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“A mathematician is a person who can find
analogies between theorems; a better
mathematician is one who can see analogies
between proofs and the best mathematician
can notice analogies between theories.”

Stefan Banach



Preface

Scope

In an abstract form, the evolutional nonlinear system is a mathematical model that
describes how physical, chemical, biological, economic, or even mathematical
phenomena evolve in time. As a rule, it contains ordinary/partial/stochastic
differential equations or inclusions that tell us how the system at hand changes
“from one instant to the next.” The main goal is to gain information about solutions
of this system and then translate this mathematical information into the scientific
context. The main challenge addressed by this book is to take this short-term
information and obtain information about long-term overall behavior. The study of
nonlinear systems has three parts: exact methods, quantitative methods and quali-
tative methods. But even if we solve the system symbolically, the question of
computing values remains.

In this book, we concentrate on the following topics, specific for nonlinear
systems:

(a) constructive existence results and regularity theorems for all weak (generalized)
solutions;

(b) convergence results for solutions and their approximations in strongest
topologies of the natural phase and extended phase spaces;

(c) uniform global behavior of solutions in time;

(d) pointwise behavior of solutions for autonomous problems with possible gaps by
the phase variables.

With numerous applications including nonlinear parabolic equations of diver-
gent form, parabolic problems with nonpolynomial growth, nonlinear stochastic
equations of parabolic type, unilateral problems with possibly nonmonotone
potential, nonlinear problems on manifolds with or without boundary, contact
piezoelectric problems with nonmonotone potential, viscoelastic problems with
nonlinear “reaction-displacement” and “reaction-velocity” laws as well as particular
examples like a model of conduction of electrical impulses in nerve axons, a climate
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energy balance model, FitzHugh—Nagumo system, Lotka—Volterra system with
diffusion, Ginzburg—Landau equations, Belousov—Zhabotinsky equations, and the
3D Navier—Stokes equations. This book is also distinguished with the solutions of a
number of applied problems in physics, chemistry, biology, economics, etc.

Contents

This book consists of three parts: Existence and Regularity Results, Quantitative
Methods and Their Convergence (Part I), Convergence Results in Strongest
Topologies (Part II), and Uniform Global Behavior of Solutions: Uniform
Attractors, Flattening and Entropy (Part III). Part I presents several numerical
methods for approximate solution of nonlinear systems, their convergence, and
regularity results and also discusses recent advances in regularity problem for the
3D Navier—Stokes equations. Part II covers three major topics: (1) strongest con-
vergence results for weak solutions of nonautonomous reaction—diffusion equations
with Carathéodory's nonlinearity with applications to FitzZHugh—Nagumo systems,
Lotka—Volterra systems with diffusion, Ginzburg-Landau equations, Belousov—
Zhabotinsky equations, etc; (2) strongest convergence results for weak solutions of
feedback control problems with applications to impulse feedback control
mechanical problems and mathematical problems of biology and climatology; and
(3) strongest convergence results for weak solutions of differential-operator equa-
tions and inclusions with applications to nonlinear parabolic equations of divergent
form, parabolic problems with nonpolynomial growth, nonlinear stochastic equa-
tions of parabolic type, general parabolic and hyperbolic problems, unilateral
problems with possibly nonmonotone operators, etc. Part III discusses general
methodology for the global qualitative and quantitative investigation of dissipative
dynamical systems, first- and second-order operator differential equations and
inclusions, and evolutional variational inequalities with possibly nonmonotone
potential with several applications. Indirect Lyapunov method for autonomous
dynamical systems, exponential attractors, and Kolmogorov entropy are also
established. All case studies are closely related to theoretical Parts I and II and are
examples of applications to solutions of problems (a) and (b).

Audience

This book is aimed at practitioners working in the areas of nonlinear mechanics,
mathematical biology, control theory, differential equations, nonlinear boundary
value problems, and decision making. It can serve as a quick introduction into the
novel methods of qualitative and quantitative analysis of nonlinear systems for the
graduate students, engineers, and mathematicians interested in analysis and control
of nonlinear processes and fields, mathematical modeling, and dynamical systems
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in infinite-dimensional spaces, to mention just a few. It can also be used as a
supplementary reading for a number of graduate courses including but not limited
to those of nonlinear PDEs, control and optimization, stochastic partial differential
equations, advanced numerical methods, systems analysis, and advanced engi-
neering economy.
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Introduction: Special Classes of Extended Phase
Spaces of Distributions

Abstract In this introduction, we briefly establish special classes of extended phase
spaces of distributions. We consider sums and intersections of Banach spaces;
Gelfand triples; special classes of Bochner integrable functions; generalized
derivatives; and basic properties of extended phase spaces.

If it is necessary to describe a nonstationary process that evolve in some domain
Q C R" during the time interval [t, T], we may deal with functions that correspond
to each pair {x,7} € Q x S the real number or vector u(x,?). In this approach, the
time and the space variables are equivalent. But there is a more convenient
approach to the mathematical description for evolution processes [1, 2]: For each
point in time ¢, it is mapped the state function u( - ,¢) (e.g., for each point of time
we put the temperature distribution or velocity distribution in the domain )

differential - operator equation / inclusion

. ) mathematical model (PDE) y:[o,T] — (Q = R")
physical process or field = y: @ x [r,T] — R™ Wi € (@ — R’™)
ter,7]

Thus, we consider the functions defined on [r, 7] with values in the state
functions space (e.g., in the space H}(€)). Therefore, to investigate the evolution
problem, it is natural to consider the space of functions acting from the time interval
[z, T] into some infinite-dimensional space V. In particular, it is natural to consider
the spaces of integrable and differentiable functions. In this book, we consider only
real vector spaces.

XV



Xvi Introduction: Special Classes of Extended Phase Spaces of Distributions

In this chapter, we introduce the classes of function spaces used for qualitative
and quantitative analysis of nonlinear distributed systems:

Lu+A(u)>f, ueD(L), (1)

where A :— 2% is possibly multi-valued mapping with nonempty values, X is a
Banach space, X* is its dual space, L : D(L) C X — X* is a linear operator defined
on D(L), and f € X*. Moreover, in this chapter, we refer to the basic properties for
this spaces (see, e.g., [1, 2] and references therein for details).

For Banach spaces X, Y, the following denotation

XCY

means the embedding in both the set-theoretic and the topological senses.

The following two theorems are frequently used in the qualitative and
quantitative analysis of nonlinear systems in infinite-dimensional spaces. The
main idea is in the following: the uniform prior estimates for solutions of
approximative problems and the following theorems allow ones to obtain at
least weak convergence (up to a subsequence in the general situation) of these
approximations to the exact solution of the problem in hands.

Theorem 1 (The reflexivity criterion) A Banach space E is reflexive if and only
ifeach bounded in E sequence has a subsequence that weakly converges in E.

Stefan Banach (March 30, 1892—August 31, 1945) was a Polish, Ukrainian,
and Soviet mathematician who is generally considered one of the world’s
most important and influential twentieth-century mathematicians. He was one
of the founders of modern functional analysis and an original member of the
Lviv School of Mathematics. His major work was the 1932 book, Théorie des
opérations linéaires (Theory of Linear Operations), the first monograph on the
general theory of functional analysis (Fig. 1).
Born in Krakéw, Banach attended IV Gymnasium, a secondary school, and
worked on mathematics problems with his friend Witold Wilkosz. After
graduating in 1910, Banach moved to Lviv. However, and during World
War I Banach returned to Krakow, where he befriended Hugo Steinhaus.
After Banach solved some mathematics problems which Steinhaus consid-
ered difficult, they published their first joint work. In 1919, with several other
mathematicians, Banach formed a mathematical society. In 1920, he received
an assistantship at the Lviv Polytechnic.

He soon became a professor at the Lviv Polytechnic and a member of the
Polish Academy of Learning. He organized the “Lviv School of
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Fig. 1 Stefan Banach

Mathematics.” Around 1929, he began writing his Théorie des opérations
linéaires.

After the outbreak of World War II, in September 1939, Lviv was taken
over by the Soviet Union. Banach became a member of the Academy of
Sciences of Ukraine and was dean of Lviv University’s Department of
Mathematics and Physics.

In 1941, when the Germans took over Lviv, all institutions of higher
education were closed to Poles. As a result, Banach was forced to earn a
living as a feeder of lice at Rudolf Weigl's Institute for Study of Typhus and
Virology. While the job carried the risk of infection with typhus, it protected
him from being sent to slave labor in Germany and from other forms of
repression. When the Soviets recaptured Lviv in 1944, Banach re-established
the university. However, because the Soviets were removing Poles from
Soviet-annexed formerly Polish territories, Banach prepared to return to
Krakow. Before he could do so, he died in August 1945, having been
diagnosed seven months earlier with lung cancer.

Some of the notable mathematical concepts that bear Banach’s name
include Banach spaces, Banach algebras, the Banach-Tarski paradox, the
Hahn—Banach theorem, the Banach—Steinhaus theorem, the Banach—Mazur
game, the Banach—Alaoglu theorem, and the Banach fixed-point theorem.

Theorem 2 (Banach—Alaoglu) In reflexive Banach space, each bounded sequence
has a subsequence that weakly converges

Leonidas (Leon) Alaoglu (March 19, 1914—August 1981) was a mathe-
matician, known for his result, called Alaoglu’s theorem on the weak-star
compactness of the closed unit ball in the dual of a normed space, also known
as the Banach—Alaoglu theorem; Fig. 2.
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Fig. 2 Leonidas (Leon)
Alaoglu’s grave

Sums and Intersections of Banach Spaces

Let us consider the sums and intersections of Banach spaces. Such objects naturally
appear under the investigation of number of anisotropic problems. Let n>2 be a
natural number and {X;}} | be a family of Banach spaces. Let us introduce the
definition of the interpolation family of Banach spaces.

Definition 1 If there exists a vector topological space (LTS) Y such that
X;CY

for each i = 1...n, then the family of Banach spaces {X;}}_, is called an inter-
polation family. If n = 2, then the interpolation family is called an interpolation
pair.

In the field of mathematical analysis, an interpolation space is a space which
lies “in between” two other Banach spaces. The main applications are in
Sobolev spaces, where spaces of functions that have a noninteger number of
derivatives are interpolated from the spaces of functions with integer number
of derivatives.

The theory of interpolation of vector spaces began by an observation of
Jozef Marcinkiewicz, later generalized and now known as the Riesz-Thorin
theorem. In simple terms, if a linear function is continuous on a certain space
L, and also on a certain space L, then it is also continuous on the space L,,
for any intermediate r between p and g. In other words, L, is a space which is
intermediate between L, and L.

In the development of Sobolev spaces, it became clear that the trace spaces
were not any of the usual function spaces (with integer number of derivatives),
and Jacques-Louis Lions discovered that indeed these trace spaces were
constituted of functions that have a noninteger degree of differentiability.
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Further, let {X;}_, be an interpolation family of Banach spaces. Similar to [1,
p. 23], we endow the vector space X = N}_,X; with the following norm:

lelly = lally,  Wxex, (2)
i=1

where | - ||, is the norm in X;.

Proposition 1 Let {X,Y,Z} be an interpolation family. Then
XN(YNz)=(XnNY)NZ=XNYNZ, XNY=YNX

both in the sense of equality of sets and in the sense of equality of norms.

Let us consider also the vector space

n n
Z:ZXi{ZXi D x; € X, il...n}
i= i=

with the norm
n
lzll; := inf¢ max ||x;]|y. : x; € X;, in =z Vz e Z. (3)
i=l..n ! P

Proposition 2 Ler {X;}!_, be an interpolation family. Then X = N"_ | X; and Z =
> X; are Banach spaces. Moreover,

XCcX,cZz 4)

for each i =1.. .n.

Remark 1 Let Banach spaces X and Y satisfy the following conditions

XCY, X isdensein Y,
Ixlly <vllxlly VxeX, 9= const.

Then

yrexs, o |f]

x <flly VfeY

Moreover, if X is reflexive, then Y* is dense in X*.
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Jozef Marcinkiewicz (March 30, 1910-1940) was a Polish mathematician.
He was a student of Antoni Zygmund and later worked with Juliusz Schauder
and Stefan Kaczmarz. He was a Professor of the Stefan Batory University in
Wilno.

Marcinkiewicz was taken as a Polish POW to a Soviet camp in
Starobielsk. The exact place and date of his death remain unknown, but it is
believed that he died in the Katyn massacre on the mass murder site near
Smolensk. His parents, to whom he gave his manuscripts before the begin-
ning of World War II, were transported to the Soviet Union in 1940 and later
died of hunger in a camp (Fig. 3).

Let {X;}._, be an interpolation family. Assume that the Banach space X :=
N'_,X;, endowed with the norm defined in (2) is dense in X; for each i = 1.. .n.
Remark 1 yields that each space X} may be considered as a subspace of X*. Therefore,
the vector space >, X; is well-defined, and the following embedding holds:

Fig. 3 Jozef Marcinkiewicz
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> oxrc(nix) (5)
i=1

Since X is dense in Z := Y7 | X; for each i = 1...n, then each X; is dense in Z.
According to Remark 1, the space Z* can be considered both as a subspace of X; for
each i = 1...n and as a subspace of N'_, X/, that is,

(izlxl> C ﬂ;’i]Xi*. (6)

G. Olof Thorin (February 23, 1912-February 14, 2004) was a Swedish
mathematician working on analysis and probability, who introduced the
Riesz—Thorin theorem (Fig. 4).

Fig. 4 G. Olof Thorin
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Proposition 3 Let {X;};_, be an interpolation family of Banach spaces such that
the space X := N7_ X; endowed with the norm (2) is dense in X; for eachi = 1.. .n.
Then the following equalities hold:

ZX* (N, X;)" and (Zx)—m;f_le

in the sense of both equalities of sets and norms.

Sergei Lvovich Sobolev (October 6, 1908—January 3, 1989) was a Soviet
mathematician working in mathematical analysis and partial differential
equations. Sobolev introduced the notions that are now fundamental for
several areas of mathematics. Sobolev spaces can be defined by some growth
conditions on the Fourier transform. They and their embedding theorems are
an important subject in functional analysis. Generalized functions (later
known as distributions) were first introduced by Sobolev in 1935 for weak
solutions and further developed by Laurent Schwartz. Sobolev abstracted the
classical notion of differentiation, so expanding the range of application
of the technique of Newton and Leibniz. The theory of distributions is
considered now as the calculus of the modern epoch (Fig. 5).

Gelfand Triple

Let V be a real reflexive separable Banach space V with the norm || - ||,, and H be a
real Hilbert space with the inner product (-, and respective norm || - || ;. Assume
that

VCH, Visdensein H, (7)
>0 plly<ylvlly Wwev.

Remark 1 and conditions (7) yield that the dual space H* to H is a subspace
of the dual space V* to V. Since the Banach space V is reflexive and the set V is
dense in the space H, then the set H* is dense in the space V* and the following
inequality holds:

7]

where || - ||y~ and | - || are the norms in spaces V* and H*, respectively. By
applying the Riesz representation theorem, we can identify H* with H. Therefore,

v < lly VF € HY,
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Fig. 5 Sergei Lvovich r
Sobolev

H* is identified with some subspace of V*; that is, each element y € H is identified
with some f, € V* such that

(yax) = <}S,,)C>V Vx € Va

where (-, -), is the canonical pairing between V* and V. Since the elements y and f,
are identified, then conditions (7) imply that the restriction of the pairing (-, -);, on
H x V coincides with the inner product (-, -) on H restricted on the same set. After
this identification of H and H*, we obtain the following tuple of the continuous and
dense embeddings

VCHCV".
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Definition 2 The tuple of spaces (V;H;V*) satisfying the above conditions is
called the evolution triple (sometimes Gelfand triple).

Israel Moiseevich Gelfand (September 2 [O.S. 20 August], 1913-October 5,
2009) was a prominent Soviet and American mathematician. He made sig-
nificant contributions to many branches of mathematics, including group
theory, representation theory, and functional analysis. The recipient of many
awards, including the Order of Lenin and the Wolf Prize, he was a Fellow
of the Royal Society and Professor at Moscow State University and, after
immigrating to the USA shortly before his 76th birthday, at Rutgers
University (Fig. 6).

His legacy continues through his students, who include Endre Szemerédi,
Alexandre Kirillov, Edward Frenkel, and Joseph Bernstein, as well as his own
son, Sergei Gelfand.

Fig. 6 Israel Moiseevich
Gelfand ot
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Special Classes of Bochner Integrable Functions

Let us consider classes of distributions with values in a Banach space. Let Y be a
real Banach space, Y* be its dual space, and S be a compact time interval. We
consider the classes of functions defined on S and taking values in Y (or in Y,
respectively).

In mathematics, the Bochner integral, named for Salomon Bochner, extends the definition
of Lebesgue integral to functions that take values in a Banach space, as the limit of integrals
of simple functions.

Let 1 <p < 4 00. The set L,,(S; Y) of all Bochner measurable functions (see [1])

such that
1/p
gmf(lh@%@ <o

is a Banach space. If p = + oo, then the norm on Ly (S;Y) is defined as follows

ly

13 [l (s:ry="esssupp || y(2) ||y -
teS

Salomon Bochner (August 20, 1899-May 2, 1982) was an American
mathematician of Austrian—Hungarian origin, known for work in mathe-
matical analysis, probability theory, and differential geometry (Fig. 7).

The following theorem establishes the sufficient conditions for the identification
of the dual space (L,(S;Y))" to L,(S;Y), 1 <p< + oo, with L,(S; Y*), where ¢ is
such that p~' +¢~! = 1. Sometimes, the following theorem is called the Riesz
representation theorem for spaces of Bochner integrable functions. We note that
/o0 :=0.

Theorem 3 Let Y be a reflexive and separable Banach space, 1 <p < + oo, and
g > 1 be such that p~' +q~' = 1. Then for each f € (L,(S;Y))" there exists a
unique & € Ly(S;Y*) such that

fmzémmwmm
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Fig. 7 Salomon Bochner

for each 'y € L,(S;Y). Moreover, this correspondence f — & is linear and
Hf”(L,,(S;Y))* = ||f||Lq(s;Y*)7

that is, this mapping is isometric isomorphism.

Frigyes Riesz (January 22, 1880-February 28, 1956) was a Hungarian
mathematician who made fundamental contributions to functional analysis.
He was the Rector and a Professor at the University of Szeged, as well as a
member of the Hungarian Academy of Sciences. He was the older brother
of the mathematician Marcel Riesz (Fig. 8).

Let us consider the sums and intersections of Banach spaces of Bochner inte-
grable functions. These spaces are important for the investigation of nonlinear
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Fig. 8 Frigyes Riesz
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anisotropic problems and the respective differential-operator equations and inclu-
sions. Let p; and r;, i = 1,2 be real numbers such that 1 <p; <r;< 4+ oo and

pi < + oo. Define the real numbers ¢; > ry > 1 as follows:
piltg =t =1, i=1,2
Let (V;; H; V), i = 1,2, be evolution triple such that
the set Vi NV, is dense in the spaces V;,V, and H.
Consider the following Banach spaces (see Proposition 2):
Xi = Xi(S) = Ly, (S; Vi) + L., (S;H), i=1,2

X = X(S) = Lg ($; Vi) + L, (S5 V3) + Ly, (S H) + Ly, (S5 H)

with the following respective norms

Ivll, = inf {max{ v, 53 V21l s}
D1 € Ly (S V), v2 € Ly, (S H),y = yi + 12},
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for all y € X;, and

IVl = inf{max{{lyiill,, (s 1v2ille,, s.m 2 v10 € Lo (S5 V),

v €L, (S;H),i=1,2;y = yi1 +yi2 +y21 +y22}s

for each y € X.

If rj< + o0, then Proposition 1 and Theorem 3 imply that the space X; is
reflexive. Similarly, if max{ry, 72} < + oo, then the space X is reflexive. Moreover,
for i =1,2 the dual space X; = X(S), we identify with L, (S;H)NL,(S; V),
where

(s T, (s:v,)

ly X =
for each y € X;. Similarly, for the dual space X* = X*(S) we identify with
L, (S;H)NL,(S;H)NL,, (S; Vi) N L, (S; V2),

where

Ylx-(s) = Iyl S T, v + 161, v

’l

for each y € X*. The pairing on X(S) x X*(S) is defined by

{f:0) = y)s = /s (fir(),y(r)dt + /s (fiz(1),y(1)dz

+ [ E@s@ndet [ Va@ @)= [ 06

for each fc€X and ye€X*, where f=fi1+fio+fu+fo fic€l,(S:H),
i € LIL‘(S; Vz*)’ i=12.

If max{r,rn}<+o00, then we will always use the following “standard”
denotations [1, p. 171]: for the spaces X*, X}, and X3, we will denote as X, X;, and
X,, respectively, and vice versa; for the spaces X, X, and X,, we will denote as X*,
X}, and X3, respectively. These denotations are correct, because Proposition 3 and
Theorem 3 yield that these spaces and their dual spaces are reflexive. The following
statement directly follows from Proposition 3 and Theorem 3.

Proposition 4 If max{r|,rn} < + oo, then the Banach spaces X, X; and X, are
reflexive.
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Generalized Derivatives

Let S be a time interval. The space Z(S) of test functions on S is defined as follows.
A function ¢ : S — R is said to have compact support if there exists a compact
subset K of S such that ¢(x) = 0 for all x € S\K. The elements of Z(S) are the
infinitely differentiable functions ¢ : S — R with compact support—also known as
bump functions. This is a real vector space. It can be given a topology by defining
the limit of a sequence of elements of Z(S). A sequence {¢; },~; C Z(S) is said to
converge to ¢ € Z(S) if the following two conditions hold:

(i) There is a compact set K C S containing the supports of all ¢:
Uksupp (¢y) C K;

(ii)) For each multi-index «, the sequence of partial derivatives 0%¢; tends uni-
formly to 0%¢.

With this definition, Z(S) becomes a complete locally convex topological vector
space satisfying the Heine—Borel property.

Let Y be a real reflexive Banach space. The distribution on S with values in Y is a
continuous linear mapping acting from Z(S) into Y endowed with the weak
topology. The space of all distributions on S with values in Y is denoted by Z*(S; Y).
For each f € 2%(S;Y), its generalized derivative f' is well defined as follows:

(o) =—f(o)

for each ¢ € 2(S).

We note that each locally integrable in the Bochner sense function u (i.e.,
u € L}°(S;Y) if and only if u € L;(K;Y) for each compact interval K C S), we can
identify with the distribution f, € 2*(S;Y) defined as follows:

f(0) = u(g) = / u(t) (o), 9)

for each @ € 2(S), where the integral is regarded in the Bochner sense. Therefore,
we interpret L(S;Y) as a subspace of Z*(S;Y), and regular distributions (the
distributions that admit the representation (9) via the locally Bochner integrable
function) are considered as functions from (S — Y). We also note that the following
operation f — f’ is continuous in Z*(S;Y) [1, p.169].

Laurent-Moise Schwartz (March 5, 1915-July 4, 2002) was a French
mathematician. He pioneered the theory of distributions, which gives a
well-defined meaning to objects such as the Dirac delta function. He was
awarded the Fields Medal in 1950 for his work on the theory of distributions.
For several years, he taught at the Ecole Polytechnique (Fig. 9).
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Fig. 9 Laurent-Moise
Schwartz

Definition 3 Let C™(S;Y), m >0, be a family of all functions y : § — Y such that
each strong derivative y\) of order i =1,2,...,m is continuous (we note that
y© =y). If S is a compact interval, then C™(S;Y) is a Banach space with the norm

sy = Y sup Iy Oy = > max [y (1),
i—0 €8 Pl

Extended Phase Spaces

Let (Vi; H; V), i = 1,2, be evolution triple such that assumption (8) holds. Let S be
a finite time interval and X = X(S) and X* = X*(S) be the spaces introduced in
Sect. 3. The extended phase space W* = W*(S), where the real (generalized)
solutions of nonlinear evolution systems belongs, is defined as follows:

W (S) = {y € X*(S) : y € X(5)},

where the derivative y of y € X* is considered in the sense of the distributions
space Z*(S; V*).
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By the analogy with Sobolev spaces, it is necessary to establish basic structure
properties, embedding and approximations theorems as well as some “rules of
work” with the elements of such spaces.

Theorem 4 The set W* with the natural operations and graph norm for y':

¥llwe = I¥llx +1llx ¥y € W

is Banach space.
Theorem 5 The set C'(S; V)N W; is dense in W;.

Theorem 6 W; C C(S;H) with continuous embedding. Moreover, for every
v, & € W5 and s,t € S, the next formula of integration by parts takes place

(1), £(0)) = (v(s), E(s)) = /1{(y’(f), (o) + (¥(x), &' (2)dr. (10)
In particular, when y = &, we have:

()l — ly(s)lI7) = /t(y’(f),y(f))df- (11)

N —

Corollary 1 W* C C(S;H) with continuous embedding. Moreover, for every
v, & € W* and s,t € S formula (10) takes place.

Remark 2 When max{ry, r,} < + 0o, due to the standard denotations [1, p. 173],
we will denote the space W* as W; “ * ” will direct on nonreflexivity of the spaces X
and W .

Jacques-Louis Lions (May 3, 1928-May 17, 2001) was a French mathe-
matician who made contributions to the theory of partial differential equations
and to stochastic control, among other areas. He received the SIAM’s John
von Neumann prize in 1986 and numerous other distinctions. Lions is listed
as an IST highly cited researcher.

After being part of the French Résistance in 1943 and 1944, J.-L. Lions
entered the Ecole Normale Supérieure in 1947. He was a Professor of math-
ematics at the Université of Nancy, the Faculty of Sciences of Paris, and the
Ecole Polytechnique. He joined the prestigious Collége de France as well as
the French Academy of Sciences in 1973. In 1979, he was appointed director
of the Institut National de la Recherche en Informatique et Automatique
(INRIA), where he taught and promoted the use of numerical simulations using
finite elements integration. Throughout his career, Lions insisted on the use of
mathematics in industry, with a particular involvement in the French space
program, as well as in domains such as energy and the environment. This
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eventually led him to be appointed director of the Centre National d'Etudes
Spatiales (CNES) from 1984 to 1992.

Lions was elected President of the International Mathematical Union in
1991 and also received the Japan Prize and the Harvey Prize that same year.
In 1991, Lions became a foreign member of the National Academy of
Sciences of Ukraine. In 1992, the University of Houston awarded him an
honorary doctoral degree. He was elected President of the French Academy
of Sciences in 1996 and was also a Foreign Member of the Royal Society
(ForMemRS) and numerous other foreign academies.

He has left a considerable body of work, among this more than 400
scientific articles, 20 volumes of mathematics that were translated into
English and Russian, and major contributions to several collective works,
including the 4000 pages of the monumental Mathematical Analysis and
Numerical Methods for Science and Technology (in collaboration with
Robert Dautray), as well as the Handbook of Numerical Analysis in 7 vol-
umes (with Philippe G. Ciarlet).

His son Pierre-Louis Lions is also a well-known mathematician who was
awarded a Fields Medal in 1994. In fact, both Father and Son have also both
received recognition in the form of Honorary Doctorates from Heriot-Watt
University in 1986 and 1995, respectively; Fig. 10.

Fig. 10 Jacques-Louis Lions
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Part I

Existence and Regularity Results,
Quantitative Methods and Their
Convergence



Chapter 1

Qualitative Methods for Classes

of Nonlinear Systems: Constructive
Existence Results

Abstract In this chapter we establish the existence results for classes of nonlin-
ear systems. Section2.1 devoted to the first order differential-operator equations
and inclusions. In Sect. 2.2 we consider the second order operator differential equa-
tions and inclusions in special classes of infinite-dimensional spaces of distributions.
Section2.3 devoted to the existence of strong solutions for evolutional variational
inequalities with nonmonotone potential. The penalty method for strong solutions
is justified. A nonlinear parabolic equations of divergent form are considered as
examples of applications in Sect. 2.4.

1.1 First Order Differential-Operator Equations
and Inclusions

1.1.1 Setting of the Problem

Let (Vi, ||-llv,) and (Va, ||-]lv,) bereal reflexive separable Banach spaces continuously
embedded in a Hilbert space (H, (-, -)). Assume that

the set V : = V| N V; is dense in spaces Vi, V, and H. (1.1)

After the identification H = H* we obtain the following tuples of continuous and
dense embeddings:
Vi HCV, V,CHCV, (1.2)

where (V*, || - |ly+) is the dual space to V;, i = 1, 2, with respect to the pairing
(v VEx Vi =R

which coincides on H x V with the inner product (-, -) on H.
Let S =1[0,T,0<T <+o00,1 < p; <ri <+4o00,i =1,2.Fori = 1,2 we
consider the reflexive Banach space
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4 1 Qualitative Methods for Classes of Nonlinear ...
Xi = Ly, (S:H) N Ly, (S5: V)
with the norm |[yllx, = [Iyllz, s;vi) + IYllL, s:m). ¥y € Xi; see section “Special
Classes of Bochner Integrable Functions”. The Banach space X = X; N X, with
the norm || y|lx = llyllx, + llyllx, is also reflexive (see section “Special Classes of
Bochner Integrable Functions”). We identify the spaces L, (S;V;*) + L,,(S; H) and
X}. Similarly,
X* = X§+ X5 = Loy (S:V)) + Ly (S:V5) + Ly (SiH) + Ly, (S:H),

where r;7! + 77" = p7' 4+ ¢; ! = 1. Let us define the duality form on X* x X

(fiy) = /S(fn(f),)’(f))ydf +/S(f12(f),y(f))ydf +/S(f21(f),y(f))vldf+

+/S<fzz(f),y(f)>v2df = /S(f(f),y(f))df,

where f = fi1 + fio + fa1 + fo, fii € L., (S;H), fai € Ly, (S; V).

Assume that there is a separable Hilbert space V,, such that V, C V|, V, C V,
with continuous and dense embedding, V,, C H with compact and dense embedding.
Then the following tuples of continuous and dense embeddings hold:

V. CVW\CHCV CV), V,CV,CHCV,SCV}.
Fori =1, 2 we set
Xio =Ly (SsH)N L, (S$:Ve), Xo = X160 N X2y,
X;fa =L, (S;H)+ L, (S;V)), X :X’fﬁ—}—X;a,
Wie={yeXi|yeX;,}, Wo=W,NWa,.

For multi-valued (in the general case) map A : X = X* let us consider the following
problem:

u(©)=a, ue W cC C(S;H), (1.3)

[ u' + A(u) > f,
where a € H and f € X* are arbitrary fixed elements. The main purpose of
this section is to establish sufficient conditions for the existence of a solution of
Problem (1.3) via the Faedo—Galerkin method.
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1.1.2 Main Assumptions

Letd € X* and E C S be a measurable set. Further we will use the following
denotations:

1, tek;

dxp)(r) =d(T)xe(r)forae.t € S8; xe(r) = 0. elsewhere.

We recall that the set B belongs to 57 (X*) if for each measurable set E C S and
u, v € B the following inclusion u + (v — u) xg € B holds.

Lemma 1.1 ([45]) B € J7(X¥) if and only if for each n > 1, {d;}_, C B and a
family of pairwise disjoint measurable sets {E;};_, C S such that U';:l E; =Swe
have that 37';_, d; Xk, € B.

Remark 1.1 We note that ¥, X* € J(X*); {f} € (X*) for each f € X*; if
K : § = V*is an arbitrary multi-valued map, then

{(feX*| ft) e K@) forae.t € S} € (X").

On the other hand, if v € V*\0, then the closed convex set B = {f € X* | f
av, a € [0, 1]} does not belong to JZ°(X*), because g(-) = v - x0,7/2(:) ¢ B.

Let Y be a reflexive Banach space, Y* be its dual, (-,-)y : Y* x Y — Rbea
pairing, A : Y = Y™ be a strict multi-valued map, thatis, A(y) # @ foreach y € Y.
Define the upper and lower support functions:

[A(y), z]l+ == sup (d,z)y, [A(y),z]- =

inf <da Z>Y;
deA(y) €A(y)

and the upper and lower norms:

AW+ == sup [ldlix-, [AWI. = inf [d]x-,
deA(y) deA(y)

v,z € Y. For a nonempty set B C Y* let coB denotes its convex hull, and coB
denotes the closed convex hull of the set B (see Fig. 1.1), that is,

coB = Ngcc, cec,(vrC, COB = Npcc, cec,v9C,
where C;(Y*) (C,(Y™)) is the family of all nonempty convex (nonempty closed and
convex respectively) subsets of Y*. Consider the following multi-valued mappings:

coA:Y =Y*andcoA : Y = Y* such that

(coA)(y) = co(A(y)) and (COA(y)) = co(A(y)),
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Fig. 1.1 Closed convex hull

for each y € Y. Each strict multi-valued maps A, B : ¥ = Y™ satisfy the following
properties [20, 31, 50, 53]:

O [A), vi+valy < [AQ), vil+ +[AD), val4, [A(Y), vi +v2l- = [A(y), vil-
+[A(Y), v2]- Yy, vi, v €Y}

i) [A(y),vly = —[AQ), —vl-, [AY) + B, vl = [AD),vIv) +
[B(Y), V4 ¥y, v €Y,

(i) [AG, VIt = [OAM), Vs Yy, v € V5

Av) [AD),vIeo) = TAD I+ iy, TAG) + B+ < IADW 1+ + I1BOD)II+
Vy eY;

(v) the inclusion d € cOA(y) holds if and only if

[A(y),v]. = (d,v)y VveY,
(viy if D € Y and a(-,-) : D x Y — R, then for each y € D the function
w > a(y, w) is positively homogeneous convex and lower semi-continuous if

and only if there exists a multi-valued map A : ¥ = Y* such that D(A) :=
{yeY : A(y) # 0} = D and

a(y,w) =[A(y),wly Vy e D(A), VweY.
Therefore, the following equalities hold:
[A(Y), vl = [COA(y), v]+(~) and AW+ = [COAW) ||+~
foreach y,v € Y.
Further, the denotation
Yo = yinY
will mean that y, converges weakly to y in a Banach space Y. The family of all

nonempty convex closed (weakly star) and bounded subsets of the dual space Y* (to
Y) we denote by C,(Y™).
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Let W be a normed space such that W C Y with the continuous embedding.
Consider the basic classes of multi-valued maps acting from Y into Y* (see also [51]
and references therein).

Definition 1.1 A strict multi-valued map A : Y = Y* is called:

e pseudomonotone on W, if for each sequence {y,, d,},>0 C W x Y* satisfying
d, € C0A(y,) foreachn > 1, y, — yoin W, d,—dyin Y* as n — 400, and

lim sup (d,, y, — yo)y <0, (1.4)

n—oo

there exists a subsequence {yy,, dn, Jk=1 C {¥n.dn}a>1 such that the following
inequality holds:

li]gggf (dngs Yn, — W)y = [A(V0), Yo — w]- (1.5)

foreachw € Y;

e bounded, if for every L > 0 there exists / > 0 such that ||A(y)||; < [ for each
y € Y with [[ylly = L;

e coercive, if there exists the real function y : R, — R such that y(s) — 400 as
s — 400 and

inf (d,y)y = y(IylIn)lylly ¥y eY;
deA(y)

e demi-closed, if for each sequence {y,, d, },>0 C W x Y* satisfying d, € COA(y,)
foreachn > 1, y, — yoin W, d,—dy in Y* as n — +o0, it follows that
d € COA(y).

Definition 1.2 A multi-valued map A : Y = Y* satisfies the property Sy on W, if
for each sequence {y,, d,},>0 C W x Y* satisfying d,, € coA(y,) foreachn > 1,
Vo, — yoin W, d,—dyin Y* as n — 400, and

lim (d,, y» — yo)y =0,
n— 00

it follows that dy € COA (yp).

Definition 1.3 A strict multi-valued map A : X = X is called the Volterra type
operator (see Fig. 1.2) if for each u, v € X and t € S satisfying the equality u(s) =
v(s) for a.e. s € (0, t), it follows that

[A@w), &1y = [AM), &1+

for each & € X such that & (s) = 0forae.s € S\ [0, 7].
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*

14 14
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Y2

0 t T 0 t T

Fig. 1.2 Volterra type operator

1.1.3 Special Basis and Approximations for Multi-valued
Mappings

Let us consider the complete vectors system {%;};>1 C V such that

(1) {h;}i>1 orthonormal in H;
(o) {h;};>1 orthogonal in V;
(a3z) (hi,v)y = A;(h;,v)foreachi > landv eV,

where 0 < A1 < Ap,---,A; = oo as j — oo, (-, )y is the natural inner product
in V. This system {h;};>; is called a special basis. Let for each m > 1 H, =
span {h;}/.,, on which we consider the inner product induced from H that we again
denote by (-, -). Due to the equivalence of H* and H it follows that H) = H,,;
X = Lpo(S;Hm)’ X;kn = qu(S;Hm)a po = max{ry, r2}, qo > 1: 1/p0 + l/qO =1,
(0%, = G )xlxe X, Wi i=1{y € Xl ' € X}, where y’ is the derivative of an
element y € X,, in the sense of distributions from 2*(S, H,,).

Let us consider multi-valued maps that act from X,, into X, m > 1. Let us
remark that embeddings X,, C Y, C X are continuous, and the embedding W,

into X, is compact.

Definition 1.4 The multi-valued map </ : X,, — C,(X}) is called (W,,, X})-
weakly closed if from that fact that y, — y in W,,, d, — d in X, d, € < (y,)
Vn > 1 it follows that d € &7 (y).

Lemma 1.2 The multi-valued map <7 : X,, — C,(X}) satisfies the property Sy on
W,, ifand only if o : X, — C,(X}}) is (W,,, X} )-weakly closed.

Proof Let us prove the necessity. Let y, — y in W,,, d, — d in X},, where
dy, € (y,) Yn > 1. Then y, — y in X, and (d,, y, — y)x,, — 0 asn — +oo.

Therefore, in virtue of .« satisfies the Sy property on W,,, we obtain that d € <7 (y).



1.1 First Order Differential-Operator Equations and Inclusions 9

Let us prove sufficiency. Let y, — yin Wy, d, — d in X\, (dy, y» — ¥)x,, <0
asn — +o00, where d, € &(y,) Vn > 1. Then y, — yin X,, and d € <7/ (y).
The lemma is proved.

Corollary 1.1 If the multi-valued map <7 : X,, — C,(X?) satisfies the property Sy
on W, then </ is pseudomonotone on W,,.

Let further 7 : X — X* be the canonical embedding. Let us fix > € R and set
@.(t) = e, t € S. For an arbitrary y € X* let us define y; (as a map from S into
V*) as follows: y; (1) = ¢, (t)y(¢) fora.e. t € S. Let us remark that (y;)_; = vy, for
all y € X*. Also we define the element ¢; y by (¢, y)(¢) = y(t)¢, (t) forae.t € S.

Lemma 1.3 The map y +— v, is an isomorphism and an homeomorphism as a map
acting from X,, into X, (respectively from X}, into X, from W, into W,,, from
X into X, from X* into X*, from Y, into Y,,, from Y into Y ). Moreover, the map
Wy 3y > yi € W, is weakly-weakly continuous, i.e. from the fact that y, — y
in W, it follows that y, ;,, — y; in Wy,. Also, we have y, = ¢,y + ¢y’ € X5,

Yy € W,.

Let us consider the multi-valued map <7 : X — C,(X*). Let us define the set
@, (v;) € C,(X*) for fixed y € X by the next relation

L, (), o]y = [ (y) + Ly, w3 ]y, Yo € X.

Let us remark that as the functional ® — [/ (y) + Ay, w; ]+ is semiadditive,
positively homogeneous and lower semicontinuous (as the supremum of linear and
continuous functionals), 7 (y;) is defined correctly.

Lemma 1.4 If the map </ : X — C,(X*) is bounded, then <, : X — C,(X™) is
bounded.

Lemmals If & : X, — C,(X}) is (W,, X)-weakly closed, then <, is
(Wi, X)-weakly closed.

Proof Let y,, — y, in Wy, d, — d in X}, d, € @ (yn,). Then, in virtue of
Lemma 1.3 we obtain that y, := (y,,)-2 — ¥ := (ya)— in Wy, Yy, = yain X,
and y, — y in X,,. Since [ (y,) + Ayn, oal+ = (d,, ®)x,, , for any w € X,,, then
dy.—5. € ' (Yu) + Ayn. Therefore, g, := d, _; — Ly, € 7 (y,). Let us remark that
dy,— = (dy)-y — d_, in X, and since X,, C X}, continuously, we have g, — g
in X for some g € X} . Due to the fact that &7 is (W,,, X )-weakly closed we have
that g € &/ (y). Therefore, d, _, — Ay, — gin X}, sothatd, _, — Ay +gin X},
and then d,, = (d, ), — Ay, + g&. in X . Therefore,

(d, w)x, = (Ayr + g @)x, = (Ay + &, wi)x, < [F(y)+ Ay, o]+,

for all w € X,,. Therefore,
d € @(y).

The lemma is proved.
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Since the embedding W,, into X, is compact, then Lemmas 1.2 and 1.5 yield the
following corollary.

Corollary 1.2 If the multi-valued map <7 : X,, — C,(X}) satisfies the property S
on W,,, then o, is pseudomonotone on W,,.

1.1.4 Results

The main solvability results for Problem (1.3) are provided in Theorems 1.1 and 1.2,
Corollaries 1.3, 1.4, and 1.5, and Proposition 1.1 (see also Fig. 1.3 and [4-11, 14-16,
18, 21, 23, 26, 27, 30, 32, 33, 35-47)).

Theorem 1.1 Leta =0, A : X — C,(X™) NI (X*) be coercive bounded map
of the Volterra type that satisfies the property S, on W,. Then for arbitrary f € X*
there exists at least one solution of Problem (1.3) that can be obtained via the Faedo—
Galerkin method.

W +AQ) > f

[ Defirnte conditions on A |

o(W . Xi)weakly closed  © Sg-property o pseudomonotoneon W,

ocoercive © Volterra-type operator o bounded

s Y w—

Relations

(W e X W ea Ky pseudomonotone
closed onW,,

™ 7

Si-property

ﬁ

[cocrcim + Volterra-typeoparator + hounded]

<

Solvability

Justification of Faedo-
Galerkin method

Fig. 1.3 Sufficient conditions of multi-valued mapping for the existence of a weak solution for
differential-operator equation/inclusion via the FG method
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Proof From coercivity for A : X == X* it follows thatVy € X

inf (d,y)x > :
dég(y)( x = vy llylix

So,3rg > 0:y(ro) > || fllx+ = 0. Therefore,

VyeX: lyllx=ro [A()— f.y]l-=0. (1.6)

The solvability of approximate problems.

Let us consider the complete vectors system {A;};>; C V such that

(oep) {h;}i>) orthonormal in H;;

(a2) {h;i}i>1 orthogonal in V;

(3)Vi=1 (h,v)y = Ai(hj,v) VeV,
where 0 < Ay < Ap,---,A; = o0as j — oo, (-, -)y is the natural inner product in
V,i.e. {h;}i>1 is a special basis. Let for each m > 1 H,, = span {h;}!" |, on which
we consider the inner product induced from H that we again denote by (-, -). Due to
the equivalence of H* and H it follows that H; = H,,; X,, = L,,(S;Hy), X}, =
L4y (S; Hy), po = max{ri, r2},q0 > 1: 1/po+1/q0 = 1, (-, -)x,, == -, I xlx;xX»
W, = {y € Xl ¥ € X}, where y’ is the derivative of an element y € X,, is
considered in the sense of 2*(S, H,,). Forany m > 1let I,, € Z(X,,; X) be the
canonical embedding of X,, in X, I’ be the adjoint operator to /,,. Then

Vm > 1 ||l ex:x:) = 1. (L.7)
Let us consider such maps:

Ap: =1 0Aoly,: Xy — C(X"), fu:=1If
Therefore, (1.6) and Corollary 1.1 yield that
(j1) Ay is pseudomonotone on W,,,;
(j2) A, 1s bounded;
(J3) [An (¥) = fm, y1+ = 0Vy € Xy [lyllx = ro.
Let us consider the operator L,,:D(L,) C X,, > X with the definition domain

D(Ly) ={y € W, | y(0) =0} =

that acts by the rule:
Vy € W,g Lyy=1Y,

where the derivative y’ we consider in the sense of the distributions space Z*(S; H,,).
The operator L, satisfies the following properties:

(ja) Ly, is linear;

(Js) Yy € Wp (Lyy,y) = 0;

(J6) L,, is maximal monotone.
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Therefore, conditions (j;)—(jg) and [S1] guarantees the existence at least one
solution y,, € D(L,,) of the problem:

Ly (ym) + Ap(ym) 2 fmv lymllx < ro,

that can be obtained by the method of singular perturbations. This means that y,, is
the solution of such problem:

yr,n + Am(_ym) > ﬁn (1 8)
Ym(0) =0, ym € Wy, llymllx =R, '

where R = ry.

Passing to the limit.
From the inclusion from (1.8) it follows that Vin > 1 3d,, € A(y,) :

Ldm = for = Y3y € An(m) = L A(Ym). (1.9)

1°. The boundedness of {d,,}n>1 in X* follows from the boundedness of A and
from (1.8). Therefore,

I, >0: Ym>1 |dnlx <ecr. (1.10)

2°. Letus prove the boundedness {y,, },,>1 in X. From (1.9) it follows that Vi > 1
v, = I*(f — dy), and, taking into account (1.7), (1.8) and (1.10) we have:

Iy llx: < 1ymllw, <c2 <400, (1.11)

In virtue of (1.8) and the continuous embedding W,, C C(S;H,) we obtain the
existence of ¢z > 0 such that

Vm =1, VteS |yn®lu < c3. (1.12)
3°. In virtue of estimations from (1.10)—(1.12), due to the Banach—Alaoglu
theorem, taking into account the compact embedding W C Y, it follows the existence
of subsequences
{Vm =1 CHymbm=1, Adm =1 C {dm}m=1

and elements y € W, d € X*, for which the following converges hold:

Ym, = yin W, d, —din X*

Ym (1) = y() in H foreacht € § (1.13)

Ym,(t) = y(t) in H forae.tr e S as k — oo.
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Therefore, since y,,, (0) = 0 for each k > 1, then y(0) = 0.
4°. Let us prove that
v =f—d. (1.14)

Lety € D(S), n € Nand h € H,. Then Vk > 1: m; > n we have:
( / P(D) (V) (T) + dy, (D))dT, h) = (Y, s V),
S

where V¥ (t) = h - ¢(r) € X, C X. Let us remark that here we use the property of
Bochner integral [12, Theorem IV.1.8, p. 153]. Since for my > n H,, O H,, then
(Y, + dmgs W) = (fmi» ¥). Therefore, Yk > 1 :my > n

(fmka W> = (ﬁ §0(T)f(f)df, h) .

Hence, forallk > 1:m; > n

( /S ¢(0)y,, (), h) —(f = d V) —

— (/ () (f(r) —d(r)dr, h) as k — oo. (1.15)
s

The last follows from the weak convergence d,,, to d in X*.
From convergence (1.13) we have:

(/ @)y, (D)d, h) — (Y'(9), h) as k — oo, (1.16)
s

where
Yo e 2(5) y(p) =—-y) = —/Sy(r)w/(f)df-

Therefore, from (1.15) and (1.16) it follows that

Vo e 2(S)Vhe | ) Hy (V(p).h) = (/Sw(f)(f(f) —d(r))dr, h)

m>1

Since |J H,, is dense in V we have that
m>1

Yo € 2(5) y(g) = /S o(D)(f () — d(v))dx.
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Therefore, y = f —d € X*.
5°. In order to prove that y is the solution of Problem (1.3) it remains to show that
y satisfies the inclusion y' + A(y) > f. In virtue if identity (1.14), it is sufficient to
prove thatd € A(y).
From (1.13) it follows the existence of {7;};>1 C S suchthaty, /T as! — 400
and
VI>1 ym () = y(r;) in H as k — oo. (1.17)
Let us show that for any [ > 1
d,w) <[A(),w]lx Ywe X: w()=0forae.t €[, T]. (1.18)
Let us fix an arbitrary t € {7;};>;. Fori = 1, 2 let us set
Xio(@)=L,(t, T H)YNLp (7, T; Vs), Xo(1) = X16(7) N X26(7),
Xio(@) =Ly, (t.T: H) + Lo (z, T; Vy), X5(7) = X{,(1) + X3, (1),
Wio(t) ={y € Xi(0) | Y € X{, (D)), Wol®) = Wi, () N Wy (1),
ap=y(1), a =ynu (1), k=1
Similarly we introduce X (1), X*(7), W(t). From (1.17) it follows that
ap — ap in H as k - +o0. (1.19)
For any k > 1 let z; € W(t) be such that
Z, + J(z) 20, 1.20
[Zk(f) = a, (120)
where J : X(t) — C,(X*(7)) be the duality (in general multi-valued) mapping, i.e.

), uly = [J@), ul- = lulie = 1T = I1J@I2, ueX().

We remark that Problem (1.20) has a solution z; € W (t) because J is monotone,
coercive, bounded and demiclosed (see [1, 3, 12, 26]). Let us also note that for any
k>1

lze (DI — laellF = 2z ) x0) + 2l 2l ) =0

Hence,

1
Vi =1 lzillx-o = lzklxq < E”ak”H =c.
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Due to (1.19), similarly to [12, 26], as k — -+o00, z; weakly converges in W
to the unique solution zy € W of Problem (1.20) with initial time value condition
z(0) = ag. Moreover,

Zx — zo in X(7) as k — +00 (1.21)

because lim sup ||z %, < ”Z(’"xu)’ 2t — zoin X (1), and X (7) is a Hilbert space.
k—+o00
For any k > 1 let us set

Mk(t) — ymk(t)v lf t € [Ov T]’ k(t) Idmk(t) lf t G [O T]

zx(t), elsewhere, di(t), elsewhere,

where cfk € A(uy) is an arbitrary. As {uy}i>1 is bounded, A : X =X* is bounded,
then {d}x>1 is bounded in X*. In virtue of (1.21), (1.13), (1.17)

lim (g0, —u) = lim / (), 1) — y(t)) di =

k—+00

:k_lfToo/o (f(f)—y]/((f)vyk(l‘)—y(f))dl:k_l)if_’r_loo/o (v @), y(©) = y (1)) dt =

— lim 1 0l i
= lim_ 3 (kO ~ Iel) + tim [ (5100, y(0)

(Ily(O)IIH IIy(T)IIi,)Jr/0 (@), y®)dr =

\S) |

So,
hm (g, ux —u) =0. (1.22)

k—+

Let us show that g € A(uy) Vk > 1. For any w € X let us set

tv(t), ift € [0, 7],

WD) = 0, if r € [0, 7],
0, elsewhere,

we() = w(t), elsewhere.
In virtue of A is the Volterra type operator we obtain that
(g1 W) = (s we) + (dis WT) < TAQm,)s wels + {die wOLAGR), el + (i wT)
< [A@r), wels + [Aur), Wil
Due to A(uy) € 7(X*), similarly to [45], we obtain that

[AQur), wely + [AGu), w'ly = [A(ur), w4
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Since w € X is an arbitrary, then g, € A(uy) Yk > 1. Due to {uy}x>; is bounded
in X, then {g;};>1 is bounded in X*. Thus, up to a subsequence {uy;, g, }j=1 C
{uk, gki>1, forsome u € W, g € X* the following convergence takes place

up, =~ uin W, g, — gin X" as j — oo. (1.23)
We remark that
u(t) = y(), g)=d@) forae.t €[0,7]. (1.24)

In virtue of (1.22), (1.23), as A satisfies the property S; on W,, we obtain that
g € A(u). Hence, due to (1.24), as A is the Volterra type operator, for any w € X
such that w(t) = 0 for a.e. t € [t, T] we have

(d.w) =(g.w) = [AQ), wl; = [A(y), w]4.

As t € {1;};>] is an arbitrary, we obtain (1.18).

From (1.18), due to the functional w — [A(y), w]4 is convex and lower semi-
continuous on X (hence it is continuous on X) we obtain that for any w € X
(d,w) <[A(y), wl;.So,d € A().

The theorem is proved.

The following corollary to Theorem 1.1 establishes sufficient conditions for solv-
ability of Problem (1.3) with nonzero initial conditions; see [28].

Corollary 1.3 Let A : X — C,(X*) NI (X*) be bounded map of the Volterra type
that satisfies the property Sy on W,. Moreover, let for some ¢ > 0

infaeapn{d, y)x — cllA I+

— 400 (1.25)
llyllx

as ||yllx — +oo. Then foreacha € H and f € X* there exists at least one solution
of Problem (1.3) that can be obtained via the Faedo—Galerkin method.

2
”CH{' . We consider w € W such that

Proof Letussete = =

w 4+ eJ(w) =0,
w(0) = a,

where J : X — C,(X*) be the duality map. Hence [[w|[x < c. WeAdeﬁne A: X —>
C,(X*)NA(X*) bytherule: A(z) = A(z+w),z € X.Letusset f = f—w' € X*.
If z € W is the solution of the problem

[z’+A(§) > f.
2(0) =0,
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then y = z 4+ w is the solution of Problem (1.3). It is clear that A is a bounded map
of the Volterra type that satisfies the property S; on W. Thus, Theorem 1.1 yields
that it is sufficient to verify the coercivity for the map A. This property follows from
the following estimates:

[A@), z]- = [AG +w), 2+ wl- — [AZ +w), wly >
> [AGz +w). 2+ wl — cllAG + W)+
lzllx = llz +wllx —c.

The corollary is proved.
Analyzing the proof of Theorem 1.1 the following convergence result holds.

Corollary 1.4 A : X — C,(X*) N A (X*) be bounded map of the Volterra type
that satisfies the property Sy on Wy, {a,},=0 C H: a, — apin H asn — 400,
Yo € W, n > 1 be the corresponding to initial data a, solution of Problem (1.3). If
Yo—Yo in X, asn — 400, then y € W is the solution of Problem (1.3) with initial
data ay. Moreover, up to a subsequence, y, — yo in Wy N C(S; H).

Now let V and H be real Hilbert spaces, Vi = V, =V, :==V; p; =1, = 2,
i =1,2.Letusset Y = L,(S;H). Then, according to the identification H* = H,
the spaces Y* and L,(S; H) are identified.

We note that the vector space W = {y € X | y' € X*} is a Hilbert space with the
norm ||y|lw = llyllx + IV llx+, where y’ is the derivative of y € X in the sense of
the space of distributions 2*(S;V*) [12]. For any v € X and f € X* consider the
pairing

(fsv) =/S(f(f),V(T))vdT,

where (-, -)y : V* x V — Ris the canonical pairing, which coincides with the inner
product (-, -) in H on H x V. Hence, (f,v) = fs (f(r),v(r))drt if f € Y. In the
sequel, to simplify the conclusions, we shall use the last notation even if f € X*.

In the following theorem we justify the Faedo—Galerkin method for solutions of
Problem (1.3) when the multi-valued mapping A is possibly noncoercive (see also
Fig.1.4).

Theorem 1.2 Leta = 0, A : X — C,(X*) N A (X*) be a bounded map of the
Volterra type, which satisfies the property Sy, on W. Moreover, let for some A > 0 the
map A + LI be coercive. Then for arbitrary f € X* there exists at least one solution
of Problem (1.3), which can be obtained via the Faedo—Galerkin method.
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W+A@) > f
Conditions on Conditions on (
A:X = C (X)) NFH(X) A+l
o Sg-property o bounded o coercive

oVolterra-type operator

[ |
) V4

Solvability

Justification of Faedo-
Galerkin method

Fig. 1.4 Sufficient conditions for the existence of a solution

Proof We shall provide the proof in several steps.
Step 1: A priory estimate.

At first let us show that there exists a real nondecreasing function y : R, — R such
that y(r) — 400 as r — +00, the function in hands is bounded from below on
bounded sets and the following inequality holds:

T
A / eV d(@) + Ay, yO)dT = y(ylolylx,  (1.26)
€AY Jo

for each y € X. For an arbitrary r > 0 we set

(d+21y,y)x

y(r) = inf n
veX, Iylx=rdeat»  |lyllx

and ¥ (0) := 0. The following properties hold:

(a) As A is bounded and the embedding X C X* is continuous, we have y (r) >
—00.
(b) From the construction of the function ¥ we have that for all y € X,
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[A(Y) + 2y, yI- = vyl lyllx. (1.27)

In virtue of the boundedness of A it follows that ¥ is bounded from below on
bounded sets.

(c) From the coercivity of A + A[ it follows that ' (r) — +00 as r — +o0.
(d) From (a)—(c) we have ing y(r)=:1a> —o0.

For an arbitrary b > a let us consider the nonempty bounded set of R, given
by A,

={c > 0] y(c) < b}. Let ¢, = infeea,c, b > a. Let us remark that

cp, < cp, < 00, forall by > by > a,and ¢, — +00 as b — +o00. Let us set

2

VN t €10, Cat+1l,
y(t) B <a +k’ re (ca-f-ky Ca+k+l]’ k > 1.

Then, ¥ : R, — R is a bounded from below function on bounded sets of R, it is
a nondecreasing function such that 7 (r) — 400, as r — o0, and y(t) < ¥ (¢), for
any t > 0.

Let us fix an arbitrary y € X. Since A is the operator of the Volterra type, then

deh/}fy)/o (d(x) + Ay(v), y(1))dt

T
—dégfy)/o (d(T) + Ay (D), yi(v))dT
> YUy lydlx = vAylx)Iylx,,

forall7 € S, where [[yllx, = lyllx, i(t) = [g(”’ ° 10 et for an arbitrary
de A(y)

ga(t) = (d(v) + Ay(1), y(v)), forae. tes,
h@) =vUylx)Iylx,, te€S.

