

Software
Architecture

Design Patterns
in Java

© 2004 by CRC Press LLC

The Complete Project Management
Office Handbook
Gerard M. Hill
0-8493-2173-5

Complex IT Project Management: 16 Steps
to Success
Peter Schulte
0-8493-1932-3

Creating Components: Object Oriented,
Concurrent, and Distributed Computing
in Java
Charles W. Kann
0-8493-1499-2

Dynamic Software Development:
Manging Projects in Flux
Timothy Wells
0-8493-129-2

The Hands-On Project Office: Guaranteeing
ROI and On-Time Delivery
Richard M. Kesner
0-8493-1991-9

Interpreting the CMMI®: A Process
Improvement Approach
Margaret Kulpa and Kent Johnson
0-8493-1654-5

Introduction to Software Engineering
Ronald Leach
0-8493-1445-3

ISO 9001:2000 for Software and Systems
Providers: An Engineering Approach
Robert Bamford and William John Deibler II
0-8493-2063-1

The Laws of Software Process:
A New Model for the Production
and Management of Software
Phillip G. Armour
0-8493-1489-5

Real Process Improvement Using
the CMMI®
Michael West
0-8493-2109-3

Six Sigma Software Development
Christine Tanytor
0-8493-1193-4

Software Architecture Design Patterns
in Java
Partha Kuchana
0-8493-2142-5

Software Configuration Management
Jessica Keyes
0-8493-1976-5

Software Engineering for Image Processing
Phillip A. Laplante
0-8493-1376-7

Software Engineering Handbook
Jessica Keyes
0-8493-1479-8

Software Engineering Measurement
John C. Munson
0-8493-1503-4

Software Engineering Processes: Principles
and Applications
Yinxu Wang, Graham King, and Saba Zamir
0-8493-2366-5

Software Metrics: A Guide to Planning,
Analysis, and Application
C.R. Pandian
0-8493-1661-8

Software Testing: A Craftsman’s Approach,
2e
Paul C. Jorgensen
0-8493-0809-7

Software Testing and Continuous Quality
Improvement, Second Edition
William E. Lewis
0-8493-2524-2

IS Management Handbook, 8th Edition
Carol V. Brown and Heikki Topi, Editors
0-8493-1595-9

Lightweight Enterprise Architectures
Fenix Theuerkorn
0-9493-2114-X

AUERBACH PUBLICATIONS

www.auerbach-publications.com
To Order Call: 1-800-272-7737 • Fax: 1-800-374-3401

E-mail: orders@crcpress.com

Other CRC/Auerbach Publications in Software Development,
Software Engineering, and Project Management

© 2004 by CRC Press LLC

AUERBACH PUBLICATIONS

A CRC Press Company

Boca Raton London New York Washington, D.C.

Software
Architecture

Design Patterns
in Java

Partha Kuchana

© 2004 by CRC Press LLC

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted
with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been
made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the
validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system,
without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new
works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation, without intent to infringe.

Visit the Auerbach Publications Web site at www.auerbach-publications.com

© 2004 by CRC Press LLC
Auerbach is an imprint of CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 0-8493-2142-5

Library of Congress Card Number 2003070897
Printed in the United States of America 1 2 3 4 5 6 7 8 9 0

Printed on acid-free paper

Library of Congress Cataloging-in-Publication Data

Kuchana, Partha.
Software architecture design patterns in Java / Partha Kuchana.

p. cm.
Includes bibliographical references and index.
ISBN 0-8493-2142-5 (alk. paper)
1. Java (Computer program language) 2. Computer Software. 3. Computer architecture.
4. Software patterns. I. Title.

QA76.73.J38K83 2004
005.13′3—dc22 2003070897

© 2004 by CRC Press LLC

DEDICATION

To my family

© 2004 by CRC Press LLC

CONTENTS

SECTION I: AN INTRODUCTION TO DESIGN PATTERNS

1 Design Patterns: Origin and History
Architectural to Software Design Patterns
What Is a Design Pattern?
More about Design Patterns
About This Book

Source Code
Source Code Disclaimer

SECTION II: UNIFIED MODELING LANGUAGE (UML)

2 UML: A Quick Reference
Structure Diagrams
Behavior Diagrams
Model Management Diagrams
Class Diagrams

Class
Inner Class
Access Specifiers
Static
Abstract Class/Method
Exception
Note
Generalization
Interface
Realization
Dependency
Class Association

Multiplicity
Navigability
Composition
Aggregation

Sequence Diagrams
Object
Message
Self Call

© 2004 by CRC Press LLC

SECTION III: BASIC PATTERNS

3 Interface
Description
Example
Practice Questions

4 Abstract Parent Class
Description
Example

Abstract Parent Class versus Interface
Practice Questions

5 Private Methods
Description
Example
Practice Questions

6 Accessor Methods
Description
Accessor Method Nomenclature
Example
Direct Reference versus Accessor Methods
Practice Questions

7 Constant Data Manager
Description
Example
Practice Questions

8 Immutable Object
Description
Example
Practice Questions

9 Monitor
Description
Example
Practice Questions

SECTION IV: CREATIONAL PATTERNS

10 Factory Method
Description
Example
Practice Questions

11 Singleton
Description
Who Should Be Responsible?
Example

Make the Constructor Private
Static Public Interface to Access an Instance

Practice Questions

© 2004 by CRC Press LLC

12 Abstract Factory
Description
Abstract Factory versus Factory Method
Example I
Example II

Logical Flow When the Application Is Run
Practice Questions

13 Prototype
Description
Shallow Copy versus Deep Copy

Shallow Copy Example
Deep Copy Example

Example I
Design Highlights of the HostingPlanKit Class

Example II
Redesign the UserAccount Class
Create a Prototype Factory Class

Practice Questions

14 Builder
Description
Example I

A Side Note
Back to the Example Application

Example II
Example III
Practice Questions

SECTION V: COLLECTIONAL PATTERNS

15 Composite
Description
Example
Design Approach I

FileComponent
getComponentSize()

DirComponent
addComponent(FileSystemComponent)
getComponent(int)
getComponentSize()

Design Approach II
Practice Questions

16 Iterator
Description
Iterators in Java
Filtered Iterators
Internal versus External Iterators
Example: Internal Iterator
Client/Container Interaction
Example: External Filtered Iterator
Practice Questions

© 2004 by CRC Press LLC

17 Flyweight
Description
How to Design a Flyweight in Java
Design Highlights
Example
Design Approach I
Design Approach II
Practice Questions

18 Visitor
Description

Design Idea 1
Design Idea 2

Defining New Operations on the Object Collection
Adding Objects of a New Type to the Collection
Example
Design Approach I
Design Approach II
Design Approach III (Composite Pattern)
Design Approach IV (The Visitor Pattern)

Application Flow
Defining a New Operation on the Order Object Collection
Adding a New Order Type to the Collection
Practice Questions

SECTION VI: STRUCTURAL PATTERNS

19 Decorator
Description
Characteristics of a Decorator
Example
Concrete Logger Decorators

HTMLLogger
EncryptLogger

Adding a New Message Logger
Adding a New Decorator
Practice Questions

20 Adapter
Description
Class Adapters versus Object Adapters

Class Adapter
Object Adapter

Example
Address Adapter as an Object Adapter
Practice Questions

21 Chain of Responsibility
Description
Example
Practice Questions

© 2004 by CRC Press LLC

22 Façade
Description
Example
Important Notes
Practice Questions

23 Proxy
Description
Proxy versus Other Patterns.

Proxy versus Decorator
Proxy versus Façade
Proxy versus Chain of Responsibility

RMI: A Quick Overview
RMI Components
RMI Communication Mechanism

RMI and Proxy Pattern
Example
Additional Notes

Compilation and Deployment Notes
Practice Questions

24 Bridge
Description
Example

Abstraction Implementation Design
Abstraction Interface Design
Design Highlights of the Abstraction Interface Classes

Bridge Pattern versus Adapter Pattern
Practice Questions

25 Virtual Proxy
Description

Advantage
Disadvantage

Example
Practice Questions

26 Counting Proxy
Description
Example
Practice Questions

27 Aggregate Enforcer
Description
Example

Design Approach I (On-Demand Initialization)
Design Approach II (Early Initialization)
Design Approach III (Final Variables)

Practice Questions

28 Explicit Object Release
Description

The finalize Method

© 2004 by CRC Press LLC

When an Object Goes Out of Scope, It Is Believed to
Be Garbage Collected Immediately
The Garbage Collection Process Runs as a Low-Level
Background Daemon Thread

The finally Statement
Example

Best Case Scenario
Exception Scenario 1
Exception Scenario 2

Practice Questions

29 Object Cache
Description
Example
Practice Questions

SECTION VII: BEHAVIORAL PATTERNS

30 Command
Description
Example I
Example II

Application Flow
Practice Questions

31 Mediator
Description
Mediator versus Façade
Example I

Client Usage of the Mediator
User Interface Objects: Mediator Interaction

Example II
Practice Questions

32 Memento
Description
Example

DataConverter (Originator)
ID
Memento
process
createMemento
setMemento

DCClient (Client)
MementoHandler

Practice Questions

33 Observer
Description
Adding New Observers
Example

Subject–Observer Association
Logical Flow

© 2004 by CRC Press LLC

Practice Questions

34 Interpreter
Description
Example

Infix-to-Postfix Conversion (Listing 34.8)
Construction of the Tree Structure (Listing 34.9)
Postorder Traversal of the Tree

Additional Notes
Infix-to-Postfix Conversion

Infix Expression
Postfix Expression

Conversion Algorithm
Example

Binary Tree Traversal Techniques
Preorder (Node-Left-Right)
In-Order (Left-Node-Right)
Postorder (Left-Right-Node)
Level-Order

Practice Questions

35 State
Description
Stateful Object: An Example
Example
Practice Questions

36 Strategy
Description
Strategies versus Other Alternatives
Strategy versus State
Example

SimpleEncryption
CaesarCypher
SubstitutionCypher
CodeBookCypher

Practice Questions

37 Null Object
Description
Example
Practice Questions

38 Template Method
Description

Abstract Class
Concrete Class

Example
Additional Notes

Mod 10 Check Digit Algorithm
Practice Questions

39 Object Authenticator
Description

© 2004 by CRC Press LLC

Example
Practice Questions

40 Common Attribute Registry
Description
Example
Practice Questions

SECTION VIII: CONCURRENCY PATTERNS

41 Critical Section
Description
Example

Approach I (Critical Section)
Approach II (Static Early Initialization)

Practice Questions

42 Consistent Lock Order
Description
Example
Practice Questions

43 Guarded Suspension
Description
Example

Use of wait() and notify() in the ParkingLot Class Design
Practice Questions

44 Read-Write Lock
Description

Design Highlights of the ReadWriteLock Class
Lock Statistics
Lock Methods
Lock Release

Example
Practice Questions

SECTION IX: CASE STUDY

45 Case Study: A Web Hosting Company
Objective
KPS Hosting Solutions: A Brief Overview
Requirements

Functional
Technical

Business Objects and Their Association
Framework for Application Processing

Enterprise Service Level
Generic Interface Contract
Sample Interface Contract

Task Level
Generic Task-Handler Mapping
Sample Task-Handler Mapping

© 2004 by CRC Press LLC

Error Processing
Enterprise Services Design
Address Validation
Credit Card Service

Validation
Search Management
Customer Management

Conclusion

SECTION X: APPENDICES

Appendix A: List of Design Patterns

Appendix B: References

© 2004 by CRC Press LLC

FOREWORD

Partha Kuchana is an experienced enterprise systems architect. He understands
that patterns are not about things that are just good ideas, but that patterns are
about capturing knowledge bred from experience. This hard-won knowledge is
what Partha is sharing with readers of his book. Here are some of the things I
really like about what he has to say.

The book presents 42 design patterns, which include the 23 GoF patterns.
These patterns are categorized as follows:

� 7 Basic patterns
� 5 Creational patterns
� 4 Collectional patterns
� 11 Structural patterns
� 11 Behavioral patterns
� 4 Concurrency patterns

The discussion of each pattern includes an example implemented in Java.
Further, the source code for all examples is found on the following Web site for
this book: http://www.crcpress.com/e_products/downloads/download.asp. The
source code and the easily understood examples make this format work well.

Partha takes complex material and clearly explains the ideas so they are easy-
to-understand, an important consideration for both the novice encountering the
material for the first time and the experienced developer who quickly wants to
extract the important bits for immediate use. Each pattern discussion also includes
Practice Questions for exactly that — your own use to improve your skills or, if
this book were to be chosen as a text, to help the time-pressured instructor.

Partha takes the time to compare and contrast the patterns. For example, in the
discussion on the Mediator pattern, a table shows similarities and differences
between Mediator and Façade. The reader will find that this analysis leads to a
clearer understanding than simply trying to focus on each pattern in isolation. The
text also includes consideration of relationships between patterns. For example, in
the discussion on the Mediator pattern there is a reference to a previous design
example for the Command pattern.

© 2004 by CRC Press LLC

Finally, at the end of the book, the reader will be happy to find a case study
that pulls some of the patterns together to illustrate how a more complicated
problem would be tackled and how the patterns work together. As those who
have studied the work of Christopher Alexander realize—patterns are not applied
in isolation but collaborate within a specific domain to address large and small
problems.

It has been ten years since the GoF book was published. A lot of patterns
have been identified and captured in that time. A lot of patterns books have been
written. This book is like the GoF book, a catalog; probably not one you will
read cover-to-cover in a single setting, but which will find a place on your
bookshelf. Keep it handy for all those “How do I do this in Java?” questions
where you wish you had an expert in the office next door to provide answers.
This book is the next best thing.

Linda Rising
Phoenix, AZ

© 2004 by CRC Press LLC

ABOUT THE AUTHOR

Partha Kuchana is an experienced enterprise systems architect. He has eleven
years of experience in all aspects of project delivery management (onsite/offshore
models), enterprise architecture, design, development, mentoring and training. He
is a Sun certified enterprise architect.

During the last several years, he has worked on numerous client–server, E-
business, Web portal and enterprise application integration (EAI) projects at various
client sites in the United Kingdom and the United States, involving iterative design
methodologies such as Rational Unified Process (RUP) and extreme programming.

He has extensive experience applying design patterns in application architec-
ture and design. He has successfully architected and designed business-to-business
systems and complex heterogeneous systems integration using Web services,
middleware and messaging products from various vendors. He has several pub-
lished software-related publications.

Home page: http://members.ITJobsList.com/partha
E-mail: ParthaKuchana@ITJobsList.com

© 2004 by CRC Press LLC

ACKNOWLEDGMENTS

First and foremost, I would like to thank my wife for her patience and support,
for taking some of my workload especially in the areas of UML and Java
programming and for her inspirational contributions at the time of frustrating
moments. I would like to thank my parents, my sister, my brother and my dear
friends whose support and encouragement throughout my life have made it
possible for me to build the skill set necessary to succeed.

I would like to thank Venu Kuchana and D.R. Sudhakar for their contributions
in terms of writing different Java programs. I would like to thank BalaLingam
Kuchana for his contributions in the area of UML and for being in charge of
creating the formatted version of my draft.

I would like to thank the entire team at Auerbach publications for their
contributions in this project and for making this a remarkable experience. In
particular, I have a deep sense of gratitude towards my acquisitions editor, John
Wyzalek, for sharing my enthusiasm and providing me with great advice and
help. I also would like to thank the managing editor, Claire Miller, for her
invaluable advice and contribution in arranging the book in a presentable form.

My sincere thanks to Linda Rising for writing the Foreword.
I am truly appreciative and thankful to the following reviewers who have

taken the time to read the draft and provide me with feedback.

� Pradyumn Sharma, CEO, Pragati Software Pvt. Ltd.
� Carsten Kuckuk, project lead, Design Patterns Study Group Stuttgart, RIB

Software AG
� Tim Kemper, Boulder Design Patterns Group
� Geoffrey Sparks, CEO, Sparx Systems P/L
� Edward L. Howe, software architect, Employease, Inc.
� Christopher R. Gardner, software developer, McKesson Information Solutions
� David Deriso, senior software engineer, Employease, Inc.
� Mike Heinrich, software engineer, Canada
� Rodney Waldoff, director of systems architecture, Encyclopedia Brittanica

Inc.
� Thomas SMETS, software engineer, Belgium
� Linda Rising, Ph.D., independent software consultant, Arizona State University
� Ray Tayek, coordinator LAJUG/OCJUG

© 2004 by CRC Press LLC

In particular, thanks to Pradyumn Sharma, Carsten Kuckuk, and Tim Kemper
for their insightful recommendations, their thoroughness, and their invaluable
suggestions, including questions that an inquisitive reader might have about design
patterns.

I would like to thank Mark Grand for his encouragement and advice on various
aspects of writing a patterns book. I am sure I have forgotten someone important;
please accept my sincere apologies.

© 2004 by CRC Press LLC

I
AN INTRODUCTION TO

DESIGN PATTERNS

© 2004 by CRC Press LLC

1

DESIGN PATTERNS:
ORIGIN AND HISTORY

During the late 1970s, an architect named Christopher Alexander carried out the
first known work in the area of patterns. In an attempt to identify and describe
the wholeness or aliveness of quality designs, Alexander and his colleagues studied
different structures that were designed to solve the same problem. He identified
similarities among designs that were of high quality. He used the term pattern in
the following books to refer to these similarities.

� A Pattern Language: Towns, Buildings, Construction (Oxford University
Press, 1977)

� The Timeless Way of Building (Oxford University Press, 1979)

The patterns identified and documented by Alexander are purely architectural
and deal with structures like buildings, gardens and roadways.

ARCHITECTURAL TO SOFTWARE DESIGN PATTERNS

In 1987, influenced by the writings of Alexander, Kent Beck and Ward Cunningham
applied the architectural pattern ideas for the software design and development.
They used some of Alexander’s ideas to develop a set of patterns for developing
elegant user interfaces in Smalltalk. With the results of their work, they gave a
presentation entitled Using Pattern Languages for Object-Oriented Programming
at the Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA) ’87 conference. Since then, many papers and presentations relating to patterns
have been published by many eminent people in the Object Oriented (OO) world.

In 1994, the publication of the book entitled Design Patterns: Elements of
Reusable Object-Oriented Software on design patterns by Erich Gamma, Richard
Helm, Ralph Johnson and John Vlissides explained the usefulness of patterns and
resulted in the widespread popularity for design patterns. These four authors
together are referred to as the Gang of Four (GoF). In this book the authors
documented the 23 patterns they found in their work of nearly four and a half
years.

© 2004 by CRC Press LLC

Since then, many other books have been published capturing design patterns
and other best practices for software engineering.

WHAT IS A DESIGN PATTERN?

A design pattern is a documented best practice or core of a solution that has
been applied successfully in multiple environments to solve a problem that recurs
in a specific set of situations.

Architect Christopher Alexander describes a pattern as “a recurring solution to
a common problem in a given context and system of forces.” In his definition,
the term context refers to the set of conditions/situations in which a given pattern
is applicable and the term system of forces refers to the set of constraints that
occur in the specific context.

MORE ABOUT DESIGN PATTERNS

� A design pattern is an effective means to convey/communicate what has
been learned about high-quality designs. The result is:
– A shared language for communicating the experience gained in dealing

with these recurring problems and their solutions.
– A common vocabulary of system design elements for problem solving

discussions. A means of reusing and building upon the acquired insight
resulting in an improvement in the software quality in terms of its
maintainability and reusability.

� A design pattern is not an invention. A design pattern is rather a docu-
mented expression of the best way of solving a problem that is observed
or discovered during the study or construction of numerous software
systems.

� One of the common misconceptions about design patterns is that they are
applied only in an object-oriented environment. Even though design pat-
terns discussions typically refer to the object-oriented development, they
are applicable in other areas as well. With only minor changes, a design
pattern description can be adjusted to refer to software design patterns in
general. From the preceding section, Origin and History, it can be seen
that patterns have existed from the early days of architecture, long before
the object-oriented design and programming era.

� Design patterns are not theoretical constructs. A design pattern can be
seen as an encapsulation of a reusable solution that has been applied
successfully to solve a common design problem.

� Though design patterns refer to the best known ways of solving problems,
not all best practices in problem resolution are considered as patterns. A
best practice must satisfy the Rule of Three to be treated as a design
pattern. The Rule of Three states that a given solution must be verified to
be a recurring phenomenon, preferably in at least three existing systems.
Otherwise, the solution is not considered as a pattern. The goal is to ensure
that some community of software professionals applied the solution
described by the pattern to solve software design problems. Satisfying the

© 2004 by CRC Press LLC

Rule of Three indicates that a design pattern provides a practical solution
to deal with a real-world problem.

� Design patterns do not provide solutions to every problem found in real-
world software design and development. Design patterns are about pro-
viding elegant, reusable solutions to commonly encountered software
development problems in a particular context. This means that a pattern
that is meant to provide the best solution to a problem in a particular
context may not produce an effective solution to the same problem in a
different context. Sometimes, the solution proposed by the design pattern
may not even be applicable in a different context.

Software frameworks can be confused with design patterns. They are closely
related. Table 1.1 lists the similarities and differences between the two.

Table 1.1 Design Patterns versus Frameworks

Design Patterns Frameworks

Design patterns are recurring solutions to
problems that arise during the life of a
software application in a particular
context.

A framework is a group of components
that cooperate with each other to
provide a reusable architecture for
applications with a given domain.

The primary goal is to: The primary goal is to:
•

•

Help improve the quality of the
software in terms of the software
being reusable, maintainable,
extensible, etc.

Reduce the development time

•

•

Help improve the quality of the
software in terms of the software
being reusable, maintainable,
extensible, etc.

Reduce development time
Patterns are logical in nature. Frameworks are more physical in nature,

as they exist in the form of some
software.

Pattern descriptions are usually
independent of programming language
or implementation details.

Because frameworks exist in the form of
some software, they are
implementation-specific.

Patterns are more generic in nature and can
be used in almost any kind of
application.

Frameworks provide domain-specific
functionality.

A design pattern does not exist in the
form of a software component on its
own. It needs to be implemented
explicitly each time it is used.

Frameworks are not complete
applications on their own. Complete
applications can be built by either
inheriting the components const
directly.

Patterns provide a way to do “good”
design and are used to help design
frameworks.

Design patterns may be used in the
design and implementation of a
framework. In other words,
frameworks typically embody several
design patterns.

© 2004 by CRC Press LLC

ABOUT THIS BOOK

The objective of this book is to discuss design patterns in an easy to understand
manner with simple examples. This book discusses 42 design patterns including
the 23 patterns by GoF. These patterns are arranged in six categories:

� 7 Basic Patterns — Section III (Chapter 3 through Chapter 9)
� 5 Creational Patterns — Section IV (Chapter 10 through Chapter 14)
� 4 Collectional Patterns — Section V (Chapter 15 through Chapter 18)
� 11 Structural Patterns — Section VI (Chapter 19 through Chapter 29)
� 11 Behavioral Patterns — Section VII (Chapter 30 through Chapter 40)
� 4 Concurrency Patterns — Section VIII (Chapter 41 through Chapter 44)

Each pattern discussion starts with an explanation of the pattern followed by
an example implemented in Java™ programming language. How a given pattern
is applied in the example is discussed in detail along with code segments and
UML diagrams (class, sequence). At the end of each pattern discussion, a few
practice questions are provided for you to work on to improve your understanding
of the pattern. Wherever applicable, patterns are compared with other similar
looking patterns.

The examples in this book are kept simple for easy understanding. The
objective is to enhance the explanation of each pattern with examples for a better
understanding.

The UML section provides an overview of the Unified Modeling Language
(UML) and discusses various elements of class and sequence diagrams.

The case study at the end of the book demonstrates the collective usage of
different design patterns in a real-world application design scenario. This section
discusses how various patterns can be used in designing a reusable application
framework for a fictitious Web hosting company.

Source Code

The source code for all example applications is available on the following Web
site for this book: http://www.crcpress.com/e_products/download.asp.

Source Code Disclaimer

Both the author and the publisher make no representations or warranties about
the suitability of the software, either expressed or implied, including but not
limited to the implied warranties of merchantability, fitness for a particular purpose
or noninfringement. Both the author and the publisher shall not be liable for any
damages suffered as a result of using, modifying or distributing the software or
its derivatives.

Java is a trademark of Sun Microsystems, Inc. Windows is a registered trademark
of Microsoft Corporation.

© 2004 by CRC Press LLC

II
UNIFIED MODELING
LANGUAGE (UML)

The Object Management Group (OMG) is a nonprofit consortium that produces
and maintains computer industry standards and specifications for enterprise appli-
cations. UML is an application modeling specification from OMG. The primary
objective of UML is to simplify the complex software engineering process. Using
UML, one can specify, visualize and create artifacts of both software and nonsoft-
ware systems. It is to be noted that UML is a modeling language only — that is,
it defines the words and grammar, but not the process or procedure for creating
models.

