and Sw, the STOIIP is 
computed. This process is repeated several hundred times. The output is a 
series of STOUP values that, using the empirical CDF procedure described 
earlier, can give the STOIIP CDF. From that CDF, summary statistics such 
as the average or median can be calculated. 

To use the Monte Carlo method, the distributions for all the input variables 
have to be determined. Experience from other fields, data from the field under 
study, and geological knowledge all contribute to the selection of the CDF for 
each variable. Interdependence between the variables (e.g., low¢ and high 
Sw) can be accommodated if it is known how the variables are interrelated. 
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Figure 3-14. Schematic procedure for producing STOIIP estimates using Monte Carlo. 
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The use of Monte Carlo results in reserve estimation varies from company to 
company. Some govemments require Monte Carlo simulation results to be 
reported when a company wants to develop a prospect. 

While Monte Carlo may seem like an easy option to theoretical approaches, it should 
be recognized that the results are sensitive to the input CDF's and consequently variability 
in the input data will affect the results. For example, in reserves estimation, if 1> and Sw 
do not vary much while the rock volume Ah varies considerably, the STOUP PDF will 
be virtually identical to the Ah PDF. In Chap. 6, we will discuss further the effects of 
variabilities of the arguments upon the resultant variation. 

3-5 SAMPUNG AND STATISTICS 

In closing this chapter, there are two philosophical issues to be considered: measurement 
volumes and the role of geology. 

Our view of the reservoir is entirely from probability distributions of the random 
variable X (Fig. 3-15), representing some property. We imagine that this property, e.g., 
permeability, porosity, or grain size, exists as a random variable in a physical region. 
Each point in the region has associated with it several PDF's: one for each random 
variable of interest. When we take samples and measure them, the properties are no 
longer random at the sampled locations. We have specific values of the reservoir 
properties obtained over a certain volume of the region. For example, the volume of a 
core plug is about 10 cm3, whereas the volume investigated by a well-logging device 
may be 0.05 m3. In any case, our measurements are averages of the random variables 
over a given volume and they cannot reflect the point-to-point variation of the properties. 

By measuring samples of nonzero volume, our characterization of the reservoir is based 
on averages of the random variable, not the variable itself. When we estimate a parameter 
at a point, we are estimating the most likely value of the parameter's average. In the 
range of scales of the geological variability present in the reservoir, some scales may be 
contained within the measurement volume and, thus, not be recognized in the result. For 
example, core plugs might contain several laminations and, therefore, may not represent 
the lamination-scale variation present. 
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x measured locations 
0 unmeasured locations 

Figure 3-15. Reservoir property distributions at sampled and unsampled locations. 

This point of view has two implications. The first is that all physical measurements 
are now actually averages, and that when we in turn average these, we are taking averages 
of averages. Thus, it is possible to have measurements over different volumes of material 
(e.g., core-plug permeability and transient-test permeability). Trying to reconcile 
measurements made on two different volumes can be very difficult, especially since the 
character of the PDF's and CDF's will change for different volume scales. This is 
especially true when comparing the statistics of porosity averages derived from core/log 
data with porosity estimates derived from seismic attributes, even when they are samples 
over common depth intervals. 

The second implication lies in regarding the original variable as being random. Many 
geological processes-sedimentation or diagenesis-are very well-known and quite 
deterministic; thus, it is counter-intuitive to think that the result of these processes-the 
variable under consideration-is random. We are not saying that the process is random, 
however, just that the detailed knowledge of the result of the process is random. This is 
almost always the case in physics: the fundamental law is quite deterministic but, as 
discussed in Chap. 1, the detailed knowledge of the result of the process (or processes) is 
imprecise. 
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FEATU 

The probability distribution function (PDF) of a random variable tells quite a bit about the 
values the variable takes. For one thing, it says how frequently some values occur 
relative to other values. We can also extract "summary" information about the behavior 
of the random variable to determine, for instance, an "average" value, or just how variable 
the values are (e.g., the variance). 

This chapter begins with definitions of the basic statistical operators, principally 
moments and their functions, and then moves on to a brief exposition of some of the more 
common PDF's. The operators are importantbecause they allow description of any 
random variable, regardless of its PDF, but mainly because much of the subsequent 
development rests on the properties of these operators. 

4-1 NONCENTERED MOMENTS 

With the probability distribution functionj(x) known for a continuous random variable X, 
we can define the ,th moment as 

+oo 

Jlr = f xr f(x)dx 

where r is a nonnegative integer. In making this definition, we have presumed that.f(x) is 
integrable. 
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The Expectation 

By far the most important is the first (i.e., r=1) moment, 

E(X) = f xf(x)dx (4-1) 
-00 

referred to as the expected value or expectation of X. E(X) is the mean for a continuous 
PDF. 

A discrete random variable X can take on one of a series of values: X1, X2, ... ,XJ with 
corresponding probabilities Pl· P2· ... PI. That is, Pi = Prob(X =Xi). The expected value 
of X is defmed to be 

I 
E(X)= LXiPi 

i=l 
~o E(X} ittll_e _S':!Jll. of !h~~P.Q£.£ibl~.Yl1l1J_~~-.Q{X)Y~jghted QYJ!!~i!-~~~pective prob~ 
of occurrence. It is relat~ to, but not necessarily the same as, the arltlimeiic·average. 
The arithmetic average, X, is computed from M samples X1, X2 . .... ,XM taken from the 
parent population, which has possible values x1, x2, ... , Xf 

1 M 
X--'"" X -M£..Jm 

m=l 

Comparing the equations for X and E(X), we see that the arithmetic average appears 
to equate Pi with 1/M. This is only partly correct, however, since X= Xi may appear 
several times among the samples. For example, several samples might all have the value 
x6. When this happens, Pi =kiM for the arithmetic average, where k is the number of 
times Xi appeared. Because of the sample size and sampling variation, the sample values 
Xi may not represent all the/ possible values of the parent population. For example, if 
M <I, all possible values of X could not have been sampled. Hence, X and E(X) 
may not be equal. However, for a finite sample there is no other alternative than to 
regard X as an estimate of E(X). 

For discrete variables, E(X) need not be one of the values Xi. For example, we h~ve 
all seen newspaper reports stating that the average number of children per household is 
2.6, or some such number. While no household has a fraction of a child, the expected
value computation does not account for the fact that X is a discrete variable in. this case 
and treats children like lengths of cloth. 
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Since there are two definitions for the expectation, corresponding to continuous and 
discrete PDF's, we should probably have two symbols. Conventional usage does not 
make this distinction, probably because the properties of the two are essentially identical. 

Properties of the Expectation 

Most of the properties follow from the properties of the PDF in Chap. 3 (which in tum 
followed from the Axioms in Chap. 2), or the properties of a sum or integral. 

Expectation of a constant c: E(c) = c 

Expectation of a constant c 
plus (minus) a random variable: E(X ±c) =E(X) ± c 

An immediate consequence of this property is that the expectation of a random 
variable with zero mean is zero. Let [X-E(X)] be such a variable, then 

E[X- E(X)] = E(X)- E[E(X)] = E(X)- E(X)= 0 

Such transformations are common in statistical manipulations. Other properties are 

Expectation of a constant c 
times a random variable: 

Expectation of the sum (difference) 

E(cX) = c E(X) 

of two random variables: E(X ± Y) = E(X) ± E(Y) 

The last two properties can be generalized to multiple random variables and their sums 
or differences: 

E ("\:" a· X· + '\:'b ·Y ·J- "\:" a· E(X ·) + "\:" b · E(Y·) L.tl-..i.JJJ-L.t z-L.J; 
i j i j 

As intuitive as these formulas seem, the last actually involve some subtlety. When the 
expectation deals with more than one random variable, the definition involves the joint 
probability distribution function for X andY, f(x, y): 

+oo +oo 

E(X + Y) = f f (x + y)f(x,y)dx dy 
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+oo +oo+oo 

= I i(-00,+oo,xf{x,y)dxdy)+ I IYf(x,y)dxdy 
-00-00 

1-oo +oo 

Jxf(x)dx+ fyj(y)dy=E(X)+E(Y) 
-00 

+oo +oo 

where If(x, y)dx = f(y) and If(x, y) dy )= f(x) are the marginal PDF's for Y and X, 

respectively. 

The properties described above carry over to more general functions of random 
variables, but the sum/difference property is all that is needed here. Discussion of the 
properties ofj{x, y) falls under the subject of bivariate distributions, covered in Chap. 8. 

There is, however, a final property that requires a further restriction on the random 
variables. 

Expectation of the product 
of two independent random variables: E(XY) = E(X)E(Y) 

For this to be true we must be able to write the joint PDF as f(x, y) = f(x)g(y). You will 
no doubt recognize this property of the PDF and the definition of independence of 
random variables from the Multiplication Axiom in Chap. 2. 

+oo +oo [ +oo l [ +oo ] 
E(XY) = _1 _1 xy f(x) g(y)dx dy = _1 xf{x)dxj _lY g(y) dy = E(X) E(Y) 

We defer further discussion of dependent random variables until Chap. 8. 
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4~2 CENTERED MOMENTS 

The rth centered moment of a random variable is 

+= 

J.l~ = E([X- E(X)Y} = f [x- E(X)]' f(x)dx 

The expectation inside the integral raises the possibility of several ways to estimate J.l~. 
For example, the integral may be approximated as a finite sum and the E(X) from a 
continuous PDF. In practice, Vfe will almost always be estimating both expectations from 
a finite data set. Of course, J.lr must satisfy all of the properties of E(J() with respect to 
the PDF. 

Variance 

One of the central concepts in all of statistics is the second (r = 2) centered moment, 
known as the variance and denoted specifically by Var(X). 

+oo 

Var(X) = f [x- E(X)J2 f(x)dx 
-00 

Using the properties of the expectation, Var(X) can be written as the difference between 
the expectation of x2 and the square of the expectation, of X, E(X)2: 

Var(X) = E ([X- E(X)]2} = E(X2)- E(X)2 (4-2) 

without loss of generality. (In this formula and elsewhere, we adopt the convention that 
E(X)2 means that the expection is squared.) This form is actually more common than the 
original definition. The discrete version of Var(X) for I values is 

I 

Var(X) = 'L [xi - E(X)J2 Pi 
i=l 

Compare this with the formula for estimating the variance from M samples X1, X2, ... ,XM: 
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M 

s = ~ I [Xm- E(X)]2 
m=l 

which requires that the mean of X be known. Observations similar to those about the 
discrete expectation also apply to this estimation formula. 

The variance is a measure of the dispersion or spread of a random variable about its 
mean. Other measures exist, such as the mean deviation, E [IX- E(X)I]. The variance, 
however, is the most fundamental such measure and, as we shall see, most other measures 
of variability are derived from it. 

Properties of the Variance 

Many of the variance's properties follow directly from those of the expectation operator. 
However, its most important property is that it is nonnegative. 

Intrinsic property: Var(X) ~ 0 

The reason this is so (the equality holds only in the degenerate case of no variability) 
follows directly from the basic definition wherein only squares of differences are used 
inside an integral andf(x) ~ 0. Of course, an absolute value or any even r will yield a 
nonnegative moment, but these are too complex mathematically. The reason that this 
seemingly small observation is so important is that when we minimize the variance in the 
following chapters, we can be assured that our search will have a lower bound. The 
following example illustrates this. 

Example 1 -Minimizing Properties of the Variance. You might ask why the 
centering point for the variance is the mean instead of some other point, say 
the median. We now show that using the mean will make the variance a 
minimal measure of dispersion. 

For this exercise only, let us define the variance as 

Var(X) = E[(X- a)2] 

where a is some arbitrary constant. To find the minimum in Var(X), take its 
derivative with respect to a and set it to zero. 
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dVar(X) -too 
da = -2 f (x- a)fl.x)dx = 0 

-oo 

noting that the differentiation is not with respect to the integration variable. 
But using the definition forE(), we find that the minimum variance occurs 
when 

E(X) =a 

or that the variance, as originally defined, is itself minimized. . 

To expose the remainder of the variance's properties, we parallel those of the 
expectation. 

Variance of a constant c: 

Variance of a random variable 
plus (minus) a constant c: 

Var(c) = 0 

Var(X± c)= Var(X) 
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These properties are consistent with the idea of the variance being a measure of spread, 
independent of translations. There is, of course, no spread in a constant. 

Variance of a random variable 
times a constant c: Var(cX) = E[(cX)2]- E(cX)2 

= c2E(X2) -c2E(X)2 

= c2Var(X) 

Unlike the analogous property for the expectation, this is not intuitive. However, since 
the constant can be negative, it is entirely consistent with the idea of a nonnegative 
variance, since Var(cX) :=:: 0. 

Variance of the sum (difference) 
of two independent random variables: 

Var(X±Y) =E[(X±Y)2] -E(X±Y)2 

= E[X2 ± 2XY + y2] - E(X)2 ± 2E(X)E(Y) -E(Y)2 

= E(X2)- E(X)2 + E(Y2)- (Y )2 = Var(X) + Var(Y) 

since E(XY) = E(X)E(Y) 
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The last two properties can be combined into 

Var(L aiXi) = 'La[var(Xi) 
i 

Remember that this property is valid for independent Xi only. 

Example 2- Variance of the Sample Mean. We can use Eq. (4-3) to derive a 
traditional result that has far-reaching consequences. Consider the drawing of 
I samples from a population containing independent Xi. The variance of the 

XiisCJ 2 . 

The variance of the sample mean X is 

1 I 
Var( X)= Var([ I Xi) 

i=l 

Since the Xi are independent, we can use Eq. (4-3) directly as 

But, since Var(Xi) = CJ2, 

- I 2 cr2 
Var( X) =-2 CJ =

I I 
(4-4) 

Equation (4-4) says that the variance of the sample means decreases as the 
number of samples increases. This makes sense in the limit of I approaching 
infinity, since the variance must then approach zero, each draw now 
containing all of the elements in the population. Of course, the variance of 
the mean is CJ2 when I= 1. 

Equation (4-4) also suggests that a log-log plot of the square root of the 
variance (the standard deviation) of the sample mean versus I will yield a 
straight line with slope of -1/2. Such a plot is the precursor of the rescaled 
range plot used to detect spatial correlation in geologic data sets. 

(4-3) 
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The procedure used in Example 2-manipulating a sum until the term inside the 
summation contains no subscripts-is a common statistical approach. This operation 
changes a summation into a multiplication to yield a result that is substantially simpler 
than the original equation. 

Properties beyond this, for example the product of two random variables, are even 
more complicated but are not necessary for this text. We will revisit many of these 
properties in the discussion of correlated random variables in Chaps. 8 and 11. 

4B3 COMBINATIONS AND OTHER MOMENTS 

There are a few other related functions of these moments. 

Standard Deviation 

The standard deviation is the positive square root of the variance 

SD = +.VVar(X) 

The standard deviation is a very familiar quantity. While Var(X) has the units of x2, the 
SD has units of X, making it more comparable to the mean. 

Coefficient of Variation 

The coefficient of variation is the standard deviation divided by the mean: 

SD 
Cv= E(X) 

Cv is one of the most attractive measures of variability. It is dimensionless, being 
normalized by the mean, and varies between zero and infinity. See Chap. 6 for more 
discussion. 

Coefficient of Skewness 

The coefficient of skewness is the third centered moment divided by the second centered 
moment: 
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Y1 is a measure of the skewness of a PDF. y1 < 0 indicates a PDF skewed to the right 
(i.e., positively skewed) and Y1 > 0 indicates a PDF skewed to the left (i.e., negatively 
skewed). Y1 = 0 indicates a symmetrical PDF. 

Coefficient of Kurtosis 

The coefficient of kurtosis is the ratio of the fourth to second moments: 

r2 is a measure of the peakedness of a PDF. The normal distribution (y2 = 0) is 
mesokurtic. A PDF flatter than the normal ( r2 > 0) is platykurtic; one more peaked than 
the normal distribution (y2 < 0) is called leptokurtic. 

These last three definitions are more for terminology than usage. They are rarely used 
and not used at all in the remainder of this text. But the expectation and variance 
properties will recur frequently. 

Let us now loo)c at a few common PDF's and some of their properties. We will begin 
with a discrete variable. 

The Binomial Distribution 

Consider an experiment with only two possible outcomes: E 1 = a "success" with 
Prob(El) = p and E2 = a "failure" with Prob(E2) = l - p. E 1 and E2 are obviously 
mutually exclusive in a single experiment, but several repetitions of the experiment 
would produce combinations of successes and failures. We also take the experiments to 
be mutually exclusive. 
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Consider the probability of getting s successes in I trials for a given p. Put another 
way, we calculate Prob(R = s) where R = Lxi, i=1, ... ,/,and Prob(Xi = 1) = p and 
Prob(Xi = 0) = 1 - p. This sort of problem might arise, for example, when estimating net
to-gross ratios for a sand-shale sequence (Xi = 1 for sand and Xi = 0 for shale). 

To answer this, we consider all possible ways of getting s successes in I trials with 
each combination multiplied by its appropriate probability p. 

[I 
Prob(R = s) = p = · ps (1 - p)l-s 

s s! (/-s)! (4-5) 

The symbol I! is read "I factorial" and it means /(/-1)(/-2)· ··1. This function is available 

on scientific calculators. Another way of writing L! :J-s)!] is 1c s• the number of 

combinations of I things taken s at a time. 

Equation (4-5) is the binomial distribution, an important result in statistics. Each term 
in the equation has physical significance: the first term is the number of ways in which 
there can be exactly s successful outcomes, the second is the aggregate probability of s 
successes, and the third is the aggregate probability of (/ - s) failures. 

Example 3- Using the Binomial Distribution for Thin-Section Porosity 
Estimation. Consider a point count on a vugular carbonate thin-section that 
has 50% porosity. The microscope cross hairs will fall either on the matrix 
(Xo = 0) or on an opening (X 1 = 1). What is the estimated porosity based on 
the number of samples we take? 

If I is the total number of samples taken and R the number of times we draw 
1/J = 1, then the observed or estimated sample porosity is 

- RX1 + (/ -R)Xo R 
1/J= -I I 

Because the thin-section has 50% porosity, Prob(l/i = 1) = 1/2. Hence, the 
probability of R points out of I samples falling on vugs is 

I! (1)/ p = Prob(R = r) = r! (/ _ r)! 2 

For I= 2 we can haveR= 0, 1, 2. From the binomial distribution the various 
probabilities can be plotted as !!.1 Fig. 4-1 (left). We can replaceR on the 
abscissa with the ratio R/1 (= 1/J) to get Fig. 4-1 (right). 
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Figure 4-1. Probability distribution functions for R and i for I = 2 samples and 
Prob(f/l= 1) = 0.5. 

This is a very simple discrete PDF for (f. Clearly, we could repeat this for 
any/. FQ! example, if I= 6 we have Fig. 4-2 (left) for R = 0, 1, 2, 3, 4, 5, 6 
and the lfl PDF (Fig. 4-2, right). 
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Figure 4-2. Probability distribution functions for R and i for I= 6 samples and 
Prob(lfl = 1) = 0.5. 

Apart from showing an application of the binomial distribution, this exf!!Uple 
illustrates an important issue: the variability of estimated quantities ( cjJ in 
this case) that depend upon data. We always estimate quantities based on 
some number of samples and those estimates are just that: estimated 
quantities that are themselves random variables. 
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Unless we counted an extremely large number of points, ljJ would always be 
subject to some variability. We can get some idea of the variability by 
looking at the probabilities of the extreme events Prob ( ljJ = 0) and 
Prob (cp = 1). Eor I= 2, Prob (p = 0) == Prob (l/J = 1) = 0.25, whereas when 
I= 6, Prob ( q; = 0) = Prob ( q; = 1) = 0.016. By tripling the sample size, the 
probabilities of the extremes have dropped considerably. 

The mean value of R for I trials is 

I 

E(R)= L i Pi pi (1- p)l-i =Ip 
i=O 

This result follows from substituting Eq. (4-5) and using the identity 

I 

L JC'i xi= (1 +Xi 
i=O 
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By a similar process, the variance is given by Var(R) = Ip(l - p). These results are used 
in the following example. 

Example 4 -Mixtures of Random Variables in Geological Sediments. 
Consider a formation unit consisting of two elements, 1 and 2, which 
interfinger in proportions p and (1- p), respectively. If each element has a 
random value of permeability, k1 and k2 with means E(k1) = 111 and 

E(k2) = 112 and variances V ar(k 1 ) =a~ and V ar(k2) =a;, respectively, what 

are the mean and variance of samples taken from the combination? Assume 
that each measurement consists only of material from one of the two elements 
and that k1 and k2 are independent. 

Let k be the sample permeability, so that 

where X is a binomially distributed variable. If X = 0, the sample is entirely 
from element 2; if X= 1, it is from element 1. Since the proportion p of the 
unit consists of element 1, Prob(X = 1) = p. We wantE(k) and Var(k) in 

terms of p, Jll, Jl2• and cr~. The mean value is 
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E(k) = E[Xk1 + (1 - X)k2J = E(Xk1) + E[(l - X)k2J 

= E(X)E(k1) + E(l- X)E(k2) 

because the variables X, k1, and k2 are all independent. Thus, 

E(k) = Pf..ll + (1 - p)f..lz 

This result agrees with what we would expect. Similar reasoning gives 

Var(k) = E[Xk1 + (1- X)k2]2 - E[Xk1 + (1- X)k2]2 

= E(X2)E(~) + 2E(k1 )E(k2)[E(X) - E(X2)] + E(~) 

- 2E(k~)E(X) + E(k~)E(X2)- [pf..ll + (1 - p)f..L2]2 

The total variability of k arises from three factors: the variability of element 
1 multiplied by the amount of 1 present; the variability of 2 also weighted by 
the amount present; and the additional variability arising because the mean 
permeabilities of the elements are different. The third factor is maximized 
whenp= l/2. 

Realistic sediments that conform to this example include eolian deposits. 
Dune slip face sediments consist of grain fall and grain flow deposits. Each 
deposit has different grain size and sorting and, hence, will have a distinctly 
different permeability from the other deposit. Probe or plug measurements 
may be taken in a number of slip face deposits, and the apparent variability 
could be quite different from the variability of either element. 

Mixtures of random variables cause the resulting PDF to be a combination of the 
component PDF's. Such PDF's are called heterogeneous or compound distributions. 
Multimodal PDF's often arise because the measurements were taken in sediments with 
distinctly different properties. 
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The Central Limit Theorem 

It takes considerable mathematics (Hald; 1952), but much less intuition, to see where the 
binomial PDF is going as I approaches infinity. The discrete PDF above becomes 
continuous and the PDF itself approaches a normal distribution, that bell-shaped curve we 
all have come to know and love. Actually, the approach to normality is quite close after 
only about I= 20 when p = 0.5. It takes considerably more points when pis closer to 0 or 
l, but the-normal distribution results as Fig. 4-3 illustrates. You can also see the 
progression of the mean and variance of the binomial distribution in Fig. 4-3. 

According to a fundamental result of applied probability known as the Central Limit 
Theorem (CLT), a random variable X, generated by adding together a large number of 
independent random variables, will usually have an approximate normal distribution 
irrespective of the PDF's of the component variables. This remarkable theorem says that 
a normal distribution will result from the binomial distribution as I approaches infinity 
regardless of the value of p. Conversely, when we observe a normal distribution in 
practice, we assume these attributes are satisfied. 
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Figure 4-3. The progression of a binomial PDF to a normal distribution for p = 0.9. 

An example of the CLT is core-plug porosity. Each plug consists of numerous pores 
that each contribute a small amount to the plug pore volume. Hence, the total porosity of 
plugs is likely to be nearly normally distributed. Indeed, in many clastic reservoirs, 
porosity is nearly normally distributed. The binomial distribution is not even necessary 
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for this argument (we used it mainly as an illustration). As long as the underlying events 
are independent and additive and there are a large number of them, the PDF will be 
normal (Blank, 1989). The CLT is as close as we get to a physical basis for statistics and 
it accounts, in part, for the popularity of the normal distribution in analysis. Many of the 
simulation techniques and tools (to be discussed in Chap. 12) require normally distributed 
random variables. 

In light of this result, we can also see how errors resulting from the measurement of a 
physical quantity could have a distribution close to normal. Typically, errors arise as a 
combined effect of a large number of independent sources of error. These errors, 
however, may not perturb the measurement very much, depending on the relative 
magnitude of the property and the associated noise. In addition, we would like the 
deviations (residuals) of a measurement away from a model to be normal, since this 
means that the model accounts for all of the features of the measurements, apart from 
unquantifiable influences. 

The Normal (Gaussian) Distribution 

In addition to the CLT, the normal distribution is hoary with statistical import. 

If a random variable X has a normal distribution, its PDF is uniquely determined by 
two parameters (j.l and a ) according to 

f(x; 0', J.l) = .V 2~0'2 exp [- ~ ( x ~ .U ) 2].-= < X < oo (4-6a) 

which graphs as shown in Fig. 4-4. 

You can easily show that E(X) = f.1 and Var(X) = a2. We will represent the normal 
distribution with the short-hand notation N(mean, variance). So X~ N(3, 9) means X is 
normally distributed with a mean value of 3 and a variance of9. The normal CDF is 

X 

F(x; a, f.l) = - 1 - J exp [-.! ( !___::___Y:. )
2] dt 

.V 2na2 2 a 
(4-6b) 

The integral function above is called the probability integral. 
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Both the normal distribution and the probability integral can be made parameter-free 
by redefining the variable as Z = (x - f.L) I a, known as the standardized normal variate. 
Thus E(Z) = 0 and Var(Z) = 1, and we say that Z ~ N(O, 1) so that 

z 

F(z) = & f exp(-~ r) dt (4-6c) 

Extensive tables for N(O,l) are printed in many statistics books; see Abramowitz and 
Stegun (1965). 
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Figure 4-4. The continuous normal PDF and CDF. 

The normal distribution occurs anywhere there are observations of processes that 
depend on additive random errors. A good example is in diffusion theory, where 
assuming a random walk of particles will lead to a concentration distribution having a 
normal shape (Lake, 1989, p. 157). In this case, the relevant function is the error 
function, defined as 
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0 

2 f 2 erf(x) =- e-t dt 
-{;.X . 

which is related to Eq. (4-6c) as 

(4-6d) 

Probability Paper 

How do we know when a variable is normally distributed? There are several fairly 
sophisticated means of testing data, but the most direct is to plot them on probability 
paper. We can invert the standard normal CDF given in Eq. (4-6d) to 

z = -"'J'2 erf-1 [1 - 2F(z)] (4-6e) 

The quantity on the right of this equation is the inverse error function. A plot with the 
inverse error function on one axis is a probability plot (Fig. 4-5). 
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Figure 4-5. Probability coordinates. 
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There is a one-to-one relationship between the value of the normalized variable Z and 
the probability that some value less than or equal to Z will occur (i.e., F(z)). 
Consequently, we can talk in terms of variable values (z) or their associated probabilities 
F(z). In Fig. 4-5, we mark off the horizontal axis in terms ofF, expressed as a percent. If 
data from a normal CDF are plotted on the vertical axis, then a straight line will result 
with this type of paper. A log-normal distribution will similarly plot as a straight line if 
the vertical axis is logarithmic. Either Z or the original X may be plotted, since the 
transforms involve simple arithmetic. Plotting X is a commonly accepted way of testing a 
set of data for normality and for determining the variability of a set of data. 

Probability plotting facilities based on the normal distribution are often found in 
statistical packages for computers. Smaller systems, however, may lack this feature. In 
order to produce a probability plot, use the following steps: 

1. Order the I data points according to magnitude (either increasing or decreasing) so 
thatXf:;X2~· · · SX1. 

2. Assign a probability to each datum. A convenient formula is P(Xi) = (i-1/2)//. 
This assignment is consistent with the idea that the data are equally probable. 

3. Calculate the Zi value for each probability P(Xi ). This may be done using 
Eq. (4-6e) or using a rational approximation to the probability integral given by 

Z. = _ 2.30753 + 0.27061 t h r = ~ _2ln[P(X. )] 
l t 1.0 + 0.99229 t + 0.04481 t2 w e e t z 

for 0 < P (Xi ) ~ 0.5. This and a more accurate approximation are listed in 

Abramowitz and Stegun (1965, p. 933). For P(Xi) > 0.5, use t = ~ -2ln[P(Xi )] 
and -Zi in the above formula (the Z's will be symmetrical about the point Z = 0). 

4. Plot the Xi versus the Zi. The points will fall approximately on a straight line if 
they come from a normally distributed population. 

This procedure should sound faintly familiar (Chap. 3); steps 1 and 2 are the same as 
for computing the empirical CDF. That is because we are actually comparing the 
empirical CDF with the normal CDF when we use a probability plot. 

How far points on a probability plot may deviate from a straight line and still be 
considered coming from a normal population is dealt with by Hald (1952, pp. 138-140). 
Clearly, however, if there are few (e.g., fewer than 15) points, the variation can be quite 
large while the underlying population PDF can still be considered normal. On the other 
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hand, 100 or200 points should fall quite closely on a straight line for the population to be 
considered normally distributed. 

The Log~Normal Distribution 

If errors multiply rather than add, the logarithms of the errors are additive. Since the 
logarithm of a random variable is a random variable, the CLT may apply to the sum of 
the logarithms to give a normal distribution. When this happens, the PDF of the sum is 
said to have a log-normal distribution. 

ExampleS- An Implausible Reason for Permeability To Be Log-Normally 
Distributed. One of the most consistent assumptions regarding the 
distribution of permeability in a naturally occurring permeable medium is that 
it is log-normally distributed. One possible explanation for this is the theory 
of breakage. 

Suppose we start with a grain of diameter DpO• which fragments to a smaller 
grain in proportionfo to yield a grain of diameter Dpl· Repeating this 
process obviously leads to an immense tree of possibilities for the ultimate 
grain diameter. However, if we follow one branch of this tree, its grain 
diameter D pi will be 

I 

Dp1= ITfiDpi 
i=O 

which yields an additive process upon taking a logarithm. Thus, we should 
expect ln(Dp1) to be normally distributed from the CLT. Since permeability 
is proportional to grain size squared, it is also log-normally distributed. 

The log-normal PDF can be derived from the basic definition of the PDF and the 
standard log-normal variate: 

ln X- ,ll]n X z = -----''---'!.!-"' 
O"lnx 

Substituting this into Eq. (4-6c) gives the following for the CDF: 
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1 X [ 1 l F(x;O"Jnx .UJnx) = {2ii J exp --2-(lnt- .UJnx)2 dt 
' O"ln x 2n: 0 20"lnx 

and using y = ln X in the transformation given in Chap. 3, we have for the PDF 

1 [ ~ln x- .U!n x)2] f(x; O"ln x, .U!n :J = - r:::.- exp - 2 0' 
XO"Jn x\1 2n: ln x 

The mean and variance of the log-normal distribution are given by 

and 

2 
E(X) = exp~ + 0.5a x) 

2 
Var(X) = exp(2.Ux + 2a x) 

The coefficient of variation is independent of f.lln x 
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(4-7a) 

(4-7b) 

The PDF for the log-normal distribution is shown in Fig. 4-6. The significant features 
of the PDF are the skewness to the left and the long tail to the right. Thus, we see that 
most of the values in a log-normal PDF are small, but that there are a small number of 
large values. Of course, the random variable X in the log-normal distribution cannot be 
less than zero. Log-normal distributions appear to be at least as common in nature as 
normal distributions. 

The case of the logarithmic transformation is a common and interesting example of 
how averages and nonlinear transforms can combine to produce nonintuitive results. If 

the random variable, X, is log-normally distributed, then ln X- N(Jlx, O" ;). Therefore, 

E(ln x) = J.lx. We might be tempted to assume that E(X) = exp[E(ln x)] = expC.ux). But, as 

we saw above, the variability of ln x also contributes to the mean: 

E(X) = exp(Jlx)exp( a 2In x /2). This second term in the product can be significantly larger 

than 1 for highly variable properties such as permeability, where a a~x of around 4 is 

commonly observed (see Example 2 of Chap. 10.) 
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The logarithmic transformation case is just one example of how we must be careful 
about using random variables in algebraic expressions. We will see later, especially in 
the chapters on estimation and regression, that the deterministic manipulation of variables 
that most of us learned in school is a special case. It is only in the special case that the 
effects of variability can be ignored. 

i 

->< --
->< -1.1.. 

0 

0 2 4 6 1 0 1 2 

Figure 4-6. PDF and CDF for a log-normal distribution. 

p-Normal Distribution 

We can go one step farther and define a more general power transformation of the form 
(Box and Cox, 1964) 

Y={[(X+cP)-1]/p 

ln(X +c) p=O 

which will render a wide range of sample spaces normal with the appropriate selection of 
p and c. It is obvious that p = 1 is the normal distribution and p = 0 is log-normal. 
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Commonly, c is taken to be zero. The skewness of the distributions, intermediate 
between normal and log-normal, corresponds to a value of p between 0 and 1. Figure 4-7 
illustrates the shapes of the p-normal PDF. 

Table 4-1 shows a few p-values estimated from permeability data from various media 
types. There are also various types or measurements, and each data set has varying 
number of data in it. 

0.5 

0.4 
f(x) 

0.3 
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0.1 

0.0 
0 5 10 15 20 

X 

Figure 4-7. PDF shapes for various p. 

Table 4-1. Estimates of p from various data sources. From Jensen (1986). 

Number 
1\ 

Data Set Label Data Tyue of Data Media TyQe JLestimate, 12 

Law plug 48 sandstone 1.0 

Sims Sand plug 167 sandstone 0.5 
Admire Sand plug 330 sandstone 0.5 
Lower San Andres dst 112 dolomite 0.1 
Pennsy 1 van ian dst 145 limestone 0.0 
Nugget Sand plug 163 sandstone -0.3 

dst = drill stem test 
plug core plug 
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We see from this that p can be quite variable, especially in sandstone sediments. For 
the carbonates in this table, the estimated p is always near zero. This reflects the greater 
variability and/or lower average permeability in these sediments. Note also that p < 0 is 
also possible, even though this does not fall within the range envisioned by the original 
transform. 

Besides the binomial, normal, and log-normal distributions, other PDFs are sometimes 
used in reservoir characterization. For example, the exponential, Pareto, and gamma 
distributions have all been used to estimate the number of small fields in mature 
provinces (Davis and Chang, 1989). We will also meet the t-distribution in a later 
chapter. It is clear that there are a large number of possible PDF's. 

Uniform Distribution 

This distribution is the simplest of all the"' commonly used CDF's and PDF's. It consists of 
three straight lines (Fig. 4-8). 

f(x) or F(x) 

1.0 

0 

1 

(a-b) 
,---------~------~ 

a b 
X 

f(x) 

Figure 4-8. PDF and CDF for a uniform distribution. 

The equation for the CDF is 
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{ 
0 X<a 

x-a 
F(x; a, b) = b 

1
_ a a 75. X 75. b 

b<X 
and, consequently, for the PDF is 

f(x; a, b) ={b ~a 
X<a 

a-:5.X-:5.b 

a<X 
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(4-8a) 

(4-8b) 

The uniform distribution is a two-parameter (a and b) distribution.The mean of this 
distribution is E(X) =(a+ b)/2 and the variance is Var(X) = (b- aP/12. The popularity of 
the uniform distribution arises from its simplicity and also from its finite bounds, X = a 
and X = b. It is to be used when there is no a priori knowledge of the distribution type 
but there are physical reasons to believe that the variable cannot take values outside a 
certain range. 

Triangular Distribution 

The triangular distribution is the next step up in complexity from the uniform distribution. 
Its PDF and CDF are shown in Fig. 4-9. 

The triangular distribution is a three-parameter distribution (a, b, and c). The equation 
for the PDF is 

0 X<a 
x-a 

a~X~b 

f(x; a, b, c) = ( __1_) b-a 
c-a c -X b<X <c 

c-b 

(4-9) 

0 c<X 

with mean E (X) = (a + b + c )/3. The variance of this distribution is (McCray, 197 5) 

(c- a)2- (b- a)(c- b) 
Var(X) = 18 
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As for the uniform distribution, the triangular distribution is useful when there is :feason 
to confine the variable to a finite range. However, it frequently occurs that there is a most 
likely value within this range, but still no a priori knowledge of the distribution form. In 
these cases, the triangular distribution is appropriate. As Fig. 4-9 suggests, the triangular 
distribution can be used as an approximation to both the normal and log-normal 
distributions. 

1 

E -... 
0 -~ 
LL 

0 

0 
a 

. F(x) 

f(x) 

b c 
X 

Figure 4-9. PDF and CDF for a triangular distribution. 

Exponential (Boltzmann) Distribution 

The exponential distribution is shown in Fig. 4-10. This distribution is a one-parameter 
function with the following form for the CDF: 

F(x; A..)= 1 - exp(-x/A..), x>O, A..> 0 (4-IOa) 

and for the PDF 

1 
f(x, A..)=~ exp(-x/A..), (4-IOb) 

The mean and variance are A.. and A,2, respectively. Despite its simplicity, the exponential 
distribution is rarely used in reservoir characterization. However, its slightly more 
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complicated cousin, the Gibbs or Boltzmann distribution, is used extensively in 
combinatorial optimization schemes (Chap. 12). The feature desired in these applications 
is that the mode of the exponential distributions occurs at the smallest value of the 
random variable. 

1 

>< --.... 
0 

>< -u.. 

0 

0 
X 

Figure 4-10. PDF and CDF for an exponential distribution. 

4-5 TRUNGA'IE::JtDAIASETS 

A truncated sample occurs when data values beyond some limit are unsampled or 
unmeasurable. Truncation can be the result of restrictive sampling, deficient sampling, or 
limitations in the measuring device. For example, some apparatus for measuring 
permeability cannot measure values less than 0.1 mD. Adata set that is missing large
valued samples is top-truncated; if it is missing small-valued samples it is bottom
truncated. The upper plot in Fig. 4-11 illustrates these concepts with the random variable 
mapping outside of a limiting value, X lim . 

Before proceeding, a word is in order about terminology. A data set is truncated if the 
number of unmeasured values is unknown; it is censored if they are known. Truncation 
in this section applies only to data; when applied to theoretical (population) CDF's, 
truncation can mean that a portion of the variable range is not attainable on physical 
grounds (porosities less than zero, for example). 
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As always in statistical manipulations, we cannot infer the underlying reason for the 
truncation (at least not from the statistics alone); we can only detect its occurrence and 
then attempt to correct for it. The correction itself is based on an application of the 
definition of conditional probabilities given in Chap. 3. See Sinclair (1976) for more 
details. 

Truncation 

Mixed 
Populations 

Xiim 

00 

+ 

Figure 4-11. Schematic plots of truncation (upper) and mixed populations (lower). 

The basic tool is the CDF, F(x), or the complementary CDF, Fc(x). We assume that 
the untruncated sample CDF is normal or can be transformed to be normal; the data sets 
are log-normal here. Recall that the horizontal axes in both plots are probabilities; 
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Prob(X :s; x) in the CDF and Prob(X;:::: x) in the complementary CDF. We use F and Fe in 
percent in this section. 

Figure 4-12 shows the effects of bottom and top truncation on a sample CDF. 
Omitting the data points, we show only lines in this figure. 

----;-------·;--------r-··t····t··-;-----i·--·-·J··;--·-·J··-;------- · ------1···· 

l 25fTf"KF~,. ·:·t ri··· 
····:·······-~---··---r·-·1····-~---;... -~ ··· · -:·····. ---~---·····f···-····1···· 

: ! j : 0 

: : u,nt~unc,ated: 
ooOO:••••••••t•••••t•••i•• •j~•·•:•••ooti•••oot···i•ooooooo(••••"t" 

····1········1. ···t··+ 1sf t~p ~:ru:nc~t~d t······-j--·· 
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Cumulative Percent Smaller than Value 

Figure 4-12. Schematic of the effects of truncation on a log-normal CD F. 

Truncation evidently flattens out the CDF in the region of the truncation. In fact, it is 
relatively easy to see the truncated value (xum in Fig. 4-11) by simply estimating on the 
value axis where the leveling out takes place. What is not so easy to see is what 
percentage of the data values are truncated, but two observations are pertinent. 

1. The slope of the CDF (related to the variance) at the extreme away from the 
truncated region is essentially the same as for the untruncated sample. 

2. The probability coordinate Fe where the leveling occurs is roughly the percentage 
of the data points that are omitted by the truncation. 

In order to correct for truncation, we must somehow determine the untruncated CDF. 
For the CDF, this process is accomplished by the following manipulations: 

Top truncation F =Fa( I - ft) (4-lla) 

Bottom truncation F = fb + Fa(l - fb) (4-llb) 
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In these equations, F is the untruncated CDF, Fa the truncated (apparent) or original 
CDF, andfb and.ft are the fraCtion of data points bottom- and top-truncated, respectively. 
From Eq. (4-12a), we have F <Fa and from Eq. (4-12b) F >Fa As mentioned above,Jb 
(or ft) can be approximated by simple inspection of where the CDF flattens out. 
However, to be more certain severalfb (or ft) values should be chosen and F vs. X plotted; 
the correct degree of truncation fb (or ft) is that which gives the best straight line. The 
similar relations for the complementary CDF apply and are left to the reader as an 
exercise. 

Despite the trial-and-error nature of the process, determining the amount of truncation 
is fairly quick, especially on spreadsheet programs. Figure 4-13 illustrates a bottom
truncated data set of original oil in place from a region in the Western U.S. 

-== 0 
0 Ill 
-!:: 
t"\1 0 
c: ·-·o,= 
·- .D. 
0 

Truncation . . . . . . . . . . ' ... . . . . . . . . . . ' . ' . 
' ' ' ' ' ' . ' ' ' . ' ' ' ... ' ... . . . . . . . ... .. 

... : --····· ..: .... -.. ! .. ,; ____ : ... :.. .. - . .!_ •••• ~---~---.:. •• -~ ------~---- ••• -~ ••• 

l l l ~ l l 1 l 1 l ~qe( l 
~ i 1 1 1 1 1 1 1 -r~A+O) t 1 
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1· ;::( .... P~l r 
Percent Smaller than Value 

Figure 4-13. CDF for original oil in place showingfb in percent. 

For this case, the reason for the truncation is apparent: reservoirs smaller than about 
0.5 billion barrels were simply uneconomical at the time of survey. However, the value 
offb from Eq. (4-12b) required to straighten out the data indicates that approximately 
40% of the reservoirs are of this size or smaller. The corrections leave the untruncated 
portion of the curves unaffected. The following example indicates how a truncation 
correction can affect measures of central tendency. 

Example 6- Top Truncation of Core Permeability Data. A waterflood in a 
particular reservoir invariably exhibits greater injectivity than is indicated by 



Statistics for Petroleum Engineers and Geoscientists 

the average core penneability data. Among the many possible causes for this 
disagreement is top truncation in the core data. 

The first column of Table 4-2 below shows an abridged (for ease of 
illustration in this exercise) set of permeability data from this reservoir. The 

second column shows the Fa= lOO[(i- t)!I] values, where i = 1, ... , I is an 

index of the data values and I is the total number of data points. The set is 
clearly top truncated, as shown in Fig. 4-14. 

Table 4-2. Data for Example 6. Columns 3 and 4 show F values that have 
been corrected forft = 0.2 and 0.6 using Eq. (4-12a). 

Permeability 

mD 

0.056 
0.268 
0.637 
1.217 
2.083 
3.343 
5.149 
7.722 

J 1.389 
16.641 
24.243 
35.423 
52.244 
78.358 

Fa 

Original 

3.570 
10.714 
17.857 
25.000 
32.143 
39.286 
46.429 
53.571 
60.714 
67.857 
75.000 
82.143 
89.286 
96.429 

F 

ft = 0.2 

2.857 
8.571 

14.286 
20.000 
25.714 
31.429 
37.143 
42.857 
48.571 
54.286 
60.000 
65.714 
71.429 
77.143 

F 

ft = 0.6 

1.429 
4.286 
7.143 

10.000 
12.857 
15.714 
18.571 
21.429 
24.286 
27.143 
30.000 
32.857 
35.714 
38.571 

Theft= 0.6 curve (60%) has been overcorrected, as evidenced by the upward 

curvature. The best correction is slightly less thanft = 0.2 (20% ). But, taking 
ft = 0.2 to be best, the geometric mean of this data set (the median) has been 
increased from around 6.5 mD to about 12 mD. This correction may be 
sufficient to explain the greater-than-expected injectivities. We should seek 
other causes to explain why more than 20% of the data are missing from the 
set. 

A data set may be both top- and bottom-truncated. In this case we have 
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(4-12) 

Using Eq. (4-13) requires a two-step trial and error to determine bothft and fb· The 

reader may verify the analogous expression for P:. 
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Figure 4-14. CDF illustrating correction for top truncation. 

4~6 PARTITIONING DATA SETS 

Nature is not always so kind as to give us data sets from only single PDF's. See the lower 
plot in Fig. 4-11 for a schematic illustration. In fact, many times each reservoir contains 
mixtures of materials with different parent distributions. The aggregate distribution is 
what we see when the reservoir is sampled. When this happens, the power of the PDF 
and the CDF gets distinctly blurred, but we can still gain some insight from them. 

Partitioning is the separating of a mixed distribution function into its component 
(parent) parts. Partitioning is most efficient when the data values separate naturally into 
groups on the basis of variables other than the variable in the CDF. This is one of the 
primary roles geology serves in reservoir characterization. 

When we partition, we obtain more homogeneous elements that we expect to be able 
to understand better. For example, in Example 4 we showed how combining two 
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elements increases variability. If we know the variability of each element and its 
probability of occurrence, we can develop a moqel of the total variation that is more 
realistic than one that is based only on the mean and variance of the aggregate. · 

·In the absence of geological information, partitioning is usually difficult, especially 
when the CDF consists of more than two parent populations. For these reasons, we limit 
the treatment here to partitioning into only two CDF's. Many of the basic assumptions 
here are the same as in the discussion on truncation: the parent populations are log
normally distributed and all operations will be on the cumulative distribution function 
(CDF) or its complement. We further assume that the parent populations are themselves 
untruncated. · 

Let the sample CDF of parent distributions A and B be FA (x) and Fn(x), respectively. 
Then the probability coordinate of the mixed CDF is given by 

(4-13) 

where fA andfB are the fractions of the samples (data values) taken from populations A 

and B. This intuitive rule is actually a consequence of both the additive and 
multiplication rules for probabilities. It implies that data are selected for incorporation 
into F without regard to their value (independence) and a sample cannot be in both 
distribution A and distribution B (mutually exclusive). Of course, we must have 
fA +in= I. 

Equation (4-13) is also a rule for combining the F's on the horizontal axis of the CDF. 
For example, ifF A= 0.9 and FB = 0.3 for a particular value of x (recall X< x) and the 
mixture is 30% A and 70% B, then F = 0.48 of the samples in the mixed CDF are less 
than x. Of course, this mixing is not linear on the probability axis of the CDF. The 
essence of partitioning is actually the reverse of this: determine fA andfB given F(x) and 
some means to infer FA and Fn. Following Sinclair (1976), there are two basic ways to 
partition based on whether populations A and Bare nonintersecting or intersecting. 

Nonintersecting Parents 

Nonintersecting means that the parent populations overlap very little. Figure 4-15 shows 
three mixed CDF's for parents A and B (A has the smaller variance) as a function of 
various proportions of A. 

The mixed CDF has the following attributes: 
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1. The central portion of the curve is the steepest. This observation is what 
distinguishes nonintersecting and intersecting CDF's. The steepness increases as 
the overlap in X values between A and B decreases. 

2. The F value of the inflection points roughly corresponds to fs = 1 -fA. 

3. The extremes (F approaching zero or one) become parallel to the CDF's for the 
parent samples. 

CD 
:J 
11:1 
> 

Figu~ 4-15. 

Percent Smaller than Value 

CDF's for nonintersecting parent populations. 

These observations . suggest the following graphical procedure for partitioning a 
sample drawn from two nonintersecting populations: 

1. Plot the data points F vs. X and draw a smooth line through the points on 
probability coordinates. The smooth line represents the mixed population CDF. 

2. Draw in straight lines corresponding to the parent populations as suggested in 
Fig. 4-15. The parent population with the smallest variance (slope) will be nearly 
tangent to the mixed CDF at .one of the extremes. This will also be true of the 
parent population with the largest variance, but less so. 

3. Estimate the partitioning fraction from the inflection point on the smooth line. 

4. The fA andfs are now known from step 3; FAandF8 from step 2. Use Eq. (4-14) 
to reconstruct F. 



Statistics for Petroleum Engineers and Geoscientists 101 

If this F(X) agrees with the original data, all inferred values are correct; if not, adjust 
the partitioning fraction and return to step 3. If it appears that a satisfactory match cannot 
be attained, it may be necessary to adjust FA and/or F B In general, convergence is 
attained in three to five trials as the following example shows. 

Example 7- Partitioning into Two Populations. The data set of 30 
permeability values in Table 4-3 is believed to come from two parent 
populations. 

The first column contains the permeability values, and the third and fourth 
columns the FA and FB values. These are the X coordinates of the two 
population lines in Fig. 4-16 corresponding to the permeability values in 
column one. Columns five and six contain F for two estimates of fA. 

The shape of the original experimental CDF in Fig. 4-16 clearly indicates a 
mixed population. 

Even though the X coordinate of the inflection point suggests fA= 0.7, we use 
fA = 0.5 and 0.8 for further illustration. However, neither fA value yields a 
particularly good fit to the data (the solid line in Fig. 4-16), probably because 
the line for FB is too low (mean is too small). For accurate work, FE should 
be redrawn and the procedure repeated. However, the procedure is suffi
ciently illustrated so that we may proceed to the second type of mixed 
populations. 
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Figure 4-16. Experimental CDF for Example 7. 
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Table 4-3. Data for Example 7. 

Permeability F FA FB F F 
mD original estimated estimated fA= 0.5 fA=0.8 

1.70 1.67 3.00 0.80 1.90 2.56 
1.75 5.00 6.00 0.90 3.45 4.98 
1.80 8.33 9.00 1.00 5.00 7.40 
1.90 11.67 12.00 1.00 6.50 9.80 
1.95 15.00 15.00 1.00 8.00 12.20 
1.95 18.33 45.00 1.00 23.00 36.20 
1.95 21.67 46.00 1.00 23.50 37.00 
2.00 25.00 51.00 1.00 26.00 41.00 
2.10 28.33 54.00 1.50 27.75 43.50 
2.10 31.67 57.00 1.50 29.25 45.90 
2.10 35.00 60.00 1.50 30.75 48.30 
2.15 38.33 63.00 2.00 32.50 50.80 
2.15 41.67 66.00 2.00 34.00 53.20 
2.15 45.00 69.00 2.00 35.50 55.60 
2.20 48.33 72.00 3.00 37.50 58.20 
2.25 51.67 78.00 3.40 40.70 63.08 
2.30 55.00 85.00 3.50 44.25 68.70 
2.50 58.33 91.00 3.90 47.45 73.58 
2.60 61.67 94.00 4.00 49.00 76.00 
2.70 65.00 96.00 4.00 50.00 77.60 
2.70 68.33 99.00 4.50 51.75 80.10 
3.50 71.67 99.99 8.00 54.00 81.59 
4.95 75.00 99.99 20.00 60.00 83.99 
8.10 78.33 99.99 50.00 74.99 89.99 
11.50 81.67 99.99 70.00 84.99 93.99 
14.50 85.00 99.99 80.00 89.99 95.99 
15.50 88.33 99.99 85.00 92.49 96.99 
16.50 91.67 99.99 86.00 92.99 97.19 
22.50 95.00 99.99 95.00 97.49 98.99 
28.00 98.33 99.99 98.00 98.99 99.59 
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Intersecting Parents 

Here the parent populations overlap to a significant degree. The signature for intersecting 
parents is not as clear as for nonintersecting parents; however, the differences in their 
respective CDF's is dramatic. Compare Figs. 4-15 and 4-17. 

Just as for nonintersecting parents, partitioning these CDF's requires a trial-and-error 
procedure using Eq. (4-13). However, there is no longer an inflection point to guide the 
initial selection off A· Instead, the central portion of the curve is flatter than the extremes, 
a factor that makes partitioning of this type of mixture more involved. Nevertheless, 
following Sinclair (1976), there are some general observations possible from Fig. 4-17. 

1. The central portion of the mixed CDF is flatter than the extremes; all three mixed 
curves intersect each other within this region. This is what makes the inflection 
point difficult to identify. 

2. The value range (on the vertical axis) of the central segment is greater than the 
range of the parent population having the smallest range (sample A in Fig. 4-17). 