Let us remark that 2(z) > min{y(0), O}|y||x and

t
inf dt > h(t), t € S.
dél)‘(y)/o ga(t)dt = h(t), t €
Let us show that

T
inf / e (d(T) + y(), y(T))dT >
deA®y) Jo

> e—ZAT

T
inf / (d(2) + Ay (D), y(O)dT+ (128)
deA Jo
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T
+ inf / (e — e Y (d(1) 4+ Ay(7), y(1))dT.
deA(y) Jo

Let us set o(t) = e 279 1 € [0,T] (so ¢ € (0,1]). For any n > 1 we put
n—1 . . .

ou(t) = > ¢ (L) A[ir w)(t), T €[0,T]. Then, ¢ (L) dy + (1—¢ (L)) ds €
i=0 n’ n

A(y),Vd, € A(y), Vd, € A(y), Vi = 0,n — 1. Let us remark that |, (t) — ¢(7)| <
MTT, vVt € [0, T]. Lemma 1.1 implies that

n—1 T iT
d=>( (’7) dy + (1 ) (’7)) d2) Xt (1) € AQY),
i=0

where t; = % Therefore,

T
inf / e P (d(v) + Ay(1), y(1)dT =
deA(y) Jo

T
> [ @+ iy, yme =
0
T
_ / on(D)(dr (1) + 2y(0), (D) PN )d T+
0
T
4 / (1 = (D) (da(T) + Ay (D), y(D)e P)dr =
0
T
_— / (di(0) + Ay(0), y(D)dT+
0
T
+ / (e —e™T) (dr(v) + Ay(1), y())dT—
0

arT 5
—T(||A()’)||+||y||x + AlylF)-

If n — 400, then taking the infimum with respect to d; € A(y) and d, € A(y) in
the last inequality we will obtain (1.28). From (1.28) it follows that

T
inf / e 2T(d(1) + Ay(1), y(1))dT >
deA Jo

T K}
> e PTR(T) + 21 inf / e 2 / ga(t)dtds >
deA(y) 0 0
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e—ZKTh(T)_i_

+2AT inf infe’ns/ d(t) + ry(7), y(v))dr.
deA(y) seS 0

Let us show that

N
inf inf e / (d(@) + hy(D), y(@)dr = —crllylxs
deA(y) seS 0

where ¢; = max{—7(0), 0} > 0 does not depend on y € X. Let y € X is fixed. For
s€S,de A(y) letus set

@(s.d) = 6_2“/ (d(®) +1y(D), y())dT

= f inf = <
a déﬂmi‘és‘”(“‘ d), Sa={s € S|es,d) <a}.

From the continuity of ¢ (-, d) on S it follows that S, is a nonempty closed set for an
arbitrary d € A(y). Indeed, for any fixed d € A(y) there exists s; € S such that

@(sq,d) = rpigso(f, d) <a.
NS

From the continuity of ¢ (-, d) on § it follows that S, is closed.
Let us prove now that the system {Sg}4eca(y) is centered. For fixed {d;}I_, C A(y),
n > 1, let us set

Vi) = (di() + 1y (), y()),
V)= Jmax, %()

Eo=0.
E _{reS\(uf_o1 )|1/f,(r) W(r)},

d() =" d;i()xe, ().

j=1
Let us remark that E; is measurable for any j = 1, n, Ui Ej =S ENE; =90,
Vi # j,i, j = 1,n. Also,d € X*. Moreover,

o(s.di) = e /S Yi(r)dt < e /‘* y(vydr =
0 0

=¢(s,d), se€S8,i=1,n
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Therefore, in virtue of Lemma 1.1 we have d € A(y) and for some s; € S,

@(s4,di) < 9(sq,d) =ming($,d) <a, i=1,n.
ses

So, 54 € N_,Sq # V.
Since § is compact, and the system of closed sets {S4}4ea(y) 1 centered, we obtain
the existence of so € S such that sy € Ngeca(y)Sq. This implies that

inf inf e 2" ' A
,Jof infe /O(d(r)+ y(1), y(1))dt

50
> inf —2“0/ d Ay (1), d
2 nf e i (d(r) + Ay (1), y(1))dT

S0

=e 2% inf / ga(T)dt > e 0 (s0)
deA Jo

> ¢~ min{7(0), 0}|lyllx

> —max{—y(0), 0}[lyllx = —cillyllx-

Therefore, forall y € X,

T
inf / e 2T d(1) + ry(1), y(r))dT >
deA Jo

> (6_2”3’/\(”)/”)() — chlT)||y||x.

If we set y (r) = e "% (r) — 2xc, T, then we will obtain (1.26).

From (1.26), the properties of the real function y and the conditions of the theorem
it follows the existence of o > 0 such that y(rg) > | f..llx+ = 0 and also that for
any y € X,

[A(a), yal= = v AV IOy x = v lyallxo)lyallx-

Therefore, for all y € X satisfying ||y, ||x = ro we have

(A () = fu ) = (v (o) — 1 fallx)ro = 0,

that is,
[A, () — fas yal- = 0. (1.29)

Step 2: Finite-dimensional approximations.

We shall consider now a sequence of finite-dimensional approximative problems via
the Faedo—Galerkin method.

Forany m > 1let I, € Z(X,,; X) be the canonical embedding of X,, into X,
and I be the adjoint operator to I,,. Then
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Il 2 x =1, Vm > 1. (1.30)
Let us consider the following maps [25]:

Api=I 0 Aol : Xy — Cy(X7),

Apm = 1% 0 Ay 0 Iyt X — C(X7),
Am,)» = (Am)k : Xm - CV(X*)’

Jm = Intf’ f)\,m = Inﬁf)ﬂ f;n,)\ = (fm)a-

Let us remark that
Axm = Amis foim = fmi- (1.31)

Indeed, in virtue of Lemma 1.3 for any y, w € X,
[Awm (), wl- = [, 0 A (ya). wl- = [Ax(y). w]-
=[A(Y) + Ay, wal- =11, 0 (A+AD(y), wa]l- =
= [(Am)r () wl- = [Ams (), wl-.

So, from (1.29), (1.31), Lemma 1.4, Corollary 1.2, and the conditions of the theorem,
applying similar arguments as in [25, pp. 115-117], [19, pp. 197-198], we obtain
the following properties:

G1l) A, , is pseudomonotone on W,,;
(G2) A, is bounded;
(G3) [Arm ) = fims yal- = Oforall y; € X,, such that ||y; [l x = ro.

We note that (j3) is a consequence of (1.29) and the definition of A ,,, fi >
whereas (j2) follows from Lemma 1.4 and the boundednesss of /,,, 1. Finally, (j1)
is obtained in the following way: since A satisfies the property Sy in W, for A,, the
same property holds on W,,; hence, by Corollary 1.2 the operator A,, » = (A,;,), is
pseudomonotone in W,,, and then (1.31) implies (j1).

Let us consider the operator L, : D(L,,) C X,, — X, with domain

D(Ly) ={y € Wy | y(0) =0} = Wy,

which is defined by the rule: L,,y = y’, Vy € WC, where the derivative y’ we
consider in the sense of the space of distributions 2*(S; H,,). From [25, Lemma 5,
p. 117] for the operator L,, the next properties are true:

(G4) L, is linear;
(G5) (Lmy.y) =0,Vy € Wp;
(j6) L,, is maximal monotone.

Therefore, conditions (j;)—(js) and Theorem 3.1 from [26] guaranty the existence
of at least one solution z,, € D(L,,) of the problem:
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Lm(Zm) + Ak,m(zm) > f)»,m’ ||Zm||X S ro,

which can be obtained by the method of singular perturbations. This means (see
(1.31)) that y,, := (z,4)—-» € W,, is the solution of the problem

Y T An(m) 2 fn,
" = 1.32
[ym«» =0, Y € W, Iymllx < R, (132
where R = rpe’!.
Step 3: Passing to the limit.
From (1.32) it follows that for any m > 1 there exists d,, € A(y,,) such that

Let us prove now that (up to a subsequence) the sequence of solutions of (1.32)
converges to a solution of (1.3). Again, we divide this proof in some substeps.
Step 3a.

The boundedness of A and (1.32) imply that {d,},,> is bounded in X*. Therefore,
there exists ¢; > 0 such that

ldnllx <c1 VYm > 1. (1.34)

Step 3b.
Let us prove the boundedness of {y/,},>1 in X*. From (1.33) it follows that y; =
I (f —dy), Ym > 1, and taking into account (1.30), (1.32) and (1.34) we have

Iyl < Iymllw < R+ 1 fllx- +c1 =i 2. (1.35)

In virtue of the continuous embedding W C C(S;H) we obtain the existence of
c3 > 0 such that
IyuOllg <c3 Ym>1, Vt €S. (1.36)

Step 3c.

In virtue of estimates (1.34)—(1.36), due to the Banach—Alaoglu theorem, and taking
into account the continuous embedding W C C(S; H) and the compact embedding
W C 7, it follows the existence of subsequences

{ymk}kzl C {y:n}mzh {dmk}k21 C {dm}mzl
and elements y € W, d € X*, for which the next convergences take place:
Ymy —\yln W, dmk — d in X*,

Ym, (t) = y(¢t) in H foreacht € §, (1.37)
Ym,(t) — y(t)in H forae.t € Sask — oo.
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From here, as y,, (0) = 0, Yk > 1, we have y(0) = 0.
Step 3d.

Let us prove that
y =f—d. (1.38)

Letp € D(S), n € N,and h € H,. Then for all k > 1 such that m; > n we have

(/S P(T) Wy, (T) + di, (7)) T, h) = (Y, T > V),

where ¥ (t) = h - ¢(7) € X,, C X. Let us remark that here we use the properties of
Bochner’s integral (see [12], Theorem IV.1.8). Since H,,, D H,, for my > n we get
(Y, + dmys ) = (fin,» ¥). Therefore, for all k > 1 such that m; > n

o ) = ( / o(0) f (D), h) .

Hence, for all k > 1 such that m; > n

(/qu(t)y,’,,k(t)dr, h) =(f—dw. V)~

— (/(p(r)(f(t) —d(7))dr, h) as k — oo. (1.39)
s

The last convergence follows from the weak convergence d,,,, to d in X*. From (1.37)
we have

(/ o)y, (D)dz, h) — (y'(¢), h) as k — +o0, (1.40)
s

where
Vip) =—y(p) = —/Sy(f)sv’(f)dr, Yo € 2(5).

Therefore, from (1.39) and (1.40) it follows that for all ¢ € Z(S), h € Umzl H,,
(v (). h) = ( [e@u@ - dwn h) .
s

Since |J H,, is dense in V we have that
m>1

y'(p) = /Sfp(r)(f(r) —d(v))dt, Vo € D(S).

Therefore, y = f —d € X*.
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Step 3e.

To prove that y is a solution of Problem (1.3) it remains to verify that y satisfies
the inclusion y" + A(y) > f. Thus, according to (1.38), it is sufficient to prove that

de A®).

From (1.37) it follows the existence of {7;};>1 C Ssuchthatt; /T asl — +o0,

and
Y (1) = y(r)in HVl > 1 ask — +o00.

Let us show that
(d,w) < [A(y), W]+

foreach/ > 1 and w € X such that w(t) =0 for ae.t € [t;, T].
Let us fix an arbitrary t € {7;};>;. Let us set

X(1) =L, T; V), X'(1) = Loz, T5 V),

e = | o), vy ds
foru € X(t), v e X*(1), and
W) ={ueX(@)|u eX (v)},
ap =y(v), ax =ym (1), k=1
From (1.41) it follows that
ay — apin H as k — +00.
For any k > 1 let z; € W(t) be such that

[zzw(zk) =0,
k(7)) = ax,

(1.41)

(1.42)

(1.43)

(1.44)

where J : X () — X*(7) is the duality mapping (which is single-valued, as X (7)

is a Hilbert space), i.e.

(Jw), uyxw = lulxe = 1T @), ueX(@).

We remark that Problem (1.44) has a solution z; € W(t) because J : X (1) — X*(1)
is monotone, coercive, bounded and demicontinuous (see [1, 3, 12, 26]). Let us also

note that for any k > 1,

2 2 2
lzk (Dl — laly = 24z 26 x@ = —2lzkllx )
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Hence,

1
Izillxso) = lzellxe) < ﬁ”ak”H <c3 Vkz 1

Due to (1.43), similarly to [12, 26], z; converges weakly in W as k — 400 to
the unique solution zyp € W of Problem (1.44) with initial condition z(t) = ay.
Moreover,

Zr — zoin X (1) as k — +o0, (1.45)

because lim sup ||Zk||§((r) < ||Zol|§((T), Z — Zzoin X (), and X (7) is a Hilbert space.
k—+00
For any k > 1 let us set

— ymk(t)7 lft € [07 t]’
(1) = Izk(t), elsewhere,

_ | dm, (), ift €0, 7],
8k(1) = [ﬁk(t), elsewhere,
where dAk € A(uy) be an arbitrary. As {uy}x>; is bounded and A : X == X" is
bounded, we obtain that {dj }¢>; is bounded in X*. In virtue of (1.45), (1.37), (1.41)
we have

lim (g, up —u) =

k—+00

T

= lim (i, (), Y (1) — y (1)) dt =

k—+00 Jq

T

= lim [ (£ =y, 0,y () = (D) di =
—400 0

T

= 1im [ (3,0, y(®) =y, (1) dt =
0

k— 400

.1 2 2
= kEToo 5 (1Y, O = Iy (OIF) +

T
i ! (t 1)) dt =
+k£r+noo/0 (v ), y(@©)

(lyO1I3 — llylF) + /0 (Y'(®), y(®)) dt = 0.

N =

So,
lim (g, ur —u)=0. (1.46)

k—+o00
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Let us show that g; € A(ur), Yk > 1. For any w € X let us set

(o = | Wit e 0.7,
Well) = 0, elsewhere,

0, ifrel0, 1],
w(t), elsewhere.

wi(t) = {
Since A is an operator of the Volterra type we obtain that
(8ks W) = {dmy we) + (dis W¥) <
< [AGwm) wely + {de, wT) =
= [AQR), wels + (di, w') <
< [A(up), wels + [Aur), Wil
Since A(uy) € S (X*), similarly to the proof of (1.28) we obtain that
[AQur), wels + [AQur), w'ly = [A(ug), wly.
Sincew € X isanarbitrary, then g € A(uy) forallk > 1. Since {uy };> is bounded in
X, {8k }r>1 1s bounded in X*. Thus, up to a subsequence {uk; s 8k, =1 C {uks i1,
for some u € W, g € X* the next convergence holds
up, ~uinW, g, — gin X*as j — oo. (1.47)

We remark that
u(t) = y(), g(t) =d(@) forae.t € [0, ]. (1.48)

Invirtue of (1.46), (1.47), as A satisfies the property S; on W, we obtainthat g € A(u).
Hence, due to (1.48), as A is the Volterra type operator, for any w € X such that
w(t) = 0forae.t €[1r, T] we get

(d.w) =(g.w) = [AQ), wl; = [A(y), w]4.

As t € {1;};>] is an arbitrary, we obtain (1.42).

From (1.42), as the functional w — [A(y), w] is convex and lower semicontin-
uous on X (hence it is continuous on X), we obtain that (d,w) < [A(y), w], for
each w € X. Therefore, d € A(y).

The theorem is proved.

Analyzing the proofs of Theorem 1.2 and Corollary 1.3 (see [28]) the following
proposition holds.
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Proposition 1.1 Let A : X — C,(X*) N € (X*) be bounded map of the Volterra
type which satisfies the property Sy on W. Moreover, let for some L4 > 0 and c > 0

[AD), yI- = cllAW) I+ + 2ally I3
Iyl x

— 400 (1.49)

as ||yllx — —+oo. Then for any a € H, f € X* there exists at least one solution of
Problem (1.3), which can be obtained via the Faedo—Galerkin method.

2
llally
2¢2

Proof Letussete = . We consider w € W such that

w +eJ(w) =0,
w() = a,

where J : X — X* is the duaAlity map. Hence ||w|x < c. We defme A:X >

C,(X*) N (X*) by therule: A(z) = A(z+w),z € X.Letusset f = f —w™. If

z € W is a solution of the problem

[ 7+ A(z_) > f
z(0) =0,

then y = z + w is a solution of Problem (1.3). It is clear that A is a bounded map of
the Volterra type which satisfies the property S; on W. So, due to Theorem 1.2 it is
enough to prove the coercivity for the map A+ A4I. This property follows from the
estimates: .

[A(2), z]l+ = [A(z+w), z+wls —[A(z+ W), w]; >

>[AGz+w),z4+wls —cl|Az +W)+,
IzIly = Iz +wly — ¢* = 2lwlx-llzllx.
lzllx = Nz + wlx — c.

The proposition is proved.

Analyzing the proof of Theorem 1.2 we can obtain the following convergence
result.

Corollary 1.5 Let A : X — C,(X*) N (X™) be a bounded map of the Volterra
type which satisfies the property Sy, on W. We consider a sequence {a, },>0 C H such
that a, — agin H asn — +o00. Let y, € W, n > 1, be solutions of Problem (1.3)
corresponding to the initial data a,. If y, — yo in X asn — 400, then yo € W
is solution of Problem (1.3) with initial data ay. Moreover, up to a subsequence,
Yo —=Yoin W C C(S;H).
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1.2 Second Order Operator Differential Equations
and Inclusions

In this section we provide the existence results for the second order operator differ-
ential equations and inclusions. Since the problem in hands naturally considers as
the first order integro-differential-operator inclusion, we recall some of them.

Let the following conditions hold:

(Hy) V, Z, H are Hilbert spaces; H* = H and we have such chain of dense and
compact embeddings:

VCZCH=H*"CZ"CcV™¥

(H2) foe V",
(A)3c>0:Vu e V,Vd € Ag(u) |ldly+ < c(1+ flullv);
(A2) Ja, B >0:Yu e V,Vd € Ag(u) (d,u)y > a||u||%, —B;
(A3) Ag = A1+ Ay, where A : V — V*islinear, selfconjugated, positive operator,
A, 1 'V = V* satisfies such conditions:

(a) there exists a Hilbert space Z such that the embedding V' C Z is dense and
compact, and the embedding Z C H is dense and continuous;

(b) for any u € Z the set A,(u) is nonempty, convex, and weakly compact in Z*;

(c) Ay : Z = Z* is abounded map, that is, A, converts bounded sets from Z into
bounded sets in the space Z*;

(d) Ay : Z = Z* is a demiclosed map, i.e. if u, — uin Z, d, — d weakly in
Z*,n - +oo,and d, € Ay(u,) Vn > 1,thend € A,(u);
(B1) By : V. — V*isalinear selfconjugated operator;
(By) Ay > 0: (Bou, u)y =y |lull3.
Here (-, /)y : V* x V — Ris the duality in V* x V, coinciding on H x V with the
inner product (-, -) in Hilbert space H.

Note that from (A;)-(A3), [34, 51] it follows that the map A, satisfies such
condition:
(A3) Ap : V = V*is (generalized) pseudomonotone operator, that is,

(a) for any u € V the set Ag(u) is nonempty, convex, and weakly compact one in
V*;

(b)ifu, - uweaklyinV,n — +4o00,d, € Ag(u,) Vn > 1, and lim sup(d,,, u,, —

n—o00
u)yy <0,thenVow € V Ad(w) € Ap(u) :

liminf(d,, u, — o)y > (d(®), u — w)y;
n—+00
(c) the map Ay is upper semicontinuous one that acts from an arbitrary finite-
dimensional subspace of V into V* endowed with weak topology.
Thus, we investigate the dynamic of all weak solutions of the second order non-
linear autonomous differential-operator inclusion
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Y'(®) + Ao(y' (1) + Bo(y(1)) > fo forae.t>0 (1.50)

as t — 400, which are defined as r > 0, where parameters of the problem satisfy
conditions (H1), (Ha), (A1)—(A3), (B1)~(B2).

As aweak solution of evolution inclusion (1.50) on the interval [, T'] we consider
a pair of elements (u(-),u'(-))”T € Lo(t,T;V x V) such that for some d(-) €
LQ(T, T; V*)

d(t) € Ag(u'(¢)) forae. t€(z,T),
— [F@ @, w@ndr + [[d@), c@0)ydi+ (1.51)
+ [T (Bou(r), @)t = [ {fo, ¢y ¥¢ € CC([T, TL; V),

where ' is the derivative of the element u(-) in the sense of the space of distributions
2*([t, T1; VY.

Note that the abstract theorems on the existence of solutions for such problems
under weaker conditions were considered in [34, 51]. Here we consider Problem 2
from [34], for which we can (as follows from results of the further chapters) have
not only the abstract result on existence of weak solution but we can investigate
the behavior of all weak solutions as + — 400 in the phase space V x H and
study the structure of the global and trajectory attractors. Underline that results
concerning multi-valued dynamic of displacements and velocities can be applied to
hemivariational inequalities.

Further, without loss the generality we consider the equivalent norm |u|y =
V(Bou,u)y, u € V, in the space V. The given norm is generated by the inner
product (u, v)y = (Bou, v)y, u,v € V. For fixed t < T let us consider

Xer=Ly(t,T:V), Xip=Lyt,T:V"), Wer={uecX.rlueX;;},
Avr: Xer 2 Xip, e (y) ={d € X7 71d(t) € Ag(y(1)) forae. t € (z, T)},
Ber: Xer —> Xigo Ber(0)(1) = Bo(y(1)) forae. t € (r,T),

fer € Xip,  for@) = foforae.r e (r,T).

Note that the space W, r is the Hilbert space with the graph norm of the derivative
(ct. [50, 51]):
lully, , = Nl + 1'%, w € Wer (1.52)

From [34, Lemma 7, p. 516], (A1), (A2), (A;3) itfollows that & 7 : X, 7 = X;T
satisfies the next conditions:
(N1) 3Cy > 0: |dllx:, < C1(1 + |Iylix,,) Yy € Xo.7,Vd € o 7(¥);

.7

(N2) 3C2, C3 > 0: {d, y)x,, > Czllyllﬁ,y, —C3Vy e X 7,Vd € o 7(y);
(N3) oo 1 Xer = X;T is (generalized) pseudomonotone on W; r, that is,

(a) for any y € X, r the set @7 r(y) is a nonempty, convex, and weakly compact
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one in X7 ;
(b) o7, r is the upper semicontinuous map as the map that acts from an arbitrary finite

dimensional subspace from X r into X7 ; endowed by the weak topology;

(¢)if y, — y weakly in Wy 7, d, € & 7(y,) Vn > 1,d, — d weakly in X7 ;, and

lim sup{(d,,, y» — ¥)x., <0,

n— 400

thend € r(y) and lm (du, yu)x.; = (ds Y)x,-

Here (-, -)x,, : Xj 7 x Xy — R is the pairing in X} ; x X, r coinciding on
Ly(r, T; H) x X, r with the inner product in L,(t, T; H), that is,

T
Yu € Ly(t, T; H), Vve Xo 7 (u,v)x,, =/ (u(t), v(t))dt.

Note also (cf. [12, Theorem IV.1.17, P. 177]) that the embedding W, r C C([z,
T1; H) is continuous and dense. Moreover,

T
(M(T),V(T))—(M(T),V(f))=/ [(u/(t),V(f))v+(V’(t),u(t)>v]dt, (1.53)

foreach u,v e W, 7.
The definition of derivative in the sense of Z([7, T]; V*) and equality (1.51) yield
the following statement.

Lemma 1.6 Each weak solution (y(-), y'(-)" of Problem (1.50) on the interval
[T, T'] belongs to the space C([t, T1; V) x Wy r. Moreover,

'+ e (y) 4+ Ber(y) 3 for. (1.54)
Vice versa, if y(-) € C([tr,TL; V), ¥y'(-) € Wi, and y(-) satisfies (1.54), then
), Y ()T is a weak solution of (1.50) on [t, T1].

A weak solution of Problem (1.50) with initial data
y(@@)=a, y(r)=b (1.55)

on the interval [z, T] exists forany a € V, b € H. It follows from [34, Theorem 11,
p. 523]. Thus, the following lemma holds.

Lemma 1.7 Foranyt < T, a € V, b € H Cauchy Problem (1.50), (1.55) has
a weak solution (y, y)T € X.7 x X 7. Moreover, each weak solution (y, )T
of Cauchy Problem (1.50), (1.55) on the interval [t, T] belongs to the space
C([t,T]; V) x W r and y satisfies (1.54).

The similar statement holds also for non-autonomous problems. For this purpose
additional measurability assumption for A, is claimed.
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1.3 Evolutional Variational Inequalities: Penalty Method
and Strong Solutions

In investigating unilateral problems, problems on Riemannian manifolds with or
without boundary, semi-penetration problems, and in the analysis and control of
processes and fields of different natures on the boundary of a domain, a demand
arises for the consideration of evolutionary variational inequalities with nonlinear
nonmonotone operators in infinite-dimensional spaces. To describe the state func-
tions of such objects, the concepts of strong and weak solutions are naturally intro-
duced. A strong solution does not always adequately describe a system state since,
in the majority of cases, such classes of solutions prevents the effects of breaks or
unilateral semi-penetration, that is, are too regular to adequately describe states of
the processes and fields being investigated. The proof of the existence of strong
solutions (especially for equations with nonmonotone reaction laws) is problematic.
The concept of a weak solution is too general (this solution not always adequately
describes a state function, that is, this class of solutions can formally include not
only physical solutions) and, at the same time, is insufficiently regular to adequately
implement the numerical analysis of the problems being investigated. Note that a
strong solution of an evolutionary variational inequality is, as a rule, a weak solu-
tion. A demand arises for the introduction of a new intermediate class of physical
solutions to such problems that, on the one hand, must satisfy natural energy equal-
ities and, on the other hand, provide the possibility of substantiation of constructive
(and at the same time physical) methods of their existence (for example, the artificial
viscosity method for problems of classical hydroaeromechanics in an incompressible
continuous medium).

This section introduces the concept of a physical solution on a finite time inter-
val for classes of autonomous evolutionary variational inequalities with nonlinear
nonmonotone (in general cases) mappings defined on convex cones. This concept is
based on natural energy equalities and continuous dependence of state functions in
the phase space on the time variable. For approximate searching for physical solu-
tions, the classical penalty method is used. For the solutions obtained, the possibility
of a global description of the behavior of such systems is substantiated on the basis
of the results of [13, 17] in their natural phase space with respect to the topology of
strong convergence by finite algorithms up to an arbitrary small parameter.

For an evolutionary triple (V; H; V*) a nonlinear (in the general case) mapping
A :V — V* and a convex closed cone K < V, the problem of investigating
the dynamics of the following autonomous evolutionary variational inequality is
considered in the phase space H of all physical solutions y : Ry — V, y(t) € K
fora.a.t > 0:

(Y (@)+A@®),v—y@)y > Oforallv e K andfora.a.t > 0 (1.56)

in which the parameters of the problem satisfy the following conditions.
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Assumptionl p > 2andg > 1: % + - = 1 and the embedding of V into H is

compact.

1
q

Assumption 2 3¢ > 0: ||A(w)|ly- <c(1 + ||u||{',_1) YuelV.
Assumption 3 o, B > 0: (A(u), u)y > allulll, —BVYu e V.

Assumption4 A : V — V¥ is a pseudomonotone operator satisfying the (S)-
property, that is, since u,, — u weakly in V, and lir}rl (A(uy), u, —u)y <0, we
n—+00
obtain that u,, — u in V and lim (A(u,),u, —w)y > (A(u),u —w)yVw € V.
n—4o0o
Assumption 5 K C V is a convex closed cone such that inty K, # 0, where V,, C

V is a real reflexive separable Banach space continuously and densely embedded
intoV,K, :=KnNV,.

Here, (-, -)y : V* x V — Ris apairing in V* x V, and this pairing coinsides on
H x V with the scalar product (-, -) in a Hilbert space H. Note that a space V) is the
conjugate of V, with respect to the canonical pairing (-, -)y, : V5 x V, — R that
coincides on H x V,, with the scalar product (-, -) in H. Then we obtain the following
chain of such continuous and dense embeddings: V, C V C H C V* C V.
Let0 <1t < T < 400. We set

Kir:={yeL,(t,T;V): y(t) e K foraa.t e (r,T)}.

By a physical solution of evolutionary variational inequality (1.56) on an interval
[t, T] we understand an element y that belongs to the space K. 7 N C([t, T]; H)
such that

T T
—/ (5’(r>,y<r>>dr+/ (A, E@O)dt = 0VE € C2([x, T1: V) N Ko,
i i (1.57)

Iy @)1 — Nyl +2/ (Ay@), y(O))ydt =0 Vt,, 1, € [t, T];  (1.58)

n

see also Fig. 1.5.

Note that the concept of a physical solution naturally weakens the concept of a
strong solution of unilateral Problem (1.56). The concept of a physical solution is
a weak solution of Problem (1.56) that is continuous as a mapping from the time
interval [7, T'] into the phase space H and satisfies energy equality (1.58). Of course,
each strong solution of Problem (1.56) is a physical solution of this problem. At
present, for Assumptions 1, 2, 3, 4 and 5, only the fact of existence of weak solutions
is well known.

Now, with the help of the penalty method, we establish the fact of existence of
physical solutions to Problem (1.56) for arbitrary initial data from K. The obtained
results will be applied in the next sections to the investigation of the dynamics of
processes and fields of different nature under unilateral constraints.
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Fig. 1.5 Classes of solutions
for evolution variation
inequalities
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Forafixed) <t < T < 400 we consider

Xer=Ly(t,T; V), Xip=Lyx, T;V"), Wer={yeX.r :y eX;}
et Xer = X (Gor(0)(@) = A(y(1)) foraa. t € (7, T),
Y‘r,T,(r == LI(T’ T; V:)a W‘[,T,U - {y S Xr,T : y/ S Y'[VT’o'}v

where y’ is the derivative of an element y € X, 7 in the sense of the space of distri-
butions Z([z, T]; V*) (see, for example [12, Definition IV.1.10, p. 168]). Note that
the space W r is a reflexive Banach space with the following derivative graph norm
(see, for example, [48, Statement 4.2.1, p. 291]): [[ully, . = llullx, , + ||u’||xjj, ue
Wer.

It follows from [52, Sect. 2.2], [46, pp. 152—-157], and Assumptions 1, 2, 3 and 4
that o7 7 : X; 7 — X} ; satisfies the following properties.

Property 1. 3C; > 0: |7 (Mllx:, < Ci(1+ |Iylly,,) Yy € Xe 7.

Property 2. 3C5, C3 > 0: (7 (), ¥)x.» = Callylly,, —C3Vy € Xe 7.

Property 3. o7; 7 : X, 7 — X7 is (generalized) pseudomonotone on W; 7, and
satisfies the (S)-property, that is, the facts that y, — y weakly in X o7 AV, In=1.2... 18
boundedin Y. . 7(yn) — d weaklyin X7 ., and n@w@%,r )y Yn—Y)x

7,T,0°
0, imply that d = 7 7(y) and y, — y in X, .
In particular, the following equalities hold:

o7 —

nETM(Wr,T(Yn), V) x.r =Ad, Y)x, s

T
lim (A (1)), yu (1) = y(@))v]dt = 0.

n—-+00 -
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O/()+A(t)),vy=y(t))v > Oforallve K and fora.a.z >0

Conditions on A [ Conditions on K [
o (S)-property o polynomial o convex closed cone
growth
o sign condition o pseudomonotone ointy K,+@

I [
N4

Existence at least one
physicalsolution for
arbitrary initial data

Fig. 1.6 Sufficient conditions for the existence of a solution for evolution variation inequality

Here, (-, -)x,, : X7 7 X X7 — Ris the pairing in X7 ; X X r that coincides with
the scalar product in Ly(t, T; H) on Lo(t, T; H) x X, 7, thatis,

T
Yue Ly(t,T; H), Vve X (U, v)x,, =/ (u(t), v(r))dt.

Note also that (see [12, Theorem IV.1.17, p. 177]) the embedding W, r C C([z,
T1; H) is continuous and dense. Moreover,

T
w(T),v(T)) — (u(7), v(1)) =/ [ @), v)v + (V') u®)vldt,  (1.59)

foreachu,v € W, r.
The main result of this section has the following formulation; Fig. 1.6.

Theorem 1.3 Let Assumptions 1, 2, 3, 4 and 5 be satisfied, 0 < 7 < T < +o0.
Then, for any y, € K there is at least one physical solution y of Problem (1.56) on
[z, T, and this solution is such that y(t) = y;.
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Proof We use the penalty method. Let Pk be the operator of orthogonal projection
of an arbitrary element of the space V onto the convex cone K. Let J : V — V*
be the dual operator, that is, the mapping satisfyin% the following two equalities:
NI y=lIvily = (JW),v)y and [|[J W) |ly+ = ||v||€',_ for an arbitrary v € V. By the
Asplund theorem, the space V can be renormalized by an equivalent strict norm so
that the corresponding norm in the conjugated space V* is also strict and equivalent
to its natural norm. Therefore, the operator J can be considered as single-valued.
We will use B(v) = J(v — Pxv), v € V, in the capacity of the penalty operator.
Note that B(v) = O if and only if v € K. Moreover, B(av) = a|a|?2B(v) and
(B(v),v)y = 0 for some arbitrary v € V and o € R. Hereafter, we consider that
BON@) = B(y()) foraa.t € (r,T) forally € X, 7.

Since B : X v — X ; is a bounded monotone demicontinuous operator, for an
arbitrary ¢ > 0, the mapping A.(y) := 2 r(y) + éﬂ(y), y € X; r,1s generalized
pseudomonotone on W, 7 (satisfies property 3). Moreover, the penalty operator def-
inition (defining the properties of the dual mapping J) and properties 1 and 2 for the
operator 7 7 imply properties 1 and 2 for the new operator A, acting from X; r to
X f,r Thus, [51, Theorem 2.4, p. 123] implies the existence of a solution y, € W, r
to the following problem:

1 _
Ve + Ao (e) + PO =0, ye(r) = yr. (1.60)

Moreover, formula (1.59), the monotonicity of 8, and the fact that K is a cone, imply
the following relationships:

— (& ye)xor H (G (V). E)x,, 20 VE € O ([t T V)N Ker,  (161)

lye @17 — Iy lF + 2/ (A1), ye())vdt =0 V1,1 € [1, T]. (1.62)

Assumptions 2 and 3 imply the existence a constant C4 > 0 such that
1Yelcqer.rim < Car Myellx,, < Car Ner(e)lx:, = Cs Ve>0. (1.63)
Let us prove the existence of a constant Cs > 0 such that
1520y, ,, < Cs Ve > 0. (1.64)

Assumption 5 implies the existence of v, € K, and r, > 0 such that {v € V, :
lv=vslly, <rs} C Ks.Since K, = KNV, isacone, without loss of generality, we
can consider that [|v,|ly, =landr, <1.WeputM :={v e K, : |[v—v,lly, <1}
and N := (M —v,)N(v, —M). The set N is convex, closed, absorbing, and balanced.
Thus, for the set N the Minkowski functional py (@) := inf{t >0 : ¢ € NL,w € V,
is correctly defined. Moreover, py satisfies the following three properties:



38 1 Qualitative Methods for Classes of Nonlinear ...

() lolly, < oy (@) < -]y, forany © € V,;
2) pn(vo) =1
3) {weV,: py@—v,) <1} CK,.

We put px(g) := sup{(g,w)y, : w € V;, pn(w) < 1}, g € V. Property (1) for
pn provides the equivalence between the norm pj; and the natural norm of the space
V. Considernow K :={g € V) : (g, w)y, < 0Vw € K,}. Properties (2) and (3)
of py imply

on(g) = —(g,vo)v, VgeK,. (1.65)

Since K C V isacone, the monotonicity of 8 : V — V* guarantees that (w) € K
for an arbitrary w € V. Therefore, statements (1.59), (1.60), and (1.65) provide the
fulfillment of the equalities

LBy, ,, =1 [TBG1). vo)vdr
= [TCAQe@), vo)vdt + e (T) = ye (D), vo)u

for any ¢ > 0. Thus, from inequalities (1.63), we obtain

1 1
gllﬁ(ys)lly,_,,,o < Callvo llv (T — 1) » +2C4llvslly Ve > 0. (1.66)

Finally, inequality (1.64) follows from Problem (1.60) and inequalities (1.63) and
(1.66) since the embedding X jT C Y:.r» is continuous and dense.
The following equality holds:

(ﬂ(ys)» ys)X,I =0 Ve > O, (167)

since (B(v), v)y = 0 for an arbitrary v € V. Moreover, from the monotonicity of 8
and the BanachSteinhaus theorem, we obtain

3Cs > 0: [IBGWlx:, <Cs Ve e (©,1). (1.68)

In fact, for an arbitrary @ € X r, the monotonicity of 8, estimate (1.63) and equality
(1.67) imply the following:

sup (B(ye), ®)x,, < sup (B(Ye), @ — Ye)x,, + sup (B(Ve), Ye)x. 1
e€(0,1) e€(0,1) ee(0,1)

= S%p)(ﬁ(w), © = Ye)x.r = IB@)Ix: (l@llx,, +C4) < 00,
ee(0,1

Hence, we obtain inequality (1.68) from the Banach—Steinhaus theorem.

From a priori estimates (1.63), (1.64), and (1.66), and the lemma on the com-
pactness of the embedding W; r C Ly(z, T; H) (by virtue of the compactness of
the embedding V C H), we obtain as a corollary of Banach—Alaoglu theorem that

there is a sequence ¢, \0, n — oo, and elements y € X; r andd € X;k,r such that
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y(t) = y, and the following convergences take place:

Ve, ~yin Xy 7, ¥, (t)—y(t)in H foraa.t e (r,T),

Vo (T) = y(TYin H, or(ye) ~din X2y n—oo. 109
Moreover, from inequalities (1.66) and (1.68), we obtain that
B(ye,) — 0in X7, n — oo. (1.70)

Let us show that y € K, 7. It follows from convergences (1.69) and (1.70) that
lim (B(y,)s e, — ¥)x., = 0. Since the monotone demicontinuous operator S is

pseudomonotone, taking into account convergence (1.70), the following inequality
holds:

0= lim (B(ve,). Yo, = @)x.s = (BO) Y = @)oo

VYo € X; 7. Thus, B(y(t)) € K for a.a. t € (tr,T). Therefore, y € K, r since
y € Xr,T-
Let us show that
im (7 7(e,), Ve, = V)xop =0 (1.71)

In fact, Problem (1.60), the monotonicity of 8 and formula (1.59) imply

(o7 (Ve)s Yoo — Wxor = H{BOe)s V= Ye)xor + (Vo oV = Yeu )Xo
< HBe) v = ye ) xor + VoV = Ve )xor (1.72)
< LBM v =y ) xs + VoV = Ve ) xr < V0V = Ve ) xoss

for arbitraryn = 1,2, ... and v € W; 7 N K, 1 since B(v) = 0. Thus, convergence
(1.69) implies the inequality

T (7 (3,), Ve D xer < (s Vxes + 00 = ¥, (1.73)

forallv e Wer N K, 7. Since 0 € K, 7 — w, for w, = y, € K., [29, p. 284]
implies the existence of a sequence {v;};—12.. C (K¢ 7 — @;) N W r such that

(@) vi(r) =0forall j =1,2,...;
(b) v > y —w;in X, 7 as j — 00;

(©) j@o(V}, Vi + o, — y)x.r < 0.

Iﬂing v=v+w; € K;rNW,r, j =1,2,... ininequality (1.73), we obtain that

lim (% 7(¥z,)s Ve, ) x.r < (d, ¥)x,,. Thelastinequality together with convergences

n—00 ’

(1.69) and inequalities (1.72) implies inequality (1.71). We will use the pseudo-

monotonicity of <% r on W 1. It follows from inequality (1.64), convergences

(1.69), and inequality (1.71) thatd = <7 7(y), lim (7 (ye,)s Ve, ) x,, = (d, ¥)x
n—o0

T2
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and ;
/ A (e, (). ye, @) — y())y|dt = 0 n — oco. (1.74)

Moreover, inequalities (1.72) additionally imply inequality (1.57).

To complete the verification of the fact that y is a physical solution to Problem
(1.56) on [t, T], it remains to verify that y € C([t, T]; H) and that y satisfies energy
equality (1.58).

It follows from formulas (1.59) and (1.60) (see also formula (1.62)) that

d 2
E”ysn(t)”[-[ = —(A(ye, (), ye, (O)v

for a.a. t € (r,T). We obtain from formula (1.74) and the last convergence in
formula (1.69) that the sequence {r — %Hysn (t)||§{}n:1.2,___ of measurable real-
valued functions on (7, T') is uniformly integrable, that is, there is a subsequence
{¥e,, }m < {Je, }n such that the sequence {t — %Hysm (t)||i,}m weakly converges in
Li(t,T)toanelement —(A(y(-)),y(-))v € Li(z, T). Hence, the sequence {t —
5_: lye, (t)||%,}m, on the one hand, converges in the space D*(t, T) (of generalized
functions on [z, T']) to a regular generalized function —(A(y( - )),y( - ))y €
Ly(t, T). On the other hand, the sequence {t — |y, (t)||12L1}m converges in the
space D*(t, T) to the measurable function || y( - )||31 essentially bounded on (7, 7).
Thus, the sequence {t — %Hysm (t)||%1}m converges in the space D*(t, T') to the
generalized function ;—t ly(- )||i1. Thus, by virtue of the uniqueness of the limit in
the space D*(t, T), “|ly( - )l = —(A(y(-)).y( )y € Li(z,T), which, in
view of formula (1.59), implies a priori estimate (1.58).
Let us show that
Iy@) =yl = 0 1\ 74 (1.75)

Since y; € K and (B(v), v)y = 0 for arbitrary v € V, formula (1.60) implies

ey (0, y0) = Iyell3 = 1L (5). yo)ds
= — [HAG:, (), yo)vdt — L [1(B(ye, (5)), ye)vdt
= — [HAQe, (), yo)vdt + L [1(B(e, (), ye, (5) — ye)vdt
> — [M(A®ye, (5)), yo)vdt

for arbitrary n = 1,2, ... and ¢t € (t, T). Otherwise,
Ver ), ) = 1yellzy < 1yl Uve, Oy — 1y llg)

for arbitraryn = 1,2, .. ..
Thus,

— [HAQ, (5)), ye)vdt < (ye, (1), yo) — Iy 113,
S yellgUye, Oy = lyellg), n=12,..., te(z,T),
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and, taking into account convergences (1.69), we obtain

— [HAG(5)), yo)vdt < (@), yo) = llyell%
S NyellgUyOllg = llyelly) foraa. t € (z, T).

Since (A(y( - )), y.)v € Li(z, T), energy equality (1.58) provides the last two
inequalities for all # € [t, T']. Hence

@), y2) = lyellf — Oas 1\ 7. (1.76)

To complete the proof of property (1.75) note that

y @) — yellz = YOl + 1yl — 20, yo), t € [7, T1.

Hence, energy equality (1.58) and property (1.76) imply property (1.75).
From the monotonicity of 8 and formulas (1.59) and (1.60) we obtain the
inequality

e, (t + 1) = ye, DI
< 1ye, (T + 1) = yell3y =2 [L{AGe, (s + 1) — A(Ye, (5)). Ye, (s + ) — ye, () ydt

for arbitrary t € (v, — h) and h € (0, T — 7). From property 3, convergences
(1.69) and (1.74), and the last inequality we obtain

ly(+h) — y®)l5
< y@+m) =yl =2 [[{AQ(s + h) — A(y(5)), y(s + h) — y(S))v?i -
fora.a.t € (v, T —h) and arbitrary & € (0, T —t). With allowance for energy equality
(1.58), inequality (1.77) takes place forallt € (t,7 —h)and h € (0, T — 7). Thus,
formulas (1.75) and (1.77) imply the property of continuity of y as a mapping from
a time interval [t, T'] into the phase space H.
The theorem is proved.

For fixed T < T, we introduce the notation:

P 1 (yr) = {y(-) | y is a physical solution to inequality (1.56) on [z, T], y(t) = y¢},
yr € K.

It follows from Theorem 1.3 that 2, r(y;) # @ and Z; r(y.) C C([r,T]; H)
VT < T, y. € K. Moreover, the conditions imposed on the parameters of Problem
(1.56) and the generalized Gronwall-Bellman lemma [2] imply the existence of Cy,
Cs, Cg, C7 > 0 such that, for any finite time interval [t, T'] each physical solution
y to Problem (1.56) on [z, T'] satisfies the following estimate V¢ > s,¢,s € [7, T]:

Iy + 04/ Iy @5 dE < ly(s)I13 + Cs(t — s), (1.78)
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2 2 - —3
Iy < Iy®)lIze ™ + Cr. (1.79)

Moreover, the translation and concatenation of physical solutions to Problem (1.56)
on finite time intervals are physical solutions of this problem on the corresponding
intervals. It follows from the proof of Theorem 1.3 that the penalty method guarantees
the existence of physical solutions to Problem (1.56) on a finite time interval that are
equicontinuous as mappings from a time interval [, 7] into the phase space H if
they start from a bounded subset of the natural phase space H (that is, the statements
of the theorems on the strong convergence of solutions from [24]). Thus (see [24]),
physical solutions (a) can be extended to global solutions defined on the positive time
semiaxis; (b) tends uniformly to a small (compact) subset of the natural phase space
H (as time t — 400), and this subset is independent of the bounded set from which
they have started. Proceeding from the results of [24], such an attracting set consists
of complete trajectories of Problem (1.56) that are defined on the entire real line.
Thus, the results of (1.56) allow one to globally describe the dynamics of solutions
to such problems by finite algorithms up to an arbitrary small parameter.

1.4 Nonlinear Parabolic Equations of Divergent Form

Consider now an example of the class of nonlinear boundary problems for which the
dynamics of solutions can be investigated as t — +o00. Note that our consideration
does not pretend to generality.

Assume thatn >2,m > 1,p>21<qg <2, 1 —i———landQCR”lsa
bounded domain with a sufficiently smooth boundary F = 8.(2 N| (N, accordingly)
is the number of differentiations with respect to x of order of < m — 1 (of order of
= m accordingly). Let A, (x, 1; §) be the family of real functions (Jo| < m) that are
defined in £2 x R x RM and satisfy the following conditions:

(i) for a.a. x € £2 afunction (1, §) — Aq(x, n, &) is continuous in RV x RM;
(i) Y(n, &) € RM x RM afunction x — A, (x, 1, £) is measurable in £2;
(iii) there are ¢y > 0 and k; € L,(§2) such that, for a.a. x € £ and V(n,§) €
RM x RN
|AaCe, )] < erllnl? ™ + 517" + k()]s

(iv) there are ¢, > 0 and k; € L,(§2) such that, for a.a x € £ and V(n,&) €
RM x RM

D Aalx 0, E)E = col€]” — ka(x);

la|=m

(v) thereis anincreasing real-valued function v such that, fora.a. x € £2,Vn € RM,
and V&, £* € RM, £ # £* the following inequality holds:
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Z (A (x, 1, 8) — Ag(x, 1, "N (e — &) = (W) — v(E)Ex — &)-

|la|=m

We introduce the denotations D*u = {DPu, |8| = k}anddu = {u, Du, ..., D" 'u}
[48, p. 194].

For an arbitrary fixed external force f € L,(£2), we will investigate the dynamics
of the following problem for all weak (generalized) solutions defined on [0, 4+-00) as
r — +4o00:

ay(axt—’ D 3 (—)FID# (A (x. by (. 1), D7 y(x. 1)) = £(@) in 2 x (0, +00),
lo|<m

(1.80)

D*y(x,1) =0 on I" x (0, 400), || <m —1, (1.81)

y(x,t) > 0fora.a. (x,1) € £2 x (0, 400).

We introduce the following denotations [48, p. 195]: H = Ly(2),V = W;""(£2),
V, = W) P(£2),0 > 1,is the Sobolev real space, K = {y € W""(£2) : y(x) >
0 fora.a. x € £2}, and

a(u, w) = z /QAa(x,(Su(x),D”’u(x))D“a)(x)dx, u,weVv.

|or|<m

Taking into account conditions (i)—(v) and [29, pp. 192—-199], the operator A : V —
V* defined by the formula (A(u), w)y = a(u, ) Yu,w € V satisfies the basic
assumptions. Therefore, we can pass from Problems (1.80), (1.81) to corresponding
Problem (1.56). Note that

Aw) = Z (=D D* (Ag(x, 8u, D"u)) Yu € C°(£2).

|| <m

Thus, for physical solutions to Problems (1.80), (1.81), all the statements from the
previous sections hold.

References

1. Aubin, J.P.,, Ekeland, I.: Applied Nonlinear Analysis. Mir, Moscow (1988)

2. Ball, J.M.: Continuity properties and global attractors of generalized semiflows and the Navier—
Stokes equations. J. Nonlinear Sci. 7(5), 475-502 (1997)

3. Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Editura Acad,
Bucuresti (1976)

4. Bearman, P.W., Obasaju, E.D.: An experimental study of pressure fluctuations on fixed and
oscillating square-section cylinders. J. Fluid Mech. 119, 297-321 (1982)

5. Browder, FE., Hess, P.: Nonlinear mappings of monotone type in Banach spaces. J. Funct.
Anal. (1972). doi:10.1016/0022-1236(72)90070-5


http://dx.doi.org/10.1016/0022-1236(72)90070-5

44

o

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

1 Qualitative Methods for Classes of Nonlinear ...

Browder, F.E.: Pseudomonotone operators and nonlinear elliptic boundary value problems on
unbounded domains. Proc. Natl. Acad. Sci. 74, 2659-2661 (1977)

Carl, S., Motreanu, D.: Extremal solutions of quasilinear parabolic inclusions with generalized
Clarke’s gradient. J. Differ. Equ. (2003). doi:10.1016/S0022-0396(03)00022-6

Chikrii, A.A.: Conflict-Controlled Processes. Kluver Academic Publishers, Boston (1997)
Davis, R.W., Moore, E.F.: A numerical study of vortex shedding from rectangles. J. Fluid Mech.
116, 475-506 (1982)

Denkowski, Z., Migorski, S., Papageorgiou, N.S.: An Introduction to Nonlinear Analysis.
Kluwer Academic Publishers, Boston (2003)

Duvaut, G., Lions, J.L.: Inequalities in Mechanics and in Phisycs. Nauka, Moskow (1980)
Gajewski, H., Groger, K., Zacharias, K.: Nichtlineare Operatorgleichungen und Operatordif-
ferentialgleichungen. Akademie, Berlin (1974)

Gorban, N.V., Kapustyan, O.V., Kasyanov, P.O.: Uniform trajectory attractor for non-
autonomous reaction-diffusion equations with Carathéodory’s nonlinearity. Nonlinear Anal.
98, 13-26 (2014)

Guan, Z., Karsatos, A.G., Skrypnik, L.V.: Ranges of densely defined generalized
pseudomonotone perturbations of maximal monotone operators. J Differ. Equ. (2003). doi:10.
1016/S0022-0396(02)00066-9

Hu, S., Papageorgiou, N.S.: Handbook of Multi-Valued Analysis, Vol. I: Theory. Kluwer Aca-
demic Publishers, Dordrecht (1997)

Hu, S., Papageorgiou, N.S.: Handbook of Multi-Valued Analysis, Vol. II: Applications. Kluwer
Academic Publishers, Dordrecht (1997)

Kalita, P., Lukaszewicz, G.: Global attractors for multi-valued semiflows with weak continuity
properties. Nonlinear Anal. Theory Methods Appl. 101, 124-143 (2014)

Kapustyan, V.0O., Kasyanov, P.O., Kogut, O.P.: On solvability for one class of parameterized
operator inclusions. Ukr. Math. J. (2008). doi:10.1007/s11253-009-0179-z

Kasyanov, P.O., Mel’nik, V.S., Toscano, S.: Periodic solutions for nonlinear evolution equations
with W, -pseudomonotone maps. Nonlinear Oscil. (2006). doi:10.1007/s11072-006-0037-y
Kasyanov, P.O., Melnik, V.S., Valero, J.: On the method of approximation for evolu-
tionary inclusions of pseudo monotone type. Bull. Aust. Math. Soc. (2008). doi:10.1017/
S0004972708000130

Kasyanov, P.O., Melnik, V.S., Yasinsky, V.V.: Evolution Inclusions and Inequalities in Banach
Spaces with w; -Pseudomonotone Maps. Naukova Dumka, Kiev (2007)

Kasyanov, P.O., Mel’'nik, V.S., Piccirillo, A.M.: Local subdifferentials and multivariational
inequalities in Banach and Frechet spaces. Opusc. Math. 28, 295-311 (2008)

Kasyanov, P.O., Mel’'nik, V.S., Toscano, S.: Solutions of Cauchy and periodic problems for
evolution inclusions with multi-valued w;,-pseudomonotone maps. J. Differ. Equ. 249(6),
1258-1287 (2010)

Kasyanov, P.O.: Multi-valued dynamics of solutions of an autonomous differential-operator
inclusion with pseudomonotone nonlinearity. Cybern. Syst. Anal. 47(5), 150-163 (2011)
Kasyanov, P.O., Melnik, V.S.: Faedo—Galerkin method differential-operator inclusions in
Banach spaces with maps of wy, -pseudomonotone type. Natl. Acad. Sci. Ukr. Kiev, Inst.
Math. Prepr. 1, 82-105 (2005). Part 2

Kasyanov, P.O., Melnik, V.S.: On solvabbility of differential-operator inclusions and evolution
variation inequalities generated by w;,, -pseudomonotone maps type. Ukr. Math. Bull. 4, 535-
581 (2007)

Kuttler, K.: Non-degenerate implicit evolution inclusions. Electron. J. Differ. Equ. 34, 1-20
(2000)

Lions, J.L.: Quelques methodes de resolution des problemes aux limites non lineaires. Dunod
Gauthier-Villars, Paris (1969)

Lions, J.-L.: Some Methods of Solution of Nonlinear Boundary-Value Problems [Russian
Translation]. Mir, Moskow (1972)

Liu, Z., Migérski, S.: Noncoercive Damping in Dynamic Hemivariational Inequality with
Application to Problem of Piezoelectricity. Discret. Contin. Dyn. Syst. Ser. B (2008). doi:10.
3934/dcdsb.2008.9.129


http://dx.doi.org/10.1016/S0022-0396(03)00022-6
http://dx.doi.org/10.1016/S0022-0396(02)00066-9
http://dx.doi.org/10.1016/S0022-0396(02)00066-9
http://dx.doi.org/10.1007/s11253-009-0179-z
http://dx.doi.org/10.1007/s11072-006-0037-y
http://dx.doi.org/10.1017/S0004972708000130
http://dx.doi.org/10.1017/S0004972708000130
http://dx.doi.org/10.3934/dcdsb.2008.9.129
http://dx.doi.org/10.3934/dcdsb.2008.9.129

References 45

31

32.

33.

34.

35.

36.

37.
38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Mel’nik, V.S.: Critical points of some classes of multi-valued mappings. Cybern. Syst. Anal.
(1997). doi:10.1007/BF02665895

Mel’nik, V.S.: Multivariational inequalities and operator inclusions in banach spaces with
mappings of the class (§)-. Ukr. Mat. Zh. (2000). doi:10.1023/A:1010431221039

Mel’nik, V.S.: Topological methods in the theory of operator inclusions in Banach spaces. 1.
Ukr. Math. J. (2006). doi:10.1007/s11253-006-0062-0

Migérski, S.: Boundary hemivariational inequalities of hyperbolic type and applications. J.
Global Optim. (2005). doi:10.1007/s10898-004-7021-9

Minewitsch, S., Franke, R., Rodi, W.: Numerical investigation of laminar vortex-shedding flow
past a square cylinder oscillating in line with the mean flow. J. Fluids Struct. 8, 787-802 (1994)
Naniewicz, Z., Panagiotopoulos, P.D.: Mathematical Theory of Hemivariational Inequalities
and Applications. Marcel Dekker, New York (1995)

Okajima, A.: Strouhal number of rectangular cylinders. J. Fluid Mech. 123, 379-398 (1982)
Panagiotopoulos, P.D.: Inequality Problems in Mechanics and Applications. Convex and Non-
convex Energy Functions. Birkhauser, Basel (1985)

Panagiotopoulos, P.D.: Hemivariational Inequalities, Applications in Mechanics and Engineer-
ing. Springer, Berlin (1993)

Perestyuk, N.A., Plotnikov, V.A., Samoilenko, A.M., Skrypnik, N.V.: Impulse differential equa-
tions with multi-valued and discontinuous right-hand side. Institute of mathematics NAS of
Ukraine, Kyiv (2007)

Perestyuk, M.O., Kasyanov, P.O., Zadoyanchuk, N.V.: On Faedo-Galerkin method for evolution
inclusions with w; -pseudomonotone maps. Mem. Differ. Equ. Math. Phys. 44, 105-132
(2008)

Skrypnik, I.V.: Methods of Investigation of Nonlinear Elliptic Boundary Problems. Nauka,
Moscow (1990)

Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer,
New York (1988)

Vickery, B.J.: Fluctuating lift and drag on a long cylinder of square cross-section in a smooth
and in a turbulent stream. J. Fluid Mech. 25, 481-494 (1966)

Zadoyanchuk, N.V., Kas’yanov, P.O.: Faedo-Galerkin method for second-order evolution inclu-
sions with Wj-pseudomonotone mappings. Ukr. Math. J. (2009). doi:10.1007/s11253-009-
0207-z

Zgurovsky, M.Z., Kasyanov, P.O.: Multi-valued dynamics of solutions for autonomous operator
differential equations in strongest topologies. In: Continuous and Distributed Systems: Theory
and Applications. Solid Mechanics and Its Applications, vol. 211, pp. 149-162 (2014)
Zgurovsky, M.Z., Melnik, V.S.: Ky Fan inequality and operational inclusions in Banach spaces.
Cybern. Syst. Anal. (2002). doi:10.1023/A:1016391328367

Zgurovsky, M.Z., Kasyanov, P.O., Melnik, V.S.: Differential-Operator Inclusions and Varia-
tional Inequalities in Infinitely Dimensional Spaces [in Russian]. Naukova Dumka, Kyiv (2008)
Zgurovsky, M.Z., Kasyanov, P.O., Melnik, V.S.: Differential-Operator Inclusions and Variation
Inequalities in Infinitedimensional Spaces (in Russian). Naukova Dumka, Kyiv (2008)
Zgurovsky, M.Z., Mel’nik, V.S., Kasyanov, P.O.: Evolution Inclusions and Variation
Inequalities for Earth Data Processing 1. Springer, Heidelberg (2010). doi:10.1007/978-3-
642-13837-9

Zgurovsky, M.Z., Mel'nik, V.S., Kasyanov, P.O.: Evolution Inclusions and Variation
Inequalities for Earth Data Processing II. Springer, Springer (2010). doi:10.1007/978-3-642-
13878-2

Zgurovsky, M.Z., Kasyanov, P.O., Kapustyan, O.V., Valero, J., Zadoianchuk, N.V.: Evolu-
tion Inclusions and Variation Inequalities for Earth Data Processing III. Series: Advances in
Mechanics and Mathematics, vol. 27. Springer, Berlin (2012)

Zgurovsky, M.Z., Melnik, V.S.: Nonlinear Analysis and Control of Physical Processes and
Fields. Springer, Berlin (2004)


http://dx.doi.org/10.1007/BF02665895
http://dx.doi.org/10.1023/A:1010431221039
http://dx.doi.org/10.1007/s11253-006-0062-0
http://dx.doi.org/10.1007/s10898-004-7021-9
http://dx.doi.org/10.1007/s11253-009-0207-z
http://dx.doi.org/10.1007/s11253-009-0207-z
http://dx.doi.org/10.1023/A:1016391328367
http://dx.doi.org/10.1007/978-3-642-13837-9
http://dx.doi.org/10.1007/978-3-642-13837-9
http://dx.doi.org/10.1007/978-3-642-13878-2
http://dx.doi.org/10.1007/978-3-642-13878-2

Chapter 2
Regularity of Solutions for Nonlinear
Systems

Abstract In this chapter we establish sufficient conditions for regularity of all weak
solutions for nonlinear systems. We note that the respective Cauchy problems may
have nonunique weak solution. In Sect.2.1 we establish regularity of all weak solu-
tions for parabolic feedback control problems. Section2.2 devoted to artificial con-
trol method for nonlinear partial differential equations and inclusions. The regularity
of all weak solutions is obtained. In Sect.2.3 we consider regularity results of all
weak solutions for nonlinear reaction-diffusion systems with nonlinear growth. In
Sect.2.4 we consider the following examples of applications: a parabolic feedback
control problem; a model of conduction of electrical impulses in nerve axons; a cli-
mate energy balance model; FitzZHugh—Nagumo System; a model of combustion in
porous media.

