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“A mathematician is a person who can find
analogies between theorems; a better
mathematician is one who can see analogies
between proofs and the best mathematician
can notice analogies between theories.”

Stefan Banach



Preface

Scope

In an abstract form, the evolutional nonlinear system is a mathematical model that
describes how physical, chemical, biological, economic, or even mathematical
phenomena evolve in time. As a rule, it contains ordinary/partial/stochastic
differential equations or inclusions that tell us how the system at hand changes
“from one instant to the next.” The main goal is to gain information about solutions
of this system and then translate this mathematical information into the scientific
context. The main challenge addressed by this book is to take this short-term
information and obtain information about long-term overall behavior. The study of
nonlinear systems has three parts: exact methods, quantitative methods and quali-
tative methods. But even if we solve the system symbolically, the question of
computing values remains.

In this book, we concentrate on the following topics, specific for nonlinear
systems:

(a) constructive existence results and regularity theorems for all weak (generalized)
solutions;

(b) convergence results for solutions and their approximations in strongest
topologies of the natural phase and extended phase spaces;

(c) uniform global behavior of solutions in time;
(d) pointwise behavior of solutions for autonomous problems with possible gaps by

the phase variables.

With numerous applications including nonlinear parabolic equations of diver-
gent form, parabolic problems with nonpolynomial growth, nonlinear stochastic
equations of parabolic type, unilateral problems with possibly nonmonotone
potential, nonlinear problems on manifolds with or without boundary, contact
piezoelectric problems with nonmonotone potential, viscoelastic problems with
nonlinear “reaction-displacement” and “reaction-velocity” laws as well as particular
examples like a model of conduction of electrical impulses in nerve axons, a climate
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energy balance model, FitzHugh–Nagumo system, Lotka–Volterra system with
diffusion, Ginzburg–Landau equations, Belousov–Zhabotinsky equations, and the
3D Navier–Stokes equations. This book is also distinguished with the solutions of a
number of applied problems in physics, chemistry, biology, economics, etc.

Contents

This book consists of three parts: Existence and Regularity Results, Quantitative
Methods and Their Convergence (Part I), Convergence Results in Strongest
Topologies (Part II), and Uniform Global Behavior of Solutions: Uniform
Attractors, Flattening and Entropy (Part III). Part I presents several numerical
methods for approximate solution of nonlinear systems, their convergence, and
regularity results and also discusses recent advances in regularity problem for the
3D Navier–Stokes equations. Part II covers three major topics: (1) strongest con-
vergence results for weak solutions of nonautonomous reaction–diffusion equations
with Carathéodory's nonlinearity with applications to FitzHugh–Nagumo systems,
Lotka–Volterra systems with diffusion, Ginzburg–Landau equations, Belousov–
Zhabotinsky equations, etc; (2) strongest convergence results for weak solutions of
feedback control problems with applications to impulse feedback control
mechanical problems and mathematical problems of biology and climatology; and
(3) strongest convergence results for weak solutions of differential-operator equa-
tions and inclusions with applications to nonlinear parabolic equations of divergent
form, parabolic problems with nonpolynomial growth, nonlinear stochastic equa-
tions of parabolic type, general parabolic and hyperbolic problems, unilateral
problems with possibly nonmonotone operators, etc. Part III discusses general
methodology for the global qualitative and quantitative investigation of dissipative
dynamical systems, first- and second-order operator differential equations and
inclusions, and evolutional variational inequalities with possibly nonmonotone
potential with several applications. Indirect Lyapunov method for autonomous
dynamical systems, exponential attractors, and Kolmogorov entropy are also
established. All case studies are closely related to theoretical Parts I and II and are
examples of applications to solutions of problems (a) and (b).

Audience

This book is aimed at practitioners working in the areas of nonlinear mechanics,
mathematical biology, control theory, differential equations, nonlinear boundary
value problems, and decision making. It can serve as a quick introduction into the
novel methods of qualitative and quantitative analysis of nonlinear systems for the
graduate students, engineers, and mathematicians interested in analysis and control
of nonlinear processes and fields, mathematical modeling, and dynamical systems
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in infinite-dimensional spaces, to mention just a few. It can also be used as a
supplementary reading for a number of graduate courses including but not limited
to those of nonlinear PDEs, control and optimization, stochastic partial differential
equations, advanced numerical methods, systems analysis, and advanced engi-
neering economy.
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Introduction: Special Classes of Extended Phase
Spaces of Distributions

Abstract In this introduction, we briefly establish special classes of extended phase
spaces of distributions. We consider sums and intersections of Banach spaces;
Gelfand triples; special classes of Bochner integrable functions; generalized
derivatives; and basic properties of extended phase spaces.

If it is necessary to describe a nonstationary process that evolve in some domain
X � R

n during the time interval ½s; T �, we may deal with functions that correspond
to each pair fx; tg 2 X� S the real number or vector uðx; tÞ. In this approach, the
time and the space variables are equivalent. But there is a more convenient
approach to the mathematical description for evolution processes [1, 2]: For each
point in time t, it is mapped the state function uð � ; tÞ (e.g., for each point of time
we put the temperature distribution or velocity distribution in the domain X)

physical process or field ) mathematical model ðPDEÞ
y : X� ½s; T � ! R

m )
differential - operator equation / inclusion

y : ½s; T � ! X ! R
mð Þ

yðt; :� 2 X ! R
mð Þ

t 2 s;T½ �

Thus, we consider the functions defined on ½s; T� with values in the state
functions space (e.g., in the space H1

0ðXÞ). Therefore, to investigate the evolution
problem, it is natural to consider the space of functions acting from the time interval
½s; T� into some infinite-dimensional space V . In particular, it is natural to consider
the spaces of integrable and differentiable functions. In this book, we consider only
real vector spaces.
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In this chapter, we introduce the classes of function spaces used for qualitative
and quantitative analysis of nonlinear distributed systems:

LuþAðuÞ 3 f ; u 2 DðLÞ; ð1Þ

where A :! 2X
�
is possibly multi-valued mapping with nonempty values, X is a

Banach space, X� is its dual space, L : DðLÞ � X ! X� is a linear operator defined
on DðLÞ; and f 2 X�. Moreover, in this chapter, we refer to the basic properties for
this spaces (see, e.g., [1, 2] and references therein for details).

For Banach spaces X; Y ; the following denotation

X � Y

means the embedding in both the set-theoretic and the topological senses.

The following two theorems are frequently used in the qualitative and
quantitative analysis of nonlinear systems in infinite-dimensional spaces. The
main idea is in the following: the uniform prior estimates for solutions of
approximative problems and the following theorems allow ones to obtain at
least weak convergence (up to a subsequence in the general situation) of these
approximations to the exact solution of the problem in hands.

Theorem 1 (The reflexivity criterion) A Banach space E is reflexive if and only
ifeach bounded in E sequence has a subsequence that weakly converges in E.

Stefan Banach (March 30, 1892–August 31, 1945) was a Polish, Ukrainian,
and Soviet mathematician who is generally considered one of the world’s
most important and influential twentieth-century mathematicians. He was one
of the founders of modern functional analysis and an original member of the
Lviv School of Mathematics. His major work was the 1932 book, Théorie des
opérations linéaires (Theory of Linear Operations), the first monograph on the
general theory of functional analysis (Fig. 1).
Born in Kraków, Banach attended IV Gymnasium, a secondary school, and
worked on mathematics problems with his friend Witold Wilkosz. After
graduating in 1910, Banach moved to Lviv. However, and during World
War I Banach returned to Kraków, where he befriended Hugo Steinhaus.
After Banach solved some mathematics problems which Steinhaus consid-
ered difficult, they published their first joint work. In 1919, with several other
mathematicians, Banach formed a mathematical society. In 1920, he received
an assistantship at the Lviv Polytechnic.

He soon became a professor at the Lviv Polytechnic and a member of the
Polish Academy of Learning. He organized the “Lviv School of
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Mathematics.” Around 1929, he began writing his Théorie des opérations
linéaires.

After the outbreak of World War II, in September 1939, Lviv was taken
over by the Soviet Union. Banach became a member of the Academy of
Sciences of Ukraine and was dean of Lviv University’s Department of
Mathematics and Physics.

In 1941, when the Germans took over Lviv, all institutions of higher
education were closed to Poles. As a result, Banach was forced to earn a
living as a feeder of lice at Rudolf Weigl's Institute for Study of Typhus and
Virology. While the job carried the risk of infection with typhus, it protected
him from being sent to slave labor in Germany and from other forms of
repression. When the Soviets recaptured Lviv in 1944, Banach re-established
the university. However, because the Soviets were removing Poles from
Soviet-annexed formerly Polish territories, Banach prepared to return to
Kraków. Before he could do so, he died in August 1945, having been
diagnosed seven months earlier with lung cancer.

Some of the notable mathematical concepts that bear Banach’s name
include Banach spaces, Banach algebras, the Banach–Tarski paradox, the
Hahn–Banach theorem, the Banach–Steinhaus theorem, the Banach–Mazur
game, the Banach–Alaoglu theorem, and the Banach fixed-point theorem.

Theorem 2 (Banach–Alaoglu) In reflexive Banach space, each bounded sequence
has a subsequence that weakly converges

Leonidas (Leon) Alaoglu (March 19, 1914–August 1981) was a mathe-
matician, known for his result, called Alaoglu’s theorem on the weak-star
compactness of the closed unit ball in the dual of a normed space, also known
as the Banach–Alaoglu theorem; Fig. 2.

Fig. 1 Stefan Banach
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Sums and Intersections of Banach Spaces

Let us consider the sums and intersections of Banach spaces. Such objects naturally
appear under the investigation of number of anisotropic problems. Let n� 2 be a
natural number and fXigni¼1 be a family of Banach spaces. Let us introduce the
definition of the interpolation family of Banach spaces.

Definition 1 If there exists a vector topological space (LTS) Y such that

Xi � Y

for each i ¼ 1. . .n; then the family of Banach spaces fXigni¼1 is called an inter-
polation family. If n ¼ 2; then the interpolation family is called an interpolation
pair.

In the field of mathematical analysis, an interpolation space is a space which
lies “in between” two other Banach spaces. The main applications are in
Sobolev spaces, where spaces of functions that have a noninteger number of
derivatives are interpolated from the spaces of functions with integer number
of derivatives.

The theory of interpolation of vector spaces began by an observation of
Józef Marcinkiewicz, later generalized and now known as the Riesz-Thorin
theorem. In simple terms, if a linear function is continuous on a certain space
Lp and also on a certain space Lq, then it is also continuous on the space Lr,
for any intermediate r between p and q. In other words, Lr is a space which is
intermediate between Lp and Lq.

In the development of Sobolev spaces, it became clear that the trace spaces
were not any of the usual function spaces (with integer number of derivatives),
and Jacques-Louis Lions discovered that indeed these trace spaces were
constituted of functions that have a noninteger degree of differentiability.

Fig. 2 Leonidas (Leon)
Alaoglu’s grave
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Further, let fXigni¼1 be an interpolation family of Banach spaces. Similar to [1,
p. 23], we endow the vector space X ¼ \ n

i¼1Xi with the following norm:

kxkX :¼
Xn
i¼1

kxkXi
8x 2 X; ð2Þ

where k � kXi
is the norm in Xi.

Proposition 1 Let fX; Y ; Zg be an interpolation family. Then

X \ ðY \ ZÞ ¼ ðX \ YÞ \Z ¼ X \ Y \ Z; X \Y ¼ Y \X

both in the sense of equality of sets and in the sense of equality of norms.

Let us consider also the vector space

Z :¼
Xn
i¼1

Xi ¼
Xn
i¼1

xi : xi 2 Xi; i ¼ 1. . .n

( )

with the norm

kzkZ :¼ inf max
i¼1...n

kxikXi
: xi 2 Xi;

Xn
i¼1

xi ¼ z

( )
8z 2 Z: ð3Þ

Proposition 2 Let fXigni¼1 be an interpolation family. Then X ¼ \ n
i¼1Xi and Z ¼Pn

i¼1 Xi are Banach spaces. Moreover,

X � Xi � Z ð4Þ

for each i ¼ 1. . .n:

Remark 1 Let Banach spaces X and Y satisfy the following conditions

X � Y ; X is dense in Y ;
kxkY � ckxkX 8x 2 X; c ¼ const :

Then

Y� � X�; kf kX� � ckf kY� 8f 2 Y�:

Moreover, if X is reflexive, then Y� is dense in X�.
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Józef Marcinkiewicz (March 30, 1910–1940) was a Polish mathematician.
He was a student of Antoni Zygmund and later worked with Juliusz Schauder
and Stefan Kaczmarz. He was a Professor of the Stefan Batory University in
Wilno.

Marcinkiewicz was taken as a Polish POW to a Soviet camp in
Starobielsk. The exact place and date of his death remain unknown, but it is
believed that he died in the Katyn massacre on the mass murder site near
Smolensk. His parents, to whom he gave his manuscripts before the begin-
ning of World War II, were transported to the Soviet Union in 1940 and later
died of hunger in a camp (Fig. 3).

Let fXigni¼1 be an interpolation family. Assume that the Banach space X :¼
\ n

i¼1Xi; endowed with the norm defined in (2) is dense in Xi for each i ¼ 1. . .n.
Remark 1 yields that each spaceX�

i may be considered as a subspace ofX�. Therefore,
the vector space

Pn
i¼1 X

�
i is well-defined, and the following embedding holds:

Fig. 3 Józef Marcinkiewicz
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Xn
i¼1

X�
i � \ n

i¼1Xi
� ��

: ð5Þ

Since X is dense in Z :¼Pn
i¼1 Xi for each i ¼ 1. . .n; then each Xi is dense in Z:

According to Remark 1, the space Z� can be considered both as a subspace of X�
i for

each i ¼ 1. . .n and as a subspace of \ n
i¼1X

�
i , that is,

Xn
i¼1

Xi

 !�
� \ n

i¼1X
�
i : ð6Þ

G. Olof Thorin (February 23, 1912–February 14, 2004) was a Swedish
mathematician working on analysis and probability, who introduced the
Riesz–Thorin theorem (Fig. 4).

Fig. 4 G. Olof Thorin
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Proposition 3 Let fXigni¼1 be an interpolation family of Banach spaces such that
the space X :¼ \ n

i¼1Xi endowed with the norm (2) is dense in Xi for each i ¼ 1. . .n.
Then the following equalities hold:

Xn
i¼1

X�
i ¼ \ n

i¼1Xi
� ��

and
Xn
i¼1

Xi

 !�
¼ \ n

i¼1X
�
i

in the sense of both equalities of sets and norms.

Sergei Lvovich Sobolev (October 6, 1908–January 3, 1989) was a Soviet
mathematician working in mathematical analysis and partial differential
equations. Sobolev introduced the notions that are now fundamental for
several areas of mathematics. Sobolev spaces can be defined by some growth
conditions on the Fourier transform. They and their embedding theorems are
an important subject in functional analysis. Generalized functions (later
known as distributions) were first introduced by Sobolev in 1935 for weak
solutions and further developed by Laurent Schwartz. Sobolev abstracted the
classical notion of differentiation, so expanding the range of application
of the technique of Newton and Leibniz. The theory of distributions is
considered now as the calculus of the modern epoch (Fig. 5).

Gelfand Triple

Let V be a real reflexive separable Banach space V with the norm k � kV and H be a
real Hilbert space with the inner product ð�; � and respective norm k � kH . Assume
that

V � H; V is dense in H;
9c[ 0 : kvkH � ckvkV 8v 2 V :

ð7Þ

Remark 1 and conditions (7) yield that the dual space H� to H is a subspace
of the dual space V� to V . Since the Banach space V is reflexive and the set V is
dense in the space H; then the set H� is dense in the space V� and the following
inequality holds:

kf kV� � ckf kH� 8f 2 H�;

where k � kV� and k � kH� are the norms in spaces V� and H�, respectively. By
applying the Riesz representation theorem, we can identify H� with H. Therefore,
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H� is identified with some subspace of V�; that is, each element y 2 H is identified
with some fy 2 V� such that

ðy; xÞ ¼ hfy; xiV 8x 2 V ;

where h�; �iV is the canonical pairing between V� and V . Since the elements y and fy
are identified, then conditions (7) imply that the restriction of the pairing h�; �iV on
H � V coincides with the inner product ð�; �Þ on H restricted on the same set. After
this identification of H and H�, we obtain the following tuple of the continuous and
dense embeddings

V � H � V�:

Fig. 5 Sergei Lvovich
Sobolev
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Definition 2 The tuple of spaces (V ;H;V�) satisfying the above conditions is
called the evolution triple (sometimes Gelfand triple).

Israel Moiseevich Gelfand (September 2 [O.S. 20 August], 1913–October 5,
2009) was a prominent Soviet and American mathematician. He made sig-
nificant contributions to many branches of mathematics, including group
theory, representation theory, and functional analysis. The recipient of many
awards, including the Order of Lenin and the Wolf Prize, he was a Fellow
of the Royal Society and Professor at Moscow State University and, after
immigrating to the USA shortly before his 76th birthday, at Rutgers
University (Fig. 6).

His legacy continues through his students, who include Endre Szemerédi,
Alexandre Kirillov, Edward Frenkel, and Joseph Bernstein, as well as his own
son, Sergei Gelfand.

Fig. 6 Israel Moiseevich
Gelfand
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Special Classes of Bochner Integrable Functions

Let us consider classes of distributions with values in a Banach space. Let Y be a
real Banach space, Y� be its dual space, and S be a compact time interval. We
consider the classes of functions defined on S and taking values in Y (or in Y�,
respectively).

In mathematics, the Bochner integral, named for Salomon Bochner, extends the definition
of Lebesgue integral to functions that take values in a Banach space, as the limit of integrals
of simple functions.

Let 1� p� þ1. The set LpðS; YÞ of all Bochner measurable functions (see [1])
such that

kykLpðS;YÞ ¼
Z
S
kyðtÞkpYdt

� �1=p

\1

is a Banach space. If p ¼ þ1; then the norm on L1ðS; YÞ is defined as follows

k y kL1ðS;YÞ¼ ess supp
t2S

k yðtÞ kY :

Salomon Bochner (August 20, 1899–May 2, 1982) was an American
mathematician of Austrian–Hungarian origin, known for work in mathe-
matical analysis, probability theory, and differential geometry (Fig. 7).

The following theorem establishes the sufficient conditions for the identification
of the dual space ðLpðS; YÞÞ� to LpðS; YÞ, 1� p\þ1, with LqðS; Y�Þ, where q is
such that p	1 þ q	1 ¼ 1. Sometimes, the following theorem is called the Riesz
representation theorem for spaces of Bochner integrable functions. We note that
1=1 :¼ 0.

Theorem 3 Let Y be a reflexive and separable Banach space, 1� p\þ1; and
q[ 1 be such that p	1 þ q	1 ¼ 1. Then for each f 2 ðLpðS; YÞÞ� there exists a
unique n 2 LqðS; Y�Þ such that

f ðyÞ ¼
Z
S
hnðtÞ; yðtÞiYdt
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for each y 2 LpðS; YÞ: Moreover, this correspondence f ! n is linear and

kf kðLpðS;YÞÞ� ¼ knkLqðS;Y�Þ;

that is, this mapping is isometric isomorphism.

Frigyes Riesz (January 22, 1880–February 28, 1956) was a Hungarian
mathematician who made fundamental contributions to functional analysis.
He was the Rector and a Professor at the University of Szeged, as well as a
member of the Hungarian Academy of Sciences. He was the older brother
of the mathematician Marcel Riesz (Fig. 8).

Let us consider the sums and intersections of Banach spaces of Bochner inte-
grable functions. These spaces are important for the investigation of nonlinear

Fig. 7 Salomon Bochner
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anisotropic problems and the respective differential-operator equations and inclu-
sions. Let pi and ri, i ¼ 1; 2 be real numbers such that 1\pi � ri � þ1 and
pi\þ1. Define the real numbers qi � ri0 � 1 as follows:

p	1
i þ q	1

i ¼ r	1
i þ r	1

i0 ¼ 1; i ¼ 1; 2:

Let (Vi;H;V�
i ), i ¼ 1; 2; be evolution triple such that

the set V1 \V2 is dense in the spaces V1;V2 and H: ð8Þ

Consider the following Banach spaces (see Proposition 2):

Xi ¼ XiðSÞ ¼ LqiðS;V�
i Þþ Lri0 ðS;HÞ; i ¼ 1; 2

X ¼ XðSÞ ¼ Lq1ðS;V�
1 Þþ Lq2ðS;V�

2 Þþ Lr20 ðS;HÞþ Lr10 ðS;HÞ

with the following respective norms

kykXi
¼ inf maxfky1kLqi ðS;V�

i Þ; ky2kLri0 ðS;HÞg :
n

: y1 2 LqiðS;V�
i Þ; y2 2 Lri0 ðS;HÞ; y ¼ y1 þ y2

�
;

Fig. 8 Frigyes Riesz
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for all y 2 Xi, and

kykX ¼ inffmax
i¼1;2

fky1ikLqi ðS;V�
i Þ; ky2ikLri0 ðS;HÞg : y1i 2 LqiðS;V�

i Þ;
y2i 2 Lri0 ðS;HÞ; i ¼ 1; 2; y ¼ y11 þ y12 þ y21 þ y22g;

for each y 2 X.
If ri\þ1, then Proposition 1 and Theorem 3 imply that the space Xi is

reflexive. Similarly, if maxfr1; r2g\þ1, then the space X is reflexive. Moreover,
for i ¼ 1; 2 the dual space X�

i ¼ X�
i ðSÞ, we identify with LriðS;HÞ \LpiðS;ViÞ,

where

kykX�
i
¼ kykLri ðS;HÞ þ kykLpi ðS;ViÞ

for each y 2 X�
i : Similarly, for the dual space X� ¼ X�ðSÞ we identify with

Lr1ðS;HÞ \ Lr2ðS;HÞ \ Lp1ðS;V1Þ \ Lp2ðS;V2Þ;

where

kykX�ðSÞ ¼ kykLr1 ðS;HÞ þ kykLr2 ðS;HÞ þ kykLp1 ðS;V1Þ þ kykLp2 ðS;V2Þ

for each y 2 X�. The pairing on XðSÞ � X�ðSÞ is defined by

hf ; yi ¼hf ; yiS ¼
Z
S
ðf11ðsÞ; yðsÞdsþ

Z
S
ðf12ðsÞ; yðsÞds

þ
Z
S
hf21ðsÞ; yðsÞiV1

dsþ
Z
S
hf22ðsÞ; yðsÞiV2

ds ¼
Z
S
ðf ðsÞ; yðsÞÞds

for each f 2 X and y 2 X�; where f ¼ f11 þ f12 þ f21 þ f22, f1i 2 Lri0 ðS;HÞ,
f2i 2 LqiðS;V�

i Þ, i ¼ 1; 2.
If maxfr1; r2g\þ1; then we will always use the following “standard”

denotations [1, p. 171]: for the spaces X�, X�
1 , and X�

2 , we will denote as X, X1, and
X2, respectively, and vice versa; for the spaces X, X1, and X2, we will denote as X�,
X�
1 , and X�

2 , respectively. These denotations are correct, because Proposition 3 and
Theorem 3 yield that these spaces and their dual spaces are reflexive. The following
statement directly follows from Proposition 3 and Theorem 3.

Proposition 4 If maxfr1; r2g\þ1, then the Banach spaces X, X1 and X2 are
reflexive.

xxviii Introduction: Special Classes of Extended Phase Spaces of Distributions



Generalized Derivatives

Let S be a time interval. The space DðSÞ of test functions on S is defined as follows.
A function u : S ! R is said to have compact support if there exists a compact
subset K of S such that uðxÞ ¼ 0 for all x 2 SnK. The elements of DðSÞ are the
infinitely differentiable functions u : S ! R with compact support—also known as
bump functions. This is a real vector space. It can be given a topology by defining
the limit of a sequence of elements of DðSÞ. A sequence fukgk� 1 � DðSÞ is said to
converge to u 2 DðSÞ if the following two conditions hold:

(i) There is a compact set K � S containing the supports of all uk:
[ ksuppðukÞ � K;

(ii) For each multi-index a, the sequence of partial derivatives @auk tends uni-
formly to @au:

With this definition, DðSÞ becomes a complete locally convex topological vector
space satisfying the Heine–Borel property.

Let Y be a real reflexive Banach space. The distribution on S with values in Y is a
continuous linear mapping acting from DðSÞ into Y endowed with the weak
topology. The space of all distributions on Swith values in Y is denoted byD�ðS; YÞ:
For each f 2 D�ðS; YÞ, its generalized derivative f 0 is well defined as follows:

f 0ðuÞ ¼ 	f ðu0Þ

for each u 2 DðSÞ:
We note that each locally integrable in the Bochner sense function u (i.e.,

u 2 Lloc1 ðS; YÞ if and only if u 2 L1ðK; YÞ for each compact interval K � S), we can
identify with the distribution fu 2 D�ðS; YÞ defined as follows:

fuðuÞ ¼ uðuÞ ¼
Z
S
uðtÞuðtÞdt; ð9Þ

for each u 2 DðSÞ; where the integral is regarded in the Bochner sense. Therefore,
we interpret Lloc1 ðS; YÞ as a subspace of D�ðS; YÞ, and regular distributions (the
distributions that admit the representation (9) via the locally Bochner integrable
function) are considered as functions from (S ! Y). We also note that the following
operation f ! f 0 is continuous in D�ðS; YÞ [1, p.169].

Laurent-Moïse Schwartz (March 5, 1915–July 4, 2002) was a French
mathematician. He pioneered the theory of distributions, which gives a
well-defined meaning to objects such as the Dirac delta function. He was
awarded the Fields Medal in 1950 for his work on the theory of distributions.
For several years, he taught at the École Polytechnique (Fig. 9).
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Definition 3 Let CmðS; YÞ, m� 0; be a family of all functions y : S ! Y such that
each strong derivative yðiÞ of order i ¼ 1; 2; . . .;m is continuous (we note that
yð0Þ ¼ y). If S is a compact interval, then CmðS; YÞ is a Banach space with the norm

kykCmðS;YÞ ¼
Xm
i¼0

sup
t2S

kyðiÞðtÞkY ¼
Xm
i¼0

max
t2S

kyðiÞðtÞkY :

Extended Phase Spaces

Let (Vi;H;V�
i ), i ¼ 1; 2; be evolution triple such that assumption (8) holds. Let S be

a finite time interval and X ¼ XðSÞ and X� ¼ X�ðSÞ be the spaces introduced in
Sect. 3. The extended phase space W� ¼ W�ðSÞ, where the real (generalized)
solutions of nonlinear evolution systems belongs, is defined as follows:

W�ðSÞ ¼ fy 2 X�ðSÞ : y0 2 XðSÞg;

where the derivative y0 of y 2 X� is considered in the sense of the distributions
space D�ðS;V�Þ.

Fig. 9 Laurent-Moïse
Schwartz

xxx Introduction: Special Classes of Extended Phase Spaces of Distributions



By the analogy with Sobolev spaces, it is necessary to establish basic structure
properties, embedding and approximations theorems as well as some “rules of
work” with the elements of such spaces.

Theorem 4 The set W� with the natural operations and graph norm for y0:

kykW� ¼ kykX� þ ky0kX 8y 2 W�

is Banach space.

Theorem 5 The set C1ðS;VÞ \W�
0 is dense in W�

0 .

Theorem 6 W�
0 � CðS;HÞ with continuous embedding. Moreover, for every

y; n 2 W�
0 and s; t 2 S, the next formula of integration by parts takes place

ðyðtÞ; nðtÞÞ 	 ðyðsÞ; nðsÞÞ ¼
Z t

s
fðy0ðsÞ; nðsÞÞþ ðyðsÞ; n0ðsÞÞgds: ð10Þ

In particular, when y ¼ n, we have:

1
2
ðkyðtÞk2H 	 kyðsÞk2HÞ ¼

Z t

s
ðy0ðsÞ; yðsÞÞds: ð11Þ

Corollary 1 W� � CðS;HÞ with continuous embedding. Moreover, for every
y; n 2 W� and s; t 2 S formula (10) takes place.

Remark 2 When maxfr1; r2g\þ1, due to the standard denotations [1, p. 173],
we will denote the spaceW� asW ; “ � ” will direct on nonreflexivity of the spaces X
and W .

Jacques-Louis Lions (May 3, 1928–May 17, 2001) was a French mathe-
matician who made contributions to the theory of partial differential equations
and to stochastic control, among other areas. He received the SIAM’s John
von Neumann prize in 1986 and numerous other distinctions. Lions is listed
as an ISI highly cited researcher.

After being part of the French Résistance in 1943 and 1944, J.-L. Lions
entered the École Normale Supérieure in 1947. He was a Professor of math-
ematics at the Université of Nancy, the Faculty of Sciences of Paris, and the
École Polytechnique. He joined the prestigious Collège de France as well as
the French Academy of Sciences in 1973. In 1979, he was appointed director
of the Institut National de la Recherche en Informatique et Automatique
(INRIA), where he taught and promoted the use of numerical simulations using
finite elements integration. Throughout his career, Lions insisted on the use of
mathematics in industry, with a particular involvement in the French space
program, as well as in domains such as energy and the environment. This
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eventually led him to be appointed director of the Centre National d'Etudes
Spatiales (CNES) from 1984 to 1992.

Lions was elected President of the International Mathematical Union in
1991 and also received the Japan Prize and the Harvey Prize that same year.
In 1991, Lions became a foreign member of the National Academy of
Sciences of Ukraine. In 1992, the University of Houston awarded him an
honorary doctoral degree. He was elected President of the French Academy
of Sciences in 1996 and was also a Foreign Member of the Royal Society
(ForMemRS) and numerous other foreign academies.

He has left a considerable body of work, among this more than 400
scientific articles, 20 volumes of mathematics that were translated into
English and Russian, and major contributions to several collective works,
including the 4000 pages of the monumental Mathematical Analysis and
Numerical Methods for Science and Technology (in collaboration with
Robert Dautray), as well as the Handbook of Numerical Analysis in 7 vol-
umes (with Philippe G. Ciarlet).

His son Pierre-Louis Lions is also a well-known mathematician who was
awarded a Fields Medal in 1994. In fact, both Father and Son have also both
received recognition in the form of Honorary Doctorates from Heriot-Watt
University in 1986 and 1995, respectively; Fig. 10.

Fig. 10 Jacques-Louis Lions
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Part I
Existence and Regularity Results,
Quantitative Methods and Their

Convergence



Chapter 1
Qualitative Methods for Classes
of Nonlinear Systems: Constructive
Existence Results

Abstract In this chapter we establish the existence results for classes of nonlin-
ear systems. Section2.1 devoted to the first order differential-operator equations
and inclusions. In Sect. 2.2 we consider the second order operator differential equa-
tions and inclusions in special classes of infinite-dimensional spaces of distributions.
Section2.3 devoted to the existence of strong solutions for evolutional variational
inequalities with nonmonotone potential. The penalty method for strong solutions
is justified. A nonlinear parabolic equations of divergent form are considered as
examples of applications in Sect. 2.4.

1.1 First Order Differential-Operator Equations
and Inclusions

1.1.1 Setting of the Problem

Let (V1, ‖·‖V1) and (V2, ‖·‖V2)be real reflexive separableBanach spaces continuously
embedded in a Hilbert space (H, (·, ·)). Assume that

the set V : = V1 ∩ V2 is dense in spaces V1, V2 and H. (1.1)

After the identification H ≡ H∗ we obtain the following tuples of continuous and
dense embeddings:

V1 ⊂ H ⊂ V ∗
1 , V2 ⊂ H ⊂ V ∗

2 , (1.2)

where (V ∗
i , ‖ · ‖V ∗

i
) is the dual space to Vi , i = 1, 2, with respect to the pairing

〈·, ·〉Vi : V ∗
i × Vi → R

which coincides on H × V with the inner product (·, ·) on H .
Let S = [0, T ], 0 < T < +∞, 1 < pi ≤ ri < +∞, i = 1, 2. For i = 1, 2 we

consider the reflexive Banach space
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4 1 Qualitative Methods for Classes of Nonlinear …

Xi = Lri (S;H) ∩ L pi (S;Vi )

with the norm ‖y‖Xi = ‖y‖L pi (S;Vi ) + ‖y‖Lri (S;H), y ∈ Xi ; see section “Special
Classes of Bochner Integrable Functions”. The Banach space X = X1 ∩ X2 with
the norm ‖y‖X = ‖y‖X1 + ‖y‖X2 is also reflexive (see section “Special Classes of
Bochner Integrable Functions”). We identify the spaces Lqi (S;V ∗

i ) + Lri ′ (S;H) and
X∗
i . Similarly,

X∗ = X∗
1 + X∗

2 ≡ Lq1(S;V ∗
1 ) + Lq2(S;V ∗

2 ) + Lr1′ (S;H) + Lr2′ (S;H),

where r−1
i + r−1

i ′ = p−1
i + q−1

i = 1. Let us define the duality form on X∗ × X

〈 f, y〉 =
∫
S
( f11(τ ), y(τ ))Hdτ +

∫
S
( f12(τ ), y(τ ))Hdτ +

∫
S
〈 f21(τ ), y(τ )〉V1dτ+

+
∫
S
〈 f22(τ ), y(τ )〉V2dτ =

∫
S
( f (τ ), y(τ ))dτ,

where f = f11 + f12 + f21 + f22, f1i ∈ Lri ′ (S;H), f2i ∈ Lqi (S;V ∗
i ).

Assume that there is a separable Hilbert space Vσ such that Vσ ⊂ V1, Vσ ⊂ V2

with continuous and dense embedding, Vσ ⊂ H with compact and dense embedding.
Then the following tuples of continuous and dense embeddings hold:

Vσ ⊂ V1 ⊂ H ⊂ V ∗
1 ⊂ V ∗

σ , Vσ ⊂ V2 ⊂ H ⊂ V ∗
2 ⊂ V ∗

σ .

For i = 1, 2 we set

Xi,σ = Lri (S;H) ∩ L pi (S;Vσ ), Xσ = X1,σ ∩ X2,σ ,

X∗
i,σ = Lri ′ (S;H) + Lqi (S;V ∗

σ ), X∗
σ = X∗

1,σ + X∗
2,σ ,

Wi,σ = {y ∈ Xi | y′ ∈ X∗
i,σ }, Wσ = W1,σ ∩ W2,σ .

For multi-valued (in the general case) map A : X ⇒ X∗ let us consider the following
problem: {

u′ + A(u) � f,
u(0) = a, u ∈ W ⊂ C(S;H),

(1.3)

where a ∈ H and f ∈ X∗ are arbitrary fixed elements. The main purpose of
this section is to establish sufficient conditions for the existence of a solution of
Problem (1.3) via the Faedo–Galerkin method.
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1.1.2 Main Assumptions

Let d ∈ X∗ and E ⊂ S be a measurable set. Further we will use the following
denotations:

(dχE )(τ ) = d(τ )χE (τ ) for a.e. τ ∈ S; χE (τ ) =
{
1, τ ∈ E;
0, elsewhere.

We recall that the set B belongs to H (X∗) if for each measurable set E ⊂ S and
u, v ∈ B the following inclusion u + (v − u)χE ∈ B holds.

Lemma 1.1 ([45]) B ∈ H (X∗) if and only if for each n ≥ 1, {di }ni=1 ⊂ B and a
family of pairwise disjoint measurable sets {E j }nj=1 ⊂ S such that

⋃n
j=1 E j = S we

have that
∑n

j=1 d jχE j ∈ B.

Remark 1.1 We note that ∅, X∗ ∈ H (X∗); { f } ∈ H (X∗) for each f ∈ X∗; if
K : S ⇒ V ∗ is an arbitrary multi-valued map, then

{ f ∈ X∗ | f (t) ∈ K (t) for a.e. t ∈ S} ∈ H (X∗).

On the other hand, if v ∈ V ∗\0̄, then the closed convex set B = { f ∈ X∗ | f ≡
αv, α ∈ [0, 1]} does not belong toH (X∗), because g(·) = v · χ[0;T/2](·) /∈ B.

Let Y be a reflexive Banach space, Y ∗ be its dual, 〈·, ·〉Y : Y ∗ × Y → R be a
pairing, A : Y ⇒ Y ∗ be a strict multi-valued map, that is, A(y) �= ∅ for each y ∈ Y.

Define the upper and lower support functions:

[A(y), z]+ := sup
d∈A(y)

〈d, z〉Y , [A(y), z]− := inf
d∈A(y)

〈d, z〉Y ;

and the upper and lower norms:

‖A(y)‖+ := sup
d∈A(y)

‖d‖X∗ , ‖A(y)‖: = inf
d∈A(y)

‖d‖X∗ ,

y, z ∈ Y . For a nonempty set B ⊂ Y ∗ let coB denotes its convex hull, and coB
denotes the closed convex hull of the set B (see Fig. 1.1), that is,

coB = ∩B⊂C, C∈C1(Y ∗)C, coB = ∩B⊂C, C∈C2(Y ∗)C,

where C1(Y ∗) (C2(Y ∗)) is the family of all nonempty convex (nonempty closed and
convex respectively) subsets of Y ∗. Consider the following multi-valued mappings:
coA : Y ⇒ Y ∗ and coA : Y ⇒ Y ∗ such that

(coA)(y) = co(A(y)) and (coA(y)) = co(A(y)),
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Fig. 1.1 Closed convex hull

for each y ∈ Y. Each strict multi-valued maps A, B : Y ⇒ Y ∗ satisfy the following
properties [20, 31, 50, 53]:

(i) [A(y), v1 + v2]+ ≤ [A(y), v1]+ + [A(y), v2]+, [A(y), v1 + v2]− ≥ [A(y), v1]−
+ [A(y), v2]− ∀y, v1, v2 ∈ Y ;

(ii) [A(y), v]+ = −[A(y),−v]−, [A(y) + B(y), v]+(−) = [A(y), v]+(−) +
[B(y), v]+(−) ∀y, v ∈ Y ;

(iii) [A(y), v]+(−) = [coA(y), v]+(−) ∀y, v ∈ Y ;
(iv) [A(y), v]+(−) ≤ ‖A(y)‖+(−)‖v‖Y , ‖A(y) + B(y)‖+ ≤ ‖A(y)‖+ + ‖B(y)‖+

∀y ∈ Y ;
(v) the inclusion d ∈ coA(y) holds if and only if

[A(y), v]+ ≥ 〈d, v〉Y ∀v ∈ Y ;

(vi) if D ⊂ Y and a(·, ·) : D × Y → R, then for each y ∈ D the function
w �→ a(y,w) is positively homogeneous convex and lower semi-continuous if
and only if there exists a multi-valued map A : Y ⇒ Y ∗ such that D(A) :=
{y ∈ Y : A(y) �= ∅} = D and

a(y,w) = [A(y),w]+ ∀y ∈ D(A), ∀w ∈ Y.

Therefore, the following equalities hold:

[A(y), v]+(−) = [coA(y), v]+(−) and ‖A(y)‖+(−) = ‖coA(y)‖+(−)

for each y, v ∈ Y.

Further, the denotation
yn ⇀ y in Y

will mean that yn converges weakly to y in a Banach space Y . The family of all
nonempty convex closed (weakly star) and bounded subsets of the dual space Y ∗ (to
Y ) we denote by Cv(Y ∗).
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Let W be a normed space such that W ⊂ Y with the continuous embedding.
Consider the basic classes of multi-valued maps acting from Y into Y ∗ (see also [51]
and references therein).

Definition 1.1 A strict multi-valued map A : Y ⇒ Y ∗ is called:

• pseudomonotone on W , if for each sequence {yn, dn}n≥0 ⊂ W × Y ∗ satisfying
dn ∈ coA(yn) for each n ≥ 1, yn ⇀ y0 in W , dn⇀d0 in Y ∗ as n → +∞, and

lim sup
n→∞

〈dn, yn − y0〉Y ≤ 0, (1.4)

there exists a subsequence {ynk , dnk }k≥1 ⊂ {yn, dn}n≥1 such that the following
inequality holds:

lim inf
k→∞ 〈dnk , ynk − w〉Y ≥ [A(y0), y0 − w]− (1.5)

for each w ∈ Y ;
• bounded, if for every L > 0 there exists l > 0 such that ‖A(y)‖+ ≤ l for each

y ∈ Y with ‖y‖Y ≤ L;
• coercive, if there exists the real function γ : R+ → R such that γ (s) → +∞ as
s → +∞ and

inf
d∈A(y)

〈d, y〉Y ≥ γ (‖y‖Y )‖y‖Y ∀y ∈ Y ;

• demi-closed, if for each sequence {yn, dn}n≥0 ⊂ W × Y ∗ satisfying dn ∈ coA(yn)
for each n ≥ 1, yn ⇀ y0 in W , dn⇀d0 in Y ∗ as n → +∞, it follows that
d ∈ coA(y).

Definition 1.2 A multi-valued map A : Y ⇒ Y ∗ satisfies the property Sk on W , if
for each sequence {yn, dn}n≥0 ⊂ W × Y ∗ satisfying dn ∈ coA(yn) for each n ≥ 1,
yn ⇀ y0 in W , dn⇀d0 in Y ∗ as n → +∞, and

lim
n→∞〈dn, yn − y0〉Y = 0,

it follows that d0 ∈ coA(y0).

Definition 1.3 A strict multi-valued map A : X ⇒ X∗ is called the Volterra type
operator (see Fig. 1.2) if for each u, v ∈ X and t ∈ S satisfying the equality u(s) =
v(s) for a.e. s ∈ (0, t), it follows that

[A(u), ξt ]+ = [A(v), ξt ]+
for each ξt ∈ X such that ξt (s) = 0 for a.e. s ∈ S \ [0, t].
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Fig. 1.2 Volterra type operator

1.1.3 Special Basis and Approximations for Multi-valued
Mappings

Let us consider the complete vectors system {hi }i≥1 ⊂ V such that

(α1) {hi }i≥1 orthonormal in H ;
(α2) {hi }i≥1 orthogonal in V ;
(α3) (hi , v)V = λi (hi , v) for each i ≥ 1 and v ∈ V ,

where 0 ≤ λ1 ≤ λ2, · · · , λ j → ∞ as j → ∞, (·, ·)V is the natural inner product
in V . This system {hi }i≥1 is called a special basis. Let for each m ≥ 1 Hm =
span {hi }mi=1, on which we consider the inner product induced from H that we again
denote by (·, ·). Due to the equivalence of H∗ and H it follows that H∗

m ≡ Hm ;
Xm = L p0(S;Hm), X∗

m = Lq0(S;Hm), p0 = max{r1, r2}, q0 > 1: 1/p0 + 1/q0 = 1,
〈·, ·〉Xm = 〈·, ·〉X |X∗

m×Xm , Wm := {y ∈ Xm | y′ ∈ X∗
m}, where y′ is the derivative of an

element y ∈ Xm in the sense of distributions from D∗(S, Hm).
Let us consider multi-valued maps that act from Xm into X∗

m , m ≥ 1. Let us
remark that embeddings Xm ⊂ Ym ⊂ X∗

m are continuous, and the embedding Wm

into Xm is compact.

Definition 1.4 The multi-valued map A : Xm → Cv(X∗
m) is called (Wm, X∗

m)-
weakly closed if from that fact that yn ⇀ y in Wm, dn ⇀ d in X∗

m, dn ∈ A (yn)
∀n ≥ 1 it follows that d ∈ A (y).

Lemma 1.2 The multi-valued mapA : Xm → Cv(X∗
m) satisfies the property Sk on

Wm if and only if A : Xm → Cv(X∗
m) is (Wm, X∗

m)-weakly closed.

Proof Let us prove the necessity. Let yn ⇀ y in Wm, dn ⇀ d in X∗
m, where

dn ∈ A (yn) ∀n ≥ 1. Then yn → y in Xm and 〈dn, yn − y〉Xm → 0 as n → +∞.

Therefore, in virtue ofA satisfies the Sk property onWm, we obtain that d ∈ A (y).
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Let us prove sufficiency. Let yn ⇀ y in Wm, dn ⇀ d in X∗
m, 〈dn, yn − y〉Xm ≤ 0

as n → +∞, where dn ∈ A (yn) ∀n ≥ 1. Then yn → y in Xm and d ∈ A (y).
The lemma is proved.

Corollary 1.1 If the multi-valued mapA : Xm → Cv(X∗
m) satisfies the property Sk

on Wm, then A is pseudomonotone on Wm.

Let further I : X → X∗ be the canonical embedding. Let us fix λ ∈ R and set
ϕλ(t) = e−λt , t ∈ S. For an arbitrary y ∈ X∗ let us define yλ (as a map from S into
V ∗) as follows: yλ(t) = ϕλ(t)y(t) for a.e. t ∈ S. Let us remark that (yλ)−λ = y, for
all y ∈ X∗. Also we define the element ϕλy by (ϕλy)(t) = y(t)ϕλ(t) for a.e. t ∈ S.

Lemma 1.3 The map y �→ yλ is an isomorphism and an homeomorphism as a map
acting from Xm into Xm (respectively from X∗

m into X∗
m, from Wm into Wm, from

X into X, from X∗ into X∗, from Ym into Ym, from Y into Y ). Moreover, the map
Wm � y �−→ yλ ∈ Wm is weakly-weakly continuous, i.e. from the fact that yn ⇀ y
in Wm it follows that yn,λ ⇀ yλ in Wm. Also, we have y′

λ = ϕ′
λy + ϕλy′ ∈ X∗

m,
∀y ∈ Wm .

Let us consider the multi-valued map A : X → Cv(X∗). Let us define the set
Aλ(yλ) ∈ Cv(X∗) for fixed y ∈ X by the next relation

[Aλ(yλ), ω]+ = [A (y) + λy, ωλ]+, ∀ω ∈ X.

Let us remark that as the functional ω �−→ [A (y) + λy, ωλ]+ is semiadditive,
positively homogeneous and lower semicontinuous (as the supremum of linear and
continuous functionals), Aλ(yλ) is defined correctly.

Lemma 1.4 If the map A : X → Cv(X∗) is bounded, then Aλ : X → Cv(X∗) is
bounded.

Lemma 1.5 If A : Xm → Cv(X∗
m) is (Wm, X∗

m)-weakly closed, then Aλ is
(Wm, X∗

m)-weakly closed.

Proof Let yn,λ ⇀ yλ in Wm, dn ⇀ d in X∗
m, dn ∈ Aλ(yn,λ). Then, in virtue of

Lemma 1.3 we obtain that yn := (yn,λ)−λ ⇀ y := (yλ)−λ in Wm, yn,λ → yλ in Xm

and yn → y in Xm . Since [A (yn) + λyn, ωλ]+ ≥ 〈dn, ω〉Xm , for any ω ∈ Xm , then
dn,−λ ∈ A (yn) + λyn. Therefore, gn := dn,−λ − λyn ∈ A (yn). Let us remark that
dn,−λ = (dn)−λ ⇀ d−λ in X∗

m, and since Xm ⊂ X∗
m continuously, we have gn ⇀ g

in X∗
m for some g ∈ X∗

m . Due to the fact thatA is (Wm, X∗
m)-weakly closed we have

that g ∈ A (y). Therefore, dn,−λ − λyn ⇀ g in X∗
m, so that dn,−λ ⇀ λy + g in X∗

m ,
and then dn = (dn,−λ)λ ⇀ λyλ + gλ in X∗

m . Therefore,

〈d, ω〉Xm = 〈λyλ + gλ, ω〉Xm = 〈λy + g, ωλ〉Xm ≤ [A (y) + λy, ωλ]+,

for all ω ∈ Xm . Therefore,
d ∈ Aλ(yλ).

The lemma is proved.
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Since the embedding Wm into Xm is compact, then Lemmas 1.2 and 1.5 yield the
following corollary.

Corollary 1.2 If the multi-valued mapA : Xm → Cv(X∗
m) satisfies the property Sk

on Wm, then Aλ is pseudomonotone on Wm.

1.1.4 Results

The main solvability results for Problem (1.3) are provided in Theorems 1.1 and 1.2,
Corollaries 1.3, 1.4, and 1.5, and Proposition 1.1 (see also Fig. 1.3 and [4–11, 14–16,
18, 21, 23, 26, 27, 30, 32, 33, 35–47]).

Theorem 1.1 Let a = 0̄, A : X → Cv(X∗) ∩ H (X∗) be coercive bounded map
of the Volterra type that satisfies the property Sk on Wσ . Then for arbitrary f ∈ X∗
there exists at least one solution of Problem (1.3) that can be obtained via the Faedo–
Galerkin method.

Fig. 1.3 Sufficient conditions of multi-valued mapping for the existence of a weak solution for
differential-operator equation/inclusion via the FG method
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Proof From coercivity for A : X ⇒ X∗ it follows that ∀ y ∈ X

inf
d∈A(y)

〈d, y〉X ≥ γ (‖y‖X )‖y‖X .

So, ∃ r0 > 0 : γ (r0) > ‖ f ‖X∗ ≥ 0. Therefore,

∀y ∈ X : ‖y‖X = r0 [A(y) − f, y]− ≥ 0. (1.6)

T h e s o l v a b i l i t y o f a p p r o x i m a t e p r o b l e m s.
Let us consider the complete vectors system {hi }i≥1 ⊂ V such that
(α1) {hi }i≥1 orthonormal in H ;
(α2) {hi }i≥1 orthogonal in V ;
(α3) ∀ i ≥ 1 (hi , v)V = λi (hi , v) ∀v ∈ V ,

where 0 ≤ λ1 ≤ λ2, · · · , λ j → ∞ as j → ∞, (·, ·)V is the natural inner product in
V , i.e. {hi }i≥1 is a special basis. Let for each m ≥ 1 Hm = span {hi }mi=1, on which
we consider the inner product induced from H that we again denote by (·, ·). Due to
the equivalence of H∗ and H it follows that H∗

m ≡ Hm ; Xm = L p0(S;Hm), X∗
m =

Lq0(S;Hm), p0 = max{r1, r2}, q0 > 1: 1/p0 +1/q0 = 1, 〈·, ·〉Xm = = 〈·, ·〉X |X∗
m×Xm ,

Wm := {y ∈ Xm | y′ ∈ X∗
m}, where y′ is the derivative of an element y ∈ Xm is

considered in the sense of D∗(S, Hm). For any m ≥ 1 let Im ∈ L (Xm; X) be the
canonical embedding of Xm in X , I ∗

m be the adjoint operator to Im . Then

∀m ≥ 1 ‖I ∗
m‖L (X∗

σ ;X∗
σ ) = 1. (1.7)

Let us consider such maps:

Am : = I ∗
m ◦ A ◦ Im : Xm → Cv(X

∗), fm := I ∗
m f.

Therefore, (1.6) and Corollary 1.1 yield that
( j1) Am is pseudomonotone on Wm ;
( j2) Am is bounded;
( j3) [Am(y) − fm, y]+ ≥ 0 ∀y ∈ Xm : ‖y‖X = r0.
Let us consider the operator Lm : D(Lm) ⊂ Xm → X∗

m with the definition domain

D(Lm) = {y ∈ Wm | y(0) = 0} = W 0
m,

that acts by the rule:
∀y ∈ W 0

m Lm y = y′,

where the derivative y′ we consider in the sense of the distributions spaceD∗(S;Hm).
The operator Lm satisfies the following properties:

( j4) Lm is linear;
( j5) ∀ y ∈ W 0

m 〈Lm y, y〉 ≥ 0;
( j6) Lm is maximal monotone.
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Therefore, conditions ( j1)–( j6) and [51] guarantees the existence at least one
solution ym ∈ D(Lm) of the problem:

Lm(ym) + Am(ym) � fm, ‖ym‖X ≤ r0,

that can be obtained by the method of singular perturbations. This means that ym is
the solution of such problem:

{
y′
m + Am(ym) � fm
ym(0) = 0̄, ym ∈ Wm, ‖ym‖X ≤ R,

(1.8)

where R = r0.
P a s s i n g t o t h e l i m i t.
From the inclusion from (1.8) it follows that ∀m ≥ 1 ∃dm ∈ A(ym) :

I ∗
mdm = fm − y′

m ∈ Am(ym) = I ∗
m A(ym). (1.9)

1◦. The boundedness of {dm}m≥1 in X∗ follows from the boundedness of A and
from (1.8). Therefore,

∃c1 > 0 : ∀m ≥ 1 ‖dm‖X∗ ≤ c1. (1.10)

2◦. Let us prove the boundedness {y′
m}m≥1 in X∗

σ . From (1.9) it follows that∀m ≥ 1
y′
m = I ∗

m( f − dm), and, taking into account (1.7), (1.8) and (1.10) we have:

‖y′
m‖X∗

σ
≤ ‖ym‖Wσ

≤ c2 < +∞. (1.11)

In virtue of (1.8) and the continuous embedding Wm ⊂ C(S;Hm) we obtain the
existence of c3 > 0 such that

∀m ≥ 1, ∀t ∈ S ‖ym(t)‖H ≤ c3. (1.12)

3◦. In virtue of estimations from (1.10)–(1.12), due to the Banach–Alaoglu
theorem, taking into account the compact embeddingW ⊂ Y , it follows the existence
of subsequences

{ymk }k≥1 ⊂ {ym}m≥1, {dmk }k≥1 ⊂ {dm}m≥1

and elements y ∈ W , d ∈ X∗, for which the following converges hold:

ymk ⇀ y in W, dmk ⇀ d in X∗

ymk (t) ⇀ y(t) in H for each t ∈ S (1.13)

ymk (t) → y(t) in H for a.e. t ∈ S as k → ∞.
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Therefore, since ymk (0) = 0̄ for each k ≥ 1, then y(0) = 0̄.
4◦. Let us prove that

y′ = f − d. (1.14)

Let ϕ ∈ D(S), n ∈ N and h ∈ Hn . Then ∀k ≥ 1: mk ≥ n we have:

(∫
S
ϕ(τ)(y′

mk
(τ ) + dmk (τ ))dτ, h

)
= 〈y′

mk
+ dmk , ψ〉,

where ψ(τ) = h · ϕ(τ) ∈ Xn ⊂ X . Let us remark that here we use the property of
Bochner integral [12, Theorem IV.1.8, p. 153]. Since for mk ≥ n Hmk ⊃ Hn , then
〈y′

mk
+ dmk , ψ〉 = 〈 fmk , ψ〉. Therefore, ∀k ≥ 1 : mk ≥ n

〈 fmk , ψ〉 =
(∫

S
ϕ(τ) f (τ )dτ, h

)
.

Hence, for all k ≥ 1: mk ≥ n

(∫
S
ϕ(τ)y′

mk
(τ )dτ, h

)
= 〈

f − dmk , ψ
〉 →

→
(∫

S
ϕ(τ)( f (τ ) − d(τ )dτ, h

)
as k → ∞. (1.15)

The last follows from the weak convergence dmk to d in X∗.
From convergence (1.13) we have:

(∫
S
ϕ(τ)y′

mk
(τ )dτ, h

)
→ (

y′(ϕ), h
)
as k → ∞, (1.16)

where

∀ϕ ∈ D(S) y′(ϕ) = −y(ϕ′) = −
∫
S
y(τ )ϕ′(τ )dτ.

Therefore, from (1.15) and (1.16) it follows that

∀ϕ ∈ D(S) ∀h ∈
⋃
m≥1

Hm (y′(ϕ), h) =
(∫

S
ϕ(τ)( f (τ ) − d(τ ))dτ, h

)
.

Since
⋃
m≥1

Hm is dense in V we have that

∀ϕ ∈ D(S) y′(ϕ) =
∫
S
ϕ(τ)( f (τ ) − d(τ ))dτ.
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Therefore, y′ = f − d ∈ X∗.
5◦. In order to prove that y is the solution of Problem (1.3) it remains to show that

y satisfies the inclusion y′ + A(y) � f . In virtue if identity (1.14), it is sufficient to
prove that d ∈ A(y).

From (1.13) it follows the existence of {τl}l≥1 ⊂ S such that τl ↗ T as l → +∞
and

∀ l ≥ 1 ymk (τl) → y(τl) in H as k → ∞. (1.17)

Let us show that for any l ≥ 1

〈d,w〉 ≤ [A(y),w]+ ∀w ∈ X : w(t) = 0 for a e. t ∈ [τl, T ]. (1.18)

Let us fix an arbitrary τ ∈ {τl}l≥1. For i = 1, 2 let us set

Xi,σ (τ ) = Lri (τ, T ; H) ∩ L pi (τ, T ; Vσ ), Xσ (τ ) = X1,σ (τ ) ∩ X2,σ (τ ),

X∗
i,σ (τ ) = Lri ′ (τ, T ; H) + Lqi (τ, T ; V ∗

σ ), X∗
σ (τ ) = X∗

1,σ (τ ) + X∗
2,σ (τ ),

Wi,σ (τ ) = {y ∈ Xi (τ ) | y′ ∈ X∗
i,σ (τ )}, Wσ (τ ) = W1,σ (τ ) ∩ W2,σ (τ ),

a0 = y(τ ), ak = ymk (τ ), k ≥ 1.

Similarly we introduce X (τ ), X∗(τ ), W (τ ). From (1.17) it follows that

ak → a0 in H as k → +∞. (1.19)

For any k ≥ 1 let zk ∈ W (τ ) be such that

{
z′
k + J (zk) � 0̄,
zk(τ ) = ak,

(1.20)

where J : X (τ ) → Cv(X∗(τ )) be the duality (in general multi-valued) mapping, i.e.

[J (u), u]+ = [J (u), u]− = ‖u‖2X (τ ) = ‖J (u)‖2+ = ‖J (u)‖2−, u ∈ X (τ ).

We remark that Problem (1.20) has a solution zk ∈ W (τ ) because J is monotone,
coercive, bounded and demiclosed (see [1, 3, 12, 26]). Let us also note that for any
k ≥ 1

‖zk(T )‖2H − ‖ak‖2H = 2〈z′
k, zk〉X (τ ) + 2‖zk‖2X (τ ) = 0.

Hence,

∀k ≥ 1 ‖z′
k‖X∗(τ ) = ‖zk‖X (τ ) ≤ 1√

2
‖ak‖H ≤ c3.
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Due to (1.19), similarly to [12, 26], as k → +∞, zk weakly converges in W
to the unique solution z0 ∈ W of Problem (1.20) with initial time value condition
z(0) = a0. Moreover,

zk → z0 in X (τ ) as k → +∞ (1.21)

because lim sup
k→+∞

‖zk‖2X (τ ) ≤ ‖z0‖2X (τ ), zk ⇀ z0 in X (τ ), and X (τ ) is a Hilbert space.

For any k ≥ 1 let us set

uk(t) =
{
ymk (t), if t ∈ [0, τ ],
zk(t), elsewhere,

gk(t) =
{
dmk (t), if t ∈ [0, τ ],
d̂k(t), elsewhere,

where d̂k ∈ A(uk) is an arbitrary. As {uk}k≥1 is bounded, A : X ⇒X∗ is bounded,
then {d̂k}k≥1 is bounded in X∗. In virtue of (1.21), (1.13), (1.17)

lim
k→+∞ 〈gk, uk − u〉 = lim

k→+∞

∫ τ

0
(dk(t), yk(t) − y(t)) dt =

= lim
k→+∞

∫ τ

0

(
f (t) − y′

k(t), yk(t) − y(t)
)
dt = lim

k→+∞

∫ τ

0

(
y′
k(t), y(t) − yk(t)

)
dt =

= lim
k→+∞

1

2

(‖yk(0)‖2H − ‖yk(τ )‖2H
) + lim

k→+∞

∫ τ

0

(
y′
k(t), y(t)

)
dt =

= 1

2

(‖y(0)‖2H − ‖y(τ )‖2H
) +

∫ τ

0

(
y′(t), y(t)

)
dt = 0.

So,
lim

k→+∞ 〈gk, uk − u〉 = 0. (1.22)

Let us show that gk ∈ A(uk) ∀k ≥ 1. For any w ∈ X let us set

wτ (t) =
{
w(t), if t ∈ [0, τ ],
0̄, elsewhere,

wτ (t) =
{
0̄, if t ∈ [0, τ ],
w(t), elsewhere.

In virtue of A is the Volterra type operator we obtain that

〈gk,w〉 = 〈dmk ,wτ 〉+ 〈d̂k,wτ 〉 ≤ [A(ymk ),wτ ]+ + 〈d̂k,wτ 〉[A(uk),wτ ]+ + 〈d̂k,wτ 〉

≤ [A(uk),wτ ]+ + [A(uk),w
τ ]+.

Due to A(uk) ∈ H (X∗), similarly to [45], we obtain that

[A(uk),wτ ]+ + [A(uk),w
τ ]+ = [A(uk),w]+.
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Since w ∈ X is an arbitrary, then gk ∈ A(uk) ∀k ≥ 1. Due to {uk}k≥1 is bounded
in X , then {gk}k≥1 is bounded in X∗. Thus, up to a subsequence {uk j , gk j } j≥1 ⊂
{uk, gk}k≥1, for some u ∈ W , g ∈ X∗ the following convergence takes place

uk j ⇀ u in Wσ , gk j ⇀ g in X∗ as j → ∞. (1.23)

We remark that

u(t) = y(t), g(t) = d(t) for a.e. t ∈ [0, τ ]. (1.24)

In virtue of (1.22), (1.23), as A satisfies the property Sk on Wσ , we obtain that
g ∈ A(u). Hence, due to (1.24), as A is the Volterra type operator, for any w ∈ X
such that w(t) = 0 for a.e. t ∈ [τ, T ] we have

〈d,w〉 = 〈g,w〉 ≤ [A(u),w]+ = [A(y),w]+.

As τ ∈ {τl}l≥1 is an arbitrary, we obtain (1.18).
From (1.18), due to the functional w → [A(y),w]+ is convex and lower semi-

continuous on X (hence it is continuous on X ) we obtain that for any w ∈ X
〈d,w〉 ≤ [A(y),w]+. So, d ∈ A(y).

The theorem is proved.

The following corollary to Theorem 1.1 establishes sufficient conditions for solv-
ability of Problem (1.3) with nonzero initial conditions; see [28].

Corollary 1.3 Let A : X → Cv(X∗)∩H (X∗) be bounded map of the Volterra type
that satisfies the property Sk on Wσ . Moreover, let for some c > 0

infd∈A(y)〈d, y〉X − c‖A(y)‖+
‖y‖X

→ +∞ (1.25)

as ‖y‖X → +∞. Then for each a ∈ H and f ∈ X∗ there exists at least one solution
of Problem (1.3) that can be obtained via the Faedo–Galerkin method.

Proof Let us set ε = ‖a‖2H
2c2 . We consider w ∈ W such that

{
w′ + εJ (w) = 0̄,
w(0) = a,

where J : X → Cv(X∗) be the duality map. Hence ‖w‖X ≤ c. We define Â : X →
Cv(X∗)∩H (X∗) by the rule: Â(z) = A(z+w), z ∈ X . Let us set f̂ = f −w′ ∈ X∗.
If z ∈ W is the solution of the problem

{
z′ + Â(z) � f,
z(0) = 0̄,
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then y = z + w is the solution of Problem (1.3). It is clear that Â is a bounded map
of the Volterra type that satisfies the property Sk on W . Thus, Theorem 1.1 yields
that it is sufficient to verify the coercivity for the map Â. This property follows from
the following estimates:

[ Â(z), z]− ≥ [A(z + w), z + w]− − [A(z + w),w]+ ≥

≥ [A(z + w), z + w]− − c‖A(z + w)‖+,

‖z‖X ≥ ‖z + w‖X − c.

The corollary is proved.

Analyzing the proof of Theorem 1.1 the following convergence result holds.

Corollary 1.4 A : X → Cv(X∗) ∩ H (X∗) be bounded map of the Volterra type
that satisfies the property Sk on Wσ , {an}n≥0 ⊂ H: an → a0 in H as n → +∞,
yn ∈ W, n ≥ 1 be the corresponding to initial data an solution of Problem (1.3). If
yn⇀y0 in X, as n → +∞, then y ∈ W is the solution of Problem (1.3) with initial
data a0. Moreover, up to a subsequence, yn ⇀ y0 in Wσ ∩ C(S;H).

Now let V and H be real Hilbert spaces, V1 = V2 = Vσ := V ; pi = ri = 2,
i = 1, 2. Let us set Y = L2(S;H). Then, according to the identification H∗ ≡ H,

the spaces Y ∗ and L2(S;H) are identified.
We note that the vector space W = {y ∈ X | y′ ∈ X∗} is a Hilbert space with the

norm ‖y‖W = ‖y‖X + ‖y′‖X∗ , where y′ is the derivative of y ∈ X in the sense of
the space of distributions D∗(S;V ∗) [12]. For any v ∈ X and f ∈ X∗ consider the
pairing

〈 f, v〉 =
∫
S
〈 f (τ ), v(τ )〉V dτ,

where 〈·, ·〉V : V ∗ ×V → R is the canonical pairing, which coincides with the inner
product (·, ·) in H on H × V . Hence, 〈 f, v〉 = ∫

S ( f (τ ), v(τ )) dτ if f ∈ Y. In the
sequel, to simplify the conclusions, we shall use the last notation even if f ∈ X∗.

In the following theorem we justify the Faedo–Galerkin method for solutions of
Problem (1.3) when the multi-valued mapping A is possibly noncoercive (see also
Fig. 1.4).

Theorem 1.2 Let a = 0̄, A : X → Cv(X∗) ∩ H (X∗) be a bounded map of the
Volterra type, which satisfies the property Sk on W. Moreover, let for some λ ≥ 0 the
map A+λI be coercive. Then for arbitrary f ∈ X∗ there exists at least one solution
of Problem (1.3), which can be obtained via the Faedo–Galerkin method.
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Fig. 1.4 Sufficient conditions for the existence of a solution

Proof We shall provide the proof in several steps.

Step 1: A priory estimate.

At first let us show that there exists a real nondecreasing function γ : R+ → R such
that γ (r) → +∞ as r → +∞, the function in hands is bounded from below on
bounded sets and the following inequality holds:

inf
d∈A(y)

∫ T

0
e−2λτ (d(τ ) + λy(τ ), y(τ ))dτ ≥ γ (‖y‖X )‖y‖X , (1.26)

for each y ∈ X. For an arbitrary r > 0 we set

γ̃ (r) = inf
y∈X, ‖y‖X=r

inf
d∈A(y)

〈d + λy, y〉X
‖y‖X

and γ̃ (0) := 0. The following properties hold:

(a) As A is bounded and the embedding X ⊂ X∗ is continuous, we have γ̃ (r) >

−∞.

(b) From the construction of the function γ̃ we have that for all y ∈ X ,
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[A(y) + λy, y]− ≥ γ̃ (‖y‖X )‖y‖X . (1.27)

In virtue of the boundedness of A it follows that γ̃ is bounded from below on
bounded sets.

(c) From the coercivity of A + λI it follows that γ̃ (r) → +∞ as r → +∞.

(d) From (a)–(c) we have inf
r≥0

γ̃ (r) =: a > −∞.

For an arbitrary b > a let us consider the nonempty bounded set of R+ given
by Ab = {c ≥ 0 | γ̃ (c) ≤ b}. Let cb = infc∈Ab c, b > a. Let us remark that
cb2 ≤ cb1 < +∞, for all b1 > b2 > a, and cb → +∞ as b → +∞. Let us set

γ̂ (t) =
{
a, t ∈ [0, ca+1],
a + k, t ∈ (ca+k, ca+k+1], k ≥ 1.

Then, γ̂ : R+ → R is a bounded from below function on bounded sets of R+, it is
a nondecreasing function such that γ̂ (r) → +∞, as r → ∞, and γ̂ (t) ≤ γ̃ (t), for
any t ≥ 0.

Let us fix an arbitrary y ∈ X. Since A is the operator of the Volterra type, then

inf
d∈A(y)

∫ t

0

(
d(τ ) + λy(τ ), y(τ )

)
dτ

= inf
d∈A(y)

∫ T

0

(
d(τ ) + λyt (τ ), yt (τ )

)
dτ

≥ γ̂ (‖yt‖X )‖yt‖X = γ̂ (‖y‖Xt )‖y‖Xt ,

for all t ∈ S, where ‖y‖Xt = ‖yt‖X , yt (τ ) =
{
y(τ ), τ ∈ [0, t],
0̄, else.

Let for an arbitrary

d ∈ A(y)
gd(τ ) = (

d(τ ) + λy(τ ), y(τ )
)
, for a.e. τ ∈ S,

h(t) = γ̂ (‖y‖Xt )‖y‖Xt , t ∈ S.

Let us remark that h(t) ≥ min{γ̂ (0), 0}‖y‖X and

inf
d∈A(y)

∫ t

0
gd(τ )dτ ≥ h(t), t ∈ S.

Let us show that

inf
d∈A(y)

∫ T

0
e−2λτ (d(τ ) + λy(τ ), y(τ ))dτ ≥

≥ e−2λT inf
d∈A(y)

∫ T

0
(d(τ ) + λy(τ ), y(τ ))dτ+ (1.28)
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+ inf
d∈A(y)

∫ T

0
(e−2λτ − e−2λT )(d(τ ) + λy(τ ), y(τ ))dτ.