© 2004 by CRC Press LLC

2

UML: A QUICK REFERENCE

UML offers 12 diagrams towards representing an application’s requirements analysis
and solution design. Each of these 12 diagrams can be classified into 3 categories
as follows.

STRUCTURE DIAGRAMS

UML offers the following four structure diagrams, which can be used to represent
the static structure of an application.

1. Class diagrams
2. Object diagrams
3. Component diagrams
4. Deployment diagrams

BEHAVIOR DIAGRAMS

UML offers the following five behavior diagrams, which can be used to represent
the dynamic behavioral aspects of an application.

1. Use Case diagrams
2. Sequence diagrams
3. Activity diagrams
4. Collaboration diagrams
5. Statechart diagram

MODEL MANAGEMENT DIAGRAMS

UML offers the following three model management diagrams, which can be used
to represent how different application modules are organized and managed.

1. Packages
2. Subsystems
3. Models

© 2004 by CRC Press LLC

Class and sequence diagrams have been provided for examples in this book.
This section provides a brief introduction to the class and sequence diagrams and
explains the different class/sequence diagram elements used in this book.

CLASS DIAGRAMS

Class diagrams are part of the structure diagrams and are used to describe the
static structure of a system. The structure and behavior of classes and their
association with other classes are depicted inside of a class diagram.

Class

Figure 2.1 shows the generic representation of a class.
It consists of three compartments (rectangular sections). The class name is

placed in the topmost compartment. The set of attributes (both instance variables
and class variables) are listed in the second compartment beneath the class name
compartment. The set of methods/operations is listed in the third compartment.

Though the generic representation consists of three compartments as described
above, the compartments may vary in number and type. One can suppress
compartments and also have additional compartments to accommodate such
aspects as constraints and tagged values.

Figure 2.2 shows an example of a class.

Figure 2.1 Generic Class Representation

Figure 2.2 An Example Class Representation

ClassName

Operations

Attributes

Customer

+getName():String
+setName(newName:String)
+getUserID():String
+setUserID(newUserID:String)
+getPassword():String
+setPassword(newPassword:String)

-name:String
-userID:String
-password:String

© 2004 by CRC Press LLC

Inner Class

An inner class is a class defined inside another class. The concept of an inner
class exists in some of the object-oriented languages such as Java, C++ (through
struct and enum) and C# (with true inner classes), but is not a standard object-
oriented concept.

UML does not provide a definite way of representing an inner class. The
notation shown in Figure 2.3 is used in this book to represent an inner class,
where the inner class is placed in the operations section of class in which the
inner class is defined.

Figure 2.4 shows an example of an inner class Memento defined inside the
DataConverter class.

Figure 2.3 Inner Class Representation

Figure 2.4 An Example Inner Class Representation

A_Class

An_Inner_Class

DataConverter

createMemento():Memento
setMemento(memento:Memento)
getLastProcessedID():long
process():boolean

ID:long

Memento

getID():long

lastProcessedID:long

© 2004 by CRC Press LLC

Access Specifiers

In Java, the visibility of different members of an object and their accessibility by
different client objects is controlled using access specifiers. Access specifiers for
attributes and operations can be specified using symbols from Table 2.1.

Table 2.2 lists Java access specifiers and their scope.
In Figure 2.2 (Customer class) name is a private attribute and getName is

a public method.

Static

Underlining a variable or method of a class specifies it as static (with class level
scope). In Figure 2.5, the method getInstance is a static method of the
FileLogger class. Client objects can invoke the getInstance method on the
FileLogger class without having to create its instances.

Table 2.1 Access Specifiers Symbols

Symbol Scope

+ Public
Protected
– Private

Table 2.2 Access Specifiers: Scope Details

Specifier
Classes in the
Same Package

Classes in Other
Packages

Subclasses in
the Same
Package

Subclasses in
Other Packages

Public Can Access Can Access Can Access Can Access
Protected Can Access Cannot Access Can Access Can Access
Friendly
(When no specifier is
used)
(Also referred to as
Package scope)

Can Access Cannot Access Can Access Cannot Access

Private Cannot
Access

Cannot
Access

Cannot
Access

Cannot
Access

Figure 2.5 Static Method Representation

FileLogger

+getInstance():FileLogger

© 2004 by CRC Press LLC

Abstract Class/Method

A method without body, in a class, is referred to as an abstract method. A class
with at least one abstract method is treated as an abstract class. Client objects
may not instantiate an abstract class. A subclass of an abstract class must implement
all abstract methods of the abstract class or be declared as an abstract class itself.

Displaying a class/method name in italics specifies it as an abstract class/
method. The Creator class in Figure 2.6 is an abstract class with an abstract method
factoryMethod.

Exception

A dashed arrow with a stereotype label “throws” is used to indicate that a specific
method throws an exception. The arrow points from the method to the exception
class. Both the methods isValid and save in Figure 2.7 declare to (possibly)
throw an exception of the java.rmi.RemoteException type.

Note

A note is attached to a UML diagram to provide additional information for a
symbol such as comments, constraints or code. In general, notes can be attached
to any diagram element in any UML diagram.

A note is denoted by a dog-eared rectangle and is attached to a diagram
element by a dotted line. Figure 2.8 shows a note attached to the attribute of a class.

Generalization

Generalization is used to depict the object-oriented concept of inheritance when
there is a base class with common behavior and each of its derived classes contains
specific details/behavior.

Figure 2.6 Abstract Class/Method Representation

Figure 2.7 Representation of Methods Throwing Exceptions

Creator

factoryMethod():ParentClass

RemoteAddress

isValid():boolean
save():boolean

java.rmi.RemoteException
<<throws>>

<<throws>>

© 2004 by CRC Press LLC

In Figure 2.9, the closed, hollow arrowhead pointing from the Shark/Whale
subclass to the Fish superclass represents generalization.

Interface

An interface specifies the externally visible operations of a class, but not the actual
implementation of those operations. An interface often specifies only a part of
the behavior of an actual implementer class. An interface can be drawn using a
class-like rectangular setup, with the text “interface” above the name of the
interface. Figure 2.10 shows an interface named VisitorInterface.

Figure 2.8 A Note to Provide Additional Information

Figure 2.9 Inheritance Relationship

Figure 2.10 An Interface

Customer

-customerID:intUnique system generated ID

Fish

Shark Whale

<<interface>>
VisitorInterface

visit()
getOrderTotal():double

© 2004 by CRC Press LLC

Realization

A realization depicts the relationship between an interface and a class that provides
the actual implementation. This can be drawn in two ways depending on how
the interface is depicted.

1. Using a closed, hollow arrowhead pointing from the implementing class
to the interface with a dashed line

2. With a line and a circle, where the circle represents the interface (with the
name of the interface kept near the circle) and the line can be drawn
pointing to the class that implements the interface represented by the circle.

In both Figure 2.11 and Figure 2.12, the OrderVisitor class implements
the interface declared by the VisitorInterface (Java) interface.

Dependency

A dependency depicts the relationship between a source and a target component,
when there is a dependency relationship between the two. It means, when there is
a change in the target, the source element undergoes a necessary change but not
vice versa.

The Order class in Figure 2.13 makes use of the execute method of the
DBUtil class to execute SQL (structured query language) statements and hence is
dependent on it.

Figure 2.11 Interface-Implementer Representation I

Figure 2.12 Interface-Implementer Representation II

Figure 2.13 One Class Dependent on the Other

OrderVisitor

visit()
getOrderTotal():double

<<interface>>
VisitorInterface

visit()
getOrderTotal():double

OrderVisitor

visit()
getOrderTotal():double

VisitorInterface

DBUtil

execute()

Order

© 2004 by CRC Press LLC

The dashed arrow points from the dependent Order class to the target DBUtil
class.

Class Association

Class association specifies the structural relationship between classes.
The concept of multiplicity discussed below is very closely tied to class

associations.

Multiplicity

Multiplicity is used to indicate the number of instances of one class linked to one
instance of the other class. Table 2.3 lists different values that can be used to
indicate the multiplicity.

The following three different types of associations are used in example UML
diagrams in this book.

Navigability

When Class A contains the information required to reach Class B, then the
navigability is from Class A to Class B. In other words, Class A knows about Class
B, but not vice versa.

In Figure 2.14, an instance of the LogAbstraction class internally maintains
a LoggerBridge object and hence will be able to reach it directly. Hence a
LoggerBridge object is navigable from a LogAbstraction instance.

Table 2.3 Multiplicity Values

Notation Description

1 No More than One
0..1 Zero or One
* Many

0..* Zero or Many
1..* One or Many

Figure 2.14 The Navigability from One Class to the Other

LoggerBridge

logList()

LogAbstraction

bridge:LoggerBridge
1

© 2004 by CRC Press LLC

It is also possible for the navigability to be bidirectional. In that case, the solid
line of association between the two classes either contains arrowheads on both
the ends or none.

The following two associations are applicable when there is a whole–part
relationship between two classes. In other words, one class contains the other.

Composition

Class A contains Class B.
This statement denotes a strong ownership between Class A, the whole, and

Class B, its part. In other words, the part class cannot meaningfully exist on its
own without the whole class.

In Figure 2.15:

� A line item is part of an order.
� A line item cannot exist without an order.

Aggregation

This is a lighter form of composition. The whole class plays a more important
role than the part class, but unlike the case of composition, the part class can
meaningfully exist on its own without the whole class.

In Figure 2.16:

� A Player is part of a Team.
� A Player can be part of more than one Team and hence, when a Team

is dissolved, the Player still remains.

Figure 2.15 The Composite Relationship

Figure 2.16 The Aggregate Relationship

LineItemOrder

1..*1

Consists of Part of

PlayerTeam

1..**

Consists of Part of

© 2004 by CRC Press LLC

SEQUENCE DIAGRAMS

Sequence diagrams are used to depict interactions among collaborating objects
in terms of messages exchanged over time for a specific result. In addition, a
sequence diagram may also be used to model business flows. Let us take a quick
look at some of the diagram elements used in creating sequence diagrams.

Object

An object is represented with the name of the class in a rectangle preceded by
a colon. Figure 2.17 shows an object named Controller.

Message

A message is a communication between objects. The solid horizontal line indicating
a message can be labeled with the name of the message/operation along with
its argument values. Figure 2.18 is a message call named save.

In general, a message call in a sequence diagram will map to a class operation.
The main exceptions are when you are not directly modeling a class interaction.
For example, a sequence diagram may be used to model a user using an ATM
machine where the interaction is more along the lines of the user sending a
message to the system or the system sending a response to the user. In this case,
the modeling is at a different conceptual level and the notion of direct mapping
to class operations may not be appropriate. Sequence diagrams may also be used
to model business flows, in which case the message may represent the passing
of a note, a file, a letter, etc.

Figure 2.17 An Object in a Sequence Diagram

Figure 2.18 A Message Call from One Object to Another

:Controller

save()

© 2004 by CRC Press LLC

Self Call

This is a message call from an object onto itself. Figure 2.19 is a self call of a
message named createSQL.

Let us create a sample sequence diagram (Figure 2.20) with the following func-
tionality, using different sequence diagram symbols discussed above.

� An Internet user enters data in an online registration form and submits it.
� All user submissions are first received by a Controller object.
� The Controller object creates an Account object with the data sub-

mitted by the user.
� The Account object creates and uses a DBManager object to save the

data to a database.

Figure 2.19 A Message Call from an Object onto Itself

Figure 2.20 Sample Sequence Diagram

createSQL()

:Controller :Account

:DBManager

Account()

save()

createSQL()

DBManager()

executeSQL
(strSQL:String)

Online user enters
the data in the
account registration
form and submits

An object

Message to a
different object

Self method call

© 2004 by CRC Press LLC

III
BASIC PATTERNS

The patterns discussed in this section are some of the most common, basic and
important design patterns one can find in the areas of object-oriented design and
programming. Some of these fundamental design patterns, such as the Interface,
Abstract Parent, Private Methods, etc., are used extensively during the discussion
of the other patterns in this book.

Chapter Pattern Name Description

3 Interface Can be used to design a set of service provider classes
that offer the same service so that a client object can
use different classes of service provider objects in a
seamless manner without having to alter the client
implementation.

4 Abstract Parent
Class

Useful for designing a framework for the consistent
implementation of the functionality common to a set of
related classes.

5 Private Methods Provide a way of designing a class behavior so that
external objects are not permitted to access the
behavior that is meant only for the internal use.

6 Accessor
Methods

Provide a way of accessing an object’s state using specific
methods. This approach discourages different client
objects from directly accessing the attributes of an
object, resulting in a more maintainable class structure.

7 Constant Data
Manager

Useful for designing an easy to maintain, centralized
repository for the constant data in an application.

8 Immutable
Object

Used to ensure that the state of an object cannot be
changed. May be used to ensure that the concurrent
access to a data object by several client objects does not
result in race conditions.

9 Monitor A way of designing an application object so that it does
not produce unpredictable results when more than one
thread tries to access the object at the same time in a
multithreaded environment.

© 2004 by CRC Press LLC

The Java programming language has built-in support for some of the funda-
mental design patterns in the form of language features. The other fundamental
patterns can very easily be implemented using the Java language constructs.

© 2004 by CRC Press LLC

3

INTERFACE

This pattern was previously described in Grand98.

DESCRIPTION

In general, the functionality of an object-oriented system is encapsulated in the
form of a set of objects. These objects provide different services either on their
own or by interacting with other objects. In other words, a given object may rely
upon the services offered by a different object to provide the service it is designed
for. An object that requests a service from another object is referred as a client
object. Some other objects in the system may seek the services offered by the
client object.

From Figure 3.1, the client object assumes that the service provider objects
corresponding to a specific service request are always of the same class type and
interacts directly with the service provider object. This type of direct interaction
ties the client with a specific class type for a given service request. This approach
works fine when there is only one class of objects offering a given service, but
may not be adequate when there is more than one class of objects that provide
the same service required by the client (Figure 3.2). Because the client expects
the service provider to be always of the same class type, it will not be able to
make use of the different classes of service provider objects in a seamless manner.
It requires changes to the design and implementation of the client and greatly
reduces the reusability of the client by other objects.

In such cases, the Interface pattern can be used to better design different
service provider classes that offer the same service to enable the client object to
use different classes of service provider objects with little or no need for altering

Figure 3.1 Client–Service Provider Interaction

Client ServiceProvider

service()

<<requests service>>

© 2004 by CRC Press LLC

g

the client code. Applying the Interface pattern, the common services offered by
different service provider classes can be abstracted out and declared as a separate
interface. Each of the service provider classes can be designed as implementers
of this common interface.

With this arrangement, the client can safely assume the service provider object
to be of the interface type. From the class hierarchy in Figure 3.3, objects of
different service provider classes can be treated as objects of the interface type.
This enables the client to use different types of service provider objects in a
seamless manner without requiring any changes. The client does not need to be
altered even when a new service provider is designed as part of the class hierarchy
in Figure 3.3.

EXAMPLE

Let us build an application to calculate and display the salaries of dif ferent
employees of an organization with the categorization of designations as listed in
Table 3.1.

Figure 3.2 Different Classes of Service Providers Offering the Same Set of Services

Figure 3.3 Common Interface with Different Service Providers as Implementers

Client ServiceProvider_1

service()

<<requests service>>

ServiceProvider_2

service()

Client

ServiceProvider_1

service()

<<requests service>>

ServiceProvider_2

service()

<<interface>>
ServiceIF

service()

© 2004 by CRC Press LLC

Let us assume that the application needs to consider only those employees
whose designations are part of Category-A. The salary calculation functionality
for all employees of Category-A can be designed in the form of the CategoryA
class as follows:

public class CategoryA {

 double baseSalary;

 double OT;

 public CategoryA(double base, double overTime) {

 baseSalary = base;

 OT = overTime;

 }

 public double getSalary() {

 return (baseSalary + OT);

 }

}

The class representation of an employee, in its simplest form, can be designed
as in the following listing with two attributes: the employee name and the category
of designation.

public class Employee {

CategoryA salaryCalculator;

String name;

public Employee(String s, CategoryA c) {

name = s;

salaryCalculator = c;

}

public void display() {

System.out.println("Name=" + name);

System.out.println("salary= " +

salaryCalculator.getSalary());

}

}

Table 3.1 Different Categories of Designations

Designations Category

Programmer, Designer and Consultant Category-A
Sales Rep, Sales Manager, Account Rep Category-B
… …
C-Level Executives Category-n
… …

© 2004 by CRC Press LLC

g

A client object can configure an Employee object with values for the name and
the category type attributes at the time of invoking its constructor. Subsequently the
client object can invoke the display method to display the details of the employee
name and salary. Because we are dealing only with employees who belong to
Category-A, instances of the Employee class always expect the category type and
hence the salary calculator to be always of the CategoryA type. As part of its
implementation of the display method, the Employee class uses the salary
calculation service provided by the CategoryA class.

The main application object MainApp that needs to display the salary details
of employees performs the following tasks:

� Creates an instance of the CategoryA class by passing appropriate details
required for the salary calculation.

� Creates an Employee object and configures it with the CategoryA object
created above.

� Invokes the display method on the Employee object.
� The Employee object makes use of the services of the CategoryA object

in calculating the salary of the employee it represents. In this aspect, the
Employee object acts as a client to the CategoryA object.

public class MainApp {

public static void main(String [] args) {

CategoryA c = new CategoryA(10000, 200);

Employee e = new Employee ("Jennifer,”c);

e.display();

}

}

This design works fine as long as the need is to calculate the salary for
Category-A employees only and there is only one class of objects that provides
this service. But the fact that the Employee object expects the salary calculation
service provider object to be always of the CategoryA class type affects the
maintainability and results in an application design that is restrictive in terms of
its adaptability.

Let us assume that the application also needs to calculate the salary of
employees who are part of Category-B, such as sales representatives and account
representatives, and the corresponding salary calculation service is provided by
objects of a different class CategoryB.

public class CategoryB {

double salesAmt;

double baseSalary;

final static double commission = 0.02;

public CategoryB(double sa, double base) {

baseSalary = base;

© 2004 by CRC Press LLC

 salesAmt = sa;

}

public double getSalary() {

return (baseSalary + (commission * salesAmt));

}

}

The main application object MainApp will be able to create an instance of
the CategoryB class but will not be able to configure the Employee object
with this instance. This is because the Employee object expects the salary
calculator to be always of the CategoryA type. As a result, the main application
will not be able to reuse the existing Employee class to represent different types
of employees (Figure 3.4). The existing Employee class implementation needs
to undergo necessary modifications to accept additional salary calculator service
provider types. These limitations can be addressed by using the Interface pattern
resulting in a much more flexible application design.

Applying the Interface pattern, the following three changes can be made to
the application design.

1. The common salary calculating service provided by different objects can
be abstracted out to a separate SalaryCalculator interface.

public interface SalaryCalculator {

public double getSalary();

}

2. Each of the CategoryA and the CategoryB classes can be designed as
implementers of the SalaryCalculator interface (Figure 3.5).

public class CategoryA implements SalaryCalculator {

double baseSalary;

double OT;

Figure 3.4 Employee/Consultant/Salesrep Class Association

Employee

display()

CategoryA

getSalary():double

<<requests salary
calc. service>>

CategoryB

getSalary():double

11..*

MainApp

© 2004 by CRC Press LLC

g

public CategoryA(double base, double overTime) {

baseSalary = base;

OT = overTime;

}

public double getSalary() {

return (baseSalary + OT);

}

}

public class CategoryB implements SalaryCalculator {

double salesAmt;

double baseSalary;

final static double commission = 0.02;

public CategoryB(double sa, double base) {

baseSalary = base;

salesAmt = sa;

}

public double getSalary() {

return (baseSalary + (commission * salesAmt));

}

}

3. The Employee class implementation needs to be changed to accept a
salary calculator service provider of type SalaryCalculator.

public class Employee {

SalaryCalculator empType;

String name;

Figure 3.5 Salary Calculation Service Provider Class Hierarchy

<<interface>>
SalaryCalculator

getSalary():double

CategoryA

getSalary():double

CategoryB

getSalary():double

© 2004 by CRC Press LLC

public Employee(String s, SalaryCalculator c) {

name = s;

empType = c;

}

public void display() {

System.out.println("Name=" + name);

System.out.println("salary= " + empType.getSalary());

}

}

With these changes in place, the main application object MainApp can now
create objects of different types of salary calculator classes and use them to
configure different Employee objects. Because the Employee class, in the revised
design, accepts objects of the SalaryCalculator type, it can be configured
with an instance of any SalaryCalculator implementer class (or its subclass).
Figure 3.6 shows the application object association.

public class MainApp {

public static void main(String [] args) {

SalaryCalculator c = new CategoryA(10000, 200);

Employee e = new Employee ("Jennifer”,c);

e.display();

c = new CategoryB(20000, 800);

e = new Employee ("Shania”,c);

e.display();

}

}

Figure 3.6 Example Application/Class Association

<<interface>>
SalaryCalculator

getSalary():double

CategoryA

getSalary():double

CategoryB

getSalary():double

Employee

display()

<<requests salary
calc. service>>

1 1..*

MainApp

© 2004 by CRC Press LLC

g

PRACTICE QUESTIONS

1. Design a Search interface that declares methods for searching an item in
a list. Design and implement two implementers — BinarySearch and
LinearSearch — to conduct a binary and linear search of the list,
respectively.

2. Design an AddressValidator interface that declares methods for vali-
dating different parts of a given address. Design and implement two
implementer classes — USAddress and CAAddress — to validate a
given U.S. and Canadian address, respectively.

© 2004 by CRC Press LLC

4

ABSTRACT PARENT CLASS

This pattern was previously described in Grand98.

DESCRIPTION

The Abstract Parent Class pattern is useful for designing a framework for the
consistent implementation of functionality common to a set of related classes.

An abstract method is a method that is declared, but contains no implemen-
tation. An abstract class is a class with one or more abstract methods. Abstract
methods, with more than one possible implementation, represent variable parts
of the behavior of an abstract class. An abstract class may contain implemen-
tations for other methods, which represent the invariable parts of the class
functionality.

Different subclasses may be designed when the functionality outlined by
abstract methods in an abstract class needs to be implemented differently. An
abstract class, as is, may not be directly instantiated. When a class is designed as
a subclass of an abstract class, it must implement all of the abstract methods
declared in the parent abstract class. Otherwise the subclass itself becomes an
abstract class. Only nonabstract subclasses of an abstract class can be instantiated.
The requirement that every concrete subclass of an abstract class must implement
all of its abstract methods ensures that the variable part of the functionality will
be implemented in a consistent manner in terms of the method signatures. The
set of methods implemented by the abstract parent class is automatically inherited
by all subclasses. This eliminates the need for redundant implementations of these
methods by each subclass. Figure 4.1 shows an abstract class with two concrete
subclasses.

In the Java programming language there is no support for multiple inheritance.
That means a class can inherit only from one single class. Hence inheritance
should be used only when it is absolutely necessary. Whenever possible, methods
denoting the common behavior should be declared in the form of a Java interface
to be implemented by different implementer classes. But interfaces suffer from
the limitation that they cannot provide method implementations. This means that
every implementer of an interface must explicitly implement all methods declared
in an interface, even when some of these methods represent the invariable part
of the functionality and have exactly the same implementation in all of the

© 2004 by CRC Press LLC

g

implementer classes. This leads to redundant code. The following example dem-
onstrates how the Abstract Parent Class pattern can be used in such cases without
requiring redundant method implementations.

EXAMPLE

In a typical organization, it is very common to have employees with different
designations. This can be represented in form of a class hierarchy with a base

class and a set of subclasses each corresponding to employees with
a specific designation.

Let us consider the following operations as part of designing the representation
of an employee.

1. Save employee data
2. Display employee data
3. Access employee attributes such as name and ID
4. Calculate compensation

While Operation 1 through Operation 3 remain the same for all employees,
the compensation calculation will be different for employees with different des-
ignations. Such an operation, which can be performed in different ways, is a
good candidate to be declared as an abstract method. This forces different concrete
subclasses of the class to provide a custom implementation for the
salary calculation operation.

From the base class implementation in Listing 4.1, it can be seen
that the base class provides implementation for the

and methods while it declares the
method as an abstract method.

Let us define two concrete subclasses — and — of
the class (Listing 4.2) representing employees who are consultants
and sales representatives, respectively. Each of these subclasses must implement
the method. Otherwise these subclasses need to be

Figure 4.1 An Abstract Class with Two Concrete Subclasses

ConcreteSubClass_1

abstractMethod()

ConcreteSubClass_2

abstractMethod()

AbstractClass

abstractMethod()

© 2004 by CRC Press LLC

declared as abstract and it becomes impossible to instantiate them. Figure 4.2
shows the class hierarchy with and concrete subclasses
of the class.