2.1 Regularity of All Weak Solutions for a Parabolic
Feedback Control Problem

Let 2 CR", n > 1, be bounded and open subset with a smooth boundary 352, f,

f : R — R are some real functions. We consider the semilinear reaction-diffusion
inclusion:

up— Au+[f@), f@)]30in 2 x (7, T), (—oo<t<T <+00), (21)

with boundary condition

ul,, =0, (2.2)

where [a, b] = {ea + (1 —a)b|a € [0, 1]},a, b € R. Wesuppose that f = [i, ?] :
R — 2R\ {#)} satisfies the growth condition

3eo >0 —co(l + |ul) < fu) < fu) < co(l + |u) Vu€R. (2.3)

Suppose also that f is lower semi-continuous, and f is upper semi-continuous.
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48 2 Regularity of Solutions for Nonlinear Systems

We shall use the following standard notations: H = L?(£2), V = HO1 (£2), V'is
the dual space of V. The function u(-) € L*(t, T; V) is a weak solution of Problem
(2.1) and (2.2) on [, T], if there exists a measurable functiond : 2 x (t,T) - R
such that

d(x,1) € [f(ux, 1), fu(x,1)] forae. (x,1) € 2x (r,T);  (24)

T di: T T
—/ <u,—>dt+/ /(Vu,vg)dxdt+/ /(d,g)dxdzzo (2.5)
< dt T Q T 2

forall &£ € C5°($2 x (t, T)), where (-, -) denotes the pairing in the space V.

We note that Problem (2.1) and (2.2) arises in many important models for distrib-
uted parameter control problems and that large class of identification problems enter
this formulation. Let us indicate a problem which is one of motivations for the study
of the autonomous evolution inclusion (2.1) (cf. [37, 56] and references therein). In
a subset 2 of R?, we consider the nonstationary heat conduction equation (Figs. 2.1
and 2.2):

dy

E—Ayzfin.Qx(O,—i—oo)

with initial conditions and suitable boundary ones. Here y = y(x, ) represents the

temperature at the point x € §2 and time ¢ > 0. It is supposed that f = f; + f>,
where f; is given and f; is a known function of the temperature of the form

—filx,t) € 9j(x, y(x,1)) ae. (x,1) € 2 x (0, 400);

Figure2.3 Here 9j(x, §) denotes generalized gradient of Clarke (see [12]) with
respect to the last variable of a function j : £2 x R — R which is assumed to be
locally Lipschitz in & (cf. [37] and references therein). The multi-valued function
9j(x,-) : R — 2% is generally nonmonotone and it includes the vertical jumps. In a
physicist’s language it means that the law is characterized by the generalized gradient
of a nonsmooth potential j (cf. [39]).

| diffusion processes |
physical biological chemical ecological geological
systems systems systems systems systems

Fig. 2.1 Diffusion processes
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Fig. 2.2 Idealized physical A
setting for heat conduction in y(%,0) = a(x)
a rod with homogeneous

boundary conditions y(0,e) =0 ﬂn/\-/\ \y(f, t)=0
H!’ — } T
o :

Fig. 2.3 Feedback control
diagram System

Controller

Another motivations connected with parabolic equations with a discontinuous
nonlinearity. In [43] it is considered the case, when f is the difference of maxi-
mal monotone maps. Global attractor in phase space H for such type equations is
considered there. Obtained inclusion is a particular case of an abstract differential
inclusion generated by a difference of subdifferential maps of proper convex lower
semicontinuous functionals [38]. Models of physical interest includes also the next
(cf. [3] and references therein):

e a model of combustion in porous media;
e a model of conduction of electrical impulses in nerve axons;
e aclimate energy balance model;

etc. The main purpose of this subsection is to investigate regularity properties of all
globally defined weak solutions for Problem (2.1) and (2.2) with initial datau, € H
under listed above assumptions.

Further we need to consider the restriction of v:[7, 7] — V* on [s5,T], s €
(r, T), T < T. To simplify conclusions denote it by the same symbol v(-).

Theorem 2.1 Let u(-) be an arbitrary weak solution of Problem (2.1) and (2.2)
on [t,T]. Then for any ¢ € (0, T — 1) u(:-) e C([t+¢, TI; V)N L*(t +¢,T;
H*(2)NV)and u,(-) € L*(t + ¢, T; H).

Proof Let u(-) be an arbitrary weak solution of Problem (2.1) and (2.2) on [z, T'].
Then there exists a measurable functiond : 2 x (t, T) — Rsuch that u(-) and d(-)
satisfy (2.4) and (2.5). As u(-) € L%(2 x (t,T)) and the growth condition (2.3)
holds, then d(-) € L?(§2 x (z, T)). The set

9D :={se (@, T)|uls) eV}

is dense in [7, T']. For any arbitrary fixed s € & we note that u(-) is the unique weak
solution on [s, T'] of the problem
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72— Az =—d(x,t)in 2 x (s, T),
z|,, =0, (2.6)
z(x,s) =u(x,s)in £2.

Moreover, u(-) € L*(s, T; H*(2)NV)NC([s,T]; V) and u,(-) € L?(s, T: H),
s € Z (cf. [40, Chap.4.1], [42, Chap. III] and references therein). Thus for any ¢ €
O,T—1) u(-)eC((r+e& T V)NL>(t+¢ T; H*(2)NV) and u,(-) € L?
(t+e,T; H).

The theorem is proved.

2.2 Artificial Control Method for Nonlinear Partial
Differential Equations and Inclusions: Regularity
of All Weak Solutions

Let (V; H; V*) be evolution triple , where V be areal Hilbert space, suchthatV C H
with compact imbedding. Let A : V — V* be a linear symmetric operator such that
dec>0: (Av,v)y > c||v||%,,f0r eachve Vandlet D(A) ={u eV : Au € H}. We
note that the mapping v — || Av|| y defines the equivalent norm on D(A); Temam [42,
Chap. III]. Let B : R x V — 2\ {3} be set-valued (in the general case) mapping
such that the following assumption holds: there exists ¢; > O such that ||y|g <
ci(1 4 |lully), fora.e. t andeachu € V and y € B(¢, u).

For a set D C H let coD be a closed convex hull of a set D. We consider the
differential-operator inclusion:

du

A + B u@) 2 0 (—oo <7 <T < +00). 2.7)

The function u(-) € L?>(z, T; V) is called a weak solution of Problem (2.7) on
[, T, if there exists a Bochner-measurable function d : (t, T) — H such that

d(t) e coB(t,u(t)) forae.t € (r, T); and (2.8)

T
/ [— (. v) E'(1) + (Au, v) E(t) + (d, v) ()] dt = 0, (2.9)

forall§ € C§°(r, T)andforallv € V, where (-, -) denotes the pairing in the space V.
The main regularity result of this section has the following formulation.

Theorem 2.2 Let —0o <t < T < 400 and u, € H. If u(-) is a weak solution of
Problem (2.7) on [t, T, then u(-) € C([t +¢&,T]; V)N L*(t +¢, T; D(A)) and

ill_z:(_) e L (t +¢,T; H) foreachs € (0, T — 7).



2.2 Atrtificial Control Method for Nonlinear Partial Differential ... 51

Proof Let u(-) be an arbitrary weak solution of Problem (2.7) on [z, T']. According
to the definition of a weak solution of Problem (2.7) on [z, T'], there exist d €
L*(t, T; H) such that u(-) € L*(z, T; V) and d () satisfy (2.8) and (2.9). Note that
the set

2 ={se(,T)|u(s) eV}

is dense in [z, T]. For an arbitrary fixed s € Z we remark that u(-) is the unique
weak solution on [7, T'] of the problem

dz 4 Az(r) = —d(t)on (s, T),
di

z(s) = u(s). (2.10)
Therefore, u(-) € L*(s, T: D(A)) N C([s, T]; V) and %(') e L*s,T:H),s €@
(cf. [40, Chap. 4.1], [42, Chap. III] and references therein). Thus u(-) € C([t +
e, T; V)NL*(t +¢ T; D(A) and fi—’;(-) € L*(t+¢,T; H) for any ¢ € (0,
T —1).

The theorem is proved.

Remark 2.1 Theorem 2.2 implies that each weak solution of Problem (2.7) on [z, T']
is regular, that is, u(-) € L%, T: D(A)NC([e, T]; V) and ‘fl—'t‘(-) e L*(@, T; H),
foreache € (0, T — 7).

Let B(t,u) := dJ;(u) — 0J,(u) foreachu € V and t € R, where J; : H > R
be a convex, lower semi-continuous function such that the following assumptions
hold: (i) (growth condition) there exists ¢; > O such that ||y|lg < c1(1 + |lull ), for
eachu € H and y € dJ;(1) and i = 1, 2; (ii) (sign condition) there exist ¢; > O,
A € (0, ¢) such that (y; — yo, u)yg > —)»I|u||f1 — ¢, for each y; € 9J;(u), u € H,
where dJ; (1) the subdifferential of J;(-) at a point u#. Note that u* € 9J; () if and
only if u*(v —u) < J;(v) — J;(u) Vv € H;i = 1, 2. For such B Problem (2.7) has
the following formulation:

du

7 + Au() + 3J,(u(®)) — 3 (u@) >0 (—oo <1 <T < +00). (2.11)

We recall that the function u(-) € L(t, T; V) is called a weak solution of Problem
(2.11) on [t, T], if there exist Bochner measurable functions d; : (v, T) — H;i=
1,2, such that

di(t) € 0J;(u(t)) forae.t € (r, T), i=1,2; and (2.12)

T
/ [— (s v) §'(0) + (Au, v) () + (d1,v) (1) — (do, v) E(D)] dt =0, (2.13)

forall & € Cg°(r, T) and forallv e V.
The following theorem provides sufficient conditions for the existence and regu-
larity of all weak solutions for Problem (2.11).
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Theorem 2.3 Let —0co <1 < T < +ooand u, € H. If u(-) is a weak solution of
Problem (2.11) on [t, T), then u(-) € C([t +¢,T); V)N L*(t + ¢, T; D(A)) and
du(yeL*(t+e T;H)foranye € (0,T — 7).

Proof The regularity of each weak solution follows from Theorem 2.2.
The theorem is proved.

2.3 Regularity of All Weak Solutions for Nonlinear
Reaction-Diffusion Systems with Nonlinear Growth

In this section we establish sufficient conditions for regularity of weak solutions
for both reaction-diffusion equations (Sect.2.3.1) as well as systems of reaction-
diffusion equations (Sect.2.3.2) separately.

2.3.1 Reaction-Diffusion Equations

In a bounded domain £2 C R?® with sufficiently smooth boundary 32 we consider
the problem
u;— Au+ f(u)=h, xe£2,t>0,
ulye =0, (2.14)
u (0) = uo,

where
h e L*(£2),

feCm®), (2.15)
|f@)] < Ci(l+[ulP™h), Yu R,

with2 < p <3,Cy,Cr,a > 0.

We denote by A the operator —A with Dirichlet boundary conditions, so that
D(A) = H*(£2)N HO1 (£2) . As usual, denote the eigenvalues and the eigenfunc-
tionsof Aby A, e, i =1,2...

Denote F(u) = fou f(s)ds. From (2.15) we have that lim inf % = 00, and for

|lu|—o0
some D;0,
|F(w)| < Di(1 + |u|?), VueR. (2.16)
In what follows we denote H = L? (£2),V = HO1 (£2),and || - ||, (-, -) will be the
norm and the scalar product in L?(£2). We denote by || - ||x the norm in the abstract

Banach space X, whereas (-, -)y will be the scalar product in the abstract Hilbert
space Y. Also, P (X) will be the set of all non-empty subsets of X.
On the other hand, we define the usual sequence of spaces
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o0
V=DA% ={ueH: Y x| e)l < oo},

i=1

where o > 0. We recall the following well known result, which is a particular case
of [40, Lemma 37.8] for our operator A = — A in a three-dimensional domain.

Lemma 2.1 D (A%) C Wk4' (§2) whenever ¢’ > 2 and k is an integer such that

k—i<2a—§.
q’ 2

Also, itis well known that V* C H® (£2) forall s > 0 (see [49, Chap. IV] or [34]).
A functionu € LIZOC(O, +o0; VYN L,’;C(O, +00; L?(8£2)) is called a weak solution
of (2.14) on (0, +o0) ifforall T > 0, ve V, n e C°(0,T)

T T
—/(M,V)rhdt+/((u,\1)v + (f(w),v) = (h,v)) ndt = 0.
0 0

It is well known [1, Theorem 2] or [9, p. 284] that for any u € there exists at
least one weak solution of (2.14) with u(0) = u( (and it may be non unique) and
that any weak solution of (2.14) belongs to C ([0, +00); H). Moreover, the function
t > |lu(t)||? is absolutely continuous and

1d
EEIIM(I)II2 +lu®Iy + (F @@), u@)) = (h, u@)) =0 ae. 2.17)

The function u € LIZOC(O, +o0; VYN L,’;C(O, +o00; LP(£2)) is called a regular
solution of (2.14) on (0, +oo) if forall T > 0, ve V, and n € C3°(0, T') we have

T T
—/(u,v)mdt+/((u,v)v+(f(u),v)—(h,v)) ndt = 0, (2.18)
0 0
and
uel>®eET;V), (2.19)
u, € L*>(e,T;: H), V0 < ¢ < T. (2.20)

Any regular solution u satisfies
uel?@e&T;D(A). (2.21)

In this section we will prove that every weak solution is in fact a regular solution.
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Theorem 2.4 Assume that 2 < p < 3 in condition (2.15). Then any weak solution
u (-) satisfiesu € C ([e, T]; V)N L?(e,T; D(A), u, € L* (&, T: H) foralle > 0,
that is, it is a regular solution.

Proof From

/ |f (u(x,1))]77 dx < C +C2/ lu (x, )| dx
2 2

we obtain that
2p—2
I GO oy = Gt Calue 0155,

Using the Sobolev embedding H” (£2) C L” (2) if r = (3 — é) <

27 (as p=3)

1
2
and the Gagliardo—Nirenberg inequality

l l
IVilgr @) = Cs vl = GCs VI VIl ) »

HY(2)
we have
2 p—1 p—1
If @) oy < Gt Collue O e 0l g,
< Csy+ Collu O lu D371 -
Thus,

<
f (u)”LZ(O,T;LP%l(Q)) <Cy (1 + llulleqo,r: 1) ”u”LZ(O,T;Hl(_Q))) )

Setd (x,1) = f(u(x, 1)) for(x, 1) € (0, T) x 2.Thend € L? (0, T: L (9))
CL*(0,T; H"(£2)) C L*(0,T; V™).
‘We consider the problem

vw—Av=—d(x,t)+h(x), xe€8,1t>0,
V0se =0,
v(t)=u (7).

We note that u (t) € V C V" for a.a. T > 0. For such t in view of [40, p. 163,
Theorem 42.12] there exists a unique weak solution v (-) such that v € C([z, T];
VOYNL?(r,T; V'), Hence,u € C([e, T]; V') N L* (e, T; V"*!) forall & > 0.
We shall prove that f(u (-)) € L? (e, T: H). As this is obvious if p =2, we
consider that 2 < p < 3. We note that V" C H" (£2) C L? (£2). Also, by Lemma

2.1 with o = % r=3 (% — %) k =1 we obtain that V"' ¢ W4 () for

any ¢’ < p. On the other hand, by the Sobolev embedding theorems we have
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W' (2) c L1 (), for g < i—pp Thus, the inequality p(p — 1) < i—pp, for all
2 < p <3,impliesthatu € C([e, T1; L? (£2)) N L* (¢, T; LPP~Y (£2)). By (2.15)
we have

I @@= [ 1f e <+ o [ ue P ds
2 fo}
p—1 p—1
<Ci3+Cullu (t)||Ll’(_Q) [|ue (t)“Lﬂ(ﬁ—l)(_Q) .
Therefore, f(u (-)) € L? (¢, T; H). Then standard results imply that u € C([e, T];
VYN L% e, T; D(A) andu, € L* (e, T; H).

The lemma is proved.

Remark 2.2 Theorem 2.4 was proved in [23].

2.3.2 Systems of Reaction-Diffusion Equations

Let us consider the following reaction-diffusion system (RD-system for short)

u, =aldu— f(u) +hx), xef,t>0, (2.22)

ulpe =0,
where u = u(x,t) = (u'(x,1),...,u" (x, 1)) is unknown vector-function, a is a
real N x N matrix with positive symmetric part %(a +a*)y>p8I, >0, h=
(hi,...,hy), f =(f1,..., fn) are given functions,

he (L)Y, feCRY;RY),

and for given numbers C;, C; >0, y >0, p; > 2, i =1, N the following condi-
tions hold:

N N
VveRY DUIAWIT < il + D MM, (2.23)
i=1 i=1

N N
VveRY DLV =y D VP -G (2.24)

i=1 i=1
where pl + % =1, i =1, N. In further arguments we will use the standard func-

tional spaces
N

H = (L*(22))" with the norm |v|* = /Z|v"(x)|2dx,

o =1
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N
V = (H}(2))" with the norm [[v]|*> = /Z|W(x)|2dx.

o i=l

Let us denote V' =H '), p=(pi,...,pyn), LP(2)=L"(2)x---
x LPV($2),
(0, +00; LP(£2)) N L}, (0, 4+00; V).

loc

w =L

loc

Definition 2.1 The function u = u(x,r) € W is called a (global) weak solution of
Problem (2.22) on (0, +o0) if forall T > 0, v € V N LP(£2),

%/u(x, Hv(x)dx + /(aVu(x, HVv(x) + fux, t)vix) — h(x)v(x))dx =0
2

2
(2.25)

in the sense of scalar distributions on (0, 7).

From (2.23) and Sobolev embedding theorem we see that every solution of (2.22)

satisfies u; € L?OC(O, +o00; H"(£2)), where r = (ry, ..., ry), ry = max{l, n(% —

lk)}. The well-known result on global resolvability of (2.22) for initial conditions
rom the phase space H established in [9]. Under conditions (2.23), (2.24) for every
uop € H there exists at least one weak solution of (2.22) on (0, +00) with u(0) = uy.
Every weak solution of (2.22) belongs to C ([0, +-00); H), the function ¢ > |u(t)|?
is absolutely continuous and for a.a. ¢+ > 0 the following energy equality holds

1d
EEIM(I)I2 + @Vu(t), Vu(0) + (f (), u(r)) = (h, u()). (2.26)

The function u = u(x, t) € W is called a regular solution of Problem (2.22) on
(0, +00) if it is weak solution on (0, +00) and, additionally,

uel™(e,T; VNLP(R)), (2.27)
u, € L?>(@, T;H)V0<e <T. (2.28)

Let us consider the following additional condition on vector-function f [51]:
VveRY f(v)=VF®W) +gW), (2.29)

where V F satisfies (2.23), (2.24),and g € C(RY; R") is such that for some constants
320,04 =20,

lgI* < C3F ) + Ca(v]* + 1), Vv e RY, (2.30)

If N = 1 (scalar case), then (2.29), (2.30) hold with F(v) = [ f(s)ds, g = 0.
0
Conditions (2.29), (2.30) also take place if
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fiv) =y V1" +gi(w), i = LN,
where o; > 0, g € C(RY; RY), and |g(v)| < C4(1 + |v|). Another example is the

FitzHugh—Nagumo system (see the example in Sect. 3.4.4 below).
Let us briefly analyze conditions (2.29), (2.30).

Using the equality
1
1 (vI+1)? 1
F@)— F(0) =/VF(sv) -vds = / VF(sv)-vds + / VF(sv)-vds
0 0 1
(vl+D?

and condition (2.24), we deduce that for some o > 0

N
VvveRY F(v) >« Z V|7 = Cs. (2.31)
i=1

1
Again using the equality F(v) — F(0) = [ VF(sv)vds, Young’s inequality and con-
0

dition (2.23), we obtain

N
IFW)] < Co(Q W17 +1). (232)
i=1

Theorem 2.5 Under conditions (2.23), (2.24), (2.29), (2.30) for every uy € H there
exists at least one regular solution u(-) of (2.22) such that u (0) = ug, and for some
positive constants C(g), D(g), which depend on the function g but not on u(-), the
following energy inequality holds for a.e. s > 0 and each t > s

E (u (1) +/ lu,Pdr < E (u(s5)) + C(g)/E(u(P))dP + D(g)(t —5),

(2.33)
where E (u (1)) = ||lu (t)||2 +2(Fw(@),1)—2h,u(t)). Moreover, C(g) =
D(g) = 0 ifin condition (2.29) we have g = 0.

Proof We take as in [9, p.281] the Galerkin approximations using the basis of eigen-
functions {w; (x), j € N}, of the Laplace operator with Dirichlet boundary condi-
tions. Let X,, = {wy, ..., w,}andlet P, be the orthogonal projector from H onto X,,.
Then u” (x, 1) = Z?:i ajm (t)w; (x) will be a solution of the system of ordinary
differential equations

dun
dt

= P,Au" — P, f (u") + Pyh, u" (0) = Pyug. (2.34)



58 2 Regularity of Solutions for Nonlinear Systems

Itis proved in [9, p.281] that (2.34) is globally resolved, and for every T > 0 passing
to a subsequence u" converges to a weak solution u of (2.22) in C([0,T]; H),
weakly in LP (0, T; LP (£2)) and weakly in L? (0, T; V). Also, ul! — u, weakly
in L4 (O, T;H™™ (.Q)).

Multiplying the equation in (2.34) by u} we get

d ny 2 n n n2 n n
- (" 1% 4+ 2(F ("), 1) = 2(h, u™)) + 2Jul’ > = =2(g ("), ul). (2.35)

Using (2.30), we deduce from (2.35) that

d
- (™1 + 2(F "), 1) — 2(h, u™)) + u? 2

< C7(9) (Ilu" 11> + 2(F ("), 1) — 2(h, u™)) + Cs(g). (2.36)
In particular, " satisfies (2.33) V ¢t > s > 0. We note that if g = 0, then C7(g) =
Cs(g) = 0, so that C(g) = D(g) = 0 holds.

On the other hand, multiplying (2.22) by u" and using (2.23) in a standard way
we obtain

d n n n s n i
TPl P [ Py 3 < KRR @37)

i=1

By Gronwall’s lemma we obtain
1
lu" (D) < e ™ ul* + = (K + |hP). (2.38)
1
Thus integrating (2.37) over (¢, t + r) with r > 0 we have
t+r 2 t+r N )
" (t +7r) | + / || ds + y/ D ur )|}, ds (2.39)
! ti=1
<" @) +r (K +|h?)
1
<e M up? + (A— +r) (K +|hP?).
1

Then from (2.32),
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t+r 2
/ (e +2 (F (" ) . 1) =2 (1. ")) ds
t
t+r t+r N _ t+r
< / ||| ds +2C6/ > ut )| ds +rinl? +/ u" [*ds + 2C6| 2|
t t o t

< Cole ™M ul)? +r+1). (2.40)

Now we can apply uniform Gronwall Lemma [46] to inequality (2.36) and obtain

| 4+ )|+ 2 (F (" (¢ +1) 1) =2 (b, u (¢ + 1) (2.41)

e M ug> + 1

< Cio( + De forall0 <t <t+r.

From the last inequality and (2.31) we have

i (2.42)

LPi

N
||u” (t +r)||2+z ||u:’(t+r)|

i=1

—At|,,n|2 1
<Cq ((%—f-l)er—f-l) forall0 <t <t-+r.
7

Therefore, the sequence u” () is bounded in L% (r,T;V N LP(£2)) for all
O<r<T.
Integrating (2.36) over (r, T'), we have

T

T
/ lu? Pt §C7/(Hu" @[ +2(F (@ ). 1) =2 (h,u"(s) ) ds (2.43)

r

+ |u" O +2(F (" (1)), 1) =2 (-, u"(r)) + Cs(T —r) + 2521 + [h]> + [u" (T) .

So from (2.38), (2.40), (2.41) and the last inequality we deduce that u} is bounded
inL?>@(, T; H)forall0 <r < T.

Thus for the limit function # we can claim that it is regular solution of (2.22) and
u(0) = ug.

Let us prove that u satisfies the energy inequality (2.33). As u” is bounded in
L>®(r, T; L?(£2)), so f(u") is bounded in L*°(r, T; LY(£2)). Therefore from [45]
up to subsequence

W' = uwin L2(r, T; V) N LP(r, T: LP(£2)). (2.44)

and, in particular,
u"(t) - u(t)in V for a.a.t € (r,T).
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Also, it is standard to check that u” — u in C([r, T], H), forall 0 <r < T, and
that u”(t) — u(t) weaklyin V forall0 <¢ <T.

Then by the dominated convergence theorem F (u"(t)) — F(u(t)) in L'(£2) for
a.a.t € [r,T] Also, forany 0 <t < T we have F(u"(x,t)) = F(u(x,1t)) for a.a.
x. Then F(u"(x,t)) > —Cs and Fatou’s lemma imply

/ F(u(x,t))dx < liminf / F@"(x,1))dx
2 2

and
E(u()) < liminf E®W"(1)).

Hence, we can pass to the limit in (2.33) and obtain the required result.
The theorem is proved.

Remark 2.3 Theorem 2.5 yields only existence but not regularity of each weak solu-
tion of Problem (2.22). This theorem was proved in [24].

2.4 Examples of Applications

In this section we provide examples of applications to theorems established in
Sects.2.1-2.3. We consider a parabolic feedback control problem (Sect.2.4.1), a
model of conduction of electrical impulses in nerve axons (Sect.2.4.2), a climate
energy balance model (Sect.2.4.3); FitzHugh—-Nagumo system (Sect.2.4.4); and a
model of combustion in porous media (Sect.2.4.5).

2.4.1 A Parabolic Feedback Control Problem

Let £2 be an open and bounded subset of R>. Let us consider the following nonsta-
tionary heat conduction equation

g—);—Ay:fin.QxR (2.45)
with initial condition and Dirichlet homogeneous boundary condition. Here y =
y(x, t) represents the temperature at the point x € £2 and time ¢ > 0.

Let j : £2 x R — R be a locally Lipschitz function in & (cf. [37] and references
therein) and d; (x, &) denotes generalized gradient of Clarke (see [12]) with respect to
the last variable. Note that the multi-valued function 3; (x, -) : R — 2F is generally
nonmonotone and it includes the vertical jumps.

We assume that f = f; + f», where f, = f>(x) is given and f; is a known
function of the temperature of the form
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— filx, 1) € 9j(x, y(x,1)) ae. (x,t) € 2 xR. (2.46)
In a physicist’s language it means that the law is characterized by the generalized
gradient of a nonsmooth potential j (cf. [39]).
Assume also that dj satisfies the growth condition
dco > 0: |p| < co(l + |u|) fora.e.x € 2, andeachu € R, and d € 9j (x, u);

and the sign condition

infdeaj(x,u) d

. C SUPgepien @

U—>—+00 u u——00 u

> —)\.1,

where 1 is the first eigenvalue of —A in Hj (£2). According to Theorem 2.2, for any
—00 < 7 < T < 400 each weak solution u, € L*(£2) of Problem (2.45) and (2.46)
on [z, T] belongs to C([t +¢&, T1; Hi (£2)) N L*(t +¢, T; H*(22) N H} (£2)) and
() e L*(t +e& T; L*(R)) foreach s € (0, T — 1).

2.4.2 A Model of Conduction of Electrical Impulses
in Nerve Axons

Consider the problem:

ot ax

w w4y e AH@u —a), (x,1) € (0,7) x R, (2.47)
u@,1) =u(mw,t) =0, tek,

where a € (0, %), Terman [47, 48]. Since Problem (2.47) is a particular case of
Problem (2.1) and (2.2), then for each —o0 < t < T < 400 and a weak solution
u; € L>((0, 7)) of Problem (2.47) on [t, T] belongs to C ([t + ¢, T]; HOl (0, m)) N
L*(t +¢,T; H*((0,7)) N HOI((O, ))) and ‘;—‘;(-) € L*(t +¢,T; L*((0, ))) for
eache € (0, T — 1); Figs.2.4,2.5,2.6,and 2.7.

2.4.3 Climate Energy Balance Model

Let (., g) be a C* compact connected oriented two-dimensional Riemannian mani-
fold without boundary (as, e.g..# = S the unit sphere of R*). Consider the problem:

g—‘t‘ — Au+ R,(x,u) € OS(x)Bu), (x,1) e # xR, (2.48)
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Fig. 2.4 Graphics of solutions of problem (2.47) witha = 0.49, A =2,n = 10, h = 0,001, N =
100inamomentat =0;br=08;¢cr=16;dr=24;er=32;ftr=4

Fig. 2.5 Screenlist of animation for dynamics of solutions of problem (2.47) in 2D

where Au = div_y (V_yu) ; V_4 is understood in the sense of the Riemannian metric
g. Note that (2.48) is the so-called climate energy balance model. It was proposed in
Budyko [8] and Sellers [41] and examined also in Diaz et al. [13—15]. The unknown
u(x, t) represents the average temperature of the Earth’s surface. In Budyko [8] the

energy balance is expressed as

heat variation = R, — R, + D.
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2.4 Examples of Applications

Fig. 2.6 Screenlist of animation for dynamics of solutions of problem (2.47) in 3D

s

7 Screenlist of animation for dynamics of solutions of problem (2.47) in section

2.

Fig
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Here R, = OS(x)B(u). Itrepresents the solar energy absorbed by the Earth, O > 0Ois
asolar constant, S(x) is an insolation function, given the distribution of solar radiation
falling on upper atmosphere, 8 represents the ratio between absorbed and incident
solar energy at the point x of the Earth’s surface (so-called co-albedo function). The
term R, represents the energy emitted by the Earth into space, as usual, it is assumed
to be an increasing function on u. The term D is heat diffusion, we assume (for
simplicity) that it is constant.

As usual, the term R, may be chosen according to the Newton cooling law as
linear function on u, R, = Bu + C (here B, C are some positive constants) [8], or
according to the Stefan-Boltzman law, R, = ou® [41]. In this subsection we consider
R. = Bu as in Budyko [8].

Let S : .# — R be a function such that S € L*°(.#) and there exist Sy, S; > 0
such that

0<S <Sx) <.

Suppose also that g is a bounded maximal monotone graph of R?, that is there exist
m, M € R such that forall s € R and z € B(s)

m=<z=<M.
Let us consider real Hilbert spaces
H:=L>(#), V:={uel*(#): VyueL*TH)}
with respective standard norms || - ||z, || - ||v, and inner products (-, - )g, (-, )y,
where T.# represents the tangent bundle and the functional spaces L?(.#) and
L*(T .#) are defined in a standard way; see, for example, Aubin [2]. According
to Theorem 2.2, for any —0o < 7 < T < 400 each weak solution u, € L?(£2) of

Problem (2.48)on [z, T']belongsto C([t + ¢, T]; HO1 YNL*t+e T: HX(2)N
Hol((O, ))) and ‘;—’;() € L*>(t +¢,T; L*(£2)) foreache € (0, T — 7).

2.4.4 FitzHugh—-Nagumo System

Let us consider generalized FitzHugh—Nagumo system [46]:

u, =diAu— fi(u) —v, (2.49)
Vi =dp AV + du — yv, (2.50)
ulge =vjse =0, (2.51)

where 2 = (0, L), dy, d», 6, y are positive constants, f; € C(R),
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Fig. 2.8 Trajectories of
FitzHugh—Nagumo system

02—

015
E Q1
z
005
0
o
A < CA+ul): flawu > alul* = C. (2.52)
For the vector-function
(i) +v
fu,v) = (_5u+yv

conditions (2.23), (2.24) hold with p; = 4, p, = 2. Moreover, f = VF + g, where

F=F(u,v) = f fi(s)ds + %vz, g=g,v) = (V—(Su) and conditions (2.29),
0

(2.30) also hold. Then all statements of Theorem 2.5 hold; Fig.2.8.

2.4.5 A Model of Combustion in Porous Media

Let us consider the following problem:

WP fu)eAHu—1), (x,1) € 0,7) xR, 2.5
u@,t) =u(m,t) =0, teR, ’
where f : R — Ris a continuous and nondecreasing function satisfying growth and
sign assumptions, A > 0, and H(0) = [0, 1], H(s) = I{s > 0}, s # 0O; Feireisl and
Norbury [17]. Since Problem (2.53) is a particular case of Problem (2.1) and (2.2),
then for any —0o < 7 < T < 400 each weak solution u, € L?((0, 7)) of Problem
(2.53)on [z, T]belongs to C([t + &, T1; Hy((0, 7)) N L*(t + ¢, T; H*((0, 7)) N
Hy((0, 7)) and % (-) € L*(t + ¢, T; L*((0, 7))) foreach e € (0, T — 1); Fig.2.9.
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Fig. 2.9 Graphics of solutions with f(u) =u, A =2, ¢ =0.1, M = 100 in moment a ¢t = 0;

btr=08;ct=16;dr=24;et=32;fr=4
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Chapter 3
Advances in the 3D Navier-Stokes Equations

Abstract In this chapter we provide a criterion for the existence of global strong
solutions for the 3D Navier-Stokes system for any regular initial data. Moreover,
we establish sufficient conditions for Leray-Hopf property of a weak solution for
the 3D Navier-Stokes system. Under such conditions this weak solution is rightly
continuous in the standard phase space H endowed with the strong convergence
topology.

3.1 Weak, Leray-Hopf and Strong Solutions

Let 2 C R? be abounded domain with rather smooth boundary I" = 8£2, and [z, T']
be a fixed time interval with —00 < 7 < T < +00. We consider 3D Navier-Stokes
system in §2 x [t, T]

a .
B—)I]—vAy~|—(y~V)y=—Vp+f,d1vy=0,

(3.1)
y|1"=0’ y|t=r:y7’
where y(x, ) means the unknown velocity, p(x, t) is the unknown pressure, f(x, )
is the given exterior force, and y;(x) is the given initial velocity with ¢ € [z, T'],
x € £2,v > 0 means the viscosity constant; see also Figs.3.1 and 3.2.
Throughout this note we consider generalized setting of Problem (3.1). For this
purpose define the usual function spaces

¥V ={u e (CF(R2)) :divu =0}, V, =clyrp?, o >0,

where cly denotes the closure in the space X. Set H := V,, V := V. Itis well known
that each V,,, 0 > 0, is a separable Hilbert space and identifying A and its dual H*
we have V, C H C V. with dense and compact embedding for each o > 0. We
denote by (-,-), ||-|| and ((:,-)), | - |lv the inner product and norm in H and V,
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respectively; (-, -) will denote pairing between V and V* that coincides on H x V
with the inner product (-, -). Let H,, be the space H endowed with the weak topology.
For u,v,w € V we put

3
- av;
b(u,v,w) =/ u;— wdx.
2 i,j2=1 ox;

It is known that b is a trilinear continuous formon V and b(u, v,v) = 0,ifu,v e V.
Furthermore, there exists a positive constant C such that

|b(u, v, w)| < CllullvIviviwly, (3.2)
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for each u, v, w € V; see, for example, Sohr [18, Lemma V.1.2.1] and references
therein.
Let f € L?(t,T; V*)+ L' (t, T; H) and y, € H. Recall that the function y €

d
L*(z, T; V) with d—f e L'(z, T; V*) is a weak solution of Problem (3.1) on [z, T],
ifforallve V

d
o 3, v) +v((y, ) +b(y, y,v) = (f,v) (3-3)
in the sense of distributions, and

y(T) = yr. 3.4)

The weak solution y of Problem (3.1) on [z, T'] is called a Leray-Hopf solution of
Problem (3.1) on [z, T, if y satisfies the energy inequality:

V:(y(@) < Vi (y(s)) forallt €[s,T], ae.s >tands =7, 3.5)

where

S S
1
Ve(y(9)) := Elly(s)ll2 + V/ Ly @Iy dé — /(f(S), y(@é)dg, ¢elr,T]

(3.6)

For each f € L?>(t,T; V*)+ L'(z, T; H) and y. € H there exists at least one
Leray-Hopf solution of Problem (3.1); see, for example, Temam [19, Chapter III]

d
and references therein. Moreover, y € C([7, T], H,,) and d_)t) € L%(r, T,V* +

d
L'(t,T;H).If f € L?(t,T; V*), then, additionally, d_)t) € L%(l’, T; V*). In par-

ticular, initial condition (3.4) makes sense.

Let A : V — V* be the linear operator associated to the bilinear form ((u, v)) =
(Au, v). Then A is an isomorphism from D(A) onto H with D(A) = (H*(£2))* N V.
We recall that the embedding D(A) C V is dense and continuous. Moreover, we
assume ||Au|ly as the norm on D(A), which is equivalent to the one induced by
(H?*(£2))3. Problem (3.3) can be rewritten as

@O+ vAy + B(y,y) = f in V*,

3.7
WD) = ye, @7

where the first equation we understand in the sense of distributions on (z, 7). Now
we write

P(y:, f) ={y : yis aweak solution of Problem (3.3) on [z, T']}.
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It is well known (cf. [19]) thatif f € L%(t, T; V*), and if y, € H, then Z(y,, f) is
not empty.

A weak solution y of Problem (3.3) on [z, T'] is called a strong one, if it addi-
tionally belongs to Serrin’s class L8(z, T; (L*(£2))?). We note that any strong solu-
tion y of Problem (3.3) on [7, T'] belongs to C([t,T]; V)N L*(t, T; D(A)) and
% € L*(t, T; H) (cf. [18, Theorem 1.8.1, p. 296] and references therein).

Forany f € L*™(z,T; H) and y, € V itis well known the only local existence
of strong solutions for the 3D Navier-Stokes equations (cf. [18-20] and references
therein).

3.2 Leray-Hopf Property for a Weak Solution of the 3D
Navier-Stokes System: Method of Artificial Control

Let —oo < 7 < T < 400. We consider the following space of parameters:
Uer = (L*(x, T; V) x (L* (v, T; V¥) + L' (z, T; H)) x H.

Each triple (u, g, z;) € Uy 7 is called admissible for the following auxiliary control
problem.

d
Problem (C) on [7, T'] with (u, g,z;) € U, 7: find z € L*(t, T; V) with d—i €
L'(z, T; V*) such that z(t) = z; and forallv € V

d
o (z,v) +v((z,v)) + b(u, z,v) = (g, V) (3.8)

in the sense of distributions; cf. Kapustyan et al. [10, 11]; Kasyanov et al. [12, 13];
Melnik and Toscano [15]; Zgurovsky et al. [20, Chap. 6].

Asusual, let A : V — V* be the linear operator associated with the bilinear form
((u,v)) = (Au,v),u,v € V.Foru,v € V we denote by B (u, v) the element of V*
definedby (B (u, v) , w) = b(u, v, w),forallw € V.ThenProblem (C)on [z, T]with

d
(u, g, 7:) € U, can be rewritten as: find z € L?(z, T; V) with d_j e LY (7, T; V¥
such that

d
d—j Y VAZ+ B, 2) =g, in V¥, and 2(7) = zo. (3.9)
We recall, that {wy, wa, - - -} C ¥ is the special basis if (w;, v)) = X ;(w;, v) for
eachveVand j=1,2,---, where 0 < A; < A, < --- is the sequence of eigen-
values. Let P,, be the projection operator of H onto H,, := span{wy, - - - , w,,}, that
is P,v = Z:"zl(v, w;)w; foreachv € Handm = 1,2, - --. Of course we may con-

sider P, as a projection operator that acts from V, onto H,, for each ¢ > 0 and,
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m

foreachve Vyand j =1,2,---.
The following theorem establishes sufficient conditions for the existence of an
unique solution for Problem (C). This is the main result of this section.

since Py = P,,, we deduce that || P, || v+ v+ < 1. Note that (w;, v)y, = )\‘;(wj, V)

Theorem 3.1 Let —co <7 <T <400, y, € H, feL*(t, T; V) +L'(z, T;
H), and y be a weak solution of Problem (3.1) on [t, T]. If Problem (C) on [t, T]
with (u, 0, 6) € U, r has the unique solution z = 0, then (v, f, y:) € U, r and Prob-
lem (C) on [t, T]with (y, f, y;) € U, 1 has the unique solution z = y. Moreover, y
satisfies inequality (3.5).

Before the proof of Theorem 3.1 we remark that AC([t, T]; H,), m =1,2,---,
will denote the family of absolutely continuous functions acting from [z, T'] into H,,,
m=1,2,---.

Proof of Theorem 3.1. Prove that z = y is the unique solution of Problem (C)
on [t, T] with (y, f, y;) € U, r. Indeed, y is the solution of Problem (C) on [z, T]
with (y, f, ;) € U; 7, because y is a weak solution of Problem (3.1) on [z, T].
Uniqueness holds, bgcause if z is a solution of Problem (C) on [t, T'] with (y, fl yz) €
U:.r, then z — y = 0 is the unique solution of Problem (C) on [z, T'] with (y, 0, 0) €
U..r.

The rest of the proof establishes that y satisfies inequality (3.5). We note that y
can be obtained via standard Galerkin arguments, that is, if y,, € AC([t, T]; Hy)

d
with —vy,, € L'(z, T; Hy),m = 1,2, -+, is the approximate solution such that
d .
% +VAy + PuB (v, ym) = P f, in Hy,  ym(7) = Ppy (), (3.10)

then the following statements hold:

(1) y, satisfy the following energy equality:

1 11 131
Ellym(t1)||2+v/ Ilym(E)Il%/df;'—/ (f (&), ym(§))dE

1 1 t
= Ellym(tz)llerv/ IIym(é)II%/dS—/ (f (&), ym(§))dE,

(3.11)
foreacht,t, € [t,T],foreachm =1,2,---;
(ii) there exists a subsequence { Yy, }k=12.... € {¥m}m=1.2.... such that the following
convergence (as k — o) hold:

(i1);  Ym, — y weakly in L*(t,T;V);

(il)2  ym, — y weakly starin L*°(t, T; H);

(i)3  Pu.B (., ym) = B (y,y) weakly in L*(t, T; V});
2

(i1)y Py, f — f strongly in L*(t, T; V¥ + L'(z, T; H);

d d
(ii)s cyl’;” N d—f weakly in L2(z, T; V) + L'(z, T; H).
2
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Indeed, convergences (ii); and (ii), follow from (3.11) (see also Temam [19,
Remark II1.3.1, pp. 264, 282]) and Banach-Alaoglu theorem. Since there exists

1
C; > 0 such that |b(u, v, w)| < C||u||v||w||V||v||‘§/||v||%, for each u, v,w € V (see,
forexample, Sohr [18, Lemma V.1.2.1]), then (ii), (ii), and Banach-Alaoglu theorem
imply (ii);. Convergence (ii)4 holds, because of the basic properties of the projec-
tion operators { Py, }n=12..... Convergence (ii)s directly follows from (ii)s, (ii)4 and
(3.10). We note that we may not pass to a subsequence in (ii);—(ii)s, because z = y
is the unique solution of Problem (C) on [z, T'] with (y, f, y;) € U, 1.
Moreover, there exists a subsequence { ykj}_,-zl,zy... C {Ym Jk=1,2.... such that

Yk, (1) = y(¢) strongly in H forae.t € (r,T)andt =7, j— o0. (3.12)

Indeed, according to (3.10), (3.11) and (ii)3, the sequence {y,, }x=1.2.... is bounded in
a reflexive Banach space W; 7 := {w € L2(t,T; V) : %w e L'(z, T; Vi)}. Com-
pactness lemma yields that W, 7 C L?(z, T; H) with compact embedding. There-
fore, (ii);—(ii)s imply that y,,, — y strongly in L?(z, T; H) as k — oo. Thus, there
exists a subsequence {yi,}j=12.. € {Ym}k=1.2,.. such that (3.12) holds.

Due to convergences (ii);—(ii)s and (3.12), if we pass to the limit in (3.11) as
my,; — 00, then we obtain that y satisfies the inequality

1 ! ! 1
glly(t)llerv/ Ly ©)II5 d& —/ (f(&),y())ds = Elly(f)llz, (3.13)

forae.r € (s,T),ae.s € (r,T)ands = 7.
Since y €e L* (z, T; HYNC([t, T]; V*) and H C V* with continuous embed-
ding, then y € C([7, T]; Hy); Temam [19, Chap. III]. Thus, equality (3.13) yields

1 ! ! 1
Elly(t)||2+v/ Ly Il dé —/ (f(&), y(§))d§ = Elly(f)llz,

foreachr € [t, T],a.e.s € (v, T) and s = 7. Therefore, y satisfies inequality (3.5).
The theorem is proved.

3.3 The Existence of Strong Solutions and 1-Dimensional
Dynamical Systems

Let T > 0. The main result of this section has the following formulation (see also
Figs.3.3 and 3.4).

Theorem 3.2 Let f € L*(0, T; H) and yy € V. Then either for any . € [0, 1] there
isany, € C([0, T]; V)N L%(0, T; D(A)) such that i € D(Ayo, Af), or the set
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{yeC(O0, T]; V)N LZ(O, T; D(A)) : y € Py, Af), 2 € (0, 1)} (3.14)
is unbounded in L8(0, T; (L*(£2))3).

In the proof of Theorem 3.2 we use an auxiliary statement connected with con-
tinuity property of strong solutions on parameters of problem (3.3) in Serrin’s class
L3O, T; (L*(£2))?).

Theorem 3.3 Let f € L*>(0,T; H) and yo € V. If y is a strong solution for Prob-
lem (3.3) on [0,T], then there exist L, § > 0 such that for any zo € V and
g € L*(0, T; H), satisfying the inequality

lzo = Yolly + 118 = FlI20.7:m) < 6 (3.15)

the set 9(zo, g) is one-point set {z} which belongsto C([0, T1; V) N L*(0, T; D(A)),
and
v

2
lz — y”C([O,T];V) + 4

Iz = Y = L (20 = Yol + g = fI20m)) -
(3.16)

Remark 3.1 We note that from Theorem 3.3 with zo € V and g € L?(0, T; H) with
sufficiently small ||zo[l3 + || g||i2(0’T; 41)» Problem (3.3) has only one global strong
solution.

Remark 3.2 Theorem 3.3 provides that, if for any A € [0, 1] there is an y, €
L¥(0, T; (L*(£2))?) such that ya € Z(Ayo, Lf), then the set
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{y € CU0, TL; V)N L0, T; D(A)) = y € D(hyo, 1f), & € (0, 1))

is bounded in L3(0, T; (L*(£2))%).

If £2 is a C*°-domain and if f € C§°((0,T) x )3, then any strong solution y of
Problem (3.3) on [0, T'] belongs to C*°((0, T'] x £2)*and p € C*®((0, T] x £2) (cf.
[18, Theorem 1.8.2, p. 300] and references therein). This fact directly provides the
next corollary of Theorems 3.2 and 3.3.

Corollary 3.1 Let §2 be a C*-domain, f € Cg°((0, T) x Q)3. Then either for any
vo € V there is a strong solution of Problem (3.3) on [0, T], or the set

{y € C®(0, T] x 2)° : y € 2y, Af), A € (0, 1)}

is unbounded in L¥(0, T’ (L4(.Q))3)f0r some yy € C80(9)3.
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Proof of Theorem 3.3. Let f € L%(0,T; H), yvweV,and ye C(0,T]; V)N
L*(0,T; D(A)) be a strong solution of Problem (3.3) on [0, T']. Due to [17], [19,
Chap. 3] the set Z(yo, f) = {y}. Letusnow fix zp € V and g € L*(0, T; H) satis-
fying (3.15) with

27¢4 778

_ i [1. V] 2re A )
S_mln{l,z}e ,C_max[w,ﬁ

2
} (IylEqorpy +1)7,  GdD)

¢ > 0 is a constant from the inequalities (cf. [18, 19])
1 1
(b, v,w)| < cllullvvlyIvlpalwlla Yu €V, ve D(A), we H;  (3.18)

3 1
1b@u, v, w)| < cllullpalullyIviviwla Yu € D(A), veV,we H. (3.19)
The auxiliary problem

9 4 vAn+ B(n,n) + B(y,n) + B(n,y) = g — f in V¥,
(3.20)
n(0) = zo — yo,

has a strong solution € C([0, T]; V) N L%(0, T; D(A)) with % e L*(0,T; H),
i.e.

d
E(”’ v) +v((m,v)) +b(n, n,v) +b(y,n,v) +b(n,y,v) = (g — f,v) forallveV,

in the sense of distributions on (0, 7). In fact, let {w;};~; C D(A) be a special basis
(cf. [19]),1.e. AWj = )\.jo,j =1,2,..,0<A <X <, )\j — 400, j = 4o00.
We consider Galerkin approximations 7,, : [0, T] — span{w;}_, for solutions of
Problem (3.20) satisfying

d
27 e W)+ V(s W) + bl s i) + DG s W) + DGy 3 w5) = (g = f W),

with (9,,(0), w;) = (zo — Yo, w;), j = 1,m. Due to (3.18), (3.19) and Young’s
inequality we get

v 4
20g = £, Amw) = 218 = fllulnmllva = 3 Mnllp + —I1F = gl

3 3 v 27c*
=26 N> Am) < 2l 15 10m | ay < §||7Im||2D(A) + W”M”%;



78 3 Advances in the 3D Navier-Stokes Equations

3 3 v 2 27¢t 2.
—=2b(y, N, Anm) < 25”)’”V”’7m”v”’7m ”D(A) = Ennm “D(A) + ﬁ”)’”c([ojj;v)”nm ”V!

i I v 2 77 8 2
=2b(Mm> y, Anm) < 2C||77m||D(A)||77m”V”y”V = E\InmIID(A) + W”Y“c([@j];v) 17m

Thus,
d v 4
Z”nm”%/ + Z”antHZD(A) < Cmmlly + Imal$) + ;Ilg — fl3.

where C > 0 is a constant from (3.17). Hence, the absolutely continuous function
@ = min{[|n, |13, 1} satisfies the inequality %(p <2Co¢p + %IIg — fI1%, and there-
fore ¢ < L(|lzo — y0||%, + g — f”%Z(O,T;H)) < 1on][0,T], where L =8~ '. Thus,
{Nn}n=1 is bounded in L>(0, T; V) N L*(0, T; D(A)) and {%Un}nzl is bounded in
L?*(0, T; H). In a standard way we get that the limit function 5 of n,, n — 400, is
a strong solution of Problem (3.20) on [0, T']. Due to [17], [19, Chapter 3] the set
(20, g) is one-point z = y +n € L¥(0, T; (L*(£2))%). So, 7 is strong solution of
Problem (3.3) on [0, T'] satisfying (3.16).

The theorem is proved.

Proof of Theorem 3.2. Let f € L*>(0,T; H) and y, € V. We consider the 3D
controlled Navier-Stokes system (cf. [10, 15])
[ % +vAy + B(z,y) = f, (3.21)

y(0) = yo,

where z € L3(0, T; (L*(£2))?).

By using standard Galerkin approximations (see [19]) itis easy to show that for any
z € L¥0, T: (L*(£2))?) there exists an unique weak solution y € L*(0, T; H) N
L*(0, T; V) of Problem (3.21) on [0, T], that is,

% (y,v) +v((y,v) +b(z,y,v) = (f,v),forallv eV, (3.22)

in the sense of distributions on (0, 7). Moreover, by the inequality

1 7 v
2 8 2
b, v, AV < erllull s IV IV < 5 IV + collulfisay VI

(3.23)

for all u € (L*(£2))% and v € D(A), where ¢, ¢, > 0 are some constants that do
not depend on u, v (cf. [19]), we find that y € C([0, T]; V) N L2(0, T; D(A))
and B(z, y) € L*>(0, T; H), so % € L*(0, T; H) as well. We add that, for any z €
L30, T; (L*(£2))?) and corresponding weak solution y € C([0, T']; V) N L0, T;
D(A)) of (3.21) on [0, T'], by using Gronwall inequality, we obtain
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1
2¢; [lz(O)]® dt
ng 2O, 4 g3

Iy < llyoll}e , Vtel0,T];
(3.24)

T
., 8
2¢y ({ ||Z(t)||(L4(Q))3df

T
v IO e < Dol | 1+ 2eze (I,

Let us consider the operator F : L300, T; (L*(£2))®) — L%(0, T; (L*(£2))3),
where F(z) € C([0, T]; V) N L*(0, T; D(A)) is the unique weak solution of (3.21)
on [0, T] corresponded to z € L3(0, T; (L*(£2))%).

Let us check that F is a compact transformation of Banach space L3(0, T’
(L*(£2))?) into itself (cf. [7]). In fact, if {z,},> is a bounded sequence in L8(0, T;
(L*(£2))%), then, due to (3.23) and (3.24), the respective weak solutions y,, n =
1,2, ..., of Problem (3.21) on [0, T'] are uniformly bounded in C([0, T]; V)N
L*(0, T; D(A)) and their time derivatives %, n =1, 2, ..., are uniformly bounded in
L%(0, T; H).So,{F (z,)},>1 is aprecompact setin L3(0, T; (L*(£2))?). In a standard
way we deduce that F : L8(0, T; (L*(£2))%) — L3(0, T; (L*(£2))?) is continuous
mapping. Since F is a compact transformation of L3(0, T; (L*(£2))?) into itself,
Schaefer’s Theorem (cf. [7, p. 133] and references therein) and Theorem 3.3 provide
the statement of Theorem 3.2. We note that Theorem 3.3 implies that the set {z €
L3O, T; (L*(£2))%) : z =AF(2), » € (0, 1)} isbounded in L¥(0, T; (L*(£2))?) iff
the set defined in (3.14) is bounded in L8(0, T; (L*(£2))?).

The theorem is proved.

3.4 Extremal Solutions: Existence and Continuity Results
in Strongest Topologies

We consider the 3D controlled Navier-Stokes system
dy
@ TAY+ B, y)=f,
dr 3.25
[y(r)zyfeH, (3:25)

where f € H and

u € Loo(t, +00; H) N LY(t, +00; V) N LI (7, +00; Ly (£2)),
+00
u() €Uy =1 [ llu(p)|Pedp < oo, lu(p)| < Ry foraa. p>rt,

lu(@®)|L, <o foraa.t>rt,
(3.26)

+00

T, y) = / 1y(p) — u(p)|Pe~*dp — inf, (327)
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with§ = Ajv, Ry = %, and where A; is the first eigenvalue of the Stokes operator

A and o > 0 is some constant.

By using standard Galerkin approximations it is easy to show that for any
v € H and u(-) € U, there exists a unique weak solution y(-) € Ly (T, +00; H) N
LY(z, +00; V) of (3.25), that is,

j—t (y,v) +v((y,v))+ b, y,v) =(f,v),forallv e V. (3.28)

Indeed, let us prove existence of a weak solution of (3.25). Let {w;} C D (A)
be the sequence of eigenfunctions of A, which are an orthonormal basis of H. Let
Y (1) = 2| gim (1) w; be the Galerkin approximations of (3.25), i.e.

ﬁ m m p—
[ G- FVAY" 4 PyB (u, y") = Py f, (3.29)

y*(r) = y7,

where P,, is the projection onto the finite dimensional subspace generated by the set
{wi, ..., wy}. Also, y" belongs to this subspace and y!' — y, in H.

We need to obtain some a priori estimates for the approximative functions {y”}.
Multiplying (3.29) by y™ we obtain

1d

SR b = (7). 50)

where we have used the equalities
(PuB (u,y") 3") = (B (. y") . 3") = b (u, ", y") = 0.