3. The F range (on the horizontal axis) of the flat central segment is a coarse 
estimate of the proportion of the small-range population in the mixture lfA in 
Fig. 4-17). 
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Figure 4-17. CDF's for intersecting populations. 
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Observation 2 helps in drawing the CDF's for one of the parent populations; 
observation 3 gives an estimate of fA- However, estimating the properties of the second 
parent CDF adds another level to the trial-and-error procedure. 

Although the corrections outlined above are based on probability laws, the lack of a 
physical base limits the insights to be derived from these procedures. In particular, it may 
not be clear if corrections are needed-deviations from a straight line might be caused by 
sampling error. Furthermore, deciding when a given degree of correction is enough is a 
matter of judgment. Sinclair (1976) recommends that, once a given CDF is partitioned, 
the practitioner should look elsewhere (more or other types of data, usually) for an 
explanation. For example, suppose that two sources of sediment feed a river that later 
deposits sand downstream. If the two distributions of, say grain size, are each normally 
distributed with the same variance but different means, then the deposited sand may have 
a sample PDF that has two peaks. Generally speaking, we can expect that mixtures of 
material will originate from parents having distributions with neither the same means nor 
variances. 

Another uncertainty is the underlying assumption that the untruncated or parent 
populations are themselves transformed Gaussian distributions. As we have seen, there is 
little physical base for a given distribution type to prevail. As in most statistical issues, 
these types of decisions depend to a great extent on the end use. 

Finally, neither the CDF nor the PDF say anything about the relationship of one 
sample space to another or about the spatial arrangement of the parameters. This is 
because both treat the observations as being ordered (sorted) without regard to where they 
came from. We will have something to say about such relations in Chaps. 8 to 11 that 
deal with correlation and autocorrelation. 

Given these limitations, simply plotting the sample CDF's often gives diagnostic 
information without further analysis. For example, Fig. 4-18 gives schematic plots that 
represent various "type" curves for some common complications. Many data sets can be 
quickly classified according to this figure and such classification may prove to be 
sufficient for the problem under consideration. 
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Figure 4-18. "Thumbprint" CDF's for truncated and mixed populations. 

4-7 CLOSING COMMENT 

Distribution functions provide the bridge between probability and statistics. The ideas of 
distribution functions arid, in particular, the ways of summarizing them through the 
expectation and variance operations will recur in many places, as will the Central Limit 
Theorem. The most important ideas deal with the manipulations of the expectation, as 
these are central to the notions of covariance and correlation. However, the reader should 
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be reminded from the last few example PDF's that, even though statistics is a flexible and 
powerful tool, its benefit is greatly enhanced with an understanding of underlying 
mechanisms. 

1 



5 

Estimators and Their 
Assessment 

Since defming probability in Chap. 2, we have begun to appreciate the difference between 
the population and the sample. The population represents the entire body from which we 
could draw examples and make measurements. The sample is a limited series of 
measurements and represents the best we can do, given the physical and fiscal constraints 
of acquiring data. 

We sample to assess the properties of the population. The assessment procedure is 
called estimation; there is a deliberately implied uncertainty in the name. The ultimate 
would be to obtain the population PDF; then we could calculate whichever parameters we 
sought. We have only a sample, however, and parameters must be estimated from this 
set of data based on the results of a limited number of experiments (Chap. 2). We also 
want to know, once we have an estimate in hand, how well it represents the true 
population value. This is where confidence limits are helpful. 

A simple example may help to highlight the issues in estimation. Suppose that we 
decide to calculate the arithmetic average of five porosity values from similar rock 
volumes: 21.1, 22.7, 26.4, 24.5, and 20.9. Since the formula for the arithmetic average 
is 

- 1 I 
f/J=- 'L l/Ji 

I i=l 
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where I is the number of data, we obtain if= 23.1. We have a number. But, what does 
the value 23.1 represent? What have we calculated and what does it represent? Is 23.1 
any "better" than 21.1, 24.5, or any of the other numbers? At least 21.1, 22.7, etc. are 
measured values, whereas there may not be any part of the reservoir with q, = 23.1. As 
we shall soon see, this procedure has several assumptions that have gone unstated. 
Consequently, the value 23.1 may or may not be suitable for our purposes. 

5=1 THE ElEMENTS OF ESTIMATION 

Estimation involves four important elements: 

1. The population quantity to be estimated, 9, (e.g., arithmetic mean, standard 
deviation, geometric mean) from a set of data. () can represent one or more 
parameters. If it represents more than one parameter, we can consider it to be a 
vector instead of a scalar. 

2. The estimator, W. This is the method by which the data values will be combined 
to produce the estimated or sample quantity. 

3. The estimate, ~.probably the most familiar component to the reader. 
4. The confidence interval or standard error, [Var(~]l/2. This allows us to judge 

how precise is the estimate ~ . 

In the porosity example, we chose the arithmetic average for the one-parameter 
estimator Wand 23.1 = ~. No confidence interval was calculated. Furthermore, the most 
important step-choosing 9--was completely ignored. 

The number of parameters required depends on the form of the PDF and the needs of 
the user. Recall from Chap. 4 that the binomial distribution has a two-parameter PDF: 
namely, p and n, the probability of success in each trial and the total number of trials, 
respectively. In many experimental situations, it is advantageous to estimate p from a 
limited number of experiments with n trials each and then use this estimate to characterize 
all future experiments. In that sense, p, the estimate of the population value p, is an 
average probability of success for a particular type of experiment against which other 
similar experiments may be judged. On the other hand, we may have an application 
where we only need the variance of the distribution, which is np(l-p), without explicitly 
needing to know what p is. In this case, we may decide to estimate p-a parameter of the 
PDF-or we may decide to estimate the quantity p(l-p) directly. 

Similarly, the normal distribution has two parameters, the mean and variance, which 
may be estimated to characterize a random variable suspected of being normally distributed 
(e.g., porosity). If a physical process is normally distributed, the mean and variance 
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precisely describe the PDF. Other distributions may require more (or fewer) parameters or 
statistics. 

Recall that a statistic is any func.tion of the measured values of a random variable 
(Chap. 2). It is an estimate of a parameter that could be computed exactly if the PDF 
were known. To distinguish between the estimate and the estimated quantity, the 
estimate is often prefixed with the terms empirical or sample. For example, some 
common statistics are measures of central tendency (e.g., averages or sample means) and 
measures of dispersion (e.g., sample variance or interquartile range), but they are by no 
means limited to these. As we will see, there may be several ways to estimate a 
parameter. 

5-2 DESIRABLE PROPERTIES OF ESTIMATORS 

Since any given statistic (parameter estimate) is a function of the data, then it too is a 
random variable whose behavior is described by a PDF. That is, given an estimator W 
and a set of data {XI.X2, ... ,XJ} taken from a population with parameter value 8, W 
produces an estimate ~based on the data: ~ = W(XI. X2, ... ,XJ). Knowing this~ there are 
several features that a good estimator will have: small bias, good efficiency, robustness, 
and consistency. In addition, it should produce physically meaningful results. 

5-3 ESTIMATOR BIAS 

The PDF of an estimate ~ should be centered about the population parameter () we wish 
to estimate (Fig. 5-1). If this is not true, the estimator W will produce estimates that 
tend to over- or underestimate 9, and the estimator is said to be biased. Bias is given by 
the expression 

b = E(fJ}- () 

Bias is generally undesirable, but sometimes an esti>mator can be corrected for it. Bias has 
two principal sources, measurement resolution and sampling, as the following example 
illustrates. 

Example 1 - Biased Sampling. Data from core-plug samples are sometimes 
misleading because of preferential sampling. The samples may not be 
representative for a variety of reasons: incomplete core recovery (nonexistent 
samples), plug breakage in friable or poorly consolidated rock (failed 
samples), and operator error (selective sampling). 
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Chap. 5 Estimators and Their Assessment 

Figure 5-1. Estimator bias (b) depends upon the PDF of~. 

An interval of core has two lithologies, siltstone and sandstone, in the 
proportions 30% siltstone and 70% sandstone. C/Jsilt = 0.10 and 
C/Jsand = 0.20, If the siltstone is not sampled, what is the bias in the 
average porosity obtained from plug samples? 

The true mean porosity is given by 

cfrr = 0.30. 0.10 + 0.70. 0.20 = 0.17 

All samples are sandstone with one porosity value. Therefore, ignoring 
measurement error, the apparent formation porosity is given by 

C/Ja = 1.0 • 0.20 = 0.20 

1 
i 

i 
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The bias is b<P = l/Ja- ¢T = +0.03, or about 18% too high. 

5-4 ESTIMATOR EFFICIENCY 

The second property of a good estimator is that the variability of its estimates should be 
as small as possible. An estimator with a small variance is said to be precise or efficient. 
Do not mistake the variance of the sample space for the variance of the estimator. The 
former is a property of the physical variable and the latter is a property of the data and the 
estimation technique (Fig. 5-2). 

/-arorw 

Figure 5-2. Estimator efficiency is based on how variable the estimates~ are. 

[Var(~]l/2, the standard deviation of the estimates, is called the standard error. There 
are theoretical statements such as the Cramer-Rao Inequality (Rice, 1988, p. 252) about 
the minimum variance an estimator can attain. When an estimator has no bias and this 
minimum variance, it is said to be an MVUE (minimum variance, unbiased estimator). 

Example 2a- Determining Uniform PDF Endpoints (Method 1). Monte 
Carlo reserves estimation often assumes a uniform PDF for one or more 
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variables (Chap. 4). How do we obtain the lower and upper limits? 
Obviously, we must depend on the data to reveal these endpoint values. 

In this example, two methods for estimating endpoint values are presented and 
compared for bias and efficiency. Rohatgi (1984, pp. 495-496) presents a 
third method. To simplify the discussion, we assume that the upper endpoint 
is unknown and the lower endpoint is zero. In the context of the previous 
discussion on estimators, e is the upper endpoint and the parameter to be 
estimated (Fig. 5-3). 

For the uniform PDF, the mean value of the random variable X is given by 

00 8 

E(X) = J xf(x) dx = j(x/0) dx = 012 
-oo 0 

That is, the arithmetic mean is exactly one-half the upper limit 0 when the 
lower limit is zero (Fig. 5-3). 

We use this result to provide an estimator for e. 

1 

9 

f(x) 

0 9 
2 

e 

Figure 5-3. Uniform PDF with lower limit 0, upper limit 0, and mean 0/2. 

Given I samples of X ,X 1. X 2 •... ,X J, taken from a uniform distribution, the 
above suggests that twice the arithmetic average should give an estimator for (): 
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2 I 
~1 = 2 X=/~ Xi 

1=1 

Let W 1 be this estimator (the subscript 1 on e, W, and b below refers to the 
first estimator). The bias of this estimator is as follows: 

Since b1 is zero, the estimator W1 is unbiased. The variance of W1 is 

Var(~l) = E[(~l- (J) 2] = E(~l2) _ (J 2 

= 4[E( X)2- E( X)2] = 4Var( X) 

- 1 
Since (see Eq. (4-4)) Var( X)= I Var(X) for I independent samples Xi, 

= 7 [ix2IO )dx - ( o2t4)] = o2!3I 

The variability of the estimates ~1 depends upon(} and/, the number of data. 

1 i3 

Var(~ oc J-1 is a very common dependence, i.e., the standard error is halved with a 
four-fold increase in data-set size. This suggests that overly stringent specifications for 
estimates can be quite costly. Var(~ oc () 2 is reasonable since, with lower limit fixed at 
0, the upper limit (}will control the variability of X. 

Example 2b- Determining Uniform PDF Endpoints (Method 2). A more 
obvious estimator than W 1 for the upper limit of a PDF is to take the 
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maximum value in the data set: ~ = Xmax· Let W2 be defined as 

~2 = max{Xl>Xz, ... ,XJ}. 

From theory based on order statistics (Cox and Hinkley, 1974, p. 467), 

E(~)= (-1 )e 
/+1 

Hence, W2 is a biased estimator with b2 = -l/(1+1). As we might expect, 
X max never quite reaches e, no matter how many data we have. We can 
correct for this bias by redefining W2 as [(1+1)/1] max{X 1. X2, ... ,XJ}. This 

estimator is unbiased because E(~) = 8. It has variance 

If we compare the variances of W 1 and W 2· we conclude that W 2 is more 
efficient than W1 because W2 has a a lower variance than W1. Their relative 
efficiencies are 

A similar procedure could be used to find an estimator for the lower limit a of 
a uniform PDF: ~= [!1(1+1)] min{X1,X2, ... ,XJ}. 

The estimator, W 2. in Example 2b was biased but more efficient. Efficiency is 
evidently not an intuitively obvious property. W 1 explicitly used all the data in the 
estimator, whereas W2 only used the values to order the data and explicitly used only the 
maximum. It may appear that W2 made less use of the information contained in the data, 
but that is not the case. 

There are several methods to develop estimators (Rice, 1988, Chap. 8). The methods 
of moments and of maximum likelihood are two examples. Maximum likelihood 
requires that the population PDF be known (or assumed). This additional information 
helps to make likelihood estimators efficient. 

Combining the properties of estimator bias and variability introduces an important 
property known as consistency. An estimator W is consistent if, as the number of data, 
l, becomes large, ~ approaches e (asymptotically unbiased) and the variance of ~ 
approaches zero. 
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5-5 ESTIMATOR ROBUSTNESS 

Estimator robustness is the ability of the estimator to be relatively uninfluenced by errors 
in a small proportion of the data set. We appreciate that errors can occur in the 
measurement and recording of data; a decimal point could get moved or a specimen could 
be improperly tested. If the unrepresentative values have a large influence on the estimate 
produced, then the estimator is not robust. We will always have problems trying to find 
an estimator that is responsive to meaningful data values but is insensitive to wild, 
unrepresentative data. 

Consider, for example, the following set of porosity data: 8.3, 9.6, 7.4, 8.9, and 9.1. 
For this set, X= 8.7 and~o.5o = 8.9, which are in good agreement (within 2%). What 
happens if one of the data values, 9.1, were misrecorded as 19.1? In that case, X= 10.7 

1\ 
while Xo.so = 8.9, a disagreement of 18%, which can be significant. 

Substantial work has been done concerning robust estimators. Barnett and Lewis 
(1984, Chap. 3) discuss some quantitative assessments for robustne~. A simple example 
is using the median to estimate the mean. The sample median (X 0.50) is the middle 
value in a set of I data: 

{
X(l+l)/2 

1\ 

Xo.5o = 1 
2 [XI/2 + X (1+2)/2] 

for I odd 

for I even 

where X 1:::;; X2::;; X3::;; ···::;;XI is an ordered data set. If the data come from a normally 
distributed population with mean J.l, ~0.50 is an unbiased estimate of Jl, but it is about 
25% less efficient than the arithmetic average, X (Kendall and Stuart, 1977, pp. 349-
350). Frequently, the most efficient estimator is less robust than other estimators. The 
more efficient estimators use all information, including knowledge of the population 
PDF, but they can deteriorate quickly with small deviations from the underlying 
assumptions. 

We will not dwell further on robust estimators because there are excellent treatments 
elsewhere (e.g., Hoaglin et al., 1983; Barnett and Lewis, 1984). We will, however, 
sometimes refer to an estimator as robust or nonrobust. In reservoir description, we must 
examine the robustness issue from two perspectives: choosing a robust estimator when 
we have a choice and, when we do not have a choice, assessing the estimator sensitivity. 
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5-6 ASSESSING THE SENSITIVITIES OF 
ESTIMATORS TO ERRONEOUS DATA 

Quantification of estimator robustness is often difficult. We can, however, make some 
progress by looking at the differential sensitivities for some estimators. If we have an 
analytic expression for the estimator W, then we can calculate the sensitivities based on 
the relation@= W(X1, X2, .. . ,XJ): 

where A@i is the error in the estimate arising from the error AXi in the measurement of 
the ith datum. This expression comes from the truncated Taylor series expansion of W 
about the true data values XI,X2, ... ,XJ, so it may only be useful for small errors (less 
than 20% or so) in the X's. The expression also assumes the AX/s are independent. 
Given that this approach has its limitations, it is often still useful to examine the 
estimator sensitivities to measurement errors. Knowing these sensitivities, resources of 
data acquisition can be better applied to give the least erroneous estimates possible. 

Example 3 -Archie's Law Sensitivity Study. We want to assess hydrocarbon 
saturation in a formation by measuring formation porosity and resistivity 
with wireline logs and cementation and saturation exponents in the 
laboratory. We use a model, Archie's law, 

to predict water saturation, where a is a constant, m and n are the cementation 
and saturation exponents, respectively, and Rw and Rt are the water and 
formation resistivities (Archie, 1943). In this case, our estimator-Archie's 
law-is fixed, but we want to know whether to pay for the expensive logging 
suite (accurate to ±5%) or spend extra money acquiring better laboratory data. 

We assess the impact of measurement errors in a, ¢!, m, n, Rw, and Rt upon 
the water saturation Sw. Taking partial derivatives of sums and differences is 
easier than differentiating products and quotients. Since Archie's law consists 
only of products, quotients, and exponents, we can simplify things by taking 
logarithms of both sides before calculating the partial derivatives: 

1 
ln(Sw) =- [ln(a) + ln(Rw)- mln(¢1)- ln(Rt)] 

n 
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Hence, in the case of the saturation exponent n, for example, we have, 
assuming that a, cp, m, n, Rw, andR1 are independent, 

a ln(S ) 1 
dn. w =- n-2 [ln(a) + ln(Rw)- mln(</J)- ln(R1)] =-;, ln(Sw) 

or asw = _ Sw ln(S ) 
an n w 

Hence, 
Sw 

..1Sw = - -ln(Sw)..1n 
n 

A similar approach for the other variables gives the following expression for 
the total error in Sw arising from errors in all the measured variables: 

Sw [ ..1Rw ..1R t ..1a Q_!P. J 
..1Sw =--;;- - ln(Sw)..1rt + Rw - Rt + --;;- m <P - ln(</J)..1m 

The proportional change in water saturation is 

..1Sw 1 [. L1Rw ..1R t ..1a Q.!P. J 
Sw =-;;, -ln(Sw)..1n + Rw - Rt. + --;;- m <P - ln(</J)..1m 

Thus, Rw. R1, a, and <P all contribute proportionately to the total error ..1Sw. 
If m = 2, porosity errors are twice as significant as resistivity errors. On the 
other hand, m and n contribute directly according to the porosity and water 
saturation of the material under consideration. Errors in n could lead to 
significant errors in Sw at low water saturations, while errors in m can be 
important for low-porosity media. Thus, extra money expended to make 
careful laboratory measurements may be worthwhile. 
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Unlike Archie's law, which deals with static quantities, there are also instances where 
measurements can influence the predicted flow properties of the reservoir. Relative 
permeability measurements are a good example of this situation. They are required for 
immiscible multiphase flow. They are a laboratory-determined property and are usually 
based on results from a few, small rock samples. Thus, these data are susceptible to 
errors and those errors may be important, as described in the next example. 
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Example 4 -Assessing the Effects of Relative Permeability Errors. In a 
common case of one spatial dimension and two phases (oil and water), the 
frontal advance solution (Willhite, 1986, pp. 59-64) of Buckley and Leverett 
shows that the fractional flow is the important quantity that relates the 
relative permeabilities to flooding performance. It is not the relative 
permeability measurement errors per se that matter, but the effects of these 
errors upon the fractional flow. If we ignore gravitational effects and assume 
negligible capillary pressure, the water fractional flow is 

1 
fw = -----='----

1 + kro Jlw 
krw f.lo 

where kr is the relative permeability, 11 is the fluid viscosity, and the 
subscripts o and w refer to oil and water. By definition fw :s:; 1 for this case. 
An analysis similar to that of Example 3 shows that 

Nw = (1- fw) (Llkrw _ Llkro) 
fw krw kro 

Thus, errors infw are less than errors in the relative permeabilities, since 
0 < (1- fw)< 1. If a shock front develops, only fw values exceeding the 
breakthrough valueJwbt. exist (see Lake, 1989, Chap. 5). This further 
mitigates the impact of relative permeability errors. The errors in kro. which 
can be large when kro is small, produce smaller changes infw· 

5~ 7 SENSITIVITY COEFFICIENTS 

The sensitivity analysis approach just presented can be developed further using the 
properties of the logarithm and the variance operator. This can lead to some to some 
interesting insights into the sources of variability and data error. This process is 
sometimes called first-order or linearized error analysis. 

Suppose we have an estimator of the form 

where Y is some quantity to be estimated that depends on the values of the X 1, X 2, ... , 
XJ, all independent quantities. We treat the Xi as random variables even though the 
relationship is deterministic; this makes Y a random variable also. In general, the 
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function Y is known (usually it is a physical law) and is nonlinear. As discussed in 
Chap. 1, statistics cannot help in determining the form of Y, but, once it is determined, 
statistics can determine the sources of its variability. We could actually treat a system of 
equations of the above form but will not for mathematical brevity. 

As in Section 5-6, we linearize Y by first writing its differential expansion: 

Upon multiplying and dividing each term on the right side by the respective Xi· 
multiplying the entire expression by Y, and recognizing the differential properties of 
natural logarithms, this equation becomes 

d ln(Y) = ar d ln(X1) + a2 d ln(X2) + ··· + a1 d ln(XJ) (5-1) 

where the coefficients ai are sensitivity coefficients defmed as (Hirasaki, 1975) 

These coefficients are not, at this point, constants since they depend on the values of the 
entire set of Xi. The ai are the relative change in Y caused by a relative change in the 
respective Xi. The relative part of this statement, which arises in the derivation because 
of the use of the logarithms, is important because the Xi can be different from each other 
by several factors of ten. Of course, since Y is known, the sensitivity coefficients can be 
easily calculated. 

Equation (5-l) is thus far without approximation. We now replace the differential 
changes by discrete changes away from some base set of values (denoted by 0 ): 

/ 

0 0 
d ln(Xi) = ln(Xi)- ln(Xi) = ln(Xi I xi) 

' 
The resulting equation is now only an approximation, being dependent on the selection of 
the base values. It is a good approximation only in some neighborhood of the base 
values. If we, in addition, evaluate the ai at the base values, the estimator becomes linear 
with constant coefficients. 

f 
e 
If 
e 

IT 

If 
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I 

ln(YIY0 ) =I ai ln(Xi/Xf) 
i=l 

This linearized estimator is now in a suitable form for application of the variance 
operator, 

I 

Var(Y) =I a; Var(Xi) 

i=l 

from the properties Var(aX) = a2Var(X), Var(X+ constant)= Var(X), and Var(constant) = 0. 
The signs of the ai no longer matter since they appear squared. This expression assumes 
that the Xi are independent. 

Example 5- Sensitivities in the Carman-Kozeny Equation. We can use the 
above procedure on a fairly simple equation to make inferences about the 
origin of permeability heterogeneity. The application also illustrates other 
ways to linearize estimators. 

Let us view a reservoir as consisting of equal-sized patches, each composed of 
spherical particles of constant diameter. (The facies-driven explanation of 
heterogeneity discussed in Chap. 11 suggests that this picture is not too far 
from reality, although we invoke it here mainly for mathematical 
convenience.) The Carman-Kozeny (CK) equation 

now gives the permeability within each patch. Dp is the particle diameter, (/> 
the porosity, and r the tortuousity in this equation. 

The CK equation is a mix of multiplications and subtractions. It can be 
partially linearized simply by taking logarithms. 

ln(k) = 2ln(Dp) -ln('r) + 1{(1 ~3(/>)2] -ln(72) 
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From inspection, the sensitivity coefficients for Dp and-rare aDp = 2 and 
a-r = -1. These coefficients are constant because of the logarithms. By 
differentiating this expression, the sensitivity coefficient for porosity is 

_l...::1!1!. 
a(/J- 1 - (jJ 

This requires a base value, which we take to be (jJ = 0.2 from which 
at= 3.25. Note that the CK permeability estimate is most sensitive to 
porosity, followed by particle size, then tortuousity (la¢1 > lanPI > la.tJ). 

The variance ofln(k) is 

I 

""' 2 2 2 2 Var[ln(k)] = .LJ ai Var(Xi) =at Var[ln(f)] +aD Var[ln(Dp)] +a-r Var[ln(r)] 
~1 p 

Estimating this variability requires estimates of the variabilities of ln(f), 
ln(Dp). and ln( r). We note in passing that porosity, particle size, and 
tortuousity are independent according to the patches model originally invoked. 

Reasonable values for the variances are Var[ln((j))] = 0.26, Var[ln(Dp)] = 2.3, 
and Var[ln(1')] = 0.69. These values are taken from typical core data. The 
variance of ln(k) is now 13.08, but perhaps the most insight comes from 
apportioning this variance among the terms. From this we find that 24% of 
Var[ln(k)] comes from ln((j)), 70% from ln(Dp) and 6% from ln(t'). Sub
stantially more of the variability in permeability comes from variability in 
particle size, even though the estimate is more sensitive to porosity. 
Additional calculations of this sort, that do not regard {j), Dp. and 1: as 
independent, are to be found in Panda (1994). 
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Although simple, Example 5 illustrates some profound truths about the origin of 
reservoir heterogeneity-namely that most heterogeneity arises because of particle size 
variations. This observation accounts, in part, for the commonly poor quality of 
permeability-porosity correlations. Similar analysis on other estimators could infer the 
source of measurement errors. We conclude with the following three points. 

1. The procedure outlined above is the most general with respect to estimator 
linearization. However, as the example shows, there are other means of 
linearization, many of which do not involve approx,imation. These should be used 
if the form of the estimator allows it. For example, logarithms are not needed if 
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the estimator is originally linear. In such cases, the entire development should be 
done with variables scaled to a standard normal distribution. 

2. The restriction to small changes away from a set of base values is unnecessarily 
limiting in many cases. When the small change approximation is not acceptable, 
the general nonlinear estimator Y= W(X1,X2, ... ,X]) can be used in Monte 
Carlo algorithms that do not require the estimator to be linear (e.g., Tarantola, 
1987). Many such algorithms also allow for the Xi to be dependent. 

3. Perhaps most important is the fact that the procedure allows a distinction between 
sensitivity and variability (or error). Sensitivity, as manifest through the 
sensitivity coefficients, is merely a function of estimator form; variability is a 
combination of sensitivity and the variability of quantities constituting the 
estimator. In most engineering applications, variability is the most interesting 
property. 

5-8 CONFIDENCE INTERVALS 

During estimation, the information conveyed by the data is "boiled down" by the 
estimator W to produce the· estimate ~. There usually is information in the data that is 
unused. Since~ is a random variable (e.g., Fig. 5-2), the additional information can be 
used to estimate 'B's variability. This variability assessment, sf}.= [Var(~]l/2, provides a 
confidence interval for ~. 

Example 2 showed that estimator W 1 produced unbiased estimates with 
Var(~l) = rP /3/while W2 gave bias-corrected estimates with Var(~2) = e 2fJ(I+2) for I 
data. If we assume that the ~ 's are normally distributed, then ~~- N[ e, e2!31] and 
@1_ N[8, e2JI(l+2)]. These results permit us to say, at any given level of probability, 
how close our estimates @1 and ~2 are to the true value e (Fig. 5-4). For any number of 
data and value of fJ, W2 will give estimates more closely centered about e. 

An alternative to showing estimated PDF's is to give the standard errors~. along with 
the estimate, usually written as ~ ± s~. s~. is an estimate of [Var(~)]l/2 because we 
(again) have to depend on the data. For example, in the case of W1 in Example 2a, we 
have ~1 ± ( fJ2/3J)112. Clearly, if we are estimating(), we do not know() for the standard 

error of ~1 either. We do the next best thing, however, and use the estimate ~1 again: 
~1 ± ~13[)112 . In essence, we are giving our best estimate of ()along with our best 
estimate of its standard deviation. 
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Figure 5-4. PDF's of ~1 and~ with thex axis scaled in units of (8!3!)112, centered at e. 

We often assume that unbiased estimates are normally distributed. This is not always 

true, particularly when I is small (e.g., less than 20), and theory exists for standard errors 

of some estimators (e.g., the arithmetic average and the correlation coefficient). However, 

as a working practice for I ~ 20, it is often safe to assume ~ is normally distributed. We 

can then use the properties of the normal PDF to state how often 8 will be within a given 

range of~- Hence, there is a 68% chance that(~- sf}. )< (8 < ~+sf}.) and a 95% chance 

that (o(,e)- 2sf).)< (8 < ~ + 2sf).) (Fig. 5-5). 

95% 

~\ I 
9? 

I ~?I ~?I 9? 
1»'-\\ I I 

A A A A A 
0 e-2s~ e-s~ e S+s~ e+2s~ 

I-cc ~I 68% 

Figure 5-5. The true value for() is not known. The size of interval where it may be 
located depends on the probability assignment. 
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To use standard errors to define and interpret confidence·intervals requires, strictly 
speaking, that the variable be ·additive (rati.Ometric, Chap. 3). For this type of variable, 
we can add and subtract multiples of the standard error without difficulty. We do reach a 
limit, however, because we might, for example, produce a reservoir thickness such as 
h = 22 m ± 15 m. The 95% confidence limits would be -8 m < h < 52 m, and we know 
that lower extreme of -8. m cannot be correct This is because the assumption of a normal 
PDF is no longer valid and we are seeing it break down. But there is also the more 
difficult area where we want to use standard errors with interval-type variables, which may 
notbe additive. These are very common in reservoir characterization (e.g., permeability, 
density, anp resistivity). 

The role of additivity in statistical ·analysis requires further research. Here, we will 
take a pragmatic approach that does not demand unconditional additivity of the variables 
to be analyzed. That is, if X is the reservoir property being considered, we will not 
require that 'LaiXi be a physically meaningful quantity for all a's and X's. We will 
only require "local" additivity, so that X± AX, where L1X is a "small" change in the 
value X (say, IAXI :::;; 0.20X), is still physically meaningful. By assuming local 
additivity, we can continue to interpret standard errors in the conventional way. Large 
changes, however, may lead to nonphysical values. For example, porosity is clearly 
nonadditive because it cannot exceed unity. It is, however, a ratio of additive quantities: 
void volume Vv + total volume Vr, where Vv:::;; Vr. For Vr constant, a Vv 
perturbation, AVv, is directly proportional to the change in porosity: At/)= AVv/Vy. 
Hence, as long as Vv + AVv:::;; Vr and Vr is constant, porosity is locally additive. If 
porosities with differentmeasurement volumes are being added, they can be put on a 
comparable basis by adjusting for Vy. 

The traditional definition of confidence intervals is tied to Var~. Confidence intervals 
are also just one type of statistical interval that could be considered. Others exist and are 
discussed at length in Hahn and Meeker (1991). We will confine discussion here to the 
traditional usage. 

5·9 COMPUTATIONAL METHODS TO OBTAIN 
CONFIDENCE INTERVALS 

While a very useful tool for conveying uncertainty, confidence intervals in many 
situations may be difficult to obtain or inaccurate, depending upon the exact 
circumstances of the problem. In particular, small data sets from non-normal populations 
can give rise to biased estimates and produce erroneous confidence regions if the usual 
normal-theory assessments are used. Two procedures, called the jackknife and the 
bootstrap, address these problems. The idea of these methods is to assess the variability 
of estimates using incomplete data sets. That is, if we have I samples in a data set, we 
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can generate a number of smaller-size data sets from it. The jackknife and bootstrap 
methods then use these subsets to assess the variability of the estimate. 

Consider, for example, the jackknife technique on a data set of size I using an 
estimator W. It is possible to generate I subsets of size I -1 by dropping a different datum 
for each subset. Then, using W, we can produce an estimate for each of the I subsets. 
Let @i represent the estimate based on the ith subset, i = 1, 2, ... ,I and let @represent the 
estimate based on the full set of size I. An unbiased estimate of 8 is given by 

I- 1 I 
B*=I~ ---I,Bi 

I i=l 

A variance estimate for 8*, which we need to obtain a confidence interval, is given by 

I II( 1 I) 
S 2 - ---~ ~. - ~ ~· 2 
8*- I L. ,-I..(,.,~ '1 

. 1 J=l 
I= 

We can then apply the usual confidence interval techniques previously discussed to 
indicate the variability in 8*. Clearly, if I exceeds 5 or 10, the jackknife becomes 
cumbersome, making it a perfect task for a computer. Some of the newer data-analysis 
packages have this feature available. 

The bootstrap is even more computationally intensive than the jackknife but similar in 
approach. The bootstrap generates subsets allowing replication of data, however. Hence, 
a much larger number of subsets can be generated. As for the jackknife, W is used to 
produce an estimate ~j for j = 1, 2, ... ,1, where J usually exceeds I. The estimate 1J for 
the complete data set is given by 

with a variance of 

J 

~-l" 11· - ]L. '} 
j=l 

J 
s2 =-1 ~ (~· _ §)2 

tJ J-lL. J 
j=l 
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The jackknife or bootstrap are useful not only for obtaining confidence intervals of X. 
For example, these methods may be very useful for analyzing output from stochastic 
simulations, where each run can be very costly and, hence, there are very few runs to 
analyze. Many of the results are likely to come from non-normal distributions (e.g., 
produced quantities, time to breakthrough, and water cut). Hence, the "average" 
performance may be hard to assess without the jackknife or bootstrap. Similar arguments 
can apply to geologic analyses, too. For example, calculation of R2 estimates from 
small numbers of core-plug porosity and permeability data may be analyzed using the 
jackknife or bootstrap. The reader is referred to Schiffelbein (1987) and Lewis and Orav 
(1989) for further details and references. 

Example 6- Jackknifing the Median. We compute the jackknife estimate of 
the median from ten wireline porosity measurements, X1, ... ,X1Q, shown in 
Table 5-l. ko.so = (0.191 + 0.206)/2 = 0.199. ko.so,i is the sample 
median of the data set without the ith point in it. 

Table 5-1. Example 5 jackknife analysis. 

i Xi j( 0.50 i 
1 0.114 0.206 
2 0.146 0.206 
3 0.178 0.206 
4 0.181 0.206 
5 0.191 0.206 
6 0.206 0.191 
7 0.207 0.191 
8 0.208 0.191 
9 0.218 0.191 
10 0.242 0.191 

Figure 5-6 is a probability plot of the data, suggesting they appear to come 
from a normal PDF. Because the data appear to have a normal PDF,ko.so 
is unbiased. Hence, we do not expect the jackknife to produce an estimate 
different from ko.so and that is the case: 

I 
M .fl. /-1 ~ A 9 x050 = Ixo.so- 1 ~ xo.so,i = 10•0.199- 10 (5 • 0.206 + 5 • 0.191) 

i=l 

= 0.199 
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Note that we are maintaining three-figure accuracy, in keeping with the 
original data. 

Porosity 
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Figure 5-6. Porosity data probability plot showing approximately normal PDF. 
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The jackknife, however, also provides a confidence interval estimate of the sample 
median: 

I- 1 I ( 1 I . )2 
sg* =-1-I, to.so,i- f.L zo.50,j 

0.50 J= 1 
i=l 

= {0 [5 (0.206- o.I99)2+ s (0.191 - o.I99)2J 

= 0.000509 
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or sx* = 0.0225 
.0.50 . 

Thus, at 95% probability, the confidence interval for k~.so is 

from(k~.so - 2s .* ) to(k~.so + 2s ·• ), or 0.154 < k~.so < 0.244. 
Xo.so Xo.so 

Clearly, there is a large possible range for k~.so· Theoretical results, 

assuming Xi is normally distributed, give s •• = 0~020 (Kendall and Stuart, 
Xo.so 

1977, p. 351), which agrees well with the jackknife value. 

The jackknife procedure is not restricted to subdividing I data into subsets of size I-1. The 
procedure is more general. Lewis and Orav (1989, Chap. 9) have the details. 

5-10 PROPERTIES OF THE SAMPLE MEAN 

The arithmetic average is a very common measure of central tendency. It has been 
extensively studied and we give some results here. Let Xi be a random sample of I 
observations from a distribution for which the population mean J.L and variance CY2 exist. 
The arithmetic average or sample mean·is 

- 1 I 
X=- LXi 

I i=l 

F~m the Central Limit Theorem (Chap. 4), one can show (Cramer, 1946, Chap. 28) that 
X has the following properties: 

- (J'2 
X - N(J.L, /) for large I 

- ~ ~ 
X- N(Jl, /) exactly, if Xi= N(Jl, 0'":') 

where E(Xi) = J.L and Var(Xi) = 0'2. The first result is independent of the PDF of the 
random variable; it says that X is an unbiased estimate of J.L or, on avera~. X over all 
samples is equal to the "true" sample space mean. In some cases, X approaches 
normality for surprisingly small I. Papoulis (1965, pp. 267-268) gives an example of 
independent, uniformly distributed X and I= 3. 
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One of the interesting features of the arithmetic a~erage is how its variability.depends 
on the number of samples, I. The variability of X decreases as I increases, which is 
what we would expect; the more information we put in, the better the estimate ought to 
be. In particular, the standard deviation of X is proportional to I-1/2, a property 
common to many estimators (e.g., Example 2a). 

Before we consider further the sampling properties of X, we first discuss variance 
estimation. 

5-11 PROPERTIES OF THE SAMPLE VARIANCE 

The sample variance is a measure of dispersion. It is defined as 

I 

s2 = t ~ (Xi - x)2 
i=l 

s2 is biased since we can show (Meyer, 1966, p. 254) that 

2 I- 1 2 E(s) =--a 
I 

However, just as in Example 2b, we can formulate an unbiased estimate of a2 by using 

AsL_I_s2 
-I- 1 

I 
=-1-" (Xi- X)2 

I- 1 ~ 
i=l 

This result has a more general concept embedded in the use of (I- 1) instead of I in the 
denominator. Since the sample mean is required to compute the sample variance, we have 
effectively reduced the number of independent pieces of information about the sample 
variance by one, leaving (I- 1) "degrees of freedom." Therefore, (I- 1) is a "natural" 
denominator for a sum of squared deviations from the sample mean. Using (I- 1) instead 
of I to estimate the variance is not very important for large samples, but we should 
always use it for small data sets (/ < 20). 
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If X- N(Jl, a2), then the Var(~2) = a2/21 (Kendall and Stuart, 1977, p. 249). More 
generally, the variability of~2 is approximately 

V r"2) E {[X - E (X)]4} - Var(X)2 ar,s = 
4(/- l)Var(X) 

where E {[X- E(X)]4} is the fourth centered moment of X. This result follows the general 
pattern that the estimate variability for the kfh moment depends upon the 2kth moment of 
the PDF. 

To estimate the standard deviation, one may usually take the square root of the 
variance. For very small data sets (/ ~ 5), however, another effect comes in. The square 
root is a nonlinear function and causes the estimated standard deviation to be too small. 
When I~ 5, multiply ~by 1+ (1/4/) (Johnson and Kotz, 1970, pp. 62-63). 

5~12 CONFIDENCE INTERVALS FOR THE SAMPLE 
MEAN 

The arithmetic average, X, is often useQ. to estimate E(X). There are some theoretical 
results for the confidence limits of X when the samples come from a normally 
distributed population. If we know the population variance, a2 = Var(X), we would 

know that (Jl-zat{D ~ X~ (Jl+zat{D for a fraction [1 - P(z)]/2 of the time. (Recall P 
is the standard normal CDF.) Usually, howe~r, we do not know a but can estimate it 
from the same samples we used to calculate X. If that is the case, we have to introduce 
a different term that acknowledges that~ is also subject to statistical variation: 

J1 = x ± t(a/2, df> ~r[i 

where t(a./2, df) is the "t value" from Student's distribution (Fig. 5-7) with confidence 
level a, df =I - 1 degrees of freedom, and ~is the sample standard deviation. 

Values of the function t(a/2, df) are widely tabulated (e.g., Table 5-2). a is the 
complement of the fractional confidence limit (e.g., if we want 95% confidence limits, 
then a= 0.05). As df (i.e., the sample size) becomes large, the t value approaches the 
normal PDF value for the same confidence level. For a given value of t = to, the 
symmetrical form of Student's distribution implies that any random variable T with this 
PDF is just as likely to exceed some value to as it is to be less than -to. Consequently, 
when we set a confidence level a forT, we usually want t(a/2, df) because T can be 
either positive or negative with equal probability. For example, if our confidence level is 
(l - a) = 0.95, we find t(0.025, df). This situation is called a double-sided confidence 
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interval. If we knew, however, that T could only have one sign or we were interested 
only in excursions in one direction, then we would use t(a, df) for a single-sided 
confidence interval. 

Table 5-2. t values. 

Tail area :probability, a 
df 0.05 0.025 0.005 
1 6.314 12.706 63.657 
2 2.920 4.303 9.925 
3 2.353 3.182 5.841 
4 2.132 2.776 4.604 
5 2.015 2.571 4.032 
6 1.943 2.447 3.707 
7 1.895 2.365 3.499 
8 1.860 2.306 3.355 
9 1.833 2.262 3.250 
10 1.812 2.228 3.169 
11 1.796 2.201 3.106 
12 1.782 2.179 3.055 
13 1.771 2.160 3.012 
14 1.761 2.145 2.977 
15 1.753 2.131 2.947 
16 1.746 2.120 2.921 
18 1.734 2.101 2.878 
20 1.725 2.086 2.845 
22 1.717 2.074 2.819 
24 1.711 2.064 2.797 
26 1.706 2.056 2.779 
28 1.701 2.048 2.763 
30 1.697 2.042 2.750 
40 1.684 2.021 2.704 
60 1.671 2.000 2.660 
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f 
df~oo 

0 t 

Figure 5-7. The Student's distributions change shape with the degrees of freedom (df). 
t is the value for which the tail area is a at the stipulated df value. 

Example 7- Estimating the Mean Value. Suppose we wish to specify the 
95% (a= 0.05) confidence interval for the population mean from a sample of 
25 data points (df = 24) with X= 30and 1 = 3. The t value from the above 
table is 2.064 and the above formula yields 

or 
Jl = 30 ± (2.064) 3r/2s 

Jl E {28.76, 31.23} 

Thus, we can be 95% certain that the population mean is within the stated 
limits (Fig. 5-8). 

~~.------95%------~ .. ~ 

~? ~? ~? 
~----~~~,--+1~1------~----~~~--~~1 
0 28.76 30.00 31.23 

Figure 5-8. Confidence limits for X. There is a 2.5% chance that Jl > 
31.23 and a similar chance that Jl < 28.76. 
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Had we used the z value instead of the t value (i.e., if we ignored the fact that 
we have estimated the standard deviation from the data as well as the mean), 
the factor would be 1.960 (from normal table, Chap. 4) instead of 2.064. 
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Despite its considerable attractions, there are some problems with the sample mean. It 
can be inefficient when the Xi are coming from skewed populations, such as the log
normal PDF. Consequently, we can expect that the arithmetic averages of quantities like 
permeability and grain size may be inaccurate. Agterberg (1974, pp. 235ft) discusses an 
efficient method for estimating the mean for log-normal populations. 

5·13 PROPERTIES OF THE SAMPLE MEDIAN 

Besides the sample mean, the ~ample median io.so is another measure of central 
tendency. We have already observed thatio.so is more robust than X. io.so. 
however, doe~ not have the nice distributional properties obtained through the central 
limit effect that X has. 

The exact PDF and properties of io.so are discussed by Kendall and Stuart (1977, 
pp. 252, 348-351). When X- N(J.L, u2), io.so is unbiased and its standard error is 
approximated by 

""var(io.so) = ~ 

for I data. Since Var( X)= u2ti we find that, for large/, 

Var( X) u2jJ = 2/n 
Var(io.so) ndl-!21 

Hence, ~x = io.SO· So, for the normal PDF, where Xo.so = E(X), estimatio~ of 

the mean using i"o.so is less efficient (i.e., needs about 60% more data) than using X. 

5·14 PROPERTIES OF THE INTERQUARTILE RANGE 

The interquartile range (IQR) is the difference (X0.75- Xo.25) and is another measure of 

dispersion. It has been used as a robust substitute for the standard deviation, .Vvar(X). 
Apart from robustness, the sample IQR, (i o. 75 - io.25),. has several other features in 
common with the median. Both are based on order statistics, which are sample quantiles. 
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For X - N(/1., cil), (Xo.75 - Xo.25) = 1.35cr. Hence, .besides the sample variance, an 
estimator for cr is ~QR = (io:is - io.25)/1.35 when Xis normally distributed. For 
large I, the sample IQR is unbiased and has the amp ling variability 

Var(i" o. 7 5 - i"o.25) = 3 a2 /2/ (Kendall and Stuart, 1977, p. 350). ~QR is less efficient 
than~ at estimating cr2. Depending upon/, Var(~QR) is between 30% (/ = 6) and 65% 
(/large) higher than Var(s'2). This puts ~QR at about the same efficiency as the sample 
median for estimating their respective quantities when X is normally distributed. 

5-15 ESTIMATOR FOR NONARITHMETIC MEANS 

There are other meansbesides the arithmetic mean, XA = E(X}, that arise in reservoir 
evaluation. The geometric and harmonic means of X are defined as Xo = exp(E[ln(X)]} 
andXH = [E(X-l}rl, respectively. All three means are specific instances of a more 
general situation (Kendall and Stuart, 1977, pp. 37-38), the power mean: 

{ 
[E(XP)]l/p 

Xp = exp(E[ln(X)]} 

p *· 0 

p = 0 

XH is the case when p = -1, X a when p = 0, and XA corresponds top= 1. Xp can be 

viewed as being the arithmetic mean of xP raised to the 1/p power. As long as the 
reservoir property X is nonnegative, Xp 1 ~ Xp 2 if Pl ~ P2 (Kendall and Stuart, 
1977, p. 38). Hence, XH :5.Xo :5.XA for many reservoir properties. 

We have already considered estimation of XA. Compared to XA, the properties of Xo 
and XH estimators have received little attention. Two common estimators for X a and 
XHare 

and 

Xo = exJ 7.£ ln(Xi)] ll=l (geometric average) 

(harmonic average) 
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Neither of these is unbiased. For example, X a overestimates X a if ln(X)- N(Jl., o-2): 
E( Xa) = Xa exp(o-2/2!), so Xa is consistent. Under similar conditions, 
E( XH) = XH{l + [exp(o-2)- 1]/I}. Xa and XH are not especially robust, either. 
These two estimators are sensitive to small, uncertain data values. One way to avoid this 
problem is to use the sample median: If Y =XP, chooseip = rto.soJ 11P. Another 
approach is to use a trimmed or Winsorized mean of Y, which is discussed below. 

5-16 FLOW ASSOCIATIONS FOR MEAN VALUES 

As we pointed out at the beginning of this chapter, an important element of the 
estimation procedure is to decide on the quantity to be estimated, 8. Sometimes the 
decision is fairly obvious. For example, E(cp) is often a useful measure for porosity in 
many applications because it represents a central value for a physically interpretable 
quantity. Permeability, on the other hand, is usually a more difficult property for which 
to find a representative value, and only a few systematic guidelines are available. 

Why is permeability so troublesome? Since it pertains to flow, permeability is clearly 
an important property. But, permeability is an intensive variable (Chap. 3). Depending 
upon the situation, it may not be additive. The flow transmitted by any given region 
depends upon the permeabilities of surrounding regions; For example, consider a highly 
permeable region of a reservoir encased in shale (e.g., lenticular bedding). No matter how 
permeable is the center, the outer "shell" of low-permeability material prevents flow. 
This is not the case for porosity, for example, where the pore volume of fluids in a lens 
contributes to the total amount of fluid in a_region without regard to whether the fluids 
can move or not. There are a few cases, however, where it is clear what the additive 
properties of permeability are. 

In the case of linear flow parallel to a stratified medium, typical of shallow marine 
sheet sands, of I layers (Fig. 5-9), the aggregate permeability (kr) of the region is the 
expected value of the layer permeabilities. To see this, we take the expression for k1 and 
rearrange it: 

I 
L. kihi 
i=l 

kt= I 

L. hi 
i=l 

I hi I· 

= ~)i -I--= L ki Pi= E(k) 

i=l l hj i=l 
j=l 
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since Pi is the probability that the permeability is ki- Clearly, permeability is additive in 
this case. 

FLOW 

• 
kl 

kr 

h .4l 1.,, 

.4~ 
hr,, 

Figure 5-9. Effective permeability for layer-parallel flow. 

When linear flow is orthogonal to the layers (e.g., dune crossbeds), permeability is no 

longer additive. Its inverse, however, is additive. The aggregate resistance to flow, k-/. 
is given by the expected value of the layer resistances to flow (Fig. 5-10): 

I 
L hi/ki I 

-1 i=l 1 
kt = I = Lki 

I hi i=l 
i=l 

Consequently, here are two situations for which we know the quantity to be estimated, 
8, when the aggregate permeability is desired: 

kt = E(k) 

k-/ = E(k-1) 

for linear flow parallel to layers 

for linear flow normal to layers 
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Figure 5-10. Effective permeability for layer-transverse flow. 

Many geological systems, while containing some degree of ordered permeability 
variation, do not meet the layered situations described above (e.g., turbidites, braided 
deposits). What are the expressions for kt in those cases? The best general answer comes 
from Matheron (1967): E(k) ~ kt ~ [E(k-1 )]-1. In other words, kt appears to be the 
power mean of permeability for some exponent p, -1 :5: p :5: 1. The work of Desbarats 
(1987) has supported this result, but it is not clear how to select p a priori. 

There is one other situation for which theoretical results exist (Matheron, 1967). 
When ln(k)-N(Jl, cr2), a is small, and the flow is two-dimensional (2D), 
ln(kt) = E[ln(k)]. Hence, the geometric mean is appropriate. Various simulation studies 
(e.g., Warren and Price, 1961) have extended this result to less-restrictive situations with 
some success. This result does not require that the system be totally disordered. As long 
as the scale of the ordered or structured element is small compared to the region for which 
kt is sought, the geometric mean will apply, given that k is log-normally distributed and 
exhibits only moderate variation. 

In summary, then, there are three definite results-all assuming linear 2D flow-for 
determining kt. 

1. Layered system, flow parallel to layers: arithmetic mean. 

2. Layered system, flow normal to layers: harmonic mean. 

3. Random system, log-normal k, small variation: geometric mean. 

Otherwise, E(k) ~ kt ~ [E(k-1)]-1 is the best that can be said. The three definitive results 
suggest that some function of permeability may always be additive, but the precise form 
of the function changes with the flow geometry. 
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5a17 PHYSICAL INTERPRETABILITY IN ESTIMATION 

Any estimator will manipulate data in some way to produce an estimate. Despite the 
large amount written on estimation, it appears very few have considered whether the 
estimator combines variable values in a physically meaningful manner. For example, to 
obtain an arithmetic average, sample values that are physically meaningful have to be 
added together. To add values and produce something that is still physically meaningful 
requires that the variable be ratiometric (Chap. 3), i.e., additive. We have just observed 
that permeability may not be additive, so calculating the average permeability may give a 
nonsensical result. 

A still more questionable estimator is the sample variance. Differences of sample 
values are taken, squared, and summed. This suggests that the variable and its square are 
both additive, a situation that would apply, for example, with length because area is also 
additive. In this light, the sample IQR might be preferable because it does not take 
squares. Unfortunately, we cannot simply take the local additivity approach with 
estimators that we took with their standard errors. Some estimators, such as the 
arithmetic average or sample variance, add or subtract quantities of similar magnitude and 
manipulate them further. It is not clear what effect the lack of additivity has on results 
and further research is needed. 

In this respect, PDF's could play an interesting role. It is well-known that two 
variables with normal PDF's give a normally distributed sum (Cramer, 1946, p. 212). 
The squares of normal PDF variables are also additive, giving the %-squared PDF 
(Cramer, 1946, p. 233). Hence, statistical additivity (preservation of the PDF when 
variables are added or subtracted) is satisfied for the average or variance when normal PDF 
variables are involved. It may be that the effects of physical nonadditivity are mitigated 
when variables have normal PDF's prior to use in estimators. For example, for sound 
statistical reasons, Xo.so ::/:. XA when X is log-normally distributed (Chap. 4). 

If ln(X)- N(J.l, o-2) and cr > 0, then Xo.so = eJL compared to E(X) = XA = 

ell-+ 0.5a2. Xo.so does not involve a summation of X (recall that Xo.so is defined as 

0.5 = f f(x)dx), but only summation of X's PDF, f(x). Compare this with XA that 

does involve a summation of all possible values of X: XA = f xf(x)dx. Could it be that 

the difference between XA and Xo.so is also a reflection of X's nonadditivity? 