Abstract Parent Class versus Interface

As an alternate design strategy, we could design the employee representation as
a Java interface, instead of designing it as an abstract class, with both the

and the classes as its implementers. Figure 4.3 shows
the resulting class hierarchy.

But doing so would require both the implementers to implement the ,
, , and the methods.

Because the implementation of the , , and

Listing 4.1 Abstract Employee Class

© 2004 by CRC Press LLC

g

Listing 4.2 Concrete Employee Subclasses

Figure 4.2 Employee Class Hierarchy

Consultant

computeCompensation():String

SalesRep

computeCompensation():String

Employee

getName():string
getID():String
save()
toString():String
computeCompensation():String

© 2004 by CRC Press LLC

methods remains the same for all implementers, this leads to redundant code in
the application. The implementation of these invariable methods cannot be made
part of the interface. This is because a Java interface cannot provide
implementation for a method. An interface is used for the declaration purpose
only. By designing the Employee class as an abstract class, the need for a redundant
implementation can be eliminated.

PRACTICE QUESTIONS

1. Consider the details of different bank account types as follows:
a. All bank accounts allow

i. Deposits
ii. Balance enquiries

b. Savings accounts
i. Allow no checking
ii. Do not charge service fee
iii. Give interest

c. Checking accounts
i. Allow checking
ii. Charge service fee
iii. Do not give interest

Design a class hierarchy with as an abstract class with the class
representations for both the savings account and the checking account as two
concrete subclasses of it.

Figure 4.3 Employee as an Interface with Two Implementers

Consultant SalesRep

<<interface>>
Employee

getName():string
getID():String
save()
toString():String
computeCompensation():String

getName():string
getID():String
save()
toString():String
computeCompensation():String

getName():string
getID():String
save()
toString():String
computeCompensation():String

© 2004 by CRC Press LLC

g

2. Both the right-angled triangle and the equilateral triangle are triangles with
specific differences. Design a class hierarchy with as an abstract
class with the class representations for both the right-angled triangle and
the equilateral triangle as two concrete subclasses of it.

© 2004 by CRC Press LLC

5

PRIVATE METHODS

DESCRIPTION

Typically a class is designed to offer a well-defined and related set of services to
its clients. These services are offered in the form of its methods, which constitute
the overall behavior of that object. In case of a well-designed class, each method
is designed to perform a single, defined task. Some of these methods may use
the functionality offered by other methods or even other objects to perform the
task they are designed for. Not all methods of a class are always meant to be
used by external client objects. Those methods that offer defined services to
different client objects make up an object’s public protocol and are to be declared
as public methods. Some of the other methods may exist to be used internally
by other methods or inner classes of the same object. The Private Methods pattern
recommends designing such methods as private methods.

In Java, a method signature starts with an access specifier (private/protected/public).
Access specifiers indicate the scope and visibility of a method/variable.

A method is declared as private by using the “private” keyword as part of its signature.
e.g.,

private int hasValidChars(){

//…

}

External client objects cannot directly access private methods. This in turn
hides the behavior contained in these methods from client objects.

EXAMPLE

Let us design an OrderManager class as in Figure 5.1 that can be used by
different client objects to create orders.

public class OrderManager {

private int orderID = 0;

//Meant to be used internally

© 2004 by CRC Press LLC

g

private int getNextID() {

++orderID;

return orderID;

}

//public method to be used by client objects

public void saveOrder(String item, int qty) {

int ID = getNextID();

System.out.println("Order ID=" + ID + "; Item=" + item +

"; Qty=" + qty + " is saved. ");

}

}

From the OrderManager implementation it can be observed that the saveOrder
method is declared as public as it is meant to be used by client objects, whereas
the getNextID method is used internally by the saveOrder method and is not
meant to be used by client objects directly. Hence the getNextID method is
designed as a private method. This automatically prevents client objects from
accessing the getNextID method directly.

PRACTICE QUESTIONS

1. Design a CreditCard class, which offers the functionality to validate
credit card numbers. Design the card validation method to internally use
a private method to check if the card number has valid characters.

2. The OrderManager class built during the example discussion does not
define a constructor. Add a private constructor to the OrderManager
class. What changes must be made to the OrderManager class so that
client objects can create OrderManager instances?

Figure 5.1 OrderManager

OrderManager

-getNextID():int
+saveOrder(item:String, qty:int)

orderID:int

© 2004 by CRC Press LLC

6

ACCESSOR METHODS

DESCRIPTION

The Accessor Methods pattern is one of the most commonly used patterns in the
area of object-oriented programming. In fact, this pattern has been used in most
of the examples discussed in this book for different patterns. In general, the values
of different instance variables of an object, at a given point of time, constitute its
state. The state of an object can be grouped into two categories — public and
private. The public state of an object is available to different client objects to
access, whereas the private state of an object is meant to be used internally by
the object itself and not to be accessed by other objects.

Consider the class representation of a customer in Figure 6.1.
The instance variable ID is maintained separately and used internally by each

Customer class instance and is not to be known by other objects. This makes the
variable ID the private state of a Customer object to be used internally by the
Customer object. On the other hand, variables such as name, SSN (Social Security
Number) and the address make up the public state of the Customer object and
are supposed to be used by client objects. In case of such an object, the Accessor
Method pattern recommends:

� All instance variables being declared as private and provide public methods
known as accessor methods to access the public state of an object. This
prevents external client objects from accessing object instance variables
directly. In addition, accessor methods hide from the client whether a
property is stored as a direct attribute or as a derived one.

Figure 6.1 Customer Class

Customer

ID:int
name:String
SSN:String
address:String

© 2004 by CRC Press LLC

g

� Client objects can make use of accessor methods to move a Customer
object from one state (source) to another state (target). In general, if the
object cannot reach the target state, it should notify the caller object that
the transition could not be completed. This can be accomplished by having
the accessor method throw an exception.

� An object can access its private variables directly. But doing so could
greatly affect the maintainability of an application, which the object is part
of. When there is a change in the way a particular instance variable is to
be defined, it requires changes to be made in every place of the application
code where the instance variable is referenced directly. Similar to its client
objects, if an object is designed to access its instance variables through
accessor methods, any change to the definition of an instance variable
requires a change only to its accessor methods.

ACCESSOR METHOD NOMENCLATURE

There is no specific requirement for an accessor method to be named following
a certain naming convention. But most commonly the following naming rules are
followed:

� To access a non-Boolean instance variable:
– Define a getXXXX method to read the values of an instance variable
XXXX. E.g., define a getFirstName() method to read the value of an
instance variable named firstName.

– Define a setXXXX(new value) method to alter the value of an instance
variable XXXX. E.g., define a setFirstName(String) method to alter
the value of an instance variable named firstName.

� To access a Boolean instance variable:
– Define an isXXXX() method to check if the value of an instance variable
XXXX is true or false. E.g., define an isActive() method on a Customer
object to check if the customer represented by the Customer object is
active.

– Define a setXXXX(new value) method to alter the value of a Boolean
instance variable XXXX. E.g., define a setActive(boolean) method
on a Customer object to mark the customer as active.

The following Customer class example explains the usage of accessor
methods.

EXAMPLE

Suppose that you are designing a Customer class as part of a large application.
A generic representation of a customer in its simplest form can be designed as
in Figure 6.2.

Applying the Accessor Method pattern, the set of accessor methods listed in Table
6.1 can be defined corresponding to each of the instance variables (Listing 6.1).

Figure 6.3 shows the resulting class structure.

© 2004 by CRC Press LLC

Different client objects can access the object state variables using the accessor
methods listed in Table 6.1. The Customer object itself can access its state variables
directly, but using the accessor methods will greatly improve the maintainability
of the Customer class code. This in turn contributes to the overall application
maintainability.

DIRECT REFERENCE VERSUS ACCESSOR METHODS

Let us suppose that we need to add the following two new methods to the
Customer class.

1. isValidCustomer — To check if the customer data is valid.
2. save — To save the customer data to a data file.

As can be seen from the Customer class implementation in Listing 6.2, the
newly added methods access different instance variables directly. Different client

Figure 6.2 Customer Representation

Table 6.1 List of Accessor Methods

Variable Method Purpose

firstName getFirstName To read the value of the firstName instance
variable

setFirstName To alter the value of the firstName instance
variable

lastName getLastName To read the value of the lastName instance
variable

setLastName To alter the value of the lastName instance
variable

address getAddress To read the value of the address instance variable
setAddress To alter the value of the address instance variable

active isActive To read the value of the active Boolean
instance variable

setActive To alter the value of the active Boolean
instance variable

Customer

firstName:String
lastName:String
active:boolean
address:String

© 2004 by CRC Press LLC

g

objects can use the Customer class in this form without any difficulty. But when
there is a change in the definition of any of the instance variables, it requires a
change to the implementation of all the methods that access these instance
variables directly. For example, if the address variable need to be changed from
its current definition as a string to a StringBuffer or something different,
then all methods that refer to the address variable directly needs to be altered.

As an alternative approach, Customer object methods can be redesigned to
access the object state through its accessor methods (Listing 6.3).

Listing 6.1 Customer Class with Accessor Methods

public class Customer {

private String firstName;

private String lastName;

private String address;

private boolean active;

public String getFirstName() {

return firstName;

}

public String getLastName() {

return lastName;

}

public String getAddress() {

return address;

}

public boolean isActive() {

return active;

}

public void setFirstName(String newValue) {

firstName = newValue;

}

public void setLastName(String newValue) {

lastName = newValue;

}

public void setAddress(String newValue) {

address = newValue;

}

public void isActive(boolean newValue) {

active = newValue;

}

}

© 2004 by CRC Press LLC

In this approach, any change to the definition of any of the instance variables
requires a change only to the implementation of the corresponding accessor
methods. No changes are required for any other part of the class implementation
and the class becomes more maintainable.

PRACTICE QUESTIONS

1. Design an Order class with accessor methods for its instance variables.
2. Identify the effect of using accessor methods when a class is subclassed.

Figure 6.3 Customer Class with Accessor Methods

Customer

getFirstName():String
getLastName():String
getAddress():String
isActive():boolean
setFirstName(newValue:String)
setLastName(newValue:String)
setAddress(newValue:String)
setActive(newValue:boolean)

firstName:String
lastName:String
active:boolean
address:String

© 2004 by CRC Press LLC

g

Listing 6.2 Customer Class Directly Accessing Its Instance Variables

public class Customer {

…

…

public String getFirstName() {

return firstName;

}

…

…

public boolean isValidCustomer() {

if ((firstName.length() > 0) && (lastName.length() > 0) &&

(address.length() > 0))

return true;

return false;

}

public void save() {

String data =

firstName + ”," + lastName + ”," + address +

 ”," + active;

FileUtil futil = new FileUtil();

futil.writeToFile("customer.txt”,data, true, true);

}

}

© 2004 by CRC Press LLC

Listing 6.3 Customer Class Using Accessor Methods to Access Its Instance Variables

public class Customer {

…

…

public String getFirstName() {

return firstName;

}

…

…

public boolean isValidCustomer() {

if ((getFirstName().length() > 0) &&

(getLastName().length() > 0) &&

(getAddress().length() > 0))

return true;

return false;

}

public void save() {

String data =

getFirstName() + ”," + getLastName() + ”," +

getAddress() + ”," + isActive();

FileUtil futil = new FileUtil();

futil.writeToFile("customer.txt”,data, true, true);

}

}

© 2004 by CRC Press LLC

7

CONSTANT DATA MANAGER

DESCRIPTION

Objects in an application usually make use of different types of data in offering
the functionality they are designed for. Such data can either be variable data or
constant data. The Constant Data Manager pattern is useful for designing an
efficient storage mechanism for the constant data used by different objects in an
application. In general, application objects access different types of constant data
items such as data file names, button labels, maximum and minimum range values,
error codes and error messages, etc.

Instead of allowing the constant data to be present in different objects, the
Constant Data Manager pattern recommends all such data, which is considered
as constant in an application, be kept in a separate object and accessed by other
objects in the application. This type of separation provides an easy to maintain,
centralized repository for the constant data in an application.

EXAMPLE

Let us consider a Customer Data Management application that makes use of three
types of objects — Account, Address and CreditCard — to represent
different parts of the customer data (Figure 7.1). Each of these objects makes use
of different items of constant data as part of offering the services it is designed
for (Listing 7.1).

Instead of allowing the distribution of the constant data across different classes,
it can be encapsulated in a separate ConstantDataManager (Listing 7.2) object
and is accessed by each of the Account, Address and CreditCard objects.

The interaction among these classes can be depicted as in Figure 7.2.
Whenever any of the constant data items needs to be modified, only the

ConstantDataManager needs to be altered without affecting other application
objects. On the other side, it is easy to lose track of constants that do not get used
anymore when code gets thrown out over the years but constants remain in the
class.

© 2004 by CRC Press LLC

g

PRACTICE QUESTIONS

1. Constant data can also be declared in a Java interface. Any class that
implements such an interface can use the constants declared in it without
any qualifications. Redesign the example application with the Constant-
DataManager as an interface.

2. Identify how the Constant Data Manager pattern can be used to store
different application-specific error messages.

Figure 7.1 Different Application Objects

Account

save()

final ACCOUNT_DATA_FILE:String ="ACCOUNT.TXT"
final VALID_MIN_LNAME_LEN:int =2

Address

save()

final ADDRESS_DATA_FILE:String ="ADDRESS.TXT"
final VALID_ST_LEN:int =2
final VALID_ZIP_CHARS:String ="0123456789"
final DEFAULT_COUNTRY:String ="USA"

CreditCard

save()

final CC_DATA_FILE:String ="CC.TXT"
final VALID_CC_CHARS:String ="0123456789"
final MASTER:String ="MASTER"
final VISA:String ="VISA"
final DISCOVER:String ="DISCOVER"

© 2004 by CRC Press LLC

g

3. The ConstantDataManager in Listing 7.2 contains hard-coded values
for different constant items. Enhance the ConstantDataManager class
to read values from a file and initialize different constant data items when
it is first constructed.

Listing 7.1 Application Classes: Account, Address and CreditCard

public class Account {

public static final String ACCOUNT_DATA_FILE = "ACCOUNT.TXT";

public static final int VALID_MIN_LNAME_LEN = 2;

public void save() {

}

}

public class Address {

public static final String ADDRESS_DATA_FILE = "ADDRESS.TXT";

public static final int VALID_ST_LEN = 2;

public static final String VALID_ZIP_CHARS = "0123456789";

public static final String DEFAULT_COUNTRY = "USA";

public void save() {

}

}

public class CreditCard {

public static final String CC_DATA_FILE = "CC.TXT";

public static final String VALID_CC_CHARS = "0123456789";

public static final String MASTER = "MASTER";

public static final String VISA = "VISA";

public static final String DISCOVER = "DISCOVER";

public void save() {

}

}

© 2004 by CRC Press LLC

g

Listing 7.2 ConstantDataManager Class

public class ConstantDataManager {

public static final String ACCOUNT_DATA_FILE = "ACCOUNT.TXT";

public static final int VALID_MIN_LNAME_LEN = 2;

public static final String ADDRESS_DATA_FILE = "ADDRESS.TXT";

public static final int VALID_ST_LEN = 2;

public static final String VALID_ZIP_CHARS = "0123456789";

public static final String DEFAULT_COUNTRY = "USA";

public static final String CC_DATA_FILE = "CC.TXT";

public static final String VALID_CC_CHARS = "0123456789";

public static final String MASTER = "MASTER";

public static final String VISA = "VISA";

public static final String DISCOVER = "DISCOVER";

}

© 2004 by CRC Press LLC

g

Figure 7.2 Different Application Objects Access the ConstantDataManager for the
Constant Data

ConstantDataManager

save()

final ACCOUNT_DATA_FILE:String ="ACCOUNT.TXT"
final VALID_MIN_LNAME_LEN:int =2

final ADDRESS_DATA_FILE:String ="ADDRESS.TXT"
final VALID_ST_LEN:int =2
final VALID_ZIP_CHARS:String ="0123456789"
final DEFAULT_COUNTRY:String ="USA"

final CC_DATA_FILE:String ="CC.TXT"
final VALID_CC_CHARS:String ="0123456789"
final MASTER:String ="MASTER"
final VISA:String ="VISA"
final DISCOVER:String ="DISCOVER"

Account

save()

CreditCard

save()

Address

save()

<<uses>>

<<uses>>

<<uses>>

© 2004 by CRC Press LLC

53

8

IMMUTABLE OBJECT

This pattern was previously described in Grand98.

DESCRIPTION

In general, classes in an application are designed to carry data and have
behavior. Sometimes a class may be designed in such a way that its instances
can be used just as carriers of related data without any specific behavior. Such
classes can be called data model classes and instances of such classes ar e
referred to as data objects. For example, consider the Employee class in Figure
8.1 and Listing 8.1.

Figure 8.1 Employee Representation

Employee

getFirstName():String
getLastName():String
getSSN():String
getAddress():String
getCar():Car
setFirstName(fname:String)
setLastName(lname:String)
setSSN(ssn:String)
setAddress(addr:String)
setCar(c:Car)
save():boolean
delete():boolean
isValid():boolean
update():boolean

firstName:String
lastName:String
SSN:String
address:String
car:Car

© 2004 by CRC Press LLC

g

Listing 8.1 Employee Class

public class Employee {

//State

private String firstName;

private String lastName;

private String SSN;

private String address;

private Car car;

//Constructor

public Employee(String fn, String ln, String ssn,

 String addr, Car c) {

firstName = fn;

lastName = ln;

SSN = ssn;

address = addr;

car = c;

}

//Behavior

public boolean save() {

//…

return true;

}

public boolean isValid() {

//…

return true;

}

public boolean update() {

//…

 return true;

}

(continued)

© 2004 by CRC Press LLC

j

Instances of the Employee class above have both the data and the behavior.
The corresponding data model class can be designed as in Figure 8.2 and Listing
8.2 without any behavior.

In a typical application scenario, several client objects may simultaneously
access instances of such data model classes. This could lead to problems if changes

Listing 8.1 Employee Class (Continued)

//Setters

public void setFirstName(String fname) {

firstName = fname;

}

public void setLastName(String lname) {

lastName = lname;

}

public void setSSN(String ssn) {

SSN = ssn;

}

public void setCar(Car c) {

car = c;

}

public void setAddress(String addr) {

address = addr;

}

//Getters

public String getFirstName() {

return firstName;

}

public String getLastName() {

return lastName;

}

public String getSSN() {

return SSN;

}

public Car getCar() {

return car;

}

public String getAddress() {

return address;

}

}

© 2004 by CRC Press LLC

g

Figure 8.2 EmployeeModel Class

Listing 8.2 EmployeeModel Class

public class EmployeeModel {

//State

private String firstName;

private String lastName;

private String SSN;

private String address;

private Car car;

//Constructor

public EmployeeModel(String fn, String ln, String ssn,

String addr, Car c) {

firstName = fn;

lastName = ln;

SSN = ssn;

address = addr;

car = c;

}

(continued)

EmployeeModel

getFirstName():String
getLastName():String
getSSN():String
getAddress():String
getCar():Car
setFirstName(fname:String)
setLastName(lname:String)
setSSN(ssn:String)
setAddress(addr:String)
setCar(c:Car)

firstName:String
lastName:String
SSN:String
address:String
car:Car

© 2004 by CRC Press LLC

j

to the state of a data object are not coordinated properly. The Immutable Object
pattern can be used to ensure that the concurrent access to a data object by
several client objects does not result in any problem. The Immutable Object
pattern accomplishes this without involving the overhead of synchronizing the
methods to access the object data.

Listing 8.2 EmployeeModel Class (Continued)

//Setters

public void setFirstName(String fname) {

firstName = fname;

}

public void setLastName(String lname) {

lastName = lname;

}

public void setSSN(String ssn) {

SSN = ssn;

}

public void setCar(Car c) {

car = c;

}

public void setAddress(String addr) {

address = addr;

}

//Getters

public String getFirstName() {

return firstName;

}

public String getLastName() {

return lastName;

}

public String getSSN() {

return SSN;

}

public Car getCar() {

return car;

}

public String getAddress() {

return address;

}

}

© 2004 by CRC Press LLC

g

Applying the Immutable Object pattern, the data model class can be designed
in such a way that the data carried by an instance of the data model class remains
unchanged over its entire lifetime. That means the instances of the data model
class become immutable.

In general, concurrent access to an object creates problems when one thread
can change data while a different thread is reading the same data. The fact that
the data of an immutable object cannot be modified makes it automatically thread-
safe and eliminates any concurrent access related problems.

Though using the Immutable Object pattern opens up an application for all
kinds of performance tuning tricks, it must be noted that designing an object as
immutable is an important decision. Every now and then it turns out that objects
that were once thought of as immutables are in fact mutable, which could result
in difficult implementation changes.

EXAMPLE

As an example, let us redesign the EmployeeModel class to make it immutable
by applying the following changes.

1. All instance variables (state) must be set in the constructor alone. No other
method should be provided to modify the state of the object. The con-
structor is automatically thread-safe and hence does not lead to problems.

2. It may be possible to override class methods to modify the state. In order
to prevent this, declare the class as final. Declaring a class as final does
not allow the class to be extended further.

3. All instance variables should be declared final so that they can be set only
once, inside the constructor.

4. If any of the instance variables contain a reference to an object, the
corresponding getter method should return a copy of the object it refers
to, but not the actual object itself.

Figure 8.3 and Listing 8.3 show the resulting immutable version of the Employ-
eeModel class.

The immutable version of the EmployeeModel objects can safely be used in
a multithreaded environment.

PRACTICE QUESTIONS

1. Design an immutable class that contains the line styles and colors used in
a given image.

2. Design an immutable class to carry the data related to a company such as
the company address, phone, fax, company name and other details.

© 2004 by CRC Press LLC

j

Figure 8.3 EmployeeModel Class: Immutable Version

EmployeeModel

getFirstName():String
getLastName():String
getSSN():String
getAddress():String

getCar():Car

final firstName:String
final lastName:String
final SSN:String
final address:String
final car:Car

final class

return car.clone();

© 2004 by CRC Press LLC

g

Listing 8.3 EmployeeModel Class: Immutable Version

public final class EmployeeModel {

//State

private final String firstName;

private final String lastName;

private final String SSN;

private final String address;

private final Car car;

//Constructor

public EmployeeModel(String fn, String ln, String ssn,

String addr, Car c) {

firstName = fn;

lastName = ln;

SSN = ssn;

address = addr;

car = c;

}

//Getters

public String getFirstName() {

return firstName;

}

public String getLastName() {

return lastName;

}

public String getSSN() {

return SSN;

}

public Car getCar() {

//return a copy of the car object

return (Car) car.clone();

}

public String getAddress() {

return address;

}

}

© 2004 by CRC Press LLC

61

9

MONITOR

DESCRIPTION

In general, an object may need to access shared resources such as files as part
of its implementation to provide the services it is designed for. In a multithreaded
environment, when methods of such an object are accessed simultaneously by
more than one thread, it could result in unpredictable behavior. Instances of such
incorrect and irregular behavior resulting from the concurrent access to an object’s
methods by multiple threads are referred to as race conditions.

The monitor is a mechanism to obtain a lock on such an object to ensure that
only one thread is allowed to execute any method on that object at any given
time. Instead of keeping the responsibility on its client objects, the actual service
provider object itself can be designed to be responsible to ensure that no two
threads can execute its methods simultaneously. This can be accomplished using
the monitor concept. In Java this can be accomplished by declaring the methods
of an object using the synchronized keyword.

The following example demonstrates the use of synchronizing an object’s
methods to prevent race conditions.

EXAMPLE

Let us build a utility class whose instances can be used to log messages in a
multithreaded environment.

A simple message logging utility class can be designed as in Listing 9.1.
Other application objects can log messages to the log file by invoking the log

method on a FileLogger instance. Inside the log method, the FileLogger
performs the necessary file operations required to log an input message. It is to
be noted that the log method is declared with the synchronized keyword. Without
synchronization, when multiple threads simultaneously try to log messages by
invoking the log method on the same FileLogger object, it could result in
unpredictable behavior. This is because multiple threads try to perform the same
set of open, write and close operations on the same log file at the same time.

The synchronized keyword ensures that only one thread is allowed to execute
the log method on a given FileLogger object at any given point in time. This
guarantee comes at a price. Declaring an object’s methods as synchronized can
have negative impact on the performance of an application that makes use of

© 2004 by CRC Press LLC

g

those methods. In general, synchronized methods run many times slower than
their nonsynchronized counterparts. Hence an object’s methods should be
designed as synchronized methods only after careful consideration.

An object can have any number of synchronized methods. For a thread to
execute a synchronized method on an object, it needs to get a lock on that object.
The thread holds the lock on the object as long as the method execution continues.
While a thread holds a lock on an object, no other thread is given a lock on the
same object and hence other threads cannot execute any of the synchronized
methods on the same object.