Also from (3.30) we obtain for all p € [s, T], s € [7, T] that

P
1 P 1
F" (@) I+ v / y™ @ dr < / (f @) . y" (D) de+51y" () .
' (3.31)

In view of (3.31) we conclude that {y™}isboundedin L, (z, T; V) N L (t, T; H) .
Therefore, passing to a subsequence we obtain y” — y weakly in L, (t, T; V)
and weakly star in L, (t, T; H). From the inequalities
[b(u, y", w)| < dllullL, Iy lwll, Yw €V,

and

| P B (u, y™)]

ve =B w ")y
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due to the choice of the spacial basis, we immediately obtain that P, B (u, y™) is
bounded in L, (t, T; V*). Then

d d
Ey — d—yweaklymLQ(r T; V), m — o0,

sothat y € C([r, T]; H) and by the Compactness Lemma we have
y" — ystronglyin L, (¢, T; H), m — oo.

Hence, y"'(t) — y(t) strongly in H fora.e.t € (v, T), m — oo. Since one can eas-
ily prove using the Ascoli-Arzela theorem that y" — y, m — o00,inC ([t, T]; V*),
astandard argument implies that y”* () — y (¢) weaklyin H forallt € [t, T], m —
oo. In particular, y(t) = y-.

On the other hand, from

T
H“iy;'n Hiz(r,T;Lz(Q)) S/r l|ui||2L4<S?) Hy;n H:(Q) dt=C

we obtain u[y_’]?’ — u;yj weakly in Ly (t, T; Ly (§2)), m — 00, so that

T
8
/ b(u, y™ —y,wydt = Z/ /u, ] j 3—dxdt—>0 m — 00,
T

i,j=1
for any w € L, (t, T; V). This implies
B(u, y™) — B(u, y) weakly in L, (r, T; V*) , m — 0o.

So we can pass to the limit in (3.29) and deduce that y is solution of (3.25). To prove
uniqueness we should note that if y;, y, are solutions of (3.25), corresponding the
same control function u, then

d 2 d(yr — )
Zyy — =2(——2Z Y — ),
lt'yl 2 ( ” yi—y2)

b(u, yi — y2, y1 — y2) = 0.
So after simple calculations we have

d 2 2

- — <C — ,

2719~ 3l" = Cly = 32

and therefore y; = y,.
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Moreover, by the inequality

b, y, v)| = |b(u, v, )| < crllullL, VIHIYIL, < caetllullL, VIV, Va, y, v eV,

and (3.26) we have B(u (-), y (+)) € Ll‘)‘(r +00; V¥), so L€ LI”‘(r +o00; V*) as
well. Hence, it follows that y(-) € C([t, +00); H) (sothe 1n1t1a1 condition y(t) = y;
makes sense for any y, € H) and standard arguments imply that for all > s > t,

F(y() = (Iy()]* — R3)e” < F(y(s)), (3.32)

l t 1
Ve(y(®)) == zly(t)l2 + V/ ly(pIIPdp — /(f, y(p)dp < Ve(y(s)), (3.33)

2
Iy +V/||y(p)I|2dp <y + |f| (t—1). (3.34)

Indeed, multiplying the equation by y (¢) and using the property b (u, y, y) =0
we obtain

1d
zd—lyl +vlvl?=(f, . (3.35)

After integration over (s, t) we obtain

1 ! ! 1
3y OF + u/ Ly (I*dp = / (fLypndp+ Iy ©F,  (336)
and then (3.33) follows. Taking s = t in (3.36) and using the inequality

Fi§ 2

(fiy@) =Iflly (I = [flly (DI < 2 + = IIy( )i

J_

we have

2
|y<t)|2+v/ Iy (WIPdp < Iy @F + 'f'v _o.

Finally, from (3.35) we obtain

IF7
L

d 2 2
— ) <
7 [yl wlylm < o
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VAt

Multiplying the last inequality by e"*'" and integrating we get

2
|y (t)|2 VAt < |y (S)lz VA ){{'2 Apvt eU)L]S),

and then (3.32) holds.

So, foralln > 0,
T+(n+1)

ly(p) — u(p)Pe™dp <

T+n
T+(n+1) 7+(n+1)
< 2¢7 80T / ly(p)II*dp + 2 / lu(p)|>e~*Pdp
T+n T+n
) |f|2 T+(n+1)
< 2ty U 42 / lu(p)Pe"dp.
T+n
From this
o T+(n+1)
=3 [ ) - uyPe dp
n=0 .4,
|f| 00 7+(n+1)
+° )Z 78"—}-22 / lu(p)|?e*Pdp < oco.
n=0 .1,

Therefore, the functional J; and the optimal control problem (3.25), (3.26) and
(3.27) is correctly defined.

Lemma 3.1 Forany t € R and y, € H the optimal control problem (3.25), (3.26)

and (3.27) has at least one solution {y(-), u(-)}, and, moreover, ‘;—f € leoc(t, +00;

V), y(-) € C([t, +00); H) and (3.32), (3.33) and (3.34) hold.

Proof Let {y,, u,} be a minimizing sequence such that

1
/ Iyn(P) — un(p)Pe™Pdp < d + . Vn>1,
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where d = inf J.(u, y). Thus, forall T > r andn > 1

T
S yn(p) — un(p)lIPe™Pdp < d + 1,
4 (3.37)

T
S 1yn(p) — un(p)IIPdp < (d + 1)eT.

From (3.32), (3.33) and (3.34) we obtain that {y,} is bounded in L (7, T; H) N
Ly(z, T; V).Hence, (3.37) implies that {u,} is bounded in L,(z, T'; V) and from the
definition of U, it follows that

lun(p)l < Ro, Vp = 7,
lu,(p)llis <« forae. p > tandforalln > 1.

Therefore, thereexistu € Loo(t, T; H) N Ly(t, T; V) N Loo(t, T; Ly($2)) and y €
Loo(t, T; H) N Ly(t, T; V) such that

u, — uweakly in L,(z,T; V),

u, — u weakly star in Lo (7, T; H),

u, — u weakly star in Lo (7, T; L*(£2)),

yo — yweakly in Ly(7, T; V),

v, — y weakly star in L (7, T; H), n — o0.
Moreover, || B(u,, yu)llv: < cillyalllluxlL,- Hence, “gr is bounded in Ly (z, T; V*).
From this using standard arguments, we obtain that y(-) € C([t, T]; H) is the solu-
tion of (3.25) with control u(-), y(-) satisfies (3.32), (3.33) and (3.34), and for this
control the following relations hold:

lu(p)| < Ry, fora.a.p>r,
lu(p)|r, <a foraa. p>rt,

uel(t,T;V),

T
/ ly(p) —u(p)|Pe*dp < d.

The fact that y () is a solution with control « (-) is proved in a standard way.
dy,

Indeed, as T is bounded in L; (7, T; V*), up to subsequence

d d klyin L, (t,T; V*)
— Yy, — —y wea m T, 1] , . — 0OQ0.
dty dty y 2
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Thus, y € C([t, T]; H) and arguing as in the proof of the existence of solution for
(3.25) we obtain

yon — ystronglyin L, (z, T; H),
ya(t) — y(¢t) strongly in H fora.at e (r,T),
yu(t) — y(t) weakly in H forallt € [, T], n — oo.

From

T
”un nHLz(r . /T H“? Hi(m Hy;’ Hi4(9> dr=¢

we obtain uiy_’]?’ — u;yj weakly in Ly (t, T; L, (£2)), n — 00, so that

T
/T b, y", wydt = Z/ /u"y;la ’dxdt—>/ b(u, w, y)dt, n — oo,

forany w € L, (z, T; V). This implies
B(u, y™) — B(u,y) weakly in L, (7, T; V*), n — oo.
Hence we can pass to the limit in (3.25) and obtain that {u, y} is a solution. Also,
y(T) =y

By using a standard diagonal procedure we can claim that y(-) and u(-) are defined
on[t, +00), y, — y, u, — u in the previous sense on every [7, T], n — 00, and

[ 1y —utmierap <a (338)
By (3.34), arguing as before,
T+n+1
[ enetap = 2;/ Iy (IFedp
6—31’ 5 |f|2 0 s
= » (nyl +1)_)»1)Ze < 00.

n=0

and from (3.38) we have

+00
{/WMWW@<w
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It follows that u(-) € U, and from (3.38) we obtain that {y(-), u(-)} is an optimal
pair of problem (3.25), (3.26) and (3.27).

The lemma is proved.

Remark 3.3 Lemma 3.1 was proved in [10].

References

11.

12.

13.

14.

16.
17.

18.

19.
20.

. Ball, J.M.: Continuity properties and global attractors of generalized semiflows and the Navier-

Stokes equations. Nonlinear Sci. 7, 475-502 (1997). Erratum, ibid 8:233, 1998. Corrected
version appears in Mechanics: from Theory to Computation. pp. 447-474. Springer (2000)
Balibrea, F., Caraballo, T., Kloeden, P.E., Valero, J.: Recent developments in dynamical sys-
tems: three perspectives. Int. J. Bifurc. Chaos (2010). doi:10.1142/S0218127410027246
Barbu, V., Rodrigues, S.S., Shirikyan, A.: Internal exponential stabilization to a nonstation-
ary solution for 3D NavierStokes equations. SIAM J. Control Optim. (2011). doi:10.1137/
100785739

Cao, Ch., Titi, E.S.: Global regularity criterion for the 3D NavierStokes equations involving one
entry of the velocity gradient tensor. Arch. Ration. Mech. Anal. (2011). doi:10.1007/s00205-
011-0439-6

Chepyzhov, V.V., Vishik, M.I.: Trajectory and global attractors of three-dimensional Navier-
Stokes systems. Math. Notes (2002). doi:10.1023/A:1014190629738

Cheskidov, A., Shvydkoy, R.: A unified approach to regularity problems for the 3D Navier-
Stokes and euler equations: the use of kolmogorovs dissipation range. J. Math. Fluid Mech.
(2014). doi:10.1007/s00021-014-0167-4

Cronin, J.: Fixed Points and Topological Degree in Nonlinear Analysis. American Mathematical
Society, Providence, RI (1964)

Gajewski, H., Groger, K., Zacharias, K.: Nichtlineare Operatorgleichungen Und Operatordif-
ferentialgleichungen. Akademie-Verlag, Berlin (1978)

Halmos, P.R.: Measure Theory. Springer, New York (1974)

Kapustyan, O.V., Kasyanov, P.O., Valero, J.: Pullback attractors for a class of extremal solutions
of the 3D Navier-Stokes system. J. Math. Anal. Appl. 373, 535-547 (2011)

Kapustyan, O.V., Melnik, V.S., Valero, J.: A weak attractor and properties of solutions for the
three-dimensional Bénard problem. Discrete Contin. Dyn. Syst. 18, 449-481 (2007)
Kasyanov, P.O., Toscano, L., Zadoianchuk, N.V.: Topological properties of strong solutions for
the 3D Navier-Stokes equations. Solid Mech. Appl. 211, 181-187 (2014)

Kasyanov, P.O., Toscano, L., Zadoianchuk, N.V.: A criterion for the existence of strong solutions
for the 3D Navier-Stokes equations. Appl. Math. Lett. 26, 15-17 (2013)

Kloeden, P.E., Marin-Rubio, P., Valero, J.: The envelope attractor of non-strict multi-valued
dynamical systems with application to the 3D Navier-Stokes and reaction-diffusion equations.
Set-Valued Var. Anal. 21, 517-540 (2013). doi:10.1007/s11228-012-0228-x

. Melnik, V.S., Toscano, L.: On weak extensions of extreme problems for nonlinear operator

equations. Part I. weak solutions. J. Autom. Inf. Sci. 38, 68-78 (2006)

Royden, H.L.: Real Analysis, 2nd edn. Macmillan, New York (1968)

Serrin, J.: The initial value problem for the Navier-Stokes equations. In: Langer, R.E. (ed.)
Nonlinear Problems, pp. 69-98. University of Wisconsin Press, Madison (1963)

Sohr, H.: The Navier-Stokes Equations. An Elementary Functional Analytic Approach.
Birkhiuser, Basel (2001)

Temam, R.: Navier-Stokes Equations. North-Holland, Amsterdam (1979)

Zgurovsky, M.Z., Kasyanov, P.O., Kapustyan, O.V., Valero, J., Zadoianchuk, N.V.: Evolution
Inclusions and Variation Inequalities for Earth Data Processing III. Springer, Berlin (2012)


http://dx.doi.org/10.1142/S0218127410027246
http://dx.doi.org/10.1137/100785739
http://dx.doi.org/10.1137/100785739
http://dx.doi.org/10.1007/s00205-011-0439-6
http://dx.doi.org/10.1007/s00205-011-0439-6
http://dx.doi.org/10.1023/A:1014190629738
http://dx.doi.org/10.1007/s00021-014-0167-4
http://dx.doi.org/10.1007/s11228-012-0228-x

Part 11
Convergence Results in Strongest
Topologies



Chapter 4

Strongest Convergence Results for Weak
Solutions of Non-autonomous
Reaction-Diffusion Equations

with Carathéodory’s Nonlinearity

Abstract In this chapter we consider the problem of uniform convergence results
for all globally defined weak solutions of non-autonomous reaction-diffusion sys-
tem with Carathéodory’s nonlinearity satisfying standard sign and polynomial growth
assumptions. The main contributions of this chapter are: the uniform convergence
results for all globally defined weak solutions of non-autonomous reaction-diffusion
equations with Carathéodory’s nonlinearity and sufficient conditions for the conver-
gence of weak solutions in strongest topologies.

Let N,M =1,2,..., 2 C RY be a bounded domain with sufficiently smooth
boundary 9£2. We consider a problem of long-time behavior of all globally defined
weak solutions for the non-autonomous parabolic problem (named RD-system)

v =aAy — f(x,t,y), x€8,t>0, @.1)
ylae =0,
ast — +oo, where y = y(x,1) = (yV(x,1),..., y™(x, 1)) is unknown vector-
function, f = f(x,t,y) = (fP(x.t,y),..., fM(x,t,y)) is given function, a is

real M x M matrix with positive symmetric part.

4.1 Translation-Compact, Translation-Bounded
and Translation Uniform Integrable Functions

To introduce the assumptions on parameters of Problem (4.1) we need to present
some additional constructions. Let y > 1 and & be a real separable Banach space.
As L')j’c (R4 ; &) we consider the Fréchet space of all locally integrable functions with
values in &, i.e. ¢ € L%j’c (R4; &) if and only if for any finite interval [z, T] C Ry
the restriction of ¢ on [t, T'] belongs to the space L, (7, T’ &).If & C Li(£2), then
any function ¢ from Ll}j’c (R4 ; &) can be considered as a measurable mapping that
acts from £2 x R into R. Further, we write ¢(x, t), when we consider this mapping
as a function from 2 x R into R, and ¢(t), if this mapping is considered as an
element from L%ﬁ’c (Ry; &); cf. Gajewski et al. [3, Chap. III]; Temam [23]; Babin and
Vishik [1]; Chepyzhov and Vishik [5]; Zgurovsky et al. [28] and references therein.
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A function ¢ € L¥*(R,; &) is called translation bounded in LY(R ; &), if

t+1
Sup/ o) lleds < 400; (4.2)
t

>0

Chepyzhov and Vishik [7, p. 105]. A function ¢ € L**(Ry; L(£2) is called trans-
lation uniform integrable (t.u.i.) in Lll"c (Ry; Li(£2)), if

t+1
lim sup//|(p(x,s)|x{|¢(xys)|zk}dxds=O. (43)
2

K—+o0 >0
t

Dunford—Pettis compactness criterion provides that a function ¢ € Lll"C (Ry; L1(82))
is t.u.i. in LllOC (R; L1(£2)) if and only if for every sequence of elements {7, },>1 C
R the sequence {¢(- + 7,)},>1 contains a subsequence which converges weakly
in Lll"C (R4; L1(£2)). We note that for any y > 1 Holder’s and Chebyshev’s inequal-
ities imply that every translation bounded in Lij’C(ng; L, (£2)) function is t.u.i. in
L11°°(R+; L(£2)), because

t+1 1 t+1

/ /|<p(x,S)Ix{|(p(x,s)|21<}dxds < X1 sug / /l(p(x,s)lydxds — 0as K — +o0.
>

t 2 Tt 2

4.2 Setting of the Problem

Throughout this chapter we suppose that the listed below assumptions hold.

Assumption I. Let p; > 2 and ¢; > 1 are such that pi + qi =1, forany i =

i

1,2, ..., M.Moreover, there exists a positive constant d such that %(a—l—a*) >dl,
where [ is unit M x M matrix, a* is a transposed matrix for a.
Assumption II. The interaction function f = (f@,..., f™) : 2 x R, x

RY — RM satisfies the standard Carathéodory’s conditions, i.e. the mapping
(x,t,u) = f(x,t,u)iscontinuous inu € RM forae. (x,t) € 2 x R,, and itis
measurable in (x,7) € 2 x R, forany u € R™,

Assumption III. (Growth Condition). There exista t.u.i. in Lll"C (Ry; Li(£2)) func-
tionc; : 2 x Ry — R, and a constant ¢, > 0 such that

M M
DO w]" <+ ) [u®”

i=1 i=1
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forany u = ", ..., u™) e R andae. (x,1) € 2 x R,.
Assumption IV. (Sign Condition). There exists a constant « > 0 and a t.u.i. in
LY (R, ; L1(£2)) function B : 2 x R, — R, such that

M M
DO twu® = a > [u?)” = B,
i=1 i=1

forany u = ", ..., u™) e R andae. (x,1) € 2 x R,.

In further arguments we will use standard functional Hilbert spaces H =
(Lo(2)M,V = (H}(£2))M, and V* = (H~1(£2))™ with standard respective inner
products and norms (-, -)y and || - || g, (-, )y and || - ||y, and (-, -)y~ and || - ||y, vector
notations p = (p1, p2, ..., pu) and q = (q1, g2, - - ., gu), and the spaces

Lp(£2) := L, (82) X -+ x Lp, (£2), Lq(£2) := Ly (£2) x -+ x Ly, (£2),
Lp(z, T; Lp(82)) := Ly (t, T; Lp,(82)) X - X L, (t, T; Lp, (£2)),
Lq(t, T; Lq(£2)) := Ly (z,T; Ly (£2)) X --- X Lgy, (t,T; Ly, (£2)), 0 <7 < T < +00.

Let0 <t < T < +oo. Afunctiony =y(x,t) €Ly(7, T; V) NLy(7, T; Lp(£2))
is called a weak solution of Problem (4.1) on [z, T], if for any function ¢ = ¢(x) €
(C5°($2))M, the following identity holds

%/ﬂy(x,t) @(x)dx +/Q{aVy(x,t) “Vox) + fx, 1, y(x, 1) - p(x)}dx =0
4.4)
in the sense of scalar distributions on (z, T').
In the general case Problem (4.1) on [z, T'] with initial condition y(x, T) = y;(x)
in £2 has more than one weak solution with y, € H (cf. Balibrea et al. [2] and
references therein).

4.3 Preliminary Properties of Weak Solutions

Let (-, ) : (V¥ +Lq(£2)) x (VNLy(£2)) — R be the pairing in (V* 4 Lq(£2)) X
(V NLy($£2)), that coincides on H x (V NLy(£2)) with the inner product (-, -) 5 on
the Hilbert space H,i.e. {u,v) = (u,v)y forany u € H andv € V NLp(£2).

For fixed nonnegative t and 7', T < T, let us consider the spaces

XO = Lo(z, Ty Hy (2)) N Ly, (1. T Ly, (82)),
XU = Lo, Ts HH () + Ly (7, T5 Ly, (82),
Xr,T = Xgl; X -+ X X.E,{VII), X:,T = Xil;* X v X Xi{‘;{)*’

[ [ i 1 M
W =y e XD 1y e X0 Wer =W x o x Wi,
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where y’ is a derivative of an element y € Xi')T (y € X;r) in the sense of

2(r, Tl; H'(£2) + L,(82)) (Z([r, T]; V* + Lq(£2)) respectively); Gajewski

etal. [3, Definition IV.1.10]. Note that the space W, r is areflexive Banach space with

the graph norm of a derivative ||lu|lw, , = llullx, , + ||u’||x;T, ueWrp.Let(, )x,,:

X;‘,T x X¢.,7r — Rbethe pairing in X’;T x X r,thatcoincideson Ly(t, T; H)x X, 1
T

with the inner product in Ly(z, T; H), i.e. (u,v)x,, = f(u(t), v(t))ydt for any

u € Ly(r,T; H) and v € X, 7. Gajewski et al. [3, Theorem IV.1.17] provide that

the embedding WT(')T C C([t, T]; Ly(£2)) is continuous and dense, i = 1,2, ..., M.
Thus, the embedding W, r C C([r, T]; H) is continuous and dense. Moreover,

T

D) T = @@ v = [ [0@0) + Wanue)lar @)

T

forany u,v e W; 7.
If y(x,1) € Ly(z, T; Ly(£2)), then Assumptions I-III yield

[l t, y(x, 1)) € Ly(t, T; Lg(£2)),

and

M
D PRI CTEN)] P
=l (4.6)

M
(i) Di
<2 DO e, @ + / e1(x, Ddxdt.
i=1 2x(r,T)

Moreover, if y(x,t) € Ly(z, T; V), then aAy(x,t) € Ly(z, T; V¥).

Assumptions I-IV and Chepyzhov and Vishik [7, pp. 283-284] (see also
Zgurovsky et al. [27, Chap. 2] and references therein) provide the existence of a
weak solution of Cauchy problem (4.1) with initial data y(z) = y* on the interval
[z, T],forany y € H.The proof is provided by standard Faecdo—Galerkin approxi-
mations and using local existence Carathéodory’s theorem instead of classical Peano
results. A priori estimates are similar. Formula (4.4) and definition of the derivative
for an element from Z([t, T']; V* +Lq(§2)) yield that each weak solution y € X, r
of Problem (4.1) on [z, T'] belongs to the space W, r. Moreover, each weak solution
of Problem (4.1) on [z, T] satisfies the equality:

T
/ / [ay(xt’ Dyt + vy - Vi + Fn y0n ) - b, t)] dxdt =0,
T 2

d
4.7
forany Y € X, r. For fixed r and 7', such that 0 < 7 < T < +00, we denote

D7 () = {y() | y is a weak solution of (4.1) on [z, T], y(r) = yP}, y@ e H.
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We remark that 2, 7(y™) # @ and 2,7 (y'?) C W,r,if0 <7 < T < 400
and y™® e H. Moreover, the concatenation of Problem (4.1) weak solutions is a
weak solutions too, ie. if 0 <t <t < T,y € H, y(-) € Z2,,(»?), and
V() € Z,7(3(1)), then
_ | y(s), s elr, 1],
o) = [v<s>, selrTl.
belongs to 2, r(y'™); cf. Zgurovsky et al. [28, pp. 55-56].
Listed above properties of solutions and Gronwall lemma provide that for any

finite time interval [7, T] C R, each weak solution y of Problem (4.1) on [z, T]
satisfies estimates

t M . . t
ly@l% -2 / /Q o )dxds +2a Y [ YOOI qdé +2d / Iy @113 de

i=17%

sny(s)n%,—z//Qﬂoc,s)dxds, (4.8)

t
ly@II7 < Iy (s)lI3e 210 42 / / Bx,&)e M axde, (4.9)
K 2

foranyt,s € [t, T],t > s, where A, is the first eigenvalue of the scalar operator — A
with Dirichlet boundary conditions; cf. Chepyzhov and Vishik [7, p. 285]; Vishik
etal. [28, p. 56]; Valero and Kapustyan [24] and references therein. We note that the
same term with B appears both on the left and right hand side of inequality (4.9).
This was done on purpose to comply the inequality with the definition (4.18) of J
and J; below.

Therefore, any weak solution y of Problem (4.1) on a finite time interval [z, T] C
R, can be extended to a global one, defined on [z, +00). For arbitrary T > 0 and
y© e Hlet Z, (y™) be the set of all weak solutions (defined on [, +00)) of Problem
(4.1) withinitial data y(t) = y). Letus consider the family /#,* = U oey Z; (v ™)
of all weak solutions of Problem (4.1) defined on the semi-infinite time interval
[t, +00).

In further arguments as a Banach space .%,, ,, we consider either C([¢;, ,]; H) or
W, ., with respective topologies of strong convergence, where 0 < #; < t, < +00.
Consider the Fréchet space

FCR) ={y:Ry > H : I, .,y € %, , forany [t;, 1] C R4},

where I1,, ,, is the restriction operator to the interval [¢;, t,]; Chepyzhov and Vishik [5,
p. 918]. We remark that the sequence { f,,},>1 converges (converges weakly respec-
tively) in .#1°¢(R, ) towards f € .#'°°(R,) asn — oo if and only if the sequence
{IT}, 1, fn}n>1 converges (converges weakly respectively) in .%,, ,, towards IT;, ,, f as
n — 4o0 for any finite interval [#;, £,] C R,..
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We denote T (h)y(-) = y;(-), where y,(¢t) = y(t + h) forany y € QIOC(RJF) and
t,h >0.

In the autonomous case, when f(x,t, y) does not depend on ¢, the long-time
behavior of all globally defined weak solutions for Problem (4.1) is described by
using trajectory and global attractors theory; Chepyzhov and Vishik [7, Chap. XIII];
Vishik et al. [25]; Melnik and Valero [19]; Kasyanov [11, 12], Zgurovsky et al. [28,
Chap. 2] and references therein; see also Balibrea et al. [2]. In this situation the set
H T = %+ is translation semi-invariant, i.e. T (h) ¢ C ¢ forany h > 0.
As trajectory attractor it is considered a classical global attractor for translation
semigroup {7 (1)}, that acts on 7.

In the non-autonomous case we notice that 7' (h).%," ¢ #;". Therefore, we
need to consider united trajectory space that includes all globally defined on any
[z, +00) € R, weak solutions of Problem (4.1) shifted to t = 0:

A=+ e WERY) 1 y() e ), (4.10)

>0

Note that T(h){y(- + 1) : y € #} S {y(- + T+ h) : y € H#.,} for any
7, h > 0. Therefore,
T(h) <

for any & > 0. Further we consider extended united trajectory space for Problem
(4.1) (see Fig.4.1):
%;;IOC(R+) == Clgloc(RJr) [L%/U-’_] 5 (4.11)

K7 =Uymen{(¥() ¥() is solutionon [z,+),y(x) = y,}
T(h)¥, & JC,+

5 =Upso (¥(-+7) e W (RL): ¥(-) € %]}
T(RK, s K5 vh=0

. -
x,m(h) = Cl‘.’.loc(a_l_) [.?Cu]
+ +
T(R)3 FoeR,) = .‘JC,.:N(R_*) Yh=0

\ S

Fig. 4.1 The extended united trajectory space construction scheme
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where cl zoe, [ - ]is the closure in .7 loc (R.). We note that
TH o) S H fs
for each 4 > 0, because
pzeey (T, T(h)v) < pgec,)(u, v) forany u, v € FRy),

where p g (g, ) is a standard metric on Fréchet space .7 loc(R,); cf. Vishik, Zelik,
and Chepyzhov [25]; Chepyzhov and Vishik [5]; Vishik et al. [25].

4.4 Strongest Convergence Results in C1°(R, ; H)

Let us provide the result characterizing the compactness properties of shifted solu-
tions of Problem (4.1) in the induced topology from Cloe Ry; H).

Theorem 4.1 Let Assumptions 1-IV hold. If {y,},>1 C jé/ctc o H) be an arbi-

trary sequence, which is bounded in Lo (R,; H), then there exist a subsequence

{yn k=1 € {Yn}n>1 and an element y € %/th(R+;H) such that
”Hr,Tynk - Hr,Ty”C(lr,T];H) — 07 k — +00, (412)
for any finite time interval [t, T] C (0, +00). Moreover, for any y € L%/CTOC(K;H) the
estimate holds
ly17 < 1y O e™ + ca, (4.13)
for any t > 0, where positive constants c3 and c4 do not depend on y € %/Ctm R, H)

andt > 0.
Proof Assume that {y,},=; C %' be an arbitrary sequence, which is bounded in

Lo (R,; H). Letus fix n > 1. Formula (4.10) provides the existence of 7, > 0 and
z,(-) € lff such that y,(-) = z,(+ + t,). Then, formulas (4.8) and (4.9) yield that

t Moo _ t
||yn(z>|\%,—2/0/Qﬂnu,s)dxdsnaz ||y,$l)<s)||£'pi(g)ds+2/ lyn(®)113de

i=179%

snyn(s)n%,—z//ﬁn<x,s>dxds, (4.14)
JO 2

t
IyaO1I7; < Iya ()7 e M0 42 / / Bu(x,&)e 21D axde,  (4.15)
K 2

forany r > s > 0, where 8, (x, 1) := B(x,t + 1,) forae. (x,1) € 2 xR,
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Note that formula (4.15) and t.u.i. of 8 in Lll"C (Ry; L1(£2)) provide formula (4.13)
forany y € %", where positive constants c3 and ¢4 do not depend on respective y and
t; cf. Chepyzhov and Vishik [7, p. 35]. Formula (4.13) holds for any y € ¢,

Cloe (R H)°
because the set ,%/J’ is dense in ,%/CT R, H) endowed with strong local convergence

topology of C'°(R_; H). Therefore, the second statement of the theorem (estimate
(4.13)) is proved.

Let us continue the proof of the first statement of the theorem (formula (4.12)).
Further, to simplify arguments we set

dy(x,t) = f(x,t 4+ Ty, Yu(x, 1)) forae. (x,7) € 2 xRy andn > 1.

Estimates (4.14) and (4.15), formula (4.7), t.u.i. of 8 and ¢; in L11°°(R+; L,(£2)),
and Assumptions III and IV, provide that the sequence {y,, d,},>1 is bounded in
W (R,) x Lg(7, T; Lq(£2)). Banach—-Alaoglu theorem (cf. Zgurovsky et al. [27,
Chap. 1]; Kasyanov [11] and references therein) yields that there exist a subsequence
{(Fnes dn =1 € {Yn. du}n=1 and elements (y, d) € W (R;) xLg(z, T; Lq(£2)), and
B € LY(Ry; Li(£2)) such that

Vs ) = (v, d) weakly in W (Ry) x L (Ry; Lq(£2)),

Vnp —> Y weakly in C'°(R,; H),

Yu, =Y in LY*(Ry; H), (4.16)
Y (1) = (1) in H forae.t > 0,

B, = B weakly in L11°“(R+; L,(82)), k— +oo.

Note that the second convergence holds, because the embedding W'**(R,) C
C'(R,; H) is continuous, the third one follows from the compact embedding of
W'°(R,) into LIZOC(R+; H) (cf. Zgurovsky et al. [27, Chap. 1]), the fourth con-
vergence follows from the third one, and the last statement in (4.16) follows from
Dunford—Pettis compactness criterion.

Let us prove that

Yn, () = y(t) in H for any ¢t > 0, as k — +o0. 4.17)

We consider continuous and nonincreasing (by formula (4.14)) functions on R, :

t t _
Je@) = a0y = 2/0 /Q Bu(x, §)dxdg, J (1) = |y — 2/0 /Q B(x.§)dxds, k= 1;

(4.18)
cf. Kapustyan et al. [14]. The fourth and the last statements in (4.16) imply

Ji(t) = J(t), ask — +oo, forae.r > 0. 4.19)

Similarly to Zgurovsky et al. [28, p. 57] (see book and references therein) we show
that
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limsup Ji () < J(t) Vt> 0. (4.20)

k—+00

Indeed, formula (4.19) and continuity of J imply that for any ¢ > 0 and & > O there
exists 7 € (0, t) such that | J(7) — J(t)| < & and klim Ji(t) = J(r). Hence,
—>+00

Je@) = J (@) < J(@) = J (@) < |J(@®) = JD]+ [T (@) = T ()] < e+ I (D) = J D),

for any k > 1. Therefore, lim sup J;(#) < J(¢t) + ¢, foreach t > 0 and ¢ > 0. Thus,

k—+00
inequality (4.20) holds.
Formula (4.20) and last statement of (4.16) yield the inequality

lim sup ||y, )13 < ly@®I3 Vi > 0.

k—+00

Convergence (4.17) holds, because of the last inequality and the pointwise weak
convergence in H of the sequence {y,, }x>1 towards y, as k — 400 (see the second
statement in (4.16)).

Let us prove (4.12). By contradiction suppose the existence of a positive constant
L > 0, a finite interval [z, T] C (0, +00), and a subsequence {yi;}j>1 < {yn k=1
such that

Viz 1 max () = YOl = Iy @) = yp)la = L.

Suppose also thatt; — t, € [t, T],as j — 4o0. Continuity of [T, 7y : [t, T] = H
implies
liminf ||y, (z;) — y(to)lw = L. (4.21)
J—+00

On the other hand we prove that

Vi, (t)) = y(to) in H, j— +oo. 4.22)

For this purpose we firstly note that
Vi, (1)) = y(fp) weakly in H, j — +o00. 4.23)
Indeed, for a fixed & € (Cg"(.Q))M from (4.16) it follows that the sequence of real
functions {(IT;, 7y, (+), W) u : [T, T] = R}i>; is uniformly bounded and equicon-
tinuous. Taking into account the boundedness of {I1; 7 yy, }k>1 in W, r and the density
of the set (C{° (£2))M in H we obtain that y,, (t) — y(t) weakly in H uniformly on

[z, T], as k — +00. So, we obtain (4.23).
Secondly we prove that
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limsup [y, t)lm < [y (o) |- (4.24)

j—+oo

We consider continuous nonincreasing functions J and i J = 1, defined in (4.18).
Let us fix an arbitrary ¢ > 0. Continuity of J and (4.19) provide the existence of
t € (t,1) such that lim J; (f) = J(t) and |J(f) — J(t)| < e. Then,

Jj—+oo

Ji; () — T (t0) < |, (D) — T O] + I (@) — T ()| < |Jx; (1) — T ()| + &,

for rather large j > 1. Thus, lim sup Jy, (¢;) < J(#) and inequality (4.24) holds.
j— 400

Thirdly note that the convé]rgence (4.22) holds, because of (4.23) and (4.24); cf.
Gajewski et al. [3, Chap. I]. Finally we remark that statement (4.22) contradicts
to assumption (4.21). Therefore, the first statement of the theorem holds for any
sequence {y,},=1 C .

To finish the proof of the theorem we consider the first statement in the general
case. Let {y,},>1 C L%/CJIZ,C(R+; ) be an arbitrary sequence, which is bounded in
Lo (Ry; H). Since the set Jifj is dense in a Polish space Jf/ct ®..H) W have that
for any n > 1 there exists y, € " such that e, 1) Vns Yn) < % A priori
estimate (4.13) provides that the sequence {y,},>1 is bounded in Lo (R, ; H). The
first statement of the theorem, applied for the sequence {J,},>1 C -#,", yields that
there exist a subsequence {y,, }x>1 C {¥u}n>1 and an element y € Ji/CT R, H) such
that |[IT; 7Yy, — e ryllcocqe, 1,0y — 0, as k — oo, for any finite time interval

[z, T] C (0, +00). Therefore, formula (4.12) holds for any [z, T] C (0, +00).

4.5 Strongest Convergence Results for Solutions
in the Natural Extended Phase Space

For convergence results in the strong topology of the natural extended phase
space W!°°(R,) it is necessary to claim that additional assumption holds (see
Example 8.1). To formulate this additional assumption we provide some auxil-
iary constructions. A function ¢ € LllOC R4; L1(£2)) is called translation-compact
(tr-c.) in L11°°(IR{+; L($2)), if the set {¢(- + h) : h > 0} is precompact in
LIIOC(RJr; L(£2)); cf. Chepyzhov and Vishik [5, p. 917]. Note that a function
@ € LY@Ry; Li(£2)) is tr-c. in LP(R,; L1(£2)) if and only if two conditions
hold: a) the set {j;ﬂrh o(s)ds @t > 0} is precompact in L(£2) for any & > 0; b)
there exists a function ¥ (s), ¥ (s) — 0+ as s — 0+ such that

+1
/ / lo(x,s) —@(x,s + h)|dxds < ¥ (|h|) forany t > Oand h > —t;
' 2

Chepyzhov and Vishik [5, Proposition 6.5].


http://dx.doi.org/10.1007/978-3-319-59840-6_8

4.5 Strongest Convergence Results for Solutions in the Natural ... 99

Assumption V. Let the conditions hold:

(i) the functions c¢; and B from Assumptions (III) and (IV) respectively are tr.-c.
in LI® (R L1 (2));
(i1) the set{%j;”rh fC,s,wyds 1t >0, he(0,hy, |lullge < R} is precompact
in (L(£2))™ for any R > 0 and some ho = ho(R) > 0;
(iii) for any r > O there exist a nondecreasing function (s, r) : Ri - Ry,
Y(s,r) — 0+ as s — 04, and hg = ho(r) > 0 such that

1 M crth . .
™ Z/ /Q ‘f(’)(x,s,u) — FD(x, s + hy )| dxds < Y (lhal + lu—vigw. r)
i=1"!

for each t > 0, hy € (0,hy), ha > —t, and u,v € RM such that
lullgs, [VIiry <.

Remark 4.1 Let us discuss sufficient conditions for Assumption V.

(i) The autonomous case. Let f does not depend on the time variable ¢ and it sat-
isfies Assumptions [-IV with ¢|, 8 € L{(£2) (in particular, assumptions from Vishik
et al. [25] hold). Then Assumption V hold. Indeed, Assumptions V(i) holds, because
¢y and B do not depend on #; Assumptions II, III and the dominated convergence
theorem imply Assumption V(ii). Assumption V(iii) follows from Heine—Cantor
theorem and continuity of the mapping u — |, o f(x, u)dx. The last follows from
the dominated convergence theorem and Assumptions I-III.

(ii) The non-autonomous case. Let f = f (¢, u) is jointly continuous mapping,
it satisfies Assumptions I-IV with positive constants c¢; and 8, and f being tr.-c. in
C"°(R4; C(RM)), that is

If (@ u)— f s, v)llev <@t —s|+ lu— vy, K),

forall t,s € Ry, |ullgm, |[VIgn < K, K > 0, where w (I, K) — 0,as ! — 0+;
see, for example, Chepyzhov and Vishik [7, p.105], Kapustyan and Valero [16, 24],
where uniform global in H and uniform trajectory in C'°°(R,; H) attractors were
investigated. Then Assumption V holds.

(iii) The sufficient condition for Assumption V(iii) is: for any » > 0 there exist a
nondecreasing function ¥ (s, r) : Rﬁ — Ry, ¥(s,r) - 04 as s — 0+, such that

M
2/ |FO@ tu) = fO@ t+h,v)|dxds < Y (b + u—vgw. )
i=1 7%

foreacht > 0,h > —t,and u, v € RM such that ||u||gm, ||v]gy <.

Note that Assumption V is a generalization of the above assumptions to the
case when f depends on the space, time and state variables simultaneously and
it is not necessarily continuous by . Meanwhile, Example 8.1 below provide piece-
wise continuous function f that satisfies Assumptions I-IV, but it does not satisfy
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Assumption V. Moreover, the statement of Theorem 4.2 below does not hold for
Problem (4.1) with such interaction function.

Now let us provide the result characterizing the compactness properties of shifted
solutions of Problem (4.1) in the induced topology from W'*¢(RR ).

Theorem 4.2 Let Assumptions 1-V hold. If {y,},>1 C % W (R, be an arbi-
trary sequence, which is bounded in Lo (R,; H), then there exist a subsequence

{¥n tk=1 S {Yn}nu=1 and an element y € ‘%/WM(R ) such that

|17 yn, — e ryllw,, = 0, ask — +oo, (4.25)
for any finite time interval [t, T] C (0, +00). Moreover, for any y € %W“‘L(]R ) he
estimate (4.13) holds for any t > 0, where positive constants c3 and c4 do not depend
ony € Ji/wlm(R ) andt > 0.
Proof The embedding %/WIOC(R ) € %IOC(R ) and Theorem 4.1 yield the second

statement of the theorem. Let us provide the first one.
We consider an arbitrary sequence {y,},>1 C Jif Wi R, )?

Loo(R; H). Since the set %, is dense in a Polish space %/Wm ®,)

(4.13) holds for any y € Jf/wlm ®.)’ there exists a sequence {y,},>1 C %’L, which

which is bounded in
and the estimate

is bounded in Loo(Ry; H) and pwocr,y(Vn, Yo) < % for any n > 1. Therefore,
to provide the first statement of the theorem, we may additionally suppose that the
sequence {y,},=1 belongs to JZ;".

Note that Assumptions III, IV, and V, and Young’s inequality yield that there exist
positive constants o, 8/ > O and atr.-c. in Lll"C (R4 ; L(£2)) functionc’ : 2 xR, —

R, such that

M M M
Z f(i)(x, ‘. u)(u(i) . V(i)) > o Z |M(i)|[’i B /3/ Z |v(i) |Pi - c’(x, t), (4.26)

i=1 i=1

for any u,v € RM and ae. (x,1) € 2 x (0, +00). Let J2(c) := clpiem,.1, ()
{c’(- +h) : h > 0} be the hull of tr.-c. function ¢’ in L11°°(R+; L(£2)). Thisis a
compact set in Lll"C (Ry; L1(£2)); Chepyzhov and Vishik [5].
Let us fix an arbitrary n > 1. Formula (4.10) provides the existence of 7, >
0 and z,(-) € %* such that y,(-) = z,(- + 1,). Following to the statement
of Theorem 4.1 and its proof (see formula (4.16) and conclusions above it), there
exist a subsequence {y,,k, dp =1 € {Yn, dn}n>1 and elements (y, d) € W“’C(R ) X
Lq(t, T; Lg(£2)), and ,3 € L1°°(]R+, L1($2)) such that convergences (4.16) and
(4.12) hold. Here we again use the notation:

d,(x,t) = f(x,t 4+ Ty, Va(x, 1)) forae. (x,7) € 2 xR, andn > 1.

Since the sets .77 (c;) and 7 (c") are compact in L11°C(R+; L,(£2)), taking into
account the third statement of (4.16), we may additionally claim (passing to a
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subsequence if necessary) the existence of elements ¢; and ¢’ from LllOC (Ry; L1(£2))
such that

ynk(-xvt) - y(-xst)
Crm (X, 1) = C1(x, 1),

c, (x, 1) = ¢(x,1), ask — +o0, forae. (x,1) € 2 xRy; (4.27)
Cp = €,
Cln, = €1, in L°(Ry; L1(£2)), as k — +o0,

where ¢, 1= c1(x,t+1,) and ¢, (x, 1) :=c'(x, 1+ 1,,) forae. (x,1) € 2 xR,
and any k > 1.
Assumption III yields that

M M
S aP @ " <cin@n+e D [y )" (4.28)
i=1 i=1

fora.e. (x,t) € 2 x Ry and any k > 1. Therefore, the first two statements of (4.27)
provide

dp (x, 1) - (Y, —y)(x, 1) > Oask — 4oo, forae. (x,1) € 2 xR, (4.29)

Now let fix an arbitrary finite time interval [z, T] C (0, +00). Prove that

2 2
1Tz, 7yn, — nr,Tynxn», = Iz, 7Yn, — HT,Ty“Lz(r,T;V)

, (4.30)
+”HT,Tynk - Hr,Ty”Lp(T,T;LP(_Q)) — 0, ask — 4o0.

Formulas (4.7) and (4.5) yield

O (0, v ) = Y@ H — O (T), yny (T) — y(T) g

T T
- / / AV Yy (6. 1) - Vo — ). dxdt + / / Aoy (62 1) - Omg — ), D,
T 2 Jt 2
431)

for any k > 1. Formula (4.12) provides

O (0 Y, () = Y@ H = W (T, Y0, (T) = y(T))g — 0, as k — +o0. (4.32)

The first statement of (4.16) implies

T
lim inf/ / aVyn, (x,1) - V(yn, — y)(x, )dxdt
T 2

k— 00

T T
= lim inf/ / aVyn, (x,1) - Vyp, (x, t)dxdt —/ / aVy(x,t) - Vy(x, t)dxdt > 0,
k—+o00 )¢ 0 T 2
(4.33)
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and

T M T M
lim inf / / >y, 0| dxdt = / / D P | dxde,  (4.34)
T 2 i=1 T 2 i=1

k—+00

because the sequence {I1; 7y, }x>1 converges weakly to [T, ry in X, 7 ask — +4o00.
Therefore, formulas (4.31)—(4.33) yield

T
lim sup/ / dp (x,1) - (Y, — ¥)(x, t)dxdt < 0. (4.35)
T 2

k— 00

Let us apply Fatou’s lemma to the sequence {1 }x>; of Lebesgue integrable non-
negative (see formula (4.26)) functions

M
Vi, 1) o= dy (6, 1) - (me — 0, ) =o' D [y x, )"
i=1

M
+8 D 00" + o . e xRy, k> 1.

i=1

We obtain
T M pi T pi r
_a// / z’y(l)(x,l‘)‘ dxdt+/3’/ / Z‘y(l)(x’t)) dxdt+/ / & (x, Hdxdt
T 2 im1 T JR i=1 T 2
T M
= liminf { dy,, (x, 1) - (Y, — ) —a
/r /Q im in [ i (X, 1)+ (e — ¥)(x, 1) a;
T T 0 M
< lim inf / / dy, (x, 1) - (yp, — y)(x, )dxdt —o// /
k—o00 T 2 " e T Qg]:
T M _ pi T
+ﬁ// / z)y(z)(x,t)‘ dxdt+/ /c;k(x,t)dxa'r
T 2 im1 T 2
T A : pi T M : i T
S—a’limsup/ / z y,(z’k)(x,t)‘ dxdt—i—ﬂ'/ / Z‘y(’)(x,t)) dxdt+/ / ¢ (x, tdxdt,
T 2 im1 T 2 im1 T 2

k—o00

M

i pi . i

yy(,’k)(x,t)‘ +ﬁ/z‘y(z)(x,t)‘ +c,/lk(x,l)]dxdz
i=1

. pi
ures t)‘ dxdt

where the equality follows from the first and third statements of (4.27) and for-
mula (4.29); the first inequality follows from Fatou’s lemma applied to the sequence
{¥x}x>1; the second inequality follows from (4.35) and the last statement of (4.27).
Therefore, due to inequality (4.34), we have

T M T M
/ / Z|y,(fk)(x,t)|P' dxdt — / / Z|y(i)(x,t)|pi dxdt, as k — oo.
TSR TR

(4.36)
Moreover,
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T
lim inf/ / dp (x,1) - (Y, —¥)(x, t)dxdt > 0. 4.37)
T 2

k—o00

Inequalities (4.35) and (4.37) provide

T
/ / dp, (x,1) - (Y, — ¥)(x, t)dxdt — 0, as k — oo. (4.38)
T 2

Passing to the limit as k — 400 in formula (4.31), taking into account (4.32) and
(4.38), we obtain

T T
/ / aVyp (x,t) - Vyp (x, )dxdt — / / aVy(x,t) - Vy(x, t)dxdt, as k — oo.
2 2
! ! (4.39)

Statement (4.30) holds, because the sequence {I1; 1y, }i>1 converges weakly to
IT; 7y in the uniformly convex (superreflexive) Banach space X, 7 = Lo(t, T; V)N
Ly(t,T;Lp(82)) as k — o0 (see the first statement of (4.16)), and statements
(4.36) and (4.39) hold. We note that the mapping

T
7 — \// / aVz(x,t)-Vz(x, t)dxdt
T 2

defines a norm, that is equivalent to the natural one, defined on Hilbert space
Ly(t, T; V). Statement (4.30) is proved.

To finish the proof of the theorem we provide that there exist a subsequence
Ve Im=1 © {yndiz such that ([T 7 & yi, — Mo 7 2V L m v 4L TiLg@2)) = O,
as m — o0, for any finite time interval [t, T'] C (0, +00). Since Ay,, — Ay in
leOC R4; V*), as k — 400 (see formula (4.30)), it is sufficient to prove that for any
finite time interval [z, T] C (0, +o00) the sequence {I1; rd,, }i>1 is precompact in
Ly(7, T; Lq($2)) (see Problem (4.1)).

On the contrary assume that {IT; 7d,, }x>1 is not precompact in Lq(7, T'; Lq(£2))
for some finite time interval [z, T] C (0, +00). Therefore, there exist a subsequence
of {I1; rd, }i>1 (we denote it again by {I1; rd,, }x>1), a finite time interval [t, T] C
(0, +00), and £* > 0 such that

| T; 7dn, — My 1dy, Ly T:L2)) = €7, forany k,m > 1. (4.40)

The last statement of (4.27), statements (4.28) and (4.30), and dominated conver-
gence theorem yield
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T u

lim su
K—>+ookZ];1)‘/./Z
2

T o i=l

T M

< lim su cl (x,t)-l—czg
Kﬁ+°°k>rl)//|: T —
Tt Q i=1

where Ay x == {(x,1) € 2 x (t,T) : |y (x,Dllgn = K}, K > 0,k > 1.
Therefore, without loss of generality, we may additionally assume that there exists
a rather large K > 0 such that

dr(ti) (x, ’)’qi XAk (%, Ddxdt

: Pi
y,(L’k)(x, t)‘ } KA x (X, Ddxdt =0,

lyn, (x,t)|lgv < K fora.e. (x,t) € 2 x (z,T), and any k > 1. “4.41)
Krasnosel’skii [17, Chap. 1] (see book and references therein) implies that for any
k=1,2,..., there exists a simple function z; : 2 x (r,T) — RM,
Ni

(. 1) = bjixp, (x. 1) forae. (x.1) € 2 x (1. T),

j=1

where N > 1, {b;i}¥5, € RM, {Bju};%, C 2 x (r.T) be a family of disjoint
measurable sets, such that ||z;(x, 1)||[gv < K, fora.e. (x,?) € £ x (t,T), and

T M

. . qi 1

1T 73m, — zeliye 7ty + / / > [ ety = O et zex )| s < o
4 5 =l

(4.42)

For any h € (0, ho), where hy = ho(K) be a positive constant from Assumption
V, let us define the mapping F, : 2 x Ry x RM — RM,

+h
1
Fy(x,t,u) = 7 / f(x,s,u)ds, (x,t,u)e 2 xRy x RM,
t

Assumption V(iii) yields that
T M
// > ‘f(i)(x, £ T 2k, 1) = FL G, 1+ Ty 2e(x, 1) | dxde < Y (k] K)(T = T)N,
T o i=l

for any k > 1 and i € (0, hy). Since, ¥ (s, K) — 0+ as s — 0+, foreach k > 1
there exists /i, € (0, hg) such that

1
Vel KXT — O)Nje < .
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Thus,

1

M
//Z\f“’(x,z+rnk,zk<x,r>> = By (14 T au(x, ) | dvdt < 2 (443)
i=1

T 2

forany k > 1.

Assumptions V(ii) and V(iii) and Arzela—Ascoli theorem (see Warga [26, Chap. I]
and references therein) provide the existence of a mapping G € C([7,T] x
Bi; (L1(2)M), where By = {u € RY : |u|gv < K}, and a subsequence
{(t,u) = Fp,, (ot + T, Whn=1 S {8, u) = Fp (-, t + Ty, w)}i>1 such that

M
. . 1
/Z F(’) G+ T, 10) = GO, 1w dx < » foranym > 1.
P Rion " MmNy,

relr, 7], ||u||RM<K

Therefore,

T
, forany m > 1.

T M
0] ) T -
D Fa (ot T, 2k, (1) = GO, 1, 24, (v, 1) | dxdit <
i=1

(4.44)
Since G € C([t, T]x Bg; (L(£2))™), Heine—Cantor theorem provides the exis-

tence of nondecreasing function ¥ : R, — Ry, ¥(s) — 0+, as s — 0+, such
that

M
/Z GO (e, 11,u1) = GV(x, 1y, 2| dx < W (It — o] + [luy — walgm),
forany t;, 5 € [t, T]and uy, up € Bg. Therefore,

M
C - meas [(x, NeRx@T): > |GV tou) =GV (x, 1 up)| = c}

i=1

M
5//Z|G<i>(x,t,u1)—G<">(x,t,u2)\dxdt5(T—z)np(uul—u2||RM)
i=1
(4.45)

for any C > O and uy, up € Bk, where meas( - ) is a standard Lebeasgue measure
on 2 x (t,T).

We note that the sequence of mappings {(x, 1) — G(x, t, 2k, (x, 1)) }u>1, defined
on £2 x (t, T'), converges in measure towards the mapping (x, t) - G(x,t, y(x, 1))
asm — +oo, i.e. forany C > 0 and ¢ > O there exists M > 1 such that
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meas (<, ¢) < &, foreachm > M, where

M
=110 e xT): Z‘G(i)(x,t,zkm(x,t)) - G(i)(x,t,y(x,t))’ >Ct.

i=1

Indeed, there exists § > 0 such that ¥ (§)(T — 7) < % Therefore, meas(.27, ¢ \
{(x,t) € 2 x (z,T) : |lzg,(x, 1) — y(x,)[lrw > 8}) < 5 forany m > 1; see
formula (4.45). Since zi, (x,t) — y(x,t) asm — 4oo forae. (x,t) € 2 x (v, T)
(see (4.42) and (4.27)), we obtain the necessary statement.

Since the sequence of mappings {(x,?) — G(x,t, zx,(x,))}m>1, defined on
£2 x (z,T), converges in measure towards the mapping (x,7) — G(x,t, y(x,1))
as m — +00, inequalities (4.42)—(4.44) yield that the sequence {I1; rd, },»>1 con-
verges in measure towards the mapping (x,¢) — G(x,t, y(x,t)) asm — +oo.
Thus, formulas (4.27), (4.28), (4.41) and dominated convergence theorem yield that

m—+00

T M
i / / > [d0 0 = GO 1, v, )| dxdr =o.
T o =1

This is a contradiction with (4.40).

4.6 Examples of Applications

As applications we may consider the following examples: FitzHugh-Nagumo sys-
tem (signal transmission across axons), complex Ginzburg—Landau equation (the-
ory of superconductivity), Lotka—Volterra system with diffusion (ecology mod-
els), Belousov-Zhabotinsky system (chemical dynamics) and many other reaction-
diffusion type systems (see Smoller [22]), whose dynamics are well studied in
autonomous case (see Temam [23], Chepyzhov and Vishik [7]) and in non-
autonomous case, when all coefficients are uniformly continuous on time variable
(see Chepyzhov and Vishik [7], Zgurovsky et al. [28] and references therein). Now
results of Theorems 4.1 and 4.2 allow us to study these systems with Carathéodory’s
nonlinearities.

4.6.1 Non-autonomous Complex Ginzburg-Landau
Equation

Let 2 C R" be an open bounded set with smooth boundary 3$2. Consider the
non-autonomous complex Ginzburg-Landau equation:
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{3—7=(1+m')Au+R(t)u—(1+iﬂ(t))|u|2u+g(x,t), (4.46)

u |aQ: Oa u (-xa T) - u‘L’ (-x) ’
where u = u (x,1) = u' (x,t) +iu®>(x,1), (x,1) € 2 xRy; g(t) = g' (1) +
g>(t)i € Ly (2;C) forae.t > 0;n,B(t) € R;and R(¢) > O forae.t > 0. We
assume that g € LY (R ; L, (£2)) with sup, fttﬂ llg' (-, s)||%2(9)ds < 400 and

also that the functions R (¢) and B (¢) are measurable and essentially bounded.
Forv = (u', u?), u = u' + iu?, Eq.(4.46) can be writen as the system

9v (1 _n)Av+ R(I)ul_(|u1|2+|u2|2) (ul_ﬂ(t)uz) +(g1(t,x))

o~ \n 1 R@uz = (| + [u2) (B ) u! +u?) g (t.x)
and Assumptions [-IV hold with p = (4, 4). Indeed, since

fav)y =(ROu' + P ' =B O u). —ROuy+ v (B0 ' +us)).
then the Young’s inequality yields that

el el <k (1ROF (] +]e2])

4 4
+ilt (118 O1) (o +12])) = Ko (Ju']* + [2]*) + K5,
because R (1), B (¢) are essentially bounded in R. Moreover,

L 2 e
R i U

(f &), vy =—RO >+ *= o - K.

Hence, all statements of Theorem 4.1 hold. Furthermore, if the functions R (¢) and
B (t) satisfy

B@) =B =a(t—sD, IR —RES)|=b(t —s), (4.47)

for all t,5 € R, where a(l) — 0, b() — 0, asl — 0", then, additionally,
Assumption V holds and, thus, all statements of Theorem 4.2 hold.

4.6.2 Non-autonomous Lotka—Volterra System with Diffusion

Let D; be positive constants, 2 C R? be an open bounded subset with sufficiently
smooth boundary 02, and g, (¢) , a;; (¢) be positive measurable and bounded func-
tions on R . Consider the Lotka—Volterra system with diffusion:
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W — DyAu +u (ar (1) —u' —an () u® —a () ),

Jr
W — Dy Au? +u? (ar (1) — u® — an () u' — ax (1) u?), (4.48)
B = Dy 4 (a3 (1) — 1 — a3 (D! — axy () u?),

. .. 1
with Neumann boundary conditions "’5—;

u' (x,1) > 0. In this case the function f is given by

2 3 .
lie= % lse= %= lse= 0, where u' =

—u' (a1 (1) —u' —ap (1) u? — ar3 (1) u)
f@u) = —u? (a2 () —u® —az () u' —ax (1) u?)
—u? (a3 (1) —u® — a3 () u' — az, (1) u?)

Then Assumptions I-IV hold for u € Ri with p := (3, 3, 3). Indeed, since u’ > 0,
then the Young’s inequality implies that

W)+ (@) + (1) —ar ) () = () () = a3 (1) ()

)4 )+ @)) - Ko,

(f @t u), u)

v

v
o=
X
—~
<

and

Sl = Ko () + () + (@) + (@) + @) + @)’

! 2)% N (u2u3)% N (ulu3)%) < Ks ((u1)3 n (u2)3 + (u3)3) + K.