Until this issue is resolved, it would appear that two approaches might be taken: 
(1) use the median and IQR instead of the mean and standard deviation for central 
tendency, dispersion, and variability measures, or (2) continue to use both the arithmetic 
average and standard deviation, but also calculate the sample median and IQR to compare 
and diagnose nonadditivity. For example, use ( XA- ko.so) ::/:. 0 as a diagnostic tool. 
When variable PDF's are near-normal, the median and mean are similar in value; they can 
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differ substantially for non-normal PDF's. In the latter case, transform the variable to 
normal (see Chap. 4) before applying estimators or re-express (if possible) the variable in 
terms of quantities that are additive. 

5~18 WEIGHTED ESTIMATORS 

Every estimator implicitly weights each data point upon which it operates. XA, for 
example, weights all the data equally. Many other estimators give equal influence or 
weight to the data points. This need not necessarily be the case, however. 

There are several reasons for weighting some data more heavily than others. First, 
some data may be more prone to errors than others. Particularly small or large values 
may be poorly measured, and we do not want especially inaccurate data to have as much 
influence as the more precisely measured values. Second, all the data may not be equally 
representative. In Fig. 5-11, for example, a representative reservoir porosity would 

4 
probably not be given by~ I, r/Ji because ¢1, ¢2, and ¢3 represent similar portions of 

i=l 

the reservoir, the crest, while ¢4 represents only a portion of the flank-region porosity. 
In other words, the four measurements do not represent equal amounts of information 
concerning the large-scale reservoir porosity. Sampling points are seldom chosen at 
random. Third, the data may represent different portions of the whole. Measurements 
may be made on different volumes of rock and, therefore, need a weight that reflects the 
amount of material sampled. 

Figure 5-11. Porosity measurements from four locations in a reservoir. 
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If W(XI.X2, ... ,XJ) is an estimator, then W(X1.X2, ... ,XJ, a1, a2, ... ,a1) is the 
I 

weighted estimator, where the ds are the weights and I,ai = 1 is a condition to ensure 
i=l 

unbiasedness. For example, if XA = W, then x,t is the weighted sample mean given 
by (Hald, 1952, pp. 243-245) 

Weighted averages occur in the Kriging estimator to be discussed in Chap. 12. The 
weighted sample variance is 

When a1 = a2 = ···= a1 = 1, we have the unweighted version. If we further assume 
that X 1 :::;, X2 :::;, · · ·:::;, XJ, then letting a1 = a2 = · · ·= ar = a(l-r+l) = a(l-r+2) = · · ·= 
a[= 0 and a(r+l) = a(r+2) = · · ·= a(l-r) =I!( I- 2r) gives the r-fold symmetrically 
trimmed estimator. In other words, the trimmed estimator ignores the r lowest and r 
highest values in the data set. A variation on trimming is to Winsorize the data set: 
a1 = a2 =···=a,= a(/-r+l) = a(l-r+2) = ···= a:r = 0 (as with trimming), but a(r+l) = 
a(l-r) = r + 1 and a(r+2) = · · · = a(I-r-1) = 1. Winsorizing still ignores the r lowest and 
highest data, but it replaces them with r values of Xr and X(l-r)· Asymmetrical trimming 
is also possible, but it is usually reserved for cases where the PDF is asymmetrical. 
Barnett and Lewis (1984, Chap. 3) discuss these methods further. 

Trimming or Winsorizing is useful when data sets are censored and the proportions of 
lost data are known or when some data at the extremes are particularly corrupted. If the 
variances of the corrupting factors are known, the weights can be modified so that all data 
are included. For example, suppose data points 1, 2, ... , r are obtained using an 

instrument with normal measurement errors of variance a; while r+l, r+2, ... , n have 

. b'l' 2 A f . h . varm 1 1ty a 2. set o we1g ts IS 

al = a2 = ... = a, = 2 2 
ra2 + (n-r)Ci 1 
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and 

a(r+l) = a(r+2) = ··· = a1 = 2 2 
rCJ2 + (n-r)CJ 1 

More sophisticated approaches are available, depending upon the information available 
about the measurement properties (Fuller, 1987). 

5-19 SUMMARY REMARKS 

Estimation is an important aspect of data analysis. It is important to understand what the 
estimator properties are so that the most appropriate estimator is used for the analysis at 
hand. The uncertainties of estimates can be assessed using confidence intervals. 

Confidence-interval size is a strong function of data variability; a highly variable 
material produces estimates with large confidence intervals. Since the geological medium 
has variability that cannot be changed, the only methods for reducing the size of 
confidence intervals is to collect more data or apply an estimator that uses the data more 
efficiently. Chapter 6 presents a method for gauging the number of samples needed, based 
on the geological characterization ·and heterogeneity of the rock. 





6 

F 
EITY 

The most common statistics of a random variable are measures of central tendency, 
dispersion, and correlation. Chapter 5 dealt with measures of central tendency and their 
associated uses, along with introducing some simple measures of dispersion. This 
chapter further discusses measures of dispersion or variation with a special emphasis on 
measures used in assessing their impact on flow performance. 

A measure of variability can, of course, be applied to any reservoir property. 
However, permeability varies far more than other properties that affect flow and 
displacement. Hence, in the petroleum sciences, measures of heterogeneity are almost 
exclusively applied to penneability data. 

Heterogeneity measures are useful for a number of purposes. Since heterogeneity 
influences the performance of many flow processes, it is helpful to have a single statistic 
that will convey the permeability variation. Variabilities can be compared for 
geologically similar units and sampling schemes can be adjusted for the variability 
present. Performance models have been developed that show how permeability 
heterogeneity will influence a particular recovery process (e.g., Lake, 1989, pp. 411-416). 
Heterogeneity measures are also helpful when comparing performance for two or more 
fields. It should be kept in mind, however, that in summarizing variability, a 
considerable amount of information is lost. 

143 
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Heterogeneity measures are not a substitute for detailed geological study, 
measurements, and reservoir analysis. They are simply one way of beginning to assess a 
formation unit. Most measures do not include any information about spatial arrangement 
and, even when they do, they tend to ignore most of the structure present. 

6-1 DEFINITION OF HETEROGENEITY 

Informally, we use heterogeneity and variability interchangeably. In reservoir 
characterization, however, heterogeneity specifically applies to variability that affects. 
flow. Consider a high-rate displacement using matched mobility and density and 
chemically inert, miscible fluids. Heterogeneity is the property of the medium that 
causes the flood front, the boundary between the displacing and displaced fluids, to distort 
and spread as the displacement proceeds. Permeability variation is usually the prime 
cause of flood-front spread and distortion; for a displacement in a hypothetical 
homogeneous medium, the rate of distortion and spreading is zero. As the permeability 
variability increases, both distortion and spreading increase. Of course, the arrangement 
of the permeability is also important since this governs the number and size of interwell 
pathways. We discuss ways to measure spatial arrangement in Chap. 11. 

Whatever the reservoir properties involved, heterogeneity measures can be classified 
into two groups, static and dynamic. Static measures are based on measured samples 
from the formation and require some flow model to be used to interpret the effect of 
variability on flow. Dynamic measures use a flow experiment and are, therefore, a direct 
measure of how the heterogeneity affects the flow. 

Each measure type has advantages and disadvantages. For example, an advantage to 
dynamic measures is that, if the process used during the flow experiment closely parallels 
the process that is expected to be applied to the reservoir, the results are most directly 
applicable with a minimum of interpretation. Disadvantages include the cost, the 
complexity, and the selection of "representative" elements of the reservoir for conducting 
the flow experiments at the appropriate scale. 

6-2 STATIC MEASURES 

We discuss four types of static heterogeneity measures and a few of their properties. 

The Coefficient of Variation 

A static measure often used in describing the amount of variation in a population is the 
coefficient of variation, 



Statistics for Petroleum Engineers and Geoscientists 145 

c -~ ~' 
V- E(k) 

This dimensionless measure of sample variability or dispersion, introduced in Chap. 4, 
expresses the standard deviation as a fraction of the m~an. For data from different 
popl.liiililinff or sorn:ces;tfie mean and standard deviation often tend to change together such 
that Cy remains relatively constant. Any large changes in Cy between two samples 
would indicate a dramatic difference in the populations associated with those samples. 

1\ 1\ -
A Cv estimator, based on the sample mean and standard deviation, is Cy = s lkA-

" The statistical properties of Cy are not easily determined in general. Hald (1952, pp. 
301-302) gives results for samples from a normal population and Koopmans et al. (1964) 
give results for the log-normal case. Figure 6-1 shows these results for a sample size 
I= 25. For Cv :::; 0.5, the sampling variabilities from the two distributions are quite 
similar. When Cy > 0.5, where a normal PDF is not possible for a nonnegative 
variable, the lower and upper limits become increasingly asymmetrical about the line 
" " .I--Cy= Cy. For I samples, Cy:::; 'I I- 1 (Kendall and Stuart, 1977, p. 48), which is 
achieved when (I -1) samples are one value and one sample is another value. 

1\ -
Estimators other than s lkA may be used, if the PDF is known, with some increase in 

efficiency. For example, if ln(k)- N(/1. a2), kAikH = exp(a2), where kA and kH are the 
arithmetic and harmonic means (Johnson and Kotz, 1970, p. 115). Hence, 

The coefficient of variation is being increasingly applied in geological andengineering 
~stud1es as an asses~-~~ii.~~~P§!.~~~!)j}}tyheterog~n~f!Y~ Cv has been used in a·sil:idy-of 
the effects of heterogeneity and structure upon unstable miscible displacements (Moissis 
and Wheeler, 1990). It is also useful when comparing variabilities of different facies, 
particularly when there can be competing causes for permeability variation. Corbett and 
Jensen (1991) for example, used Cy to assess the relative effects of grain-size variation 
and mica content upon permeability variation. Comparisons of geologically similar 
elements in outcrop and subsurface showed that, despite large changes in the average 
permeability, the Cy's remained similar (Goggin et al., 1992; Kittridge et al., 1990). 
These and other studies (e.g., Corbett and Jensen, 1992a) suggest that Cy's may be 
transportable for elements with similar geologies. Cy's and scale may also be linked as 
shown in the following example. 
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Figure 6-1. Cy variability (J = 25 samples) for normal and log-normal populations. 

Example 1- Geological Variation and Scale. Cy, as a measure of relative 
permeability variation, can be used to compare and contrast facies and 
formations. The smaller stratal elements appear to have the most uniform 
properties. The larger the element, the more opportunity for variability 
(Fig. 6-2). 

In Fig. 6-2, we have not highlighted the scale (i.e., grid size) associated with 
each measurement. We prefer to note lamina or subfacies (e.g., grainfall, 
grainflow), bedform or facies (e.g., trough crossbedding), or formation (e.g., 
Etive, Rannoch, Rotliegendes) terminology in preference to specific 
dimensions. If a bedform consists of a single lamina type, or a formation 
consists of a single bedform type, then it is reasonable to expect similar 
variabilities with increasing scale (e.g., low-contrast lamination and SCS, 
HCS, and Rannoch). The occurrence of a rock type with a certain Cy (e.g., 
fluvial trough crossbeds) does not mean that they always occur with this level 
of heterogeneity, as has been pointed out by Martin us and Nieuwenhuijs 
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(1995). The interesting point to note in Fig. 6-2 is that the two samples of 
fluvial trough crossbeds (from the same formation) have similar Cy's and, 
measured by different geologists, this suggests a certain transportability. 

With the combination of several subfacies or bedforms, the variability 
increases. For example, bedforms are composed of numerous laminations. In 
the aeolian environment, dune bedforms are composed of wind-ripple and 
grainflow components, each of which has an intrinsic variability. Goggin et 
al. (1988) found that Cy= 0.26 for wind ripple (unimodal PDF) and 0.21 for 
grainflow (unimodal PDF) in a unit of the Page Sandstone. The combination 
for the dune (bimodal PDF) produced Cy = 0.45, approximately the sum of 
the grainflow and wind-ripple Cy's. 

Carbonate (mixed pore type) (4) 
S.North Sea Rotliegendes Fm (6) 

Crevasse splay sst (5) 
Shallow marine rippled micaceous sst 

Fluvial lateral accretion sst (5) 
Distributary/tidal channel Etive ssts 

Beach/stacked tidal Etive Fm. 
Heterolithic channel fill 

Shallow marine HCS 
Shallow marine high contrast lamination 

Shallow marine Lochaline Sst (3) 
Shallow marine Rannach Fm 

Aeolian interdune (1) 
Shallow marine SCS 

Large scale cross-bed channel (5) 
Mixed aeolian wind ripple/grainflow(1) 

Fluvial trough-cross beds (5) 
Fluvial trough-cross beds (2) 

Shallow marine low contrast lamination 
Aeolian grainflow (1) 

Aeolian wind ripple (1) 
Homogeneous core plugs 

Synthetic core plugs 

0 1 

Heterogeneous 

Homogeneous 

2 

Cv 
3 4 

Figure 6-2. Variation of Cy with scale and depositional environment. SCS = 
swaley cross-stratification and HCS = hummocky cross-stratification. 
Homogeneous region is taken as Cy s; 0.5; 0.5 < Cv s; 1 is 
heterogeneous; and Cy > 1 is very heterogeneous. Sources .of data for 
this plot are (1) Goggin et al, (1988); (2) Dreyer et al. (1990); (3) 
Lewis and Lowden (1990); (4) Kittridge et al. (1990)~ (5) Jacobsen and 
Rendall (1991); and (6) Rosvoll, personal communication (1991). 

147 
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Corbett and Jensen (1993b) observed that an HCS bedform in the shallow 
marine environment has the following facies variabilities: Cv = 0.2 to 0.7 
for the low-contrast (low-mica) laminations; Cv = 1.0 to 1.3 for the high
contrast (high-mica) laminations; and Cv = 1.0 to 1.3 for the rippled 
laminations. The HCS bedform is approximately composed of 60% low
contrast rock, 35% high-contrast rock, and 5% rippled material. The weighted 
sum of the component Cv's gives 0.60 • 0.6 + 0.35 • 1.2 + 0.05 • 1.2 = 
0.84. This agrees well with the overall HCS Cv of 0.86. 

Despite the evidence of this example, Cv's are not, in general, additive. For example, 
consider a formation unit composed of two elements (a mixture), each having independent 
random permeabilities, k1 and k2, and present in proportions p and 1-p, respectively. For 

this mixture of random variables, let E(k1) = fJ.l• Var(kl) = ai, E(k2) = fJ.2, and 

Var(k2) = a;. The Cv of the unit is given by (Chap. 4, Example 4) 

-..J PaT + (l-p )a; + p(l-p )(fJ.l - J1.2)2 
Cv -

total - PfJ.l + (l-p)JL2 

which is not the sum of the constituent Cv's. If we let JL2 = rJL1 for some factor r, 
Cv can be expressed as 

total 

~ pC~ + (l-p)r2c~ + p(l-p)(l-r)2 
c - 1 2 

vtota/ - p + r(l-p) 

When the component means are identical, r = 1, and 

Cv z = ~ pCv2 + (1-p)Cv2 
tota 1 2 

so the total is the root mean square of the weighted individual component variabilities. 
Thus, Cv 1 is guaranteed only to be the minimum of Cv and Cv . In most geological tota 1 2 

situations, r =F 1 because the elements have differences in the energies, source materials, 
and other factors that produced them. When r >> 1 andp < 1, 
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so the variability of the larger mean population dominates and is amplified by 
(1-p)-112. For these cases, Cy 1 may be near Cy + Cy2• 

tota 1 

One case where Cy's are additive concerns the sensitivity analysis of estimators to 
errors in the data (Chap. 5). We saw that random variables that are products of other 
random variables give' an especially simple form to the sensitivity equation. For 
example, if m and n in Archie's law (Chap. 5) are constant, the sensitivity of Sw to errors 
in Rw, Rt, a, and qy is 

If we interpret the L1's as being the standard deviations of these variables, we can recast the 
above as 

Each term has the form of a variability over a true value, giving it the same form as a 
coefficient of variation. Hence, we can express the variability of Sw in the following 
manner: 

1 Cvs =- (CvR + CvR + Cy + m Cv,.) 
w n w t a 'Y 

Consequently, we can see at a glance which measurement(s) will contribute the most to 
the uncertainty in Sw. A similar treatment can be made for other equations, such as the 
STOIIP expression discussed in Chap. 3. 

The above expression for the total C v is an approximation that works best for small 
Cy's (i.e., Cy < 0.5). It will show the relative contributions of each component of 
variability. A better approximation applies if the variables are all log-normally 

distributed in a product. Recall from Chap. 4 that if ln(X) - N(J.lx, q 2), then O"x 2 = 

ln(l + C:V~ ). Hence, if ln(Y)- N(J.lx, ~ 2) and Z = XY, then 
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2 2 2 2 . 2 2 
O"z = O"x + O"Y and ln(l + Cv) = ln(l + Cv) + ln(l + Cyy) 

Solving for c;.,2 gives 
z 

2 2 2 2 2 22 
Cy = (1 + Cy )(1 +Cy)- 1 = Cy + Cy + Cy Cy 

% y % y % y 

Neglecting cross terms and extending to products of I terms, we obtain the 
approximation 

We also note that, because Cy = [exp(o-2)- 1]112 for ln(k)- N(j.l, o-2), Cy is an 
estimator for the standard deviation o-when o-is small (e.g., O"< 0.5). 

Cy can also be used to guide sampling density. The so-called "N-zero method," 
discussed by Hurst and Rosvoll (1990), is based on two results of statistical theory: 

1. The Central Limit Theorem states that, if Is independent samples are drawn from 
a population (not necessarily normal) with mean Jl and standard deviation 0", then 
the distribution of their arithmetic average will be approximately normal. 

2. The sample average will have mean J.L and standard error ot-{4. 

See Chap. 5 for more details. From these two points, the probability that the sample 

average ( k 8) of Is observations lies within a certain range of the population mean (j.l) can 
be determined for a given confidence interval. 

For a 95% confidence level, the range of the average is given by± t • SE, where the 

standard error (SE) is approximated by J';-{1;. The larger the sample number I 8 , the more 
confident we can be about estimates of the mean. SE is the standard deviation of the 
sample mean, drawn from a parent population, and is a measure of the difference between 
sample and population means. 

The student's tis a measure of the difference between the estimated mean, for a single 
sample, and the population mean, normalized by the SE. For normal distributions, the t 
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value varies with size of sample and confidence level (Chap. 5). The above statement can 
be expressed mathematically as 

Consider now another sample of size / 0 such that k0 ± P% tolerance satisfies the 
predetermined confidence interval: 

[( Pk0 ) - ( Pk0)~ 
Prob J1 - 100 ~ k o ~ J1 + 100 U = 95% 

This time, we have expressed the permissible error in terms of a percentage of k0 • When 
both conditions are satisfied, Is =I 0 and 

Pko s" 
-=t-
100 Wo 

Rearranging this gives an expression for the appropriate number of specimens, / 0 : 

I =(lOOt; )2 
o Pko 

(6-1) 

where the nearest integer value for the right side is taken for 10 • For Is> 30, t = 2 and 
with a 20% tolerance (i.e., the sample mean will be within ±20% of the parent mean for 
95% of all possible samples, which we consider to be an acceptable limitation), this 
expression reduces to · 

(2oocv )2 " " _ 
lo = . 20 where Cv= s/k0 

or 

This rule of thumb is a simple way of determining sample sufficiency. Of course, since 
" Cv is a random variable, I 0 is . also random in the abov~ expression. I 0 will change 

because of sampling variability. The above is called the I 0 -sampling approach. 
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Although derived for the estimate of the arithmetic mean from uncorrelated samples by 
normal theory, we have found it useful in designing sample programs in a range of core 
and outcrop studies. Having determined the appropriate number of samples, the domain 
length (d) will determine the sample spacing (d0 ) as d0 = d I 10 • 

An initial sample of 25 measurements, evenly spaced over the domain, which can be a 
" lamina, bedform, formation, outcrop, etc., is recommended. If Cy, estimated from this 

sample, is less than 0.5, sufficient samples have been collected. If more are required, 
infilling the original with 1, 2, or J samples will give 50, 75, or 25! samples. In this 
way, sufficient samples can be collected. 

Example 2 - Variability and Sample Size. In a 9-ft interval of wavy bedded 
material (Fig. 6-3), the performance of core plugs is compared with the probe 
permeameter for the estimate of the mean permeability of the interval. Based 

" . on the core plugs, Cy= 0.74, giving 10 =55 and d0 = 2 in., well below the 
customary 1-ft sample spacing. The probe data give/0 = 98 and d0 = 1 in. 
For such variability, about 100 probe-permeameter measurements are needed 
for estimates within ±20% but, because of the way core plugs are taken 
(Chap. 1), plugs are an impractical method for adequately sampling this 
interval. Nine plugs, taken one per foot over the 9-ft interval, are clearly 
insufficient even if they are not biased towards the high-permeability 
intervals. 

Comparing the sample means, the plug estimate is 2.3 times the probe value. 
Why are they so different? Equation (6-1) can be rearranged to solve for P for " . 
both data sets. In the case of the nine plug data, Cv= 0.74 and t = 2.3, so 
that P = 57%. The true mean is within 390 roD ± 57% about 95% of the 
time. A similar calculation for the probe data shows the mean to be in the 
range 172 mD ± 12%. Thus, the estimates are not statistically different. 
That is, the difference between the estimated means can be explained by 
sampling variability. No preferential sampling by the plugs in the better, 
higher-permeability material is indicated. The plugs have simply 
undersampled this highly variable interval. 

Corbett and Jensen (1992a) have suggested that Cy's in clastic sediments could have 
sufficient predictability that sample numbers could be estimated by using the geological 
description. While further data are needed, there are indications that stratal elements of 
similar depositional environments have similar variabilities. For example, the two 
fluvial trough crossbed data sets of Fig. 6-2, obtained at different locations of the same 
outcrop, show very similar Cy's. Thus, applying the / 0 -sampling approach, sample 
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numbers could be predicted on the basis of the geological element (e.g., aeolian dune 
foreset, fluvial trough crossbed, fluvio-marine tidal channel). 

-xx58 
10 100 

Permeability, mD 
1000 

0 Core plug 

+ Probe permeameter 

PLUGS: I= 9 data 
1\ 
Cv = 0.74, Arith. av. = 390mD 

PROBE: I= 274 data 
1\ 
Cv = 0.99, Arith. av. = 172mD 

Figure 6-3. Core-plug and probe-permeameter data in a Rannach formation interval. 

Dykstra~Parsons Coefficient 

The most common measure of permeability variation used in the petroleum industry is 
V DP• the Dykstra-Parsons coefficient (Dykstra and Parsons, 1950): 

v _ ko.so- ko.16 
DP- ko.so (6-2) 

where ko.so is the median permeability and k0 .16 is the permeability one standard 
deviation below ko.so on a log-probability plot (Fig. 6-4). Vvp is zero for homogeneous 
reservoirs and one for the hypothetical "infinitely" heterogeneous reservoir. The latter is a 
layered reservoir having one layer of infinite permeability and nonzero thickness. V DP 

has also been called the coefficient of permeability variation, the variance, or the 
variation. Other definitions of V DP involving permeability-porosity ratios and/or variable 
sample sizes are possible (Lake, 1989, p. 196). 
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The Dykstra-Parsons coefficient is computed from a set ofpermeability data ordered in 
increasing value. The probability associated with each data point is the thickness of the 
interval represented by that data point. Dykstra and Parsons (1950) state that the values 
to be used in the defmition are taken from a "best fit" line through the data when they are 
plotted on a log-probability. plot (Fig. 6-4). Some later published work, however, does 
not mention the line and depends directly on the data to estimate ko.l6 and ko.so (Jensen 
and Currie, 1990). 

1\ 1\ 
ko.so - ko.16 

A 

ko.so 

~ .... ~ ·- ~~--------------~ :s - 0.50 
~ 

~ 
~ 

0.02 0.16 0.50 
Probability Scale 

0.84 

Figure 6-4. Dykstra-Parsons plot. 

0.98 
p 

There are several drawbacks in using the "best fit" approach, especially if the data set is 
not log-normally distributed. Jensen and Lake (1988) demonstrate the nonunique 
properties of V DP in light of an entire family of p-normal distributions. Although 
Dykstra and Parsons were able to correlate V DP with expected waterflood performance, 
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caution should be exercised in the universal application of V DP for data sets that are not 
log-normal. See, for example, Willhite's (1986) Example 5.6. 

From the definition for V DP (Eq. (6-2)), V DP = 1 - e-cr when ln(kl;- N(Jl, a2). Thls 
relation" between VDP and a provides an alternative VD)l. estimator: V DP = 1 - exp(-s), 
"Xhere s is the sample standard deviation of ln(k). V DP is about twice as efficient as 
VDP (Jensen and Currie, 1990). 

A study by Lambert (1981) shows that VDP estimated from vertical wells ranges 
between 0.65 and 0.99. VDp's measured areally (from arithmetically averaged well 
permeabilities) range from 0.12 to 0.93. Both the areal and vertical V DP's are normally 
distributed, even though most of the permeability values themselves are not normally 
distributed. Of greater significance, however, is the observation that V DP did not 
apparently differentiate between formation type. This observation suggests that either 
V DP is, by itself, insufficient to characterize the spatial distribution of permeability 
and/or the estimator itself is suspect. Probably both suggestions are correct; we elaborate 
on the latter theme in the next few paragraphs. 

The simplicity of V DP means that analytical formulas may be derived for the bias and 
standard error (Jensen and Lake, 1988), assuming ln(k) is normally distributed. The bias 
is given by 

bv=- 0.749[ln(l- VDp)] 2 (1- VDp) I I 

and the standard error is 

sv= -1.49[ln(l- VDp)](l- VDp)/fi 

1\ 

where I is the number of data in the sample. The bias is always negative (VDP 
underestimates the heterogeneity), is inversely proportional to I, and reaches a maximum 
in absolute value when V DP = 0.87. However, the bias is generally small. For example, 
when VDP = 0.87, only I= 40 data are required to obtain by=- 0.009. 

1\ 

The variability of V DP• on the other hand, can be significant (Fig. 6-5). The standard 
error decreases as the inverse of the square root of I and sy attains a maximum at 
VDP = 0.63. The number of data needed to keep sv small is quite large for moderately 
heterogeneous formations. For example, at VDP = 0.6, 120 samples are required to attain 
a precision of sv = 0.05. From the definition of standard error, this value means that 
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Vnp has a 68% (±one standard deviation) chance of being between 0.55 and 0.65, 
ignoring the small bias. 

1000 
<l) -~ Sy=0.02 s 
~ 
"-! 

= .... 
~ .... 100 ~ 
't:l 0.05 
c;.. 
0 -~ ,Q s 
= z 10 

0.2 0.4 0.6 0.8 1 

Vnp 

Figure 6-5. Variability performance of Vnp estimator. From Jensen and Lake (1988). 

Example 3- Estimating Vnpfor a Data Set. Estimate Vnp for the data set 
in Example 4, Chap. 3: 900, 591, 381, 450, 430, 1212, 730, 565, 407, 
440, 283, 650, 315, 500,420, 714, 324. Assume each datum represents the 

* same volume of the reservoir. The ordered data set (xj) and its logarithm (xi) 
are shown in the table below, repeated from Example 4. 

Figure 6-6 shows the probability plot for x *. From the "best fit" line 
A 

established by eye, V DP = ( 493 - 308) I 493 = 0.38. These data represent a 
A 

fairly homogeneous reservoir. If we assume that V DP = V DP• then bv = -0.006 
and sv = 0.11. While bv is negligible, sy is sufficiently large that rounding 

A 

V DP to 0.4 is appropriate. 

As we have stated before, statistics such as V DP can gloss over a number of 
details. Even in this example, with very few data, this is true. The CDF 
presented above manifests evidence of two populations; a small-value sample 
that is even more homogeneous than V DP = 0.4, and a large-value portion 
that is about as homogeneous as the entire sample. 
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* * No. X; xi Prob., Pi No. X; Xi Prob., Pi 

1 283 5.65 0.029 10 500 6.21 0.559 
2 315 5.75 0.088 11 565 6.34 0.618 
3 324 5.78 0.147 12 591 6.38 0.676 
4 381 5.94 0.206 13 650 6.48 0.735 
5 407 6.01 0.265 14 714 6.57 0.794 
6 420 6.04 0.324 15 730 6.59 0.853 
7 430 6.06 0.382 16 900 6.80 o.9T~ 
8 440 6.09 0.441 17 1212 7.10 0.971 
9 450 6.11 0.500 

7.0 

6.5 
M 1\ 
1:1>.0 493 = k 0_50 0 
~ 

6.0 

" 
5.5 

-3 -2 -1 0 1 2 3 
Normal Quantiles 

0.1 2.3 16 50 84 97.7 99.9 
Probability (%) 

A 
Figure 6-6. Probability plot for VDP in Example 3. 
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A number of investigators have used V DP to correlate oil recovery from core-scale 
waterfloods (see Lake and Jensen, 1991, for examples). A significant feature of many 
studies is the small sensitivity of models to variations in V DP when V DP :::;; 0.5 while, 
for the large-heterogeneity cases, there is a large sensitivity. This behavior reflects, in 
part, that V DP• with a finite range of 0 to 1, poorly discerns large-heterogeneity 
situations. 

lorenz Coefficient 

A less well-known but more general static measure of variability is the Lorenz 
coefficient, Lc. To compute this coefficient, first arrange the permeability values in 
decreasing order of k/1/J and then calculate the partial sums. 

where 1 :::;; J ~I and there are I data. We then plot F versus Con a linear graph (Fig. 6-7) 
and connect the points to form the Lorenz curve BCD. The curve must pass through (0, 
0) and (1, 1). If A is the area between the curve and the diagonal (shaded region in Fig. 6-
7), the Lorenz coefficient is defined as Lc = 2A. Using the trapezoidal integration rule, 
we have (Lake and Jensen, 1991) 

1 I J k k· ic = I. I. ..J.. _ _j_ 

(J-1)2 f~ i=lj=l c/Ji c/Jj 

i=li/Ji 

Just as for V DP• Lc is 0 for homogeneous reservoirs and 1 for infinitely heterogeneous 
reservoirs, and field-measured values of Lc appear to range from 0.6 to 0.9. However, in 
general, V DP i' Lc. 

The Lorenz coefficient has several advantages over the Dykstra-Parsons coefficient. 
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Fraction of Total Storage Capacity 

Figure 6-7. Lorenz plot for heterogeneity. 

1. It can be calculated with good accuracy for any distribution. However, for the 
family of p-normal distributions, Lc is still not a unique measure of variability. 

2. It does not rely on best-fit procedures. In fact, being essentially a numerical 
integration, there is typically less calculation error in Lc than in V DP· 

3. Its evaluation includes porosity heterogeneity and (explicitly) variable thickness 
layers. 

Lc is, however, somewhat harder to calculate than V DP and has not, as yet, been 
directly related to oil recovery. For a reservoir consisting of I uniformly stratified 
elements between wells through which is flowing a single-phase fluid, the F-C curve has 
a physical interpretation, one of the few such instances of a physical meaning for a CDF. 
F represents the fraction of the total flow passing a fraction C of the reservoir volume. 
For example, in Fig. 6-7, approximately 80% (F = 0.8) of the flow is passing through 
50% (C = 0.5) of the reservoir. This curve, therefore, plays the same role, at a large 
scale, that a water-oil fractional flow curve does on a small scale, which accounts for its 
use in the same fashion as the Buckley-Leverett theory (Lake, 1989, Chap. 5). 
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For ln(k) -N(/1., ci2), Lc. Vvp. Cv, and a are related by the following expressions (if 
porosity is constant): 

where erf() is the error function discussed in Chap. 4. Lc is also known as Gini's 
coefficient of concentration in statistical texts (Kendall and Stuart, 1977, p. 48). 

A A 
It is more difficult to develop estimates of bias and precision for Lc than for V DP· 

Using numerical methods, however, we can still present the results graphically if we 
assume ln(k) is normally distributed. Figure 6-8 presents the bias as a fraction of the true 
value in Lc. The x axis gives the number of data in the sample, and each curve is for 
different values of Lc beginning at 0.3 (topmost curve) down to 0.9 (lowest curve). The 
bias can be pronounced, particularly at high Lc and small sample sizes. For example, for 
I= 40 data in the sample and a true Lc = 0.80, repeated measurements will actually yield 

A 

an estimated Lc of 0.72 (since the bias is -0.08). Lc is, on average, lower than the true 
value; thus, we are again underestimating the heterogeneity. 

0.0 

-0.1 

I.e =0.3 

-0.2 
I.e= 0.6 

0 Lc=0.9 

0 25 50 75 100 

Number of data in sample 

Figure 6-8. Bias performance of the Lorenz coefficient estimator. Lines are best-fit 
curves for Lc = 0.3 and 0.9. From Jensen and Lake (1988). 
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/\ 

Figure 6-9 gives the error sL (standard error in Lc) for Lc. For example, when 
Lc = 0.8 (neglecting the correction for bias), about 140 data values are required to 
determine Lc to within a standard error of 0.05. Do not try to compare this figure with 
the similar figure for V DP• because sL is a measure of the error in the Lorenz estimate in 
units of Lc and sy measures error in units of V DP· Since V DP '* Lc;., in general, the 
units are not the sa~e. For an equivalent situation, it turns out that Lc usually has a 
lower error than the V DP estimate. See Jensen and Lake (1988) for further details. 
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Figure 6-9. Variability of Lorenz coefficient estimates. After Jensen and Lake (1988). 

Gelhar~Axness Coefficient 

A combined static measure of heterogeneity and spatial correlation is the Gelhar-Axness 
coefficient (Gelhar and Axness, 1979), defined as 
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where a~(k) = Var[ln(k)] and An is the autocorrelation length in the main direction along 

which flow is taking place, expressed as a fraction of the inlet to outlet spacing. An is a 
measure of the distance over which similar permeability values exist. We discuss An in 
more detail in Chap. 11. 

I H has the great advantage of combining both heterogeneity and structure in a quite 
compact form. Cv. V nP• and Lc all ignore how the permeability varies in the rock; 
regions of high and low permeability could be far apart or quite close and yet have the 
same Cv, V nP• and Lc. As we have discussed, however, Cv with the geological 
description does appear to have potential for guiding sampling strategies. I H begins to 
incorporate a numerical measure of the geological organization present in the rock. As 
with V nP• I H asumes ln(k) is normally distributed. 

Numerical simulation work by Waggoner et al. (1992) and Kempers (1990) indicates 
that! His a much improved indicator of flow performance compared to V nP· However, it 
cannot be satisfactory for all cases since, in the limit of An ~oo (uniform, continuous 
layers), the flow must again be governed by V nP· Sorbie et al. (1994) discuss some 
limitations of I H• particularly as it relates to prediction of flow regimes for small An. 

6=3 DYNAMIC MEASURES 

In principle, these measures should be superior to static measures since they most directly 
characterize flow. In practice, dynamic measures are difficult to infer and, like the static 
measures, are unclear as to their translation to other systems and scales. 

The measures we discuss are based on end-member displacements. A displacement that 
has an uneven front is called channeling and its progress is to be characterized by a Koval 
factor. If it has an even front it is dispersive and is characterized by a dispersion 
coefficient. See Chap. 13 and Waggoner et al. (1992) for more details. 

Koval Factor 

The Koval heterogeneity factor H K is used in miscible flooding to empirically incorporate 
the effect of heterogeneity on viscous fingering (Koval, 1963). It is defined as the 
reciprocal of the dimensionless breakthrough time in a unit-mobility-ratio displacement: 

HK = l/tn 
breakthrough 
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It follows from this that the maximum oil recovery has been obtained when H K pore· 
volumes of fluid have been injected: 

t -H V sweepout - K 

In these equations, tv is the volume of displacing fluid injected divided by the pore 
volume of the medium. Breakthrough means when the displacing fluid first arrives at the 
outlet and sweepout means that the originally resident fluid is no longer being produced. 
For a homogeneous medium, both occur at tv= 1 andHK= 1, but there is no upper limit 
on HK. Obviously, large values of HK are detrimental to recovery. 

If we interpret the above response as occurring in a uniformly layered medium with a 
log-normal permeability distribution, then H K and V VP are empirically related by 

which plots as Fig. 6-10. 
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log10(HI() = V0 p(1-V0 pr0·2 

Calculated 

o~----~----~----~----~~--~ 
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Vnp 
Figure 6-10. Koval factor and Dykstra-Parsons coefficient for a uniformly layered 

medium. From Paul et al. (1982). 
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H K has many of the same problems as V DP and Lc. but it is a far more linear measure 
of performance, being bounded between zero and infinity. If the medium is not uniformly 
layered, H K can be related to I H , the Gelhar-Axness coefficient, as in Fig. 6-11. 

10 
Koval Factor, HK 

1 

0.0001 0.001 0.01 0.1 1 
Heterogeneity Index, IH 

10 

Figure 6-11. Relationship between Koval factor and Gelhar-Axness coefficient From 
Datta Gupta et al. (1992). 

Dispersion 

If a miscible displacement proceeds through a one-dimensional "homogeneous" permeable 
medium, its concentration at any position x and time tis given by 

1[ (x-vt)~ C(x, t) = 2 1 - erf 2~ U 

where v is the mean interstitial velocity of the displacement. The most important 
parameter in this expression is Kz, the longitudinal dispersion coefficient. Kz has been 
found to be proportional to v according to 
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where a1 is the longitudinal dispersivity, an intrinsic property of the medium. Clearly, 
the degree of spreading depends on the dispersivity; the larger a1, the more spreading 
occurs. 

The derivation and implications of the equation for C(x,t) are too numerous to discuss 
here (Lake, 1989, pp. 157-168). However, both HK and a1 are clearly manifestations of 
heterogeneity in the medium because there would be no spreading of the displacement 
front if the medium were truly homogeneous. Indeed, several attempts have been made 
to relate a1 to the statistical properties of the medium. In the limiting case of small 
autocorrelation and heterogeneity, a1 divided by the length of the medium is proportional 
to I H (Arya et al., 1988). This should come as no surprise if we view such dispersion as 
a series of uncorrelated particle jumps during the displacement. In such circumstances, 
the average particle position, now being the result of a series of such jumps, should take 
on a Gaussian character as required by the Central Limit Theorem (Chap. 4) and suggested 
by the error function in the C(x,t) equation. 

Unfortunately, a substantial amount of data collected in the field suggests that a1 
depends on the scale of the measurement. Such behavior is called non-Fickian dispersion. 
In such cases, a1 can still be related to the statistical properties of the medium (Dagan, 
1989, Chap. 4; Gelhar, 1993), but the connection is much more involved and its utility 
in subsequent applications is reduced. 

Datta Gupta et al. (1992) have shown that the concentration profile of miscible 
displacements through a correlated medium behaves as a truncated Gaussian distribution, 
becoming more Gaussian as the scale of correlation decreases with respect to the length of 
the medium. Adopting this point of view, the dispersion relation (with constant az) and 
Koval approach (with constant H K) represent the extremes of small and large spatial 
correlation, respectively. (If we applied the Koval approach to uncorrelated media, we 
would find that H K depends on scale.) Nevertheless, both approaches give material 
properties (a1 or H K) that are related to the heterogeneity of the medium. 

6-4 SUMMARY REMARKS 

The progression of this chapter mimics the progress of the entire book in a way. We 
have begun by discussing heterogeneity measures and their properties. But during the 
dynamic measure discussion, we could not avoid speaking about autocorrelation or spatial 
arrangement. This is a subject we will return to later in the book. But we must depart 
this chapter with a bit of foreshadowing. 
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The subject of autocorrelation (and its existence in permeable media properties) means 
that measures of heterogeneity must be scale-dependent. Indeed, laborious measurements 
in the field have shown this to be the case (Goggin et al., 1988). There are entire 
statistical tools devoted to such measurements, and these tools frequently combine spatial 
arrangement and heterogeneity. Chapter 11 contains a discussion of these, along with the 
implications for the geological character. 

Spatial arrangement implies some force or causality behind the observation. Since we 
are dealing with naturally occurring media, a study and understanding of this causality 
must deal with the geologic reasons behind the observations. Indeed, we shall fmd that 
geologic insight can frequently unravel a statistical conundrum, allow us to fill in 
missing data, or even indicate that a statistical approach is not necessary. Such a 
combination is most powerful and forms an underlying theme for this book. 



7 

HYPOTHESIS TESTS 

Every computation produces an estimate of some formation property. Given unlimite~ 
resources and ·time, we could very accurately establish the exact value of that property 
using the entire volume of material we wish to assess. Since resources and time are 
limited, the values we calculate use modest sample numbers and sample volumes and may 
differ from the exact value because of sampling variability. That is, if we could obtain 
several sets of measurements, the estimates would vary from set to set because each 
estimate is a function of the data in that set. An estimate will have an associated error 
range, the standard error, which gives an idea of the precision of the estimate attributable 
to sampling fluctuation. The standard error is a number based on the number and 
variability of the measurements and does not take into account biased sampling procedures 
or other inadequacies in the sampling program. Chapter 5 described some methods for 
determiningstandarderro~. 

In this chapter, the central theme is making comparisons involving one or more 
random variables. A hypothesis test (or a confidence test) is a formal procedure to judge 
whether some estimate is different in a statistical sense from some other quantity. That 
latter quantity can be a second estimate or some number ("truth") obtained by another 
method. We will use several methods for comparing estimates. Whatever the technique 
used, the comparison is made to answer the question: can the difference in value between 
the two quantities be explained by sampling variability? If the answer is yes, then we say 
the two quantities are not statistically different. 

In many cases, hypothesis tests may be unnecessary because they do not answer the 
appropriate question or they only formalize what we already knew. For example, suppose 
we have two laterally extensive facies,f1 andf2, with/1 abovef2• For the purposes of 
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developing a flow-simulation model, we want to know whether they can be combined or 
if they should be separately distinguished; Assuming that the arithmetic average is the 
appropriate average for flow in each of these facies, we calculate the average 
permeabilities and standard errors from core samples and obtain the results 

faciesf1: 

faciesj2: 

k; = 30 ± 10 mD 
kz = 100 ± 20 mD 

Do we need a hypothesis test to establish that/1 and/2 are statistically different? No! A 
simple sketch shows us that the 95% confidence intervals do not intersect (Fig. 7-1). 

• 95% • • 95% • 10 50 60 140 
\\. 
\i: I I I I .k 

0 kl =30 k2= 100 

Figure 7-1. Two arithmetic averages and their 95% confidence intervals (twice their 
standard errors). 

So the statistical significance of the averages is . clear: h and h have average 
permeabilities that are different at the 95% level. Wha~ is less evident is whether, under 
the desired flow process, separating the facies into two strata will improve the predictions 
made by the simulator model. This issue is beyond the ability of hypothesis testing to 
answer. 

Hypothesis tests are also unsuitable for analyzing noncomparable quantities. One 
indicator of comparability is whether the two quantities have the same units (dimensions), 
but this test is incomplete. The quantities should be additive (see Chaps. 3 and 5) 
because hypothesis tests assume that differences in estimates are meaningful. For 
example, consider the two regions shown in Fig. 7-2. If they have equal areas of the 
front and back faces.for injection or production and no-flow boundaries otherwise, they 
have identical abilities to transmit a single phase. Thus, while a hypothesis test may 
indicate that the permeabilities of the two regions are statistically different, their 
transmissibilities are equal. This problem arises because permeability is ah intensive 
property and, therefore, is not additive. Flow resistance or conductance, however, may be 
additive (Muskat, 1938, pp. 403-404) so that, with similar boundary conditions, the 
sample statistics of these variables may be comparable. It is easy to overlook this aspect 
of hypothesis testing in the heat of the statistical battle. 
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No-flow surfaces 

Figure 7-2. Two samples with differing average permeabilities but similar flow 
properties. 

Statisticians have implicitly recognized the need for additivity in hypothesis testing. 
Their 'concern, however, usually focuses on knowing the PDF of the difference of the 
quantities to be compared. For example, problems are often expressed so that two 
normally distributed variables are compared because the difference of two uncorrelated 
normal variables is also normal. Besides the normal, the c2 and the Poisson distributions 
also have this property (see Cramer, 1946, and Johnson and Kotz, 1970, for more), but 
most other PDF's do not. Because the c2 PDF is additive and variances of independent 
variables are additive, hypothesis tests on variabilities compare sample variances rather 
than standard deviations. Here, we will take the approach discussed in Chap. 5 and require 
only local additivity (i.e., small perturbations are additive even though large perturbations 
may not be additive). 

Hypothesis tests are similar in some ways to the judicial process that exists in many 
countries. When someone is accused of committing a crime, a trial is held to determine 
the guilt or innocence of the accused. The accused is assumed to be innocent until a jury 
decides. At the conclusion of the trial, there are usually four possible results to this 
process: 

1. the accused is actually guilty and is found guilty; 
2. the accused is actually innocent and is found innocent; 
3. the accused is actually innocent but is found guilty; and 
4. the accused is actually guilty but is found innocent. 

In the first result, the assumption (innocence) was wrong and was found to be wrong. In 
the second result, the assumption was right and was confirmed. In both cases, the 
outcomes reflected the true status of the accused and justice was served. In the last two 
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possibilities, however, mistakes were made and the outcomes were wrong. Different 
countries handle these errors differently. The judicial process may be adjusted to 
minimize outcome 3 at the expense of increasing the occurrences of outcome 4 by, for 
example, increasing the burden of proof required for a conviction. 

For hypothesis tests, we start with an assumption that is called the null hypothesis. 
Sampling variability alone often can explain the difference between J:wo em:imates. For 
example, faciesfi andh have the same mean permeability and k1 =F- k2 because of 
sampling variation. In this case, the alternative hypothesis is that the difference cannot 
be explained by sampling variability and some other cause (unspecified) must be in effect. 
We then apply the hypothesis test and obtain a result that either upholds the null 
hypothesis or shows that the alternative is indicated. Just as in the judicial process, 
mistakes may result. We may decide the difference in two quantities cannot be explained 
by sampling variability when, if the truth could be known, it could be so explained 
(judicial outcome 3). This type of mistaken conclusion is called a type-I error. A type-2 
error occurs when the null hypothesis is accepted when, in fact, the altema,tive applies 
(judicial outcome 4). Before we apply a hypothesis test, we usually stipulate the 
probability of avoiding a type-1 error, and this probability is called the confidence level of 
the test. · 

Depending on the hypothesis test used, the number of errors will vary. Different tests 
may give different outcomes. The choice of test depends upon the information available, 
the estimates to be tested, and the consequences of making errors. We will only consider 
a few hypothesis tests and their properties that are commonly used to analyze 
geoscientific and geoengineering data. We will assume that, when comparisons are made 
between different sample statistics, the statistics are based on independent samples. 
Extensive treatments are given by Rohatgi (1984), Snedecor and Cochrane (1980), and 
Rock (1988). Cox and Hinkley (1974) discuss the theoretical underpinnings of 
hypothesis tests. 

7-1 PARAMETRIC HYPOTHESIS TESTS 

These tests depend on a knowledge of the form of the PDF from which the data come. 
Common tests involve the normal, binomial, Poisson, and uniform distributions. The t 
and F tests are particularly common and assume the data come from normal PDF's. 

The t Test 

Populations A and B will be assumed normal with means and variances (J.LA• cr~) and 
(J.l.B• cri). We begin with the case cr~ = 0'~ = i and deal later with the case cr~ =F- cri, 
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From the data sets having IA and IB data, respectively, we compute ( XA.~~) and 
( XB, ~i) and make the null hypothesis H0 that the two population means are equal, 

null hypothesis, H o= llA = llB 

with the alternative hypothesis H A that the two means are not equal, 

alternative hypothesis, H A: llA i'JlB 

If we can demonstrate statistically that, at some predetermined confidence level Ia, the 

null hypothesis is false, then we have found a "significant difference" in the sample 

means ( XA - XB). That is, it is a difference that, at the given level of probability, 

cannot be explained by sampling variability alone. The roles of the hypotheses and 

confidence level are quite important because they govern what question the test will 

answer and with what probability type- I errors will occur. ( X A - X B ) has a t 

distribution with (I A + I B - 2) degrees of freedom and a variance of 0' 2(r} + I"B\ Since 

H A is satisfied if either llA > llB or llA < llB, we have to consider both possibilities 

when choosing the desired confidence level. That is, there is a probability of a/2 that llA 

> llB and a probability of a/2 that llA < llB· Such a situation requires a "two-tailed" t 

test. 

The appropriate statistic is 

where 

We reject Ho if 

Prob[ltl > t(a/2,IA +IB- 2)] >a 
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and we acceptH0 if 

Prob[ ltl > t(a/2,/A +IB- 2)]::;;; a 

In terms of confidence intervals, H0 is accepted if 

where to= lt(a/2, /A+ IB- 2)1. If the alternative HA had admitted only one inequality 
(e.g., JlA > JlB), then the critical t value would be to= t(a, !A+ IB- 2). 

Example la- Comparing Two Averages (Equal Variances Assumed). 
Consider the following data: 

XA =50 

For a= 0.05 (95% confidence level), t(a/2, df> = 2.006 from a table oft 
values (Table 5-2). 

~2 = 24•5 + 29•3 = 3.91 
25 + 30 - 2 

50- 48 
t = --;:::::::=====:....= 3.74 

~ 3·91 (is + io) 
Since the absolute value oft is greater than 2.006, we reject H0 in favor of 
HA and conclude with 95% confidence that the means are not equal. Recall 
from Chap. 5, J1 == X± t(a/2, df)s/{/, and this situation can be represented 
as in Fig. 7-3. 

Unfortunately, errors are the inevitable byproduct of hypothesis testing. No matter 
how careful we are in selecting the form of the null hypothesis and associated confidence 
level, we always run the risk of rejecting Ho when it is true or accepting Ho when HA is 
true. Once an inference is made, there is no way of knowing whether an error was 
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committed. However, it is possible to compute the probability of committing such an 
error using the t distribution. In fact, since probabilities and frequencies are equivalent, 
we can say that if we repeat the above test many times, we will find the sample means to 
be different 95 times out of 100 trials. 

... 95% 
~ ~ 

95% .. 
'\ 47.35 XB 48.65 49.08 XA 50.92 

'" I I I I I I 
0 48.0 50.0 

t(0.025, 29) = 2.045 t(0.025, 24) = 2.064 

Figure 7-3. Relationships of averages and their 95% confidence limits. Note that 
2.045 {3 I f30 = 0.65 and 2.064 {5 I m = 0.92. 

The above analysis is largely unchanged when ~ =F o-~ except that we can no longer 
combine the variance estimates sx and s~to give s and we have to adjust the degrees of 
freedom. The appropriate statistic is 

t= 

We reject Ho if Prob[ ltl > t(a/2, d.[)]> a and accept Ho if Prob[ ltl > t(a/2, d.[)]:; a 
with 

as an "adjusted" degrees of freedom that has been devised to allow us to continue using the 
conventional t tables (Satterthwaite, 1946). 
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Example 1 b - Comparing Two Averages (Unequal Variances Assumed). 
Suppose that we have the same data as before but the populations are no 
longer presumed to have the same variance: 

0.090 
0.0020 = 44.7 = 44 

For a= 0.05 (95% confidence level), t(a/2, df> = 2.015 (from Table 5-2) and 

t = 50 - 48 = 3.65 

~is+ :o 
Since the absolute value oft is greater than 2.015, we reject H0 in favor of 
H A and conclude with 95% confidence that the means are not equal. 

In the t test, additional information has direct value in terms of the number of data 
required. For example, in Example lb, the number of degrees of freedom decreases from 
53 to 44 when we remove the information that cr~ = 0'1, increasing slightly the 
possibility of a type-1 error (i.e., a computed ltl that is closer to t(a/2, df)). This is in 
keepinf with the intuitive notion that information has value. In this case, the knowledge 
that O'A = 0'~ is worth 9 data points. Similarly, if we knew that JlA > Jln was 
impossible from some engineering argument (e.g., a law of physics, thermodynamics, or 
geology), we could use a one-tailed t test instead of a two-tailed test In Example la, the 
critical t value, t(O.OS, 53), would then be 1.67 instead of 2.006. Alternatively, to have a 
critical t-value of 2.006, the df could be reduced to 6, so we would need only 8 data (df = 
I A + I B - 2). The information that JlA > f.ln can be excluded is therefore worth 45 data 
points in this case. 

The t-test theory is developed on the assumption of normality. It has been found, 
however, that the test is rather insensitive to deviations from normality (Miller, 1986). 
For the arithmetic average, the Central Limit Theorem (Chap. 4) suggests that 
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X A (= .!. f Xi) will be much closer to normal than the population from which the 
I i=l 

samples Xi are taken. This argument, however, may not apply when other quantities, 
such as the geometric ( Xc) or harmonic ( XH) averages, are being compared. In that 
case, transformat~ns might be useful. For example, if the_!! i are log-normally 
distributed, ln( Xc) has a normal PDF, so comparing In( Xc)'s is appropriate. 