Let us set ϕ(τ) = e−2λ(T−τ), τ ∈ [0, T ] (so ϕ ∈ (0, 1]). For any n ≥ 1 we put

ϕn(τ ) =
n−1∑
i=0

ϕ
(
iT
n

)
χ[

iT
n , (i+1)T

n

)(τ ), τ ∈ [0, T ]. Then, ϕ (
iT
n

)
d1 + (

1 − ϕ
(
iT
n

))
d2 ∈

A(y), ∀d1 ∈ A(y), ∀d2 ∈ A(y), ∀i = 0, n − 1. Let us remark that |ϕn(τ )−ϕ(τ)| ≤
2λT
n , ∀τ ∈ [0, T ]. Lemma 1.1 implies that

d =
n−1∑
i=0

(ϕ

(
iT

n

)
d1 +

(
1 − ϕ

(
iT

n

))
d2)χ[ti ,ti+1)(τ ) ∈ A(y),

where ti = iT
n . Therefore,

inf
d∈A(y)

∫ T

0
e−2λτ (d(τ ) + λy(τ ), y(τ ))dτ ≥

≥
∫ T

0
(d(τ ) + λy(τ ), y(τ )e−2λτ )dτ =

=
∫ T

0
ϕn(τ )(d1(τ ) + λy(τ ), y(τ )e−2λτ )dτ+

+
∫ T

0
(1 − ϕn(τ ))(d2(τ ) + λy(τ ), y(τ )e−2λτ )dτ ≥

≥ e−2λT
∫ T

0
(d1(τ ) + λy(τ ), y(τ ))dτ+

+
∫ T

0

(
e−2λτ − e−2λT

)
(d2(τ ) + λy(τ ), y(τ ))dτ−

−4λT

n

(‖A(y)‖+‖y‖X + λ‖y‖2Y
)
.

If n → +∞, then taking the infimum with respect to d1 ∈ A(y) and d2 ∈ A(y) in
the last inequality we will obtain (1.28). From (1.28) it follows that

inf
d∈A(y)

∫ T

0
e−2λτ (d(τ ) + λy(τ ), y(τ ))dτ ≥

≥ e−2λT h(T ) + 2λ inf
d∈A(y)

∫ T

0
e−2λs

∫ s

0
gd(τ )dτds ≥
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≥ e−2λT h(T )+

+2λT inf
d∈A(y)

inf
s∈S e

−2λs
∫ s

0
(d(τ ) + λy(τ ), y(τ ))dτ.

Let us show that

inf
d∈A(y)

inf
s∈S e

−2λs
∫ s

0
(d(τ ) + λy(τ ), y(τ ))dτ ≥ −c1‖y‖X ,

where c1 = max{−γ̂ (0), 0} ≥ 0 does not depend on y ∈ X. Let y ∈ X is fixed. For
s ∈ S, d ∈ A(y) let us set

ϕ(s, d) = e−2λs
∫ s

0

(
d(τ ) + λy(τ ), y(τ )

)
dτ,

a = inf
d∈A(y)

inf
s∈S ϕ(s, d), Sd = {s ∈ S | ϕ(s, d) ≤ a}.

From the continuity of ϕ(·, d) on S it follows that Sd is a nonempty closed set for an
arbitrary d ∈ A(y). Indeed, for any fixed d ∈ A(y) there exists sd ∈ S such that

ϕ(sd , d) = min
ŝ∈S

ϕ(ŝ, d) ≤ a.

From the continuity of ϕ(·, d) on S it follows that Sd is closed.
Let us prove now that the system {Sd}d∈A(y) is centered. For fixed {di }ni=1 ⊂ A(y),

n ≥ 1, let us set

ψi (·) = (
di (·) + λy(·), y(·)),

ψ(·) = max
i∈{1,...,n} ψi (·),

E0 = ∅,

E j =
{
τ ∈ S \

(
∪ j−1
i=0 Ei

)
| ψ j (τ ) = ψ(τ)

}
,

for j = 1, n, and

d(·) =
n∑
j=1

d j (·)χE j (·).

Let us remark that E j is measurable for any j = 1, n, ∪n
j=1E j = S, Ei ∩ E j = ∅,

∀i �= j , i, j = 1, n. Also, d ∈ X∗. Moreover,

ϕ(s, di ) = e−2λs
∫ s

0
ψi (τ )dτ ≤ e−2λs

∫ s

0
ψ(τ)dτ =

= ϕ(s, d), s ∈ S, i = 1, n.
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Therefore, in virtue of Lemma 1.1 we have d ∈ A(y) and for some sd ∈ S,

ϕ(sd , di ) ≤ ϕ(sd , d) = min
ŝ∈S

ϕ(ŝ, d) ≤ a, i = 1, n.

So, sd ∈ ∩n
i=1Sdi �= ∅.

Since S is compact, and the system of closed sets {Sd}d∈A(y) is centered, we obtain
the existence of s0 ∈ S such that s0 ∈ ∩d∈A(y)Sd . This implies that

inf
d∈A(y)

inf
s∈S e

−2λs
∫ s

0

(
d(τ ) + λy(τ ), y(τ )

)
dτ

≥ inf
d∈A(y)

e−2λs0

∫ s0

0

(
d(τ ) + λy(τ ), y(τ )

)
dτ

= e−2λs0 inf
d∈A(y)

∫ s0

0
gd(τ )dτ ≥ e−2λs0h(s0)

≥ e−2λs0 min{γ̂ (0), 0}‖y‖X

≥ −max{−γ̂ (0), 0}‖y‖X = −c1‖y‖X .

Therefore, for all y ∈ X ,

inf
d∈A(y)

∫ T

0
e−2λτ (d(τ ) + λy(τ ), y(τ ))dτ ≥

≥ (
e−2λT γ̂ (‖y‖X ) − 2λc1T

)‖y‖X .

If we set γ (r) = e−2λT γ̂ (r) − 2λc1T, then we will obtain (1.26).
From (1.26), the properties of the real function γ and the conditions of the theorem

it follows the existence of r0 > 0 such that γ (r0) > ‖ fλ‖X∗ ≥ 0 and also that for
any y ∈ X ,

[Aλ(yλ), yλ]− ≥ γ (‖y‖X )‖y‖X ≥ γ (‖yλ‖X )‖yλ‖X .

Therefore, for all y ∈ X satisfying ‖yλ‖X = r0 we have

[Aλ(yλ) − fλ, yλ]− ≥ (γ (r0) − ‖ fλ‖X∗)r0 ≥ 0,

that is,
[Aλ(yλ) − fλ, yλ]− ≥ 0. (1.29)

Step 2: Finite-dimensional approximations.

We shall consider now a sequence of finite-dimensional approximative problems via
the Faedo–Galerkin method.

For any m ≥ 1 let Im ∈ L (Xm; X) be the canonical embedding of Xm into X ,
and I ∗

m be the adjoint operator to Im . Then
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‖I ∗
m‖L (X∗; X∗) = 1, ∀m ≥ 1. (1.30)

Let us consider the following maps [25]:

Am := I ∗
m ◦ A ◦ Im : Xm → Cv(X∗),

Aλ,m := I ∗
m ◦ Aλ ◦ Im : Xm → Cv(X∗),

Am,λ := (Am)λ : Xm → Cv(X∗),
fm := I ∗

m f, fλ,m := I ∗
m fλ, fm,λ := ( fm)λ.

Let us remark that
Aλ,m = Am,λ, fλ,m = fm,λ. (1.31)

Indeed, in virtue of Lemma 1.3 for any y,w ∈ Xm,

[Aλ,m(yλ),w]− = [(I ∗
m ◦ Aλ)(yλ),w]− = [Aλ(yλ),w]−

= [A(y) + λy,wλ]− = [I ∗
m ◦ (A + λI )(y),wλ]− =

= [(Am)λ(yλ),w]− = [Am,λ(yλ),w]−.

So, from (1.29), (1.31), Lemma 1.4, Corollary 1.2, and the conditions of the theorem,
applying similar arguments as in [25, pp. 115–117], [19, pp. 197–198], we obtain
the following properties:

(j1) Aλ,m is pseudomonotone on Wm ;
(j2) Aλ,m is bounded;
(j3) [Aλ,m(yλ) − fλ,m, yλ]− ≥ 0 for all yλ ∈ Xm such that ‖yλ‖X = r0.

We note that (j3) is a consequence of (1.29) and the definition of Aλ,m , fλ,m ,
whereas (j2) follows from Lemma 1.4 and the boundednesss of Im, I ∗

m . Finally, (j1)
is obtained in the following way: since A satisfies the property Sk in W , for Am the
same property holds on Wm ; hence, by Corollary 1.2 the operator Am,λ = (Am)λ is
pseudomonotone in Wm , and then (1.31) implies (j1).

Let us consider the operator Lm : D(Lm) ⊂ Xm → X∗
m with domain

D(Lm) = {y ∈ Wm | y(0) = 0} = W 0
m,

which is defined by the rule: Lm y = y′, ∀y ∈ W 0
m , where the derivative y′ we

consider in the sense of the space of distributions D∗(S;Hm). From [25, Lemma 5,
p. 117] for the operator Lm the next properties are true:

(j4) Lm is linear;
(j5) 〈Lm y, y〉 ≥ 0, ∀y ∈ W 0

m ;
(j6) Lm is maximal monotone.

Therefore, conditions ( j1)–( j6) and Theorem 3.1 from [26] guaranty the existence
of at least one solution zm ∈ D(Lm) of the problem:
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Lm(zm) + Aλ,m(zm) � fλ,m, ‖zm‖X ≤ r0,

which can be obtained by the method of singular perturbations. This means (see
(1.31)) that ym := (zm)−λ ∈ Wm is the solution of the problem

{
y′
m + Am(ym) � fm,

ym(0) = 0̄, ym ∈ Wm, ‖ym‖X ≤ R,
(1.32)

where R = r0eλT .
Step 3: Passing to the limit.

From (1.32) it follows that for any m ≥ 1 there exists dm ∈ A(ym) such that

I ∗
mdm = fm − y′

m ∈ Am(ym) = I ∗
m A(ym). (1.33)

Let us prove now that (up to a subsequence) the sequence of solutions of (1.32)
converges to a solution of (1.3). Again, we divide this proof in some substeps.
Step 3a.

The boundedness of A and (1.32) imply that {dm}m≥1 is bounded in X∗. Therefore,
there exists c1 > 0 such that

‖dm‖X∗ ≤ c1 ∀m ≥ 1. (1.34)

Step 3b.

Let us prove the boundedness of {y′
m}m≥1 in X∗. From (1.33) it follows that y′

m =
I ∗
m( f − dm), ∀m ≥ 1, and taking into account (1.30), (1.32) and (1.34) we have

‖y′
m‖X∗ ≤ ‖ym‖W ≤ R + ‖ f ‖X∗ + c1 =: c2. (1.35)

In virtue of the continuous embedding W ⊂ C(S;H) we obtain the existence of
c3 > 0 such that

‖ym(t)‖H ≤ c3 ∀m ≥ 1, ∀t ∈ S. (1.36)

Step 3c.

In virtue of estimates (1.34)–(1.36), due to the Banach–Alaoglu theorem, and taking
into account the continuous embedding W ⊂ C(S;H) and the compact embedding
W ⊂ Y , it follows the existence of subsequences

{ymk }k≥1 ⊂ {ym}m≥1, {dmk }k≥1 ⊂ {dm}m≥1

and elements y ∈ W , d ∈ X∗, for which the next convergences take place:

ymk ⇀ y in W, dmk ⇀ d in X∗,
ymk (t) ⇀ y(t) in H for each t ∈ S,

ymk (t) → y(t) in H for a.e. t ∈ S as k → ∞.

(1.37)
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From here, as ymk (0) = 0̄, ∀k ≥ 1, we have y(0) = 0̄.
Step 3d.

Let us prove that
y′ = f − d. (1.38)

Let ϕ ∈ D(S), n ∈ N, and h ∈ Hn . Then for all k ≥ 1 such that mk ≥ n we have

(∫
S
ϕ(τ)(y′

mk
(τ ) + dmk (τ ))dτ, h

)
= 〈y′

mk
+ dmk , ψ〉,

where ψ(τ) = h · ϕ(τ) ∈ Xn ⊂ X . Let us remark that here we use the properties of
Bochner’s integral (see [12], Theorem IV.1.8). Since Hmk ⊃ Hn , for mk ≥ n we get
〈y′

mk
+ dmk , ψ〉 = 〈 fmk , ψ〉. Therefore, for all k ≥ 1 such that mk ≥ n

〈 fmk , ψ〉 =
(∫

S
ϕ(τ) f (τ )dτ, h

)
.

Hence, for all k ≥ 1 such that mk ≥ n

(∫
S
ϕ(τ)y′

mk
(τ )dτ, h

)
= 〈 f − dmk , ψ〉 →

→
(∫

S
ϕ(τ)( f (τ ) − d(τ ))dτ, h

)
as k → ∞. (1.39)

The last convergence follows from the weak convergence dmk to d in X∗. From (1.37)
we have (∫

S
ϕ(τ)y′

mk
(τ )dτ, h

)
→ (

y′(ϕ), h
)
as k → +∞, (1.40)

where

y′(ϕ) = −y(ϕ′) = −
∫
S
y(τ )ϕ′(τ )dτ, ∀ϕ ∈ D(S).

Therefore, from (1.39) and (1.40) it follows that for all ϕ ∈ D(S), h ∈ ⋃
m≥1 Hm ,

(
y′(ϕ), h

) =
(∫

S
ϕ(τ)( f (τ ) − d(τ ))dτ, h

)
.

Since
⋃
m≥1

Hm is dense in V we have that

y′(ϕ) =
∫
S
ϕ(τ)( f (τ ) − d(τ ))dτ , ∀ϕ ∈ D(S).

Therefore, y′ = f − d ∈ X∗.
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Step 3e.

To prove that y is a solution of Problem (1.3) it remains to verify that y satisfies
the inclusion y′ + A(y) � f . Thus, according to (1.38), it is sufficient to prove that
d ∈ A(y).

From (1.37) it follows the existence of {τl}l≥1 ⊂ S such that τl ↗ T as l → +∞,

and
ymk (τl) → y(τl) in H ∀l ≥ 1 as k → +∞. (1.41)

Let us show that
〈d,w〉 ≤ [A(y),w]+ (1.42)

for each l ≥ 1 and w ∈ X such that w(t) = 0 for a.e. t ∈ [τl , T ].
Let us fix an arbitrary τ ∈ {τl}l≥1. Let us set

X (τ ) = L2(τ, T ; V ), X∗(τ ) = L2(τ, T ; V ∗),

〈u, v〉X (τ ) =
∫ T

τ

〈u(s), v(s)〉V ds

for u ∈ X (τ ), v ∈ X∗(τ ), and

W (τ ) = {u ∈ X (τ ) | u′ ∈ X∗(τ )},

a0 = y(τ ), ak = ymk (τ ), k ≥ 1.

From (1.41) it follows that

ak → a0 in H as k → +∞. (1.43)

For any k ≥ 1 let zk ∈ W (τ ) be such that

{
z′
k + J (zk) = 0̄,
zk(τ ) = ak,

(1.44)

where J : X (τ ) → X∗(τ ) is the duality mapping (which is single-valued, as X (τ )

is a Hilbert space), i.e.

〈J (u), u〉X (τ ) = ‖u‖2X (τ ) = ‖J (u)‖2X∗(τ ), u ∈ X (τ ).

We remark that Problem (1.44) has a solution zk ∈ W (τ ) because J : X (τ ) → X∗(τ )

is monotone, coercive, bounded and demicontinuous (see [1, 3, 12, 26]). Let us also
note that for any k ≥ 1,

‖zk(T )‖2H − ‖ak‖2H = 2〈z′
k, zk〉X (τ ) = −2‖zk‖2X (τ ).
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Hence,

‖z′
k‖X∗(τ ) = ‖zk‖X (τ ) ≤ 1√

2
‖ak‖H ≤ c3, ∀k ≥ 1.

Due to (1.43), similarly to [12, 26], zk converges weakly in W as k → +∞ to
the unique solution z0 ∈ W of Problem (1.44) with initial condition z(τ ) = a0.
Moreover,

zk → z0 in X (τ ) as k → +∞, (1.45)

because lim sup
k→+∞

‖zk‖2X (τ ) ≤ ‖z0‖2X (τ ), zk ⇀ z0 in X (τ ), and X (τ ) is a Hilbert space.

For any k ≥ 1 let us set

uk(t) =
{
ymk (t), if t ∈ [0, τ ],
zk(t), elsewhere,

gk(t) =
{
dmk (t), if t ∈ [0, τ ],
d̂k(t), elsewhere,

where d̂k ∈ A(uk) be an arbitrary. As {uk}k≥1 is bounded and A : X ⇒ X∗ is
bounded, we obtain that {d̂k}k≥1 is bounded in X∗. In virtue of (1.45), (1.37), (1.41)
we have

lim
k→+∞〈gk, uk − u〉 =

= lim
k→+∞

∫ τ

0

(
dmk (t), ymk (t) − y(t)

)
dt =

= lim
k→+∞

∫ τ

0

(
f (t) − y′

mk
(t), ymk (t) − y(t)

)
dt =

= lim
k→+∞

∫ τ

0

(
y′
mk

(t), y(t) − ymk (t)
)
dt =

= lim
k→+∞

1

2

(‖ymk (0)‖2H − ‖ymk (τ )‖2H
)+

+ lim
k→+∞

∫ τ

0

(
y′
mk

(t), y(t)
)
dt =

= 1

2

(‖y(0)‖2H − ‖y(τ )‖2H
) +

∫ τ

0

(
y′(t), y(t)

)
dt = 0.

So,
lim

k→+∞〈gk, uk − u〉 = 0. (1.46)
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Let us show that gk ∈ A(uk), ∀k ≥ 1. For any w ∈ X let us set

wτ (t) =
{
w(t), if t ∈ [0, τ ],
0̄, elsewhere,

wτ (t) =
{
0̄, if t ∈ [0, τ ],
w(t), elsewhere.

Since A is an operator of the Volterra type we obtain that

〈gk,w〉 = 〈dmk ,wτ 〉 + 〈d̂k,wτ 〉 ≤

≤ [A(ymk ),wτ ]+ + 〈d̂k,wτ 〉 =

= [A(uk),wτ ]+ + 〈d̂k,wτ 〉 ≤

≤ [A(uk),wτ ]+ + [A(uk),w
τ ]+.

Since A(uk) ∈ H (X∗), similarly to the proof of (1.28) we obtain that

[A(uk),wτ ]+ + [A(uk),w
τ ]+ = [A(uk),w]+.

Sincew ∈ X is an arbitrary, then gk ∈ A(uk) for all k ≥ 1. Since {uk}k≥1 is bounded in
X , {gk}k≥1 is bounded in X∗. Thus, up to a subsequence {uk j , gk j } j≥1 ⊂ {uk, gk}k≥1,
for some u ∈ W , g ∈ X∗ the next convergence holds

uk j ⇀ u in W, gk j ⇀ g in X∗ as j → ∞. (1.47)

We remark that
u(t) = y(t), g(t) = d(t) for a.e. t ∈ [0, τ ]. (1.48)

In virtue of (1.46), (1.47), as A satisfies the property Sk onW ,weobtain that g ∈ A(u).
Hence, due to (1.48), as A is the Volterra type operator, for any w ∈ X such that
w(t) = 0 for a.e. t ∈ [τ, T ] we get

〈d,w〉 = 〈g,w〉 ≤ [A(u),w]+ = [A(y),w]+.

As τ ∈ {τl}l≥1 is an arbitrary, we obtain (1.42).
From (1.42), as the functional w → [A(y),w]+ is convex and lower semicontin-

uous on X (hence it is continuous on X ), we obtain that 〈d,w〉 ≤ [A(y),w]+ for
each w ∈ X . Therefore, d ∈ A(y).

The theorem is proved.

Analyzing the proofs of Theorem 1.2 and Corollary 1.3 (see [28]) the following
proposition holds.
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Proposition 1.1 Let A : X → Cv(X∗) ∩ H (X∗) be bounded map of the Volterra
type which satisfies the property Sk on W. Moreover, let for some λA ≥ 0 and c > 0

[A(y), y]− − c‖A(y)‖+ + λA‖y‖2Y
‖y‖X

→ +∞ (1.49)

as ‖y‖X → +∞. Then for any a ∈ H, f ∈ X∗ there exists at least one solution of
Problem (1.3), which can be obtained via the Faedo–Galerkin method.

Proof Let us set ε = ‖a‖2H
2c2 . We consider w ∈ W such that

{
w′ + εJ (w) = 0̄,
w(0) = a,

where J : X → X∗ is the duality map. Hence ‖w‖X ≤ c. We define Â : X →
Cv(X∗) ∩ H (X∗) by the rule: Â(z) = A(z + w), z ∈ X . Let us set f̂ = f − w′∗. If
z ∈ W is a solution of the problem

{
z′ + Â(z) � f̂ ,
z(0) = 0̄,

then y = z + w is a solution of Problem (1.3). It is clear that Â is a bounded map of
the Volterra type which satisfies the property Sk on W . So, due to Theorem 1.2 it is
enough to prove the coercivity for the map Â+ λA I . This property follows from the
estimates:

[ Â(z), z]+ ≥ [A(z + w), z + w]+ − [A(z + w),w]+ ≥

≥ [A(z + w), z + w]+ − c‖A(z + w)‖+,

‖z‖2Y ≥ ‖z + w‖2Y − c2 − 2‖w‖X∗‖z‖X .

‖z‖X ≥ ‖z + w‖X − c.

The proposition is proved.

Analyzing the proof of Theorem 1.2 we can obtain the following convergence
result.

Corollary 1.5 Let A : X → Cv(X∗) ∩ H (X∗) be a bounded map of the Volterra
type which satisfies the property Sk on W.We consider a sequence {an}n≥0 ⊂ H such
that an → a0 in H as n → +∞. Let yn ∈ W, n ≥ 1, be solutions of Problem (1.3)
corresponding to the initial data an. If yn ⇀ y0 in X as n → +∞, then y0 ∈ W
is solution of Problem (1.3) with initial data a0. Moreover, up to a subsequence,
yn ⇀ y0 in W ⊂ C(S;H).
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1.2 Second Order Operator Differential Equations
and Inclusions

In this section we provide the existence results for the second order operator differ-
ential equations and inclusions. Since the problem in hands naturally considers as
the first order integro-differential-operator inclusion, we recall some of them.

Let the following conditions hold:
(H1) V , Z , H are Hilbert spaces; H∗ ≡ H and we have such chain of dense and

compact embeddings:

V ⊂ Z ⊂ H ≡ H∗ ⊂ Z∗ ⊂ V ∗;

(H2) f0 ∈ V ∗;
(A1) ∃c > 0 : ∀u ∈ V, ∀d ∈ A0(u) ‖d‖V ∗ ≤ c(1 + ‖u‖V );
(A2) ∃α, β > 0 : ∀u ∈ V , ∀d ∈ A0(u) 〈d, u〉V ≥ α‖u‖2V − β;
(A3) A0 = A1+ A2, where A1 : V → V ∗ is linear, selfconjugated, positive operator,
A2 : V ⇒ V ∗ satisfies such conditions:

(a) there exists a Hilbert space Z such that the embedding V ⊂ Z is dense and
compact, and the embedding Z ⊂ H is dense and continuous;

(b) for any u ∈ Z the set A2(u) is nonempty, convex, and weakly compact in Z∗;
(c) A2 : Z ⇒ Z∗ is a bounded map, that is, A2 converts bounded sets from Z into

bounded sets in the space Z∗;
(d) A2 : Z ⇒ Z∗ is a demiclosed map, i.e. if un → u in Z , dn → d weakly in

Z∗, n → +∞, and dn ∈ A2(un) ∀n ≥ 1, then d ∈ A2(u);
(B1) B0 : V → V ∗ is a linear selfconjugated operator;
(B2) ∃γ > 0 : 〈B0u, u〉V ≥ γ ‖u‖2V .

Here 〈·, ·〉V : V ∗ × V → R is the duality in V ∗ × V, coinciding on H × V with the
inner product (·, ·) in Hilbert space H.

Note that from (A1)–(A3), [34, 51] it follows that the map A0 satisfies such
condition:
(A3)

′ A0 : V ⇒ V ∗ is (generalized) pseudomonotone operator, that is,
(a) for any u ∈ V the set A0(u) is nonempty, convex, and weakly compact one in

V ∗;
(b) if un → u weakly in V, n → +∞, dn ∈ A0(un) ∀n ≥ 1, and lim sup

n→∞
〈dn, un −

u〉V ≤ 0, then ∀ω ∈ V ∃d(ω) ∈ A0(u) :

lim inf
n→+∞ 〈dn, un − ω〉V ≥ 〈d(ω), u − ω〉V ;

(c) the map A0 is upper semicontinuous one that acts from an arbitrary finite-
dimensional subspace of V into V ∗ endowed with weak topology.

Thus, we investigate the dynamic of all weak solutions of the second order non-
linear autonomous differential-operator inclusion
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y′′(t) + A0(y
′(t)) + B0(y(t)) � f0 for a.e. t > 0 (1.50)

as t → +∞, which are defined as t ≥ 0, where parameters of the problem satisfy
conditions (H1), (H2), (A1)–(A3), (B1)–(B2).

As aweak solution of evolution inclusion (1.50) on the interval [τ, T ]we consider
a pair of elements (u(·), u′(·))T ∈ L2(τ, T ; V × V ) such that for some d(·) ∈
L2(τ, T ; V ∗)

d(t) ∈ A0(u′(t)) for a.e. t ∈ (τ, T ),

− ∫ T
τ

(ζ ′(t), u′(t))dt + ∫ T
τ

〈d(t), ζ(t)〉V dt+
+ ∫ T

τ
〈B0u(t), ζ(t)〉V dt = ∫ T

τ
〈 f0, ζ(t)〉V ∀ζ ∈ C∞

0 ([τ, T ]; V ),

(1.51)

where u′ is the derivative of the element u(·) in the sense of the space of distributions
D∗([τ, T ]; V ∗).

Note that the abstract theorems on the existence of solutions for such problems
under weaker conditions were considered in [34, 51]. Here we consider Problem 2
from [34], for which we can (as follows from results of the further chapters) have
not only the abstract result on existence of weak solution but we can investigate
the behavior of all weak solutions as t → +∞ in the phase space V × H and
study the structure of the global and trajectory attractors. Underline that results
concerning multi-valued dynamic of displacements and velocities can be applied to
hemivariational inequalities.

Further, without loss the generality we consider the equivalent norm ‖u‖V =√〈B0u, u〉V , u ∈ V, in the space V . The given norm is generated by the inner
product (u, v)V = 〈B0u, v〉V , u, v ∈ V . For fixed τ < T let us consider

Xτ,T = L2(τ, T ; V ), X∗
τ,T = L2(τ, T ; V ∗), Wτ,T = {u ∈ Xτ,T |u′ ∈ X∗

τ,T },

Aτ,T : Xτ,T ⇒ X∗
τ,T , Aτ,T (y) = {d ∈ X∗

τ,T |d(t) ∈ A0(y(t)) for a.e. t ∈ (τ, T )},

Bτ,T : Xτ,T → X∗
τ,T , Bτ,T (y)(t) = B0(y(t)) for a.e. t ∈ (τ, T ),

fτ,T ∈ X∗
τ,T , fτ,T (t) = f0 for a.e. t ∈ (τ, T ).

Note that the space Wτ,T is the Hilbert space with the graph norm of the derivative
(cf. [50, 51]):

‖u‖2Wτ,T
= ‖u‖2Xτ,T

+ ‖u′‖2X∗
τ,T

, u ∈ Wτ,T . (1.52)

From [34, Lemma 7, p. 516], (A1), (A2), (A3)
′ it follows thatAτ,T : Xτ,T ⇒ X∗

τ,T
satisfies the next conditions:

(N1) ∃C1 > 0: ‖d‖X∗
τ,T

≤ C1(1 + ‖y‖Xτ,T ) ∀y ∈ Xτ,T , ∀d ∈ Aτ,T (y);
(N2) ∃C2,C3 > 0: 〈d, y〉Xτ,T ≥ C2‖y‖2Xτ,T

− C3 ∀y ∈ Xτ,T , ∀d ∈ Aτ,T (y);
(N3) Aτ,T : Xτ,T ⇒ X∗

τ,T is (generalized) pseudomonotone on Wτ,T , that is,
(a) for any y ∈ Xτ,T the set Aτ,T (y) is a nonempty, convex, and weakly compact
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one in X∗
τ,T ;

(b)Aτ,T is the upper semicontinuous map as the map that acts from an arbitrary finite
dimensional subspace from Xτ,T into X∗

τ,T endowed by the weak topology;
(c) if yn → y weakly in Wτ,T , dn ∈ Aτ,T (yn) ∀n ≥ 1, dn → d weakly in X∗

τ,T , and

lim sup
n→+∞

〈dn, yn − y〉Xτ,T ≤ 0,

then d ∈ Aτ,T (y) and lim
n→+∞〈dn, yn〉Xτ,T = 〈d, y〉Xτ,T .

Here 〈·, ·〉Xτ,T : X∗
τ,T × Xτ,T → R is the pairing in X∗

τ,T × Xτ,T coinciding on
L2(τ, T ; H) × Xτ,T with the inner product in L2(τ, T ; H), that is,

∀u ∈ L2(τ, T ; H), ∀v ∈ Xτ,T 〈u, v〉Xτ,T =
∫ T

τ

(u(t), v(t))dt.

Note also (cf. [12, Theorem IV.1.17, P. 177]) that the embedding Wτ,T ⊂ C([τ,
T ]; H) is continuous and dense. Moreover,

(u(T ), v(T )) − (u(τ ), v(τ )) =
∫ T

τ

[
〈u′(t), v(t)〉V + 〈v′(t), u(t)〉V

]
dt, (1.53)

for each u, v ∈ Wτ,T .

The definition of derivative in the sense ofD([τ, T ]; V ∗) and equality (1.51) yield
the following statement.

Lemma 1.6 Each weak solution (y(·), y′(·))T of Problem (1.50) on the interval
[τ, T ] belongs to the space C([τ, T ]; V ) × Wτ,T . Moreover,

y′′ + Aτ,T (y′) + Bτ,T (y) � fτ,T . (1.54)

Vice versa, if y(·) ∈ C([τ, T ]; V ), y′(·) ∈ Wτ,T , and y(·) satisfies (1.54), then
(y(·), y′(·))T is a weak solution of (1.50) on [τ, T ].
A weak solution of Problem (1.50) with initial data

y(τ ) = a, y′(τ ) = b (1.55)

on the interval [τ, T ] exists for any a ∈ V, b ∈ H. It follows from [34, Theorem 11,
p. 523]. Thus, the following lemma holds.

Lemma 1.7 For any τ < T, a ∈ V, b ∈ H Cauchy Problem (1.50), (1.55) has
a weak solution (y, y′)T ∈ Xτ,T × Xτ,T . Moreover, each weak solution (y, y′)T
of Cauchy Problem (1.50), (1.55) on the interval [τ, T ] belongs to the space
C([τ, T ]; V ) × Wτ,T and y satisfies (1.54).

The similar statement holds also for non-autonomous problems. For this purpose
additional measurability assumption for A2 is claimed.
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1.3 Evolutional Variational Inequalities: Penalty Method
and Strong Solutions

In investigating unilateral problems, problems on Riemannian manifolds with or
without boundary, semi-penetration problems, and in the analysis and control of
processes and fields of different natures on the boundary of a domain, a demand
arises for the consideration of evolutionary variational inequalities with nonlinear
nonmonotone operators in infinite-dimensional spaces. To describe the state func-
tions of such objects, the concepts of strong and weak solutions are naturally intro-
duced. A strong solution does not always adequately describe a system state since,
in the majority of cases, such classes of solutions prevents the effects of breaks or
unilateral semi-penetration, that is, are too regular to adequately describe states of
the processes and fields being investigated. The proof of the existence of strong
solutions (especially for equations with nonmonotone reaction laws) is problematic.
The concept of a weak solution is too general (this solution not always adequately
describes a state function, that is, this class of solutions can formally include not
only physical solutions) and, at the same time, is insufficiently regular to adequately
implement the numerical analysis of the problems being investigated. Note that a
strong solution of an evolutionary variational inequality is, as a rule, a weak solu-
tion. A demand arises for the introduction of a new intermediate class of physical
solutions to such problems that, on the one hand, must satisfy natural energy equal-
ities and, on the other hand, provide the possibility of substantiation of constructive
(and at the same time physical) methods of their existence (for example, the artificial
viscositymethod for problems of classical hydroaeromechanics in an incompressible
continuous medium).

This section introduces the concept of a physical solution on a finite time inter-
val for classes of autonomous evolutionary variational inequalities with nonlinear
nonmonotone (in general cases) mappings defined on convex cones. This concept is
based on natural energy equalities and continuous dependence of state functions in
the phase space on the time variable. For approximate searching for physical solu-
tions, the classical penalty method is used. For the solutions obtained, the possibility
of a global description of the behavior of such systems is substantiated on the basis
of the results of [13, 17] in their natural phase space with respect to the topology of
strong convergence by finite algorithms up to an arbitrary small parameter.

For an evolutionary triple (V ; H ; V ∗) a nonlinear (in the general case) mapping
A : V → V ∗, and a convex closed cone K ⊆ V , the problem of investigating
the dynamics of the following autonomous evolutionary variational inequality is
considered in the phase space H of all physical solutions y : R+ → V , y(t) ∈ K
for a.a. t > 0:

〈y′(t) + A(y(t)), v − y(t)〉V ≥ 0 for all v ∈ K and for a.a. t > 0 (1.56)

in which the parameters of the problem satisfy the following conditions.
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Assumption 1 p ≥ 2 and q > 1: 1
p + 1

q = 1 and the embedding of V into H is
compact.

Assumption 2 ∃c > 0: ‖A(u)‖V ∗ ≤ c(1 + ‖u‖p−1
V ) ∀u ∈ V .

Assumption 3 ∃α, β > 0: 〈A(u), u〉V ≥ α‖u‖p
V − β ∀u ∈ V .

Assumption 4 A : V → V ∗ is a pseudomonotone operator satisfying the (S)-
property, that is, since un → u weakly in V , and lim

n→+∞〈A(un), un − u〉V ≤ 0, we

obtain that un → u in V and lim
n→+∞

〈A(un), un − ω〉V ≥ 〈A(u), u − ω〉V∀ω ∈ V .

Assumption 5 K ⊆ V is a convex closed cone such that intVσ
Kσ �=�0, where Vσ ⊆

V is a real reflexive separable Banach space continuously and densely embedded
into V , Kσ := K ∩ Vσ .

Here, 〈·, ·〉V : V ∗ × V → R is a pairing in V ∗ × V , and this pairing coinsides on
H ×V with the scalar product (·, ·) in a Hilbert space H . Note that a space V ∗

σ is the
conjugate of Vσ with respect to the canonical pairing 〈·, ·〉Vσ

: V ∗
σ × Vσ → R that

coincides on H×Vσ with the scalar product (·, ·) in H . Then we obtain the following
chain of such continuous and dense embeddings: Vσ ⊂ V ⊂ H ⊂ V ∗ ⊂ V ∗

σ .

Let 0 ≤ τ < T < +∞. We set

Kτ,T := {y ∈ L p(τ, T ; V ) : y(t) ∈ K for a.a. t ∈ (τ, T )}.

By a physical solution of evolutionary variational inequality (1.56) on an interval
[τ, T ] we understand an element y that belongs to the space Kτ,T ∩ C([τ, T ]; H)

such that

−
∫ T

τ

(ξ ′(t), y(t))dt +
∫ T

τ

〈A(y(t)), ξ(t)〉V dt ≥ 0 ∀ξ ∈ C∞
0 ([τ, T ]; V ) ∩ Kτ,T ,

(1.57)

||y(t2)||2H − ||y(t1)||2H + 2
∫ t2

t1

〈A(y(t)), y(t)〉V dt = 0 ∀t1, t2 ∈ [τ, T ]; (1.58)

see also Fig. 1.5.
Note that the concept of a physical solution naturally weakens the concept of a

strong solution of unilateral Problem (1.56). The concept of a physical solution is
a weak solution of Problem (1.56) that is continuous as a mapping from the time
interval [τ, T ] into the phase space H and satisfies energy equality (1.58). Of course,
each strong solution of Problem (1.56) is a physical solution of this problem. At
present, for Assumptions 1, 2, 3, 4 and 5, only the fact of existence of weak solutions
is well known.

Now, with the help of the penalty method, we establish the fact of existence of
physical solutions to Problem (1.56) for arbitrary initial data from K . The obtained
results will be applied in the next sections to the investigation of the dynamics of
processes and fields of different nature under unilateral constraints.
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Fig. 1.5 Classes of solutions
for evolution variation
inequalities

For a fixed 0 ≤ τ < T < +∞ we consider

Xτ,T = L p(τ, T ; V ), X∗
τ,T = Lq(τ, T ; V ∗), Wτ,T = {y ∈ Xτ,T : y′ ∈ X∗

τ,T },
Aτ,T : Xτ,T → X∗

τ,T , (Aτ,T (y))(t) = A(y(t)) for a.a. t ∈ (τ, T ),

Yτ,T,σ = L1(τ, T ; V ∗
σ ), Wτ,T,σ = {y ∈ Xτ,T : y′ ∈ Yτ,T,σ },

where y′ is the derivative of an element y ∈ Xτ,T in the sense of the space of distri-
butions D([τ, T ]; V ∗) (see, for example [12, Definition IV.1.10, p. 168]). Note that
the spaceWτ,T is a reflexive Banach space with the following derivative graph norm
(see, for example, [48, Statement 4.2.1, p. 291]): ‖u‖Wτ,T

= ‖u‖Xτ,T
+‖u′‖X∗

τ,T
, u ∈

Wτ,T .

It follows from [52, Sect. 2.2], [46, pp. 152–157], and Assumptions 1, 2, 3 and 4
that Aτ,T : Xτ,T → X∗

τ,T satisfies the following properties.
Property 1. ∃C1 > 0: ‖Aτ,T (y)‖X∗

τ,T
≤ C1(1 + ‖y‖p−1

Xτ,T
) ∀y ∈ Xτ,T .

Property 2. ∃C2,C3 > 0: 〈Aτ,T (y), y〉Xτ,T ≥ C2‖y‖p

Xτ,T
− C3 ∀y ∈ Xτ,T .

Property 3.Aτ,T : Xτ,T → X∗
τ,T is (generalized) pseudomonotone onWτ,T,σ and

satisfies the (S)-property, that is, the facts that yn → y weakly in Xτ,T , {y′
n}n=1,2,... is

bounded inYτ,T,σ ,Aτ,T (yn) → d weakly in X∗
τ,T , and lim

n→+∞〈Aτ,T (yn), yn−y〉Xτ,T ≤
0, imply that d = Aτ,T (y) and yn → y in Xτ,T .

In particular, the following equalities hold:

lim
n→+∞〈Aτ,T (yn), yn〉Xτ,T = 〈d, y〉Xτ,T ,

lim
n→+∞

∫ T

τ

|〈A(yn(t)), yn(t) − y(t)〉V |dt = 0.
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Fig. 1.6 Sufficient conditions for the existence of a solution for evolution variation inequality

Here, 〈·, ·〉Xτ,T : X∗
τ,T × Xτ,T → R is the pairing in X∗

τ,T × Xτ,T that coincides with
the scalar product in L2(τ, T ; H) on L2(τ, T ; H) × Xτ,T , that is,

∀u ∈ L2(τ, T ; H), ∀v ∈ Xτ,T 〈u, v〉Xτ,T =
∫ T

τ

(u(t), v(t))dt.

Note also that (see [12, Theorem IV.1.17, p. 177]) the embedding Wτ,T ⊂ C([τ,
T ]; H) is continuous and dense. Moreover,

(u(T ), v(T )) − (u(τ ), v(τ )) =
∫ T

τ

[〈u′(t), v(t)〉V + 〈v′(t), u(t)〉V ]dt, (1.59)

for each u, v ∈ Wτ,T .
The main result of this section has the following formulation; Fig. 1.6.

Theorem 1.3 Let Assumptions 1, 2, 3, 4 and 5 be satisfied, 0 ≤ τ < T < +∞.
Then, for any yτ ∈ K there is at least one physical solution y of Problem (1.56) on
[τ, T ], and this solution is such that y(τ ) = yτ .
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Proof We use the penalty method. Let PK be the operator of orthogonal projection
of an arbitrary element of the space V onto the convex cone K . Let J : V → V ∗
be the dual operator, that is, the mapping satisfying the following two equalities:
‖J (v)‖V ∗‖v‖V = 〈J (v), v〉V and ‖J (v)‖V ∗ = ‖v‖p−1

V for an arbitrary v ∈ V . By the
Asplund theorem, the space V can be renormalized by an equivalent strict norm so
that the corresponding norm in the conjugated space V ∗ is also strict and equivalent
to its natural norm. Therefore, the operator J can be considered as single-valued.
We will use β(v) = J (v − PKv), v ∈ V , in the capacity of the penalty operator.
Note that β(v) = 0̄ if and only if v ∈ K . Moreover, β(αv) = α|α|p−2β(v) and
〈β(v), v〉V = 0 for some arbitrary v ∈ V and α ∈ R. Hereafter, we consider that
(β(y))(t) = β(y(t)) for a.a. t ∈ (τ, T ) for all y ∈ Xτ,T .

Since β : Xτ,T → X∗
τ,T is a bounded monotone demicontinuous operator, for an

arbitrary ε > 0, the mapping Aε(y) := Aτ,T (y) + 1
ε
β(y), y ∈ Xτ,T , is generalized

pseudomonotone on Wτ,T (satisfies property 3). Moreover, the penalty operator def-
inition (defining the properties of the dual mapping J ) and properties 1 and 2 for the
operator Aτ,T imply properties 1 and 2 for the new operator Aε acting from Xτ,T to
X∗

τ,T . Thus, [51, Theorem 2.4, p. 123] implies the existence of a solution yε ∈ Wτ,T

to the following problem:

y′
ε + Aτ,T (yε) + 1

ε
β(yε) = 0̄, yε(τ ) = yτ . (1.60)

Moreover, formula (1.59), the monotonicity of β, and the fact that K is a cone, imply
the following relationships:

− 〈ξ ′, yε〉Xτ,T + 〈Aτ,T (yε), ξ 〉Xτ,T ≥ 0 ∀ξ ∈ C∞
0 ([τ, T ]; V ) ∩ Kτ,T , (1.61)

‖yε(t2)‖2H − ‖yε(t1)‖2H + 2
∫ t2

t1

〈A(yε(t)), yε(t)〉V dt = 0 ∀t1, t2 ∈ [τ, T ]. (1.62)

Assumptions 2 and 3 imply the existence a constant C4 > 0 such that

‖yε‖C([τ,T ];H) ≤ C4, ‖yε‖Xτ,T
≤ C4, ‖Aτ,T (yε)‖X∗

τ,T
≤ C4 ∀ε > 0. (1.63)

Let us prove the existence of a constant C5 > 0 such that

‖y′
ε‖Yτ,T,σ

≤ C5 ∀ε > 0. (1.64)

Assumption 5 implies the existence of vσ ∈ Kσ and rσ > 0 such that {v ∈ Vσ :
‖v−vσ ‖Vσ

≤ rσ } ⊂ Kσ . Since Kσ = K ∩Vσ is a cone, without loss of generality, we
can consider that ‖vσ ‖Vσ

= 1 and rσ ≤ 1. We put M := {v ∈ Kσ : ‖v− vσ ‖Vσ
≤ 1}

and N := (M−vσ )∩(vσ −M). The set N is convex, closed, absorbing, and balanced.
Thus, for the set N theMinkowski functional ρN (ω) := inf{t > 0 : ω

t ∈ N },ω ∈ Vσ

is correctly defined. Moreover, ρN satisfies the following three properties:
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(1) ‖ω‖Vσ
≤ ρN (ω) ≤ 1

rσ
‖ω‖Vσ

for any ω ∈ Vσ ;

(2) ρN (vσ ) = 1;

(3) {ω ∈ Vσ : ρN (ω − vσ ) ≤ 1} ⊂ Kσ .

We put ρ∗
N (g) := sup{〈g, ω〉Vσ

: ω ∈ Vσ , ρN (ω) ≤ 1}, g ∈ V ∗
σ . Property (1) for

ρN provides the equivalence between the norm ρ∗
N and the natural norm of the space

V ∗
σ . Consider now K−

σ := {g ∈ V ∗
σ : 〈g, ω〉Vσ

≤ 0∀ω ∈ Kσ }. Properties (2) and (3)
of ρN imply

ρ∗
N (g) = −〈g, vσ 〉Vσ

∀g ∈ K−
σ . (1.65)

Since K ⊆ V is a cone, themonotonicity ofβ : V → V ∗ guarantees thatβ(ω) ∈ K−
σ

for an arbitrary ω ∈ V . Therefore, statements (1.59), (1.60), and (1.65) provide the
fulfillment of the equalities

1
ε
‖β(yε)‖Yτ,T,σ

= − 1
ε

∫ T
τ

〈β(yε(t)), vσ 〉V dt
= ∫ T

τ
〈A(yε(t)), vσ 〉V dt + (yε(T ) − yε(τ ), vσ )H

for any ε > 0. Thus, from inequalities (1.63), we obtain

1

ε
‖β(yε)‖Yτ,T,σ

≤ C4‖vσ ‖V (T − τ)
1
p + 2C4‖vσ‖H ∀ε > 0. (1.66)

Finally, inequality (1.64) follows from Problem (1.60) and inequalities (1.63) and
(1.66) since the embedding X∗

τ,T ⊂ Yτ,T,σ is continuous and dense.
The following equality holds:

〈β(yε), yε〉Xτ,T = 0 ∀ε > 0, (1.67)

since 〈β(v), v〉V = 0 for an arbitrary v ∈ V . Moreover, from the monotonicity of β

and the BanachSteinhaus theorem, we obtain

∃C5 > 0 : ‖β(yε)‖X∗
τ,T

≤ C5 ∀ε ∈ (0, 1). (1.68)

In fact, for an arbitraryω ∈ Xτ,T , the monotonicity of β, estimate (1.63) and equality
(1.67) imply the following:

sup
ε∈(0,1)

〈β(yε), ω〉Xτ,T ≤ sup
ε∈(0,1)

〈β(yε), ω − yε〉Xτ,T + sup
ε∈(0,1)

〈β(yε), yε〉Xτ,T

= sup
ε∈(0,1)

〈β(ω), ω − yε〉Xτ,T ≤ ‖β(ω)‖X∗
τ,T

(‖ω‖Xτ,T
+ C4) < ∞.

Hence, we obtain inequality (1.68) from the Banach–Steinhaus theorem.
From a priori estimates (1.63), (1.64), and (1.66), and the lemma on the com-

pactness of the embedding Wτ,T ⊂ L2(τ, T ; H) (by virtue of the compactness of
the embedding V ⊂ H ), we obtain as a corollary of Banach–Alaoglu theorem that
there is a sequence εn↘0, n → ∞, and elements y ∈ Xτ,T and d ∈ X∗

τ,T such that



1.3 Evolutional Variational Inequalities: Penalty Method and Strong Solutions 39

y(τ ) = yτ and the following convergences take place:

yεn ⇀ y in Xτ,T , yεn (t)→ y(t) in H for a.a. t ∈ (τ, T ),

yεn (T ) ⇀ y(T ) in H, Aτ,T (yεn ) ⇀ d in X∗
τ,T n → ∞.

(1.69)

Moreover, from inequalities (1.66) and (1.68), we obtain that

β(yεn ) → 0 in X∗
τ,T n → ∞. (1.70)

Let us show that y ∈ Kτ,T . It follows from convergences (1.69) and (1.70) that
lim
n→∞〈β(yεn ), yεn − y〉Xτ,T = 0. Since the monotone demicontinuous operator β is

pseudomonotone, taking into account convergence (1.70), the following inequality
holds:

0 = lim
n→∞〈β(yεn ), yεn − ω〉Xτ,T ≥ 〈β(y), y − ω〉Xτ,T ,

∀ω ∈ Xτ,T . Thus, β(y(t)) ∈ K for a.a. t ∈ (τ, T ). Therefore, y ∈ Kτ,T since
y ∈ Xτ,T .

Let us show that
lim
n→∞〈Aτ,T (yεn ), yεn − y〉Xτ,T ≤ 0. (1.71)

In fact, Problem (1.60), the monotonicity of β and formula (1.59) imply

〈Aτ,T (yεn ), yεn − v〉Xτ,T = 1
ε
〈β(yεn ), v − yεn 〉Xτ,T + 〈y′

εn
, v − yεn 〉Xτ,T

≤ 1
ε
〈β(yεn ), v − yεn 〉Xτ,T + 〈v′, v − yεn 〉Xτ,T

≤ 1
ε
〈β(v), v − yεn 〉Xτ,T + 〈v′, v − yεn 〉Xτ,T ≤ 〈v′, v − yεn 〉Xτ,T ,

(1.72)

for arbitrary n = 1, 2, . . . and v ∈ Wτ,T ∩ Kτ,T since β(v) = 0̄. Thus, convergence
(1.69) implies the inequality

lim
n→∞〈Aτ,T (yεn ), yεn 〉Xτ,T ≤ 〈d, v〉Xτ,T + 〈v′, v − y〉Xτ,T , (1.73)

for all v ∈ Wτ,T ∩ Kτ,T . Since 0̄ ∈ Kτ,T − ωτ for ωτ ≡ yτ ∈ Kτ,T , [29, p. 284]
implies the existence of a sequence {v j } j=1,2,... ⊂ (Kτ,T − ωτ ) ∩ Wτ,T such that

(a) v j (τ ) = 0̄ for all j = 1, 2, . . . ;
(b) v j → y − ωτ in Xτ,T as j → ∞;

(c) lim
j→∞〈v′

j , v j + ωτ − y〉Xτ ,T ≤ 0.

Putting v = v j +ωτ ∈ Kτ,T ∩Wτ,T , j = 1, 2, . . . in inequality (1.73), we obtain that
lim
n→∞〈Aτ,T (yεn ), yεn 〉Xτ,T ≤ 〈d, y〉Xτ,T .The last inequality togetherwith convergences

(1.69) and inequalities (1.72) implies inequality (1.71). We will use the pseudo-
monotonicity of Aτ,T on Wτ,T,σ . It follows from inequality (1.64), convergences
(1.69), and inequality (1.71) that d = Aτ,T (y), lim

n→∞〈Aτ,T (yεn ), yεn 〉Xτ,T = 〈d, y〉Xτ,T ,
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and ∫ T

τ

∣∣〈A(yεn (t)), yεn (t) − y(t)〉V
∣∣ dt → 0 n → ∞. (1.74)

Moreover, inequalities (1.72) additionally imply inequality (1.57).
To complete the verification of the fact that y is a physical solution to Problem

(1.56) on [τ, T ], it remains to verify that y ∈ C([τ, T ]; H) and that y satisfies energy
equality (1.58).

It follows from formulas (1.59) and (1.60) (see also formula (1.62)) that

d

dt
‖yεn (t)‖2H = −〈A(yεn (t)), yεn (t)〉V

for a.a. t ∈ (τ, T ). We obtain from formula (1.74) and the last convergence in
formula (1.69) that the sequence {t → d

dt ‖yεn (t)‖2H }n=1,2,... of measurable real-
valued functions on (τ, T ) is uniformly integrable, that is, there is a subsequence
{yεm }m ⊆ {yεn }n such that the sequence {t → d

dt ‖yεm (t)‖2H }m weakly converges in
L1(τ, T ) to an element −〈A(y( · )), y( · )〉V ∈ L1(τ, T ). Hence, the sequence {t →
d
dt ‖yεm (t)‖2H }m, on the one hand, converges in the space D∗(τ, T ) (of generalized
functions on [τ, T ]) to a regular generalized function −〈A(y( · )), y( · )〉V ∈
L1(τ, T ). On the other hand, the sequence {t → ‖yεm (t)‖2H }m converges in the
space D∗(τ, T ) to the measurable function ‖y( · )‖2H essentially bounded on (τ, T ).
Thus, the sequence {t → d

dt ‖yεm (t)‖2H }m converges in the space D∗(τ, T ) to the
generalized function d

dt ‖y( · )‖2H . Thus, by virtue of the uniqueness of the limit in
the space D∗(τ, T ), d

dt ‖y( · )‖2H = −〈A(y( · )), y( · )〉V ∈ L1(τ, T ), which, in
view of formula (1.59), implies a priori estimate (1.58).

Let us show that
‖y(t) − yτ‖H → 0 t ↘ τ+. (1.75)

Since yτ ∈ K and 〈β(v), v〉V = 0 for arbitrary v ∈ V , formula (1.60) implies

(yεn (t), yτ ) − ‖yτ‖2H = ∫ t
τ
(y′

εn
(s), yτ )ds

= − ∫ t
τ
〈A(yεn (s)), yτ 〉V dt − 1

ε

∫ t
τ
〈β(yεn (s)), yτ 〉V dt

= − ∫ t
τ
〈A(yεn (s)), yτ 〉V dt + 1

ε

∫ t
τ
〈β(yεn (s)), yεn (s) − yτ 〉V dt

≥ − ∫ t
τ
〈A(yεn (s)), yτ 〉V dt

for arbitrary n = 1, 2, . . . and t ∈ (τ, T ). Otherwise,

(yεn (t), yτ ) − ‖yτ‖2H ≤ ‖yτ‖H (‖yεn (t)‖H − ‖yτ‖H )

for arbitrary n = 1, 2, . . ..
Thus,

− ∫ t
τ
〈A(yεn (s)), yτ 〉V dt ≤ (yεn (t), yτ ) − ‖yτ‖2H≤ ‖yτ‖H (‖yεn (t)‖H − ‖yτ‖H ), n = 1, 2, . . . , t ∈ (τ, T ),
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and, taking into account convergences (1.69), we obtain

− ∫ t
τ
〈A(y(s)), yτ 〉V dt ≤ (y(t), yτ ) − ‖yτ‖2H≤ ‖yτ‖H (‖y(t)‖H − ‖yτ‖H ) for a.a. t ∈ (τ, T ).

Since 〈A(y( · )), yτ 〉V ∈ L1(τ, T ), energy equality (1.58) provides the last two
inequalities for all t ∈ [τ, T ]. Hence

(y(t), yτ ) − ‖yτ‖2H → 0 as t ↘ τ+. (1.76)

To complete the proof of property (1.75) note that

||y(t) − yτ ||2H = ||y(t)||2H + ||yτ ||2H − 2(y(t), yτ ), t ∈ [τ, T ].

Hence, energy equality (1.58) and property (1.76) imply property (1.75).
From the monotonicity of β and formulas (1.59) and (1.60) we obtain the

inequality

‖yεn (t + h) − yεn (t)‖2H
≤ ‖yεn (τ + h) − yτ ‖2H − 2

∫ t
τ 〈A(yεn (s + h)) − A(yεn (s)), yεn (s + h) − yεn (s)〉V dt

for arbitrary t ∈ (τ, T − h) and h ∈ (0, T − τ). From property 3, convergences
(1.69) and (1.74), and the last inequality we obtain

‖y(t + h) − y(t)‖2H
≤ ‖y(τ + h) − yτ‖2H − 2

∫ t
τ
〈A(y(s + h)) − A(y(s)), y(s + h) − y(s)〉V dt

(1.77)
for a.a. t ∈ (τ, T−h) and arbitrary h ∈ (0, T−τ).With allowance for energy equality
(1.58), inequality (1.77) takes place for all t ∈ (τ, T − h) and h ∈ (0, T − τ). Thus,
formulas (1.75) and (1.77) imply the property of continuity of y as a mapping from
a time interval [τ, T ] into the phase space H .

The theorem is proved.

For fixed τ < T , we introduce the notation:

Dτ,T (yτ ) = {y(·) | y is a physical solution to inequality (1.56) on [τ, T ], y(τ ) = yτ },
yτ ∈ K .

It follows from Theorem 1.3 that Dτ,T (yτ ) �= ∅ and Dτ,T (yτ ) ⊂ C([τ, T ]; H)

∀τ < T, yτ ∈ K . Moreover, the conditions imposed on the parameters of Problem
(1.56) and the generalized Gronwall–Bellman lemma [2] imply the existence of C4,

C5, C6, C7 > 0 such that, for any finite time interval [τ, T ] each physical solution
y to Problem (1.56) on [τ, T ] satisfies the following estimate ∀t ≥ s, t, s ∈ [τ, T ]:

‖y(t)‖2H + C4

∫ t

s
‖y(ξ)‖p

V dξ ≤ ‖y(s)‖2H + C5(t − s), (1.78)
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‖y(t)‖2H ≤ ‖y(s)‖2He−C6(t−s) + C7. (1.79)

Moreover, the translation and concatenation of physical solutions to Problem (1.56)
on finite time intervals are physical solutions of this problem on the corresponding
intervals. It follows from the proof of Theorem1.3 that the penaltymethod guarantees
the existence of physical solutions to Problem (1.56) on a finite time interval that are
equicontinuous as mappings from a time interval [τ, T ] into the phase space H if
they start from a bounded subset of the natural phase space H (that is, the statements
of the theorems on the strong convergence of solutions from [24]). Thus (see [24]),
physical solutions (a) can be extended to global solutions defined on the positive time
semiaxis; (b) tends uniformly to a small (compact) subset of the natural phase space
H (as time t → +∞), and this subset is independent of the bounded set from which
they have started. Proceeding from the results of [24], such an attracting set consists
of complete trajectories of Problem (1.56) that are defined on the entire real line.
Thus, the results of (1.56) allow one to globally describe the dynamics of solutions
to such problems by finite algorithms up to an arbitrary small parameter.

1.4 Nonlinear Parabolic Equations of Divergent Form

Consider now an example of the class of nonlinear boundary problems for which the
dynamics of solutions can be investigated as t → +∞. Note that our consideration
does not pretend to generality.

Assume that n ≥ 2, m ≥ 1, p ≥ 2, 1 < q ≤ 2, 1
p + 1

q = 1, and Ω ⊂ Rn is a
bounded domain with a sufficiently smooth boundary Γ = ∂Ω , N1 (N2 accordingly)
is the number of differentiations with respect to x of order of ≤ m − 1 (of order of
= m accordingly). Let Aα(x, η; ξ) be the family of real functions (|α| ≤ m) that are
defined in Ω × RN1 × RN2 and satisfy the following conditions:

(i) for a.a. x ∈ Ω a function (η, ξ) → Aα(x, η, ξ) is continuous in RN1 × RN2 ;
(ii) ∀(η, ξ) ∈ RN1 × RN2 a function x → Aα(x, η, ξ) is measurable in Ω;
(iii) there are c1 ≥ 0 and k1 ∈ Lq(Ω) such that, for a.a. x ∈ Ω and ∀(η, ξ) ∈

RN1 × RN2

|Aα(x, η, ξ)| ≤ c1[|η|p−1 + |ξ |p−1 + k1(x)];

(iv) there are c2 > 0 and k2 ∈ L1(Ω) such that, for a.a x ∈ Ω and ∀(η, ξ) ∈
RN1 × RN2 ∑

|α|=m

Aα(x, η, ξ)ξα ≥ c2|ξ |p − k2(x);

(v) there is an increasing real-valued functionυ such that, for a.a. x ∈ Ω ,∀η ∈ RN1 ,

and ∀ξ, ξ ∗ ∈ RN2 , ξ �= ξ ∗ the following inequality holds:
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∑
|α|=m

(Aα(x, η, ξ) − Aα(x, η, ξ ∗))(ξα − ξ ∗
α ) ≥ (υ(ξα) − υ(ξ ∗

α ))(ξα − ξ ∗
α ).

We introduce the denotations Dku = {Dβu, |β| = k} and δu = {u, Du, . . . , Dm−1u}
[48, p. 194].

For an arbitrary fixed external force f ∈ L2(Ω), we will investigate the dynamics
of the following problem for all weak (generalized) solutions defined on [0,+∞) as
t → +∞:

∂y(x, t)

∂t
+

∑
|α|≤m

(−1)|α|Dα
(
Aα(x, δy(x, t), Dm y(x, t))

) = f (x) in Ω × (0,+∞),

(1.80)
Dα y(x, t) = 0 on Γ × (0,+∞), |α| ≤ m − 1,

y(x, t) ≥ 0 for a.a. (x, t) ∈ Ω × (0,+∞).
(1.81)

We introduce the followingdenotations [48, p. 195]: H = L2(Ω),V = Wm,p
0 (Ω),

Vσ = Wm+σ,p
0 (Ω), σ � 1, is the Sobolev real space, K = {y ∈ Wm,p

0 (Ω) : y(x) ≥
0 for a.a. x ∈ Ω}, and

a(u, ω) =
∑

|α|≤m

∫
Ω

Aα(x, δu(x), Dmu(x))Dαω(x)dx, u, ω ∈ V .

Taking into account conditions (i)–(v) and [29, pp. 192–199], the operator A : V →
V ∗ defined by the formula 〈A(u), ω〉V = a(u, ω) ∀u, ω ∈ V satisfies the basic
assumptions. Therefore, we can pass from Problems (1.80), (1.81) to corresponding
Problem (1.56). Note that

A(u) =
∑

|α|≤m

(−1)|α|Dα
(
Aα(x, δu, Dmu)

) ∀u ∈ C∞
0 (Ω).

Thus, for physical solutions to Problems (1.80), (1.81), all the statements from the
previous sections hold.
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Chapter 2
Regularity of Solutions for Nonlinear
Systems

Abstract In this chapter we establish sufficient conditions for regularity of all weak
solutions for nonlinear systems. We note that the respective Cauchy problems may
have nonunique weak solution. In Sect. 2.1 we establish regularity of all weak solu-
tions for parabolic feedback control problems. Section2.2 devoted to artificial con-
trol method for nonlinear partial differential equations and inclusions. The regularity
of all weak solutions is obtained. In Sect. 2.3 we consider regularity results of all
weak solutions for nonlinear reaction-diffusion systems with nonlinear growth. In
Sect. 2.4 we consider the following examples of applications: a parabolic feedback
control problem; a model of conduction of electrical impulses in nerve axons; a cli-
mate energy balance model; FitzHugh–Nagumo System; a model of combustion in
porous media.

2.1 Regularity of All Weak Solutions for a Parabolic
Feedback Control Problem

Let Ω ⊂ R
n, n ≥ 1, be bounded and open subset with a smooth boundary ∂Ω , f ,

f : R → R are some real functions. We consider the semilinear reaction-diffusion
inclusion:

ut − �u + [ f (u), f (u)] � 0 in Ω × (τ, T ), (−∞ < τ < T < +∞), (2.1)

with boundary condition
u
∣
∣
∂Ω

= 0, (2.2)

where [a, b] = {αa + (1 − α)b | α ∈ [0, 1]},a, b ∈ R.We suppose that f = [ f , f ] :
R → 2R \ {∅} satisfies the growth condition

∃c0 > 0 : −c0(1 + |u|) ≤ f (u) ≤ f (u) ≤ c0(1 + |u|) ∀u ∈ R. (2.3)

Suppose also that f is lower semi-continuous, and f is upper semi-continuous.
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M.Z. Zgurovsky and P.O. Kasyanov, Qualitative and Quantitative Analysis
of Nonlinear Systems, Studies in Systems, Decision and Control 111,
DOI 10.1007/978-3-319-59840-6_2

47



48 2 Regularity of Solutions for Nonlinear Systems

We shall use the following standard notations: H = L2(Ω), V = H 1
0 (Ω), V ′ is

the dual space of V . The function u(·) ∈ L2(τ, T ; V ) is a weak solution of Problem
(2.1) and (2.2) on [τ, T ], if there exists a measurable function d : Ω × (τ, T ) → R

such that

d(x, t) ∈ [ f (u(x, t)), f (u(x, t))] for a.e. (x, t) ∈ Ω × (τ, T ); (2.4)

−
∫ T

τ

〈

u,
dξ

dt

〉

dt +
∫ T

τ

∫

Ω

(∇u,∇ξ) dxdt +
∫ T

τ

∫

Ω

(d, ξ) dxdt = 0 (2.5)

for all ξ ∈ C∞
0 (Ω × (τ, T )), where 〈·, ·〉 denotes the pairing in the space V .

We note that Problem (2.1) and (2.2) arises in many important models for distrib-
uted parameter control problems and that large class of identification problems enter
this formulation. Let us indicate a problem which is one of motivations for the study
of the autonomous evolution inclusion (2.1) (cf. [37, 56] and references therein). In
a subset Ω of R3, we consider the nonstationary heat conduction equation (Figs. 2.1
and 2.2):

∂y

∂t
− �y = f in Ω × (0,+∞)

with initial conditions and suitable boundary ones. Here y = y(x, t) represents the
temperature at the point x ∈ Ω and time t > 0. It is supposed that f = f1 + f2,
where f2 is given and f1 is a known function of the temperature of the form

− f1(x, t) ∈ ∂ j (x, y(x, t)) a.e. (x, t) ∈ Ω × (0,+∞);

Figure2.3 Here ∂ j (x, ξ) denotes generalized gradient of Clarke (see [12]) with
respect to the last variable of a function j : Ω × R → R which is assumed to be
locally Lipschitz in ξ (cf. [37] and references therein). The multi-valued function
∂ j (x, ·) : R → 2R is generally nonmonotone and it includes the vertical jumps. In a
physicist’s language it means that the law is characterized by the generalized gradient
of a nonsmooth potential j (cf. [39]).

Fig. 2.1 Diffusion processes
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Fig. 2.2 Idealized physical
setting for heat conduction in
a rod with homogeneous
boundary conditions

Fig. 2.3 Feedback control
diagram

Another motivations connected with parabolic equations with a discontinuous
nonlinearity. In [43] it is considered the case, when f is the difference of maxi-
mal monotone maps. Global attractor in phase space H for such type equations is
considered there. Obtained inclusion is a particular case of an abstract differential
inclusion generated by a difference of subdifferential maps of proper convex lower
semicontinuous functionals [38]. Models of physical interest includes also the next
(cf. [3] and references therein):

• a model of combustion in porous media;
• a model of conduction of electrical impulses in nerve axons;
• a climate energy balance model;

etc. The main purpose of this subsection is to investigate regularity properties of all
globally defined weak solutions for Problem (2.1) and (2.2) with initial data uτ ∈ H
under listed above assumptions.

Further we need to consider the restriction of v : [τ, T ] → V ∗ on [s, T ], s ∈
(τ, T ), τ < T . To simplify conclusions denote it by the same symbol v(·).
Theorem 2.1 Let u(·) be an arbitrary weak solution of Problem (2.1) and (2.2)
on [τ, T ]. Then for any ε ∈ (0, T − τ) u(·) ∈ C([τ + ε, T ]; V ) ∩ L2(τ + ε, T ;
H 2(Ω) ∩ V ) and ut (·) ∈ L2(τ + ε, T ; H).

Proof Let u(·) be an arbitrary weak solution of Problem (2.1) and (2.2) on [τ, T ].
Then there exists a measurable function d : Ω × (τ, T ) → R such that u(·) and d(·)
satisfy (2.4) and (2.5). As u(·) ∈ L2(Ω × (τ, T )) and the growth condition (2.3)
holds, then d(·) ∈ L2(Ω × (τ, T )). The set

D := {s ∈ (τ, T ) | u(s) ∈ V }

is dense in [τ, T ]. For any arbitrary fixed s ∈ D we note that u(·) is the unique weak
solution on [s, T ] of the problem
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⎧

⎨

⎩

zt − �z = −d(x, t) in Ω × (s, T ),

z
∣
∣
∂Ω

= 0,
z(x, s) = u(x, s) in Ω.

(2.6)

Moreover, u(·) ∈ L2(s, T ; H 2(Ω) ∩ V ) ∩ C([s, T ]; V ) and ut (·) ∈ L2(s, T ; H),
s ∈ D (cf. [40, Chap. 4.I], [42, Chap. III] and references therein). Thus for any ε ∈
(0, T − τ) u(·) ∈ C([τ + ε, T ]; V ) ∩ L2(τ + ε, T ; H 2(Ω) ∩ V ) and ut (·) ∈ L2

(τ + ε, T ; H).
The theorem is proved.

2.2 Artificial Control Method for Nonlinear Partial
Differential Equations and Inclusions: Regularity
of All Weak Solutions

Let (V ; H ; V ∗) be evolution triple , where V be a real Hilbert space, such that V ⊂ H
with compact imbedding. Let A : V → V ∗ be a linear symmetric operator such that
∃c > 0 : 〈Av, v〉V ≥ c‖v‖2V , for each v ∈ V and let D(A) = {u ∈ V : Au ∈ H}. We
note that themapping v → ‖Av‖H defines the equivalent normon D(A); Temam [42,
Chap. III]. Let B : R × V → 2H \ {∅} be set-valued (in the general case) mapping
such that the following assumption holds: there exists c1 > 0 such that ‖y‖H ≤
c1(1 + ‖u‖V ), for a.e. t and each u ∈ V and y ∈ B(t, u).