Hence, all statements of Theorem 4.1 hold. Furthermore, if the functions a; (¢) and
a;j (t) satisfy (4.47), then, additionally, Assumption V holds and, thus, all statements
of Theorem 4.2 hold.
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Chapter 5
Strongest Convergence Results for Weak
Solutions of Feedback Control Problems

Abstract In this chapter we establish strongest convergence results for weak solu-
tions of feedback control problems. In Sect. 5.1 we set the problem. Section 5.2
devoted to the regularity of all weak solutions and their additional properties. In
Sect. 5.3 we consider convergence of weak solutions results in the strongest topolo-
gies. As examples of applications we consider a model of combustion in porous
media; a model of conduction of electrical impulses in nerve axons; and a climate
energy balance model.

5.1 Setting of the Problem

Let £2 C R", n > 1, be bounded and open subset with a smooth boundary 942, i s

f iR — R are some real functions. We consider the semilinear reaction-diffusion
inclusion

u, — Au + [i(u),?(u)] 50in2 x (r,T), (o<1t <T <+00), (5.1

with boundary condition

ul,, =0, (5.2)

where [a, b] = {aa + (1 —a)b|a € [0, 1]},a, b € R. Wesuppose that f = [f, fl:
R — 28\ {¢} satisfies the growth condition

Jeo > 0: —co(l+|ul) < fu) < fu) <co(l + |ul) Vu R, (5.3)

and the sign condition

S . fu
lim =—— > —X;; lim A > =\, (5.4)
u—+oo U u—s—co U
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where A; is the first eigenvalue of —A in Hj (£2). Suppose also that f is lower
semi-continuous, and f is upper semi-continuous (see Sect. 2.1).

We shall use the following standard notations: H = L*(£2), V = H}(£2), V' is
the dual space of V and (-, -) denotes the pairing in the space V.

5.2 Regularity of All Weak Solutions and Their Additional
Properties

Further by ||| we denote the norm in a real Banach space E. Assumption (5.4) is
equivalent to the next one

Ire 0,A), 31 >0: f(u) -u> —xu’? — ¢y Yu € R. (5.5)

Sign condition (5.5), the variational characterization of A;, and Gronwall-Bellman
inequality imply that for any t < T and for any weak solution u(-) of Problems (5.1)
and (5.2) on [t, T'] we have

* C
lu@) % < llu(s)3e 2 4 8—1 Vi<s<i<T, (5.6)

where ¢* = A} — A and ¢; = ¢ - meas($2) (cf. [56, p. 56]).

We note that the mapping v — || Av||y defines an equivalent normon V N H?(£2)
(cf. [42, Chapter III]). The next theorem provides additional a priory estimates for
all weak solutions of Problems (5.1) and (5.2).

Theorem 5.1 There exists C > 0 such that for any t < T each weak solution
u(-) of Problems (5.1) and (5.2) on [z, T] belongs to C([t +¢,T]; V)N L*(t +
e, T; D(A)) and ‘2—‘;() € L*(t +¢,T; H) for each s € (0, T — t). Moreover; the
following inequality holds

t
= Dllu®lly +/<s — D32 g)nyds < CU+ [u@ly + ¢ = )% Vie (Tl

Proof Let t < T and u(-) be an arbitrary weak solution of Problems (5.1) and
(5.2) on [t, T]. We fix ¢ € (0, T — 7). Theorem 2.1 implies that u(-) € C([t +
e, T, V)NL*(t +¢&,T; H*(2)NV) and u, € L*(t +¢,T; H). Then [lu()||3,
and ||u(~)||%, are absolutely continuous on [t +¢,T] and for a.e. s € (t +¢,T)
we have < [L|u(s)[3] = @/ (s), —Au(s)) and £ [Lu(s)[1%] = @' (5), u(s)) (cf.
[18, Chapter IV]). Thus due to grows and sign assumptions (5.3) and (5.5) for a.e.
s € (t + &, T) in a standard way we obtain
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d 2 1 2 2
I [(S — Tt —=&)llul)Iy + EIIM(S)IIH] + 6 =7 =) u®) 20y

< [lu(s)|I% (cg + % +2ck(s — 7 — e)) + (c§ + 2¢3(s — T — £)) meas(£2)
< (cg + % + 2k (s — T — 8)) (llu(s)|I3; + meas(£2)) (5.7)

1 X c
< (cé + 3+ 2656 —T - e)) (||u<r)||%,e*25 670+ 8—2 + meas(fz)) ,

where the last inequality follows from (5.6). We fix an arbitrary 7 € [t + ¢, T].
Integrating the inequality (5.7) from 7 4 ¢ to ¢, we have

t
1 1
(=7 =)u®Iy + S luOlFy = Sl + o)l + / (s = 7 = ) u®) 32 )y ds
T+¢€

1 1 (3 1
< (Ecg +5+ (Ecg + Z) (t — 1')2) x (uu(r)n%, + z—i +meas(.Q)) .

Lete \(O+.ThenVt € (7, T]

t

lu@)13 (¢ —©) +/<s — Olu®) 3 2ynvds < C( — 1) + u(0)|17 + D,

T

where C > 0 is a constant that does not depend on z, 7, &, and u(-).
The theorem is proved.

5.3 Convergence of Weak Solutions in the Strongest
Topologies

For each u, € H we set Z;.r(u;) = {u(-) € L*(z, T; V)| u(-) is a weak solution
of Problems (5.1) and (5.2) and u(t) = u.}. We note that the existence of a weak
solution for this problem was considered in [56] (see also Sect. 1.1).

The compactness in V' of global attractor and compactness in L,zac (Ry; H>(£2)N
V) N C(Ry; V) of trajectory attractor for Problems (5.1) and (5.2) with initial data
from H is based on properties of the family of weak solutions of Problems (5.1) and
(5.2), related to the asymptotic compactness of the generated m-semiflow of solutions
and its absorbing (cf. [10, 30-32, 35, 44] and references therein). Theorem 5.2 below
on dependence of weak solutions in V' on initial data from H and Theorem 5.1 allow
us to investigate the dynamics of all weak solutions of Problems (5.1) and (5.2) in V
ast — +o00.
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Theorem 5.2 Let t < T and u,, — u, weakly in H, u,(-) € 2.1 (u,,) for any
n > 1. Then there exist a subsequence {uy, (-)}>1 C {tn()}p>1 andu(-) € Dy r(u;)
such that

Vee (0, T —t) sup |lun, (1) —u@®)|lv — 0, k = +o0. (5.8)
telt+e,T)

Proof Let t < T, u;, — u, weakly in H, u,(-) € Z;r(u;) Yn > 1. Theorem 1
from [26] (cf. also [56, Theorem 2.1, p. 56]) implies the existence of a subsequence
{ttn, (D=1 € {un()}nz1 and u(-) € Zp r(uy) such that

Vee (0, T —t) sup |lu, (t) —u(®)|lg — 0, k - 4o0. 5.9)
te[t+e,T]

We fix an arbitrary ¢ € (0, T — 7). Theorem 2.1 implies that the restrictions of u,,, (-)
and u(-) on [t + ¢, T] belong to L*c+e T, H*2)NV)NC(t +¢, T V).
Moreover, u,, ;(-) and u,(-) belong to L*(t +¢, T; H). Theorem 5.1 imply that
{4, () }r=1 isbounded in C([t + &, T1]; V) N L*(x + ¢, T; H*($2) N V). Moreover,
{t4,..+(-)}i>1 1s bounded in L*(t 4+ ¢, T; H). Thus in virtue of (5.9) and of the com-
pact and dense embedding H>(2) NV C V C H C V*, we have

Un, () = u(-) weakly in Lz(r +e, T, Hz(.Q) nv),

Up, 1 (-) = u;(-) weakly in L*(t +¢&,T; H), k> +00. (5.10)

Moreover,
up, () > u(-)inC(r +¢,T]; V), k = 4o0. (5.11)

Without loss of generality, in virtue of the compact embedding theorem (cf. [33,
Section 5.1]), the next convergences hold

up,(t) > u(t)inVforae. t € (v +¢,7),

Up, (-) = u(-) in L*(t+¢,T;V), k- +o0. (5.12)
We consider the dense subset of [, T']:
2 =1t € [t, T1|u,, (t) > u(t) in V, k — +oo}.
Let us fix an arbitrary ¢ > 0 such that t + ¢ € Z. Then
sup Nup, (1) —u(@)llv = lup, (tn,) — uta)llv, (5.13)

te[t+e,T]

where f,, € [t + ¢, T] forany k > 1.
Let us show that

lln, () — uta)llv = 0, k — +o0. (5.14)
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We prove this statement by contradiction. If (5.14) does not hold, then without loss
of generality we assume that for some ) € [t + ¢, T']

ty, = to, k — 400, (5.15)
and there exists 6* > 0 such that
o, (t0,) — u(ta)lly = 8™ Vk > 1. (5.16)
Asu(-) €e C([t +¢,T]; V) then (5.15) and (5.16) imply
lttn, (t0,) — u(to)|ly > 8* for k rather large. (5.17)
On the other hand from (5.12) we get
YV (up)(s) = V(u)(s) foreachs € (t +¢,T)N YD, k — 400, (5.18)
where for any weak solution z(-) of Problems (5.1) and (5.2) on [z, T] and any
selt+e T

Y (2)(s) = l|lz(s) I} — 2cymeas(£2)s — 2¢; / lu(€)|7,dE.

We note that
YV (up)(@) <V (up)(s) Vo <s<t<T, Vk>1. (5.19)
Let us prove the inequality

k@ Ai/(unk)(tnk) = 41/(”)(1‘0) (520)

‘We need to consider two cases.

Case 1: ) > 7 4+ ¢. Let us fix an arbitrary § > 0. As u(-) e C([t +¢,T]; V),
then the density of Z in [, T'] implies the existence of 5 € [t + ¢, fp) N Z such that

V(W) (s) — ¥V (u)(to) < 6.
In virtue of (5.15)—(5.19) for any § > 0 we obtain
kﬁm V() () — ¥V W) (to) < kETOO V() (S) =V @) to) =V (u)S) — ¥V (u)(to) < 8.

Thus inequality (5.20) holds.
Case2:fo =1+ ¢&. As T + ¢ € 9, then in virtue of (5.15)—(5.19) we obtain
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m Y () () — V() (o) < Tim ¥ (un,)(t0) — ¥ () (1) = 0.
k—+o00 k—+o00
Thus inequality (5.20) is true. Therefore, (5.9), (5.11) and (5.15) imply
im Juy, (t) Nl < lluGo)llv
k—+00
that together with (5.11) provides
unk(tnk) — u(ty) inV, k — +oo,

which contradicts (5.17). Therefore (5.14) holds.
The theorem is proved.

5.4 Examples of Applications

In this section we provide examples of applications to theorems established in
Sects. 5.1-5.3. We consider a model of combustion in porous media (sect. 5.4.1),
a model of conduction of electrical impulses in nerve axons (sect. 5.4.2), a climate
energy balance model (sect. 5.4.2); and a model of combustion in porous media
(sect. 5.4.3).

5.4.1 A Model of Combustion in Porous Media
Let us consider the following problem:

at dx?2

du 9%u
S —fE—fwerHw 1), (x,n € 0,7) xR,
{M(O, t):u(ﬂ',l):o’ [ER, (521)

where f : R — R is a continuous and nondecreasing function satisfying growth
and sign assumptions, A > 0, and H(0) = [0, 1], H(s) = I{s > 0}, s # 0; Feireisl
and Norbury [17] (see also sect. 2.4.5 and Fig. 5.1). For each u, € L?((0, 7)) we set
Der(uy) ={u() € L*(t, T; HOI((O, n)))] u(-) is a weak solution of
Problem (5.21) and u(t) = u.}. Since Problem (5.21) is a particular case of Prob-
lems (5.1) and (5.2), then the following statement holds: if t < T and u,, — u,
weakly in L2((0, 7)), u,(-) € Py (us,) for any n > 1, then there exist a subse-
quence {u, () }k=1 C {un()}n>1 and u(-) € Z; r(u,) such that

Vee (0, T —t) sup |u,(t) — u(t)||H01((O.,T)) — 0, k — 4o0.
te[t+e,T]
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Fig. 5.1 Porous media

Fig. 5.2 Structure of the peripheral nerve

5.4.2 A Model of Conduction of Electrical Impulses in Nerve
Axons

Consider the problem:

[g—;’—g%ﬂ € AH(u —a), (x,1) € (0,7) x R,
where a € (O, %), Terman [47, 48] (see also sect. 2.4.2 and Fig. 5.2). Since Problems
(5.22) is a particular case of Problems (5.1) and (5.2), then then the following state-
mentholds:ift < T andu,, — u, weaklyin L>((0, 7)), u,(-) € Z; 1 (u,,) forany
n > 1, then there exist a subsequence {u,, (-)}k>1 C {4, ()}u>1 and u(:) € Zr 1 (u;)
such that

Vee (0,7 —7) sup |luy (1) —u®ll g 0. = 0, k — +00.
te[t+e,T]
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5.4.3 Climate Energy Balance Model

Let (., g) be a C*™ compact connected oriented two-dimensional Riemannian man-
ifold without boundary (as, e.g. .# = S the unit sphere of R*). Consider the Budyko
model (see also sect. 2.4.3 and Figs. 5.3 and 5.4):

B — Au+ Bu e QS(x)B(u), (x,1) € 4 xR, (5.23)

where Au = div_y (V_yu) ; V_y is understood in the sense of the Riemannian metric
g (see sect. 2.4.3, Budyko [8] and Sellers [41]).
Let S : .# — R be a function such that S € L (.#) and there exist Sy, S; > 0
such that
0< 8 <Skx) <85

average surface temperature insolation

\
% —Au-+Bu E/QS(X)ﬁ(”)

solar constant co- albedo

Fig. 5.3 Budyko model

Emitted terrestrial

Absorbed
solar radiation

Fig. 5.4 Climate energy


http://dx.doi.org/10.1007/978-3-319-59840-6_2
http://dx.doi.org/10.1007/978-3-319-59840-6_2

5.4 Examples of Applications 119

Suppose also that B is a bounded maximal monotone graph of R?, that is there exist
m, M € R such that for all s € R and z € B(s)

m=<z=<M.
Let us consider real Hilbert spaces
H:=L>(#), V:={uel*(#): VyueL*TH)

with respective standard norms || - ||z, || - ||v, and inner products (-, )y, (-, )y,
where T.# represents the tangent bundle and the functional spaces L%(.#) and
L*(T .A#) are defined in a standard way; see, for example, Aubin [2]. According
to Theorem 2.2, for any —oo < 7 < T < 400 each weak solution u, € L*(£2) of
Problem (5.23)on [z, T]belongsto C([t + ¢, T']; HO1 RNNL*t+e T: HX(2)N
Hy((0, ) and 4 (-) € L*(t + &, T; L?(2)) foreache € (0, T — 7). Consider the
generalized setting of Problem (5.23):

du

o + Au(®) + 0J,(u(®)) — 3L w@)o00n (—oo <t < T < +00), (5.24)

where A : V — V* be a linear symmetric operator such that 3¢ > 0: (Av, v)y >
c|vl|?, foreach v € V and J; : H — R be a convex, lower semi-continuous function
such, that the following assumptions hold: (i) (growth condition) there exists ¢; > 0
such that | yllg < ci(1 + ||ullg), foreachu € H and y € 3J;(u) and i = 1, 2; (ii)
(sign condition) there exist c; > 0, A € (0, ¢) such that (y; — y», u)y > —)»||u||12q —
¢y, foreach y; € 0J;(u), u € H, where dJ; (u) the subdifferential of J;(-) at a point
u. Note that u™ € dJ;(u) ifand only if u*(v —u) < J;(v) — Ji(u) Vv e H;i =1, 2.
Let D(A) = {u € V : Au € H}. We note that the mapping v — ||Av||y defines the
equivalent norm on D(A); Temam [42, Chapter III].

We recall that the function u(-) € L*(z, T; V) is called a weak solution of Problem
(5.24) on [t, T], if there exist Bochner measurable functions d; : (v, T) — H;i =
1, 2, such that

di(t) € 0J;(u(t)) forae.t € (r,T), i =1,2; and (5.25)

T
/ [— (u, V) E'(0) + (Au, v) §(1) + (di, v) (1) — (da, v) E()]dr =0, (5.26)

forall§ € Cg°(r, T) and forallv € V.
The following theorem provides sufficient conditions for the existence and regu-
larity of all weak solutions for Problem (5.24).

Theorem 5.3 Let —o0 <17 < T < 400 and u; € H. Problem (5.24) has at least
one weak solution u(-) € L*>(t, T; V) on [t, T] such that u(v) = u,. Moreover, if
u(-) is a weak solution of Problem (5.24) on [t, T], thenu(-) € C([t +¢,T]; V) N
L*(t +¢,T; D(A)) and ‘;—’;(-) e L*(t+6¢,T; H) foranye € (0, T — 7).
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Proof We note that for any u, € H there exists at least one weak solution of Problem
(5.24) on [t, T'] with initial condition u(t) = u.; see Kasyanov [26] and references
therein. The regularity of each weak solution follows from Theorem 2.3.

The theorem is proved.

Denote by #.. the family of all, globally defined on [0, +00), weak solutions of
Problem (5.24). Let us set

E(u) = %(Au, u)+Ji(w) — JL(m), ueV. (5.27)

Theorem 5.4 Foreachu € #, andalltandT,0 <t < T < o0, the energy equal-
ity holds

T du
E@(T)) — Eu(z)) = — / 1556 s (5.28)

Proof Suppose u(-) € . be arbitrary fixed and let 0 < 7 < T < +00. To sim-
plify conclusions, let the symbol u(-) denotes the restriction of u(-) on [z, T].
Theorem 5.3 implies that u(-) € C([r, T]; V) N L*(r, T; D(A)) and ‘fi—';(') e L?
(r,T; H), because T > 0. Barbu [7, Lemma 2.1, p. 189] yields that the functions
Ji(u(-)), i = 1,2, are absolutely continuous on [z, 7] and the equality holds:

4, — ). f T 529
o i(u(t)) = (hi(?), E(ﬂ)H, orae.t € (t,T), (5.29)

for all h;(-) € L*(z, T; H) such that i, (¢) € 3J; (8)|s=u(r forae.t € (r, T), i=1,2.
We remark that the mapping t — (Au(t), u(¢))y is absolutely continuous on
[z, T'] and the equality holds:

d d
E(Au(t)’ u(t)) = 2(Au(r), d—’:(t))H, forae.t € (r,T) (5.30)
Thus, the function E (u(-)) is absolutely continuous on [z, T'] as the linear com-
bination of absolutely continuous on [z, T'] functions. According to formulae (5.29)
and (5.30), LE(u(t)) = — || % ®)||% forae.t € (. T).
The theorem is proved.

Repeating several lines from the proof of Theorem 5.1 we obtain that there exists
C > 0 such that for any t < T and for each weak solution u«(-) of Problem (5.24)
on [t, T'] the inequality holds

=D lu®lly +/<s — D [u@®) IHads < CA+ u(@ly + ¢ —1)%), (5.31)

foreacht € (t, T].
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Let
Der(ue) ={u(-) € Lz(‘[, T, V)‘ u(-) is a weak solution of Problem (5.24) and u(t) = u.},
for any u, € H. Let us provide the main convergence result for all weak solutions
of Problem (5.24) in the strongest topologies.

Theorem 5.5 Lett < T, u,, — u, weaklyin H, u,(-) € Dy r(u.,) foranyn > 1.
Then there exists a subsequence {u,, (-)}x>1 € {un()}p=1 and u(-) € Dy 7 (u) such
that

sup  |lun, (1) —u@)lly — 0, (5.32)
te[t+e,T]
/T |I—du"" (1) du ®3,dt — 0 (5.33)
- — — .
e dt dr 1 ’

ask — +oo, foralle € (0, T — 1).

Proof The inequality (5.31), Kasyanov et al. [29, Theorem 3], Banach-Alaoglu the-
orem, and Cantor diagonal arguments (alternatively we may repeat several lines
from the proof of Theorem 5.2) yield that there exist a subsequence {u,, (-)}x>1 €
{t,()},=1 and u(-) € D, 7 (u,) such that the following statements hold:

(a) the restrictions of u,, (-) and u(-) on [t +¢&, T] belongto C([t +¢,T]; V) N
L3(z +&,T; D(A) and (), () € L(z +e, T; H);
(b) the following convergence hold:

Un, () — u(-) weakly in L*(t + &, T; D(A)),
un, () = u(-) stronglyin C([t +¢,T]; V), (5.34)

Log (1) — 41y weakly in L2(x + &, T; H),

ask — oo, foreache € (0, T — 1), that imply statement (5.32). Let us prove (5.33).
Theorem 5.4 yields the following energy equalities

T du )
/ 1= Oldt = Eu(r +€)) — E(T)), (5.35)
T+e t
T du,,
/ ”_dt ) 5dt = E(uy, (t +€)) — E(u, (T)), (5.36)
T+e

k>1,e € (0, T — 7). Continuity of £ on V and (5.32) imply
E(uy (t +¢) — E(uy (T)) - E(u(t +¢)) — Em(T)), m — oo. (5.37)

Therefore, formulae (5.35)—(5.37) yield
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T du, T du
== )l dt — / = @)I3dt, (5.38)
/tJrs dt " T+e dt f

as k — oo, for each ¢ € (0, T — 7). Since, L*>(t + &; T) is a Hilbert space, (5.34)
and (5.38) imply (5.33).
The theorem is proved.
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Chapter 6

Strongest Convergence Results for Weak
Solutions of Differential-Operator
Equations and Inclusions

Abstract In this chapter we establish strongest convergence results for weak solu-
tions of differential-operator equations and inclusions. In Sect. 6.1 we consider first
order differential-operator equations and inclusions. Section 6.2 devoted to conver-
gence results for weak solutions of second order operator differential equations and
inclusions. In Sect. 6.3 we consider the following examples of applications: nonlin-
ear parabolic equations of divergent form; nonlinear problems on manifolds with
and without boundary: a climate energy balance model; a model of conduction of
electrical impulses in nerve axons; viscoelastic problems with nonlinear “reaction-
displacement” law.

6.1 First Order Differential-Operator Equations
and Inclusions

In this section we consider strongest convergence results for both the autonomous first
order differential-operator equations as well as nonautonomous evolution inclusions.

6.1.1 Convergence Results for Autonomous Evolution
Equations

Let us consider the first-order general nonlinear evolution equations of the form
u' (1) + Au(r)) =0, (6.1)

It is assumed that the nonlinear operator A : V — V*, acts in a Banach space V,
which is reflexive and separable and, for some Hilbert space H, the embeddings V &
H = H C V* are valid. Suppose that the nonlinear operator A is pseudomonotone
and satisfies dissipation conditions of the form

(Aw), upyy = allully, —p YueV, (6.2)

© Springer International Publishing AG 2018 125
M.Z. Zgurovsky and P.O. Kasyanov, Qualitative and Quantitative Analysis

of Nonlinear Systems, Studies in Systems, Decision and Control 111,

DOI 10.1007/978-3-319-59840-6_6
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where p > 2, and «, 8 > 0, and also power growth conditions of the form
—1
IA@)|lv- < c(1+lully™) YueV, (6.3)

for some ¢ > 0. Here (-, -)y : V* x V — Riis the pairing in V* x V coinciding on
H x V with the inner product(-, -) in the Hilbert space H.

By a weak solution of operator differential equation (6.1) on a closed interval
[z, T] we mean an element u of the space L ,(t, T; V') such that

T

T
VE e C(n T V) — / E W), ul)dt + / (AW, EO)ydt = 0. (64)

T

Many evolution partial differential equations in a domain §2 whose leading part
is a pth power nonlinear monotone differential operator and which may contain
lower (now nonmonotone) summands with subordinate nonlinearity growth can be
reduced to the form (6.1). In this case, the space V is a Sobolev space of the cor-
responding order, while the space H is H = L,(§2). Such equations are very often
used to describe complicated evolution processes in various models in physics and
mechanics. For equations of the form (6.1), there is a well-developed technique
for constructing global (i.e., for all + > 0) weak solutions u(¢), t > 0, from the
space Ll[fc(R+; V) such that u'(-) € Li]“(l&_; V*) (here 1/p + 1/q = 1). It is well
known that such weak solutions u(#) are continuous functions with values in H, i.e.,
u(-) e CRy; H).

The problem is to study the asymptotic behavior as t — +o0o of the families of
weak solutions {u(¢)} of Problem (6.1) in the norm of H under the assumption that
the initial data {u(0)} constitute a bounded set in H (see also [1, 2, 4, 7, 9, 11,
19-21, 28]).

Note that, under certain additional conditions on the nonlinear operator A(u)
ensuring, for Problem (6.1), the unique solvability of the Cauchy problem u|,—o = ug
forany uy € H, the study of the class of weak solutions under consideration involves
the highly fruitful theory of dynamical semigroups and their global attractors in
infinite-dimensional phase spaces. This theory has been successfully developed over
a period of more than thirty years; its foundations were created by Ladyzhenskaya,
Babin, Vishik, Hale, Temam and other well-known mathematicians [14, 15, 17, 18].

The problem becomes significantly more complicated if the corresponding Cauchy
problem is not uniquely solvable or the proof of the relevant theorem is not known.
Such a situation often occurs in complicated mathematical models. In this case,
the “classical” method based on unique semigroups and global attractors cannot be
applied directly. However, two approaches to the study of the dynamics of the corre-
sponding weak solutions are well known. The first method is based on the theory of
multi-valued semigroups; it was developed in ground-breaking papers of Babin and
Vishik (see, for example, [3]). The second approach uses the method of trajectory
attractors; it was proposed in the papers [5, 6] of Chepyzhov and Vishik as well as
in the independent work [25] of Sell.
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The new results contained in the present section consist in the application of these
two approaches to the study of the strongest convergence results for weak solutions
of equations of the form (6.1) with general nonlinear pseudomonotone operator A (u)
satisfying (S)-property without any conditions guaranteeing the unique solvability
of the Cauchy problem.

For fixed v < T let us set

X‘L’,T = L[)(ra T; V)5 X;T = Lq(ta T; V*)a WT,T = {M € X‘L’,T | u/ S X:T}a

where u’ is a derivative of an element u € X, 7 in the sense of the space of distri-
butions Z([t, T]; V*) (see, for example, [12, Definition IV.1.10, p. 168]). We note
that

A(u)(t) = A(u(t)), foranyu € X;randae.t e (7,7T).

The space W, 7 is a reflexive Banach space with the graph norm of a derivative (see,
for, example [15, Proposition 4.2.1, p. 291]):

lullw,, = lullx., + 1Wllx:,. ueWer. (6.5)
Properties of A and (V, H, V*) provide the existence of a weak solution of Cauchy

problem (6.1) with initial data
u(t) = u, (6.6)

on the interval [t, T'] for an arbitrary y, € H. Therefore, the next result takes place:
According to Proposition 1.1, forany r < T, y, € H Cauchy problem (6.1), (6.6)

has a weak solution on the interval [z, T']. Moreover, each weak solution u € X 7 of

Cauchy problem (6.1), (6.6) on the interval [z, T'] belongs to W, C C([t, T]; H).
For fixed t < T we denote

Der(ur) = {u(:) | u is a weak solution of (6.1) on [z, T'], u(r) =u.}, u. € H.

From Proposition 1.1 it follows that Z; 7 (u;) # @ and Z; r(u.) C Wyr VT <
T, u, € H.

We note that the translation and concatenation of weak solutions is a weak solution
too.

Lemma 6.1 (Zgurovskyetal. [15])Ift < T,u, € H,u(-) € Z;.1(u,), thenv(:) =
u(-+8) € Dr_sr—su) Vs. If t <t <T, ur € H, u(-) € r,(u;) and v(-) €
Dy 7(u(t)), then

_uls), s ez, 1],

2s) = v(s), s €[t,T]

belongs to Dy 1 (ur).

As a rule, the proof of the existence of compact global and trajectory attractors
for equations of type (6.1) is based on the properties of the set of weak solutions of
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problem (6.1) related to the absorption of the generated m-semiflow of solutions and
its asymptotic compactness (see, for example, [24, 27] and the references therein).
The following lemma on a priori estimates of solutions and Theorem 6.1 on the
dependence of solutions on initial data will play a key role in the study of the dynamics
of the solutions of Problem (6.1) as t — +o0.

Lemma 6.2 (Zgurovsky et al. [15]) There exist cs, cs, 6, c7 > 0 such that for any
finite interval of time [T, T'] every weak solution u of problem (6.1) on [z, T] satisfies
estimates: Nt > s, t,s5 € [1,T]

()11 +C4/ lu@NYdg < u)ly +cst =), (6.7)

lu@)l3 < lus)Ize " +c7. (6.8)

We recall that A : V — V* satisfies (S)-property, if from u,, — u weakly in V
and (A(u,), u, —u)y — 0, as n — oo, it follows that u, — u strongly in V, as
n — +o00.

Further we assume that A satisfies (S)-property.

Theorem 6.1 Lett < T, {u,},>1 be anarbitrary sequence of weak solutions of (6.1)
on[t, T]such that u,(t) — nweakly in H. Then there exist {u,, }x>1 C {tn}n>1 and
u(-) € Y.r(n) such that

T
Vee (0, T —1) [maXT] ln, (1) —u()llg + / e, (1) — u(t)||€/dt — 0, k— +oo.

te[t+e
T+e
(6.9)
Before the proof of Theorem 6.1 let us provide some auxiliary statements.
Lemma 6.3 Lett < T, y, — y weakly in W, 7, and
lim sup(A(yn), yn — ¥)x,, = 0. (6.10)
n—-+00
Then
T
nEToo/ {AQn (), yu(t) — y(©))v]dt = 0. (6.11)
T

Proof There exists a set of measure zero, Xy C (tr, T') such that fort ¢ X, we have
that
yu(t) € V for all n > 1.

Similarly to [17, p. 7] we verify the following claim.
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Claim: Let y, — y weakly in W; 7 and let ¢ ¢ X. Then

lim (A(ya (), ya(t) — y(©))y = 0.

n—+00

Proof of the claim. Fix t ¢ X and suppose to the contrary that

lim (A(y,(1), ya(t) — y(1))y < 0. (6.12)

n—-+00

Then up to a subsequence {y,, }x>1 C {yu}n>1 we have

(A (D), yu, (1) = y@O))y = 1lim (A(y, (1)), ya(r) — y(@))v < 0. (6.13)

lim
k=00 n—+00

Therefore, for all rather large k, growth and dissipation conditions imply

allym O = B < IAGw ) v-lyOllv < e+ [y D15 DY@ v

which implies that the sequences {|y, (£)|lv}k=1 and consequently {||A(yx,
() |lv+}x>1 are bounded sequences. In virtue of the continuous embedding W, r C
C([r, T]; H) we obtain that y,, (f) — y(¢) weakly in H. Due to boundedness of
{Vn, ) }i>1 in V we finally have

vVt e[t, T\NX yn (t) = y(t) weakly in V, k — +o0. (6.14)
The pseudomonotony of A, (6.12)—(6.14) imply that

lim (A(y,(1), ya(t) — y(O))v = (A(y(1)),

n——+o0o

y@O) =y@®)y =0> Tlim (A(y,(0)), yu(t) = y(@))v.

n—-+o00

We obtain a contradiction.

The claim is proved.

Now let us continue the proof of Lemma 6.3. The claim provides that for a.e.
t € [t, T], in fact for any ¢t ¢ X', we have

Lim (A (1)), ya(t) — y())y > 0. (6.15)

n—400
Dissipation and growth conditions imply that, if € X; 7, then
(A, yu () = 0O}y = allyaOI] = B = e+ Iy OIF D@y
forae. t € [t, T]\X.

Using p— 1= g the right side of the above inequality equals to
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allya @I} = B = clly @y llo®lly = cllo@lly.
Now using Young’s inequality, we can obtain a constant c(c, &) depending on ¢,
such that ,
2 o
clynOlylo®llv = Ellyn(t)llf/ + oIy - c(c, @).
Letting ¢ = max{B + 3; c(c,a) + %} it follows that

(A (), yu (1) — @ (0)y = —C(1 + [lw(D)]y) forae. 1 € [z, T]. (6.16)

Letting @ = y, we can use Fatou’s lemma and we obtain

T
_rf / (A (), yu(6) = y@)y + e+ y®II]dt >
0

n——+00

T
z/ Jim [<A<yn<r)),yn<r)—y(z>>v+6<1+||y(r>||’;)]drza/<1+||y<r)||€)dz.
0

Therefore,
T
0 > limsup(A(yn), yn — ¥)x,, = Hm [ (A(ya(2)), ya(?) — y(0))vdt =
n——+0o00 n——+00
T
= lm (A(Yn), Yn — ¥)x.s 2/ lim (A(y.(2)), ya(t) — y(O))ydt =0,
n——+o00 n——+0o00
showing that
nETm<A(yn)’ Yo = Y)x.r =0. (6.17)

From (6.16),

Vi > 1Vt ¢ 310 < (A (®), ya(t) = y(0)y < A+ ly®Iy),

where a— = max{0, —a}, fora € R. Due to (6.15) we know that fora.e. ¢, (A(y, (1)),
Ya(t) — y(t))y = —e for all rather large n. Therefore, for such n, (A(y,(¢)), y,(t) —
y@O)y =&, if (A(ya (1)), yo (1) — y(@©))y < 0and (A(y, (1)), ya(?) — (1)), =0, if
(AQn(®)), yu(®) = y(1)v = 0. Therefore, lim (A(y, (1)), yu(1) = y())y = 0and

we can apply the dominated convergence theorem and from (6.15) we conclude that
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T T
lim_ / (AORO), () = () = / Tim (A (0), () = y(0)ydr =0.

T

Now by (6.17) and the above equation we have

T
im_ / (A1), ya(t) — y())bdi =

T

= nETm/HA(yn(t)), V(@) = y(O))y + (A(ya (1), ya () — y(1)), 1dt =

0

= lim (A(ya), yo — Y)x., = 0.
n—-+00
Therefore,

T
Jdim [ 1AGL0). 500 = yO)vldr =0

The lemma is proved.

Lemma 6.4 Lett <T,y, — yweaklyin W, 7, and (6.10) holds. Then there exists
a subsequence {yn, }k>1 C {Yn}n>1 suchthatfora.e.t € (v, T) we have that y,, (t) —
y(t) weakly in V, and (A(y,, (1)), Yo, (t) — y(t))y — 0, k = 4-o00.

Proof Lety, — y weakly in W, 7 and

lim Sllp(A(yn)’ Yn — y>XpT =<0.

n——+00

In virtue of Lemma 6.3 we obtain
T
nEI-Ikloo/ A (), ya(t) — y(0))vldt = 0. (6.18)
T

Due to the continuous embedding W, r C C([t, T]; H) we have
vVt € [t, T] y,(t) — y(t) weakly in H, n — +o0. (6.19)
From (6.18) it follows that there exists a subsequence {y,, }x>1 C {yx}n>1 such that

(A, () yu, (1) — y(©))y — 0, k > 400, forae.re[r,T].
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Let Xy C [t, T] be a set of measure zero such that for t ¢ X y,, (¢), y(¢) are well-
defined Yk > 1, and

(An, (), yu (1) = y(O))v — 0, k — Fo00.

In virtue of growth and dissipation conditions we obtain

Vi ¢ By k= 1 limsup (@l O — = e+ Ly 01 DIyOllv) < 0.

k—+4o00

Thus V¢ ¢ 3,

1/i<m sup |y, (D1ly < cle, . By P)A+ [y OIF)-

—+0o0

Therefore, due to (6.19) we obtain that for a.e. t € (7, T) y,, (1) — y(t) weakly in
V,k — +oo.
The lemma is proved.

Proof of Theorem 6.1. Let t < T, {u,},>1 be an arbitrary sequence of weak
solutions of (6.1) on [t, T'] such that u,,(r) — n weakly in H. Theorem 1 from [15]
implies the existence of a subsequence {u,, }x>1 C {tn}n>1 and u(-) € Z; 7 (n) such
that

Vee (0,T — 1) max_ |u,, (1) —u(@)||lp — 0, k — 4o0. (6.20)
te[t+e,T)

Let us prove that

T
Vee (0, T — 1) / llttn, (1) —u@ ||y dt — 0, k — +o0. (6.21)

T+e
On the contrary, without loss of generality we assume that for some ¢ € (0, T — 1)

and § > 0 it is fulfilled

T
/ i, (1) —u(®) ||} dt > 8, Vk > 1. (6.22)

T+e&

In virtue of (6.7), without loss of generality we claim that
un, — uweakly in Wi, 7, k — 4o0. (6.23)

Moreover, due to (6.20), we have



6.1 First Order Differential-Operator Equations and Inclusions 133

T
lim sup / (A(un, (1)), up, () — u(t))ydt <0. (6.24)

k— 00
T+e

Thus, Lemma 6.4 and (S)-property for A imply that up to a subsequence which we
denote again as {u,, };>1 fora.e.t € (v + ¢, T) we have that u,, (t) — u(t) strongly
in V, k — 400. Moreover, Lemma 6.3 provides that

k—+

T
lim / [(A U, (1)), tn, (8) — u(®))y|dt = 0.

T+¢&

Dissipation and growth conditions follow the existence a constant C > 0 such that
it (8) = w1y < CA+ @ + [(A, (1)), (1) = u(®))v )

fora.e.t € (t +¢&,T) and any k > 1. Therefore,

T
kljrfw/ [t (1) = u(D)|I},dr = 0.
T+¢€

‘We obtain a contradiction.
The theorem is proved.

6.1.2 Convergence Results for Nonautonomous Evolution
Inclusions

For evolution triple (Vi; H; V*)! and multi-valued map A, : Ry x V = V*, i =
1,2,...,N,N = 1,2, ... we consider a problem of long-time behavior of all glob-
ally defined weak solutions for nonautonomous evolution inclusion

N
Y + DAt y(1) 30, (6.25)

i=1

as t — 4o00. Let (-, )y, : V;* x V; = R be the pairing in V;* x V;, that coincides
on H x V; with the inner product (-, -) in the Hilbert space H.

.e., V; is a real reflexive separable Banach space continuously and densely embedded into a real
Hilbert space H, H is identified with its topologically conjugated space H*, V;* is a dual space to V;.
So, there is a chain of continuous and dense embeddings: V; C H = H* C Vl* (see, for example,
Gajewski, Groger, and Zacharias [12, Chap. I]).
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Note that Problem (6.25) arises in many important models for distributed para-
meter control problems and that large class of identification problems enter this
formulation.

Throughout this subsection we suppose that the listed below assumptions hold:

Assumption 1. Let p; > 2, g; > 1 are such that — + =1, for each for
i=1,2,...,N, and the embedding V; C H is compact one for some for i =
1,2,..., N .

Assumption II (Grows Condition). There exist a translation uniform integrable
(t.u.i.) function in Lll"c (R,) function ¢y : Ry — R, and a constant ¢; > 0 such that

N

N
max Idi 1%, < () + 2 D llull},
i=
i=1

foranyu € V;,d; € A;(t,u),i =1,2,...,N,and ae. t > 0.
Assumption III (Sign Assumption). There exist a constant &« > 0 and a t.u.i. in
L*(R,) function B : Ry — R, such that

N N
Z di,uy, = a ) |lullf, — B()
i=I i=1

foranyu € V;,d; € A;(t,u),i =1,2,...,N,and ae. t > 0.
Assumption IV (Strong Measurability). If C C V;* is a closed set, then the set
{(t,u) € (0,400) x V; : A;(t,u) N C # @} is a Borel subset in (0, 400) x V;.
Assumption V (Pointwise Pseudomonotonicity). Let for each i =1,2,..., N
and a.e. t > 0 two assumptions hold:

(a) forevery u € V; the set A;(t, u) is nonempty, convex, and weakly compact one
in V;*;

(b) if a sequence {u,},>1 converges weakly in V; towards u € V; as n — +o0,
d, € Ai(t,u,)foranyn > 1,andlim sup(d,, u, — u)y, < 0,thenforanyw € V;

n—-+o00

there exists d(w) € A;(t, u) such that

liminf(d,, u, — )y, > (d(w), u — w)y,.

n——+o0o

Let0 <t < T < +00. As a weak solution of evolution inclusion (6.25) on the
interval [t, T'] we consider an element u(-) of the space ﬂlNzlei (t, T; V;) such that
for some d;(-) € Ly, (t, T; Vi"),i =1,2,..., N, itis fulfilled:

A N
- / E @, y@)dt+ / (d; (D), §D)vdt =0 V& € C¥(IT, T; Vi), (6.26)
T i=1

and d;(t) € A;(t, y(t)) foreachi = 1,2,...,Nandae.t € (7, T).
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For fixed nonnegative T and 7', T < T, let us consider

N

Xer =0 Ly (. T Vi), Xip=> Lo(t.T:Vi*), Wer={yeXer|y €Xirh
i=1

Aor i Xer =3 Xip. er(y)={d € X} |d(t) € At, y(1) forae. t € (. T)},

where y’ is a derivative of an element u € X, 7 in the sense of Z([t, T]; ZlN=1 Vi)
(see, for example, Gajewski, Groger, and Zacharias [12, Definition 1V.1.10]). Note
that the space W r is a reflexive Banach space with the graph norm of a deriv-
ative ullw,, = lullx,, + u'lx:,. u € Wer. Let (- -)x,, : Xip x Xep — R be
the pairing in Xf,r x X¢.r, that coincides on L,(t, T; H) x X, r with the inner

T
product in Lo(7, T H), i.e., (u, v)x,, = f(u(t), v(t))dt for any u € Ly(t,T; H)

T
and v € X, r. Gajewski, Groger, and Zacharias [12, Theorem IV.1.17] provide that
the embedding W, 7 C C([t, T']; H) is continuous and dense one. Moreover,

T

u(T), v(T)) — (u(r), v(1)) =/[<u'(l), v(®))y, + (v'(t),u(t))v,-]dt, (6.27)

T

forany u,v e W, r.

Migérski [22, Lemma 7, p. 516] (see paper and references therein) and
Assumptions I-V provide the existence of multi-valued Nemitsky operator <7 r :
X1 = Xj g for Z,N: | A; that satisfies the following properties:

Property I. The mapping <7 r transforms an each bounded set in X, 7 onto
bounded subset of X7 ;;
Property II. There exist positive constants C; = Ci(zr, T) and C, = Co(7, T)
such that (d, y)x,, > C1||y||§” — Cyforany y € X, r and d € o 1(y).
Property III. The multi-valued mapping % r : X = X7 ;. is (generalized)
pseudomonotone on W, r, i.e., (a) for every y € X, r the set < r(y) is a
nonempty, convex and weakly compact one in X7 ;; (b) <% r is upper semi-
continuous from every finite dimensional subspace X. 7 into X} , endowed with
the weak topology; (c) if a sequence {y,, d,}n>1 C Wrr X X ;T converges weakly
in W, r x X:T towards (y,d) € W, r x X;T, d, € 9 1(y,) forany n > 1, and
lim sup(d,, y» — ¥)x., < O0,thend € o7 r(y)and lim (d,, yu)x,, = (d,¥)x, .
n—+0o ' n—+00 '
Formula (6.26) and definition of the derivative for an element from Z([t, T];
ZiNzl ‘/i*) yield thateach weak solution y € X, 7 of Problem (6.25)on [z, T'] belongs
to the space W, and y' + 7 7(y) 3 0. Vice versa, if y € W,y satisfies the last
inclusion, then y is a weak solution of Problem (6.25) on [z, T'].
Assumption I, Properties I-III, and Denkowski, Migérski, and Papageorgiou [10,
Theorem 1.3.73] (see also Zgurovsky, Mel’nik, and Kasyanov [30, Chap. 2] and



136 6 Strongest Convergence Results for Weak Solutions ...

references therein) provide the existence of a weak solution of Cauchy problem
(6.25) with initial data y(z) = y® on the interval [z, T], for any y® € H.
For fixed T and 7', such that 0 < 7 < T < +00, we denote

QI,T()/(T)) ={y() | y is a weak solution of (6.25) on [z, T], y(z) =y}, y© e H.

We remark that 2, 7(y?) # @ and Z, 1 (y®) C W,.r,if 0 <1 < T < +00 and
y e H. Moreover, the concatenation of Problem (6.25) weak solutions is a
weak solutions too, i.e.,if 0 <t <t < T, y™ € H, y(-) € Z,,(y), and v(-) €
D 7(y(1)), then
| y@s), s elr, 1],
€)= [U(S), selt, T,

belongs to Z, 7(y™); cf. Zgurovsky et al. [31, pp. 55-56].
Gronwall lemma provides that for any finite time interval [t, T] C R} each weak
solution y of Problem (6.25) on [z, T'] satisfies estimates

t N t s
||y(r>||%,—2/0 ﬂ(é)d$+2a2/ ||y<$)||€,d55||y(s>||%,—2/0 B(E)dE,
= , (6.28)
Iy < ly(s)13e 270 42 / (BE) +ay)e 7179ge, (6.29)

where ¢, s € [t, T], t > s; y is a constant that does not depend on y, s, and ¢; cf.
Zgurovsky etal. [31, p. 56]. In the proof of (6.29) we used the inequality ||« ||%1 —1=<
l|ul||%, forany u € H.

Therefore, any weak solution y of Problem (6.25) on a finite time interval
[z, T] C Ry can be extended to a global one, defined on [z, +00). For arbitrary
>0 and y® € H let Z.(y'”) be the set of all weak solutions (defined on
[, +00)) of Problem (6.25) with initial data y(t) = y®. Let us consider the fam-
ily " = Uyowen Z:(y'™) of all weak solutions of Problem (6.25) defined on the
semi-infinite time interval [T, +00).

Assumptions (IT) and (IIT) yield that there exist a positive constant &’ > 0 and a
t.ui. function ¢’ in L (R}) such that A(z, u) € ) (u) for each u € N, V; and
a.e. t > 0, where

oo ) —[Zp, pie v ,Zp,, v, = o' max {Jull: 11, }—c’(r)].

Let 57 (¢") be the hull of t.u.i. function ¢’ in L10C Ry e, ) = Clpie,) {c(- +

h) : h > 0}. This is a weakly compact set in L11°°(]R+); Gorban et al. [13].
Let us consider the family of problems
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VY =y (y), o€ X :=H(). (6.30)

To each o € X' there corresponds a space of all globally defined on [0, +00) weak
solutions 7" C C'°(Ry; H) of Problem (6.30). We set #5 = Uyex 7,7 .
We remark that any element from %5 satisfies prior estimates.

Lemma 6.5 There exist positive constants ¢z and cy4 such that for any o € X and
y € KT the inequalities hold:

t s

N t
Iyl — 2/o<s)ds +20/Z/ Iy@11},dE < [yl — 2/a<s>ds,
i=1"

0
(6.31)

1

Iyl < Iy) 5 + ¢4 / o(E)e 2 8qg, (6.32)

s
foranyt > s > Q.

Proof The proof naturally follows from conditions for the parameters of Problem
(6.30) and Gronwall lemma.

Let us provide the result characterizing the compactness properties of solutions
for the family of Problems (6.30).

Theorem 6.2 Let {y,},>1 C %, ; be an arbitrary sequence, that is bounded in
Lo (Ry; H). Then there exist a subsequence {y, }i>1 C {Yn}n>1 and an element
y € A5 such that

max, [n, (1) = yOllu — 0, k — +o00, (6.33)

rel
for any finite time interval [t, T] C (0, +00).

Proof For any n > 1 there exists o, € ¥ such that y, € Jiff. Furthermore, the
definition of weak solution of evolution inclusion yields that for any n > 1 and
i =1,2,..., N thereexistsd,; € LI(Ry; V;*) suchthat y,(t) + X, d,i(1) = 0
for a.e. r > 0. The definition of <7, and estimates (6.31) and (6.32) provide that the
sequence {yu, ¥, dn.i}n=1 is bounded in N LI¢(R; Vi) x >N LRy Vi¥) x
L;‘I?C(RJr; Vi), i=1,2,...,N. Since X is a weakly compact set in L11°°(R+),
Banach—Alaoglu theorem (cf. Zgurovsky, Mel’nik, and Kasyanov [30, Chap. 1];
Kasyanov [15]) yields that there exist a subsequence {yn,, du,.i}k>1 C {Yn> du}n>1
and elements d; € L;?C(R+; Vi), y € DL LY(R,; V;), and 0 € X, such that y' €
vazl L}]‘)C (R,; V;*) and foreachi = 1,2, ..., N the following convergence hold:
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Y, =Y weakly in ﬂIN:l LII‘}[C(RJF; V),

v =y weakly in 37| LI®(R,; V"),

dy,i — d; weakly in LI?C(R+; Vi),

Yo, =Y weakly in C'°(Ry; H), (6.34)
Yu, =Y in LY*(Ry; H),

Yn, (1) = y(t) in H fora.e. t > 0,

Op — O weakly in LI(Ry), k — +oo.

Formula (6.33) follows from Zgurovsky etal. [31, Steps 1 and 5, p. 58]. We remark
that in the proof we need to consider continuous and nonincreasing (by Lemma 6.5)
functions on R :

1 t

Je@®) = lym O3 — 2/%(5)015, J@&) = lly®lF — 2/o(s>ds, k> 1.

0 0
(6.35)

The two last statements in (6.34) imply Ji(¢) — J(¢), as k — o0, fora.e.t > 0.

The definition of a weak solution of evolution inclusion (cf. Zgurovsky et al. [31,
p. 58]) and (6.34) yield y'(¢t) = — Z,N=1 d;(t) for a.e. t > 0. To finish the proof it is
necessary to provide that

N
" di(1) € Ay (y(1)) forae. 1 > 0, (6.36)

i=1

Let ¢ € C3°((0, +00)), ¢ > 0. Then

[ oo i {1yl i | - ow)ar <
R, i=

.. ;N
timint [ (0o i {10 (0010 1 1| = 0, ) <
R4 1=

k—+00

N
: .1 , d
tim [, @ gj(dm,i(r), ynO)vdt = lim /R om O 5o dr =

k—+o00 JR

N
1 , d
— t —oet)dt = t){d; (1), y(t))y dt,
2/R+”y()”Hdt¢() ;/&w(x 0, yO),
where the first inequality holds, because the convex functional

0 = | o mar [y O 101 |

is weakly lower semi-continuous on N 1LII,"‘,C(IRJF; Vi) x Lz"IC(RJr; Vi*) x L}Zc
Ry; V¥ x ... x L}]"NC(R+; Vn™®); the second inequality follows from the
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definition of .o, ; the first and the third equalities follow from formula (6.27), because
Vo, () + Z,Nzl dy i () =y () + Z,N=1 d;i(t) =0 for any k > 1 and a.e. t > 0; the
second equality holds, because y,, — y in L12°°(]R+; H),as k — +00. As anonneg-
ative function ¢ € C3°((0, +00)) is an arbitrary, then, by definition of .27, formula
(6.36) holds.

The theorem is proved.

6.2 Second Order Operator Differential Equations
and Inclusions

In this section we consider damped wave equations with possibly nonmonotone dis-
continuous nonlinearities. Then, we generalize the results to the autonomous second
order differential-operator inclusions with possibly nonmonotone potential.
Let B > 0 be a constant, £2 C R” be a bounded domain with sufficiently smooth
boundary d£2. Consider the problem
[ uy + Pur — Au+ fu) =0, (6.37)
ulpe =0,

where u(x, t) is unknown state function defined on 2 x R; f : R — Ris an inter-
action function such that
. f)
lim

lul—»o00 U

> —Ap, (6.38)

where A is the first eigenvalue for —A in Hj (£2);
AD>0: |f(w)| <D+ |u]), VueR. (6.39)
Further, we use such denotation

F(s) :=limsup (1), f(s):=1lm f(1), G(s):=[f(s), f(®)], s€R.

1—s —s

LetussetV = HO1 (£2) and H = L*(£2). The space X = V x H is a phase space of
Problem (6.37). For the Hilbert space X as (-, -)x and || - || x denote the inner product
and the norm in X respectively.

Definition 6.1 Let 7 >0, v <T7. The function ¢()= (), u ()’ e
L*®(t, T; X) is called a weak solution of Problem (6.37) on (z, T') if fora.e. (x, t) €
2 x (tr,T), there exists [ =1(x,t) € L>(t, T; L*(2)) I(x, t) € G(u(x, 1)), such
that Vi € Hj (£2),Vn € CP(z, T),
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) A

hH

=h

W

v

=
>

Fig. 6.1 Difference of nondecreasing functions

T T
- /(ut, V)umndt + /(ﬂ(ut, Vg + @, )y + € Y)gndt =0. (6.40)

The main goal of the manuscript is to obtain the existence of the global attractor
generated by the weak solutions of Problem (6.37) in the phase space X.

Lemma 6.6 (Zgurovsky et al. [31]) For any ¢, = (ug, u;)” € X and v < T there
exists a weak solution ¢(-) of Problem (6.37) on (t, T) such that ¢(t) = ¢..

Further, we assume that

f(s) = fils) — fa(s), s €eR,

where f; : R — R, i = 1, 2, are nondecreasing functions (see Fig.6.1).
We remark that

[f(5), f(H)I S LAi6s), fi(9)] = [2(5), fa(5)], s €R.

Thus we consider more general evolution inclusion

[ B — D+ [0, Fr] = [0, H@l20.

u|ag = 0
Let us set

N
Gi(s) :=/f,-(§)d§, Ji(u) :=/Gi(u(x))dx, Jw)y=J1(w)—Jru), ueH, i=1,2.
0 2

The functionals G; and J; are locally Lipschitz and regular; Clarke [8, Chap. I]. Thus
the next result holds.

Lemma 6.7 (Kasyanov etal. [31]) Letu € C'([t, T]; H). Thenfora.e.t € (t, T),
the functions J; o u are classically differentiable at the point t. Moreover,
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d ;
E(Ji ou)(t) = (p,u, (1)) Vp € 9Ji(u(t)), i =1,2,

and L(J; ou)(-) € Li(z, T).

Consider WrT = C([7, T]; X). Lebourgue’s mean value theorem (see Clarke [8,
Chap. 2]) provides the existence of constants ¢y, ¢, > 0 and u € (0, A1) such that

)| < er(1+ ullg). Jw) > —%IIMIIZH —c YueH. (6.42)
The weak solution of Problem (6.37) with initial data
u(t)=a, u'(r)=> (6.43)

on the interval [z, T] exists forany a € V, b € H. It follows from Zadoianchuk and
Kasyanov [29, Theorem 1.4]. Thus the next lemma holds true (see Kasyanov et al.
[16, Lemma 3.2]).

Lemma 6.8 (Kasyanov et al. [16, Lemma 3.2]) For any t < T, a€V, b€ H,
Cauchy Problem (6.37), (6.43) has the weak solution (u, u;)T € Loo(t, T; X). More-
over, each weak solution (u, u;)T of Cauchy Problem (6.37), (6.43) on the interval
[z, T belongs to the space C([t, T]; X) and u; € Lo(t, T; V).

For any ¢, = (a, b)” € X, denote

(u, u,)Tis a weak solution of Problem (6.37) on [z, T'],
u(t)=a,u;(t) =>b ’

De (7)) = {(uc), ur (N7

From Lemma 6.8 it follows that 2, r(¢;) C C([t, T]; X) = WrT. Let us check that
translation and concatenation of weak solutions are weak solutions too.

Lemma6.9 If t <7, ¢, €X, ¢()€ Zr7(p:), then Vs () =¢(-+s)€
91:7S,T7S((p1:)- If'L' <t< T; (22 S X; (P() € @r,t(ﬁor) Cll’ld W() S @t,T((pt); then

| e@), s et 1],
0(s) = [w(s), selr.T] € D1 (@7).

Proof The proof is trivial (see Kasyanov et al. [16, Lemma 4.1]).

Let ¢ = (a,b)” € X and

1
Y (p) = Enwni + Ji(@) — Jr(a). (6.44)
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Lemma 6.10 Lett < T, ¢, € X, ¢o(-) = ("), u; ()7 € D r(@r). Then V oo :
[t,T] = R is absolutely continuous and for a.e. t e (z,T), %”//(q)(t)) =
—Bllu ()3

Proof Let —0o <7 < T < 400, ¢(-) = (u(-), u,(-))T € WI be an arbitrary weak
solution of Problem (6.37) on (t, T). Since 8J (u(-)) C L,(z, T; H), from Temam
[26] and Zgurovsky et al. [31, Chap. 2] we obtain that the function r — | u,(¢) II%, +
||u(t) ||%/ is absolutely continuous and for a.e. r € (t, T),

L, OIF + a3 ] = @ () — Du@), u, ()n =

6.45
= —Bllu:(Ofy = (d1(@©), u (D) + (da(t), u, (1))m, (04

where d;(t) € 0J;(u(t)) for ae. t € (r,T) and d;(-) € Lo(t, T; H), i = 1,2. As
u() e CY([r, T; H)and J; : H > R,i = 1,21s regular and locally Lipschitz, due
to Lemma 6.7 we obtain that fora.e. t € (7, T), Elj—t(J,- ou)(t),i = 1,2. Moreover,
%(J,- ou)(-) € Li(r,T),i =1,2and forae.t € (r, T),Vp € 3J; (u(t)),

%(Ji ou)(t) = (p,us (), i =12

In particular for a.e. t € (7, T), dt(J ou)(t) = (d;i(t), u,(t)) y. Taking into account
(6.45) we finally obtain the necessary statement.
This completes the proof.

Lemma 6.11 Let T > 0. Then any weak solution of Problem (6.37) on [0, T] can
be extended to a global one defined on [0, +00).

Proof The statement of this lemma follows from Lemmas 6.8-6.10, (6.42) and from
the next estimates

Vi <T, Vie[t,T], Yo, € X, Yo() = (), u;()" € Do 1(pr),

2e1+ (14 2) @I + @I} 227 (0(@) 2 2/ (p0) =
= I} -+l O, +27 ) = (1= £ )l + lu 01 - 22,

The lemma is proved.

For an arbitrary ¢y € X let Z(¢y) be the set of all weak solutions (defined on
[0, +00)) of Problem (6.37) with initial data ¢(0) = ¢o. We remark that from the
proof of Lemma 6.11 we obtain the next corollary.