Similarly, xfi is likely to be more nearly normal than XH because of the central limit 

effect, so the inverse of harmonic averages may be compared with the t test. If 
transformed quantities are being compared, however, the standard deviations also have to 
pertain to the transformed quantity. Box et al. (1978, pp. 122-123) give an example of 
applying at test to a log-transformed data set. Transformation before the t test, however, 
will not work if one average is being compared with another type of average, e.g., XA 
from one facies (approximately normal) compared with XH of another facies (non
normal) for some property X. If severe nonnormality of the two quantities is suspected 
and they really are comparable, a nonparametric method, such as the Mann-Whitney
Wilcoxon test (see below) may be used. 

When three or more quantities are to be compared, it may be tempting to apply the t 
test pairwise to the estimates. In general, this is not advisable because of the increasing 
chance of a type-1 error. If we compare two estimates at the 95% confidence level, there 
is a 1 - 0.95 = 0.05 probability that H 0 is. satisfied but H A is indicated. If we compare 

pairwise three estimates at the 95% level, there is a 1 - (0.95)3 = 0.14 probability or a 
14% chance that H0 is satisfied but HA will be indicated by at least one pair of estimates. 
The preferred approach to testing several estimates is to use the F test. However, the 
elementary application of the F test is to compare population variances, a subject we deal 
with next. 

The F Test 

We begin again with e1e now familiar assumption that populations A and B are normally 

distributed with means and variances (JlA, 0'~) and (JlB, O'i). From the data sets, we 

compute (XA,s~) and (XB,s~) and we make the null hypothesis H 0 that the two 

population variances are equal 

2 2 
null hypothesis, H0: O'A = O'B 
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with the alternative hypothesis HA that the two variances are not equal 

2 2 
alternative hypothesis, HA: O"A * O"B 

The appropriate statistic is 

where si > s~. We reject Ho if Prob[F > F(IA - 1, IB- 1, a)]> a and accept Ho if 

Prob[F > F(I A - 1, I B - 1, a)] ::;;; a. 

We assume that s 1 > si because F?:: 1 and that simplifies the standard tables. There 

is one table for each value of a. A limited portion of a standard table is given in Table 
7-1. More extensive tables are given in Abramowitz and Stegun (1965) and many other 
statistics books. 

Table 7-1. Critical values for the F test with a= 0.05. 

JA-1 1 2 3 4 5 6 8 10 20 30 00 

............. 
In-1 

1 161 200 216 225 230 234 239 242 248 250 254 
2 18.5 19.0 19.2 19.3 19.3 19.3 19.4 19.4 19.4 19.5 19.5 
3 10.1 9.55 9.28 9.12 9.01 8.94 8.85 8.79 8.66 8.62 8.53 
4 7.71 6.94 6.59 6.39 6.26 6.16 6.04 5.96 5.80 5.75 5.63 
5 6.61 5.79 5.41 5.19 5.05 4.95 4.82 4.74 4.56 4.50 4.36 
6 5.99 5.14 4.76 4.53 4.39 4.28 4.15 4.06 3.87 3.81 3.67 
8 5.32 4.46 4.07 3.84 3.69 3.58 3.44 3.35 3.15 3.08 2.93 
10 4.96 4.10 3.71 3.48 3.33 3.22 3.07 2.98 2.77 2.70 2.54 
20 4.35 3.49 3.10 2.87 2.71 2.60 2.45 2.35 2.12 2.04 1.84 
30 4.17 3.32 2.92 2.69 2.53 2.42 2.27 2.16 1.93 1.84 1.62 
00 3.84 3.00 2.60 2.37 2.21 2.10 1.94 1.83 1.57 1.46 1.00 
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Example 1 c - Comparing Two Sample Variances. Let us reconsider the 
previous data to compare the sample variances. 

Since 1.67 < 1.91, the critical value, H0, is accepted. Therefore, the values 
s 1 = 5 and si = 3 do not indicate that the underlying population variances are 
unequal. They may, in fact, be unequal, but the variability in the sample 
variances is sufficiently large to mask the difference. Further samples or 
other information (e.g., geological provenances of the samples) are needed to 
make this assessment. 

Example 2- Comparing Dykstra-Parsons Coefficients. Consider the case 
where two Dykstr~-Parsons coefficients CVvp's) have been estimated from two 
wells in a field: V DPl = 0.70 (from I 1 = 31 core-plug samples) and 
A 
Vvp2 = 0.80 (from I2 = 41 core-plug samples). We want to determine 
whether the difference in V DP can be explained by sampling variability at the 
5% level. 

Since V DP is being used to assess variability, we assume that permeability is 
log-normally distributed (see Chap. 6). The standard error of Vvp estimates 
is given by 

sv= -1.49[ln(l-Vvp)](l- Vvp)]!{j 

where Vvp is the "true" population value (Jensen and Lake, 1988). Here we 
will assume that V DP = 0.75, a value between the two estimates and in 

A A 

keeping with our null hypothesis that Vvp1 and Vvp2 are not statistically 

different. The standard errors for the two estimates are 

i77 
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and 

~v1 = -1.49[1n(1-0.75)](1-0.75)rJ3i = 0.093 

~Vz::::: -1.49[1n(1-0.75)](1-0.75).f'}4i = 0.081 

· A simple sketch shows that the 95% confidence intervals (of size± 2 standard 
errors) for these estimates overlap considerably (Fig. 7-4). Hence, no 
statistically significant difference appears to exist. 

~DPl 

• 95% • 0.50 0.70 0.80 0.90 
~" '" I I I I I .k 

0 • 95% • ~DP2 
Figure 7-4. Confidence intervals for two Dykstra-Parsons coefficient estimates. 

1\ 1\ 1\ 

Quantifying this assessment, we have LlVvp = V DPz- Vvp1 = 0.10 and 

1\ 1\2 1\2 2 2 . 
Var(LlVvp) = sv + sv = (0.093) + (0.081) = 0.015. Hence, the standard 

1 2 
1\ - ,-;::-;:::::; 1\ 

error of LlV DP is about"\' 0.015 = 0.12, giving Ll V DP'= 0.10 ± 0.12, which 
is not statistically different from 0. Such large standard errors are typical and 
probably account for the lack of differentiation of formations in the work of 

1\ 

Lambert (1981), inasmuch as it is rare to calculate Vvp from more than 100 
samples. 

There is, however, a problem with the above analysis. V vp's are not additive 
and, therefore, the implicit comparison shown in Fig. 7-4 may not be 

1\ . 

meaningful. We see, for example, that ~v1 is more than 10% of V vp1, and 

we may no longer be in the region of local additivity for this level of V DP· 
The variances, however, should be additive and can be compared using an F 
test. 



Statistics for Petroleum Engineers and Geoscientists 

As shown in Chap. 6, V DP = 1 - e-a, where a2 is the variance of the log
/\ 

permeability PDF. We can estimate a from the Vnp's and compare the 
variance estimates. 

"2 
sy2 2.59 

F = :5Jl = 1.45 = 1.80 

The F statistic for this case is F(40, 30, 0.05) = 1.79 

Consequently, comparing the variances shows that the difference in the two 
variabilities is statistically significant at the 95% level. This contradicts the 
assessment based on the V DP standard errors. 
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The F test for equality of variances has two weaknesses. First, it is more complicated 
than the t test because it requires two degrees of freedom and F values from tables. There 
are no values readily related to the normal-distribution probabilities as has the t 
distribution. Second, it is very sensitive to nonnormality of the populations (Miller, 
1986). The F test is much less sensitive to nonnormality, however, when used for 
testing equality of means. 

When means are being tested, the procedure is termed analysis of variance or ANOVA. 
Once the basis for ANOV A is understood, it can be appreciated why it is called an 
analysis of variance and not an analysis of means. The ANOV A method uses the F 
distribution in the following manner. 

Suppose we have samples from three populations N(IJA, a;), N(IJB, a;), and 

N(IJc, a~) with ai =a]= a~= a 2. The null hypothesis (Ho) is that llA =liB= Pc 
with the alternative that either or both equalities are untrue. From the data sets, we 

J\2 J\ 2 A 'l. , 
compute (XA, sA), (Xs, sB), and (Xc, sc) for set s1zes IA,lB, and I c. The overall 
average is given by 

X 

The variability of the averages is 

IAXA + IsXB + IcXc 

IA+IB+Ic 
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where the denominator is 2 because we have three averages with (3 - 1) degrees of 
freedom. The total variability of all the data in the sets is 

This gives us all we need to apply the F test. The appropriate quantity is 

where we reject H0 if Prob{ F > F[2, (!Kl) + (JB-1) + (/c-1), al} >a and accept Ho if 
Prob{F > F[2, (/Kl) + (JB-1) + (Ic-1). a] } :-.:;;a. 

In this case, F is a ratio comparing two variabilities (hence the name analysis of 
variance), both of which are estimates of cP. The numerator is the variability based on 
the three averages, XA, XB, and Xc. while the denominator is based on pooling all 
the data together. We will use this approach again in regression, for the coefficient of 
determination. The above expressions can be extended to tests on many means. 

Example 3- Means Testing Using the F test. Let us retest the means using 
ANOVA for the data sets from Example 1. Ho: JlA = JlB;HA: JlA * JlB· 

~1 =50 

XB = 48 

X ::: 
25•50 + 30•48 

25 + 30 
=48.9 

25 (50-48.9)2 + 30 (48-48.9)2 
1 = 54.5 
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Since F(l, 53, 0.05) = 4.03, HA is clearly indicated. This is the same result 
as using the t test. Indeed, it can be shown that F(l, /, a)= [t(/, a)]2. 
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Th F . d 1 . . . 1 . ( 2 2 2) e test 1s mo erate y msens1t1ve to unequa vanances e.g., aA 1:. aB 1:. ac among 

the populations.· The ANOV A method can be extended well beyond the limited 
application shown here. Box et al. (1978) do an excellent job of presenting the various 
applications and interpretations of ANOV A. 

When it is desired to know more than just that the means are not all equal, a multiple 
comparison test is needed. It will tell which mean is greater for a stipulated confidence 
level. Box et al. (1978) and Rock (1988) discuss several such tests. We reiterate here, 
however, our earlier caution that hypothesis testing addresses only the question of 
statistical variability. If the means are found to be significantly different, further analysis 
should be undertaken. This analysis would include any geological information available 
for the data sets and whether the result of different means has an engineering significance. 
Recall our earlier comment (relating to Fig. 7-2) pointing out that statistical significance 
may not translate to significant differences in flow performance. Facies geometries and 
the flow process may either mitigate large contrasts or magnify statistically insignificant 
differences in reservoir properties. See, for example, the Rannoch and Lochaline flood 
results in Chap. 13. 

7m2 NONPARAMETRIC TESTS 

These tests do not assume anything about the underlying distributions of the populations 
under investigation. There is a price to be paid, however, for not providing PDF 
information in hypothesis tests. Nonparametric tests are not so powerful as parametric 
tests if the data actually come from the stipulated distribution. As remarked with the t 
and F tests, however, the superiority of parametric tests may quickly vanish (e.g., the F 
test for equality of variances) if the true PDF's do not accord with the assumed PDF's. 
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Mann-Whitney-Wilcoxon Rank Sum Test 

This hypothesis test can go by several other names, including the Mann-Whitney and the 
Wilcoxon Rank Sum Test. Strictly speaking, the Mann-Whitney test is slightly different 
from the Wilcoxon test, but they can be shown to be equivalent. It is a test that is 
sensitive to changes in the median, but it is actually a comparison of the empirical CDF's 
of the two data sets. Hence, the test will also respond to changes in other features of the 
distribution, including skewness. It is only marginally less powerful than the t-test when 
the data are samples from normal populations. It may also be used for ordinal- or 
interval-type variables, an important tool for comparing geological (indicator) variables. 

Suppose we have two data sets, X1,X2,X3, ... ,XJ and Y1, Y2, Y3, ... , YJ. with 
I :s; J. We assume for the null hypothesis that they come from populations with the 
same CDF. We mix the two sets and order the data from smallest to largest. The 
smallest datum has rank 1 and the largest has rank I+J. LetR(Xi) be the rank of Xi in 
the combined set and T x be the sum of ranks of all I X's: 

I 

Tx= L,R<XD 
i=l 

If I~ 10 and Ho applies, T xis approximately normally distributed: 

T -N(I(I + J + 1) 'IJ(I + J + l)) 
X 2 12 

Therefore, a single- or double-sided test result can be applied. If 10 ~ J > I, special tables 
must be consulted (e.g., Rohatgi, 1984). If ties occur, the rank assigned to each value is 
the average of the ranks. Rice (1988, Chap. 11) gives a good account of the theory 
behind this test 

There are two points that drive the Mann~ Whitney test. First, 

T T /(I + J + 1) J(I + J + 1) (I + J)(I + J + 1) 
x+ y= 2 + 2 = · 2 

so the ranks must sum to a number that depends only on the data-set sizes, and each data 
set should contribute to the sum according to the size of the data set.· It also suggests that 
T x and T y are equivalent statistics, and a test on one will yield the same result as a test 
on the other. Second, if T xis particularly large or small compared to the size of the data 
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set (i.e., the X data are dominating the high or low ranks, respectively), the suggestion is 
that the X and Y populations are not the same. 

Example 4 - Testing Directional Permeability Data. Suppose that we have 
the following core-plug permeability measurements from a massive (i.e., 
structureless) sandstone interval. There is no information about sample 
depths. Is there a statistically significant difference in the distributions of the 
horizontal and vertical permeabilities? Our H 0 assumes that there is no 
statistically significant difference between the distributions against the 
alternative (HA), and that there is no preferred direction to the difference. 

kh: 411; 857; 996; 1010; 1510; 1840; 1870; 2050; 2200; 2640; 2660; 3180 mD 
kv:700; 858;967; 1060; 1091; 1220; 1637;1910;2160;2320;2800;2870 mD 

We are testing the medians here because of the structureless nature of the 
sediment. Testing the arithmetic or harmonic averages would be inappropri
ate because of the layered nature of the medium that they imply (see Chap. 5). 
By inspection, the medians are kMh = 1855 and kMv = 1428 mD. 
Comparing these values with the arithmetic averages, fh = 1768 and 

f"v = 1633 mD, we see that the differences are less than 15%. This sug
gests that, despite the flow implications for certain averages, the heterogene
ity is sufficiently low that any measure of central tendency would suffice. 
The ranks of the combined set are shown in Table 7-2. 

For these data, Th = 154 and Tv= 146. Note Th +Tv= (12+12)(12+12+1)/2 
= 300, as a quick check of our mathematics. In this case, I= J, so we can 
analyze Thor Tv, and both samples are larger than 10, so we can use the 
normal approximation. 

E(Th):::: 12(12+12+1)/2 = 150 and Var(T~ = (12•12)(12+12+1)/12 = 300 

Th- E(Th) 
Hence, Z = = (154- 150)/17.3 = 0.23. A table of Z values 

--Jvar(T~ 
suggests that there is a 40% chance of observing T h ~ 154 under H0. Hence, 
H o is upheld. 
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Table 7-2. Permeability data and ranks for Example 4. 

Data value Rank Data type 
411 1 h 
700 2 v 
857 3 h 
858 4 v 
967 5 v 
996 6 h 
1010 7 h 
1060 8 v 
1091 9 v 
1220 10 v 
1510 11 h 
1637 12 v 
1840 13 h 
1870 14 h 
1910 15 v 
2050 16 h 
2160 1 17 v 

~ 

2200 18 h 
2320 19 v 
2640 20 h 
2660 21 h 
2800 22 v 
2870 23 v 

' o" 

3180 24 h 

If we had more information in Example 4, a more sophisticated analysis could be 
performed to look for systematic differences between kv and kh. We might also apply a 
one-sided t test, allowing only the alternative kv < kh, if we knew the sediments were not 
reworked (e.g., dewatered or bioturbated). If we had depth information and the samples 
were paired (i.e., one kv and one kh measurement at each depth), we might have checked 
for systematic variations. Core-plug depths, however, can be inaccurate and, without 
reference to the core or core photographs to check sampling locations, so-called paired 
samples may be taken in quite different locations. 

Kolmorogov-Smirnov Test 

This hypothesis test may be used to compare the empirical CDF against either a known 
CDF or another empirical CDF. The test may be used for nominal, ordinal, or ratio 
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data. It is based on measuring the maximum vertical separation between the two 
distributions (Fig. 7-5). If dmax is small, the CDF's F 1 and F 2 are probably not 
statistically different. It is a particularly helpful test because, while it may be easy to 
compare averages or medians of distributions, comparing entire CDF's is more involved. 

1 

F(x) 

0 X 

Figure 7-5. Comparison of two CDF's in the Kolmogorov-Smirnov test. 

Each empirical CDF Fi is based on a data set of size Ii so that each Fi will increase in 
steps of size I/ or integer multiples thereof. The producti1I2dmax will be an integer, 
and that is the way the critical tables are listed. For small samples (/i ~ 16), no 
approximation is available and tables are needed to interpret the result. Rock (1988) 
points out that caution is required with tables because some give the value I 1I2dmax that 
must be exceeded while others give the critical value, i.e., the latter give the value 
(!1!2dmax + 1). If Ii > 16, Cheeney (1983) gives the 5% two-sided critical value that 
must be exceeded as either 1.3611-112, where the comparison is with a theoretical CDF, or 
1.36(! 1J2)112(J 1 + 12)-1/2 for comparing two empirical CDF's. The one-sided 5% test 
values use 1.22 instead of 1.36 so that approximately 20% fewer data are needed for a one
sided test than for a two-sided test. 

Example 5- Comparing Wireline and Core-Plug Data. We have core-plug 
( </Jp) and wireline ( </Jw) porosity measurements over the same interval in a 
well (Table 7-3). Visual inspection of the core suggests all the data came 
from similiar facies. At a 5% level, is there a statistically significant 
difference in the distributional forms of the two porosities? We assume H 0 
such that there is no statistically significant difference between the forms. 
against the alternative H A that they are different. 
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Table 7-3. Ordered wireline and core-plug data for Example 5. 

tPw tPp Zw z, Pi 
32.3 28.4 1.61 1.78 97.8 
32.2 28.3 1.56 1.69 93.5 
31.7 27.8 1.14 1.21 89.1 
31.7 27.5 1.14 0.93 84.8 
31.6 27.3 1.04 0.74 80.4 
31.3 27.3 0.83 0.74 76.1 
31.2 26.7 0.73 0.17 71.7 
30.9 26.7 '0.41 0.17 67.4 
30.7 26.6 0.31 0.07 63.0 
30.6 26.6 0.20 0.07 58.7 
30.6 26.5 0.20 -0.02 54.3 
30.2 26.5 -0.11 -0.02 50.0 
30.2 26.4 -0.11 -0.12 45.7 
30.1 26.4 -0.22 -0.12 41.3 
30.1 26.3 -0.22 -0.22 37.0 
30.1 26.3 -0.22 -0.22 32.6 
30.0 26.2 -0.32 -0.31 28.3 
29.6 26.2 -0.69 -0.31 23.9 
29.6 26.0 -0.69 -0.50 19.6 
29.1 26.0 -1.10 -0.50 15.2 
28.5 25.8 -1.63 -0.69 10.9 
28.3 25.2 -1.73 -1.26 6.5 
27.9 23.1 -2.15 -3.26 2.2 

Because of the different volumes of investigation and measurement condi
tions, the average porosities and variabilities may be different for C/Jw and C/Jp· 
We will adjust the data so that they are more nearly comparable. Each data 
set has been normalized by subtracting the average from each datum and 
dividing by the standard deviation to yield the Z values in Table 7-3. 
Subtracting the average adjusts for the difference of measurement conditions: 
in-situ for wireline compared to laboratory conditions for plugs. Dividing by 
the variability adjusts for the different sampling volumes. This is because we 
assume that the formation can be divided into units of constant porosity 
(porosity-representative elementary volumes using Bear's (1972) terminol
ogy). Both the plug and wireline measurement sample one or more of these 
units. We further assume that either measurement is the arithmetic average of 
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the fonnation porosities within its volume of investigation. Each measure
ment's variability will decrease as n·l, where n is the number of units of 
constant porosity. Hence, dividing each measurement by the apparent 
standard deviation of the porosity in the interval will compensate for the 
difference in volumes. 

The CDF's of the normalized data are plotted in Fig. 7-6 using the probabili
ties shown in Table 7-3. The maximum distance between the CDF's is 
dmax = 67.39- 54.35 = 13.0%, or l1/2dmax = 23•23•0.130 = 69. The 5% 
critical value.is 1.36(23•23)112(23+23)•1/2 = 5, which is exceeded consider
ably by fti2dmax· Hence, the two CDF's are statistically different at the5% 
level. 

What is surprising about the result of Example 5 is not that the CDF's are 
different but where they are different. Inspection of Fig. 7-6 shows that the CDF's 
are different at several places; dmax occurs near the arithmetic average of the 
porosities, not at regions in the tails, as might be expected. Clearly, the plug and 
wireline measurements are not responding similarly and simple shifts or 
multiplying factors will not reconcile them. 
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Figure 7-6. Empirical CDF's for Example 5. 
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7-3 SUMMARY REMARKS 

Hypothesis testing has several uses in the analysis of data. Care must be taken, however, 
to ensure that the correct problem is. being posed that hypothesis testing is equipped to 
answer. The additivity of variables under test can be a major problem and solutions are 
not always apparent. Many statistical-analysis software packages contain large amounts 
of hypothesis-testing routines, and itis tempting to apply these to our data. The results, 
however,may mislead us unless we have a clear physical basis for interpretation. 

Perhaps one important role that hypothesis testing can fulfill is to raise awareness of 
the value of auxiliary information. For example, the data requirements for one-sided tests 
are often considerably lower than for two-sided tests. The geological characterization of 
the sediments under analysis may help restrict the analysis so that more may be learned 
from the data 
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Correlation is the study of how two or more random variables are related. It is a much 
less powerfultechnique than regression, discussed in Chaps. 9 and 10, because correlation 
does not develop a predictive relationship. It can be useful, however, for establishing the 
strength and nature of the association, or covariation, between random variables. 

Since correlation centers on random variables, it is unsuitable for relationships 
involving deterministic (or "controllable") variables. For example, in many bivariate 
problems, one of the variables can be considered as a quantity under our control with little 
or no error (such as a core flood where the amount of fluid injected is a controllable 
variable). In other situations, however, we simply measure both the X andY values on a 
number of samples with no control over either X or Y, e.g., porosity and permeability of 
core plugs. In these latter situations, correlation analysis is appropriate. 

8-1 JOINT DISTRIBUTIONS 

We have seen in Chap. 3 that all random variables have a distribution function that 
characterizes their probabilities of occurrence. If we have two random variables, X and Y, 
their probabilities of occurrence will be expressed through their joint probability density 
function,f(x, y): 

189 
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Prob(x <X~ x + OX andy < Y ~ y + oy) = f(x, y) ox oy 

If X and Yare independent, a knowledge of X or Y has no effect upon the value of the 
other variable and the joint PDF is simply the product of the two separate PDF's: 

f(x, y) = fx(x)fy(y) 

since Prob(x <X~ x + 8x andy< Y ~ y + 8y) = Prob(x <X~ x + 8x) Prob(y < Y ~ 
y + oy). In this case, as shown in Chap. 4, E(XY) = E(X)E(Y). 

The joint PDF of X and Y is an extension of the univariate situation where X and Y 
each has its own PDF./x andfy. X andY may both be continuous, discrete, or mixed 
with X of one type and Y of another type of variable (see Chap. 3 for a description of 
these variable types). Plottingf(x, y) requires three axes (Fig. 8-1). The projection of 
f(x, y) onto the x andy axes produces the marginal distributions of X andY. These are 
the PDF'sfx andfy that we observe when we ignore the other variable. The areas under 
each of these distributions must be one to ensure that they represent probabilities. 

f(x, y) 

- X=Xz 

Figure 8-1. A mixed joint PDF for X discrete andY continuous, with their 
bimodal marginal PDF's. 

Several features of the X-Y relationship can be obtained from the joint PDF. If one of 
the two variables is fixed within a small range, say x0 <X~ x0 + ox, while Y is al
lowed to vary, we can obtain the conditional PDF of YJYix(y I X= x0). Geometrically, 
fyiX(y I X= xo) is obtained when the plane X= xo "slices through" f(x, y). The condi
tional PDF can be used to determine how the mean value of Y varies with x0: 
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+oo 

E(Y I X= x0) = f y /y 1x(Y I X = x 0) d y 

E(Y I X= x0) is called the conditional expectation of Y and is a function of x0. There is 
a similar conditional PDF and expectation of X. The joint PDF is also used to measure 
the X-Y relationship strength, which we discuss further below. 

Just as with the univariate case, there are also joint CDF's. Conditional CDF's are 
obtained from the joint CDF by holding one of the variables constant. Recall that in 
Chap. 3 (Example 3), we used conditional CDF's to relate the sizes of shales to their 
depositional environments. In that case, the depositional environment and shale size are 
the two random variables. The depositional environment variable has a strong effect on 
the shape of the shale-size CDF. 

A plane can be drawn parallel to the x-y axes such that f(x, y) is constant (the 
"tombstone" sketch of Fig. 8-2). The plane represents the probability p, where 

p = Prob( Yl < Y:::; Y2• X= x2) + Prob( Y3 < Y:::; Y4· X= x1) 

f(x, y) X 

Figure 8-2. A plane with constantf(x, y) represents (X, Y) pairs with a 
specific probability of occurrence. 

Since probabilities are areas under the PDF, p can be interpreted as the following sum of 
areas: 
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Y2 Y4 
p = J j(x2,y)dy + J f(xloy)dy 

Y==yl Y==y3 
In a common case where both X and Yare continuous variables and the joint PDF is 

unimodal,f{x, y) = c will be a single closed curve, often elliptical in shape. We will see 
examples of this below. 

8-2 THE COVARIANCE OF X AND Y 

How do we measure the strength of covariation between the random variables X and Y? 
One such measure of this relationship is the covariance of X and. Y, defmed as 

+oo +oo 

Cov(X, Y) = E[(X- f.lx)(Y- f.ly)] = J J<x-f.lx){y-f.J,y)f(x, y) dx dy (8-1) 

where E(X) = JlX and E(Y) = f.lY· The covariance can also be written as 

Cov(X, Y) = E(XY) - /lx /ly 

from the properties of the expectation operator (Chap. 4). The covariance is one of the 
most important devices in all of multivariable statistics; it will be used extensively in the 
remainder of this text, so it is fitting to devote some space to its properties. 

The covariance is a generalized variance. That is, 

Cov (X, X)= Var(X) 

from its definition and that of the variance. Thus, we would expect Cov and Var to share 
many of the same properties. As we shall see, this is only partially true, since the added 
generality makes Cov substantially different from Var except in the degenerate case 
mentioned above. For example, whereas we must have Var(X)::?! 0, Cov can be either 
negative or positive. Additional properties are 

covariance is commutative: Cov(X, Y) = Cov(Y, X) 

from the definition (Eq. (8-1)), and 

covariance with a constant cis zero: Cov(X, c) = 0. 

This latter property is reasonable once it is understood that Cov measures the extent to 
which the first argument varies (covaries) with the second. Any fluctuations in the 
random variable X will not have any like variations with a constant. 



Statistics for Petroleum Engineers and Geoscientists 193 

The reader might notice that, although the covariance was introduced and continues to 
be based on the notion of the joint PDF, we begin to use it without showing the PDF 
explicitly. This practice will continue to the end of the text. It is a good idea, however, 
to keep the joint PDF and the associated probability defmitions in mind, since these form 
the basic link between probability and statistics. 

One manifestation ofthis is the covariance with multiple random variables Xi and Yj= 

Cov(± aiXi, i bjYj)= I f aibjCov(Xi, Yj) 
1=1 J=l i=l j=l 

which is a relationship that occurs in several applications. 

The most important property of the covariance, however, lies in its ability to measure 
the association between two random variables. If X and Yare independent, then Cov(X, 
Y) = 0, a property that follows from the independence property of the joint PDF given 
above. The converse, however, is not necessarily true; if Cov(X, Y) = 0, then X and Y 
might not be independent. Meyer(1966, pp. 144-145) gives an example. 

To form a useful baSis of comparison, the measure of relationship strength should be 
dimensionless. The covariance of X and Y is often normalized by dividing by the 
variabilities of X and Y. The resulting quantity is the correlation coefficient of X and Y, 
given by 

p()(, Y) = Cov(X, Y) 

..J V ar(X) V ar(Y) 

From the properties of the expectation (Chap. 4), this equation can be rewritten as 

p(X, Y) =E[(~~:~x~~;~)J 
or p(X, Y) = E(X*Y*) 

where x* = (X - J.lx)tV V ar(X) and y* = (Y - J.ly)!.Y V ar(Y). Since x* and y* are standard 
random variables with zero mean and unit variance, p(X, Y) can be viewed as the mean 
value of the product of two standardized variables. Standardization shifts the center and 
scale of a cloud of (X, Y) values to the origin with equal scales on both axes (Fig. 8-3). 

Each point (X*, r*) will lie in one of the four quadrants formed by the axes (Fig. 8-
3). In quadrants 1 and 3, the product x*y* is positive, while x*y* is negative in 
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quadrants 2 and 4. Thus the sign of p(X, Y) suggests, taking all possible pairs (X, Y), 
whether the relationship is mostly in quadrants 1 and 3 or quadrants 2 and 4. The 
narrower the "cloud" is around either the 45" or 135' lines, the larger p or -p, respectively, 
will be. 

y* 
Quadrant2 

E(Y) 

E(X) 
X X* 

Quadrant4 

Figure 8-3. Standardized variables x* andy* shift the original X-Y 
relationship (left) to the origin and produce a change of scales. 
The shaded region represents all (X, Y) pairs within a given 
probability of occurrence. 

Some properties of the correlation coefficient include 

1. lp(X, Y)l :0:::: 1 and 
2. lp(X, Y)l = 1 if and only if Y =aX+ b for some constants a and b, a:tO. 

Although p is not in general a good indicator of relationship strength, it is better at 
recognizing linear interdependence as indicated by property 2. Even so, the correlation 
coefficient should be used with caution. The behavior of p(X, Y) depends on the joint 
distribution of X and Y, so what may work well with one set of data may not work well 
in another case, as shown below. 

Example 1 - Comparing Correlation Coefficients. Consider the case of three 
variables, X, Y, and Z, where we have 0 < lp(X, Y)l < lp(X, Z)l < 1 
(Fig. 8-4). Do X and Z have a stronger linear element to their relationship 
than do X and Y? 

The X-Y figure (left) has the same Xi coordinates as the X-Z figure for 

-1 <X< 1. Thus Y = Z for -1 <X< 1. Z = pX + (1 - p2)112t:, where X 
and e- N(O, 1), making X and Z joint normally distributed (Morgan, 1984, 
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y 

p. 89). For this distribution, the Z- X covariation is strictly linear (see 
below). Thus, both data sets have identical linear elements to their 
relationships, while the estimated p's are different. 

4 4 

2 2 

z 
0 0 

-2 p =0.74 
-2 

+ 
-4 -4 

-3 -2 -1 0 1 2 3 -3 -2 -1 0 

X X 

Figure 8-4. Bivariate data sets for Example 1. 

8E3 THE JOINT NORMAL DISTRIBUTION 

195 

p =0.90 

1 2 3 

One case for which the correlation coefficient p is important is if X and Yare joint 
normally distributed (or bivariate normally distributed). If X and Yare joint normally 
distributed (JND), then 

fir ) 1 x - 2px y + y [ *2 * * * 2] ,x, y = exp 2 
2ncrxay·h - p 2 -2(1 - P ) 

(8-2) 

* ~ 2 where x ::::: Cf)( with .ux = E(X) and crx = V ar(X) 

* Jl...::...1!L 2 y = cry with ,uy = E(Y) and cry = V ar(Y) 

crxy 
and p = -- with axy = Cov(X, Y) 

crxcry 
p is the correlation coefficient between Y and X and is a population parameter of the 
distribution, just as J.l.x and ).l.y are. 
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The joint normal PDF looks like Fig. 8-5 when p = 0.7. When p = 0, a plane 
f(x *, y*) = constant makes a circle; when p -:t= 0, the form is an ellipse. The closer I pi is 
to 1, the more elongated the ellipse becomes. The major axis of the ellipse is at 45' or 
135' to the X-Y axes. The interior of any ellipse represents those (X, Y) pairs having a 
given probability of occurrence. Hence, each ellipse has a probability level associated 
with it. This probability is given by the volume of the PDF within the boundary of the 
ellipse (recall Fig. 8-2 and associated discussion). Formulas for the ellipses and their 
associated probabilities are given in Abramowitz and Stegun (1965, p. 940). 

f(x*, y*) 

x* = 0 

x* = +1 

x* = +2 

Figure 8-5. A joint normal PDF with p = 0.7. The 
marginal PDF's of x* andy* are both N(O, 1). 

The JND ellipses are often plotted with data on scatter plots. The ellipses are a 
diagnostic tool to help detect significant deviations from joint normality. Drawing such 
an ellipse does not imply that the data come from a JND population, however. For 
example, if 5 out of 40 points fall outside the 95% ellipse, it is rather unlikely that the 
data are JND. A test for X andY JND is to examine the marginal PDF's; if either X or Y 
is not normal, they cannot be JND. Marginal normality is necessary but not sufficient, 
however. Hald (1952, pp. 602-606) discusses a test (the z2 test) for joint normality. 

Example 2 -Assessing Joint Normality with Probability Ellipses. Figure 
8-6 shows two 100-point data sets with their 90% probability ellipses. As in 
Example 1, we have constructed theY data from Y = pX + (1- p2)112e, 
where X and e- N(O, 1) and p = 0.9. For Z, however, we have 
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2 

1 
y 

0 

-1 

-2 

-3 

Z = pX + 3.46 (l-p2)1128, where 8 is a uniformly distributed variable with 
upper and lower endpoints of 0.5 and -0.5, respectively. The factor 3.46 is to 
keep Var(8) = Var(e) = 1. X andY are JND, but X and Z are not. Both Y 
and Z have marginal distributions very close to normal, as judged by 
probability plots. 

When comparing distributions, differences are usually most pronounced at the 
extremes, rather than near the middle of PDF's. Therefore, we choose a large 
probability ellipse (e.g., 90, 95, or 99%) and examine the behavior of the 
points falling outside this ellipse. The more data we have, the larger 
probability level we can choose. In this case with 100 data, a 90 or 95% 
level is appropriate, and we have chosen the 90% level (Fig. 8-6). 

In line with the probability level, about ten points lie outside the ellipse for 
the JND data (Fig. 8-6 left). These points are not clustered at one area and are 
near the ellipse. In contrast, the non-JND data set (Fig. 8-6 right) has fewer 
data outside the ellipse, the deviations are concentrated at the extreme upper 
and lower parts of the ellipse, and there is one point (X= -2.5, Y = -2.9) well 
away from it. Such differences might give cause to resort to more formal 
tests (such as the x2 test) to determine the joint normality of X and Z. In 
this case, the non-JND data do fail the test. 

+ 

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 

X X 

Figure 8-6. Two data-set scatter plots with normal probability ellipses. 
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When X andY are JND, several nice properties apply to X andY (see, for example, 
Hald, 1952, pp. 590-601, for a detailed discussion with figures): 

1. The conditional PDF's of X and Y have a normal (Gaussian) shape, but these 
shapes do not have unit area. (The volume under the full PDF is equal to one.) 
This is plausible from inspection of Eq. (8-2) and Fig. 8-5. 

2. The marginal PDF's of X and Y are both normal. To obtain this result, we 
integrate Eq. (8-2) over all values of one variable. 

3. The standardized variable x*-r* covariation is linear, along a 45• or 135• line. 
4. The conditional means are linear functions of Yo and x0: 

ax 
E(X I Y =Yo) = J.Lx + p- (yo- )ly) for variable x and fixed y (8-3a) 

ay 
and 

O'y 
E(Y I X = x0) = J.Ly + ~ (xo - J.Lx) for variable y and fixed x ax (8-3b) 

These are the equations for regression lines in the X and Y JND. Thus, a linear 
regression model (Chap. 9) is automatically appropriate. 

An estimator for pis the sample correlation coefficient, given by 

where S is the sum of squares of the products shown in its subscripts and the summations 
are over the I data. I-lsAB is an estimate for aAB• where A andB represent X or Y. r2 

is equal in value to the coefficient of determination (R2) when X andY are JND. R2, 
however, has a different interpretation from that of r, which is an estimate of a population 
parameter when X andY are JND. Otherwise, r can be used as a measure of the linear 
interdependence of X and Y. R2 has an interpretation no matter what the joint PDF of X 
andY is or even if X is deterministic, not random. R2, however, must have a model 
(which might not be linear) to indicate what the anticipated form of the covariation is. 
R2 will be discussed further in Section 9-9. 

There are significance tests available for r. The PDF of r is rather complicated, but the 
transformed quantity (1/2) [ln(l + r) - ln(l - r)] is approximately normal with mean 
(1/2) [ln(l+ p) -ln(l - p)] + p/[2(I- 1)] and variance 1/(I- 3) for I data (Hald, 1952, p. 
609). Tables are widely available (e.g., Snedecor and Cochran, 1980, pp. 477-478). A 
common test is to determine whether lrl is sufficiently large for the sample to indicate that 
pis significantly different from zero. These tests, however, are only applicable if X and 
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Yare JND (or nearly so). Variabilities and significance tests for X, Y, SXY, Sxx. and 
Syyare fairly complicated and given in Anderson (1984, Chaps. 4 and 7). 

The estimated slopes of the regression lines are given by 

r - fSYY and r - rsxx \JSXi \Jsyy 
for Y upon X and X upon Y, respectively. We can calculate r without calculating any 
regression lines, since it requires neither the slope nor the intercept of either line. This 
points out a fundamental distinction between correlation and regression. Correlation 
indicates only the presence of an association between variables and has no predictive 
power. Regression permits the quantification of relationships between variables (the 
appropriate model being known) and their exploitation for prediction. 

8-4 THE REDUCED MAJOR AXIS (RMA) AND 
REGRESSION LINES 

The line at 45o or 135° in the x* "y* plane (Fig. 8-3) represents the form of the X-Y 
covariation if X and Yare approximately JND. This line, the major axis of all ellipses 
formed from fix*, y*) =constant (Fig. 8-5), is called the line of organic correlation or the 
reduced major axis line (see Sokal and Rohlf, 1981, p. 550 for other names). It is related 
to the major axis line but has the advantage of being scale invariant (Agterberg, 1974, 
pp. 119-123). The RMA line equation is 

(8-4) 

and is similar in form, but with a different slope, to the regression lines of Eqs. (8-3). 
The RMA line lies between the_twQ__regression lines (see Fig. 8-7). All the estimated 
lines pass through the point ( X, Y) in the X-Y plane. The RMA line represents the 
relationship such that one standard deviation change in X (i.e., o-x) is associated with a 
unit standard deviation change in Y (i.e., O'y). When perfect linear correlation exists, all 
three lines are coincident. The RMA line is insensitive to the strength of correlation 
between X and Y since its slope does not change as O'XY• the covariance of X and Y, 
changes. 

The RMA line represents how X andY covary; as X changes by o-x, Y tends to 
change by O'y. This gives the slope Syy/Sxx for the estimated line. The "tightness" 
of the X-Y covariation is estimated by r. There is no suggestion in this relationship that 



200 Chap. 8 Bivariate Analysis: Correlation 

one variable is a predictor while the other is a predicted variable. The RMA line is 
usually more appropriate for applications where prediction is not involved. Such 
applications include estimating an underlying relationship or comparing a fitted line to a 
theoretical line. For example, suppose we had porosity and permeability data from core 
plugs coming from two different lithofacies. To compare the porosity-permeability 
relationships of the two lithofacies, the RMA line would be an appropriate choice. See 
Example 3 below. 

Y-on-X 

RMA 
X-on-Y 

RMA 
X-on-Y 

Figure 8-7. JND ellipses of X and Y and their RMA and regression lines. 

The two regression lines also define linear relationships between X and Y. The 
predictor-predicted roles of the variables, however, are inherent in the lines. The Y-on-X 
line, representing E(Y I X = xo), shows how the mean value of Y varies when X is fixed 
at the value x0. Thus X must be known in order to establish the mean of Y. As the 
correlation diminishes to zero, the regression lines become coincident with the axes, 
suggesting that the best estimate of X or Y is E(X) or E(Y), respectively. In this case, a 
knowledge of one variable gives little help in predicting the value of the other. The 
RMA line, however, remains the same and is always coincident with the major axis of 
the ellipse. 

A geometrical interpretation exists for calculating the RMA and regression lines for a 
standardized (X*, r*) data set (Agterberg, 1974, Chap. 4). The Y-on-X regression line is 
obtained by minimizing the sum of the squared vertical distances (line ad in Fig. 8-8) 
from the line to the data points. The X-on-Y regression line is given by minimizing the 
sum of the squared horizontal distances (line ab in Fig. 8-8). The RMA line obtains 
from minimizing the sum of the squared distances from the data points to the line ac in 
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Fig. 8-8. Because of these geometrical interpretations, it is sometimes argued that the 
RMA line is the more appropriate line for prediction when both variables are subject to 
substantial error. The relative merits of these lines for prediction will be discussed in 
Chap. 10. 

X* 

Figure 8-8. Different regression lines can be determined from a data set, 
depending upon which distances are minimized. 

For X andY JND, the variability of the RMA line slope is the same as the Y-on-X 
line slope variability, which to order J-1 is (Teissier, 1948) 

2 

(Syy }cry~ 
Var S 2 I 

XX CTx 

The RMA Y-intercept variability is (Kermack and Haldane, 1950) 

2 [ 2 ] _ a _ cry J.J.x(1 + p) 
Var(Y-_rX)=I(l-p)2+ 2 crx G 

X 

Kermack and Haldane (1950) also give results for X andY not JND. 

Example 3 -Regression and RMA Lines for Core Data. Figure 8-9 shows a 
scatter plot for two sets of core-plug porosity (base-10 log) and permeability 
data. Both sets are from the Rannoch formation (see Example 6, Chap. 3 for 

(8-5) 
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more details of the Rannach) and come from similar facies within one well 
from each field. Field A, however, has a slightly coarser sediment with less 
mica than Field B. As expected, the average porosity and permeability of 
Field B are less than those of Field A. 

All marginal distributions appear approximately normal on probability plots, 
and slightly fewer than the expected number of data fall outside the 90% 
ellipses: 22 data for A and 5 data forB. The cluster of A data near X= 21 
and Y = 1. 7 suggests that these data may not be from a JND population but 
are reasonably close for our purposes. 

Figure 8-9 also shows the RMA and regression (Y-on-X) lines for both data 
sets. The RMA and Y-on-X lines are close for Field B, reflecting the large 
correlation coefficient, rB = 0.97. Field A has a smaller r, r A= 0.84, so the 
lines are more distinct. Both r's are significantly different from zero (no 
correlation). For example, for Field A, O.S[ln(l + r A) - ln(l - r A)] = 2.4 with 
standard error(/- 3)-1/2 = 0.06. 

3.5 
+ Field A, 286 data 

3.0 x Field B, 74 data 
,.-.... 

~ 2.5 
·- Y-on-X line .._., 

eJ:) 
0 -~ - 2.0 ·--·-,Q 
e;:l 1.5 ~ e 
~ 
<lJ 1.0 ~ 

0.5 
lilt 

0.0 
15.0 20.0 25.0 30.0 

Porosity, % 

Figure 8-9. Porosity (X)-permeability (Y) scatter plot and lines for 
Example 3. 
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The RMA lines have different intercepts because of the textural differences of 
the two fields. The RMA line slopes are statistically similar, however: 
0.162±0.005 for Field A and 0.161±0.005 for Field B. (The standard errors 
are from Eq. (8-5).) This suggests that the same mechanism may be 
controlling the permeability-porosity covariation in both wells. A different 
conclusion might be reached, however, using the Y-on-X lines: Field A has 
slope 0.135±0.005 while Field B has slope 0.156±0.005. The regression
line slopes are related to the strength of correlation, which reflects the amount 
of variability within. the relationship as well as the nature of the relationship. 
For the purposes of comparing relationships, the RMA lines are the easier to 
interpret. 
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The similarity of the permeability-porosity relationships of Fields A and B in 
Example 3 suggests that Field B does not have lower porosity and permeability from 
causes other than the grain size and mica. We would, therefore, expect that porosity and 
permeability estimates from wireline or other measurements could be similarly interpreted 
in both fields. 

8=5 SUMMARY REMARKS 

Correlation analysis provides several procedures for assessing JOint vanatwn 
(correlation). Most of these methods are best applied when the data are from a joint 
normally distributed sample space because the statistics have a particularly helpful 
interpretation and the sampling errors can be evaluated. We will see correlation measures 
developed and extended further in Chap. 11, where sampling locations are also involved. 
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BIVARIATE ANALYSIS: 
LINEAR REGRESSION 

Probably no other statistical procedure is used and abused as much as regression. The 
popularity of regression stems from its purpose, to produce a model that will predict 
some property from the measurements of other properties, from its generality, and from 
its wide availability on calculators and computer software. Regression is especially 
useful for reservoir description. 

Because reservoirs are below the Earth's surface, measurements made in situ are often 
restricted in type and number. Therefore, it is desirable to exploit any relationship 
between a property that can be measured and another that is needed but cannot be 
measured. It is, however, open to abuse because of numerous aspects of which the user 
need not be aware in order to apply the results. It may be only after the unsatisfactory 
predictions are applied that a problem becomes apparent. 

For two reasons, we will concentrate here on linear regression with one predictor 
variable. The first reason is clarity. The conclusions for the bivariate and multivariate 
cases are similar, but the matrix expressions can obscure the underlying concepts as more 
variables are introduced. The second reason is par$imony, a term borrowed from time
series analysis, which means that the simplest model tbat explains a response should be 
used. Often, the bivariate model will meet this requirement. More elaborate models may. 
fit the data better, but complications may arise when, unwittingly, the model is used 
outside the range of the data on which it was developed. 

205 
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We begin by covering the basic features of least-squares bivariate regression. 
Mathematically, the procedure is straightforward and can be covered in a few lines. 
Statistically, however, regression has a number of aspects that we consider in detail to get 
the most benefit from the data collected. Because of the amount of material involved, 
more advanced considerations are deferred to Chap. 10. 

9=1 THE ElEMENTS OF REGRESSION 

The regression procedure consists of the following elements: 

1. A model (derived or assumed), an equation that relates one or more observed 
quantities to a quantity to be predicted. The model contains unknown parameters 
that must be evaluated. 

2. Measurements of both observed and predicted quantities. 
3. A method to reverse the role of the variables and the parameters in the model to 

determine the latter, based on the measurements. 
4. Application of the model to predict the desired quantity. 

Regression is based on using data to determine some unknown parameters in a model. 
Hence, a model must exist or be developed (element 1) for the regression to proceed. The 
model represents the a priori information we bring to the data analysis, but it is 
incomplete by itself. Unknown parameters in the model must be determined from 
measurements (element 2) of all the quantities involved. The regression centers on 
element 3, in which the model parameters can be determined from statistical arguments, 
provided that the data satisfy certain conditions. The procedure has great practical use 
because it provides measures to indicate the appropriateness of the model and it provides 
parameter values. It does not, however, of itself determine the model. 

Element 4 in the above list is also very important. If we are developing a model for a 
purpose other than prediction, another procedure may be more appropriate than regression 
(e.g., the RMA line discussed in Chap. 8). Recall from Chap. 8 that regression implies 
that we want to model how the mean value (i.e., the expected value) of the predicted 
quantity varies with the observed quantities.· 

Element 1 might be unnecessary in some situations. Consider the plots in Fig. 9-1, 
which have a large number of measurements for X andY, two variables of interest. It is 
apparent from the left diagram that there is some relationship between the two variables. 
Hence, a knowledge of one could be profitably used to predict the value of the other. 
Assume that we wish to predict Y from measurements of X. There are enough data that 
we could divide up the "cloud" into sections or bins (right figure) and calculate the 
arithmetic average of the Y's in each section. This procedure would give us a set of Yj's 
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for the i = 1, 2, .. . ,I sections. W~ co~d then use this set to predict Y from X: when 
X i-l ~X ~ Xi for some i, then Y = Yi. The coarseness of the approximations thus 
depends on how many data we have; if we have many data, the sectioning could be quite 
fine and we would have a good approximation to how Y varies with X, the regression 
relationship, without recourse to a model. 
y y 

X 

+ 
.l 

Figure 9-1. Many data in an X-Y scatter plot (left) provide directly for 
an X-Y relationship. 

1\ 

X 

Of course, because this procedure involves step changes in Y, it requires a considerable 
amount of data to develop. It also should not be used outside the measured data range; the 

1\ -
procedure would require that Y = Y 1 for any X > X b no matter how large X is, and it 
ignores any information we have about the X-Y relationship. Instead, we may wish to 
introduce an equation (element 1) that will tell us, in a continuous manner, how Y 
varies with X. Therefore, we want to use prior knowledge (the form of the equation) to 
replace the need for so many data and obtain a continuous regression relation. 

9~2 THE LINEAR MODEL 

The most common type of regression is linear regression. Furthermore, of all possible 
models, the linear model is the most frequently used: 

Y = f3o + /31 X + e (9-1) 

where X is the predictor or explanatory variable, Y is the response, e is a random error, 
and f3o and /31 are the regression model parameters. X is called an explanatory variable 
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because a knowledge of how X varies will be used to explain variations in Y. f31 is also 
called the regression coefficient. 

Note that "linear" can be used in two ways when considering regression. The first way 
describes how the unknowns ([30 and /31 in the above equation) appear in the problem. 
The second way describes how the predictor variable appears in the problem. For 
example, the model Y = f3o + fhX2 + e is still a linear regression problem, since the 
unknown f3's appear linearly in the model, but the model is nonlinear in X, the predictor. 
Since e is a random variable in the model, Y is also a random variable. X might or 
might not be a random variable. See Graybill (1961, Chap. 5) for an excellent discussion 
of the various situations Eq. (9-1) might represent. 

If the model, Eq. (9-1), is describing the data behavior well, the errors are random. 
This means that they are independent: individual deviations do not depend on other 
deviations or on the data values. It is also common to assume that errors are normally 
distributed with zero mean (E(e) = 0). The term "error" here covers a multitude of sins. 
It includes measurement errors in the observed values of Y and inadequacies in the model. 
For example, e includes the effects of variables that influence the response but that were 
not measured. 

Model inadequacy is often a significant contributor to the "error." Typically, what we 
set out to measure is measured with reasonably good accuracy. The properties that we 
cannot measure, coupled with the use of simplistic models, usually account for most of 
the prediction error. This aspect of the error is often overlooked in discussions of its role 
and magnitude. However, even if we cannot measure the predictor accurately, regression 
is usually the appropriate method when we want to develop a model for prediction. 

We can take the conditional expectation of both sides ofEq. (9-1) to give 

E(Y I X= Xo) = f3o + fJ1 Xo 

since we assume that E(e) = 0. Likewise, the variance is 

2 
Var(Y I X= Xo) = Var(f3o + /31 X+ e I X= X0) = ae 

We are using conditional operators here because, by assumption, Y depends on X. 
Recall that, from Chap. 8, E(Y I X= Xo) is the mean value for Y when X takes the 
value Xo and involves the conditional PDF of Y, fyiX(Y I X= X0). The last equation 
yields the variance of errors because the errors are assumed independent of X. 
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9-3 THE LEAST=SQUARES METHOD 

We use the method of least squares to estimate the model parameters f3o and [31 in 
Eq. (9-1) from a set of paired data [(X1, Y1), (X2, Y2), ... ,(Xb YJ)]. The least-squares 
criterion is a minimization of the sum of the/\ squared differences between the observed 
responses, hand the ;redicted responses, Yi, for each fixed value of Xi (Fig. 9-2). 
These differences, Yi- Yi> are called residuals. 

y 

X 

Figure 9-2. The least-squares procedure determines a line that minimizes 
the sum of all the squared differences, (Yi- Yj)2, between the 
data points and the line. 

In mathematical terms, the preceding description can be expressed as 

I I 

S(f3o,/h)= ~ (ri- ¥)2 = L (Yi- f3o- f31Xi) 2 (9-2) 
1=1 i=l 

Equation (9-2) is I times the estimate ofVar(Yi- Yi), since Var(Yi- Yi) = E[(Yi- Yi)2] 
1\ 

and E(Yi- Yj) = 0. Since Sis proportional to a variance, it is always nonnegative. 