For a set D ⊂ H let coD be a closed convex hull of a set D. We consider the
differential-operator inclusion:

du

dt
+ Au(t) + B(t, u(t)) � 0̄ (−∞ < τ < T < +∞). (2.7)

The function u(·) ∈ L2(τ, T ; V ) is called a weak solution of Problem (2.7) on
[τ, T ], if there exists a Bochner-measurable function d : (τ, T ) → H such that

d(t) ∈ coB(t, u(t)) for a.e. t ∈ (τ, T ); and (2.8)

∫ T

τ

[−〈u, v〉 ξ ′(t) + 〈Au, v〉 ξ(t) + 〈d, v〉 ξ(t)
]

dt = 0, (2.9)

for all ξ ∈ C∞
0 (τ, T ) and for all v ∈ V , where 〈·, ·〉 denotes the pairing in the space V .

The main regularity result of this section has the following formulation.

Theorem 2.2 Let −∞ < τ < T < +∞ and uτ ∈ H. If u(·) is a weak solution of
Problem (2.7) on [τ, T ], then u(·) ∈ C([τ + ε, T ]; V ) ∩ L2(τ + ε, T ; D(A)) and
du
dt (·) ∈ L2(τ + ε, T ; H) for each ε ∈ (0, T − τ).
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Proof Let u(·) be an arbitrary weak solution of Problem (2.7) on [τ, T ]. According
to the definition of a weak solution of Problem (2.7) on [τ, T ], there exist d ∈
L2(τ, T ; H) such that u(·) ∈ L2(τ, T ; V ) and d(·) satisfy (2.8) and (2.9). Note that
the set

D := {s ∈ (τ, T ) | u(s) ∈ V }

is dense in [τ, T ]. For an arbitrary fixed s ∈ D we remark that u(·) is the unique
weak solution on [τ, T ] of the problem

{
dz
dt + Az(t) = −d(t) on (s, T ),

z(s) = u(s).
(2.10)

Therefore, u(·) ∈ L2(s, T ; D(A)) ∩ C([s, T ]; V ) and du
dt (·) ∈ L2(s, T ; H), s ∈ D

(cf. [40, Chap. 4.I], [42, Chap. III] and references therein). Thus u(·) ∈ C([τ +
ε, T ]; V ) ∩ L2(τ + ε, T ; D(A)) and du

dt (·) ∈ L2(τ + ε, T ; H) for any ε ∈ (0,
T − τ).

The theorem is proved.

Remark 2.1 Theorem 2.2 implies that each weak solution of Problem (2.7) on [τ, T ]
is regular, that is, u(·) ∈ L2(ε, T ; D(A)) ∩ C([ε, T ]; V ) and du

dt (·) ∈ L2(ε, T ; H),
for each ε ∈ (0, T − τ).

Let B(t, u) := ∂ J1(u) − ∂ J2(u) for each u ∈ V and t ∈ R, where Ji : H → R

be a convex, lower semi-continuous function such that the following assumptions
hold: (i) (growth condition) there exists c1 > 0 such that ‖y‖H ≤ c1(1 + ‖u‖H ), for
each u ∈ H and y ∈ ∂ Ji (u) and i = 1, 2; (ii) (sign condition) there exist c2 > 0,
λ ∈ (0, c) such that (y1 − y2, u)H ≥ −λ‖u‖2H − c2, for each yi ∈ ∂ Ji (u), u ∈ H ,
where ∂ Ji (u) the subdifferential of Ji (·) at a point u. Note that u∗ ∈ ∂ Ji (u) if and
only if u∗(v − u) ≤ Ji (v) − Ji (u) ∀v ∈ H ; i = 1, 2. For such B Problem (2.7) has
the following formulation:

du

dt
+ Au(t) + ∂ J1(u(t)) − ∂ J2(u(t)) � 0̄ (−∞ < τ < T < +∞). (2.11)

We recall that the function u(·) ∈ L2(τ, T ; V ) is called a weak solution of Problem
(2.11) on [τ, T ], if there exist Bochner measurable functions di : (τ, T ) → H ; i =
1,2, such that

di (t) ∈ ∂ Ji (u(t)) for a.e. t ∈ (τ, T ), i=1,2; and (2.12)

∫ T

τ

[−〈u, v〉 ξ ′(t) + 〈Au, v〉 ξ(t) + 〈d1, v〉 ξ(t) − 〈d2, v〉 ξ(t)
]

dt = 0, (2.13)

for all ξ ∈ C∞
0 (τ, T ) and for all v ∈ V .

The following theorem provides sufficient conditions for the existence and regu-
larity of all weak solutions for Problem (2.11).
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Theorem 2.3 Let −∞ < τ < T < +∞ and uτ ∈ H. If u(·) is a weak solution of
Problem (2.11) on [τ, T ], then u(·) ∈ C([τ + ε, T ]; V ) ∩ L2(τ + ε, T ; D(A)) and
du
dt (·) ∈ L2(τ + ε, T ; H) for any ε ∈ (0, T − τ).

Proof The regularity of each weak solution follows from Theorem 2.2.
The theorem is proved.

2.3 Regularity of All Weak Solutions for Nonlinear
Reaction-Diffusion Systems with Nonlinear Growth

In this section we establish sufficient conditions for regularity of weak solutions
for both reaction-diffusion equations (Sect. 2.3.1) as well as systems of reaction-
diffusion equations (Sect. 2.3.2) separately.

2.3.1 Reaction-Diffusion Equations

In a bounded domain Ω ⊂ R
3 with sufficiently smooth boundary ∂Ω we consider

the problem
⎧

⎨

⎩

ut − Δu + f (u) = h, x ∈ Ω, t > 0,
u|∂Ω = 0,
u (0) = u0,

(2.14)

where
h ∈ L2(Ω),

f ∈ C(R),

| f (u)| ≤ C1(1 + |u|p−1), ∀u ∈ R,

(2.15)

with 2 ≤ p ≤ 3, C1,C2, α > 0.
We denote by A the operator −Δ with Dirichlet boundary conditions, so that

D (A) = H 2 (Ω) ∩ H 1
0 (Ω) . As usual, denote the eigenvalues and the eigenfunc-

tions of A by λi , ei , i = 1, 2 . . .

Denote F(u) = ∫ u
0 f (s)ds. From (2.15) we have that lim inf|u|→∞

f (u)

u = ∞, and for

some D10,
|F(u)| ≤ D1(1 + |u|p), ∀u ∈ R. (2.16)

In what follows we denote H = L2 (Ω), V = H 1
0 (Ω), and ‖ · ‖, (·, ·) will be the

norm and the scalar product in L2(Ω). We denote by ‖ · ‖X the norm in the abstract
Banach space X , whereas (·, ·)Y will be the scalar product in the abstract Hilbert
space Y . Also, P (X) will be the set of all non-empty subsets of X.

On the other hand, we define the usual sequence of spaces
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V 2α = D (Aα) = {u ∈ H :
∞

∑

i=1

λ2α
i |(u, ei )|2 < ∞},

where α ≥ 0. We recall the following well known result, which is a particular case
of [40, Lemma 37.8] for our operator A = −Δ in a three-dimensional domain.

Lemma 2.1 D (Aα) ⊂ Wk,q ′
(Ω) whenever q ′ ≥ 2 and k is an integer such that

k − 3

q ′ < 2α − 3

2
.

Also, it is well known that V s ⊂ Hs (Ω) for all s ≥ 0 (see [49, Chap. IV] or [34]).
A function u ∈ L2

loc(0,+∞; V )
⋂

L p
loc(0,+∞; L p(Ω)) is called aweak solution

of (2.14) on (0,+∞) if for all T > 0 , v ∈ V, η ∈ C∞
0 (0, T )

−
T∫

0

(u, v)ηt dt +
T∫

0

((u, v)V + ( f (u), v) − (h, v)) ηdt = 0.

It is well known [1, Theorem 2] or [9, p. 284] that for any u0 ∈ there exists at
least one weak solution of (2.14) with u(0) = u0 (and it may be non unique) and
that any weak solution of (2.14) belongs to C ([0,+∞); H). Moreover, the function
t �→ ‖u(t)‖2 is absolutely continuous and

1

2

d

dt
‖u(t)‖2 + ‖u(t)‖2V + ( f (u(t)), u(t)) − (h, u(t)) = 0 a.e. (2.17)

The function u ∈ L2
loc(0,+∞; V )

⋂
L p
loc(0,+∞; L p(Ω)) is called a regular

solution of (2.14) on (0,+∞) if for all T > 0, v ∈ V, and η ∈ C∞
0 (0, T ) we have

−
T∫

0

(u, v)ηt dt +
T∫

0

((u, v)V + ( f (u), v) − (h, v)) ηdt = 0, (2.18)

and

u ∈ L∞ (ε, T ; V ) , (2.19)

ut ∈ L2 (ε, T ; H) , ∀0 < ε < T . (2.20)

Any regular solution u satisfies

u ∈ L2 (ε, T ; D (A)) . (2.21)

In this section we will prove that every weak solution is in fact a regular solution.



54 2 Regularity of Solutions for Nonlinear Systems

Theorem 2.4 Assume that 2 ≤ p ≤ 3 in condition (2.15). Then any weak solution
u (·) satisfies u ∈ C ([ε, T ]; V ) ∩ L2 (ε, T ; D (A)), ut ∈ L2 (ε, T ; H) for all ε > 0,
that is, it is a regular solution.

Proof From

∫

Ω

| f (u (x, t))| p
p−1 dx ≤ C1 + C2

∫

Ω

|u (x, t)|p dx

we obtain that
‖ f (u (t))‖2

L
p

p−1 (Ω)
≤ C3 + C4 ‖u (t)‖2p−2

L p(Ω) .

Using the Sobolev embedding Hr (Ω) ⊂ L p (Ω) if r =
(
3
2 − 3

p

)

≤ 1
2 (as p ≤ 3)

and the Gagliardo–Nirenberg inequality

‖v‖Hr (Ω) ≤ C5 ‖v‖
H

1
2 (Ω)

≤ C6 ‖v‖ 1
2 ‖v‖ 1

2

H 1(Ω)
,

we have

‖ f (u (t))‖2
L

p
p−1 (Ω)

≤ C3 + C7 ‖u (t)‖p−1 ‖u (t)‖p−1
H 1(Ω)

≤ C8 + C9 ‖u (t)‖2 ‖u (t)‖2H 1(Ω) .

Thus,

‖ f (u)‖
L2

(

0,T ;L
p

p−1 (Ω)

) ≤ C10

(

1 + ‖u‖C([0,T ];H) ‖u‖L2(0,T ;H 1(Ω))

)

.

Setd (x, t) = f (u (x, t)) for (x, t) ∈ (0, T ) × Ω . Thend ∈ L2
(

0, T ; L p
p−1 (Ω)

)

⊂ L2
(

0, T ; H−r (Ω)
) ⊂ L2

(

0, T ; V−r
)

.
We consider the problem

⎧

⎨

⎩

vt − Δv = −d (x, t) + h (x) , x ∈ Ω, t > 0,
v|∂Ω = 0,
v (τ ) = u (τ ) .

We note that u (τ ) ∈ V ⊂ V r for a.a. τ > 0. For such τ in view of [40, p. 163,
Theorem 42.12] there exists a unique weak solution v (·) such that v ∈ C([τ, T ];
V r ) ∩ L2

(

τ, T ; V r+1
)

. Hence, u ∈ C([ε, T ]; V r ) ∩ L2
(

ε, T ; V r+1
)

for all ε > 0.
We shall prove that f (u (·)) ∈ L2 (ε, T ; H). As this is obvious if p = 2, we

consider that 2 < p ≤ 3. We note that V r ⊂ Hr (Ω) ⊂ L p (Ω). Also, by Lemma

2.1 with α = r+1
2 , r = 3

(
1
2 − 1

p

)

, k = 1 we obtain that V r+1 ⊂ W 1,q ′
(Ω) for

any q ′ < p. On the other hand, by the Sobolev embedding theorems we have
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W 1,q ′
(Ω) ⊂ Lq (Ω), for q <

3p
3−p . Thus, the inequality p (p − 1) <

3p
3−p , for all

2 ≤ p ≤ 3, implies that u ∈ C([ε, T ]; L p (Ω)) ∩ L2
(

ε, T ; L p(p−1) (Ω)
)

. By (2.15)
we have

‖ f (u (t))‖2 =
∫

Ω

| f (u (x, t))|2 dx ≤ C11 + C12

∫

Ω

|u (x, t)|2(p−1) dx

≤ C13 + C14 ‖u (t)‖p−1
L p(Ω) ‖u (t)‖p−1

L p(p−1)(Ω)
.

Therefore, f (u (·)) ∈ L2 (ε, T ; H). Then standard results imply that u ∈ C([ε, T ];
V ) ∩ L2(ε, T ; D (A)) and ut ∈ L2 (ε, T ; H).

The lemma is proved.

Remark 2.2 Theorem 2.4 was proved in [23].

2.3.2 Systems of Reaction-Diffusion Equations

Let us consider the following reaction-diffusion system (RD-system for short)

{

ut = aΔu − f (u) + h(x), x ∈ Ω, t > 0,
u|∂Ω = 0,

(2.22)

where u = u(x, t) = (u1(x, t), . . . , uN (x, t)) is unknown vector-function, a is a
real N × N matrix with positive symmetric part 1

2 (a + a∗) ≥ β I , β > 0, h =
(h1, . . . , hN ), f = ( f1, . . . , fN ) are given functions,

h ∈ (L2(Ω))N , f ∈ C(RN ;RN ),

and for given numbers C1,C2 ≥ 0, γ > 0, pi ≥ 2, i = 1, N the following condi-
tions hold:

∀ v ∈ R
N

N
∑

i=1

| fi (v)|qi ≤ C1(1 +
N

∑

i=1

|vi |pi ), (2.23)

∀ v ∈ R
N

N
∑

i=1

fi (v)v
i ≥ γ

N
∑

i=1

|vi |pi − C2, (2.24)

where 1
pi

+ 1
qi

= 1, i = 1, N . In further arguments we will use the standard func-
tional spaces

H = (L2(Ω))N with the norm |v|2 =
∫

Ω

N
∑

i=1

|vi (x)|2dx,
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V = (H 1
0 (Ω))N with the norm ‖v‖2 =

∫

Ω

N
∑

i=1

|∇vi (x)|2dx .

Let us denote V ′ = H−1(Ω))N , p = (p1, . . . , pN ), Lp(Ω) = L p1(Ω) × · · ·
× L pN (Ω),

W = Lp
loc(0,+∞; Lp(Ω)) ∩ L2

loc(0,+∞; V ).

Definition 2.1 The function u = u(x, t) ∈ W is called a (global) weak solution of
Problem (2.22) on (0,+∞) if for all T > 0, v ∈ V ∩ Lp(Ω),

d

dt

∫

Ω

u(x, t)v(x)dx +
∫

Ω

(

a∇u(x, t)∇v(x) + f (u(x, t))v(x) − h(x)v(x)
)

dx = 0

(2.25)
in the sense of scalar distributions on (0, T ).

From (2.23) and Sobolev embedding theorem we see that every solution of (2.22)
satisfies ut ∈ Lq

loc(0,+∞; H−r(Ω)), where r = (r1, . . . , rN ), rk = max{1, n( 12 −
1
pk

)}. The well-known result on global resolvability of (2.22) for initial conditions
from the phase space H established in [9]. Under conditions (2.23), (2.24) for every
u0 ∈ H there exists at least one weak solution of (2.22) on (0,+∞) with u(0) = u0.
Every weak solution of (2.22) belongs to C ([0,+∞); H), the function t �→ |u(t)|2
is absolutely continuous and for a.a. t ≥ 0 the following energy equality holds

1

2

d

dt
|u(t)|2 + (a∇u(t),∇u(t)) + ( f (u(t)), u(t)) = (h, u(t)). (2.26)

The function u = u(x, t) ∈ W is called a regular solution of Problem (2.22) on
(0,+∞) if it is weak solution on (0,+∞) and, additionally,

u ∈ L∞ (

ε, T ; V ∩ Lp(Ω)
)

, (2.27)

ut ∈ L2 (ε, T ; H) ∀ 0 < ε < T . (2.28)

Let us consider the following additional condition on vector-function f [51]:

∀ v ∈ R
N f (v) = ∇F(v) + g(v), (2.29)

where∇F satisfies (2.23), (2.24), and g ∈ C(RN ;RN ) is such that for some constants
C3 ≥ 0, C4 ≥ 0,

|g(v)|2 ≤ C3F(v) + C4(|v|2 + 1), ∀ v ∈ R
N . (2.30)

If N = 1 (scalar case), then (2.29), (2.30) hold with F(v) =
v∫

0
f (s)ds, g ≡ 0.

Conditions (2.29), (2.30) also take place if
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fi (v) = αi v
i |vi |pi−2 + gi (v), i = 1, N ,

where αi > 0, g ∈ C(RN ;RN ), and |g(v)| ≤ C4(1 + |v|). Another example is the
FitzHugh–Nagumo system (see the example in Sect. 3.4.4 below).

Let us briefly analyze conditions (2.29), (2.30).
Using the equality

F(v) − F(0) =
1∫

0

∇F(sv) · vds =
1

(|v|+1)2∫

0

∇F(sv) · vds +
1∫

1
(|v|+1)2

∇F(sv) · vds

and condition (2.24), we deduce that for some α > 0

∀ v ∈ R
N F(v) ≥ α

N
∑

i=1

|vi |pi − C5. (2.31)

Again using the equality F(v) − F(0) =
1∫

0
∇F(sv)vds, Young’s inequality and con-

dition (2.23), we obtain

|F(v)| ≤ C6(

N
∑

i=1

|vi |pi + 1). (2.32)

Theorem 2.5 Under conditions (2.23), (2.24), (2.29), (2.30) for every u0 ∈ H there
exists at least one regular solution u(·) of (2.22) such that u (0) = u0, and for some
positive constants C(g), D(g), which depend on the function g but not on u(·), the
following energy inequality holds for a.e. s > 0 and each t ≥ s

E (u (t)) +
∫ t

s
|ur |2dr ≤ E (u (s)) + C(g)

t∫

s

E(u(p))dp + D(g)(t − s),

(2.33)
where E (u (t)) = ‖u (t)‖2 + 2 (F (u (t)) , 1) − 2 (h, u (t)) . Moreover, C(g) =
D(g) = 0 if in condition (2.29) we have g ≡ 0.

Proof We take as in [9, p.281] the Galerkin approximations using the basis of eigen-
functions {wj (x) , j ∈ N}, of the Laplace operator with Dirichlet boundary condi-
tions. Let Xn = {w1, . . . ,wn} and let Pn be the orthogonal projector from H onto Xn .
Then un (x, t) = ∑n

j=i a j,m (t)wj (x) will be a solution of the system of ordinary
differential equations

dun

dt
= PnΔun − Pn f

(

un
) + Pnh, un (0) = Pnu0. (2.34)
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It is proved in [9, p.281] that (2.34) is globally resolved, and for every T > 0 passing
to a subsequence un converges to a weak solution u of (2.22) in C([0, T ]; H),
weakly in Lp (0, T ; Lp (Ω)) and weakly in L2 (0, T ; V ). Also, unt → ut weakly
in Lq

(

0, T ; H−r (Ω)
)

.
Multiplying the equation in (2.34) by unt we get

d

dt

(‖un‖2 + 2(F(un), 1) − 2(h, un)
) + 2|unt |2 = −2(g(un), unt ). (2.35)

Using (2.30), we deduce from (2.35) that

d

dt

(‖un‖2 + 2(F(un), 1) − 2(h, un)
) + |unt |2

≤ C7(g)
(‖un‖2 + 2(F(un), 1) − 2(h, un)

) + C8(g). (2.36)

In particular, un satisfies (2.33) ∀ t ≥ s ≥ 0. We note that if g ≡ 0, then C7(g) =
C8(g) = 0, so that C(g) = D(g) = 0 holds.

On the other hand, multiplying (2.22) by un and using (2.23) in a standard way
we obtain

d

dt
|un|2 + λ1|un|2 + ∥

∥un
∥
∥
2 + γ

N
∑

i=1

∥
∥uni

∥
∥
pi
L pi

≤ K + |h|2. (2.37)

By Gronwall’s lemma we obtain

|un(t)|2 ≤ e−λ1t |un0|2 + 1

λ1

(

K + |h|2) . (2.38)

Thus integrating (2.37) over (t, t + r) with r > 0 we have

|un (t + r) |2 +
∫ t+r

t

∥
∥un

∥
∥
2
ds + γ

∫ t+r

t

N
∑

i=1

∥
∥uni (s)

∥
∥
pi
L pi

ds (2.39)

≤ |un (t) |2 + r
(

K + |h|2)

≤ e−λ1t |un0|2 +
(

1

λ1
+ r

)
(

K + |h|2) .

Then from (2.32),
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∫ t+r

t

(∥
∥un

∥
∥2 + 2

(

F
(

un (s)
)

, 1
) − 2

(

h, un
))

ds

≤
∫ t+r

t

∥
∥un

∥
∥2 ds + 2C6

∫ t+r

t

N
∑

i=1

∥
∥uni (s)

∥
∥pi
L pi ds + r |h|2 +

∫ t+r

t
|un |2ds + 2C6|Ω|r

≤ C9(e
−λ1t |un0 |2 + r + 1). (2.40)

Now we can apply uniform Gronwall Lemma [46] to inequality (2.36) and obtain

∥
∥un (t + r)

∥
∥
2 + 2

(

F
(

un (t + r)
)

, 1
) − 2

(

h, un (t + r)
)

(2.41)

≤ C10(
e−λ1t |un0|2 + 1

r
+ 1)er for all 0 ≤ t ≤ t + r.

From the last inequality and (2.31) we have

∥
∥un (t + r)

∥
∥
2 +

N
∑

i=1

∥
∥uni (t + r)

∥
∥
pi
L pi

(2.42)

≤ C11

(

(
e−λ1t |un0|2 + 1

r
+ 1)er + 1

)

for all 0 ≤ t ≤ t + r.

Therefore, the sequence un (·) is bounded in L∞ (r, T ; V ∩ Lp(Ω)) for all
0 < r < T .

Integrating (2.36) over (r, T ), we have

∫ T

r
|unt |2dt ≤ C7

T∫

r

(∥
∥un (s)

∥
∥2 + 2

(

F
(

un (s)
)

, 1
) − 2

(

h, un(s)
))

ds (2.43)

+ ∥
∥un (r)

∥
∥2 + 2

(

F
(

un (r)
)

, 1
) − 2

(

h, un(r)
) +C8(T − r) + 2C5|Ω| + |h|2 + |un(T )|2.

So from (2.38), (2.40), (2.41) and the last inequality we deduce that unt is bounded
in L2 (r, T ; H) for all 0 < r < T .

Thus for the limit function u we can claim that it is regular solution of (2.22) and
u(0) = u0.

Let us prove that u satisfies the energy inequality (2.33). As un is bounded in
L∞(r, T ; Lp(Ω)), so f (un) is bounded in L∞(r, T ; Lq(Ω)). Therefore from [45]
up to subsequence

un → u in L2(r, T ; V ) ∩ Lp(r, T ; Lp(Ω)). (2.44)

and, in particular,
un(t) → u(t) in V for a.a. t ∈ (r, T ).
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Also, it is standard to check that un → u in C([r, T ], H), for all 0 < r < T, and
that un(t) → u(t) weakly in V for all 0 < t ≤ T .

Then by the dominated convergence theorem F(un(t)) → F(u(t)) in L1(Ω) for
a.a. t ∈ [r, T ]. Also, for any 0 < t ≤ T we have F(un(x, t)) → F(u(x, t)) for a.a.
x . Then F(un(x, t)) ≥ −C5 and Fatou’s lemma imply

∫

Ω

F(u(x, t))dx ≤ lim inf
∫

Ω

F(un(x, t))dx

and
E(u(t)) ≤ lim inf E(un(t)).

Hence, we can pass to the limit in (2.33) and obtain the required result.
The theorem is proved.

Remark 2.3 Theorem 2.5 yields only existence but not regularity of each weak solu-
tion of Problem (2.22). This theorem was proved in [24].

2.4 Examples of Applications

In this section we provide examples of applications to theorems established in
Sects. 2.1–2.3. We consider a parabolic feedback control problem (Sect. 2.4.1), a
model of conduction of electrical impulses in nerve axons (Sect. 2.4.2), a climate
energy balance model (Sect. 2.4.3); FitzHugh–Nagumo system (Sect. 2.4.4); and a
model of combustion in porous media (Sect. 2.4.5).

2.4.1 A Parabolic Feedback Control Problem

Let Ω be an open and bounded subset of R3. Let us consider the following nonsta-
tionary heat conduction equation

∂y

∂t
− �y = f in Ω × R (2.45)

with initial condition and Dirichlet homogeneous boundary condition. Here y =
y(x, t) represents the temperature at the point x ∈ Ω and time t > 0.

Let j : Ω × R → R be a locally Lipschitz function in ξ (cf. [37] and references
therein) and ∂ j (x, ξ) denotes generalized gradient of Clarke (see [12]) with respect to
the last variable. Note that the multi-valued function ∂ j (x, ·) : R → 2R is generally
nonmonotone and it includes the vertical jumps.

We assume that f = f1 + f2, where f2 = f2(x) is given and f1 is a known
function of the temperature of the form



2.4 Examples of Applications 61

− f1(x, t) ∈ ∂ j (x, y(x, t)) a.e. (x, t) ∈ Ω × R. (2.46)

In a physicist’s language it means that the law is characterized by the generalized
gradient of a nonsmooth potential j (cf. [39]).

Assume also that ∂ j satisfies the growth condition

∃c0 > 0 : |p| ≤ c0(1 + |u|) for a.e. x ∈ Ω, and each u ∈ R, and d ∈ ∂ j (x, u);

and the sign condition

lim
u→+∞

infd∈∂ j (x,u) d

u
> −λ1; lim

u→−∞

supd∈∂ j (x,u) d

u
> −λ1,

where λ1 is the first eigenvalue of−� in H 1
0 (Ω). According to Theorem 2.2, for any

−∞ < τ < T < +∞ each weak solution uτ ∈ L2(Ω) of Problem (2.45) and (2.46)
on [τ, T ] belongs to C([τ + ε, T ]; H 1

0 (Ω)) ∩ L2(τ + ε, T ; H 2(Ω) ∩ H 1
0 (Ω)) and

du
dt (·) ∈ L2(τ + ε, T ; L2(Ω)) for each ε ∈ (0, T − τ).

2.4.2 A Model of Conduction of Electrical Impulses
in Nerve Axons

Consider the problem:

{
∂u
∂t − ∂2u

∂x2 + u ∈ λH(u − a), (x, t) ∈ (0, π) × R,

u(0, t) = u(π, t) = 0, t ∈ R,
(2.47)

where a ∈ (

0, 1
2

)

; Terman [47, 48]. Since Problem (2.47) is a particular case of
Problem (2.1) and (2.2), then for each −∞ < τ < T < +∞ and a weak solution
uτ ∈ L2((0, π)) of Problem (2.47) on [τ, T ] belongs toC([τ + ε, T ]; H 1

0 ((0, π))) ∩
L2(τ + ε, T ; H 2((0, π)) ∩ H 1

0 ((0, π))) and du
dt (·) ∈ L2(τ + ε, T ; L2((0, π))) for

each ε ∈ (0, T − τ); Figs. 2.4, 2.5, 2.6, and 2.7.

2.4.3 Climate Energy Balance Model

Let (M , g)be aC∞ compact connected oriented two-dimensionalRiemannianmani-
foldwithout boundary (as, e.g.M = S2 the unit sphere ofR3). Consider the problem:

∂u
∂t − Δu + Re(x, u) ∈ QS(x)β(u), (x, t) ∈ M × R, (2.48)



62 2 Regularity of Solutions for Nonlinear Systems

Fig. 2.4 Graphics of solutions of problem (2.47) with a = 0.49, λ = 2, n = 10, h = 0, 001, N =
100 in a moment a t = 0; b t = 0.8; c t = 1.6; d t = 2.4; e t = 3.2; f t = 4

Fig. 2.5 Screenlist of animation for dynamics of solutions of problem (2.47) in 2D

whereΔu = divM (∇Mu) ; ∇M is understood in the sense of theRiemannianmetric
g. Note that (2.48) is the so-called climate energy balance model. It was proposed in
Budyko [8] and Sellers [41] and examined also in Díaz et al. [13–15]. The unknown
u(x, t) represents the average temperature of the Earth’s surface. In Budyko [8] the
energy balance is expressed as

heat variation = Ra − Re + D.
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Fig. 2.6 Screenlist of animation for dynamics of solutions of problem (2.47) in 3D

Fig. 2.7 Screenlist of animation for dynamics of solutions of problem (2.47) in section
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Here Ra = QS(x)β(u). It represents the solar energy absorbed by the Earth, Q > 0 is
a solar constant, S(x) is an insolation function, given the distribution of solar radiation
falling on upper atmosphere, β represents the ratio between absorbed and incident
solar energy at the point x of the Earth’s surface (so-called co-albedo function). The
term Re represents the energy emitted by the Earth into space, as usual, it is assumed
to be an increasing function on u. The term D is heat diffusion, we assume (for
simplicity) that it is constant.

As usual, the term Re may be chosen according to the Newton cooling law as
linear function on u, Re = Bu + C (here B, C are some positive constants) [8], or
according to the Stefan-Boltzman law, Re = σu4 [41]. In this subsection we consider
Re = Bu as in Budyko [8].

Let S : M → R be a function such that S ∈ L∞(M ) and there exist S0, S1 > 0
such that

0 < S0 ≤ S(x) ≤ S1.

Suppose also that β is a bounded maximal monotone graph of R2, that is there exist
m, M ∈ R such that for all s ∈ R and z ∈ β(s)

m ≤ z ≤ M.

Let us consider real Hilbert spaces

H := L2(M ), V := {u ∈ L2(M ) : ∇Mu ∈ L2(TM )}

with respective standard norms ‖ · ‖H , ‖ · ‖V , and inner products ( · , · )H , ( · , · )V ,

where TM represents the tangent bundle and the functional spaces L2(M ) and
L2(TM ) are defined in a standard way; see, for example, Aubin [2]. According
to Theorem 2.2, for any −∞ < τ < T < +∞ each weak solution uτ ∈ L2(Ω) of
Problem (2.48) on [τ, T ]belongs toC([τ + ε, T ]; H 1

0 (Ω)) ∩ L2(τ + ε, T ; H 2(Ω) ∩
H 1

0 ((0, π))) and du
dt (·) ∈ L2(τ + ε, T ; L2(Ω)) for each ε ∈ (0, T − τ).

2.4.4 FitzHugh–Nagumo System

Let us consider generalized FitzHugh–Nagumo system [46]:

ut = d1Δu − f1(u) − v, (2.49)

vt = d2Δv + δu − γ v, (2.50)

u|∂Ω = v|∂Ω = 0, (2.51)

where Ω = (0, L), d1, d2, δ, γ are positive constants, f1 ∈ C(R),
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Fig. 2.8 Trajectories of
FitzHugh–Nagumo system

| f1(u)| ≤ C1(1 + |u|3); f 1(u)u ≥ α|u|4 − C2. (2.52)

For the vector-function

f (u, v) =
(

f1(u) + v
−δu + γ v

)

conditions (2.23), (2.24) hold with p1 = 4, p2 = 2. Moreover, f = ∇F + g, where

F = F(u, v) =
u∫

0
f1(s)ds + γ

2 v
2, g = g(u, v) =

(

v
−δu

)

and conditions (2.29),

(2.30) also hold. Then all statements of Theorem 2.5 hold; Fig. 2.8.

2.4.5 A Model of Combustion in Porous Media

Let us consider the following problem:

{
∂u
∂t − ∂2u

∂x2 − f (u) ∈ λH(u − 1), (x, t) ∈ (0, π) × R,

u(0, t) = u(π, t) = 0, t ∈ R,
(2.53)

where f : R → R is a continuous and nondecreasing function satisfying growth and
sign assumptions, λ > 0, and H(0) = [0, 1], H(s) = I{s > 0}, s �= 0; Feireisl and
Norbury [17]. Since Problem (2.53) is a particular case of Problem (2.1) and (2.2),
then for any −∞ < τ < T < +∞ each weak solution uτ ∈ L2((0, π)) of Problem
(2.53) on [τ, T ] belongs toC([τ + ε, T ]; H 1

0 ((0, π))) ∩ L2(τ + ε, T ; H 2((0, π)) ∩
H 1

0 ((0, π))) and du
dt (·) ∈ L2(τ + ε, T ; L2((0, π))) for each ε ∈ (0, T − τ); Fig. 2.9.
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Fig. 2.9 Graphics of solutions with f (u) = u, λ = 2, ε = 0.1, M = 100 in moment a t = 0;
b t = 0.8; c t = 1.6; d t = 2.4; e t = 3.2; f t = 4
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36. Migórski, S.: On the existence of solutions for parabolic hemivariational inequalities. J. Com-
put. Appl. Math. 129, 77–87 (2001)

http://dx.doi.org/10.1016/j.jmaa.2010.07.040
http://dx.doi.org/10.1016/j.jmaa.2010.07.040
http://dx.doi.org/10.1142/S0218127410027313
http://dx.doi.org/10.1142/S0218127410027313
http://dx.doi.org/10.12785/amis/090506
http://dx.doi.org/10.12785/amis/090506
http://dx.doi.org/10.3934/cpaa.2014.13.1891
http://dx.doi.org/10.1134/S0001434612070231
http://dx.doi.org/10.1134/S0001434612070231
http://dx.doi.org/10.1007/s10559-011-9359-6
http://dx.doi.org/10.1007/s10559-011-9359-6
http://dx.doi.org/10.1007/s11228-013-0233-8
http://dx.doi.org/10.1023/A:1008608431399


68 2 Regularity of Solutions for Nonlinear Systems
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Chapter 3
Advances in the 3D Navier-Stokes Equations

Abstract In this chapter we provide a criterion for the existence of global strong
solutions for the 3D Navier-Stokes system for any regular initial data. Moreover,
we establish sufficient conditions for Leray-Hopf property of a weak solution for
the 3D Navier-Stokes system. Under such conditions this weak solution is rightly
continuous in the standard phase space H endowed with the strong convergence
topology.

3.1 Weak, Leray-Hopf and Strong Solutions

LetΩ ⊂ R
3 be a bounded domain with rather smooth boundary Γ = ∂Ω , and [τ, T ]

be a fixed time interval with −∞ < τ < T < +∞. We consider 3D Navier-Stokes
system in Ω × [τ, T ]

⎧
⎨

⎩

∂y

∂t
− ν�y + (y · ∇)y = −∇ p + f, div y = 0,

y
∣
∣
Γ

= 0, y
∣
∣
t=τ

= yτ ,
(3.1)

where y(x, t) means the unknown velocity, p(x, t) is the unknown pressure, f (x, t)
is the given exterior force, and yτ (x) is the given initial velocity with t ∈ [τ, T ],
x ∈ Ω , ν > 0 means the viscosity constant; see also Figs. 3.1 and 3.2.

Throughout this note we consider generalized setting of Problem (3.1). For this
purpose define the usual function spaces

V = {u ∈ (C∞
0 (Ω))3 : div u = 0}, Vσ = cl(Hσ

0 (Ω))3V , σ ≥ 0,

where clX denotes the closure in the space X . Set H := V0, V := V1. It is well known
that each Vσ , σ > 0, is a separable Hilbert space and identifying H and its dual H∗
we have Vσ ⊂ H ⊂ V ∗

σ with dense and compact embedding for each σ > 0. We
denote by (·, ·), ‖·‖ and ((·, ·)), ‖ · ‖V the inner product and norm in H and V ,
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Fig. 3.1 Alternating turbulence

Fig. 3.2 Poincare
intersections of vortices in
groove in perturbed flow

respectively; 〈·, ·〉 will denote pairing between V and V ∗ that coincides on H × V
with the inner product (·, ·). Let Hw be the space H endowed with the weak topology.
For u, v,w ∈ V we put

b(u, v,w) =
∫

Ω

3∑

i, j=1

ui
∂v j
∂xi

w jdx .

It is known that b is a trilinear continuous form on V and b(u, v, v) = 0, if u, v ∈ V .
Furthermore, there exists a positive constant C such that

|b(u, v,w)| ≤ C‖u‖V ‖v‖V ‖w‖V , (3.2)
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for each u, v,w ∈ V ; see, for example, Sohr [18, Lemma V.1.2.1] and references
therein.

Let f ∈ L2 (τ, T ; V ∗) + L1(τ, T ; H) and yτ ∈ H . Recall that the function y ∈
L2(τ, T ; V ) with

dy

dt
∈ L1(τ, T ; V ∗) is a weak solution of Problem (3.1) on [τ, T ],

if for all v ∈ V

d

dt
(y, v) + ν((y, v)) + b(y, y, v) = 〈 f, v〉 (3.3)

in the sense of distributions, and

y(τ ) = yτ . (3.4)

The weak solution y of Problem (3.1) on [τ, T ] is called a Leray-Hopf solution of
Problem (3.1) on [τ, T ], if y satisfies the energy inequality:

Vτ (y(t)) ≤ Vτ (y(s)) for all t ∈ [s, T ], a.e. s > τ and s = τ, (3.5)

where

Vτ (y(ς)) := 1

2
‖y(ς)‖2 + ν

ς∫

τ

‖y(ξ)‖2V dξ −
ς∫

τ

〈 f (ξ), y(ξ)〉dξ, ς ∈ [τ, T ].

(3.6)

For each f ∈ L2 (τ, T ; V ∗) + L1(τ, T ; H) and yτ ∈ H there exists at least one
Leray-Hopf solution of Problem (3.1); see, for example, Temam [19, Chapter III]

and references therein. Moreover, y ∈ C([τ, T ], Hw) and
dy

dt
∈ L

4
3 (τ, T ; V ∗) +

L1(τ, T ; H). If f ∈ L2 (τ, T ; V ∗), then, additionally,
dy

dt
∈ L

4
3 (τ, T ; V ∗). In par-

ticular, initial condition (3.4) makes sense.
Let A : V → V ∗ be the linear operator associated to the bilinear form ((u, v)) =

〈Au, v〉. Then A is an isomorphism from D(A) onto H with D(A) = (H 2(Ω))3 ∩ V .

We recall that the embedding D(A) ⊂ V is dense and continuous. Moreover, we
assume ‖Au‖H as the norm on D(A), which is equivalent to the one induced by
(H 2(Ω))3. Problem (3.3) can be rewritten as

{ dy
dt + νAy + B(y, y) = f in V ∗,
y(τ ) = yτ ,

(3.7)

where the first equation we understand in the sense of distributions on (τ, T ). Now
we write

D(yτ , f ) = {y : y is a weak solution of Problem (3.3) on [τ, T ]}.
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It is well known (cf. [19]) that if f ∈ L2(τ, T ; V ∗), and if yτ ∈ H , thenD(yτ , f ) is
not empty.

A weak solution y of Problem (3.3) on [τ, T ] is called a strong one, if it addi-
tionally belongs to Serrin’s class L8(τ, T ; (L4(Ω))3). We note that any strong solu-
tion y of Problem (3.3) on [τ, T ] belongs to C([τ, T ]; V ) ∩ L2(τ, T ; D(A)) and
dy
dt ∈ L2(τ, T ; H) (cf. [18, Theorem 1.8.1, p. 296] and references therein).

For any f ∈ L∞(τ, T ; H) and yτ ∈ V it is well known the only local existence
of strong solutions for the 3D Navier-Stokes equations (cf. [18–20] and references
therein).

3.2 Leray-Hopf Property for a Weak Solution of the 3D
Navier-Stokes System: Method of Artificial Control

Let −∞ < τ < T < +∞. We consider the following space of parameters:

Uτ,T := (L2(τ, T ; V )) × (
L2 (

τ, T ; V ∗) + L1(τ, T ; H)
) × H.

Each triple (u, g, zτ ) ∈ Uτ,T is called admissible for the following auxiliary control
problem.

Problem (C) on [τ, T ] with (u, g, zτ ) ∈ Uτ,T : find z ∈ L2(τ, T ; V ) with
dz

dt
∈

L1(τ, T ; V ∗) such that z(τ ) = zτ and for all v ∈ V

d

dt
(z, v) + ν((z, v)) + b(u, z, v) = 〈g, v〉 (3.8)

in the sense of distributions; cf. Kapustyan et al. [10, 11]; Kasyanov et al. [12, 13];
Melnik and Toscano [15]; Zgurovsky et al. [20, Chap. 6].

As usual, let A : V → V ∗ be the linear operator associated with the bilinear form
((u, v)) = 〈Au, v〉, u, v ∈ V . For u, v ∈ V we denote by B (u, v) the element of V ∗
definedby 〈B (u, v) ,w〉 = b(u, v,w), for allw ∈ V . ThenProblem (C)on [τ, T ]with
(u, g, zτ ) ∈ Uτ,T can be rewritten as: find z ∈ L2(τ, T ; V ) with

dz

dt
∈ L1(τ, T ; V ∗)

such that
dz

dt
+ νAz + B (u, z) = g, in V ∗, and z(τ ) = zτ . (3.9)

We recall, that {w1,w2, · · · } ⊂ V is the special basis if ((wj , v)) = λ j (wj , v) for
each v ∈ V and j = 1, 2, · · · , where 0 < λ1 ≤ λ2 ≤ · · · is the sequence of eigen-
values. Let Pm be the projection operator of H onto Hm := span{w1, · · · ,wm}, that
is Pmv = ∑m

i=1(v,wi )wi for each v ∈ H and m = 1, 2, · · · . Of course we may con-
sider Pm as a projection operator that acts from Vσ onto Hm for each σ > 0 and,
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since P∗
m = Pm , we deduce that ‖Pm‖L (V ∗

σ ;V ∗
σ ) ≤ 1. Note that (wj , v)Vσ

= λσ
j (wj , v)

for each v ∈ Vσ and j = 1, 2, · · · .

The following theorem establishes sufficient conditions for the existence of an
unique solution for Problem (C). This is the main result of this section.

Theorem 3.1 Let −∞ < τ < T < +∞, yτ ∈ H, f ∈ L2 (τ, T ; V ∗) + L1(τ, T ;
H), and y be a weak solution of Problem (3.1) on [τ, T ]. If Problem (C) on [τ, T ]
with (u, 0̄, 0̄) ∈ Uτ,T has the unique solution z ≡ 0̄, then (y, f, yτ ) ∈ Uτ,T and Prob-
lem (C) on [τ, T ] with (y, f, yτ ) ∈ Uτ,T has the unique solution z = y. Moreover, y
satisfies inequality (3.5).

Before the proof of Theorem 3.1 we remark that AC([τ, T ]; Hm), m = 1, 2, · · · ,

will denote the family of absolutely continuous functions acting from [τ, T ] into Hm ,
m = 1, 2, · · · .

Proof of Theorem 3.1. Prove that z = y is the unique solution of Problem (C)
on [τ, T ] with (y, f, yτ ) ∈ Uτ,T . Indeed, y is the solution of Problem (C) on [τ, T ]
with (y, f, yτ ) ∈ Uτ,T , because y is a weak solution of Problem (3.1) on [τ, T ].
Uniqueness holds, because if z is a solution of Problem (C) on [τ, T ]with (y, f, yτ ) ∈
Uτ,T , then z − y ≡ 0̄ is the unique solution of Problem (C) on [τ, T ]with (y, 0̄, 0̄) ∈
Uτ,T .

The rest of the proof establishes that y satisfies inequality (3.5). We note that y
can be obtained via standard Galerkin arguments, that is, if ym ∈ AC([τ, T ]; Hm)

with
d

dt
ym ∈ L1(τ, T ; Hm), m = 1, 2, · · · , is the approximate solution such that
dym
dt

+ νAym + PmB (y, ym) = Pm f, in Hm , ym(τ ) = Pm y(τ ), (3.10)

then the following statements hold:

(i) ym satisfy the following energy equality:

1

2
‖ym(t1)‖2 + ν

∫ t1

s
‖ym(ξ)‖2V dξ −

∫ t1

s
〈 f (ξ), ym(ξ)〉dξ

= 1

2
‖ym(t2)‖2 + ν

∫ t2

s
‖ym(ξ)‖2V dξ−

∫ t2

s
〈 f (ξ), ym(ξ)〉dξ,

(3.11)
for each t1, t2 ∈ [τ, T ], for each m = 1, 2, · · · ;

(ii) there exists a subsequence {ymk }k=1,2,··· ⊆ {ym}m=1,2,··· such that the following
convergence (as k → ∞) hold:

(ii)1 ymk → y weakly in L2(τ, T ; V );
(ii)2 ymk → y weakly star in L∞(τ, T ; H);
(ii)3 Pmk B

(
y, ymk

) → B (y, y) weakly in L2(τ, T ; V ∗
3
2
);

(ii)4 Pmk f → f strongly in L2(τ, T ; V ∗) + L1(τ, T ; H);

(ii)5
dymk

dt
→ dy

dt
weakly in L2(τ, T ; V ∗

3
2
) + L1(τ, T ; H).
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Indeed, convergences (ii)1 and (ii)2 follow from (3.11) (see also Temam [19,
Remark III.3.1, pp. 264, 282]) and Banach-Alaoglu theorem. Since there exists

C1 > 0 such that |b(u, v,w)| ≤ C‖u‖V ‖w‖V ‖v‖ 1
2
V ‖v‖ 1

2 , for each u, v,w ∈ V (see,
for example, Sohr [18,LemmaV.1.2.1]), then (ii)1, (ii)2 andBanach-Alaoglu theorem
imply (ii)3. Convergence (ii)4 holds, because of the basic properties of the projec-
tion operators {Pm}m=1,2,···. Convergence (ii)5 directly follows from (ii)3, (ii)4 and
(3.10). We note that we may not pass to a subsequence in (ii)1–(ii)5, because z = y
is the unique solution of Problem (C) on [τ, T ] with (y, f, yτ ) ∈ Uτ,T .

Moreover, there exists a subsequence {yk j } j=1,2,··· ⊆ {ymk }k=1,2,··· such that

yk j (t) → y(t) strongly in H for a.e. t ∈ (τ, T ) and t = τ, j → ∞. (3.12)

Indeed, according to (3.10), (3.11) and (ii)3, the sequence {ymk }k=1,2,··· is bounded in
a reflexive Banach space Wτ,T := {w ∈ L2(τ, T ; V ) : d

dt w ∈ L1(τ, T ; V ∗
3
2
)}. Com-

pactness lemma yields that Wτ,T ⊂ L2(τ, T ; H) with compact embedding. There-
fore, (ii)1–(ii)5 imply that ymk → y strongly in L2(τ, T ; H) as k → ∞. Thus, there
exists a subsequence {yk j } j=1,2,··· ⊆ {ymk }k=1,2,··· such that (3.12) holds.

Due to convergences (ii)1–(ii)5 and (3.12), if we pass to the limit in (3.11) as
mkj → ∞, then we obtain that y satisfies the inequality

1

2
‖y(t)‖2 + ν

∫ t

s
‖y(ξ)‖2V dξ −

∫ t

s
〈 f (ξ), y(ξ)〉dξ ≤ 1

2
‖y(τ )‖2, (3.13)

for a.e. t ∈ (s, T ), a.e. s ∈ (τ, T ) and s = τ .
Since y ∈ L∞ (τ, T ; H) ∩ C([τ, T ]; V ∗) and H ⊂ V ∗ with continuous embed-

ding, then y ∈ C([τ, T ]; Hw); Temam [19, Chap. III]. Thus, equality (3.13) yields

1

2
‖y(t)‖2 + ν

∫ t

s
‖y(ξ)‖2V dξ −

∫ t

s
〈 f (ξ), y(ξ)〉dξ ≤ 1

2
‖y(τ )‖2,

for each t ∈ [τ, T ], a.e. s ∈ (τ, T ) and s = τ . Therefore, y satisfies inequality (3.5).
The theorem is proved.

3.3 The Existence of Strong Solutions and 1-Dimensional
Dynamical Systems

Let T > 0. The main result of this section has the following formulation (see also
Figs. 3.3 and 3.4).

Theorem 3.2 Let f ∈ L2(0, T ; H) and y0 ∈ V . Then either for any λ ∈ [0, 1] there
is an yλ ∈ C([0, T ]; V ) ∩ L2(0, T ; D(A)) such that yλ ∈ D(λy0, λ f ), or the set
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Fig. 3.3 Relations between
the types of solutions for the
3D Navier-Stokes system

{y ∈ C([0, T ]; V ) ∩ L2(0, T ; D(A)) : y ∈ D(λy0, λ f ), λ ∈ (0, 1)} (3.14)

is unbounded in L8(0, T ; (L4(Ω))3).

In the proof of Theorem 3.2 we use an auxiliary statement connected with con-
tinuity property of strong solutions on parameters of problem (3.3) in Serrin’s class
L8(0, T ; (L4(Ω))3).

Theorem 3.3 Let f ∈ L2(0, T ; H) and y0 ∈ V . If y is a strong solution for Prob-
lem (3.3) on [0, T ], then there exist L , δ > 0 such that for any z0 ∈ V and
g ∈ L2(0, T ; H), satisfying the inequality

‖z0 − y0‖2V + ‖g − f ‖2L2(0,T ;H) < δ, (3.15)

the setD(z0, g) is one-point set {z}whichbelongs toC([0, T ]; V ) ∩ L2(0, T ; D(A)),
and

‖z − y‖2C([0,T ];V ) + ν

4
‖z − y‖2D(A) ≤ L

(
‖z0 − y0‖2V + ‖g − f ‖2L2(0,T ;H)

)
.

(3.16)

Remark 3.1 We note that from Theorem 3.3 with z0 ∈ V and g ∈ L2(0, T ; H) with
sufficiently small ‖z0‖2V + ‖g‖2L2(0,T ;H)

, Problem (3.3) has only one global strong
solution.

Remark 3.2 Theorem 3.3 provides that, if for any λ ∈ [0, 1] there is an yλ ∈
L8(0, T ; (L4(Ω))3) such that yλ ∈ D(λy0, λ f ), then the set
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Fig. 3.4 Existence of solutions for the 3D Navier-Stokes System

{y ∈ C([0, T ]; V ) ∩ L2(0, T ; D(A)) : y ∈ D(λy0, λ f ), λ ∈ (0, 1)}

is bounded in L8(0, T ; (L4(Ω))3).

If Ω is a C∞-domain and if f ∈ C∞
0 ((0, T ) × Ω)3, then any strong solution y of

Problem (3.3) on [0, T ] belongs to C∞((0, T ] × Ω)3 and p ∈ C∞((0, T ] × Ω) (cf.
[18, Theorem 1.8.2, p. 300] and references therein). This fact directly provides the
next corollary of Theorems 3.2 and 3.3.

Corollary 3.1 Let Ω be a C∞-domain, f ∈ C∞
0 ((0, T ) × Ω)3. Then either for any

y0 ∈ V there is a strong solution of Problem (3.3) on [0, T ], or the set

{y ∈ C∞((0, T ] × Ω)3 : y ∈ D(λy0, λ f ), λ ∈ (0, 1)}

is unbounded in L8(0, T ; (L4(Ω))3) for some y0 ∈ C∞
0 (Ω)3.
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Proof of Theorem 3.3. Let f ∈ L2(0, T ; H), y0 ∈ V , and y ∈ C([0, T ]; V ) ∩
L2(0, T ; D(A)) be a strong solution of Problem (3.3) on [0, T ]. Due to [17], [19,
Chap. 3] the set D(y0, f ) = {y}. Let us now fix z0 ∈ V and g ∈ L2(0, T ; H) satis-
fying (3.15) with

δ = min
{
1; ν

4

}
e−2TC , C = max

{
27c4

2ν3
; 7

7c8

29ν7

}
(‖y‖4C([0,T ];V ) + 1

)2
, (3.17)

c > 0 is a constant from the inequalities (cf. [18, 19])

|b(u, v,w)| ≤ c‖u‖V ‖v‖ 1
2
V ‖v‖ 1

2
D(A)‖w‖H ∀u ∈ V, v ∈ D(A), w ∈ H ; (3.18)

|b(u, v,w)| ≤ c‖u‖ 3
4
D(A)‖u‖ 1

4
V ‖v‖V ‖w‖H ∀u ∈ D(A), v ∈ V, w ∈ H. (3.19)

The auxiliary problem

{ dη

dt + νAη + B(η, η) + B(y, η) + B(η, y) = g − f in V ∗,
η(0) = z0 − y0,

(3.20)

has a strong solution η ∈ C([0, T ]; V ) ∩ L2(0, T ; D(A)) with dη

dt ∈ L2(0, T ; H),
i.e.

d

dt
(η, v) + ν((η, v)) + b(η, η, v) + b(y, η, v) + b(η, y, v) = 〈g − f, v〉 for all v ∈ V,

in the sense of distributions on (0, T ). In fact, let {wj } j≥1 ⊂ D(A) be a special basis
(cf. [19]), i.e. Awj = λ jw j , j = 1, 2, ..., 0 < λ1 ≤ λ2 ≤ ..., λ j → +∞, j → +∞.
We consider Galerkin approximations ηm : [0, T ] → span{wj }mj=1 for solutions of
Problem (3.20) satisfying

d

dt
(ηm ,wj ) + ν((ηm ,wj )) + b(ηm , ηm ,wj ) + b(y, ηm ,wj ) + b(ηm , y,wj ) = 〈g − f,wj 〉,

with (ηm(0),wj ) = (z0 − y0,wj ), j = 1,m. Due to (3.18), (3.19) and Young’s
inequality we get

2〈g − f, Aηm〉 ≤ 2‖g − f ‖H‖ηm‖D(A) ≤ ν

4
‖ηm‖2D(A) + 4

ν
‖ f − g‖2H ;

−2b(ηm, ηm, Aηm) ≤ 2c‖ηm‖ 3
2
V ‖ηm‖ 3

2
D(A) ≤ ν

2
‖ηm‖2D(A) + 27c4

2ν3
‖ηm‖6V ;
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−2b(y, ηm , Aηm) ≤ 2c‖y‖V ‖ηm‖
1
2
V ‖ηm‖

3
2
D(A) ≤ ν

2
‖ηm‖2D(A) + 27c4

2ν3
‖y‖4C([0,T ];V )‖ηm‖2V ;

−2b(ηm , y, Aηm) ≤ 2c‖ηm‖
7
4
D(A)‖ηm‖

1
4
V ‖y‖V ≤ ν

2
‖ηm‖2D(A) + 77c8

29ν7
‖y‖8C([0,T ];V )‖ηm‖2V .

Thus,

d

dt
‖ηm‖2V + ν

4
‖ηm‖2D(A) ≤ C(‖ηm‖2V + ‖ηm‖6V ) + 4

ν
‖g − f ‖2H ,

where C > 0 is a constant from (3.17). Hence, the absolutely continuous function
ϕ = min{‖ηm‖2V , 1} satisfies the inequality d

dt ϕ ≤ 2Cϕ + 4
ν
‖g − f ‖2H , and there-

fore ϕ ≤ L(‖z0 − y0‖2V + ‖g − f ‖2L2(0,T ;H)
) < 1 on [0, T ], where L = δ−1. Thus,

{ηn}n≥1 is bounded in L∞(0, T ; V ) ∩ L2(0, T ; D(A)) and { d
dt ηn}n≥1 is bounded in

L2(0, T ; H). In a standard way we get that the limit function η of ηn , n → +∞, is
a strong solution of Problem (3.20) on [0, T ]. Due to [17], [19, Chapter 3] the set
D(z0, g) is one-point z = y + η ∈ L8(0, T ; (L4(Ω))3). So, z is strong solution of
Problem (3.3) on [0, T ] satisfying (3.16).

The theorem is proved.
Proof of Theorem 3.2. Let f ∈ L2(0, T ; H) and y0 ∈ V . We consider the 3D

controlled Navier-Stokes system (cf. [10, 15])

{ dy
dt + νAy + B(z, y) = f,
y(0) = y0,

(3.21)

where z ∈ L8(0, T ; (L4(Ω))3).
By using standardGalerkin approximations (see [19]) it is easy to show that for any

z ∈ L8(0, T ; (L4(Ω))3) there exists an unique weak solution y ∈ L∞(0, T ; H) ∩
L2(0, T ; V ) of Problem (3.21) on [0, T ], that is,

d

dt
(y, v) + ν((y, v)) + b(z, y, v) = 〈 f, v〉 , for all v ∈ V, (3.22)

in the sense of distributions on (0, T ). Moreover, by the inequality

|b(u, v, Av)| ≤ c1‖u‖(L4(Ω))3‖v‖
1
4
V ‖v‖ 7

4
D(A) ≤ ν

2
‖v‖2D(A) + c2‖u‖8(L4(Ω))3‖v‖2V ,

(3.23)

for all u ∈ (L4(Ω))3 and v ∈ D(A), where c1, c2 > 0 are some constants that do
not depend on u, v (cf. [19]), we find that y ∈ C([0, T ]; V ) ∩ L2(0, T ; D(A))

and B(z, y) ∈ L2(0, T ; H), so dy
dt ∈ L2(0, T ; H) as well. We add that, for any z ∈

L8(0, T ; (L4(Ω))3) and corresponding weak solution y ∈ C([0, T ]; V ) ∩ L2(0, T ;
D(A)) of (3.21) on [0, T ], by using Gronwall inequality, we obtain
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‖y(t)‖2V ≤ ‖y0‖2V e
2c2

t∫

0
‖z(t)‖8

(L4(Ω))3
dt

, ∀t ∈ [0, T ];

ν
T∫

0
‖y(t)‖2D(A)dt ≤ ‖y0‖2V

⎡

⎣1 + 2c2e
2c2

T∫

0
‖z(t)‖8

(L4(Ω))3
dt‖z‖8L8(0,T ;(L4(Ω))3)

⎤

⎦ .

(3.24)

Let us consider the operator F : L8(0, T ; (L4(Ω))3) → L8(0, T ; (L4(Ω))3),
where F(z) ∈ C([0, T ]; V ) ∩ L2(0, T ; D(A)) is the unique weak solution of (3.21)
on [0, T ] corresponded to z ∈ L8(0, T ; (L4(Ω))3).

Let us check that F is a compact transformation of Banach space L8(0, T ;
(L4(Ω))3) into itself (cf. [7]). In fact, if {zn}n≥1 is a bounded sequence in L8(0, T ;
(L4(Ω))3), then, due to (3.23) and (3.24), the respective weak solutions yn , n =
1, 2, ..., of Problem (3.21) on [0, T ] are uniformly bounded in C([0, T ]; V ) ∩
L2(0, T ; D(A)) and their time derivatives dyn

dt , n = 1, 2, ..., are uniformly bounded in
L2(0, T ; H). So, {F(zn)}n≥1 is a precompact set in L8(0, T ; (L4(Ω))3). In a standard
way we deduce that F : L8(0, T ; (L4(Ω))3) → L8(0, T ; (L4(Ω))3) is continuous
mapping. Since F is a compact transformation of L8(0, T ; (L4(Ω))3) into itself,
Schaefer’s Theorem (cf. [7, p. 133] and references therein) and Theorem 3.3 provide
the statement of Theorem 3.2. We note that Theorem 3.3 implies that the set {z ∈
L8(0, T ; (L4(Ω))3) : z = λF(z), λ ∈ (0, 1)} is bounded in L8(0, T ; (L4(Ω))3) iff
the set defined in (3.14) is bounded in L8(0, T ; (L4(Ω))3).

The theorem is proved.

3.4 Extremal Solutions: Existence and Continuity Results
in Strongest Topologies

We consider the 3D controlled Navier-Stokes system

{ dy
dt + Ay + B(u, y) = f,
y(τ ) = yτ ∈ H,

(3.25)

where f ∈ H and

u(·) ∈ Uτ =

⎧
⎪⎪⎨

⎪⎪⎩

u ∈ L∞(τ,+∞; H) ∩ Lloc
2 (τ,+∞; V ) ∩ Lloc∞ (τ,+∞;L4(Ω)),

+∞∫

τ

‖u(p)‖2e−δpdp < ∞, |u(p)| ≤ R0 for a.a. p ≥ τ,

‖u(t)‖L4 ≤ α for a.a. t > τ,

(3.26)

Jτ (u, y) =
+∞∫

τ

‖y(p) − u(p)‖2e−δpdp → inf, (3.27)
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with δ = λ1ν, R0 = | f |
νλ1

, and where λ1 is the first eigenvalue of the Stokes operator
A and α > 0 is some constant.

By using standard Galerkin approximations it is easy to show that for any
yτ ∈ H and u(·) ∈ Uτ there exists a unique weak solution y(·) ∈ L∞(τ,+∞; H) ∩
Lloc
2 (τ,+∞; V ) of (3.25), that is,

d

dt
(y, v) + ν((y, v)) + b(u, y, v) = 〈 f, v〉 , for all v ∈ V . (3.28)

Indeed, let us prove existence of a weak solution of (3.25). Let {wi } ⊂ D (A)

be the sequence of eigenfunctions of A, which are an orthonormal basis of H . Let
ym (t) = ∑m

i=1 gim (t)wi be the Galerkin approximations of (3.25), i.e.

{ dym

dt + νAym + PmB (u, ym) = Pm f,
ym (τ ) = ymτ ,

(3.29)

where Pm is the projection onto the finite dimensional subspace generated by the set
{w1, ...,wm}. Also, ymτ belongs to this subspace and ymτ → yτ in H .

We need to obtain some a priori estimates for the approximative functions {ym}.
Multiplying (3.29) by ym we obtain

1

2

d

dt
|ym |2 + ν

∥
∥ym

∥
∥2 = (

f, ym
)
, (3.30)

where we have used the equalities

(
PmB

(
u, ym

)
, ym

) = (
B

(
u, ym

)
, ym

) = b
(
u, ym, ym

) = 0.

Also from (3.30) we obtain for all p ∈ [s, T ] , s ∈ [τ, T ] that

1

2
|ym (p) |2 + ν

p∫

s

∥
∥ym (τ )

∥
∥2

dτ ≤
∫ p

s

(
f (τ ) , ym (τ )

)
dτ + 1

2
|ym (s) |2.

(3.31)

In view of (3.31) we conclude that {ym} is bounded in L2 (τ, T ; V ) ∩ L∞ (τ, T ; H) .

Therefore, passing to a subsequence we obtain ym → y weakly in L2 (τ, T ; V )

and weakly star in L∞ (τ, T ; H). From the inequalities

|b(u, ym,w)| ≤ d‖u‖L4‖ym‖‖w‖, ∀w ∈ V,

and
∥
∥PmB

(
u, ym

)∥
∥
V ∗ ≤ ∥

∥B
(
u, ym

)∥
∥
V ∗ ,
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due to the choice of the spacial basis, we immediately obtain that PmB (u, ym) is
bounded in L2 (τ, T ; V ∗). Then

d

dt
ym → d

dt
y weakly in L2

(
τ, T ; V ∗) , m → ∞,

so that y ∈ C([τ, T ]; H) and by the Compactness Lemma we have

ym → y strongly in L2 (τ, T ; H) , m → ∞.

Hence, ym(t) → y(t) strongly in H for a.e. t ∈ (τ, T ) , m → ∞. Since one can eas-
ily prove using the Ascoli-Arzelà theorem that ym → y, m → ∞, inC ([τ, T ]; V ∗),
a standard argument implies that ym (t) → y (t)weakly in H for all t ∈ [τ, T ] , m →
∞. In particular, y(τ ) = yτ .

On the other hand, from

∥
∥ui y

m
j

∥
∥2

L2(τ,T ;L2(Ω))
≤

∫ T

τ

‖ui‖2L4(Ω)

∥
∥ymj

∥
∥2

L4(Ω)
dt ≤ C

we obtain ui ymj → ui y j weakly in L2 (τ, T ; L2 (Ω)) , m → ∞, so that

∫ T

τ

b(u, ym − y,w)dt = −
3∑

i, j=1

∫ T

τ

∫

Ω

ui
(
ymj − y j

) ∂wj

∂xi
dxdt → 0, m → ∞,

for any w ∈ L2 (τ, T ; V ). This implies

B(u, ym) → B(u, y) weakly in L2
(
τ, T ; V ∗) , m → ∞.

So we can pass to the limit in (3.29) and deduce that y is solution of (3.25). To prove
uniqueness we should note that if y1, y2 are solutions of (3.25), corresponding the
same control function u, then

d

dt
|y1 − y2|2 = 2(

d(y1 − y2)

dt
, y1 − y2),

b(u, y1 − y2, y1 − y2) = 0.

So after simple calculations we have

d

dt
|y1 − y2|2 ≤ C |y1 − y2|2,

and therefore y1 ≡ y2.
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Moreover, by the inequality

|b(u, y, v)| = |b(u, v, y)| ≤ c1‖u‖L4 ‖v‖ ‖y‖L4 ≤ c2c1‖u‖L4 ‖v‖ ‖y‖, ∀u, y, v ∈ V,

and (3.26) we have B(u (·) , y (·)) ∈ Lloc
2 (τ,+∞; V ∗), so dy

dt ∈ Lloc
2 (τ,+∞; V ∗) as

well. Hence, it follows that y(·) ∈ C([τ,+∞); H) (so the initial condition y(τ ) = yτ

makes sense for any yτ ∈ H ) and standard arguments imply that for all t ≥ s ≥ τ ,

F(y(t)) := (|y(t)|2 − R2
0

)
eδt ≤ F(y(s)), (3.32)

Vτ (y(t)) := 1

2
|y(t)|2 + ν

t∫

τ

‖y(p)‖2dp −
t∫

τ

( f, y(p))dp ≤ Vτ (y(s)), (3.33)

|y(t)|2 + ν

t∫

τ

‖y(p)‖2dp ≤ |yτ |2 + | f |2
νλ1

(t − τ). (3.34)

Indeed, multiplying the equation by y (t) and using the property b (u, y, y) = 0
we obtain

1

2

d

dt
|y|2 + ν ‖y‖2 = ( f, y) . (3.35)

After integration over (s, t) we obtain

1

2
|y (t)|2 + ν

∫ t

s
‖y (p)‖2 dp =

∫ t

s
( f, y (p)) dp + 1

2
|y (s)|2 , (3.36)

and then (3.33) follows. Taking s = τ in (3.36) and using the inequality

( f, y (p)) ≤ | f | |y (p)| ≤ 1√
λ1

| f | ‖y (p)‖ ≤ | f |2
2λ1ν

+ ν

2
‖y (p)‖2

we have

|y (t)|2 + ν

∫ t

s
‖y (p)‖2 dp ≤ |y (τ )|2 + | f |2

λ1ν
(t − τ) .

Finally, from (3.35) we obtain

d

dt
|y|2 + λ1ν |y|2 ≤ | f |2

λ1ν
.
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Multiplying the last inequality by eνλ1t and integrating we get

|y (t)|2 eνλ1t ≤ |y (s)|2 eνλ1s + | f |2
λ2
1ν

2
(eλ1νt − eνλ1s),

and then (3.32) holds.
So, for all n ≥ 0,

τ+(n+1)∫

τ+n

‖y(p) − u(p)‖2e−δpdp ≤

≤ 2e−δ(n+τ)

τ+(n+1)∫

τ+n

‖y(p)‖2dp + 2

τ+(n+1)∫

τ+n

‖u(p)‖2e−δpdp

≤ 2

ν
e−δ(n+τ)(|yτ |2 + | f |2

νλ1
) + 2

τ+(n+1)∫

τ+n

‖u(p)‖2e−δpdp.

From this

Jτ (u, y) =
∞∑

n=0

τ+(n+1)∫

τ+n

‖y(p) − u(p)‖2e−δpdp

≤ 2e−δτ

ν
(|yτ |2 + | f |2

νλ1
)

∞∑

n=0

e−δn + 2
∞∑

n=0

τ+(n+1)∫

τ+n

‖u(p)‖2e−δpdp < ∞.

Therefore, the functional Jτ and the optimal control problem (3.25), (3.26) and
(3.27) is correctly defined.

Lemma 3.1 For any τ ∈ R and yτ ∈ H the optimal control problem (3.25), (3.26)
and (3.27) has at least one solution {y(·), u(·)}, and, moreover, dy

dt ∈ Lloc
2 (τ,+∞;

V ∗), y(·) ∈ C([τ,+∞); H) and (3.32), (3.33) and (3.34) hold.

Proof Let {yn, un} be a minimizing sequence such that

+∞∫

τ

‖yn(p) − un(p)‖2e−δpdp ≤ d + 1

n
, ∀n ≥ 1 ,
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where d = inf Jτ (u, y). Thus, for all T > τ and n ≥ 1

T∫

τ

‖yn(p) − un(p)‖2e−δpdp ≤ d + 1
n ,

T∫

τ

‖yn(p) − un(p)‖2dp ≤ (d + 1
n )e

δT .

(3.37)

From (3.32), (3.33) and (3.34) we obtain that {yn} is bounded in L∞(τ, T ; H) ∩
L2(τ, T ; V ). Hence, (3.37) implies that {un} is bounded in L2(τ, T ; V ) and from the
definition of Uτ it follows that

|un(p)| ≤ R0, ∀p ≥ τ,

‖un(p)‖L4 ≤ α for a.e. p > τ and for all n ≥ 1.

Therefore, there exist u ∈ L∞(τ, T ; H) ∩ L2(τ, T ; V ) ∩ L∞(τ, T ;L4(Ω)) and y ∈
L∞(τ, T ; H) ∩ L2(τ, T ; V ) such that

un → u weakly in L2(τ, T ; V ),

un → u weakly star in L∞(τ, T ; H),

un → u weakly star in L∞(τ, T ;L4(Ω)),

yn → y weakly in L2(τ, T ; V ),

yn → y weakly star in L∞(τ, T ; H), n → ∞.