Corollary 6.1 Forany ¢y € X and ¢ € D (¢y), the next inequality is fulfilled

2(c1 + c2)A

||<p(t)||x_ A — || OIx + T n Vi > 0. (6.46)
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From Corollary 6.1 in a standard way we obtain such statement.

Theorem 6.3 Lett < T, {¢,(:)}n>1 C WTT be an arbitrary sequence of weak solu-
tions of Problem (6.37) on [z, T] such that ¢,(t) — ¢, weakly in X, n — 400, and
let {t,}n>1 C [t, T] be a sequence such that t, — ty, n — +00. Then there exists
¢ € Dy 1(pr) suchthat up to a subsequence ¢, (t,) — ¢(ty) weaklyin X, n — +o0.

Proof We prove this theorem in several steps.

Step 1. Lett < T, {@,(-) = (un(+), t/,(-))}a>1 C W/ be an arbitrary sequence of
weak solutions of Problem (6.37) on [t, T] and {#,,},>1 C [z, T] such that

¢n(t) = @, weaklyin X, t, > ty, n— +oo. (6.47)

In virtue of Corollary 6.1 we have that {¢,(-)},>1 is bounded on W! C
Loo(t, T; X). Therefore up to a subsequence {@,, (-)}i>1 C {¢n(-)}n>1 We have

u,, — u weakly starin Lo (7, T; V), k — +o0,

u,, — u' weakly star in Loo(7, T; H), k — +00,
u, — u" weakly starin Loo(t, T; V¥), k — +00,

dp,i — d; weakly starin Loo(t, T; H), i = 1,2, k —> +o0,

Up, —> uin Ly(r,T; H), k — o0, (6.48)
Up,(t) = u(t) in H forae.t € [r,T], k = +o0,
up, (1) — u'(¢) in V* forae. t € (v, T), k — +oo,
Au,, — Au weakly in Lo(t, T; V*), k — 400,
where Vn > 1d,; € Ly(r, T; H) and
w!(t) + Bul (t) 4+ dy1 (1) — dno(t) — Au,(t) =0,
() + Bu, (1) 1(0) 2(1) () (6.49)

d,i(t) € dJ;(u,(t)), i=1,2, forae. t € (r,T).

Step 2. 0J;, i = 1, 2 are demiclosed. So, by a standard way we get that d;(-) €
(), i =1,2,¢:= (u,u') € Zrr(p:) C W

Step 3. From (6.48) it follows that for arbitrary fixed 4 € V the sequences of
real functions (u,,(-), h)u, (u;k(-), h)y : [t, T] — R are uniformly bounded and
equipotentionally continuous. Taking into account (6.48), (6.46) and density of the
embedding V C H we obtain that uj, (1,,) — u'(t9) weakly in H and u,,(,,) —
u(tg) weakly in V as k — +o0.

The theorem is proved.

Theorem 6.4 Lett < T, {¢,(-)}u>1 C W be an arbitrary sequence of weak solu-
tions of Problem (6.37) on [t, T] such that ¢,(t) — ¢, strongly in X, n — 400,
then up to a subsequence ¢, (-) — ¢ () in C([t, T]; X), n — +o0.

Proof Let t < T, {¢u(-) = (un (), u,(:))"},=1 C W] be an arbitrary sequence of
weak solutions of Problem (6.37) on [z, T] and {¢#,},>1 C [t, T]:
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©n(t) = ¢ strongly in X, n — +o00. (6.50)

From Theorem 6.3 we have that there exists ¢ € Z; r(¢,) such that up to the sub-
sequence {@,, (D=1 C {@n(D}u=1 9. (-) = @(-) weakly in X, uniformly on [z, T],
k — 4-o00. Let us prove that

@n, — @in W',k — +oo. (6.51)

By contradiction, suppose the existence of L > 0 and the subsequence {(pk]_ }j=1 C
{@nJk=1 such that Vj > 1,

max llor; @) —o@lix = g, ;) — @(t)llx = L.

Without loss of generality we suggest that ; — #y € [t, T'], j — +o00. Therefore
by virtue of a continuity of ¢ : [, T] — X we have

Lim {lgx, ;) — @(t0)lx = L. (6.52)

j—+oo
On the other hand, we prove that
@k, (1) = @(to) in X, j — +o0. (6.53)
First we remark that
@i, (1)) — @(tp) weakly in X, j — +o0 (6.54)
(see Theorem 6.3 for details). Secondly let us prove that

lim sup [[¢,; () [[x < llo(0)llx- (6.55)

j—+oo

Since J is sequentially weakly continuous, ¥ is sequentially weakly lower semi-
continuous on X. Hence we obtain

V(p(t)) = lim ¥ (g, (1)),

Jj—+oo (6 56)
T lj .
Sl $)II5ds < Tim [ flu ()1I3,ds
T j—o+oort ’

and

Y (¢(10)) + B / lu' () Ngds < Lim |V (gx, (1)) + B / g, (5) jzdls

Jj—+00

(6.57)
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Since by the energy equation both sides of (6.57) equal ¥ (¢ (7)) (see Lemma 6.10),
it follows from (6.56) that ¥ (¢, (¢;)) — 7 (¢(ty)), j — +00 and (6.55). Conver-
gence (6.53) directly follows from (6.54), (6.55) and Gajewski et al. [12, Chap. I]. To
finish the proof of the theorem we remark that (6.53) contradicts (6.52). Therefore
(6.51) holds.

The theorem is proved.

Now let us consider autonomous second order differential-operator inclusions
with possibly nonmonotone potential. Let V and H be real separable Hilbert spaces
such that V C H with compact and dense embedding. Let V* be the dual space of
V. We identify H with H* (dual space of H). For the linear operators A : V. — V*,
B : V — V* and locally Lipschitz functional J : H — R we consider a problem
of investigation of dynamics for all weak solutions defined for # > 0 of non-linear
second order autonomous differential-operator inclusion:

u”(t) + Au'(t) + Bu(t) + 3J,(u(t)) — dJ2(u(t)) 3 0. (6.58)

We need the following hypotheses:.

H(A) A:V — V*isalinear symmetric such thatdc, > 0 : (Av, v)y > CA||U||%/
YveV,;

H(B) B : V — V*islinear, symmetric and 3cg > 0 : (Bv, v)y > cB||v||%, Yv €
V2

H(J) J;: H— R,i=1,2, is a function such that

(@) J; () is locally Lipschitz and regular [8, Chap. I, i.e.,

e for any x,v € H, the usual one-sided directional derivative J'(x;v) =
M exists
[ s

lim
N0
eforallx,v € H,J (x; v) = J°(x; v), where J°(x; v) = lim\‘0
y—x,t
(i) 3cy > 0: sup ldllm < ci(1+lvlw) Yv e H;

dedJ,(v)—aJr(v)
(iii) 3cr > 0:

SO+t —JW).
t

[l

inf  (d,v)y = —Alvl3 —c; YveH,
dedJy(v)—0J,(v)

where 0J;(v) ={p € H|(p,w)n < J°(v; w) Yw € H} denotes the Clarke sub-
differential of J;(-) at a point v € H (see [8] for details), A € (0, 1), A > O:
o3 > Allv]l3, Yo e V,i=1,2.

We note that in (6.89) we can consider g = 0. Indeed, let g € V¥, then u* =
B~'g € V C H.Ifu(-) is a weak solution of (6.89), then it (-) = u(-) — u* is a weak

2We remark that operators A and B are continuous on V [12, Chap. III].
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solution of

i (t) + A (t) + Bii(t) + dJ3(i(t)) — 8J4(ii(t)) 20 ae. t >0,
where Jio(:) = Ji(-+u*), i = 1,2, satisfies H(J) with respective parameters.
Thus, to simplify our conclusions, without loss of generality, further we will consider

problem (6.58).
The phase space for Problem (6.58) is the Hilbert space:

E={a,b) laeV, be H),

a

where (a, b)T = (b

+00.

) with [[(a, D))" |lg = (lall}, + 1bI3)"*. Let—co <7 < T <

Definition 6.2 The function (u(-), u’'(:-))T € Loo(t, T; E) with u/(:) € Lo(z, T; V)
is called a weak solution for (6.58) on [t, T], if there exists d(-) € Lo(t, T; H),
d(t) € 0J1(u(t)) — 0Jo(u(t)) forae. t € (r,T),suchthatVyy € V,Vn e C°(r, T)

T T
—/(M/(t), Y)gn' (tdt +/ [(Ad' @), ¥)v + (Bu(t), yr)v + (d®), y) ] n()dr = 0.

T T

Evidently if (u(-),u’(-))T is a weak solution of (6.58) on [z, T], then u”(-) €
Loz, T; V¥), (u(),u'(-))" € C([r, T]; E) and d(:) € Loo(z, T H).

We consider the class of functions WTT = C([z, T); E). Further ¢y, ¢, A, Aq,
ca, cg we recall parameters of Problem (6.58). The main purpose of this work is
to investigate the long-time behavior (as t — +00) of all weak solutions for the
problem (6.58) on [0, +00).

To simplify our conclusions, since condition H (B), we suppose that

(u,v)y = (Bu,v)y, ||v||%/ = (Bv,v)y, cg =1, Yu,v e V. (6.59)

Lebourg mean value theorem [8, Chap. 2] provides the existence of constants c3, ¢4 >
Oand u € (0, Ay):

IJ@)| < es(1+ ull), J@) > —%nuu%, —c¢y VYueH, (6.60)

where J (v) := Ji(v) — J,(v), v € H.

Lemma 6.12 Let J : H — R be a locally Lipschitz and regular functional, y €
C'([r, T1; H). Then for a.e. t € (t, T) there exists %(] o y)(@) = (p, y'(t)) forall
p € 8J(y(t)). Moreover, %(J o y)(-) € Li(t, T).

Proof Since y € C'([r, T]; H) then y is strictly differentiable at the point #, for any
to € (t, T). Hence, taking into account the regularity of J and [8, Theorem 2.3.10],
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we obtain that the functional J o y is regular one at ¢y € (7, T) and d(J o y)(ty) =
{(p, Y (t0))| p € 3J(y(tp))}. On the other hand, since y € C'([t, T]; H), J : H —
R is locally Lipschitz then J o y : [t, T] — R is globally Lipschitz and therefore it

is absolutely continuous. Hence for a.e. t € (7, T) EW, ‘% e Li(t,T)
t
and f %(] oy)(&)dE =(Joy)t)—(Joy)(s) VT <s <t <T. At that taking

into éccount the regularity of J oy, note that (J o y)°(ty, v) = (J o y) (ty, v) =

d”"dw -v for a.e. 1o € (7, T) and all v € R. This implies that for a.e. t) € (7, T)

I(J 0 y)(tg) = {2y,

At the inclusion (6.58) on [7, T'] we associate the conditions
u(ty=a, u'(t)=>b (6.61)

where a € V and b € H. From [29] we get the following lemma.

Lemma 6.13 For any t < T, a€V, b € H the Cauchy problem (6.58), (6.61)
has a weak solution (v, y')T € Lo (t, T; E). Moreover; each weak solution (y, y')"
of the Cauchy problem (6.58), (6.61) on the interval [t, T] belongs to the space
C(t, T E)andy € Ly(t,T; V), y" € Ly(r,T; V¥).

Let us consider the next denotations: Yo, = (a, b)T € E we set D (@) ={
@), ' (N7 | (u,u)T is a weak solution of (6.58) on [z, T], u(t) = a, u'(t)
= b }. From Lemma 6.13 it follows that Z; 7 (¢.) C C([z, T]; E) = WI.

Let us check that translation and concatenation of weak solutions are weak solu-
tions too.

Lemma6.14 If t<T, ¢, €E, ¢()€ Prr(p;), then Y()=¢(+s)€E
Dr—sr—s(@)Vs. lft <t <T,¢; € E, () € Dr (@) and Y (-) € D, 1((1)), then
0(s) = [w(s), s € [z.1],

V(). s € [r. ) Pelongs 1o Zer(@o).

Proof The first part of the statement of this lemma follows from the autonomy of
the inclusion (6.58). The proof of the second part follows from the definition of the
solution of (6.58) and from that fact that z € W, y assoonasv € W, ,,u € W, r and
v(t) = u(t), where

_Jv(@s), s e, 1],
2s) = [u(s), selr. T]

Let ¢ = (a,b)T € E and

|
Y (p) = Ellwllé + J(a). (6.62)
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Lemma6.15 Let 1 < T, ¢, € E, (1) = (y(-), y ()T € D17 (@r). Then ¥V o @ :
[z, T] — Ris absolutely continuous and fora.e. t € (t, T) %”f/((p(z‘)) = —(Ay'(1),
Y (®))y < =y 1y (O3, wherey > 0depends only on parameters of Problem (6.58).3

Proof Let —o0o <7 < T < +00, ¢(-) = (y(-), y'(-))T € WI be an arbitrary weak
solution of (6.58) on (z, T'). From [12, Chap. IV] we get that the function r —
||y/(t)||%1 + ||y(t)||%, is absolutely continuous and for a.e. t € (7, T)

1 d ’ 2 2 7 /
S [y O + IyOIy] = ") + By(@), y' @)y =

= —(AY®), Y D)y = @d@), ) u < =y YOI} = @@), ¥y ), (6.63)

where d(t) € 0J;(y(t)) — dJr(y(¢)) forae.t € (t,T),d(-) € Lr(t,T; H)yand y >
0 depends only on parameters of Problem (6.58), in virtue of u — /(Au, u)y is
equivalent norm on V. Since y(-) € C'([t,Tl;H) and J; : H - R, i = 1,2, is
regular and locally Lipschitz, then Lemma 6.12 yields that for a.e. € (r, T') there
exists j—t(Ji o y)(t). Moreover, j—t(Ji oy)(-) € Li(r,T) and for a.e. t € (7, T) and
all p € J,(y(t)) — 0J2(y(t)) we have %(J o y)() = (p, y'(t)) g In particular, for
ae. te(t,T) %(J o y)() = (d(t), y'(¢))y. Taking into account (6.63) we finally
obtain the necessary statement.
The lemma is proved.

Lemma 6.16 Let Ty > 0.If (u(-), u'(-))7 is aweak solution of (6.58) on [0, Ty), then
there exists an its extension on [0, +00) (i(-), i’ (-))T which is weak solution of (6.58)
on [0, +00), i.e., (u(-), ' ()T € CR4; E) N Loo(Ry; E) withit'(-) € Ly(0, T; V)
VYT > 0 and there exists d(-) € Lo(0, +00; H), d(t) € 3J1(u(t)) — aJ,(u(t)) for
a.e. t € (0, 400), such that¥Vyr € V, Vn € C§°(0, +00)

+00 —+00
- / @ (0. ) g (Odi + / AT (). Y)y + (Bi(1). Yy + @), ¥) g In()dt = 0.
0 0

Proof The statement of this lemma follows from Lemmas 6.13-6.15, Conditions
(6.59), (6.60) and from the next estimates: VT < T,Vg, € E,Vo(-) = (y(-), Y ()T €

Do, Vi€ [1.T] 25+ (1+32) Iy@I} + 1Y @I =27 (p(@) = 27

@) = IyOI + Iy O3 +2700) = (1= £) IOl + Iy Ol - 2.
The lemma is proved.

For an arbitrary ¢y € E let Z(¢p) be the set of all weak solutions (defined on
[0, +00)) of problem (6.58) with initial data ¢(0) = ¢y. We remark that from the
proof of Lemma 6.16 we obtain the next corollary.

Corollary 6.2 For any ¢y € E and ¢ € P (@) the next inequality is fulfilled:

3We remark that /{Au, u)y is equivalent norm on V, generated by inner product (Au, v)y.
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M+ 2c 2(c3 + ey
leI} < =—llpO)|} + === v > 0. (6.64)
A—p AL—p

From Corollary 6.2 and Conditions H(A), H(B), H(J) in a standard way we
obtain such proposition.

Theorem 6.5 Lett < T, {¢,(-)}n>1 C WtT be an arbitrary sequence of weak solu-
tions of (6.58) on [z, T] such that ¢,(t) — @, weakly in E, n — +o00. Then there
exist ¢ € D1 (@:) and {@n, ()}i=1 C {@n()}n=1 such that ¢, (-) — @(-) weakly in
E uniformly on [t, T], k — 400, i.e., ¢n, (tx) = @(to) weakly in E, k — +o00, for
any {ti}r>1 C v, T] with ty — ty, k — +o0.

Theorem 6.6 Lett < T, {¢,(-)}n>1 C WTT be an arbitrary sequence of weak solu-
tions of (6.58) on [t, T such that ¢,(t) — @, strongly in E, n — +o0c. Then there
exist ¢ € Dy 1(p;) such that up to a subsequence ¢,(-) — ¢(-) in C([t,T]; E),
n — 4oQ.

Proof Let{g,(-) = (u,(), u,(-))"},=1 C WI beanarbitrary sequence of weak solu-
tions of (6.58) on [7, T'] such that

@u(T) = @, stronglyin E, n — +o00. (6.65)

Letg = (u(-), u' ()" € Zr () and {gn, (V=1 S {@a()}a=1asin Theorem6.5.
It is important to remark that in the proof of Theorem 6.5, by using the inequality
(Lemma 6.15, Corollary 6.2, (6.60))

P, Ol a(e ) = 7 (on(®) = 7 on () = 50p [V gn (@) + 5 ln (D)l | -1 < oo,

we establish that
u, () = u'(:) weaklyin Ly(t,T;V), k — +oo0.

Let us prove that
@n, — @ in W' k— +oo. (6.66)

By contradiction suppose the existence of L > 0 and subsequence {(pkj }i=1 C
{@n, Ji=1 such that Vj > 1;21[13)}] lor; 1) —oOlle = llgr; () — @)l = L. With-

out loss of generality we suppose that t; — to € [t, T], j — +00. Therefore, by
virtue of the continuity of ¢ : [t, T] — E, we have

lim lgy, (1) — @(t0)lle = L. (6.67)

j—>+o0o

On the other hand we prove that

o, (1)) = @(to) in E, j — +oo. (6.68)
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Firstly we remark that (Theorem 6.5)
@, (tj) = @(fp) weakly in E, j — +o00. (6.69)
Secondly let us prove that

dim g, @) lle = lleo) e (6.70)
Jj—>+oo

Since J is sequentially weakly continuous on V, ¥ is sequentially weakly lower
semicontinuous on E. Hence, we obtain

fo ]
V(plto)) < lim ¥ (g, (1)), /(Au’(S),u/(S))vdSS lim <Au§<j(s),u§<j(S))vds,
Jj—+oo . j—>+oor

(6.71)
and hence

V(o) + (AW (). w'®))vds < Tim ¥ (gp, (1)) + [(Au'(s), w/(s))vds <

j—+oo T

= jE_TOO Vg, (t)) + fO(Au’(s), w'(s))yds

< @ Vo, (1)) + lim [ (Au (5), up (5))yds <
j—+00 J J

j—4oo T
< Tm_ (”ﬂ(gok,. 1) + (4}, (), (S)>vds)-

(6.72)

We remark that the last inequality in (6.71) follows from weak convergence of
T
u, () tou'(-)in Ly(z, T; V) and because of the functional v — J{Av(s), v(s))vds

is sequentially weakly lower semi-continuous on L,(z, T'; V).

Since the energy equation and (6.65) both sides of (6.72) are equal to ¥ (¢(7))
(see Lemma 6.15), it follows that ¥ (¢, (t;)) — ¥ (¢()), j — 00 and then (6.70).
Convergence (6.68) directly follows from (6.69), (6.70). Finally we remark that (6.68)
contradicts (6.67). Therefore, (6.60) is true.

The theorem is proved.

6.3 Examples of Applications

In this section we consider the following examples of applications: nonlinear
parabolic equations of divergent form, nonlinear problems on manifolds with
and without boundary: a climate energy balance model; a model of conduction
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of electrical impulses in nerve axons; and viscoelastic problems with nonlinear
“reaction-displacement” law.

6.3.1 Nonlinear Parabolic Equations of Divergent Form

Consider an example of the class of nonlinear boundary value problems for which
we can investigate the dynamics of solutions as t+ — +oo. Note that in discussion
we do not claim generality.

Letn >2,m>1,p>2,1<q <2, % + }] =1, £2 C R" be a bounded domain
with sufficiently smooth boundary I" = 92. We denote a number of differentiations
by x of order < m — 1 (correspondingly of order = m) by N, (correspondingly by
N,). Let Ay (x, n; £) be a family of real functions (|a| < m), defined in 2 x RM x
R and satisfying the next properties:

(Cy) for ace. (x, 1) € £2 x (0, 0o) the function (n, §) — A, (x, t, n, §) is contin-
uous one in RN x RMN2;

(Cy) for each (1, £) € RM x R the function x — Ag(x, £, 1, £) is measurable
on £2 x (0, 00);

(Cs) there exist ¢y > 0 and k; € L, (§2) such that

Ao e, 1, ) < crlInl” " + &7 + ki (x0)]

fora.e. (x, 1) € £2 x (0, c0) and for each (5, £) € RM x RM2;
(Cy) there exist ¢, > 0 and k>, € L;(£2) such that

D Aa(x 1,0, ) > ealE]” — ka(x)

la|=m

fora.e. (x, 1) € £2 x (0, c0) and for each (5, £) € RM x RM2;
(Cs) there exists an increasing function ¢ : R, — R such that the following
inequality holds:

D (Aalx,t.0,8) = Aa(x, 1,0, E))(Ea — £3) = (0(1Ea]) — 9(E; D) (€l — 1E5])

lo|=m

fora.e. (x,1) € 2 x (0,00) and each n € RV and &, £* € RN, & #£ £*.
Consider the following notations:

D*u = {DPu,|B| =k}, Su={u,Du,..., D" u}.

Let us examine the dynamics of all weak (generalized) solutions defined on
[0, 4-00) for the following problem:
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ay(axt, 2 ‘%(—1)‘“'1)“ (Au(x, 8y(x, ), D" y(x, 1)) = 00n2 x (0, +00),
- (6.73)
Dy(x,1) = Oon I x (0, +00), |a| <m — 1. (6.74)

ast — 4o00.
Consider such denotations: H = L,(£2), V = W(;" "P(£2) is a real Sobolev space,

a(t,u, w) = Z Ay (x,t,8u(x), D"u(x))D*w(x)dx, u,weV.

|D‘|Sm(2

Note thatthe operator A(¢) : V — V*, ¢ > 0, defined by the formula (A (¢, u), w)y =
a(t,u,w), t >0, u, w € V, satisfies Assumptions (C1)—(C5). Therefore, we pass
from Problem (6.73) and (6.74) to the respective problem in the “generalized” setting
(6.1). Here we note that

Alt,uy= D (=D“ID" (A(x. 1. 8u, D"w)), u e CF (), t = 0.

lee|<m

Therefore, all statements from Sect. 6.1 hold for all weak (generalized) solutions of
Problem (6.73) and (6.74).

6.3.2 Nonlinear Non-autonomous Problems on Manifolds
with and Without Boundary: A Climate Energy
Balance Model

Let (#, g) be a C*>° compact connected oriented two-dimensional Riemannian man-
ifold without boundary (as, e.g..# = S? the unit sphere of R?). Consider the problem
(see Sect.2.4.3 for autonomous setting):

B — Au+ Ro(x,t,u) € QS(x,)B), (x,1) € M xR, (6.75)

where Au =div_ 4 (V_4u); V_ 4 is understood in the sense of the Riemannian
metric g. Note that (6.75) is the so-called climate energy balance model (see
Sect.2.4.3). The unknown u(x, t) represents the average temperature of the Earth’s
surface. The energy balance is expressed as

heat variation = R, — R, + D.
Here R, = O S(x, t)B(u). Itrepresents the solar energy absorbed by the Earth, Q0 > 0

is a solar constant, S(x, 7) is an insolation function, given the distribution of solar
radiation falling on upper atmosphere, B represents the ratio between absorbed and
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incident solar energy at the point x of the Earth’s surface (so-called co-albedo func-
tion). The term R, represents the energy emitted by the Earth into space, as usual,
it is assumed to be an increasing function on u. The term D is heat diffusion, we
assume (for simplicity) that it is constant. We consider R, = Bu as in Budyko; see
[31] and references therein.

Let S : .# — R be a function such that S € L*°(.#) and there exist Sy, S| > 0
such that

0< S <S(x,1) <S.

Suppose also that B is a bounded maximal monotone graph of R?, that is there exist
m, M € R such that for all s € R and z € B(s)

m<z<M.
Let us consider real Hilbert spaces
H:=L*A), V:i={uel*(H): V. quel*TH)
with respective standard norms || - ||z, || - |lv, and inner products (-, - )g, (-, )y,
where T.# represents the tangent bundle and the functional spaces L?(.#) and

L*(T .#) are defined in a standard way. Therefore, all statements from Sect. 6.1 hold
for weak solutions of Problem (6.75).

6.3.3 A Model of Conduction of Electrical Impulses
in Nerve Axons

Consider the problem (see Sect.2.4.2 and Fig. 6.2):

at ax

o Puy e AH(u —a), (x,1) € 0,7) xR, 6.76)
u,t) =u(mw,t) =0, tekR,

where a € (0, %) (see Sect.2.4.2) Therefore, all statements from Sect. 6.1 hold for
weak solutions of Problem (6.76).

Nerve impulse propagation

F \_‘_'_( \_'_'_f' N
f\ y € J - 4
Axon

Fig. 6.2 Nerve impulse propagation
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6.3.4 Viscoelastic Problems with Nonlinear
“Reaction-Displacement” Law

Let a viscoelastic body occupy a bounded domain £2 C R?, d = 2, 3 in applications,
and it is acted upon by volume forces and surface tractions.* The boundary I of £2 is
supposed to be Lipschitz continuous and it is partitioned into two disjoint measurable
parts I'p and I'y such that meas(I'p) > 0. We consider the process of evolution of
the mechanical state on the interval (0, 400). The body is clamped on I'p and
thus the displacement vanishes there. The forces field of density fj acts in £2, the

surface tractions of density go are applied on I'y. We denote by u = (uy, ..., ug)
the displacement vector, by o = (0;;) the stress tensor and by &(u) = (g;;(u)) the
linearized (small) strain tensor (g;; (1) = %(ajui + d;u;)), wherei, j =1,...,d.

The mechanical problem consists in finding the displacement field u : £2 x
(0, +00) — R? such that

u'(t) — divo (1) = fo in 2 x (0, +00), (6.77)
o(t) = Ce(/' (1) + Ee(u(t)) in 2 x (0, +00), (6.78)
u(t) =0 on I'p x (0, +00), (6.79)

on(t) =gy on Iy x (0, +00), (6.80)

u(0) = uo, u'(0) =u; in £2, (6.81)

where ¢ and & are given linear constitutive functions, n being the outward unit
normal vector to I".

In the above model dynamic equation (6.77) is considered with the viscoelastic
constitutive relationship of the Kelvin—Voigt type (6.78) while (6.79) and (6.80) rep-
resent the displacement and traction boundary conditions, respectively. The functions
uo and u; are the initial displacement and the initial velocity, respectively. In order
to formulate the skin effects, we suppose that the body forces of density f consists
of two parts: f; which is prescribed external loading and f, which is the reaction
of constrains introducing the skin effects, i.e., fo = fi + f>. Here f; is a possibly
multi-valued function of the displacement u. We consider the reaction-displacement
law of the form

— fox,t) € 9j(x,u(x,t)) in £2 x (0, +00), (6.82)
where j : 2 x RY — R is locally Lipschitz function in u and dj represents the

Clarke subdifferential with respect to u. Let %, be the space of second-order sym-
metric tensors on R,

4This section is based on results of [23] and references therein.
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We consider the following problem:

examine the long-time (as t — +00) behavior of all (weak, generalized) solutions
for (6.77)—(6.81) and (6.82).

In [23] for finite time interval it was presented the hemivariational formulation of
problems similar to (6.77)—(6.82) and an existence theorem for evolution inclusions
with pseudomonotone operators. We give now variational formulation of the above
problem. To this aim let H = L,(£2,R?), H, = H' (2, RY), 7 = L,(£2, %;) and
V be the closed subspace of H; defined by

V={veH :v=0o0n Ip}.
On V we consider the inner product and the corresponding norm given by

(u,v)y = (e), e, vy = el for u,ve V.

From the Korn inequality [|v| g, < Cille(v)|l s for v e V with C; > 0, it follows
that || - ||z, and | - ||y are the equivalent norms on V. Identifying H with its dual,
we have an evolution triple V C H C V* (see e.g. [12]) with dense and compact
embeddings. We denote by (-, -}y the duality of V and its dual V*, by | - ||y~ the
norm in V*. We have (u, v)y = (u,v)y forallu € H andv € V.

We admit the following hypotheses:

H(%). The linear symmetric viscosity operator & : 2 x %; — % satisfies the
Carathéodory condition (i.e., € (-, €) is measurable on £2 for all ¢ € % and € (x, -)
is continuous on % for a.e. x € §2) and

C(x,e):e> C2||8||2% forall ¢ € #; and a.e. x € £2 with C, > 0. (6.83)

H(&). The elasticity operator & : 2 x %; — % is of the form & (x, &) = E(x)e
(Hooke’s law) with a symmetric elasticity tensor E € Lo (£2), i.e., E = (giju),
i,j, k,l=1,...,dwith &ijkl = &jikl = 8lkij € L (£2). Moreover,

E(x,e):e> C3||8||2% forall ¢ € #; and a.e. x € £2 with C3 > 0.

H(j). j : 2 x RY — Ris a function such that

(@) j(-, &) is measurable for all £ € R? and Jj(,0) e Li($2);

(i7) j(x, ) is locally Lipschitz and it admits the representation via the difference
of regular functions [8] for all x € £2;

@@ii) Inll < C4(1 + ||&])) forall n € 3j (x, &), x € 2 with Cy > 0;

(iv) jOx,&; —&) < Cs(1 + ||&|) for all £ e RY, x € 2, with Cs > 0, where
j%(x, &; n) is the directional derivative of j (x, -) at the point & € R¢ in the direction
n e R

H). fi € V*, go € Ly(I'v; RY), ug € V and u; € H.

Next we need the spaces ¥ = Ly(t,T; V), 7 = Lo(t,T; H)y and # = {w €
¥ . w' € ¥*}, where the time derivative involved in the definition of 7 is
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understood in the sense of vector-valued distributions, —co <17 < T < +00.
Endowed with the norm |[v|| = ||v||y + ||[V/|v~, the space # becomes a separa-

ble reflexive Banach space. We also have # C ¥ C A C V*. The duality for the
T
pair (¥, #*) is denoted by (z, w)y = [(z(s), w(s))vds. Itis well known (cf. [12])

T
that the embedding # € C([t,T]; H)yand{w € ¥ : w' e #} C C([tr,T]; V) are
continuous. Next we define g € V* by

(g, v)v = (f1, v)v + (80, V) r2(ry:re) fOr v € V. (6.84)

According to condition (6.82), we obtain the following variational formulation of
our problem:

@' (@), v)yv + (a(1), e) e 4 [ jO(x, u(t); v)dx >
2

> (g,v)y forall v e V and a.e. ¢ € (0, +00), (6.85)
o(t) =C (W @))) + E(E())) forae. t € (0, +00),
u(0) = ug, u'(0) = u;.

We define the operators A : V — V*and B : V — V* by
(A(u), v)y = (€(x, e)), e(v) o for u,v eV, (6.86)
(Bu,v)y = (&(x, e)), e(v))» for u,veV. (6.87)

Note that bilinear forms (6.86) and (6.87) are symmetric, continuous, and coercive.
Let us introduce the functional J : L,(82; RY) — R defined by

J(v) = /j(x, v(x))dx for v € L,(2; RY). (6.88)
2

From [8, Chap. II] under Assumptions H(j), the functional J defined by (6.88)
satisfies

HJ). J : Ly(2; RY) — R is a functional such that:

(i) J(-) is well defined, locally Lipschitz (in fact, Lipschitz on bounded subsets of
L>(£2; RY)) and it admits the representation via the difference of regular functions
Jiand J, on H;

(ii) ¢ € 3J1(v) — 3J2(v) implies ||Z || z,(2:re) < Co(1 + |[V]l1,(2:re)) fOr v € Ly
(2; R?Y) with Cg > 0;

(@ii) JO(v; —v) < Co(1 + vl z,(2:rey) for v € Ly(82; R?) with C; > 0, where
JO(u; v) denotes the directional derivative of J(-) at a point u € L,(£2; RY) in the
direction v € L,(£2; RY).

We can now formulate the second-order evolution inclusions associated with the
variational form of our problem
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Find u € C([0, +00); V) withu’ € C([0, +00); H) N L(0, +o0; V)
and u” € LZZ‘)"(O, +00; V*) such that
W'(1) + Au'(t) + Bu(t) + 8J, (u(t)) — 2 (u(t)) > g ae. t € (0, +00),
u(0) = ug, u'(0) = uy.
(6.89)

Theorem 6.6 yields that, if T < T, {¢,(-)},>1 C WrT is an arbitrary sequence of
weak solutions of (6.89) on [z, T'] such that ¢,(t) — ¢, strongly in E, n — +00,
then there exists ¢ € Z; r(p;) such that up to a subsequence ¢,(-) — ¢(-) in
C([t,T]; E),n — 400 (see Sect. 6.2 for details).
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Chapter 7

Uniform Global Attractors for
Non-autonomous Dissipative Dynamical
Systems

Abstract In this chapter we consider sufficient conditions for the existence of
uniform compact global attractor for non-autonomous dynamical systems in spe-
cial classes of infinite-dimensional phase spaces. The obtained generalizations allow
us to avoid the restrictive compactness assumptions on the space of shifts of non-
autonomous terms in particular evolution problems. The results are applied to several
evolution inclusions.

7.1 General Methodology

The standard scheme of investigation of uniform the long-time behavior for all solu-
tions of non-autonomous problems covers non-autonomous problems of the form

du(t) = Ag(p (1)), (7.1)

where o (s), s > 0, is a functional parameter called the time symbol of Eq.(7.1)
(¢ is replaced by s). In applications to mathematical physics equations, a function
o (s) consists of all time-dependent terms of the equation under consideration: exter-
nal forces, parameters of mediums, interaction functions, control functions, etc.;
Chepyzhov and Vishik [4, 5, 8]; Sell [36]; Zgurovsky et al. [48] and references
therein; see also Hale [16]; Ladyzhenskaya [30]; Mel’nik and Valero [32]; lovane,
Kapustyan and Valero [17]. In the mentioned above papers and books it is assumed
that the symbol o of Eq. (7.1) belongs to a Hausdorff topological space = of func-
tions defined on R, with values in some complete metric space. Usually, in applica-
tions, the topology in the space Z is a local convergence topology on any segment
[t1, 2] C R.. Further, they consider the family of Eq.(7.1) with various symbols
o (s) belonging to a set X' € &, . The set X is called the symbol space of the fam-
ily of Eq.(7.1). It is assumed that the set X, together with any symbol o (s) € X,
contains all positive translations of o (s): o (¢ +s5) = T (¢t)o(s) € X forany ¢, s > 0.
The symbol space X' is invariant with respect to the translation semigroup {7 (¢)},>0:
T ()X < X for any ¢t > 0. To prove the existence of uniform trajectory attractors
they suppose that the symbol space X with the topology induced from &, is a
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compact metric space. Mostly in applications, as a symbol space X' it is naturally to
consider the hull of translation-compact function oy (s) in an appropriate Hausdorff
topological space & . The direct realization of this approach to differential-operator
inclusions, PDEs with Caratheodory’s nonlinearities, optimization problems, etc., is
problematic without any additional assumptions for parameters of Problem (7.1) and
requires the translation-compactness of the symbol o (s) in some compact Hausdorff
topological space of measurable multi-valued mappings acts from R to some metric
space of operators from (V — 2""), where V is a Banach space and V* is its dual
space, satisfying (possibly) only growth and sign assumptions. To avoid this techni-
cal difficulties we present an alternative approach for the existence and construction
of the uniform global attractor for classes of non-autonomous dynamical systems in
special classes of infinite-dimensional phase spaces; see also [1, 6, 12-15, 18, 21,
22, 24-29, 37-44, 46].

7.2 Main Constructions and Results

Let p > 2 and g > 1 be such that % + ql =1, (V; H; V*) to be evolution triple
such that V C H with compact embedding. Foreach#|,, e R,0 < <1, < +00,
consider the space

WZ]A,ZZ = {)’(') € Lp(th t2§ V) : y/() € L(](tla t2§ V*)}a

where y'(-) is a derivative of an element y(-) € L,(t1, f; V) in the sense of distrib-
utions Z*([t1, ©2]; V*). The space W;, ,, endowed with the norm

IVIw, ., = IV, @00y + 1Y I L,0mvs Y € Win,

is a reflexive Banach space. Note that W;, ,, C C([t1, 2]; H) with continuous and
dense embedding; Gajewsky et al. [11, Chap. IV]. For each t > 0, consider the
Fréchet space

W ([7, +00)) := {y : [1, +00) = H : Iy 1,y € Wy 1, foreach [t1, 2] C [t, +00)},

where I1;, ;, is the restriction operator to the finite time interval [#;, #,]. We recall that
the sequence {f,},=1 converges in W!°°([z, +-00)) (in C'°([r, +00); H) respec-
tively) to f € W'°([r, +00)) (to f € C'°°([r, +00); H) respectively) as n — +00
if and only if the sequence {I1;, , f,},>1 converges in W,, ,, (in C([t1, t2]; H) respec-
tively) to I1;, ;, f asn — 4-oc for each finite time interval [#, £,] C [z, +00). Further
we denote that

T(h)y(:) = Mo +00y(- +h), ye€ W R,), h >0,

where Ry = [0, +00) and Iy ;o is the restriction operator to the time interval
[0, 400).
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Throughout the chapter we consider the family of solution sets { %"}~ such that
HtC W'e([r, 400)) for each > 0 and ‘%/r: # ) for some 7y > 0. In the most
of applications as .#," can be considered the family of globally defined on [z, 4+00)
weak solutions for particular non-autonomous evolution problem (see Sect.7.4).

To state the main assumptions on the family of solution sets {7}, it is nec-
essary to formulate two auxiliary definitions.

A function ¢ € L%f’c Ry), y > 1, is called translation bounded function in
Ll}j’c (Ry) if

r+1
sup/ lp(s)|¥ds < +o00;
t

>0

Chepyzhov and Vishik [7, p. 105]. A function ¢ € L**(R,) is called a translation
uniform integrable (t.u.i.) function in Lll"c Ry) if

t+1
lim Sup/ lp(s)[{le(s)] = K}ds = 0;
t

K—+o00 >0

Gorban et al. [14]. Note that Dunford—Pettis compactness criterion provides that
@ € L'(R,) is a tu.i. function in L(R,) if and only if for every sequence of
elements {7, },>1 C Ry, the sequence {¢(- + 7,)},>; contains a subsequence con-
verging weakly in Lll"C (R). Note that for each y > 1, every translation bounded in
LI;’C (R,) function is t.u.i. in LllOC (R4); Gorban et al. [14].

Main assumptions. Let the following two assumptions hold:

(A1) there exist a t.u.i. in L11°°(R+) function ¢; : R, — R, and a constant oy > 0
such that for each T > 0, y € ., and 1, > 1; > 7, the following inequality
holds:

I — @1 + o / ly()l12di < / awds  (12)

I3} 1

(A2) there exist a t.u.i. in Lll"c (R,) function ¢; : Ry — R, and a constant a; > 0
such that foreach 7 > 0, y € %fﬁ, and t, > t; > 7, the following inequality
holds:

15} 15} [5)
/ Iy (ON}.dt < Olz/ ly® |y dt +/ ca(t)dt. (7.3)

3] 3] n

To characterize the uniform long-time behavior of solutions for non-autonomous
dissipative dynamical system consider the united trajectory space ;" for the family
of solutions {#, "}, shifted to zero:

A = {TmyC+1) () e =0 WERY),  (T4)

>0
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and the extended united trajectory space for the family {7, }.~o:
A = clewr, . m [0, (7.5)

where clcie(g, ;[ - 1is the closure in C'(R; H). Since T (h). %" € J¢" for each
h > 0, then
T(h)y#t < #* foreach h > 0, (7.6)

due to
,Ocloc(R+;H)(T(l’l)u, T(h)V) < pCIOC(RJr;H) (u, V) for each u,v e CIOC(R+; H),

where pcie(r, . ) 18 the standard metric on Fréchet space C loc(R,; H). Therefore
the set
X:={y0) : yex") (71.7)

is closed in H (it follows from Theorem 7.2). We endow this set X with metric
px(x1, x2) = [lx; —x2llg, x1,x2 € X,

Then we obtain that (X, p) is a Polish space (complete separable metric space).
Let us define the multi-valued semiflow (m-semiflow) G : Ry x X — 2%:

G(t,yo) :={y(r) : y() € ZTand y(0) = yo}, >0, ypeX. (7.8)
According to (7.6), (7.7), and (7.8) for each # > 0 and yy € X the set G(t, yp) is

nonempty. Moreover, the following two conditions hold:

(1) G (0,-) = I is the identity map;
(i) G (1 +12,y0) € G (11, G (12, y0)), Vi1, 12 € Ry, Vyp € X,

where G (t, D) = U G (t,y), D C X.
yeD

We denote by distx(C, D) = sup,.c infsep p(c, d) the Hausdorff semidistance
between nonempty subsets C and D of the Polish space X. Recall that the set i C X
is a global attractor of the m-semiflow G if it satisfies the following conditions:

(i) M attracts each bounded subset B C X, i.e.
distx(G(t, B), ) — 0, t — +o0; (7.9)

(i1) 9 is negatively semi-invariant set, i.e. ® € G (¢, N) for each ¢ > 0;
(iii) N is the minimal set among all nonempty closed subsets C C X that satisfy
(7.9).

In this chapter we examine the uniform long-time behavior of solution sets
{# )50 in the strong topology of the natural phase space H (as time 7 — +00) in
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the sense of the existence of a compact global attractor for m-semiflow G generated
by the family of solution sets {-#,"};>¢ and their shifts. The following theorem is
the main result of the chapter.

Theorem 7.1 Let assumptions (Al)—(A2) hold. Then the m-semiflow G, defined in
(7.8), has a compact global attractor N in the phase space X.

7.3 Proof of Theorem 7.1

Before the proof of Theorem 7.1 we provide the following statement characteriz-
ing the compactness properties of the family ™t in the topology induced from
Cl°(R,; H).

Theorem 7.2 Let assumptions (Al)—(A2) hold. Then the following two statements
hold:

(a) foreachy € ", the following estimate holds
Iyl < IyO)lIFe " +es 120, (7.10)

where the positive constants c3 and c4 do not depend on'y € # ™ andt > 0;
(b) foranyboundedin Lo, (Ry; H) sequence {y,},>1 C H ', there exist an increas-
ing sequence {n;};=1 € N and an element y € " such that

M1 7yn, — e ryllcqerim —> 0, k — o0, (7.11)

for each finite time interval [T, T] C (0, +00). If, additionally, there exists yy €
H such that y,, (0) — yo in H, then y(0) = yo.

Proof Let us prove statement (a). If statement (a) holds for each y € %", then
inequality (7.10) holds for each y € £, due to (7.5). The rest of the proof of
statement (a) establishes inequality (7.10) for each y € ji(f.

For an arbitrary y € %}, there exist 7, h > O and z(-) € 7 suchthat y(-) =
T (t + h)z(-). Assumption (A1) implies the following inequality:

15 15
||y<z2>||%,—||y<t1>||%,+a1/ ||y<r>||';drs/ C+T4hdn  (112)
5]

151

for each t, > #; > 0, where ¢ () is t.u.1. in L11°°(R+). Since the embedding V C H
is compact, then this embedding is continuous. So, there exists a constant 8 > 0
such that ||b||y < B||b|lv for each b € V. According to (7.12), since the inequality
a? < 1 + a” holds for each a > 0, then the following inequality holds:

Iy — Iy I + / Iy () Iydt < / 1t + 7 +h) +asldr, (7.13)

151 Al



166 7 Uniform Global Attractors for Non-autonomous Dissipative Dynamical Systems

foreach r, > t; > 0, where a3 = /% Let us set

p(t) = ||y(r)||%,+a3/ ||y<s>||%,ds—/ lei(s + 1 +h) +aslds, 1= 0.
0 0

Inequality (7.13) and Ball [3, Lemma 7.1] yield that %p < 0in D*((0, 4+00)), where
5(11_; is the derivative operation in the sense of D*((0, +00)). Thus,

d .
Eny(r)u%, +aslly®3 — [e1(t + 1 + h) 4+ 3] < 0in D*((0, +00)).
Therefore,
d 2 ast ast : *
- [y N7e"] — ™" [e1(t + T+ h) + 3] < 0in D*((0, +00)).  (7.14)

Ball [3, Lemma 7.1] and inequality (7.14) imply

15
ly@) 3 < lly@)lFe " + / e [e1(t + 7+ h) + as]dt, (7.15)

I

for each t, > t; > 0. Therefore,

15}
ly )13 <y ()3~ 4 / e [oy(t 4+ T 4+ h) + az]dt <
1

t+t+h

||y(tl)||%_lefas(trtl)+1+/ e’“(’z””*h)cl(l‘)dt <
Hh+t+h

K
Iy ()le 7 + 14—+
3

t+t+h
/ e O 0 ()| I{|er (1)] > K )dt,
H+t+h

for each K > 0, t, > #; > 0. Since the function ¢; : R, — R, is t.u.i. in L11°C(R+)
(see assumption (A1)), then there exists Ky > 0 such that

t+1
SUP/ le1()[Hlei(s)| = Ko}ds < 1.
t

>0

Thus,
_ _ Ky
ly@)I3 <ly)lze @™ + 1+ et
3

that yields estimate (7.10) with ¢3 ;= a3 and ¢4 := 1+ f—f + €% + 1, where the
positive constants ¢3 and ¢4 do not depend on y € J# " and t > 0.
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Let us prove statement (b). Let {y,},~1 C 2# T be an arbitrary sequence that is
bounded in Lo (R4; H). Since Ji{f is the dense set in a Polish space 7" endowed
with the topology induced from C'°°(R; H), then for each n > 1 there exists u, €
" such that

pcoe®,: Y (Yns Un) < %, foreachn > 1. (7.16)
Note that a priori estimate (7.10) provides that the sequence {u,},>; is bounded
in Loo(R,; H). Therefore, the rest of the proof establishes statement (b) for the
sequence {u,},>1.

Letus fix n > 1. Formula (7.4) provides the existence of t,,, 1, > 0 and z,,(-) €
f%/j such that u,(-) = z,(- + ©, + h,). Then, assumptions (A1) and (A2) yield

5] 5]
||un<rz)||%,—||un(t1)||%,+a1/ ||un(r>||€drs/ C1(t + 1o + ho)dt,
n 1

, t t (7.17)
2 2 2
/ s 115 dt < / ()12t + / et + T + ),

a1 151 51

foreacht, >t >0andn > 1.
We remark that

%) 15
sup/ lc1(t + T, + hy,)|dt < oo and sup/ lea(t + T, + hy)|dt < oo, (7.18)
n 1

n>1 n>1

for each #, > #; > 0, since the functions ¢y, ¢; : Ry — R, are t.u.i. in L11°°(R+).

Formulae (7.17) and (7.18) imply that the sequence {u,},>; is bounded in
W'¢(R ). Thus, Banach—Alaoglu theorem and Zgurovsky et al. [47, Theorems 1.16
and 1.21] yield that there exist an increasing sequence {n;},>; € N and elements
y € We(Ry) € C°°(Ry; H) and ¢; € L*(R,) such that

Up, — Y weakly in Lllfc(]&_; V),

U, —>y weakly in L};’C(R+; V),

Up, — Y weakly in C'°(R_; H), (7.19)
Up, (1) = y(t) in H forae.t > 0,

ci1(+ + 1y, + hy) — 1 weakly in Llf’c(RJr), k — o0,

where the last convergence holds due to the fact that ¢; € LI°(R,) is tu.i. in
LHOC(RJF). According to (7.19), we can pass to the limit in (7.2). So, we obtain
that y satisfies (7.2).

We consider the continuous and nonincreasing (by assumption (A1)) functions
onR,:
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t
.Mo=wmm@—/cm+mwwmw,
0

; (7.20)
IO =ty - [ awds k=1
0
cf. Kapustyan and Valero [19]. The last two statements in (7.19) imply
J(t) = J(t), as k — +oo, forae.r > 0. (7.21)

Similarly to Zgurovsky et al. [48, p. 57] (see the book and references therein) we
show that (7.11) holds. By contradiction suppose the existence of a positive constant
L > 0, a finite interval [z, T] C (0, +00), and a subsequence {uk/ Vi=1 C© {un, bi=1
such that

max |ug, (t) — y(Ollw = llux, (1)) = yEplla = L,
teltr,T]

for each j > 1. Suppose also that t; — 1o € [t, T], as j — +oco. Continuity of
I, ry:[t, T] - H implies

lim inf |juy, (;) — y(10)llu = L. (7.22)
J—+0o0

On the other hand, we prove that
ug,(t;) — y(to) in H, j — +o00. (7.23)
For this purpose we firstly note that from (7.19) we have
ug,(t;) — y(to) weakly in H, j — +o0. (7.24)
Secondly we prove that

limsup [[ug, (1)1 < 1y @)l a- (7.25)

jo+oo

We consider the continuous nonincreasing functions J and ;o J = 1, defined in
(7.20). Let us fix an arbitrary ¢ > 0. The continuity of J and (7.21) provide the exis-
tence of 7 € (t, 1o) such that lim; o Ji, (t) = J(¢) and | J () — J (to)| < &. Then,

Ji; () = I (t0) = |k, (1) = JO] + [T (D) — T (to)| = [Ty, (1) — J ()] + &,

for rather large j > 1. Thus, limsup;_, , . Ji;(t;) < J(f) and inequality (7.25)
holds.

Thirdly note that the convergence (7.23) holds due to (7.24) and (7.25); cf. Gajew-
skietal. [11, Chap.I]. Finally, we remark that statement (7.23) contradicts assumption
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(7.22). Therefore, according to (7.16), the first statement of the theorem holds for
each sequence {y,},=1 C A .

To finish the proof of statement (b) we note that if, additionally, there exists
Yo € H such that y, (0) — yo in H, then, according to the third convergence in

(7.19), y(0) = yo.
Let us provide the proof of the main result.

Proof (Proof of Theorem 7.1) Theorem 7.2 implies the following properties for the
m-semiflow G, defined in (7.8):

(a) for each r > 0 the mapping G (¢, -) : X — 2%\ {#J} has a closed graph;

(b) foreacht > 0~and yo e X Ehe set G (¢, yo) is compact in X;

(c) the set G(1,C), where C :={z € X : ||z||12L1 < ¢4 + 1}, is precompact and
attracts each bounded subset C C X.

Indeed, property (a) follows from Theorem 7.2 (see formulae (7.5) and (7.8)); prop-
erty (b) directly follows from (a) and Theorem 7.2(b); property (c) holds, since
G(1,0) is precompact in X (Theorem 7.2(b) and formula (7.8)) and the following
inequalities and equality hold:

distx(G(t, ), G(1,C)) < distx(G(1, G(t — 1,()), G(1,C)) <
distx(G(1,C), G(1,C)) =0,
for sufficiently large 7.
According to properties (a)—(c), Mel’nik and Valero [31, Theorems 1,2, Remark 2,

Proposition 1] yields that the m-semiflow G has a compact global attractor ) in the
phase space X.

7.4 Example of Applications

In the following three examples we examine the uniform global attractor for the
family of solution sets {#."} generated by particular evolution problems. In all the
cases we assume that

¥z e H VT >0 3y € # " such that y(7) = z.

This assumption guarantees the equality X = H.
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7.4.1 Autonomous Evolution Problem

Let {77} be a family of solutions for an autonomous problem on [z, 400), T > 0.
Then we have:
Yh >0 T(h)#," C "t (7.26)
VT >0Vye T y(+1) et (7.27)
So, " = J#,". If additionally we have that
Ay is closed in C'*°(Ry; H), (7.28)

then
Ht = %*.

It implies that the m-semiflow G (defined by (7.8)) is a classical multi-valued semi-
group generated by an autonomous evolution problem.

7.4.2 Non-autonomous Evolution Problem

Let {%/ﬁ} be a family of solutions for non-autonomous problem on [z, +00), T > 0,
and the following condition holds:

Vs >7>0Vye€ %ff I 1 ooy() € jif’. (7.29)
Then, according to Kapustyan et al. [23], formula

Ut,t,2) = {y(t) : y() € #, y(x) =2} (7.30)
defines a m-semiprocess, that is

Vi>s>t Ul(t,t,2) cU(t,s,U(s,1,2)).
One of the most important objects for m-semiprocess (7.30) is uniform global attrac-

tor; Chepyzhov and Vishik [7], Kapustyan et al. [20], Zgurovsky et al. [48]. It is a
set ® such that for every bounded subset C C H

supdisty(U(t +71,7,C),®) - 0, t — oo, (7.31)

>0

and ® is minimal among all closed sets satisfying this property. Then under assump-
tions (Al), (A2) and from (7.29) it follows that the m-semiprocess (7.30) has the
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compact uniform global attractor ® C 9, where N is the global attractor for the
m-semiflow (7.8).
Indeed,
Vi>1>0VzeH U(t+r1,71,2) CG(@,2). (7.32)

So, if N is a compact global attractor for the m-semiflow G then, according
to Kapustyan et al. [20], there exists a compact uniform global attractor ® for
m-semiprocess U and, moreover, ® C .

In the following example we examine the existence of uniform global attractor for
non-autonomous differential-operator inclusion. The uniform trajectory attractors
for classes of non-autonomous inclusions and equations were proved to exist in
Zgurovsky and Kasyanov [45] (see also Gorban et al. [14]).

7.4.3 Non-autonomous Differential-Operator Inclusion

For the multi-valued map A : R, x V — 2V \} we consider the problem of long-
time behavior of all globally defined weak solutions for non-autonomous evolution
inclusion

V' (1) + A(t, y(1)) 3 0, (7.33)

ast — +oo. Let (-, )y : V¥ x V — R be the pairing in V* x V, that coincides on
H x V with the inner product (-, -) in the Hilbert space H.

We note that Problem (7.33) arises in many important models for distributed
parameter control problems and that large class of identification problems enter this
formulation. Let us indicate a problem which is one of the motivations for the study
of the non-autonomous evolution inclusion (7.33) (see, for example, Migorski and
Ochal [34]; Zgurovsky et al. [48] and references therein). In a subset §2 of R3, we
consider the nonstationary heat conduction equation

%—Ay:finﬂ x (0, +00)
with initial conditions and suitable boundary ones. Here y = y(x, t) represents the
temperature at the point x € £2 and time ¢t > 0. It is supposed that f = f| + fa,
where f; is given and f} is a known function of the temperature of the form (see
Fig.7.1)
—filx, 1) € 9j(x,t,y(x,1)) ae. (x,1) € £2 x (0, +00).

Here 9j(x, ¢, &) denotes generalized gradient of Clarke (see Clarke [9]) with
respect to the last variable of a function j : £2 x R; x R — R which is assumed to
be locally Lipschitz in & (cf. Migérski and Ochal [34] and references therein). The
multi-valued function dj (x, 7, ) : R — 2R is generally nonmonotone and it includes
the vertical jumps. In a physicist’s language it means that the law is characterized
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(a) i (b) 5

Fig. 7.1 Control laws

by the generalized gradient of a nonsmooth potential j (cf. Panagiotopoulos [35]).
Models of physical interest includes also the next (see, for example, Balibrea et al.
[2] and references therein): a model of combustion in porous media; a model of
conduction of electrical impulses in nerve axons; a climate energy balance model;
etc.

Let the following assumptions hold:

(H1) (Growth condition) There exist a t.u.i. in L11°C(R+) function ¢; : Ry — Ry
and a constant ¢; > 0 such that ||d||}. < c1(t) + ca2l|lull, foranyu € V,d €
A(t,u),and a.e. t > O;

(H2) (Sign condition) There exist a constant @ > 0 and a t.u.i. in LllOC (R.) function
B : R, — R, suchthat (d, u)y > a||u||(’, — B@) foranyu € V,d € A(t, u),
and a.e.t > 0;

(H3) (Strong measurability) If C C V* is a closed set, then the set {(¢,u) €
(0, 400) x V : A(t,u) N C # @} is a Borel subset in (0, +00) x V;

(H4) (Pointwise pseudomonotonicity) Let for a.e. t > 0 the following two assump-
tions hold:

a) for every u € V the set A(¢, u) is nonempty, convex, and weakly compact
one in V*;

b) if a sequence {u,},>; converges weakly in V towards u € V as n — +o0,
d, € A(t,u,) for any n > 1, and limsup,_, , .. (d,, u, — u)y < 0, then for
any w € V there exists d(w) € A(t, u) such that

liminf{d,, u, — w)y > (d(w), u — w)y.
n——400

Let0 <t < T < 400. As a weak solution of evolution inclusion (7.33) on the
interval [t, T'] we consider an element u(-) of the space L,(t, T; V) such that for
some d(-) € L,(tr, T; V*) itis fulfilled:
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T T
—/ (E/(t),y(l))dﬂr/ (d(®),§M)vdt =0 V& € Co([7, T V),  (7.34)

and d(t) € A(t, y(t)) fora.e. t € (t, T). For fixed nonnegative t and 7', 7 < T, let
us consider
Xr,T = Lp(f’ T;V), Xj,T = Lq("—', T; V*)v

Wer ={y € Xer | Y € Xip), or: Xor — 2%\ {0,
dyr(y)={d € Xj,T |d(t) € A(t, y(¢)) forae. t € (z, T)},

where y’ is a derivative of an element u € X, 7 in the sense of Z([t, T]; V*) (see,
for example, Gajewski, Groger, and Zacharias [11, Definition IV.1.10]). Gajewski,
Groger, and Zacharias [11, Theorem IV.1.17] provide that the embedding W; 7 C
C([r, T]; H) is continuous and dense. Moreover,

T
(M(T),V(T))—(M(T),V(T))=/ [(M/(t),V(l))v+(V’(t),u(t)>v]dt, (7.35)

forany u,v e Wy r.