We would like to find the values of the slope (/31) and intercept (f3o) that makeS as 
small as possible (Fig. 9-3). 
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s 

min S 

Figure 9-3. The least-squares procedure finds the minimum value of S. 

A differential change inS, dS, can be written in terms of differential changes in f3o and 
{31 as 

as as 
dS = CJfJo dfJo + CJ/31 d/31 

This is a local condition since it applies only to small changes in the variables. At the 
minimal S, we must have dS = 0. Since the slope and intercept are independent (i.e., 
?.odf3o + ?.1 d/31 = 0 only for ?.a = ?.1 = 0), this can only be true if each partial derivative 
is zero. 

CJS 
From af3o = 0: 

as 
From af3l = 0: 

or 

or 

(9-3a) 

L (Y·- Y·) X·= 0 I I I (9-3b) 

where the summations are from i = 1 to i =I. These equations are the least-squares 
/', 1\ 

normal equations. fJo and fi1 are xhe valuxs of f3o and /31 that minimizeS, but they also 
have a statistical interpretation. f3o and /31 are the slope and intercept estimates derived 
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from a sample of I data; they may differ in value from the Ropulat~on slope and intercept 
values. Because the Yi are samples of a random variable, f3o and /31 are also samples of 
random variables. Similarly, S is a random variable, related to the variability of the 
residuals. 

1\ 

The version of Eq. (9-3b) on the right makes it apparent that the residuals Yi- Yi and 
Xi are orthogonal (i.e., have zero estimated covariance). This means that the least-squares 
procedure is giving residuals that have no further relationship with X. Thus, the model 
and least-squares estimator have "squeezed out" all the explanatory power of X (see Box et 
al., 1978, Chap. 14, for further details). 

Both of the normal equations are linear; hence, they can be solved as 

(9-4a) 

and 

(9-4b) 

to give 

the sample regression of Y on X. Equation (9-4b) can also be written as 
b -fh = SSxy I SSx, where SSxy represents the sum L(Xi- X)Yi and SSx is the sum of 

the squares L(Xi- X)2. 

1\ 

T~e form of Eq. (9-2) ensures that, within the constraints of the model, the values [30 
and [31 will approximate the mean value of Y at any given X= x. Recall that, from 
Chap. 4, the mean value ~inimj_zes the variance. Since S is a measure of the variance of 
the data about the line, {30 + J31x thus approximates E(Y I X= x). Equation (9-4a) 
reflects this property in that f3o is computed to ensure that the line includes the point 
( X, Y). 

Example la- Regression Using a Small Data Set. Compute the least-squares 
1\ A 

estimates [30 and [31 for the model Y = [30 + [31 X + e with the data set 
((X, Y)} = {(0, 0), (1, 1), (1, 3), (2, 4)). 
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2 
We have 'LXi = 4, 'LYi = 8, 'LXiYi = 12, and LXi = 6. From Eqs. (9-4), 

1 
A 12 - 4 4•8 4 A 1 1 
/31 = 1 -2 = 2 and f3o = -4 • 8 - 2 • -4 • 4 = 0 

6- -42 
4 

A similar approach can be taken with models having more than two unknowns, 
although the expressions are best handled using matrix notation. Suppose the model is 

A 
where we have J explanatory variables and a set of I data. Let Y and Y be the I x 1 
vectors of predicted and actual responses, X is the I x (J + 1) matrix of explanatory 

values, and ft is a (J + 1) x 1 vector of the estimated model parameters. Y =X~ thus 
represents the following equation: 

1 

1 

1 

x?) x}2) 

xil) xi2) 
xU) 

1 
xU) 

2 

X 

Using this shorthand notation, the normal equations, Eqs. (9-3), can be written as 
xT (Y - Y) = 0 or, since Y = X~. the normal equations become xT (Y - X ffi) = 0, where 

xT is the transpose of X. If we solve the normal equations for ft, we obtain 

Example 1 b- Regression Using a Small Data Set. We re-solve the previous 
problem using matrix notation. In this case, J = 1, 
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Hence, 

~TX]-1 = {[ ~ : : ~ J [ ! I ] r = [: : r = [ '[~ -.;; J 
and 

~] m= [~] 
This is the same result as obtained in Example la. 

The approach embodied by the above equations, which assume that all the data (Xi, Yi) 
are equally reliable, is called ordinary least squares (OLS). The equations for the more 
general case where different points have differing reliabilities (weighted least squares, or 
WLS) is treated in Chap. 10. For the linear OLS model, the more sophisticated hand 
calculators have these equations already programmed as function keys. 

9u4 PROPERTIES OF SlOPE AND INTERCEPT 
ESTIMATES 

Understanding the origin of variances in the slope and intercept estimates takes some 
doing, because we have been treating them as single-valued parameters used to describe a 
set of data. Recalling the probabilistic approach described in Chap. 2, however, the 
observations Yi and Xi are really only the results of experiments from two sample spaces 
that are correlated. If we were to pick another set of (Xi> Yi), we would get another slope 
and intercept. If we pick many sets of (Xi, Yi), we get a set of slopes and intercepts that 
are distributed with mean and variance as given below. 

When E(e) = 0 and Var(e) =a;, we can estimate the bias and precision of the slope 

and intercept obtained by OLS. See Montgomery and Peck (1982, Chap. 2), Box et al. 
1\ 

(1978, Chap. 14), or Rice (1988, Chap. 14) for derivations of these results. Both f3o and 
1\ 

f31 are unbiased: 
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More importantly, the precision of the estimates is given by 

(9-Sa) 

arxl 

(9-Sb) 

These assume that the Ei values are independent and we know the value of a~. 
Usually, we have to depend on the data to estimate a;. The a; estimate is based on the 
residual sum of squares: 

A A 
SS sis the value of S in Eq. (9-2) when the values f3o and {31 are chosen for the intercept 
and slope, respectively. The expected value of the residual sum of squares is 

th 2. . d so at a e 1s estimate as 

2 
E(SS J = (/- 2)ae 

(9-6) 

SSs is the estimate of the error variance and MS6 is called the mean square error. The 

square root of MS s is the standard error of regression. SS s has (/- 2) degrees of freedom 
because two degrees of freedom are associated with the regression estimates of the slope 
and intercept. 
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Returning now to the sample slope and intercept variabilities, our estimates are based 
on Eqs. (9-5) and (9-6). 

and 
2 MSs 

s {31 = I 

2: (Xi- X)2 
i=l 

(9-7a) 

(9-7b) 

The variabilities of both sample parameters are directly proportional to the variability 
of e and inversely related to the variability in X. Thus, a greater spread in X's will give 
more reliable parameter estimates. This means that a well-designed experimental program 
will interrogate the explanatory variables (the X's in this case) over as wide a range as 
possible. 

Example 1 c- Estimating Parameter Variability. We now estimate the 
variabilities of the sample intercept and slope for the small data set of 
Example la. The residuals are shown in the table below. 

-
i X· ! 

1\ y. Yi I 

1\ 
(Yi- Yi)2 (Xi- X)2 Yi- Yi xi- X 

1 0 0 0 0 0 -1 
2 1 1 2 -1 1 0 
3 1 3 2 1 1 0 
4 2 4 4 0 0 1 

Hence, sst:= L(Yi- Yi)2 = 2, MSt: = SSs/(I- 2) = 1, X= 1 and 

'L(Xi - X)2 = 2. This gives 

2 1 12 
s = 1(- + -) = 3/4 f3o 4 2 

2 
and s {31 = l/2 

If we assume that the errors are normally distributed, we can produce confi
dence intervals for '/Jo and '/31 from the above results (Chap. 5). The 95% 
interval for '/30 is± t(0.025, 2) s130 = ±4.3 (0.75)112 = ±3.7. The t value 

1 
0 
0 
1 
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chosen, t = 4.3, reflects the two-sided nature of the interval and that, with 4 
data and 2 parameters estimated, there are only two degrees of freedom 
remaining. A similar treatment for '/31 yields the 95% interval 
±t(0.025, 2) sp1= ±4.3 (0.5)112 = ±3.0. From these data and the assump
tions mentioned, f3o = 0 ± 3.7 and [31 = 2 ± 3 with a 95% level of confidence. 
Such large errors on the slope and intercept reflect the small number of data in 
this example. 

If the errors remaining from the regression are independent and normally distributed, 
then the estimates of the slope and intercept are called BLUE. This stands for best 
(minimum variance), linear, unbiased estimators. We will encounter BLUE estimators 
again in Chap.l2. 

9-5 SEPARATElY TESTING THE PRECISION OF THE 
SLOPE AND INTERCEPT 

Suppose we wish to test whether the slope P1 is significantly different from some a priori 
I 2 

~onstant, [312 If the errors are N(O, a e) and the observations Yi are uncorrelated, 

/31- N(/31, s13 ). To test whether the estimate and the constant are different, we form the 
0 0 1 

statlstlc 

The t fJ statistic has a t distribution with (/ - 2) degrees of freedom (Chap. 7). The t 

distributioh is used here to account for the added variability in the test resulting from the 

M S t: approximation of s2 for small data sets. As I becomes large, t fJ approaches an 
N(O,l) distribution. The regression estimates account for two degrles of freedom; 
therefore, the t ratio has df=l- 2. We complete the test by comparing the computed 

value of t f3 with t( a/2, df). The proposed value and the estimated value are different to 
the a probJbility if t p1 is greater than the tabulated value. 

A similar approach can be taken for the confidence limits of p0. To compare Po with 

any reference value [3~. we use 
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Example 2a -Separately Testing Intercept and Slope Estimates. A set of 
core-plug (C/Jp) and wireline (C/Jw) porosity data (I= 41) were depth-matched and 
plotted to assess their relationship. The aim of the analysis is to see if C/Jw 
could be used to predict fPp· If both measurements are responding to the same 
features of the formation, we would expect a regression line to have both unit 
slope and zero intercept. The result (Fig. 9-4), however, suggests the 
measurements may not be similar; the regression-line intercept is not zero and 
the slope is 16% greater than one. The slope and intercept estimate 
variabilities should be evaluated to help decide what these data are indicating. 
We will test the intercept and slope to see if either one is statistically different 
from 0 or 1, respectively. 

0.20 

$ 
ell .= 0.16 
~ 
~ 
~ 8 0.14 

0.12 --1-----v----.,..-----, 

0.12 0.14 0.16 0.18 

Wireline <P w 

Figure 9-4. Wireline and core-plug porosities with regression line. 

We first check the residuals, fPpi- $pi· A probability plot (Fig. 9-5 top left) 
suggests that they appear normally distributed. A plot of residuals against C/Jw 
(Fig. 9-5 top right) shows no particular pattern, suggesting the linear model 
is adequate. Similarly, there appears to be no pattern in a scatter plot of the 

217 
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ith residual versus the (i+ l)th residual (Fig. 9-5 bottom), suggesting the 
errors are uncorrelated to each other. These checks help to confirm that the 

assumptions of e- N(O,a~ and the appropriateness of the linear model 

apply. 

- - 2 
For these 41 data, MS.e = 0.0000892, C/>w = 0.159, and L(</Jwi- </Jw) = 

0.00342. From Eqs. (9-7), 

2 1 0.1592 
s130 = 0.0000892 (41 + 0_00342) = 0.00066 

and 

2 = 0.0000892 = 0 0261 
s/31 0.00342 · 

The critical t value for the 95% level is t(0.025, 39) = 2.02, so that 

-0.016 - 2.02-! 0.00066 < f3o < -0.016 + 2.02-l 0.00066 

-0.068 < f3o < 0.036 

and 

1.163 - 2.02-10.0261 ~ [31 < 1.163 + 2.02-l 0.0261 

0.83 < lh < 1.5 

Hence, the data do not contradict either of the hypotheses that f3o = 0 or 
[31 = 1. The t tests confirm this: 

1-0.016 - 01 

--Jo.ooo66 
0.62 and t = 11.163- 11 = 0.99 

[Jl -v 0.0261 

Referring to a table oft values (e.g., Abramowitz and Stegun, 1965), we find 
that t8 is only significant at approximately the a= 50% level, and tp is 
signifi~ant at the 70% level. This analysis suggests that the wireline 1 

measurements can be used interchangeably with core-plug porosities provided 
the formation character does not change from that represented by these data 
(e.g., similar levels of porosity heterogeneity). 
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Figure 9-5. Diagnostic probability (top left) and residuals plots (top right 
and bottom) suggest the errors are normally distributed, show no 
systematic variation over the range of X, and are uncorrelated. 
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As an alternative to plotting the residuals as in Example 2a, we could have estimated 
the co variances between the residuals and lf>w and between the ith and (i+ 1 )th residuals to 
perform these functions. Plotting is actually a more powerful way to check for 
independence because it will show all error types. 

9~6 JOINTLY TESTING THE PRECISION OF THE 
SLOPE AND INTERCEPT 

In Example 2a, we separately tested the slope and intercept estimates and concluded that, 
at a 95% level, the sample line does not have a slope or an intercept appreciably different 

A 
from what we would expect. f3o was tested with the null hypothesis (H o) that f3o = 0 and 

A 

the alternative hypothesis (H A) that f3o 7: 0. For /31, H o is /31 = 1 and H A is /31 7: 1. 
What we did not do, however, was test together (jointly) the null hypothesis that f3o = 0 
and f3 1 = 1. In Chap. 7, we explained that applying a t test to each part of a joint 
problem does not give the same confidence level that a joint test does. In situations 
where the estimates are independent, the confidence level decreases (e.g., a increases from 
5% to 10% for two independent estimates tested jointly). In this case, the result is more 

l\ A 
complicated because f3o and /31 are correlated. 

The problem of joint confidence tests can be described in geometrical terms. Separate 
confidence intervals (C. I.) on '/30 and fi1 provide a rectangularly shaped confidence region 
in the /30 - /31 plane (Fig. 9-6 left). This region represents the values for /30 and /31 that 
the data would support within the specified confidence level. The value for one parameter 
takes no account of the effect it has on the other parameter. The borders of the region 
represent different values of S in Eq. (9-2), where S is the sum of squared deviations in Y 
between the regression line and the data. 

Regions of constant S are ellipses (Fig. 9-6 right), and it is values of S that are a 
better measure for permissible combinations of f3o and /31. Why is this so? It is clear 

l\ l\ 

that S is a measure of the joint suitability of f3o and [31 with the data (Eq. (9-2)), butS is 
also a random variable. Therefore, S has an associated confidence interval so that S::;; Sa, 
where Sa is the maximum permitted value of Sat the (1 - a) level of confidence. S may 

A A 

not achieve its minimum value when f3o = f3o and /h = {31. The data and the least-squares 
estimator, however, dictate the values for '/30 and fi1. Therefore, this confidence level for 
S represents all pairs (/30 , {31) that make the joint null hypothesis acceptable such that 
S ::;; Sa· For example, points A and B are both on the border of the independent 
assessments region (Fig. 9-6 left) but have different values of S. Point A is well outside 
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the permissible variation of S at the specified confidence level whereas Point B just 
qualifies. 

The equation for the elliptical region, derived in Montgomery and Peck (1982, 
pp. 389-391), is 

where F(2, I - 2, a) is the F statistic (see Chap. 7) for the desired confidence level 
(1 - a). 

'---1--"----t--pl 
A 

pl 

Figure 9-6. Confidence regions for f3o and /31, as reflected by the data, for 
independent assessments (left) and joint assessment (right) are 
shown by the shaded regions. (C. I. =confidence interval.) 

Example 2b- Jointly Testing Intercept and Slope Estimates. We now test 
the slope and intercept estimates jointly at a 95% level of confidence with 
Ho: f3o = 0 and f31 = 1. We use Eq. (9-8) with the following values: 

~0 - {30 = -0.016 - o = -0.016; /11 - {31 = 1.163 - 1 = 0.163 

I= 41 MSe = o.oooo892; "Lxi =I x = 41•0.159 = 6.5 

"Lxf = L(X i- x)2 + I X2 = o.00342 + 41·0.159 2 = l.04F(2, 39, o.05) = 

3.23 
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The left side of Eq. (9-8) gives 

41(-0.016)2 + 2(-0.016)(0.163)6.5 + (0.163)2 1.04 = 22 
2(0.0000892) 

which exceeds the critical F value of 3.23 by a considerable margin. Hence, 
the data do not support the model Y =X (i.e., a model with unit slope and 
zero intercept). 

The contours of constantS (confidence regions) are rather long, narrow, and 
1\ 1\ 

inclined with a negative slope for this data set (Fig. 9-7) because Po and p1 
1\ 1\ 

are strongly anticorrelated: if p1 increases, Po will decrease. From 
1\ - 1\ 

Eq. (9-5a), the variability of Po is caused by the variabilities in Y and [31. 

For this data set, where Xis far from X= 0 (about two standard deviations), 
1\ 

the variability of fh dominates. In the context of Example 2, we can 

conclude that there is not a one-to-one correspondence between core-plug and 

wireline porosities, contrary to the independent assessment results, because 

this test overlooked the dependency between slope and intercept. 

0.06 
Independent assessment 

0.03 

A 0.0 

~o- - - - - -
-0.03 

-0.06 

~1 
-0.09 +--.----.--....-~~+---t-.---T~"'--..::,.--..,---= 

0.2 0.4 0.6 0.8 1.0 1.4 1.6 1.8 

Figure 9-7. The rectangular confidence region obtained from independent 
1\ 1\ 

assessments/\ of [30 ~nd [31 and the joint, elliptical confidence 
region of Po and P1· 
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There are other methods for producing joint confidence regions and testing besides the 
constant-S approach discussed here (e.g., Montgomery and Peck, 1982, pp. 393-396). 
They are generally simpler but may not give the desired result if a specific confidence 
level is required; they only assure that the test will be at least at the specified level. Joint 
confidence regions are also useful for testing the significance of different regression lines 
(Seber, 1977, Chap. 7). 

9e 7 CONFIDENCE INTERVAlS FOR THE MEAN 
RESPONSE OF THE liNEAR MODEl AND 
NEW OBSERVATIONS 

If we wish to estimate E(Y I X= X0), an unbiased point estimator is 

A 
Y 0 has variance 

A A 1\ 

Var(Yo) = Var (/3o + /hXo) 

- A -
= Var[ Y + f3I(X0 - X)] 

2 [1 (X 0 - X)2 J 
= ae I + :L (Xi - X)2 

When we replace a; by its estimate, this gives the following sample variance: 

A 

(9-9) 

The estimate for Var(Yo) is then used to define the (1 - a) confidence bands for the 
estimate of E(Y I X= Xo): 

A 

Y 0 ± t( a/2, I - 2) .\}) 
0 
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The confidence interval widens as (X o - X)2 increases and, when x0 = 0, 
1\ 1\ 

Var(Yo) = Var(/30). Intuitively, this result seems reasonal:>le since we would expect to 
estimate E(Y I X= Xo) better for X values near the center of the data than for X values 
near the extremes. 

To produce a confidence interval about the line to define where a new observation 
(X0, Y*) might lie, we add the error component variability to Eq. (9-9). 

. 1\ 2 [ 1 (X 0 - X)2 J 
Var(Y*) = Var(Yo) + Var(e) = a-e 1 + I + L (X. _ X)2 

. I 

Addition of variances is permissible here because of the independence of the error e. 
Using sample values, this leads to the confidence interval 

1\ 

Yo± t(a/2,1- 2) 

about the line for a new observation, Y*. 

9m8 RESIDUALS ANAlYSIS 

As suggested in Example 2, plots of the residuals can be very helpful in determining how 
well a model captures the behavior of the data. Residual plots can also convey whether 
parameters that were not included in the regression could help to better predict the Y's. 

Example 3 -Residual Analysis of a Data Set. From the scatter plot in 
Fig. 9-8 left, a linear relation looks appropriate and a least-squares line may 
be calculated. A residuals plot (Fig. 9-8 right), however, shows a problem. 
For -1 <X< 4, the residuals systematically increase with X, suggesting the 
calculated line is not increasing as quickly as the Y's are. The point at 
X= 5.8 (a high leverage point) has a large influence on the line and has 
reduced the slope. Consequently, there is a significant relationship between 
the residuals and X. We should now decide whether to keep the point, which 
requires further assessment of how representative it is. It would be 
inappropriate to continue with the line as it is because the assumption of 
normally distributed, independent errors has been violated. 
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Figure 9-8. While a linear model (left) appears suitable, a residual plot 
suggests otherwise. Note the change of scale for the vertical 
axis between the plots. 
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As already suggested, we can plot residuals against any other variable, including those 
not considered in the model. By doing so, we will be able to tell whether there is any 
variation in Y that can be explained by a missing variable. This approach is an 
improvement over multiple regression procedures that throw all possible variables in at 
once without considering whether they have any explanatory power. We should approach 
multiple regression systematically, variable by variable, choosing first those in which we 
have the most confidence and those that have the strongest engineering and geological 
reasons for being included. Further aspects of residual analysis are discussed in many 
regression texts, including Box et al. (1978), Montgomery and Peck (1982), and Hoaglin 
et al. (1983). 

Residual analysis is particularly important when confidence intervals are desired. 
Confidence intervals can be used, when the assumptions are fulfilled, for many purposes. 
They help to decide whether a predictor has any explanatory power, to determine required 
numbers of samples, and to compare parameter estimates with other values. Confidence 
intervals, however, may easily mislead if the residuals are not examined first to ensure the 
model and errors are behaving suitably. 

A simple example of misleading results occurs when confidence intervals are used to 
decide whether X has any explanatory power for Y. Figure 9-9 shows two scatter plots 
and fitted lines for which the slope confidence intervals include zero. This result for the 
left figure correctly leads to the conclusion that X has no power to predict Y. On the 
other hand, the right figure suggests that X has considerable explanatory power, but the 
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A 

model is inappropriate. In both cases, a plot of (Yi - Yi) versus X would immediately 
show whether the fitted line properly reflected the X-Y association depicted by the data. 
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Figure 9-9. Two data sets with near-zero regression line slopes but 
different explanatory powers of X. 

9-9 THE COEFFICIENT OF DETERMINATION 

0 

(I 
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Often we would like to know how much of the observed variability can be explained by a 
given regression model with fitted parameters. The coefficient of determination is that 
proportion of the variability in Y explained by the model. It is defined as 

R2 = 1- SSe 
SSy 

where SSy is the total variability in Y, given by I, (Yi - ¥)2, so that 

R 2 = 1 _ 2& i - Y i) 2 

L(Yi- Y) 2 

The total variability in Y, SS y, can be broken down into two components: the part 
that the model can explain, when X is known and can be used to predict Y, and the 
remainder (residual) that the model cannot explain. R2, so-called because of its 
relationship to r2 when X and Yare joint normally distributed (Chap. 8), measures the 
residual part compared to the total variation. If R2 = 1, there is no residual and the model 
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explains all variation in Y. When R2 = 0, the residual and total variability are equal, thus 
the model has no explanatory power. 

With a little reflection, we see that the coefficient of determination 

1. increases as the inclination of the cloud of points increases and vice-versa, 
2. does not measure the magnitude of the slope of the regression line, and 
3. does not measure the appropriateness of a model. 

The first point suggests that, given a cloud of points and a regression line with a positive 
slope, R2 will increase as the cloud is rotated counter-clockwise about the point 
( X, Y). Thus, while the appropriateness of the line to the cloud does not change, R2 
changes. The second point follows because the definition of the coefficient does not 
contain the slope. The third point is a form of the oft-repeated caveat about regression 
not being able to determine the correct model. 

Caution should be used when comparing R2 values. We have just observed that 
comparisons of identical models between different data sets may be invalid using R2. But 
comparisons of different models using the same data set may also be misleading. For 
example, SU,QQOSe we wish to determine whether the model Y = f3o + f31X is better than 
the model "'-/ Y = /32 + f33X for a particular data set. If we simply compute the values of 
R2 for the two cases and compare them, we will be comparing two different things. In 
the first case, R2 gives us the proportion of variability in Y that is accounted for when X 
is known. In the second case, it is the proportion of variability in Tithat is accounted 
for by knowing X. Because the square root is a nonlinear function, the variability in Y is 
quite different from the variability in fY (e.g., compare Y decreasing from 100 to 0 with 
what happens to {f). To compare the two models, we should compare R2 for the model 
Y = (f32+f33X)2, where /32 and /33 are estimated by regressing ..fY upon X, with the R2 

value obtained using the model Y = f3o+f31X. 

Example 4 - R2 and Porosity-Permeability Relationships. Example 6 of 
Chap. 3 discussed the lower Brent sequence, showing that geological 
information can help to separate porosity and permeability data from 
geologically different elements. This is also true for porosity-permeability 
relationships. Figure 9-10 left shows a typical plot and regression line that 
would be obtained if all data from the Rannoch formation were included. A 
large R2 value obtains for the regression line because the line connects two 
clouds of data, well·separated in terms of their porosities. The lower-left 
cloud represents carbonate-cemented regions (concretions) with very little 
porosity and permeability. The upper-right cloud represents micaceous, fine-
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grained sandstones with no permeability below 7 mD. The regression line 
connects these two groups as if they represented a continuum of changing 
porosity and permeability, yet they represent very different lithologies with 
no permeability between 0.03 and 7 mD. The line poorly represents the 
sandstone porosity-permeability relationship (e.g., it underpredicts 
permeability for porosities below 25%) and is not needed to predict the 
concretion properties. The concretions are nonproductive intervals, easily 
detected with resistivity or acoustic measurements. A more appropriate 
regression line for the sandstones is obtained ignoring the concretion data 
(Fig. 9-10 right) but, for this line, the R2 has decreased considerably. 
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Figure 9-10. Rannach formation porosity-permeability data and 
regression lines including (left) and excluding (right) the 
carbonate concretions. 
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9-10 SIGNIFICANCE TESTS USING THE ANALYSIS OF 
VARIANCE 

The breakdown of the total variability of Y into two parts can be used to develop a 
significance test for the model. The total variation in Y can be expressed as 
SSy = SSreg +SSe, where SSreg is the regression sum of squares, L (Yi- ¥)2. 
Following the discussion in Chap. 7, the ratio of the regression to the error sums of 
squares forms a statistic suitable for the F test. 

40 
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- SSreg 
F- SS~/(/- 2) 

can be tested against F(l, I- 2, a) at the desired confidence level, 1 - a, with the null 
hypothesis Ho: fJ1 = 0 and the alternative !!A:_f3r! 0. SSreg has only one degree of 
freedom since the line must pass through ( X, Y). 

Example 5- Interpreting Computer Package Regression Output. In 
Example 1, a regression line was obtained for the data set {(X, Y)) = { (0, 0), 
(1, 1), (1, 3), (2, 4)}. A typical computer printout of this process gives an 

/\ /\ 

analysis of the slope and intercept estimates, {31 and {30, along with their 
standard errors. The t ratios and probabilities commonly assume the null 

/\ /\ 

hypotheses are {30 = {31 = 0, and care is needed to remember that these null 
values might not suit the user. For example, we may be more interested in 

/\ 

whether /31 = 1. 

Y by X Linear Fit 
Summary of Fit 
Ftsquare 0.8 
Mean of Response 2 

Variance 

Root Mean Square Error 
Observations 

1 
4 

Analysis of 
Source 
Model 
Error 
C Total 

DF 
1 
2 
3 

Sum of Sguares 
8.000000 
2.000000 

10.000000 

Mean Sguare 
8.00000 
1.00000 

F Ratio 
8.0000 
Prob>F 
0.1056 

Parameter 
Thim. 
Intercept 
X 

Estimate 
Estimate 

0 
2 

StdError 
0.86603 
0.70711 

t Ratio 
0.00 
2.83 

Prob>ltl 
1.0000 
0.1056 

The analysis of variance F test gives the same result as the t test on the 
slope. The model sum of squares is SSreg and the error sum of squares is 
SSE. The mean square values are sums of squares divided by their respective 
degrees of freedom. 
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9m11 THE NOaiNTERCEPT REGRESSION MODEL 

A frequently encountered special case of the linear regression model is where the intercept 
is zero. The number of degrees offreedom for the model is now (J- 1) since we have fixed 
the intercept, but all of the other equations are the same. The model is 

The least-squares estimate of the slope is 

/1. L(YiXi) 
fh = 2 

LX· l 

which is unbiased as before. The estimate for (J'~ is 

1 /\ 
MS =-~(Y·-Y·)2 

£ /-lL, I l 

The confidence interval for the slope is 

/\ ~·s£ fh ± t(a/2, I- 1) --2 
LX· I 

The confidence interval for the mean response at X.= Xo (which becomes wider as x 0 
moves away from the origin) is 

' 
Y 0 ± t( a/2, I - 1) 

For the no-intercept model, the coefficient of determination is given by 
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The denominator of this expression is a sum of squares about the origin, not the mean 
of Y. Hence, comparisons between coefficients of determination from a no-intercept 
model and a with-intercept model are not meaningful. 

All the above variabilities also apply for the more general case where the line is forced 
through an arbitrary point (X0, Y0), not just the origin. In this case, 

ftl =:EX iyi- ~o:EY i 2- Yo'LX i + IXoYo 

'LXi +IX 0 - 2X0:Exi 

9-12 OTHER CONSIDERATIONS 

/\ /\ 

and f3o = Yo - f31Xo 

As we noted in the introduction to this chapter, least-squares regression is mathematically 
quite straightforward but it has numerous statistical ramifications. We will cover some of 
the more advanced aspects in Chap. 10, but there are basic topics we still have not yet 
discussed. We now consider some of these issues. 

Model Validity 

Strictly speaking, regressed models may not be valid outside the range of the variables 
used to fit the model. Of course, if the model to be regressed is based on physical 
principles, this is much less of a factor, but regression-only models are often not so 
based. 

The risk of extrapolation is especially large when a regression model is developed from 
data in one portion of a reservoir and then applied blindly throughout the reservoir. The 
computer predictions may be based upon values of X well outside the range for which the 
original relation was developed. The geological properties of the rock can also change, 
invalidating the X-Y model, as was shown in Example 4. The fundamental problem is 
that we often employ bivariate models to multivariate problems when we cannot measure 
the other explanatory variables. Some of these hidden variables are geological factors 
such as grain size and sorting, minerals, and diagenetic alteration that, in nearby wells, 
may not change significantly. Over larger distances, however, these variables cause the 
reservoir petrophysical properties to change considerably, invalidating predictions that do 
not take these factors into account. 
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Situations With Errors in the Explanatory Variable(s) 

We have only considered those situations where the X values can be perfectly measured; 
all the error was associated withY or the model (e.g., unmeasured variables). In practice, 
this means that the error in X should be much less than the errors in Y and in the model 
for these techniques to apply. When substantial errors exist in X, more involved methods 
are available that either require that the ratio of the errors in Y to those in X be known or 
that X no longer be an arbitrary value. If conventional procedures such as ordinary least 
squares described above are used, the relation will not appear as strong as it should be, 

A 
causing /31 to be too small (negative bias). Seber (1977, pp. 155-160) has further details. 
In any case, if X cannot be measured with reasonable accuracy, its value as a predictor is 
diminished and it may not be worthwhile to develop a predictive model including that 
variable. 

Predicting X From Y 

Although we have only considered the case of using least-squares regression with a model 
to predict E(Y) on the basis of X, the alternative situation (predicting E(X) on the basis of 
Y) may also occur. The lines are different for these two cases. Although the line will 
still pass through ( X, Y), the slope will change from SSxy/S~x to SSxy/SSy. This 
is because the minimization is now on the X residuals, Xi -Xi· Compare this to 
Fig. 9-2 and Eq. (9-2). In this case, Y is assumed to be knowR with neg~igiblK error. 
Algebraic manipulation of the Y-on-X model to predict X (i.e., Xi = (Y i - f3o)l fh) will 
give biased results except at ( X, Y) and is not recommended One exception to this rule 
will be discussed in Chap. 10 concerning prediction of the X-axis intercept. 

If the Y's are measured for prespecified values of X, then the least-squares regression 
procedure to predict X from Y does not apply. The procedure assumes that the response 
variable is a random variable. For example, suppose we have a core flood for which, for a 
given amount of injected fluid (X pore volumes), we measure the oil recovery, Y. 
Developing a regression model to predict Y from a knowledge of X is appropriate, 
whereas applying regression to develop a predictor of X from Y violates the procedure and 
gives a meaningless result. 

It may seem curious that more than one line is available to express relationships 
between two variables. In deterministic problems, one and only one solution exists; in 
statistical problems, each line represents a different aspect of the relationship. Y-on-X 
regression estimates E(Y I X= X0), X-on-Y regression gives E(X I Y = Y0, while other 
lines express yet other aspects of the X-Y relationship. This variation between different 
lines is in addition to the variability that exists because we have a limited sample of X-Y 
values. 
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Discrete Variables 

While we have considered only continuous explanatory variables, it is also possible to 
use discrete variables. For example, we may wish to develop a drilling model relating the 
penetration rate (Y) to bit type (X). Clearly, bits come only in distinct types, so we have 
to consider discrete variables of the form X= 1 (roller cone) or X= 0 (synthetic diamond). 
If J bit types are involved, (J- 1) regressors will be required. 

Variable Additivity 

Once again, during both the model development and parameter estimation phases, the role 
of additivity of the variables should be considered. Chapter 5 discussed the considerations 
and these apply in regressioh as well. The problems are greater with regression, however, 

1\ 

~ecause of the presence of cro~s-product terms (J:xiYi) and the fact that estimates f3o and 
/31 have standard errors. 

· When a physically based model exists for the X-Y relationship, additivity questions are 
usually less problematic. The model parameters and cross-product terms may have a 
physical interpretation. For example, porosity 1/J and bulk density Pb are related by mass 
balance through Pb = Pma + rfJ(p1- Pma) for a given volume of material, V T• where Pma is 
the matrix density and p1 is the pore-fluid density. A regression of Pb upon 1/J for samples 
of equal bulk volume provides estimates of Pma and p1 - Pma· Standard errors of these 
estimates are masses, since multiplication by Vr is implied, and so are additive. The 
cross-product term rfJPb also represents mass. . 

Without a physically based model, regression introduces questionable operations. For 
example, a permeability predictor in the form log(k) using porosity is often sought. 
Regressing log(k) upon r/J involves calculations with terms f/llog(k) for which a physical 
interpretation is difficult. 

9-13 SUMMARY REMARKS 

Bivariate regression is an elegant method for eliciting a predictive relationship from data 
and a model. The results, however, are only as good as the care taken to ensure the model 
is appropriate and the underlying assumptions are tolerably obeyed. Diagnostic 
procedures are readily available for ensuring the model and data are consistent and for 
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examining for outliers. In this regard, the residuals are extremely valuable and will show 
model adequacy as well as the value of including further explanatory variables in the 
model. 

Estimates of the model parameters can be assessed for variability, either separately or 
jointly. These variabilities, based on the residual variability, give a valuable indication of 
the explanatory power of the predictor variable. R2 also uses the residual variability to 
indicate what proportion of the total variability in Y can be explained by a knowledge of 
X. Inappropriate comparisons of R2 are easily made, however, because it is 
dimensionless and the scale of variability is not apparent. 
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Having discussed the mathematical basis and statistical interpretations for the ordinary 
least-squares (OLS) estimator in Chap. 9, we now explore more advanced topics of 
regression. By and large, these topics do not require further mathematical methods or 
sophisticated statistical analyses. They involve commonly encountered issues that require 
a more careful consideration of the assumptions involved in OLS and their implications. 
We will try here to highlight the statistical aspects of the problem for which the OLS 
method provides estimates. 

1 0=1 AlTERNATIVES TO THE LEAST-SQUARES UNES 

The least-squares procedure, described in Chap. 9, is remarkably robust even if there are 
deviations from the basic assumptions (Miller, 1986, Chap. 5). The most .Q!Ominent 
weakness of the procedure is for possibly erroneous data with large IX - XI. These 
extreme data points have a large leverage (Chap. 9, Example 3). Robust methods exist to 
develop regression lines, but variabilities in slope and intercept are more difficult to 
obtain. Hoaglin et al. (1983, Chap. 5) is a useful introduction. 

Other lines, such as the major axis and reduced major axis lines (RMA) also exist but, 
as shown in Chap. 8, they are not regression lines. One attraction of the RMA line is 
that it lies between the Y-on-X and X-on-Y lines (Fig. 8-6 and Eqs. (8-3) and (8-4)). The 
RMA line slope (ay/ax) is between the Y-on-X line slope (pay/ax) and X-on-Y line 

235 
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slope (p-luy/ux) and they all pass through ( X, Y). It appears that the RMA line 
might provide better estimates for Y than the OLS line for the case where X, the 
predictor, is measured with significant error. Since the Y-on~x slope will underpredict 
E(Y I X= Xo) and the X-on-Y slope will overpredict this value, a line with an 
intermediate slope (the RMA line) might be better. This iogic, however, has two 
weaknesses. 

The first weakness concerns the assessment of the relative errors of measuring X and 
Y. If the error term e in the model Y = f3o + /31 X+ e represents only measurement error 

of Y, then substantial errors· in X would affect the estimates bo and b1 obtained 
from Y-on-X regression. The error term e, however, often includes model inadequacy. 

· Hence, the errors of X should be compared to the errors arising from model inadequacy as 
well as ¥-measurement errors. 

The second weakness concerns the utility of developing a model that is to be used with 
unreliable predictor values. When X is poorly measured, the Y-on-X slope will approach 
zero, indicating that, under the circumstances, the best estimate of Y is~= E(Y). This 
is a useful diagnostic feature indicating that, no matter how good the underlying X-Y 
relationship is, the measurement errors of X render it nearly useless as a predictor of Y. 

The relative merits of lines should be assessed in the context of the specific problem. 
As a general rule, remember that, while the RMA Une portrays the X-Y covariation 
without regard to the roles of the variables, the regression lines X-on-Y and Y~on-X do 
assign explicit roles to the variables. Thus, use of the RMA line in a prediction role 
should be carefully justified. 

A frequently overlooked limitation of OLS lines is that they may lead to biased results 
for some applications. Recall from Chap. 9 that the re&l:ession line is an estimate of the 
conditional expectation E(/1 X = Xo) and the estimates Y are unbiased. Thus, any linear 
combination of estimates Y is also unbiased but nonlinear combinations will be biased. 
The following simplified example illustrates this. 

Example 1 a - Applying Regression Line Estimates for Prediction of Effective 
Permeability. Permeability can be difficult to measure in situ. Therefore, it 
is common in reservoir characterization to predict permeability from an OLS 
regression line and in-situ porosity measurements. The regression line is 
based on permeability and porosity data taken from geologically similar 
portions of the reservoir. These predictions are then often combined, using 
the arithmetic and harmonic averages, to predict the larger-scale aggregate 
horizontal and vertical permeabilities of stratified rocks for subsequent 
applications. (Recall from Chap. 5 that, in a layered medium, the arithmetic 
average of permeability is an appropriate estimator for layer-parallel flow 
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while the harmonic average estimates aggregate penneability for layer
transverse flow.) 

A portion of a hypothetical porosity-permeability regression line and the 
"data" are shown in Fig. 10c1left. The line is passing midway between the 
two points shown, as we would expect (on average). Looking more closely, 
the data indicate k may be 1 or 100 with equal probability when cp = 0.1. At 
cp = 0.1, however, the line provides an estimate~= 50.5, which is neither 1 
nor 100. Nonetheless, 50.5 is a reasonable value since regression lines are 
designed to predict E(k I cp = c/Jo) and the average of 1 and 100 is 50.5. 

Suppose now we have a rock unit composed of four equally thick and equally 
porous layers (Fig. 10-1 right) with porosity measurements but the penne
abilities are unknown. Therefore, we must use the regression-derived esti
mated permeability for each layer to predict the aggregate horizontal and verti
cal permeabilities of the unit. We compare the estimated horizontal and verti
cal permeabilities with the true values given as the arithmetic mean E(k I cp 
= 0.1) = 50.5 (horizontal) and the harmonic mean [E(k-11 cp = 0.1)]-1 = 
1.98 (vertical). 

For the aggregate horizontal permeability, we have 

4 

kA. = ± 2: ti = 50.5 
i=l 

This agrees exactly,with E(k I cp = 0.1) = 50.5. For the vertical permeability 
of the unit, the harmonic average gives 

which is a poor estimate of the harmonic mean. From the regression 
estimates, the rock unit appears to have no permeability anisotropy (vertical
to-horizontal permeability ratio equals one), while the unit in fact has a 
vertical-to-horizontal penneability ratio of 0.04. 

237 
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Figure 10-1. Regression line and data (left) and layered formation (right). 

In Example 1a, the regression line gave an unbiased estimate for the arithmetic average 
because this average is a linear combination of the estimates. This is a result of the 
Gauss-Markov Theorem (Graybill, 1961, pp. 116-117), which assures that all linear 
combinations of the estimates flo and /11 are unbiased. The harmonic average is a 
nonlinear combination of the estimates, and use of the Y-on-X line could give highly 
misleading results. The following example shows an alternative procedure for use with 
the harmonic average. 

Example lb- A Regression Estimator for the Harmonic Average. A 
regression line based on resistivity to flow, r =k-1, and using the data of 
Example 1 a would estimate E(r I cp = 0.1) as the average of 1 and 100-1, or 

A 

0.505. Thus, for the four-layer model of Fig. 10-1 right, ri = 0.505. This 
gives, for the harmonic average, 

( 4 )-1 
kn = i ~ ~ i = 1.98 

z=l 

which agrees with the h2rmonic mean. 

When the harmonic average is needed, better results are obtained using a y-1-on-X 
line. The line then provides estimates of y-1 for use in the harmonic average. This is 
still not entirely satisfactory, because the inverse of the sum of estimates is required. 
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Nonetheless, the sum would be much less variable than any one estimate of y-1, so it 
would be less biased. A similar approach, using a log(Y)-on-X line, would be suitable 
for geometric mean estimation. 

In Chap. 9, we remarked that the possibility of two lines (Y-on-X and X-on-Y) is a 
curious feature of regression. This may be especially so for those more accustomed to 
deterministic methods. Here, we have another example of regression being able to 
produce several lines. These lines arise because the application of the estimates 
influences the choice of estimator. This choice must be made on geological and physical 
reasons; the statistics do not help. 

10-2 VARIABLE TRANSFORMATIONS 

The linear model is a compact and useful way of expressing bivariate relationships. In 
cases where a linear model is inappropriate, some transformation of the variables may 
permit a linear model to be used if the application for the estimates is compatible with 
the transforms. For example, while porosity cp and permeability k are usually observed to 
be nonlinearly related, a logarithmic transform (to any base) applied to permeability may 
linearize the relationship: log(k) = f3o + /31 cp + e, and predicting log(k) is appropriate 
for estimating the geometric mean. A particular case of linear bivariate relationships 
occurs when random variables are joint normally distributed.. If random variables are 
transformed to become joint normally distributed, the linear model will automatically 
apply (Chap. 8). There are, however, some precautions that should be observed when 
selecting a transformation and applying the results of the regression model. 

Variable transformations affect the way that the noise, e, enters into the model. For 
example, the modelln(Y) = f3o + /31 X+ e assumes the noise is additive for ln(Y). This 
means that the noise is multiplicative for Y because Y = expCf3o + {31X) • exp(e). This 
model is often appropriate when the size of error is proportional to the magnitude of the 
g._uantity measured, e.g., e = ±O~lOY. Regressing ln(Y) upon X then gives the parameters 
f3o and f}1. If, on the other hand, an additive noise model is more suitable, we can regress 
Y upon exp(X). This implies the model Y = f3o + {31 exp(X) + e. The proportional effect 
of noise in permeability measurements may be why ln(k) versus porosity (cp) plots are 
more common thank versus exp(cp) plots. Recall from Chap. 9, however, that the term 
e includes all errors, including model deficiencies as well as measurement errors. Thus, 
while & small component of the k error may be multiplicative from measurement error, 
the predominant component may still be additive, justifying a regression of k upon 
exp(cp). 
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What happens if we get the noise model wrong? Usually, the spread of residuals varies 
with X (Fig. 10-2). In this case, the assumption of OLS that c,-N(O, ~) (see Chap. 9) 
is being violated since the variance is not constant. Alternative transformations of X and 
Yare needed to produce a more appropriate noise model. 

0.8 

0.0 

Residuals 

0 
0 

-0.8 -+-------r-------.--
0.1 0.2 0.3 

X 

Figure 10-2. Regression residuals showing an inappropriate noise model. 

Transformations of the response variable also affect the least-squares criterion and the 
resulting line. This feature is quite evident, for example, with a logarithmic 
transf~rmation (Fig. 10-3). Deviations above the regression line (log1 0(Yi) -
log10(Yi) > 0) do not represent the same magnitude as deviations below the line 

1\ 

(log10(Yi)- log10(Yi) < 0) in the Y domain. This behavior is because of the 
nonlinearity of the logarithmic function. The effect can produce a considerable bias, 
especially with highly variable data having a weak X-log(Y) relationship, but, in certain 
circumstances, can be compensated for during de transformation. 

Detransformation is the process whereby estimates of W = f(Y) produced by the 
1\ 1\ 

regression line are converted back to estimates of Y. The algebraic approach Y=J-l(W) 
does not always work well whenfis strongly nonlinear or the relationship is weak. 
However, when the assumption of e -N(O,J;) applies for the model W = f3o + {31 X + e, 
we can use the theory of the normal distribution to derive a bias-corrected Y. 
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For an.y regression of W upon X, E(W I X= Xo) = f3o + f31Xo. In the common case 
W = ln(Y), Y will be log-normally distributed and W- N(f3o + f31Xo, a;). Thus we 
have, from the properties of the log-normal PDF (Chap. 4), 

E(Y I X= Xo) = exp(fJo + fJ1Xo + 0.5~ 

This result indicates that there is an additional multiplicative factor of exp(O.So;) to 
determining the conditional mean of Y besides the factor exp(fJo + f31X0) we might 
naively assume. cr; is approximated from the data by the meari squared error, MS£ 
(Eq. (9-6)). 

4 .................................................................................... .. 

X 

Figure 10-3. The regression-line procedure gives equal weight to 
deviations of9,000and 900. 

The preceding equations apply equally well using base-10 logarithms as the Napierian 
type. We suggest that, to. avoid making mistakes by overlooking factors of 2.3 to 
convert In to log10, the Napierian form be used. The following example illustrates the 
procedure for data transformed using base-l 0 logarithms. 

Example 2- Detransformation of a Log-Transformed Data Set. The data of 
Fig. 10-4 left indicate that the log10(Y)- X relationship is linear, with the 
line explaining about 79% of the variability in logw(Y). The sample 
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variance of log10(Y) is 0.733 and, with the line, this is reduced to 
0.7~3(1-R2) = 0.153. This gives a standard deviation of about 0.4 decades 
(= 0.153) about the regression line. A naive detransformation suggests the 
relation Y = 1015.4X-1.41 (Fig. 10-4 right). A probability plot indicates 
that the residuals of log(Y) are approximately normally distributed so that the 
log-normal correction applies. This gives an additional factor of exp(o.so;> 
= exp(0.5•2.32•0.153) = 1.50, where the factor 2.32 converts the log10 
variability to Napierian units (In). The bias-corrected line relation is 
y = 1.5•1Q15.4X-1.41, also shown in Fig. 10-4. 

4.0 15000 

3.0 

Bias-corrected Y 

0 

0 

E .3 2.0 
oo 

1.0 
0 00 CODCD 

o o 8 # Log(Y) = 15.41X- 1.41 

o dl R2 =0.791 s 2 =0.733 o~~~~~~~--0.0 
0.10 0.20 0.30 0.10 0.20 0.30 

X X 

Figure 10-4. Data set for Example 2 with log- and untransformed plots. 

At first glance, it may be difficult to discern whether the bias-corrected line is better 
than the naive predictor in Fig. 10-4 right. More careful inspection reveals that the latter 
line is consistently near the bottom of the scatter for large X; the bias-corrected line 
passes more nearly through the center of the large-X data. Nonetheless, the linear plot 
shows a considerable variability of the Y values that is not readily apparent on the log(Y) 
plot. 

W = ln(Y) is one example of the more general case of power transformations, 
W = yP, discussed in Chap. 4. If we assume e- N(O,~, Jensen and Lake (1985) give 
a general expression for any value of p. If p > 0, the correction is additive rather than 
multiplicative. For example, when p = 1/2, 

E(Y I X= x0) = E(W I X= x0)2 + cl-;4 . (10-1) 
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Jensen and Lake (1985) suggest transforming both predictor and response variables prior 
to regression if the predictor is a random variable. The objective is to find functions f(Y) 
and g(X) that make the joint PDF approximately normal. As described in Chap. 8, joint 
normal variables automatically have linear regression relationships, which helps to keep 
the X-Y relationship as parsimonious as possible. The noise model for f(Y) upon g(X) 
will be appropriate and detransformation will be simplified since the residuals are 
normally distributed. It is usually sufficient to select f and g so that the marginal 
histograms are approximately symmetrical. This is not strictly adequate, however, 
because symmetry of the marginal distributions is necessary but not sufficient for joint 
normality. The following example demonstrates this procedure. Further examples are 
contained in Jensen and Lake (1985). 

;;... 

Example 3- Transformations for Joint Normality. Scatter plots of a data set 
(Fig. 10-5) suggest that neither untransformed nor log-transformed versions of 
the response are entirely suitable, despite the impressive values of R2. TheY 
plot shows a concave-upward form while the log(Y) plot is concave 
downwards. 

800 3 
Y = 6550X - 1280 R 

600 R2=0.92 

400 

200 0 

Y = llX- 0.23 

0 
0 

1~------T-------r------

0.18 0.22 0.26 0.30 0.18 0.22 0.26 

X X 

Figure 10-5. Scatter plots and regression lines for Y and log(Y). 

Histograms of Y and log(Y) (Fig. 10-6left and center) are significantly 
skewed while the histogram of X (Fig. 10-6 right) is reasonably symmetrical. 
Consequently, only Y need be transformed. Since the sample PDF of Y is 
right-skewed while log(Y) is left-skewed, an exponent between 0 and 1 is 
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indicated. A square-root transform (Fig. 10-7left) for Y gives a nearly 
symmetrical histogram. 

30 

20 

10 

< 

0 200 400 600 800 0 1 2 3 0.19 

y log(Y) 

Figure 10-6. Histograms for the data in Fig. 10-5. 

0.24 

X 

The scatter plot and regression line for 1Y (Fig. 10-7 right) suggest a better 
linear relationship with X. There is not an even variability about the line; 
lower values of X appear to have about twice the variability that larger X 
values have. This might be corrected with more careful selection of 
transformations, but it is unlikely to produce much benefit. If estimates of 
Y, instead of yl/2, are needed, the final predictor should be bias-corrected for 
the detransformation. The large R2 value and moderate variability of yl/2, 
however, show that the correction is quite small (Eq. (10-1)): 

Y = (200X -31)2 + ~1.16)2 = (200X -31)2 + 0.34 

giving a correction of less than 1%. 

0.29 

In summary, there are three important aspects to using transformed variables in 
developing models through OLS regression. The first is that using transformed variables 
may help to keep the model simple because a linear model is sufficient for variables with 
symmetrical histograms. Second, transformations help us to honor the noise behavior 
assumed for OLS regression. Third, detransforming predicted values requires some care, 
because the algebraically correct detransformation of predictions (i.e., naive 
detransformation) may give significantly biased estimates. 
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Figure 10-7. Histogram, scatter plot, and regression line for 1Y. 

10-3 WEIGHTED LEAST SQUARES 

For ordinary least squares, we assume that all the data used in the regression method are 
equally reliable. This assumption appears in the sum of the squared differences 
(Eq. (9-2)): 

I 

S(/3o,f31)= L (Yi- f3o- f31Xi)2 

i=1 

because all the differences (Yi- f3o- f31Xi) are equally influential on S. We can assign a 
weight, w i• to each term in the sum 

I 

S*(f3o, /31) = L w i(Y i - f3o - f31X i ) 2 

i=1 
A A A 

If we calculate estimates {30 and {31 that minimize S*, then the equations for the f3 's 
become 

A ~ w ·Y·- {3A1 ~ w.X· 
R £...i t I £...i I I 
PO= ~Wi . 
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and 

where all summations are from i= 1 to i=l. 

The w /S can be obtained in several ways. One way is to use experience. If some data 
are thought to be twice as reliable as others, then the w's for the more reliable data should 
be twice thew's for the less reliable points. It does not matter what values are chosen for 
thew's (as long as they are not all zero), just make some twice the value of the others. 
Another way is if quantitative assessments of the relative reliabilities of the Yi are 
available, based on theory, for example, then more careful estimates can be made for the 
w's. If Yi has variability a?, then wi =a? 