Moreover, ‖B(un, yn)‖V ∗ ≤ c1‖yn‖‖un‖L4 . Hence,
dyn
dt is bounded in L2(τ, T ; V ∗).

From this using standard arguments, we obtain that y(·) ∈ C([τ, T ]; H) is the solu-
tion of (3.25) with control u(·), y(·) satisfies (3.32), (3.33) and (3.34), and for this
control the following relations hold:

|u(p)| ≤ R0, for a.a. p ≥ τ,

‖u(p)‖L4 ≤ α for a.a. p > τ,

u ∈ L2(τ, T ; V ),

T∫

τ

‖y(p) − u(p)‖2e−δpdp ≤ d.

The fact that y (·) is a solution with control u (·) is proved in a standard way.
Indeed, as dyn

dt is bounded in L2 (τ, T ; V ∗), up to subsequence

d

dt
yn → d

dt
y weakly in L2

(
τ, T ; V ∗) , n → ∞.
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Thus, y ∈ C([τ, T ]; H) and arguing as in the proof of the existence of solution for
(3.25) we obtain

yn → y strongly in L2 (τ, T ; H) ,

yn(t) → y(t) strongly in H for a.a t ∈ (τ, T ) ,

yn(t) → y(t) weakly in H for all t ∈ [τ, T ], n → ∞.

From

∥
∥uni y

n
j

∥
∥2

L2(τ,T ;L2(Ω))
≤

∫ T

τ

∥
∥uni

∥
∥2
L4(Ω)

∥
∥ynj

∥
∥2

L4(Ω)
dt ≤ C

we obtain ui ymj → ui y j weakly in L2 (τ, T ; L2 (Ω)) , n → ∞, so that

∫ T

τ

b(un, yn,w)dt = −
3∑

i, j=1

∫ T

τ

∫

Ω

uni y
n
j
∂wj

∂xi
dxdt →

∫ T

τ

b(u,w, y)dt, n → ∞,

for any w ∈ L2 (τ, T ; V ). This implies

B(u, ym) → B(u, y) weakly in L2
(
τ, T ; V ∗) , n → ∞.

Hence we can pass to the limit in (3.25) and obtain that {u, y} is a solution. Also,
y (τ ) = yτ .

By using a standard diagonal procedure we can claim that y(·) and u(·) are defined
on [τ,+∞), yn → y, un → u in the previous sense on every [τ, T ], n → ∞, and

+∞∫

τ

‖y(p) − u(p)‖2e−δpdp ≤ d. (3.38)

By (3.34), arguing as before,

∫ ∞

τ

‖y (p)‖2 e−δpdp =
∞∑

n=0

∫ τ+n+1

τ+n
‖y (p)‖2 e−δpdp

≤ e−δτ

ν

(

|yτ |2 + | f |2
νλ1

) ∞∑

n=0

e−δn < ∞.

and from (3.38) we have

+∞∫

τ

‖u(p)‖2e−δpdp < ∞.
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It follows that u(·) ∈ Uτ and from (3.38) we obtain that {y(·), u(·)} is an optimal
pair of problem (3.25), (3.26) and (3.27).

The lemma is proved.

Remark 3.3 Lemma 3.1 was proved in [10].
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Chapter 4
Strongest Convergence Results for Weak
Solutions of Non-autonomous
Reaction-Diffusion Equations
with Carathéodory’s Nonlinearity

Abstract In this chapter we consider the problem of uniform convergence results
for all globally defined weak solutions of non-autonomous reaction-diffusion sys-
temwithCarathéodory’s nonlinearity satisfying standard sign andpolynomial growth
assumptions. The main contributions of this chapter are: the uniform convergence
results for all globally defined weak solutions of non-autonomous reaction-diffusion
equations with Carathéodory’s nonlinearity and sufficient conditions for the conver-
gence of weak solutions in strongest topologies.

Let N , M = 1, 2, . . ., Ω ⊂ R
N be a bounded domain with sufficiently smooth

boundary ∂Ω . We consider a problem of long-time behavior of all globally defined
weak solutions for the non-autonomous parabolic problem (named RD-system)

{
yt = aΔy − f (x, t, y), x ∈ Ω, t > 0,
y|∂Ω = 0,

(4.1)

as t → +∞, where y = y(x, t) = (y(1)(x, t), . . . , y(M)(x, t)) is unknown vector-
function, f = f (x, t, y) = ( f (1)(x, t, y), . . . , f (M)(x, t, y)) is given function, a is
real M × M matrix with positive symmetric part.

4.1 Translation-Compact, Translation-Bounded
and Translation Uniform Integrable Functions

To introduce the assumptions on parameters of Problem (4.1) we need to present
some additional constructions. Let γ ≥ 1 and E be a real separable Banach space.
As L loc

γ (R+;E )we consider the Fréchet space of all locally integrable functions with
values in E , i.e. ϕ ∈ L loc

γ (R+;E ) if and only if for any finite interval [τ, T ] ⊂ R+
the restriction of ϕ on [τ, T ] belongs to the space Lγ (τ, T ;E ). If E ⊆ L1(Ω), then
any function ϕ from L loc

γ (R+;E ) can be considered as a measurable mapping that
acts from Ω × R+ into R. Further, we write ϕ(x, t), when we consider this mapping
as a function from Ω × R+ into R, and ϕ(t), if this mapping is considered as an
element from L loc

γ (R+;E ); cf. Gajewski et al. [3, Chap. III]; Temam [23]; Babin and
Vishik [1]; Chepyzhov and Vishik [5]; Zgurovsky et al. [28] and references therein.
© Springer International Publishing AG 2018
M.Z. Zgurovsky and P.O. Kasyanov, Qualitative and Quantitative Analysis
of Nonlinear Systems, Studies in Systems, Decision and Control 111,
DOI 10.1007/978-3-319-59840-6_4
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A function ϕ ∈ L loc
γ (R+;E ) is called translation bounded in L loc

γ (R+;E ), if

sup
t≥0

t+1∫
t

‖ϕ(s)‖γ

E ds < +∞; (4.2)

Chepyzhov and Vishik [7, p. 105]. A function ϕ ∈ L loc
1 (R+; L1(Ω) is called trans-

lation uniform integrable (t.u.i.) in L loc
1 (R+; L1(Ω)), if

lim
K→+∞ sup

t≥0

t+1∫
t

∫
Ω

|ϕ(x, s)|χ{|ϕ(x,s)|≥K }dxds = 0. (4.3)

Dunford–Pettis compactness criterion provides that a function ϕ ∈ L loc
1 (R+; L1(Ω))

is t.u.i. in L loc
1 (R+; L1(Ω)) if and only if for every sequence of elements {τn}n≥1 ⊂

R+ the sequence {ϕ( · + τn)}n≥1 contains a subsequence which converges weakly
in L loc

1 (R+; L1(Ω)). We note that for any γ > 1 Hölder’s and Chebyshev’s inequal-
ities imply that every translation bounded in L loc

γ (R+; Lγ (Ω)) function is t.u.i. in
L loc
1 (R+; L1(Ω)), because

t+1∫
t

∫
Ω

|ϕ(x, s)|χ{|ϕ(x,s)|≥K }dxds ≤ 1

K γ−1 sup
t≥0

t+1∫
t

∫
Ω

|ϕ(x, s)|γ dxds → 0 as K → +∞.

4.2 Setting of the Problem

Throughout this chapter we suppose that the listed below assumptions hold.

Assumption I. Let pi ≥ 2 and qi > 1 are such that 1
pi

+ 1
qi

= 1, for any i =
1, 2, . . . , M .Moreover, there exists a positive constantd such that 12 (a+a∗) ≥ d I ,
where I is unit M × M matrix, a∗ is a transposed matrix for a.
Assumption II. The interaction function f = ( f (1), . . . , f (M)) : Ω × R+ ×
R

M → R
M satisfies the standard Carathéodory’s conditions, i.e. the mapping

(x, t, u) → f (x, t, u) is continuous in u ∈ R
M for a.e. (x, t) ∈ Ω × R+, and it is

measurable in (x, t) ∈ Ω × R+ for any u ∈ R
M .

Assumption III. (GrowthCondition). There exist a t.u.i. in L loc
1 (R+; L1(Ω)) func-

tion c1 : Ω × R+ → R+ and a constant c2 > 0 such that

M∑
i=1

∣∣ f (i)(x, t, u)
∣∣qi ≤ c1(x, t) + c2

M∑
i=1

∣∣u(i)
∣∣pi
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for any u = (u(1), . . . , u(M)) ∈ R
M , and a.e. (x, t) ∈ Ω × R+.

Assumption IV. (Sign Condition). There exists a constant α > 0 and a t.u.i. in
L loc
1 (R+; L1(Ω)) function β : Ω × R+ → R+ such that

M∑
i=1

f (i)(x, t, u)u(i) ≥ α

M∑
i=1

∣∣u(i)
∣∣pi − β(x, t)

for any u = (u(1), . . . , u(M)) ∈ R
M , and a.e. (x, t) ∈ Ω × R+.

In further arguments we will use standard functional Hilbert spaces H =
(L2(Ω))M , V = (H 1

0 (Ω))M , and V ∗ = (H−1(Ω))M with standard respective inner
products and norms (·, ·)H and ‖ ·‖H , (·, ·)V and ‖ ·‖V , and (·, ·)V ∗ and ‖ ·‖V ∗ , vector
notations p = (p1, p2, . . . , pM) and q = (q1, q2, . . . , qM), and the spaces

Lp(Ω) := L p1 (Ω) × · · · × L pM (Ω), Lq(Ω) := Lq1 (Ω) × · · · × LqM (Ω),

Lp(τ, T ;Lp(Ω)) := L p1 (τ, T ; L p1 (Ω)) × · · · × L pM (τ, T ; L pM (Ω)),

Lq(τ, T ;Lq(Ω)) := Lq1 (τ, T ; Lq1 (Ω)) × · · · × LqM (τ, T ; LqM (Ω)), 0 ≤ τ < T < +∞.

Let 0 ≤ τ < T < +∞. A function y = y(x, t)∈L2(τ, T ; V )∩Lp(τ, T ;Lp(Ω))

is called a weak solution of Problem (4.1) on [τ, T ], if for any function ϕ = ϕ(x) ∈
(C∞

0 (Ω))M , the following identity holds

d

dt

∫
Ω

y(x, t) · ϕ(x)dx +
∫

Ω

{a∇ y(x, t) · ∇ϕ(x) + f (x, t, y(x, t)) · ϕ(x)}dx = 0

(4.4)
in the sense of scalar distributions on (τ, T ).

In the general case Problem (4.1) on [τ, T ]with initial condition y(x, τ ) = yτ (x)
in Ω has more than one weak solution with yτ ∈ H (cf. Balibrea et al. [2] and
references therein).

4.3 Preliminary Properties of Weak Solutions

Let 〈·, ·〉 : (V ∗ + Lq(Ω)) × (V ∩ Lp(Ω)) → R be the pairing in (V ∗ + Lq(Ω)) ×
(V ∩Lp(Ω)), that coincides on H × (V ∩Lp(Ω)) with the inner product (·, ·)H on
the Hilbert space H , i.e. 〈u, v〉 = (u, v)H for any u ∈ H and v ∈ V ∩ Lp(Ω).

For fixed nonnegative τ and T , τ < T , let us consider the spaces

X (i)
τ,T = L2(τ, T ; H 1

0 (Ω)) ∩ L pi (τ, T ; L pi (Ω)),

X (i) ∗
τ,T = L2(τ, T ; H−1(Ω)) + Lqi (τ, T ; Lqi (Ω)),

Xτ,T = X (1)
τ,T × · · · × X (M)

τ,T , X∗
τ,T = X (1) ∗

τ,T × · · · × X (M) ∗
τ,T ,

W (i)
τ,T = {y ∈ X (i)

τ,T | y′ ∈ X (i) ∗
τ,T }, Wτ,T = W (1)

τ,T × · · · × W (M)
τ,T ,
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where y′ is a derivative of an element y ∈ X (i)
τ,T (y ∈ Xτ,T ) in the sense of

D([τ, T ]; H−1(Ω) + Lq(Ω)) (D([τ, T ]; V ∗ + Lq(Ω)) respectively); Gajewski
et al. [3, Definition IV.1.10]. Note that the spaceWτ,T is a reflexive Banach spacewith
the graph norm of a derivative ‖u‖Wτ,T = ‖u‖Xτ,T +‖u′‖X∗

τ,T
, u ∈ Wτ,T . Let 〈·, ·〉Xτ,T :

X∗
τ,T ×Xτ,T → R be the pairing in X∗

τ,T ×Xτ,T , that coincides on L2(τ, T ; H)×Xτ,T

with the inner product in L2(τ, T ; H), i.e. 〈u, v〉Xτ,T =
T∫
τ

(u(t), v(t))Hdt for any

u ∈ L2(τ, T ; H) and v ∈ Xτ,T . Gajewski et al. [3, Theorem IV.1.17] provide that
the embeddingW (i)

τ,T ⊂ C([τ, T ]; L2(Ω)) is continuous and dense, i = 1, 2, . . . , M .
Thus, the embedding Wτ,T ⊂ C([τ, T ]; H) is continuous and dense. Moreover,

(u(T ), v(T ))H − (u(τ ), v(τ ))H =
T∫

τ

[
〈u′(t), v(t)〉 + 〈v′(t), u(t)〉

]
dt, (4.5)

for any u, v ∈ Wτ,T .
If y(x, t) ∈ Lp(τ, T ;Lp(Ω)), then Assumptions I–III yield

f (x, t, y(x, t)) ∈ Lq(τ, T ;Lq(Ω)),

and
M∑
i=1

‖ f (i)(y( · ))‖qiLqi (τ,T ;Lqi (Ω))

≤c2

M∑
i=1

‖y(i)( · )‖pi
L pi (τ,T ;L pi (Ω)) +

∫
Ω×(τ,T )

c1(x, t)dxdt.

(4.6)

Moreover, if y(x, t) ∈ L2(τ, T ; V ), then a�y(x, t) ∈ L2(τ, T ; V ∗).
Assumptions I–IV and Chepyzhov and Vishik [7, pp. 283–284] (see also

Zgurovsky et al. [27, Chap. 2] and references therein) provide the existence of a
weak solution of Cauchy problem (4.1) with initial data y(τ ) = y(τ ) on the interval
[τ, T ], for any y(τ ) ∈ H . The proof is provided by standard Faedo–Galerkin approxi-
mations and using local existence Carathéodory’s theorem instead of classical Peano
results. A priori estimates are similar. Formula (4.4) and definition of the derivative
for an element fromD([τ, T ]; V ∗ +Lq(Ω)) yield that each weak solution y ∈ Xτ,T

of Problem (4.1) on [τ, T ] belongs to the spaceWτ,T . Moreover, each weak solution
of Problem (4.1) on [τ, T ] satisfies the equality:
∫ T

τ

∫
Ω

[
∂y(x, t)

∂t
· ψ(x, t) + a∇ y(x, t) · ∇ψ(x, t) + f (x, t, y(x, t)) · ψ(x, t)

]
dxdt = 0,

(4.7)
for any ψ ∈ Xτ,T . For fixed τ and T , such that 0 ≤ τ < T < +∞, we denote

Dτ,T (y(τ )) = {y(·) | y is a weak solution of (4.1) on [τ, T ], y(τ ) = y(τ )}, y(τ ) ∈ H.
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We remark that Dτ,T (y(τ )) �= ∅ and Dτ,T (y(τ )) ⊂ Wτ,T , if 0 ≤ τ < T < +∞
and y(τ ) ∈ H . Moreover, the concatenation of Problem (4.1) weak solutions is a
weak solutions too, i.e. if 0 ≤ τ < t < T , y(τ ) ∈ H , y(·) ∈ Dτ,t (y(τ )), and
v(·) ∈ Dt,T (y(t)), then

z(s) =
{
y(s), s ∈ [τ, t],
v(s), s ∈ [t, T ],

belongs to Dτ,T (y(τ )); cf. Zgurovsky et al. [28, pp. 55–56].
Listed above properties of solutions and Gronwall lemma provide that for any

finite time interval [τ, T ] ⊂ R+ each weak solution y of Problem (4.1) on [τ, T ]
satisfies estimates

‖y(t)‖2H − 2
∫ t

τ

∫
Ω

β(x, ξ)dxdξ + 2α
M∑
i=1

∫ t

s
‖y(i)(ξ)‖piL pi (Ω)

dξ + 2d
∫ t

s
‖y(ξ)‖2V dξ

≤ ‖y(s)‖2H − 2
∫ s

τ

∫
Ω

β(x, ξ)dxdξ, (4.8)

‖y(t)‖2H ≤ ‖y(s)‖2He−2dλ1(t−s) + 2
∫ t

s

∫
Ω

β(x, ξ)e−2dλ1(t−ξ)dxdξ, (4.9)

for any t, s ∈ [τ, T ], t ≥ s, where λ1 is the first eigenvalue of the scalar operator−Δ

with Dirichlet boundary conditions; cf. Chepyzhov and Vishik [7, p. 285]; Vishik
et al. [28, p. 56]; Valero and Kapustyan [24] and references therein. We note that the
same term with β appears both on the left and right hand side of inequality (4.9).
This was done on purpose to comply the inequality with the definition (4.18) of J
and Jk below.

Therefore, any weak solution y of Problem (4.1) on a finite time interval [τ, T ] ⊂
R+ can be extended to a global one, defined on [τ,+∞). For arbitrary τ ≥ 0 and
y(τ ) ∈ H letDτ (y(τ ))be the set of allweak solutions (definedon [τ,+∞)) of Problem
(4.1) with initial data y(τ ) = y(τ ). Let us consider the familyK +

τ = ∪y(τ )∈HDτ (y(τ ))

of all weak solutions of Problem (4.1) defined on the semi-infinite time interval
[τ,+∞).

In further arguments as a Banach spaceFt1,t2 we consider either C([t1, t2]; H) or
Wt1,t2 with respective topologies of strong convergence, where 0 ≤ t1 < t2 < +∞.
Consider the Fréchet space

F loc(R+) := {y : R+ → H : Πt1,t2 y ∈ Ft1,t2 for any [t1, t2] ⊂ R+},

whereΠt1,t2 is the restriction operator to the interval [t1, t2]; Chepyzhov andVishik [5,
p. 918]. We remark that the sequence { fn}n≥1 converges (converges weakly respec-
tively) inF loc(R+) towards f ∈ F loc(R+) as n → +∞ if and only if the sequence
{Πt1,t2 fn}n≥1 converges (converges weakly respectively) inFt1,t2 towards Πt1,t2 f as
n → +∞ for any finite interval [t1, t2] ⊂ R+.
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We denote T (h)y(·) = yh(·), where yh(t) = y(t + h) for any y ∈ F loc(R+) and
t, h ≥ 0.

In the autonomous case, when f (x, t, y) does not depend on t , the long-time
behavior of all globally defined weak solutions for Problem (4.1) is described by
using trajectory and global attractors theory; Chepyzhov and Vishik [7, Chap. XIII];
Vishik et al. [25]; Melnik and Valero [19]; Kasyanov [11, 12], Zgurovsky et al. [28,
Chap. 2] and references therein; see also Balibrea et al. [2]. In this situation the set
K + := K +

0 is translation semi-invariant, i.e. T (h)K + ⊆ K + for any h ≥ 0.
As trajectory attractor it is considered a classical global attractor for translation
semigroup {T (h)}h≥0, that acts onK +.

In the non-autonomous case we notice that T (h)K +
0 � K +

0 . Therefore, we
need to consider united trajectory space that includes all globally defined on any
[τ,+∞) ⊆ R+ weak solutions of Problem (4.1) shifted to τ = 0:

K +
∪ :=

⋃
τ≥0

{
y( · + τ) ∈ W loc(R+) : y( · ) ∈ K +

τ

}
, (4.10)

Note that T (h){y( · + τ) : y ∈ K +
τ } ⊆ {y( · + τ + h) : y ∈ K +

τ+h} for any
τ, h ≥ 0. Therefore,

T (h)K +
∪ ⊆ K +

∪

for any h ≥ 0. Further we consider extended united trajectory space for Problem
(4.1) (see Fig. 4.1):

K +
F loc(R+)

= clF loc(R+)

[
K +

∪
]
, (4.11)

Fig. 4.1 The extended united trajectory space construction scheme
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where clF loc(R+)[ · ] is the closure inF loc(R+). We note that

T (h)K +
F loc(R+)

⊆ K +
F loc(R+)

for each h ≥ 0, because

ρF loc(R+)(T (h)u, T (h)v) ≤ ρF loc(R+)(u, v) for any u, v ∈ F loc(R+),

where ρF loc(R+) is a standard metric on Fréchet space F loc(R+); cf. Vishik, Zelik,
and Chepyzhov [25]; Chepyzhov and Vishik [5]; Vishik et al. [25].

4.4 Strongest Convergence Results in CLoc(RRR+; H)

Let us provide the result characterizing the compactness properties of shifted solu-
tions of Problem (4.1) in the induced topology from C loc(R+; H).

Theorem 4.1 Let Assumptions I–IV hold. If {yn}n≥1 ⊂ K +
C loc(R+;H)

be an arbi-
trary sequence, which is bounded in L∞(R+; H), then there exist a subsequence
{ynk }k≥1 ⊆ {yn}n≥1 and an element y ∈ K +

C loc(R+;H)
such that

‖Πτ,T ynk − Πτ,T y‖C([τ,T ];H) → 0, k → +∞, (4.12)

for any finite time interval [τ, T ] ⊂ (0,+∞). Moreover, for any y ∈ K +
C loc(R+;H)

the
estimate holds

‖y(t)‖2H ≤ ‖y(0)‖2He−c3t + c4, (4.13)

for any t ≥ 0, where positive constants c3 and c4 do not depend on y ∈ K +
C loc(R+;H)

and t ≥ 0.

Proof Assume that {yn}n≥1 ⊂ K +
∪ be an arbitrary sequence, which is bounded in

L∞(R+; H). Let us fix n ≥ 1. Formula (4.10) provides the existence of τn ≥ 0 and
zn( · ) ∈ K +

τn
such that yn( · ) = zn( · + τn). Then, formulas (4.8) and (4.9) yield that

‖yn(t)‖2H − 2
∫ t

0

∫
Ω

βn(x, ξ)dxdξ+2α
M∑
i=1

∫ t

s
‖y(i)

n (ξ)‖piL pi (Ω)
dξ + 2

∫ t

s
‖yn(ξ)‖2V dξ

≤ ‖yn(s)‖2H − 2
∫ s

0

∫
Ω

βn(x, ξ)dxdξ, (4.14)

‖yn(t)‖2H ≤ ‖yn(s)‖2He−2dλ1(t−s) + 2
∫ t

s

∫
Ω

βn(x, ξ)e−2dλ1(t−ξ)dxdξ, (4.15)

for any t ≥ s ≥ 0, where βn(x, t) := β(x, t + τn) for a.e. (x, t) ∈ Ω × R+.
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Note that formula (4.15) and t.u.i. of β in L loc
1 (R+; L1(Ω)) provide formula (4.13)

for any y ∈ K +
∪ , where positive constants c3 and c4 do not depend on respective y and

t ; cf. Chepyzhov and Vishik [7, p. 35]. Formula (4.13) holds for any y ∈ K +
C loc(R+;H)

,

because the setK +
∪ is dense inK +

C loc(R+;H)
endowed with strong local convergence

topology of C loc(R+; H). Therefore, the second statement of the theorem (estimate
(4.13)) is proved.

Let us continue the proof of the first statement of the theorem (formula (4.12)).
Further, to simplify arguments we set

dn(x, t) := f (x, t + τn, yn(x, t)) for a.e. (x, t) ∈ Ω × R+ and n ≥ 1.

Estimates (4.14) and (4.15), formula (4.7), t.u.i. of β and c1 in L loc
1 (R+; L1(Ω)),

and Assumptions III and IV, provide that the sequence {yn, dn}n≥1 is bounded in
W loc(R+) × Lq(τ, T ;Lq(Ω)). Banach–Alaoglu theorem (cf. Zgurovsky et al. [27,
Chap. 1]; Kasyanov [11] and references therein) yields that there exist a subsequence
{ynk , dnk }k≥1 ⊆ {yn, dn}n≥1 and elements (y, d) ∈ W loc(R+)×Lq(τ, T ;Lq(Ω)), and
β̄ ∈ L loc

1 (R+; L1(Ω)) such that

(ynk , dnk ) → (y, d) weakly in W loc(R+) × Lloc
q (R+;Lq(Ω)),

ynk → y weakly in C loc(R+; H),

ynk → y in L loc
2 (R+; H),

ynk (t) → y(t) in H for a.e. t > 0,
βnk → β̄ weakly in L loc

1 (R+; L1(Ω)), k → +∞.

(4.16)

Note that the second convergence holds, because the embedding W loc(R+) ⊂
C loc(R+; H) is continuous, the third one follows from the compact embedding of
W loc(R+) into L loc

2 (R+; H) (cf. Zgurovsky et al. [27, Chap. 1]), the fourth con-
vergence follows from the third one, and the last statement in (4.16) follows from
Dunford–Pettis compactness criterion.

Let us prove that

ynk (t) → y(t) in H for any t > 0, as k → +∞. (4.17)

We consider continuous and nonincreasing (by formula (4.14)) functions on R+:

Jk(t) = ‖yn(t)‖2H − 2
∫ t

0

∫
Ω

βn(x, ξ)dxdξ, J (t) = ‖y(t)‖2H − 2
∫ t

0

∫
Ω

β̄(x, ξ)dxdξ, k ≥ 1;
(4.18)

cf. Kapustyan et al. [14]. The fourth and the last statements in (4.16) imply

Jk(t) → J (t), as k → +∞, for a.e. t > 0. (4.19)

Similarly to Zgurovsky et al. [28, p. 57] (see book and references therein) we show
that
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lim sup
k→+∞

Jk(t) ≤ J (t) ∀t > 0. (4.20)

Indeed, formula (4.19) and continuity of J imply that for any t > 0 and ε > 0 there
exists t̄ ∈ (0, t) such that |J (t̄) − J (t)| < ε and lim

k→+∞ Jk(t̄) = J (t̄). Hence,

Jk(t) − J (t) ≤ Jk(t̄) − J (t) ≤ |Jk(t̄) − J (t̄)| + |J (t̄) − J (t)| < ε + |Jk(t̄) − J (t̄)|,

for any k ≥ 1. Therefore, lim sup
k→+∞

Jk(t) ≤ J (t) + ε, for each t > 0 and ε > 0. Thus,

inequality (4.20) holds.
Formula (4.20) and last statement of (4.16) yield the inequality

lim sup
k→+∞

‖ynk (t)‖2H ≤ ‖y(t)‖2H ∀t > 0.

Convergence (4.17) holds, because of the last inequality and the pointwise weak
convergence in H of the sequence {ynk }k≥1 towards y, as k → +∞ (see the second
statement in (4.16)).

Let us prove (4.12). By contradiction suppose the existence of a positive constant
L > 0, a finite interval [τ, T ] ⊂ (0,+∞), and a subsequence {yk j } j≥1 ⊆ {ynk }k≥1

such that

∀ j ≥ 1 max
t∈[τ,T ] ‖yk j (t) − y(t)‖H = ‖yk j (t j ) − y(t j )‖H ≥ L .

Suppose also that t j → t0 ∈ [τ, T ], as j → +∞. Continuity ofΠτ,T y : [τ, T ] → H
implies

lim inf
j→+∞ ‖yk j (t j ) − y(t0)‖H ≥ L . (4.21)

On the other hand we prove that

yk j (t j ) → y(t0) in H, j → +∞. (4.22)

For this purpose we firstly note that

yk j (t j ) → y(t0) weakly in H, j → +∞. (4.23)

Indeed, for a fixed h ∈ (C∞
0 (Ω))M from (4.16) it follows that the sequence of real

functions {(Πτ,T ynk ( · ), h)H : [τ, T ] → R}k≥1 is uniformly bounded and equicon-
tinuous. Taking into account the boundedness of {Πτ,T ynk }k≥1 inWτ,T and the density
of the set (C∞

0 (Ω))M in H we obtain that ynk (t) → y(t) weakly in H uniformly on
[τ, T ], as k → +∞. So, we obtain (4.23).

Secondly we prove that
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lim sup
j→+∞

‖yk j (t j )‖H ≤ ‖y(t0)‖H . (4.24)

We consider continuous nonincreasing functions J and Jk j , j ≥ 1, defined in (4.18).
Let us fix an arbitrary ε > 0. Continuity of J and (4.19) provide the existence of
t̄ ∈ (τ, t0) such that lim

j→+∞ Jk j (t̄) = J (t̄) and |J (t̄) − J (t0)| < ε. Then,

Jk j (t j ) − J (t0) ≤ |Jk j (t̄) − J (t̄)| + |J (t̄) − J (t0)| ≤ |Jk j (t̄) − J (t̄)| + ε,

for rather large j ≥ 1. Thus, lim sup
j→+∞

Jk j (t j ) ≤ J (t0) and inequality (4.24) holds.

Thirdly note that the convergence (4.22) holds, because of (4.23) and (4.24); cf.
Gajewski et al. [3, Chap. I]. Finally we remark that statement (4.22) contradicts
to assumption (4.21). Therefore, the first statement of the theorem holds for any
sequence {yn}n≥1 ⊂ K +

∪ .
To finish the proof of the theorem we consider the first statement in the general

case. Let {yn}n≥1 ⊂ K +
C loc(R+;H)

be an arbitrary sequence, which is bounded in

L∞(R+; H). Since the set K +
∪ is dense in a Polish space K +

C loc(R+;H)
we have that

for any n ≥ 1 there exists ȳn ∈ K +
∪ such that ρC loc(R+;H)(yn, ȳn) ≤ 1

n . A priori
estimate (4.13) provides that the sequence {ȳn}n≥1 is bounded in L∞(R+; H). The
first statement of the theorem, applied for the sequence {ȳn}n≥1 ⊂ K +

∪ , yields that
there exist a subsequence {ȳnk }k≥1 ⊂ {ȳn}n≥1 and an element y ∈ K +

C loc(R+;H)
such

that ‖Πτ,T ȳnk − Πτ,T y‖C loc([τ,T ];H) → 0, as k → +∞, for any finite time interval
[τ, T ] ⊂ (0,+∞). Therefore, formula (4.12) holds for any [τ, T ] ⊂ (0,+∞).

4.5 Strongest Convergence Results for Solutions
in the Natural Extended Phase Space

For convergence results in the strong topology of the natural extended phase
space W loc(R+) it is necessary to claim that additional assumption holds (see
Example 8.1). To formulate this additional assumption we provide some auxil-
iary constructions. A function ϕ ∈ L loc

1 (R+; L1(Ω)) is called translation-compact
(tr.-c.) in L loc

1 (R+; L1(Ω)), if the set {ϕ( · + h) : h ≥ 0} is precompact in
L loc
1 (R+; L1(Ω)); cf. Chepyzhov and Vishik [5, p. 917]. Note that a function

ϕ ∈ L loc
1 (R+; L1(Ω)) is tr.-c. in L loc

1 (R+; L1(Ω)) if and only if two conditions

hold: a) the set
{∫ t+h

t ϕ(s)ds : t ≥ 0
}
is precompact in L1(Ω) for any h > 0; b)

there exists a function ψ(s), ψ(s) → 0+ as s → 0+ such that

∫ t+1

t

∫
Ω

|ϕ(x, s) − ϕ(x, s + h)|dxds ≤ ψ(|h|) for any t ≥ 0 and h ≥ −t;

Chepyzhov and Vishik [5, Proposition 6.5].

http://dx.doi.org/10.1007/978-3-319-59840-6_8
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Assumption V. Let the conditions hold:

(i) the functions c1 and β from Assumptions (III) and (IV) respectively are tr.-c.
in L loc

1 (R+; L1(Ω));

(ii) the set
{
1
h

∫ t+h
t f ( · , s, u)ds : t ≥ 0, h ∈ (0, h0), ‖u‖RM ≤ R

}
is precompact

in (L1(Ω))M for any R > 0 and some h0 = h0(R) > 0;
(iii) for any r > 0 there exist a nondecreasing function ψ(s, r) : R

2+ → R+,
ψ(s, r) → 0+ as s → 0+, and h0 = h0(r) > 0 such that

1

h1

M∑
i=1

∫ t+h1

t

∫
Ω

∣∣∣ f (i)(x, s, u) − f (i)(x, s + h2, v)
∣∣∣ dxds ≤ ψ(|h2| + ‖u − v‖

RM , r)

for each t ≥ 0, h1 ∈ (0, h0), h2 ≥ −t , and u, v ∈ R
M such that

‖u‖RM , ‖v‖RM ≤ r .

Remark 4.1 Let us discuss sufficient conditions for Assumption V.
(i) The autonomous case. Let f does not depend on the time variable t and it sat-

isfies Assumptions I–IV with c1, β ∈ L1(Ω) (in particular, assumptions fromVishik
et al. [25] hold). Then Assumption V hold. Indeed, Assumptions V(i) holds, because
c1 and β do not depend on t ; Assumptions II, III and the dominated convergence
theorem imply Assumption V(ii). Assumption V(iii) follows from Heine–Cantor
theorem and continuity of the mapping u → ∫

Ω
f (x, u)dx . The last follows from

the dominated convergence theorem and Assumptions I–III.
(ii) The non-autonomous case. Let f = f (t, u) is jointly continuous mapping,

it satisfies Assumptions I–IV with positive constants c1 and β, and f being tr.-c. in
C loc(R+;C(RM)), that is

‖ f (t, u) − f (s, v) ‖RM ≤ ω (|t − s| + ‖u − v‖RM , K ) ,

for all t, s ∈ R+, ‖u‖RM , ‖v‖RM ≤ K , K > 0, where ω (l, K ) → 0, as l → 0+;
see, for example, Chepyzhov and Vishik [7, p.105], Kapustyan and Valero [16, 24],
where uniform global in H and uniform trajectory in C loc(R+; H) attractors were
investigated. Then Assumption V holds.

(iii) The sufficient condition for Assumption V(iii) is: for any r > 0 there exist a
nondecreasing function ψ(s, r) : R

2+ → R+, ψ(s, r) → 0+ as s → 0+, such that

M∑
i=1

∫
Ω

∣∣ f (i)(x, t, u) − f (i)(x, t + h, v)
∣∣ dxds ≤ ψ(|h| + ‖u − v‖RM , r)

for each t ≥ 0, h ≥ −t , and u, v ∈ R
M such that ‖u‖RM , ‖v‖RM ≤ r .

Note that Assumption V is a generalization of the above assumptions to the
case when f depends on the space, time and state variables simultaneously and
it is not necessarily continuous by t . Meanwhile, Example 8.1 below provide piece-
wise continuous function f that satisfies Assumptions I–IV, but it does not satisfy

http://dx.doi.org/10.1007/978-3-319-59840-6_8
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Assumption V. Moreover, the statement of Theorem 4.2 below does not hold for
Problem (4.1) with such interaction function.

Now let us provide the result characterizing the compactness properties of shifted
solutions of Problem (4.1) in the induced topology from W loc(R+).

Theorem 4.2 Let Assumptions I–V hold. If {yn}n≥1 ⊂ K +
W loc(R+)

be an arbi-
trary sequence, which is bounded in L∞(R+; H), then there exist a subsequence
{ynk }k≥1 ⊆ {yn}n≥1 and an element y ∈ K +

W loc(R+)
such that

‖Πτ,T ynk − Πτ,T y‖Wτ,T → 0, as k → +∞, (4.25)

for any finite time interval [τ, T ] ⊂ (0,+∞). Moreover, for any y ∈ K +
W loc(R+)

the
estimate (4.13) holds for any t ≥ 0, where positive constants c3 and c4 do not depend
on y ∈ K +

W loc(R+)
and t ≥ 0.

Proof The embedding K +
W loc(R+)

⊆ K +
C loc(R+;H)

and Theorem 4.1 yield the second
statement of the theorem. Let us provide the first one.

We consider an arbitrary sequence {yn}n≥1 ⊂ K +
W loc(R+)

, which is bounded in

L∞(R+; H). Since the setK +
∪ is dense in a Polish spaceK +

W loc(R+)
and the estimate

(4.13) holds for any y ∈ K +
W loc(R+)

, there exists a sequence {ȳn}n≥1 ⊂ K +
∪ , which

is bounded in L∞(R+; H) and ρW loc(R+)(yn, ȳn) ≤ 1
n for any n ≥ 1. Therefore,

to provide the first statement of the theorem, we may additionally suppose that the
sequence {yn}n≥1 belongs toK

+
∪ .

Note that Assumptions III, IV, and V, and Young’s inequality yield that there exist
positive constants α′, β ′ > 0 and a tr.-c. in L loc

1 (R+; L1(Ω)) function c′ : Ω×R+ →
R+ such that

M∑
i=1

f (i)(x, t, u)(u(i) − v(i)) ≥ α′
M∑
i=1

∣∣u(i)
∣∣pi − β ′

M∑
i=1

∣∣v(i)
∣∣pi − c′(x, t), (4.26)

for any u, v ∈ R
M and a.e. (x, t) ∈ Ω × (0,+∞). Let H (c′) := clL loc

1 (R+;L1(Ω))

{c′( · + h) : h ≥ 0} be the hull of tr.-c. function c′ in L loc
1 (R+; L1(Ω)). This is a

compact set in L loc
1 (R+; L1(Ω)); Chepyzhov and Vishik [5].

Let us fix an arbitrary n ≥ 1. Formula (4.10) provides the existence of τn ≥
0 and zn( · ) ∈ K +

τn
such that yn( · ) = zn( · + τn). Following to the statement

of Theorem 4.1 and its proof (see formula (4.16) and conclusions above it), there
exist a subsequence {ynk , dnk }k≥1 ⊆ {yn, dn}n≥1 and elements (y, d) ∈ W loc(R+) ×
Lq(τ, T ;Lq(Ω)), and β̄ ∈ L loc

1 (R+; L1(Ω)) such that convergences (4.16) and
(4.12) hold. Here we again use the notation:

dn(x, t) := f (x, t + τn, yn(x, t)) for a.e. (x, t) ∈ Ω × R+ and n ≥ 1.

Since the sets H (c1) and H (c′) are compact in L loc
1 (R+; L1(Ω)), taking into

account the third statement of (4.16), we may additionally claim (passing to a



4.5 Strongest Convergence Results for Solutions in the Natural … 101

subsequence if necessary) the existence of elements c̄1 and c̄′ from L loc
1 (R+; L1(Ω))

such that

ynk (x, t) → y(x, t)
c1,nk (x, t) → c̄1(x, t),
c′
nk (x, t) → c̄′(x, t), as k → +∞, for a.e. (x, t) ∈ Ω × R+;

c′
nk → c̄′,

c1,nk → c̄1, in L loc
1 (R+; L1(Ω)), as k → +∞,

(4.27)

where c1,nk := c1(x, t + τnk ) and c
′
nk (x, t) := c′(x, t + τnk ) for a.e. (x, t) ∈ Ω × R+

and any k ≥ 1.
Assumption III yields that

M∑
i=1

∣∣d(i)
nk (x, t)

∣∣qi ≤ c1,nk (x, t) + c2

M∑
i=1

∣∣y(i)
nk (x, t)

∣∣pi (4.28)

for a.e. (x, t) ∈ Ω × R+ and any k ≥ 1. Therefore, the first two statements of (4.27)
provide

dnk (x, t) · (ynk − y)(x, t) → 0 as k → +∞, for a.e. (x, t) ∈ Ω × R+. (4.29)

Now let fix an arbitrary finite time interval [τ, T ] ⊂ (0,+∞). Prove that

‖Πτ,T ynk − Πτ,T y‖2Xτ,T
= ‖Πτ,T ynk − Πτ,T y‖2L2(τ,T ;V )

+‖Πτ,T ynk − Πτ,T y‖2Lp(τ,T ;Lp(Ω)) → 0, as k → +∞.
(4.30)

Formulas (4.7) and (4.5) yield

(ynk (τ ), ynk (τ ) − y(τ ))H − (ynk (T ), ynk (T ) − y(T ))H

=
∫ T

τ

∫
Ω
a∇ ynk (x, t) · ∇(ynk − y)(x, t)dxdt +

∫ T

τ

∫
Ω
dnk (x, t) · (ynk − y)(x, t)dxdt,

(4.31)

for any k ≥ 1. Formula (4.12) provides

(ynk (τ ), ynk (τ ) − y(τ ))H − (ynk (T ), ynk (T ) − y(T ))H → 0, as k → +∞. (4.32)

The first statement of (4.16) implies

lim inf
k→+∞

∫ T

τ

∫
Ω
a∇ ynk (x, t) · ∇(ynk − y)(x, t)dxdt

= lim inf
k→+∞

∫ T

τ

∫
Ω
a∇ ynk (x, t) · ∇ ynk (x, t)dxdt −

∫ T

τ

∫
Ω
a∇ y(x, t) · ∇ y(x, t)dxdt ≥ 0,

(4.33)



102 4 Strongest Convergence Results …

and

lim inf
k→+∞

∫ T

τ

∫
Ω

M∑
i=1

∣∣y(i)
nk (x, t)

∣∣pi dxdt ≥
∫ T

τ

∫
Ω

M∑
i=1

∣∣y(i)(x, t)
∣∣pi dxdt, (4.34)

because the sequence {Πτ,T ynk }k≥1 converges weakly toΠτ,T y in Xτ,T as k → +∞.

Therefore, formulas (4.31)–(4.33) yield

lim sup
k→∞

∫ T

τ

∫
Ω

dnk (x, t) · (ynk − y)(x, t)dxdt ≤ 0. (4.35)

Let us apply Fatou’s lemma to the sequence {ψk}k≥1 of Lebesgue integrable non-
negative (see formula (4.26)) functions

ψk(x, t) := dnk (x, t) · (ynk − y)(x, t) − α′
M∑
i=1

∣∣y(i)
nk (x, t)

∣∣pi

+β ′
M∑
i=1

∣∣y(i)(x, t)
∣∣pi + c′

n,k(x, t), (x, t) ∈ Ω × R+, k ≥ 1.

We obtain

− α′
∫ T

τ

∫
Ω

M∑
i=1

∣∣∣y(i)(x, t)
∣∣∣pi dxdt + β ′

∫ T

τ

∫
Ω

M∑
i=1

∣∣∣y(i)(x, t)
∣∣∣pi dxdt +

∫ T

τ

∫
Ω

c̄′(x, t)dxdt

=
∫ T

τ

∫
Ω

lim inf
k→∞

{
dnk (x, t) · (ynk − y)(x, t) − α′

M∑
i=1

∣∣∣y(i)
nk (x, t)

∣∣∣pi + β ′
M∑
i=1

∣∣∣y(i)(x, t)
∣∣∣pi + c̄′

nk (x, t)

}
dxdt

≤ lim inf
k→∞

{∫ T

τ

∫
Ω

dnk (x, t) · (ynk − y)(x, t)dxdt − α′
∫ T

τ

∫
Ω

M∑
i=1

∣∣∣y(i)
nk (x, t)

∣∣∣pi dxdt

+β ′
∫ T

τ

∫
Ω

M∑
i=1

∣∣∣y(i)(x, t)
∣∣∣pi dxdt +

∫ T

τ

∫
Ω

c′
nk (x, t)dxdt

}

≤ − α′ lim sup
k→∞

∫ T

τ

∫
Ω

M∑
i=1

∣∣∣y(i)
nk (x, t)

∣∣∣pi dxdt + β ′
∫ T

τ

∫
Ω

M∑
i=1

∣∣∣y(i)(x, t)
∣∣∣pi dxdt +

∫ T

τ

∫
Ω

c̄′(x, t)dxdt,

where the equality follows from the first and third statements of (4.27) and for-
mula (4.29); the first inequality follows from Fatou’s lemma applied to the sequence
{ψk}k≥1; the second inequality follows from (4.35) and the last statement of (4.27).
Therefore, due to inequality (4.34), we have

∫ T

τ

∫
Ω

M∑
i=1

∣∣y(i)
nk (x, t)

∣∣pi dxdt →
∫ T

τ

∫
Ω

M∑
i=1

∣∣y(i)(x, t)
∣∣pi dxdt, as k → ∞.

(4.36)
Moreover,
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lim inf
k→∞

∫ T

τ

∫
Ω

dnk (x, t) · (ynk − y)(x, t)dxdt ≥ 0. (4.37)

Inequalities (4.35) and (4.37) provide

∫ T

τ

∫
Ω

dnk (x, t) · (ynk − y)(x, t)dxdt → 0, as k → ∞. (4.38)

Passing to the limit as k → +∞ in formula (4.31), taking into account (4.32) and
(4.38), we obtain

∫ T

τ

∫
Ω
a∇ ynk (x, t) · ∇ ynk (x, t)dxdt →

∫ T

τ

∫
Ω
a∇ y(x, t) · ∇ y(x, t)dxdt, as k → ∞.

(4.39)

Statement (4.30) holds, because the sequence {Πτ,T ynk }k≥1 converges weakly to
Πτ,T y in the uniformly convex (superreflexive) Banach space Xτ,T = L2(τ, T ; V )∩
Lp(τ, T ;Lp(Ω)) as k → +∞ (see the first statement of (4.16)), and statements
(4.36) and (4.39) hold. We note that the mapping

z →
√∫ T

τ

∫
Ω

a∇z(x, t) · ∇z(x, t)dxdt

defines a norm, that is equivalent to the natural one, defined on Hilbert space
L2(τ, T ; V ). Statement (4.30) is proved.

To finish the proof of the theorem we provide that there exist a subsequence
{ykm }m≥1 ⊆ {ynk }k≥1 such that ‖Πτ,T

∂
∂t ykm − Πτ,T

∂
∂t y‖L2(τ,T ;V ∗)+Lq(τ,T ;Lq(Ω)) → 0,

as m → +∞, for any finite time interval [τ, T ] ⊂ (0,+∞). Since �ynk → �y in
L loc
2 (R+; V ∗), as k → +∞ (see formula (4.30)), it is sufficient to prove that for any

finite time interval [τ, T ] ⊂ (0,+∞) the sequence {Πτ,T dnk }k≥1 is precompact in
Lq(τ, T ;Lq(Ω)) (see Problem (4.1)).

On the contrary assume that {Πτ,T dnk }k≥1 is not precompact in Lq(τ, T ;Lq(Ω))

for some finite time interval [τ, T ] ⊂ (0,+∞). Therefore, there exist a subsequence
of {Πτ,T dnk }k≥1 (we denote it again by {Πτ,T dnk }k≥1), a finite time interval [τ, T ] ⊂
(0,+∞), and ε∗ > 0 such that

‖Πτ,T dnk − Πτ,T dnm‖Lq(τ,T ;Lq(Ω)) ≥ ε∗, for any k,m ≥ 1. (4.40)

The last statement of (4.27), statements (4.28) and (4.30), and dominated conver-
gence theorem yield
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lim
K→+∞ sup

k≥1

T∫
τ

∫
Ω

M∑
i=1

∣∣∣d(i)
nk (x, t)

∣∣∣qi χAk,K (x, t)dxdt

≤ lim
K→+∞ sup

k≥1

T∫
τ

∫
Ω

[
c1,nk (x, t) + c2

M∑
i=1

∣∣∣y(i)
nk (x, t)

∣∣∣pi
]

χAk,K (x, t)dxdt = 0,

where Ak,K := {(x, t) ∈ Ω × (τ, T ) : ‖ynk (x, t)‖RM ≥ K }, K > 0, k ≥ 1.
Therefore, without loss of generality, we may additionally assume that there exists
a rather large K > 0 such that

‖ynk (x, t)‖RM ≤ K for a.e. (x, t) ∈ Ω × (τ, T ), and any k ≥ 1. (4.41)

Krasnosel’skii [17, Chap. 1] (see book and references therein) implies that for any
k = 1, 2, . . . , there exists a simple function zk : Ω × (τ, T ) → R

M ,

zk(x, t) =
Nk∑
j=1

b j,kχBj,k (x, t) for a.e. (x, t) ∈ Ω × (τ, T ),

where Nk ≥ 1, {b j,k}Nk
j=1 ⊂ R

M , {Bj,k}Nk
k=1 ⊂ Ω × (τ, T ) be a family of disjoint

measurable sets, such that ‖zk(x, t)‖RM ≤ K , for a.e. (x, t) ∈ Ω × (τ, T ), and

‖Πτ,T ynk − zk‖Lp(τ,T ;Lp(Ω)) +
T∫

τ

∫
Ω

M∑
i=1

∣∣∣d(i)
nk (x, t) − f (i)(x, t + τnk , zk(x, t))

∣∣∣qi dxdt ≤ 1

k
.

(4.42)

For any h ∈ (0, h0), where h0 = h0(K ) be a positive constant from Assumption
V, let us define the mapping Fh : Ω × R+ × R

M → R
M ,

Fh(x, t, u) := 1

h

t+h∫
t

f (x, s, u)ds, (x, t, u) ∈ Ω × R+ × R
M .

Assumption V(iii) yields that

T∫
τ

∫
Ω

M∑
i=1

∣∣∣ f (i)(x, t + τnk , zk(x, t)) − F (i)
h (x, t + τnk , zk(x, t))

∣∣∣ dxdt ≤ ψ(|h|, K )(T − τ)Nk ,

for any k ≥ 1 and h ∈ (0, h0). Since, ψ(s, K ) → 0+ as s → 0+, for each k ≥ 1
there exists hk ∈ (0, h0) such that

ψ(|hk |, K )(T − τ)Nk ≤ 1

k
.
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Thus,

T∫
τ

∫
Ω

M∑
i=1

∣∣∣ f (i)(x, t + τnk , zk(x, t)) − F (i)
hk

(x, t + τnk , zk(x, t))
∣∣∣ dxdt ≤ 1

k
, (4.43)

for any k ≥ 1.
Assumptions V(ii) andV(iii) andArzelà–Ascoli theorem (seeWarga [26, Chap. I]

and references therein) provide the existence of a mapping G ∈ C([τ, T ] ×
B̄K ; (L1(Ω))M), where B̄K := {u ∈ R

M : ‖u‖RM ≤ K }, and a subsequence
{(t, u) → Fhkm ( · , t + τkm , u)}m≥1 ⊆ {(t, u) → Fhk ( · , t + τnk , u)}k≥1 such that

sup
t∈[τ,T ], ‖u‖

RM ≤K

∫
Ω

M∑
i=1

∣∣∣F(i)
hkm

(x, t + τkm , u) − G(i)(x, t, u)

∣∣∣ dx ≤ 1

mNkm
, for any m ≥ 1.

Therefore,

T∫
τ

∫
Ω

M∑
i=1

∣∣∣F (i)
hkm

(x, t + τkm , zkm (x, t)) − G(i)(x, t, zkm (x, t))
∣∣∣ dxdt ≤ T − τ

m
, for any m ≥ 1.

(4.44)

SinceG ∈ C([τ, T ]× B̄K ; (L1(Ω))M), Heine–Cantor theorem provides the exis-
tence of nondecreasing function Ψ : R+ → R+, Ψ (s) → 0+, as s → 0+, such
that

∫
Ω

M∑
i=1

∣∣G(i)(x, t1, u1) − G(i)(x, t2, u2)
∣∣ dx ≤ Ψ (|t1 − t2| + ‖u1 − u2‖RM ),

for any t1, t2 ∈ [τ, T ] and u1, u2 ∈ B̄K . Therefore,

C · meas

{
(x, t) ∈ Ω × (τ, T ) :

M∑
i=1

∣∣G(i)(x, t, u1) − G(i)(x, t, u2)
∣∣ ≥ C

}

≤
T∫

τ

∫
Ω

M∑
i=1

∣∣G(i)(x, t, u1) − G(i)(x, t, u2)
∣∣ dxdt ≤ (T − τ)Ψ (‖u1 − u2‖RM )

(4.45)

for any C > 0 and u1, u2 ∈ B̄K , where meas( · ) is a standard Lebeasgue measure
on Ω × (τ, T ).

We note that the sequence of mappings {(x, t) → G(x, t, zkm (x, t))}m≥1, defined
onΩ × (τ, T ), converges in measure towards the mapping (x, t) → G(x, t, y(x, t))
as m → +∞, i.e. for any C > 0 and ε > 0 there exists M̄ ≥ 1 such that
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meas (Am,C) ≤ ε, for each m ≥ M̄ , where

Am,C :=
⎧⎨
⎩(x, t) ∈ Ω × (τ, T ) :

M∑
i=1

∣∣∣G(i)(x, t, zkm (x, t)) − G(i)(x, t, y(x, t))
∣∣∣ ≥ C

⎫⎬
⎭ .

Indeed, there exists δ > 0 such that Ψ (δ)(T − τ) ≤ Cε
2 . Therefore, meas(Am,C \

{(x, t) ∈ Ω × (τ, T ) : ‖zkm (x, t) − y(x, t)‖RM ≥ δ}) ≤ ε
2 for any m ≥ 1; see

formula (4.45). Since zkm (x, t) → y(x, t) as m → +∞ for a.e. (x, t) ∈ Ω × (τ, T )

(see (4.42) and (4.27)), we obtain the necessary statement.
Since the sequence of mappings {(x, t) → G(x, t, zkm (x, t))}m≥1, defined on

Ω × (τ, T ), converges in measure towards the mapping (x, t) → G(x, t, y(x, t))
as m → +∞, inequalities (4.42)–(4.44) yield that the sequence {Πτ,T dkm }m≥1 con-
verges in measure towards the mapping (x, t) → G(x, t, y(x, t)) as m → +∞.
Thus, formulas (4.27), (4.28), (4.41) and dominated convergence theorem yield that

lim
m→+∞

T∫
τ

∫
Ω

M∑
i=1

∣∣∣d(i)
km

(x, t) − G(i)(x, t, y(x, t))
∣∣∣qi dxdt = 0.

This is a contradiction with (4.40).

4.6 Examples of Applications

As applications we may consider the following examples: FitzHugh-Nagumo sys-
tem (signal transmission across axons), complex Ginzburg–Landau equation (the-
ory of superconductivity), Lotka–Volterra system with diffusion (ecology mod-
els), Belousov-Zhabotinsky system (chemical dynamics) and many other reaction-
diffusion type systems (see Smoller [22]), whose dynamics are well studied in
autonomous case (see Temam [23], Chepyzhov and Vishik [7]) and in non-
autonomous case, when all coefficients are uniformly continuous on time variable
(see Chepyzhov and Vishik [7], Zgurovsky et al. [28] and references therein). Now
results of Theorems 4.1 and 4.2 allow us to study these systems with Carathéodory’s
nonlinearities.

4.6.1 Non-autonomous Complex Ginzburg–Landau
Equation

Let Ω ⊂ R
N be an open bounded set with smooth boundary ∂Ω. Consider the

non-autonomous complex Ginzburg–Landau equation:



4.6 Examples of Applications 107

{
∂u
∂t = (1 + ηi) Δu + R (t) u − (1 + iβ (t)) |u|2 u + g (x, t) ,

u |∂Ω= 0, u (x, τ ) = uτ (x) ,
(4.46)

where u = u (x, t) = u1 (x, t) + iu2 (x, t), (x, t) ∈ Ω × R+; g (t) = g1 (t) +
g2 (t) i ∈ L2 (Ω; C) for a.e. t > 0; η, β (t) ∈ R; and R (t) > 0 for a.e. t > 0. We
assume that gi ∈ L loc

2 (R+; L2 (Ω)) with supt>0

∫ t+1
t ‖gi ( · , s)‖2L2(Ω)ds < +∞ and

also that the functions R (t) and β (t) are measurable and essentially bounded.
For v = (

u1, u2
)
, u = u1 + iu2, Eq. (4.46) can be writen as the system

∂v

∂t
=
(
1 −η

η 1

)
Δv+

⎛
⎝ R (t) u1 −

(∣∣u1∣∣2 + ∣∣u2∣∣2) (u1 − β (t) u2
)

R (t) u2 −
(∣∣u1∣∣2 + ∣∣u2∣∣2) (β (t) u1 + u2

)
⎞
⎠+

(
g1 (t, x)
g2 (t, x)

)

and Assumptions I–IV hold with p = (4, 4). Indeed, since

f (t, v) = (−R (t) u1 + |v|2 (u1 − β (t) u2
)
,−R (t) u2 + |v|2 (β (t) u1 + u2

))
,

then the Young’s inequality yields that

∣∣ f 1 (t, v)
∣∣ 43 + ∣∣ f 2 (t, v)

∣∣ 43 ≤ K1

(
|R (t)| 4

3

(∣∣u1∣∣ 43 + ∣∣u2∣∣ 43 )

+ |v| 8
3

(
1 + |β (t)| 4

3

) (∣∣u1∣∣ 43 + ∣∣u2∣∣ 43 )) ≤ K2

(∣∣u1∣∣4 + ∣∣u2∣∣4)+ K3,

because R (t), β (t) are essentially bounded in R. Moreover,

( f (t, v) , v) = −R (t) |v|2 + |v|4 ≥ |v|4
2

− K4 ≥
∣∣u1∣∣4 + ∣∣u2∣∣4

2
− K4.

Hence, all statements of Theorem 4.1 hold. Furthermore, if the functions R (t) and
β (t) satisfy

|β (t) − β (s)| ≤ a (|t − s|) , |R (t) − R (s)| ≤ b (|t − s|) , (4.47)

for all t, s ∈ R, where a (l) → 0, b (l) → 0, as l → 0+, then, additionally,
Assumption V holds and, thus, all statements of Theorem 4.2 hold.

4.6.2 Non-autonomous Lotka–Volterra System with Diffusion

Let Di be positive constants, Ω ⊂ R
3 be an open bounded subset with sufficiently

smooth boundary ∂Ω, and ai (t) , ai j (t) be positive measurable and bounded func-
tions on R+. Consider the Lotka–Volterra system with diffusion:
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⎧⎪⎨
⎪⎩

∂u1

∂t = D1Δu1 + u1
(
a1 (t) − u1 − a12 (t) u2 − a13 (t) u3

)
,

∂u2

∂t = D2Δu2 + u2
(
a2 (t) − u2 − a21 (t) u1 − a23 (t) u3

)
,

∂u3

∂t = D3Δu3 + u3
(
a3 (t) − u3 − a31 (t) u1 − a32 (t) u2

)
,

(4.48)

with Neumann boundary conditions ∂u1

∂ν
|∂Ω= ∂u2

∂ν
|∂Ω= ∂u3

∂ν
|∂Ω= 0, where ui =

ui (x, t) ≥ 0. In this case the function f is given by

f (t, u) =
⎛
⎜⎝

−u1
(
a1 (t) − u1 − a12 (t) u2 − a13 (t) u3

)
−u2

(
a2 (t) − u2 − a21 (t) u1 − a23 (t) u3

)
−u3

(
a3 (t) − u3 − a31 (t) u1 − a32 (t) u2

)

⎞
⎟⎠ .

Then Assumptions I–IV hold for u ∈ R
3+ with p := (3, 3, 3). Indeed, since ui ≥ 0,

then the Young’s inequality implies that

( f (t, u) , u) ≥ (
u1
)3 + (

u2
)3 + (

u3
)3 − a1 (t)

(
u1
)2 − a2 (t)

(
u2
)2 − a3 (t)

(
u3
)2

≥ 1
2

((
u1
)3 + (

u2
)3 + (

u3
)3)− K1,

and

3∑
i=1

| fi (t, u)| 3
2 ≤ K2

((
u1
)3 + (

u2
)3 + (

u3
)3 + (

u1
) 3

2 + (
u2
) 3

2 + (
u3
) 3

2

+ (
u1u2

) 3
2 + (

u2u3
) 3

2 + (
u1u3

) 3
2

)
≤ K3

((
u1
)3 + (

u2
)3 + (

u3
)3)+ K4.

Hence, all statements of Theorem 4.1 hold. Furthermore, if the functions ai (t) and
ai j (t) satisfy (4.47), then, additionally, Assumption V holds and, thus, all statements
of Theorem 4.2 hold.
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Chapter 5
Strongest Convergence Results for Weak
Solutions of Feedback Control Problems

Abstract In this chapter we establish strongest convergence results for weak solu-
tions of feedback control problems. In Sect. 5.1 we set the problem. Section 5.2
devoted to the regularity of all weak solutions and their additional properties. In
Sect. 5.3 we consider convergence of weak solutions results in the strongest topolo-
gies. As examples of applications we consider a model of combustion in porous
media; a model of conduction of electrical impulses in nerve axons; and a climate
energy balance model.

5.1 Setting of the Problem

Let Ω ⊂ R
n, n ≥ 1, be bounded and open subset with a smooth boundary ∂Ω , f ,

f : R → R are some real functions. We consider the semilinear reaction-diffusion
inclusion

ut − �u + [ f (u), f (u)] � 0 in Ω × (τ, T ), (−∞ < τ < T < +∞), (5.1)

with boundary condition
u
∣
∣
∂Ω

= 0, (5.2)

where [a, b] = {αa + (1 − α)b | α ∈ [0, 1]},a, b ∈ R.We suppose that f = [ f , f ] :
R → 2R \ {∅} satisfies the growth condition

∃c0 > 0 : −c0(1 + |u|) ≤ f (u) ≤ f (u) ≤ c0(1 + |u|) ∀u ∈ R, (5.3)

and the sign condition

lim
u→+∞

f (u)

u
> −λ1; lim

u→−∞
f (u)

u
> −λ1, (5.4)
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where λ1 is the first eigenvalue of −� in H 1
0 (Ω). Suppose also that f is lower

semi-continuous, and f is upper semi-continuous (see Sect. 2.1).
We shall use the following standard notations: H = L2(Ω), V = H 1

0 (Ω), V ′ is
the dual space of V and 〈·, ·〉 denotes the pairing in the space V .

5.2 Regularity of All Weak Solutions and Their Additional
Properties

Further by ‖·‖E we denote the norm in a real Banach space E . Assumption (5.4) is
equivalent to the next one

∃λ ∈ (0, λ1), ∃c1 > 0 : f (u) · u ≥ −λu2 − c1 ∀u ∈ R. (5.5)

Sign condition (5.5), the variational characterization of λ1, and Gronwall-Bellman
inequality imply that for any τ < T and for any weak solution u(·) of Problems (5.1)
and (5.2) on [τ, T ] we have

‖u(t)‖2H ≤ ‖u(s)‖2He−2ε∗(t−s) + c2
ε∗ ∀τ ≤ s ≤ t ≤ T, (5.6)

where ε∗ = λ1 − λ and c2 = c1 · meas(Ω) (cf. [56, p. 56]).
We note that themapping v → ‖�v‖H defines an equivalent norm on V ∩ H 2(Ω)

(cf. [42, Chapter III]). The next theorem provides additional a priory estimates for
all weak solutions of Problems (5.1) and (5.2).

Theorem 5.1 There exists C > 0 such that for any τ < T each weak solution
u(·) of Problems (5.1) and (5.2) on [τ, T ] belongs to C([τ + ε, T ]; V ) ∩ L2(τ +
ε, T ; D(A)) and du

dt (·) ∈ L2(τ + ε, T ; H) for each ε ∈ (0, T − τ). Moreover, the
following inequality holds

(t − τ)‖u(t)‖2V +
t∫

τ

(s − τ)‖u(s)‖2H2(Ω)∩V ds ≤ C(1 + ‖u(τ )‖2H + (t − τ)2) ∀t ∈ (τ, T ].

Proof Let τ < T and u(·) be an arbitrary weak solution of Problems (5.1) and
(5.2) on [τ, T ]. We fix ε ∈ (0, T − τ). Theorem 2.1 implies that u(·) ∈ C([τ +
ε, T ]; V ) ∩ L2(τ + ε, T ; H 2(Ω) ∩ V ) and ut ∈ L2(τ + ε, T ; H). Then ‖u(·)‖2V
and ‖u(·)‖2H are absolutely continuous on [τ + ε, T ] and for a.e. s ∈ (τ + ε, T )

we have d
ds

[
1
2‖u(s)‖2V

] = (u′(s),−�u(s)) and d
ds

[
1
2‖u(s)‖2H

] = (u′(s), u(s)) (cf.
[18, Chapter IV]). Thus due to grows and sign assumptions (5.3) and (5.5) for a.e.
s ∈ (τ + ε, T ) in a standard way we obtain

http://dx.doi.org/10.1007/978-3-319-59840-6_2
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d

ds

[

(s − τ − ε)‖u(s)‖2V + 1

2
‖u(s)‖2H

]

+ (s − τ − ε)‖u(s)‖2H 2(Ω)∩V

≤ ‖u(s)‖2H
(

c20 + 1

2
+ 2c20(s − τ − ε)

)

+ (

c20 + 2c20(s − τ − ε)
)

meas(Ω)

≤
(

c20 + 1

2
+ 2c20(s − τ − ε)

)
(‖u(s)‖2H + meas(Ω)

)

(5.7)

≤
(

c20 + 1

2
+ 2c20(s − τ − ε)

) (

‖u(τ )‖2He−2ε∗(s−τ) + c2
ε∗ + meas(Ω)

)

,

where the last inequality follows from (5.6). We fix an arbitrary t ∈ [τ + ε, T ].
Integrating the inequality (5.7) from τ + ε to t , we have

(t − τ − ε)‖u(t)‖2V + 1

2
‖u(t)‖2H − 1

2
‖u(τ + ε)‖2H +

t∫

τ+ε

(s − τ − ε)‖u(s)‖2H2(Ω)∩V ds

≤
(
1

2
c20 + 1

4
+

(
3

2
c20 + 1

4

)

(t − τ)2
)

×
(

‖u(τ )‖2H + c2
ε∗ + meas(Ω)

)

.

Let ε ↘ 0 + . Then ∀t ∈ (τ, T ]

‖u(t)‖2V (t − τ) +
t∫

τ

(s − τ)‖u(s)‖2H 2(Ω)∩V ds ≤ C((t − τ)2 + ‖u(τ )‖2H + 1),

where C > 0 is a constant that does not depend on τ, T, ε, and u(·).
The theorem is proved.

5.3 Convergence of Weak Solutions in the Strongest
Topologies

For each uτ ∈ H we set Dτ,T (uτ ) = {u(·) ∈ L2(τ, T ; V )
∣
∣ u(·) is a weak solution

of Problems (5.1) and (5.2) and u(τ ) = uτ }. We note that the existence of a weak
solution for this problem was considered in [56] (see also Sect. 1.1).

The compactness in V of global attractor and compactness in L2
loc(R+; H 2(Ω) ∩

V ) ∩ C(R+; V ) of trajectory attractor for Problems (5.1) and (5.2) with initial data
from H is based on properties of the family of weak solutions of Problems (5.1) and
(5.2), related to the asymptotic compactness of the generatedm-semiflowof solutions
and its absorbing (cf. [10, 30–32, 35, 44] and references therein). Theorem 5.2 below
on dependence of weak solutions in V on initial data from H and Theorem 5.1 allow
us to investigate the dynamics of all weak solutions of Problems (5.1) and (5.2) in V
as t → +∞.

http://dx.doi.org/10.1007/978-3-319-59840-6_1
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Theorem 5.2 Let τ < T and uτ,n → uτ weakly in H, un(·) ∈ Dτ,T (uτ,n) for any
n ≥ 1. Then there exist a subsequence {unk (·)}k≥1 ⊂ {un(·)}n≥1 and u(·) ∈ Dτ,T (uτ )

such that

∀ε ∈ (0, T − τ) sup
t∈[τ+ε,T ]

‖unk (t) − u(t)‖V → 0, k → +∞. (5.8)

Proof Let τ < T , uτ,n → uτ weakly in H , un(·) ∈ Dτ,T (uτ ) ∀n ≥ 1. Theorem 1
from [26] (cf. also [56, Theorem 2.1, p. 56]) implies the existence of a subsequence
{unk (·)}k≥1 ⊆ {un(·)}n≥1 and u(·) ∈ Dτ,T (uτ ) such that

∀ε ∈ (0, T − τ) sup
t∈[τ+ε,T ]

‖unk (t) − u(t)‖H → 0, k → +∞. (5.9)

We fix an arbitrary ε ∈ (0, T − τ). Theorem 2.1 implies that the restrictions of unk (·)
and u(·) on [τ + ε, T ] belong to L2(τ + ε, T ; H 2(Ω) ∩ V ) ∩ C([τ + ε, T ]; V ).
Moreover, unk ,t (·) and ut (·) belong to L2(τ + ε, T ; H). Theorem 5.1 imply that
{unk (·)}k≥1 is bounded inC([τ + ε, T ]; V ) ∩ L2(τ + ε, T ; H 2(Ω) ∩ V ). Moreover,
{unk ,t (·)}k≥1 is bounded in L2(τ + ε, T ; H). Thus in virtue of (5.9) and of the com-
pact and dense embedding H 2(Ω) ∩ V ⊂ V ⊂ H ⊂ V ∗, we have

unk (·) → u(·) weakly in L2(τ + ε, T ; H 2(Ω) ∩ V ),

unk ,t (·) → ut (·) weakly in L2(τ + ε, T ; H), k → +∞.
(5.10)

Moreover,
unk (·) → u(·) in C([τ + ε, T ]; Vw), k → +∞. (5.11)

Without loss of generality, in virtue of the compact embedding theorem (cf. [33,
Section 5.1]), the next convergences hold

unk (t) → u(t) in V for a.e. t ∈ (τ + ε, T ),

unk (·) → u(·) in L2(τ + ε, T ; V ), k → +∞.
(5.12)

We consider the dense subset of [τ, T ]:

D := {t ∈ [τ, T ] ∣∣ unk (t) → u(t) in V, k → +∞}.