Migoérski [33, Lemma 7, p. 516] (see the paper and references therein) and the
assumptions above provide that the multi-valued mapping <% 7 : X, — 2%u7 \ {4}
satisfies the listed below properties:

(P1) There exists a positive constant C; = C;(t, T') such that ||d||X;T <C(1+

IyI%.)) forany y € X, 7 and d € o 7(3);

(P2) There exist positive constants C, = C»(t, T) and C3 = C3(t, T) such that
(. y)x., = Callylly,, — Csforany y € X7 and d € 1 ();

(P3) The multi-valued mapping <7 7 : X; 1 — 2%\ (A} is (generalized) pseudo-
monotone on W; 7, i.e.

(a) forevery y € X, 1 the set <7 r(y) is a nonempty, convex and weakly com-
pact one in X7 ;;

(b) o 1 is upper semi-continuous from every finite dimensional subspace X, r
into X7 ; endowed with the weak topology;

(c) if a sequence {y,dn}u>1 C Wy X X:T converges weakly in W; 7 x
X7 towards (y,d) € Wer x X7 1, dy € & 7(y,) for any n > 1, and
lim Supn%jtoo(dna Yn — y)X,,T <0, then de ﬁfr,r()’) and lim,

(dy, yn>X,_T = (d, y)XrAT'

Formula (7.34) and the definition of the derivative for an element from Z([t, T'];
V*) yield that each weak solution y € X, r of Problem (7.33) on [, T] belongs
to the space W, r and y' + % r(y) 3 0. On the contrary, suppose that y € W; 7
satisfies the last inclusion, then y is a weak solution of Problem (7.33) on [z, T].

Assumption (HI1), properties (P1)—(P3), and Denkowski, Migérski, and
Papageorgiou [10, Theorem 1.3.73] (see also Zgurovsky, Mel’nik, and Kasyanov
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[47, Chap. 2] and references therein) provide the existence of a weak solution of
Cauchy problem (7.33) with initial data y(r) = y® on the interval [z, T], for any
y® e H.

For fixed T and T, such that 0 < 7 < T < +00, we denote

@,’T(y(r)) = {y()) | y is a weak solution of (7.33) on [7, T1, y(z) = yP}, y™ e H.

We remark that Z, 7 (") # @ and Z, 7 (yP) C W, 7, if 0 <t < T < 400 and
y™ e H. Moreover, the concatenation of weak solutions of Problem (7.33) is a
weak solutions too, i.e. if 0 <t <t < T,y € H, y(-) € Z,,(»'"), and v(-) €
D 1(y(1)), then

_ ) y(s), s €[t 1],
6s) = [V(S), s e, T,

belongs to Z, 7 (y?); cf. Zgurovsky et al. [48, pp. 55-56].
Gronwall’s lemma provides that for any finite time interval [t, 7] C R, each
weak solution y of Problem (7.33) on [, T'] satisfies the estimates

ly @Il —2/0 B(&)dg +2a/ Iy@15ds < Iyl —2/()‘ B(&)dE, (7.36)

Iyl < ly(s)lI3e 27 +2 / (BE) +ay)e ("8, (7.37)

where 7,5 € [, T], t > s; y > 0 is a constant such that y|jull, < |lu|l}, for any
u € V; cf. Zgurovsky et al. [48, p. 56]. In the proof of (7.37) we used the inequality
lull3, — 1 < |lu||5; forany u € H.

Therefore, any weak solution y of Problem (7.33) on a finite time interval
[z, T] C Ry can be extended to a global one, defined on [z, +00). For arbitrary
>0 and y@ € H let 2,(y) be the set of all weak solutions (defined on
[, +00)) of Problem (7.33) with initial data y(t) = y®. Let us consider the fam-
ily " = Uyowen Z:(y'™) of all weak solutions of Problem (7.33) defined on the
semi-infinite time interval [T, +00).

Properties (P1)—(P2) imply assumptions (A1) and (A2). Therefore, Theorem 7.1
yields that the m-semiflow G, defined in (7.8), has a compact global attractor ) in
the phase space H.
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Chapter 8
Uniform Trajectory Attractors
for Non-autonomous Nonlinear Systems

Abstract In this chapter we study uniform trajectory attractors for non-autonomous
nonlinear systems. In Sect. 8.1 we establish the existence of uniform trajectory attrac-
tor for non-autonomous reaction-diffusion equations with Carathéodory’s nonlinear-
ity. Section 8.2 devoted to structural properties of the uniform global attractor for
non-autonomous reaction-diffusion system in which uniqueness of Cauchy problem
is not guarantied. In the case of translation compact time-depended coefficients it is
established that the uniform global attractor consists of bounded complete trajectories
of corresponding multi-valued processes. Under additional sign conditions on non-
linear term we also prove (and essentially use previous result) that the uniform global
attractor is, in fact, bounded set in L*°(£2) N Hol (£2). Section 8.3 devoted to uniform
trajectory attractors for nonautonomous dissipative dynamical systems. As applica-
tions we may consider FitzHugh—Nagumo system (signal transmission across axons),
complex Ginzburg—Landau equation (theory of superconductivity), Lotka—Volterra
system with diffusion (ecology models), Belousov—Zhabotinsky system (chemical
dynamics) and many other reaction-diffusion type systems from Sect.2.4.

8.1 Uniform Trajectory Attractor for Non-autonomous
Reaction-Diffusion Equations with Carathéodory’s
Nonlinearity

Let N,M = 1,2,..., 2 c RY be a bounded domain with sufficiently smooth

boundary 2. We consider a problem of long-time behavior of all globally defined

weak solutions for the non-autonomous parabolic problem (named reaction-diffusion

or RD-system; see Chap.4 and [1-23]).

i =aAdy — f(x,t,y), xe€8,t>0,

(8.1)
Yo =0,

ast — 400, where y = y(x,1) = (yV(x,1), ..., y™(x, 1)) is unknown vector-
function, f = f(x,t,y) = (fP(x.t,y), ..., fM(x,t,y)) is given function, a is
real M x M matrix with positive symmetric part.
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Throughout this section we suppose that the listed below assumptions hold (see
Chap. 5).

Assumption I Let p; > 2 and ¢; > 1 are such that i + qi =1, forany i =

1,2, ..., M.Moreover, there exists a positive constant d such that %(a—l—a*) >dl,

where [ is unit M x M matrix, a* is a transposed matrix for a.

Assumption II The interaction function f = (fV, ..., f™): 2 xR, xR —

R satisfies the standard Carathéodory’s conditions, i.e. the mapping (x, t, u) —

f(x,t,u)is continuous in u € RM for a.e. (x, 1) € 2 x R, and it is measurable

in (x,1) € 2 x R, forany u € RM,

Assumption III (Growth Condition) There exist a t.u.i. in LIIOC(R+; L(£2)) func-

tionc; : 2 x Ry — R, and a constant ¢, > 0 such that

M M
DU w]" <@+ [u®”

i=1 i=1

forany u = (u'V, ...,u™) e R¥, and ae. (x,1) € 2 x R,.
Assumption IV (Sign Condition). There exists a constant ¢ > 0 and a t.u.i. in
LY (R,; L1(£2)) function B : 2 x Ry — R such that

M

M
Z O, t,u)u® > o z |u(i)|p’ — B(x,1)

i=1 i=1

forany u = u, ..., u™) e RM, and ae. (x,1) € 2 x R,.

In further arguments we will use standard functional Hilbert spaces H =
(L2(2)M,V = (Hy($2))M, and V* = (H~'(£2))™ with standard respective inner
products and norms (-, <)z and || - ||z, (-, )y and || - ||y, and (-, -)y= and | - || v+, vector
notations p = (py, p2, ..., pu) and q = (q1, 42, .., gu), and the spaces

Lp(£2) :=Lp,(2) x ... x Lp,,(82), Lq(82) := Ly, (£2) X ... X Lg,, (£2),
Lp(z, T; Lp(£2)) := Lp,(z, T; Lp,(§2)) X ... x Lp,, (v, T; Lp,, (£2)),
Lq(r, T; Lq(Q)) = Lg, (r,T; Ly, (£2)) x ... x LqM(r, T, LqM(.Q)), 0<t<T < +4o00.

Let0 <t < T < 4o00. We recall that a function y = y(x,t) € Ly(z, T; V) N
Ly (7, T; Lp($2)) is a weak solution of Problem (8.1) on [z, T, if for any function
¢ =¢(x) e (CS"(.Q))M , the following identity holds

d
E/ﬂy(x, 1) - ¢(x)dx +/Q{aVy(x, 1) - Vo) + fx, 1, y(x, 1) - px)}dx =0

in the sense of scalar distributions on (t, T).
In the general case Problem (8.1) on [z, T'] with initial condition y(x, 7) = y.(x)
in §2 has more than one weak solution with y, € H (cf. Zgurovsky et al. [23] and
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references therein). Thus, for investigation of the long-time behavior as t — 400
of all weak solutions of Problem (8.1) with initial data from H, the results for
uniform global and trajectory attractors of multi-valued semi-processes in infinite-
dimensional spaces were applied; Babin and Vishik [2], Chepyzhov and Vishik [6],
Mel’nik and Valero [14, 15] and references therein. Theses approaches were applied
to various non-autonomous problems of the form

O y(t) = Agi(¥(1)), (8.2)

where o (s), s > 0, is a functional parameter called the time symbol of Eq.(8.2) (¢
is replaced by s). In applications to mathematical physics equations, a function o (s)
consists of all time-dependent terms of the equation under consideration: external
forces, parameters of mediums, interaction functions, control functions, etc. It is
assumed that the symbol o of Eq. (8.2) belongs to a Hausdorff topological space &
of functions defined on R with values in some complete metric space. Usually, in
applications, the topology in the space & is a local convergence topology on any
segment [#1, t;] C R.. Further, they consider the family of Eq.(8.2) with various
symbols o (s) belonging to a set ¥ C Z.. The set X is called the symbol space
of the family of Eq.(8.2). It is assumed that the set X', together with any symbol
o(s) € X, contains all positive translations of o (s): o(t +5) = T(t)o(s) € ¥
for any 7, s > 0. The symbol space X is invariant with respect to the translation
semigroup {7 (t)},0: T (1) X € X for any ¢t > 0. To prove the existence of uniform
trajectory attractor they supposed that the symbol space X with the topology induced
from Z is a compact metric space. Mostly in applications, as a symbol space X it is
natural to consider the hull of translation-compact function oy (s) in an appropriate
Hausdorff topological space & . The direct realization of this approach for Problem
(8.1) is problematic without any additional assumptions for parameters of Problem
(8.1) and requires the translation-compactness of the symbol o (s) = f(-, s, ) in
some compact Hausdorff topological space of mappings act from R to some metric
space of Carathéodory’s vector-functions satisfying growth and signed assumptions.
To avoid this technical difficulties we present the alternative direct approach for the
existence and construction of the uniform trajectory attractor for all weak solutions
for Problem (8.1).

The main purpose of this section is to investigate uniform long-time behavior of
all globally defined weak solutions for Problem (8.1) with initial data u, € H under
listed above assumptions. The main results of this paper are: (i) the existence of uni-
form trajectory attractor for all globally defined weak solutions of non-autonomous
reaction-diffusion equations with Carathéodory’s nonlinearity (Theorem 8.1), and
(ii) sufficient conditions for the existence of uniform trajectory attractor in strongest
topologies (Theorem 8.2).

In further arguments as a Banach space .%,, ,, we consider either C ([, t,]; H) or
W, ., with respective topologies of strong convergence, where 0 < 1} < t, < +00.
Consider the Fréchet space

3510°(R+) ={y:Ry - H : II, ,,y € %, ,, forany [t;, ] C R},
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Fig. 8.1 Translation AN
operation

S
-~

where I1;, ;, is the restriction operator to the interval [¢;, #,]; Chepyzhov and Vishik [6,
p- 918]. We remark that the sequence { f,},>; converges (converges weakly respec-
tively) in .#1°¢(R, ) towards f € .Z'°°(R,) asn — oo if and only if the sequence
{I1;, 1, [u}n>1 converges (converges weakly respectively) in .%;, ,, towards I1,, ,, f as
n — 400 for any finite interval [#;, ;] C R,.

We denote T (h)y(-) = yu(-), where y,(¢) = y(¢t + h) forany y € ﬂlOC(R+) and
t,h > 0 (see Fig.8.1).

In the autonomous case, when f(x,, y) does not depend on ¢, the long-time
behavior of all globally defined weak solutions for Problem (8.1) is described by
using trajectory and global attractors theory. In this situation the set #* := J¢;" is
translation semi-invariant,i.e. T (h). ¢t C " for any h > 0. As trajectory attrac-
tor it is considered a classical global attractor for translation semigroup {7 (h)},>0,
that acts on ¢ .

In the non-autonomous case we notice that T(h)Jif)Jr g %*. Therefore, we
need to consider united trajectory space that includes all globally defined on any
[, +00) C R, weak solutions of Problem (8.1) shifted to 7 = O:

A =G+ e W Ry 1 y() e 2T}, (8.3)

>0

Note that T(h){y(- +7) : y € ZF} S {y(- +t+h) : y € Jf/rih} for any
7, h > 0. Therefore, T(h)%{j’ C %{j’ for any & > 0.



8.1 Uniform Trajectory Attractor for Non-autonomous Reaction-Diffusion ... 183

To define an uniform trajectory attractor, the united trajectory space need to be a
closed subset of a Polish space. Further we consider extended united trajectory space
for Problem (8.1):

H G, = oo,y [£], (8.4)
where cl goe, [ - 11is the closure in % loc(R, ). We note that

T(h)%;h‘c(R+) C ,%/+

€ Hgur,) forany h > 0,

because
pie,) (T (hu, T(h)v) < pgc,)(u, v) for any u, v € F(R,),

where oz, ) is a standard metric on Fréchet space .% lo¢(IR, ); cf. Chepyzhov and
Vishik [6]; Vishik et al. [21].
Aset Z C .F'°(R;) N Loo(Ry; H) is said to be a uniformly attracting set (cf.

Chepyzhov and Vishik [6, p. 921]) for the extended united trajectory space 7, ;100 ®,)

of Problem (8.1) in the topology of .#!°°(R ), if for any bounded in L, (R, ; H) set
P C Ji/ ;IOC(R+) and any segment [z, ] C R the following relation holds:

distz, (I o T()B, My, P) — 0, 1 — +00, (8.5)

where distz, , is the Hausdorff semi-metric.

Aset U C H j. (&, 1S said to be a uniform trajectory attractor (cf. Chepyzhov
and Vishik [6, p. 921] and references therein) of the translation semigroup {7 (¢)},>0
on in the induced topology from .Z!°¢(R ), if

Fle(Ry)

(i) % is a compact set in .Z'°°(R, ) and bounded in L., (R ; H);
(ii) 7 is strictly invariant with respect to {7 (h)}n>0, 1.e. T(h)% = % Yh > 0;

(iii) % is a minimal uniformly attracting set for .7, ;"’C(R+) in the topology of

F(R,), i.e. % belongs to any compact uniformly attracting set & of

+ .
H ey U € P.

Note that uniform trajectory attractor of the translation semigroup {7'(¢)};>0 on
H, }m ®,) in the induced topology from .%!°¢ (IR, ) coincides with the classical global
attractor for the continuous semi-group {7 (¢)};>o defined on .7, 3';“ ®,)"

Assumptions I-IV are sufficient conditions for the existence of uniform trajectory

attractor for weak solutions of Problem (8.1) in the topology of C'°(R, ; H).

Theorem 8.1 Let Assumptions 1-1V hold. Then there exists an uniform trajectory

+ . . +
attractor % C f%/cloc(m; o of the translation semigroup {T (t)};>0 on i R, H)

in the induced topology from C(R_.; H). Moreover, there exists a compact in
C'°(Ry; H) uniformly attracting set 2 C C'°(Ry; H) N Loo(Ry; H) for the
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extended united trajectory space ’%/CL(]R+~ ) of Problem (8.1) in the topology of
C'°(Ry; H) such that % coincides with w-limit set of 2

U = () clew,:m) [U T(h)@:| : (8.6)

>0 h>t

For the existence of uniform trajectory attractor in the strong topology of the nat-
ural extended phase space W'°°(R. ) it is necessary to claim that additional assump-
tion holds (see Example 8.1). To formulate this additional assumption we provide
some auxiliary constructions. A function ¢ € LIIOC(RJr; L1(£2)) is called translation-
compact (tr.-c.) in L11°°(R+; L1(82)), if the set {¢(- + h) : h > 0} is precompact
in L11°C(R+; L1(82)); cf. Chepyzhov and Vishik [6, p. 917]. Note that a function
Y €E Llf’C (R4; Li(£2))istr.-c.in Lll"C (R4; L1(£2)) if and only if two conditions hold:
(a) the set {f:’Lh p(s)ds @t > O} is precompact in L (£2) for any & > 0; (b) there
exists a function ¥ (s), ¥ (s) — 0+ as s — 0+ such that

1+1
/ / lo(x,s) —@(x,s + h)|dxds < ¥ (|h]) forany ¢t > O and h > —f;
t Q

Chepyzhov and Vishik [6, Proposition 6.5].
Assumption V Let the conditions hold:

(i) the functions ¢y and B from Assumptions (IIT) and (IV) respectively are tr.-c.
in LY“(Ry; Li(£2));
(i)  the set {%ftHh fC,s,u)ds it >0, he(0,hy, |lullgsy < R} is precom-
pactin (L1(£2))™ for any R > 0 and some hg = ho(R) > 0;
(iii) for any r > O there exist a nondecreasing function (s, r) : Ri —- R,
Y(s,r) — 0+ ass — 0+, and hy = ho(r) > 0 such that

1 M t+hy X .
M Z/ /s2 ‘f(”(x, sou) — fD(x, s+ hyov) | dxds < Y ((hg| + llu = viigw. r)
=7

for each t > 0, hy € (0,hy), hy > —t, and u,v € RM such that
llullmm, IVIRy < r.

Remark 8.1 Let us discuss sufficient conditions for Assumption V.

(i) The autonomous case. Let f does not depend on the time variable ¢ and it
satisfies Assumptions I-IV with ¢;, 8 € L(£2) (in particular, assumptions from
Vishik et al. [21] hold). Then Assumption V hold; see Remark 4.1.

(ii) The non-autonomous case. Let f = f(t, u) is jointly continuous mapping,
it satisfies Assumptions I-IV with positive constants c¢; and 8, and f being tr.-c. in
Cl°(R; C(RM)), that is,

If @ u)— fGs,v) v <o —s|+ llu— vy, K)


http://dx.doi.org/10.1007/978-3-319-59840-6_4

8.1 Uniform Trajectory Attractor for Non-autonomous Reaction-Diffusion ... 185

forall t,s € Ry, |lullgm, |vIgy < K, K > 0, where w (I, K) — 0, as ] — 0+;
see, for example, Chepyzhov and Vishik [6, p. 105], Kapustyan and Valero [8-10],
where uniform global in H and uniform trajectory in C'*°(R, ; H) attractors were
investigated. Then Assumption V holds.

(iii) The sufficient condition for Assumption V(iii) is: for any » > 0 there exist a
nondecreasing function ¥ (s, r) : Ri — Ry, ¥ (s,r) - 0+ as s — 04, such that

M
Z/ |fOC,tu)y = O, t+h,v)|dxds < W (h] + llu— vigs,r)
i=17%

foreacht > 0, h > —t, and u, v € RM such that ||u||gw, ||[v||gn < r.

Note that Assumption V is a generalization of the above assumptions to the case
when f depends on the space, time and state variables simultaneously and it is
not necessarily continuous by . Meanwhile, Example 8.1 below provide piecewise
continuous function f that satisfies Assumptions I-IV, but it does not satisfy Assump-
tion V. Moreover, the statement of Theorem 8.2 below does not hold for Problem
(8.1) with such interaction function.

The main result on the existence of uniform trajectory attractor for weak solutions
of Problem (8.1) in the topology of W'*¢(R. ) has the following form:

Theorem 8.2 Let Assumptions 1=V hold. Then there exists an uniform trajectory
attractor U C WJOC(R” of the translation semigroup {T (t)};>0 on e%/v;oc(&) in
the induced topology from W'*(R_.). Moreover, there exists a compact in W' (R..)
uniformly attracting set & C W'°(R,) N Lo (Ry; H) for the extended united
trajectory space Ji/v;ﬁoc ®,) of Problem (8.1) in the topology of W'¢(R,.) such that
U coincides with w-limit set of P

U = () clwe,) [U T(h)@i| . (8.7)

t>0 h>t

Remark 8.2 All statements of Theorems 8.1 and 8.2 hold for the function f (x, t, y)
equals to the sum of an interaction function f;(x, ¢, y), satisfying Assumptions I—-
IV (Assumptions I-V respectively), and an external force g € L12°°(R+; V*). In
Theorem 8.1 g is need to be translation bounded in LY*(R; V*) and g is transla-
tion compact in LY°(R,; V*) in Theorem 8.2 respectively. The proofs are similar
with some standard technical modifications. To simplify the conclusions, further we
consider the case g = 0.

Proof of Theorems 8.1 and 8.2 The proofs of both two theorems are similar and
based on the respective statements of Theorems 4.1 and 4.2. To avoid reduplication
we set Z1°(R,) := C'°°(R,; H) for the proof of Theorem 8.1 and .Z#'**(R,) :=
W!oc(RR ) for the proof of Theorem 8.2 respectively.

We provide the proof in several steps. First, let us show that there exists a uni-

form trajectory attractor % C %, ;, ®.) of the translation semigroup {7 (¢)};>o on
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K Fieg,, in the induced topology from .7'**(R.). Theorem 4.1, if F'*(R;) =
C'°(Ry; H), and Theorem 4.2, if Z'°°(R,) = W'°°(R,), yields that the translation
semigroup {7 (t)},>0 has a compact absorbing (and, therefore, an uniformly attract-
ing) set in the space of trajectories %, }’,OC R, Zgurovsky et al. [23] and references
therein. This set can be constructed as follows: 1) consider & zue (g, ), the intersection
of . }m ®,) with a ball in the space of bounded continuous functions on R with
values in H, C, (R ; H), of sufficiently large radius; 2) shift the resulting set by any
fixed distance 4 > 0. Thus, we obtain T (h) & g r, ), a set with the required proper-
ties. Recall that the semigroup {7 (#)},>0 is continuous. Therefore, the set & g, )

is a compact absorbing (and, therefore, an uniformly attracting) for 7 :;' ®,) with

the induced topology of .#'°°(R, ). Then we can apply, for example, Theorem 2.2
from Chepyzhov and Vishik [6, Chap. XI] and finish the proof. In particular, formula
(8.6) holds; cf. Babin and Vishik [2]; Melnik and Valero [14], Temam [20] etc.

The example provided below implies that additional Assumption V in Theorem 4.2
is essential for the existence of uniform trajectory attractor in strongest topology of
an extended united phase space of weak solutions for Problem (4.1).

Example 8.1 Interaction function f : 2 x R, x RY — RM satisfies Assumptions
-1V, Assumption V does not hold, and the statement of Theorem 4.2 does not
hold. Let NNM =1, 2 = (0,7),a = 1, f(x,t,u) := u — sin(x) - sin(w[t]?),
(x,t,u) € 2 x Ry x R, where [¢] is a largest integer, that does not exceed ¢. The
verifying of Assumptions I-IV and V(i,ii) is trivial. Assumption V(iii) does not hold,
because | sin(rk?) — sin(w(k + 5)k)| =1 /4 0, ask — +oo.

The statement of Theorem 4.2 does not hold. On the contrary assume that there
exists an uniform trajectory attractor % C 7 of the translation semigroup

Wl"“(R+)
{T(t)};>0 on «75/‘;1@(&) in the induced topology from W'OC(R+). By definition of

an uniform trajectory attractor, since % is a compact set in W'°°(R_.), for each
y() € Jifv;’,(,c(&) (wenote thatthe set {T'(h)y(-) : h > O}isboundedin L, (R; H))
any monotone increasing unbounded sequence {4,},>1 C R, has a subsequence
{hy =1 S {hn}u>1 such that {T'(h,,)y(-)}k>1 1S precompact in W'°(R,). On the
other hand, let

t
y(x, 1) :=sin(x) [ sin(w[s]s)e 2ds, (x,1) € 2 x Ry,
0

and h, :=n,n=1,2,....Note that y € Jiff C %v;rlw(m)’ and

t+n
%y(x,t—i—n) = —2sin(x) / sin(r[s](s))e 2" ds 4+ (—1)" sin(x)-sin(wnt),
0

(x,t) e 2 x(0,1),n=1,2,.... Therefore,

liminf 1770, 7 ()y() = Hoa Tm)y(llw, > 0,
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because the sequence of functions {(x, ) — sin(x) fot e sin(rr[s]s)e2¢ +"“V)ds},,z] s
restricted on £2 x (0, 1), converges strongly in L,(0, 1; V) C X&l asn — 400,
and the sequence of functions {(x, ) — \/i; sin(x) - sin(wnt)},s;, restricted on
£2 x (0, 1), is orthonormal in X . This is a contradiction with the existence of a sub-
sequence {h,, }k>1 S {h,}n>1 such that {T (h,,)y(:)}k>1 is precompact in W1°°(R+).
Therefore, the statement of Theorem 4.2 does not hold.

8.2 Structure of Uniform Global Attractor
for Non-autonomous Reaction-Diffusion Equations

In this section we study the structural properties of the uniform global attractor
of non-autonomous reaction-diffusion system in which the nonlinear term satisfy
suitable growth and dissipative conditions on the phase variable, suitable translation
compact conditions on time variable, but there is no condition ensuring uniqueness
of Cauchy problem. In autonomous case such system generates in the general case a
multi-valued semiflow having a global compact attractor (see [8, 12, 23]). Also, it is
known [12], that the attractor is the union of all bounded complete trajectories of the
semiflow. Here we prove the same result for non-autonomous system. More precisely,
we prove that the family of multi-valued processes, generated by weak solutions of
reaction-diffusion system, has uniform global attractor which is union of bounded
complete trajectories of corresponding processes. Using this result, we can prove
that under additional restrictions on nonlinear term obtained uniform global attractor
is bounded set in the space L*(£2) N HOl (£2).

In abounded domain §£2 C R" with sufficiently smooth boundary 92 we consider
the following non-autonomous parabolic problem (named RD-system)

uy =alu— f(t,u)+h(t,x), xe€2,t>r,

8.8
ulpe =0, 8)

where v € R is initial moment of time, u = u(t,x) = ('@, x), ..., u™ (t, x)) is
unknown vector-function, f = (f', ..., f¥), h = (h', ..., k") are given functions,
a isreal N x N matrix with positive symmetric part %(a +a*)>BI,B8 >0,

hel? (R; (L22)Y), feCRxRY;RY), (8.9)

loc

3C,C, >0, >0, pi>2,i=1,NsuchthatVr e R, Vv eRY

N N
ST <+ > VI, (8.10)
i=1 i=1
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N N
DA = w1 - G (8.11)
i=1 i=1
In further arguments we will use standard functional spaces

N
H = (L*(2))" with the norm |v|*> = /Z|v"(x)|2dx,
o =1

N
V = (H}(£2))" with the norm [[v]|*> = /Z|Vvi(x)|2dx.

o i=l1

Let us denote V' = (H~'(2)V, ¢; = %, p = (p1,.., PN), 4 = (q1, -, qN),
LP(2) = L7 (£2) x ... x LP¥(£2).

Definition 8.1 The function u = u(t,x) € L7 (t,400; V)(L! (z,+00;
LP(£2)) is called a (weak) solution of the problem (8.8) on (r, +o00) if for all
T>t,ve VNLP(S)

% /u(t, x)v(x)dx + /(aVu(t, xX)Vv(x) + f(t,u(t, x))v(x) — h(t, x)v(x))dx =0
2 2

(8.12)
in the sense of scalar distributions on (z, T').

From (8.10) and Sobolev embedding theorem we see that every solution of
(8.8) satisfies inclusion u, € L} (t,+o00; H'(£2)), where r = (ry,...,ry),
rr = max{l, n(% — pl)}. The following theorem is well-known result about global

k

resolvability of (8.8) for initial conditions from the phase space H.

Theorem 8.3 ([1, Theorem 2] or [6, p.284]) Under conditions (8.10), (8.11) for
every T € R, u, € H there exists at least one weak solution of (8.8) on (t, +00)
withu(t) = u, (and it may be non unique) and any weak solution of (8.8) belongs to
C ([t, +00); H). Moreover, the function t +> lu(t)|? is absolutely continuous and
fora.a. t > t the following energy equality holds

1d
EEIM(I)I2 + @Vu(t), Vu(0) + (f @, u@®)), u®)) = (h(t), u(?)). (8.13)

Under additional not-restrictive conditions on function f and # it is known that
solution of (8.8) generate non-autonomous dynamical system (two-parametric family
of m-processes), which has uniform global attractor. The aim of this paper is to give
description of the attractor in terms of bounded complete trajectories and show some
regularity property of this set.

Let (X, p) be a complete metric space. The Hausdorff semidistance from A to B
is given by
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dist(A, B) = sup ing,o(x, y),

xeAYE

By A and O.(A) = {x € X | ingp(x,y) < ¢} we denote closure and &-
ye

neighborhood of the set A. Denote by P(X) (B(X), C(X), K(X)) the set of all
non-empty (not-empty bounded, not-empty closed, not-empty compact) subsets of
X7

R, = {(t,7) € R?|r > 7).

Let X' be some complete metric space, {T'(h) : ¥ — X},>0 be a continuous
semigroup, acting on X. Note, that in most applications 7 () is shift semigroup.

Definition 8.2 Two-parameter family of multi-valued mappings {U, : Ry x X +—
P(X)}sey is said to be the family of m-processes (family of MP),if Vo € ¥, 7 € R:

(1) Uy(r,7,x) =x Vx € X,

Q) Uy(t,t,x) CU;(t,s5,Us(s,T,x)), Yt >s5>T1 Vx e X,

B) Ust+h,t4+h,x) SUraye(t,t,x) Vt>1T YVh >0, Vx € X,
where for AC X, B C ¥ Ug(t,s,A) = |J U Us(¢, s, x), in particular

oceB xeA

Us(t,t,x) = U Uy, (t, T, x);

oeX

see also Fig.8.2.

Family of MP {U,|o € X'} is called strict, if in conditions (2), (3) equality take
place.

Definition 8.3 A set A C X is called uniformly attracting for the family of MP
{U,|lo € X}, if for arbitrary T € R, B € B(X)

dist(Ux(t,7,B),A) = 0, t - +00, (8.14)
AN N
—

Fig. 8.2 Concatenation
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thatisVe > 0,7 € Rand B € S(X) there exists T = T (7, &, B) such that
Us(t,7,B) C O, (A) Yt >T.

For fixed B C X and (s, t) € R, let us define the following sets

v (B)=|JUs(t. 7, B), v 5(B)=|JUs(t. 7. B),

t>s t>s

wr(t, B) = [ clx (] 5(B)).

§>T

It is clear that wy (7, B) = () clx(y{ 5(B)) ¥p > 1.
s2p
Definition 8.4 The family of MP {U,|oc € X'} is called uniformly asymptotically
compact, if for arbitrary 7 € R and B € B(X) there exists A(t, B) € K(X) such
that
Us(t,t,B) > A(t,B), t > +00 in X.

Itis known [9] thatif VT € R, VB € B(X) 3T =T (7, B) y7 »(B) € B(X), then
the condition of uniformly asymptotically compactness is equivalent to the following
one:

Vi e RVB € B(X) Vt, /' o0

every sequence &, € Ux(t,, T, B) is precompact.

Definition 8.5 A set ®y C X is called uniform global attractor of the family of MP
{Uslo € X}, if:

(1) ®5 is uniformly attracting set;
(2) for every uniformly attracting set Y we have Oy C clxY.

Uniform global attractor ®x C X is called invariant (semiinvariant), if V (¢, 7) €
Ry
Or =Us(t,7,05) (O CUs(t, 7, OF)).

If ®5 is compact, invariant uniform global attractor, then it is called stable if
Ve>036§>0V (r,7) e Ry

Us(t, 7, 05(Ox)) C 0,(Ox).

The following sufficient conditions we can obtain with slight modifications from [9].

Theorem 8.4 (I) Let us assume that the family of MP {U,|oc € X} satisfies the
following conditions:
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(1)3Bye p(X)VBeB(X)YVT e RIT =T(t, B)
Vt>TUg(t, T, B) C By;

(2){Uy|o € X'} is uniformly asymptotically compact.
Then {U,}scx has compact uniform global attractor

Os=|]J |J oz B)=wx(0, B) = ws(r, By Vr € R. (8.15)
teR Bep(X)

(1) If {Uy }yex satisfy 1),2), X is compact and Nt > T the mapping
(x,0) = Uy(t, T, x) (8.16)

has closed graph, then @y is semiinvariant.

If, moreover, Vh > 0 T (h) X = X and the family MP {U,|oc € X'} is strict, then
Oy is invariant.

() If {Uy Y5 e 5 satisfy (1), (2), X is connected and compact, ¥Vt > 1 the mapping
(8.16) is upper semicontinuous and has connected values, By is connected set, then
®5x is connected set.

(IV) If {Us|o € X} has compact, invariant uniform global attractor @y and the
following condition hold:

lf Yn € UE(tnv T, xn)a t, —> to, Xp —> Xo,
then up to subsequence y, — yo € Ux(ty, T, X0), (8.17)

then Oy is stable.

Proof (I) From conditions (1), (2) due to [9] we have that VT € R VB € B(X)
wy(t, B) # @, is compact, wx (t, B) C By and the set

os=J |J oz B

7eR Bep(X)

is uniform global attractor. Let us prove that wx (t, B) C wx (79, Bo) VT, 790 € R.

t t t t
U(r(ta T, B) - Ua(tv Ea UO‘(Ea T, B)) C UT(%frg)a(E =+ 70, o, UG(§7 T, B)) C

1 Lt
C Uz(z + 19, 70, Bo), if 2 >T(t,B) + vl +|t|:=T.

So, fort > 2T
t
Usx(t,7,B) C UZ(E + 79, 70, Bo).
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Then for s > 2T

t
U Us(t,t,B) C U UE(E + 7o, To, Bo) = U Ux(p, 10, By),

t>s 1=>s p=5+70

N Uust.t.By=ox@Byc () |J Usp. w0 Bo) =

s>2T t>s s>2T pz%ﬂo

N U Us(p. %0, Bo) = ws(x0, Bo).

s'>T+1y p>s'
So we deduce equality (8.15).

(IT) Due to (8.15) V¢ € Oy = wx(t,By) 3Ft, / 400, o, € X I, €
Usx, (t,, T, Bo) such that § = lim &,. Then
n— 00

EneUy,(ty,—t—1+t+71,7,B)) C
CUs(ty—t—t+t+1.t,—t+717,U, (t, —t+ 7,7, By) C Urgt,—n)o, (t, T, M),
where 1, € Uy, (t, —t + 7, 7, By), t > T and for sufficiently large n > 1.

From uniform asymptotically compactness we have that on some subsequence
M —> 1 € ws(t, Bo) = O,
T, —t)o, > o € X.
Then from (8.16) we deduce:
§eUs(t, 7, 0O5),
and therefore @y C Ux(t, 1, OF).

Other statements of the theorem are proved similarly to [9].
Theorem is proved.

Corollary 8.1 If for the family of MP {U, },cx we have:

(1) Vh>0T(h)Y = 3;
(2) V(t,7) e Ry Vh > 0Vo € ¥ Vx € X

Us(t +h, T+ h,x) =Urpo(t, 7, %),

then all conditions of previous theorem can be verified only for t = 0.

Proof Under conditions (1), (2) V¢ > t if T > 0 then

U(I(t’ f,.x) = UT(‘L’)(Y(t -1, 09 -x)7
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andift <Othendo’ € ¥ :0 =T (—1)0/, so
Uo(ta T, )C) = UT(—r)o’(t’ T, )C) = Uo’(t -7, Oa x)-

In the single-valued case it is known [6], that the uniform global attractor consists
of bounded complete trajectories of processes {U, }yex.

Definition 8.6 The mapping ¢ : [t, +00) — X is called trajectory of MP Uy, if
Vi>s>1
@) € Us(t, s, ¢(s)). (8.18)

If for ¢ : R — X the equality (8.18) takes place V¢ > s, then ¢ is called complete
trajectory.

Now we assume that for arbitrary 0 € X and T € R we have the set K of
mappings ¢ : [t, +00) — X such that:
(a) Vx € X Jp(-) € K such, that (1) = x;
(b) Yo() € K7 Vs 2T ¢()ls.400) € K33
(©) Yh = 0V9p(-) € K™ @(-+h) € KF -
Let us put
Us(t, 7, x) = {pDp() € K7, ¢(7) = x}. (8.19)

Lemma 8.1 Formula (8.19) defines the family of MP {Us}sex, and Vo(-) € K
Vizs=1 @) € Us(t,s, (s)). (8.20)

Proof Let us check conditions of the Definition 8.2.

D Us(r, 7, %) = @(1) = x;

(2) V& € Us(t, T, x) § = (1), where ¢ € K}, ¢(t) = x. Then for s € [7,1]
@(s) € Us (s, T, x) and from ¢|[s +o0) € K we have (1) € Uy (2, 5, ¢(s)). So

EeU(t,s,Us(s, T,X)).

(3) VE € Uy (t +h,T+h,x) & =q@(t +h), where ¢ € KX ¢(t + h) = x. Then
Y = 9(+h) € Kf g ¥(1) = x, 50 € = Y(1) € Urgppo (¢, 7. ). Lemma is
proved.

It is easy to show that under conditions a)-c), if Vs > t Vi € K}, V¢ € K] such
that ¢ (s) = ¢(s), we have

_ ¥, pelrs] c
0(p) = [w(p), b, € K;, (8.21)

then in the condition (2) of Definition 8.2 equality takes place.
IfVh > 0Vgp € K}(h)a o(-—h) e K;*h, then in the condition 3) of Definition 8.2
equality takes place.
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From (8.20) we immediately obtain that if for mapping ¢ () : R — X for arbitrary
7 € R we have ¢(-)|[r,+00) € K7, then ¢(-) is complete trajectory of U, .
The next result is generalization on non-autonomous case results from [5].

Lemma 8.2 Let the family of MP {U,}scx be constructed by the formula (8.19),
Yo(-) € K/ is continuous on [t,+00), the condition (8.21) takes place and the
following one:
if o,() € K2, @,(v) = x, then 3p(-) € K;, @(t) = x such that on some
subsequence

@n(t) = @(t) V1 = 1.

Then every continuous on [t, +00) trajectory of MP U, belongs to K.

Proof Let ¥ : [t,+00) > X be continuous trajectory. Let us construct sequence
{@a ()32, C K] such that

on(t+ 27 =Y+ 27", j=01,..,n2".
For ¢, (-) we have
1 1
V(T + 5) eUs(t + 7T ¥ (7)),
1 1
YvY(r+D)eUs(r+1, 7+ E,w(t—i- E)'
~ 1

So there exists ¢(-) € K, there exists ¢(-) € K;+2 such that

1 ~ I~
v+ =0 +3). o(m) =y,

= = 1 1
va+D=¢+1), o+ 5) =y(r+ 5)'
Therefore due to (8.21) for function

9(p), T<p<tT+3,

= | we have:
ep), p>1+3

o1(p) =

1 1
o) € Ky, o1(0) =¥ (1), pr+35)=vC+2), at+DH=v@E+1).

Further, using (8.21), we obtain required property foreveryn > 1. As ¢, (t) = ¥ (1),
sodgp(-) € K7, ¢(r) = ¥ () such that on subsequence V¢ > 7 ¢, (1) — @(t). As
Vt =1+ j27" @(t) = ¥ (1), so from continuity ¢(¢) = ¥ (f) V¢t > 7. Lemma is
proved.
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The following theorem declare structure of uniform global attractor in terms of
bounded complete trajectories of corresponding m-processes. It should be noted that
this result is known for single-valued case [6] and in multi-valued case for very
special class of strict processes, generated by strict compact semiprocesses, which
act in Banach spaces [22].

Theorem 8.5 Let X is compact, T(h)X = X Y h > 0, the family of MP {U,}scx
satisfies (8.19), in condition (3) of Definition 8.2 equality takes place, the mapping
(x,0) — U,(t,0, x) has closed graph. Let us assume that there exists ® s - compact
uniform global attractor of the family {U, }, ¢ 5, and one of two conditions hold: either
the family of MP {U, }scx is strict, or

for every o, — 00, X, = X0 if ¢u() € K) . 9,(0) = xy,

soI () e KSO, ©(0) = xg such that on subsequnce Yt > 0 @,(t) — ¢(1).
(8.22)
Then the following structural formula holds

Ox = | #0). (8.23)

oeX
where Jt; is the set of all bounded complete trajectories of MP U,,.

Proof First let us consider situation when the family of MP {U, }, < is strict. In this
case one can consider multi-valued semigroup (m-semiflow) on the extended phase
space X x X by the rule

G, {x,0}) ={Us(t,0,x), T(t)o}. (8.24)

Then G is strict, has closed graph and compact attracting set @y x X. So G has
compact invariant global attractor

o = ﬂ U G(t,Ox x X)) ={y(0)]y is bounded complete trajectories of G}.

§>01=>s

Here under complete trajectory of m-semiflow G we mean the mapping R > ¢ —
y (t) such that
VteRVYs>0y@+s)eG(s,y()).

Let us consider two projectors [1, and I, I[1\(u,0) = u, I[IL(u,0) = o. As
T()XY = X,s0 o/ = X. Letus prove that [1)&/ = Ojy.
AsVBefB(X)G(t,BxX)— o, t = 400,580

Us(t,7,B) > I« ,
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s0 Oy C I11.9/. Let us prove that IT\«7 = |J #,(0). For this purpose we take

oeX
(up, 0p) € <. Then there exists y(-) = {u(-),o(-)}, which is bounded complete
trajectory of G and such that y (0) = (ug, 0p). Then V¢ > t

u(t) € Upr)(t — 7,0, u(7)), o(t) =T(t —1)o(T).
If 7 > 0, then o (t) = T(1)0y, that is
u(t) € Ur(yoy (t — T, 0, u(7)) = Uqy (¢, T, u(7)).
If 7 <0, then o = T(—1)0 (1), 50
U(t) € Upiey(t — 7.7 — 7, u(1)) = Ur(—oyo () (1, T u(T)) = Ug, (1, T, u(1)).

Therefore ug = u(0) € J#;,(0) C |J 4 (0).

oeX
Now let ug = u(0) € Ky, (0), u(t) € Uy, (t, T, u(r)) Vit > 1. AsT(1)Y = X,
so there exists o (s), s € R, such that o (1) = T(t — 1)o(r), Vt > 17, 0(0) = 0.
Then for s > 0 we have

G(t,{u(s), 0(s)}) = WUo5) (1,0, u(s)), T (1)o(s)) =
= (UT(X)U()(Z" 07 M(S)), G(t + S)) = (UU(J(t + Sa Sa M(s))7 G(t + S))?
{ut+s),0( +5)} € (Up,(t +5,5,u(s)), ot +5)).
If s <0, then oyg = T(—s)o (s), and
u(t + S) € U(To(t + Sv S, M(S)) = UT(—S)U(S)(Z + Sv S, M(S)) = UU(S)(tﬂ 0’ M(S))
Then ug € IT) o7 and IT).o/ = | J,, .5 H#5(0).
Since for arbitrary attracting set P and for arbitrary bounded complete trajectory
I' = {u(s)}ser of the process U, we have
u(0) € U (0, =n, u(—n)) = Urnyo(—n) (0, —n, u(—n)) C
cUsx(n,0,I"') — P, n —> 400,
so u(0) € P, and we obtain (8.23).
Now let us consider another case, when family of m-processes is not strict, but
the condition (8.22) holds. Let us show that .7, (0) C @x. If z € %, (0), then there

exists bounded complete trajectory ¢(-) of m-process U,,, such that ¢(0) = z. Let

us denote I' = |J ¢(¢t) € B(X). Then for z = ¢(0) we have
teR
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(p(o) € UO' (07 —n, (p(_n)) = UT(n)(T,l (07 —n, (p(_n)) C UE(na 07 F)'
Since Ve > 0 dng VYn > ny Us(n,0,I") C O.(@x), then z € @5 and we obtain

required embedding.
Nowletz € @5 = wx (0, By). Thenz = liT &,,&, € Ux(t,,0, By). Therefore
n——+0o0

on some subsequence

e= lm g,@). ¢u() € K?. ¢,(0) € By, 0, — o.
—+00 "

n

For Vn > 1 let us consider
1ﬁn() = Qon(' + tn) € K;(t;’”)gn’

that is ¥, (+) € Kaft", where ¢, = T(t,)0,. Then v,(-) € Kg , O, —> 0, ¥,(0) =
@n(ty) = z, so there exists O (-) € K2, ¢@(0) = z, such that

Vi =0 Y, (1) = @u(t +1,) — YO0,
Fort = —1 Vn >n; —t, < —1, therefore ¥,,() € Kafnl and on some subsequence
V(=1 = @u(ty — 1) = z1.
Herewith there exists (" (-) € K ' such that on subsequence
V) = @t +1,) = V@) Vi = —1,
and vVt > 0 ¥ @) = v “D(r). By standard diagonal procedure we construct
sequence of functions
v PO ekt k=0,
with %D (1) = R () Vi > —k + 1. Let us put
V() =y, if 1=~k
Then the function ¥ (-) is correctly defined, ¥ : R — X.

Moreover YT < 0 3k such that [z, +00) C [k, +00), on [—k, +00) ¥ (-) =
YR soy() e K&‘k, and from this

v eK: v0) =y 00 =z
Since on subsequence

VieR Y1) = lim ¢,(t+1,) € w50, Bo) € f(X),
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then z = ¥ (0) € #; and theorem is proved.

Definition 8.7 Let ® be some topological space of functions from R to topological
space E. The function £ € @ is called translation compact in @, if the set

H(§) =clo{s(-+5) |s € R}
is compact in .

To construct family of m-processes for the problem (8.8) we suppose that time-
depended functions f and A are translation compact in natural spaces [6]. More
precisely, we will assume that

his translation compact in LZ‘W(R; H), (8.25)

loc

where Lfo’? (R; H)isthe space L}, (R; H) with the local weak convergence topology,
and
f is translation compact in C(R; C@RN, RMY)), (8.26)

where C(R; C(RY, RY)) equipped with local uniform convergence topology.
It is known that condition (8.25) is equivalent to

t+1

Ih|3 = sup/ |h(s)|*ds < oo (8.27)
teR f

It is also known that condition (8.26) is equivalent to

VY R >0 fis bounded and uni formly continuous on

O(R) = {(t,v) e R x RY | [v|gv < R}. (8.28)

If conditions (8.25), (8.26) take place, then the symbol space

XY= ch(R;C(RN’RN))Xleo-:yf(R;H){(f(- +5),h(-+5))|s €R} (8.29)

is compact, and Vs > 0 T(s) X = X, where T (s) is translation semigroup, which
is continuous on X.
For every 0 = (f5, hs) € X we consider the problem

uy =adu — f(t,u) + hs(t,x), x €82, t>r, (8.30)

ulpe =0.
Itis provedin [9] thatV o € X f, satisfies (8.10), (8.11) with the same constants C,
Ca, Vi, lho |+ < |h|4+. So we can apply Theorem 2 and obtain that V7 € R, u, € H
the problem (8.30) has at least one solution on (t, 400), each solution of (8.30)
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belongs to C([t, +00); H) and satisfies energy equality (8.13). For every o € X,
T € R we define

Ky ={u() | u()is solution of (8.30) on (t, +00)} (8.31)
and according to (8.19) weputVo € X, Vt>t,Vu, € H
Us(t, T ur) = {u@®lu(-) € K7, u(t) = u.}. (8.32)

From [9] and Theorem 8.5 we obtain the following result. The following theorem
was proved in [11].

Theorem 8.6 Under conditions (8.10), (8.11), (8.25), (8.26) formula (8.32) defines
a strict family of MP {U, },<x which has compact, invariant, stable and connected
uniform global attractor ® 5, which consists of bounded complete trajectories, that
is

Ox = | #(0). (8.33)

oeX
where J; is the set of all bounded complete trajectories of MP U,.

Now we want to use formula (8.33) for proving that the uniform global attractor
of RD-system is bounded set in the space (L®(2)Y N V.
First let us consider the following conditions:

IM; >0, i=1,Nsuchthatf0rallv=(vl,...,vN)ERN foraa.x € 2VtelR

N
Dy =k ) = M)t =0 (8.34)

i=1

N
Dy =)0 + M) <0 (8.35)
i=1

where ¢ = max{0, ¢}, o7 = max{0, —¢}, ¢ = T —¢~.
Let us consider some example, which allow to verify conditions (8.34), (8.35).

Lemma 8.3 If N = 1 (scalar equation), then from (8.10), (8.11) and h € L*° (R x
£2) we have (8.34), (8.35).

Proof From (8.10)and h € L*°(£2) fora.a. x € 2 andu € R,
PlulP — Gy < g(t, x, wu < Cilul” + Cy,

where g(t, x,u) = f(t,u) — h(t, x), y does not depend on ¢, u, x.
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Ifu < M, then g(t, x, u)(u — M)* = 0.
If u > M, then

_ +
ot ) — My = gt x, wu = o x wu - M
u u

. ~ M . ~ M
= (yu” = C)(1 - )z (yMP —Cy)(1 — -

and if we choose M = (%);, then g(¢, x, u)(u — M)™ > 0 ae.

Lemma 8.4 Ifforarbitrary N > 1 h =0, f(t,u) = (f'(t,u), ...V (t, u)), where
N

fitt,u)y = O [u'|> — RPu', R > 0 is positive constant, then conditions (8.34),
i=1

(8.35) hold for M; = R.

N . — .
Proof It 3" |u'|*> < R*>,soVi =1, N |u'| < R and
i=1

N
> Flwe — R =0,

i=1

N

> e ww + R =

i=1

N
If > |u|* > R?, then
i=1

N N N
Dol ww =Rt = (Z lu' > — Rz)Zu'(ui —R)" >0,
i=l i i=1

N N N
D S +R) = (Z ' — Rz)Zu’rul’ +R)” <0.

i=1 i=1 i=1

Theorem 8.7 If conditions (8.10), (8.11), (8.25), (8.26), (8.34), (8.35) hold and
matrix a is diagonal, then the uniform global attractor Oy is bounded set in the
space (L¥(2)N N V.

Proof First let us prove thatV o € X functions f;, h, satisfy (8.34), (8.35). Indeed,
there exists sequence #, /" cosuchthatVT >0, R >0, n € L>((~T,T) x 2)

sup sup Z|f (t+ta,v) = fL(t, V) = 0, n — o0,

[t(|<T [VI=R;
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T
Z//(h"(z + ty, x) — hL(t, x)n(t, x)dxdt — 0, n — o0.
=17 o
From (8.34)
N
DS+t v) = B+ 1, ) = M)t = 0. (8.36)

i=1
Therefore for fixed v and for arbitrary ¢ > O there exists N > 1 such thatVn > N

N N N
D+ tn, )0 = MY <D 10 = M) <D fEE O = Myt e,

i=1 i=1 i=1
Because

N N
D b+t ) = M) — D hE (6, x) (V' — M) weakly in L*((—=T. T) x £2),

i=I i=1
from Mazur Theorem we deduce that
N N
Zh;(r, 0 = M)t < Z £, v — M) +e foraa.x e 2.
i=1 i=1

From arbitrary choice of ¢ we can obtain required result.
It is easy to obtain that for arbitrary weak solution of (8.8) and for every n €
Gy (r, 1)

T T
1
/(u,,u+)ndt = —§/|u+|2n,dt. (8.37)

Then putting g, = f, — h, and for numbers My, ..., My from condition (8.34) we
have

| =
&.lg_

N N N
u —M)T PP+ u'—MH*t 2—1—/ L, x, )W —M) dx = 0.
;;'( )" ﬂgll( )l ;g(,( )( )
1= 1= Q 1=

Then from (8.34)

d & N

T2 = M) P26 = M)YP <0

i=1 i=1

and forallr > t
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N N
D =My OP < D1 = Myt (@Pe 0 (838)
i=1 i=1

If u(-) € J then from (8.38) taking T — —oo we obtain u'(x,t) < M;, i =

1, N, Vt e R, fora.a. x € £2.

In the same way we will have u’ (x, t) > M; (using (u’ + M;)"7).
Then

esssup |z (x)| < M; Yz = (Z',...,7") € O.
xe

So we obtain that @5 is bounded set in the space (L*°(£2))". From the equality
Ox =Us(t,1,0x)Vit > 7 wededucethat Vo € X U,(t,7,O0x) C Ox. Now
let us consider arbitrary complete trajectory u(-) € .%#,. Due to definition of weak
solution for a.a. t € R u(z) € V. We take such 7 € R that u(t) € V and consider
the following Cauchy problem

vi =aAv — f,(t,u)+hs(t,x), xe€82,t>r,
V|;;_Q = 0, (839)
v|t:r = M('L')

Because V t > T u(t) € Oy, which is bounded in (L*(£2))", we have that
o (t,u(t, x)) € (L®(£2))N. Thus for linear problem (8.39) from well-known results
one can deduce that VT > t v € C([t, T]; V). So from uniqueness of the solution
of Cauchy problem (8.39) v = u on [t, +00) and, therefore, V¢ > t u(t) € V. It
means that V¢ € R u(t) € V and from the formula (8.33) ®x C V.

From the energy equality, applying to function u, and boundness of @y in the
space H we deduce, that 3 C > 0, which does not depend on o, such thatV ¢ € R

t+1 t+1

/ lu(s)|%ds < C(1 + / (hy () Pds).

From translation compactness of & we have

t+1
/ lu(s)|*ds < C(1+ |h[2).

t

So for arbitrary t € R we find 7 € [¢, ¢ + 1] such that |lu(7)||*> < C(1 + Ihli). Then
for the problem (8.39) we obtain inequality

V>t vl < e u())? + D,
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where positive constants §, D do not depend on o. Thus
VieR u@|* <CA+h2)+D

and theorem is proved.

8.3 Uniform Trajectory Attractors for Nonautonomous
Dissipative Dynamical Systems

For evolution triple (V;; H; Vi*)' and multi-valued map A; : Ry x V = V¥ i =
1,2,...,N, N = 1,2,... we consider a problem of long-time behavior of all
globally defined weak solutions for nonautonomous evolution inclusion

N
Y@+ At y()) 30, (8.40)

i=1

ast — +oo. Let (-, )y, : V;* x V; — R be the pairing in V;* x V,, that coincides
on H x V; with the inner product (-, -) in the Hilbert space H.

Note that Problem (8.40) arises in many important models for distributed para-
meter control problems and that large class of identification problems enter this
formulation.

Throughout this subsection we suppose that the listed below assumptions hold:

Assumptlon ILet p; > 2,qg; > 1 are such that wt e = 1, for each for
i =1, 2 , N, and the embedding V; C H is compact one for some for i =
1,2,...,

Assumption II (Grows Condition) There exist a t.u.i. in L'l"c (R.) function c; :
R, — R, and a constant ¢, > 0 such that

N
N
max [|d;[[},. < e1(6) + 2 D ull,

i=1

foranyu € V;,d; € A;(t,u),i =1,2,...,N,and ae. t > 0.
Assumption III (Signed Assumption) There exist a constant @ > 0 and a t.u.i. in
L*(R,) function B : Ry — Ry such that

N N
Z di,u)y, = a Y |lully, — B()
i=1 i=1

li.e. V; is a real reflexive separable Banach space continuously and densely embedded into a real
Hilbert space H, H is identified with its topologically conjugated space H*, V;* is a dual space to
V;. So, there is a chain of continuous and dense embeddings: V; C H = H* C Vl*
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foranyu € V;,d; € A;(t,u),i =1,2,...,N,and ae.t > 0.
Assumption IV (Strong Measurability) If C € V;* is a closed set, then the set
{(t,u) € (0,400) x V; : A;(t,u) N C # @} is a Borel subset in (0, +00) x V;.
Assumption V (Pointwise Pseudomonotonicity) Let for eachi = 1,2,..., N
and a.e. ¢ > 0 two assumptions hold:

(a) forevery u € V; the set A;(t, u) is nonempty, convex, and weakly compact one
in V;*;
(b) if a sequence {u,},>1 converges weakly in V; towards u € V; as n — 4o0,

d, € Ai(t,uy,) for any n > 1, and lim sup(d,,, u, — u)y, < 0, then for any
n——+o0o

w € V; there exists d(w) € A;(t, u) such that

liminf(d,, u, — )y, > {(d(w), u — w)y,.
n——+o00o
Let0 <t < T < +00. As a weak solution of evolution inclusion (8.40) on the
interval [t, T'] we consider an element u(-) of the space ﬂlNz L, (z, T; V;) such that
forsome d;(-) € L, (r,T; V;*),i =1,2,..., N, itis fulfilled:

T N T
- [ yend+ 3 [, eondi =0 e e R TV, 4D
] i=1

and d;(t) € A;(t, y(t)) foreachi = 1,2,...,Nandae.t € (7, T).
For fixed nonnegative T and 7, 7 < T, let us consider

N
Xer = 0L Ly (0T V) Xip =2 Lo @ TV, Wer=1{yeXer |y € Xir),
i=1

et Xer = XiT, er(y)=1{d e X;‘,T |d(t) € Az, y(2)) fora.e.t € (1, T)},

where y’ is a derivative of an element u € X, 7 in the sense of Z([z, T']; ZlN=1 Vi)

(see, for example, Sect. 6.1). Note that the space W- 7 is areflexive Banach space with

the graph norm of a derivative [lullw, , = llu|lx, , + ”"‘,”X?r’ uec Wer.Let(, )x, ,:

X, x X¢ 7 — Rbe the pairing in X:T x Xq.r, that coincides on L(t, T; H) x
T

X, 7 with the inner product in Ly(z, T; H), i.e. (u, v)x,, = f(u (1), v(t))dt for any
T

ue Ly(tr,T; H)andv € X, r. The embedding W, r C C([t, T]; H) is continuous

and dense one. Moreover,

T

(D)) = @) = [ [ @Oy + 000 Jar, - 642

T

forany u,v e Wy r.
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For fixed T and T, such that 0 < 7 < T < +00, we denote
D7 (D) = {y() | y is a weak solution of (8.40) on [z, T1, y(r) = yP}, y@ e H.