A A 
Small differences among thew's usually do not influence the estimates f3o and 131 by 

much, compared to the OLS values. The changes will depend, however, on Xi and the 
A 

residual (Yi- ~· Residual analysis from ~eighted least squares requires that variables be 
weighted by w i. Hence, plot -.J w i (Y - Yi) versus ~ w i Xi or any other desired 
variable to assess the model fit. 

10-4 REDUCING THE NUMBER OF VARIABLES 

In a multivariate model such as Y = f3oU + /31 V, it is tempting to reduce the number of 
predictors by dividing by one of the predictor variables. Hence, Y = /31 V + f3oU could 
become 

* * y* * * * By setting Y = YIU and X = VIU, we obtain = f3 1 X + f3 0 . Thus, we have 
changed a three-dimensional problem into a two-dimensional problem and can use simpler 
equations to estimate the f3 's. While this approach is algebraically correct, it may not be 

A A* A .1'.* 
statistically sound. That is, will [3 1 = f3 1 and will f3o = f3 0? 

Unfortunately, the answer is probably not. If U is constant, then the above procedure 
is correct. If, however, U varies significantly compared to V, then the estimated f3 's will 
differ. The reason is because of a change in the role of the errors in the models. When 
we use OLS regression to estimate f3o and /31 in Y = f3oU + /31 V, we are implicitly 
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assuming that the model is Y = f3oU + {31 V + e. Furthermore, we're also assuming that 
e does not change with U, V, or Y. Dividing the original model through by U gives us 
the model 

Y* = {31 x* + f3o + e* 

where e*==e/U, which is not the same model as 

* * * Y* = f3 1 X + f3 o + e 

When U is constant, the noise e* is independent of V and Y but, if U is variable, then e* 
is variable and is related to x* and y*. Hence, because we're solving two different 1\ 1\* 1\ A* . 
equations, we cannot expect /31 = /3 1 and f3o = f3 0. 

This situation often arises in reservoir-engineering material-balance calculations. 
Tehrani (1985) shows that the volumetric-balance equation can take the form 
Y = f3oU + {31 V. He proceeds to show that the revised model (Y/U) = f3o + {31 (V!U) 1\ 1\ 
does not give the same f3o and {3 1 as the original model and large errors can occur. The 
following example illustrates the problem for a gascap-drive reservoir and shows that, in 
addition, confidence intervals are also affected. 

Example 4 -Material-Balance Errors in Gascap-Drive Reservoirs. The 
material-balance equation for gascap-drive reservoirs is (Dake, 1978, 

. pp. 78-79) 

(10-2) 

where F is the underground withdrawal (reservoir barrels, RB), N is the initial 
oil in place (stock tank barrels, STB), E0 is the oil and dissolved gas 
expansion factor (RB/STB), Egis the gascap expansion factor (RB/STB), and 
m is the ratio of the initial gascap-hydrocarbon to the initial oil-hydrocarbon 
volumes prior to production. F, E0 , and Eg are known quantities based on 
measurements of the produced oil and gas and their properties. m may be 
estimated from seismic or other geological data but, depending upon 
circumstances, the estimate may be rather poor. 

If m is not known or poorly known, we have a two-unknown, nonlinear 
problem because Eq. (10-2) has the unknowns, m andN, appearing as a 
product in the second term. Thus, the best solution procedure requires 
nonlinear regression, a procedure outside the scope of this book. See Bard 
(1974) for a good discussion of nonlinearregression methods and analysis. 
We can solve linearized forms ofEq. (10-2) that, as we will see, have some 
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limitations. The linear approaches require treating the product mN as one 
regression unknown. If we do this, Eq. (10-2) can be solved directly as a 
multiple-linear-regression problem with two explanatory variables, Eg and 
E0 , or by reducing the number of variables using the form 

(10-3) 

Thus, an OLS F/E0 -on-EgfE0 line would also appear to give an interceptN 
and slope mN. 

For the following data, taken from Dak:e (1978, p. 92), we calculate lines for 
both Eqs. (10-2) and (10-3) to examine the differences. 

w-6F Eo Et.! w-6FfE 
0 

EK/EO 

5.807 0.01456 0.07190 398.8 4.938 
10.671 0.02870 0.12942 371.8 4.509 
17.302 0.04695 0.20133 368.5 4.288 
24.094. 0.06773 0.28761 355.7 4.246 
31.898 0.09365 0.37389 340.6 3.992 
41.130 0.12070 0.47456 340.8 3.932 

Because the units ofF are 106 or million RB, the corresponding units of N 
will be million STB. Using multiple-regression (discussed briefly later in 
this chapter), the zero-intercept, two-variable model (Eq. (10-2)) gives (with 
standard errors in brackets) 

N = 105 [±34] and mN = 59.6 [±8.4] 

With bivariate regression, the free-intercept, single variable model (Eq. (10-3)) 
gives 

N = 109 [±23] and mN = 58.8 [±5.4] 

The initial oil figures differ by about 3%, which is well within the statistical 
variability of either estimate. The precision of the second model is 
substantially less than that of the first model. For either model, it is clear 
that material balance can only estimate the oil in place to within, say, 30 or 
40% based on such few data. 

m can be estimated by taking the ratio mN/N (i.e., 59.6/105 = 0.57). 
Standard errors of mare more difficult to calculate because the regression 
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coefficients are correlated. A simplistic approach is to ignore the correlation 
and use the sensitivity analysis described in Chap. 5. Let Z = mN so that 

..1Z ..1m ..1N -=-+-z m N 

where the ..1's are perturbations in the appropriate quantity. We have 

8.4 ..1m 34 --=-+-
59.6 m 105 

giving Llm/m = -0.18. Since m =mN/N = 59.6/105 = 0.57, m = 0.57 [ =t=O.l]. 
Note the errors in m are in antiphase with the errors of N. 

A nonlinear regression with Eq. (10-2) gives the results 

N = 105 [±34] and m = 0.57 [ +D.26] 

The multivariate linear (the first model, Eq. (10-2)) and the nonlinear 
regression results are identical for N. The estimates of m are identical but the 
simplified perturbation analysis has considerably understated the standard 
error. The simpler the solution methods to solve this problem, the less 
reliable have been the results. 
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Why are the standard errors so different for the two linear regression models, 
Eqs. (10-2) and (10-3)? This is because, by dividing by a common factor (£0 ), the 
correlation between the response and explanatory variables has been improved. A simple 
example discussed by Hald (1952, p. 614) helps to explain the problem. Consider the 
case where a response (Y) and an explanatory (X) variables are unrelated so that the true 
regression-line slope is zero. If new response and explanatory variables are created by 
dividing by a common factor, y* = Y/Z and x* = X/Z, where Z is not constant, then y* 
and x* will appear to be correlated and the regression-line slope will no longer be zero. 
See Kenney (1982) for further examples of this effect. 

1 0=5 THE X-AXIS INTERCEPT AND ERROR BOUNDS 

Chapter 9 presented an expression, Eq. (9-5a), for the variability of the Y-axis intercept, 
[30. A fairly common but more COI)!plicated situalion is to obtain a confidence interval 
for the X -axis intercept estimate -{30 I p1. This estimate is biased but there are few 
attractive alternatives. In the statistical literature, this problem is often known as the 
calibration or discrimination problem. There are several expressions for confidence 
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/1. /1. 

intervals for -f3o !/31. Miller (1981, pp. 117-119) shows that, when they exist, limits of 
the (1 - a) confidence region are given by 

- y -) y2- a[t2MSe0 + liJ)- y2] 
x' =X + ---;;:- + /\ 

af31 af31 
(10-4a) 

and 
- y -j y2- a[t2MSe0 + liJ)- y2] 

X"= X +---;;:-- " 
af31 af31 

(10-4b) 

where 
t2Ms 

a= --1--_.:;_t: __ - 1 and t = t( a/2, I - 2), the t- tatistic. 

gi'L ex i- f)2 
i=l 

xz0 , xhi• or both may not exist. This is because, if the line slope could be zero at the 
required level of confidence, the X intercept may be at infinity. That is, if the OLS 
regression line could be parallel to the X axis, the intercept will be unbounded. 
Consequently, only meaningful confidence intervals can be obtained from Eqs. (10-4) if 
/1. /31 is significantly nonzero. 

Montgomery and Peck (1982, p. 402) and Seber (1977, p. 189) discuss another 
approach for estimating the X intercept and its confidence interval. If the explanatory 
variable is also a random variable (i.e., not a controllable variable), an X-on-Y regression 
could be performed to estimate the X intercept and its confidence interval. They suggest 
that the method ofEqs. (10-4) is generally preferred but there is not much difference when 
R2 is large. 

Example 5- Estimating Grain-Density Variability from Core and Wireline 
Data. The bulk-density log is often used to estimate formation porosity if 
certain parameters of the lithology are known. Conversion of the bulk 
density (ph) to porosity (¢D) requires the densities of the pore fluid (pfl) and 
grains (PmcJ be known or estimated: 

For this model, Pb = Pma when ¢n = 0. If Pb is plotted against porosity 
measured by another method (l/J plug), the linear model may apply and Pma 
estimated from the Ph-axis intercept. 
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Figure 10-8 shows a scatter plot of core-plug porosities and the corresponding 
wireline density measurements for a well. A strong linear relation appears, 
despite the large difference in volumes of investigation. If the porosity 
heterogeneity were large at the density-log scale, this relation might have 
been much weaker. The data here suggest that Pb and the model could form a 
useful porosity predictor. As a check on the quality of the line fit, however, 
the Pb intercept <Pma) should match the grain density measured from core 

samples <Pmad· In this case, an average of laboratory measurements of core 

samples gives PmaC = 2.67 g/cm3, while Pma = 2.69 g/cm3. Is this 
difference significant at the 95% level? 

<!>plug 

0.32 

0.28 

0.24 

0.20 
2.15 

<l>plug = -0.569pb + 1.530 

R2 = 0.915 

2.20 2.25 2.30 
pb, g/cm3 

2.35 

Figure 10-8. Wireline density versus core-plug porosity scatter plot and 
regression line. 

For this data set, we have I= 20, t(0.025, 18) = 2.101, X= 2.246, 

"'L(Xi- X)2 = 0.0256, Y = 0.252, MSt: = 0.0000425, and /31 = -0.569. 

Using Eqs. (10-4), these data give a= -0.977, xz0 = 2.63, and xhi = 2.77. 

Thus, the results PmaC = 2.67 and Pma = 2.69 are not significantly different 

at the 95% level, since PmaC falls within the 95% confidence interval for Pma· 

Since neither ¢plug nor Pb are controlled variables, we can regress Pb on ¢plug 

to obtain another estimate of Pma· These data give Pb = -1.61¢plug + 2.65, 

implying that Pma = 2.65 g/cc. The 95% confidence interval for this Pma is 
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2.65 ± 2.101(0.029) or 2.59 to 2.71, calculated using Eq. (9-7a). This interval 
is slightly smaller than the one obtained using Eqs. (10-4), but both methods 
suggest the core and log matrix densities are similar. 

In the above example, the 95% confidence region does not lie symetrically about the X 

intercept: 12.63 - 2.691 =1- 12.69 - 2.771. This is reasonable since ~1 - fh = 8fh is equally 
likely to be positive or negative, but the commensurate change in the X -axis inte~em;, 
OX, is nonlinearly related to 8{31. Because the line must pass through the point ( X, Y), 
by geometry we have that 8X = - Y8{3 1![{31 ({31 + 8{31)]. Thus, except for very small 
8{31, 8X and 8{31 are nonlinearly related and, consequently, an asymmetrical confidence 
interval occurs. 

Another situation involving discrimination is the definition of nonproductive intervals. 
Frequently, nonproductive portions of the formation are defined on the basis of 
permeability. For example, 1 mD is a common cut-off value with only intervals having 
permeabilities above that value being declared as "net pay" for liquid flow. As described 
in Example 1, however, permeability is difficult to measure in situ, so porosity is often 
used to predict the permeability. In the following brief example, we obtain the best 
estimate of porosity for the cutoff value and its range of uncertainty. 

Example 6- Defining the Net Pay Cutoff Value Using a Porosity
Permeability Correlation. We use the data set presented in Example 2 and 
interpret Y as the permeability and X as porosity. We assume that a cutoff 
value of approximately 1 mD is required. We use the term "approximately" 
here because the bias of the line may also be a consideration. In this case, 
log(l) = 0 actually represents 1.5 mD permeability. However, as we see 
below, the bias of the predictor is an unimportant issue here. 

In this case, the X axis (log(Y) = 0) is the desired cutoff value, so the 
/1. /1. 

porosity corresponding to this permeability is -/30//31 = 1.41/15.4 = 0.092. 
Eqs. (10-4) provide the 95% confidence interval endpoints as X"= 0.144 and 
X'= 0.037. In other words, an interval with permeability 1 mD has a 95% 
probability that its porosity will fall somewhere in the interval [0.037, 
0.144]. 

It is surprising that even with nearly 100 data points and a strong porosity
permeability correlation, this example gives a wide porosity interval. The 
variation in possible X intercept values represents approximately two orders 
of magnitude in permeability variation. This large variability is why the 
estimator bias is of relatively little importance. 
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The primary source for this X intercept variability can be explained by 
thinking of the porosity variability about the line for a fixed permeability. 
The standard deviation of the porosity is about 0.05 and the line, having 

R2 = 0.79, reduces this variation to about O.os--J 1-0.79 = 0.023 at a fixed 
permeability. Multiplying this variation by t = 2 for the 95% interval 
suggests the precise porosity for a given permeability is not going to be 
pinned down to better than ±0.05 or so unlesss we can include more 
information into the prediction. 
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Examples 5 and 6 differ in an important aspect. The confidence interval of Example 5 
is genuinely used in only one test to compare the X intercept with a value determined by 
another method. The confidence interval determined in Example 6, however, might not 
be used just once; it could be applied on a foot-by-foot basis across the entire interval of 
interest. In this case, if a type 1 error at the 95% level is to be avoided for all intervals 
simultaneously, a modified form of Eqs. (10-4) needs to be used. Miller (1981, pp. 
117-119) has the details. 

1 0~6 IMPROVING CORRElATIONS FOR BETTER 
PREDICTION 

In several examples of this and other chapters, we allude to a common problem in 
reservoir characterization. Frequently, we attempt to relate measurements having very 
different volumes of investigation. In homogeneous materials, this would not be a 
problem. Inheterogeneous media such as sedimentary rocks, however, differences in 
volumes of investigation tend to weaken relationships among measurements. 

Reconciling and comparing different measurements on different volumes of rock is a 
broad and difficult area. Much research remains to be done. We can, however, give a few 
tips and illustrate the ideas with an example. 

Relationships between measurements are stronger when 

1. there is a physically based reason for the two quantities to be related (e.g., 
porosity and bulk density, resistivity and permeability, radioactivity and clay 
content); 

2. the measurement volumes are similar (e.g., core-plug porosity and permeability, 
probe permeability and microscale resistivity, grain size and probe permeability); 
and 

3. the measurements have sample volumes consistent with one of the geological 
scales (e.g., probe permeability and laminations, resistivity and beds, transient 
tests and bed sets). 
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The first item avoids exploiting "happenstance" relationships that may disappear without 
warning. The second item ensures that, in heterogeneous rocks, one measurement is not 
responding to material to which the other sensor cannot respond, or responds differently. 
The third item exploits the semirepetitive nature of geologic events by making 
measurements on similar rock units. 

"""' 

Example 7 -Assessing Probe Permeameter Calibrationfrom Core-Plug Data. 
While plug and probe permeameters both measure permeability, their 
volumes of investigation and the boundary conditions of the measurements 
differ considerably. This would suggest that there is not necessarily a one-to
one correspondence between the measurements. 
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Figure 10-9. Scatter plot and regression line (left) and histogram of 
probe-based variability (right) of Rannoch formation core 
plugs. 

Figure 10-9 left is a plot of probe and plug data taken from the Rannoch 
formation (discussed in Example 6 of Chap. 3). Each core plug had four 
probe measurements on each face, giving eight probe permeabilities per plug. 
Some plugs showed considerable variability; Fig. 10-9 right is a histogram of 
the probe-based Cy's from each plug, in which we see that 29% of the plugs 
have Cv;?; 0.5. this variability arises because each core plug is sufficiently 
large to contain several laminations, which the probe is detecting 
individually. 

A plot of probe-measured variability (Fig. 10-10 left) supports this observa
tion. The average and ±1 standard deviation points are shown for the Cy's of 

1.2 
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1 

0.8 

0.6 

0.4 

0.2 
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three rock types common to the Rannach formation. Rocks with stronger 
visual heterogeneity tend to exhibit greater permeability variation. 

A regression line using all the data (Fig. 10-9 left) suggests that the probe 
and plug data are systematically different(i.e., 0.84 =1= 1 and 0.79 =1= 0). Some 
of this difference, however, may arise because of the highly heterogeneous 
nature of some samples. A regression line using only the plugs with 
Cv::;; 0.4 shows the probe and plug measurements are similar and, therefore, 
no further calibration is required; the slope and intercept are nearly 1 and 0, 
respectively. Thus, there is good cause for some probe and plug data to differ, 
and the cause here lies with the scales of geological variation to which each 
measurement is responding. 
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Figure 10-10. Probe permeability variation observed as a function of 
visually assessed rock type (left) and a probe-plug 
permeability scatter plot (right) for plugs with limited 
variability. Lam.= laminated, Wkly lam.= weakly 
laminated, and Mass. = massive. 

8 

1 0=7 MULTIVARIATE REGRESSION 

255 

As explained in the introduction to Chap. 9, multivariate linear regression is not covered 
in detail in this book. Nonetheless, we will say a few words about it because it is very 
common and we will use many of its concepts when we discuss Kriging in Chap. 12. 
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The model now is 

M 

Y = f3o + L f3mx(m) + e (10-5) 
m=l 

where x<m) is a set of the observed data {Xlm), x<-t), ... , x<'F)}, and Y is a set 

containing estimates of the variable to be predicted. e is the white noise whose elements 
have zero mean and are uncorrelated with anything except themselves. The procedure is 
the same as before; we take the expectation ofEq. (10-5) to solve for f3o· 

M 

f3o = E(Y) - L f3mE(X(m)) (10-6) 
m=l 

After inserting the model and eliminating f3o with Eq. (10-6), we have 

M M M 
Var(Y- h = Var(Y)- 2 L f3mCov(Y, x(m)) + L L f3nf3mCov(X(n), x<m)) 

m=l n=l m=l 

This expression is the same as the sum-of-the-squares operatorS given in Chap. 9 if we 
replace the expectations with their estimates. To find the regression coefficients, set the 
derivative with respect to each regression coefficient to zero: 

as as as 
a{31 = afh = ... = a{3M = O 

These operations lead to the following normal form of the multivariate linear model: 

= (10-7) 

where we have substituted the covariance definitions for the expectation operators. 
Cx<l)x(M) = Cov(xCl), x(M)), etc. Equation (10-7) represents a set of M linear 
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equations that can be solved by standard means. The coefficient [30 follows from Eq. 
(10-6) after determining {31 through f3M· 

The matrix on the left ofEq. (10-7) is the covariance matrix; its elements represent the 
degree of association between the "independent" variables x(l) through x(M). If the 
variables are independent (of each other), the matrix is diagonal and the resulting solution 
much easier. In any event, the diagonal elements are the variances of each variable. 

Example 8a - Multivariate Regression to Examine Relationship of Oil 
Recovery to Slug Size and Pressure. We can illustrate the above procedure 
and introduce two other statistical insights with a fairly simple example. 

The following table represents the incremental oil recovery (Y) from seven 
immiscible-gas-injection projects (adapted from Quigley, 1984) and their 
corresponding slug size (XCl)) and average pressure (XC2)). 

Incremental Slug Size, Average Pressure, 
Oil Recovery, fraction psig 

fraction 
0.394 0.3742 ! 3671 
0.06 0.00157 1695 
0.4 1.515 4046 
0.189 0.04707 4200 

_._....._......_............._ ......... 

0.091 0.00002 2285 
0.0997 0.0031 2049 
0.128 0.5764 1050 

For this problem, M = 2 and I= 7. We seek the model coefficients {30 , {31, 

and {32. 

For numerical reasons, it is often advantageous to work in standardized 
normal variates, particularly when the range of data is large as it is here. To 
do this we require for Y 

y = (0.394 + 0.06 + ... + 0.128)!7 = 0.195 
and 

(jf = [(0.394)2 + (0.06)2 + ... + (0.128)2]/7 - (0.195)2 = 0.0207 

from which we have, for example, 
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Y1 = (0.394- 0.195)/(0.0207)112 = 1.386 and similarly for the other values 
and for x*(l) and x*(2). The following table shows the standardized variates. 

y* x*O) x*C2) 

1.386 0.02615 0.7676 
-0.9347 -0.6423 -0.8168 
1.428 2.073 1.068 ---0.0384 -0.5607 1.191 ·---------- ~~A.O.-... ........ ..>..>..Vo..U~-~-

-0.7193 -0.6451 -0.3438 
--~~~ ----0.6589 -0.6396 -0.533 ................... ~~ 

-0.4622 0.3889 -1.334 

Such a transformation also renders the model equation dimensionless. {30 = 0 
in the standardized variates, since the expectations of the new variables are 0. 
Also, their variances are 1. 

The normal equations require the covariances; an example calculation for one 
element is 

Cov(X*(l), x*(2))= [(0.02615)(0.7676) + (-0.6423)(-0.8168) + · · · ]/7 
= 0.3049 

which leads to the following normal equations: 

[ 1 0.3049 J [ {31 J [ 0.6176 J 
0.3049 1 f32 = 0.6460 

Owing to the standardization of the variables, the elements of the matrix on 
the right side are now correlation coefficients. The solution to these leads to 
the following regression equation: 

y* = 0.4637 x*Cl) + 0.5046 x*C2) 

A 
Apparently, Y is about equally sensitive to both X*(l) and x*(2). However, 
x*(l) and x*(2) are somewhat correlated. 

Physical arguments on this type of process suggest that incremental oil 
recovery (IOR) should increase roughly linearly with slug size as the model 
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suggests (Lake, 1989, Chap. 7). The dependency of lOR on pressure is more 
complex, but the two should be positively correlated also. Moreover, there is 
no obvious reason for slug size and pressure to be correlated; hence, the 
0.3049 correlation coefficient is likely to be not significant. Of course, from 
a statistical point of view, we should interrogate e for independence and 
normality (Chap. 9). 
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Analogous to the analysis for bivariate models, we can obtain confidence intervals for 
the parameter estimates of multivariate regression. This topic is covered in Montgomery 
and Peck (1982) and other regression texts. 

If the covariance (correlation) matrix is nonsingular, it is possible to redefine the 
variables again to make them independent. We need a little development to see this. 
Write the original model as 

1\ 

Y = xT f3 

and the normal equations as 

Cxx f3 = Cxy 

in matrix form. For any nonsingular matrix P we can write 

Cxx p-lp f3 = Cxy 

It is also possible to multiply both sides by P to arrive at 

- - -
Cxx f3= Cxy 

- - -
whereCxx =P Cxx p- 1, f3 = P/3, and Cxy =PCxy all define a regression 
problem 

1\ -
y = X f3 

in the new variable X = X P -1. 

-
The new covariance matrix Cxx will be diagonal if the columns of the matrix P 

consist of eigenvectors of the original covariance matrix Cxx· 
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Example 8b -Multivariate Regression to Examine Relationship of Oil 
Recovery to Slug Size and Pressure. For the case here, P and p-l are 
both 

p = [ 0.7071 0.7071 J 
0.7071 -0.7071 

The new variables are 

x(l') = 0.7071 x(l) + 0.1011 xC2) 

and 
x<2') = 0.1011 x(l) - 0.7071 xC2) 

and the new regression equation is 

-Y = o.6847 x<n - o.o289 xC2') 

where the variables on the right side are now independent. 

The principal reasons for going through this is that the variance of Y can 
now be attributed individually to the new variables. Using Eq. (4-3), we 
have 

Var {Y) = (0.6847)2 Var(XO')) + (-0.0289)2 Var(X(2')) 

or 63.56 % of the variance of Y can be attributed to x<l'), only 0.05% to 

x<2'), and the remainder to e. Variance analysis on redefined variables 
such as this is called factor analysis, a topic covered in more detail in Carr 
(1995, pp. 99-102). 

1 0=8 CONClUDING COMMENTS 

Linear least-squares regression is a relatively simple method for developing predictors. 
Despite this mathematical simplicity, the method has a wealth of statistical features and 
interpretations that can make it enormously powerful. The material-balance analysis 
(Example 4 of this chapter) is a good example of this. Simple OLS regression produced 
estimates of m and Nand no statistical analysis was needed to obtain these results. The 
data, however, have more information that can be interrogated to produce estimated 
confidence levels for m and N. These precisions have quite an influence on the way we 
look at the resulting m and N values. Without them, N = 105 million stock tank barrels 
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(MSTB). With them, we see that N is about 105 MSTB, give or take 34 MSTB, and 
that we need more data to reduce the uncertainty to a tolerable level, dictated by the field 
economics. 

Chapter 9 and this chapter represent some of our experiences with regression. Much 
more could be said and there are excellent books on the subject, which we have cited. We 
encourage the reader to explore these aspects further and expand their "regression tool kit." 
Regression· is a fascinating area that seems limited only by the user's ingenuity. 





11 

ANAL YS/5 OF SPATIAL 
RELATIONSHIPS 

We have now spent three chapters exposing aspects of correlation among different random 
variables. In addition, in Chap. 6 we discussed heterogeneity and its measures. A more 
complete exposition of ways to represent spatial structure requires information about both 
heterogeneity and correlation, except now this is the correlation of a random variable with 
itself. Such autocorrelation (or self correlation) is the subject of this chapter. 

Correlation is the study of how two or more random variables are related. In data 
analysis, there are three types of correlation, as depicted in Fig. 11-1. 

1. Simple correlation, such as between permeability and porosity in Well No. 1 in 
Fig. 11-1, is the relationship between two variables taken from two different 
sample spaces but representing the same location in the reservoir. The analysis 
and quantification of this type of relationship were considered in Chap. 8. 

2. Crosscorrelation, such as of permeability between Well No. 1 and Well No. 2 in 
Fig. 11-1, is the relationship between two samples taken from the same sample 
space but at different locations. Examining electrical logs from several wells for 

263 
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characteristic patterns-the generic usage of "correlation" in petroleum engineering
is one example of crosscorrelation. 

3. The last type of correlation, autocorrelation, is between variables of the same 
sample space taken at different locations. This is illustrated on the permeability 
data of Well No. 1 in Fig. 11-1. This correlation addresses, for example, the 
sequence of lithofacies that appear in a well. The last two types of correlation are 
both autocorrelation but in different directions. 

Well No.1 

1,o-21o-1 1po 1p1 1P21o3 

Permeability, mD 

Well No.1 

0102030 

Well No.2 

10"2 10"1 10° 10 1 10 2 10 3 
i I I I I I 

Permeability, mD 

Figure 11-1. Schematic illustration of correlation types for porosity and 
permeability. 
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Because time-dependent data are usually in the form of series of data, sometimes 
autocorrelation and crosscorrelation fall under the subject of time-series analysis. In what 
follows, we will not make a distinction between data from time-sampled sequences and 
data from spatially sampled seguences. 

11·1 DATA TYPES 

Recall from Chap. 2 that there are two types of measurements recorded in series, strings, 
or chains. 

1. Continuous variables recorded on a known or measurable scale, e.g., 
(a) electric logs measuring resistivity as a continuous function of depth, 
(b) production history or time-dependence of an individual well, and 
(c) core-plug data recorded as a function of specified depth locations. 

2. Categorical or discrete variables with/without a known or measurable scale, e.g., 
(a) lithologic states recorded in a sedimentary succession, 
(b) the occurrence of certain types of microfossils as functions of depth, and 
(c) successions of mineral types encountered at equally spaced points on a 

transect across a thin-section. 

These measurements may be regular (equally spaced) or irregular. The type of variable 
and the spacing affect the method and extent of analysis possible, as Fig. 11-2 indicates. 

Regularly Spaced Samples Irregularly Spaced Samples 
Interval or 1. Regression 1. Regularization 
Ratio Data 2. Time-trend analysis 2. Regression 

3. Autocorrelation or 3. Autocorrelation or 
semivariograms semivariograms 

4. Spectral an.alysis 
Nominal or 1. Auto association or cross- 1. Series of events 
Ordinal Data correlation 

2. Markov chains 
3. Runs test 
4. Indicator semivariograms 

Figure 11-2. Summary of selected relationship modeling and assessment methods 
according to the nature and spacing of the sampled variable. Adapted from 
Davis (1973). 

In the following, we discuss a few of these techniques, concentrating primarily on 
regularly spaced data. · 
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11-2 NOMINAL VARIABLES 

A run is a successive occurrence of a given discrete variable, which includes a single 
occurrence. This is the simplest type of sequence because an ordered set of qualitative 
observations falls under two mutually exclusive states. A· test for randomness 
(independence) of occ\rrrence is formulated from the number of runs of a given state. We 
can determine the probability of a given sequence or run being created by the random 
occurrence of two states. We do this by enumerating all possible ways of arranging n1 
items of state 1 and n2 items of state 2. Taking u to be the total number of runs in a 
sequence and assuming n1 and n2 are greater than 10, u is approximately normally 
distributed (Fuller, 1950, pp. 194-195). The expected value is 

with variance 

2n1n2 
f.L ~ E(u) = 1 + --=-=-

u nl + n2 

Knowing the mean and variance of u, we can apply a hypothesis test to its normalized 
version: 

u - f.Lu 
z=-

Cfu 

Example 1 -Illustration of Runs Test. Analysis of an outcrop section 
revealed the following. sequence of rock types sampled every 30 em along a 
line: 

QQSQQQSQQQSSQQSQQQSSQSQQQSQSS 

where S = shale and Q = sandstone. The data are discrete variables that, being 
geologic features, are usually grouped or autocorrelated. The grouping or 
autocorrelation could take one of two forms: either there may be fewer 
transitions (positive autocorrelation) m: there may be more transitions 
(negative autocorrelation or anticorrelation) than the expected number for a 
random selection of the S's and Q's. We can detect either case using a runs 
test. 

The null and alternative hypotheses in this case are 

H o: u = f.Lu (i.e., no autocorrelation) 
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H A: u #= J.lu (i.e., positive or negative autocorrelation). 
Hence, at a 5% level of significance, lzl > 1.96 would lead to rejection of H0. 

The statistics suggested by the above are 

n1 = number of shale points = 11 n2 = number of sandstone points = 18 

J.lu =expected number of runs= 14.7 a~ =variance of u = 6.2 

u - J.1 
u =observed number of runs= 16 z = ___ u = 0.5 < 1.96 

O"u 

So, we accept Ho in favor of HA at the 5% level of confidence. We could 
analyze this set further to determine the existence of autocorrelation, but the 
runs test indicates no structure .. 
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The runs test is a simple test for the presence of autocorrelation. In many problems, 
however, such a test does not provide enough information to permit successful 
exploitation of the answer it gives. This failing is primarily because of the qualitative 
nature of discrete variables. For interval or ratio variables, more powerful techniques are 
possible. We discuss these next. 

11-3 MEASURES OF AUTOCORRElATION 

Recall from Chap. 8 that the covariance, Cov(X, Y), is a measure of the strength of a 
relationship between two variables X and Y. In that case, nothing was mentioned about 
the spatial locations of X and Y because we assumed that both reflected properties at the 
same location. In a similar way, we can use the covariance to measure the relationship 
strength between a variable and itself, but at two different locations. 

Let Z denote some property (e.g., permeability or porosity) of the rock that has been 
measured on a regular grid (such as along a core) as sketched in Fig. 11-3. Zi is the 
property Z at location Xi, or Zi = Z(xi). The location xis a time-like variable (non
negative and always increasing with i). L!Jh =Xi+ 1 -Xi is the spacing or class size. 

Number 1 2 3 i+l I 

Location xl X2 X3 Xi Xi+l XJ 

Value zl z2 z3 Zi Zi+l ZJ 

Figure 11-3. Schematic and nomenclature of a property Z measured at 
points along a line. 
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Autocovariance/Autocorrelation 

We can now define the autocovariance between data Zi and Zj as 

Cov(Zi, Zj) = E ( [Zi - E(Zi)] [Zj- E(Zj)]} = E(ZiZj) - E(Zi) E(Zj) (11-1) 

The quantity Cov(Zi, Zj) is a measure of how strongly the property Z at location Xi is 
related to Z at location Xj. When Xi and Xj are close together, we expect a strong 
relationship. As Xi and Xj move farther apart, the relationship should weaken. The 
properties of the autocovariance are similar to the covariance discussed in Chap. 8, 
specifically Cov(Zj, Zj) = Cov(Zj. Zj) and Cov(Zi, Zi) = V ar(Zi). 

The autocovariance, being a generalized variance, is a measure of both autocorrelation 
and variability (i.e., heterogeneity). To remove the heterogeneity, we define an 
autocorrelation coefficient between Zi and Zj as 

As in the case of the correlation coefficient discussed in Chap. 8, p must be between -1 
and + 1. Many times both Cov and p are written in terms of a lag or separation index k, 
where j = i+k. 

The similarities between the definitions of autocovariance and covariance belies a 
subtlety that has significance throughout the remainder of this discussion. Recall that the 
basic definition for the expectation operator involved a probability density function (PDF) 
for the random variable (since we are dealing with two variables here, these are actually 
joint PDF's). Taken to Eq. (11-1), this means that Zi and Zj both must have PDF's 
associated with them even though they are from the same parameter space. Taken as a 
single line of data, Fig. 11-3, a PDF at each point is difficult to imagine. If we view the 
line as only one of several possible lines, however, things begin to make more sense 
because we can imagine several values of Z existing at a point Xi. If the PDF's for all Zi 
are the same, we have assumed strict stationarity. 

A related hypothesis comes from the need to estimate Cov. Equation (11-1) contains 
E(Zj), which we would normally estimate with a formula like 

1 I 
E(Z) =- L Zi 

I i=l 
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It is not clear that E(Z) estimated in this fashion (the spatial average) would be the 
same as if we had averaged all the values at Xi from the multiple lines (an ensemble 
average). Assuming an equality between spatial and ensemble averages is the ergodic 
hypothesis. We assume ergodicity and some form of stationarity in all that we do. 

Example 2- Variance of the Sample Mean (Revisited). We recalculate the 
variance of the sample mean, as was done in Example 2 of Chap. 4, but now 
allow the random variable to be dependent. As before, we have 

Inserting the definition for variance and multiplying out yields 

. - 1 
Var(Z) = p {E[Z1(Z1+···+ ZI) +···+ZI(Zl +···+ ZI)]-

[E(Z1)(E(Z1) +···+ E(ZI) +···+ E(ZI)(E(Zl) +···+ E(ZI)]} 

We can no longer drop the cross terms. Further multiplying and 
identification with the Cov definition yields 

_ l I I 
Var(Z) = 2 I, I,Cov(Zi.Zj) 

I i=l j=l 

an equation with a considerably different form from the case with the Zi 
independent. The inclusion of autocorrelation may increase or decrease the 
variance of the sample mean, compared to the independent variable case, since 
Cov can be either positive or negative. 

The variance of the sample mean has many different forms. For example, 

_ ~2 2I I ) 
Var (Z) = I 1 + 1 .l . ~p(Zi.Zj) 

l=l J=z+l 

where V ar(Zi) = (j2. This equation is the starting point for the study of 
dispersion in an autocorrelated medium or of any similar additive property. 
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Semivariance 

A common tool in spatial statistics is the semivariance y, defined as 

(11-2) 

The semivariance is also a generalized variance; compare its definition to Var(Z) = 
E[(Z- z)2]. It shares many properties with the variance, most notably that it is always 
greater than zero. However both Cov and y are limited in utility without further 
assumptions, which we go into below. Sometimes, a normalized version of the 
semivariogram is considered: 

Stationarity 

One of the consequences of strict stationarity (discussed above) is that all moments are 
invariant under translation, that is, they are independent of position. Stationary of order r 
means that moments up to order r are independent of position. Since we do not use 
moments higher than 2, all we require for the moments is second-order stationarity, but 
even this has some subtle aspects. 

We have already used second-order stationarity in Example 2, where we set 
Var(Zi) = a2, or 

which is free of an index on the right side. Also 

from which it follows that Cov(Z 1, Z1 +k) = Cov(Z2, Z2+k), etc. (Second-order 
stationarity implies that first moments are also independent of position.) Thus, second
order stationarity renders the autorrelation measures independent of position: 

Cov(Zi, Zi+k) = Cov(k) = Covk 

p(Zi. Zi+k) = p(k) = Pk 
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or, the autocorrelation measures become functions of a single argument. In terms of the 
line-of-data viewpoint (Fig. 11-3), these become 

Cov(k) = Cov(k-1.h) = Cov(h) 

p(k) = p(Mh) = p(h) 

y(k) = y(k-1.h) = y(h) 

where h (k-1.h) is the separation distance, lag distance, or sometimes just lag. 

It is difficult to overstate the simplifications that second-order stationarity brings to the 
autocorrelation measures. For one thing, there is now a simple relationship between the 
autocovariance and the semivariance, 

y(h) = a2 - Cov(h) (11-3) 

which holds if the variance is finite. A second advantage is that there is now possible a 
graphical representation of the autocorrelation measures. A plot of Cov versus h is called 
the autocovariogram, yversus h the semivariogram (almost always referred to as the 
variogram), and p versus h the autocorrelogram. The qualitative behavior of these is 
discussed in the following paragraphs. 

Figure 11-4 illustrates an autocorrelation coefficient p decreasing with lag distance 
(k or h). 

When p approaches zero there is, on the average, no correlation between data at that 
separation. The lag where this occurs is a measure of the extent of autocorrelation. The 
left curve shows a modest amount of autocorrelation, the center curve shows even less, 
and the right curve shows one with a very long autocorrelation distance. This last figure 
indicates a trend or a spatially varying mean that would probably be apparent from 
carefully inspecting the original data set. 

Another form of stationarity is sometimes invoked when using the semivariogram. It 
is slightly weaker than second-order stationarity. If the difference Zi- Zi+k has a mean 
and variance that exist and are stationary, then Z satisfies the intrinsic hypothesis. It is 
weaker because V ar(Z) may not exist. 
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It is often assumed that second-order stationarity applies. If so, Eq. (11-3) implies that 
p and yare mirror images of each other. When p decreases, yincreases. If p(h) < 0 for 
some h, y(h) > a2. Thus, anticorrelation appears as an increase in yabove the variance. 

1 1 1 

Pk 

0 

-1,_--,---.---.---·-l~--.----.--.---,_1~--~--~--~--~ 

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 
Lag Index, k 

Figure 11-4. Schematic of autocorrelogram with modest (left), little 
(center), and strong (right) correlation. 

As beneficial as they are, ergodicity and stationarity are difficult to verify in a set of 
data. Verifying ergodicity would mean measuring multiple lines and seeing if ensemble 
statistics compare with spatial statistics. However, any such differences would be 
indistinguishable from heterogeneity. We could, similarly, calculate Cov and ywith 
successively smaller sets of the data but, at some point, we would be unable to conclude 
anything because the number of data would be small. 

Another subtlety of yand pis that, because they are related to the autocovariance, they 
must obey certain properties. The most important is that p must be a positive 
semidefinite function and, correspondingly, ymust be a negative semidefinite function. 
Since the mathematical terms positive and negative semidefinite may not be familiar to 
the reader, we will discuss these properties further by examining the implications for the 
autocorrelation p. 

The term positive definite is for functions what the requirement to be positive is for 
scalars (A> 0). Semidefiniteness corresponds to the scalar requirement of nonnegativity, 
A~ 0. Because we are dealing with functions, however, positive semidefiniteness is 
more complicated. For the autocorrelation function, p, it means that the correlation at 
one point, Xi, is related to the correlation at any other point, Xi+k· For example, we will 
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see later that any interpolation procedure requires that the estimated value at the new 
location be a linear combination of the values at the I measured locations: 

I 
Z* = I, AiZi 

i=l 

where the weights (A.'s) are determined by a specific procedure. If I= 2, we have 
Z* = A-1 z1 + A:2Z2. Since Z* is a random variable, it has a variance given by 

If Z is stationary, 

2 2 
Var(Z*) = Var(Z) [AJ: + 1t2 + 2A.l ~p(l)] 

Since Var(Z*);::.:: 0, we require that [A,; + A.; + 2A.1 A.2p(l)] ;::.:: 0. This can only be 

achieved for any A-1 and A-2 if p(l) ::::; 1. Clearly, when I> 2 the situation is analogous 
but more complicated. This is where the positive semidefiniteness of p is needed: the 
Var(Z*) must be nonnegative for any values the A.'s take. Thus, not just any function 
can be used for p; it has to be positive semidefinite. This limits the possibilities quite 
considerably, and several examples will be considered below. 

11-4 ESTIMATING AUTOCORRELATION MEASURES 

Like all statistics, Cov, p, and ymust be estimated. We discuss here only the more 
common estimators. See Priestley (1981, Sec. 5.3) and Cressie (1991, Sec. 2.4) for 
further estimators and their properties. 

Autocovariance/ Autocorrelation Coefficient 

The most common estimator for the autocovariance between data points Zi and Zi+k is 
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- A 
where Z is an estimate for the mean value of Z and C is an estimate for Cov. 

Subject to the assumption of second-order stationarity (that Cov depends only on the 
separation index k), this becomes 

(11-4) 

If the separation distance or lag is zero, the above becomes an estimator of the variance 
that itself becomes an appropriate normalization factor. An estimator for the 
autocorrelation coefficient is 

(ll-5) 

the denominator being, of course, an estimate of the variance. The estimator in 
Eq. (11-5), though common, may not be a positive semidefinite function; see Priestly 
(1981, p. 331). 

Example 3 -Autocorrelation of an Ordered Card Deck. Let us calculate the 
autocorrelogram for a standard deck of cards (four suites of ace through king 
each). This is also a concrete way to illustrate autocorrelation, for we can 
show that "randomness" in card decks really means absence of autocorrelation. 
Let ace be one, etc., up to king equaling 13. The mean value in the deck is 7 
and the standard deviation 3 .78. Neither of these statistics expresses the 
actual spatial ordering, however. 

A completely ordered deck has an autocorrelogram that looks something like 
Fig. 11-5 left. There is perfect autocorrelation at every thirteenth card, as 
expected, and the pattern repeats itself. This means that, given the value and 
position of any card in the deck, the value of any card that is 13n (n an 
integer) away has the same value. Every seventh card shows very strong 
negative autocorrelation since these separations are, on average, as far apart as 
possible in numerical value. In other words, given the position p of a card 
with value Vp, if vp> 7 (the mean value of the deck), the card at position 
p + 7 is likely to have Vp+? < 7 (and vice versa). 
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Figure 11-5. The autocorrelogram of an ordered card deck. Originally 
ordered (left); after one to three shuffles (right). 

Figure 11-5 right shows the autocorrelograms after several shuffles of the card 
deck. The autocorrelation is much more erratic (the shuffle was not perfect) 
but, after the first shuffle, there is a hint of periodicity at every 26th card. 
More importantly, the autocorrelation coefficient approaches zero only 
gradually. 

After three shuffles, there is very little dependence on adjacent cards. Besides 
the importance of not shuffling card decks fewer than three times when 
gambling, this example shows that autocorrelation is a useful tool for 
evaluating spatial dependencies. 

Semivari ograms 

The standard estimator for the semi variance is 

1-k 

2Yk = 1 ~ k L (Zi - Zi+k) 2 

i=l 

275 

30 

(11-6) 
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This formula expresses the variance of I - k sample increments measured a distance k 
units apart, again assuming second-order stationarity. The sample semivariogram may 
look something like Fig. 11-6. 

The data points in the sample semivariogram rise with lag, although not necessarily 
smoothly or monotonically, reflecting greater heterogeneity for larger sample scales. The 
data may or may not tend to a plateau as the lag increases; similarly, they may or may 
not tend to zero as the lag decreases. We quantify the shape of these trends in the model 
curves discussed later in the chapter. 
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Figure 11-6. Schematic illustration of a sample semivariogram. 

8 

Although it is not their prime purpose, both the semivariogram and the 
autocorrelogram can be used to detect periodicities. As Example 3 showed, large values 
of p fork> 0 may reflect a repetitive feature in the data. Similarly, repetitiveness with a 
semivariogram is shown by a reduction in yfor k > 0, This is called a hole. Some 
examples will be considered next. 

11-5 SEMIVARIOGRAMS IN HYPOTHETICAl MEDIA 

Simple synthetic permeability trends are useful to demonstrate the form of the 
semivariogram in typical geological scenarios and to demonstrate what can or r'1nnot be 
extracted in their interpretation. 
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Large-Scale Trends 

Detenninistic trends (i.e., with no random component) produce a semivariogram function 
that is monotonically increasing with increasing lag. Both linear trends (Fig. 11-7 A) and 
step changes (Fig. 11-7B) are common depositional features, although they are rarely as 
easy to recognize in practice as is suggested by these figures. Cyclic patterns are also 
common. 
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Figure 11-7 A. Sample semivariogram for data with a linear trend. 

Both features give similar semivariograms; the form of the semivariogram only 
indicates an underlying large-scale trend. It provides no insight into the fonn of that 
trend. Indeed if the simple trends were inverted (reversed), the resulting semivariograms 
would be indistinguishable. 
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Figure ll-7B. Sample semivariogram for data with a step change. 

Periodicity and Geological Structure 

5 6 

The effects of a periodic component upon the autocorrelation structure of a signal are 
well-known (e.g., Schwarzacher, 1975, pp. 169-179). Suppose Z has a periodic 
component with wavelength A-. These components are evident in the sample 
semivariogram, )(h) (Fig. 11-8). The depth of the holes will depend upon the size of the 
periodic component compared to any random component(s) present in Z. The depths of 
the holes may also diminish with increasing lag, depending upon the nature of the 
sedimentary system and the nature of its energy source (Schwarzacher, 1975, 
pp. 268-274). In particular, since even strongly repetitive features in sediments are 
usually not perfectly periodic, holes may be much shallower than the structure merits. 
For example, a slightly aperiodic signal (Fig. 11-8 left) has a smaller first hole (Fig. 11-8 
right) and much smaller subsequent holes than its periodic equivalent. Yet, the structure 
represented by each signal is equivalent. So we must be careful using the 
autocorrelogram or the semivariogram to detect cyclicity. If, however, evidence of 
cyclicity appears in a sample plot, the cyclicity is probably a significant element in the 
property variation. 
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Example permeability plots and semivariograms based on the series 
Z(xi) = 1 + 0.4 sin(nxi/6) + ei, where ei - N(O, 1) and Zi (= 0, 1, ... ) 
is position, showing evidence of structure (cyclicity with A,= 12 
units). The acyclic series is Z '(xi) = 1 + 0.4 sin(rrxi/6 + 5) + ej, 
where 8 = O.Ol[xi/12] and [xi/12] is the greatest integer less than or 
equal to zi/12. Left figure shows deterministic components of Z (x) 
and z' (x). Adapted from Jensen et al. (1996). 

Various nested, graded beds result in semivariograms that reflect underlying trends and 
periodicity. More complex patterns may not be resolvable (especially real patterns!). See 
the examples in Fig. 11-9. 
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Figure 11-9. Semivariograms for graded and nested patterns. 
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11-6 SEMIVARIOGRAMS IN REAL MEDIA 

Geologic data can be much more complex than shown by certain idealized correlation 
behavior. We show some examples in this section. 

Autocorrelation in clastic formations tends to be scale-dependent, with different scales 
being associated with laminae, bedforms, and formations. Additionally, autocorrelation 
tends to be anisotropic; vertical and horizontal autocorrelation structure can be quite 
different. Cylindrical anisotropy in the horizontal plane is also likely where the 
deposition is unidirectional or current-generated (e.g., fluvial) in contrast to oscillatory, 
wave-generated deposits that are more likely to be cylindrically isotropic (e.g., shoreface). 
The statistical characterization of the properties of geologically recognizable forms is an 
ongoing area of investigation. As an introduction, we illustrate some of these features in 
the following items. 

Deterministic Structure of Tidal Sediments 

In a study of bed-thickness data for an estuarine Upper Carboniferous sequence in Eastern 
Kentucky (Martino and Sanderson, 1993), autocorrelation analysis was used to determine 
the spatial relationships of bed thickness. The correlogram shows distinct periodicity 
with layer periods at 12 and 32. The first periodicity is interpreted to reflect spring-neap 
tidal variations over 11 to 14 days and the longer range signal as having resulted from 
monthly variations in tidal range. These results were supported by Fourier analysis. 

The semivariogram can sometimes reveal "average" periodicities that are represented by 
a significant reduction (to less than 50%) in variance at some lags. Two example 
semivariograms from the Rannoch formation in two different wells, Fig. 11-10, show a 
periodicity at 1.2 to 1.4 m (4 to 4.5 ft). This periodicity is similar to that clearly seen in 
other intervals and is thought to be related to the (hummocky, cross-stratified) bedform 
thickness. 
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Figure 11-10. Two examples of geologic periodicities in probe permeability data 
from the Rannoch formation. 
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Figure 11-11. Semivariograms at various scales in permeability data from the 
Rannoch formation. 

Determination of Nested Structure 

There is a relationship between sample density, sample length, and the scale of geological 
variation that one is trying to characterize. The larger-scale variation tends to dominate. 
Several correlation lengths and scales of periodicity may exist in a formation, and each 
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requires a tailor-made sampling scheme. Figure 11-11 shows this. The general 
dependency on scale coupled with the cyclic behavior makes it difficult to completely 
characterize the autocorrelation behavior with even a fractal model. 

Semivariograms and Anisotropy 

Semivariograms in different directions can be used to demonstrate anisotropy. This could 
be particularly useful where the trends are not so visually obvious as they are in 
Fig. 11-12. The filled and open symbols in Fig. 11-12 are taken from data strings 
perpendicular to each other. 
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Figure 11-12. Illustration of anisotropy in semivariograms from the 
Rannach formation. 

Clastic reservoirs are characterized by relatively weak autocorrelation in the vertical 
direction and much stronger autocorrelation in the horizontal. In carbonates, the 
preservation of bedding is not always so clear, but anisotropy may still be present. 
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11-7 BIAS AND PRECISION 

With the tools now available to estimate autocorrelation, it becomes a natural question as 
to which is preferable. As is usual, the preference of one measure over another depends 
on the application, but we can also make some statistical judgments. 

Yang and Lake (1988) investigated the bias and precision of the autocovariance and 
semivariogram. They found that the autocovariance is in general negatively biased, that 
is, it tends to underestimate the extent of autocorrelation. The source of this bias lies in 
the estimate of the sample mean, which is required for the estimates of both Cov and p. 
The sample mean does not appear in the definition for the semivariance, Eq. (11-6); it is 
consequently unbiased. The semivariance is, therefore, the best tool to estimate 
autocorrelation from this standpoint. These statements are necessarily oversimplifications; 
the error behavior of the autocorrelogram depends not just on k and I, but also on the 
underlying structure of the data. Priestley (1981, Sec. 5.3) discusses this and related 
topics. 

Both the autocovariance and the semi variance estimates are relatively imprecise beyond 
one-half of the sample span, so that fitting models to experimental curves by regression 
is discouraged. Since it is precisely the autocorrelation at large lags that is of interest in 
calculating these measures, this can be a serious problem in practice. 

The origin behind the lack of precision in the autocorrelation measures lies in the 
successively smaller pairs available in the estimators, Eqs. (11-5) and (11-6), at large 
lags. Caution is also required when interpreting estimates based on data sets with 
significant proportions of missing measurements. In these circumstances, y may be as 
unreliable at some short lags as it is at very long lags. As a simple example, consider 
the case of six measurement locations (/ = 6) with two data missing. If i = 2 and 4 are 
missing, there is only one pair to estimate y(l) but two pairs to estimate y(2). 

Li and Lake (1994) addressed these problems by an integral estimator that keeps 
constant the number of pairs throughout the procedure. Maintaining the same number of 
pairs in the calculation causes the semivariance estimate for the largest lag to be equal to 
the sample variance. See the original reference for the estimator equation, which is 
complicated. Figure 11-13 shows some of the results from using this moving-window 
estimator. 
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Figure 11-13. Semivariogram estimators for horizontal (H) and vertical (V) 
data sets from the Algerita outcrop. From Li and Lake (1994). 