PRACTICE QUESTIONS

1. Design a thread-safe LogReader class to read messages from the log file
log.txt.

2. As can be seen from the example, the monitor concept ensures the
prevention of race conditions by providing a lock on an object to a thread.
Identify how to provide a lock on an entire class of objects when a thread
is executing some code on an instance of that class. In other words, when
a thread is executing a method on an object, no other thread should be
allowed to execute the same method even on a different instance of the
same class.

Listing 9.1 A Simple Message Logger

public class FileLogger {

public synchronized void log(String msg) {

DataOutputStream dos = null;

try {

dos = new DataOutputStream(

new FileOutputStream("log.txt”,true));

dos.writeBytes(msg);

dos.close();

} catch (FileNotFoundException ex) {

//

}

catch (IOException ex) {

//

}

}

}

© 2004 by CRC Press LLC

IV
CREATIONAL PATTERNS

Creational Patterns:

� Deal with one of the most commonly performed tasks in an OO application,
the creation of objects.

� Support a uniform, simple, and controlled mechanism to create objects.
� Allow the encapsulation of the details about what classes are instantiated

and how these instances are created.
� Encourage the use of interfaces, which reduces coupling.

Chapter Pattern Name Description

10 Factory
Method

When a client object does not know which class to
instantiate, it can make use of the factory method to create
an instance of an appropriate class from a class hierarchy
or a family of related classes. The factory method may be
designed as part of the client itself or in a separate class.
The class that contains the factory method or any of its
subclasses decides on which class to select and how to
instantiate it.

11 Singleton Provides a controlled object creation mechanism to ensure
that only one instance of a given class exists.

12 Abstract
Factory

Allows the creation of an instance of a class from a suite of
related classes without having a client object to specify the
actual concrete class to be instantiated.

13 Prototype Provides a simpler way of creating an object by cloning it
from an existing (prototype) object.

14 Builder Allows the creation of a complex object by providing the
information on only its type and content, keeping the
details of the object creation transparent to the client. This
allows the same construction process to produce different
representations of the object.

© 2004 by CRC Press LLC

10

FACTORY METHOD

This pattern was previously described in GoF95.

DESCRIPTION

In general, all subclasses in a class hierarchy inherit the methods implemented
by the parent class. A subclass may override the parent class implementation to
offer a different type of functionality for the same method. When an application
object is aware of the exact functionality it needs, it can directly instantiate the
class from the class hierarchy that offers the required functionality.

At times, an application object may only know that it needs to access a class
from within the class hierarchy, but does not know exactly which class from
among the set of subclasses of the parent class is to be selected. The choice of
an appropriate class may depend on factors such as:

� The state of the running application
� Application configuration settings
� Expansion of requirements or enhancements

In such cases, an application object needs to implement the class selection
criteria to instantiate an appropriate class from the hierarchy to access its services
(Figure 10.1).

This type of design has the following disadvantages:

� Because every application object that intends to use the services offered
by the class hierarchy needs to implement the class selection criteria, it
results in a high degree of coupling between an application object and
the service provider class hierarchy.

� Whenever the class selection criteria change, every application object that
uses the class hierarchy must undergo a corresponding change.

� Because class selection criteria needs to take all the factors that could
affect the selection process into account, the implementation of an appli-
cation object could contain inelegant conditional statements.

© 2004 by CRC Press LLC

g

� If different classes in the class hierarchy need to be instantiated in diverse
manners, the implementation of an application object can become more
complex.

� It requires an application object to be fully aware of the existence and the
functionality offered by each class in the service provider class hierarchy.

In such cases, the Factory Method pattern recommends encapsulating the
functionality required, to select and instantiate an appropriate class, inside a
designated method referred to as a factory method. Thus, a factory method can
be defined as a method in a class that:

� Selects an appropriate class from a class hierarchy based on the application
context and other influencing factors

� Instantiates the selected class and returns it as an instance of the parent
class type

Encapsulation of the required implementation to select and instantiate an
appropriate class in a separate method has the following advantages:

� Application objects can make use of the factory method to get access to
the appropriate class instance. This eliminates the need for an application
object to deal with the varying class selection criteria.

� Besides the class selection criteria, the factory method also implements
any special mechanisms required to instantiate the selected class. This
is applicable if different classes in the hierarchy need to be instantiated
in different ways. The factory method hides these details from applica-
tion objects and eliminates the need for them to deal with these
intricacies.

Figure 10.1 Client Object Directly Accessing a Service Provider Class Hierarchy

ParentClass

SubClass_1

App_object

Client

SubClass_2

Class Hierarchy

© 2004 by CRC Press LLC

y

� Because the factory method returns the selected class instance as an object
of the parent class type, an application object does not have to be aware
of the existence of the classes in the hierarchy.

One of the simplest ways of designing a factory method is to create an abstract
class or an interface that just declares the factory method. Different subclasses
(or implementer classes in the case of an interface) can be designed to implement
the factory method in its entirety as depicted in Figure 10.2. Another strategy is
to create a concrete creator class with default implementation for the factory
method in it. Different subclasses of this concrete class can override the factory
method to implement specialized class selection criteria.

EXAMPLE

Let us design the functionality to log messages in an application. In general,
logging messages is one of the most commonly performed tasks in software
applications. Logging appropriate messages at appropriate stages can be extremely
useful for debugging and monitoring applications.

Because the message logging functionality could be needed by many different
clients, it would be a good idea to keep the actual message logging functionality
inside a common utility class so that client objects do not have to repeat these
details.

Figure 10.2 A Client Object Accessing a Service Provider Class Hierarchy Using a Factory
Method

ParentClass

SubClass_1

App_object

Client

SubClass_2

Class Hierarchy

ConcreteCreator

factoryMethod():ParentClass

<<interface>>
Creator

factoryMethod():ParentClass

Factory Method Implementation

© 2004 by CRC Press LLC

g

Let us define a Java interface Logger (Listing 10.1) that declares the interface
to be used by the client objects to log messages.

In general, an incoming message could be logged to different output media,
in different formats. Different concrete implementer classes of the Logger inter-
face can handle these differences in implementation. Let us define two such
implementers as in Table 10.1. The resulting class hierarchy is depicted in Figure
10.3.

Each of the Logger implementer classes (Listing 10.2) offers the respective
functionality stated in Table 10.1 inside the log method declared by the Logger
interface.

Consider an application object LoggerTest that intends to use the services
provided by the Logger implementers. Suppose that the overall application
message logging configuration can be specified using the logger.properties
property file.

Listing 10.1 Logger Interface

public interface Logger {

public void log(String msg);

}

Table 10.1 Logger Implementers

Implementer Functionality

FileLogger Stores incoming messages to a log file
ConsoleLogger Displays incoming messages on the screen

Figure 10.3 Message Logging Utility Class Hierarchy

<<interface>>
Logger

log(msg:String)

FileLogger

log(msg:String)

ConsoleLogger

log(msg:String)

© 2004 by CRC Press LLC

y

Sample logger.properties file contents
FileLogging=OFF

Depending on the value of the FileLogging property, an appropriate
Logger implementer needs to be used to log messages. For example, if the
FileLogging property is set to ON, messages are to be logged to a file and
hence a FileLogger object can be used to log messages. Similarly, if the
FileLogging property is set to OFF, messages are to be displayed on the console
and hence a ConsoleLogger object can be used.

To log messages, an application object such as the LoggerTest needs to:

� Identify an appropriate Logger implementer by reading the FileLog-
ging property value from the logger.properties file

� Instantiate the Logger implementer and invoke the log method by
passing the message text to be logged as an argument

This requires every application object to:

� Be aware of the existence and the functionality of all implementers of the
Logger interface and their subclasses

� Provide the implementation required to select and instantiate an appropri-
ate Logger implementer

Figure 10.4 depicts this design strategy.
Applying the Factory Method pattern, the necessary implementation for select-

ing and instantiating an appropriate Logger implementer can be encapsulated
inside a separate getLogger method in a separate class LoggerFactory

Listing 10.2 Logger Implementer Classes

public class FileLogger implements Logger {

public void log(String msg) {

FileUtil futil = new FileUtil();

futil.writeToFile("log.txt”, msg, true, true);

}

}

public class ConsoleLogger implements Logger {

public void log(String msg) {

System.out.println(msg);

}

}

© 2004 by CRC Press LLC

g

(Listing 10.3). The LoggerFactory, with the getLogger factory method, plays
the role of the ConcreteCreator shown in Figure 10.2.

As part of its implementation, the factory method getLogger checks the
logger.properties property file to see if file logging is enabled and decides
which Logger implementation is to be instantiated. The selected Logger imple-
menter instance is returned as an object of type Logger.

With the factory method in place, client objects do not need to deal with the
intricacies involved in selecting and instantiating an appropriate Logger imple-
menter. Client objects do not need to know the existence of different implementers
of the Logger interface and their associated functionality (Figure 10.5).

Whenever a client object such as the LoggerTest (Listing 10.4) needs to log
a message, it can:

� Invoke the factory method getLogger. When the factory method returns,
the client object does not have to know the exact Logger subtype that
is instantiated as long as the returned object is of the Logger type.

� Invoke the log method exposed by the Logger interface on the returned
object.

Figure 10.6 shows the message flow when the client object LoggerTest uses
the LoggerFactory factory method to create an appropriate Logger imple-
menter to log a message.

In this example application design, the creator class LoggerFactory is
designed as a concrete class with default implementation for the factory method
getLogger. There can be variations in the way in which the class selection
criterion is implemented. Such variations can be implemented by overriding the
getLogger method in LoggerFactory subclasses.

Figure 10.4 Client LoggerTest Accessing Logger Implementers Directly

<<interface>>
Logger

log(msg:String)

FileLogger

log(msg:String)

ConsoleLogger

log(msg:String)

LoggerTest

<<creates>>

<<creates>>

© 2004 by CRC Press LLC

y

PRACTICE QUESTIONS

1. Add a new logger DBLogger that logs messages to a database.
2. Create a subclass of the LoggerFactory class and override the getLog-

ger implementation to implement a different class selection criterion.

Listing 10.3 LoggerFactory Class

public class LoggerFactory {

public boolean isFileLoggingEnabled() {

Properties p = new Properties();

try {

p.load(ClassLoader.getSystemResourceAsStream(

"Logger.properties"));

String fileLoggingValue =

p.getProperty("FileLogging");

if (fileLoggingValue.equalsIgnoreCase("ON") == true)

return true;

else

return false;

} catch (IOException e) {

return false;

}

}

//Factory Method

public Logger getLogger() {

if (isFileLoggingEnabled()) {

return new FileLogger();

} else {

return new ConsoleLogger();

}

}

}

© 2004 by CRC Press LLC

g

Figure 10.5 The Client LoggerTest Accessing the Logger Class Hierarchy after the
Factory Method Pattern Is Applied

Listing 10.4 Client LoggerTest Class

public class LoggerTest {

public static void main(String[] args) {

LoggerFactory factory = new LoggerFactory();

Logger logger = factory.getLogger();

logger.log("A Message to Log");

}

}

Figure 10.6 Message Flow When a Client Uses the LoggerFactory to Create an Appro-
priate Logger to Log a Message

<<interface>>
Logger

log(msg:String)

LoggerFactory

getLogger():Logger

FileLogger

log(msg:String)

ConsoleLogger

log(msg:String)

LoggerTest

<<creates>>

<<uses>>

<<creates>>

:LoggerTest :LoggerFactory

:FileLogger :ConsoleLoggergetLogger()

FileLogger()

ConsoleLogger()

log(msg:String)

log(msg:String)

The getLogger factory method
creates an instance of

either the FileLogger or the
ConsoleLogger

invoke the log method
on the Logger instance

created

© 2004 by CRC Press LLC

11

SINGLETON

This pattern was previously described in GoF95.

DESCRIPTION

The Singleton pattern is an easy to understand design pattern. Sometimes, there
may be a need to have one and only one instance of a given class during the
lifetime of an application. This may be due to necessity or, more often, due to
the fact that only a single instance of the class is sufficient. For example, we may
need a single database connection object in an application. The Singleton pattern
is useful in such cases because it ensures that there exists one and only one
instance of a particular object ever. Further, it suggests that client objects should
be able to access the single instance in a consistent manner.

WHO SHOULD BE RESPONSIBLE?

Having an instance of the class in a global variable seems like an easy way to
maintain the single instance. All client objects can access this instance in a
consistent manner through this global variable. But this does not prevent clients
from creating other instances of the class. For this approach to be successful, all
of the client objects have to be responsible for controlling the number of instances
of the class. This widely distributed responsibility is not desirable because a client
should be free from any class creation process details. The responsibility for
making sure that there is only one instance of the class should belong to the
class itself, leaving client objects free from having to handle these details.

A class that maintains its single instance nature by itself is referred to as a
Singleton class.

EXAMPLE

Let us continue to work on the message logging utility example we have designed
during the Factory Method pattern discussion in the previous chapter. One of the
implementers of the interface, the class, logs incoming
messages to the file . Having a singleton is helpful when there is only
one physical instance of what the object represents. This is true in case of the

© 2004 by CRC Press LLC

g

because there is only one physical log file. In an application, when
different client objects try to log messages to the file, there could potentially be
multiple instances of the class in use by each of the client objects.
This could lead to different issues due to the concurrent access to the same file
by different objects.

One of the solutions is to maintain an instance of the class in
a global variable within the application. This instance can be accessed in a
consistent manner by all clients providing them with a single, global point of
access to it. However this does not solve the problem fully.

� It does not prevent clients from creating new instances of the
class.

� It does not prevent multiple threads within the same client from executing
the method.

Another solution is to apply the monitor concept and declare the
method as synchronized.

The monitor concept, discussed under Basic Patterns, ensures that no two threads are
allowed to access the same object at the same time.

This does prevent multiple threads from entering the same method for exe-
cution, but does not prevent the client objects from creating multiple instances
of the class.

In addition to declaring the method as synchronized, what is needed is
a way to ensure that there exists one and only one instance of the
class during the lifetime of an application. This needs to be done in such a way
that the client objects do not have to monitor the creation process or keep track
of the number of instances that exist.

To accomplish this using the Singleton pattern, the following changes can be
made to the class to make it a singleton class (Figure 11.1 and
Listing 11.1).

Figure 11.1 Class as a Singleton

© 2004 by CRC Press LLC

g

Make the Constructor Private

Making the constructor private prevents client objects from creating
objects by invoking its constructor. At the same time, other methods inside

will have access to the private constructor.

Static Public Interface to Access an Instance

Provide a public interface, in the form of a static method , for
clients to be able to get access to an instance of the class. This
public method must be static for a client to be able to access this method without
having to instantiate the class.

Inside the method, create and return an instance of the
class by accessing its private constructor. This is done only during

the first invocation of the method. Every subsequent call to the
method returns the same instance that is created

during the first invocation. A new instance of the class is not created again.
A design like this ensures that there exists only one instance of the

class and that no two threads are allowed to execute the
method at the same time. This solves the problems the earlier design approach
has posed.

In the case of clients expecting to use the singleton object (the
in this case), nothing really changes in the way they interact with

the singleton object.

Listing 11.1 Singleton Class

© 2004 by CRC Press LLC

g

Figure 11.2 shows the message flow when the client accesses
the singleton .

The only change is for those client objects that attempt to create an instance
of the class (the in this case). Instead of invoking
the constructor method, they will have to use the public method
to get an instance of the class as in Listing 11.2.

Figure 11.2 Message Flow When a Client Accesses the Singleton and
Invokes Its Method to Log a Message

:LoggerTester :LoggerFactory :FileLogger

getLogger()

getInstance()

static method call to the singleton class
getInstance static method checks to
see if the object has been created yet
if yes - it returns the object to LoggerTester.
if no - it creates the instance and returns it
to LoggerTester.

log(msg:String)

call to the singleton object

© 2004 by CRC Press LLC

g

PRACTICE QUESTIONS

1. Besides the approach adopted in the example above, there can be different
ways to ensure the singleton nature of an object. Think of other ways of
accomplishing it.

2. Design and implement a database connection class as singleton.

Listing 11.2 Class: Revised

© 2004 by CRC Press LLC

12

ABSTRACT FACTORY

This pattern was previously described in GoF95.

DESCRIPTION

During the discussion of the Factory Method pattern we saw that:

� In the context of a factory method, there exists a class hierarchy composed
of a set of subclasses with a common parent class.

� A factory method is used when a client object knows when to create an
instance of the parent class type, but does not know (or should not know)
exactly which class from among the set of subclasses (and possibly the
parent class) should be instantiated. Besides the class selection criteria, a
factory method also hides any special mechanism required to instantiate
the selected class.

The Abstract Factory pattern takes the same concept to the next level. In
simple terms, an abstract factory is a class that provides an interface to produce
a family of objects. In the Java programming language, it can be implemented
either as an interface or as an abstract class.

In the context of an abstract factory there exist:

� Suites or families of related, dependent classes.
� A group of concrete factory classes that implements the interface provided

by the abstract factory class. Each of these factories controls or provides
access to a particular suite of related, dependent objects and implements
the abstract factory interface in a manner that is specific to the family of
classes it controls.

The Abstract Factory pattern is useful when a client object wants to create an
instance of one of a suite of related, dependent classes without having to know
which specific concrete class is to be instantiated. In the absence of an abstract
factory, the required implementation to select an appropriate class (in other words,
the class selection criterion) needs to be present everywhere such an instance is
created. An abstract factory helps avoid this duplication by providing the necessary

© 2004 by CRC Press LLC

g

interface for creating such instances. Different concrete factories implement this
interface. Client objects make use of these concrete factories to create objects
and, therefore, do not need to know which concrete class is actually instantiated.
Figure 12.1 shows the generic class association when the Abstract Factory pattern
is applied.

The abstract factory shown in the Figure 12.1 class diagram is designed as a
Java interface with its implementers as concrete factories. In Java, an abstract
factory can also be designed as an abstract class with its concrete subclasses as
factories, where each factory is responsible for creating and providing access to
the objects of a particular suite of classes.

ABSTRACT FACTORY VERSUS FACTORY METHOD

Abstract Factory is used to create groups of related objects while hiding the actual
concrete classes. This is useful for plugging in a different group of objects to alter
the behavior of the system. For each group or family, a concrete factory is
implemented that manages the creation of the objects and the interdependencies
and consistency requirements between them. Each concrete factory implements
the interface of the abstract factory.

This situation often arises when designing a framework or a library, which
needs to be kept extensible. One example is the JDBC (Java Database Connectivity)

Figure 12.1 Generic Class Associations While Applying the Abstract Factory Pattern

<<interface>>
AbstractFactory

createProduct_A()
createProduct_B()

ConcreteFactory_2

createProduct_A()
createProduct_B()

ConcreteFactory_1

createProduct_A()
createProduct_B()

<<interface>>
Product_A

Product_A2Product_A1

<<interface>>
Product_B

Product_B2Product_B1

<
<
c
r
e
a
t
e
s
>
>

<<creates>>

<
<
c
r
e
a
t
e
s
>
>

<<creates>>

© 2004 by CRC Press LLC

y

driver system, where each driver contains classes that implement the Connec-
tion, the Statement and the ResultSet interfaces. The set of classes that
the Oracle JDBC driver contains are different from the set of classes that the DB2
JDBC driver contains and they must not be mixed up. This is where the role of
the factory comes in: It knows which classes belong together and how to create
objects in a consistent way.

Factory Method is specifying a method for the creation of an object, thus
allowing subclasses or implementing classes to define the concrete object. Abstract
Factories are usually implemented using the Factory Method pattern. Another
approach would be to use the Prototype pattern.

EXAMPLE I

Let us design an application to query the features of different types of vehicles.
For simplicity, let us consider two types of vehicles: cars and SUVs. Further, a
vehicle can be of either luxury or nonluxury category.

Let us define a common Car interface (Figure 12.2, Listing 12.1) that declares
the interface to be implemented by different classes that represent different types
of cars.

Let us design two classes (Listing 12.2) that implement the Car interface —
LuxuryCar and NonLuxuryCar — representing luxury cars and nonluxury cars,
respectively. Figure 12.2 shows the resulting class hierarchy.

A similar class hierarchy can be designed to represent SUVs (Figure 12.3,
Listing 12.3). In Figure 12.3, the SUV interface declares the common interface to
be offered by different classes that represent SUVs and its implementers —
LuxurySUV and NonLuxurySUV — (Listing 12.4) represent luxury and nonluxury
SUVs, respectively.

For simplicity, both the Car and the SUV class hierarchies are designed to offer
only two basic operations to retrieve the details of a car or SUV. Together these
class hierarchies contain two families of classes as listed in Table 12.1.

Figure 12.2 The Car Class Hierarchy

LuxuryCar

getCarName():String
getCarFeatures():String

name:String

NonLuxuryCar

getCarName():String
getCarFeatures():String

name:String

<<interface>>
Car

getCarName():String
getCarFeatures():String

© 2004 by CRC Press LLC

g

An application object can make use of the services of dif ferent Car/SUV
implementers (Table 12.1) to query the features of a car or SUV. If such an
application object is to directly deal with different concrete Car/SUV classes, it
needs to be aware of the existence of different concrete Car/SUV implementers.
In addition, this approach results in the required implementation to select and
instantiate an appropriate Car/SUV class to be present everywhere an application

Listing 12.1 The Common Car Interface

public interface Car {

public String getCarName();

public String getCarFeatures();

}//End of class

Listing 12.2 Classes Representing Luxury and NonLuxury Cars

public class LuxuryCar implements Car {

private String name;

public LuxuryCar(String cName) {

name = cName;

}

public String getCarName() {

return name;

}

public String getCarFeatures() {

return "Luxury Car Features ";

};

}//End of class

public class NonLuxuryCar implements Car {

private String name;

public NonLuxuryCar(String cName) {

name = cName;

}

public String getCarName() {

return name;

}

public String getCarFeatures() {

return "Non-Luxury Car Features ";

};

}//End of class

© 2004 by CRC Press LLC

y

object needs to query the features of a car or SUV. Using the Abstract Factory
pattern in such cases, the responsibility of selecting and instantiating an appro-
priate Car/SUV implementer can be moved out of application objects to a separate
designated abstract factory class. The abstract factory class may simply declare
the required interface, leaving the actual implementation details of class selection
and instantiation to its implementers. This type of design eliminates the need for
an application object to be aware of the existence of different concrete Car/SUV
classes.

Applying the Abstract Factory pattern in this case, let us define an interface
in the form of an abstract class VehicleFactory (Figure 12.4, Listing 12.5).

The VehicleFactory class acts as an abstract factory. A client object can
use an instance of a concrete factory that implements the VehicleFactory
interface to create objects representing vehicles of different types and categories
without having to know the actual concrete class that needs to be instantiated.
As we proceed with the design, we will create a utility method that can be used
by different client objects to obtain an appropriate concrete factory (which
implements the abstract factory interface).

As part of applying the Abstract Factory pattern, let us define two concrete
factory classes — LuxuryVehicleFactory and NonLuxuryVehicleFactory
— as concrete subclasses (Listing 12.6) of the VehicleFactory with responsi-
bilities as detailed in Table 12.2. The class diagram in Figure 12.5 shows the
resulting class hierarchy.

Figure 12.3 The SUV Class Hierarchy

Listing 12.3 The Common SUV Interface

public interface SUV {

public String getSUVName();

public String getSUVFeatures();

}//End of class

LuxurySUV

getSUVName():String
getSUVFeatures():String

name:String

NonLuxurySUV

getSUVName():String
getSUVFeatures():String

name:String

<<interface>>
SUV

getSUVName():String
getSUVFeatures():String

© 2004 by CRC Press LLC

g

Now, it also needs to be ensured that client objects do not have to know
about the existence of these concrete factory classes. A client object should be
provided with an appropriate factory object as needed.

To facilitate this, let us add a static method getVehicleFactory(String
type) to the VehicleFactory abstract class (Figure 12.6). This new method
can be implemented to return an appropriate concrete vehicle factory object

Listing 12.4 Classes Representing Luxury and NonLuxury SUVs

public class LuxurySUV implements SUV {

private String name;

public LuxurySUV(String sName) {

name = sName;

}

public String getSUVName() {

return name;

}

public String getSUVFeatures() {

return "Luxury SUV Features ";

};

}//End of class

public class NonLuxurySUV implements SUV {

private String name;

public NonLuxurySUV(String sName) {

name = sName;

}

public String getSUVName() {

return name;

}

public String getSUVFeatures() {

return "Non-Luxury SUV Features ";

};

}//End of class

Table 12.1 Families of Vehicle Classes

Family Member Classes

Luxury LuxuryCar, LuxurySUV
Nonluxury NonLuxuryCar, NonLuxurySUV

© 2004 by CRC Press LLC

y

Figure 12.4 The Abstract Factory Class

Listing 12.5 Abstract VehicleFactory Class

public abstract class VehicleFactory {

public static final String LUXURY_VEHICLE = "Luxury";

public static final String NON_LUXURY_VEHICLE = "Non-Luxury";

public abstract Car getCar();

public abstract SUV getSUV();

…

…

}//End of class

Listing 12.6 Concrete Factory Subclasses of the Abstract VehicleFactory Class

public class LuxuryVehicleFactory extends VehicleFactory {

public Car getCar() {

return new LuxuryCar("L-C");

}

public SUV getSUV() {

return new LuxurySUV("L-S");

}

}//End of class

public class NonLuxuryVehicleFactory extends VehicleFactory {

public Car getCar() {

return new NonLuxuryCar("NL-C");

}

public SUV getSUV() {

return new NonLuxurySUV("NL-S");

}

}//End of class

VehicleFactory

getCar():Car
getSUV():SUV

© 2004 by CRC Press LLC

g

(LuxuryVehicleFactory or NonLuxuryVehicleFactory in this case) to
a calling client object (Listing 12.7).