Let us fix an arbitrary ε > 0 such that τ + ε ∈ D . Then

sup
t∈[τ+ε,T ]

‖unk (t) − u(t)‖V = ‖unk (tnk ) − u(tnk )‖V , (5.13)

where tnk ∈ [τ + ε, T ] for any k ≥ 1.
Let us show that

‖unk (tnk ) − u(tnk )‖V → 0, k → +∞. (5.14)

http://dx.doi.org/10.1007/978-3-319-59840-6_2
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We prove this statement by contradiction. If (5.14) does not hold, then without loss
of generality we assume that for some t0 ∈ [τ + ε, T ]

tnk → t0, k → +∞, (5.15)

and there exists δ∗ > 0 such that

‖unk (tnk ) − u(tnk )‖V ≥ δ∗ ∀k ≥ 1. (5.16)

As u(·) ∈ C([τ + ε, T ]; V ) then (5.15) and (5.16) imply

‖unk (tnk ) − u(t0)‖V ≥ δ∗ for k rather large. (5.17)

On the other hand from (5.12) we get

V (unk )(s) → V (u)(s) for each s ∈ (τ + ε, T ) ∩ D, k → +∞, (5.18)

where for any weak solution z(·) of Problems (5.1) and (5.2) on [τ, T ] and any
s ∈ [τ + ε, T ]

V (z)(s) = ‖z(s)‖2V − 2c20meas(Ω)s − 2c20

s∫

τ

‖u(ξ)‖2Hdξ.

We note that

V (unk )(t) ≤ V (unk )(s) ∀ τ ≤ s ≤ t ≤ T, ∀k ≥ 1. (5.19)

Let us prove the inequality

lim
k→+∞V (unk )(tnk ) ≤ V (u)(t0). (5.20)

We need to consider two cases.

Case 1: t0 > τ + ε. Let us fix an arbitrary δ > 0. As u(·) ∈ C([τ + ε, T ]; V ),
then the density ofD in [τ, T ] implies the existence of s̄ ∈ [τ + ε, t0) ∩ D such that

V (u)(s̄) − V (u)(t0) < δ.

In virtue of (5.15)–(5.19) for any δ > 0 we obtain

lim
k→+∞V (unk )(tnk ) − V (u)(t0) ≤ lim

k→+∞V (unk )(s̄) − V (u)(t0) = V (u)(s̄) − V (u)(t0) < δ.

Thus inequality (5.20) holds.
Case 2: t0 = τ + ε. As τ + ε ∈ D , then in virtue of (5.15)–(5.19) we obtain
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lim
k→+∞V (unk )(tnk ) − V (u)(t0) ≤ lim

k→+∞V (unk )(t0) − V (u)(t0) = 0.

Thus inequality (5.20) is true. Therefore, (5.9), (5.11) and (5.15) imply

lim
k→+∞ ‖unk (tnk )‖V ≤ ‖u(t0)‖V

that together with (5.11) provides

unk (tnk ) → u(t0) in V, k → +∞,

which contradicts (5.17). Therefore (5.14) holds.
The theorem is proved.

5.4 Examples of Applications

In this section we provide examples of applications to theorems established in
Sects. 5.1–5.3. We consider a model of combustion in porous media (sect. 5.4.1),
a model of conduction of electrical impulses in nerve axons (sect. 5.4.2), a climate
energy balance model (sect. 5.4.2); and a model of combustion in porous media
(sect. 5.4.3).

5.4.1 A Model of Combustion in Porous Media

Let us consider the following problem:

{
∂u
∂t − ∂2u

∂x2 − f (u) ∈ λH(u − 1), (x, t) ∈ (0, π) × R,

u(0, t) = u(π, t) = 0, t ∈ R,
(5.21)

where f : R → R is a continuous and nondecreasing function satisfying growth
and sign assumptions, λ > 0, and H(0) = [0, 1], H(s) = I{s > 0}, s �= 0; Feireisl
and Norbury [17] (see also sect. 2.4.5 and Fig. 5.1). For each uτ ∈ L2((0, π)) we set
Dτ,T (uτ ) = {u(·) ∈ L2(τ, T ; H 1

0 ((0, π)))
∣
∣ u(·) is a weak solution of

Problem (5.21) and u(τ ) = uτ }. Since Problem (5.21) is a particular case of Prob-
lems (5.1) and (5.2), then the following statement holds: if τ < T and uτ,n → uτ

weakly in L2((0, π)), un(·) ∈ Dτ,T (uτ,n) for any n ≥ 1, then there exist a subse-
quence {unk (·)}k≥1 ⊂ {un(·)}n≥1 and u(·) ∈ Dτ,T (uτ ) such that

∀ε ∈ (0, T − τ) sup
t∈[τ+ε,T ]

‖unk (t) − u(t)‖H 1
0 ((0,π)) → 0, k → +∞.

http://dx.doi.org/10.1007/978-3-319-59840-6_2
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Fig. 5.1 Porous media

Fig. 5.2 Structure of the peripheral nerve

5.4.2 A Model of Conduction of Electrical Impulses in Nerve
Axons

Consider the problem:

{
∂u
∂t − ∂2u

∂x2 + u ∈ λH(u − a), (x, t) ∈ (0, π) × R,

u(0, t) = u(π, t) = 0, t ∈ R,
(5.22)

where a ∈ (

0, 1
2

)

; Terman [47, 48] (see also sect. 2.4.2 and Fig. 5.2). Since Problems
(5.22) is a particular case of Problems (5.1) and (5.2), then then the following state-
ment holds: if τ < T and uτ,n → uτ weakly in L2((0, π)), un(·) ∈ Dτ,T (uτ,n) for any
n ≥ 1, then there exist a subsequence {unk (·)}k≥1 ⊂ {un(·)}n≥1 and u(·) ∈ Dτ,T (uτ )

such that

∀ε ∈ (0, T − τ) sup
t∈[τ+ε,T ]

‖unk (t) − u(t)‖H 1
0 ((0,π)) → 0, k → +∞.

http://dx.doi.org/10.1007/978-3-319-59840-6_2
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5.4.3 Climate Energy Balance Model

Let (M , g) be aC∞ compact connected oriented two-dimensional Riemannianman-
ifoldwithout boundary (as, e.g.M = S2 the unit sphere ofR3). Consider the Budyko
model (see also sect. 2.4.3 and Figs. 5.3 and 5.4):

∂u
∂t − Δu + Bu ∈ QS(x)β(u), (x, t) ∈ M × R, (5.23)

whereΔu = divM (∇Mu) ; ∇M is understood in the sense of theRiemannianmetric
g (see sect. 2.4.3, Budyko [8] and Sellers [41]).

Let S : M → R be a function such that S ∈ L∞(M ) and there exist S0, S1 > 0
such that

0 < S0 ≤ S(x) ≤ S1.

Fig. 5.3 Budyko model

Fig. 5.4 Climate energy

http://dx.doi.org/10.1007/978-3-319-59840-6_2
http://dx.doi.org/10.1007/978-3-319-59840-6_2
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Suppose also that β is a bounded maximal monotone graph of R2, that is there exist
m, M ∈ R such that for all s ∈ R and z ∈ β(s)

m ≤ z ≤ M.

Let us consider real Hilbert spaces

H := L2(M ), V := {u ∈ L2(M ) : ∇Mu ∈ L2(TM )}

with respective standard norms ‖ · ‖H , ‖ · ‖V , and inner products ( · , · )H , ( · , · )V ,

where TM represents the tangent bundle and the functional spaces L2(M ) and
L2(TM ) are defined in a standard way; see, for example, Aubin [2]. According
to Theorem 2.2, for any −∞ < τ < T < +∞ each weak solution uτ ∈ L2(Ω) of
Problem (5.23) on [τ, T ]belongs toC([τ + ε, T ]; H 1

0 (Ω)) ∩ L2(τ + ε, T ; H 2(Ω) ∩
H 1

0 ((0, π))) and du
dt (·) ∈ L2(τ + ε, T ; L2(Ω)) for each ε ∈ (0, T − τ).Consider the

generalized setting of Problem (5.23):

du

dt
+ Au(t) + ∂ J1(u(t)) − ∂ J2(u(t)) � 0̄ on (−∞ < τ < T < +∞), (5.24)

where A : V → V ∗ be a linear symmetric operator such that ∃c > 0 : 〈Av, v〉V ≥
c‖v‖2V , for each v ∈ V and Ji : H → R be a convex, lower semi-continuous function
such, that the following assumptions hold: (i) (growth condition) there exists c1 > 0
such that ‖y‖H ≤ c1(1 + ‖u‖H ), for each u ∈ H and y ∈ ∂ Ji (u) and i = 1, 2; (ii)
(sign condition) there exist c2 > 0, λ ∈ (0, c) such that (y1 − y2, u)H ≥ −λ‖u‖2H −
c2, for each yi ∈ ∂ Ji (u), u ∈ H , where ∂ Ji (u) the subdifferential of Ji (·) at a point
u. Note that u∗ ∈ ∂ Ji (u) if and only if u∗(v − u) ≤ Ji (v) − Ji (u) ∀v ∈ H ; i = 1, 2.
Let D(A) = {u ∈ V : Au ∈ H}. We note that the mapping v → ‖Av‖H defines the
equivalent norm on D(A); Temam [42, Chapter III].

We recall that the function u(·) ∈ L2(τ, T ; V ) is called aweak solution of Problem
(5.24) on [τ, T ], if there exist Bochner measurable functions di : (τ, T ) → H ; i =
1, 2, such that

di (t) ∈ ∂ Ji (u(t)) for a.e. t ∈ (τ, T ), i = 1, 2; and (5.25)

∫ T

τ

[−〈u, v〉 ξ ′(t) + 〈Au, v〉 ξ(t) + 〈d1, v〉 ξ(t) − 〈d2, v〉 ξ(t)
]

dt = 0, (5.26)

for all ξ ∈ C∞
0 (τ, T ) and for all v ∈ V .

The following theorem provides sufficient conditions for the existence and regu-
larity of all weak solutions for Problem (5.24).

Theorem 5.3 Let −∞ < τ < T < +∞ and uτ ∈ H. Problem (5.24) has at least
one weak solution u(·) ∈ L2(τ, T ; V ) on [τ, T ] such that u(τ ) = uτ . Moreover, if
u(·) is a weak solution of Problem (5.24) on [τ, T ], then u(·) ∈ C([τ + ε, T ]; V ) ∩
L2(τ + ε, T ; D(A)) and du

dt (·) ∈ L2(τ + ε, T ; H) for any ε ∈ (0, T − τ).

http://dx.doi.org/10.1007/978-3-319-59840-6_2
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Proof We note that for any uτ ∈ H there exists at least one weak solution of Problem
(5.24) on [τ, T ] with initial condition u(τ ) = uτ ; see Kasyanov [26] and references
therein. The regularity of each weak solution follows from Theorem 2.3.

The theorem is proved.

Denote byK+ the family of all, globally defined on [0,+∞), weak solutions of
Problem (5.24). Let us set

E(u) = 1

2
〈Au, u〉 + J1(u) − J2(u), u ∈ V . (5.27)

Theorem 5.4 For each u ∈ K+ and all τ and T , 0 < τ < T < ∞, the energy equal-
ity holds

E(u(T )) − E(u(τ )) = −
∫ T

τ

‖du
ds

(s)‖2Hds. (5.28)

Proof Suppose u(·) ∈ K+ be arbitrary fixed and let 0 < τ < T < +∞. To sim-
plify conclusions, let the symbol u(·) denotes the restriction of u(·) on [τ, T ].
Theorem 5.3 implies that u(·) ∈ C([τ, T ]; V ) ∩ L2(τ, T ; D(A)) and du

dt (·) ∈ L2

(τ, T ; H), because τ > 0. Barbu [7, Lemma 2.1, p. 189] yields that the functions
Ji (u(·)), i = 1, 2, are absolutely continuous on [τ, T ] and the equality holds:

d

dt
Ji (u(t)) = 〈hi (t), du

dt
(t)〉H , for a.e. t ∈ (τ, T ), (5.29)

for all hi (·) ∈ L2(τ, T ; H) such that hi (t) ∈ ∂ Ji (s)|s=u(t) for a.e. t ∈ (τ, T ), i=1,2.
We remark that the mapping t → 〈Au(t), u(t)〉V is absolutely continuous on

[τ, T ] and the equality holds:

d

dt
〈Au(t), u(t)〉 = 2〈Au(t),

du

dt
(t)〉H , for a.e. t ∈ (τ, T ) (5.30)

Thus, the function E(u(·)) is absolutely continuous on [τ, T ] as the linear com-
bination of absolutely continuous on [τ, T ] functions. According to formulae (5.29)
and (5.30), d

dt E(u(t)) = −‖ du
dt (t)‖2H for a.e. t ∈ (τ, T ).

The theorem is proved.

Repeating several lines from the proof of Theorem 5.1 we obtain that there exists
C > 0 such that for any τ < T and for each weak solution u(·) of Problem (5.24)
on [τ, T ] the inequality holds

(t − τ)‖u(t)‖2V +
t∫

τ

(s − τ)‖u(s)‖2D(A)ds ≤ C(1 + ‖u(τ )‖2H + (t − τ)2), (5.31)

for each t ∈ (τ, T ].

http://dx.doi.org/10.1007/978-3-319-59840-6_2
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Let

Dτ,T (uτ ) = {u(·) ∈ L2(τ, T ; V )
∣
∣ u(·) is a weak solution of Problem (5.24) and u(τ ) = uτ },

for any uτ ∈ H . Let us provide the main convergence result for all weak solutions
of Problem (5.24) in the strongest topologies.

Theorem 5.5 Let τ < T , uτ,n → uτ weakly in H, un(·) ∈ Dτ,T (uτ,n) for any n ≥ 1.
Then there exists a subsequence {unk (·)}k≥1 ⊆ {un(·)}n≥1 and u(·) ∈ Dτ,T (uτ ) such
that

sup
t∈[τ+ε,T ]

‖unk (t) − u(t)‖V → 0, (5.32)

∫ T

τ+ε

‖dunk
dt

(t) − du

dt
(t)‖2Hdt → 0, (5.33)

as k → +∞, for all ε ∈ (0, T − τ).

Proof The inequality (5.31), Kasyanov et al. [29, Theorem 3], Banach-Alaoglu the-
orem, and Cantor diagonal arguments (alternatively we may repeat several lines
from the proof of Theorem 5.2) yield that there exist a subsequence {unk (·)}k≥1 ⊆
{un(·)}n≥1 and u(·) ∈ Dτ,T (uτ ) such that the following statements hold:

(a) the restrictions of unk (·) and u(·) on [τ + ε, T ] belong to C([τ + ε, T ]; V ) ∩
L2(τ + ε, T ; D(A)) and

dunk
dt (·), du

dt (·) ∈ L2(τ + ε, T ; H);
(b) the following convergence hold:

unk (·) → u(·) weakly in L2(τ + ε, T ; D(A)),

unk (·) → u(·) strongly in C([τ + ε, T ]; V ),
dunk
dt (·) → du

dt (·) weakly in L2(τ + ε, T ; H),

(5.34)

as k → ∞, for each ε ∈ (0, T − τ), that imply statement (5.32). Let us prove (5.33).
Theorem 5.4 yields the following energy equalities

∫ T

τ+ε

‖du
dt

(t)‖2Hdt = E(u(τ + ε)) − E(u(T )), (5.35)

∫ T

τ+ε

‖dunk
dt

(t)‖2Hdt = E(unk (τ + ε)) − E(unk (T )), (5.36)

k ≥ 1, ε ∈ (0, T − τ). Continuity of E on V and (5.32) imply

E(unk (τ + ε)) − E(unk (T )) → E(u(τ + ε)) − E(u(T )), m → ∞. (5.37)

Therefore, formulae (5.35)–(5.37) yield
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∫ T

τ+ε

‖dunk
dt

(t)‖2Hdt →
∫ T

τ+ε

‖du
dt

(t)‖2Hdt, (5.38)

as k → ∞, for each ε ∈ (0, T − τ). Since, L2(τ + ε; T ) is a Hilbert space, (5.34)
and (5.38) imply (5.33).

The theorem is proved.
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Chapter 6
Strongest Convergence Results for Weak
Solutions of Differential-Operator
Equations and Inclusions

Abstract In this chapter we establish strongest convergence results for weak solu-
tions of differential-operator equations and inclusions. In Sect. 6.1 we consider first
order differential-operator equations and inclusions. Section6.2 devoted to conver-
gence results for weak solutions of second order operator differential equations and
inclusions. In Sect. 6.3 we consider the following examples of applications: nonlin-
ear parabolic equations of divergent form; nonlinear problems on manifolds with
and without boundary: a climate energy balance model; a model of conduction of
electrical impulses in nerve axons; viscoelastic problems with nonlinear “reaction-
displacement” law.

6.1 First Order Differential-Operator Equations
and Inclusions

In this sectionwe consider strongest convergence results for both the autonomousfirst
order differential-operator equations as well as nonautonomous evolution inclusions.

6.1.1 Convergence Results for Autonomous Evolution
Equations

Let us consider the first-order general nonlinear evolution equations of the form

u′(t) + A(u(t)) = 0̄, (6.1)

It is assumed that the nonlinear operator A : V → V ∗, acts in a Banach space V ,
which is reflexive and separable and, for some Hilbert space H , the embeddings V �
H ≡ H ⊂ V ∗ are valid. Suppose that the nonlinear operator A is pseudomonotone
and satisfies dissipation conditions of the form

〈A(u), u〉V ≥ α‖u‖p
V − β ∀u ∈ V, (6.2)
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where p ≥ 2, and α, β > 0, and also power growth conditions of the form

‖A(u)‖V ∗ ≤ c(1 + ‖u‖p−1
V ) ∀u ∈ V, (6.3)

for some c > 0. Here 〈·, ·〉V : V ∗ × V → R is the pairing in V ∗ × V coinciding on
H × V with the inner product(·, ·) in the Hilbert space H .

By a weak solution of operator differential equation (6.1) on a closed interval
[τ, T ] we mean an element u of the space L p(τ, T ; V ) such that

∀ξ ∈ C∞
0 ([τ, T ]; V ) −

T∫

τ

(ξ ′(t), u(t))dt +
T∫

τ

〈A(u(t)), ξ(t)〉V dt = 0. (6.4)

Many evolution partial differential equations in a domain Ω whose leading part
is a pth power nonlinear monotone differential operator and which may contain
lower (now nonmonotone) summands with subordinate nonlinearity growth can be
reduced to the form (6.1). In this case, the space V is a Sobolev space of the cor-
responding order, while the space H is H = L2(Ω). Such equations are very often
used to describe complicated evolution processes in various models in physics and
mechanics. For equations of the form (6.1), there is a well-developed technique
for constructing global (i.e., for all t ≥ 0) weak solutions u(t), t ≥ 0, from the
space Lloc

p (R+; V ) such that u′(·) ∈ Lloc
q (R+; V ∗) (here 1/p + 1/q = 1). It is well

known that such weak solutions u(t) are continuous functions with values in H , i.e.,
u(·) ∈ C(R+; H).

The problem is to study the asymptotic behavior as t → +∞ of the families of
weak solutions {u(t)} of Problem (6.1) in the norm of H under the assumption that
the initial data {u(0)} constitute a bounded set in H (see also [1, 2, 4, 7, 9, 11,
19–21, 28]).

Note that, under certain additional conditions on the nonlinear operator A(u)

ensuring, for Problem (6.1), the unique solvability of the Cauchy problem u|t=0 = u0
for any u0 ∈ H , the study of the class of weak solutions under consideration involves
the highly fruitful theory of dynamical semigroups and their global attractors in
infinite-dimensional phase spaces. This theory has been successfully developed over
a period of more than thirty years; its foundations were created by Ladyzhenskaya,
Babin, Vishik, Hale, Temam and other well-known mathematicians [14, 15, 17, 18].

Theproblembecomes significantlymore complicated if the correspondingCauchy
problem is not uniquely solvable or the proof of the relevant theorem is not known.
Such a situation often occurs in complicated mathematical models. In this case,
the “classical” method based on unique semigroups and global attractors cannot be
applied directly. However, two approaches to the study of the dynamics of the corre-
sponding weak solutions are well known. The first method is based on the theory of
multi-valued semigroups; it was developed in ground-breaking papers of Babin and
Vishik (see, for example, [3]). The second approach uses the method of trajectory
attractors; it was proposed in the papers [5, 6] of Chepyzhov and Vishik as well as
in the independent work [25] of Sell.
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The new results contained in the present section consist in the application of these
two approaches to the study of the strongest convergence results for weak solutions
of equations of the form (6.1) with general nonlinear pseudomonotone operator A(u)

satisfying (S)-property without any conditions guaranteeing the unique solvability
of the Cauchy problem.

For fixed τ < T let us set

Xτ,T = L p(τ, T ; V ), X∗
τ,T = Lq(τ, T ; V ∗), Wτ,T = {u ∈ Xτ,T | u′ ∈ X∗

τ,T },

where u′ is a derivative of an element u ∈ Xτ,T in the sense of the space of distri-
butions D([τ, T ]; V ∗) (see, for example, [12, Definition IV.1.10, p. 168]). We note
that

A(u)(t) = A(u(t)), for any u ∈ Xτ,T and a.e. t ∈ (τ, T ).

The spaceWτ,T is a reflexive Banach space with the graph norm of a derivative (see,
for, example [15, Proposition 4.2.1, p. 291]):

‖u‖Wτ,T = ‖u‖Xτ,T + ‖u′‖X∗
τ,T

, u ∈ Wτ,T . (6.5)

Properties of A and (V, H, V ∗) provide the existence of aweak solution ofCauchy
problem (6.1) with initial data

u(τ ) = uτ (6.6)

on the interval [τ, T ] for an arbitrary yτ ∈ H . Therefore, the next result takes place:
According to Proposition 1.1, for any τ < T, yτ ∈ H Cauchy problem (6.1), (6.6)

has a weak solution on the interval [τ, T ]. Moreover, each weak solution u ∈ Xτ,T of
Cauchy problem (6.1), (6.6) on the interval [τ, T ] belongs to Wτ,T ⊂ C([τ, T ]; H).

For fixed τ < T we denote

Dτ,T (uτ ) = {u(·) | u is a weak solution of (6.1) on [τ, T ], u(τ ) = uτ }, uτ ∈ H.

From Proposition 1.1 it follows that Dτ,T (uτ ) �= ∅ and Dτ,T (uτ ) ⊂ Wτ,T ∀τ <

T, uτ ∈ H .
We note that the translation and concatenation ofweak solutions is aweak solution

too.

Lemma 6.1 (Zgurovsky et al. [15]) If τ < T , uτ ∈ H, u(·) ∈ Dτ,T (uτ ), then v(·) =
u(· + s) ∈ Dτ−s,T−s(uτ ) ∀s. If τ < t < T , uτ ∈ H, u(·) ∈ Dτ,t (uτ ) and v(·) ∈
Dt,T (u(t)), then

z(s) =
{
u(s), s ∈ [τ, t],
v(s), s ∈ [t, T ]

belongs to Dτ,T (uτ ).

As a rule, the proof of the existence of compact global and trajectory attractors
for equations of type (6.1) is based on the properties of the set of weak solutions of

http://dx.doi.org/10.1007/978-3-319-59840-6_1
http://dx.doi.org/10.1007/978-3-319-59840-6_1
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problem (6.1) related to the absorption of the generated m-semiflow of solutions and
its asymptotic compactness (see, for example, [24, 27] and the references therein).
The following lemma on a priori estimates of solutions and Theorem 6.1 on the
dependence of solutions on initial datawill play a key role in the study of the dynamics
of the solutions of Problem (6.1) as t → +∞.

Lemma 6.2 (Zgurovsky et al. [15]) There exist c4, c5, c6, c7 > 0 such that for any
finite interval of time [τ, T ] every weak solution u of problem (6.1) on [τ, T ] satisfies
estimates: ∀t ≥ s, t, s ∈ [τ, T ]

‖u(t)‖2H + c4

t∫

s

‖u(ξ)‖p
V dξ ≤ ‖u(s)‖2H + c5(t − s), (6.7)

‖u(t)‖2H ≤ ‖u(s)‖2He−c6(t−s) + c7. (6.8)

We recall that A : V → V ∗ satisfies (S)-property, if from un → u weakly in V
and 〈A(un), un − u〉V → 0, as n → ∞, it follows that un → u strongly in V , as
n → +∞.

Further we assume that A satisfies (S)-property.

Theorem 6.1 Let τ < T , {un}n≥1 be an arbitrary sequence of weak solutions of (6.1)
on [τ, T ] such that un(τ ) → η weakly in H. Then there exist {unk }k≥1 ⊂ {un}n≥1 and
u(·) ∈ Dτ,T (η) such that

∀ε ∈ (0, T − τ) max
t∈[τ+ε,T ] ‖unk (t) − u(t)‖H +

T∫

τ+ε

‖unk (t) − u(t)‖p
V dt → 0, k → +∞.

(6.9)

Before the proof of Theorem 6.1 let us provide some auxiliary statements.

Lemma 6.3 Let τ < T , yn → y weakly in Wτ,T , and

lim sup
n→+∞

〈A(yn), yn − y〉Xτ,T ≤ 0. (6.10)

Then

lim
n→+∞

T∫

τ

|〈A(yn(t)), yn(t) − y(t)〉V | dt = 0. (6.11)

Proof There exists a set of measure zero,Σ1 ⊂ (τ, T ) such that for t /∈ Σ1,we have
that

yn(t) ∈ V for all n ≥ 1.

Similarly to [17, p. 7] we verify the following claim.
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Claim: Let yn → y weakly in Wτ,T and let t /∈ Σ1. Then

lim
n→+∞

〈A(yn(t)), yn(t) − y(t)〉V ≥ 0.

Proof of the claim. Fix t /∈ Σ1 and suppose to the contrary that

lim
n→+∞

〈A(yn(t)), yn(t) − y(t)〉V < 0. (6.12)

Then up to a subsequence {ynk }k≥1 ⊂ {yn}n≥1 we have

lim
k→+∞〈A(ynk (t)), ynk (t) − y(t)〉V = lim

n→+∞
〈A(yn(t)), yn(t) − y(t)〉V < 0. (6.13)

Therefore, for all rather large k, growth and dissipation conditions imply

α‖ynk (t)‖p
V − β ≤ ‖A(ynk (t))‖V ∗‖y(t)‖V ≤ c(1 + ‖ynk (t)‖p−1

V )‖y(t)‖V .

which implies that the sequences {‖ynk (t)‖V }k≥1 and consequently {‖A(ynk
(t))‖V ∗ }k≥1 are bounded sequences. In virtue of the continuous embedding Wτ,T ⊂
C([τ, T ]; H) we obtain that ynk (t) → y(t) weakly in H . Due to boundedness of
{ynk (t)}k≥1 in V we finally have

∀t ∈ [τ, T ]\Σ1 ynk (t) → y(t) weakly in V, k → +∞. (6.14)

The pseudomonotony of A, (6.12)–(6.14) imply that

lim
n→+∞

〈A(yn(t)), yn(t) − y(t)〉V ≥ 〈A(y(t)),

y(t) − y(t)〉V = 0 > lim
n→+∞

〈A(yn(t)), yn(t) − y(t)〉V .

We obtain a contradiction.
The claim is proved.
Now let us continue the proof of Lemma 6.3. The claim provides that for a.e.

t ∈ [τ, T ], in fact for any t /∈ Σ1, we have

lim
n→+∞

〈A(yn(t)), yn(t) − y(t)〉V ≥ 0. (6.15)

Dissipation and growth conditions imply that, if ω ∈ Xτ,T , then

〈A(yn(t)), yn(t) − ω(t)〉V ≥ α‖yn(t)‖p
V − β − c(1 + ‖yn(t)‖p−1

V )‖ω(t)‖V
for a.e. t ∈ [τ, T ]\Σ1.

Using p − 1 = p
q , the right side of the above inequality equals to
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α‖yn(t)‖p
V − β − c‖yn(t)‖

p
q

V ‖ω(t)‖V − c‖ω(t)‖V .

Now using Young’s inequality, we can obtain a constant c(c, α) depending on c, α
such that

c‖yn(t)‖
p
q

V ‖ω(t)‖V ≤ α

2
‖yn(t)‖p

V + ‖ω(t)‖p
V · c(c, α).

Letting c̄ = max{β + c
q ; c(c, α) + c

p } it follows that

〈A(yn(t)), yn(t) − ω(t)〉V ≥ −c̄(1 + ‖ω(t)‖p
V ) for a.e. t ∈ [τ, T ]. (6.16)

Letting ω = y, we can use Fatou’s lemma and we obtain

lim
n→+∞

T∫

0

[〈A(yn(t)), yn(t) − y(t)〉V + c̄(1 + ‖y(t)‖p
V )]dt ≥

≥
T∫

0

lim
n→+∞

[〈A(yn(t)), yn(t) − y(t)〉V + c̄(1 + ‖y(t)‖pV )]dt ≥ c̄

T∫

0

(1 + ‖y(t)‖pV )dt.

Therefore,

0 ≥ lim sup
n→+∞

〈A(yn), yn − y〉Xτ,T ≥ lim
n→+∞

T∫

τ

〈A(yn(t)), yn(t) − y(t)〉V dt =

= lim
n→+∞

〈A(yn), yn − y〉Xτ,T ≥
T∫

τ

lim
n→+∞

〈A(yn(t)), yn(t) − y(t)〉V dt = 0,

showing that
lim

n→+∞〈A(yn), yn − y〉Xτ,T = 0. (6.17)

From (6.16),

∀n ≥ 1 ∀t /∈ Σ1 0 ≤ 〈A(yn(t)), yn(t) − y(t)〉−V ≤ c̄(1 + ‖y(t)‖p
V ),

where a− = max{0,−a}, for a ∈ R. Due to (6.15) we know that for a.e. t , 〈A(yn(t)),
yn(t) − y(t)〉V ≥ −ε for all rather large n. Therefore, for such n, 〈A(yn(t)), yn(t) −
y(t)〉−V ≤ ε, if 〈A(yn(t)), yn(t) − y(t)〉V < 0 and 〈A(yn(t)), yn(t) − y(t)〉−V = 0, if
〈A(yn(t)), yn(t) − y(t)〉V ≥ 0. Therefore, lim

n→+∞〈A(yn(t)), yn(t) − y(t)〉−V = 0 and

we can apply the dominated convergence theorem and from (6.15) we conclude that
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lim
n→+∞

T∫

τ

〈A(yn(t)), yn(t) − y(t)〉−V =
T∫

τ

lim
n→+∞〈A(yn(t)), yn(t) − y(t)〉−V dt = 0.

Now by (6.17) and the above equation we have

lim
n→+∞

T∫

τ

〈A(yn(t)), yn(t) − y(t)〉+V dt =

= lim
n→+∞

T∫

0

[〈A(yn(t)), yn(t) − y(t)〉V + 〈A(yn(t)), yn(t) − y(t)〉−V ]dt =

= lim
n→+∞〈A(yn), yn − y〉Xτ,T = 0.

Therefore,

lim
n→+∞

T∫

τ

|〈A(yn(t)), yn(t) − y(t)〉V |dt = 0.

The lemma is proved.

Lemma 6.4 Let τ < T , yn → y weakly in Wτ,T , and (6.10) holds. Then there exists
a subsequence {ynk }k≥1 ⊂ {yn}n≥1 such that for a.e. t ∈ (τ, T )we have that ynk (t) →
y(t) weakly in V , and 〈A(ynk (t)), ynk (t) − y(t)〉V → 0, k → +∞.

Proof Let yn → y weakly in Wτ,T and

lim sup
n→+∞

〈A(yn), yn − y〉Xτ,T ≤ 0.

In virtue of Lemma 6.3 we obtain

lim
n→+∞

T∫

τ

|〈A(yn(t)), yn(t) − y(t)〉V |dt = 0. (6.18)

Due to the continuous embedding Wτ,T ⊂ C([τ, T ]; H) we have

∀t ∈ [τ, T ] yn(t) → y(t) weakly in H, n → +∞. (6.19)

From (6.18) it follows that there exists a subsequence {ynk }k≥1 ⊂ {yn}n≥1 such that

〈A(ynk (t)), ynk (t) − y(t)〉V → 0, k → +∞, for a.e. t ∈ [τ, T ].
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Let Σ1 ⊂ [τ, T ] be a set of measure zero such that for t /∈ Σ1 ynk (t), y(t) are well-
defined ∀k ≥ 1, and

〈A(ynk (t)), ynk (t) − y(t)〉V → 0, k → +∞.

In virtue of growth and dissipation conditions we obtain

∀t /∈ Σ1 ∀k ≥ 1 lim sup
k→+∞

(
α‖ynk (t)‖p

V − β − c(1 + ‖ynk (t)‖p−1
V )‖y(t)‖V

)
≤ 0.

Thus ∀t /∈ Σ1

lim sup
k→+∞

‖ynk (t)‖p
V ≤ c(c, α, β, p)(1 + ‖y(t)‖p

V ).

Therefore, due to (6.19) we obtain that for a.e. t ∈ (τ, T ) ynk (t) → y(t) weakly in
V , k → +∞.

The lemma is proved.

Proof of Theorem 6.1. Let τ < T , {un}n≥1 be an arbitrary sequence of weak
solutions of (6.1) on [τ, T ] such that un(τ ) → η weakly in H . Theorem 1 from [15]
implies the existence of a subsequence {unk }k≥1 ⊂ {un}n≥1 and u(·) ∈ Dτ,T (η) such
that

∀ε ∈ (0, T − τ) max
t∈[τ+ε,T ] ‖unk (t) − u(t)‖H → 0, k → +∞. (6.20)

Let us prove that

∀ε ∈ (0, T − τ)

T∫

τ+ε

‖unk (t) − u(t)‖p
V dt → 0, k → +∞. (6.21)

On the contrary,without loss of generalitywe assume that for some ε ∈ (0, T − τ)

and δ > 0 it is fulfilled

T∫

τ+ε

‖unk (t) − u(t)‖p
V dt ≥ δ, ∀k ≥ 1. (6.22)

In virtue of (6.7), without loss of generality we claim that

unk → u weakly in Wτ+ε,T , k → +∞. (6.23)

Moreover, due to (6.20), we have
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lim sup
k→∞

T∫

τ+ε

〈A(unk (t)), unk (t) − u(t)〉V dt ≤ 0. (6.24)

Thus, Lemma 6.4 and (S)-property for A imply that up to a subsequence which we
denote again as {unk }k≥1 for a.e. t ∈ (τ + ε, T ) we have that unk (t) → u(t) strongly
in V , k → +∞. Moreover, Lemma 6.3 provides that

lim
k→+∞

T∫

τ+ε

∣∣〈A(unk (t)), unk (t) − u(t)〉V
∣∣ dt = 0.

Dissipation and growth conditions follow the existence a constant C > 0 such that

‖unk (t) − u(t)‖p
V ≤ C(1 + ‖u(t)‖p

V + ∣∣〈A(unk (t)), unk (t) − u(t)〉V
∣∣)

for a.e. t ∈ (τ + ε, T ) and any k ≥ 1. Therefore,

lim
k→+∞

T∫

τ+ε

‖unk (t) − u(t)‖p
V dt = 0.

We obtain a contradiction.
The theorem is proved.

6.1.2 Convergence Results for Nonautonomous Evolution
Inclusions

For evolution triple (Vi ; H ; V ∗
i )

1 and multi-valued map Ai : R+ × V ⇒ V ∗, i =
1, 2, . . . , N , N = 1, 2, . . . we consider a problem of long-time behavior of all glob-
ally defined weak solutions for nonautonomous evolution inclusion

y′(t) +
N∑
i=1

Ai (t, y(t)) � 0̄, (6.25)

as t → +∞. Let 〈·, ·〉Vi : Vi
∗ × Vi → R be the pairing in Vi

∗ × Vi , that coincides
on H × Vi with the inner product (·, ·) in the Hilbert space H .

1I.e., Vi is a real reflexive separable Banach space continuously and densely embedded into a real
Hilbert space H , H is identifiedwith its topologically conjugated space H∗, V ∗

i is a dual space to Vi .
So, there is a chain of continuous and dense embeddings: Vi ⊂ H ≡ H∗ ⊂ V ∗

i (see, for example,
Gajewski, Gröger, and Zacharias [12, Chap. I]).



134 6 Strongest Convergence Results for Weak Solutions …

Note that Problem (6.25) arises in many important models for distributed para-
meter control problems and that large class of identification problems enter this
formulation.

Throughout this subsection we suppose that the listed below assumptions hold:

Assumption I. Let pi ≥ 2, qi > 1 are such that 1
pi

+ 1
qi

= 1, for each for
i = 1, 2, . . . , N , and the embedding Vi ⊂ H is compact one, for some for i =
1, 2, . . . , N .

Assumption II (Grows Condition). There exist a translation uniform integrable
(t.u.i.) function in L loc

1 (R+) function c1 : R+ → R+ and a constant c2 > 0 such that

N
max
i=1

‖di‖qVi
∗ ≤ c1(t) + c2

N∑
i=1

‖u‖p
Vi

for any u ∈ Vi , di ∈ Ai (t, u), i = 1, 2, . . . , N , and a.e. t > 0.
Assumption III (Sign Assumption). There exist a constant α > 0 and a t.u.i. in

L loc
1 (R+) function β : R+ → R+ such that

N∑
i=1

〈di , u〉Vi ≥ α

N∑
i=1

‖u‖p
Vi

− β(t)

for any u ∈ Vi , di ∈ Ai (t, u), i = 1, 2, . . . , N , and a.e. t > 0.
Assumption IV (Strong Measurability). If C ⊆ Vi

∗ is a closed set, then the set
{(t, u) ∈ (0,+∞) × Vi : Ai (t, u) ∩ C �= ∅} is a Borel subset in (0,+∞) × Vi .

Assumption V (Pointwise Pseudomonotonicity). Let for each i = 1, 2, . . . , N
and a.e. t > 0 two assumptions hold:

(a) for every u ∈ Vi the set Ai (t, u) is nonempty, convex, and weakly compact one
in Vi

∗;
(b) if a sequence {un}n≥1 converges weakly in Vi towards u ∈ Vi as n → +∞,

dn ∈ Ai (t, un) for any n ≥ 1, and lim sup
n→+∞

〈dn, un − u〉Vi ≤ 0, then for anyω ∈ Vi

there exists d(ω) ∈ Ai (t, u) such that

lim inf
n→+∞ 〈dn, un − ω〉Vi ≥ 〈d(ω), u − ω〉Vi .

Let 0 ≤ τ < T < +∞. As a weak solution of evolution inclusion (6.25) on the
interval [τ, T ] we consider an element u(·) of the space ∩N

i=1L pi (τ, T ; Vi ) such that
for some di (·) ∈ Lqi (τ, T ; Vi

∗), i = 1, 2, . . . , N , it is fulfilled:

−
T∫

τ

(ξ ′(t), y(t))dt +
N∑
i=1

T∫

τ

〈di (t), ξ(t)〉Vi dt = 0 ∀ξ ∈ C∞
0 ([τ, T ]; Vi ), (6.26)

and di (t) ∈ Ai (t, y(t)) for each i = 1, 2, . . . , N and a.e. t ∈ (τ, T ).
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For fixed nonnegative τ and T , τ < T , let us consider

Xτ,T = ∩N
i=1L pi (τ, T ; Vi ), X∗

τ,T =
N∑
i=1

Lqi (τ, T ; Vi ∗), Wτ,T = {y ∈ Xτ,T | y′ ∈ X∗
τ,T },

Aτ,T : Xτ,T ⇒ X∗
τ,T , Aτ,T (y) = {d ∈ X∗

τ,T | d(t) ∈ A(t, y(t)) for a.e. t ∈ (τ, T )},

where y′ is a derivative of an element u ∈ Xτ,T in the sense ofD([τ, T ];∑N
i=1 Vi

∗)
(see, for example, Gajewski, Gröger, and Zacharias [12, Definition IV.1.10]). Note
that the space Wτ,T is a reflexive Banach space with the graph norm of a deriv-
ative ‖u‖Wτ,T = ‖u‖Xτ,T + ‖u′‖X∗

τ,T
, u ∈ Wτ,T . Let 〈·, ·〉Xτ,T : X∗

τ,T × Xτ,T → R be
the pairing in X∗

τ,T × Xτ,T , that coincides on L2(τ, T ; H) × Xτ,T with the inner

product in L2(τ, T ; H), i.e., 〈u, v〉Xτ,T =
T∫
τ

(u(t), v(t))dt for any u ∈ L2(τ, T ; H)

and v ∈ Xτ,T . Gajewski, Gröger, and Zacharias [12, Theorem IV.1.17] provide that
the embedding Wτ,T ⊂ C([τ, T ]; H) is continuous and dense one. Moreover,

(u(T ), v(T )) − (u(τ ), v(τ )) =
T∫

τ

[
〈u′(t), v(t)〉Vi + 〈v′(t), u(t)〉Vi

]
dt, (6.27)

for any u, v ∈ Wτ,T .
Migórski [22, Lemma 7, p. 516] (see paper and references therein) and

Assumptions I–V provide the existence of multi-valued Nemitsky operator Aτ,T :
Xτ,T ⇒ X∗

τ,T for
∑N

i=1 Ai that satisfies the following properties:

Property I. The mapping Aτ,T transforms an each bounded set in Xτ,T onto
bounded subset of X∗

τ,T ;
Property II. There exist positive constants C1 = C1(τ, T ) and C2 = C2(τ, T )

such that 〈d, y〉Xτ,T ≥ C1‖y‖p
Xτ,T

− C2 for any y ∈ Xτ,T and d ∈ Aτ,T (y).
Property III. The multi-valued mapping Aτ,T : Xτ,T ⇒ X∗

τ,T is (generalized)
pseudomonotone on Wτ,T , i.e., (a) for every y ∈ Xτ,T the set Aτ,T (y) is a
nonempty, convex and weakly compact one in X∗

τ,T ; (b) Aτ,T is upper semi-
continuous from every finite dimensional subspace Xτ,T into X∗

τ,T endowed with
the weak topology; (c) if a sequence {yn, dn}n≥1 ⊂ Wτ,T × X∗

τ,T converges weakly
in Wτ,T × X∗

τ,T towards (y, d) ∈ Wτ,T × X∗
τ,T , dn ∈ Aτ,T (yn) for any n ≥ 1, and

lim sup
n→+∞

〈dn, yn − y〉Xτ,T ≤ 0, then d ∈ Aτ,T (y) and lim
n→+∞〈dn, yn〉Xτ,T = 〈d, y〉Xτ,T .

Formula (6.26) and definition of the derivative for an element from D([τ, T ];∑N
i=1 Vi

∗
)yield that eachweak solution y ∈ Xτ,T ofProblem (6.25) on [τ, T ]belongs

to the space Wτ,T and y′ + Aτ,T (y) � 0̄. Vice versa, if y ∈ Wτ,T satisfies the last
inclusion, then y is a weak solution of Problem (6.25) on [τ, T ].

Assumption I, Properties I–III, and Denkowski, Migórski, and Papageorgiou [10,
Theorem 1.3.73] (see also Zgurovsky, Mel’nik, and Kasyanov [30, Chap. 2] and
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references therein) provide the existence of a weak solution of Cauchy problem
(6.25) with initial data y(τ ) = y(τ ) on the interval [τ, T ], for any y(τ ) ∈ H .

For fixed τ and T , such that 0 ≤ τ < T < +∞, we denote

Dτ,T (y(τ )) = {y(·) | y is a weak solution of (6.25) on [τ, T ], y(τ ) = y(τ )}, y(τ ) ∈ H.

We remark that Dτ,T (y(τ )) �= ∅ and Dτ,T (y(τ )) ⊂ Wτ,T , if 0 ≤ τ < T < +∞ and
y(τ ) ∈ H . Moreover, the concatenation of Problem (6.25) weak solutions is a
weak solutions too, i.e., if 0 ≤ τ < t < T , y(τ ) ∈ H , y(·) ∈ Dτ,t (y(τ )), and v(·) ∈
Dt,T (y(t)), then

z(s) =
{
y(s), s ∈ [τ, t],
v(s), s ∈ [t, T ],

belongs to Dτ,T (y(τ )); cf. Zgurovsky et al. [31, pp. 55–56].
Gronwall lemma provides that for any finite time interval [τ, T ] ⊂ R+ each weak

solution y of Problem (6.25) on [τ, T ] satisfies estimates

‖y(t)‖2H − 2
∫ t

0
β(ξ)dξ + 2α

N∑
i=1

∫ t

s
‖y(ξ)‖p

Vi
dξ ≤ ‖y(s)‖2H − 2

∫ s

0
β(ξ)dξ,

(6.28)

‖y(t)‖2H ≤ ‖y(s)‖2He−2αγ (t−s) + 2
∫ t

s
(β(ξ) + αγ )e−2αγ (t−ξ)dξ, (6.29)

where t, s ∈ [τ, T ], t ≥ s; γ is a constant that does not depend on y, s, and t ; cf.
Zgurovsky et al. [31, p. 56]. In the proof of (6.29) we used the inequality ‖u‖2H − 1 ≤
‖u‖p

H for any u ∈ H .
Therefore, any weak solution y of Problem (6.25) on a finite time interval

[τ, T ] ⊂ R+ can be extended to a global one, defined on [τ,+∞). For arbitrary
τ ≥ 0 and y(τ ) ∈ H let Dτ (y(τ )) be the set of all weak solutions (defined on
[τ,+∞)) of Problem (6.25) with initial data y(τ ) = y(τ ). Let us consider the fam-
ily K +

τ = ∪y(τ )∈HDτ (y(τ )) of all weak solutions of Problem (6.25) defined on the
semi-infinite time interval [τ,+∞).

Assumptions (II) and (III) yield that there exist a positive constant α′ > 0 and a
t.u.i. function c′ in L loc

1 (R+) such that A(t, u) ⊆ Ac′(t)(u) for each u ∈ ∩N
i=1Vi and

a.e. t > 0, where

Ac′(t)(u) :=
{

N∑
i=1

pi : pi ∈ Vi
∗,

N∑
i=1

〈pi , u〉Vi ≥ α′ N
max
i=1

{
‖u‖p

Vi
; ‖p‖qVi

∗
}

− c′(t)

}
.

LetH (c′) be the hull of t.u.i. function c′ in L loc
1,w(R+), i.e.,H (c′) = clL loc

1 (R+){c′( · +
h) : h ≥ 0}. This is a weakly compact set in L loc

1 (R+); Gorban et al. [13].
Let us consider the family of problems
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y′ = Aσ (y), σ ∈ Σ := H (c′). (6.30)

To each σ ∈ Σ there corresponds a space of all globally defined on [0,+∞) weak
solutions K +

σ ⊂ C loc(R+; H) of Problem (6.30). We setK +
Σ = ∪σ∈ΣK +

σ .
We remark that any element from K +

Σ satisfies prior estimates.

Lemma 6.5 There exist positive constants c3 and c4 such that for any σ ∈ Σ and
y ∈ K +

σ the inequalities hold:

‖y(t)‖2H − 2

t∫

0

σ(ξ)dξ + 2α′
N∑
i=1

t∫

s

‖y(ξ)‖p
Vi
dξ ≤ ‖y(s)‖2H − 2

s∫

0

σ(ξ)dξ,

(6.31)

‖y(t)‖2H ≤ ‖y(s)‖2He−c3(t−s) + c4

t∫

s

σ(ξ)e−c3(t−ξ)dξ, (6.32)

for any t ≥ s ≥ 0.

Proof The proof naturally follows from conditions for the parameters of Problem
(6.30) and Gronwall lemma.

Let us provide the result characterizing the compactness properties of solutions
for the family of Problems (6.30).

Theorem 6.2 Let {yn}n≥1 ⊂ K +
Σ be an arbitrary sequence, that is bounded in

L∞(R+; H). Then there exist a subsequence {ynk }k≥1 ⊂ {yn}n≥1 and an element
y ∈ K +

Σ such that

max
t∈[τ,T ] ‖ynk (t) − y(t)‖H → 0, k → +∞, (6.33)

for any finite time interval [τ, T ] ⊂ (0,+∞).

Proof For any n ≥ 1 there exists σn ∈ Σ such that yn ∈ K +
σ . Furthermore, the

definition of weak solution of evolution inclusion yields that for any n ≥ 1 and
i = 1, 2, . . . , N , there existsdn,i ∈ L loc

qi (R+; Vi
∗) such that y′

n(t) +∑N
i=1 dn,i (t) = 0̄

for a.e. t > 0. The definition of Aσ and estimates (6.31) and (6.32) provide that the
sequence {yn, y′

n, dn,i }n≥1 is bounded in ∩N
i=1L

loc
pi (R+; Vi ) ×∑N

i=1 L
loc
qi (R+; Vi

∗) ×
L loc
qi (R+; Vi

∗), i = 1, 2, . . . , N . Since Σ is a weakly compact set in L loc
1 (R+),

Banach–Alaoglu theorem (cf. Zgurovsky, Mel’nik, and Kasyanov [30, Chap. 1];
Kasyanov [15]) yields that there exist a subsequence {ynk , dnk ,i }k≥1 ⊂ {yn, dn}n≥1

and elements di ∈ L loc
qi (R+; Vi

∗), y ∈ ∩N
i=1L

loc
pi (R+; Vi ), and σ ∈ Σ , such that y′ ∈∑N

i=1 L
loc
q (R+; Vi

∗) and for each i = 1, 2, . . . , N the following convergence hold:
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ynk → y weakly in ∩N
i=1 L

loc
pi (R+; Vi ),

y′
nk → y′ weakly in

∑N
i=1 L

loc
qi (R+; Vi

∗),
dnk ,i → di weakly in L loc

qi (R+; Vi
∗),

ynk → y weakly in C loc(R+; H),

ynk → y in L loc
2 (R+; H),

ynk (t) → y(t) in H for a.e. t > 0,
σnk → σ weakly in L loc

1 (R+), k → +∞.

(6.34)

Formula (6.33) follows fromZgurovsky et al. [31, Steps 1 and 5, p. 58].We remark
that in the proof we need to consider continuous and nonincreasing (by Lemma 6.5)
functions on R+:

Jk(t) = ‖ynk (t)‖2H − 2

t∫

0

σnk (ξ)dξ, J (t) = ‖y(t)‖2H − 2

t∫

0

σ(ξ)dξ, k ≥ 1.

(6.35)
The two last statements in (6.34) imply Jk(t) → J (t), as k → +∞, for a.e. t > 0.

The definition of a weak solution of evolution inclusion (cf. Zgurovsky et al. [31,
p. 58]) and (6.34) yield y′(t) = −∑N

i=1 di (t) for a.e. t > 0. To finish the proof it is
necessary to provide that

N∑
i=1

di (t) ∈ Aσ(t)(y(t)) for a.e. t > 0. (6.36)

Let ϕ ∈ C∞
0 ((0,+∞)), ϕ ≥ 0. Then

∫
R+

ϕ(t)
(
α′ N

max
i=1

{
‖y(t)‖p

Vi
; ‖di (t)‖qVi

∗
}

− σ(t)
)
dt ≤

lim inf
k→+∞

∫
R+

ϕ(t)
(
α′ N

max
i=1

{
‖ynk (t)‖p

Vi
; ‖dnk ,i (t)‖qVi

∗
}

− σnk (t)
)
dt ≤

lim
k→+∞

∫
R+

ϕ(t)
N∑
i=1

〈dnk ,i (t), ynk (t)〉V dt = lim
k→+∞

1

2

∫
R+

‖ynk (t)‖2H
d

dt
ϕ(t)dt =

1

2

∫
R+

‖y(t)‖2H
d

dt
ϕ(t)dt =

N∑
i=1

∫
R+

ϕ(t)〈di (t), y(t)〉Vi dt,

where the first inequality holds, because the convex functional

(y, d) →
∫
R+

ϕ(t)
(
α′ N

max
i=1

{
‖y(t)‖p

Vi
; ‖di (t)‖qVi

∗
} )

dt

is weakly lower semi-continuous on ∩N
i=1L

loc
pi (R+; Vi ) × L loc

q1 (R+; V1
∗) × L loc

q2

(R+; V2
∗) × . . . × L loc

qN (R+; VN
∗); the second inequality follows from the
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definition ofAσ ; the first and the third equalities follow from formula (6.27), because
y′
nk (t) +∑N

i=1 dnk ,i (t) = y′(t) +∑N
i=1 di (t) = 0̄ for any k ≥ 1 and a.e. t > 0; the

second equality holds, because ynk → y in L loc
2 (R+; H), as k → +∞. As a nonneg-

ative function ϕ ∈ C∞
0 ((0,+∞)) is an arbitrary, then, by definition of Aσ , formula

(6.36) holds.
The theorem is proved.

6.2 Second Order Operator Differential Equations
and Inclusions

In this section we consider damped wave equations with possibly nonmonotone dis-
continuous nonlinearities. Then, we generalize the results to the autonomous second
order differential-operator inclusions with possibly nonmonotone potential.

Let β > 0 be a constant, Ω ⊂ R
n be a bounded domain with sufficiently smooth

boundary ∂Ω . Consider the problem

{
utt + βut − �u + f (u) = 0,
u|∂Ω = 0,

(6.37)

where u(x, t) is unknown state function defined on Ω × R+; f : R → R is an inter-
action function such that

lim|u|→∞
f (u)

u
> −λ1, (6.38)

where λ1 is the first eigenvalue for −� in H 1
0 (Ω);

∃ D ≥ 0 : | f (u)| ≤ D(1 + |u|), ∀u ∈ R. (6.39)

Further, we use such denotation

f (s) := lim sup
t→s

f (t), f (s) := lim
t→s

f (t), G(s) := [ f (s), f (s)], s ∈ R.

Let us set V = H 1
0 (Ω) and H = L2(Ω). The space X = V × H is a phase space of

Problem (6.37). For the Hilbert space X as (·, ·)X and ‖ · ‖X denote the inner product
and the norm in X respectively.

Definition 6.1 Let T > 0, τ < T . The function ϕ(·) = (u(·), ut (·))T ∈
L∞(τ, T ; X) is called a weak solution of Problem (6.37) on (τ, T ) if for a.e. (x, t) ∈
Ω × (τ, T ), there exists l = l(x, t) ∈ L2(τ, T ; L2(Ω)) l(x, t) ∈ G(u(x, t)), such
that ∀ψ ∈ H 1

0 (Ω), ∀η ∈ C∞
0 (τ, T ),
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Fig. 6.1 Difference of nondecreasing functions

−
T∫

τ

(ut , ψ)Hηt dt +
T∫

τ

(β(ut , ψ)H + (u, ψ)V + (l, ψ)H )ηdt = 0. (6.40)

The main goal of the manuscript is to obtain the existence of the global attractor
generated by the weak solutions of Problem (6.37) in the phase space X .

Lemma 6.6 (Zgurovsky et al. [31]) For any ϕτ = (u0, u1)T ∈ X and τ < T there
exists a weak solution ϕ(·) of Problem (6.37) on (τ, T ) such that ϕ(τ) = ϕτ .

Further, we assume that

f (s) = f1(s) − f2(s), s ∈ R,

where fi : R → R, i = 1, 2, are nondecreasing functions (see Fig. 6.1).
We remark that

[ f (s), f (s)] ⊆ [ f1(s), f1(s)] − [ f2(s), f2(s)], s ∈ R.

Thus we consider more general evolution inclusion

{
utt + βut − �u + [ f1(u), f1(u)] − [ f2(u), f2(u)] � 0,
u|∂Ω = 0.

(6.41)

Let us set

Gi (s) :=
s∫

0

fi (ξ)dξ, Ji (u) :=
∫

Ω

Gi (u(x))dx, J (u) = J1(u) − J2(u), u ∈ H, i = 1, 2.

The functionalsGi and Ji are locally Lipschitz and regular; Clarke [8, Chap. I]. Thus
the next result holds.

Lemma 6.7 (Kasyanov et al. [31]) Let u ∈ C1([τ, T ]; H). Then for a.e. t ∈ (τ, T ),
the functions Ji ◦ u are classically differentiable at the point t . Moreover,
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d

dt
(Ji ◦ u)(t) = (p, ut (t)) ∀p ∈ ∂ Ji (u(t)), i = 1, 2,

and d
dt (Ji ◦ u)(·) ∈ L1(τ, T ).

Consider WT
τ = C([τ, T ]; X). Lebourgue’s mean value theorem (see Clarke [8,

Chap. 2]) provides the existence of constants c1, c2 > 0 and μ ∈ (0, λ1) such that

|J (u)| ≤ c1(1 + ‖u‖2H ), J (u) ≥ −μ

2
‖u‖2H − c2 ∀u ∈ H. (6.42)

The weak solution of Problem (6.37) with initial data

u(τ ) = a, u′(τ ) = b (6.43)

on the interval [τ, T ] exists for any a ∈ V, b ∈ H. It follows from Zadoianchuk and
Kasyanov [29, Theorem 1.4]. Thus the next lemma holds true (see Kasyanov et al.
[16, Lemma 3.2]).

Lemma 6.8 (Kasyanov et al. [16, Lemma 3.2]) For any τ < T, a ∈ V, b ∈ H,
Cauchy Problem (6.37), (6.43) has the weak solution (u, ut )T ∈ L∞(τ, T ; X).More-
over, each weak solution (u, ut )T of Cauchy Problem (6.37), (6.43) on the interval
[τ, T ] belongs to the space C([τ, T ]; X) and utt ∈ L2(τ, T ; V ∗).

For any ϕτ = (a, b)T ∈ X , denote

Dτ,T (ϕτ ) =
{
(u(·), ut (·))T

∣∣∣∣ (u, ut )T is a weak solution of Problem (6.37) on [τ, T ],
u(τ ) = a, ut (τ ) = b

}
.

From Lemma 6.8 it follows thatDτ,T (ϕτ ) ⊂ C([τ, T ]; X) = WT
τ . Let us check that

translation and concatenation of weak solutions are weak solutions too.

Lemma 6.9 If τ < T , ϕτ ∈ X, ϕ(·) ∈ Dτ,T (ϕτ ), then ∀s ψ(·) = ϕ(· + s) ∈
Dτ−s,T−s(ϕτ ). If τ < t < T , ϕτ ∈ X, ϕ(·) ∈ Dτ,t (ϕτ ) and ψ(·) ∈ Dt,T (ϕτ ), then

θ(s) =
{

ϕ(s), s ∈ [τ, t],
ψ(s), s ∈ [t, T ] ∈ Dτ,T (ϕτ ).

Proof The proof is trivial (see Kasyanov et al. [16, Lemma 4.1]).

Let ϕ = (a, b)T ∈ X and

V (ϕ) = 1

2
‖ϕ‖2X + J1(a) − J2(a). (6.44)
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Lemma 6.10 Let τ < T , ϕτ ∈ X, ϕ(·) = (u(·), ut (·))T ∈ Dτ,T (ϕτ ). Then V ◦ ϕ :
[τ, T ] → R is absolutely continuous and for a.e. t ∈ (τ, T ), d

dtV (ϕ(t)) =
−β‖ut (t)‖2H .
Proof Let −∞ < τ < T < +∞, ϕ(·) = (u(·), ut (·))T ∈ WT

τ be an arbitrary weak
solution of Problem (6.37) on (τ, T ). Since ∂ J (u(·)) ⊂ L2(τ, T ; H), from Temam
[26] and Zgurovsky et al. [31, Chap. 2] we obtain that the function t → ‖ut (t)‖2H +
‖u(t)‖2V is absolutely continuous and for a.e. t ∈ (τ, T ),

1
2

d
dt

[‖ut (t)‖2H + ‖u(t)‖2V
] = (utt (t) − �u(t), ut (t))H =

= −β‖ut (t)‖2H − (d1(t), ut (t))H + (d2(t), ut (t))H,
(6.45)

where di (t) ∈ ∂ Ji (u(t)) for a.e. t ∈ (τ, T ) and di (·) ∈ L2(τ, T ; H), i = 1, 2. As
u(·) ∈ C1([τ, T ]; H) and Ji : H → R, i = 1, 2 is regular and locally Lipschitz, due
to Lemma 6.7 we obtain that for a.e. t ∈ (τ, T ), ∃ d

dt (Ji ◦ u)(t), i = 1, 2. Moreover,
d
dt (Ji ◦ u)(·) ∈ L1(τ, T ), i = 1, 2 and for a.e. t ∈ (τ, T ), ∀p ∈ ∂ Ji (u(t)),

d

dt
(Ji ◦ u)(t) = (p, ut (t))H , i = 1, 2.

In particular for a.e. t ∈ (τ, T ), d
dt (Ji ◦ u)(t) = (di (t), ut (t))H . Taking into account

(6.45) we finally obtain the necessary statement.
This completes the proof.

Lemma 6.11 Let T > 0. Then any weak solution of Problem (6.37) on [0, T ] can
be extended to a global one defined on [0,+∞).

Proof The statement of this lemma follows from Lemmas 6.8–6.10, (6.42) and from
the next estimates

∀τ < T, ∀t ∈ [τ, T ], ∀ϕτ ∈ X, ∀ϕ(·) = (u(·), ut (·))T ∈ Dτ,T (ϕτ ),

2c1 +
(
1 + 2c1

λ1

)
‖u(τ )‖2V + ‖ut (τ )‖2H ≥ 2V (ϕ(τ)) ≥ 2V (ϕ(t)) =

= ‖u(t)‖2V + ‖ut (t)‖2H + 2J (u(t)) ≥
(
1 − μ

λ1

)
‖u(t)‖2V + ‖ut (t)‖2H − 2c2.

The lemma is proved.

For an arbitrary ϕ0 ∈ X let D(ϕ0) be the set of all weak solutions (defined on
[0,+∞)) of Problem (6.37) with initial data ϕ(0) = ϕ0. We remark that from the
proof of Lemma 6.11 we obtain the next corollary.

Corollary 6.1 For any ϕ0 ∈ X and ϕ ∈ D(ϕ0), the next inequality is fulfilled

‖ϕ(t)‖2X ≤ λ1 + 2c1
λ1 − μ

‖ϕ(0)‖2X + 2(c1 + c2)λ1

λ1 − μ
∀t > 0. (6.46)
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From Corollary 6.1 in a standard way we obtain such statement.

Theorem 6.3 Let τ < T, {ϕn(·)}n≥1 ⊂ WT
τ be an arbitrary sequence of weak solu-

tions of Problem (6.37) on [τ, T ] such that ϕn(τ ) → ϕτ weakly in X, n → +∞, and
let {tn}n≥1 ⊂ [τ, T ] be a sequence such that tn → t0, n → +∞. Then there exists
ϕ ∈ Dτ,T (ϕτ ) such that up to a subsequence ϕn(tn) → ϕ(t0)weakly in X, n → +∞.

Proof We prove this theorem in several steps.

Step 1. Let τ < T, {ϕn(·) = (un(·), u′
n(·))}n≥1 ⊂ WT

τ be an arbitrary sequence of
weak solutions of Problem (6.37) on [τ, T ] and {tn}n≥1 ⊂ [τ, T ] such that

ϕn(τ ) → ϕτ weakly in X, tn → t0, n → +∞. (6.47)

In virtue of Corollary 6.1 we have that {ϕn(·)}n≥1 is bounded on WT
τ ⊂

L∞(τ, T ; X). Therefore up to a subsequence {ϕnk (·)}k≥1 ⊂ {ϕn(·)}n≥1 we have

unk → u weakly star in L∞(τ, T ; V ), k → +∞,

u′
nk → u′ weakly star in L∞(τ, T ; H), k → +∞,

u′′
nk → u′′ weakly star in L∞(τ, T ; V ∗), k → +∞,

dnk ,i → di weakly star in L∞(τ, T ; H), i = 1, 2, k → +∞,

unk → u in L2(τ, T ; H), k → +∞,

unk (t) → u(t) in H for a.e. t ∈ [τ, T ], k → +∞,

u′
nk (t) → u′(t) in V ∗ for a.e. t ∈ (τ, T ), k → +∞,

�unk → �u weakly in L2(τ, T ; V ∗), k → +∞,

(6.48)

where ∀n ≥ 1 dn,i ∈ L2(τ, T ; H) and

u′′
n(t) + βu′

n(t) + dn,1(t) − dn,2(t) − �un(t) = 0̄,

dn,i (t) ∈ ∂ Ji (un(t)), i = 1, 2, for a.e. t ∈ (τ, T ).
(6.49)

Step 2. ∂ Ji , i = 1, 2 are demiclosed. So, by a standard way we get that di (·) ∈
∂ Ji (u(·)), i = 1, 2, ϕ := (u, u′) ∈ Dτ,T (ϕτ ) ⊂ WT

τ .

Step 3. From (6.48) it follows that for arbitrary fixed h ∈ V the sequences of
real functions (unk (·), h)H , (u′

nk (·), h)H : [τ, T ] → R are uniformly bounded and
equipotentionally continuous. Taking into account (6.48), (6.46) and density of the
embedding V ⊂ H we obtain that u′

nk (tnk ) → u′(t0) weakly in H and unk (tnk ) →
u(t0) weakly in V as k → +∞.

The theorem is proved.

Theorem 6.4 Let τ < T, {ϕn(·)}n≥1 ⊂ WT
τ be an arbitrary sequence of weak solu-

tions of Problem (6.37) on [τ, T ] such that ϕn(τ ) → ϕτ strongly in X, n → +∞,
then up to a subsequence ϕn(·) → ϕ(·) in C([τ, T ]; X), n → +∞.

Proof Let τ < T, {ϕn(·) = (un(·), u′
n(·))T }n≥1 ⊂ WT

τ be an arbitrary sequence of
weak solutions of Problem (6.37) on [τ, T ] and {tn}n≥1 ⊂ [τ, T ]:
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ϕn(τ ) → ϕτ strongly in X, n → +∞. (6.50)

From Theorem 6.3 we have that there exists ϕ ∈ Dτ,T (ϕτ ) such that up to the sub-
sequence {ϕnk (·)}k≥1 ⊂ {ϕn(·)}n≥1 ϕn(·) → ϕ(·) weakly in X , uniformly on [τ, T ],
k → +∞. Let us prove that

ϕnk → ϕ in WT
τ , k → +∞. (6.51)

By contradiction, suppose the existence of L > 0 and the subsequence {ϕk j } j≥1 ⊂
{ϕnk }k≥1 such that ∀ j ≥ 1,

max
t∈[τ,T ] ‖ϕk j (t) − ϕ(t)‖X = ‖ϕk j (t j ) − ϕ(t j )‖X ≥ L .

Without loss of generality we suggest that t j → t0 ∈ [τ, T ], j → +∞. Therefore
by virtue of a continuity of ϕ : [τ, T ] → X we have

lim
j→+∞

‖ϕk j (t j ) − ϕ(t0)‖X ≥ L . (6.52)

On the other hand, we prove that

ϕk j (t j ) → ϕ(t0) in X, j → +∞. (6.53)

First we remark that

ϕk j (t j ) → ϕ(t0) weakly in X, j → +∞ (6.54)

(see Theorem 6.3 for details). Secondly let us prove that

lim sup
j→+∞

‖ϕk j (t j )‖X ≤ ‖ϕ(t0)‖X . (6.55)

Since J is sequentially weakly continuous, V is sequentially weakly lower semi-
continuous on X . Hence we obtain

V (ϕ(t0)) ≤ lim
j→+∞

V (ϕk j (t j )),

t0∫
τ

‖u′(s)‖2Hds ≤ lim
j→+∞

t j∫
τ

‖u′
k j

(s)‖2Hds
(6.56)

and

V (ϕ(t0)) + β

t0∫

τ

‖u′(s)‖2Hds ≤ lim
j→+∞

⎛
⎝V (ϕk j (t j )) + β

t j∫

τ

‖u′
k j

(s)‖2Hds
⎞
⎠ .

(6.57)
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Sinceby the energy equationboth sides of (6.57) equalV (ϕ(τ)) (seeLemma6.10),
it follows from (6.56) that V (ϕk j (t j )) → V (ϕ(t0)), j → +∞ and (6.55). Conver-
gence (6.53) directly follows from (6.54), (6.55) and Gajewski et al. [12, Chap. I]. To
finish the proof of the theorem we remark that (6.53) contradicts (6.52). Therefore
(6.51) holds.

The theorem is proved.

Now let us consider autonomous second order differential-operator inclusions
with possibly nonmonotone potential. Let V and H be real separable Hilbert spaces
such that V ⊂ H with compact and dense embedding. Let V ∗ be the dual space of
V . We identify H with H∗ (dual space of H ). For the linear operators A : V → V ∗,
B : V → V ∗ and locally Lipschitz functional J : H → R we consider a problem
of investigation of dynamics for all weak solutions defined for t ≥ 0 of non-linear
second order autonomous differential-operator inclusion:

u′′(t) + Au′(t) + Bu(t) + ∂ J1(u(t)) − ∂ J2(u(t)) � 0̄. (6.58)

We need the following hypotheses:.