The plot is on log-log scales to facilitate the interpretation of data with a fractal model. 
But it is clear that the fluctuations present at large lags in the "classical" (Eq. (11-6)) 
estimator have been eliminated. The new estimator (New-2) performs better in this regard 
than all the others. In addition to being more precise, the new semi variance estimator can 
deal with multidimensional data (rather than along a line as has been the focus of the 
discussion here) and does not require equally spaced data. The latter aspect means that the 
new procedure is robust against missing data. 

This "moving window" estimator may become an important standard method in the 
future. Not only does it reduce the semivariance fluctuations at large lags, it also 
smoothes out fluctuations at small lags, yielding semivariogram behavior that is easier to 
fit to models near the origin. These effects are important for two reasons: (1) we are able 
to interpret a model in difficult data situations (for example, with few wells or large well 
spacing) and (2) because of the smooth near-origin behavior, we can use autofitting 
methods, such as regression, to obtain a model. Being able to autofit semivariogram 
functions would eliminate much of the subjectivity in current semivariogram analysis. 
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11-8 MODELS 

Just as with PDF's and CDF's, we frequently have a need to report the extent of 
autocorrelation in a fashion that is even more succinct than the estimates from data. 
Moreover, some forward applications (see Chap. 12) require negative or positive semi
definite relations that the estimates may not provide. However, just as in the curve 
fitting to PDF's, there is no strong physical significance to the models apart from the 
association with the underlying geologic structure discussed above. 

Finite Autocorrelation Models 

We cover only the models most commonly used in reservoir characterization applications. 
See Cressie (1991, Sec. 2.5) for others. All are, however, positive or negative semi
definite, as appropriate, and can be used in three-dimensional characterizations. 

Exponential model of the autocorrelogram: 

h 
p(h) = exp(- A£) (11-7) 

This one-parameter model of autocorrelation is popular for its simplicity. The parameter 
1\,£ is the correlation length. p(h) in this model is always positive and monotonically 
decreasing. Consequently, it should not be used for cyclic or periodic structures. Clearly, 
as A£ approaches zero, autocorrelation vanishes. 

Spherical model of the semi variance: 

for h ~ AR 

for h > AR 
(11-8) 

This most popu!fr of all autocorrelation models is the three-parameter spherical model. 
a2 is the sill, a0 the nugget, and AR is the range. These quantities are illustrated in Fig. 
11-14, which shows the spherical model fit to a small set of data. 
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Figure 11-14. Illustration of spherical semivariogram model. 

The sill should approximate the sample variance, and the range the extent of the 
autocorrelation. The nugget is an inferred quantity, since it can never be measured directly. 
A semivariogram that has a nugget approximately equal to its sill exhits a pure nugget 
effect and, similarly to having a small range, has no autocorrelation in the underlying 
data. The pervasiveness of the spherical model has led to the incorporation of range, sill, 
and nugget into the more general statistical terminology. For example, a data set with a 
"large range" is strongly autocorrelated even though the spherical model may not apply at 
all. 

A semivariogram model that does include a degree of cyclicity and, therefore, has some 
physical significance attached to its behavior is the hole effect model given by 

The peaks and troughs (the holes) of this model are at solutions to the equation 
h!A.H = tan(h!A.H)· The first peak is at h!A.H = 3n/2 and the first hole is at h/A.H = Sn/2. 
The first hole has depth 0.13 of the nugget minus sill distance, 0'~ - 0'2. The is the 
deepest hole of any of the known models for 3-D correlation and is the minimum possible 
for the model to be positive semidefinite. As seen earlier, deeper holes in some directions 
are common in many sedimentary systems. Therefore, an anisotropic covariance is needed 
to model this behavior with a model of the form 

c 
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2 2 2 
y(h) = a0 +(a - a0) [1 - cos(h!?w)] 

in the direction where the cyclicity is strongest. 

Integral Scale 

The correlation length and range are often used interchangeably, probably because they 
both express the same general idea. However, they are not the same, each being unique to 
the respective model. A quantity that also expresses the extent of autocorrelation is the 
integral scale, defined as 

00 

(11-9) 

AJ is defined for any autocorelation coefficient with a finite correlation, but, apart from 
this, it is independent of the model chosen. Of course, A I = AL if the model is 
exponential. 

Infinite Autocorrelation Models 

A growing body of literature suggets that many geological data sets do not have finite 
correlation. Indeed, the data in Fig. 11-13 can be so interpreted. In this eventuality, there 
is a class of models abstracted from fractal terminology. 

The fractional Brownian motion lfBm) semivariogram, 

y(h) =Yo h2H (11-10) 

is a two-parameter model that contains a variance at a reference (h = 1) scale, y0 , and the 
Hurst or intermittency coefficient, H. H takes on the role of the various lengths in 
Eqs. (11-7) to (11-9), but, of course, y is unbounded in general. Figure 11-13 illustrates 
one of the ways to estimate H by plotting yversus h on log-log coordinates. See Hewett 
(1986) for discussion of other methods. 

A related model is the fractional Gaussian noise (jGn), which has a much more 
complicated model equation. However, Li and Lake (1995) have shown that, under most 
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practical circumstances, fGn with 0 < H < 1 is equivalent to fBm for 1 < H < 2 as long 
as H+l is used instead of H in Eq. (11-10). 

The unbounded nature of y(and the simplicity of the model) makes fractal models 
particularly appealing for geological characterization. But, it is conventional to truncate 
the model at some upper and lower scales simply in order not to be extrapolating too far 
outside the range of the data (Li and Lake, 1995). 

Fitting Covariance Models to Estimates 

The choice of appropriate autocovariance model based on data is often not straightforward. 
A number of models might "almost" fit a sample semivariogram or correlogram. 
Combinations of models can also be used, since the sum of covariance models will still 
have the appropriate positive- or negative-semidefiniteness property. Carr (1995, 
Chap. 6) and Journel and Huijbregts (1978, Chap. 4) give examples. 

The fitting of a model must account for what behavior in the sample covariance plot is 
"real" and what aspects arise from sampling variability. If the range or correlation length 
can be related to a physical aspect of the system, then the model is better tied to the 
geosystem being assessed. For example, the range has been observed to coincide with the 
thickness of tidal channels (Jensen et al., 1994). Holes in the sample semivariogram 
have been found to frequently reflect sedimentary cyclicities, and the nugget may represent 
undersampled smaller-scale variability (Jensen et al., 1996). Therefore, an iterative 
procedure may be needed where features observed in the sample covariance plot are 
investigated for any relationship with sedimentary aspects. Another helpful test is to 
apply a jack-knife procedure to the sample covariance to determine what behavior might 
be unexplained by sampling variability. See Shafer and Varljen (1990) for an example of 
this approach. 

11-9 THE IMPACT OF AUTOCORRELATION UPON THE 
INFORMATION CONTENT OF DATA 

Until this chapter, we have ignored the fact that measurements made at nearby locations 
in the reservoir may be correlated. All of the theory presented in Chap. 5 concerning 
variability assessments of estimates implicitly assumes that all the data are independent 
and makes no allowance for autocorrelation; a sample of size I is assumed to consist of I 
uncorrelated measurements. We know, however, that this may not be correct. For 
example, measurements within a facie may be highly autocorrelated, whereas 
measurements from different facies may well be uncorrelated. How does correlation affect 
the theory presented in previous chapters? Some idea about this was presented through 
Example 2; we discuss the implications in the following paragraph. 
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Autocorrelation reduces the information content of data. That is, I correlated 
measurements will only be worth leff uncorrelated measurements, where left< I. The 
greater the degree of correlation, the smaller is Ieffii. For example, we have for the 
arithmetic average 

if the I data are uncorrelated and come from a population with mean f.1 and variance a2. 
However, if the data have a first-lag correlation of p = p(l) ::f. 0, then (Bras and Rodriquez
Iturbe, 1985) 

- { a2 [ £ I p (1 - p) - p(l - pi)]} 
X- N Jl, I 1 + I (1- p)2 

Consequently, the variance of the estimate X may increase. 

Correlation of data can arise also when samples are bunched. For example, consider 
the situation where a reservoir has been drilled as in Fig. 11-15. 

Figure 11-15. Schematic of variable sampling density for average porosities. 

Would a representative porosity in the oil-saturated medium be given by (<h + ¢2 + 
¢3 + ¢4)/4? Clearly, the answer is no; a simple average would probably be optimistic 
since three of the four wells penetrate the largest part of the oil region. The ¢ values for 
wells 1, 2, and 3 do not represent the same volume of material as does ¢4. A better 
average porosity would be obtained by declustering the data-weighting each <P by the 
volume it represents in the sum. 
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Dealing with correlated data can be difficult. It is an area of continuing research for 
which there are as yet more questions than answers. Barnes (1988) offers a recent and 
helpful discussion of the problem. It is clear, however, that the first problem is to 
become aware that the problem exists. 

11-10 CONCLUDING REMARKS 

The statistical study of autocorrelation is still in a state of relative infancy. We have 
developed a fairly substantial number of tools to do it, some with a strong theoretical 
base, but we are still learning how to use them. Of particular interest is how geologic 
features can best be conveyed through the statistics. One thing seems obvious: 
autocorrelation is very important to reservoir performance and we, therefore, are highly 
motivated to make the connection between it and fluid flow. Chapter 12 describes a 
means of doing this. 
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G E L I AL 

Thus far, our discussion has been to develop and illustrate tools for the analysis of data, 
primarily to characterize them using particular models and for diagnostic purposes. An 
extraordinarily powerful use of statistics is to apply the models to construct synthetic data 
sets for use in subsequent calculations. 

This procedure was mentioned in Chap. 1, and we have implicitly used it several times 
already. The idea is to use the data and any geological and physical information to 
produce statistically plausible reproductions (realizations). This approach underlies 

A 
regression, where we take a model, Y = f(X, {3) + e, and data to establish the unknown 
parameters ({3) of the model. Once determined, the model can be applied to produce 
estimates of Y. These estimates will usually differ from the true values of Y but, if we 
have modelled well, the errors will be small. 

For regression, every time we set X = x0, the model will produce the same estimated 
value for Y. Thus, regression is a method for producing identical realizations. Other 
methods will produce different estimates each time the estimator is applied. Each 
realization conforms to the statistical, geological, and physical information we 
incorporate into the model. The different estimates, however, result because we have not 
included sufficient information to uniquely predict the reservoir property at each desired 
location in the domain. 

293 
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The general area of using statistical methods to create replicas of variable distributions 
in the earth sciences has been called geostatistics. In this chapter we discuss the use of 
statistical techniques and statistics to generate sets of data. We have already done this in a 
simple way using the Monte Carlo technique for reserves estimates and stochastic shale 
models in Chap. 3. Usually these sets will be on arrays or statistical fields that can be 
used in a variety of calculations: reserve calculations (hydrocarbons in place), locating the 
top of structures, or as numerical simulation input. Before becoming this specific, 
however, we give a systematic summary of the basic techniques for generating statistical 
fields based on only a limited amount of measured data, a problem that is among the most 
basic in earth sciences. 

12-1 STATISTICAL POINT OF VIEW 

To begin with, we return to Fig. 3-15 to discuss a point of view that holds throughout 
this chapter. The following remarks apply to any spatial dimensionality, but they are 
easiest to visualize in two dimensions. Likewise, the remarks hold for all parameters 
relevant to a given application, even though we discuss the figure as a univariate field. 

The statistical point of view is that every point in the field (and each random variable) 
has a probability density function (PDF). For measured points, the PDF consists of a 
single value (a "spike" or zero-variance PDF, assuming no measurement error). For the 
unmeasured points, the PDF has a nonzero variance and, without further restrictions, can 
take on an arbitrary shape. For example, if we assume second-order stationarity, the PDF 
must have the same first and second moments everywhere in the domain. 

This point of view is central to the statistical techniques discussed in this chapter. But 
we must remember that it is only a point of view; there is in reality a single value for 
each variable at each point. If we sample one of the unknown points, assuming no 
measurement error, it becomes known and its PDF converts to a spike (with a value, it is 
presumed, that is consistent with the imagined PDF). 

12-2 KRIGING 

There are several statistical procedures for interpolating data. These procedures form the 
basis for sophisticated techniques, so it is important that we understand the fundamental 
ideas. 

Kriging is a basic statistical estimation technique. Named after its originator, D. 
Krige (1951), it was first used to estimate ore grade in gold mines. It was then 
theoretically developed by researchers, primarily in France (e.g., Matheron, 1965). As we 
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shall see, there are now many vanatwns of Kriging, but all start with the same 
fundamentals and all are related to regression. 

Consider a three-dimensional field as illustrated schematically (in two dimensions) in 
Fig. 3-15. We seek an estimate of a property Z" at an unmeasured location (point o) that 
is based on the Zi, i = 1, ... ,/known values. 

I 

z* = I~tizi 
i=l 

(12-1) 

Equation (12-1) is a common interpolator. For the specific way we calculate the lti 
described below, it is the Kriging estimator. It is linear in the Zi. The values lti, 

i=l, ... ,I, are the Kriging weights. Clearly, if we determine the lti, we can calculate Z". 

BlUE Estimators 

Statistical estimation techniques are best linear unbiased estimators (BLUE). "Best," in a 
statistical sense, means that the estimators have been arrived at through minimization of 
some type of variance. "Linear" means that the estimator is a linear combination of data 
values at known points, and, as we have discussed in Chap. 5, "unbiased" means that the 
expectation of the estimator will return the true (or population) value. How these criteria 
are imposed is evident in the following development of the Kriging estimator. 

The linearity of Eq. (12-1) simplifies the procedure significantly. However, it also 
means that the z* will be approximately normally distributed (Gaussian). Recall from 
the discussion of the Central Limit Theorem in Chap. 4 that any random variable that is 
the sum of a large number of independent, additive events will become Gaussian, 
regardless of the underlying PDF of the events. If we view the ltiZi as the independent 
events, the estimator in Eq. (12-1) satisfies these criteria iff is large. Unfortunately, z* 
will be Gaussian even if the Zi are not; hence, statistical additivity (Chap. 5) requires us 
to transform data (the ZD to normality before analysis and field generation. If the Zi are 
normally distributed, the Kriging estimator will give the means of the imagined 
distributions in Fig. 3-15, which are now themselves normal. A nice feature of the 
normal PDF is that the z* will also be the most likely (the mode) value at the point o. 
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Simple Kriging 

To determine the weights A.i, we first define and then minimize the simple Kriging (SK) 
. 2 

vanance (YSK: 

2 * 2 aSK= E[(Z- Z ) ] 

In this definition, z* is the estimate of Z at a single point. The Z itself is unknown, 
but we can proceed without this knowledge. a}K is interpreted as the variance of the 
distribution at the point being estimated (Fig. 3-15). Substitution of Eq. (12-1) and 
rearrangement gives 

(12-2) 

where we have employed the convention that 0'~ = Var(Z), a;i = Cov(Z, Zi), and 

ai~ = Cov(Zi, Zj) are known quantities. Written in this form, a}K is a function of 

the weights, since the autocovariance model alone determines the autocovariances. 

To minimize (jffK, we employ the now familiar argument (Chap. 9) that we seek a 
point in Ai space such that da}K = 0. If the weights are independent, the minimal affK 
will occur when 

2 
JaSK . 
~ = 0 for 1 =1,2, .. . ,! 

1 

Performing the differentiations on Eq. (12-2) gives the following equations: 

j =1, . .. ,I 

which can be written in matrix form as 

(12-3a) 
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2 ).,1 2 
all O"ol 

= (12-3b) 

2 2 
all AJ aoi 

or in vector notation as 

(12-3c) 

The SK A-/s are therefore the solution to these normal equations. Equation (12-3b) is 
similar to the regression matrix Eq. ( 10-7). 

Strictly speaking, the requirement das2K = 0 locates only extrema in the Aj space, not 
necessarily a minimum. We should, therefore, interrogate the second derivative of a}K 
to see whether we have arrived at a maximum or a minimum. This is left as an exercise 
to the reader; however, the linearity of Eq. (12-3), caused originally by the linearity of the 
Kriging estimator, means that the solution to these equations will always be a minimum 

2 
asK· 

The elements in the above matrix and in the vector on the right side are 
autocovariances. As will be seen below, these can all be obtained from the 
semivariogram. The right side deals with autocorrelations among the known points and 
the point o being estimated; the matrix elements account for autocorrelations among the 
known points. The autocorrelation matrix contains variances along its diagonal and is 
symmetric because of the reciprocal property of the autocovariance. The symmetry means 
that the inversion of Eq. (12-3) is amenable to various specialized techniques. Although 
the autocorrelation matrix contains nonnegative elements along its diagonal, it is not, in 
general, positive definite, although this is frequently the case. Finally, if we invoke 
weak stationarity (Chap. 11), all of the covariances become functions only of their 
separation distances (or of the separation vector if the autocorrelation is anisotropic). The 
locations of the Zi being fixed, the matrix of the a;] in Eq. (12-3b) need be inverted only 
once to estimate Z: at other points. 



298 Chap. 12 Modeling Geological Media 

We can eliminate the inner sum of the last term of Eq. (12-2) with Eq. (12-3a) to give 
a short form for the minimized SK variance, 

for the point o. 

the unknown Z. 

semivariogram. 

I 
2 2 ~ 2 

aSK= (Jo- L...JA-iaoi (l2-4a) 
i=l 

Unlike the formula for the weights, this equation requires a variance of 

By convention, we evaluate a~ from the sample variance or from the 

* * * Many applications require estimates z1, z2, ... , Z 1 on a grid of J values. The above 

equations nicely generalize with matrix notation in this case. The Kriging estimator is 

(12-5) 

where z* is an M-element vector of the estimated values, Zan /-element vector of the 

known values, and AT is an I x M matrix of the Kriging weights A-ij= 

The subscripts on the Aij refer to the measurement position and estimation location, 
respectively. Solving for the weights from Eq. (12-3c) and combining with Eq. (12-5) 
gives an expression for the vector of estimates, 

(12-6) 

where the elements of r?and r,; are the autocovariances between the known v~ues and 
between these values and the estimated points, respectively. Inverting :E can be 
computationally intensive, if the number of data is large, since it is an I by I matrix. 
But, as suggested above, the inversion need be performed only once for each point 
estimated. 
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Example 1 - Simple Kriging as an Exact Estimator. An estimator is exact if 
it reproduces the sampled data points. Show that, under some fairly easy 
conditions, the SK estimator is exact. 

We begin with Eq. (12-3a) to estimate the j = kth known point: 

Upon rearranging, 

. 2 
If the O"ik are independent of each other and not all zero, we must have 

ltk - 1 = 0 and Aj = 0 for j of:. k 

Therefore, the weight for the kth point is one and all others are zero. As 
would be expected, a~r 0 at this point from Eq. (12-4a). Since the point k 
was chosen arbitrarily, this result applies to all the known points. Hence, the 
Kriging estimator reproduces the values at the known points. 
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Exactness is a property not shared between Kriging and regression, and, in fact, 
exactness will not apply here if the O"~ are dependent as might occur if the semivariogram 
model used had a nonzero nugget. Indeed, you may show that the Kriging estimator 
reduces to the inexact arithmetic average in the limit of the semivariogram model 
approaching a pure nugget. 

Kriging with Constraints 

Many applications require additional constraints on the Kriging estimates, constraints that 
arise from statistical grounds, from geology, from physical limits (nonnegative porosity, 
for example), or from other data. There are several ways to constrain Kriging estimates, 
but the one most consistent with the linearity of the Kriging estimator is the method of 
Lagrange multipliers. We illustrate this method through an example. See Beveridge and 
Schechter (1970, Chap. 7) for an exposition of Lagrange multipliers. 
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Ordinary Kriging 

Unfortunately, the z* from simple Kriging are biased (BLE, not BLUE), because we did 
not constrain SK to estimate the true mean at unsampled locations. The SK bias can be 
determined as 

* * bz = E(Z ) - E(Z) 

= E (~ l.; Z i )- E(Z) = ~A; E(Z,) - E(Z) = (~ (l.; - !) )E(Z) 

Hence, the bias can be removed by forcing the A,i to sum to one. The problem of 
determining the Kriging weights now evolves to a constrained minimization, that is, 
minimizing a;K subject to the statistical constraint 

I 

I,t.i= 1 (12-7) 
i=l 

To apply the Lagrange multiplier technique to minimize the Kriging variance, 
Eq. (12-2), subject to constraint Eq. (12-7), we form the following objective function: 

The factor 2 before the last term is for subsequent mathematical simplicity. We can 
either add or subtract the last term since it will be zero ultimately, but the form indicated 
above has a slight mathematical advantage. J1 is the Lagrange multiplier, a new variable 
in the problem. 

Minimizing the objective function in the usual way (now setting dL = 0) leads to the 
following equations for Ordinary Kriging (OK): 

I 
~ 2 2 
£,,,/•iO'ij = O'oj + J1 j = 1, ... ,/ (12-8) 
i= 1 

which can be written in the following matrix form: 
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= 

2 
(Joi 

1 
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The problem to be solved is nearly the same as for SK; there is an additional column 
in the autocovariance matrix to account for the Lagrange multiplier and there is an 
additional row to account for the constraint. Of course, there is now an additional 
unknown, the Lagrange multiplier itself. 

For large problems, say I> 10, there is a negligible difference in effect between 
solving the SK equations and the OK equations, since the latter just involve a slightly 
expanded matrix. However', the matrix, while still symmetrical in the form shown, 
contains a zero on the diagonal that restricts the applicable inversion techniques. Just as 
in SK, the matrix is invariant as the point to be estimated moves; hence, the 
autocorrelation matrix need be inverted only once for multiple estimations. 

We can combine the equation for the OK objective function and Eq. (12-8) to give the 
minimized OK variance, 

(12-4b) 

or 

Being constrained, the OK variance is usually greater than the SK variance because the 
additional constraint does not allow the attainment of as deep a minimum. 

Example 2 - Ordinary Kriging with Three Known Points. Consider the 
arrangement of points shown below (Knutsen and Kim, 1970). 
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2 

100 

3 
Figure 12-l. Layout of known points (x) and point (o) to be estimated. 

Estimate the value of z* at point o. The theoretical semivariogram is given 
as 

(h)_ { O.Olh fl < 400 
r - 4 h > 4oo 

Since the semivariance is written as a function of separation distance only, we 
have assumed weak stationarity. Hence, the autocovariances and semivari
ances are related as (Chap. 11) Cov(h) = Cov(O)- y(h). We now calculate the 
elements of the OK equations as 

2 2 2 
0"11 = a22 = 0"33 = Cov(O) = 4 

2 2 2 2 
0"12 = 0"21 = 0"13 = a31 = Cov(199) = Cov(O)- y(l99) = 2.01 

2 2 
0"23 = a32 = Cov(20) = Cov(O) - y(20) = 3.8 

2 2 2 
0"0 1 = 0"0 2 = 0"0 3 = Cov(lOO) = Cov(O) - y(lOO) = 3 

and the OK equations in matrix form are 

4 2.01 2.01 1 A,l 3 

2.01 4 3.8 1 A-2 3 

A-3 
= 3 2.01 3.8 4 1 

1 1 1 0 J.1 1 
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Solution of this set of equations yields A-1 = 0.487, 4:2 = 0.256, A-3 = 0.256, 
and J.1 = 0.026, from which we take the estimate to be 

z: = (0.487)(10) + (0.256)(5) + (0.256)(15) = 9.99 

where z1 = 10, q = 5, and z3 = 15. The OK variance can be obtained from 

Eq. (12-4b) as u'fyK = 1.026. The z* estimate is nearly the same as the 

arithmetic average, to which OK degenerates in the limit of no 
autocorrelation. 
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As simple as this exercise is, it illustrates a number of points. First, note that 
.:t2 = .:t3 and that IL1 is nearly equal to 1\..2 + 1\..3 . This is because points 2 and 3 are so 
close together that they are essentially acting as a single point in the estimate. If points 
2 and 3 were spaced farther apart, A-2 would not equal .:t3. The sharing of weights for 
clustered known points is known as a transfer of influence (Knutsen and Kim, 1970). 
Fields with clustered points will have larger Kriging variances than fields with widely 
separated points, a fact that obviously indicates the most efficient way to sample a 
property in a field (but ignores scales of variation in geology and the financial aspects of 
the sampling strategy). 

Now suppose point 2 is moved so that it is directly behind point 3 from point o. We 
would find, on solution, that 4:2 becomes negative and ~ exceeds one. (There is nothing 
wrong with negative weights as long as the weights sum to one.) The negative weight 
for 4:2 overcomes an undue influence from A-3 . By the same token, point 3 is shielding 
point 2. 

Another general property of OK is that if all the points, both known and to be 
estimated, are so far apart from each other that they are uncorrelated, the Kriging estimator 
becomes the arithmetic average. This property is consistent with the notion, first 
discussed in Chap. 5, that the arithmetic average is the best estimator of the mean for a 
set of uncorrelated data-as the points would certainly be in this case. 

This discussion of moving sampled points around might lead one to believe that the 
semivariogram and the data are independent. In reality, the semivariogram is estimated 
from the data so that any shift in the sampling points will cause a change in the 
semivariance. However, the change will be small if the semivariogram is based on a 
large number of points. Such is presumed to be the case with the points in Example 2. 
Note that it is possible to perform Kriging with fewer sampling points than are in the 
entire set. 
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Recall from Chap. 6 that the N 0 approach was described for obtaining sufficient 
samples to allow the arithmetic average to be predicted to within 20% of the true mean 
95% of the time. These Kriging results indicate that the No method is a simplification 
and has to be modified to account for correlation among measurements. When the sample 
locations are such that the measurements are correlated, more measurements need to be 
taken to keep the variability of the estimated mean within 20%. See Chap. 11 and Barnes 
(1988) for a discussion of the problem. 

Finally, you may wonder why we resort to Lagrange multipliers to enforce the 
unbiased condition in OK instead of renormalizing the SK weights by their sum. Such a 
procedure does not result in a minimized a52K (the estimate would be LUE, not BLUE). 
To see this, let f3 be the sum of the weights. We multiply and divide the second term in 
Eq. (12-2) by f3 and the third term by {32. The minimization proceeds as before to result 
in the following minimized SK variance: 

I 
2 2 2 ~ 2 

asK= ao + (/3 -2/3) .L..JAi a oi 
i=l 

This equation shows that a'ffK is the smallest only when f3 = 1, the same result as 
Eq. (12-4a). Hence, such a renormalization will lead to a larger Kriging variance than 
SK. This variance may or may not be larger than the corresponding OK variance, but the 
Lagrange multiplier technique always leads to the deeper minimum. 

Nonlinear Constraints 

One of the more interesting, and largely unexplored, avenues in Kriging is the possibility 
of adding more constraints. In the case of Kriging applied to permeability, in particular, 
the linear unbiased constraint is weak because of the lack of additivity of this variable for 
many situations (see Chap. 5). However, this can be modified somewhat using the 
approach suggested inChap. 10 (e.g., Kriging log(Z) or z-1). 

Well testing is a useful means of inferring the larger-scale flow properties of an aquifer 
or reservoir. In this class of procedures, the permeability in the vicinity of a well is 
inferred, usually by imposing changes in the rate of the well and measuring changes in 
pressure. The permeability so obtained (we will call it kwt) is a good reflection of the 
average flow properties of the reservoir, but it says little about its variability because it is 
a global (that is, it applies to a large region) rather than a point measure. Moreover, it is 
not clear how to average the point values within the test region to arrive at kwt· 



Statistics for Petroleum Engineers and Geoscientists 305 

Campozana (1995) has added the nonlinear constraint kwt =-f(kl, k2, ... ,kM) to 
Kriging through the Lagrange multiplier procedure. He deals with the global nature of 
kwt by minimizing the sum of the Kriging variances at all points (recall that the Kriging 
variances are all positive) and with the discrepancy in scales by allowing kwt to be related 
to the point values through the following power-averaging formula: 

The exponent m in this formula can be obtained through minimization, just like the 
weights. Of course, the point-wise autocorrelation is maintained through the 
autocovariances in the Kriging procedure. 

Figure 12-2 shows the results of adding the kwt constraint to the permeability field. 
The upper-left plot is a two-dimensional, fine-scale permeability field that is the test case 
for this procedure. kwt for this field is known through a simulation of right-to-left flow. 
The upper-right plot in Fig. 12-2 shows a reconstruction of the field using OK based on 
data known at nine equally spaced points within the field; the lower-left plot shows the 
result of the Kriging with the kwt constraint. The heterogeneity of the field is reproduced 
much better with the kwt constraint. The example illustrates how Kriging can be used to 
apply global information to improve arrays of point information. 

To be sure, the improvement shown in Fig. 12-2 does not come without a price. The 
nonlinearity of the constraint means that iteration is required to attain a minimized 
solution and much larger matrices must be inverted. More subtly, the lack of additivity 
may mean there is a basic inconsistency between the Kriging estimate and the power 
average. However, the results of Fig. 12-2 are encouraging. Other nonlinear constraints 
are possible, of course. See Barnes and You (1992) and Journel (1986) for an illustration 
of how bounds may be added to Kriging. 

Indicator Kriging 

Kriging is a desirable estimator: it is linear, unbiased, and exact and has minimal 
variance. Despite these attractive features, it has three other aspects that are less desirable. 

1. Kriging tends to generate a synthetic field that is too smooth-it underrepresents 
the variability. This is a property that has been established from application; 
however, it is also evident from the filtering aspects of the estimator itself. 
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Figure 12-2. Results of Kriging constrained to well-test data. Original field is in upper 
left; ordinary Kriging reconstruction in upper right; simple Kriging with 
well-test constraint is in lower left. The scale is in mD. From Campozana 
(1996). 

2. Like regression, Kriging is deterministic; the same data values Zi will yield the 
same estimates. Whether or not this is viewed as an advantage depends on the 
application, but such a procedure cannot be used for uncertainty estimation. 

3. The fields generated are Gaussian. The restriction to the generation of Gaussian 
fields (and the requirement of ensuring consistency) can also be bothersome. 
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We can get around the deterministic nature of Kriging by regarding z* and cr~K (for 

example) as the mean and variance of locally Gaussian PDF's (see below). Remarkably, 
Kriging can be easily modified to eliminate all three of these problems by generating the 
entire CDF of the estimates (Fig. 3-15) at each point. This procedure is called indicator 
Kriging. 

Before proceeding, you should review the material in Chap. 3 on CDF's. There we 
discovered that a CDF consists of a plot of the frequency of occurrence F(z) of a random 
variable Z less than some limit z. F(z) was nondecreasing and consisted of two types: 
continuous CDF's, appropriate for continuous variables, and discrete CDF's, appropriate 
for discrete variables. Recalling the definition of probability (Chap. 2), for a given cutoff 
value zc, F(zc) represents 

Number of samples with Z ~ zc 
F(zc) = Total number of samples 

Other terms for zc are the critical or threshold value. zc varies between a minimum 
zmin and a maximum zmax and can take on several values. 

Let I(zcn) for n = 1 , .. . ,N represent an indicator variable defined as 

(12-9) 

I(zc ) is an on-off (Boolean) variable because it can take on only two values. N is less 
n 

than or equal to the number of data values. The estimated CDF follows from 

1 N 
F(zc) = N '"JJCzc) 

n=l 

and letting zc run from Zmin to Zmax· p* (zc) is the sample or empirical CDF of z*. 

We form the indicator semivariogram Y[ in exactly the same fashion as the 
semivariograms discussed in Chap. 11. These devices have the same meaning as they did 
there except they are now expressing the continuity (extent of autocorrelation) of z* 
values less than Zc· It is clear from this comment that the indicator semivariogram YJ can 
be used to concentrate on a particular range of the Z that is known to be most significant 



308 Chap. 12 Modeling Geological Media 

to the application, e.g., the connected large-permeability range in flow simulations. 11• 
of course, is always less than one because 0 5:./(zcn) 5:. 1 since /(zen) is either zero or 
one. 

Perhaps the most desirable feature of the indicator semivariogram is that it is robust
that is, YI does not depend strongly on the nature of the distribution of the Zi nor is it 
affected by the presence of extreme values. The latter factor makes the indicator 
semivariogram very useful in assessing autocorrelation in noisy data. 

It is also clear that 'YJ will depend on the value of zc chosen, a decided increase in 
complexity compared to previous semivariogram analyses. However, the semivariogram 
is frequently robust to the zc, in which case a single 'Yt is satisfactory for the subsequent 
construction. If zc is the median value in a data set, the subsequent Kriging is known as 
median indicator Kriging. 

The actual indicator Kriging proceeds exactly as in Kriging, except YJ is used in place 
of rand the data values Zi are replaced by their respective indicators /i· (Replacing the 
data values with indicators and using the indicator semivariogram is a form of 
nonparametric statistics.) The following example indicates how to use them. 

Example 3- Indicator Kriging for Three Known Points. Rework Example 2 
to generate a CDF forT at the point o. Take the indicator semivariogram to 
be . 

(h) - { h/1600 r - o.2s 
h < 400 
h > 400 

and independent of the value of J(zc ) chosen. As before, we use this to form 
n 

the Kriging equations. 

[ 

0.25 0.1250.1251] 
0.125 0.25 0.238 1 

0.125 0.238 0.25 1 

1 1 1 0 

0.188 

0.188 

1 

where we have now used Cov(h) = Cov(O) - yJ(h). The solution to these 
equations yields the same weights as before: /\.1 = 0.487 and 10, = /\.3 = 0.256. 
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Since rr is independent of zc, these weights will remain the same throughout 
the example. For zcl = 5, the indicators for points 1, 2, and 3 are 0, 1, and 
0, respectively, from which we calculate 

F*(5) = 0.487(0).+ 0.256(1) + 0.256(0) = 0.256 

for the CDF value corresponding to zc1 = 5. Similarly, for zc2 = 10 we have 
I= (1, 1,0} andforzc3 = 15,/= {1, 1, 1}. ThesegiveF*(10)=0.743 and 
F*(15) = 1, which give the discrete CDF at the point o (Fig. 12-3). To 
estimate uncertainty, we sample the CDF in the same fashion as was done in 
earlier chapters. 
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The discreteness of the F* depends on the number of known points. In Example 3, the 
CDF has only three steps because there are only three points. Clearly, the more data 
there are, the better is the approximation to the population CDF. As in the other types 
of Kriging, the autocovariance matrix does not change from point to point (if r1 is truly 
independent of zc)· Even so, generating F* can become time-consuming if the full CDF 
must be constructed at every point in a field that has a large amount of data. But, unlike 
ordinary Kriging, the weights A.i here must be nonnegative, otherwise the properties of 
the F* (Chap. 3) will not, in general, be satisfied. 

Finally, and most interestingly, the indicator variable may be associated with some 
geologic feature (e.g., I= 0 is shale, I= 1 is sand). When this occurs, indicator Kriging 
is estimating the probability that the particular feature exists at the point of estimation. 
Such a procedure, expanded to include several different types of indicators, offers the most 
direct way to convert geologic classifications into a synthetic field. We discuss this 
further in Section 12-4. 

When applying indicator Kriging, users will typically choose from one to five cutoffs 
based on geologic or engineering criteria, e.g., net pay, lithologies indicated from wireline 
logs, flow units > 100 mD, etc. In this fashion, indicator semivariograms will have 
geologic and/or engineering significance. However, such few cutoffs will generate a local 
CDF that is segmented and will not fully represent the range and shape of the actual 
CDF. Such CDF's will give a poor representation of the local statistics; the median in 
Fig. 12-3, for example, is estimated to be about 7, whereas it is actually 10 from the data 
and from the nonsegmented CDF's. 
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Figure 12-3. Discrete CDF of Z at the point o (Fig. 12-1) contrasted with the 
CDF of the Zi from Example 3. The indicator CDF is different from 
the empirical CDF (values between 5 and 10 are less probable) 
because it is now conditioned on the data. 

Figure 12-4a shows that segmentation produces artifacts in regions of the CDF where 
the curvature is large, where the estimated CDF "short hops" across the empirical CDF. 
Short hopping can be corrected by selecting additional cutoffs (increase the number of data 
or categories) in the large-curvature areas (Fig. 12-4b). 

Additional semivariogram modeling is required for these nongeological/engineering 
cutoffs, but usually only one to three additional cutoff points are needed. 

12~3 OTHER KRIGING TYPES 

This discussion has far from exhausted the different possibilities of Kriging. Other forms 
are briefly described below. 
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Universal Kriging 

This form seeks to account for drift or a long-range autocorrelation in the data by 
subjecting the data to a preprocessing step. The preprocessing can be as basic as fitting a 
low-order polynomial to the original data or more sophisticated, such as segmenting the 
data according to the geologic patterns. 

* F or F 
a 

Empirical 
CDF 

1 b 
"' F or F 

o .~.----:;;.,...---------o 
Zmin Zcl Zc2 Zmax 

Empirical 
CDF 

z z 

Figure 12-4. Illustration of the effect of adding additional cutoff points to eliminate 
"short hopping." 

Disjunctive Kriging 

This is another way to deal with the Gaussian nature of Kriged data. Here the data are 
first rendered Gaussian by the appropriate transform before Kriging proceeds. 

The ideas behind universal (e.g., stratigraphic coordinates) and disjunctive (e.g., the 
p-normal transform) Kriging have become common practice. The remaining form of 
Kriging is more involved. 
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One of the most useful generalizations is to define the original Kriging estimator, 
Eq. (12-1), in terms of more than one data set. For example, if the need is to estimate 
z* based on known Zi and Yi, as might be the case where we would estimate 
permeability from permeability and porosity data, the estimator would be 

I I 
z*-~ lt·Z·+ ~v·Y· -~ll ~ll 

i= 1 i=l 

The weights, vi, account for any change of units between Y and Z. The ensuing Kriging 
manipulations are exactly the same as those above, but with an expanded set of equations 
to be solved since terms involving the correlation between the Zi and the Yi will appear. 
Co-Kriging is a powerful tool that can incorporate a broad range of reservoir data in its 
most general form. 

12=4 CONDITIONAL SIMULATION 

As we mentioned above, Kriging fields are deterministic and cannot be used to quantify 
uncertainty. In the following, we review some of the more common procedures, 
collectively termed conditional simulation (CS), to generate a stochastic random field. 
The term conditional arises because, as we shall see, the fields so generated are exact, just 
as with Kriging. All techniques, which are more algorithms than mathematical 
developments, use some form of Kriging. In all cases we are to generate a random field 
consisting of values inj =1, ... , J cells based on i =l, .. . ,I sampled data points. There 
are therefore (J -1) points to be estimated or simulated initially based on I conditioning 
points. We have previously determined the appropriate semivariogram model either from 
the I data points or from geology and we assume the values at the conditioning points are 
free of error. 

Sequential Gaussian Simulation 

Sequential Gaussian Simulation (SGS) is a procedure that uses the Kriging mean variance 
to generate a Gaussian field. The entire procedure is the following: 

1. Transform the sampled data to be Gaussian. The most common technique is the 
normal scores technique (Chap. 4). This is a natural precursor to any Gaussian 
technique. 
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2. Assign each of the (J - I) unconditioned cell values to be equal to those at the 
nearest conditioned cells. The values in the conditioned cells do not change in 
the following. 

3. Define a random path through the field such that each unconditioned cell is 
visited once and only once. 

4. For each cell along the random path, locate a prespecified number of surrounding 
conditioning data. This local neighborhood, which may contain data from 
previously simulated cells, is selected to roughly conform to the ellipse range on 
the semivariogram model. 

5. Perform ordinary Kriging at the cell using data in the local neighborhood as 
conditioning points. This determines the mean of the Gaussian distribution z* 
and the variance crJ K· The local CDF is now known since the mean and 
variance completely determine a Gaussian distribution. 

6. Draw a random number in the interval [0, 1] from a uniform distribution. Use 
this value to sample the Gaussian distribution in step 5. The corresponding 
transformed value is the simulated value at that cell. 

7. Add the newly simulated value to the set of "known" data, increment I by 1, and 
proceed to the next cell as in step 4. 

Repeat steps 4 to 7 until all cells have been visited. This constitutes a single 
realization of the procedure. Multiple realizations are effected by repeating steps 3 to 7. 
All the values in all realizations are back-transformed to their original distribution before 
subsequent use. 

At each step in the random path through the grid, a new conditioning data point is 
added to the list of original data points. Use of the local neighborhood is to avert the 
problem of inverting an ever-increasing Kriging matrix (Eq. (12-6)) as more and more 
points are estimated. It is also possible to use a prespecified maximum number of nearest 
conditioning data, including previously simulated values, in the estimate. In this way the 
Kriging matrix will never be more than this number of points within the ellipse and the 
SGS method will be able to handle large fields. Of course, ordinary Kriging in this 
procedure can be replaced by simple Kriging or co-Kriging as the need dictates. 

The local neighborhood restriction, however, can not preserve large-scale trends. This 
can be modified to some extent by increasing the local neighborhood at the expense of 
greater effort. Obviously, some care is required in using fractal semivariograms. 
Alternatively, we can select a set of conditioning points that are a mix of points inside 
and outside of the neighborhood. The estimated points in SGS act as "seed points" for 
new stochastic features (e.g., low-, medium-, or high-value regions) in the random field. 
Since the SGS procedure ensures continuity in the random field according to the 
semivariogram, these stochastic features can persist and win be geologically acceptable if 
the semivariogram is consistent with the geologic structure. Cells far from conditioning 
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points can take on values that are equiprobable over the full range of the empirical CDF; 
hence, SGS maximizes uncertainty in this sense. 

Random Residual Additions 

In the following, we discuss a procedure that is computationally more intensive but does 
not involve the subjectivity of determining a local neighborhood. We call it the 
procedure of random residual additions (RRA). 

Figure 12-5 illustrates the procedure; the data points are indicated with x's, and we are 
to fill in a random surface in this one-dimensional example. Five steps are required to 
produce the desired field. 

z 

0 

Residual 

Distance 
* Figure 12-5. Schematic of random residual addition procedure. z0 K is ~he first Kriging 

surface (deterministic); Zs is the unconditioned surface; ZsK is the second 
Kriging surface; Z0 is the final surface. 

* 1. Generate a Kriging surface. This surface, shown as the dashed line z0 K in 
Fig. 12-5, has the usual attributes of Kriging, the most important here being the 
exactness and the determinism. 
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2. Generate an unconditioned surface. This surface, shown as the erratic solid line Zs 
in Fig. 12-5, has the desired statistical properties of the final surface, the 
appropriate second moments as conveyed through the semivariogram. But, of 
course, being unconditioned, this surface does not pass through the measured data. 
We discuss ways to generate this surface later. In general, many of the statistical 
tools used in this generation are the same tools used in the Kriging step. The 
unconditioned surface is not deterministic. 

3. Generate a second Kriging surface. This step is the most important of all. The 
* second Kriging surface, shown as ZsK in Fig. 12-5, passes through the 

unconditioned surface at spatial coordinates that coincide with those of the 
* measured data in Fig .. 12-5. The ZsK surface, therefore, treats i =1,2, .. . ,I points 

on the Zs surface as known. 

4. Subtract the unconditioned surface from the second Kriged surface. These 
differences are known as residuals. The residuals are zero at the measured data 
locations because of the coordinate conditioning in step 3. 

5. Add the residual surface to the original Kriged surface (step 1). Because the 
residuals are zero at the measured points, the original data will be reproduced in the 
synthetic surface. 

The final surface Z 0 in Fig. 12-5 has many desirable properties: it matches the 
measured data, has the appropriate degree of heterogeneity (if there is consistency between 
the statistical devices used in generating the various surfaces), is unbiased, and remains 
minimal. Many of these attributes, carry through from the ordinary Kriging step because 
of the linearity of the operations .. Most importantly, the final surface is stochastic; steps 
2 to 5 will be different for each execution and constitute a realization for the entire 
process. 

Throughout this book we have been making distinctions between deterministic and 
random processes (although both may be treated statistically). The RRA procedure offers 
a clear demonstration of the combination of the two (i.e .. ,. it is a hybrid method). The 
determinism comes from step 1 and the randomness. from steps 2 to 5. Indeed, many 
applications may be so deterministic that only the ordinary Kriging step is necessary. Of 
course, other surfaces may be so erratic that the determinism is negligible, but these 
limits may not be so apparent in the original data. R'RA, then, offers a way of blending 
these two aspects in, it is hoped, the appropriate amounts. 
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Generating an Unconditioned Surface 

There are two basic techniques for generating an unconditioned surface: spectral methods 
and averaging methods. 

Spectral methods rely on the ability to represent a synthetic field with a Fourier series 
(Shinozuka and Jan, 1972). The key information here is a plot of the amplitude of each 
term in that series versus its frequency, known as a spectral density plot, which can be 
analytically related to autocovariance functions (Jenkins and Watts, 1968). This means 
that spectral methods are slightly limited in their ability to use a large number of 
autocovariance functions, especially those related to fractal semivariograms (Bmining, 
1991). Spectral methods are difficult to implement in more than one dimension; 
however, a version of spectral methods, the turning-bands method (Montoglou and 
Wilson, 1985), is quite efficient This method relies on projecting a one-dimensional data 
set throughout a two-dimensional field by a series of geometrical constructions around a 
rotating line. The price for this efficiency is a slight, spurious periodicity in the 
generated field (Ghori et al., 1990). 

Averaging methods exhibit more flexibility than spectral methods. They range from 
the relatively simple source-point method (Heller, 1972) to the most complicated matrix
decomposition method. The source-point method is simple because it does not require a 
matrix inversion. It can generate a wide variety of autocovariance functions, but fields 
with a prespecified function must be developed by trial and error (Bhosale, 1992). 

The matrix-decomposition method (MDM) is the most computationally intensive of 
the averaging methods (Yang, 1990), and its advantages are to be balanced against the 
computation cost. The intensiveness results from the repeated inversion of an 
autocovariance matrix. Even though the many inversion procedures are quite efficient, 
this task is still challenging even on the most advanced computers. Various 
approximations and the use of parallel computing seem to be of great advantage here 
(de Lima, 1995). 

Both the foregoing CS procedures generate Gaussian fields that are frequently at odds 
with actual (geologic) distribution of properties. For example, the procedure can generate 
a stochastic feature that a geologist, based on sedimentary principles, knows is 
deterministic. These difficulties can be avoided with a careful geologic study that precedes 
or, better yet, is done in conjunction with the field generation. With this in mind, CS 
can be done entirely within the geologic framework or the geology can be superimposed 
through a multilevel CS. Chapter 13 shows some examples. The principal difficulty 
with these CS procedures is that they tend to be time-consuming, especially if multiple 
realizations are desired. Of course, being able to generate multiple realizations is the 
principle justification for CS. However, we can use indicator mathematics to generate 
geologically based realizations, as the following paragraphs describe. 
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Generating Facies Distribution 

This method is called the sequential indicator simulation-probability distribution function 
(SIS-PDF) method. The objective is to generate a random field that classifies each cell 
into a facies category. Once each cell is so assigned, we can associate a property to the 
cell from the PDF of that facie. 

We begin by assuming that the spatial distribution of facies categories is mutually 
exclusive, that is, two facies cannot exist at the same cell. The spatial pattern of each 
facie is governed only by its overall probability of occurrence and its semivariogram (e.g., 
structural type, range, orientation, and anisotropy). The overall facies PDF represents the 
field-wide occurrence of each category; it is usually obtained from well data or a facies 
map. Indicator simulation is ideal for modeling such "discrete" variables as these 
(Deutsch and Journel, 1992; Alabert and Massonnat, 1990). The SIS-PDF procedure for 
categorical indicators has the following steps (Goggin et al., 1995). 

1. Define a random path through the reservoir model such that each unconditioned 
cell is visited once and only once. Conditioned cells contain wells that are 
initially given known facies categorical values. 

2. For each cell along the random path, locate a prespecified number of conditioning 
facies data, including facies data from wells, pseudowells, and previously 
simulated cells. 

3. Using indicator Kriging (above), estimate the conditional probability for each 
facies category. Each facie will be estimated independently using individual facies 
semivariograms. 

4. Normalize each facies probability by the sum of probabilities over all facies and 
build a corresponding local conditional CDF from the normalized probabilities. 

5. Draw a uniform random number in [0, 1] and determine the simulated facies 
category in the current cell by sampling the local CDF generated in step 4. 

6. Repeat steps 2 to 5 for each cell in the random path, paying attention to the local 
availability of conditioning facies data in the previously simulated cells. New 
facies "realizations" are obtained by reinitializing the random path through the 
model, beginning at step 1. 

Goggin et al. (1995) used this procedure for modeling facies patterns and their 
uncertainties in sand-rich turbidite systems. Facies categories, identified from interpreted 
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seismic-amplitude map extractions, calibrated using core and log data, are (a) channels, 
(b) overbank deposits, (c) turbidites, and (d) distal lobes. Major facies trends were 
preserved by sampling the interpreted facies maps in "high probability" areas (e.g., 
pseudowell picks). Therefore, the SIS-PDF technique can model local facies uncertainty 
at the scale of cells in a full-field flow simulation. 

·12-~ SIMULATED ANNEALING 

Simulated annealing (SA) is a method for producing a field with known properties. The 
procedures attempt to simulate physical processes, such as melting, freezing, and genetic 
reproduction, through a variety of algorithms. By the same token, the number of 
applications has also been diverse. Its use in reservoir characterization is fairly recent 
(Farmer, 1989) although it shows great promise (Datta Gupta, 1992; Panda and Lake, 
1993). 

Simulated annealing overcomes many of the difficulties with the methods described 
above. The data do not have to be normally distributed (in fact, any type of distribution 
is acceptable), stationarity is not necessary, conditioning is easy, and there are virtually 
no limits on the type of autocorrelation or heterogeneity a given field may possess. 
Indeed, SA can entirely ignore autocorrelation if necessary. The single largest advantage 
of SA is that it can incorporate several constraints, each from a different source, as long 
as these do not conflict. Hence, it is possible to generate a field that, in principle, 
satisfies all of the data gathered in a specific application. Finally, SA, as a . class of 
techniques, is very simple and direct. Balanced against these advantages are the facts that 
SA tends to be quite computationally intensive and it has an uncertain theoretical 
pedigree. The trade-offs among these items should become clear as we discuss the main 
SA techniques, but first we cover some background items. · 

Background 

If a metal or a glass is heated to near its melting point and then cooled to a given 
temperature T, the properties of the material depend on the rate of the cooling. For 
example, the material might be stronger, less brittle, or more transparent when cooled at a 
slower rate. The explanation for the different properties is usually based on diffusion 
arguments; if cooling is too fast, there is not enough time for physical defects or 
entrained gas to diffuse from the material. The process of slow cooling is called 
annealing. 

From a thermodynamic viewpoint, each step in the cooling results in an equilibrium 
state or a minimum in the free energy surface. This is idealization because true 
equilibrium at any temperature Tis attained only for an infinitely slow cooling rate. The 
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end of each cooling step, then, must represent a local equilibrium or a local mtnimum in 
the free energy surface. 

A central tool in the application of SA is the Boltzman or Gibbs cumulative density 
function given by 

F(&) = exp(-Llli/D (12-10) 

where AE is the change in the energy, Tis the temperature, and F is the frequency of 
occurrence of a given AE. Both T and the energy change are positive. The CDF in 
Eq. (12-10) is the complement of the one-parameter exponential distribution function 
first discussed in Chap. 4. Based on this equation, we see that the most likely energy 
change at a given T is zero and that nonzero energy changes become less likely as T 
decreases. 

It is important to remember that SA is essentially an argument by analogy; the 
quantities we have been calling energy and temperature are really just thermodynamic 
names for variables that behave like them. The energy, in fact, plays the role of the 
objective function in previous work. A typical form for an objective function is 

M 

E = I,mm (z m- zcm)2 
m=l 

where there are m =1,2, ... ,M constraints, and mm is a weighting factor, selected in part 

to make the units consistent in this equation. The z and z c are actual and computed 
statistics of the field, respectvely; usually they are a function of the Zi, i =1,2, .. . ,I 
points to be generated. This equation is desirably vague for it is here that all constraints 

on a given field apply. The z may be anything; we will show examples below of z as 
points on a semivariogram, global averages, and tracer data. The key property of E is that 
it be nonnegative, but this can be satisfied by other forms. For example, 

M 

E= I,mm lzm-zcml 
m=l 

also satisfies the nonnegative requirement. As we shall see, we take only differences of E 
in the SA procedures, rather than derivatives as in conditional simulation; hence, the 
absolute value form is as convenient as the squared form. 

Simulated annealing can be implemented in several ways. We cover two basic types: 
the Metropolis and the heat-bath algorithms. As is usual, we generate a grid ofj=l,2, .. . ,J 
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properties Zj that satisfy the constraints and that are also drawn from a specific empirical 
(experimental) CDF. 