The getVehicleFactory(String type) method does not need to be
within the abstract factory as we designed in this example application. It can be
in a different class altogether. In such a case, the abstract factory can be imple-
mented as a Java interface instead of its current design as an abstract class.

Table 12.2 Different Concrete Vehicle Factories

Concrete Factory Responsibility

LuxuryVehicleFactory Responsible for creating instances of classes
representing luxury vehicles

NonLuxuryVehicleFactory Responsible for creating instances of classes
representing nonluxury vehicles

Figure 12.5 Abstract VehicleFactory Class Hierarchy

Figure 12.6 Revised Abstract Factory Class

NonLuxuryVehicleFactory

getCar():Car
getSUV():SUV

LuxuryVehicleFactory

getCar():Car
getSUV():SUV

VehicleFactory

getCar():Car
getSUV():SUV

VehicleFactory

getCar():Car
getSUV():SUV
getVehicleFactory(type:String):VehicleFactory

© 2004 by CRC Press LLC

y

Let us see how a typical client object can make use of the class structure we
have put together so far in this example.

The example client object AutoSearchUI (Listing 12.8) displays the necessary
user interface as in Figure 12.7 for querying different vehicle features.

When the Search button is clicked after a vehicle category and type combi-
nation is selected:

1. The client AutoSearchUI invokes the static getVehicleFac-
tory(String type) method on the abstract VehicleFactory class.

2. The getVehicleFactory method creates an appropriate factory object
and returns it as an object of VehicleFactory type.

3. The client AutoSearchUI does not need to know the existence of any
concrete vehicle factory class. It simply invokes the required abstract vehicle
factory method such as getCar or getSUV on the returned factory instance.

4. The factory object internally creates an instance of an appropriate class from
among the family of classes it controls (LuxuryCar/LuxurySUV or Non-
LuxuryCar/NonLuxurySUV) and returns it as an object of Car/SUV type.

5. The client AutoSearchUI does not need to be aware of the existence of
different concrete Car/SUV classes. It simply invokes methods declared
by the Car/SUV interface such as getName or getFeatures on the
object returned in Step 4 above.

The sequence diagram in Figure 12.8 depicts the message exchange between
objects when the client AutoSearchUI uses VehicleFactory (i.e., the abstract
factory) to retrieve luxury car details.

Listing 12.7 Abstract VehicleFactory Class: Revised

public abstract class VehicleFactory {

…

…

public static VehicleFactory getVehicleFactory(String type) {

if (type.equals(VehicleFactory.LUXURY_VEHICLE))

return new LuxuryVehicleFactory();

if (type.equals(VehicleFactory.NON_LUXURY_VEHICLE))

return new NonLuxuryVehicleFactory();

return new LuxuryVehicleFactory();

}

}//End of class

© 2004 by CRC Press LLC

g

Listing 12.8 Client AutoSearchUI Class

public class AutoSearchUI extends JFrame {

…

…

public void actionPerformed(ActionEvent e) {

String searchResult = null;

 if (e.getActionCommand().equals(AutoSearchUI.EXIT)) {

 System.exit(1);

}

if (e.getActionCommand().equals(AutoSearchUI.SEARCH)) {

//get input values

String vhCategory =

objAutoSearchUI.getSelectedCategory();

String vhType = objAutoSearchUI.getSelectedType();

//get one of Luxury or NonLuxury vehicle factories

VehicleFactory vf =

VehicleFactory.getVehicleFactory(vhCategory);

if (vhType.equals(AutoSearchUI.CAR)) {

Car c = vf.getCar();

searchResult =

"Name: " + c.getCarName() + " Features: " +

c.getCarFeatures();

}

if (vhType.equals(AutoSearchUI.SUV)) {

SUV s = vf.getSUV();

searchResult =

"Name: " + s.getSUVName() + " Features: " +

s.getSUVFeatures();

}

objAutoSearchUI.setResult(searchResult);

}

}

…

…

}

© 2004 by CRC Press LLC

y

EXAMPLE II

Let us design a simple customer data management application with the following
features:

� The basic functionality is to validate and save the input customer data
consisting of account, address and credit card data.

� The application should be functional in both local and remote modes.
� In the remote mode, the application should make use of remote objects

using Java Remote Method Invocation (RMI) and save the data to a central
server.

Figure 12.7 Vehicle Query User Interface

Figure 12.8 Luxury Car Details Query: Message Flow

SearchUI VehicleFactory LuxuryVehicleFactory LuxuryCar

getVehicleFactory(vhCategory:String)

create()

getCar()

create()

getCarName()

getCarFeatures()

depending on the input vehicle type,
the VehicleFactory creates either

a LuxuryVehicleFactory or
a NonLuxuryVehicleFactory object

© 2004 by CRC Press LLC

g

� When the remote server is not available, users should be able to operate
the application locally without interruption.

� The process of synchronizing both the local and the central databases is
not considered as part of this example application.

Let us design three classes — Account, Address and CreditCard — as
in Figure 12.9 representing the three different parts of the customer data.

Each of the customer data classes in Figure 12.9 offers methods to accept,
validate and save appropriate parts of the customer data. Instances of these classes
can be used by the application while operating in the local mode. As stated
earlier, the application must function in remote mode as well and should make
use of remote objects using RMI. The set of customer data classes in Figure 12.9
cannot be readily used as remote objects. This is because for a class instance to
be accessible via RMI as a remote object, the class must:

� Extend the built-in java.rmi.server.UnicastRemoteObject class
� Implement the built-in java.rmi.Remote interface or any interface that

is derived from the java.rmi.Remote interface
� Declare all of its methods to throw the built-in java.rmi.RemoteEx-

ception exception

Hence, for the application to be functional in the remote mode, a second set of
customer data classes is needed, whose instances can be accessed using RMI. In

Figure 12.9 Classes Representing the Customer Data

Account

isValid():boolean
save():boolean
getFirstName():String
getLastName():String

firstName:String
lastName:String

Address

isValid():boolean
save():boolean
getAddress():String
getState():String

address:String
city:String
state:String

CreditCard

isValid():String
save():String
getCardType():String
getCardNumber():String
getCardExpDate():String

cardType:String
cardNumber:String
cardExpDate:String

© 2004 by CRC Press LLC

y

addition, both the local and the remote objects must offer the same interface to
enable the application to use both local and remote objects in a seamless manner.

The common interface for both the local and the remote class representations
of the account data can be designed in the form of a Java interface Account
(Figure 12.10) with the following features:

� Derived from the built-in java.rmi.Remote interface to enable its imple-
menters to be used as remote objects accessible via RMI.

� Declares all of its methods to throw the java.lang.Exception excep-
tion. This allows an implementer class to throw any subclass of the
java.lang.Exception class as part of implementing the inter face
methods.

As seen earlier, a remote class must declare all of its methods to throw the
java.rmi.RemoteException. Because the java.rmi.RemoteException is
a subclass of the java.lang.Exception class, the remote class representation of
the account data can safely declare its methods to throw the java.rmi.Remote-
Exception at the time of implementing the common Account interface methods.
Because there are no special requirements for the local class representation of the
customer account data, the local class can be designed to implement the same

Figure 12.10 Account Class Hierarchy

<<interface>>
java.rmi.Remote

<<interface>>
Account

isValid():boolean
save():boolean
getFirstName():String
getLastName():String

LocalAccount

isValid():boolean
save():boolean
getFirstName():String
getLastName():String

RemoteAccount

isValid():boolean
save():boolean
getFirstName():String
getLastName():String

UnicastRemoteObject

java.rmi.RemoteException
Exception

<<throws>>

<
<
t
h
r
o
w
s
>
>

<<throws>>

© 2004 by CRC Press LLC

g

Account interface as the remote class. As a result, both LocalAccount and
RemoteAccount classes, which are the local and remote class representations of
the account data, share the same common Account interface. Figure 12.10 shows
the Account class hierarchy and its relationship with exception and RMI-specific
classes.

In a similar manner, the class representations for both the address and the
credit card parts of the customer data can be designed as in Figures 12.11 and
12.12, respectively.

Let us design an interface in the form of the CustomerFactory Java interface,
which declares the methods to create instances of local or remote family of
customer data classes (Account, Address and CreditCard). Let us further
design two concrete implementers of the CustomerFactory interface as detailed
in Table 12.3.

In this design, the CustomerFactory interface acts as an abstract factory
and each of its concrete implementers act as factories. Figure 12.13 depicts the
resulting factory class hierarchy.

To eliminate the need for a client object to deal with the factory objects directly,
let us design a utility class CustomerUtil with a static method getCustFac-
tory(String mode) that takes the current mode of operation as input and returns
an appropriate CustomerFactory implementer object to the calling client object.

Figure 12.11 Address Class Hierarchy

<<interface>>
java.rmi.Remote

<<interface>>
Address

isValid():boolean
save():boolean
getAddress():String
getState():String

LocalAddress

isValid():boolean
save():boolean
getAddress():String
getState():String

RemoteAddress

isValid():boolean
save():boolean
getAddress():String
getState():String

UnicastRemoteObject

java.rmi.RemoteException

Exception
<<throws>>

<
<
t
h
r
o
w
s
>
>

<<throws>>

© 2004 by CRC Press LLC

y

Logical Flow When the Application Is Run

� The client object that needs to access the services of the customer data
objects to validate and save the customer data is assumed to be aware of
the current mode of operation (i.e., local or remote).

Figure 12.12 CreditCard Class Hierarchy

Table 12.3 Concrete Customer Factory Classes

Implementer Class Responsibility

LocalCustomerFactory Responsible for creating instances of classes
representing the customer data in the local mode:
LocalAccount, LocalAddress and
LocalCreditCard

RemoteCustomerFactory Responsible for creating instances of classes
representing the customer data in the remote mode:
RemoteAccount, RemoteAddress and
RemoteCreditCard

<<interface>>
java.rmi.Remote

<<interface>>
CreditCard

isValid():String
save():String
getCardType():String
getCardNumber():String
getCardExpDate():String

LocalCreditCard

isValid():String
save():String
getCardType():String
getCardNumber():String
getCardExpDate():String

RemoteCreditCard

isValid():String
save():String
getCardType():String
getCardNumber():String
getCardExpDate():String

UnicastRemoteObject

java.rmi.RemoteException

Exception

<<throws>>

<
<
t
h
r
o
w
s
>
>

<<throws>>

© 2004 by CRC Press LLC

g

� By passing the application mode as the parameter, the client object can
invoke the getCustFactory(String) static method of the Custom-
erUtil class.

� Inside the getCustFactory(String) method, the CustomerUtil
creates an appropriate customer factory object and returns it to the client
as an object of the CustomerFactory type.

� The client object can create the required customer data class (Account,
Address or CreditCard) by invoking the CustomerFactory methods
on the returned factory instance.

� Once an appropriate customer data object is created, the class object can
use it to validate and save data.

PRACTICE QUESTIONS

1. Implement the example-II customer data management application.
2. Draw sequence diagrams to depict the message flow when the application

is run.
3. Consider a Web hosting company that offers hosting services on both

Windows and UNIX platforms. Suppose that the Web hosting company
offers three different types of hosting packages — Basic, Premium and
Premium Plus — on both platforms. Design an application using the Abstract
Factory pattern to query the features of different types of hosting packages
offered by the Web hosting company.

Figure 12.13 CustomerFactory Class Hierarchy

<<interface>>
CustomerFactory

getAddress():Address
getAccount():Account
getCreditCard():CreditCard

LocalCustomerFactory

getAddress():Address
getAccount():Account
getCreditCard():CreditCard

RemoteCustomerFactory

getAddress():Address
getAccount():Account
getCreditCard():CreditCard

© 2004 by CRC Press LLC

13

PROTOTYPE

This pattern was previously described in GoF95.

DESCRIPTION

As discussed in earlier chapters, both the Factory Method and the Abstract Factory
patterns allow a system to be independent of the object creation process. In other
words, these patterns enable a client object to create an instance of an appropriate
class by invoking a designated method without having to specify the exact concrete
class to be instantiated. While addressing the same problem as the Factory Method
and Abstract Factory patterns, the Prototype pattern offers a different, more flexible
way of achieveing the same result.

Other uses of the Prototype pattern include:

� When a client needs to create a set of objects that are alike or differ from
each other only in terms of their state and it is expensive to create such
objects in terms of the time and the processing involved.

� As an alternative to building numerous factories that mirror the classes to
be instantiated (as in the Factory Method).

In such cases, the Prototype pattern suggests to:

� Create one object upfront and designate it as a prototype object.
� Create other objects by simply making a copy of the prototype object and

making required modifications.

In the real world, we use the Prototype pattern on many occasions to reduce
the time and effort spent on different tasks. The following are two such examples:

1. New Software Program Creation — Typically programmers tend to make a
copy of an existing program with similar structure and modify it to create
new programs.

2. Cover Letters — When applying for positions at different organizations, an
applicant may not create cover letters for each organization individually
from scratch. Instead, the applicant would create one cover letter in the

© 2004 by CRC Press LLC

g

most appealing format, make a copy of it and personalize it for every
organization.

As can be seen from the examples above, some of the objects are created
from scratch, whereas other objects are created as copies of existing objects and
then modified. But the system or the process that uses these objects does not
differentiate between them on the basis of how they are actually created. In a
similar manner, when using the Prototype pattern, a system should be independent
of the creation, composition and representation details of the objects it uses.

One of the requirements of the prototype object is that it should provide a
way for clients to create a copy of it. By default, all Java objects inherit the built-
in clone() method from the topmost java.lang.Object class. The built-in
clone() method creates a clone of the original object as a shallow copy.

SHALLOW COPY VERSUS DEEP COPY

When an object is cloned as a shallow copy:

� The original top-level object and all of its primitive members are duplicated.
� Any lower-level objects that the top-level object contains are not duplicated.

Only references to these objects are copied. This results in both the orginal
and the cloned object referring to the same copy of the lower-level object.
Figure 13.1 shows this behavior.

In contrast, when an object is cloned as a deep copy:

� The original top-level object and all of its primitive members are duplicated.
� Any lower-level objects that the top-level object contains are also dupli-

cated. In this case, both the orginal and the cloned object refer to two
different lower-level objects. Figure 13.2 shows this behavior.

Figure 13.1 Shallow Copy

OriginalObject

NonobjectReferences
ObjectReference-1

Object-1

ClonedObject

CopyofNonObjectReferences
CopyofObjectReference-1

Refers to
Refers to

© 2004 by CRC Press LLC

yp

Shallow Copy Example

The following is an example of creating a shallow copy using the built-in
java.lang.Object clone() method. Let us design a Person class (Listing
13.1) as an implementer of the built-in Java java.lang.Cloneable interface
with two attributes, a string variable name and a Car object car.

In general, a class must implement the Cloneable interface to indicate that
a field-for-field copy of instances of that class is allowed by the Object.clone()
method. When a class implements the Cloneable interface, it should override
the Object.clone method with a public method. Note that when the clone
method is invoked on an object that does not implement the Cloneable interface,
the exception CloneNotSupportedException is thrown.

As part of its implementation of the public clone method, the Person class
simply invokes the built-in clone method. The built-in clone method creates
a clone of the current object as a shallow copy, which is returned to the calling
client object.

Let us design a client ShallowCopyTest (Listing 13.2) to demonstrate the
behavior of a shallow copy object. To demonstrate the fact that the shallow
copy process duplicates nonobject references only but not object references,
the client:

� Creates an instance of the Person class
� Creates a clone of the Person object created above and alters the values

of its attributes
� Displays the values of its attributes at different stages

When the Car object associated with the cloned object is modified, it can
be seen that the Car object associated with the original object gets affected. This
is because the lower-level Car object is not duplicated and is shared by both the
original and the cloned Person objects, whereas the name attribute value of the
orginal object does not get affected when the cloned object’s name attribute value
is altered. This is because the shallow copy process duplicates attributes that are
of primitive types.

Figure 13.2 Deep Copy

OriginalObject

NonobjectReferences
ObjectReference-1

Object-1

ClonedObject

CopyofNonObjectReferences
CopyofObjectReference-1

CopyofObject-1

© 2004 by CRC Press LLC

g

Listing 13.1 Person Class

class Person implements Cloneable {

//Lower-level object

private Car car;

private String name;

public Car getCar() {

return car;

}

public String getName() {

return name;

}

public void setName(String s) {

name = s;

}

public Person(String s, String t) {

name = s;

car = new Car(t);

}

public Object clone() {

//shallow copy

try {

return super.clone();

} catch (CloneNotSupportedException e) {

return null;

}

}

}

class Car {

private String name;

public String getName() {

return name;

}

public void setName(String s) {

name = s;

}

public Car(String s) {

name = s;

}

© 2004 by CRC Press LLC

yp

When this program is run, the following output is displayed:

Original (orginal values): Person-A - Civic

Clone (before change): Person-A - Civic

Clone (after change): Person-B - Accord

Original (after clone is modified): Person-A – Accord

Deep Copy Example

The same example above can be redesigned by overriding the built-in clone()
method to create a deep copy of the Person object (Listing 13.3). As part of
its implementation of the clone method, to create a deep copy, the Person
class creates a new Person object with its attribute values the same as the original
object and returns it to the client object.

Listing 13.2 Client ShallowCopyTest Class

public class ShallowCopyTest {

public static void main(String[] args) {

//Original Object

Person p = new Person("Person-A,”"Civic");

System.out.println("Original (orginal values): " +

p.getName() + " - " +

p.getCar().getName());

//Clone as a shallow copy

Person q = (Person) p.clone();

System.out.println("Clone (before change): " +

q.getName() + " - " +

q.getCar().getName());

//change the primitive member

q.setName("Person-B");

//change the lower-level object

q.getCar().setName("Accord");

System.out.println("Clone (after change): " +

q.getName() + " - " +

q.getCar().getName());

System.out.println(

"Original (after clone is modified): " +

p.getName() + " - " + p.getCar().getName());

}

}

© 2004 by CRC Press LLC

g

Listing 13.3 Person Class Revised

class Person implements Cloneable {

//Lower-level object

private Car car;

private String name;

public Car getCar() {

return car;

}

public String getName() {

return name;

}

public void setName(String s) {

name = s;

}

public Person(String s, String t) {

name = s;

car = new Car(t);

}

public Object clone() {

//Deep copy

Person p = new Person(name, car.getName());

return p;

}

}

class Car {

private String name;

public String getName() {

return name;

}

public void setName(String s) {

name = s;

}

public Car(String s) {

name = s;

}

}

© 2004 by CRC Press LLC

yp

Similar to the client ShallowCopyTest, a new client DeepCopyTest (Listing
13.4) can be designed to:

� Create an instance of the Person class
� Create a clone of the Person object created above and alter the values

of its attributes
� Display the values of its attributes at different stages

When the Car object associated with the cloned object is modified, it can be
seen that the Car object associated with the original object does not get affected.
This is because the lower-level Car object is duplicated and is not shared by
both the original and the cloned Person objects.

Listing 13.4 Client DeepCopyTest Class

public class DeepCopyTest {

public static void main(String[] args) {

//Original Object

Person p = new Person("Person-A”,"Civic");

System.out.println("Original (orginal values): " +

p.getName() + " - " +

p.getCar().getName());

//Clone as a shallow copy

Person q = (Person) p.clone();

System.out.println("Clone (before change): " +

q.getName() + " - " +

q.getCar().getName());

//change the primitive member

q.setName("Person-B");

//change the lower-level object

q.getCar().setName("Accord");

System.out.println("Clone (after change): " +

q.getName() + " - " +

q.getCar().getName());

System.out.println(

"Original (after clone is modified): " +

p.getName() + " - " + p.getCar().getName());

}

}

© 2004 by CRC Press LLC

g

Similar to a shallow copy, the name attribute value of the orginal object does
not get affected when the cloned object’s name attribute value is altered. This is
because in addition to attributes that are object references, the deep copy process
duplicates those attributes that are of primitive types.

When the client DeepCopyTest is run, it displays the following output. From
the output it can be seen that the lower-level Car object of the original Person
object is unaffected when its clone is modified.

Original (orginal values): Person-A - Civic

Clone (before change): Person-A - Civic

Clone (after change): Person-B - Accord

Original (after clone is modified): Person-A - Civic

EXAMPLE I

Let us consider Practice Question 3 from Chapter 12 — Abstract Factory. The
representation of different hosting packages would have resulted in a class
hierarchy as shown in Figure 13.3.

Applying the Abstract Factory pattern, the application design would have
resulted in a factory class hierarchy as shown in Figure 13.4.

In Figure 13.4, the HostingPlanFactory plays the role of an abstract
factory whereas WinPlanFactory and UnixPlanFactory act as concrete
factories. Each of these concrete factories would be responsible for the creation
of a family of related classes that represent hosting packages on a specific
platform as follows:

� WinPlanFactory would be responsible for the creation of WinBasic,
WinPremium and WinPremiumPlus objects.

Figure 13.3 Hosting Packages Class Hierarchy

HostingPlan

WinPlan UnixPlan

WinBasic UnixBasic

WinPremium UnixPremiumWinPremPlus UnixPremPlus

© 2004 by CRC Press LLC

yp

� UnixPlanFactory would be responsible for the creation of UnixBa-
sic, UnixPremium and UnixPremiumPlus objects.

Client objects can make use of an appropriate concrete factory class instance
to create required HostingPlan objects.

Let us design the same application using the Prototype pattern. Applying the
Prototype pattern, the HostingPlanFactory class hierarchy in Figure 13.4 can
be replaced with a single concrete class HostingPlanKit (Figure 13.5 and
Listing 13.5).

Design Highlights of the HostingPlanKit Class

� Maintains different prototypical objects that represent different types of
hosting packages in its instance variables.

Figure 13.4 Hosting Packages Factory Class Hierarchy

Figure 13.5 Single Class Equivalent of the Abstract Factory Class Hierarchy

<<interface>>
HostingPlanFactory

getBasicPlan():HostingPlan
getPremiumPlan():HostingPlan
getPremPlusPlan():HostingPlan

WinPlanFactory UnixPlanFactory

getBasicPlan():HostingPlan
getPremiumPlan():HostingPlan
getPremPlusPlan():HostingPlan

getBasicPlan():HostingPlan
getPremiumPlan():HostingPlan
getPremPlusPlan():HostingPlan

HostingPlanKit

basicPlan:HostingPlan
premiumPlan:HostingPlan
premPlusPlan:HostingPlan

getBasicPlan():HostingPlan
getPremiumPlan():HostingPlan
getPremPlusPlan():HostingPlan

prototypical objects

© 2004 by CRC Press LLC

g

� Offers a set of methods that can be used by different client objects to get
access to objects representing different hosting plans. As part of its imple-
mentation of these methods, it returns copies of the prototypical objects
it contains.

For a client object to be able to make use of a HostingPlanKit instance,
the HostingPlanKit instance must be configured with appropriate prototypical
objects.

Let us design a separate class HostingPlanManager (Figure 13.6) with the
responsibility of configuring a HostingPlanKit object with appropriate proto-
typical objects and return it to client objects.

public class HostingPlanManager {

public static HostingPlanKit getHostingPlanKit(

String platform) {

HostingPlan basicPlan = null;

HostingPlan premiumPlan = null;

HostingPlan premPlusPlan = null;

if (platform.equalsIgnoreCase("Win")) {

Listing 13.5 HostingPlanKit Class

public class HostingPlanKit {

private HostingPlan basicPlan;

private HostingPlan premiumPlan;

private HostingPlan premPlusPlan;

public HostingPlanKit(HostingPlan basic, HostingPlan premium,

HostingPlan premPlus) {

basicPlan = basic;

premiumPlan = premium;

premPlusPlan = premPlus;

}

public HostingPlan getBasicPlan() {

return (HostingPlan) basicPlan.clone();

}

public HostingPlan getPremiumPlan() {

return (HostingPlan) premiumPlan.clone();

}

public HostingPlan getPremPlusPlan() {

return (HostingPlan) premPlusPlan.clone();

}

}

© 2004 by CRC Press LLC

yp

basicPlan = new WinBasic();

premiumPlan = new WinPremium();

premPlusPlan = new WinPremPlus();

}

if (platform.equalsIgnoreCase("Unix")) {

basicPlan = new UnixBasic();

premiumPlan = new UnixPremium();

premPlusPlan = new UnixPremPlus();

}

return new HostingPlanKit(basicPlan, premiumPlan,

premPlusPlan);

}

}

The HostingPlanManager offers a static method getHostingPlanKit
that can be used by client objects to get access to a HostingPlanKit object
configured with prototypical HostingPlan objects that represent hosting plans
on the specified platform. As an alternative design strategy, the static method
getHostingPlanKit can be designed as part of the HostingPlanKit class
itself.