We remark that 2, 7(y?) # @ and 2, 7(y'?) C Wer,if0 <7 < T < +00
and y® e H. Moreover, the concatenation of Problem (8.40) weak solutions is
a weak solutions too, i.e. if 0 < 7 <t < T,y € H, y(-) € 2;,(y), and
v(:) € Z,1(y(t)), then

) y(), s et t],
us) = [v<s>, selr Tl

belongs to Z; 7 (y'™); see Sect.6.1.
Gronwall lemma provides that for any finite time interval [7, T] C R, each weak
solution y of Problem (8.40) on [z, T'] satisfies estimates

¢ N ¢ 5
||y<r>||%,—2/0 ﬂ(é)d§+2a2/ ||y<s>||ad55||y<s>||%,—2/0 B(&)dE,
= (8.43)
Iyl < Iy ()5 e 27 +2 / (BE) +ay)e 7" 8qg, (8.44)

where ¢, s € [t,T],t > s; y is a constant that does not depend on y, s, and ¢; cf.
Sect.6.1. In the proof of (8.44) we used the inequality ||u||%1 —-1< ||u||Z for any
ueH.

Therefore, any weak solution y of Problem (8.40) on a finite time interval [t, T'] C
R, can be extended to a global one, defined on [z, +00). For arbitrary 7 > 0 and
y© e H let 2.(y™®) be the set of all weak solutions (defined on [z, +00)) of
Problem (8.40) with initial data y(t) = y™. Let us consider the family 2t =
Uyoen Zx (y™) of all weak solutions of Problem (8.40) defined on the semi-infinite
time interval [, +00). Consider the Fréchet space C 1"C(RJr; H). We remark that the
sequence { f,,},>1 converges in C'®(R; H) towards f € C'°(R,; H) asn — +00
iff the sequence {1}, ;, fu}»>1 convergesin C([t;, t,]; H) towards I, ;, f asn — 400
for any finite interval [#;, 2] C Ry, where I1,, ,, is the restriction operator to the
interval [t;, t,]; Chepyzhov and Vishik [6, p. 918]. We denote T'(h)y(-) = yu(-),
where y,,(t) = y(t + h) forany y € C'°(R,; H) and ¢, h > 0.

In the autonomous case, when A(#, y) does not depend on ¢, the long-time behav-
ior of all globally defined weak solutions for Problem (8.40) is described by using
trajectory and global attractors theory. In this situation the set J#* := %’L is trans-
lation invariant, i.e. T (h). ¢+ C ¢ for any h > 0. As trajectory attractor it is
considered a classical global attractor for translation semigroup {7 (h)},>0, that acts
on .

In the nonautonomous case we notice that 7'(h).%," ¢ #;". Therefore, we
need to consider united trajectory space that includes all globally defined on any
[z, 4+00) € R, weak solutions of Problem (8.40) shifted to 7 = 0:
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Tt = Clcloc(R+;H) |:U {y(. +1):ye€e %+}:| ,

>0

where clewer, . )l - | is the closure in C"°(R4; H). Note that T(h){y(-+71) : y €
,%/T*} C{y(-+t+h):ye Ji/tfrh} for any 7, h > 0. Moreover,

T(h)# ™ € ¢ forany h > 0,
because
pees, i (T (Wu, T (h)v) < pec,;m(u, v) for any u, v € C'(Ry; H),

where pcie(r, . i) is a standard metric on Fréchet space C (R, : H).

Aset Z C C(Ry; H) N Loo(Ry; H) is said to be a uniformly attracting
set (cf. Chepyzhov and Vishik [6, p. 921]) for the united trajectory space .# ™ of
Problem (8.40) in the topology of C'°°(R,; H), if for any bounded in Lo, (R ; H)
set  C ¢+ and any segment [¢, ;] C R, the following relation holds:

diStC([z‘],tg];H)(ntl,tzT(t)f%a Hh,tz gZ) — O, t — 400, (845)

where distc(y, 1,1 &) 1s the Hausdorff semi-metric.

Aset Z C ¢ is said to be a uniform trajectory attractor (cf. Chepyzhov and
Vishik [6, p. 921]) of the translation semigroup {7 (¢)},>0 on J# " in the induced
topology from C'*°(R,; H), if

(i) 7% is a compact setin C'*(R,; H) and bounded in L, (R; H);
(ii) 7 is strictly invariant with respect to {7 (h)}n>0, 1.e. T(h)% = % Yh > 0;
(iii) % isaminimal uniformly attracting set for.# ¥ in the topology of C'**(R; H),
i.e. % belongs to any compact uniformly attracting set & of & ": % C 2.

Note that uniform trajectory attractor of the translation semigroup {7'(¢)};>0 on
2t inthe induced topology from C'*° (R, ; H) coincides with the classical trajectory
attractor for the continuous semi-group {7 (¢)},=¢ defined on #* (see, for example,
Chepyzhov and Vishik [6, Definition 1.1]).

Presented construction is coordinated with the theory of uniform trajectory attrac-
tors for nonautonomous problems of the form

du(t) = Ay (1)), (8.46)

where o (s), s > 0, is a functional parameter called the time symbol of Eq. (8.46)
(¢ is replaced by s). In applications to mathematical physics equations, a function
o (s) consists of all time-dependent terms of the equation under consideration: exter-
nal forces, parameters of mediums, interaction functions, control functions, etc. In
mentioned above papers and books it is assumed that the symbol o of Eq.(8.46)
belongs to a Hausdorff topological space = of functions defined on R, with val-
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ues in some complete metric space. Usually, in applications, the topology in the
space = is a local convergence topology on any segment [¢1, ] C R,. Further,
they consider the family of Eq. (8.46) with various symbols o (s) belonging to a set
Y C E,. The set X is called the symbol space of the family of Eq.(8.46). It is
assumed that the set X, together with any symbol o (s) € X, contains all positive
translations of 6 (s): o (t +s) = T (t)o(s) € X for any ¢, s > 0. The symbol space
X' is invariant with respect to the translation semigroup {7 (¢)};50: T(1)X <€ X
for any ¢ > 0. To prove the existence of uniform trajectory attractor they suppose
that the symbol space X' with the topology induced from & is a compact metric
space. Mostly in applications, as a symbol space X' it is naturally to consider the
hull of translation-compact function oy (s) in an appropriate Hausdorff topological
space & . The direct realization of this approach for Problem (8.40) is problematic
without any additional assumptions for parameters of Problem (8.40) and requires
the translation-compactness of the symbol o (s) = A(s, -) in some compact Haus-
dorff topological space of measurable multi-valued mappings acts from R to some
metric space of pseudomonotone operators from (V; — 2"") satisfying grows and
signed assumptions. To avoid this technical difficulties we present the alternative
approach for the existence and construction of the uniform trajectory attractor for all
weak solutions for Problem (8.40). Note that Assumptions (I)—(V) are natural and
guaranty, in the general case, only existence of weak solution for Cauchy problem
on any finite time interval [z, 7] C R and for any initial data form H.
The main result of this section has the following form.

Theorem 8.8 Let Assumptions (1)—(V) hold. Then there exists an uniform trajectory
attractor % C X of the translation semigroup {T (t)},>0 on " in the induced
topology from C'*° (R ; H). Moreover, there exists a compact in C'*(R,; H) uni-
formly attracting set 2 C C'°(Ry; H) N Lo(Ry; H) for the united trajectory
space Z of Problem (8.40) in the topology of C'°(R; H) such that % coincides
with w-limit set of &:

U = ﬂ C]CIOC(R+;H) |:U T(h)@:| . (847)

t>0 h>t

Before the proof of Theorem 8.8 we provide some auxiliary constructions (see
Sect.6.1).

Assumptions (IT) and (IIT) yield that there exist a positive constant ¢’ > 0 and a
t.u.i. function ¢’ in LIIOC(RQ such that A(t, u) € o/ (u) for each u € ﬂf\’:l V; and
a.e. t > 0, where

N N
N
Loty (u) = [Zpi D pi € VS D Upiu)y, = a/rpjfc {Ilullﬁ,.; ||P||[‘1/,.*} - c/(t)] .
i=1 i=1

Let 57 (c’) be the hull of t.u.i. function ¢’ in L!° (R,), i.e. S£(c') = clyieg,) {c(-+

1w

h) : h > 0}. This is a weakly compact set in LI°°(R ).
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Let us consider the family of problems
v =@, (y), o€ X :=3(C). (8.48)

To each 0 € X there corresponds a space of all globally defined on [0, +-00) weak
solutions #,* C C'(R; H) of Problem (8.48). We set #5 = Uycx 7"
We remark that (see Sect.6.1) any element from 77 ; satisfies prior estimates.

Lemma 8.5 There exist positive constants c3 and c4 such that for any o € X and
y € J,t the inequalities hold:

t

N t
ly 1% -2 / o ()de+22 > / Iy @I}, d < Iyl —2 / o (§)dE, (8.49)
i=1

0 0

N

t

Iyl < Iy 5 + ¢4 / o(E)e 2 8dg, (8.50)

N
foranyt > s > Q.

Moreover, the following result characterizing the compactness properties of solu-
tions for the family of Problems (8.48) holds:

Theorem 8.9 Let {y,},>1 C ¥, ; be an arbitrary sequence, that is bounded in
Loo(Ry; H). Then there exist a subsequence {yn, }i>1 C {Ynln>1 and an element
y € Ky such that

max, [Yn, (1) = yOllz = 0, k — +o00, (8.51)

telt,T
for any finite time interval [t, T] C (0, 400).

Proof of Theorem 8.8 First, let us show that there exists a uniform trajectory
attractor 7 C ¢ of the translation semigroup {7 (1)};>0 on J#* in the induced
topology from C'*°(R,.; H). Lemma 8.5 and Theorem 8.9 yields that the translation
semigroup {7 (t)},>0 has a compact absorbing (and, therefore, an uniformly attract-
ing) set in the space of trajectories % . This set can be constructed as follows: 1)
consider &, the intersection of %, ; with a ball in the space of bounded continuous
functions on R, with values in H, C;,(Ry; H), of sufficiently large radius; 2) shift
the resulting set by any fixed distance & > 0. Thus, we obtain T (h) 2, a set with
the required properties. Recall that the semigroup {7 (¢)},>¢ is continuous. There-
fore, the set &) := & N ¢ is a compact absorbing (and, therefore, an uniformly
attracting) in the space .# * with the induced topology of C'*°(R; H). In fact, here
one can apply the classical theorem on the global attractor of a (unique) continuous
semigroup in a complete metric space, the semigroup in question having a compact
attracting.
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8.4 Notes on Applications

As applications we may consider FitzHugh—Nagumo system (signal transmission
across axons), complex Ginzburg—Landau equation (theory of superconductivity),
Lotka—Volterra system with diffusion (ecology models), Belousov—Zhabotinsky sys-
tem (chemical dynamics) and many other nonlinear systems (see Sects.2.4 and 4.6).
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Chapter 9
Indirect Lyapunov Method for Autonomous
Dynamical Systems

Abstract In this chapter we establish indirect Lyapunov method for autonomous
dynamical systems. Section9.1 devoted to the first order autonomous differential-
operator equations and inclusions. In Sect.9.2 we consider the second order
autonomous operator differential equations and inclusions. In Sect.9.3 we exam-
ine examples of applications. In particular, a model of combustion in porous media;
a model of conduction of electrical impulses in nerve axons; viscoelastic problems
with nonlinear “reaction-displacement” law etc.

9.1 First Order Autonomous Differential-Operator
Equations and Inclusions

Let (., g) be a C*™ compact connected oriented two-dimensional Riemannian man-
ifold without boundary (as, e.g. .# = S? the unit sphere of R*). Consider the Budyko
model:

% — Au+ Bu € QS(x)B(w), (x,1) € M4 xR, 9.1)

where Au = div_y (V_yu) ; V_y4 is understood in the sense of the Riemannian metric
g (see Sect.2.4.3).
Let S : .# — R be a function such that S € L*°(.#) and there exist Sy, S; > 0
such that
0< S <Skx) <85.

Suppose also that B is a bounded maximal monotone graph of R?, that is there exist
m, M € R such that for all s € R and z € B(s)

m=<z=<M.
Let us consider real Hilbert spaces

H:=L*#), V:={uel*H):Vyuel>(T#))
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with respective standard norms || - ||z, || - |lv, and inner products (-, - )g, (-, )y,
where T.# represents the tangent bundle and the functional spaces L>(.#) and
L*(T.#) are defined in a standard way. According to Theorem 2.2, for any —oo <
T < T < 400 each weak solution u, € L*(£2) of Problem (9.1) on [z, T'] belongs to
C(r +¢& Tl Hi(2)NL*(t +¢,T; H*(22) N H} ((0, 7))) and ‘;—’;(-) € L*(r +
e, T; L*(2)) foreache € (0, T — 7).

Consider the generalized setting of Problem (9.1):

du

7 + Au(t) +0J1(u(t)) — oJr(u(t)) > 0on (—oo<1<T < +00), 9.2)

where A : V — V’ be a linear symmetric operator such that 3¢ > 0 : (Av, v)y >
c||v||%/, foreach v € Vand J; : H — R be aconvex, lower semi-continuous function
such, that the following assumptions hold: (i) (growth condition) there exists ¢; > 0
such that | y|lg < c1(1 + ||u|lg), foreachu € H and y € 9J;(u) and i = 1, 2; (ii)
(sign condition) there exist c; > 0, A € (0, ¢) such that (y; — y,, u)yg > —)»||u||%1 —
¢y, for each y; € 0J;(u), u € H, where dJ;(u) the subdifferential of J;(-) at a point
u.Note thatu™ € dJ;(u) ifand only if u* (v —u) < J;(v) — i) Vv e H;i =1, 2.
Let D(A) = {u € V : Au € H}. We note that the mapping v — || Av||y defines the
equivalent norm on D(A).

We recall that the function u(-) € L*(z, T; V) is called a weak solution of Problem
(9.2) on [z, T], if there exist Bochner measurable functions d; : (t,T) — H;i =
1, 2, such that

di(t) € 0J;(u(t)) forae.t € (r,T), i = 1,2; and (9.3)

T
/ [— (u, v) §'(1) + (Au, v) () + (d1,v) () — (do, ) E)]dt =0, (9.4)

forall§ € Cg°(r, T) and forallv € V.

We note that for any u, € H there exists at least one weak solution of Problem
(9.2) on [, T'] with initial condition u(t) = u.. The regularity of each weak solution
follows from Theorem 2.3.

Denote by 7, the family of all, globally defined on [0, +00), weak solutions of
Problem (9.2). Let us set

E(u) = %(Au, u) + Ji(u) — JH(u), uelV. 9.5)

Foreachu € . andalltand 7,0 < 7 < T < 00, the energy equality holds

T du )
E(T)) — E(u(r)) = —/ |I$(S)||Hds- (9.6)
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Fig. 9.1 Multi-valued semiflow

Thus, the function E (u(-)) is absolutely continuous on [z, 7] as the linear combina-

tion of absolutely continuous on [t, 7'] functions.
Let

Der () ={u(-) € Lz(r, T; V)| u(-) is a weak solution of Problem (9.2) and u(t) = u},

forany u, € H.
Define real Banach space

d
W (My, My) = {u() € C(IMy, My]; V) : d_?(') e LA(My, My; H)}

with the norm [lullw . vy = llull e ar:vy + 154 N L2 vy 4 € W (M, My),
—00 < M| < M, < +00.

We denote the set of all nonempty (nonempty bounded) subsets of H by P(H)
(#(H)). Let us define the strict m-semiflow G : Ry x H — P(H) in the following
way: G(t, ug) = {u(t) 1 u(-) € #,, u(0) = up}. Werecall that the multi-valued map
G : Ry x H — P(H) issaidtobe a strict multi-valued semiflow (strict m-semiflow)
if (see also Fig.9.1):

(a) G(0, -) = Id (the identity map);
®GEt+s,x)=G(t,G(s,x))Vx € H,t,s e R,.

We recall that the set &7 C H is said to be an invariant global attractor of G if:
(1) & is invariant (that is .«Z = G (¢, 2/) Vt > 0);

(2) o is attracting set, that is,

disty (G(t, B), /) — 0, t — +oo VB € B(H), 9.7)

where disty (C, D) = sup gng llc — d|| g is the Hausdorff semidistance;
ceC <
(3) for any closed set Y C H satisfying (9.7), we have ./ C Y (minimality).
Let {T'(h)}s>0 be the translation semigroup acting on %, that is T (h)u(-) =

u(-+h), h >0, u(-) € #,. On J#, we consider the topology induced from the
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Fréchet space C'°(R,; H). Note that f,(-) — f(-) in C!*°(R,; H) if and only if
YM > 011y f,(-) = Iy f(-) in C([0, M]; H), where I1), is the restriction operator
to the interval [0, M].

Aset 7 C ¥, is said to be trajectory attractor in the trajectory space %, with
respect to the topology of C!*“(R.; H), if % C ¥, is a global attractor for the
translation semigroup {7 (h)};>0 acting on 7, .

The following theorem completely describes the long-time behavior of all weak
solutions, as time ¢+ — +o0, for the problem in hands. The structure properties of
global and trajectory attractors and the strongest convergence results of solutions are
provided.

Theorem 9.1 The following statements hold:

(i)  the strict m-semiflow G : R, x H — P(H) has the invariant global attrac-
tor o ;
(ii)  there exists the trajectory attractor % C . in the space K. ;
(iii)  the following equalities hold: % =11, % ={y € #, | y(t) € &/ Vt €
R, },
(iv) o is a compact subset of V;
(v) foreach B € #(H) disty(G(t, B), &) — 0, ast — o0;
(vi) U is a bounded subset of L (R ; V) and compact subset of Wloe Ry), that
is [Ty % is compact in W(0, M) for each M > 0;
(vii)  for any bounded in L*° (R, ; H) set B C J, and any M > 0 the following
relation holds: disty oy (ITy T (t)B, [Ty %) — 0, t — +o00;
(viii) is a bounded subset of L®(R; V) and compact subset of W' (R),
that is Iy, m, % is compact in W(M,, M) for each My, M, —oo0 < M <
My < +00;
(ix)  foreachu € ¢ the limit sets

a() ={z € V|u(t;) — zinV for some sequence t; — —o0},
ww) ={z € V|u(t;) — zinV for some sequence t; — —+0o0}

are connected subsets of Z on which E is constant. If Z is totally disconnected
(in particular, if Z is countable) the limits in V

z- = lim u(t), z4+ = lim u(?) (9.8)
t——00 t—+400

exist and z_, 7.y are rest points; furthermore, u(t) tends in 'V to a rest point as
t — 400 for everyu € J,.

Proof Statements (i)—(v) of Theorem 9.1 follow from Kasyanov et al. [2, Theorems
4-6]. Statements (vi)—(viii) of Theorem 9.1 follow from Theorem 5.5 and Kasyanov
et al. [2, Theorem 6]. Statement (ix) of Theorem 9.1 follows from Theorem 5.4 and
Ball [1, Theorem 2.7].
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9.2 Second Order Autonomous Operator Differential
Equations and Inclusions

Let 8 > 0 be a constant, £2 C R” be a bounded domain with sufficiently smooth
boundary 9£2. Consider the problem

uy; + Bu — Au+ f(u) =0,

9.9
ulae =0, ©-9)

where u(x, t) is unknown state function defined on £2 x R, ; f : R — R is an inter-
action function such that
. f)
lim

lu|—>00 U

> —Ai, (9.10)

where 1, is the first eigenvalue for —A in HO1 (£2);
AD>0: |f(w)| <D+ |u]), VueR. 9.11)
Further, we use such denotation

f(s) =limsup f(1), f(s):=lm f(1), G(s):=[f(s), f(s)]. s€R.

t—s t—s

LetussetV = HO1 (£2) and H = L?(£2). The space X = V x H is a phase space of
Problem (9.9). For the Hilbert space X as (-, -)x and || - || x denote the inner product
and the norm in X respectively.

Definition 9.1 Let7 > 0,7 < T.Thefunctionp(-) = (u(-), u,(-))T € L*®(z, T; X)
is called a weak solution of Problem (9.9) on (z, T) if for a.e. (x,7) € 2 x (t, T),
there exists [ =1I(x,t) € L?(z, T; L*(2)) I(x, 1) € G(u(x, 1)), such that Vi €
Hy(£2),¥n € CF (v, T),

T T
—/(u,,w>Hn,dr+/<ﬁ<u,,w>H+<u,w>v+(z, Wandt = 0. (9.12)

The main goal of the manuscript is to obtain the existence of the global attractor

generated by the weak solutions of Problem (9.9) in the phase space X.
Thus we consider more general evolution inclusion

[ ig + Puts = D+ L[, iG] = [Lw), LG50 g

ulye =0.
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Let us set

Gi(s) :=/f,~(.§)d§, Ji(u) :=/G,-(u(x))dx, Jw)=J1(u)—Jr(w), ueH,i=1,2.
0 2

The functionals G; and J; are locally Lipschitz and regular. Consider W =
C([t, T); X). Forany ¢, = (a, b)” € X, denote

(u, u,)Tis a weak solution of Problem (9.9) on [, T'], | .
u(t)=a,u;(t) =>b ’

De1(pe) = {(u(-), ur (N7’

see Sect.7.2.
Define the m-semiflow ¥ as

G(t,50) ={6(0) | §() € Z(Go)}, 1 =0.

Denote the set of all nonempty (nonempty bounded) subsets of X by P (X)(B8(X)).
Note that the multi-valued map ¥4 : R, x X — P(X) is a strict m-semiflow,
i.e., (see Lemma 6.9)

1. 4(t,-) = Id (the identity map);

2. G(t+s,x)=9(t,9(s,x))Vx € X, t,5s € R,.

Further, ¢ € ¢4 means that ¢ € 2(&;) for some &, € X.

Definition 9.2 ¥ iscalled an asymprotically compact m-semiflow if for any sequence
{@utn=1 C ¢ with {¢,(0)},>1 bounded, and for any sequence {t,},>1: t, — +00,
n — oo, the sequence {¢,(f,)},>1 has a convergent subsequence Ball [1, p. 35].

Theorem 9.2 ¥ is an asymptotically compact m-semiflow.

Proof Let &, € 9(ty, vu), v € B, B € 8(X),n > 1,1, > +00, n — +00. Let us
check a precompactness of {£,},> in X. Without loss of the generality, we extract a
convergent in X subsequence from {&,},>1. From Corollary 6.1 we obtain that there
exists {&,,}x>1 and & € X such that §,, — & weakly in X, [, |lx = a > [€]x,
k — 4o00. Show that a < ||&]|x.

Let us fix an arbitrary Ty > 0. Then for rather big k > 1, 9 (1,,, v,,) C ¥4 (To,
4 (ty, — To, vn,)). Hence &, €9 (Ty, pB,,), where B, €9, — To,v,) and

sup || Bu, | x < 400 (see Corollary 6.1). From Theorem 6.3 for some {&;, Bx; }j>1 C
k=1

{Eas Buidi=1, B, € X, we obtain
£ €9 Ty, Br), P, — Br, weaklyin X, j — o0, (9.14)
From the definition of & we set Vj > 1, &, = (u; (7o), u/j(TO))T’ Br, = (u;(0),

w007, & = (uo(To), up(To))", Br, = (uo(0), up(0))", where ¢; = (u;, u)" €
C([0, Tol; X), u} € L>(0, To; V*), dj € Loo(0, To; H),
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Wi(t) + pu's(t) — Auj(t) +dj () —dja(t) = 0,
dji(t) € dJi(uj(t)), i =1,2 forae. te(0,T).
Let for every ¢ € [0, To],

B

1
I(g;(1)) = EH(Pj(t)”%( + Ji(uj(0) = au;(0) + E(u}(t), uj(t)u-

Then in virtue of Lemma 6.7

dl(z;'(t)) = —B1(p;(1)) + BH (p;(1)), forae.1 € (0, Tp),

where

217

1 1
H (@ (1) = Ji(u;(1)) — 5@ @), uj(©) = Lo j(®) + 5(dja(0), uj(t))n-

From (9.14) we have 3R > 0:Vj > 0, Vr € [0, To],
;DI + llu; O < R
Moreover,
uj — ug weakly in L, (0, To; V), j — 400,
u; — ug weakly in L,(0, To; H), j — o0,
Ui — U in L(0, Ty; H), j — 400,
dj; — d; weakly in L,(0, To; H), i =1,2, j — +o0,
u/]’ — ug weakly in Ly(0, Tp; V*), j — 400,

Vi €[0,To] u;(t) — uo(t)in H, j — +o0.

For every j > O and ¢ € [0, Ty],

I(p;(1) = I(p;(0))e +/<9‘f(<pj(s))e*ﬁ(’*s>ds.
0

Ty
In particular 1 (¢, (Ty)) = I(p;(0))e P10 + [ 7 (p;(s))e PTo=ds.
0

From (9.15) and Lemma 6.7 we have

To Ty
/ H(@;(s))e PTds — / H(@o(s)e P 9ds, j — +o0.
0 0

(9.15)
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Therefore

limsup 7 (¢;(Tp)) < limsup I (¢;(0))e T + f%”((po(s))e BTh—9) gy =

Jj—>4o0 Jj—+00

= 1(@o(To) + [ﬁm sup I (¢;(0)) — 1(€00(0))i| e T < I(po(Ty)) + c3e P70,

J—>+00

where c3 does not depend on 7y > 0.
On the other hand, from (9.15) we have

1
lim sup 15, (To) = 3 Tim_llg; (To) I, + I uo(To) + é<u0<To> uo(Ty)).

Jj—+0oo

Therefore we obtain $a* < 1[|€]1% + e3¢ 7?7 VT > 0.
Thus, a < [|&]lx.
The Theorem is proved.

Let us consider the family JZ, = U,,exZ(uo) of all weak solutions of Problem
(9.9) defined on [0, 4+-00). Note that 7., is translation invariant one,i.e.,Yu(-) € .,
Vh > 0, u,(-) € ., where u;,(s) = u(h +s), s > 0. On %, we set the translation
semigroup {T (h)}p=0, T (Wu(-) = u,(-), h = 0, u € ;. In view of the translation
invariance of J#, we conclude that T (h). %, C J#, ash > 0.

On .#, we consider a topology induced from the Fréchet space C'(R; X).
Note that

fa() = F)in C1°(Ry: X) = ¥M > 0, Iy fn(-) = My £(-) in C([0, M]; X),

where 1), is the restriction operator to the interval [0, M]. We denote the restriction
operator to [0, +00) by I1.

Let us consider Problem (9.9) on the entire time axis. Similarly to the space
C'“(R,; X) the space C'"°(R; X) is endowed with the topology of a local uni-
form convergence on each interval [-M, M] C R. A function u € C loc(R; X) N
L (R; X) is said to be a complete trajectory of Problem (9.9) if Vh € R, IT, u;(-) €
.

Let 2% be a family of all complete trajectories of Problem (9.9). Note that Vi € R,
Yu(-) € & up(-) € . We say that the complete trajectory ¢ € ¢ is stationary if
@(t) = zforallt € R for some z € X. Following Ball [1, p. 486] we denote by Z (%)
the set of all rest points of ¢. Note that

Z(@) = {0, u)|u eV, —Au)+dJ(u) > 0}.

Lemma 9.1 Z(¥) is an bounded set in X.

The existence of a Lyapunov function for ¢ follows from Lemma 6.10 (see Ball
[1, p. 486]).
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Lemma 9.2 A functional v : X — R defined by (6.44) is a Lyapunov function
for¥.

We recall that the set .o/ is said to be a global attractor ¢ if
(1) < is negatively semiinvariant (i.e., & C 4 (t, /) Vt > 0);
(2) o is attracting set, i.e.,

dist(¥(t, B), /) — 0, t — +o0o, VB e B(X), (9.16)

where dist(C, D) = sup ailnlfj |lc — d||x is the Hausdorff semidistance;
ceC 4€

(3) for any closed set Y C H satisfying (9.16), we have &/ C Y (minimality).
The global attractor is said to be invariant if & = 4 (t, /), Vt > 0.
Note that by definition a global attractor is unique.
We prove the existence of an invariant compact global attractor.

Theorem 9.3 The m-semiflow ¢ has an invariant compact in the phase space X
global attractor <7 . For each W € J¢ the limit sets

a(y) ={z € X| ¥(tj) — z for some sequence t; — —00},
() = {z € X| ¥(t;) — z for some sequence t; — +0o0}

are connected subsets of Z(4) onwhich V' is constant. If Z(99) is totally disconnected
(in particular if Z(9) is countable) the limits

z- = lim ¥(@), z4 = lim (1)
t——00 1——+00

exist and 7_, 7, are rest points, furthermore, ¢(t) tends to a rest point as t — 400
for every solution ¢ € K.

Proof The existence of a global attractor for Second Order Evolution Inclusions
directly follows from Lemmas 6.8, 6.9, 9.1 and 9.2, Theorems 6.3, 6.4, 9.2 and Ball
[1, Theorem 2.7].

9.3 Examples of Applications

In this section we provide examples of applications to theorems established in pre-
vious sections. We consider a model of combustion in porous media, a model of
conduction of electrical impulses in nerve axons, a climate energy balance model
etc. (see also [4-21, 23-46, 49-96]).
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http://dx.doi.org/10.1007/978-3-319-59840-6_6
http://dx.doi.org/10.1007/978-3-319-59840-6_6
http://dx.doi.org/10.1007/978-3-319-59840-6_6
http://dx.doi.org/10.1007/978-3-319-59840-6_6

220 9 Indirect Lyapunov Method for Autonomous Dynamical Systems

(a) (b) (c)
35 A
25
EX] 20
25 20 1.5¢
20 15
15 1.0 1o
1.0
0.5
0.5 0.5
05 1.0 1.5 20 25 3.0 05 10 15 20 25 3.0 05 10 15 20 25 3.0
(d) (e) (®
0.8 1o 1.0
0.8
0.6 0.8
0.6 0.6
- 04 0.4
o2 02 0.2
05 10 15 20 25 30 05 10 15 20 25 30 05 10 15 20 25 30

Fig. 9.2 Approximations for trajectories to model of combustion in porous media in a moment
at=0;br=08;cr=16;dt=24;et=32;ft=4

9.3.1 A Model of Combustion in Porous Media
Let us consider the following problem:

ot ox?

u 9%u
a — f) € \H@u —1), (x,1) € (0,7) xR,
[M(O, H=u(r,t)=0, tekR, 9.17)

where f : R — R is a continuous and nondecreasing function satisfying growth
and sign assumptions, A > 0, and H(0) = [0, 1], H(s) = I{s > 0}, s # 0. For each
ur € L*((0, 7)) we set Zpr(uz) = {u(-) € L*(t, T; Hy((0, m)))| u() is a weak
solution of Problem (9.17) and u(t) = u.}. Since Problem (9.17) is a particular case
of Problem (9.2), then all statements from Sect. 10.1 hold; Fig.9.2.

9.3.2 A Model of Conduction of Electrical Impulses in Nerve
Axons

Consider the problem:

ot dx2

du Py e AH@u —a), (x,1) € (0,7) x R, ©.18)
w(©,1) = u(m,1) =0, teR, ‘

where a € (O, %) Terman [47, 48]. Since Problem (9.18) is a particular case of

Problem (9.2), then all statements from Sect. 9.1 hold; Fig.9.3.
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Fig. 9.3 Modeling of Ve
solutions for a model of
conduction of electrical
impulses in nerve axons

0 a=0.49; A=2;
T=4

9.3.3 Viscoelastic Problems with Nonlinear
“Reaction-Displacement” Law

Let a viscoelastic body occupy a bounded domain £2 C R?, d = 2, 3 in applications,
and it is acted upon by volume forces and surface tractions.! The boundary I of £2 is
supposed to be Lipschitz continuous and it is partitioned into two disjoint measurable
parts I'p and Iy such that meas(I'p) > 0. We consider the process of evolution of
the mechanical state on the interval (0, 400). The body is clamped on I'p and
thus the displacement vanishes there. The forces field of density fp act in £2, the

surface tractions of density gy are applied on I'y. We denote by u = (uy, ..., ug)
the displacement vector, by o = (0;;) the stress tensor and by £(u) = (g&;;(«)) the
linearized (small) strain tensor (g;; (1) = %(Bju,- + d;u;)), wherei, j =1,...,d.

The mechanical problem consists in finding the displacement field u : £2 x
(0, +00) — R? such that

u'(t) — divo (1) = fo in 2 x (0, +00), (9.19)
o(t) = Ce(/' (1) + Ee(u(t)) in 2 x (0, +00), (9.20)
u(t) =0 on I'p x (0, +00), 9.21)

on(t) =gy on Iy x (0, +00), (9.22)

u(0) = uo, u'(0) =u; in £2, (9.23)

where ¥ and & are given linear constitutive functions, n being the outward unit
normal vector to I'.

IThis section is based on results of [22] and references therein.
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Fig. 9.4 Foundation, body, f
and main forces // //

| foundation |

In the above model the dynamic equation (9.19) is considered with the viscoelas-
tic constitutive relationship of the Kelvin-Voigt type (9.20) while (9.21) and (9.22)
represent the displacement and traction boundary conditions (Fig. 9.4), respectively.
The functions u( and u; are the initial displacement and the initial velocity, respec-
tively. In order to formulate the skin effects, we suppose that the body forces of
density f; consists of two parts: f; which is prescribed external loading and f,
which is the reaction of constrains introducing the skin effects, i.e. fo = f1 + f>.
Here f; is a possibly multi-valued function of the displacement . We consider the
reaction-displacement law of the form

— fo(x,t) € 9j(x, u(x, 1)) in £2 x (0, +00), (9.24)

where j : 2 x RY — R is locally Lipschitz function in u and dj represents the
Clarke subdifferential with respect to u. Let % be the space of second-order sym-
metric tensors on R?.

We consider the following problem:

examine the long-time (as t — +00) behavior of all (weak, generalized) solutions
for (9.19)—(9.23) and (9.24).

In [22] for finite time interval it was presented the hemivariational formulation of
problems similar to (9.19)—(9.24) and an existence theorem for evolution inclusions
with pseudomonotone operators. We give now variational formulation of the above
problem. To this aim let H = L,(2,R?), Hy = H' (2, RY), 2 = L,(£2, %) and
V be the closed subspace of H; defined by

V={veH :v=0on Ip}.
On V we consider the inner product and the corresponding norm given by
(u, vy = (e), eWM)re, IVIlv = lleM) e for u,veV.

From the Korn inequality ||[v||g, < Cil|le(v)||s¢ for v € V with C; > 0, it follows
that || - ||z, and || - ||y are the equivalent norms on V. Identifying H with its dual,
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we have an evolution triple V. C H C V* (see e.g. [3]) with dense and compact
embeddings. We denote by (-, -}y the duality of V and its dual V*, by | - ||y« the
norm in V*. We have (u, v)y = (u,v)y forallu € Handv € V.

We admit the following hypotheses:

H(%). The linear symmetric viscosity operator € : 2 x %; — % satisfies the
Carathéodory condition (i.e. € (-, €) is measurable on §2 for all € € % and € (x, -)
is continuous on % for a.e. x € £2) and

C(x,e):e> C2||8||é,d forall ¢ € #; and a.e. x € £2 with C, > 0. (9.25)

H(&). The elasticity operator & : 2 x #; — %, is of the form & (x, &) = E(x)e
(Hooke’s law) with a symmetric elasticity tensor E € Lo (£2), i.e. E = (g;jx),
i,j,k,1=1,...,d with g;ji; = gjirt = &irij € Loo(£2). Moreover,

E(x,e) 6> C3||e||2% forall ¢ € #; and a.e. x € £2 with C3 > 0.

H(j). j : 2 x RY — Ris a function such that

(i) j(-, &) is measurable for all € € R? and j (-, 0) € L;(£2);

(i7) j(x,-) is locally Lipschitz and regular [8] for all x € £2;

@@ii) Inll < C4(1 + ||&])) forall n € 3j(x, &), x € 2 with Cy > 0;

(iv) jOx,&; —&) < Cs(1 + ||&]) for all £ € RY, x € 2, with C5 > 0, where
J O(x, &; 1) is the directional derivative of j(x,-) atthe point & € R? in the direction
n e R

H(f) fl € V*, 8o € LQ(FN; Rd), Uug € V and If\tl € H.

Next we need the spaces ¥ = Lo(t,T; V), I = Ly(t,T; H) and # = {w €
¥ . w' e ¥*}, where the time derivative involved in the definition of % is under-
stood in the sense of vector-valued distributions, —oc0 < t < T < 400. Endowed

with the norm ||v|l = |[v|l¥ + V|| v+, the space # becomes a separable reflexive
Banach space. We also have # C ¥ C ¢ C ¥*. The duality for the pair (¥, *)
T

isdenoted by (z, w)y = [(z(s), w(s))yds.Itis well known (cf. [13]) that the embed-
ding # Cc C([r,T]; H) and {we ¥ : w € #'} C C([z,T]; V) are continuous.
Next we define g € V* by

(g, viv = {(f1,v)v + (g0, V) r2(ry:re) for v e V. (9.26)

Taking into account the condition (9.24), we obtain the following variational formu-
lation of our problem:

@' (@), vy + (@ @), e + [ JO0x, u(); v)dx >
2

> (g,v)y forall ve V and a.e. t € (0, +00), (9.27)
o(t) =€ (W @) + E(Eu())) forae. t € (0, +00),
u(0) = ug, u'(0) = u;.
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We define the operators A : V — V*and B : V — V* by

(A(u),v)y = (€ (x,e()), e(v)) s for u,veVv, (9.28)

(Bu,v)y = (&(x, e(u)), e(v))  for u,ve V. (9.29)

Obviously the bilinear forms (9.28) and (9.29) are symmetric, continuous and
coercive.
Let us introduce the functional J : L,(£2; RY) — R defined by

J(v) = /j(x, v(x))dx for v € Ly(2; RY). (9.30)
2

From Sect. 7.3, under Assumptions H(j), the functional J defined by (9.30) satisfies

H{J). J : Ly(£2; RY) — R is a functional such that:

(@) J(-) is well defined, locally Lipschitz (in fact, Lipschitz on bounded subsets
of L,(£2; R?)) and admits the representation via the difference of convex functions;

(ii) ¢ € 3J(v) implies [I¢[l1,@:re) < Co(l + [IVI1,2:rey) for v € Ly(52; RY)
with Cg > 0;

Gii) JO(v; —v) < C7(1 + IVIlL,2:re)) for v e Ly(82; R?) with C; > 0, where
JO(u; v) denotes the directional derivative of J(-) at a point u € L,(£2; RY) in the
direction v € L,(£2; RY).

We can now formulate the second-order evolution inclusions associated with the
variational form of our problem

Find u € C([0, +00); V) with u’ € C([0, +00); H) N L(0, +o0; V)
and u” € LIZ"C(O, +00; V*) such that

u”(t) + Au'(t) + Bu(t) + 9J (u(t)) > g a.e. t € (0, +00),

u(0) = ug, u'(0) = u;y.

(9.31)

Theorem 6.6 yields that,if t < T, {¢,(-)},>1 C WTT is an arbitrary sequence of weak
solutions of (9.31) on [z, T'] such that ¢, (t) — ¢, strongly in E, n — +00, then
there exist ¢ € Z; r(p;) such thatup to asubsequence ¢, () — ¢(-)inC([7, T1]; E),
n — 400 (see Sect.7.3 for details).

We define the m-semiflow &4 as 4 (¢, &) = {£(t) | (1) € D(&)},t > 0.Denote the
set of all nonempty (nonempty bounded) subsets of E by P(E) (B(E)). We remark
that the multi-valued map & : R, x E — P(E) is strict m-semiflow, i.e. 4(0, -) =
Id (the identity map), 4 (t + s, x) = 9 (t,9(s,x))Vx € E, t,s € R, .Furtherp € 4
will mean that ¢ € Z(&;) for some &, € E.

Definition 9.3 ([1, p. 35]) The m-semiflow ¥ is called asymprotically compact, if
for any sequence ¢; € ¢ with ¢;(0) bounded, and for any sequence #; — +o0, the
sequence ¢;(t;) has a convergent subsequence.
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Theorem 9.4 The m-semiflow ¢ is asymptotically compact.

Proof Let &, € 9(t,,v,), v, € B€ B(E), n> 1, t, > +00, n — 400. Let us
check the precompactness of {§,},>; in E. In order to do that without loss of the
generality it is sufficiently to extract a convergent in E subsequence from {§,},>;.
From Corollary 6.2 we obtain that there exist {£,, }y>1 and & € E such that§,, — &
weakly in E, ||§,,|lg = a > ||§||g, kK — +00. We show that a < ||&]|g. Let us fix
an arbitrary 7p > 0. Then for rather bigk > 19 (t,,, vi,) = 9(To, 9 (tn, — To, Vu,))-
Hence &,, € 4 (T, By,), where B, € 4(t,, — Ty, vs,) and

§ :=sup By llg < +o0
k=1

(see Corollary 6.2). From Theorem 6.5 for some {&;, B¢, }j=1 C {&n,» BuiJi=1, Bry €
E we obtain:

& € 9(Ty, Br,), Br, — Pr, weaklyin E, j — +o0. (9.32)
From the definition of & we set: Vj > 1 &, = (y;(To), y}(To))T, B, = (v;(0),
y}(O))T, £ = (yo(To), yo(To)", Br, = (30(0), y5(0))”, where ¢; = (y;. y})T eC
([0, Tol; E), ¥} € La(0, To; V), ¥ € La(0, To; V*), d;j € Loo(0, To; H),

y}/(t)+Ay}(t)+Byj(l)—|—dj(t)=(_), dj(t) € 3J(yj(1)) forae. te€(0,Tp),Vj=>0.

Now we fix an arbitrary ¢ > 0. Let for each ¢ € [0, Tp], j > 0

1
Ie(pj (1) = §||§0j(t)||25 + I (i) +e(y;(0), y; ().

Then,

dlg(p;(t /
% — 26l (p; (1)) + 267 (p; (1) — £(AY) (1), v} )y — (AY, (1), ¥, O)v.

fora.e.r € (0, Ty), where

1
Hi(pi®) = J(yj(1) — 5(dj ). yj)u + 155 + 80 0), v ) a, forae.t € (0, To).

Thus, forany j > 0 and ¢ € [0, Tp]

Ty
1.(¢;(T0)) = L (¢;(0)e 2™ 4 2¢ / A (t))e T gr—
0


http://dx.doi.org/10.1007/978-3-319-59840-6_6
http://dx.doi.org/10.1007/978-3-319-59840-6_6
http://dx.doi.org/10.1007/978-3-319-59840-6_6

226 9 Indirect Lyapunov Method for Autonomous Dynamical Systems

T() TO
—e / (Ay; (o), yj0)ve > dr - / (AYj(©), yjO)ve D 0dr,
0

0

From (6.64), (9.32) and Lemma 6.15 we have
t
Iy, + Iy 1 + y/ Iy;@lydt <R ¥j >0, ¥t €[0, Tl
0

where R > 0 is a constant. Moreover,

yj = yo weakly in L»(0, To; V), y; — yo weakly in L2 (0, To; V),
y; = Yo strongly in L, (0, To; H), y;. — y;, strongly in L, (0, Tp; H),
y}’ — v, weakly in L, (0, To; V*), d; — do weakly in L,(0, To; H),
vVt € [0, To] y;(t) = yo(t) in H, y}(t) — yo(t) weakly in H, j — 4o00.
(9.33)
Therefore,

To Ty
/ Ao, (1)) TN dr > / A oo)e D Ddr, | — too,
0 0

T() TO
lim [ (AY; @), yi(0)ve > dr > / (Ayy(0), yo(0))ve > T="d.

J—+00
0

Ty
The last inequality holds, because of the functional v(-)— [(Av(2), v(1))ye T dt

0
is sequentially weakly lower semi-continuous on L, (z, Ty; V). Furthermore,

To
6‘/(ij(1‘), y}(t))ve*ZS(Toft)d[ = %(ij (Ty), yj(TO))V _ %(ij (0), yj(o))ve*28To_
0

Ty
—&? / (Ay; (1), y;())ye *TDdr Vj >0,

0

from which, by Corollary 6.2, we have

Ty
_ _ A+ 2c 2(c3 + c4)h
s/<ij(t),y}(z)>ve 26(To=1) gy 5283/[ ;1_:5% (il_:) !

0

] Vj=o.
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Thus,
Jm 1 (o3 (To)) < L (po(0)e ™0 + [jE_TOO I(p;(0) — I, (wo(on} ey

Ty

+28/%(¢0(f))€_28(r°_’)dt —8/(Ayo(t),yé(t))ve_zs(T“_’)dt—
0

Ty

/ / 2e(Ty— A t2 2(c3 + ca)h
—/<Ay0(f), y()(t)>Ve 2e(Ty t)dt + 48)/ [ )\l’ C3 82 + (C; C4) 1} <
11— M 11—

0

< L(po(Tp)) + 8% %10 4 dey |: 1+ 2¢3 52 4 (c3+cq) 1:|

AL— AL —
and, due to (9.33), forany 7o > Oand ¢ > 0

1 | I 1 B
SUEIR < 30 = 5 Tim g I < 5161 + 8% T+ dey [

A +2c3 52 2(c3 + ca)A }
Al — Al — '

Hence, for all ¢ > 0 we have

A+ 2¢3 52 + 2(c3 + C4))\1j| '
Al — Al —

1 1
Ensné <1 §||s||5+4ey[

Thus, a = [|§] k.
The theorem is proved.

Let us consider the family 7, = Uy,cgZ(yo) of all weak solutions of the inclu-
sion (9.31), defined on [0, +00). Note that Z, is translation invariant one, i.e. for all
u(-) € #,; and all h > 0 we have uy,(-) € J#,, where u,(s) = u(h +s), s > 0. On
4 we set the translation semigroup {T (h)}p=0, T (W u(-) = up(-), h > 0,u € H,.
In view of the translation invariance of J#, we conclude that 7' (h).¢, C J, as
h>0.

On %, we consider the topology induced from the Fréchet space C'‘(R,; E).
Note that

fu) = fin C"(Ry; E) <= YM > 0y f,(-) — Iy f(-) in C([0, M]; E),

where Iy, is the restriction operator to the interval [0, M]. We denote the restriction
operator to [0, +00) by I1.

Let us consider the autonomous inclusion (9.31) on the entire time axis. Similarly
to the space C'°°(R, ; E) the space C'*“(R; E) is endowed with the topology of local
uniform convergence on each interval [-M, M] C R. A functionu € C locR; E) N
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L (R; E) is said to be a complete trajectory of the inclusion (9.31), if Vh € R
Hiuy(-) € Hy. Let  be a family of all complete trajectories of the inclusion
(9.31). Note that Vi € R,Vu(-) € J# u;,(-) € J£ . We say that the complete trajectory
@ € A is stationary if ¢(t) = z forall t € R for some z = (u, 0)” € E (rest point).
We denote the set of rest points of & by Z(%). We remark that Z(%) = {(u, 0)” |u
V, B(u) + 8J(u) > 0).

From Conditions H(B) and H (J) it follows that

Lemma 9.3 The set Z(7) is nonempty and bounded in E.

From Lemma 6.10 the existence of Lyapunov function for ¢ follows.

Lemma 9.4 The functional V' : E — R, defined by

1
V(p) = illwllé + J(a). (9.34)

, is a Lyapunov function for 9.

We recall that the set &7 C E is said to be a global attractor for ¢, if
(1) o is negatively semiinvariant (i.e. & C ¥ (t, /) Vt > 0);
(2) o is attracting set i.e.

dist(¢9(t, B), /) - 0, t — 400 VB € B(E), (9.35)

where dist(C, D) = sup }nlf) |lc — d|| g is the Hausdorff semidistance;
ceC 4¢&
(3) for any closed set Y C E, satisfying (9.35), we have &/ C Y (minimality).
The global attractor is said to be invariant, if o/ = 4 (t, «/) Vt > 0.
Note that from the definition of the global attractor it follows that it is unique.
We prove the existence of the invariant compact global attractor.

Theorem 9.5 The m-semiflow & has the invariant compact in the phase space E
global attractor 7. For each W € J¢ the limit sets

a(y) ={z € E| ¥(tj) = z forsomesequence tj — —o0},
o) ={z € E| y(t;) — z for somesequence tj — +00}

are connected subsets of Z(%9) on which ¥V is constant. If Z() is totally disconnected
(in particular, if Z(9) is countable) the limits

o= lim ¥(t), z;= lim ¥ @)
t——00 t——+00

exists and 7_, 7 are rest points; furthermore, @(t) tends to a rest point ast — +00
for every ¢ € ..
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Proof The existence of the global attractor with required properties directly follows
from previous theorems and [1, Theorem 2.7].

We remark in advance
Vh e R, Yu(-) e Z uy(-) e X. (9.36)
Lemma 9.5 The set £ is nonempty and
VE()e K, VteR &) e o, (9.37)

where <7 is the global attractor from Theorem 9.5.

Proof Let us show that Z" # (J. Note that in virtue of Lemma 9.3, the set Z(¥)
is nonempty and bounded in E. Let (v, 0)” € Z(¥). We set u(t) = v Vt € R. Then
w, u" e H #0.

Let us prove (9.37). Forany y € # 3d > 0: ||y(#)||lg <d Vt € R. We set B =
Urer{y(#)} € B(E). Note that VT € R, Vt e Ry y(1) = y,,(t) € 4(t, y.(0)) C
¥4 (t, B). From Theorem 9.5 and from (9.35) it follows that Ve > 037 > 0:Vt € R
dist(y(7), &) < dist(¢4(T, B), «/) < e. Hence taking into account the compactness
of o7 in E, it follows that y(t) € </ for any 7 € R.

Lemma 9.6 The set % is compact in C'°(R; E) and bounded in Lo (R; E).

Proof The boundedness of JZ in Lo (R, ; E) follows from (9.37) and from the
boundedness of .27 in E.

Let us check the compactness of .#” in C¢(R; E). In order to do that it is sufficient
to check the precompactness and completeness.

Step 1. Let us check the precompactness of %" in C'¢(R; E). If it is not true then
in view of (9.36), AM > 0: [Ty, ¢ is not precompact set in C ([0, M]; E). Hence
there exists a sequence {v,},>1 C 1y, that has not a convergent subsequence in
C ([0, M]; E). On the other hand v,, = ITyu,, where u,, € #,v,(0) = u, (0) € &,
n > 1. Since 7 is compact set in E (see Theorem 9.5), then in view of Theo-
rem 6.4, vy, his1 C {ulns1, I € E, () € Dom(m): vi, (0) = nin E, v,, — v
in C([0, T]; E), k — +00. We obtained a contradiction.

Step 2. Let us check the completeness of JZ~ in Cl*(R; E). Let {(Valus1 C A,
v e Cl[R; E): v, — vin C'°(R; E), n — +o00. From the boundedness of .# in
L~ (R; E) it follows that v € Lo (R; E). From Theorem 6.4 we have that VM > 0
the restriction v(-) to the interval [—M, M] belongs to Z_y y (v(—M)). Therefore
v(-) is a complete trajectory of the inclusion (9.31). Thus, v € 2.

Lemma 9.7 Let <7 be the global attractor from Theorem 9.5. Then

Vyoe @ 3dy() e y(0) = yo. (9.38)
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Proof Letyy € «,u(-) € 2(yy). FromTheorem9.5¥ (¢, o) = o/ Vt € R, .There-
fore,
u(t) € o Vvt € Ry,

Vnew 3 e, () € Zoa(6): (1) =n.
For any t € R we set

([) _ I/l(t), t e R+,
Y= oyiant +k), t € [—k, —k + 1), k € N.

Note that y € C'“(R; E), y(t) € &/ Vt € R (hence y € Lo(R; E)) y € #. More-
over y(0) = yo.

Now we shall construct the attractor of the translation semigroup {7 (h)},>0,
acting on %, . We recall that the set & C C'“(R; E) N Loo(Ry; E) is said to be
an attracting one for the trajectory space %, of the inclusion (9.31) in the topology
of Cl¢(R,; E), if for any bounded (in L, (R, ; E)) set # C .#, and an arbitrary
number M > 0 the next relation

diStC([o,M];E)(HMT(I)%, ny2)—0, t— 4o (9.39)

holds.
Aset 7 C ¥ is said to be trajectory attractor in the trajectory space %, with
respect to the topology of C“(R_; E) (cf. [5, Definition 1.2, p. 179)), if
(1) % is a compact set in Cloc (Ry; E) and bounded in Lo (Ry; E);
(ii) Z is strictly invariant with respect to {7 (h)}s=0, i.e. T(W)% = % Yh > 0;
(iii) 7 is an attracting set in the trajectory space .#; in the topology C!*“(R,; E).
Note that from the definition of the trajectory attractor it follows that it is unique.
The existence of the trajectory attractor and its structure properties follow from
such theorem:

Theorem 9.6 Let of be the global attractor from Theorem 9.5. Then there exists the
trajectory attractor & C J¢y in the space J¢; and we have

P =M. ={ye A |yit)e gVt eR,}. (9.40)

Proof The proof intersects with proofs of previous sections results.

From Lemmas 9.5, 9.6 and the continuity of the operator I7, : C'“(R; E) —
C'(R,; E) it follows that the set I, .# is nonempty, compact in C/°(R, ; E) and
bounded in L, (R ; E). Moreover, the second equality in (9.40) holds (Lemma 9.5
and the proof of Lemma 9.7). The strict invariance of I7,.%# follows from the auton-
omy of the inclusion (9.31).

Let us prove that I7,.% is the attracting set for the trajectory space %} in the
topology of Cl””(]R+; E). Let B C J#, be a bounded set in Lo, (Ry; E), M > 0.
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Let us suppose M > 0. Let us check (9.39). If it is not true, then there exist ¢ > 0,
the sequences t, — +00, v,(-) € B such that

Vn >1 diStC([()’T];E) (IMTyv,(ty, + ), [y H) > €. 9.41)

On the other hand, from the boundedness of B in L, (R, ; E) it follows that 3R > 0:
Yv(-) € B,Vt € Ry ||[v(t)||r < R. Hence, taking into account (9.35) and the asymp-
totic compactness of m-semiflow ¢ (Theorem 9.4) we obtain that 3{v,, (t,,)}k>1 C
{va ()} n>1, 3z € &7 vy, (t,,) — zin E, k — +o0. Further, Vk > 1 we set ¢, (1) =
Vi, (ta, + 1), t € [0, M]. Note that Yk > 1 @x(-) € Py (Vn, (ts,)). Then from The-
orem 6.4 there exists a subsequence {gy;};>1 C {¢}r=1 and an element ¢(-) €
Do.m(2):

@, > ¢in C([0, M]; E), j — +o0. (9.42)

Moreover, taking into account the invariance of <7 (see Theorem 9.5), for all 7 €
[0, M] ¢(t) € o/. From Lemma 9.7 there exist y(-), v(-) € £ y(0) =z, v(0) =
@(M). For any t € R we set
y(), <0,
Y(t) =1 o), t € [0, M],
vit—M), t > M.

Therefore, from (9.41) we obtain:

Vk > 1 [yvy (ty, + ) — HIuvOllcqo.mrey = o — @llcqo,mye) = &,

that contradicts with (9.42). We reason in the same way when M = 0.
Thus, the set &2 constructed in (9.40) is the trajectory attractor in the trajectory
space %, with respect to the topology of C/“(R,; E).

Let o/ be the global attractor from Theorem 9.5, &2 be the trajectory attractor
from Theorem 9.6. From previous sections results we have:

&/ is a compact set in the space E; (9.43)
2 is a compact set in the space C'°(R; E); (9.44)
P =T, H ={yeH|yt)e IVt eR.}=1{ye A, |y0) e}, (9.45)

where J# is the family of all complete trajectories of the inclusion (9.31), [T, is the
restriction operator on R . Moreover,

¢ is a compact in the space C'°°(R; E); (9.46)
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VE(-) € A and Vt e R £(1) € o (9.47)
Yyo € o and V1o € R 3y(-) € # : y(to) = o. (9.48)
For any y € ¢ let us set
H(y) = clowe@ ) {(y(- +9)|s € R} C C“(R; E) N L¥(R; E).

Such family is said to be the hull of function y(-) in & = C/*“(R; E).

&}

Definition 9.4 The function y(-) € & is said to be translation-compact (tr.-c.) in
if the hull 7 (y) is compact in =.

Definition 9.5 The family % C & is said to be translation-compact, if (%) =
cle{y(- + )| y(-) € %, s € R} is a compact in =.

From the autonomy of problem (9.31) and (9.46) it follows that
Corollary 9.1 7 is translation-compact set in E.

From autonomy of system (9.31), applying the Arzeld-Ascoli compactness criterion,
we obtain the translation compactness criterion for the family %" :

a) the set {y(¢)| y € £} is a compact in E V¢ € R;

b) there exists a positive function «(s) — 0+ (s — 0+) such that

ly(t) =yt e <a(lti —t:]) Yy € 2 and Vi, 1, € R.

Similarly if we set &, = C"“(R,; E) we obtain:

Corollary 9.2 & is translation-compact set in 5 .
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