H(A) A : V → V ∗ is a linear symmetric such that ∃cA > 0 : 〈Av, v〉V ≥ cA‖v‖2V∀v ∈ V ;
H(B) B : V → V ∗ is linear, symmetric and ∃cB > 0 : 〈Bv, v〉V ≥ cB‖v‖2V ∀v ∈

V 2;
H(J ) Ji : H → R, i = 1, 2, is a function such that

(i) Ji (·) is locally Lipschitz and regular [8, Chap. II], i.e.,
• for any x, v ∈ H , the usual one-sided directional derivative J ′(x; v) =

lim
t↘0

J (x+tv)−J (x)
t exists,

• for all x, v ∈ H , J ′(x; v) = J ◦(x; v), where J ◦(x; v) = lim
y→x, t↘0

J (y+tv)−J (y)
t ;

(i i) ∃c1 > 0: sup
d∈∂ J1(v)−∂ J2(v)

‖d‖H ≤ c1(1 + ‖v‖H ) ∀v ∈ H ;

(i i i) ∃c2 > 0:

inf
d∈∂ J1(v)−∂ J2(v)

(d, v)H ≥ −λ‖v‖2H − c2 ∀v ∈ H,

where ∂ Ji (v) = {p ∈ H | (p, w)H ≤ J ◦
i (v;w) ∀w ∈ H} denotes the Clarke sub-

differential of Ji (·) at a point v ∈ H (see [8] for details), λ ∈ (0, λ1), λ1 > 0:
‖v‖2V ≥ λ1‖v‖2H ∀v ∈ V , i = 1, 2.

We note that in (6.89) we can consider g = 0̄. Indeed, let g ∈ V ∗, then u∗ =
B−1g ∈ V ⊂ H . If u(·) is a weak solution of (6.89), then ū(·) = u(·) − u∗ is a weak

2We remark that operators A and B are continuous on V [12, Chap. III].
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solution of

ū′′(t) + Aū′(t) + Bū(t) + ∂ J3(ū(t)) − ∂ J4(ū(t)) � 0̄ a.e. t > 0,

where Ji+2(·) = Ji (· + u∗), i = 1, 2, satisfies H(J ) with respective parameters.
Thus, to simplify our conclusions, without loss of generality, further wewill consider
problem (6.58).

The phase space for Problem (6.58) is the Hilbert space:

E = {(a, b)T | a ∈ V, b ∈ H},

where (a, b)T =
(
a
b

)
with ‖(a, b)T ‖E = (‖a‖2V + ‖b‖2H )1/2. Let −∞ < τ < T <

+∞.

Definition 6.2 The function (u(·), u′(·))T ∈ L∞(τ, T ; E)with u′(·) ∈ L2(τ, T ; V )
is called a weak solution for (6.58) on [τ, T ], if there exists d(·) ∈ L2(τ, T ; H),
d(t) ∈ ∂ J1(u(t)) − ∂ J2(u(t)) for a.e. t ∈ (τ, T ), such that ∀ψ ∈ V , ∀η ∈ C∞

0 (τ, T )

−
T∫

τ

(u′(t), ψ)Hη′(t)dt +
T∫

τ

[〈Au′(t), ψ〉V + 〈Bu(t), ψ〉V + (d(t), ψ)H
]
η(t)dt = 0.

Evidently if (u(·), u′(·))T is a weak solution of (6.58) on [τ, T ], then u′′(·) ∈
L2(τ, T ; V ∗), (u(·), u′(·))T ∈ C([τ, T ]; E) and d(·) ∈ L∞(τ, T ; H).

We consider the class of functions WT
τ = C([τ, T ]; E). Further c1, c2, λ, λ1,

cA, cB we recall parameters of Problem (6.58). The main purpose of this work is
to investigate the long-time behavior (as t → +∞) of all weak solutions for the
problem (6.58) on [0,+∞).

To simplify our conclusions, since condition H(B), we suppose that

(u, v)V = 〈Bu, v〉V , ‖v‖2V = 〈Bv, v〉V , cB = 1, ∀u, v ∈ V . (6.59)

Lebourgmean value theorem [8, Chap. 2] provides the existence of constants c3, c4 >

0 and μ ∈ (0, λ1):

|J (u)| ≤ c3(1 + ‖u‖2H ), J (u) ≥ −μ

2
‖u‖2H − c4 ∀u ∈ H, (6.60)

where J (v) := J1(v) − J2(v), v ∈ H.

Lemma 6.12 Let J : H → R be a locally Lipschitz and regular functional, y ∈
C1([τ, T ]; H). Then for a.e. t ∈ (τ, T ) there exists d

dt (J ◦ y)(t) = (p, y′(t)) for all
p ∈ ∂ J (y(t)). Moreover, d

dt (J ◦ y)(·) ∈ L1(τ, T ).

Proof Since y ∈ C1([τ, T ]; H) then y is strictly differentiable at the point t0 for any
t0 ∈ (τ, T ). Hence, taking into account the regularity of J and [8, Theorem 2.3.10],
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we obtain that the functional J ◦ y is regular one at t0 ∈ (τ, T ) and ∂(J ◦ y)(t0) =
{(p, y′(t0))| p ∈ ∂ J (y(t0))}. On the other hand, since y ∈ C1([τ, T ]; H), J : H →
R is locally Lipschitz then J ◦ y : [τ, T ] → R is globally Lipschitz and therefore it

is absolutely continuous. Hence for a.e. t ∈ (τ, T ) ∃ d(J◦y)(t)
dt ,

d(J◦y)(·)
dt ∈ L1(τ, T )

and
t∫
s

d
dξ

(J ◦ y)(ξ)dξ = (J ◦ y)(t) − (J ◦ y)(s) ∀τ ≤ s < t ≤ T . At that taking

into account the regularity of J ◦ y, note that (J ◦ y)◦(t0, v) = (J ◦ y)′(t0, v) =
d(J◦y)(t0)

dt · v for a.e. t0 ∈ (τ, T ) and all v ∈ R. This implies that for a.e. t0 ∈ (τ, T )

∂(J ◦ y)(t0) = { d(J◦y)(t0)
dt }.

At the inclusion (6.58) on [τ, T ] we associate the conditions

u(τ ) = a, u′(τ ) = b (6.61)

where a ∈ V and b ∈ H. From [29] we get the following lemma.

Lemma 6.13 For any τ < T, a ∈ V, b ∈ H the Cauchy problem (6.58), (6.61)
has a weak solution (y, y′)T ∈ L∞(τ, T ; E). Moreover, each weak solution (y, y′)T
of the Cauchy problem (6.58), (6.61) on the interval [τ, T ] belongs to the space
C([τ, T ]; E) and y′ ∈ L2(τ, T ; V ), y′′ ∈ L2(τ, T ; V ∗).

Let us consider the next denotations: ∀ϕτ = (a, b)T ∈ E we set Dτ,T (ϕτ ) = {
(u(·), u′(·))T | (u, u′)T is a weak solution of (6.58) on [τ, T ], u(τ ) = a, u′(τ )

= b }. From Lemma 6.13 it follows that Dτ,T (ϕτ ) ⊂ C([τ, T ]; E) = WT
τ .

Let us check that translation and concatenation of weak solutions are weak solu-
tions too.

Lemma 6.14 If τ < T , ϕτ ∈ E, ϕ(·) ∈ Dτ,T (ϕτ ), then ψ(·) = ϕ(· + s) ∈
Dτ−s,T−s(ϕτ )∀s. If τ < t < T ,ϕτ ∈ E,ϕ(·) ∈ Dτ,t (ϕτ ) andψ(·) ∈ Dt,T (ϕ(t)), then

θ(s) =
{

ϕ(s), s ∈ [τ, t],
ψ(s), s ∈ [t, T ] belongs to Dτ,T (ϕτ ).

Proof The first part of the statement of this lemma follows from the autonomy of
the inclusion (6.58). The proof of the second part follows from the definition of the
solution of (6.58) and from that fact that z ∈ Wτ,T as soon as v ∈ Wτ,t , u ∈ Wt,T and
v(t) = u(t), where

z(s) =
{

v(s), s ∈ [τ, t],
u(s), s ∈ [t, T ]

Let ϕ = (a, b)T ∈ E and

V (ϕ) = 1

2
‖ϕ‖2E + J (a). (6.62)
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Lemma 6.15 Let τ < T , ϕτ ∈ E, ϕ(·) = (y(·), y′(·))T ∈ Dτ,T (ϕτ ). Then V ◦ ϕ :
[τ, T ] → R is absolutely continuous and for a.e. t ∈ (τ, T ) d

dtV (ϕ(t)) = −〈Ay′(t),
y′(t)〉V ≤ −γ ‖y′(t)‖2V ,whereγ > 0dependsonly onparameters ofProblem (6.58).3

Proof Let −∞ < τ < T < +∞, ϕ(·) = (y(·), y′(·))T ∈ WT
τ be an arbitrary weak

solution of (6.58) on (τ, T ). From [12, Chap. IV] we get that the function t →
‖y′(t)‖2H + ‖y(t)‖2V is absolutely continuous and for a.e. t ∈ (τ, T )

1

2

d

dt

[‖y′(t)‖2H + ‖y(t)‖2V
] = 〈y′′(t) + By(t), y′(t)〉V =

= −〈Ay′(t), y′(t)〉V − (d(t), y′(t))H ≤ −γ ‖y′(t)‖2V − (d(t), y′(t))H , (6.63)

where d(t) ∈ ∂ J1(y(t)) − ∂ J2(y(t)) for a.e. t ∈ (τ, T ), d(·) ∈ L2(τ, T ; H) and γ >

0 depends only on parameters of Problem (6.58), in virtue of u → √〈Au, u〉V is
equivalent norm on V . Since y(·) ∈ C1([τ, T ]; H) and Ji : H → R, i = 1, 2, is
regular and locally Lipschitz, then Lemma 6.12 yields that for a.e. t ∈ (τ, T ) there
exists d

dt (Ji ◦ y)(t). Moreover, d
dt (Ji ◦ y)(·) ∈ L1(τ, T ) and for a.e. t ∈ (τ, T ) and

all p ∈ ∂ J1(y(t)) − ∂ J2(y(t))we have d
dt (J ◦ y)(t) = (p, y′(t))H . In particular, for

a.e. t ∈ (τ, T ) d
dt (J ◦ y)(t) = (d(t), y′(t))H . Taking into account (6.63) we finally

obtain the necessary statement.
The lemma is proved.

Lemma 6.16 Let T0 > 0. If (u(·), u′(·))T is a weak solution of (6.58) on [0, T0], then
there exists an its extension on [0,+∞) (ū(·), ū′(·))T which is weak solution of (6.58)
on [0,+∞), i.e., (ū(·), ū′(·))T ∈ C(R+; E) ∩ L∞(R+; E) with ū′(·) ∈ L2(0, T ; V )
∀T > 0 and there exists d(·) ∈ L∞(0,+∞; H), d(t) ∈ ∂ J1(ū(t)) − ∂ J2(ū(t)) for
a.e. t ∈ (0,+∞), such that ∀ψ ∈ V, ∀η ∈ C∞

0 (0,+∞)

−
+∞∫

0

(ū′(t), ψ)Hη′(t)dt +
+∞∫

0

[〈Aū′(t), ψ〉V + 〈Bū(t), ψ〉V + (d(t), ψ)H ]η(t)dt = 0.

Proof The statement of this lemma follows from Lemmas 6.13–6.15, Conditions
(6.59), (6.60) and from thenext estimates:∀τ < T ,∀ϕτ ∈ E ,∀ϕ(·) = (y(·), y′(·))T ∈
Dτ,T (ϕτ ), ∀t ∈ [τ, T ] 2c3 +

(
1 + 2c3

λ1

)
‖y(τ )‖2V + ‖y′(τ )‖2H ≥ 2V (ϕ(τ)) ≥ 2V

(ϕ(t)) = ‖y(t)‖2V + ‖y′(t)‖2H + 2J (y(t)) ≥
(
1 − μ

λ1

)
‖y(t)‖2V + ‖y′(t)‖2H − 2c4.

The lemma is proved.

For an arbitrary ϕ0 ∈ E let D(ϕ0) be the set of all weak solutions (defined on
[0,+∞)) of problem (6.58) with initial data ϕ(0) = ϕ0. We remark that from the
proof of Lemma 6.16 we obtain the next corollary.

Corollary 6.2 For any ϕ0 ∈ E and ϕ ∈ D(ϕ0) the next inequality is fulfilled:

3We remark that
√〈Au, u〉V is equivalent norm on V , generated by inner product 〈Au, v〉V .
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‖ϕ(t)‖2E ≤ λ1 + 2c3
λ1 − μ

‖ϕ(0)‖2E + 2(c3 + c4)λ1

λ1 − μ
∀t > 0. (6.64)

From Corollary 6.2 and Conditions H(A), H(B), H(J ) in a standard way we
obtain such proposition.

Theorem 6.5 Let τ < T, {ϕn(·)}n≥1 ⊂ WT
τ be an arbitrary sequence of weak solu-

tions of (6.58) on [τ, T ] such that ϕn(τ ) → ϕτ weakly in E, n → +∞. Then there
exist ϕ ∈ Dτ,T (ϕτ ) and {ϕnk (·)}k≥1 ⊂ {ϕn(·)}n≥1 such that ϕnk (·) → ϕ(·) weakly in
E uniformly on [τ, T ], k → +∞, i.e., ϕnk (tk) → ϕ(t0) weakly in E, k → +∞, for
any {tk}k≥1 ⊂ [τ, T ] with tk → t0, k → +∞.

Theorem 6.6 Let τ < T, {ϕn(·)}n≥1 ⊂ WT
τ be an arbitrary sequence of weak solu-

tions of (6.58) on [τ, T ] such that ϕn(τ ) → ϕτ strongly in E, n → +∞. Then there
exist ϕ ∈ Dτ,T (ϕτ ) such that up to a subsequence ϕn(·) → ϕ(·) in C([τ, T ]; E),
n → +∞.

Proof Let {ϕn(·) = (un(·), u′
n(·))T }n≥1 ⊂ WT

τ be an arbitrary sequence ofweak solu-
tions of (6.58) on [τ, T ] such that

ϕn(τ ) → ϕτ strongly in E, n → +∞. (6.65)

Letϕ = (u(·), u′(·))T ∈ Dτ,T (ϕτ ) and {ϕnk (·)}k≥1 ⊆ {ϕn(·)}n≥1 as inTheorem6.5.
It is important to remark that in the proof of Theorem 6.5, by using the inequality
(Lemma 6.15, Corollary 6.2, (6.60))

γ ‖u′
n(·)‖L2(τ,T ;V ) ≤ V (ϕn(τ )) − V (ϕn(T )) ≤ sup

n≥1

[
V (ϕn(τ )) + μ

2
‖un(T )‖2H

]
+ c4 < +∞,

we establish that

u′
nk (·) → u′(·) weakly in L2(τ, T ; V ), k → +∞.

Let us prove that
ϕnk → ϕ in WT

τ , k → +∞. (6.66)

By contradiction suppose the existence of L > 0 and subsequence {ϕk j } j≥1 ⊂
{ϕnk }k≥1 such that ∀ j ≥ 1 max

t∈[τ,T ] ‖ϕk j (t) − ϕ(t)‖E = ‖ϕk j (t j ) − ϕ(t j )‖E ≥ L . With-

out loss of generality we suppose that t j → t0 ∈ [τ, T ], j → +∞. Therefore, by
virtue of the continuity of ϕ : [τ, T ] → E , we have

lim
j→+∞

‖ϕk j (t j ) − ϕ(t0)‖E ≥ L . (6.67)

On the other hand we prove that

ϕk j (t j ) → ϕ(t0) in E, j → +∞. (6.68)
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Firstly we remark that (Theorem 6.5)

ϕk j (t j ) → ϕ(t0) weakly in E, j → +∞. (6.69)

Secondly let us prove that

lim
j→+∞ ‖ϕk j (t j )‖E = ‖ϕ(t0)‖E . (6.70)

Since J is sequentially weakly continuous on V , V is sequentially weakly lower
semicontinuous on E . Hence, we obtain

V (ϕ(t0)) ≤ lim
j→+∞

V (ϕk j (t j )),

t0∫

τ

〈Au′(s), u′(s)〉V ds ≤ lim
j→+∞

t j∫

τ

〈Au′
k j (s), u

′
k j (s)〉V ds,

(6.71)
and hence

V (ϕ(t0)) +
t0∫
τ

〈Au′(s), u′(s)〉V ds ≤ lim
j→+∞

V (ϕk j (t j )) +
t0∫
τ

〈Au′(s), u′(s)〉V ds ≤

≤ lim
j→+∞V (ϕk j (t j )) +

t0∫
τ

〈Au′(s), u′(s)〉V ds

≤ lim
j→+∞V (ϕk j (t j )) + lim

j→+∞

t j∫
τ

〈Au′
k j

(s), u′
k j

(s)〉V ds ≤

≤ lim
j→+∞

(
V (ϕk j (t j )) +

t j∫
τ

〈Au′
k j

(s), u′
k j

(s)〉V ds
)

.

(6.72)
We remark that the last inequality in (6.71) follows from weak convergence of

u′
nk (·) to u′(·) in L2(τ, T ; V ) and because of the functional v →

T∫
τ

〈Av(s), v(s)〉V ds
is sequentially weakly lower semi-continuous on L2(τ, T ; V ).

Since the energy equation and (6.65) both sides of (6.72) are equal to V (ϕ(τ))

(seeLemma6.15), it follows thatV (ϕk j (t j )) → V (ϕ(t0)), j → +∞ and then (6.70).
Convergence (6.68) directly follows from (6.69), (6.70). Finallywe remark that (6.68)
contradicts (6.67). Therefore, (6.66) is true.

The theorem is proved.

6.3 Examples of Applications

In this section we consider the following examples of applications: nonlinear
parabolic equations of divergent form, nonlinear problems on manifolds with
and without boundary: a climate energy balance model; a model of conduction
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of electrical impulses in nerve axons; and viscoelastic problems with nonlinear
“reaction-displacement” law.

6.3.1 Nonlinear Parabolic Equations of Divergent Form

Consider an example of the class of nonlinear boundary value problems for which
we can investigate the dynamics of solutions as t → +∞. Note that in discussion
we do not claim generality.

Let n ≥ 2, m ≥ 1, p ≥ 2, 1 < q ≤ 2, 1
p + 1

q = 1, Ω ⊂ R
n be a bounded domain

with sufficiently smooth boundary Γ = ∂Ω . We denote a number of differentiations
by x of order ≤ m − 1 (correspondingly of order = m) by N1 (correspondingly by
N2). Let Aα(x, η; ξ) be a family of real functions (|α| ≤ m), defined in Ω × R

N1 ×
R

N2 and satisfying the next properties:

(C1) for a.e. (x, t) ∈ Ω × (0,∞) the function (η, ξ) → Aα(x, t, η, ξ) is contin-
uous one in RN1 × R

N2 ;
(C2) for each (η, ξ) ∈ R

N1 × R
N2 the function x → Aα(x, t, η, ξ) is measurable

on Ω × (0,∞);
(C3) there exist c1 ≥ 0 and k1 ∈ Lq(Ω) such that

|Aα(x, t, η, ξ)| ≤ c1[|η|p−1 + |ξ |p−1 + k1(x)]

for a.e. (x, t) ∈ Ω × (0,∞) and for each (η, ξ) ∈ R
N1 × R

N2;
(C4) there exist c2 > 0 and k2 ∈ L1(Ω) such that

∑
|α|=m

Aα(x, t, η, ξ)ξα ≥ c2|ξ |p − k2(x)

for a.e. (x, t) ∈ Ω × (0,∞) and for each (η, ξ) ∈ R
N1 × R

N2;
(C5) there exists an increasing function ϕ : R+ → R such that the following

inequality holds:

∑
|α|=m

(Aα(x, t, η, ξ) − Aα(x, t, η, ξ ∗))(ξα − ξ ∗
α ) ≥ (ϕ(|ξα|) − ϕ(|ξ ∗

α |))(|ξα| − |ξ ∗
α |)

for a.e. (x, t) ∈ Ω × (0,∞) and each η ∈ R
N1 and ξ, ξ ∗ ∈ R

N2 , ξ �= ξ ∗.
Consider the following notations:

Dku = {Dβu, |β| = k}, δu = {u, Du, . . . , Dm−1u}.

Let us examine the dynamics of all weak (generalized) solutions defined on
[0,+∞) for the following problem:
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∂y(x, t)

∂t
+
∑

|α|≤m

(−1)|α|Dα
(
Aα(x, δy(x, t), Dmy(x, t))

) = 0onΩ × (0,+∞),

(6.73)
Dα y(x, t) = 0on Γ × (0,+∞), |α| ≤ m − 1. (6.74)

as t → +∞.

Consider such denotations: H = L2(Ω), V = Wm,p
0 (Ω) is a real Sobolev space,

a(t, u, ω) =
∑

|α|≤m

∫

Ω

Aα(x, t, δu(x), Dmu(x))Dαω(x)dx, u, ω ∈ V .

Note that the operator A(t) : V → V ∗, t ≥ 0,definedby the formula 〈A(t, u), ω〉V =
a(t, u, ω), t ≥ 0, u, ω ∈ V , satisfies Assumptions (C1)–(C5). Therefore, we pass
from Problem (6.73) and (6.74) to the respective problem in the “generalized” setting
(6.1). Here we note that

A(t, u) =
∑

|α|≤m

(−1)|α|Dα
(
Aα(x, t, δu, Dmu)

)
, u ∈ C∞

0 (Ω), t ≥ 0.

Therefore, all statements from Sect. 6.1 hold for all weak (generalized) solutions of
Problem (6.73) and (6.74).

6.3.2 Nonlinear Non-autonomous Problems on Manifolds
with and Without Boundary: A Climate Energy
Balance Model

Let (M , g) be aC∞ compact connected oriented two-dimensional Riemannianman-
ifoldwithout boundary (as, e.g.M = S2 the unit sphere ofR3). Consider the problem
(see Sect. 2.4.3 for autonomous setting):

∂u
∂t − Δu + Re(x, t, u) ∈ QS(x, t)β(u), (x, t) ∈ M × R, (6.75)

where Δu = divM (∇Mu) ; ∇M is understood in the sense of the Riemannian
metric g. Note that (6.75) is the so-called climate energy balance model (see
Sect. 2.4.3). The unknown u(x, t) represents the average temperature of the Earth’s
surface. The energy balance is expressed as

heat variation = Ra − Re + D.

Here Ra = QS(x, t)β(u). It represents the solar energy absorbedby theEarth, Q > 0
is a solar constant, S(x, t) is an insolation function, given the distribution of solar
radiation falling on upper atmosphere, β represents the ratio between absorbed and

http://dx.doi.org/10.1007/978-3-319-59840-6_2
http://dx.doi.org/10.1007/978-3-319-59840-6_2
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incident solar energy at the point x of the Earth’s surface (so-called co-albedo func-
tion). The term Re represents the energy emitted by the Earth into space, as usual,
it is assumed to be an increasing function on u. The term D is heat diffusion, we
assume (for simplicity) that it is constant. We consider Re = Bu as in Budyko; see
[31] and references therein.

Let S : M → R be a function such that S ∈ L∞(M ) and there exist S0, S1 > 0
such that

0 < S0 ≤ S(x, t) ≤ S1.

Suppose also that β is a bounded maximal monotone graph of R2, that is there exist
m, M ∈ R such that for all s ∈ R and z ∈ β(s)

m ≤ z ≤ M.

Let us consider real Hilbert spaces

H := L2(M ), V := {u ∈ L2(M ) : ∇Mu ∈ L2(TM )}

with respective standard norms ‖ · ‖H , ‖ · ‖V , and inner products ( · , · )H , ( · , · )V ,

where TM represents the tangent bundle and the functional spaces L2(M ) and
L2(TM ) are defined in a standard way. Therefore, all statements from Sect. 6.1 hold
for weak solutions of Problem (6.75).

6.3.3 A Model of Conduction of Electrical Impulses
in Nerve Axons

Consider the problem (see Sect. 2.4.2 and Fig. 6.2):

{
∂u
∂t − ∂2u

∂x2 + u ∈ λH(u − a), (x, t) ∈ (0, π) × R,

u(0, t) = u(π, t) = 0, t ∈ R,
(6.76)

where a ∈ (0, 1
2

)
(see Sect. 2.4.2) Therefore, all statements from Sect. 6.1 hold for

weak solutions of Problem (6.76).

Fig. 6.2 Nerve impulse propagation

http://dx.doi.org/10.1007/978-3-319-59840-6_2
http://dx.doi.org/10.1007/978-3-319-59840-6_2
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6.3.4 Viscoelastic Problems with Nonlinear
“Reaction-Displacement” Law

Let a viscoelastic body occupy a bounded domainΩ ⊂ R
d , d = 2, 3 in applications,

and it is acted upon by volume forces and surface tractions.4 The boundary Γ ofΩ is
supposed to be Lipschitz continuous and it is partitioned into two disjoint measurable
parts ΓD and ΓN such that meas(ΓD) > 0. We consider the process of evolution of
the mechanical state on the interval (0,+∞). The body is clamped on ΓD and
thus the displacement vanishes there. The forces field of density f0 acts in Ω, the
surface tractions of density g0 are applied on ΓN . We denote by u = (u1, . . . , ud)
the displacement vector, by σ = (σi j ) the stress tensor and by ε(u) = (εi j (u)) the
linearized (small) strain tensor (εi j (u) = 1

2 (∂ j ui + ∂i u j )), where i, j = 1, . . . , d.

The mechanical problem consists in finding the displacement field u : Ω ×
(0,+∞) → R

d such that

u′′(t) − divσ(t) = f0 in Ω × (0,+∞), (6.77)

σ(t) = C ε(u′(t)) + E ε(u(t)) in Ω × (0,+∞), (6.78)

u(t) = 0 on ΓD × (0,+∞), (6.79)

σn(t) = g0 on ΓN × (0,+∞), (6.80)

u(0) = u0, u′(0) = u1 in Ω, (6.81)

where C and E are given linear constitutive functions, n being the outward unit
normal vector to Γ .

In the above model dynamic equation (6.77) is considered with the viscoelastic
constitutive relationship of the Kelvin–Voigt type (6.78) while (6.79) and (6.80) rep-
resent the displacement and traction boundary conditions, respectively. The functions
u0 and u1 are the initial displacement and the initial velocity, respectively. In order
to formulate the skin effects, we suppose that the body forces of density f0 consists
of two parts: f1 which is prescribed external loading and f2 which is the reaction
of constrains introducing the skin effects, i.e., f0 = f1 + f2. Here f2 is a possibly
multi-valued function of the displacement u. We consider the reaction-displacement
law of the form

− f2(x, t) ∈ ∂ j (x, u(x, t)) in Ω × (0,+∞), (6.82)

where j : Ω × R
d → R is locally Lipschitz function in u and ∂ j represents the

Clarke subdifferential with respect to u. Let Yd be the space of second-order sym-
metric tensors on Rd .

4This section is based on results of [23] and references therein.
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We consider the following problem:
examine the long-time (as t → +∞) behavior of all (weak, generalized) solutions

for (6.77)–(6.81) and (6.82).
In [23] for finite time interval it was presented the hemivariational formulation of

problems similar to (6.77)–(6.82) and an existence theorem for evolution inclusions
with pseudomonotone operators. We give now variational formulation of the above
problem. To this aim let H = L2(Ω,Rd), H1 = H 1(Ω,Rd), H = L2(Ω,Yd) and
V be the closed subspace of H1 defined by

V = {v ∈ H1 : v = 0 on ΓD}.

On V we consider the inner product and the corresponding norm given by

(u, v)V = 〈ε(u), ε(v)〉H , ‖v‖V = ‖ε(v)‖H for u, v ∈ V .

From the Korn inequality ‖v‖H1 ≤ C1‖ε(v)‖H for v ∈ V with C1 > 0, it follows
that ‖ · ‖H1 and ‖ · ‖V are the equivalent norms on V . Identifying H with its dual,
we have an evolution triple V ⊂ H ⊂ V ∗ (see e.g. [12]) with dense and compact
embeddings. We denote by 〈·, ·〉V the duality of V and its dual V ∗, by ‖ · ‖V ∗ the
norm in V ∗. We have 〈u, v〉V = (u, v)H for all u ∈ H and v ∈ V .

We admit the following hypotheses:

H(C ). The linear symmetric viscosity operator C : Ω × Yd → Yd satisfies the
Carathéodory condition (i.e., C (·, ε) is measurable on Ω for all ε ∈ Yd and C (x, ·)
is continuous on Yd for a.e. x ∈ Ω) and

C (x, ε) : ε ≥ C2‖ε‖2Yd
for all ε ∈ Yd and a.e. x ∈ Ω with C2 > 0. (6.83)

H(E ). The elasticity operator E : Ω × Yd → Yd is of the form E (x, ε) = E(x)ε
(Hooke’s law) with a symmetric elasticity tensor E ∈ L∞(Ω), i.e., E = (gi jkl),
i, j, k, l = 1, . . . , d with gi jkl = g jikl = glki j ∈ L∞(Ω). Moreover,

E (x, ε) : ε ≥ C3‖ε‖2Yd
for all ε ∈ Yd and a.e. x ∈ Ω with C3 > 0.

H(j). j : Ω × R
d → R is a function such that

(i) j (·, ξ) is measurable for all ξ ∈ R
d and j (·, 0) ∈ L1(Ω);

(i i) j (x, ·) is locally Lipschitz and it admits the representation via the difference
of regular functions [8] for all x ∈ Ω;

(i i i) ‖η‖ ≤ C4(1 + ‖ξ‖) for all η ∈ ∂ j (x, ξ), x ∈ Ω with C4 > 0;
(iv) j0(x, ξ ;−ξ) ≤ C5(1 + ‖ξ‖) for all ξ ∈ R

d , x ∈ Ω, with C5 ≥ 0, where
j0(x, ξ ; η) is the directional derivative of j (x, ·) at the point ξ ∈ R

d in the direction
η ∈ R

d .
H(f). f1 ∈ V ∗, g0 ∈ L2(ΓN ;Rd), u0 ∈ V and u1 ∈ H.

Next we need the spaces V = L2(τ, T ; V ), Ĥ = L2(τ, T ; H) and W = {w ∈
V : w′ ∈ V ∗}, where the time derivative involved in the definition of W is
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understood in the sense of vector-valued distributions, −∞ < τ < T < +∞.
Endowed with the norm ‖v‖W = ‖v‖V + ‖v′‖V ∗ , the space W becomes a separa-
ble reflexive Banach space. We also have W ⊂ V ⊂ Ĥ ⊂ V ∗. The duality for the

pair (V ,V ∗) is denoted by 〈z, w〉V =
T∫
τ

〈z(s), w(s)〉V ds. It is well known (cf. [12])
that the embeddingW ⊂ C([τ, T ]; H) and {w ∈ V : w′ ∈ W } ⊂ C([τ, T ]; V ) are
continuous. Next we define g ∈ V ∗ by

〈g, v〉V = 〈 f1, v〉V + 〈g0, v〉L2(ΓN ;Rd ) for v ∈ V . (6.84)

According to condition (6.82), we obtain the following variational formulation of
our problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈u′′(t), v〉V + (σ (t), ε(v))H + ∫
Ω

j0(x, u(t); v)dx ≥
≥ 〈g, v〉V for all v ∈ V and a.e. t ∈ (0,+∞),

σ (t) = C (ε(u′(t))) + E (ε(u(t))) for a.e. t ∈ (0,+∞),

u(0) = u0, u′(0) = u1.

(6.85)

We define the operators A : V → V ∗ and B : V → V ∗ by

〈A(u), v〉V = (C (x, ε(u)), ε(v))H for u, v ∈ V, (6.86)

〈Bu, v〉V = (E (x, ε(u)), ε(v))H for u, v ∈ V . (6.87)

Note that bilinear forms (6.86) and (6.87) are symmetric, continuous, and coercive.
Let us introduce the functional J : L2(Ω;Rd) → R defined by

J (v) =
∫

Ω

j (x, v(x))dx for v ∈ L2(Ω;Rd). (6.88)

From [8, Chap. II] under Assumptions H(j), the functional J defined by (6.88)
satisfies

H(J). J : L2(Ω;Rd) → R is a functional such that:
(i) J (·) is well defined, locally Lipschitz (in fact, Lipschitz on bounded subsets of

L2(Ω;Rd)) and it admits the representation via the difference of regular functions
J1 and J2 on H ;

(i i) ζ ∈ ∂ J1(v) − ∂ J2(v) implies ‖ζ‖L2(Ω;Rd ) ≤ C6(1 + ‖v‖L2(Ω;Rd )) for v ∈ L2

(Ω;Rd) with C6 > 0;
(i i i) J 0(v;−v) ≤ C7(1 + ‖v‖L2(Ω;Rd )) for v ∈ L2(Ω;Rd) with C7 ≥ 0, where

J 0(u; v) denotes the directional derivative of J (·) at a point u ∈ L2(Ω;Rd) in the
direction v ∈ L2(Ω;Rd).

We can now formulate the second-order evolution inclusions associated with the
variational form of our problem
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⎧⎪⎪⎨
⎪⎪⎩

Find u ∈ C([0,+∞); V ) with u′ ∈ C([0,+∞); H) ∩ Lloc
2 (0,+∞; V )

and u′′ ∈ Lloc
2 (0,+∞; V ∗) such that

u′′(t) + Au′(t) + Bu(t) + ∂ J1(u(t)) − ∂ J2(u(t)) � g a.e. t ∈ (0,+∞),

u(0) = u0, u′(0) = u1.
(6.89)

Theorem 6.6 yields that, if τ < T, {ϕn(·)}n≥1 ⊂ WT
τ is an arbitrary sequence of

weak solutions of (6.89) on [τ, T ] such that ϕn(τ ) → ϕτ strongly in E , n → +∞,

then there exists ϕ ∈ Dτ,T (ϕτ ) such that up to a subsequence ϕn(·) → ϕ(·) in
C([τ, T ]; E), n → +∞ (see Sect. 6.2 for details).
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Part III
Uniform Global Behavior of Solutions:

Uniform Attractors, Flattening and
Entropy



Chapter 7
Uniform Global Attractors for
Non-autonomous Dissipative Dynamical
Systems

Abstract In this chapter we consider sufficient conditions for the existence of
uniform compact global attractor for non-autonomous dynamical systems in spe-
cial classes of infinite-dimensional phase spaces. The obtained generalizations allow
us to avoid the restrictive compactness assumptions on the space of shifts of non-
autonomous terms in particular evolution problems. The results are applied to several
evolution inclusions.

7.1 General Methodology

The standard scheme of investigation of uniform the long-time behavior for all solu-
tions of non-autonomous problems covers non-autonomous problems of the form

∂t u(t) = Aσ(t)(u(t)), (7.1)

where σ(s), s ≥ 0, is a functional parameter called the time symbol of Eq. (7.1)
(t is replaced by s). In applications to mathematical physics equations, a function
σ(s) consists of all time-dependent terms of the equation under consideration: exter-
nal forces, parameters of mediums, interaction functions, control functions, etc.;
Chepyzhov and Vishik [4, 5, 8]; Sell [36]; Zgurovsky et al. [48] and references
therein; see also Hale [16]; Ladyzhenskaya [30]; Mel’nik and Valero [32]; Iovane,
Kapustyan and Valero [17]. In the mentioned above papers and books it is assumed
that the symbol σ of Eq. (7.1) belongs to a Hausdorff topological space Ξ+ of func-
tions defined on R+ with values in some complete metric space. Usually, in applica-
tions, the topology in the space Ξ+ is a local convergence topology on any segment
[t1, t2] ⊂ R+. Further, they consider the family of Eq. (7.1) with various symbols
σ(s) belonging to a set Σ ⊆ Ξ+. The set Σ is called the symbol space of the fam-
ily of Eq. (7.1). It is assumed that the set Σ , together with any symbol σ(s) ∈ Σ ,
contains all positive translations of σ(s): σ(t + s) = T (t)σ (s) ∈ Σ for any t, s ≥ 0.
The symbol spaceΣ is invariant with respect to the translation semigroup {T (t)}t≥0:
T (t)Σ ⊆ Σ for any t ≥ 0. To prove the existence of uniform trajectory attractors
they suppose that the symbol space Σ with the topology induced from Ξ+ is a

© Springer International Publishing AG 2018
M.Z. Zgurovsky and P.O. Kasyanov, Qualitative and Quantitative Analysis
of Nonlinear Systems, Studies in Systems, Decision and Control 111,
DOI 10.1007/978-3-319-59840-6_7
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compact metric space. Mostly in applications, as a symbol space Σ it is naturally to
consider the hull of translation-compact function σ0(s) in an appropriate Hausdorff
topological space Ξ+. The direct realization of this approach to differential-operator
inclusions, PDEs with Caratheodory’s nonlinearities, optimization problems, etc., is
problematic without any additional assumptions for parameters of Problem (7.1) and
requires the translation-compactness of the symbol σ(s) in some compact Hausdorff
topological space of measurable multi-valuedmappings acts fromR+ to somemetric
space of operators from (V → 2V

∗
), where V is a Banach space and V ∗ is its dual

space, satisfying (possibly) only growth and sign assumptions. To avoid this techni-
cal difficulties we present an alternative approach for the existence and construction
of the uniform global attractor for classes of non-autonomous dynamical systems in
special classes of infinite-dimensional phase spaces; see also [1, 6, 12–15, 18, 21,
22, 24–29, 37–44, 46].

7.2 Main Constructions and Results

Let p ≥ 2 and q > 1 be such that 1
p + 1

q = 1, (V ; H ; V ∗) to be evolution triple
such that V ⊂ H with compact embedding. For each t1, t2 ∈ R, 0 ≤ t1 < t2 < +∞,
consider the space

Wt1,t2 := {y(·) ∈ L p(t1, t2; V ) : y′(·) ∈ Lq(t1, t2; V ∗)},

where y′(·) is a derivative of an element y(·) ∈ L p(t1, t2; V ) in the sense of distrib-
utions D∗([t1, t2]; V ∗). The space Wt1,t2 endowed with the norm

‖y‖Wt1 ,t2
:= ‖y‖L p(t1,t2;V ) + ‖y′‖Lq (t1,t2;V ∗), y ∈ Wt1,t2 ,

is a reflexive Banach space. Note that Wt1,t2 ⊂ C([t1, t2]; H) with continuous and
dense embedding; Gajewsky et al. [11, Chap. IV]. For each τ ≥ 0, consider the
Fréchet space

W loc([τ,+∞)) := {y : [τ,+∞) → H : Πt1,t2 y ∈ Wt1,t2 for each [t1, t2] ⊂ [τ, +∞)},

whereΠt1,t2 is the restriction operator to the finite time interval [t1, t2]. We recall that
the sequence { fn}n≥1 converges in W loc([τ,+∞)) (in C loc([τ,+∞); H) respec-
tively) to f ∈ W loc([τ,+∞)) (to f ∈ C loc([τ,+∞); H) respectively) as n → +∞
if and only if the sequence {Πt1,t2 fn}n≥1 converges inWt1,t2 (in C([t1, t2]; H) respec-
tively) toΠt1,t2 f as n → +∞ for each finite time interval [t1, t2] ⊂ [τ,+∞). Further
we denote that

T (h)y(·) = Π0,+∞ y( · + h), y ∈ W loc(R+), h ≥ 0,

where R+ = [0,+∞) and Π0,+∞ is the restriction operator to the time interval
[0,+∞).
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Throughout the chapter we consider the family of solution sets {K +
τ }τ≥0 such that

K +
τ ⊂ W loc([τ,+∞)) for each τ ≥ 0 and K +

τ0
�= ∅ for some τ0 ≥ 0. In the most

of applications asK +
τ can be considered the family of globally defined on [τ,+∞)

weak solutions for particular non-autonomous evolution problem (see Sect. 7.4).
To state the main assumptions on the family of solution sets {K +

τ }τ≥0 it is nec-
essary to formulate two auxiliary definitions.

A function ϕ ∈ L loc
γ (R+), γ > 1, is called translation bounded function in

L loc
γ (R+) if

sup
t≥0

∫ t+1

t
|ϕ(s)|γ ds < +∞;

Chepyzhov and Vishik [7, p. 105]. A function ϕ ∈ L loc
1 (R+) is called a translation

uniform integrable (t.u.i.) function in L loc
1 (R+) if

lim
K→+∞ sup

t≥0

∫ t+1

t
|ϕ(s)|I{|ϕ(s)| ≥ K }ds = 0;

Gorban et al. [14]. Note that Dunford–Pettis compactness criterion provides that
ϕ ∈ L loc

1 (R+) is a t.u.i. function in L loc
1 (R+) if and only if for every sequence of

elements {τn}n≥1 ⊂ R+, the sequence {ϕ( · + τn)}n≥1 contains a subsequence con-
verging weakly in L loc

1 (R+). Note that for each γ > 1, every translation bounded in
L loc

γ (R+) function is t.u.i. in L loc
1 (R+); Gorban et al. [14].

Main assumptions. Let the following two assumptions hold:

(A1) there exist a t.u.i. in L loc
1 (R+) function c1 : R+ → R+ and a constant α1 > 0

such that for each τ ≥ 0, y ∈ K +
τ , and t2 ≥ t1 ≥ τ , the following inequality

holds:

‖y(t2)‖2H − ‖y(t1)‖2H + α1

∫ t2

t1

‖y(t)‖p
V dt ≤

∫ t2

t1

c1(t)dt; (7.2)

(A2) there exist a t.u.i. in L loc
1 (R+) function c2 : R+ → R+ and a constant α2 > 0

such that for each τ ≥ 0, y ∈ K +
τ , and t2 ≥ t1 ≥ τ , the following inequality

holds: ∫ t2

t1

‖y′(t)‖qV ∗dt ≤ α2

∫ t2

t1

‖y(t)‖p
V dt +

∫ t2

t1

c2(t)dt. (7.3)

To characterize the uniform long-time behavior of solutions for non-autonomous
dissipative dynamical system consider the united trajectory spaceK +

∪ for the family
of solutions {K +

τ }τ≥0 shifted to zero:

K +
∪ :=

⋃
τ≥0

{
T (h)y( · + τ ) : y( · ) ∈ K +

τ , h ≥ 0
} ⊂ W loc(R+), (7.4)
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and the extended united trajectory space for the family {K +
τ }τ≥0:

K + := clC loc(R+;H)

[
K +

∪
]
, (7.5)

where clC loc(R+;H)[ · ] is the closure in C loc(R+; H). Since T (h)K +
∪ ⊆ K +

∪ for each
h ≥ 0, then

T (h)K + ⊆ K + for each h ≥ 0, (7.6)

due to

ρC loc(R+;H)(T (h)u, T (h)v) ≤ ρC loc(R+;H)(u, v) for each u, v ∈ C loc(R+; H),

where ρC loc(R+;H) is the standard metric on Fréchet space C loc(R+; H). Therefore
the set

X := {y(0) : y ∈ K +} (7.7)

is closed in H (it follows from Theorem 7.2). We endow this set X with metric

ρX(x1, x2) = ‖x1 − x2‖H , x1, x2 ∈ X.

Then we obtain that (X, ρ) is a Polish space (complete separable metric space).
Let us define the multi-valued semiflow (m-semiflow) G : R+ × X → 2X:

G(t, y0) := {y(t) : y(·) ∈ K + and y(0) = y0}, t ≥ 0, y0 ∈ X. (7.8)

According to (7.6), (7.7), and (7.8) for each t ≥ 0 and y0 ∈ X the set G(t, y0) is
nonempty. Moreover, the following two conditions hold:

(i) G (0, ·) = I is the identity map;
(ii) G (t1 + t2, y0) ⊆ G (t1,G (t2, y0)) , ∀t1, t2 ∈ R+, ∀y0 ∈ X,

where G (t, D) = ∪
y∈DG (t, y) , D ⊆ X.

We denote by distX(C, D) = supc∈C infd∈D ρ(c, d) the Hausdorff semidistance
between nonempty subsets C and D of the Polish spaceX. Recall that the set� ⊂ X

is a global attractor of the m-semiflow G if it satisfies the following conditions:

(i) � attracts each bounded subset B ⊂ X, i.e.

distX(G(t, B),�) → 0, t → +∞; (7.9)

(ii) � is negatively semi-invariant set, i.e. � ⊆ G (t,�) for each t ≥ 0;
(iii) � is the minimal set among all nonempty closed subsets C ⊆ X that satisfy

(7.9).

In this chapter we examine the uniform long-time behavior of solution sets
{K +

τ }τ≥0 in the strong topology of the natural phase space H (as time t → +∞) in
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the sense of the existence of a compact global attractor for m-semiflow G generated
by the family of solution sets {K +

τ }τ≥0 and their shifts. The following theorem is
the main result of the chapter.

Theorem 7.1 Let assumptions (A1)–(A2) hold. Then the m-semiflow G, defined in
(7.8), has a compact global attractor � in the phase space X.

7.3 Proof of Theorem 7.1

Before the proof of Theorem 7.1 we provide the following statement characteriz-
ing the compactness properties of the family K + in the topology induced from
C loc(R+; H).

Theorem 7.2 Let assumptions (A1)–(A2) hold. Then the following two statements
hold:

(a) for each y ∈ K +, the following estimate holds

‖y(t)‖2H ≤ ‖y(0)‖2He−c3t + c4, t ≥ 0, (7.10)

where the positive constants c3 and c4 do not depend on y ∈ K + and t ≥ 0;
(b) for any bounded in L∞(R+; H) sequence {yn}n≥1 ⊂ K +, there exist an increas-

ing sequence {nk}k≥1 ⊆ N and an element y ∈ K + such that

‖Πτ,T ynk − Πτ,T y‖C([τ,T ];H) → 0, k → +∞, (7.11)

for each finite time interval [τ, T ] ⊂ (0,+∞). If, additionally, there exists y0 ∈
H such that ynk (0) → y0 in H, then y(0) = y0.

Proof Let us prove statement (a). If statement (a) holds for each y ∈ K +
∪ , then

inequality (7.10) holds for each y ∈ K +, due to (7.5). The rest of the proof of
statement (a) establishes inequality (7.10) for each y ∈ K +

∪ .
For an arbitrary y ∈ K +

∪ , there exist τ, h ≥ 0 and z( · ) ∈ K +
τ such that y( · ) =

T (τ + h)z( · ). Assumption (A1) implies the following inequality:

‖y(t2)‖2H − ‖y(t1)‖2H + α1

∫ t2

t1

‖y(t)‖p
V dt ≤

∫ t2

t1

c1(t + τ + h)dt, (7.12)

for each t2 ≥ t1 ≥ 0, where c1(·) is t.u.i. in L loc
1 (R+). Since the embedding V ⊂ H

is compact, then this embedding is continuous. So, there exists a constant β > 0
such that ‖b‖H ≤ β‖b‖V for each b ∈ V . According to (7.12), since the inequality
a2 ≤ 1 + a p holds for each a ≥ 0, then the following inequality holds:

‖y(t2)‖2H − ‖y(t1)‖2H + α3

∫ t2

t1

‖y(t)‖2Hdt ≤
∫ t2

t1

[c1(t + τ + h) + α3] dt, (7.13)
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for each t2 ≥ t1 ≥ 0, where α3 = α1
β p . Let us set

ρ(t) := ‖y(t)‖2H + α3

∫ t

0
‖y(s)‖2Hds −

∫ t

0
[c1(s + τ + h) + α3] ds, t ≥ 0.

Inequality (7.13) and Ball [3, Lemma 7.1] yield that d
dt ρ ≤ 0 in D∗((0,+∞)),where

d
dt is the derivative operation in the sense of D∗((0,+∞)). Thus,

d

dt
‖y(t)‖2H + α3‖y(t)‖2H − [c1(t + τ + h) + α3] ≤ 0 in D∗((0,+∞)).

Therefore,

d

dt

[‖y(t)‖2Heα3t
] − eα3t [c1(t + τ + h) + α3] ≤ 0 in D∗((0,+∞)). (7.14)

Ball [3, Lemma 7.1] and inequality (7.14) imply

‖y(t2)‖2H ≤ ‖y(t1)‖2He−α3(t2−t1) +
∫ t2

t1

e−α3(t2−t) [c1(t + τ + h) + α3] dt, (7.15)

for each t2 ≥ t1 ≥ 0. Therefore,

‖y(t2)‖2H ≤‖y(t1)‖2He−α3(t2−t1) +
∫ t2

t1

e−α3(t2−t) [c1(t + τ + h) + α3] dt ≤

‖y(t1)‖2He−α3(t2−t1) + 1 +
∫ t2+τ+h

t1+τ+h
e−α3(t2−t+τ+h)c1(t)dt ≤

‖y(t1)‖2He−α3(t2−t1) + 1 + K

α3
+

∫ t2+τ+h

t1+τ+h
e−α3(t2−t+τ+h)|c1(t)|I{|c1(t)| ≥ K }dt,

for each K > 0, t2 ≥ t1 ≥ 0. Since the function c1 : R+ → R+ is t.u.i. in L loc
1 (R+)

(see assumption (A1)), then there exists K0 > 0 such that

sup
t≥0

∫ t+1

t
|c1(s)|I{|c1(s)| ≥ K0}ds ≤ 1.

Thus,

‖y(t2)‖2H ≤‖y(t1)‖2He−α3(t2−t1) + 1 + K0

α3
+ eα3 + 1,

that yields estimate (7.10) with c3 := α3 and c4 := 1 + K0
α3

+ eα3 + 1, where the
positive constants c3 and c4 do not depend on y ∈ K + and t ≥ 0.
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Let us prove statement (b). Let {yn}n≥1 ⊂ K + be an arbitrary sequence that is
bounded in L∞(R+; H). SinceK +

∪ is the dense set in a Polish spaceK + endowed
with the topology induced from C loc(R+; H), then for each n ≥ 1 there exists un ∈
K +

∪ such that

ρC loc(R+;H)(yn, un) ≤ 1

n
, for each n ≥ 1. (7.16)

Note that a priori estimate (7.10) provides that the sequence {un}n≥1 is bounded
in L∞(R+; H). Therefore, the rest of the proof establishes statement (b) for the
sequence {un}n≥1.

Let us fix n ≥ 1. Formula (7.4) provides the existence of τn, hn ≥ 0 and zn( · ) ∈
K +

τn
such that un( · ) = zn( · + τn + hn). Then, assumptions (A1) and (A2) yield

‖un(t2)‖2H − ‖un(t1)‖2H + α1

∫ t2

t1

‖un(t)‖p
V dt ≤

∫ t2

t1

c1(t + τn + hn)dt,

∫ t2

t1

‖un ′(t)‖qV ∗dt ≤ α2

∫ t2

t1

‖un(t)‖p
V dt +

∫ t2

t1

c2(t + τn + hn)dt,

(7.17)

for each t2 ≥ t1 ≥ 0 and n ≥ 1.
We remark that

sup
n≥1

∫ t2

t1

|c1(t + τn + hn)|dt < ∞ and sup
n≥1

∫ t2

t1

|c2(t + τn + hn)|dt < ∞, (7.18)

for each t2 ≥ t1 ≥ 0, since the functions c1, c2 : R+ → R+ are t.u.i. in L loc
1 (R+).

Formulae (7.17) and (7.18) imply that the sequence {un}n≥1 is bounded in
W loc(R+). Thus, Banach–Alaoglu theorem and Zgurovsky et al. [47, Theorems 1.16
and 1.21] yield that there exist an increasing sequence {nk}k≥1 ⊆ N and elements
y ∈ Wloc(R+) ⊂ C loc(R+; H) and c̄1 ∈ L loc

1 (R+) such that

unk → y weakly in L loc
p (R+; V ),

u′
nk → y′ weakly in L loc

q (R+; V ∗),
unk → y weakly in C loc(R+; H),

unk (t) → y(t) in H for a.e. t > 0,

c1( · + τnk + hnk ) → c̄1 weakly in L loc
1 (R+), k → ∞,

(7.19)

where the last convergence holds due to the fact that c1 ∈ L loc
1 (R+) is t.u.i. in

L loc
1 (R+). According to (7.19), we can pass to the limit in (7.2). So, we obtain

that y satisfies (7.2).
We consider the continuous and nonincreasing (by assumption (A1)) functions

on R+:
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Jk(t) = ‖unk (t)‖2H −
∫ t

0
c1(s + τnk + hnk )ds,

J (t) = ‖y(t)‖2H −
∫ t

0
c̄1(s)ds, k ≥ 1;

(7.20)

cf. Kapustyan and Valero [19]. The last two statements in (7.19) imply

Jk(t) → J (t), as k → +∞, for a.e. t > 0. (7.21)

Similarly to Zgurovsky et al. [48, p. 57] (see the book and references therein) we
show that (7.11) holds. By contradiction suppose the existence of a positive constant
L > 0, a finite interval [τ, T ] ⊂ (0,+∞), and a subsequence {uk j } j≥1 ⊆ {unk }k≥1

such that
max
t∈[τ,T ] ‖uk j (t) − y(t)‖H = ‖uk j (t j ) − y(t j )‖H ≥ L ,

for each j ≥ 1. Suppose also that t j → t0 ∈ [τ, T ], as j → +∞. Continuity of
Πτ,T y : [τ, T ] → H implies

lim inf
j→+∞ ‖uk j (t j ) − y(t0)‖H ≥ L . (7.22)

On the other hand, we prove that

uk j (t j ) → y(t0) in H, j → +∞. (7.23)

For this purpose we firstly note that from (7.19) we have

uk j (t j ) → y(t0) weakly in H, j → +∞. (7.24)

Secondly we prove that

lim sup
j→+∞

‖uk j (t j )‖H ≤ ‖y(t0)‖H . (7.25)

We consider the continuous nonincreasing functions J and Jk j , j ≥ 1, defined in
(7.20). Let us fix an arbitrary ε > 0. The continuity of J and (7.21) provide the exis-
tence of t̄ ∈ (τ, t0) such that lim j→∞ Jk j (t̄) = J (t̄) and |J (t̄) − J (t0)| < ε. Then,

Jk j (t j ) − J (t0) ≤ |Jk j (t̄) − J (t̄)| + |J (t̄) − J (t0)| ≤ |Jk j (t̄) − J (t̄)| + ε,

for rather large j ≥ 1. Thus, lim sup j→+∞ Jk j (t j ) ≤ J (t0) and inequality (7.25)
holds.

Thirdly note that the convergence (7.23) holds due to (7.24) and (7.25); cf. Gajew-
ski et al. [11,Chap. I]. Finally,we remark that statement (7.23) contradicts assumption
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(7.22). Therefore, according to (7.16), the first statement of the theorem holds for
each sequence {yn}n≥1 ⊂ K +.

To finish the proof of statement (b) we note that if, additionally, there exists
y0 ∈ H such that ynk (0) → y0 in H , then, according to the third convergence in
(7.19), y(0) = y0.

Let us provide the proof of the main result.

Proof (Proof of Theorem 7.1) Theorem7.2 implies the following properties for the
m-semiflow G, defined in (7.8):

(a) for each t ≥ 0 the mapping G(t, · ) : X → 2X \ {∅} has a closed graph;
(b) for each t ≥ 0 and y0 ∈ X the set G(t, y0) is compact in X;
(c) the set G(1, C̃), where C̃ := {z ∈ X : ‖z‖2H < c4 + 1}, is precompact and

attracts each bounded subset C ⊂ X.

Indeed, property (a) follows from Theorem 7.2 (see formulae (7.5) and (7.8)); prop-
erty (b) directly follows from (a) and Theorem 7.2(b); property (c) holds, since
G(1, C̃) is precompact in X (Theorem 7.2(b) and formula (7.8)) and the following
inequalities and equality hold:

distX(G(t,C),G(1, C̃)) ≤ distX(G(1,G(t − 1,C)),G(1, C̃)) ≤

distX(G(1, C̃),G(1, C̃)) = 0,

for sufficiently large t .
According to properties (a)–(c),Mel’nik andValero [31, Theorems 1, 2, Remark 2,

Proposition 1] yields that the m-semiflow G has a compact global attractor � in the
phase space X.

7.4 Example of Applications

In the following three examples we examine the uniform global attractor for the
family of solution sets {K +

τ } generated by particular evolution problems. In all the
cases we assume that

∀z ∈ H ∀τ ≥ 0 ∃y ∈ K +
τ such that y(τ ) = z.

This assumption guarantees the equality X = H .
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7.4.1 Autonomous Evolution Problem

Let {K +
τ } be a family of solutions for an autonomous problem on [τ,+∞), τ ≥ 0.

Then we have:
∀h ≥ 0 T (h)K +

0 ⊂ K +
0 ; (7.26)

∀τ ≥ 0 ∀y ∈ K +
τ y(· + τ) ∈ K +

0 . (7.27)

So, K +
∪ = K +

0 . If additionally we have that

K +
0 is closed in C loc(R+; H), (7.28)

then
K + = K +

0 .

It implies that the m-semiflow G (defined by (7.8)) is a classical multi-valued semi-
group generated by an autonomous evolution problem.

7.4.2 Non-autonomous Evolution Problem

Let {K +
τ } be a family of solutions for non-autonomous problem on [τ,+∞), τ ≥ 0,

and the following condition holds:

∀s ≥ τ ≥ 0 ∀y ∈ K +
τ Πs,+∞y(·) ∈ K +

s . (7.29)

Then, according to Kapustyan et al. [23], formula

U (t, τ, z) = {y(t) : y(·) ∈ K +
τ , y(τ ) = z} (7.30)

defines a m-semiprocess, that is

∀t ≥ s ≥ τ U (t, τ, z) ⊂ U (t, s,U (s, τ, z)).

One of the most important objects for m-semiprocess (7.30) is uniform global attrac-
tor; Chepyzhov and Vishik [7], Kapustyan et al. [20], Zgurovsky et al. [48]. It is a
set � such that for every bounded subset C ⊂ H

sup
τ≥0

distH (U (t + τ, τ,C),�) → 0, t → ∞, (7.31)

and� is minimal among all closed sets satisfying this property. Then under assump-
tions (A1), (A2) and from (7.29) it follows that the m-semiprocess (7.30) has the
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compact uniform global attractor � ⊆ �, where � is the global attractor for the
m-semiflow (7.8).

Indeed,
∀t ≥ τ ≥ 0 ∀z ∈ H U (t + τ, τ, z) ⊂ G(t, z). (7.32)

So, if � is a compact global attractor for the m-semiflow G then, according
to Kapustyan et al. [20], there exists a compact uniform global attractor � for
m-semiprocess U and, moreover, � ⊂ �.

In the following example we examine the existence of uniform global attractor for
non-autonomous differential-operator inclusion. The uniform trajectory attractors
for classes of non-autonomous inclusions and equations were proved to exist in
Zgurovsky and Kasyanov [45] (see also Gorban et al. [14]).

7.4.3 Non-autonomous Differential-Operator Inclusion

For the multi-valued map A : R+ × V → 2V
∗\{∅} we consider the problem of long-

time behavior of all globally defined weak solutions for non-autonomous evolution
inclusion

y′(t) + A(t, y(t)) � 0̄, (7.33)

as t → +∞. Let 〈·, ·〉V : V ∗ × V → R be the pairing in V ∗ × V , that coincides on
H × V with the inner product (·, ·) in the Hilbert space H .

We note that Problem (7.33) arises in many important models for distributed
parameter control problems and that large class of identification problems enter this
formulation. Let us indicate a problem which is one of the motivations for the study
of the non-autonomous evolution inclusion (7.33) (see, for example, Migórski and
Ochal [34]; Zgurovsky et al. [48] and references therein). In a subset Ω of R3, we
consider the nonstationary heat conduction equation

∂y

∂t
− �y = f in Ω × (0,+∞)

with initial conditions and suitable boundary ones. Here y = y(x, t) represents the
temperature at the point x ∈ Ω and time t > 0. It is supposed that f = f1 + f2,
where f2 is given and f1 is a known function of the temperature of the form (see
Fig. 7.1)

− f1(x, t) ∈ ∂ j (x, t, y(x, t)) a.e. (x, t) ∈ Ω × (0,+∞).

Here ∂ j (x, t, ξ) denotes generalized gradient of Clarke (see Clarke [9]) with
respect to the last variable of a function j : Ω × R+ × R → R which is assumed to
be locally Lipschitz in ξ (cf. Migórski and Ochal [34] and references therein). The
multi-valued function ∂ j (x, t, ·) : R → 2R is generally nonmonotone and it includes
the vertical jumps. In a physicist’s language it means that the law is characterized
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Fig. 7.1 Control laws

by the generalized gradient of a nonsmooth potential j (cf. Panagiotopoulos [35]).
Models of physical interest includes also the next (see, for example, Balibrea et al.
[2] and references therein): a model of combustion in porous media; a model of
conduction of electrical impulses in nerve axons; a climate energy balance model;
etc.

Let the following assumptions hold:

(H1) (Growth condition) There exist a t.u.i. in L loc
1 (R+) function c1 : R+ → R+

and a constant c2 > 0 such that ‖d‖qV ∗ ≤ c1(t) + c2‖u‖p
V for any u ∈ V , d ∈

A(t, u), and a.e. t > 0;
(H2) (Sign condition) There exist a constant α > 0 and a t.u.i. in L loc

1 (R+) function
β : R+ → R+ such that 〈d, u〉V ≥ α‖u‖p

V − β(t) for any u ∈ V , d ∈ A(t, u),
and a.e. t > 0;

(H3) (Strong measurability) If C ⊆ V ∗ is a closed set, then the set {(t, u) ∈
(0,+∞) × V : A(t, u) ∩ C �= ∅} is a Borel subset in (0,+∞) × V ;

(H4) (Pointwise pseudomonotonicity) Let for a.e. t > 0 the following two assump-
tions hold:

a) for every u ∈ V the set A(t, u) is nonempty, convex, and weakly compact
one in V ∗;

b) if a sequence {un}n≥1 converges weakly in V towards u ∈ V as n → +∞,
dn ∈ A(t, un) for any n ≥ 1, and lim supn→+∞〈dn, un − u〉V ≤ 0, then for
any ω ∈ V there exists d(ω) ∈ A(t, u) such that

lim inf
n→+∞ 〈dn, un − ω〉V ≥ 〈d(ω), u − ω〉V .

Let 0 ≤ τ < T < +∞. As a weak solution of evolution inclusion (7.33) on the
interval [τ, T ] we consider an element u(·) of the space L p(τ, T ; V ) such that for
some d(·) ∈ Lq(τ, T ; V ∗) it is fulfilled:
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−
∫ T

τ

(ξ ′(t), y(t))dt +
∫ T

τ

〈d(t), ξ(t)〉V dt = 0 ∀ξ ∈ C∞
0 ([τ, T ]; V ), (7.34)

and d(t) ∈ A(t, y(t)) for a.e. t ∈ (τ, T ). For fixed nonnegative τ and T , τ < T , let
us consider

Xτ,T = L p(τ, T ; V ), X∗
τ,T = Lq(τ, T ; V ∗),

Wτ,T = {y ∈ Xτ,T | y′ ∈ X∗
τ,T }, Aτ,T : Xτ,T → 2X

∗
τ,T \ {∅},

Aτ,T (y) = {d ∈ X∗
τ,T | d(t) ∈ A(t, y(t)) for a.e. t ∈ (τ, T )},

where y′ is a derivative of an element u ∈ Xτ,T in the sense of D([τ, T ]; V ∗) (see,
for example, Gajewski, Gröger, and Zacharias [11, Definition IV.1.10]). Gajewski,
Gröger, and Zacharias [11, Theorem IV.1.17] provide that the embedding Wτ,T ⊂
C([τ, T ]; H) is continuous and dense. Moreover,

(u(T ), v(T )) − (u(τ ), v(τ )) =
∫ T

τ

[
〈u′(t), v(t)〉V + 〈v′(t), u(t)〉V

]
dt, (7.35)

for any u, v ∈ Wτ,T .
Migórski [33, Lemma 7, p. 516] (see the paper and references therein) and the

assumptions above provide that themulti-valuedmappingAτ,T : Xτ,T → 2X
∗
τ,T \ {∅}

satisfies the listed below properties:

(P1) There exists a positive constant C1 = C1(τ, T ) such that ‖d‖X∗
τ,T

≤ C1(1 +
‖y‖p−1

Xτ,T
) for any y ∈ Xτ,T and d ∈ Aτ,T (y);

(P2) There exist positive constants C2 = C2(τ, T ) and C3 = C3(τ, T ) such that
〈d, y〉Xτ,T ≥ C2‖y‖p

Xτ,T
− C3 for any y ∈ Xτ,T and d ∈ Aτ,T (y);

(P3) The multi-valued mappingAτ,T : Xτ,T → 2X
∗
τ,T \ {∅} is (generalized) pseudo-

monotone on Wτ,T , i.e.

(a) for every y ∈ Xτ,T the setAτ,T (y) is a nonempty, convex and weakly com-
pact one in X∗

τ,T ;
(b) Aτ,T is upper semi-continuous from every finite dimensional subspace Xτ,T

into X∗
τ,T endowed with the weak topology;

(c) if a sequence {yn, dn}n≥1 ⊂ Wτ,T × X∗
τ,T converges weakly in Wτ,T ×

X∗
τ,T towards (y, d) ∈ Wτ,T × X∗

τ,T , dn ∈ Aτ,T (yn) for any n ≥ 1, and
lim supn→+∞〈dn, yn − y〉Xτ,T ≤ 0, then d ∈ Aτ,T (y) and limn→+∞
〈dn, yn〉Xτ,T = 〈d, y〉Xτ,T .

Formula (7.34) and the definition of the derivative for an element fromD([τ, T ];
V ∗) yield that each weak solution y ∈ Xτ,T of Problem (7.33) on [τ, T ] belongs
to the space Wτ,T and y′ + Aτ,T (y) � 0̄. On the contrary, suppose that y ∈ Wτ,T

satisfies the last inclusion, then y is a weak solution of Problem (7.33) on [τ, T ].
Assumption (H1), properties (P1)–(P3), and Denkowski, Migórski, and

Papageorgiou [10, Theorem 1.3.73] (see also Zgurovsky, Mel’nik, and Kasyanov
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[47, Chap. 2] and references therein) provide the existence of a weak solution of
Cauchy problem (7.33) with initial data y(τ ) = y(τ ) on the interval [τ, T ], for any
y(τ ) ∈ H .

For fixed τ and T , such that 0 ≤ τ < T < +∞, we denote

Dτ,T (y(τ )) = {y(·) | y is a weak solution of (7.33) on [τ, T ], y(τ ) = y(τ )}, y(τ ) ∈ H.

We remark that Dτ,T (y(τ )) �= ∅ and Dτ,T (y(τ )) ⊂ Wτ,T , if 0 ≤ τ < T < +∞ and
y(τ ) ∈ H . Moreover, the concatenation of weak solutions of Problem (7.33) is a
weak solutions too, i.e. if 0 ≤ τ < t < T , y(τ ) ∈ H , y(·) ∈ Dτ,t (y(τ )), and v(·) ∈
Dt,T (y(t)), then

z(s) =
{
y(s), s ∈ [τ, t],
v(s), s ∈ [t, T ],

belongs to Dτ,T (y(τ )); cf. Zgurovsky et al. [48, pp. 55–56].
Gronwall’s lemma provides that for any finite time interval [τ, T ] ⊂ R+ each

weak solution y of Problem (7.33) on [τ, T ] satisfies the estimates

‖y(t)‖2H − 2
∫ t

0
β(ξ)dξ + 2α

∫ t

s
‖y(ξ)‖p

V dξ ≤ ‖y(s)‖2H − 2
∫ s

0
β(ξ)dξ, (7.36)

‖y(t)‖2H ≤ ‖y(s)‖2He−2αγ (t−s) + 2
∫ t

s
(β(ξ) + αγ )e−2αγ (t−ξ)dξ, (7.37)

where t, s ∈ [τ, T ], t ≥ s; γ > 0 is a constant such that γ ‖u‖p
H ≤ ‖u‖p

V for any
u ∈ V ; cf. Zgurovsky et al. [48, p. 56]. In the proof of (7.37) we used the inequality
‖u‖2H − 1 ≤ ‖u‖p

H for any u ∈ H .
Therefore, any weak solution y of Problem (7.33) on a finite time interval

[τ, T ] ⊂ R+ can be extended to a global one, defined on [τ,+∞). For arbitrary
τ ≥ 0 and y(τ ) ∈ H let Dτ (y(τ )) be the set of all weak solutions (defined on
[τ,+∞)) of Problem (7.33) with initial data y(τ ) = y(τ ). Let us consider the fam-
ily K +

τ = ∪y(τ )∈HDτ (y(τ )) of all weak solutions of Problem (7.33) defined on the
semi-infinite time interval [τ,+∞).