Once the HostingPlanKit object is received, a client can make use of
getBasicPlan/getPremiumPlan/getPremPlusPlan methods to get access
to HostingPlan objects.

Figure 13.6 HostingPlanManager Class Representation

HostingPlanManager

getHostingPlanKit(platform:String)
:HostingPlanKit

HostingPlanKit

basicPlan:HostingPlan
premiumPlan:HostingPlan
premPlusPlan:HostingPlan

getBasicPlan():HostingPlan
getPremiumPlan():HostingPlan
getPremPlusPlan():HostingPlan

© 2004 by CRC Press LLC

g

public class TestClient {

public static void main(String[] args) {

HostingPlanManager manager = new HostingPlanManager();

HostingPlanKit kit = manager.getHostingPlanKit("Win");

HostingPlan plan = kit.getBasicPlan();

System.out.println(plan.getFeatures());

plan = kit.getPremiumPlan();

System.out.println(plan.getFeatures());

}

}

EXAMPLE II

A computer user in a typical organization is associated with a user account. A
user account can be part of one or more groups. Permissions on different resources
(such as servers, printers, etc.) are defined at the group level. A user gets all the
permissions defined for all groups that his or her account is part of. Let us build
an application to facilitate the creation of user accounts. For simplicity, let us
consider only two groups — Supervisor and AccountRep — representing users
who are supervisors and account representatives, respectively.

Let us define a UserAccount class (Figure 13.7 and Listing 13.6) that repre-
sents a typical user account.

A typical UserAccount object maintains user-specific data such as firstname
and lastname as strings and maintains the set of user permissions in the form of
a vector.

Figure 13.7 UserAccount Representation

UserAccount

userName:String
password:String
fname:String
lname:String
permissions:Vector

setUserName(userName:String)
setPassword(pwd:String)
setFName(fname:String)
setLName(lname:String)
setPermission(rights:Vector)
getUserName():String
getPassword():String
getFName():String
getLName():String

© 2004 by CRC Press LLC

yp

Listing 13.6 UserAccount Class

public class UserAccount {

private String userName;

private String password;

private String fname;

private String lname;

private Vector permissions = new Vector();

public void setUserName(String uName) {

userName = uName;

}

public String getUserName() {

return userName;

}

public void setPassword(String pwd) {

password = pwd;

}

public String getPassword() {

return password;

}

public void setFName(String name) {

fname = name;

}

public String getFName() {

return fname;

}

public void setLName(String name) {

lname = name;

}

public String getLName() {

return lname;

}

public void setPermissions(Vector rights) {

permissions = rights;

}

public Vector getPermissions() {

return permissions;

}

}

© 2004 by CRC Press LLC

g

For simplicity, let us define the set of permissions for each of the Supervisor
and the AccountRep groups in the form of two text files — supervisor.txt
and accountrep.txt, respectively. With this arrangement, one of the simplest
ways to create a user account is to:

� Instantiate the UserAccount class
� Read permissions from an appropriate data file
� Set these permissions in the UserAccount object

Though this approach looks straightforward, it is not efficient as it involves
expensive file I/O (input/output) each time an account is created. This process
can be designed more efficiently using the Prototype pattern. Applying the
Prototype pattern, let us make the following changes to the design.

Redesign the UserAccount Class

The UserAccount class needs to be redesigned to provide a way for clients to
create a clone of it (Listing 13.7). This can be accomplished by:

� Designing the UserAccount class to implement the Cloneable interface
� Returning a shallow copy of itself as part of its implementation of the

clone method

Listing 13.7 UserAccount Class Revised

public class UserAccount implements Cloneable {

private String userName;

private String password;

private String fname;

private String lname;

private Vector permissions = new Vector();

…

…

public Object clone() {

//Shallow Copy

try {

return super.clone();

} catch (CloneNotSupportedException e) {

return null;

}

…

…

}

© 2004 by CRC Press LLC

yp

Create a Prototype Factory Class

A new class, AccountPrototypeFactory, can be defined to hold prototypical
UserAccount objects representing Supervisor and AccountRep type accounts.
When requested by a client, the AccountPrototypeFactory returns a copy
of an appropriate UserAccount object. Figure 13.8 shows the resulting class
association.

public class AccountPrototypeFactory {

private UserAccount accountRep;

private UserAccount supervisor;

public AccountPrototypeFactory(UserAccount supervisorAccount,

UserAccount arep) {

accountRep = arep;

supervisor = supervisorAccount;

}

public UserAccount getAccountRep() {

return (UserAccount) accountRep.clone();

}

public UserAccount getSupervisor() {

return (UserAccount) supervisor.clone();

}

}

With these modifications in place, in order to create user accounts, a typical
client (Listing 13.8):

Figure 13.8 UserAccount Creation Utility: Class Association

AccountManager
<<creates>>

AccountPrototypeFactory

accountRep:UserAccount
supervisor:UserAccount

getAccountRep():UserAccount
getSupervisor():UserAccount

UserAccount

userName:String
permissions:Vector

setUserName(userName:String)
setPermission(rights:Vector)

<<clones>>

<<uses>>

1 1..*

© 2004 by CRC Press LLC

g

� First creates two UserAccount objects representing Supervisor and
AccountRep type accounts. These instances are then stored inside the
AccountPrototypeFactory as prototype objects. This is the only time
permissions are read from data files.

Listing 13.8 Client AccountManager Class

public class AccountManager {

public static void main(String[] args) {

/*

Create Prototypical Objects

*/

Vector supervisorPermissions =

getPermissionsFromFile("supervisor.txt");

UserAccount supervisor = new UserAccount();

supervisor.setPermissions(supervisorPermissions);

Vector accountRepPermissions =

getPermissionsFromFile("accountrep.txt");

UserAccount accountRep = new UserAccount();

accountRep.setPermissions(accountRepPermissions);

AccountPrototypeFactory factory =

new AccountPrototypeFactory(supervisor,

accountRep);

/* Using protype objects to create other user accounts */

UserAccount newSupervisor = factory.getSupervisor();

newSupervisor.setUserName("PKuchana");

newSupervisor.setPassword("Everest");

System.out.println(newSupervisor);

UserAccount anotherSupervisor = factory.getSupervisor();

anotherSupervisor.setUserName("SKuchana");

anotherSupervisor.setPassword("Everest");

System.out.println(anotherSupervisor);

UserAccount newAccountRep = factory.getAccountRep();

newAccountRep.setUserName("VKuchana");

newAccountRep.setPassword("Vishal");

System.out.println(newAccountRep);

}

…

…

}

© 2004 by CRC Press LLC

yp

� Each time a new Supervisor or AccountRep type account needs to be
created, the client invokes one of the getSupervisor or the getAc-
countRep methods of the AccountPrototypeFactory. In response,
the AccountPrototypeFactory clones an appropriate prototype
UserAccount object and returns it to the client. Once the UserAccount
clone is received, the client can make necessary changes such as setting
the new username and password.

Unlike the earlier design, this approach does not involve creating each User-
Account object from scratch by reading from the data file. Instead, it makes use
of object cloning to create new objects. The sequence diagram in Figure 13.9
depicts the message flow when a new supervisor account is created.

PRACTICE QUESTIONS

1. In the example application above, every new Supervisor type account
is given exactly the same set of permissions as the prototypical Supervisor
UserAccount object. Let us consider a new user account group to
represent marketing coordinators. In addition to all the permissions of
a regular supervisor, a marketing coordinator is to be given access to
the color printer. Hence, whenever a marketing coordinator is to be
created, the existing Supervisor prototype account object can be cloned
and the required new color printer access privilege can be added. In
terms of implementation, this means adding a new permission object to
the permissions vector after the clone is received through the getSu-
pervisor method call. In this case, is the existing shallow copy
implementation, of the clone method sufficient, or does it need to be
changed and why?

Figure 13.9 UserAccount Creation: Message Flow

AccountManager AccountPrototypeFactory UserAccount

create()

create()

create(supervisior:UserAccount, accountRep:UserAccount)

getSupervisior()

clone()

setUserName(userName:String)

setPassword(password:String)

create prototypical
Supervisior & AccountRep

user account objects.

© 2004 by CRC Press LLC

g

2. During the discussion of the Abstract Factory pattern, we designed an
application that deals with different types of vehicles. Besides the families
of vehicle classes, the application design is comprised of an abstract
VehicleFactory with two concrete factory subclasses as listed in Table
13.1. Applying the Prototype pattern, redesign this application so that only
one concrete factory class is needed. The concrete factory can be configured
with the prototypical instance of each vehicle type in the vehicle family.
The concrete factory then uses these prototypes to create new objects.
Make any necessary assumptions about the application functionality.

Table 13.1 Concrete Factory Classes

Concrete Factory Responsibility

LuxuryVehicleFactory Responsible for creating instances of classes
representing luxury vehicles

NonLuxuryVehicleFactory Responsible for creating instances of classes
representing nonluxury vehicles

© 2004 by CRC Press LLC

14

BUILDER

This pattern was previously described in GoF95.

DESCRIPTION

In general, object construction details such as instantiating and initializing the
components that make up the object are kept within the object, often as part of
its constructor. This type of design closely ties the object construction process
with the components that make up the object. This approach is suitable as long
as the object under construction is simple and the object construction process is
definite and always produces the same representation of the object.

This design may not be effective when the object being created is complex
and the series of steps constituting the object creation process can be implemented
in different ways producing different representations of the object. Because
different implementations of the construction process are all kept within the object,
the object can become bulky (construction bloat) and less modular. Subsequently,
adding a new implementation or making changes to an existing implementation
requires changes to the existing code.

Using the Builder pattern, the process of constructing such an object can be
designed more effectively. The Builder pattern suggests moving the construction
logic out of the object class to a separate class referred to as a builder class.
There can be more than one such builder class each with different implementation
for the series of steps to construct the object. Each such builder implementation
results in a different representation of the object. This type of separation reduces
the object size. In addition:

� The design turns out to be more modular with each implementation
contained in a different builder object.

� Adding a new implementation (i.e., adding a new builder) becomes easier.
� The object construction process becomes independent of the components

that make up the object. This provides more control over the object
construction process.

In terms of implementation, each of the different steps in the construction process
can be declared as methods of a common interface to be implemented by different
concrete builders. Figure 14.1 shows the resulting builder class hierarchy.

© 2004 by CRC Press LLC

g

A client object can create an instance of a concrete builder and invoke the
set of methods required to construct different parts of the final object. Figure 14.2
shows the corresponding message flow.

This approach requires every client object to be aware of the construction
logic. Whenever the construction logic undergoes a change, all client objects need
to be modified accordingly. The Builder pattern introduces another level of
separation that addresses this problem. Instead of having client objects invoke
different builder methods directly, the Builder pattern suggests using a dedicated
object referred to as a Director, which is responsible for invoking different builder

Figure 14.1 Generic Builder Class Hierarchy

Figure 14.2 Client/Builder Direct Interaction

createComponent_A()
createComponent_B()
getObject()

<<interface>>
Builder

createComponent_A()
createComponent_B()
getObject()

ConcreteBuilder_1

createComponent_A()
createComponent_B()
getObject()

ConcreteBuilder_2

Client ConcreteBuilder_1

create()

createComponent_A()

createComponent_B()

© 2004 by CRC Press LLC

methods required for the construction of the final object. Different client objects
can make use of the Director object to create the required object. Once the object
is constructed, the client object can directly request from the builder the fully
constructed object. To facilitate this process, a new method getObject can be
declared in the common Builder interface to be implemented by different concrete
builders.

The new design eliminates the need for a client object to deal with the methods
constituting the object construction process and encapsulates the details of how
the object is constructed from the client. Figure 14.3 shows the association between
different classes.

The interaction between the client object, the Director and the Builder objects
can be summarized as follows:

� The client object creates instances of an appropriate concrete Builder
implementer and the Director. The client may use a factory for creating
an appropriate Builder object.

� The client associates the Builder object with the Director object.
� The client invokes the build method on the Director instance to begin

the object creation process. Internally, the Director invokes different Builder
methods required to construct the final object.

� Once the object creation is completed, the client invokes the getObject
method on the concrete Builder instance to get the newly created object.
Figure 14.4 shows the overall message flow.

Figure 14.3 Class Association

createComponent_A()
createComponent_B()
getObject()

<<interface>>
Builder

createComponent_A()
createComponent_B()
getObject()

ConcreteBuilder

build()

Director
<<contains>>

1 1..*

responsible for the actual
construction of the object

© 2004 by CRC Press LLC

g

EXAMPLE I

A typical online job site maintains employer-, candidate- and jobs-related data.
Let us build an application using the Builder pattern that displays the necessary
user interface to allow a user to search for different employers and candidates in
the database. For simplicity, let us consider only three fields for each search,
which users can use to specify the search criteria.

� Employer Search
– Name
– City
– Membership Renewal Date

� Candidate Search
– Name
– Experience (minimum number of years)
– Skill Set

The required user interface (UI) for each of these searches requires a different
combination of UI controls. In terms of implementation, the required set of UI
controls can be placed in a JPanel container. The Builder pattern can be used
in this case with different builder objects constructing the JPanel object with
the necessary UI controls and initializing them appropriately.

Applying the Builder pattern, let us define the common builder interface in
the form of an abstract UIBuilder class as in Listing 14.1.

Let us define two concrete subclasses (Figure 14.5 and Listing 14.2) of the
UIBuilder class with responsibilities as listed in Table 14.1. These subclasses
act as concrete builder classes.

A Side Note …

For simplicity, the getSQL method in both the EmpSrchBuilder the Cand-
SrchBuilder is implemented to create the SQL statement as a string by simply

Figure 14.4 Object Creation When the Builder Pattern Is Applied

Client ConcreteBuilder

create()

Director

create(builder:ConcreteBuilder)

build()

createComponent_A()

createComponent_B()

getObject()

© 2004 by CRC Press LLC

including the user input values, without any validations, in the SQL string. This
type of implementation is likely to introduce an SQL injection problem. SQL
injection is a technique that enables a malicious user to execute unauthorized

Listing 14.1 Abstract UIBuilder Class

public abstract class UIBuilder {

protected JPanel searchUI;

//add necessary UI controls and initialize them

public abstract void addUIControls();

public abstract void initialize();

//return the SELECT sql command for the specified criteria

public abstract String getSQL();

//common to all concrete builders.

//returns the fully constructed search UI

public JPanel getSearchUI() {

return searchUI;

}

}

Figure 14.5 UIBuilder: Class Hierarchy

searchUI:JPanel

addUIControls()
initialize()
getSQL():String
getSearchUI():JPanel

UIBuilder

addUIControls()
initialize()
getSQL():String
getSearchUI():JPanel

EmpSrchBuilder

addUIControls()
initialize()
getSQL():String
getSearchUI():JPanel

CandSrchBuilder

© 2004 by CRC Press LLC

g

Listing 14.2 UIBuilder Concrete Subclasses

class EmpSrchBuilder extends UIBuilder {

…

…

public void addUIControls() {

searchUI = new JPanel();

JLabel lblUserName = new JLabel("Name :");

JLabel lblCity = new JLabel("City:");

JLabel lblRenewal = new JLabel("Membership Renewal :");

GridBagLayout gridbag = new GridBagLayout();

searchUI.setLayout(gridbag);

GridBagConstraints gbc = new GridBagConstraints();

searchUI.add(lblUserName);

searchUI.add(txtUserName);

searchUI.add(lblCity);

searchUI.add(txtCity);

searchUI.add(lblRenewal);

searchUI.add(txtRenewal);

…

…

gbc.gridx = 0;

gbc.gridy = 0;

gridbag.setConstraints(lblUserName, gbc);

gbc.gridx = 0;

gbc.gridy = 1;

gridbag.setConstraints(lblCity, gbc);

gbc.gridx = 0;

gbc.gridy = 2;

gridbag.setConstraints(lblRenewal, gbc);

…

…

 }

 public void initialize() {

Calendar cal = Calendar.getInstance();

cal.setTime(new java.util.Date());

txtUserName.setText("Enter UserName Here");

txtRenewal.setText((cal.get(Calendar.MONTH) + 1) + "/" +

cal.get(Calendar.DATE) + "/" +

cal.get(Calendar.YEAR));

 }
(continued)

© 2004 by CRC Press LLC

Listing 14.2 UIBuilder Concrete Subclasses (Continued)

public String getSQL() {

return ("Select * from Employer where Username='" +

txtUserName.getText() + "'" + " and City='" +

txtCity.getText() + "' and DateRenewal='" +

txtRenewal.getText() + "'");

}

}

class CandSrchBuilder extends UIBuilder {

…

…

public void addUIControls() {

searchUI = new JPanel();

JLabel lblUserName = new JLabel("Name :");

JLabel lblExperienceRange =

new JLabel("Experience(min Yrs.):");

JLabel lblSkill = new JLabel("Skill :");

cmbExperience.addItem("<5");

cmbExperience.addItem(">5");

GridBagLayout gridbag = new GridBagLayout();

searchUI.setLayout(gridbag);

GridBagConstraints gbc = new GridBagConstraints();

gbc.anchor = GridBagConstraints.WEST;

searchUI.add(lblUserName);

searchUI.add(txtUserName);

searchUI.add(lblExperienceRange);

searchUI.add(cmbExperience);

searchUI.add(lblSkill);

searchUI.add(txtSkill);

…

…

(continued)

© 2004 by CRC Press LLC

g

SQL commands by taking advantage of poor or no input validation when an SQL
statement is built as a string, using user input values.

A malicious user could enter something like joe’;delete * from
Employer into the Username field, which results in an SQL statement as follows:

Select * from Employer where Username=’joe’;’delete *
from employer…

Most commercial database servers treat this as a batch of SQL statements. The
first occurrence of ‘; terminates the first SQL command and the server attempts
to execute the next SQL statement in the batch, which is delete * from
employer.

In this manner, attackers can trick the program into executing whatever SQL
statement they want. In a real-world application, prepared statements (with

Listing 14.2 UIBuilder Concrete Subclasses (Continued)

gbc.gridx = 0;

gbc.gridy = 0;

gridbag.setConstraints(lblUserName, gbc);

gbc.gridx = 0;

gbc.gridy = 1;

gridbag.setConstraints(lblExperienceRange, gbc);

gbc.gridx = 0;

gbc.gridy = 2;

gridbag.setConstraints(lblSkill, gbc);

…

…

}

public void initialize() {

txtUserName.setText("Enter UserName Here");

txtSkill.setText("Internet Tech");

}

public String getSQL() {

String experience =

(String) cmbExperience.getSelectedItem();

return ("Select * from Candidate where Username='" +

txtUserName.getText() + "' and Experience " +

experience + " and Skill='" +

txtSkill.getText() + "'");

}

}

© 2004 by CRC Press LLC

placeholders instead of textual parameter insertion) should be used and parameters
should be examined for dangerous characters before being passed on to the
database.

Back to the Example Application …

Let us define a Director class UIDirector as in Listing 14.3.
The UIDirector maintains an object reference of type UIBuilder. This

UIBuilder object can be passed to the UIDirector as part of a call to its
constructor. As part of the build method, the UIDirector invokes different
UIBuilder methods on this object for constructing the JPanel searchUI
object.

Table 14.1 Responsibilities of EmpSrchBuilder and CandSrchBuilder Concrete
Builder Classes

Builder Responsibility

EmpSrchBuilder •

•
•

•

Builds a JPanel object with the necessary UI controls for
the employer search

Initializes UI controls
Returns the fully constructed JPanel object as part of the
getSearchUI method

Builds the required SQL select command and returns it as
part of the getSQL method

CandSrchBuilder •

•
•

•

Builds a JPanel object with the necessary UI controls for
the candidate search

Initializes UI controls
Returns the fully constructed JPanel object as part of the
getSearchUI method

Builds the required SQL select command and returns it as
part of the getSQL method

Listing 14.3 UIDirector Class

public class UIDirector {

private UIBuilder builder;

public UIDirector(UIBuilder bldr) {

builder = bldr;

}

public void build() {

builder.addUIControls();

builder.initialize();

}

}

© 2004 by CRC Press LLC

g

The client SearchManager can be designed (Listing 14.5) such that:

� It displays the necessary UI to allow a user to select the type of the search.
The initial display contains an empty panel for the display of the search
criteria UI (Figure 14.6).

� When the user selects a search type, the client object creates an instance
of an appropriate UIBuilder using a BuilderFactory factory object.
The BuilderFactory getUIBuilder method (Listing 14.4):
– Accepts the type of the search selected by the user as input.
– Creates an appropriate UIBuilder object based on this input and

returns the UIBuilder object to the client.
� The client creates a UIDirector object and configures it with the

UIBuilder object created above.
� The client invokes the build method of the UIDirector to begin the

UI panel construction process. The UIDirector invokes the set of
UIBuilder methods required to construct the JPanel object with the
necessary UI controls.

� The client invokes the getSearchUI method on the UIBuilder object
to access the fully constructed JPanel object, which contains the necessary
user interface controls to allow a user to specify the search criteria. The
JPanel search criteria UI is then displayed in the main UI window. Figures
14.7 and 14.8 show the UI displays for the employer search and candidate
search, respectively.

� Once the user enters the search criteria and clicks on the GetSQL button,
the client invokes the getSQL method on the UIBuilder object. Different
concrete UIBuilder subclasses display different UI controls and the SQL
statement depends on the fields represented by these controls but the
client does not have to deal with these differences. Each of the concrete
UIBuilder objects hides these details from the client and provides the
implementation for the getSQL method, taking into account the repre-
sentation of the object it builds.

Listing 14.4 BuilderFactory Class

class BuilderFactory {

public UIBuilder getUIBuilder(String str) {

UIBuilder builder = null;

if (str.equals(SearchManager.CANDIDATE_SRCH)) {

builder = new CandSrchBuilder();

} else if (str.equals(SearchManager.EMPLOYER_SRCH)) {

builder = new EmpSrchBuilder();

}

return builder;

}

}

© 2004 by CRC Press LLC

The database interaction is not included in this example to keep it simple.
The final SQL statement is simply displayed in the UI (Figure 14.9).

The class association can be depicted as in Figure 14.10.

Listing 14.5 The Client SearchManager Class

public class SearchManager extends JFrame {

…

…

public void actionPerformed(ActionEvent e) {

…

…

if (e.getActionCommand().equals(SearchManager.GET_SQL)) {

manager.setSQL(builder.getSQL());

}

if (e.getSource() == manager.getSearchTypeCtrl()) {

String selection = manager.getSearchType();

if (selection.equals("") == false) {

BuilderFactory factory = new BuilderFactory();

//create an appropriate builder instance

builder = factory.getUIBuilder(selection);

//configure the director with the builder

UIDirector director = new UIDirector(builder);

//director invokes different builder

//methods

director.build();

//get the final build object

JPanel UIObj = builder.getSearchUI();

manager.displayNewUI(UIObj);

}

}

 }

…

…

public buttonHandler(SearchManager inManager) {

manager = inManager;

}

}

© 2004 by CRC Press LLC

g

The BuilderFactory factory is not shown in the Figure 14.10 class diagram
because it is not part of the Builder pattern implementation. The client Search-
Manager uses it only as a helper class.

The sequence diagram in Figure 14.11 shows the message flow when the user
conducts an employer search.

EXAMPLE II

Let us design the following functionality for an online shopping site.

� A server side component receives the order information submitted by a
user in the form of an XML string.

� The order XML is then parsed and validated to create an Order object.
� The Order object is finally saved to the disk.