Metropolis Algorithm 

This algorithm, first proposed by Metropolis et al. (1953), is the simplest SA algorithm. 
It has the following steps. 

1. Generate a random field on the grid of J values by drawing some initial Zj from 
the desired empirical CD F. 

2. Based on these values, calculate z m for theM constraints. 

3. Calculate the objective function Eotd· If this is the first outer iteration, set the 
initial temperature to E0 zd· 

4. Choose a gridblock randomly and draw a new value z:;ew for this cell from the 

empirical distribution. 

5. Recalculate the objective function Enew-

6. If Enew is less than Eold• accept the new value (that is, replace the original Zj 

with z:;ew), set E 0 zd = Enew• and return to step 4. 

7. If E new is greater than E old• calculate ,1£ = E new - E old and the Gibbs 
probability F from Eq. (12-10). 

8. Pick a random number r from a uniform distribution between 0 and 1. If r > F, 

reject the z:;ew and return to step 4. Otherwise, go to step 9. 

9. If r < F, accept the new value (even though t.E has increased), let E 0 zd = Enew, 

and return to step 4. 

Repeat steps 4 to 9 until a suitable number of acceptances has occurred. These 
steps constitute the search for a local minimum at a given temperature. Usually 
the number of accepts should be somewhat greater than J, but it is not necessary 
to be more specific since we will ultimately be seeking a global minimum after 
the temperature has been lowered. 

10. Test for convergence. Check to see if !ill is below some preset tolerance. If it is, 
terminate the procedure; if not, continue to the next step. 
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11. Lower the temperature according to some cooling schedule such as T new = r f Told 

and return to step 4. rfis a reduction factor (rt< 1) that is typically around 0.8. 

The Metropolis procedure involves two levels of cycling; the inner level, steps 4 to 9, 
at constant temperature, is noniterative and the outer level, steps 4 to 10, is iterative. 
Figure 12-6, a plot of E versus the cumulative cycling counts of three outer cycles, 
illustrates how convergence is attained. 

In this figure, T is decreasing to the right with inflections intended to show when a 
new temperature is adopted. E decreases at each fixed temperature, but not necessarily 
monotonically; the cycle for T1 illustrates a local minimum forE there. Steps 7 to 9 are 
intended to boost E over such local extrema. Since the algorithm uses E at two levels 
only, it is a form of a Markov process. 

The generality of this procedure is somewhat offset by the ad hoc nature of many of 
the steps, for example, the number of inner cycles and the rate of cooling. To set these 
values for a particular application normally requires some trial and error. From a rigorous 
standpoint, the most serious problem with SA is that there is no guarantee that the 
process will converge. However, the procedure is quite flexible, as the following simple 
example shows. 

E 

1_ 
Tolerance 

T -----------------------
lnteration Number 

Figure 12-6. Schematic convergence of simulated annealing. 
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Example 4 - Simulated Annealing with the Metropolis Algorithm (from 
M.N. Panda, personal communication, 1994). Use the Metropolis algorithm 
to generate a four-cell (J = 4) grid with a geometric mean z = 340. Use the 
absolute-value form of the energy definition. 

For later comparison, let the true distribution be 

where the subscripts indicate the cell number. Of course, we know only the 
value of the geometric mean before we do the annealing. 

In this case there is only M = 1 constraint and we perform the inner cycle 
seven times at each temperature. The discrete experimental PDF is the set of 
nine equally likely values (100, 200, 300, 400, 500, 600, 700, 800, 900). 
This means that if a random number falls between 0 and 0.111, the selected 
value is 100; between 0.444 and 0.555, it is 500; etc. Table 12-1 shows the 
steps for the results for the first temperature T0 = 106. 

Table 12-1. Inner cycle for Metropolis example. 

2 3 4 5 6 7 8 9 10 11 12 
Move Rand. Cell Cell Cell Cell Geo. E Delta Gibbs Rand. Deci-
Cell No. 1 2 3 4 Mean E Pro b. No. sion 

Initial 400 500 400 500 447 106 
1 0.82 800 500 400 500 532 191 85 0.45 0.57 Reject 

1 0.59 600 500 400 500 495 154 48 0.64 0.51 Accept 

3 0.99 600 500 900 500 606 265 111 0.35 0.78 Reject 

4 0.96 600 500 400 900 573 232 78 0.48 0.44 Accept 

2 0.01 600 100 400 900 383 42 -190 Accept 

4 0.61 600 100 400 500 331 10 -33 Accept 

3 0.13 600 100 200 500 278 63 53 0.61 0.38 Accept 

The first column is the randomly selected cell, and the second is the random number 
for selecting the trial value z?ew. Column 7 shows the current geometric mean. 
Columns 8 and 9 show the energy (E) and the energy change (Llli), respectively. The 
Gibbs probability and the corresponding random number are not needed unless the 
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energy change is positive. Three trials were accepted even though the energy change 
was positive. The energy has decreased from 106 to 63 (not monotonically) during 
this cycle. 

Table 12-2 further illustrates the entire process by showing only the accept steps 
until convergence. 

Table 12-2. Acceptance steps for Metropolis example. 

Move Rand. Cell Cell Cell Cell Trial E Delta Gibbs Rand. 
Ternn. Cell No. 1 2 3 4 Geomean E Pro b. No. 

106 

85 

68 

54 

1 0.59 600 500 400 500 495 154 48 0.64 
4 0.96 600 500 400 900 573 232 78 0.48 
2 0.01 600 100 400 900 383 42 -190 
4 0.61 600 100 400 500 331 10 -33 
3 0.13 600 100 200 500 278 63 53 0.61 

3 0.06 600 100 200 500 278 63 0 
2 0.66 600 500 200 500 416 75 13 0.86 
4 0.35 600 500 200 400 394 53 -23 
1 0.18 200 500 200 400 299 42 -11 

4 0.09 200 500 200 100 211 129 88 0.36 
3 0.11 200 500 200 100 211 129 0 

1 0.65 500 500 200 100 266 75 -54 

3 0.58 500 500 600 100 350 9 -66 
1 0.63 500 500 600 100 350 9 0 
3 0.58 500 500 600 100 350 9 0 
3 0.47 500 500 500 100 334 6 -3 

1 0.31 900 500 500 100 387 46 40 0.48 
3 0.44 900 500 300 100 341 0 -6 

The horizontal lines show when the temperature has been lowered (we have 
used rt= 0.8 here). Again, several trials were accepted even though the 
energy increased; indeed, three trials resulted in no decrease of the energy 
whatsoever. We can illustrate the nature of the convergence in this simple 
problem with Fig. 12-7. 

0.51 
0.44 

0.38 

0.53 

0.18 

0.21 



324 Chap. 12 Modeling Geological Media 

As illustrated, the convergence is not monotonic because of the possibility of 
accepting a _positive energy change. The final answer, 

is not the same as the actual one. The converged solution, which may be 
regarded as a realization of the process, differs from the true distribution that 
we gave at the first of the example because the objective function contained 
no information regarding the spatial arrangement of the values. However, the 
final solution has the desired geometric mean. 
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Figure 12-7. Convergence rate for Example 4. 
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This example illustrates both the strength and weaknesses of SA. The objective 
function is statistical but it does not deal with spatial arrangement, although this could 
have been included. The procedure converges, but it converges slowly, especially toward 
the end of the process where most of the Gibbs trials are rejects. The multiple rejections 
can significantly increase the computation effort of the process. 

Heat Bath Algorithm 

The second SA algorithm eliminates the multiple rejections of the Metropolis algorithm 
at the cost of additional computer storage. We begin with the same data as the 
Metropolis algorithm except now we discretize the parameter space into k =1,2, ... ,K z 
values. The steps are as follows: 

1. Start with an arbitrary z k on each cell and calculate the initial energy. Set the 
initial temperature equal to this energy. 

2. Beginning with the first cell, replace the original zk with each of the k=l,2, ... ,K 
values and calculate the energy for each. There are now K energy values 
E1,E2·····Ek; this is equivalent to there being K fields, each differing only in the 
value for the first cell. 

3. Calculate the discrete cumulative Gibbs probability for each of the K fields 
according to 

k 

I.exp(-Emfn 
m=l 

Fk= K 

L exp( -EmfT) 

m=l 

4. Generate a random number r between 0 and 1 from a uniform distribution. 

5. Accept the energy value in the first cell that has the Gibbs probability closest to r. 

6. Test for convergence. That is, test that the energy is below some preset tolerance. 
If it is, the procedure is over for this cell; if not, repeat steps 2 to 6 for the next 
cell. 

7. If convergence has not been attained when all of the cells have been visited, lower 
the temperature and begin again with step 1 at the first cell. 
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This procedure has the same number of rejected values (K- 1) each cycle, so, while it also 
can be computationally intensive, its operation count is less than for the Metropolis 
algorithm. The somewhat artificial discretizing of the z values is less of a problem than 
it first appears because the granularity (the increment between successive zi) can be 
adjusted. 

12-6 CONCLUDING REMARKS 

The technology of statistics, particularly as applied to fluid-flow modeling, has made 
remarkable advancements. We know that using statistics to assign the input to a 
simulator improves the efficiency of the modeler. We must verify, however, that the 
procedures generate realistic heterogeneity and can be made to agree with geology; they 
are adjuncts to, not replacements for, geology. The next chapter has further discussion. 
These considerations make it likely that the practice of using statistics to assign input 
will be standard technology in the near future. But there is one other argument, not yet 
realized, that may supersede in importance all of the previous ones. 

We continually observe (and occasionally contribute to) the ongoing revolution in 
computer technology. What is possible today-a few million cells in a numerical 
simulation-was only a dream a few years ago, and with this capability comes a 
significant burden in knowledge management. A typical numerical simulation requires at 
a minimum three permeabilities, a porosity, a fluid saturation, and a pressure for each 
cell. For a one-million-cell simulation, then, six million numbers are required. Simply 
assigning these numbers for the simulation is a significant task, and adjusting specific 
ones for the purpose (say) of history matching becomes impossible. 

On the other hand, each parameter field can be efficiently controlled with an 
appropriate semivariogram; thus, instead of six million numbers, we control the 
simulation with only 12, if a two-parameter semivariogram is used and the entire field is 
one geologic classification. Twelve parameters represent a nice balance between 
flexibility and what can be realistically achieved. Thus, it is far more efficient to assign 
fields with statistics than to assign the numbers directly. This advantage may be the 
most important one for future application and one that will be present even if the current 
trend in increasing computer power continues. 
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In this chapter, we develop and apply the concepts introduced in previous chapters for the 
modeling of reservoir and aquifer properties. The first part (analysis) draws together data 
and statistical concepts into a method for inferring a model for subsequent use in 
numerical reservoir simulation. The case studies are arranged in increasing sophistication 
of statistical treatment. In the second part (application), we give examples of how 
statistical/geological models perform in numerical simulation. 

We should remember that the appropriateness of a model depends on the ultimate 
application; more sophistication and complexity do not always result in a "better" model. 
For example, a tank-type material-balance model of a field can yield a fairly accurate 
estimate of reserves and may, in certain circumstances, even provide as much insight as a 
more sophisticated model (Dake, 1994, p. 4). Moreover, there are times when a crude 
but easy-to-use model will fit better into time and budget constraints. The question in 
these cases is not whether a detailed model is better than a simple one, but rather how 
much better. However, more detail always yields a better answer, time and budget 
notwithstanding. For detailed models, it is how well they capture the essential physics 
and geology (the geoengineering) that determines their accuracy. 

For most properties, both recognizable (essentially deterministic) geological elements 
at some scale(s) and a random element are present. The random element can represent 
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natural variability, sparse sampling, noisy data, or a combination of all. Stochastic 
modeling is a useful method that can be applied to media that are neither entirely 
deterministic nor random. 

Chapter 1 introduced three types/descriptions of reservoir structures. We repeat these 
here with more geologic elaboration. 

Strictly deterministic: Correlatable and mappable reservoir units with well understood 
internal sedimentary architecture and predictable petrophysical properties. 

Mixed deterministic and random (i.e., stochastic): Correlatable and mappable 
reservoir units with an internal sedimentary architecture and/or petrophysical 
properties defined by vertical and lateral spatial statistics (e.g., facies PDFs, porosity 
CDFs, and associated semivariograms). 

Purely random: No apparent geological explanation for the distribution of 
petrophysical properties in a heterogeneous reservoir. 

These categories are listed in order of the amount of information required for modeling. 
The deterministic style requires the most information; measurements at all geologically 
relevant scales are needed and the geological units must be pieced together. On the other 
hand, the purely random style needs only estimates of the mean and variance of the 
important flow properties to produce a model. The result of the lack of information in 
the random and stochastic cases is that many different but statistically similar realizations 
can be produced. The deterministic case produces only one realization. 

Reservoirs and aquifers are deterministic only in the most qualitative sense; on the 
other hand, strict randomness is extremely rare in nature. However, as the cases below 
show, statistics has a role in all three categories. In fact statistics, used in tandem with 
geoscientific concepts for reservoir modeling, provides power and authenticity not 
achievable by either method alone. 

The degrees of determinism and/or randomness, which can be assessed by careful 
geological description and sampling, will determine the appropriate modeling strategy. 
While a reservoir or aquifer may fall into different categories at different scales, we will 
concentrate on the flow unit (Hearn et al., 1984) or interwell scale (over 1 or2 km). 

13~1 THE IMPORTANCE OF GEOLOGY 

Questions concerning the role of geology often arise during modeling studies. Does the 
geology matter and, if so, by how much? While the interaction of heterogeneity and flow 
processes is still being researched, there are increasing indications that geological 
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information may be quite important for accurate flow behavior models. The Page 
Sandstone is a case of particular interest and it, along with others, is presented below. 

A succession of works has detailed the geology (Chandler et al., 1989), the 
permeability distribution (Goggin et al., 1988; Goggin et al. 1992) and fluid flow (Kasap 
and Lake, 1990) through the Page Sandstone, a Jurassic eolian sand that outcrops in the 
extreme of northern Arizona near Glen Canyon Dam. 

The geological section selected for the flow simulation was the northeast wall of the 
Page Knob (Goggin, 1988). The data were derived from probe permeameter 
measurements taken on various grids and transects surveyed on the outcrop surfaces, 
together with profiles along a core. The individual stratification types comprising the 
dunes, i.e., grainfall and windripple, have low variabilities (Cv's of 0.21). The interdune 
element has a Cv of 0.81. The interdune material is less well-sorted than the dune 
elements. Grainfall and windripple elements are normally distributed, the interdune log
normally. The individual stratigraphic elements in this eolian system are well-defined by 
their means, Cy's, and PDF's. 

The vertical outcrop transects are more variable (Cv = 0.91) than the horizontal 
transects (Cv= 0.55), an anisotropy that seems to be typical for most bedded sedimentary 
rocks. The global level of heterogeneity for the Page Knob is probably best represented 
by the transect along the core, which had a Cv = 0.6. Semivariograms were calculated 
for the grids and core profiles. The grids allowed spherical semivariogram ranges to be 
determined for various orientations. These ranges indicate the dip of the cross beds ; the 
ranges were 17m along the bed and 5 m across the bed (Goggin, 1988). Hole structures 
are present in most of the semivariograms, indicating significant permeability cyclicity 
that corresponds to dune cross bed set thicknesses. 

For our purposes, the most important facet of this work is the modeling of a matched
density, adverse-mobility-ratio miscible displacement through a two-dimensional cross 
section of the Page Sandstone. Figure 13-1 shows a typical fluid distribution just after 
breakthrough of the solvent to the producing well on the right. The dark band is a 
mixing zone of solvent concentrations between 30% and 70%. The region to the left of 
this band contains solvent in concentrations greater than 70%, to the right in 
concentrations less than 30%. The impact of the variability (Cv = 0.6) and continuity can 
be seen in the character of the flood front in the large fluid channel occurring within the 
upper portion of the panel. There is a smaller second channel that forms midway in the 
section. As we shall see, both features are important to the efficiency of the 
displacement. 
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c 

Figure 13-1. Distribution of solvent during a miscible displacement in the detailed 
simulation of the Page Sandstone outcrop. From Kasap (1990). The flow 
is from left to right. 

The simulation in Fig. 13-1 represents one of the most geologically realistic, 
deterministic, numerical flow simulations ever run because it attempts to account for 
every geologic detail established through prior work. Specifically, 

1. permeabilities were assigned according to the known stratification types at every 
gridblock; 

2. the permeability PDF for each stratification type is well-known; 

3. a random component was assigned to the permeability of each gridblock to 
account for variance of the local PDF's; 

4. crossbedding was accounted for through the assignment of a full tensorial 
permeability in about one-third of the gridblocks; 

5. the specific geometry of the features was accounted for through the use of finite 
elements; and 

6. each bounding surface feature (low permeability) was explicitly accounted for 
with at least one cell in each surface. 

In all, over 12,000 finite-element cells were required to account for all of the geologic 
detail in this relatively small cross section. Indeed, one of the purposes of the simulation 
was to assess the importance of this detail through successively degraded computations. 
See Kasap (1990) for more details. 
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Another purpose of the deterministic simulation was to provide a standard against 
which to measure the success of conditional simulation (CS) as was described in Chap. 
12. Figure 13-2A shows two CS-produced realizations of solvent flowing through the 
Page cross section. Compared to Fig. 13-1, the permeability distribution was constructed 
with a significantly degraded data set that used only data at the two vertical wells 
(imagined to be on the edges of the panel) and information about a horizontal 
semivariogram. The field on which the simulation of Fig. 13-2A was constructed used a 
spherical semivariogram. Figure 13-2B shows the same field constructed with a fractal 
semivariogram. 

We compare both figures to the distribution in Fig. 13-1. Qualitatively, the fractal 
representation (Fig. 13-2B) seems to better represent the actual distribution of solvent; it 
captures the predominant channel and seems to have the correct degree of mixing. The 
spherical representation (Fig. 13-2A) shows far less channeling and too much mixing 
(that is, too much of the panel contains solvent of intermediate concentrations). 
However, a quantitative comparison of the two cases shows that this impression is in 
error (Fig. 13-3). The distribution that gave the best qualitative agreement (Fig. 13-2B) 
gives the poorest quantitative agreement; Such paradoxes should cause us concern when 
performing visual comparisons; however, there is clearly something incorrect about these 
comparisons. The key to resolving the discrepancy lies in returning to the geology. 

Figure 13-2A. Simulated solvent distribution through cross section using a spherical 
semivariogram. From Lake and Malik (1993). The mobility ratio is 10. 
The scale refers to the fractional (at the injected) solvent concentration. 
Flow is from left to right. · 
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o.·s 
Solvent distribution through cross section using a fractal semivariogram. 
From Lake and Malik (1993). The mobility ratio is 10. The scale refers 
to the fractional (at the injected) solvent concentration. Flow is from left 
to right. 
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Figure 13-3. Sweep efficiency of the base and CS cases. From Lake and Malik (1993). 



Statistics for Petroleum Engineers and Geoscientists 333 

Figure 13-4 shows the actual distribution of stratification types at the Page Sandstone 
panel based on the northeast wall of the Page Knob. 
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Figure 13-4. Spatial distribution of stratification types on the northeast wall of the Page 
Sandstone panel. From Kasap and Lake (1993). The thin bounding 
surfaces are black lines, the high-permeability grainflow deposits are 
shaded, and the intermediate-permeability windripples are light regions. 

The thin bounding surfaces are readily apparent (black lines), as are the high
permeability grainflow deposits (shaded) and the intermediate-permeability windripples 
(light). This is the panel for which the simulation in Fig. 13-1 was performed. Even 
though the entire cross section was from the same eolian environment, the cross section 
consists of two sands with differing amounts of lateral continuity: a highly continuous 
upper sand and a discontinuous lower sand. Both sands require separate statistical 
treatment because they are so disparate that it is unlikely that the behavior of both could 
be mimicked with the same population statistics. (Such behavior might be possible with 
many realizations generated, but it is unlikely that the mean of this ensemble would 
reproduce the deterministic performance.) 

When we divide the sand into a continuous upper portion, in which we use the fractal 
semivariogram, and a discontinuous lower portion, in which we use the spherical 
semivariogram, the results improve (Fig. 13-5). Now both the predominant and the 
secondary flow channels are reproduced. 
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Figure 13-5. Solvent distribution through cross section using two semivariograms. 
From Lake and Malik (1993). Shading same as in Fig. 13-1. 

Now both the predominant and the secondary flow channels are reproduced. More 
importantly, the results agree quantitatively as well as qualitatively (Fig. 13-6). 

The existence of these two populations is unlikely to be detected from limited well 
data with statistics only; hence, we conclude that the best prediction still requires a 
measure of geological information. The ability to include geology was possible because 
of the extreme flexibility of CS. The technological success of CS did not diminish the 
importance of geology; rather, each one showed the need for the other. 

13-2 ANALYSIS AND INFERENCE 

Petrophysical properties (e.g., porosity and permeability) are usually related to the 
manner in which the medium was deposited. In fact, it is often observed that textural 
characteristics of sediments (e.g., grain size and sorting) play an important role in 
determining levels and distributions of petrophysical properties (Panda and Lake, 1995). 
The hierarchical nature of sediments is such that reservoirs often comprise systematic 
groupings and arrangements of depositional elements. Sedimentology takes advantage of 
knowledge of this organization to interpret sediments in terms of depositional 
environment. The environments contain a great deal of variability in all aspects, but 
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"typical" elements exist and the architecture (stacking patterns) of those elements reveals 
the processes at work during deposition. 

Statistics should be used within the geological framework provided by stratigraphic 
concepts (e.g., sequence stratigraphy, genetic units, architectural elements). An 
important aspect of the statistical analysis is to detect and exploit the geological elements 
from a set of data by using appropriate sampling plans, spatial analysis, and descriptive 
statistics. 
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Figure 13-6. Sweep efficiency of the base and dual population CS cases. 
From Lake and Malik (1993). 

We now present several case studies that cover the range of reservoir types previously 
outlined. The examples show the statistical/geological interplay needed to model a 
reservoir. 

Rannoch Formation, North Sea 

The Rannach formation (Middle Jurassic, North Sea) is a shoreface sandstone reservoir 
that occurs as a well-defined flow unit over a wide area. The reservoir unit is generally 
continuous over the producing fields, but it is internally heterogeneous. The Rannach 
can be distinguished from the overlying Etive formations by careful analysis of porosity-
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permeability data; these show a unit with a left-skewed but dominantly unimodal PDF 
(Fig. 3-11). The fine grain size of the Rannoch is largely responsible for the low 
permeability compared to the Etive (Fig. 13-7). 
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Figure 13-7. Typical Rannoch formation sedimentary profile. f, m, and c 
refer to fine, medium and coarse grain sizes, respectively. The 
Rannach is generally micaceous (m), and this controls the 
small-scale permeability contrasts. 

The permeability Cv varies from 0.7 (in Statfjord field) to 1.48 (Thistle field). From 
Fig. 6-2, the formation is heterogeneous to very heterogeneous. Carbonate concretions 
are present in the Thistle field reservoir, and these can be readily identified as a separate 
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population from the uncemented reservoir intervals by their low porosity and 
permeability (Fig. 10-10). With the concretion data omitted, the permeability Cvreduces 
in the Thistle field to 0. 73 to 0.87. The permeability of the Rannach is heterogeneous 
because of a subtle coarsening-up profile and small-scale depositional fabric. 

There are three possible ways to model the Rannoch permeability patterns. Most 
simply, it would be possible.to select the arithmetic average permeability and model the 
Rannach as a layer cake with a single effective property. Second, the Rannoch could be 
represented with a linear, upward-increasing permeability trend to reflect the gentle 
coarsening-upwards grainsize profile. However, both of these deterministic models may 
be inadequate if the small-scale heterogeneity affects the flow. The third method is 
described further below. 
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Figure 13-8. Heterogeneity at different scales in the Rannach formation. The lamina
set packages that occur in the wavy bedded and HCS beds have different 
levels of heterogeneity and vertical lengths. For the purposes of 
illustration, only certain intervals are shown; for more details and 
discussion, the reader is referred to Corbett (1993). 

The Rannach is a heterogeneous reservoir (Cv> 0.5), whose heterogeneity varies with 
scale and location in the reservoir. For example, at the small scale, the low-mica 



338 Chap. 13 The Use of Statistics in Reservoir Modeling 

lamination is relatively uniform (Cv = 0.2) in comparison with the wavy bedded material 
(Cv = 0.6) over similar 30-cm intervals (Fig. 13-8). At the bed scale, there is significant 
heterogeneity in the wavy bedded and hummocky cross-stratified (HCS) intervals. Probe 
permeameter data are critical to assess the small-scale variability (Fig. 6-3). The 
geological elements at these scales (lamina sets) should behave differently under 
waterflood because of the vertical length scales of the geological structure and the effects 
of capillary pressure (Corbett and Jensen, 1993b). 

Knowledge of the geology aids the interpretation of the statistical measures, and vice
versa. Representative vertical semivariograms for the Rannoch show "holes" at 2 em and 
1.35 m associated with lamina-scale (high-mica laminated and wavy bedding) and bed
scale sedimentary structures (in the HCS), respectively (Fig. 13-9 left and center). The 
large-scale semivariogram (Fig. 13-9 right) shows a linear trend over the 35-m Rannoch 
interval associated with the coarsening-upward shoreface, with some evidence of · 
additional structure at 10m. These semivariograms are showing signs of deterministic 
cyclicity at the lamina, bed, and parasequence scales. The geological analysis is helped 
by the spatial measures and, used in tandem, geology and statistics can identify 
"significant" (from a petrophysical property point of view) variability. 
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Figure 13-9. Spatial patterns of permeability in the Rannoch formation from representative 
semivariograms over various length scales. Note the nested hierarchy of 
spatial structure and the absence of nugget for the finest-scale data. The 
nugget at larger scales represents the poor resolution of the lamina by larger 
sampling programs. The semi variance is normalized by the sample variance. 
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Lochaline Sandstone, lower Cretaceous, West Scotland 

The Lochaline mine on the west coast of Scotland provides a rare opportunity for the 
collection of three-dimensional permeability data within a reservoir analog (Lewis et al., 
1990). These data have been analyzed and simulated using a variety of statistical 
techniques. 

The Lochaline Sandstone is a shoreface sandstone as was the Rannach, but the 
Lochaline was deposited in a high-energy environment that leads to clean, well-sorted, 
large-grain sands. The lateral extent of the properties tends to be more nearly layer-like. 
The Rannoch, with its prevalence of HCS bedforms and a mica-rich medium, gives rise 
to more permeability and visual contrast at the smaller scale. As we shall see, these 
differences appear in the analysis. 
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Figure 13-10. Coarsening-up profile in the Lochaline shoreface sandstone. 
The coarsening-up profile is a characteristic of prograding 
shorefaces (c.f., Rannach profile in Fig. 13-7) albeit much 
thinner in this example. The histogram shows a "bell-shaped" 
distribution in the square-root domain (i.e., root normal). 

The grain-size profile (~ig. 13-10 left) shows a distinct upward-increasing trend in 
permeability. The Lochaline data are root-normally (p = 0.5) distributed with a 
(heterogeneous) Cv = 0.63 (Fig. 13-10 right). In this case, small-scale laminae and bed 
structure were not visible to the eye; the variability at this scale was small (Cv = 0.25) 
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and the permeability normally distributed. This is quite different from the Rannoch 
shoreface, where the mica contributes to very visible lamination. 

At the parasequence scale, the vertical semivariogram shows a gentle linear trend (Fig. 
13-11 top). The hole in the horizontal semivariogram at 70 m is probably a result of 
difficulties maintaining a constant stratigraphic datum rather than any lateral structure 
(Lewis, personal communication, 1994). The nonzero nugget is more likely to be caused 
by heterogeneity below the measurement spacing than measurement error, as mm-spaced 
data commonly show zero nugget (Fig. 13-9 left). A small nugget was seen in 2-cm
spaced data, which suggests that there may be small-scale structure that has gone 
undetected. Careful review of the semivariograms is a useful diagnostic procedure. 
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Figure 13-11. Vertical and horizontal semivariograms for probe flow rate 
(proportional to permeability) in the Lochaline mine. The 
horizontal semivariogram suggests a correlation length of ~bout 
50 m with a hole at 70 m. Note the differences in scales 
between the two plots. 
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San Andres Formation Shelf Carbonates, 
Permian Basin, Texas 

341 

In this example, we consider a carbonate reservoir on which a statistical study has been 
carried out (Lucia and Fogg, 1990; Fogg et al., 1991). Flow units extend between wells 
but no internal structure can be easily recognized or correlated. The San Andres 
formation carbonates are very heterogeneous with a Cy of 2.0 to 3.5 (Kittridge et al., 
1990; Grant et al., 1994). A vertical permeability profile (Fig. 13-12) from a wireline
log-derived estimator shows two scales of bedding . 
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Figure 13-12. Permeability profile for the San Andres carbonate generated 
from a porosity-based predictor. There are two types (A and 
B) of heterogeneity at the bed scale. From Fogg et al. (1991). 

A vertical sample semivariogram (Fig. 13-13) shows aspherical behavior out to a 
range of about 8 ft. This range appears to be between the scales of the two bedding types 
(A and B) shown in Fig. 13-12. The spherical model fit to the sample semivariogram 
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overlooks the hole (at around 24 ft) that may be reflecting Type B scale cyclicity. The 
structure of Type A beds may not be reflected in the sample semivariogram because of 
the effect of the larger "dominating" Type B cycles. 

Horizontal semivariograms were derived from permeability predictions generated 
from initial well production data (Fig. 13-14). Because of the sparse data, these 
semivariograms alone are indistinguishable. But there is a mapped high-permeability 
grainstone trend associated with reef development that is consistent with an anisotropic 
autocorrelation structure. The geology is critical to interpreting these semivariograms 
(refer to Fogg et al., 1991, for further discussion). 
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Figure 13-13. Spherical model fitted to a vertical sample semivariogram. The 
spherical model ignores the hole at 24 ft that indicates cyclicity. 
From Fogg et al. (1991). 

13~3 FLOW MODELING RESULTS 

As a tool for generating the input to reservoir flow simulations, statistical techniques 
offer an unprecedented means of generating insights into reservoir processes and 
improving efficiency. We give a few illustrations in this section. In general, we present 
results of two types: result~ of fluid-flow simulations that have used statistical modeling 
to generate their input permeability or maps of the input itself. All of the cases to be 
discussed have used some form of conditional simulation (Chap. 11), and, except where 
noted, all have used random field generation in conjunction with geological information. 
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History Matching 

Figure 13-15 shows calculated (from a numerical simulator) and actual results of water 
cut from a waterflood in a U.S. oilfield. 
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Figure 13-14. Sample semivariograms in two horizontal directions for the San 
Andres carbonate. Semivariograms with different ranges can express 
the anisotropy suggested by the geological model. From Fogg et al. 
(1991). 

The calculated results used a hybrid streamline approach in which the results of 
several two-dimensional cross sections were combined into a three-dimensional 
representation. The permeability distributions in the cross sections were generated by 
CS, using, in this case, a fractal representation that was derived from analysis of wireline 
logs and permeability-porosity transforms. The calculated and actual results agree well. 

The process of bringing the output of a numerical simulator into agreement with actual 
performance is known as history matching. History matching is a way of calibrating a 
simulator before using it for predictions. In most cases, history matching requires more 
than 50% of a user's time, time that could be better spent on analysis and prediction. For 
the case illustrated in Fig. 13-15 (and in several other cases in the same reference), the 
indicated history match was attained in only one computer run. Historical data are best 
used to test and diagnose problems in the model rather than to determine the model. 



344 Chap. 13 The Use of Statistics in Reservoir Modeling 

Subsequent experience has shown that such agreement is not so easily attained for 
individual wells and, even for entire field performance, some adjustment may be needed. 
However, the point of Fig. 13-15 is that CS significantly improved the efficiency of the 
analyst. 
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Figure 13-lS.Actual and simulated production from a waterflood. From 

Emanuel et al. (1989). 

Geologic Realism 

Figure 13-16A shows a three-dimensional permeability distribution from a carbonate 
reservoir in east Texas generated using CS and fractal semivariograms. The dark shading 
indicates low-permeability regions and the small circles indicate well locations. 

This realization was generated with substantial geological insight, the most important 
of which was the identification of six separate facies, indicated in the figure as layers. 
Only the frrst two facies (layers 1 and 2) were statistically distinct from the others (Yang, 
1990), but the properties within each were nevertheless generated to be consistent with 
the respective permeability PDF. 

Subsequent analysis revealed the existence of a pinchout (a deterioration in reservoir 
quality) to the southeast in this field. The pinchout is represented by the solid lines in 
Fig. 13-16B. Such features are not a standard in field~generation procedures and 
modeling; however, with some effort they can be incorporated. 
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Figure 13-16A. Three-dimensional permeability realization of an east Texas fiel< 
From Ravnaas et al. (1992). (Top row contains layers 1,2, and 3). 
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Figure 13-16B. Three-dimensional permeability realizations of an east Texas field wi1 
pinchout. From Ravnaas et al., (1992). 
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As discussed in Yang (1990), the pinchout is introduced by a two-level CS. The first 
level constructs the pinchout along the given line using data along the vertical line from 
the rightmost well in the figure. This well, a poor producer, has properties that are 
representative of those along the pinchout. After the first level, the second-level CS 
proceeds, now using data from the first level as conditioning points (some call these 
points "pseudowells"). The result is a gradual but sporadic deterioration of reservoir 
quality to the southeast in all layers, as well as a general alteration of permeability in all 
layers. 

Another way to impart geological realism is through the use of pseudoproperties. 
These properties are the usual transport properties-permeability, relative permeability, 
and capillary pressure-that have been adjusted so that Darcy's law applies at the scale of 
interest. The adjustment takes into account the underlying geology of the field, the flow 
properties, and the prevailing boundary conditions. 

Corbett and Jensen (1993b) simulated flow through three types of laminae in the 
Rannach sets (Fig. 13-7), extracted pseudoproperties from these, and then applied the 
pseudoproperties to simulate bedform flow. They found the bed pseudoproperties to be 
insensitive to small changes in the bed geometries. The sophistication of their model 
could be increased by a series of statistical realizations at each stage that would reflect 
the variability and geometry of the beds. This would significantly add to the cost and 
complexity of the model exercise, however. The deterministic approach to modeling is 
useful for understanding the process and evaluating sensitivities. 

To model the upward increase in permeability and the lateral variability in the 
Lochaline formation (Fig. 13-10), simple polynomial curves were fitted to the medians 
of a series of profiles for each height above a datum. The median was chosen because it 
is a robust measure of central tendency. Each median was derived from more than 20 
profiles; the residuals provided a PDF from which a random variation was drawn and 
added to the deterministic trend in the simulation model. However, the small-scale 
structure effects, evaluated by simulations, were found to be insignificant (Pickup, 
personal communication, 1993). 

The resulting model was used to study a simulated waterflood using a mobility ratio of 
10 at a rate of 0.6 m/d. The effect of water preferentially following the high permeability 
at the top of the shoreface is clear in Fig. 13-17. In this reservoir analog, the production 
mechanism (i.e., waterflood) is most sensitive to the deterministic trend. At the scale of 
the system, viscous forces dominate (the water preferentially follows the high 
permeability) because there is little evidence of gravity "pulling" the water down into the 
bottom of the shoreface. Capillary forces are generally weak in this case because of the 
low heterogeneity and the relatively high permeability. 
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Saturation distribution in a simulated waterflood of the Lochaline 
Sandstone. High water saturations are the black region to the left; 
the gray region to the right is at initial oil saturation. 
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In this example, the system was relatively simple but the ability to combine the 
deterministic element (increasing upward permeabilities) with a random element 
(residuals about the trend) demonstrates the power of stochastic models. The procedure 
described in the Lochaline study can be applied to the various scales of interest described 
in the Rannach study. 

Conditional simulations (conditioned on the well data) of the permeability field in the 
San Andres formation were generated to investigate the influence of infill drilling (Fig. 
13-18). In this case, the permeability field was modeled as an autocorrelated random 
field using single semivariograms in the vertical and horizontal directions. Both 
realizations show the degree of heterogeneity and continuity needed for this type of 
application. However, there are still deficiencies in the characterization that might prove 
impottant. 

.1. The profile in Fig. 13-18 suggests a reservoir dominated by two scales of beds. In 
the realizations in Fig. 13-18, it is difficult to see that this structure has been 
reproduced. 

2. The autocorrelated random field model does not explicitly represent the baffles 
caused by the bed bounding surfaces; these may have a different flow response 
from that of the models in Fig. 13-12. 
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REALIZATION NO. 192 
PERMEABILITY SIMULATION 43-36-A 

REALIZATION NO. 90 
PERMEABILITY SIMULATION 43-36-A 
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Figure 13-18. 
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Two realizations of the spatial distribution of the permeability field for 
the San Andres generated by theoretical semivariograms fit to the 
sample semivariograms shown in Figs. 13-9 and 13~10. The 
permeability fields are the same in the two realizations for the extreme 
left and right ends of the model where the conditioning wells are 
located. From Fogg et al. (1991). 

The panels in Fig. 13-18 also illustrate a generic problem with pixel-based stochastic 
modeling: there is no good a priori way to impose reservoir architecture. If the 
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geometry of the beds were determined to be important, other modeling techniques (e.g., 
object-based) might have been useful. 

The San Andres study illustrates how semivariograms can be used to generate 
autocorrelated random fields that are equiprobable and conditioned on "hard" well data. 
These realizations can form the basis of further engineering studies; however, it is 
unlikely that all 200 realizations will be subjected to full flow simulation. Usually only 
the extreme cases or representative cases, often selected by a geologist's visual 
inspection, will be used. 

The main point from these exercises is that geostatistics and CS procedures are 
extremely flexible; if geology is known, it can be honored with suitable manipulation 
both as a preprocessing step (previous section) or in postprocessing. 

Hybrid Modeling 

If the reservoir lithology can be discriminated into two populations, for example by a 
bimodal PDF of a particular wireline-log measurement, the autocorrelation can be 
determined using the resulting discrete lithological indicator. 

Rossini et al. (1994) have taken this approach with a sandy dolomitic reservoir where 
a wireline-log value has been taken to distinguish sandy facies ("good" reservoir) from 
dolomitic facies ("poor" reservoir). Sequential indicator simulation (SIS) using facies
indicator semivariograms is used to generate the model facies fields. Porosities within 
each facie are then assigned as correlated random fields from the appropriate facies
specific semivariograms using sequential Gaussian simulation (SGS). The permeability 
is determined from the porosity data using a regression relationship and a Monte Carlo 
procedure. The resulting fields capture both the variability and architecture of the 
geological structure (i.e., facies architecture), without recourse to a large data base of 
channel attributes (needed for object modeling). However, indicator semivariograms are 
needed, and these often must be imposed from an understanding of the geological 
structure in the absence of real data. 

In this study by Rossini et al. (1994), the quality of the statistical models was assessed 
by a grading system based on the maximum number of water-cut matches to production 
data. The high-graded realizations were then used for full-field simulations to develop a 
management strategy. This interesting case study combines many of the statistical 
treatments covered in this text-PDF's, transformations, regression, spatial correlation, 
and statistical modeling-and provides a useful introduction for all students of reservoir 
geo-modeling. 
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Fluvial reservoirs, in which the flow units can comprise reservoir units (channel 
sandstones, crevasse splay sandstones) and nonreservoir units (lagoonal muds, coals) are 
often modeled with object-based techniques (using the known or inferred geometry of 
the sands and/or shales). The use of object-based models for the simulation of low 
net:gross reservoirs (e.g., Ness formation, Upper Brent, North Sea) have been discussed 
in Williams et al. (1993). These systems have also been modeled using a marked-point 
process (Tyler et al., 1994), where the "marked points" represent the principal axis of a 
channel belt to which the modeled channel attributes are attached. In both techniques, 
discrete architectural elements are distributed in a background matrix. 

The realism of the models depends on how well the input parameters (e.g., total 
reservoir net:gross, channel belt azimuth, and channel belt width:thickness ratios) can be 
defined. Net:gross can be obtained from well information; width-thickness data rely on 
appropriate outcrop analog data~ Other data sources include "hard" data (e.g., well logs 
and well test) and "soft" data (e.g., regional channel orientations or maps of seismic 
attributes) to further condition the models. 

The advantage of the statistical techniques is that numerous "equiprobable" 
realizations can be generated. These realizations are data-hungry and the need for 
screening prior to use in an engineering application can limit the usefulness of all the 
realizations. Often the connectivity alone is of major concern and this can be determined 
relatively simply (Williams et al., 1993). The balance between models and realism has to 
be carefully weighed so that the uncertainty in the engineering decision-making process 
is adequately quantified within the time frame and budget available. 

Fluid-Flow Insights 

Numerical simulation has been in common practice for several years, and we have come 
to believe in the correctness of its results if we are confident in its input. This procedure 
requires careful geological and statistical assessment. Now, we take a different approach 
and, using hypothetical models, examine the sensitivities of recovery processes to 
changes in the statistical modeling. Statistical modeling through CS offers a way to 
control both the heterogeneity and continuity of an input flow field with sufficient 
generality to gain novel insights into reservoir processes. 

We have known for several decades that miscible displacements in which the solvent 
is less mobile than the phase being displaced have a tendency to form an erratic 
displacement front, bypass, and, as a consequence, inefficiently recover the resident fluid. 
The ratio of mobilities of such a displacement (the mobility ratio) being greater than one, 
the displacement is termed adverse. This phenomenon, among the most interesting in all 
of fluid dynamics, has been modeled in the laboratory by numerical simulation and 
through analytic methods. Nearly all of this work has been in homogeneous media. The 
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question then arises: what happens to adverse miscible displacements in the presence of 
realistic heterogeneity? 

This was the issue in the work of Waggoner et al. (1992) extended by Sorbie et al. 
(1994), who studied adverse miscible displacements through two-dimensional cross 
sections of specific heterogeneity and continuity. This work used the Dykstra-Parsons 
coefficient VDP (Chap. 6) to summarize heterogeneity and the spherical semivariogram 
range (Chap. 11) in the main direction of flow to summarize continuity. The 
displacements fell into three categories. 

1. Fingering: displacements in which bypassing occurred, caused by the adverse 
mobility ratio. 

2. Channeling: displacements in which bypassing occurred, caused by the 
permeability distribution. 

3. Dispersive: displacements in which no bypassing occurred. 

Both fingering and channeling displacements manifest inefficient recovery and early 
breakthrough of the solvent. The dispersive displacements showed efficient recovery and 
late breakthrough. The principal distinction between fingering and channeling is that a 
fingering displacement becomes dispersive when the mobility ratio becomes less than 
one; a channeling displacement continues bypassing. 

These classifications are of little use without some means of saying when a given type 
will occur. Figure 13-19 shows this on a flow-regime diagram. 

The figure shows some interesting features. For example, it appears possible to 
completely defeat fingering with uncorrelated heterogeneity as, for example, might occur 
within a carbonate bed (Grant et al., 1994). However, the overwhelming impression is of 
the ubiquitousness of channeling. In fact, for typical values of VDP. fingering does not 
occur and there are dispersive displacements only in essentially random fields. It appears 
that fingering occurs only in regimes where VDP is less than 0.2. Such low values are 
normally possible only in laboratory displacements. The transition to channeling flow 
normally occurs at a heterogeneity index IH of around 0.2. 

The above two observations render a remarkable change in the point of view of 
miscible displacements: rather than being dominated by viscous fingering, as had been 
thought, they appear to be channeling. Indeed, channeling appears to be the principal 
displacement mode for most field displacements. These insights have operational 
significance. For example, it seems obvious that decreasing well spacing (increasing the 
dimensionless range) will always lead to more channeling and, consequently, less sweep 
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and ultimate recovery. Such a loss might be compensated by an increased rate; however, 
smaller well spacings will always lead to more continuity between wells. 
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Figure 13-19. The various types of flow regimes for a matched-density miscible 
displacement. From Waggoner et al. (1992). Filled boxes indicate 
computer runs. 

The Waggoner et al. (1992) conclusions have been extended to unmatched density 
displacements by Chang et al. (1994), to more general cases by Sorbie et al. (1994), and 
to immiscible displacements by Li and Lake (1994). In the context of this discussion, we 
emphasize that such insight can only be possible with a suitably general representation of 
heterogeneity afforded by CS. 

13~4 MODEL BUILDING 

The few case studies presented above illustrate several aspects of reservoir modeling 
using statistics. We summarize these examples, in this section, to sketch a method for the 
selection of an appropriate approach. Remember, the goal is to generate a three-
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dimensional array of petrophysical properties (mainly permeability) that can be used in 
numerical simulation. 

Geologic Inference 

Geology provides several insights that are useful for statistical model-building: 
categorization of petrophysical dependencies, identification of large-scale trends, 
interpretation of statistical measures, and quality-control on generated models. The first 
two serve to bring the statistical analysis closer to satisfying the underlying assumptions. 
For example, identification of categories and trends, and their subsequent removal, will 
bring data sets closer to being Gaussian and/or to being stationary. The last two are to 
detect incorrect inferences arising from limited and/or biased sampling. Consequently, 
we shall see aspects of these in the following procedures. 

The first two steps are common for all procedures. 

1. Divide the reservoir into flow units. f}.Q~ J.mi~.are packages of reservoir rocks 
withsimilar petrophysical characteristics-not necessarily uniform or of a single 
rock type-¢..ilUlJ?Pea~ in all or most of the wells. This classification will serve to 
develop a stratigraphiC framework ("stratigraphic coordinates") for the reservoir 
model at the interwell scale. 

2. Review the sample petrophysical distributions with respect to geological and 
statistical representativity. 

What follows next depends on the properties within the flow units, the process to 
be modeled, and the amount of data available. We presume some degree of 
heterogeneity within the flow unit. 

3. If there are no data present apart from well data and there is no geologic 
interpretation, the best procedure is to simply use a conditional simulation 
technique applied directly to the well data (Fig. 13-20). The advantage of this 
approach is that it requires minimal data: semivariogram models for the three 
orthogonal directions. (Remember, a gridblock representing a single value of a 
parameter adds autocorrelation to the field to be simulated.) 
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Figure 13-20. Generation of a three-dimensional autocorrelated random field using 
orthogonal semivariograms. hx, hy and hz are the lags in the coordinate 
directions. dm is decameters, km kilometers. 

While parameters for vertical semivariograms are usually available from the well 
data, the lateral parameters must be estimated from the normally sparse well data 
and/or reservoir analogs. It is important that uncertainties in these parameters be 
acknowledged in the modeling schemes. This approach is the most stochastic of 
those considered here and will lead to the most uncertainty in the predictions. 
This approach was used in the Page (Fig. 13-3) and San Andres (Fig, 13-18) 
examples. 

4. If, from geological analysis, a representative geological structure can be 
recognized within the flow unit and the flow unit itself is laterally extensive, a 
deterministic model can be built. The scales of heterogeneity can be handled by 
geopseudo upscaling (Fig. 13-21). The role of statistics in this case is to assess 
how representative is the structure. Structure can be identified by nuggets, holes, 
and/or trends in the semivariograms. Lateral dimensions rely on the quality of the 
geological interpretation in this model. The Rannoch example followed these 
steps. 

5. If the property distribution is multimodal, the population in the flow unit can be 
split into components and indicator conditional simulation can be used to generate 
the fields. This is useful in fields where the variation between the elements is not 
clearly defined and distinct objects cannot be measured. This approach 
(Fig. 13-22) yields fields with jigsaw patterns. This was the approach taken by 
Rossini et al. (1994). See also Jordan et al. (1995). 
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Figure 13-21. Schematic reservoir model at two hierarchical scales capturing well
determined geological scales at each step. A small-scale (em to m) 
semivariogram guides selection of representative structure. 
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Figure 13-22. Schematic of a sequential indicator simulation for a binary system. 
Indicator semivariograms are determined from a binary coding of the 
formation. hx, hy and hz are the lags in the coordinate directions. dm 
is decameters, km kilometers. 

6. If the flow unit contains distinctly separate rock types and a PDF can be 
determined for the dimensions of the objects, the latter can be distributed in a 
matrix until some conditioning parameter is satisfied (e.g., the ratio of sand to 
total thickness). This type of object-based modelling lends itself to the modeling 
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of labyrinth fluvial reservoirs (Fig. 13-23). More sophisticated rules to follow 
deterministic stratigraphic trends (e.g., stacking patterns) and interaction between 
objects (e.g., erosion or aversion) are available or being developed. A similar 
model for stochastic shales would place objects representing the shales in a 
sandstone matrix following the same method. 

Figure 13-23. Schematic of object model of a fluvial reservoir. Dimensions of 
objects are sampled and their locations set by sampling CDF's. 

These models are the most realistic of all for handling low net-to-gross fluvial 
reservoirs; however, they require a good association between petrophysical 
properties and the CDF's for the geometries. Tyler et al. (1995) give a good 
example of this application. 

If the reservoir contains more than one flow unit, then the procedure must be repeated 
for the next zone. In the Page example (Fig. 13-6), the upper layer needed a different 
correlation model (generated by a fractal semivariogram) from the lower layer (spherical 
semivariogram). 

The modelling of petroleum reservoirs requires an understanding of the heterogeneity, 
autocorrelation structure (nested or hierarchical) derived from the geological architecture, 
and the flow process to select the most appropriate technique. As reservoirs have various 
correlation structures at various scales, flexibility in modeling approach must be 
maintained. The "right" combination of techniques for a Jurassic reservoir in Indonesia 
may be entirely inappropriate for a Jurassic North Sea reservoir. The methods discussed 
here try to emphasize the need for a flexible toolbox. 
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Other Conditioning 

As has been the thrust of this entire book, the above section has concentrated on geologic 
and well data, the so-called static data. Other data sources abound in engineering 
practice and should, as time and expense permit, be part of the reservoir model also. The 
most common of these are the following. 

1. Pressure-transient data: In these types of tests, one or more wells are allowed to 
flow and the pressure at the bottom of the pumped wells observed as a function of 
time. In some cases, the pressure is recorded at nonflowing observation wells. 
Pressure-transient data have the decided advantage that they capture exactly how 
a region of a reservoir is performing. This is because interpreted well-test 
properties represent regions in space rather than points. Resolving the disparity in 
scales between the regional and point measurements and choosing the appropriate 
interpretation model remain significant challenges in using pressure-transient 
data. (See Fig. 12-2 for the results of attempts to incorporate pressure-transient 
data into Kriging.) However, this type of data is quite common and may be 
inexpensive to acquire, making it an important tool in the tool box. 

2. Seismic data: The ultimate reservoir characterization tool would be a device that 
could image all the relevant petrophysical properties over all the relevant scales 
and over a volume larger than interwell spacing. Such a tool eludes us at the 
moment, especially if we consider cost and time. However, seismic data come 
the closest to the goal in current technology. 

There are two basic types of seismic information: three-dimensional, depth
corrected traces "slabbed" from a full cubic volume of a reservoir, and two
dimensional maps of various seismic attributes. Seismic data are generally 
considered as soft constraints on model building because of the as-yet limited 
vertical resolution. However, because of the high sampling rate, seismic data can 
provide excellent lateral constraints on properties away from wells. Seismic data 
integration into statistical models, mainly through co-Kriging and simulated 
annealing, are becoming common in large projects (MacLeod et al., 1996) 

3. Production data: Like pressure-transient data, production data (rates and 
amounts of produced fluids versus time) reflect directly on how a reservoir is 
performing. Consequently, such data form the most powerful conditioning data 
available. Like the seismic integration, incorporating production data is a subject 
of active research (see Datta-Gupta et al., 1995, for use of tracer data) because it 
is currently very expensive. The expense derives from the need to run a flow 
simulation for each perturbation of the stochastic field. Furthermore, production 
data will have most impact on a description only when there is a fairly large 
quantity of it, and, of course, we become less and less interested in reservoir 
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description as a field ages. Nevertheless, simulated annealing offers a significant 
promise in bringing this technology to fruition. 

13-5 CONCLUDING REMARKS 

We have seen the basics of statistics, how geology and statistics (and other technologies) 
might be used to complement each other in analysis, and how their combinations produce 
the best predictions. As we stated in the introduction, what constitutes the "best" model 
depends on the data available, the reservoir type, the processes envisioned, and of course 
budget and time. Despite ongoing progress, one thing seems clear: statistical methods 
(to be sure, along with improved computing power) have vastly improved our ability to 
predict reservoir performance. We hope that the technologists from the various 
disciplines will be helped by this volume as the science of generating realistic 
"numerical" rocks will remain a common ground for geoscientists and statistical research 
in years to come. 
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standard error 

simple Kriging 

stock-tank original oil in place[=] standard L3 

weighted least squares 
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