Properties (P1)–(P2) imply assumptions (A1) and (A2). Therefore, Theorem 7.1
yields that the m-semiflow G, defined in (7.8), has a compact global attractor � in
the phase space H.
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Chapter 8
Uniform Trajectory Attractors
for Non-autonomous Nonlinear Systems

Abstract In this chapter we study uniform trajectory attractors for non-autonomous
nonlinear systems. In Sect. 8.1 we establish the existence of uniform trajectory attrac-
tor for non-autonomous reaction-diffusion equations with Carathéodory’s nonlinear-
ity. Section8.2 devoted to structural properties of the uniform global attractor for
non-autonomous reaction-diffusion system in which uniqueness of Cauchy problem
is not guarantied. In the case of translation compact time-depended coefficients it is
established that the uniformglobal attractor consists of bounded complete trajectories
of corresponding multi-valued processes. Under additional sign conditions on non-
linear termwe also prove (and essentially use previous result) that the uniform global
attractor is, in fact, bounded set in L∞(Ω)∩ H 1

0 (Ω). Section8.3 devoted to uniform
trajectory attractors for nonautonomous dissipative dynamical systems. As applica-
tionswemay consider FitzHugh–Nagumo system (signal transmission across axons),
complex Ginzburg–Landau equation (theory of superconductivity), Lotka–Volterra
system with diffusion (ecology models), Belousov–Zhabotinsky system (chemical
dynamics) and many other reaction-diffusion type systems from Sect. 2.4.

8.1 Uniform Trajectory Attractor for Non-autonomous
Reaction-Diffusion Equations with Carathéodory’s
Nonlinearity

Let N , M = 1, 2, . . ., Ω ⊂ R
N be a bounded domain with sufficiently smooth

boundary ∂Ω . We consider a problem of long-time behavior of all globally defined
weak solutions for the non-autonomous parabolic problem (named reaction-diffusion
or RD-system; see Chap. 4 and [1–23]).

{
yt = aΔy − f (x, t, y), x ∈ Ω, t > 0,
y|∂Ω = 0,

(8.1)

as t → +∞, where y = y(x, t) = (y(1)(x, t), ..., y(M)(x, t)) is unknown vector-
function, f = f (x, t, y) = ( f (1)(x, t, y), ..., f (M)(x, t, y)) is given function, a is
real M × M matrix with positive symmetric part.
© Springer International Publishing AG 2018
M.Z. Zgurovsky and P.O. Kasyanov, Qualitative and Quantitative Analysis
of Nonlinear Systems, Studies in Systems, Decision and Control 111,
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Throughout this section we suppose that the listed below assumptions hold (see
Chap.5).

Assumption I Let pi ≥ 2 and qi > 1 are such that 1
pi

+ 1
qi

= 1, for any i =
1, 2, . . . , M .Moreover, there exists a positive constantd such that 12 (a+a∗) ≥ d I ,
where I is unit M × M matrix, a∗ is a transposed matrix for a.
Assumption II The interaction function f = ( f (1), ..., f (M)) : Ω ×R+ ×R

M →
R

M satisfies the standard Carathéodory’s conditions, i.e. the mapping (x, t, u) →
f (x, t, u) is continuous in u ∈ R

M for a.e. (x, t) ∈ Ω × R+, and it is measurable
in (x, t) ∈ Ω × R+ for any u ∈ R

M .
Assumption III (Growth Condition) There exist a t.u.i. in L loc

1 (R+; L1(Ω)) func-
tion c1 : Ω × R+ → R+ and a constant c2 > 0 such that

M∑
i=1

∣∣ f (i)(x, t, u)
∣∣qi ≤ c1(x, t) + c2

M∑
i=1

∣∣u(i)
∣∣pi

for any u = (u(1), ..., u(M)) ∈ R
M , and a.e. (x, t) ∈ Ω × R+.

Assumption IV (Sign Condition). There exists a constant α > 0 and a t.u.i. in
L loc
1 (R+; L1(Ω)) function β : Ω × R+ → R+ such that

M∑
i=1

f (i)(x, t, u)u(i) ≥ α

M∑
i=1

∣∣u(i)
∣∣pi − β(x, t)

for any u = (u(1), ..., u(M)) ∈ R
M , and a.e. (x, t) ∈ Ω × R+.

In further arguments we will use standard functional Hilbert spaces H =
(L2(Ω))M , V = (H 1

0 (Ω))M , and V ∗ = (H−1(Ω))M with standard respective inner
products and norms (·, ·)H and ‖ ·‖H , (·, ·)V and ‖ ·‖V , and (·, ·)V ∗ and ‖ ·‖V ∗ , vector
notations p = (p1, p2, ..., pM ) and q = (q1, q2, ..., qM ), and the spaces

Lp(Ω) := L p1(Ω) × ... × L pM (Ω), Lq(Ω) := Lq1(Ω) × ... × LqM (Ω),

Lp(τ, T ; Lp(Ω)) := L p1(τ, T ; L p1 (Ω)) × ... × L pM (τ, T ; L pM (Ω)),

Lq(τ, T ; Lq(Ω)) := Lq1(τ, T ; Lq1(Ω)) × ... × LqM (τ, T ; LqM (Ω)), 0 ≤ τ < T < +∞.

Let 0 ≤ τ < T < +∞. We recall that a function y = y(x, t) ∈ L2(τ, T ; V ) ∩
Lp(τ, T ; Lp(Ω)) is a weak solution of Problem (8.1) on [τ, T ], if for any function
ϕ = ϕ(x) ∈ (C∞

0 (Ω))M , the following identity holds

d

dt

∫
Ω

y(x, t) · ϕ(x)dx +
∫

Ω

{a∇ y(x, t) · ∇ϕ(x) + f (x, t, y(x, t)) · ϕ(x)}dx = 0

in the sense of scalar distributions on (τ, T ).
In the general case Problem (8.1) on [τ, T ]with initial condition y(x, τ ) = yτ (x)

in Ω has more than one weak solution with yτ ∈ H (cf. Zgurovsky et al. [23] and

http://dx.doi.org/10.1007/978-3-319-59840-6_5
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references therein). Thus, for investigation of the long-time behavior as t → +∞
of all weak solutions of Problem (8.1) with initial data from H , the results for
uniform global and trajectory attractors of multi-valued semi-processes in infinite-
dimensional spaces were applied; Babin and Vishik [2], Chepyzhov and Vishik [6],
Mel’nik and Valero [14, 15] and references therein. Theses approaches were applied
to various non-autonomous problems of the form

∂t y(t) = Aσ(t)(y(t)), (8.2)

where σ(s), s ≥ 0, is a functional parameter called the time symbol of Eq. (8.2) (t
is replaced by s). In applications to mathematical physics equations, a function σ(s)
consists of all time-dependent terms of the equation under consideration: external
forces, parameters of mediums, interaction functions, control functions, etc. It is
assumed that the symbol σ of Eq. (8.2) belongs to a Hausdorff topological space Ξ+
of functions defined on R+ with values in some complete metric space. Usually, in
applications, the topology in the space Ξ+ is a local convergence topology on any
segment [t1, t2] ⊂ R+. Further, they consider the family of Eq. (8.2) with various
symbols σ(s) belonging to a set Σ ⊆ Ξ+. The set Σ is called the symbol space
of the family of Eq. (8.2). It is assumed that the set Σ , together with any symbol
σ(s) ∈ Σ , contains all positive translations of σ(s): σ(t + s) = T (t)σ (s) ∈ Σ

for any t, s ≥ 0. The symbol space Σ is invariant with respect to the translation
semigroup {T (t)}t≥0: T (t)Σ ⊆ Σ for any t ≥ 0. To prove the existence of uniform
trajectory attractor they supposed that the symbol spaceΣ with the topology induced
fromΞ+ is a compact metric space. Mostly in applications, as a symbol spaceΣ it is
natural to consider the hull of translation-compact function σ0(s) in an appropriate
Hausdorff topological space Ξ+. The direct realization of this approach for Problem
(8.1) is problematic without any additional assumptions for parameters of Problem
(8.1) and requires the translation-compactness of the symbol σ(s) = f (·, s, ·) in
some compact Hausdorff topological space of mappings act from R+ to some metric
space of Carathéodory’s vector-functions satisfying growth and signed assumptions.
To avoid this technical difficulties we present the alternative direct approach for the
existence and construction of the uniform trajectory attractor for all weak solutions
for Problem (8.1).

The main purpose of this section is to investigate uniform long-time behavior of
all globally defined weak solutions for Problem (8.1) with initial data uτ ∈ H under
listed above assumptions. The main results of this paper are: (i) the existence of uni-
form trajectory attractor for all globally defined weak solutions of non-autonomous
reaction-diffusion equations with Carathéodory’s nonlinearity (Theorem 8.1), and
(ii) sufficient conditions for the existence of uniform trajectory attractor in strongest
topologies (Theorem 8.2).

In further arguments as a Banach spaceFt1,t2 we consider either C([t1, t2]; H) or
Wt1,t2 with respective topologies of strong convergence, where 0 ≤ t1 < t2 < +∞.
Consider the Fréchet space

F loc(R+) := {y : R+ → H : Πt1,t2 y ∈ Ft1,t2 for any [t1, t2] ⊂ R+},
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Fig. 8.1 Translation
operation

whereΠt1,t2 is the restriction operator to the interval [t1, t2]; Chepyzhov andVishik [6,
p. 918]. We remark that the sequence { fn}n≥1 converges (converges weakly respec-
tively) inF loc(R+) towards f ∈ F loc(R+) as n → +∞ if and only if the sequence
{Πt1,t2 fn}n≥1 converges (converges weakly respectively) inFt1,t2 towards Πt1,t2 f as
n → +∞ for any finite interval [t1, t2] ⊂ R+.

We denote T (h)y(·) = yh(·), where yh(t) = y(t + h) for any y ∈ F loc(R+) and
t, h ≥ 0 (see Fig. 8.1).

In the autonomous case, when f (x, t, y) does not depend on t , the long-time
behavior of all globally defined weak solutions for Problem (8.1) is described by
using trajectory and global attractors theory. In this situation the setK + := K +

0 is
translation semi-invariant, i.e. T (h)K + ⊆ K + for any h ≥ 0. As trajectory attrac-
tor it is considered a classical global attractor for translation semigroup {T (h)}h≥0,
that acts on K +.

In the non-autonomous case we notice that T (h)K +
0 � K +

0 . Therefore, we
need to consider united trajectory space that includes all globally defined on any
[τ,+∞) ⊆ R+ weak solutions of Problem (8.1) shifted to τ = 0:

K +
∪ :=

⋃
τ≥0

{
y( · + τ) ∈ W loc(R+) : y( · ) ∈ K +

τ

}
, (8.3)

Note that T (h){y( · + τ) : y ∈ K +
τ } ⊆ {y( · + τ + h) : y ∈ K +

τ+h} for any
τ, h ≥ 0. Therefore, T (h)K +

∪ ⊆ K +
∪ for any h ≥ 0.
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To define an uniform trajectory attractor, the united trajectory space need to be a
closed subset of a Polish space. Further we consider extended united trajectory space
for Problem (8.1):

K +
F loc(R+)

= clF loc(R+)

[
K +

∪
]
, (8.4)

where clF loc(R+)[ · ] is the closure inF loc(R+). We note that

T (h)K +
F loc(R+)

⊆ K +
F loc(R+)

for any h ≥ 0,

because

ρF loc(R+)(T (h)u, T (h)v) ≤ ρF loc(R+)(u, v) for any u, v ∈ F loc(R+),

where ρF loc(R+) is a standard metric on Fréchet spaceF loc(R+); cf. Chepyzhov and
Vishik [6]; Vishik et al. [21].

A set P ⊂ F loc(R+) ∩ L∞(R+; H) is said to be a uniformly attracting set (cf.
Chepyzhov and Vishik [6, p. 921]) for the extended united trajectory spaceK +

F loc(R+)

of Problem (8.1) in the topology ofF loc(R+), if for any bounded in L∞(R+; H) set
B ⊆ K +

F loc(R+)
and any segment [t1, t2] ⊂ R+ the following relation holds:

distFt1 ,t2
(Πt1,t2T (t)B,Πt1,t2P) → 0, t → +∞, (8.5)

where distFt1 ,t2
is the Hausdorff semi-metric.

A set U ⊂ K +
F loc(R+)

is said to be a uniform trajectory attractor (cf. Chepyzhov
and Vishik [6, p. 921] and references therein) of the translation semigroup {T (t)}t≥0

onK +
F loc(R+)

in the induced topology from F loc(R+), if

(i) U is a compact set inF loc(R+) and bounded in L∞(R+; H);
(ii) U is strictly invariant with respect to {T (h)}h≥0, i.e. T (h)U = U ∀h ≥ 0;
(iii) U is a minimal uniformly attracting set for K +

F loc(R+)
in the topology of

F loc(R+), i.e. U belongs to any compact uniformly attracting set P of
K +

F loc(R+)
: U ⊆ P .

Note that uniform trajectory attractor of the translation semigroup {T (t)}t≥0 on
K +

F loc(R+)
in the induced topology fromF loc(R+) coincides with the classical global

attractor for the continuous semi-group {T (t)}t≥0 defined onK +
F loc(R+)

.
Assumptions I–IV are sufficient conditions for the existence of uniform trajectory

attractor for weak solutions of Problem (8.1) in the topology of C loc(R+; H).

Theorem 8.1 Let Assumptions I–IV hold. Then there exists an uniform trajectory
attractor U ⊂ K +

C loc(R+;H)
of the translation semigroup {T (t)}t≥0 on K +

C loc(R+;H)

in the induced topology from C loc(R+; H). Moreover, there exists a compact in
C loc(R+; H) uniformly attracting set P ⊂ C loc(R+; H) ∩ L∞(R+; H) for the
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extended united trajectory space K +
C loc(R+;H)

of Problem (8.1) in the topology of

C loc(R+; H) such that U coincides with ω-limit set of P:

U =
⋂
t≥0

clC loc(R+;H)

[⋃
h≥t

T (h)P

]
. (8.6)

For the existence of uniform trajectory attractor in the strong topology of the nat-
ural extended phase space W loc(R+) it is necessary to claim that additional assump-
tion holds (see Example 8.1). To formulate this additional assumption we provide
some auxiliary constructions. A function ϕ ∈ L loc

1 (R+; L1(Ω)) is called translation-
compact (tr.-c.) in L loc

1 (R+; L1(Ω)), if the set {ϕ( · + h) : h ≥ 0} is precompact
in L loc

1 (R+; L1(Ω)); cf. Chepyzhov and Vishik [6, p. 917]. Note that a function
ϕ ∈ L loc

1 (R+; L1(Ω)) is tr.-c. in L loc
1 (R+; L1(Ω)) if and only if two conditions hold:

(a) the set
{∫ t+h

t ϕ(s)ds : t ≥ 0
}
is precompact in L1(Ω) for any h > 0; (b) there

exists a function ψ(s), ψ(s) → 0+ as s → 0+ such that

∫ t+1

t

∫
Ω

|ϕ(x, s) − ϕ(x, s + h)|dxds ≤ ψ(|h|) for any t ≥ 0 and h ≥ −t;

Chepyzhov and Vishik [6, Proposition 6.5].
Assumption V Let the conditions hold:

(i) the functions c1 and β from Assumptions (III) and (IV) respectively are tr.-c.
in L loc

1 (R+; L1(Ω));

(ii) the set
{
1
h

∫ t+h
t f ( · , s, u)ds : t ≥ 0, h ∈ (0, h0), ‖u‖RM ≤ R

}
is precom-

pact in (L1(Ω))M for any R > 0 and some h0 = h0(R) > 0;
(iii) for any r > 0 there exist a nondecreasing function ψ(s, r) : R

2+ → R+,
ψ(s, r) → 0+ as s → 0+, and h0 = h0(r) > 0 such that

1

h1

M∑
i=1

∫ t+h1

t

∫
Ω

∣∣∣ f (i)(x, s, u) − f (i)(x, s + h2, v)
∣∣∣ dxds ≤ ψ(|h2| + ‖u − v‖

RM , r)

for each t ≥ 0, h1 ∈ (0, h0), h2 ≥ −t , and u, v ∈ R
M such that

‖u‖RM , ‖v‖RM ≤ r .

Remark 8.1 Let us discuss sufficient conditions for Assumption V.
(i) The autonomous case. Let f does not depend on the time variable t and it

satisfies Assumptions I–IV with c1, β ∈ L1(Ω) (in particular, assumptions from
Vishik et al. [21] hold). Then Assumption V hold; see Remark 4.1.

(ii) The non-autonomous case. Let f = f (t, u) is jointly continuous mapping,
it satisfies Assumptions I–IV with positive constants c1 and β, and f being tr.-c. in
C loc(R+;C(RM)), that is,

‖ f (t, u) − f (s, v) ‖RM ≤ ω (|t − s| + ‖u − v‖RM , K )

http://dx.doi.org/10.1007/978-3-319-59840-6_4
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for all t, s ∈ R+, ‖u‖RM , ‖v‖RM ≤ K , K > 0, where ω (l, K ) → 0, as l → 0+;
see, for example, Chepyzhov and Vishik [6, p. 105], Kapustyan and Valero [8–10],
where uniform global in H and uniform trajectory in C loc(R+; H) attractors were
investigated. Then Assumption V holds.

(iii) The sufficient condition for Assumption V(iii) is: for any r > 0 there exist a
nondecreasing function ψ(s, r) : R

2+ → R+, ψ(s, r) → 0+ as s → 0+, such that

M∑
i=1

∫
Ω

∣∣ f (i)(x, t, u) − f (i)(x, t + h, v)
∣∣ dxds ≤ ψ(|h| + ‖u − v‖RM , r)

for each t ≥ 0, h ≥ −t , and u, v ∈ R
M such that ‖u‖RM , ‖v‖RM ≤ r .

Note that Assumption V is a generalization of the above assumptions to the case
when f depends on the space, time and state variables simultaneously and it is
not necessarily continuous by t . Meanwhile, Example 8.1 below provide piecewise
continuous function f that satisfiesAssumptions I-IV, but it does not satisfyAssump-
tion V. Moreover, the statement of Theorem 8.2 below does not hold for Problem
(8.1) with such interaction function.

The main result on the existence of uniform trajectory attractor for weak solutions
of Problem (8.1) in the topology of W loc(R+) has the following form:

Theorem 8.2 Let Assumptions I–V hold. Then there exists an uniform trajectory
attractor U ⊂ K +

W loc(R+)
of the translation semigroup {T (t)}t≥0 on K +

W loc(R+)
in

the induced topology from W loc(R+). Moreover, there exists a compact in W loc(R+)

uniformly attracting set P ⊂ W loc(R+) ∩ L∞(R+; H) for the extended united
trajectory space K +

W loc(R+)
of Problem (8.1) in the topology of W loc(R+) such that

U coincides with ω-limit set of P:

U =
⋂
t≥0

clW loc(R+)

[⋃
h≥t

T (h)P

]
. (8.7)

Remark 8.2 All statements of Theorems 8.1 and 8.2 hold for the function f (x, t, y)
equals to the sum of an interaction function f1(x, t, y), satisfying Assumptions I–
IV (Assumptions I–V respectively), and an external force g ∈ L loc

2 (R+; V ∗). In
Theorem 8.1 g is need to be translation bounded in L loc

2 (R+; V ∗) and g is transla-
tion compact in L loc

2 (R+; V ∗) in Theorem 8.2 respectively. The proofs are similar
with some standard technical modifications. To simplify the conclusions, further we
consider the case g ≡ 0.

Proof of Theorems 8.1 and 8.2 The proofs of both two theorems are similar and
based on the respective statements of Theorems 4.1 and 4.2. To avoid reduplication
we set F loc(R+) := C loc(R+; H) for the proof of Theorem 8.1 and F loc(R+) :=
W loc(R+) for the proof of Theorem 8.2 respectively.

We provide the proof in several steps. First, let us show that there exists a uni-
form trajectory attractor U ⊂ K +

F loc(R+)
of the translation semigroup {T (t)}t≥0 on

http://dx.doi.org/10.1007/978-3-319-59840-6_4
http://dx.doi.org/10.1007/978-3-319-59840-6_4
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K +
F loc(R+)

in the induced topology from F loc(R+). Theorem 4.1, if F loc(R+) =
C loc(R+; H), and Theorem 4.2, ifF loc(R+) = W loc(R+), yields that the translation
semigroup {T (t)}t≥0 has a compact absorbing (and, therefore, an uniformly attract-
ing) set in the space of trajectories K +

F loc(R+)
; Zgurovsky et al. [23] and references

therein. This set can be constructed as follows: 1) considerPF loc(R+), the intersection
of K +

F loc(R+)
with a ball in the space of bounded continuous functions on R+ with

values in H , Cb(R+; H), of sufficiently large radius; 2) shift the resulting set by any
fixed distance h > 0. Thus, we obtain T (h)PF loc(R+), a set with the required proper-
ties. Recall that the semigroup {T (t)}t≥0 is continuous. Therefore, the setPF loc(R+)

is a compact absorbing (and, therefore, an uniformly attracting) for K +
F loc(R+)

with

the induced topology of F loc(R+). Then we can apply, for example, Theorem 2.2
from Chepyzhov and Vishik [6, Chap.XI] and finish the proof. In particular, formula
(8.6) holds; cf. Babin and Vishik [2]; Melnik and Valero [14], Temam [20] etc.

The example providedbelow implies that additionalAssumptionV inTheorem4.2
is essential for the existence of uniform trajectory attractor in strongest topology of
an extended united phase space of weak solutions for Problem (4.1).

Example 8.1 Interaction function f : Ω × R+ × R
M → R

M satisfies Assumptions
I–IV, Assumption V does not hold, and the statement of Theorem 4.2 does not
hold. Let N , M = 1, Ω = (0, π), a = 1, f (x, t, u) := u − sin(x) · sin(π [t]t),
(x, t, u) ∈ Ω × R+ × R, where [t] is a largest integer, that does not exceed t . The
verifying of Assumptions I–IV and V(i,ii) is trivial. Assumption V(iii) does not hold,
because | sin(πk2) − sin(π(k + 1

2k )k)| = 1 �→ 0, as k → +∞.
The statement of Theorem 4.2 does not hold. On the contrary assume that there

exists an uniform trajectory attractor U ⊂ K +
W loc(R+)

of the translation semigroup

{T (t)}t≥0 on K +
W loc(R+)

in the induced topology from W loc(R+). By definition of

an uniform trajectory attractor, since U is a compact set in W loc(R+), for each
y(·) ∈ K +

W loc(R+)
(we note that the set {T (h)y(·) : h ≥ 0} is bounded in L∞(R+; H))

any monotone increasing unbounded sequence {hn}n≥1 ⊂ R+ has a subsequence
{hnk }k≥1 ⊆ {hn}n≥1 such that {T (hnk )y(·)}k≥1 is precompact in W loc(R+). On the
other hand, let

y(x, t) := sin(x)
∫ t

0
sin(π [s]s)e−2(t−s)ds, (x, t) ∈ Ω × R+,

and hn := n, n = 1, 2, . . .. Note that y ∈ K +
0 ⊆ K +

W loc(R+)
, and

∂

∂t
y(x, t+n) = −2 sin(x)

∫ t+n

0
sin(π [s](s))e−2(t+n−s)ds+(−1)n sin(x)·sin(πnt),

(x, t) ∈ Ω × (0, 1), n = 1, 2, . . .. Therefore,

lim inf
n,m→+∞ ‖Π0,1T (n)y(·) − Π0,1T (m)y(·)‖W0,1 > 0,

http://dx.doi.org/10.1007/978-3-319-59840-6_4
http://dx.doi.org/10.1007/978-3-319-59840-6_4
http://dx.doi.org/10.1007/978-3-319-59840-6_4
http://dx.doi.org/10.1007/978-3-319-59840-6_4
http://dx.doi.org/10.1007/978-3-319-59840-6_4
http://dx.doi.org/10.1007/978-3-319-59840-6_4
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because the sequenceof functions {(x, t) → sin(x)
∫ t+n
0 sin(π [s]s)e−2(t+n−s)ds}n≥1,

restricted on Ω × (0, 1), converges strongly in L2(0, 1; V ) ⊂ X∗
0,1 as n → +∞,

and the sequence of functions {(x, t) → 2√
π
sin(x) · sin(πnt)}n≥1, restricted on

Ω ×(0, 1), is orthonormal in X∗
0,1. This is a contradiction with the existence of a sub-

sequence {hnk }k≥1 ⊆ {hn}n≥1 such that {T (hnk )y(·)}k≥1 is precompact in W loc(R+).
Therefore, the statement of Theorem 4.2 does not hold.

8.2 Structure of Uniform Global Attractor
for Non-autonomous Reaction-Diffusion Equations

In this section we study the structural properties of the uniform global attractor
of non-autonomous reaction-diffusion system in which the nonlinear term satisfy
suitable growth and dissipative conditions on the phase variable, suitable translation
compact conditions on time variable, but there is no condition ensuring uniqueness
of Cauchy problem. In autonomous case such system generates in the general case a
multi-valued semiflow having a global compact attractor (see [8, 12, 23]). Also, it is
known [12], that the attractor is the union of all bounded complete trajectories of the
semiflow.Herewe prove the same result for non-autonomous system.More precisely,
we prove that the family of multi-valued processes, generated by weak solutions of
reaction-diffusion system, has uniform global attractor which is union of bounded
complete trajectories of corresponding processes. Using this result, we can prove
that under additional restrictions on nonlinear term obtained uniform global attractor
is bounded set in the space L∞(Ω) ∩ H 1

0 (Ω).
In a bounded domainΩ ⊂ R

n with sufficiently smooth boundary ∂Ω we consider
the following non-autonomous parabolic problem (named RD-system)

{
ut = aΔu − f (t, u) + h(t, x), x ∈ Ω, t > τ,

u|∂Ω = 0,
(8.8)

where τ ∈ R is initial moment of time, u = u(t, x) = (u1(t, x), ..., uN (t, x)) is
unknown vector-function, f = ( f 1, ..., f N ), h = (h1, ..., hN ) are given functions,
a is real N × N matrix with positive symmetric part 1

2 (a + a∗) ≥ β I , β > 0,

h ∈ L2
loc(R; (L2(Ω))N ), f ∈ C(R × R

N ; R
N ), (8.9)

∃ C1,C2 > 0, γi > 0, pi ≥ 2, i = 1, N such that ∀ t ∈ R, ∀ v ∈ R
N

N∑
i=1

| f i (t, v)| pi
pi−1 ≤ C1(1 +

N∑
i=1

|vi |pi ), (8.10)

http://dx.doi.org/10.1007/978-3-319-59840-6_4
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N∑
i=1

f i (t, v)vi ≥
N∑
i=1

γi |vi |pi − C2. (8.11)

In further arguments we will use standard functional spaces

H = (L2(Ω))N with the norm |v|2 =
∫
Ω

N∑
i=1

|vi (x)|2dx,

V = (H 1
0 (Ω))N with the norm ‖v‖2 =

∫
Ω

N∑
i=1

|∇vi (x)|2dx .

Let us denote V ′ = (H−1(Ω))N , qi = pi
pi−1 , p = (p1, ..., pN ), q = (q1, ..., qN ),

L p(Ω) = L p1(Ω) × ... × L pN (Ω).

Definition 8.1 The function u = u(t, x) ∈ L2
loc(τ,+∞; V )

⋂
L p
loc(τ,+∞;

L p(Ω)) is called a (weak) solution of the problem (8.8) on (τ,+∞) if for all
T > τ, v ∈ V ∩ L p(Ω)

d

dt

∫
Ω

u(t, x)v(x)dx +
∫
Ω

(
a∇u(t, x)∇v(x) + f (t, u(t, x))v(x) − h(t, x)v(x)

)
dx = 0

(8.12)
in the sense of scalar distributions on (τ, T ).

From (8.10) and Sobolev embedding theorem we see that every solution of
(8.8) satisfies inclusion ut ∈ Lq

loc(τ,+∞; H−r (Ω)), where r = (r1, ..., rN ),
rk = max{1, n( 12 − 1

pk
)}. The following theorem is well-known result about global

resolvability of (8.8) for initial conditions from the phase space H .

Theorem 8.3 ([1, Theorem 2] or [6, p.284]) Under conditions (8.10), (8.11) for
every τ ∈ R, uτ ∈ H there exists at least one weak solution of (8.8) on (τ,+∞)

with u(τ ) = uτ (and it may be non unique) and any weak solution of (8.8) belongs to
C ([τ,+∞); H). Moreover, the function t �→ |u(t)|2 is absolutely continuous and
for a.a. t ≥ τ the following energy equality holds

1

2

d

dt
|u(t)|2 + (a∇u(t),∇u(t)) + ( f (t, u(t)), u(t)) = (h(t), u(t)). (8.13)

Under additional not-restrictive conditions on function f and h it is known that
solution of (8.8) generate non-autonomous dynamical system (two-parametric family
of m-processes), which has uniform global attractor. The aim of this paper is to give
description of the attractor in terms of bounded complete trajectories and show some
regularity property of this set.

Let (X, ρ) be a complete metric space. The Hausdorff semidistance from A to B
is given by
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dist (A, B) = sup
x∈A

inf
y∈B ρ(x, y),

By A and Oε(A) = {x ∈ X | inf
y∈A

ρ(x, y) < ε} we denote closure and ε-

neighborhood of the set A. Denote by P(X) (β(X), C(X), K (X)) the set of all
non-empty (not-empty bounded, not-empty closed, not-empty compact) subsets of
X ,

Rd = {(t, τ ) ∈ R
2|t ≥ τ }.

Let Σ be some complete metric space, {T (h) : Σ �→ Σ}h≥0 be a continuous
semigroup, acting on Σ . Note, that in most applications T (h) is shift semigroup.

Definition 8.2 Two-parameter family of multi-valued mappings {Uσ : Rd × X �→
P(X)}σ∈Σ is said to be the family of m-processes (family ofMP), if ∀ σ ∈ Σ , τ ∈ R:

(1) Uσ (τ, τ, x) = x ∀x ∈ X,

(2) Uσ (t, τ, x) ⊆ Uσ (t, s,Uσ (s, τ, x)), ∀t ≥ s ≥ τ ∀x ∈ X,

(3) Uσ (t + h, τ + h, x) ⊆ UT (h)σ (t, τ, x) ∀t ≥ τ ∀h ≥ 0, ∀ x ∈ X,

where for A ⊂ X , B ⊂ Σ UB(t, s, A) = ⋃
σ∈B

⋃
x∈A

Uσ (t, s, x), in particular

UΣ(t, τ, x) =
⋃
σ∈Σ

Uσ (t, τ, x);

see also Fig. 8.2.

Family of MP {Uσ |σ ∈ Σ} is called strict, if in conditions (2), (3) equality take
place.

Definition 8.3 A set A ⊂ X is called uniformly attracting for the family of MP
{Uσ |σ ∈ Σ}, if for arbitrary τ ∈ R, B ∈ β(X)

dist (UΣ(t, τ, B), A) → 0, t → +∞, (8.14)

Fig. 8.2 Concatenation
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that is ∀ ε > 0, τ ∈ R and B ∈ β(X) there exists T = T (τ, ε, B) such that

UΣ(t, τ, B) ⊂ Oε(A) ∀ t ≥ T .

For fixed B ⊂ X and (s, τ ) ∈ Rd let us define the following sets

γ τ
s,σ (B) =

⋃
t≥s

Uσ (t, τ, B), γ τ
s,Σ(B) =

⋃
t≥s

UΣ(t, τ, B),

ωΣ(τ, B) =
⋂
s≥τ

clX (γ τ
s,Σ(B)).

It is clear that ωΣ(τ, B) = ⋂
s≥p

clX (γ τ
s,Σ(B)) ∀p ≥ τ.

Definition 8.4 The family of MP {Uσ |σ ∈ Σ} is called uniformly asymptotically
compact, if for arbitrary τ ∈ R and B ∈ β(X) there exists A(τ, B) ∈ K (X) such
that

UΣ(t, τ, B) → A(τ, B), t → +∞ in X.

It is known [9] that if ∀τ ∈ R, ∀B ∈ β(X) ∃T = T (τ, B) γ τ
T,Σ(B) ∈ β(X), then

the condition of uniformly asymptotically compactness is equivalent to the following
one:

∀τ ∈ R ∀B ∈ β(X) ∀tn ↗ ∞

every sequence ξn ∈ UΣ(tn, τ, B) is precompact.

Definition 8.5 A set ΘΣ ⊂ X is called uniform global attractor of the family of MP
{Uσ |σ ∈ Σ}, if:
(1) ΘΣ is uniformly attracting set;
(2) for every uniformly attracting set Y we have ΘΣ ⊂ clXY .

Uniform global attractor ΘΣ ⊂ X is called invariant (semiinvariant), if ∀ (t, τ ) ∈
Rd

ΘΣ = UΣ(t, τ,ΘΣ) (ΘΣ ⊂ UΣ(t, τ,ΘΣ)).

If ΘΣ is compact, invariant uniform global attractor, then it is called stable if
∀ ε > 0 ∃ δ > 0 ∀ (t, τ ) ∈ Rd

UΣ(t, τ, Oδ(ΘΣ)) ⊂ Oε(ΘΣ).

The following sufficient conditions we can obtain with slight modifications from [9].

Theorem 8.4 (I) Let us assume that the family of MP {Uσ |σ ∈ Σ} satisfies the
following conditions:
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(1) ∃ B0 ∈ β(X) ∀ B ∈ β(X) ∀τ ∈ R ∃ T = T (τ, B)

∀ t ≥ T UΣ(t, τ, B) ⊂ B0;

(2) {Uσ |σ ∈ Σ} is uniformly asymptotically compact.
Then {Uσ }σ∈Σ has compact uniform global attractor

ΘΣ =
⋃
τ∈R

⋃
B∈β(X)

ωΣ(τ, B) = ωΣ(0, B0) = ωΣ(τ, B0) ∀τ ∈ R. (8.15)

(II) If {Uσ }σ∈Σ satisfy 1),2), Σ is compact and ∀t ≥ τ the mapping

(x, σ ) �→ Uσ (t, τ, x) (8.16)

has closed graph, then ΘΣ is semiinvariant.
If, moreover, ∀h ≥ 0 T (h)Σ = Σ and the family MP {Uσ |σ ∈ Σ} is strict, then

ΘΣ is invariant.
(III) If {Uσ }σ∈Σ satisfy (1), (2),Σ is connected and compact, ∀t ≥ τ the mapping

(8.16) is upper semicontinuous and has connected values, B0 is connected set, then
ΘΣ is connected set.

(IV) If {Uσ |σ ∈ Σ} has compact, invariant uniform global attractor ΘΣ and the
following condition hold:

i f yn ∈ UΣ(tn, τ, xn), tn → t0, xn → x0,

then up to subsequence yn → y0 ∈ UΣ(t0, τ, x0), (8.17)

then ΘΣ is stable.

Proof (I) From conditions (1), (2) due to [9] we have that ∀τ ∈ R ∀B ∈ β(X)

ωΣ(τ, B) �= ∅, is compact, ωΣ(τ, B) ⊂ B0 and the set

ΘΣ =
⋃
τ∈R

⋃
B∈β(X)

ωΣ(τ, B)

is uniform global attractor. Let us prove that ωΣ(τ, B) ⊂ ωΣ(τ0, B0) ∀τ, τ0 ∈ R.

Uσ (t, τ, B) ⊂ Uσ (t,
t

2
,Uσ (

t

2
, τ, B)) ⊂ UT ( t

2 −τ0)σ (
t

2
+ τ0, τ0,Uσ (

t

2
, τ, B)) ⊂

⊂ UΣ(
t

2
+ τ0, τ0, B0), if

t

2
≥ T (τ, B) + |τ0| + |τ | := T .

So, for t ≥ 2T

UΣ(t, τ, B) ⊂ UΣ(
t

2
+ τ0, τ0, B0).
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Then for s ≥ 2T

⋃
t≥s

UΣ(t, τ, B) ⊂
⋃
t≥s

UΣ(
t

2
+ τ0, τ0, B0) =

⋃
p≥ s

2 +τ0

UΣ(p, τ0, B0),

⋂
s≥2T

⋃
t≥s

UΣ(t, τ, B) = ωΣ(τ, B) ⊂
⋂
s≥2T

⋃
p≥ s

2 +τ0

UΣ(p, τ0, B0) =

⋂
s ′≥T+τ0

⋃
p≥s ′

UΣ(p, τ0, B0) = ωΣ(τ0, B0).

So we deduce equality (8.15).
(II) Due to (8.15) ∀ξ ∈ ΘΣ = ωΣ(τ, B0) ∃tn ↗ +∞, ∃σn ∈ Σ ∃ξn ∈

UΣn (tn, τ, B0) such that ξ = lim
n→∞ ξn . Then

ξn ∈ Uσn (tn − t − τ + t + τ, τ, B0) ⊂

⊂ Uσn (tn − t − τ + t + τ, tn − t + τ,Uσn (tn − t + τ, τ, B0)) ⊂ UT (tn−t)σn (t, τ, ηn),

where ηn ∈ Uσn (tn − t + τ, τ, B0), t ≥ τ and for sufficiently large n ≥ 1.
From uniform asymptotically compactness we have that on some subsequence

ηn → η ∈ ωΣ(τ, B0) = ΘΣ,

T (tn − t)σn → σ ∈ Σ.

Then from (8.16) we deduce:

ξ ∈ UΣ(t, τ,ΘΣ),

and therefore ΘΣ ⊂ UΣ(t, τ,ΘΣ).

Other statements of the theorem are proved similarly to [9].
Theorem is proved.

Corollary 8.1 If for the family of MP {Uσ }σ∈Σ we have:

(1) ∀h ≥ 0 T (h)Σ = Σ;
(2) ∀(t, τ ) ∈ Rd ∀h ≥ 0 ∀σ ∈ Σ ∀x ∈ X

Uσ (t + h, τ + h, x) = UT (h)σ (t, τ, x),

then all conditions of previous theorem can be verified only for τ = 0.

Proof Under conditions (1), (2) ∀t ≥ τ if τ ≥ 0 then

Uσ (t, τ, x) = UT (τ )σ (t − τ, 0, x),
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and if τ ≤ 0 then ∃σ ′ ∈ Σ : σ = T (−τ)σ ′, so

Uσ (t, τ, x) = UT (−τ)σ ′(t, τ, x) = Uσ ′(t − τ, 0, x).

In the single-valued case it is known [6], that the uniform global attractor consists
of bounded complete trajectories of processes {Uσ }σ∈Σ .

Definition 8.6 The mapping ϕ : [τ,+∞) �→ X is called trajectory of MP Uσ , if
∀t ≥ s ≥ τ

ϕ(t) ∈ Uσ (t, s, ϕ(s)). (8.18)

If for ϕ : R �→ X the equality (8.18) takes place ∀t ≥ s, then ϕ is called complete
trajectory.

Now we assume that for arbitrary σ ∈ Σ and τ ∈ R we have the set K τ
σ of

mappings ϕ : [τ,+∞) �→ X such that:

(a) ∀x ∈ X ∃ϕ(·) ∈ K τ
σ such, that ϕ(τ) = x;

(b) ∀ϕ(·) ∈ K τ
σ ∀s ≥ τ ϕ(·)|[s,+∞) ∈ Ks

σ ;
(c) ∀h ≥ 0 ∀ϕ(·) ∈ K τ+h

σ ϕ(· + h) ∈ K τ
T (h)σ .

Let us put
Uσ (t, τ, x) = {ϕ(t)|ϕ(·) ∈ K τ

σ , ϕ(τ ) = x}. (8.19)

Lemma 8.1 Formula (8.19) defines the family of MP {Uσ }σ∈Σ, and ∀ϕ(·) ∈ K τ
σ

∀t ≥ s ≥ τ ϕ(t) ∈ Uσ (t, s, ϕ(s)). (8.20)

Proof Let us check conditions of the Definition 8.2.
(1) Uσ (τ, τ, x) = ϕ(τ) = x ;
(2) ∀ξ ∈ Uσ (t, τ, x) ξ = ϕ(t), where ϕ ∈ K τ

σ , ϕ(τ) = x . Then for s ∈ [τ, t]
ϕ(s) ∈ Uσ (s, τ, x) and from ϕ|[s,+∞) ∈ Ks

σ we have ϕ(t) ∈ Uσ (t, s, ϕ(s)). So

ξ ∈ Uσ (t, s,Uσ (s, τ, x)).

(3) ∀ξ ∈ Uσ (t + h, τ + h, x) ξ = ϕ(t + h), where ϕ ∈ K τ+h
σ , ϕ(τ + h) = x . Then

ψ(·) = ϕ(· + h) ∈ K τ
T (h)σ , ψ(τ) = x , so ξ = ψ(t) ∈ UT (h)σ (t, τ, x). Lemma is

proved.

It is easy to show that under conditions a)-c), if ∀s ≥ τ ∀ψ ∈ K τ
σ , ∀ϕ ∈ Ks

σ such
that ψ(s) = ϕ(s), we have

θ(p) =
{

ψ(p), p ∈ [τ, s]
ϕ(p), p > s,

∈ K τ
σ , (8.21)

then in the condition (2) of Definition 8.2 equality takes place.
If ∀h ≥ 0 ∀ϕ ∈ K τ

T (h)σ ϕ(·−h) ∈ K τ+h
σ , then in the condition 3) of Definition 8.2

equality takes place.
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From (8.20)we immediately obtain that if formappingϕ(·) : R �→ X for arbitrary
τ ∈ R we have ϕ(·)|[τ,+∞) ∈ K τ

σ , then ϕ(·) is complete trajectory of Uσ .
The next result is generalization on non-autonomous case results from [5].

Lemma 8.2 Let the family of MP {Uσ }σ∈Σ be constructed by the formula (8.19),
∀ϕ(·) ∈ K τ

σ is continuous on [τ,+∞), the condition (8.21) takes place and the
following one:
if ϕn(·) ∈ K τ

σ , ϕn(τ ) = x, then ∃ϕ(·) ∈ K τ
σ , ϕ(τ ) = x such that on some

subsequence
ϕn(t) → ϕ(t) ∀t ≥ τ.

Then every continuous on [τ,+∞) trajectory of MP Uσ belongs to K τ
σ .

Proof Let ψ : [τ,+∞) �→ X be continuous trajectory. Let us construct sequence
{ϕn(·)}∞n=1 ⊂ K τ

σ such that

ϕn(τ + j2−n) = ψ(τ + j2−n), j = 0, 1, ..., n2n .

For ϕ1(·) we have
ψ(τ + 1

2
) ∈ Uσ (τ + 1

2
, τ, ψ(τ)),

ψ(τ + 1) ∈ Uσ (τ + 1, τ + 1

2
, ψ(τ + 1

2
).

So there exists ϕ̃(·) ∈ K τ
σ , there exists ˜̃ϕ(·) ∈ K

τ+ 1
2

σ such that

ψ(τ + 1

2
) = ϕ̃(τ + 1

2
), ϕ̃(τ ) = ψ(τ),

ψ(τ + 1) = ˜̃ϕ(τ + 1), ˜̃ϕ(τ + 1

2
) = ψ(τ + 1

2
).

Therefore due to (8.21) for function

ϕ1(p) =
{

ϕ̃(p), τ ≤ p ≤ τ + 1
2 ,˜̃ϕ(p), p > τ + 1

2
we have:

ϕ1(·) ∈ K τ
σ , ϕ1(τ ) = ψ(τ), ϕ1(τ + 1

2
) = ψ(τ + 1

2
), ϕ1(τ + 1) = ψ(τ + 1).

Further, using (8.21), we obtain required property for every n ≥ 1. As ϕn(τ ) = ψ(τ),
so ∃ϕ(·) ∈ K τ

σ , ϕ(τ ) = ψ(τ) such that on subsequence ∀t ≥ τ ϕn(t) → ϕ(t). As
∀t = τ + j2−n ϕ(t) = ψ(t), so from continuity ϕ(t) = ψ(t) ∀t ≥ τ . Lemma is
proved.
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The following theorem declare structure of uniform global attractor in terms of
bounded complete trajectories of corresponding m-processes. It should be noted that
this result is known for single-valued case [6] and in multi-valued case for very
special class of strict processes, generated by strict compact semiprocesses, which
act in Banach spaces [22].

Theorem 8.5 Let Σ is compact, T (h)Σ = Σ ∀ h ≥ 0, the family of MP {Uσ }σ∈Σ

satisfies (8.19), in condition (3) of Definition 8.2 equality takes place, the mapping
(x, σ ) �→ Uσ (t, 0, x) has closed graph. Let us assume that there existsΘΣ - compact
uniformglobal attractor of the family {Uσ }σ∈Σ , and one of two conditions hold: either
the family of MP {Uσ }σ∈Σ is strict, or

f or every σn → σ0, xn → x0 i f ϕn(·) ∈ K 0
σn

, ϕn(0) = xn,

so ∃ ϕ(·) ∈ K 0
σ0

, ϕ(0) = x0 such that on subsequnce ∀t ≥ 0 ϕn(t) → ϕ(t).
(8.22)

Then the following structural formula holds

ΘΣ =
⋃
σ∈Σ

Kσ (0), (8.23)

where Kσ is the set of all bounded complete trajectories of MP Uσ .

Proof First let us consider situation when the family of MP {Uσ }σ∈Σ is strict. In this
case one can consider multi-valued semigroup (m-semiflow) on the extended phase
space X × Σ by the rule

G(t, {x, σ }) = {Uσ (t, 0, x), T (t)σ }. (8.24)

Then G is strict, has closed graph and compact attracting set ΘΣ × Σ . So G has
compact invariant global attractor

A =
⋂
s≥0

⋃
t≥s

G(t,ΘΣ × Σ) = {γ (0)|γ is bounded complete trajectories of G}.

Here under complete trajectory of m-semiflow G we mean the mapping R � t �→
γ (t) such that

∀ t ∈ R ∀ s ≥ 0 γ (t + s) ∈ G(s, γ (t)).

Let us consider two projectors Π1 and Π2, Π1(u, σ ) = u, Π2(u, σ ) = σ . As
T (t)Σ = Σ , so Π2A = Σ . Let us prove that Π1A = ΘΣ.

As ∀ B ∈ β(X) G(t, B × Σ) → A , t → +∞, so

UΣ(t, τ, B) → Π1A ,



196 8 Uniform Trajectory Attractors for Non-autonomous Nonlinear Systems

so ΘΣ ⊂ Π1A . Let us prove that Π1A = ⋃
σ∈Σ

Kσ (0). For this purpose we take

(u0, σ0) ∈ A . Then there exists γ (·) = {u(·), σ (·)}, which is bounded complete
trajectory of G and such that γ (0) = (u0, σ0). Then ∀t ≥ τ

u(t) ∈ Uσ(τ)(t − τ, 0, u(τ )), σ (t) = T (t − τ)σ (τ).

If τ ≥ 0, then σ(τ) = T (τ )σ0, that is

u(t) ∈ UT (τ )σ0(t − τ, 0, u(τ )) = Uσ0(t, τ, u(τ )).

If τ < 0, then σ0 = T (−τ)σ (τ), so

u(t) ∈ Uσ(τ)(t − τ, τ − τ, u(τ )) = UT (−τ)σ (τ )(t, τ, u(τ )) = Uσ0(t, τ, u(τ )).

Therefore u0 = u(0) ∈ Kσ0(0) ⊂ ⋃
σ∈Σ

Kσ (0).

Now let u0 = u(0) ∈ Kσ0(0), u(t) ∈ Uσ0(t, τ, u(τ )) ∀t ≥ τ. As T (t)Σ = Σ ,
so there exists σ(s), s ∈ R, such that σ(t) = T (t − τ)σ (τ), ∀t ≥ τ, σ (0) = σ0.

Then for s ≥ 0 we have

G(t, {u(s), σ (s)}) = (Uσ(s)(t, 0, u(s)), T (t)σ (s)) =

= (UT (s)σ0(t, 0, u(s)), σ (t + s)) = (Uσ0(t + s, s, u(s)), σ (t + s)),

{u(t + s), σ (t + s)} ∈ (Uσ0(t + s, s, u(s)), σ (t + s)).

If s < 0, then σ0 = T (−s)σ (s), and

u(t + s) ∈ Uσ0(t + s, s, u(s)) = UT (−s)σ (s)(t + s, s, u(s)) = Uσ(s)(t, 0, u(s)).

Then u0 ∈ Π1A and Π1A = ⋃
σ∈Σ Kσ (0).

Since for arbitrary attracting set P and for arbitrary bounded complete trajectory
Γ = {u(s)}s∈R of the process Uσ we have

u(0) ∈ Uσ (0,−n, u(−n)) = UT (n)σ (−n)(0,−n, u(−n)) ⊂

⊂ UΣ(n, 0, Γ ) → P, n → +∞,

so u(0) ∈ P , and we obtain (8.23).
Now let us consider another case, when family of m-processes is not strict, but

the condition (8.22) holds. Let us show thatKσ (0) ⊂ ΘΣ. If z ∈ Kσ (0), then there
exists bounded complete trajectory ϕ(·) of m-process Uσ , such that ϕ(0) = z. Let
us denote Γ = ⋃

t∈R
ϕ(t) ∈ β(X). Then for z = ϕ(0) we have
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ϕ(0) ∈ Uσ (0,−n, ϕ(−n)) = UT (n)σn (0,−n, ϕ(−n)) ⊂ UΣ(n, 0, Γ ).

Since ∀ε > 0 ∃n0 ∀n ≥ n0 UΣ(n, 0, Γ ) ⊂ Oε(ΘΣ), then z ∈ ΘΣ and we obtain
required embedding.

Now let z ∈ ΘΣ = ωΣ(0, B0).Then z = lim
n→+∞ ξn, ξn ∈ UΣ(tn, 0, B0). Therefore

on some subsequence

z = lim
n→+∞ ϕn(tn), ϕn(·) ∈ K 0

σn
, ϕn(0) ∈ B0, σn → σ.

For ∀n ≥ 1 let us consider

ψn(·) := ϕn(· + tn) ∈ K−tn
T (tn)σn

,

that is ψn(·) ∈ K−tn
σ̃n

, where σ̃n = T (tn)σn . Then ψn(·) ∈ K 0
σ̃n

, σ̃n → σ̃ , ψn(0) =
ϕn(tn) → z, so there exists ψ(0)(·) ∈ K 0

σ̃
, ψ(0)(0) = z, such that

∀t ≥ 0 ψn(t) = ϕn(t + tn) → ψ(0)(t).

For τ = −1 ∀n ≥ n1 − tn < −1, therefore ψn(·) ∈ K−1
σ̃n

and on some subsequence

ψn(−1) = ϕn(tn − 1) → z1.

Herewith there exists ψ(−1)(·) ∈ K−1
σ̃

such that on subsequence

ψn(t) = ϕn(t + tn) → ψ(−1)(t) ∀t ≥ −1,

and ∀t ≥ 0 ψ(0)(t) = ψ(−1)(t). By standard diagonal procedure we construct
sequence of functions

ψ(−k)(·) ∈ K−k
σ̃

, k ≥ 0,

with ψ(−k+1)(t) = ψ(−k)(t) ∀t ≥ −k + 1. Let us put

ψ(t) := ψ(−k)(t), i f t ≥ −k.

Then the function ψ(·) is correctly defined, ψ : R �→ X.

Moreover ∀τ < 0 ∃k such that [τ,+∞) ⊂ [−k,+∞), on [−k,+∞) ψ(·) ≡
ψ(−k), so ψ(·) ∈ K−k

σ̃
, and from this

ψ(·) ∈ K τ
σ̃ , ψ(0) = ψ(0)(0) = z.

Since on subsequence

∀t ∈ R ψ(t) = lim
n→+∞ ϕn(t + tn) ∈ ωΣ(0, B0) ∈ β(X),
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then z = ψ(0) ∈ Kσ̃ and theorem is proved.

Definition 8.7 Let Θ be some topological space of functions from R to topological
space E . The function ξ ∈ Θ is called translation compact in Θ , if the set

H(ξ) = clΘ{ξ(· + s) | s ∈ R}

is compact in Θ .

To construct family of m-processes for the problem (8.8) we suppose that time-
depended functions f and h are translation compact in natural spaces [6]. More
precisely, we will assume that

h is translation compact in L2,w
loc (R; H), (8.25)

where L2,w
loc (R; H) is the space L2

loc(R; H)with the localweak convergence topology,
and

f is translation compact in C(R;C(RN , R
N )), (8.26)

where C(R;C(RN , R
N )) equipped with local uniform convergence topology.

It is known that condition (8.25) is equivalent to

|h|2+ := sup
t∈R

t+1∫
t

|h(s)|2ds < ∞ (8.27)

It is also known that condition (8.26) is equivalent to

∀ R > 0 f is bounded and uni f ormly continuous on
Q(R) = {(t, v) ∈ R × R

N | |v|RN ≤ R}. (8.28)

If conditions (8.25), (8.26) take place, then the symbol space

Σ = clC(R;C(RN ,RN ))×L2,w
loc (R;H){( f (· + s), h(· + s)) | s ∈ R} (8.29)

is compact, and ∀ s ≥ 0 T (s)Σ = Σ , where T (s) is translation semigroup, which
is continuous on Σ .

For every σ = ( fσ , hσ ) ∈ Σ we consider the problem

{
ut = aΔu − fσ (t, u) + hσ (t, x), x ∈ Ω, t > τ,

u|∂Ω = 0.
(8.30)

It is proved in [9] that ∀ σ ∈ Σ fσ satisfies (8.10), (8.11) with the same constantsC1,
C2, γi , |hσ |+ ≤ |h|+. So we can apply Theorem 2 and obtain that ∀ τ ∈ R, uτ ∈ H
the problem (8.30) has at least one solution on (τ,+∞), each solution of (8.30)
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belongs to C([τ,+∞); H) and satisfies energy equality (8.13). For every σ ∈ Σ ,
τ ∈ R we define

K τ
σ = {u(·) | u(·) is solution of (8.30) on (τ,+∞)} (8.31)

and according to (8.19) we put ∀ σ ∈ Σ , ∀ t ≥ τ , ∀ uτ ∈ H

Uσ (t, τ, uτ ) = {u(t)|u(·) ∈ K τ
σ , u(τ ) = uτ }. (8.32)

From [9] and Theorem 8.5 we obtain the following result. The following theorem
was proved in [11].

Theorem 8.6 Under conditions (8.10), (8.11), (8.25), (8.26) formula (8.32) defines
a strict family of MP {Uσ }σ∈Σ which has compact, invariant, stable and connected
uniform global attractor ΘΣ , which consists of bounded complete trajectories, that
is

ΘΣ =
⋃
σ∈Σ

Kσ (0), (8.33)

where Kσ is the set of all bounded complete trajectories of MP Uσ .

Now we want to use formula (8.33) for proving that the uniform global attractor
of RD-system is bounded set in the space (L∞(Ω))N ∩ V .

First let us consider the following conditions:

∃ Mi > 0, i = 1, N such that f or all v = (v1, ..., vN ) ∈ R
N f or a.a. x ∈ Ω ∀ t ∈ R

N∑
i=1

( f i (t, v) − hi (t, x))(vi − Mi )
+ ≥ 0 (8.34)

N∑
i=1

( f i (t, v) − hi (t, x))(vi + Mi )
− ≤ 0 (8.35)

where ϕ+ = max{0, ϕ}, ϕ− = max{0,−ϕ}, ϕ = ϕ+ − ϕ−.
Let us consider some example, which allow to verify conditions (8.34), (8.35).

Lemma 8.3 If N = 1 (scalar equation), then from (8.10), (8.11) and h ∈ L∞(R ×
Ω) we have (8.34), (8.35).

Proof From (8.10) and h ∈ L∞(Ω) for a.a. x ∈ Ω and u ∈ R,

γ̃ |u|p − C̃2 ≤ g(t, x, u)u ≤ C̃1|u|p + C̃1,

where g(t, x, u) = f (t, u) − h(t, x), γ̃ does not depend on t, u, x .
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If u ≤ M , then g(t, x, u)(u − M)+ = 0.
If u > M , then

g(t, x, u)(u − M)+ = g(t, x, u)u
(u − M)+

u
= g(t, x, u)u(1 − M

u
)

≥ (γ̃ u p − C̃2)(1 − M

u
) ≥ (γ̃ Mp − C̃2)(1 − M

u
)

and if we choose M =
(
C̃2
γ̃

) 1
p
, then g(t, x, u)(u − M)+ ≥ 0 a.e.

Lemma 8.4 If for arbitrary N ≥ 1 h ≡ 0, f (t, u) = ( f 1(t, u), ... f N (t, u)), where

f i (t, u) = (
N∑
i=1

|ui |2 − R2)ui , R > 0 is positive constant, then conditions (8.34),

(8.35) hold for Mi = R.

Proof If
N∑
i=1

|ui |2 < R2, so ∀ i = 1, N |ui | < R and

N∑
i=1

f i (t, u)(ui − R)+ = 0,

N∑
i=1

f i (t, u)(ui + R)− = 0.

If
N∑
i=1

|ui |2 ≥ R2, then

N∑
i=1

f i (t, u)(ui − R)+ =
(

N∑
i=1

|ui |2 − R2

)
N∑
i=1

ui (ui − R)+ ≥ 0,

N∑
i=1

f i (t, u)(ui + R)− =
(

N∑
i=1

|ui |2 − R2

)
N∑
i=1

ui (ui + R)− ≤ 0.

Theorem 8.7 If conditions (8.10), (8.11), (8.25), (8.26), (8.34), (8.35) hold and
matrix a is diagonal, then the uniform global attractor ΘΣ is bounded set in the
space (L∞(Ω))N ∩ V .

Proof First let us prove that ∀ σ ∈ Σ functions fσ , hσ satisfy (8.34), (8.35). Indeed,
there exists sequence tn ↗ ∞ such that ∀ T > 0, R > 0, η ∈ L2((−T, T ) × Ω)

sup
|t |≤T

sup
|v|≤R

N∑
i=1

| f i (t + tn, v) − f iσ (t, v)|2 → 0, n → ∞,
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N∑
i=1

T∫
−T

∫
Ω

(hi (t + tn, x) − hiσ (t, x))η(t, x)dxdt → 0, n → ∞.

From (8.34)
N∑
i=1

( f i (t + tn, v) − hi (t + tn, x))(v
i − Mi )

+ ≥ 0. (8.36)

Therefore for fixed v and for arbitrary ε > 0 there exists N ≥ 1 such that ∀ n ≥ N

N∑
i=1

hi (t + tn, x)(v
i − Mi )

+ ≤
N∑
i=1

f i (t + tn, v)(v
i − Mi )

+ <

N∑
i=1

f iσ (t, v)(vi − Mi )
+ + ε.

Because

N∑
i=1

hi (t+ tn, x)(v
i −Mi )

+ →
N∑
i=1

hiσ (t, x)(vi −Mi )
+ weakly in L2((−T, T )×Ω),

from Mazur Theorem we deduce that

N∑
i=1

hiσ (t, x)(vi − Mi )
+ ≤

N∑
i=1

f iσ (t, v)(vi − Mi )
+ + ε f or a.a. x ∈ Ω.

From arbitrary choice of ε we can obtain required result.
It is easy to obtain that for arbitrary weak solution of (8.8) and for every η ∈

C∞
0 (τ, T )

T∫
τ

(ut , u
+)ηdt = −1

2

T∫
τ

|u+|2ηt dt. (8.37)

Then putting gσ = fσ − hσ and for numbers M1, ..., MN from condition (8.34) we
have

1

2

d

dt

N∑
i=1

|(ui−Mi )
+|2+β

N∑
i=1

‖(ui−Mi )
+‖2+

∫
Ω

N∑
i=1

giσ (t, x, u)(ui−Mi )
+dx = 0.

Then from (8.34)

d

dt

N∑
i=1

|(ui − Mi )
+|2 + 2β

N∑
i=1

|(ui − Mi )
+|2 ≤ 0

and for all t > τ
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N∑
i=1

|(ui − Mi )
+(t)|2 ≤

N∑
i=1

|(ui − Mi )
+(τ )|2e−2λ1β(t−τ). (8.38)

If u(·) ∈ Kσ then from (8.38) taking τ → −∞ we obtain ui (x, t) ≤ Mi , i =
1, N , ∀t ∈ R, for a.a. x ∈ Ω.

In the same way we will have ui (x, t) ≥ Mi (using (ui + Mi )
−).

Then
ess sup

x∈Ω

|zi (x)| ≤ Mi ∀z = (z1, ..., zN ) ∈ ΘΣ.

So we obtain that ΘΣ is bounded set in the space (L∞(Ω))N . From the equality
ΘΣ = UΣ(t, τ,ΘΣ) ∀ t ≥ τ we deduce that ∀ σ ∈ Σ Uσ (t, τ,ΘΣ) ⊂ ΘΣ . Now
let us consider arbitrary complete trajectory u(·) ∈ Kσ . Due to definition of weak
solution for a.a. t ∈ R u(t) ∈ V . We take such τ ∈ R that u(τ ) ∈ V and consider
the following Cauchy problem

⎧⎨
⎩
vt = aΔv − fσ (t, u) + hσ (t, x), x ∈ Ω, t > τ,

v|∂Ω = 0,
v|t=τ = u(τ ).

(8.39)

Because ∀ t ≥ τ u(t) ∈ ΘΣ , which is bounded in (L∞(Ω))N , we have that
fσ (t, u(t, x)) ∈ (L∞(Ω))N . Thus for linear problem (8.39) fromwell-known results
one can deduce that ∀ T > τ v ∈ C([τ, T ]; V ). So from uniqueness of the solution
of Cauchy problem (8.39) v ≡ u on [τ,+∞) and, therefore, ∀ t ≥ τ u(t) ∈ V . It
means that ∀ t ∈ R u(t) ∈ V and from the formula (8.33) ΘΣ ⊂ V .

From the energy equality, applying to function u, and boundness of ΘΣ in the
space H we deduce, that ∃ C > 0, which does not depend on σ , such that ∀ t ∈ R

t+1∫
t

‖u(s)‖2ds ≤ C(1 +
t+1∫
t

|hσ (s)|2ds).

From translation compactness of h we have

t+1∫
t

‖u(s)‖2ds ≤ C(1 + |h|2+).

So for arbitrary t ∈ R we find τ ∈ [t, t + 1] such that ‖u(τ )‖2 ≤ C(1+ |h|2+). Then
for the problem (8.39) we obtain inequality

∀ t ≥ τ ‖v(t)‖2 ≤ e−δ(t−τ)‖u(τ )‖2 + D,
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where positive constants δ, D do not depend on σ . Thus

∀ t ∈ R ‖u(t)‖2 ≤ C(1 + |h|2+) + D

and theorem is proved.

8.3 Uniform Trajectory Attractors for Nonautonomous
Dissipative Dynamical Systems

For evolution triple (Vi ; H ; V ∗
i )

1 and multi-valued map Ai : R+ × V ⇒ V ∗, i =
1, 2, . . . , N , N = 1, 2, . . . we consider a problem of long-time behavior of all
globally defined weak solutions for nonautonomous evolution inclusion

y′(t) +
N∑
i=1

Ai (t, y(t)) � 0̄, (8.40)

as t → +∞. Let 〈·, ·〉Vi : Vi
∗ × Vi → R be the pairing in Vi

∗ × Vi , that coincides
on H × Vi with the inner product (·, ·) in the Hilbert space H .

Note that Problem (8.40) arises in many important models for distributed para-
meter control problems and that large class of identification problems enter this
formulation.

Throughout this subsection we suppose that the listed below assumptions hold:
Assumption I Let pi ≥ 2, qi > 1 are such that 1

pi
+ 1

qi
= 1, for each for

i = 1, 2, . . . , N , and the embedding Vi ⊂ H is compact one, for some for i =
1, 2, . . . , N .

Assumption II (Grows Condition) There exist a t.u.i. in L loc
1 (R+) function c1 :

R+ → R+ and a constant c2 > 0 such that

N
max
i=1

‖di‖qVi
∗ ≤ c1(t) + c2

N∑
i=1

‖u‖p
Vi

for any u ∈ Vi , di ∈ Ai (t, u), i = 1, 2, . . . , N , and a.e. t > 0.
Assumption III (Signed Assumption) There exist a constant α > 0 and a t.u.i. in

L loc
1 (R+) function β : R+ → R+ such that

N∑
i=1

〈di , u〉Vi ≥ α

N∑
i=1

‖u‖p
Vi

− β(t)

1i.e. Vi is a real reflexive separable Banach space continuously and densely embedded into a real
Hilbert space H , H is identified with its topologically conjugated space H∗, V ∗

i is a dual space to
Vi . So, there is a chain of continuous and dense embeddings: Vi ⊂ H ≡ H∗ ⊂ V ∗

i .
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for any u ∈ Vi , di ∈ Ai (t, u), i = 1, 2, . . . , N , and a.e. t > 0.
Assumption IV (Strong Measurability) If C ⊆ Vi

∗ is a closed set, then the set
{(t, u) ∈ (0,+∞) × Vi : Ai (t, u) ∩ C �= ∅} is a Borel subset in (0,+∞) × Vi .

Assumption V (Pointwise Pseudomonotonicity) Let for each i = 1, 2, . . . , N
and a.e. t > 0 two assumptions hold:

(a) for every u ∈ Vi the set Ai (t, u) is nonempty, convex, and weakly compact one
in Vi

∗;
(b) if a sequence {un}n≥1 converges weakly in Vi towards u ∈ Vi as n → +∞,

dn ∈ Ai (t, un) for any n ≥ 1, and lim sup
n→+∞

〈dn, un − u〉Vi ≤ 0, then for any

ω ∈ Vi there exists d(ω) ∈ Ai (t, u) such that

lim inf
n→+∞ 〈dn, un − ω〉Vi ≥ 〈d(ω), u − ω〉Vi .

Let 0 ≤ τ < T < +∞. As a weak solution of evolution inclusion (8.40) on the
interval [τ, T ] we consider an element u(·) of the space ∩N

i=1L pi (τ, T ; Vi ) such that
for some di (·) ∈ Lqi (τ, T ; Vi

∗), i = 1, 2, . . . , N , it is fulfilled:

−
T∫

τ

(ξ ′(t), y(t))dt +
N∑
i=1

T∫
τ

〈di (t), ξ(t)〉Vi dt = 0 ∀ξ ∈ C∞
0 ([τ, T ]; Vi ), (8.41)

and di (t) ∈ Ai (t, y(t)) for each i = 1, 2, . . . , N and a.e. t ∈ (τ, T ).
For fixed nonnegative τ and T , τ < T , let us consider

Xτ,T = ∩N
i=1L pi (τ, T ; Vi ), X∗

τ,T =
N∑
i=1

Lqi (τ, T ; Vi ∗), Wτ,T = {y ∈ Xτ,T | y′ ∈ X∗
τ,T },

Aτ,T : Xτ,T ⇒ X∗
τ,T , Aτ,T (y) = {d ∈ X∗

τ,T | d(t) ∈ A(t, y(t)) for a.e. t ∈ (τ, T )},

where y′ is a derivative of an element u ∈ Xτ,T in the sense of D([τ, T ];∑N
i=1 Vi

∗)
(see, for example, Sect. 6.1). Note that the spaceWτ,T is a reflexiveBanach spacewith
the graph norm of a derivative ‖u‖Wτ,T = ‖u‖Xτ,T +‖u′‖X∗

τ,T
, u ∈ Wτ,T . Let 〈·, ·〉Xτ,T :

X∗
τ,T × Xτ,T → R be the pairing in X∗

τ,T × Xτ,T , that coincides on L2(τ, T ; H) ×
Xτ,T with the inner product in L2(τ, T ; H), i.e. 〈u, v〉Xτ,T =

T∫
τ

(u(t), v(t))dt for any

u ∈ L2(τ, T ; H) and v ∈ Xτ,T . The embedding Wτ,T ⊂ C([τ, T ]; H) is continuous
and dense one. Moreover,

(u(T ), v(T )) − (u(τ ), v(τ )) =
T∫

τ

[
〈u′(t), v(t)〉Vi + 〈v′(t), u(t)〉Vi

]
dt, (8.42)

for any u, v ∈ Wτ,T .

http://dx.doi.org/10.1007/978-3-319-59840-6_6
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For fixed τ and T , such that 0 ≤ τ < T < +∞, we denote

Dτ,T (y(τ )) = {y(·) | y is a weak solution of (8.40) on [τ, T ], y(τ ) = y(τ )}, y(τ ) ∈ H.

We remark that Dτ,T (y(τ )) �= ∅ and Dτ,T (y(τ )) ⊂ Wτ,T , if 0 ≤ τ < T < +∞
and y(τ ) ∈ H . Moreover, the concatenation of Problem (8.40) weak solutions is
a weak solutions too, i.e. if 0 ≤ τ < t < T , y(τ ) ∈ H , y(·) ∈ Dτ,t (y(τ )), and
v(·) ∈ Dt,T (y(t)), then

z(s) =
{
y(s), s ∈ [τ, t],
v(s), s ∈ [t, T ],

belongs to Dτ,T (y(τ )); see Sect. 6.1.
Gronwall lemma provides that for any finite time interval [τ, T ] ⊂ R+ each weak

solution y of Problem (8.40) on [τ, T ] satisfies estimates

‖y(t)‖2H − 2
∫ t

0
β(ξ)dξ + 2α

N∑
i=1

∫ t

s
‖y(ξ)‖p

Vi
dξ ≤ ‖y(s)‖2H − 2

∫ s

0
β(ξ)dξ,

(8.43)

‖y(t)‖2H ≤ ‖y(s)‖2He−2αγ (t−s) + 2
∫ t

s
(β(ξ) + αγ )e−2αγ (t−ξ)dξ, (8.44)

where t, s ∈ [τ, T ], t ≥ s; γ is a constant that does not depend on y, s, and t ; cf.
Sect. 6.1. In the proof of (8.44) we used the inequality ‖u‖2H − 1 ≤ ‖u‖p

H for any
u ∈ H .