A typical order XML record is shown follows:

<Order>

<LineItems>

<Item>

<ID>100</ID>

<Qty>1</Qty>

</Item>

Figure 14.6 SearchManager: Initial UI Display

© 2004 by CRC Press LLC

<Item>

<ID>200</ID>

<Qty>2</Qty>

</Item>

</LineItems>

<ShippingAddress>

<Address1>101 Arrowhead Trail </Address1>

<Address2> Suite 100</Address2>

<City>Anytown</City>

<State>OH</State>

<Zip>12345</Zip>

</ShippingAddress>

<BillingAddress>

<Address1>2669 Knox St </Address1>

<Address2> Unit 444</Address2>

<City>Anytown</City>

<State>CA</State>

Figure 14.7 UI Display for the Employer Search

© 2004 by CRC Press LLC

g

<Zip>56789</Zip>

</BillingAddress>

</Order>

Payment details are not included in XML in order to keep the example simple.
Let us consider three types of orders as in Table 14.2.
The class representation of a generic order can be designed as in Figure 14.12

with the required attributes and methods.
The save method can be used by different client objects to save the Order

object to disk.
The series of steps required for the creation of an Order object can be

summarized as follows:

� Parse the input XML string
� Validate the data
� Calculate the tax
� Calculate the shipping
� Create the actual object with:

– Line items from the input XML string
– Tax and shipping details calculated as per the details listed in Table 14.2

Figure 14.8 UI Display for the Candidate Search

© 2004 by CRC Press LLC

Let us design an interface OrderBuilder as in Figure 14.13 that declares
the methods representing different steps in the Order object creation.

Because an order can exist in three different forms (California, Non-California
or Overseas), let us define three concrete OrderBuilder implementers (Figure
14.14), where each implementer is responsible for the construction of a specific
order type representation.

Each concrete OrderBuilder implementer can be designed to carry out the
validations and tax and shipping calculation rules listed in Table 14.2 for the type
of the Order object it constructs.

As a next step, let us define an OrderDirector as in Figure 14.15.
The OrderDirector contains an object reference of type OrderBuilder.

The parse method is used internally by the OrderDirector to parse the
input XML record. Figure 14.16 shows the overall association between different
classes.

The server-side object that first receives the order XML acts as the client object
in this case. The client makes use of the OrderDirector and concrete Order-
Builder implementer objects to create different representations of the Order
object using the same construction process described as follows:

� The client first receives the order in the form of an XML record.

Figure 14.9 UI Display with SQL Statement Output

© 2004 by CRC Press LLC

g

Figure 14.10 Class Association

Figure 14.11 Message Flow

searchUI:JPanel

addUIControls()
initialize()
getSQL():String
getSearchUI():JPanel

UIBuilder

addUIControls()
initialize()
getSQL():String
getSearchUI():JPanel

EmpSrchBuilder

addUIControls()
initialize()
getSQL():String
getSearchUI():JPanel

CandSrchBuilder

builder:UIBuilder

build()

UIDirector

SearchManager

JPanel

<<creates>>

<<creates>>

<<creates>>

<<creates>>

<<creates>>

<<contains>>

1 1..*

SearchManager UIDirector EmpSrchBuilder BuilderFactory

create()

getUIBuilder(type:String)

create()

create(builder:UIBuilder)

build()

addUIControls()

initialize()

getSearchUI()

getSQL()

© 2004 by CRC Press LLC

Table 14.2 Different Order Types

S. No Order Type Details

1 Overseas orders •

•

Orders from countries other than the United States.
Additional shipping and handling is charged for these
orders.

Overseas orders are accepted only if the order amount
is greater than $100.

2 California orders •

•

U.S. orders with shipping address in California and are
charged additional sales tax.

Orders with $100 or more order amount receive free
regular shipping.

3 Non-California
orders

•

•

U.S. orders with shipping address not in California.
Additional sales tax is not applicable.

Orders with $100 or more order amount receive free
regular shipping.

Figure 14.12 Generic Order Representation

Figure 14.13 Builder Interface for Order Objects

items:Vector
tax:double
shipping:double

save()

Order

order:Order

isValidOrder()
addItems()
calcShipping()
calcTax()
getOrder()

<<interface>>
OrderBuilder

© 2004 by CRC Press LLC

g

� The client creates an appropriate OrderBuilder object. It then instantiates
the OrderDirector, passing the OrderBuilder object as a parameter.

� The client invokes the build method on the OrderDirector, passing
the input XML data to initiate the Order object construction process.
– If a problem is encountered during the construction process, a

BuilderException is thrown. In general, error handling should be

Figure 14.14 OrderBuilder Hierarchy

Figure 14.15 Director for the Creation of Order Objects

order:Order

isValidOrder()
addItems()
calcShipping()
calcTax()
getOrder()

<<interface>>
OrderBuilder

order:Order

isValidOrder()
addItems()
calcShipping()
calcTax()
getOrder()

CAOrdBuilder

order:Order

isValidOrder()
addItems()
calcShipping()
calcTax()
getOrder()

NonCAOrdBuilder

order:Order

isValidOrder()
addItems()
calcShipping()
calcTax()
getOrder()

OSOrdBuilder

builder:OrderBuilder

parse(XMLData:String)
build(XMLData:String)

...

...

OrderDirector

© 2004 by CRC Press LLC

done in a proper way with Builders to avoid the risk of having half-
created objects lying around.

� The OrderDirector invokes different OrderBuilder methods to com-
plete the construction of the Order object.

� The client calls the getOrder method of the OrderBuilder to get the
final constructed Order object.

� The client can invoke the save method on the returned Order object to
save the order to the disk.

EXAMPLE III

Let us design the order handling functionality for a different type of an online
shopping site that transmits orders to different order fulfilling companies based
on the type of the goods ordered. Suppose that the group of order processing
companies can be classified into three categories based on the format of the order
information they expect to receive. These formats include comma-separated value
(CSV), XML and a custom object. When the order information is transformed into
one of these formats, appropriate header and footer information that is specific
to a format needs to be added to the order data.

Figure 14.16 Class Association

<
<
c
r
e
a
t
e
s
>
>

<<creates>>

items:Vector
tax:double
shipping:double

save()

Order

order:Order

isValidOrder()
addItems()
calcShipping()
calcTax()
getOrder()

<<interface>>
OrderBuilder

order:Order

isValidOrder()
addItems()
calcShipping()
calcTax()
getOrder()

CAOrdBuilder

order:Order

isValidOrder()
addItems()
calcShipping()
calcTax()
getOrder()

NonCAOrdBuilder

order:Order

isValidOrder()
addItems()
calcShipping()
calcTax()
getOrder()

OSOrdBuilder

<<creates>>

<<contains>>

1 1..*
builder:OrderBuilder

parse(XMLData:String)
build(XMLData:String)

...

...

OrderDirector

© 2004 by CRC Press LLC

g

The series of steps required for the creation of an Order object can be
summarized as follows:

� Create the header specific to the format
� Add the order data
� Create the footer specific to the format

Let us design an interface OrderBuilder as in Figure 14.17 that declares
the methods representing different steps in the Order object creation.

Because an order can exist in three different forms (CSV, XML and custom
object), let us define three concrete OrderBuilder implementers as in Figure
14.18, where each implementer is responsible for the construction of a specific
order representation.

Each concrete OrderBuilder implementer can be designed to implement
the details of:

� Transforming input order information into a specific format
� Creating header or footer specific to the representation of the order being

created

As a next step, let us define an OrderDirector as in Figure 14.19.
The OrderDirector contains an object reference of type OrderBuilder.

Figure 14.20 shows the overall association between different classes.
Client objects can make use of the OrderDirector and concrete Order-

Builder implementer objects to create different representations of the Order
object using the same construction process described as follows:

� The client creates an appropriate OrderBuilder object. It then instan-
tiates the OrderDirector, passing the OrderBuilder object as a
parameter.

� The client invokes the build method on the OrderDirector, passing
the input order data to initiate the Order object construction process.

Figure 14.17 Builder Interface for Order Objects

order:Object

buildOrder()
addHeader()
addFooter()
getOrder():Object

<<interface>>
OrderBuilder

© 2004 by CRC Press LLC

– If a problem is encountered during the construction process, an excep-
tion BuilderException is thrown.

� The OrderDirector invokes the buildOrder, addHeader and add-
Footer OrderBuilder methods to complete the construction of the
Order object.

� The client calls the getOrder method of the OrderBuilder to get the
final constructed Order object.

� The client can transmit the order to an appropriate order handling
company.

Figure 14.18 OrderBuilder Hierarchy

Figure 14.19 Director for the Creation of Order Objects

order:Object

buildOrder()
addHeader()
addFooter()
getOrder():Object

<<interface>>
OrderBuilder

order:Object

buildOrder()
addHeader()
addFooter()
getOrder():Object

CSVBuilder

order:Object

buildOrder()
addHeader()
addFooter()
getOrder():Object

XMLBuilder

order:Object

buildOrder()
addHeader()
addFooter()
getOrder():Object

ObjBuilder

Order

builder:OrderBuilder

build(...)
...
...

OrderDirector

© 2004 by CRC Press LLC

g

PRACTICE QUESTIONS

1. Enhance the Example I application above to allow users to query on jobs
as well. Create a new concrete builder to construct the necessary user
interface.

2. Implement Examples II and III discussed above. Draw sequence diagrams
to depict the message flow when the application is run.

Figure 14.20 Class Association

order:Object

buildOrder()
addHeader()
addFooter()
getOrder():Object

<<interface>>
OrderBuilder

order:Object

buildOrder()
addHeader()
addFooter()
getOrder():Object

CSVBuilder

order:Object

buildOrder()
addHeader()
addFooter()
getOrder():Object

XMLBuilder

order:Object

buildOrder()
addHeader()
addFooter()
getOrder():Object

ObjBuilder

Order

<<contains>>

1

1..*

builder:OrderBuilder

build(...)
...
...

OrderDirector

© 2004 by CRC Press LLC

V
COLLECTIONAL PATTERNS

Collectional patterns primarily:

� Deal with groups or collections of objects
� Deal with the details of how to compose classes and objects to form larger

structures
� Concentrate on the most efficient way of designing a class so that its

instances do not carry any duplicate data
� Allow the definition of operations on collections of objects

Chapter Pattern Name Description

15 Composite Allows both individual objects and composite objects
to be treated uniformly.

16 Iterator Allows a client to access the contents of an aggregate
object (collection of objects) in some sequential
manner, without having any knowledge about the
internal representation of its contents.

17 Flyweight The intrinsic, invariant common information and the
variable parts of a class are separated into two classes,
leading to savings in terms of the memory usage and
the amount of time required for the creation of a large
number of its instances.

18 Visitor Allows an operation to be defined across a collection
of different objects without changing the classes of
objects on which it operates.

© 2004 by CRC Press LLC

15

COMPOSITE

This pattern was previously described in GoF95.

DESCRIPTION

Every component or object can be classified into one of the two categories —
Individual Components or Composite Components — which are composed of
individual components or other composite components. The Composite pattern
is useful in designing a common interface for both individual and composite
components so that client programs can view both the individual components
and groups of components uniformly. In other words, the Composite design
pattern allows a client object to treat both single components and collections of
components in an identical manner.

This can also be explained in terms of a tree structure. The Composite pattern
allows uniform reference to both Nonterminal nodes (which represent collections
of components or composites) and terminal nodes (which represent individual
components).

EXAMPLE

Let us create an application to simulate the Windows/UNIX file system. The file
system consists mainly of two types of components — directories and files.
Directories can be made up of other directories or files, whereas files cannot
contain any other file system component. In this aspect, directories act as non-
terminal nodes and files act as terminal nodes of a tree structure.

DESIGN APPROACH I

Let us define a common interface for both directories and files in the form of a
Java interface FileSystemComponent (Figure 15.1). The FileSystemCompo-
nent interface declares methods that are common for both file components and
directory components.

Let us further define two classes — FileComponent and DirComponent
— as implementers of the common FileSystemComponent interface. Figure
15.2 shows the resulting class hierarchy.

© 2004 by CRC Press LLC

g

FileComponent

The FileComponent class represents a file in the file system and offers imple-
mentation for the following methods.

getComponentSize()

This method returns the size (in kilobytes) of the file represented by the File-
Component object.

DirComponent

This class represents a directory in the file system. Since directories are composite
entities, the DirComponent provides methods to deal with the components it
contains. These methods are in addition to the common getComponentSize
method declared in the FileSystemComponent interface.

Figure 15.1 The Common FileSystemComponent Interface

Figure 15.2 The FileSystemComponent Class Hierarchy

<<interface>>
FileSystemComponent

getComponentSize():long

<<interface>>
FileSystemComponent

getComponentSize():long

FileComponent

getComponentSize():long

DirComponent

getComponentSize():long
addComponent(fc:FileSystemComponent)
getComponent(location:int)

:FileSystemComponent

*

<
<
c
o
n
t
a
i
n
s

c
h
i
l
d
r
e
n

o
f

t
y
p
e

F
i
l
e
S
y
s
t
e
m
C
o
m
p
o
n
e
n
t
>
>

© 2004 by CRC Press LLC

p

addComponent(FileSystemComponent)

This method is used by client applications to add different DirComponent and
FileComponent objects to a DirComponent object.

getComponent(int)

The DirComponent stores the other FileSystemComponent objects inside a
vector. This method is used to retrieve one such object stored at the specified
location.

getComponentSize()

This method returns the size (in kilobytes) of the directory represented by the
DirComponent object. As part of the implementation, the DirComponent object
iterates over the collection of FileSystemComponent objects it contains, in a
recursive manner, and sums up the sizes of all individual FileComponents.
The final sum is returned as the size of the directory it represents.

A typical client would first create a set of FileSystemComponent objects (both
DirComponent and FileComponent instances). It can use the addComponent
method of the DirComponent to add different FileSystemComponents to a
DirComponent, creating a hierarchy of file system (FileSystemComponent)
objects.

When the client wants to query any of these objects for its size, it can simply
invoke the getComponentSize method. The client does not have to be aware
of the calculations involved or the manner in which the calculations are carried
out in determining the component size. In this aspect, the client treats both the
FileComponent and the DirComponent object in the same manner. No sep-
arate code is required to query FileComponent objects and DirComponent
objects for their size.

Though the client treats both the FileComponent and DirComponent
objects in a uniform manner in the case of the common getComponentSize
method, it does need to distinguish when calling composite specific methods such
as addComponent and getComponent defined exclusively in the DirCompo-
nent. Because these methods are not available with FileComponent objects,
the client needs to check to make sure that the FileSystemComponent object
it is working with is in fact a DirComponent object.

The following Design Approach II eliminates this requirement from the client.

DESIGN APPROACH II

The objective of this approach is to:

� Provide the same advantage of allowing the client application to treat both
the composite DirComponent and the individual FileComponent
objects in a uniform manner while invoking the getComponentSize
method

© 2004 by CRC Press LLC

g

� Free the client application from having to check to make sure that the
FileSystemComponent it is dealing with is an instance of the DirCom-
ponent class while invoking any of the composite-specific methods such
as addComponent or getComponent

In the new design (Figure 15.3), the composite-specific addComponent and
getComponent methods are moved to the common interface FileSystem-
Component. The FileSystemComponent provides the default implementation
for these methods and is designed as an abstract class (Listing 15.1).

The default implementation of these methods consists of what is applicable
to FileComponent objects. FileComponent objects are individual objects and
do not contain other FileSystemComponent objects within. Hence, the default
implementation does nothing and simply throws a custom CompositeExcep-
tion exception. The derived composite DirComponent class overrides these
methods to provide custom implementation (Listing 15.2).

Because there is no change in the way the common getComponentSize
method is designed, the client will still be able to treat both the composite
DirComponent and FileComponent objects identically.

Because the common parent FileSystemComponent class now contains
default implementations for the addComponent and the getComponent meth-
ods, the client application does not need to make any check before making a
call to these composite-specific methods.

Figure 15.3 Class Association

FileSystemComponent

getComponentSize():long
addComponent(fc:FileSystemComponent)
getComponent(location:int)

:FileSystemComponent

FileComponent

getComponentSize():long

DirComponent

getComponentSize():long
addComponent(fc:FileSystemComponent)
getComponent(location:int)

:FileSystemComponent

*

<<contains children
of type

FileSystemComponent>>

© 2004 by CRC Press LLC

p

Whenever a new composite-specific method such as removeComponent is
to be added to the composite DirComponent, it also needs to be added to the
parent FileSystemComponent class. The FileSystemComponent class must
provide a FileComponent-specific default implementation for the new method.

The test client application CompositeDemo (Listing 15.3) creates a set of
DirComponent, FileComponent objects. Using the composite method addCom-
ponent, it builds a file system component hierarchy as in Figure 15.4.

When the client needs to find the size of a file system component, it simply
invokes the getComponentSize method on the DirComponent or File-
Component object that represents the file system component. The client does
not need to treat the component differently depending on if the component is
an individual component (FileComponent) or a composite component
(DirComponent). When the client CompositeDemo is run, the following
output is displayed:

Main Folder Size= 10000kb

Sub Folder1 Size= 3000kb

File1 in Folder1 Size= 1000kb

Listing 15.1 FileSystemComponent Abstract Class

public abstract class FileSystemComponent {

String name;

public FileSystemComponent(String cName) {

name = cName;

}

public void addComponent(FileSystemComponent component)

throws CompositeException {

throw new CompositeException(

"Invalid Operation. Not Supported");

}

public FileSystemComponent getComponent(int componentNum)

throws CompositeException {

throw new CompositeException(

"Invalid Operation. Not Supported");

}

public abstract long getComponentSize();

}//End of class FileSystemComponent

© 2004 by CRC Press LLC

g

Listing 15.2 FileSystemComponent Concrete Subclasses: FileComponent and
DirComponent

public class FileComponent extends FileSystemComponent {

private long size;

public FileComponent(String cName, long sz) {

super(cName);

size = sz;

}

public long getComponentSize() {

return size;

}

}//End of class

public class DirComponent extends FileSystemComponent {

Vector dirContents = new Vector();

//individual files/sub folders collection

public DirComponent(String cName) {

super(cName);

}

public void addComponent(FileSystemComponent fc)

throws CompositeException {

dirContents.add(fc);

}

public FileSystemComponent getComponent(int location)

throws CompositeException {

return (FileSystemComponent) dirContents.elementAt(

location);

}

public long getComponentSize() {

long sizeOfAllFiles = 0;

Enumeration e = dirContents.elements();

while (e.hasMoreElements()) {

FileSystemComponent component =

(FileSystemComponent) e.nextElement();

sizeOfAllFiles = sizeOfAllFiles +

(component.getComponentSize());

}

return sizeOfAllFiles;

}

}//End of class

© 2004 by CRC Press LLC

p

Listing 15.3 Client CompositeDemo Class

public class CompositeDemo {

public static final String SEPARATOR = ”, ";

public static void main(String[] args) {

FileSystemComponent mainFolder =

new DirComponent("Year2000");

FileSystemComponent subFolder1 = new DirComponent("Jan");

FileSystemComponent subFolder2 = new DirComponent("Feb");

FileSystemComponent folder1File1 =

new FileComponent("Jan1DataFile.txt,”1000);

FileSystemComponent folder1File2 =

new FileComponent("Jan2DataFile.txt”,2000);

FileSystemComponent folder2File1 =

new FileComponent("Feb1DataFile.txt”,3000);

FileSystemComponent folder2File2 =

new FileComponent("Feb2DataFile.txt”,4000);

try {

mainFolder.addComponent(subFolder1);

mainFolder.addComponent(subFolder2);

subFolder1.addComponent(folder1File1);

subFolder1.addComponent(folder1File2);

subFolder2.addComponent(folder2File1);

subFolder2.addComponent(folder2File2);

} catch (CompositeException ex) {

//

}

//Client refers to both composite &

//individual components in a uniform manner

System.out.println(" Main Folder Size= " +

mainFolder.getComponentSize() + "kb");

System.out.println(" Sub Folder1 Size= " +

subFolder1.getComponentSize() + "kb");

System.out.println(" File1 in Folder1 size= " +

folder1File1.getComponentSize() + "kb");

}

}

© 2004 by CRC Press LLC

g

PRACTICE QUESTIONS

1. The following is an example of the FQDN (fully qualified domain name)
on the Internet:

nwest.sales.DomainName.com

It consists of different subdomains. Each such subdomain can be mapped
onto a specific directory on the file system of the computer where the
DomainName.com is hosted. Each such subdomain can have different
HTML files, which can be accessed through a URL. Thus a subdomain and
the set of HTML files can be viewed as two main components of a Web site.
a. Define a subdomain hierarchy for an example domain.
b. Create an application that uses the Composite pattern to:

i. Display the directory a given subdomain is mapped onto
ii. Display the URLs of Web site components (either subdomains or

single HTML files) in a uniform manner
2. Let us consider the HTML <frameset> tag. The <frameset> tag is used

to divide a Web page into different sections for the purpose of displaying
multiple Web pages. Each such section can display a separate Web page.
The actual Web page to be displayed inside a section can be specified
using the <frame> tag. Further, a <frameset> tag can be nested,
allowing further division of these sections.

E.g.,

<html>

<head></head>

<frameset rows=”20%,80%”>

<frameset rows=”100,200”>

<frame src=”frame1.html”>

<frame src=”frame2.html”>

</frameset>

<frame src=”frame3.html”>

Figure 15.4 Example Application: FileSystemComponent Hierarchy

MainFolder

SubFolder1 SubFolder2

SubFolder1
File1

SubFolder1
File2

SubFolder2
File1

SubFolder2
File2

© 2004 by CRC Press LLC

p

</frameset>

</html>

From the description of the <frameset> and <frame> tags above, it
can be seen that these can be arranged in a tree-like structure with each
<frameset> tag as a nonterminal node and each <frame> tag as a
terminal node.
a. Design two classes — FrameSet and Frame — to represent the

<frameset> and the <frame> tags, respectively.
b. Define an operation getSourceFiles() on these classes that returns

the HTML file(s) specified to be displayed by a specific FrameSet or
Frame object.

c. Design and implement this operation applying the Composite pattern
so that a client can refer to these classes in an identical manner.

3. A typical product database consists of two types of product components
— product categories and product items. A product category is generally
composite in nature. It can contain product items and also other product
categories as its subcategories.
Example Product Categories:
a. Computers
b. Desktops
c. Laptops
d. Peripherals
e. Printers
f. Cables
The Computers product category contains both the Desktops and the
Laptops product categories as its subcategories. The Desktop category can
contain a product item such as Compaq Presario 5050.
Product items are usually individual, in the sense that they do not contain
any product component within.
Design and implement an application to list the dollar value of a product
component. Use the Composite pattern to allow the client application to
refer to both the product categories and the product items in a uniform
manner.

© 2004 by CRC Press LLC

16

ITERATOR

This pattern was previously described in GoF95.

DESCRIPTION

The Iterator pattern allows a client object to access the contents of a container
in a sequential manner, without having any knowledge about the internal repre-
sentation of its contents.

The term container, used above, can simply be defined as a collection of data
or objects. The objects within the container could in turn be collections, making
it a collection of collections. The Iterator pattern enables a client object to traverse
through this collection of objects (or the container) without having the container
to reveal how the data is stored internally.

To accomplish this, the Iterator pattern suggests that a Container object
should be designed to provide a public interface in the form of an Iterator object
for different client objects to access its contents. An Iterator object contains
public methods to allow a client object to navigate through the list of objects
within the container.

ITERATORS IN JAVA

One of the simplest iterators available in Java is the java.sql.ResultSet
class, which is used to hold database records. This class offers a method next()
for navigating along rows and a set of getter methods for column positioning.

Java also offers an interface Enumeration as part of the java.util package,
which declares the methods listed in Table 16.1.

Table 16.1 Enumeration Methods

Method Return Description

hasMoreElements() boolean Checks if there are more elements in the
collection

nextElement() Object Returns the next element in the collection

© 2004 by CRC Press LLC

g

Concrete iterators can be built as implementers of the Enumeration interface
by providing implementation for its methods.

In addition, the java.util.Vector class offers a method:

public final synchronized Enumeration elements()

that returns an enumeration of elements or objects. The returned Enumeration
object works as an iterator for the Vector object. The Java Enumeration
interface methods listed in Table 16.1 can be used on the returned Enumeration
object to sequentially fetch elements stored in the Vector object.

Besides the Enumeration interface, Java also offers the java.util.Iter-
ator interface. The Iterator interface declares three methods as in Table 16.2.

Similar to the Enumeration interface, concrete iterators can be built as
implementers of the java.util.Iterator interface.

Though it is considered useful to employ existing Java iterator interfaces such
as Iterator or Enumeration, it is not necessary to utilize one of these built-
in Java interfaces to implement an iterator. One can design a custom iterator
interface that is more suitable for an application need.

FILTERED ITERATORS

In the case of the java.util.Vector class, its iterator simply returns the next
element in the collection. In addition to this basic behavior, an iterator may be
implemented to do more than simply returning the next object in line. For instance,
an iterator object can return a selected set of objects (instead of all objects) in a
sequential order. This filtering can be based on some form of input from the
client. These types of iterators are referred to as filtered iterators.

INTERNAL VERSUS EXTERNAL ITERATORS

An iterator can be designed either as an internal iterator or as an external iterator.

� Internal iterators
– The collection itself offers methods to allow a client to visit different

objects within the collection. For example, the java.util.Result-
Set class contains the data and also offers methods such as next()
to navigate through the item list.

– There can be only one iterator on a collection at any given time.
– The collection has to maintain or save the state of iteration.