Therefore, anyweak solution y of Problem (8.40) on a finite time interval [τ, T ] ⊂
R+ can be extended to a global one, defined on [τ,+∞). For arbitrary τ ≥ 0 and
y(τ ) ∈ H let Dτ (y(τ )) be the set of all weak solutions (defined on [τ,+∞)) of
Problem (8.40) with initial data y(τ ) = y(τ ). Let us consider the family K +

τ =
∪y(τ )∈HDτ (y(τ )) of all weak solutions of Problem (8.40) defined on the semi-infinite
time interval [τ,+∞). Consider the Fréchet space C loc(R+; H). We remark that the
sequence { fn}n≥1 converges in C loc(R+; H) towards f ∈ C loc(R+; H) as n → +∞
iff the sequence {Πt1,t2 fn}n≥1 converges inC([t1, t2]; H) towardsΠt1,t2 f asn → +∞
for any finite interval [t1, t2] ⊂ R+, where Πt1,t2 is the restriction operator to the
interval [t1, t2]; Chepyzhov and Vishik [6, p. 918]. We denote T (h)y(·) = yh(·),
where yh(t) = y(t + h) for any y ∈ C loc(R+; H) and t, h ≥ 0.

In the autonomous case, when A(t, y) does not depend on t , the long-time behav-
ior of all globally defined weak solutions for Problem (8.40) is described by using
trajectory and global attractors theory. In this situation the setK + := K +

0 is trans-
lation invariant, i.e. T (h)K + ⊆ K + for any h ≥ 0. As trajectory attractor it is
considered a classical global attractor for translation semigroup {T (h)}h≥0, that acts
onK +.

In the nonautonomous case we notice that T (h)K +
0 � K +

0 . Therefore, we
need to consider united trajectory space that includes all globally defined on any
[τ,+∞) ⊆ R+ weak solutions of Problem (8.40) shifted to τ = 0:

http://dx.doi.org/10.1007/978-3-319-59840-6_6
http://dx.doi.org/10.1007/978-3-319-59840-6_6
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K + = clC loc(R+;H)

[⋃
τ≥0

{
y( · + τ) : y ∈ K +

τ

}]
,

where clC loc(R+;H)[ · ] is the closure in C loc(R+; H). Note that T (h){y( · + τ) : y ∈
K +

τ } ⊆ {y( · + τ + h) : y ∈ K +
τ+h} for any τ, h ≥ 0. Moreover,

T (h)K + ⊆ K + for any h ≥ 0,

because

ρC loc(R+;H)(T (h)u, T (h)v) ≤ ρC loc(R+;H)(u, v) for any u, v ∈ C loc(R+; H),

where ρC loc(R+;H) is a standard metric on Fréchet space C loc(R+; H).
A set P ⊂ C loc(R+; H) ∩ L∞(R+; H) is said to be a uniformly attracting

set (cf. Chepyzhov and Vishik [6, p. 921]) for the united trajectory space K + of
Problem (8.40) in the topology of C loc(R+; H), if for any bounded in L∞(R+; H)

setB ⊆ K + and any segment [t1, t2] ⊂ R+ the following relation holds:

distC([t1,t2];H)(Πt1,t2T (t)B,Πt1,t2P) → 0, t → +∞, (8.45)

where distC([t1,t2];H) is the Hausdorff semi-metric.
A set U ⊂ K + is said to be a uniform trajectory attractor (cf. Chepyzhov and

Vishik [6, p. 921]) of the translation semigroup {T (t)}t≥0 on K + in the induced
topology from C loc(R+; H), if

(i) U is a compact set in C loc(R+; H) and bounded in L∞(R+; H);
(ii) U is strictly invariant with respect to {T (h)}h≥0, i.e. T (h)U = U ∀h ≥ 0;
(iii) U is aminimal uniformly attracting set forK + in the topology ofC loc(R+; H),

i.e. U belongs to any compact uniformly attracting set P of K +: U ⊆ P .

Note that uniform trajectory attractor of the translation semigroup {T (t)}t≥0 on
K + in the induced topology fromC loc(R+; H) coincideswith the classical trajectory
attractor for the continuous semi-group {T (t)}t≥0 defined onK + (see, for example,
Chepyzhov and Vishik [6, Definition 1.1]).

Presented construction is coordinated with the theory of uniform trajectory attrac-
tors for nonautonomous problems of the form

∂t u(t) = Aσ(t)(u(t)), (8.46)

where σ(s), s ≥ 0, is a functional parameter called the time symbol of Eq. (8.46)
(t is replaced by s). In applications to mathematical physics equations, a function
σ(s) consists of all time-dependent terms of the equation under consideration: exter-
nal forces, parameters of mediums, interaction functions, control functions, etc. In
mentioned above papers and books it is assumed that the symbol σ of Eq. (8.46)
belongs to a Hausdorff topological space Ξ+ of functions defined on R+ with val-
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ues in some complete metric space. Usually, in applications, the topology in the
space Ξ+ is a local convergence topology on any segment [t1, t2] ⊂ R+. Further,
they consider the family of Eq. (8.46) with various symbols σ(s) belonging to a set
Σ ⊆ Ξ+. The set Σ is called the symbol space of the family of Eq. (8.46). It is
assumed that the set Σ , together with any symbol σ(s) ∈ Σ , contains all positive
translations of σ(s): σ(t + s) = T (t)σ (s) ∈ Σ for any t, s ≥ 0. The symbol space
Σ is invariant with respect to the translation semigroup {T (t)}t≥0: T (t)Σ ⊆ Σ

for any t ≥ 0. To prove the existence of uniform trajectory attractor they suppose
that the symbol space Σ with the topology induced from Ξ+ is a compact metric
space. Mostly in applications, as a symbol space Σ it is naturally to consider the
hull of translation-compact function σ0(s) in an appropriate Hausdorff topological
space Ξ+. The direct realization of this approach for Problem (8.40) is problematic
without any additional assumptions for parameters of Problem (8.40) and requires
the translation-compactness of the symbol σ(s) = A(s, ·) in some compact Haus-
dorff topological space of measurable multi-valued mappings acts from R+ to some
metric space of pseudomonotone operators from (Vi → 2Vi

∗
) satisfying grows and

signed assumptions. To avoid this technical difficulties we present the alternative
approach for the existence and construction of the uniform trajectory attractor for all
weak solutions for Problem (8.40). Note that Assumptions (I)–(V) are natural and
guaranty, in the general case, only existence of weak solution for Cauchy problem
on any finite time interval [τ, T ] ⊂ R+ and for any initial data form H .

The main result of this section has the following form.

Theorem 8.8 Let Assumptions (I)–(V) hold. Then there exists an uniform trajectory
attractor U ⊂ K + of the translation semigroup {T (t)}t≥0 on K + in the induced
topology from C loc(R+; H). Moreover, there exists a compact in C loc(R+; H) uni-
formly attracting set P ⊂ C loc(R+; H) ∩ L∞(R+; H) for the united trajectory
spaceK + of Problem (8.40) in the topology of C loc(R+; H) such thatU coincides
with ω-limit set of P:

U =
⋂
t≥0

clC loc(R+;H)

[⋃
h≥t

T (h)P

]
. (8.47)

Before the proof of Theorem 8.8 we provide some auxiliary constructions (see
Sect. 6.1).

Assumptions (II) and (III) yield that there exist a positive constant α′ > 0 and a
t.u.i. function c′ in L loc

1 (R+) such that A(t, u) ⊆ Ac′(t)(u) for each u ∈ ∩N
i=1Vi and

a.e. t > 0, where

Ac′(t)(u) :=
{

N∑
i=1

pi : pi ∈ Vi
∗,

N∑
i=1

〈pi , u〉Vi ≥ α′ N
max
i=1

{
‖u‖p

Vi
; ‖p‖qVi

∗
}

− c′(t)

}
.

LetH (c′) be the hull of t.u.i. function c′ in L loc
1,w(R+), i.e.H (c′) = clL loc

1 (R+){c′( · +
h) : h ≥ 0}. This is a weakly compact set in L loc

1 (R+).

http://dx.doi.org/10.1007/978-3-319-59840-6_6
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Let us consider the family of problems

y′ = Aσ (y), σ ∈ Σ := H (c′). (8.48)

To each σ ∈ Σ there corresponds a space of all globally defined on [0,+∞) weak
solutions K +

σ ⊂ C loc(R+; H) of Problem (8.48). We setK +
Σ = ∪σ∈ΣK +

σ .
We remark that (see Sect. 6.1) any element from K +

Σ satisfies prior estimates.

Lemma 8.5 There exist positive constants c3 and c4 such that for any σ ∈ Σ and
y ∈ K +

σ the inequalities hold:

‖y(t)‖2H −2

t∫
0

σ(ξ)dξ +2α′
N∑
i=1

t∫
s

‖y(ξ)‖p
Vi
dξ ≤ ‖y(s)‖2H −2

s∫
0

σ(ξ)dξ, (8.49)

‖y(t)‖2H ≤ ‖y(s)‖2He−c3(t−s) + c4

t∫
s

σ(ξ)e−c3(t−ξ)dξ, (8.50)

for any t ≥ s ≥ 0.

Moreover, the following result characterizing the compactness properties of solu-
tions for the family of Problems (8.48) holds:

Theorem 8.9 Let {yn}n≥1 ⊂ K +
Σ be an arbitrary sequence, that is bounded in

L∞(R+; H). Then there exist a subsequence {ynk }k≥1 ⊂ {yn}n≥1 and an element
y ∈ K +

Σ such that

max
t∈[τ,T ] ‖ynk (t) − y(t)‖H → 0, k → +∞, (8.51)

for any finite time interval [τ, T ] ⊂ (0,+∞).

Proof of Theorem 8.8 First, let us show that there exists a uniform trajectory
attractor U ⊂ K + of the translation semigroup {T (t)}t≥0 on K + in the induced
topology from C loc(R+; H). Lemma 8.5 and Theorem 8.9 yields that the translation
semigroup {T (t)}t≥0 has a compact absorbing (and, therefore, an uniformly attract-
ing) set in the space of trajectories K +

Σ . This set can be constructed as follows: 1)
considerP , the intersection ofK +

Σ with a ball in the space of bounded continuous
functions on R+ with values in H , Cb(R+; H), of sufficiently large radius; 2) shift
the resulting set by any fixed distance h > 0. Thus, we obtain T (h)P , a set with
the required properties. Recall that the semigroup {T (t)}t≥0 is continuous. There-
fore, the set P1 := P ∩ K + is a compact absorbing (and, therefore, an uniformly
attracting) in the spaceK + with the induced topology of C loc(R+; H). In fact, here
one can apply the classical theorem on the global attractor of a (unique) continuous
semigroup in a complete metric space, the semigroup in question having a compact
attracting.

http://dx.doi.org/10.1007/978-3-319-59840-6_6
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8.4 Notes on Applications

As applications we may consider FitzHugh–Nagumo system (signal transmission
across axons), complex Ginzburg–Landau equation (theory of superconductivity),
Lotka–Volterra systemwith diffusion (ecologymodels), Belousov–Zhabotinsky sys-
tem (chemical dynamics) and many other nonlinear systems (see Sects. 2.4 and 4.6).
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Chapter 9
Indirect Lyapunov Method for Autonomous
Dynamical Systems

Abstract In this chapter we establish indirect Lyapunov method for autonomous
dynamical systems. Section9.1 devoted to the first order autonomous differential-
operator equations and inclusions. In Sect. 9.2 we consider the second order
autonomous operator differential equations and inclusions. In Sect. 9.3 we exam-
ine examples of applications. In particular, a model of combustion in porous media;
a model of conduction of electrical impulses in nerve axons; viscoelastic problems
with nonlinear “reaction-displacement” law etc.

9.1 First Order Autonomous Differential-Operator
Equations and Inclusions

Let (M , g) be aC∞ compact connected oriented two-dimensional Riemannianman-
ifoldwithout boundary (as, e.g.M = S2 the unit sphere ofR3). Consider the Budyko
model:

∂u
∂t − Δu + Bu ∈ QS(x)β(u), (x, t) ∈ M × R, (9.1)

whereΔu = divM (∇Mu) ; ∇M is understood in the sense of theRiemannianmetric
g (see Sect. 2.4.3).

Let S : M → R be a function such that S ∈ L∞(M ) and there exist S0, S1 > 0
such that

0 < S0 ≤ S(x) ≤ S1.

Suppose also that β is a bounded maximal monotone graph of R2, that is there exist
m, M ∈ R such that for all s ∈ R and z ∈ β(s)

m ≤ z ≤ M.

Let us consider real Hilbert spaces

H := L2(M ), V := {u ∈ L2(M ) : ∇Mu ∈ L2(TM )}
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with respective standard norms ‖ · ‖H , ‖ · ‖V , and inner products ( · , · )H , ( · , · )V ,

where TM represents the tangent bundle and the functional spaces L2(M ) and
L2(TM ) are defined in a standard way. According to Theorem 2.2, for any −∞ <

τ < T < +∞ each weak solution uτ ∈ L2(Ω) of Problem (9.1) on [τ, T ] belongs to
C([τ + ε, T ]; H 1

0 (Ω)) ∩ L2(τ + ε, T ; H 2(Ω) ∩ H 1
0 ((0, π))) and du

dt (·) ∈ L2(τ +
ε, T ; L2(Ω)) for each ε ∈ (0, T − τ).

Consider the generalized setting of Problem (9.1):

du

dt
+ Au(t) + ∂ J1(u(t)) − ∂ J2(u(t)) 	 0̄ on (−∞ < τ < T < +∞), (9.2)

where A : V → V ′ be a linear symmetric operator such that ∃c > 0 : 〈Av, v〉V ≥
c‖v‖2V , for each v ∈ V and Ji : H → R be a convex, lower semi-continuous function
such, that the following assumptions hold: (i) (growth condition) there exists c1 > 0
such that ‖y‖H ≤ c1(1 + ‖u‖H ), for each u ∈ H and y ∈ ∂ Ji (u) and i = 1, 2; (ii)
(sign condition) there exist c2 > 0, λ ∈ (0, c) such that (y1 − y2, u)H ≥ −λ‖u‖2H −
c2, for each yi ∈ ∂ Ji (u), u ∈ H , where ∂ Ji (u) the subdifferential of Ji (·) at a point
u. Note that u∗ ∈ ∂ Ji (u) if and only if u∗(v − u) ≤ Ji (v) − Ji (u) ∀v ∈ H ; i = 1, 2.
Let D(A) = {u ∈ V : Au ∈ H}. We note that the mapping v → ‖Av‖H defines the
equivalent norm on D(A).

We recall that the function u(·) ∈ L2(τ, T ; V ) is called aweak solution of Problem
(9.2) on [τ, T ], if there exist Bochner measurable functions di : (τ, T ) → H ; i =
1, 2, such that

di (t) ∈ ∂ Ji (u(t)) for a.e. t ∈ (τ, T ), i = 1, 2; and (9.3)

∫ T

τ

[−〈u, v〉 ξ ′(t) + 〈Au, v〉 ξ(t) + 〈d1, v〉 ξ(t) − 〈d2, v〉 ξ(t)
]
dt = 0, (9.4)

for all ξ ∈ C∞
0 (τ, T ) and for all v ∈ V .

We note that for any uτ ∈ H there exists at least one weak solution of Problem
(9.2) on [τ, T ]with initial condition u(τ ) = uτ . The regularity of each weak solution
follows from Theorem 2.3.

Denote byK+ the family of all, globally defined on [0,+∞), weak solutions of
Problem (9.2). Let us set

E(u) = 1

2
〈Au, u〉 + J1(u) − J2(u), u ∈ V . (9.5)

For each u ∈ K+ and all τ and T , 0 < τ < T < ∞, the energy equality holds

E(u(T )) − E(u(τ )) = −
∫ T

τ

‖du
ds

(s)‖2Hds. (9.6)

http://dx.doi.org/10.1007/978-3-319-59840-6_2
http://dx.doi.org/10.1007/978-3-319-59840-6_2
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Fig. 9.1 Multi-valued semiflow

Thus, the function E(u(·)) is absolutely continuous on [τ, T ] as the linear combina-
tion of absolutely continuous on [τ, T ] functions.

Let

Dτ,T (uτ ) = {u(·) ∈ L2(τ, T ; V )
∣∣ u(·) is a weak solution of Problem (9.2) and u(τ ) = uτ },

for any uτ ∈ H .
Define real Banach space

W (M1, M2) = {u(·) ∈ C([M1, M2]; V ) : du

dt
(·) ∈ L2(M1, M2; H)}

with the norm ‖u‖W (M1,M2) = ‖u‖C([M1,M2];V ) + ‖ du
dt ‖L2(M1,M2;H), u ∈ W (M1, M2),

−∞ < M1 < M2 < +∞.
We denote the set of all nonempty (nonempty bounded) subsets of H by P(H)

(B(H)). Let us define the strict m-semiflow G : R+ × H → P(H) in the following
way:G(t, u0) = {u(t) : u(·) ∈ K+, u(0) = u0}.We recall that themulti-valuedmap
G : R+ × H → P(H) is said to be a strict multi-valued semiflow (strict m-semiflow)
if (see also Fig. 9.1):
(a) G(0, ·) = Id (the identity map);
(b) G(t + s, x) = G(t,G(s, x)) ∀x ∈ H, t, s ∈ R+.

We recall that the set A ⊆ H is said to be an invariant global attractor of G if:
(1) A is invariant (that is A = G(t,A ) ∀t ≥ 0);
(2) A is attracting set, that is,

distH (G(t, B),A ) → 0, t → +∞ ∀B ∈ B(H), (9.7)

where distH (C, D) = sup
c∈C

inf
d∈D ‖c − d‖H is the Hausdorff semidistance;

(3) for any closed set Y ⊆ H satisfying (9.7), we have A ⊆ Y (minimality).
Let {T (h)}h≥0 be the translation semigroup acting on K+, that is T (h)u(·) =

u(· + h), h ≥ 0, u(·) ∈ K+. On K+ we consider the topology induced from the
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Fréchet space Cloc(R+; H). Note that fn(·) → f (·) in Cloc(R+; H) if and only if
∀M > 0ΠM fn(·) → ΠM f (·) in C([0, M]; H), whereΠM is the restriction operator
to the interval [0, M].

A set U ⊂ K+ is said to be trajectory attractor in the trajectory space K+ with
respect to the topology of Cloc(R+; H), if U ⊂ K+ is a global attractor for the
translation semigroup {T (h)}h≥0 acting on K+.

The following theorem completely describes the long-time behavior of all weak
solutions, as time t → +∞, for the problem in hands. The structure properties of
global and trajectory attractors and the strongest convergence results of solutions are
provided.

Theorem 9.1 The following statements hold:

(i) the strict m-semiflow G : R+ × H → P(H) has the invariant global attrac-
tor A ;

(ii) there exists the trajectory attractor U ⊂ K+ in the space K+;
(iii) the following equalities hold: U = Π+K = {y ∈ K+ | y(t) ∈ A ∀t ∈

R+};
(iv) A is a compact subset of V ;
(v) for each B ∈ B(H) distV (G(t, B),A ) → 0, as t → ∞;
(vi) U is a bounded subset of L∞(R+; V ) and compact subset of W loc(R+), that

is ΠMU is compact in W (0, M) for each M > 0;
(vii) for any bounded in L∞(R+; H) set B ⊂ K+ and any M ≥ 0 the following

relation holds: distW (0,M)(ΠMT (t)B,ΠMU ) → 0, t → +∞;
(viii) K is a bounded subset of L∞(R; V ) and compact subset of W loc(R),

that is ΠM1,M2U is compact in W (M1, M2) for each M1, M2, −∞ < M1 <

M2 < +∞;
(ix) for each u ∈ K the limit sets

α(u) = {z ∈ V | u(t j ) → z in V for some sequence t j → −∞},

ω(u) = {z ∈ V | u(t j ) → z in V for some sequence t j → +∞}

are connected subsets of Z on which E is constant. If Z is totally disconnected
(in particular, if Z is countable) the limits in V

z− = lim
t→−∞ u(t), z+ = lim

t→+∞ u(t) (9.8)

exist and z−, z+ are rest points; furthermore, u(t) tends in V to a rest point as
t → +∞ for every u ∈ K+.

Proof Statements (i)–(v) of Theorem 9.1 follow from Kasyanov et al. [2, Theorems
4–6]. Statements (vi)–(viii) of Theorem 9.1 follow from Theorem 5.5 and Kasyanov
et al. [2, Theorem 6]. Statement (ix) of Theorem 9.1 follows from Theorem 5.4 and
Ball [1, Theorem 2.7].

http://dx.doi.org/10.1007/978-3-319-59840-6_5
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9.2 Second Order Autonomous Operator Differential
Equations and Inclusions

Let β > 0 be a constant, Ω ⊂ R
n be a bounded domain with sufficiently smooth

boundary ∂Ω . Consider the problem

{
utt + βut − �u + f (u) = 0,
u|∂Ω = 0,

(9.9)

where u(x, t) is unknown state function defined on Ω × R+; f : R → R is an inter-
action function such that

lim|u|→∞
f (u)

u
> −λ1, (9.10)

where λ1 is the first eigenvalue for −� in H 1
0 (Ω);

∃ D ≥ 0 : | f (u)| ≤ D(1 + |u|), ∀u ∈ R. (9.11)

Further, we use such denotation

f (s) := lim sup
t→s

f (t), f (s) := lim
t→s

f (t), G(s) := [ f (s), f (s)], s ∈ R.

Let us set V = H 1
0 (Ω) and H = L2(Ω). The space X = V × H is a phase space of

Problem (9.9). For the Hilbert space X as (·, ·)X and ‖ · ‖X denote the inner product
and the norm in X respectively.

Definition 9.1 LetT > 0, τ < T . The functionϕ(·) = (u(·), ut (·))T ∈ L∞(τ, T ; X)

is called a weak solution of Problem (9.9) on (τ, T ) if for a.e. (x, t) ∈ Ω × (τ, T ),
there exists l = l(x, t) ∈ L2(τ, T ; L2(Ω)) l(x, t) ∈ G(u(x, t)), such that ∀ψ ∈
H 1

0 (Ω), ∀η ∈ C∞
0 (τ, T ),

−
T∫

τ

(ut , ψ)Hηt dt +
T∫

τ

(β(ut , ψ)H + (u, ψ)V + (l, ψ)H )ηdt = 0. (9.12)

The main goal of the manuscript is to obtain the existence of the global attractor
generated by the weak solutions of Problem (9.9) in the phase space X .

Thus we consider more general evolution inclusion

{
utt + βut − �u + [ f1(u), f1(u)] − [ f2(u), f2(u)] 	 0,
u|∂Ω = 0.

(9.13)
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Let us set

Gi (s) :=
s∫

0

fi (ξ)dξ, Ji (u) :=
∫

Ω

Gi (u(x))dx, J (u) = J1(u) − J2(u), u ∈ H, i = 1, 2.

The functionals Gi and Ji are locally Lipschitz and regular. Consider WT
τ =

C([τ, T ]; X). For any ϕτ = (a, b)T ∈ X , denote

Dτ,T (ϕτ ) =
{
(u(·), ut (·))T

∣∣∣∣ (u, ut )T is a weak solution of Problem (9.9) on [τ, T ],
u(τ ) = a, ut (τ ) = b

}
;

see Sect. 7.2.
Define the m-semiflow G as

G (t, ξ0) = {ξ(t) | ξ(·) ∈ D(ξ0)}, t ≥ 0.

Denote the set of all nonempty (nonempty bounded) subsets of X by P(X)(β(X)).
Note that the multi-valued map G : R+ × X → P(X) is a strict m-semiflow,
i.e., (see Lemma 6.9)
1. G (t, ·) = Id (the identity map);
2. G (t + s, x) = G (t,G (s, x)) ∀x ∈ X, t, s ∈ R+.
Further, ϕ ∈ G means that ϕ ∈ D(ξ0) for some ξ0 ∈ X .

Definition 9.2 G is calledanasymptotically compactm-semiflow if for any sequence
{ϕn}n≥1 ⊂ G with {ϕn(0)}n≥1 bounded, and for any sequence {tn}n≥1: tn → +∞,

n → ∞, the sequence {ϕn(tn)}n≥1 has a convergent subsequence Ball [1, p. 35].

Theorem 9.2 G is an asymptotically compact m-semiflow.

Proof Let ξn ∈ G (tn, vn), vn ∈ B, B ∈ β(X), n ≥ 1, tn → +∞, n → +∞. Let us
check a precompactness of {ξn}n≥1 in X . Without loss of the generality, we extract a
convergent in X subsequence from {ξn}n≥1. From Corollary 6.1 we obtain that there
exists {ξnk }k≥1 and ξ ∈ X such that ξnk → ξ weakly in X , ‖ξnk‖X → a ≥ ‖ξ‖X ,
k → +∞. Show that a ≤ ‖ξ‖X .

Let us fix an arbitrary T0 > 0. Then for rather big k ≥ 1, G (tnk , vnk ) ⊂ G (T0,
G (tnk − T0, vnk )). Hence ξnk ∈ G (T0, βnk ), where βnk ∈ G (tnk − T0, vnk ) and
sup
k≥1

‖βnk‖X < +∞ (see Corollary 6.1). From Theorem 6.3 for some {ξk j , βk j } j≥1 ⊂
{ξnk , βnk }k≥1, βT0 ∈ X , we obtain

ξ ∈ G (T0, βT0), βk j → βT0 weakly in X, j → +∞. (9.14)

From the definition of G we set ∀ j ≥ 1, ξk j = (u j (T0), u′
j (T0))

T , βk j = (u j (0),
u′
j (0))

T , ξ = (u0(T0), u′
0(T0))

T , βT0 = (u0(0), u′
0(0))

T , where ϕ j = (u j , u′
j )

T ∈
C([0, T0]; X), u′′

j ∈ L2(0, T0; V ∗), d j ∈ L∞(0, T0; H),

http://dx.doi.org/10.1007/978-3-319-59840-6_7
http://dx.doi.org/10.1007/978-3-319-59840-6_6
http://dx.doi.org/10.1007/978-3-319-59840-6_6
http://dx.doi.org/10.1007/978-3-319-59840-6_6
http://dx.doi.org/10.1007/978-3-319-59840-6_6
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u′′
j (t) + βu′

j (t) − �u j (t) + d j,1(t) − d j,2(t) = 0̄,

d j,i (t) ∈ ∂ Ji (u j (t)), i = 1, 2 for a.e. t ∈ (0, T0).

Let for every t ∈ [0, T0],

I (ϕ j (t)) := 1

2
‖ϕ j (t)‖2X + J1(u j (t)) − J2(u j (t)) + β

2
(u′

j (t), u j (t))H .

Then in virtue of Lemma 6.7

d I (ϕ j (t))

dt
= −β I (ϕ j (t)) + βH (ϕ j (t)), for a.e. t ∈ (0, T0),

where

H (ϕ j (t)) = J1(u j (t)) − 1

2
(d j,1(t), u j (t)) − J2(u j (t)) + 1

2
(d j,2(t), u j (t))H .

From (9.14) we have ∃R̄ > 0 : ∀ j ≥ 0, ∀t ∈ [0, T0],

‖u′
j (t)‖2H + ‖u j (t)‖2V ≤ R̄2.

Moreover,

u j → u0 weakly in L2(0, T0; V ), j → +∞,

u′
j → u′

0 weakly in L2(0, T0; H), j → +∞,

u j → u0 in L2(0, T0; H), j → +∞,

d j,i → di weakly in L2(0, T0; H), i = 1, 2, j → +∞,

u′′
j → u′′

0 weakly in L2(0, T0; V ∗), j → +∞,

∀t ∈ [0, T0] u j (t) → u0(t) in H, j → +∞.

(9.15)

For every j ≥ 0 and t ∈ [0, T0],

I (ϕ j (t)) = I (ϕ j (0))e
−βt +

t∫

0

H (ϕ j (s))e
−β(t−s)ds.

In particular I (ϕ j (T0)) = I (ϕ j (0))e−βT0 +
T0∫
0
H (ϕ j (s))e−β(T0−s)ds.

From (9.15) and Lemma 6.7 we have

T0∫

0

H (ϕ j (s))e
−β(T0−s)ds →

T0∫

0

H (ϕ0(s))e
−β(T0−s)ds, j → +∞.

http://dx.doi.org/10.1007/978-3-319-59840-6_6
http://dx.doi.org/10.1007/978-3-319-59840-6_6
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Therefore

lim sup
j→+∞

I (ϕ j (T0)) ≤ lim sup
j→+∞

I (ϕ j (0))e−βT0 +
T0∫
0
H (ϕ0(s))e−β(T0−s)ds =

= I (ϕ0(T0)) +
[
lim sup
j→+∞

I (ϕ j (0)) − I (ϕ0(0))

]
e−βT0 ≤ I (ϕ0(T0)) + c3e−βT0 ,

where c3 does not depend on T0 > 0.
On the other hand, from (9.15) we have

lim sup
j→+∞

I (ϕ j (T0)) ≥ 1

2
lim

j→+∞ ‖ϕ j (T0)‖2X + J (u0(T0)) + β

2
(u′

0(T0), u0(T0)).

Therefore we obtain 1
2a

2 ≤ 1
2‖ξ‖2X + c3e−βT0 ∀T0 > 0.

Thus, a ≤ ‖ξ‖X .

The Theorem is proved.

Let us consider the family K+ = ∪u0∈XD(u0) of all weak solutions of Problem
(9.9) defined on [0,+∞). Note thatK+ is translation invariant one, i.e.,∀u(·) ∈ K+,
∀h ≥ 0, uh(·) ∈ K+, where uh(s) = u(h + s), s ≥ 0. OnK+ we set the translation
semigroup {T (h)}h≥0, T (h)u(·) = uh(·), h ≥ 0, u ∈ K+. In view of the translation
invariance of K+ we conclude that T (h)K+ ⊂ K+ as h ≥ 0.

On K+ we consider a topology induced from the Fréchet space Cloc(R+; X).
Note that

fn(·) → f (·) in Cloc(R+; X) ⇐⇒ ∀M > 0, ΠM fn(·) → ΠM f (·) in C([0, M]; X),

where ΠM is the restriction operator to the interval [0, M]. We denote the restriction
operator to [0,+∞) by Π+.

Let us consider Problem (9.9) on the entire time axis. Similarly to the space
Cloc(R+; X) the space Cloc(R; X) is endowed with the topology of a local uni-
form convergence on each interval [−M, M] ⊂ R. A function u ∈ Cloc(R; X) ∩
L∞(R; X) is said to be a complete trajectory of Problem (9.9) if ∀h ∈ R,Π+uh(·) ∈
K+.

LetK be a family of all complete trajectories of Problem (9.9). Note that ∀h ∈ R,
∀u(·) ∈ K uh(·) ∈ K . We say that the complete trajectory ϕ ∈ K is stationary if
ϕ(t) = z for all t ∈ R for some z ∈ X. Following Ball [1, p. 486] we denote by Z(G )

the set of all rest points of G . Note that

Z(G ) = {(0̄, u) | u ∈ V, −�(u) + ∂ J (u) 	 0̄}.

Lemma 9.1 Z(G ) is an bounded set in X.

The existence of a Lyapunov function for G follows from Lemma 6.10 (see Ball
[1, p. 486]).

http://dx.doi.org/10.1007/978-3-319-59840-6_6
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Lemma 9.2 A functional V : X → R defined by (6.44) is a Lyapunov function
for G .

We recall that the set A is said to be a global attractor G if
(1) A is negatively semiinvariant (i.e., A ⊂ G (t,A ) ∀t ≥ 0);
(2) A is attracting set, i.e.,

dist(G (t, B),A ) → 0, t → +∞, ∀B ∈ β(X), (9.16)

where dist(C, D) = sup
c∈C

inf
d∈D ‖c − d‖X is the Hausdorff semidistance;

(3) for any closed set Y ⊂ H satisfying (9.16), we have A ⊂ Y (minimality).
The global attractor is said to be invariant if A = G (t,A ), ∀t ≥ 0.
Note that by definition a global attractor is unique.
We prove the existence of an invariant compact global attractor.

Theorem 9.3 The m-semiflow G has an invariant compact in the phase space X
global attractor A . For each ψ ∈ K the limit sets

α(ψ) = {z ∈ X| ψ(t j ) → z for some sequence t j → −∞},

ω(ψ) = {z ∈ X| ψ(t j ) → z for some sequence t j → +∞}

are connected subsets of Z(G ) onwhichV is constant. If Z(G ) is totally disconnected
(in particular if Z(G ) is countable) the limits

z− = lim
t→−∞ ψ(t), z+ = lim

t→+∞ ψ(t)

exist and z−, z+ are rest points; furthermore, ϕ(t) tends to a rest point as t → +∞
for every solution ϕ ∈ K+.

Proof The existence of a global attractor for Second Order Evolution Inclusions
directly follows from Lemmas 6.8, 6.9, 9.1 and 9.2, Theorems 6.3, 6.4, 9.2 and Ball
[1, Theorem 2.7].

9.3 Examples of Applications

In this section we provide examples of applications to theorems established in pre-
vious sections. We consider a model of combustion in porous media, a model of
conduction of electrical impulses in nerve axons, a climate energy balance model
etc. (see also [4–21, 23–46, 49–96]).

http://dx.doi.org/10.1007/978-3-319-59840-6_6
http://dx.doi.org/10.1007/978-3-319-59840-6_6
http://dx.doi.org/10.1007/978-3-319-59840-6_6
http://dx.doi.org/10.1007/978-3-319-59840-6_6
http://dx.doi.org/10.1007/978-3-319-59840-6_6
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Fig. 9.2 Approximations for trajectories to model of combustion in porous media in a moment
a t = 0; b t = 0.8; c t = 1.6; d t = 2.4; e t = 3.2; f t = 4

9.3.1 A Model of Combustion in Porous Media

Let us consider the following problem:

{
∂u
∂t − ∂2u

∂x2 − f (u) ∈ λH(u − 1), (x, t) ∈ (0, π) × R,

u(0, t) = u(π, t) = 0, t ∈ R,
(9.17)

where f : R → R is a continuous and nondecreasing function satisfying growth
and sign assumptions, λ > 0, and H(0) = [0, 1], H(s) = I{s > 0}, s �= 0. For each
uτ ∈ L2((0, π)) we set Dτ,T (uτ ) = {u(·) ∈ L2(τ, T ; H 1

0 ((0, π)))
∣∣ u(·) is a weak

solution of Problem (9.17) and u(τ ) = uτ }. Since Problem (9.17) is a particular case
of Problem (9.2), then all statements from Sect. 10.1 hold; Fig. 9.2.

9.3.2 A Model of Conduction of Electrical Impulses in Nerve
Axons

Consider the problem:

{
∂u
∂t − ∂2u

∂x2 + u ∈ λH(u − a), (x, t) ∈ (0, π) × R,

u(0, t) = u(π, t) = 0, t ∈ R,
(9.18)

where a ∈ (
0, 1

2

)
; Terman [47, 48]. Since Problem (9.18) is a particular case of

Problem (9.2), then all statements from Sect. 9.1 hold; Fig. 9.3.
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Fig. 9.3 Modeling of
solutions for a model of
conduction of electrical
impulses in nerve axons

9.3.3 Viscoelastic Problems with Nonlinear
“Reaction-Displacement” Law

Let a viscoelastic body occupy a bounded domainΩ ⊂ R
d , d = 2, 3 in applications,

and it is acted upon by volume forces and surface tractions.1 The boundary Γ ofΩ is
supposed to be Lipschitz continuous and it is partitioned into two disjoint measurable
parts ΓD and ΓN such that meas(ΓD) > 0. We consider the process of evolution of
the mechanical state on the interval (0,+∞). The body is clamped on ΓD and
thus the displacement vanishes there. The forces field of density f0 act in Ω, the
surface tractions of density g0 are applied on ΓN . We denote by u = (u1, . . . , ud)
the displacement vector, by σ = (σi j ) the stress tensor and by ε(u) = (εi j (u)) the
linearized (small) strain tensor (εi j (u) = 1

2 (∂ j ui + ∂i u j )), where i, j = 1, . . . , d.

The mechanical problem consists in finding the displacement field u : Ω ×
(0,+∞) → R

d such that

u′′(t) − divσ(t) = f0 in Ω × (0,+∞), (9.19)

σ(t) = C ε(u′(t)) + E ε(u(t)) in Ω × (0,+∞), (9.20)

u(t) = 0 on ΓD × (0,+∞), (9.21)

σn(t) = g0 on ΓN × (0,+∞), (9.22)

u(0) = u0, u′(0) = u1 in Ω, (9.23)

where C and E are given linear constitutive functions, n being the outward unit
normal vector to Γ.

1This section is based on results of [22] and references therein.
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Fig. 9.4 Foundation, body,
and main forces

In the above model the dynamic equation (9.19) is considered with the viscoelas-
tic constitutive relationship of the Kelvin-Voigt type (9.20) while (9.21) and (9.22)
represent the displacement and traction boundary conditions (Fig. 9.4), respectively.
The functions u0 and u1 are the initial displacement and the initial velocity, respec-
tively. In order to formulate the skin effects, we suppose that the body forces of
density f0 consists of two parts: f1 which is prescribed external loading and f2
which is the reaction of constrains introducing the skin effects, i.e. f0 = f1 + f2.
Here f2 is a possibly multi-valued function of the displacement u. We consider the
reaction-displacement law of the form

− f2(x, t) ∈ ∂ j (x, u(x, t)) in Ω × (0,+∞), (9.24)

where j : Ω × R
d → R is locally Lipschitz function in u and ∂ j represents the

Clarke subdifferential with respect to u. Let Yd be the space of second-order sym-
metric tensors on Rd .

We consider the following problem:
examine the long-time (as t → +∞) behavior of all (weak, generalized) solutions

for (9.19)–(9.23) and (9.24).
In [22] for finite time interval it was presented the hemivariational formulation of

problems similar to (9.19)–(9.24) and an existence theorem for evolution inclusions
with pseudomonotone operators. We give now variational formulation of the above
problem. To this aim let H = L2(Ω,Rd), H1 = H 1(Ω,Rd), H = L2(Ω,Yd) and
V be the closed subspace of H1 defined by

V = {v ∈ H1 : v = 0 on ΓD}.

On V we consider the inner product and the corresponding norm given by

(u, v)V = 〈ε(u), ε(v)〉H , ‖v‖V = ‖ε(v)‖H for u, v ∈ V .

From the Korn inequality ‖v‖H1 ≤ C1‖ε(v)‖H for v ∈ V with C1 > 0, it follows
that ‖ · ‖H1 and ‖ · ‖V are the equivalent norms on V . Identifying H with its dual,
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we have an evolution triple V ⊂ H ⊂ V ∗ (see e.g. [3]) with dense and compact
embeddings. We denote by 〈·, ·〉V the duality of V and its dual V ∗, by ‖ · ‖V ∗ the
norm in V ∗. We have 〈u, v〉V = (u, v)H for all u ∈ H and v ∈ V .

We admit the following hypotheses:
H(C ). The linear symmetric viscosity operator C : Ω × Yd → Yd satisfies the

Carathéodory condition (i.e. C (·, ε) is measurable on Ω for all ε ∈ Yd and C (x, ·)
is continuous on Yd for a.e. x ∈ Ω) and

C (x, ε) : ε ≥ C2‖ε‖2Yd
for all ε ∈ Yd and a.e. x ∈ Ω with C2 > 0. (9.25)

H(E ). The elasticity operator E : Ω × Yd → Yd is of the form E (x, ε) = E(x)ε
(Hooke’s law) with a symmetric elasticity tensor E ∈ L∞(Ω), i.e. E = (gi jkl),
i, j, k, l = 1, . . . , d with gi jkl = g jikl = glki j ∈ L∞(Ω). Moreover,

E (x, ε) : ε ≥ C3‖ε‖2Yd
for all ε ∈ Yd and a.e. x ∈ Ω with C3 > 0.

H(j). j : Ω × R
d → R is a function such that

(i) j (·, ξ) is measurable for all ξ ∈ R
d and j (·, 0) ∈ L1(Ω);

(i i) j (x, ·) is locally Lipschitz and regular [8] for all x ∈ Ω;
(i i i) ‖η‖ ≤ C4(1 + ‖ξ‖) for all η ∈ ∂ j (x, ξ), x ∈ Ω with C4 > 0;
(iv) j0(x, ξ ;−ξ) ≤ C5(1 + ‖ξ‖) for all ξ ∈ R

d , x ∈ Ω, with C5 ≥ 0, where
j0(x, ξ ; η) is the directional derivative of j (x, ·) at the point ξ ∈ R

d in the direction
η ∈ R

d .
H(f). f1 ∈ V ∗, g0 ∈ L2(ΓN ;Rd), u0 ∈ V and u1 ∈ H.

Next we need the spaces V = L2(τ, T ; V ), Ĥ = L2(τ, T ; H) and W = {w ∈
V : w′ ∈ V ∗}, where the time derivative involved in the definition of W is under-
stood in the sense of vector-valued distributions, −∞ < τ < T < +∞. Endowed
with the norm ‖v‖W = ‖v‖V + ‖v′‖V ∗ , the spaceW becomes a separable reflexive
Banach space. We also haveW ⊂ V ⊂ Ĥ ⊂ V ∗. The duality for the pair (V ,V ∗)

is denoted by 〈z,w〉V =
T∫
τ

〈z(s),w(s)〉V ds. It is well known (cf. [13]) that the embed-

ding W ⊂ C([τ, T ]; H) and {w ∈ V : w′ ∈ W } ⊂ C([τ, T ]; V ) are continuous.
Next we define g ∈ V ∗ by

〈g, v〉V = 〈 f1, v〉V + 〈g0, v〉L2(ΓN ;Rd ) for v ∈ V . (9.26)

Taking into account the condition (9.24), we obtain the following variational formu-
lation of our problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈u′′(t), v〉V + (σ (t), ε(v))H + ∫
Ω

j0(x, u(t); v)dx ≥
≥ 〈g, v〉V for all v ∈ V and a.e. t ∈ (0,+∞),

σ (t) = C (ε(u′(t))) + E (ε(u(t))) for a.e. t ∈ (0,+∞),

u(0) = u0, u′(0) = u1.

(9.27)
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We define the operators A : V → V ∗ and B : V → V ∗ by

〈A(u), v〉V = (C (x, ε(u)), ε(v))H for u, v ∈ V, (9.28)

〈Bu, v〉V = (E (x, ε(u)), ε(v))H for u, v ∈ V . (9.29)

Obviously the bilinear forms (9.28) and (9.29) are symmetric, continuous and
coercive.

Let us introduce the functional J : L2(Ω;Rd) → R defined by

J (v) =
∫

Ω

j (x, v(x))dx for v ∈ L2(Ω;Rd). (9.30)

From Sect. 7.3, under AssumptionsH(j), the functional J defined by (9.30) satisfies
H(J). J : L2(Ω;Rd) → R is a functional such that:
(i) J (·) is well defined, locally Lipschitz (in fact, Lipschitz on bounded subsets

of L2(Ω;Rd)) and admits the representation via the difference of convex functions;
(i i) ζ ∈ ∂ J (v) implies ‖ζ‖L2(Ω;Rd ) ≤ C6(1 + ‖v‖L2(Ω;Rd )) for v ∈ L2(Ω;Rd)

with C6 > 0;
(i i i) J 0(v;−v) ≤ C7(1 + ‖v‖L2(Ω;Rd )) for v ∈ L2(Ω;Rd) with C7 ≥ 0, where

J 0(u; v) denotes the directional derivative of J (·) at a point u ∈ L2(Ω;Rd) in the
direction v ∈ L2(Ω;Rd).

We can now formulate the second-order evolution inclusions associated with the
variational form of our problem

⎧⎪⎪⎨
⎪⎪⎩

Find u ∈ C([0,+∞); V ) with u′ ∈ C([0,+∞); H) ∩ Lloc
2 (0,+∞; V )

and u′′ ∈ Lloc
2 (0,+∞; V ∗) such that

u′′(t) + Au′(t) + Bu(t) + ∂ J (u(t)) 	 g a.e. t ∈ (0,+∞),

u(0) = u0, u′(0) = u1.

(9.31)

Theorem 6.6 yields that, if τ < T, {ϕn(·)}n≥1 ⊂ WT
τ is an arbitrary sequence of weak

solutions of (9.31) on [τ, T ] such that ϕn(τ ) → ϕτ strongly in E, n → +∞, then
there existϕ ∈ Dτ,T (ϕτ ) such that up to a subsequenceϕn(·) → ϕ(·) inC([τ, T ]; E),
n → +∞ (see Sect. 7.3 for details).

Wedefine them-semiflowG asG (t, ξ0) = {ξ(t) | ξ(·) ∈ D(ξ0)}, t ≥ 0.Denote the
set of all nonempty (nonempty bounded) subsets of E by P(E) (β(E)). We remark
that the multi-valued map G : R+ × E → P(E) is strict m-semiflow, i.e. G (0, ·) =
Id (the identitymap),G (t + s, x) = G (t,G (s, x))∀x ∈ E, t, s ∈ R+. Furtherϕ ∈ G
will mean that ϕ ∈ D(ξ0) for some ξ0 ∈ E .

Definition 9.3 ([1, p. 35]) The m-semiflow G is called asymptotically compact, if
for any sequence ϕ j ∈ G with ϕ j (0) bounded, and for any sequence t j → +∞, the
sequence ϕ j (t j ) has a convergent subsequence.

http://dx.doi.org/10.1007/978-3-319-59840-6_7
http://dx.doi.org/10.1007/978-3-319-59840-6_6
http://dx.doi.org/10.1007/978-3-319-59840-6_7


9.3 Examples of Applications 225

Theorem 9.4 The m-semiflow G is asymptotically compact.

Proof Let ξn ∈ G (tn, vn), vn ∈ B ∈ β(E), n ≥ 1, tn → +∞, n → +∞. Let us
check the precompactness of {ξn}n≥1 in E . In order to do that without loss of the
generality it is sufficiently to extract a convergent in E subsequence from {ξn}n≥1.
From Corollary 6.2 we obtain that there exist {ξnk }k≥1 and ξ ∈ E such that ξnk → ξ

weakly in E , ‖ξnk‖E → a ≥ ‖ξ‖E , k → +∞. We show that a ≤ ‖ξ‖E . Let us fix
an arbitrary T0 > 0. Then for rather big k ≥ 1 G (tnk , vnk ) = G (T0,G (tnk − T0, vnk )).
Hence ξnk ∈ G (T0, βnk ), where βnk ∈ G (tnk − T0, vnk ) and

δ := sup
k≥1

‖βnk‖E < +∞

(see Corollary 6.2). From Theorem 6.5 for some {ξk j , βk j } j≥1 ⊂ {ξnk , βnk }k≥1, βT0 ∈
E we obtain:

ξ ∈ G (T0, βT0), βk j → βT0 weakly in E, j → +∞. (9.32)

From the definition of G we set: ∀ j ≥ 1 ξk j = (y j (T0), y′
j (T0))

T , βk j = (y j (0),
y′
j (0))

T , ξ = (y0(T0), y′
0(T0))

T , βT0 = (y0(0), y′
0(0))

T , where ϕ j = (y j , y′
j )

T ∈ C
([0, T0]; E), y′

j ∈ L2(0, T0; V ), y′′
j ∈ L2(0, T0; V ∗), d j ∈ L∞(0, T0; H),

y′′
j (t) + Ay′

j (t) + By j (t) + d j (t) = 0̄, d j (t) ∈ ∂ J (y j (t)) for a.e. t ∈ (0, T0), ∀ j ≥ 0.

Now we fix an arbitrary ε > 0. Let for each t ∈ [0, T0], j ≥ 0

Iε(ϕ j (t)) := 1

2
‖ϕ j (t)‖2E + J (y j (t)) + ε(y′

j (t), y j (t))H .

Then,

d Iε(ϕ j (t))

dt
= −2ε Iε(ϕ j (t)) + 2εHε(ϕ j (t)) − ε〈Ay′

j (t), y j (t)〉V − 〈Ay′
j (t), y

′
j (t)〉V ,

for a.e. t ∈ (0, T0), where

Hε(ϕ j (t)) = J (y j (t)) − 1

2
(d j (t), y j (t))H + ‖y′

j (t)‖2H + ε(y′
j (t), y j (t))H , for a.e. t ∈ (0, T0).

Thus, for any j ≥ 0 and t ∈ [0, T0]

Iε(ϕ j (T0)) = Iε(ϕ j (0))e
−2εT0 + 2ε

T0∫

0

Hε(ϕ j (t))e
−2ε(T0−t)dt−

http://dx.doi.org/10.1007/978-3-319-59840-6_6
http://dx.doi.org/10.1007/978-3-319-59840-6_6
http://dx.doi.org/10.1007/978-3-319-59840-6_6


226 9 Indirect Lyapunov Method for Autonomous Dynamical Systems

−ε

T0∫

0

〈Ayj (t), y′
j (t)〉V e−2ε(T0−t)dt −

T0∫

0

〈Ay′
j (t), y

′
j (t)〉V e−2ε(T0−t)dt.

From (6.64), (9.32) and Lemma 6.15 we have

‖y′
j (t)‖2H + ‖y j (t)‖2V + γ

t∫

0

‖y′
j (t)‖2V dt ≤ R̄ ∀ j ≥ 0, ∀t ∈ [0, T0],

where R̄ > 0 is a constant. Moreover,

y j → y0 weakly in L2(0, T0; V ), y′
j → y′

0 weakly in L2(0, T0; V ),

y j → y0 strongly in L2(0, T0; H), y′
j → y′

0 strongly in L2(0, T0; H),

y′′
j → y′′

0 weakly in L2(0, T0; V ∗), d j → d0 weakly in L2(0, T0; H),

∀t ∈ [0, T0] y j (t) → y0(t) in H, y′
j (t) → y′

0(t) weakly in H, j → +∞.

(9.33)
Therefore,

T0∫

0

Hε(ϕ j (t))e
−2ε(T0−t)dt →

T0∫

0

Hε(ϕ0(t))e
−2ε(T0−t)dt, j → +∞,

lim
j→+∞

T0∫

0

〈Ay′
j (t), y

′
j (t)〉V e−2ε(T0−t)dt ≥

T0∫

0

〈Ay′
0(t), y

′
0(t)〉V e−2ε(T0−t)dt.

The last inequality holds, becauseof the functional v(·)→
T0∫
0
〈Av(t), v(t)〉V e−2ε(T0−t)dt

is sequentially weakly lower semi-continuous on L2(τ, T0; V ). Furthermore,

ε

T0∫

0

〈Ay j (t), y′
j (t)〉V e−2ε(T0−t)dt = ε

2
〈Ay j (T0), y j (T0)〉V − ε

2
〈Ay j (0), y j (0)〉V e−2εT0−

−ε2

T0∫

0

〈Ayj (t), y j (t)〉V e−2ε(T0−t)dt ∀ j ≥ 0,

from which, by Corollary 6.2, we have

∣∣∣∣∣∣∣
ε

T0∫

0

〈Ay j (t), y′
j (t)〉V e−2ε(T0−t)dt

∣∣∣∣∣∣∣
≤ 2εγ

[
λ1 + 2c3
λ1 − μ

δ2 + 2(c3 + c4)λ1
λ1 − μ

]
, ∀ j ≥ 0.

http://dx.doi.org/10.1007/978-3-319-59840-6_6
http://dx.doi.org/10.1007/978-3-319-59840-6_6
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Thus,

lim
j→+∞ Iε(ϕ j (T0)) ≤ Iε(ϕ0(0))e

−2εT0 +
[

lim
j→+∞ Iε(ϕ j (0)) − Iε(ϕ0(0))

]
e−2εT0+

+2ε

T0∫

0

Hε(ϕ0(t))e
−2ε(T0−t)dt − ε

T0∫

0

〈Ay0(t), y′
0(t)〉V e−2ε(T0−t)dt−

−
T0∫

0

〈Ay′
0(t), y

′
0(t)〉V e−2ε(T0−t)dt + 4εγ

[
λ1 + 2c3
λ1 − μ

δ2 + 2(c3 + c4)λ1

λ1 − μ

]
≤

≤ Iε(ϕ0(T0)) + δ2e−2εT0 + 4εγ

[
λ1 + 2c3
λ1 − μ

δ2 + 2(c3 + c4)λ1

λ1 − μ

]

and, due to (9.33), for any T0 > 0 and ε > 0

1

2
‖ξ‖2E ≤ 1

2
a2 = 1

2
lim

j→+∞ ‖ξk j ‖2E ≤ 1

2
‖ξ‖2E + δ2e−2εT0 + 4εγ

[
λ1 + 2c3
λ1 − μ

δ2 + 2(c3 + c4)λ1
λ1 − μ

]
.

Hence, for all ε > 0 we have

1

2
‖ξ‖2E ≤ 1

2
a2 ≤ 1

2
‖ξ‖2E + 4εγ

[
λ1 + 2c3
λ1 − μ

δ2 + 2(c3 + c4)λ1

λ1 − μ

]
.

Thus, a = ‖ξ‖E .

The theorem is proved.

Let us consider the family K+ = ∪y0∈ED(y0) of all weak solutions of the inclu-
sion (9.31), defined on [0,+∞). Note thatK+ is translation invariant one, i.e. for all
u(·) ∈ K+ and all h ≥ 0 we have uh(·) ∈ K+, where uh(s) = u(h + s), s ≥ 0. On
K+ we set the translation semigroup {T (h)}h≥0, T (h)u(·) = uh(·), h ≥ 0, u ∈ K+.
In view of the translation invariance of K+ we conclude that T (h)K+ ⊂ K+ as
h ≥ 0.

On K+ we consider the topology induced from the Fréchet space Cloc(R+; E).
Note that

fn(·) → f (·) in Cloc(R+; E) ⇐⇒ ∀M > 0ΠM fn(·) → ΠM f (·) in C([0, M]; E),

where ΠM is the restriction operator to the interval [0, M]. We denote the restriction
operator to [0,+∞) by Π+.

Let us consider the autonomous inclusion (9.31) on the entire time axis. Similarly
to the spaceCloc(R+; E) the spaceCloc(R; E) is endowed with the topology of local
uniform convergence on each interval [−M, M] ⊂ R. A function u ∈ Cloc(R; E) ∩



228 9 Indirect Lyapunov Method for Autonomous Dynamical Systems

L∞(R; E) is said to be a complete trajectory of the inclusion (9.31), if ∀h ∈ R

Π+uh(·) ∈ K+. Let K be a family of all complete trajectories of the inclusion
(9.31). Note that∀h ∈ R,∀u(·) ∈ K uh(·) ∈ K .We say that the complete trajectory
ϕ ∈ K is stationary if ϕ(t) = z for all t ∈ R for some z = (u, 0̄)T ∈ E (rest point).
We denote the set of rest points of G by Z(G ).We remark that Z(G ) = {(u, 0̄)T | u ∈
V, B(u) + ∂ J (u) 	 0̄}.

From Conditions H(B) and H(J ) it follows that

Lemma 9.3 The set Z(G ) is nonempty and bounded in E.

From Lemma 6.10 the existence of Lyapunov function for G follows.

Lemma 9.4 The functional V : E → R, defined by

V (ϕ) = 1

2
‖ϕ‖2E + J (a). (9.34)

, is a Lyapunov function for G .

We recall that the set A ⊂ E is said to be a global attractor for G , if
(1) A is negatively semiinvariant (i.e. A ⊂ G (t,A ) ∀t ≥ 0);
(2) A is attracting set i.e.

dist(G (t, B),A ) → 0, t → +∞ ∀B ∈ β(E), (9.35)

where dist(C, D) = sup
c∈C

inf
d∈D ‖c − d‖E is the Hausdorff semidistance;

(3) for any closed set Y ⊂ E , satisfying (9.35), we have A ⊂ Y (minimality).
The global attractor is said to be invariant, if A = G (t,A ) ∀t ≥ 0.
Note that from the definition of the global attractor it follows that it is unique.
We prove the existence of the invariant compact global attractor.

Theorem 9.5 The m-semiflow G has the invariant compact in the phase space E
global attractor A . For each ψ ∈ K the limit sets

α(ψ) = {z ∈ E | ψ(t j ) → z f or some sequence t j → −∞},

ω(ψ) = {z ∈ E | ψ(t j ) → z f or some sequence t j → +∞}

are connected subsets of Z(G ) onwhichV is constant. If Z(G ) is totally disconnected
(in particular, if Z(G ) is countable) the limits

z− = lim
t→−∞ ψ(t), z+ = lim

t→+∞ ψ(t)

exists and z−, z+ are rest points; furthermore, ϕ(t) tends to a rest point as t → +∞
for every ϕ ∈ K+.

http://dx.doi.org/10.1007/978-3-319-59840-6_6
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Proof The existence of the global attractor with required properties directly follows
from previous theorems and [1, Theorem 2.7].

We remark in advance

∀h ∈ R, ∀u(·) ∈ K uh(·) ∈ K . (9.36)

Lemma 9.5 The set K is nonempty and

∀ξ(·) ∈ K , ∀t ∈ R ξ(t) ∈ A , (9.37)

where A is the global attractor from Theorem 9.5.

Proof Let us show that K �= ∅. Note that in virtue of Lemma 9.3, the set Z(G )

is nonempty and bounded in E . Let (v, 0̄)T ∈ Z(G ). We set u(t) = v ∀t ∈ R. Then
(u, u′)T ∈ K �= ∅.

Let us prove (9.37). For any y ∈ K ∃d > 0: ‖y(t)‖E ≤ d ∀t ∈ R. We set B =
∪t∈R{y(t)} ∈ β(E). Note that ∀τ ∈ R, ∀t ∈ R+ y(τ ) = yτ−t (t) ∈ G (t, yτ−t (0)) ⊂
G (t, B). From Theorem 9.5 and from (9.35) it follows that ∀ε > 0 ∃T > 0: ∀τ ∈ R

dist(y(τ ),A ) ≤ dist(G (T, B),A ) < ε. Hence taking into account the compactness
of A in E , it follows that y(τ ) ∈ A for any τ ∈ R.

Lemma 9.6 The set K is compact in Cloc(R; E) and bounded in L∞(R; E).

Proof The boundedness of K in L∞(R+; E) follows from (9.37) and from the
boundedness of A in E .

Let us check the compactness ofK inCloc(R; E). In order to do that it is sufficient
to check the precompactness and completeness.

Step 1. Let us check the precompactness ofK in Cloc(R; E). If it is not true then
in view of (9.36), ∃M > 0: ΠMK is not precompact set in C([0, M]; E). Hence
there exists a sequence {vn}n≥1 ⊂ ΠMK , that has not a convergent subsequence in
C([0, M]; E). On the other hand vn = ΠMun , where un ∈ K , vn(0) = un(0) ∈ A ,
n ≥ 1. Since A is compact set in E (see Theorem 9.5), then in view of Theo-
rem 6.4, ∃{vnk }k≥1 ⊂ {vn}n≥1, ∃η ∈ E , ∃v(·) ∈ D0,M(η): vnk (0) → η in E , vnk → v
in C([0, T ]; E), k → +∞. We obtained a contradiction.

Step 2. Let us check the completeness of K in Cloc(R; E). Let {vn}n≥1 ⊂ K ,
v ∈ Cloc(R; E): vn → v in Cloc(R; E), n → +∞. From the boundedness of K in
L∞(R; E) it follows that v ∈ L∞(R; E). From Theorem 6.4 we have that ∀M > 0
the restriction v(·) to the interval [−M, M] belongs to D−M,M(v(−M)). Therefore
v(·) is a complete trajectory of the inclusion (9.31). Thus, v ∈ K .

Lemma 9.7 Let A be the global attractor from Theorem 9.5. Then

∀y0 ∈ A ∃y(·) ∈ K : y(0) = y0. (9.38)

http://dx.doi.org/10.1007/978-3-319-59840-6_6
http://dx.doi.org/10.1007/978-3-319-59840-6_6
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Proof Let y0 ∈ A ,u(·) ∈ D(y0). FromTheorem9.5G (t,A ) = A ∀t ∈ R+.There-
fore,

u(t) ∈ A ∀t ∈ R+,

∀η ∈ A ∃ξ ∈ A , ∃ϕη(·) ∈ D0,1(ξ) : ϕη(1) = η.

For any t ∈ R we set

y(t) =
{
u(t), t ∈ R+,

ϕy(−k+1)(t + k), t ∈ [−k,−k + 1), k ∈ N.

Note that y ∈ Cloc(R; E), y(t) ∈ A ∀t ∈ R (hence y ∈ L∞(R; E)) y ∈ K . More-
over y(0) = y0.

Now we shall construct the attractor of the translation semigroup {T (h)}h≥0,
acting on K+. We recall that the set P ⊂ Cloc(R+; E) ∩ L∞(R+; E) is said to be
an attracting one for the trajectory spaceK+ of the inclusion (9.31) in the topology
of Cloc(R+; E), if for any bounded (in L∞(R+; E)) set B ⊂ K+ and an arbitrary
number M ≥ 0 the next relation

distC([0,M];E)(ΠMT (t)B,ΠMP) → 0, t → +∞ (9.39)

holds.
A set U ⊂ K+ is said to be trajectory attractor in the trajectory space K+ with

respect to the topology of Cloc(R+; E) (cf. [5, Definition 1.2, p. 179]), if
(i) U is a compact set in Cloc(R+; E) and bounded in L∞(R+; E);
(ii) U is strictly invariant with respect to {T (h)}h≥0, i.e. T (h)U = U ∀h ≥ 0;
(iii) U is an attracting set in the trajectory space K+ in the topology Cloc(R+; E).

Note that from the definition of the trajectory attractor it follows that it is unique.
The existence of the trajectory attractor and its structure properties follow from

such theorem:

Theorem 9.6 LetA be the global attractor from Theorem 9.5. Then there exists the
trajectory attractor P ⊂ K+ in the space K+ and we have

P = Π+K = {y ∈ K+ | y(t) ∈ A ∀t ∈ R+}. (9.40)

Proof The proof intersects with proofs of previous sections results.
From Lemmas 9.5, 9.6 and the continuity of the operator Π+ : Cloc(R; E) →

Cloc(R+; E) it follows that the set Π+K is nonempty, compact in Cloc(R+; E) and
bounded in L∞(R+; E). Moreover, the second equality in (9.40) holds (Lemma 9.5
and the proof of Lemma 9.7). The strict invariance of Π+K follows from the auton-
omy of the inclusion (9.31).

Let us prove that Π+K is the attracting set for the trajectory space K+ in the
topology of Cloc(R+; E). Let B ⊂ K+ be a bounded set in L∞(R+; E), M ≥ 0.
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Let us suppose M > 0. Let us check (9.39). If it is not true, then there exist ε > 0,
the sequences tn → +∞, vn(·) ∈ B such that

∀n ≥ 1 distC([0,T ];E)(ΠMvn(tn + ·),ΠMK ) ≥ ε. (9.41)

On the other hand, from the boundedness of B in L∞(R+; E) it follows that ∃R > 0:
∀v(·) ∈ B, ∀t ∈ R+ ‖v(t)‖E ≤ R. Hence, taking into account (9.35) and the asymp-
totic compactness of m-semiflow G (Theorem 9.4) we obtain that ∃{vnk (tnk )}k≥1 ⊂
{vn(tn)}n≥1, ∃z ∈ A : vnk (tnk ) → z in E , k → +∞. Further, ∀k ≥ 1 we set ϕk(t) =
vnk (tnk + t), t ∈ [0, M]. Note that ∀k ≥ 1 ϕk(·) ∈ D0,M(vnk (tnk )). Then from The-
orem 6.4 there exists a subsequence {ϕk j } j≥1 ⊂ {ϕk}k≥1 and an element ϕ(·) ∈
D0,M(z):

ϕk j → ϕ in C([0, M]; E), j → +∞. (9.42)

Moreover, taking into account the invariance of A (see Theorem 9.5), for all t ∈
[0, M] ϕ(t) ∈ A . From Lemma 9.7 there exist y(·), v(·) ∈ K : y(0) = z, v(0) =
ϕ(M). For any t ∈ R we set

ψ(t) =
⎧⎨
⎩

y(t), t ≤ 0,
ϕ(t), t ∈ [0, M],
v(t − M), t ≥ M.

Therefore, from (9.41) we obtain:

∀k ≥ 1 ‖ΠMvnk (tnk + ·) − ΠMψ(·)‖C([0,M];E) = ‖ϕk − ϕ‖C([0,M];E) ≥ ε,

that contradicts with (9.42). We reason in the same way when M = 0.
Thus, the set P constructed in (9.40) is the trajectory attractor in the trajectory

space K+ with respect to the topology of Cloc(R+; E).

Let A be the global attractor from Theorem 9.5, P be the trajectory attractor
from Theorem 9.6. From previous sections results we have:

A is a compact set in the space E; (9.43)

P is a compact set in the space Cloc(R+; E); (9.44)

P = Π+K = {y ∈ K+ | y(t) ∈ A ∀t ∈ R+} = {y ∈ K+, | y(0) ∈ A }, (9.45)

whereK is the family of all complete trajectories of the inclusion (9.31), Π+ is the
restriction operator on R+. Moreover,

K is a compact in the space Cloc(R; E); (9.46)

http://dx.doi.org/10.1007/978-3-319-59840-6_6
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∀ξ(·) ∈ K and ∀t ∈ R ξ(t) ∈ A ; (9.47)

∀y0 ∈ A and ∀t0 ∈ R ∃y(·) ∈ K : y(t0) = y0. (9.48)

For any y ∈ K let us set

H (y) = clCloc(R;E){y(· + s)| s ∈ R} ⊂ Cloc(R; E) ∩ L∞(R; E).

Such family is said to be the hull of function y(·) in Ξ = Cloc(R; E).

Definition 9.4 The function y(·) ∈ Ξ is said to be translation-compact (tr.-c.) in Ξ

if the hull H (y) is compact in Ξ.

Definition 9.5 The family U ⊂ Ξ is said to be translation-compact, if H (U ) =
clΞ {y(· + s)| y(·) ∈ U , s ∈ R} is a compact in Ξ.

From the autonomy of problem (9.31) and (9.46) it follows that

Corollary 9.1 K is translation-compact set in Ξ.

From autonomy of system (9.31), applying the Arzelá-Ascoli compactness criterion,
we obtain the translation compactness criterion for the family K :

a) the set {y(t)| y ∈ K } is a compact in E ∀t ∈ R;
b) there exists a positive function α(s) → 0+ (s → 0+) such that

‖y(t1) − y(t2)‖E ≤ α(|t1 − t2|) ∀y ∈ K and ∀t1, t2 ∈ R.

Similarly if we set Ξ+ = Cloc(R+; E) we obtain:

Corollary 9.2 P is translation-compact set in Ξ+.
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A
Admissible triple, 72
Approximate problem, 22
Artificial control method, 50, 72
Attractor

global, 213, 219, 228
trajectory, 214, 229
uniform global, 9, 10, 162
uniform trajectory, 3, 5

B
Banach-Alaoglu theorem, 6
Budyko model, 118

C
Climate energy balance model, 62, 118, 152
Cm(S;X), xxiv

D
Differential-operator equation, 12, 125

first order, 125
nonlinear parabolic, 9, 150, 151
reaction-diffusion, 1, 9, 89
second order, 31, 139, 215

Differential-operator inclusion, 3, 24, 57,
125, 171

first order, 125
reaction-diffusion, 55, 57, 64, 111

second order, 145
3D Navier-Stokes equations, 72

E
Energy quality, 10, 73, 120, 121, 153
Evolutional multivariational inequality, 33
Evolution triple (Gelfand triple), 50

F
Family of m-processes, 10

strict, 11
uniformly asymptotically compact, 12

FitzHugh-Nagumo system, 116
Function

Lyapunov, 218
translation bounded, 90
translation-compact, 5, 98, 230
translation uniform integrable, 5, 98

G
Gagliardo–Nirenberg inequality, 54

H
Hausdorff semidistance, 164
Heat conduction equation, 60, 171
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Indirect Lyapunov method, 211
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Interpolation family, xiv
Interpolation pair, xiv

L
Leray-Hopf property, 72

M
Model of combustion in porous media, 116,

117, 220
Model of conduction of electrical impulses

in nerve, 61, 106, 116, 117
Multi-valued map, 14, 17

λ0-pseudomonotone, 23
weakly closed, 15, 25

Multivalued semiflow, 165
asymptotically compact, 216, 224
strict, 213, 214

P
Parabolic feedback control problem, 60
Penalty method, 42
Phase space, 31
Pointwise pseudomonotonicity, 134, 172

R
Reflexivity criterium, xii
Regularity of solutions, 60

S
Set

translation-compact, 232
translation semi-invariant, 94
uniformly attracting, 5, 11, 30

Sk -property, 16, 23
Solution

extremal, 79
Leray-Hopf, 69, 71
physical, 43
regular, 60
strong, 42
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Special basis, 77
(S)-property, 127
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bounded, 7, 16
coercive, 7, 14
demi-closed, 7, 14
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T
Trajectory

complete, 218
of m-process, 10
of m-process complete, 10
stationary, 218

Translation semigroup, 227

U
United trajectory space, 5, 27, 94, 163

extended, 5, 94, 163

V
Viscoelastic problems with nonlinear
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