Table 16.2 Iterator Interface Methods

Method Return Description

hasNext() boolean Checks if there are more elements in the collection.
next() Object Returns the next element in the collection.
remove() void Removes from the collection, the last element returned by

the iterator.

© 2004 by CRC Press LLC

� External iterators
– The iteration functionality is separated from the collection and kept inside

a different object referred to as an iterator. Usually, the collection itself
returns an appropriate iterator object to the client depending on the client
input. For example, the java.util.Vector class has its iterator defined
in the form of a separate object of type Enumeration. This object is
returned to a client object in response to the elements() method call.

– There can be multiple iterators on a given collection at any given time.
– The overhead involved in storing the state of iteration is not associated

with the collection. It lies with the exclusive Iterator object.

EXAMPLE: INTERNAL ITERATOR

Let us build an application to display data from a file Candidates.txt con-
taining details of different IT professionals who have offered their candidature
for a job opening. For simplicity, let us consider only three attributes — name,
current working location and certification type. As discussed in the preceding
section “Internal versus External Iterators”, in case of an internal iterator, the
container (or the collection) is responsible for providing the interface for a client
object to navigate through the container’s contents.

Let us define a container class AllCandidates (Listing 16.1) that:

� Reads data from the data file as part of its constructor and stores the data
in the form of a group of Candidate objects inside of an instance variable
of Vector type.

� Implements the built-in java.util.Iterator interface and provides
implementation for its methods as follows:
– hasNext() — Checks to see if there are any more candidates in the

collection.
– next() — Returns the next candidate object, if any, from the collection.

If there is none, it throws a NoSuchElementException exception.
– remove() — Because the application does not deal with the candidate

data deletion, this method implementation does nothing.

Figure 16.1 shows the class association of the example application using an
internal iterator.

A client SearchManager can be designed to make use of the AllCandi-
dates container to display different candidates data.

CLIENT/CONTAINER INTERACTION

The client SearchManager creates the necessary user interface for the display
of the data (Figure 16.2). When a user clicks on the Show All button, it creates
an instance of the container AllCandidates. As part of its constructor, the
AllCandidates object reads the data file and stores it inside a Vector in the
form of a group of Candidate objects. The client does not have to be aware
of how the data is stored, in which form and other details. In other words, the
client SearchManager only needs to know that the container AllCandidates

© 2004 by CRC Press LLC

g

Listing 16.1 AllCandidates Class

public class AllCandidates implements Iterator {

private Vector data;

Enumeration ec;

Candidate nextCandidate;

public AllCandidates() {

initialize();

ec = data.elements();

}

private void initialize() {

/*

Get data from db.

*/

data = new Vector();

FileUtil util = new FileUtil();

Vector dataLines = util.fileToVector("Candidates.txt");

for (int i = 0; i < dataLines.size(); i++) {

String str = (String) dataLines.elementAt(i);

StringTokenizer st = new StringTokenizer(str, ”,");

data.add(

new Candidate(st.nextToken(), st.nextToken(),

st.nextToken()));

}

}

public boolean hasNext() {

boolean matchFound = false;

nextCandidate = null;

while (ec.hasMoreElements()) {

Candidate tempObj = (Candidate) ec.nextElement();

nextCandidate = tempObj;

break;

}

return (nextCandidate != null);

}

 (continued)

© 2004 by CRC Press LLC

functions as a data store for the candidate data in the form of a group of
Candidate objects. It does not need to know how these objects are stored (in
a Vector or Hashmap, etc.) inside the container.

For the client, the AllCandidates object functions both as a container and
an iterator. It makes use of the hasNext() and the next() methods to retrieve
different Candidate objects and displays them in the user interface (Figure 16.2).

…

…

public void actionPerformed(ActionEvent e) {

if (e.getActionCommand().equals(SearchManager.EXIT)) {

System.exit(1);

}

if (e.getActionCommand().equals(SearchManager.SHOW_ALL)) {

Listing 16.1 AllCandidates Class (Continued)

public Object next() {

if (nextCandidate == null) {

throw new NoSuchElementException();

} else {

return nextCandidate;

}

}

public void remove() {};

}

Figure 16.1 Internal Iterator: Class Association

SearchManager

AllCandidates

hasNext():boolean
next():Object
remove()

data:Vector

<<interface>>
java.util.Iterator

© 2004 by CRC Press LLC

g

AllCandidates ac = new AllCandidates();

String selectedCandidates =

"Name — - Cert Type — - Location" + "\n" +

" — — — — — — — — — — — — — — — — — — — ";

while (ac.hasNext()) {

Candidate c = (Candidate) ac.next();

selectedCandidates = selectedCandidates + "\n" +

c.getName() + " - " +

c.getCertificationType() + " - " +

c.getLocation();

}

manager.setSelectedCandidates(selectedCandidates);

}

}

…

…

Figure 16.2 Client User Interface: Results Display

© 2004 by CRC Press LLC

Figure 16.3 shows the application message flow when the user clicks on the
Show All button.

EXAMPLE: EXTERNAL FILTERED ITERATOR

Let us enhance the example application to allow a user to filter candidates by
the type of certification they have. This enhancement can be designed using an
external filtered iterator.

In the case of an external iterator, the implementation is decoupled from the
container and is kept inside a separate iterator class.

Let us design an external iterator class CertifiedCandidates (Listing 16.2)
as an implementer of the built-in java.util.Iterator interface. As part of
its constructor, the CertifiedCandidates iterator accepts a certification type
and an instance of AllCandidates as input. It works as a filtered iterator for
the candidate data contained in the AllCandidates container and returns the
group of candidates with the specified certification type in a sequential manner.
It implements the java.util.Iterator methods as follows:

� hasNext() — Checks to see if there are any more candidates with the
specified certification type.

� next() — Returns the next candidate, if any, with the specified certifi-
cation type. If there is none, it throws a NoSuchElementException
exception. Ideally, a client would invoke the next() method only if a
prior call to the hasNext() method returns true.

� remove() — Because the scope of the example application does not
deal with deleting the profile of a candidate, this method implementation
does nothing.

Besides the external iterator definition, as part of the new design, the container
AllCandidates class needs to be modified (Listing 16.3) so that:

Figure 16.3 Internal Iterator: Message Flow

SearchManager AllCandidates

create()

hasNext()

next()

Candidate

getName()

getCertificationType()

getLocation()

the SearchManager invokes
the next() method until the

hasNext() method returns false

the next() method returns
the next Candidate.

retrieve the next Candidate
details

© 2004 by CRC Press LLC

g

Listing 16.2 CertifiedCandidates Class

public class CertifiedCandidates implements Iterator {

private Vector v;

AllCandidates ac;

String certificationType;

Candidate nextCandidate;

Enumeration ec;

public CertifiedCandidates(AllCandidates inp_ac,

String certType) {

ac = inp_ac;

certificationType = certType;

ec = inp_ac.getAllCandidates();

}

public boolean hasNext() {

boolean matchFound = false;

while (ec.hasMoreElements()) {

Candidate tempObj = (Candidate) ec.nextElement();

if (tempObj.getCertificationType().equals(

certificationType)) {

matchFound = true;

nextCandidate = tempObj;

break;

}

}

if (matchFound == true) {

} else {

nextCandidate = null;

}

return matchFound;

}

public Object next() {

if (nextCandidate == null) {

throw new NoSuchElementException();

} else {

return nextCandidate;

}

}

public void remove() {};

}

© 2004 by CRC Press LLC

� It is still responsible for reading the data file and carrying the data inside
it, in the form of Candidate objects.

� It offers a public method getCertifiedCandidates(String type).
This method creates and returns an iterator as an object of type
java.util.Iterator. The client SearchManager can use this
method when it wants to filter the candidate data by a specific certification
type.

While creating an instance of the iterator CertifiedCandidates, the con-
tainer AllCandidates sends itself as an argument to the iterator. The iterator
uses this instance to access the data stored inside the AllCandidates container.

Listing 16.3 AllCandidates Class: Modified

public class AllCandidates {

private Vector data;

public AllCandidates() {

initialize();

}

private void initialize() {

/*

Get data from db.

*/

data = new Vector();

FileUtil util = new FileUtil();

Vector dataLines = util.fileToVector("Candidates.txt");

for (int i = 0; i < dataLines.size(); i++) {

String str = (String) dataLines.elementAt(i);

StringTokenizer st = new StringTokenizer(str, ”,");

data.add(

new Candidate(st.nextToken(), st.nextToken(),

st.nextToken()));

}

}

public Enumeration getAllCandidates() {

return data.elements();

}

public Iterator getCertifiedCandidates(String type) {

return new CertifiedCandidates(this, type);

}

}

© 2004 by CRC Press LLC

g

The class diagram in Figure 16.4 shows the class association in the example
application using an external filtered iterator.

The client SearchManager creates the necessary user interface to allow a
user to select a certification type and to display the data (Figure 16.5). When a
user selects a certification type and clicks on the Retrieve button, the Search-
Manager:

� Creates an instance of the container AllCandidates. As part of its
constructor, the AllCandidates object reads the data file and stores the
data inside an instance variable data of type Vector. The client does not
have to be aware of the data format or how the data is stored.

� Invokes the getCertifiedCandidates(String type) method on
the AllCandidates container object by passing the selected certification
type as an argument. The getCertifiedCandidates method creates
an instance of the CertifiedCandidates class and returns it as an
object of type java.util.Iterator.

Figure 16.4 External Iterator: Class Association

java.util.Iterator

AllCandidates

getCertifiedCandidate(type:String)
:iterator

data:Vector

CertifiedCandidates

hasNext():boolean
next():Object
remove()

ac:AllCandidates

SearchManager

<
<
C
r
e
a
t
e
s
>
>

1

1..*<
<
c
o
n
t
a
i
n
s
>
>

<
<
U
s
e
s
>
>

© 2004 by CRC Press LLC

Once the Iterator object is received, the client SearchManager makes
use of the hasNext() and the next() methods to retrieve the matching
Candidate objects and displays them in the user interface (Figure 16.5).

…

…

public void actionPerformed(ActionEvent e) {

if (e.getActionCommand().equals(SearchManager.EXIT)) {

System.exit(1);

}

if (e.getActionCommand().equals(

SearchManager.GET_CANDIDATES)) {

String selection = manager.getCertificationType();

AllCandidates ac = new AllCandidates();

Iterator certCandidates =

ac.getCertifiedCandidates(selection);

String selectedCandidates =

"Name — - Cert Type — - Location" + "\n" +

" — — — — — — — — — — — — — — — — — — — ";

while (certCandidates.hasNext()) {

Candidate c = (Candidate) certCandidates.next();

selectedCandidates = selectedCandidates + "\n" +

Figure 16.5 Client User Interface: Results Display

© 2004 by CRC Press LLC

g

c.getName() + " - " + c.getCertificationType() +

" - " + c.getLocation();

}

manager.setSelectedCandidates(selectedCandidates);

}

}

…

…

The sequence diagram in Figure 16.6 shows the message flow when the user
clicks on the Retrieve button.

In the case of both iterators, the client SearchManager does not contain
any implementation that is tied to the way data is stored inside the container. All
such implementation is completely moved out of the client to either the container
(internal iterator) or to the iterator object (external iterator). The resulting design
protects the client SearchManager from any changes to the way the data is
maintained inside the container. For instance, if the internal representation of the
data is changed so that the data is stored in an array or in some other form
instead of a Vector, no changes are required to the client SearchManager
implementation.

Figure 16.6 Message Flow When the External Iterator Is in Use

SearchManager AllCandidates

create()

getCertifiedCandidates(selection:String)

Candidate

the SearchManager invokes
the next() method until the

hasNext() method returns false

retrieve the next Candidate
details

CertifiedCandidates

create()

hasNext()

next()

create()

getName()

getCertificationType()

getLocation()

the next() method returns
the next Candidate with the

specified certification.

© 2004 by CRC Press LLC

PRACTICE QUESTIONS

1. Design and implement a new filtered external iterator to filter the list of
candidates by location and integrate it into the example application.

2. Consider the following author details XML data file contents.

<Authors>

<Author>

<Name>Auth_1</Name>

<Books>

<Book>

<Title>B1</Title>

</Book>

<Book>

<Title>B2</Title>

</Book>

<Books>

</Author>

<Author>

<Name>Auth_2</Name>

<Books>

<Book>

<Title>B3</Title>

</Book>

<Book>

<Title>B4</Title>

</Book>

<Books>

</Author>

</Authors>

Design an application to go through this list of authors and their books
using the components listed in Table 16.3.
Design a client to use these two iterators together to access each author,
the author’s books and display them in a desired format.

© 2004 by CRC Press LLC

g

Table 16.3 Application Components

Name Role Responsibility

AuthorCollection Container This class is responsible for reading from the
physical XML file and holding the data.

Offers methods to create two external
iterators — AuthorIterator and
BookIterator — on its data.

AuthorIterator Iterator An external iterator that returns all authors
one by one in response to its next()
method call.

BookIterator Iterator An external filtered iterator that returns all
books written by a specified author one by
one in response to its next() method call.

© 2004 by CRC Press LLC

17

FLYWEIGHT

This pattern was previously described in GoF95.

DESCRIPTION

Every object can be viewed as consisting of one or both of the following two
sets of information:

1. Intrinsic Information — The intrinsic information of an object is indepen-
dent of the object context. That means the intrinsic information is the
common information that remains constant among different instances of a
given class. For example, the company information on a visiting card is
the same for all employees.

2. Extrinsic Information — The extrinsic information of an object is dependent
upon and varies with the object context. That means the extrinsic informa-
tion is unique for every instance of a given class. For example, the employee
name and title are extrinsic on a visiting card as this information is unique
for every employee.

Consider an application scenario that involves creating a large number of
objects that are unique only in terms of a few parameters. In other words, these
objects contain some intrinsic, invariant data that is common among all objects.
This intrinsic data needs to be created and maintained as part of every object
that is being created. The overall creation and maintenance of a large group of
such objects can be very expensive in terms of memory-usage and performance.

The Flyweight pattern can be used in such scenarios to design a more efficient
way of creating objects.

The Flyweight pattern suggests separating all the intrinsic common data into
a separate object referred to as a Flyweight object. The group of objects being
created can share the object as it represents their intrinsic state. This
eliminates the need for storing the same invariant, intrinsic information in every
object; instead it is stored only once in the form of a single object.
As a result, the client application can realize considerable savings in terms of the
memory-usage and the time.

© 2004 by CRC Press LLC

g

When the Flyweight pattern is applied, it is important to make sure that the
requirements listed in Table 17.1 are satisfied.

HOW TO DESIGN A FLYWEIGHT IN JAVA

One of the ways to design a flyweight in Java is to design it as a singleton similar
to the class in Figure 17.1.

DESIGN HIGHLIGHTS

� The class is designed with a private constructor. This is to
prevent client objects from creating instances by directly
accessing its constructor.

� In general, a singleton is expected to maintain only one instance of itself.
That is, the singleton nature is at the class type level. When a flyweight is
designed as a singleton, it exhibits the singleton nature at the flyweight
type level, not at the class type level. In other words, the singleton

Table 17.1 Flyweight Requirements

Serial
Number Description

1 There exists only one object of a given flyweight kind and is shared by
all the other appropriate objects.

2 Client objects should not be allowed to create flyweight instances
directly. At the same time, client objects should have a way of accessing
a required object when needed.

Figure 17.1 Flyweight as a Singleton

Flyweight

synchronized getFlyweight(flyweightType)
:Flyweight

-Flyweight()

lstFlyweight:HashMap
intrinsic_var_1
 ...
intrinsic_var_n

1..*

© 2004 by CRC Press LLC

y g

maintains a single instance of itself for every possible flyweight
type in the system. These flyweight objects are stored in the

static variable. This can be viewed as a variation of the Singleton
pattern.

Whenever a client needs to create an instance of a given flyweight type, it
invokes the static method, passing the required flyweight type
as an argument. The method is designed as a synchronized class
level method to make it thread safe.

As part of its implementation of the method, the
checks to see if an instance of itself corresponding to the requested flyweight
type already exists in the .

� If it exists, the returns the existing object to the
client.

� If it does not exist:
– The creates a new instance of itself corresponding to the

requested flyweight type and adds it to the flyweights list maintained
in the static variable. Because the

method is defined within the class, it can access
its private constructor to create an instance of itself.

– It returns the newly created object to the client.

The flyweight design discussed so far meets the requirements listed in Table
17.1. In general, a flyweight is designed solely to represent the intrinsic state of
an object. Besides representing an object’s intrinsic state, the flyweight contains
the required data structures and the implementation to maintain different types
of singleton objects.

As an alternate design strategy, the responsibility of creating and maintaining
different singleton objects can be moved out of the to
a designated . The can be designed as an inner
class of the class. Since the class is defined
with a private constructor, external objects are prevented from creating its instances
by directly invoking the constructor. But the can invoke
the class private constructor to create necessary objects.
This is because an outer class can access the private methods of its inner class.

In the new design (Figure 17.2), both the data structure (
) and the behavior (method) related to the creation

and maintenance of singleton objects are moved from the
class to the class. The instances are

used solely to represent an object’s intrinsic state.
Whenever a client needs to create an instance of a given flyweight type, it

invokes, the method on the singleton
instance, passing the required flyweight type as an argument. The singleton

object maintains the list of existing objects in
the instance variable.

© 2004 by CRC Press LLC

g

As part of its implementation of the method, the
checks to see if an instance of the corresponding

to the requested flyweight type already exists in the .

� If it exists, the returns the existing
object to the client.

� If it does not exist:
– The creates a new instance of the

corresponding to the requested flyweight type and adds it to the fly-
weights list maintained in the variable.

– It returns the newly created object to the client.

The is designed as a singleton to prevent client objects
from creating multiple instances of the , thereby creating
multiple instances of a given flyweight kind.

Once the requested object is received, the client can either:

� Create an object with the exclusive extrinsic data and associate the
object with it. This approach still results in the creation of a large

number of objects but the design becomes more efficient as the intrinsic
data is not duplicated in every object. Instead, it is kept inside a single
shared object (Design Approach I in the following example).

Figure 17.2 Flyweight as an Inner Class inside a Singleton Factory

lstFlyweight:HashMap
factory:FlyweightFactory

synchronized getFlyweight(flyweightType)
:Flyweight

getInstance():FlyweightFactory

FlyweightFactory

Flyweight

intrinsic_var_1
 ...
intrinsic_var_n

-Flyweight()

-$SingleInstance

© 2004 by CRC Press LLC

y g

� Send the extrinsic data as part of a method call to the object.
This approach results in the creation of few objects with no duplication
(Design Approach II in the following example).

EXAMPLE

To demonstrate the use of the Flyweight pattern, let us design an application that
prints out the data for visiting cards of all the employees of a large organization
with four major divisional offices. A typical visiting card can be assumed to have
the following layout:

From the visiting card data layout, it can be observed that:

� The name and the title are unique for every employee and can be
considered as the extrinsic data.

� The company name remains the same for all employees and every
employee working under a divisional office is given the same divisional
office address. Therefore the company name and division address part of
a visiting card can be treated as the intrinsic data.

One of the simplest strategies for designing this example application is to
create a class representing a visiting card as in Figure 17.3. The
method can be implemented to display the visiting card data.

Figure 17.3 Visiting Card: Class Representation

name:String
title:String
company:String
address:String
city:String
state:String
zip:String

print()

VCard

© 2004 by CRC Press LLC

g

Usually, there will be thousands of employees in a large organization and
hence the application may need to create thousands of objects. As
discussed earlier, the address part of the class remains constant for all
employees working under a given divisional office. Hence, adapting the class
representation depicted in Figure 17.3 could lead to duplicate data being created
and maintained as part of every new instance created. Using the Flyweight
pattern, the need for storing the duplicate data can be eliminated.

DESIGN APPROACH I

In this approach, the extrinsic data is represented as an object and configured
with a object representing its intrinsic data.

Applying the Flyweight pattern, all the intrinsic data can be moved out of the
class into a separate class. Let us define an interface

to be implemented by the class representing the
visiting card intrinsic data.

As we discussed under the “How to Design a Flyweight in Java” section earlier,
let us define a singleton (Listing 17.1) with the responsi-
bility of creating and maintaining single instances of different objects
corresponding to different divisions.

The actual class can be defined within the
as an inner class (Figure 17.4).

The design highlights of the concrete and the
classes are as follows:

� The concrete class is designed with a private constructor to
prevent external objects from creating Flyweight instances directly by
invoking its constructor.

� The concrete class is designed as an inner class within the
to allow the to invoke its

private constructor.
� The is responsible for creating and managing dif-

ferent Flyweight instances. It maintains a list of dif ferent
objects inside the instance variable. When a
client requests a object corresponding to a specific division,
the checks the list of existing objects
to see if it is already created. If it is already created and available in the
list, the returns the existing object. If

© 2004 by CRC Press LLC

y g

Listing 17.1 Singleton Class with Inner Class

(continued)

© 2004 by CRC Press LLC

g

not, the creates the requested object,
stores it inside the list and returns it to the client. Subsequently, when a
client object requests a flyweight corresponding to the same division, the

 object is not created. Instead, the corresponding

Listing 17.1 Singleton Class with Inner Class
(Continued)

© 2004 by CRC Press LLC

y g

object from the instance variable is returned
to the client.

� The is designed as a singleton so that it guarantees
the uniqueness of objects.

After the intrinsic data is removed, the extrinsic data still remains within the
class (Listing 17.2). As part of its constructor, the accepts a

instance representing its intrinsic data. The method displays
extrinsic data from the and intrinsic data from the associated
object.

With these objects in place, in order to print the visiting card data, a client
object such as (Listing 17.3):

1. Creates an instance of the singleton .
2. Requests an appropriate object (for every employee) by invok-

ing the method on the singleton
instance, passing the division that the employee works for as an argument.
In response, the returns a instance
corresponding to the specified division. Since the example organization is

Figure 17.4 with an Inner Class

lstFlyweight:HashMap
factory:FlyweightFactory

synchronized getFlyweight(division:String)
:FlyweightIntr

getInstance():FlyweightFactory

FlyweightFactory

Flyweight

company:String
address:String
city:String
state:String
zip:String

<<interface>>
FlyweightIntr

getCompany():String
getAddress():String
getCity():String
getState():String
getZip():String

-$SingleInstance

getCompany():String
getAddress():String
getCity():String
getState():String
getZip():String

© 2004 by CRC Press LLC

g

assumed to have only four divisions, there will be a maximum of four
objects created when the application is run.

3. Receives the requested object and then associates the Fly-
weight with the instance representing the extrinsic data by passing
the object as an argument to the constructor.

Figure 17.5 shows the overall class association.
The following sequence diagram in Figure 17.6 depicts the message flow during

the creation and display of the visiting card data of an employee working for a
specific divisional office.

This approach requires the creation of a object for every employee in
addition to the four objects. The fact that the intrinsic data is not
duplicated in every object results in savings in terms of the memory usage
and the time it takes to create objects.

DESIGN APPROACH II

Extrinsic data passed to the flyweight as part of a method call and was not
represented as an object (Listing 17.4).

This design approach requires the following two changes to the application
design discussed in Design Approach I.

Listing 17.2 Class Using a Object to Represent the Intrinsic Data

© 2004 by CRC Press LLC

y g

� The print method:
– Needs to be moved from the class to the class.
– Signature needs to be changed from

to

in order to accept the extrinsic data as arguments.
� Should be implemented to display the extrinsic data passed to it along

with the intrinsic data it represents.

Listing 17.3 Client Class

© 2004 by CRC Press LLC

g

Figure 17.5 Design Approach I: Class Association

Figure 17.6 Message Flow: Design Approach I

lstFlyweight:HashMap
factory:FlyweightFactory

FlyweightFactory

Flyweight

<<Interface>>
FlyweightIntr

getCompany():String
getAddress():String
getCity():String
getState():String
getZip():String

-$SingleInstance

getCompany():String
getAddress():String
getCity():String
getState():String
getZip():String

getFlyweight(division:String)
:FlyweightIntr

getInstance():FlyweightFactory

VCard

objFW:FlyweightIntr

FlyweightTest

flyweight:FlyweightIntr

<
<
c
r
e
a
t
e
s
>
>

<<creates>>

FlyweightTest FlyweightFactory Flyweight VCard

getInstance()

getFlyweight(division:String)

create()

create(name:String, title:String, objFW:Flyweight)

print()

© 2004 by CRC Press LLC

y g

� class:
– Since the extrinsic data is to be passed to the object and

hence the class is no longer needed, this class can be removed
from the design.

In the new design, the client (Listing 17.5):

� First creates an instance of the singleton . The design
and implementation of the remains the same as in
Design Approach I.

� For every employee, the application requests the
for an appropriate object by passing the division that the
employee works for.

Listing 17.4 Revised Class

© 2004 by CRC Press LLC

g

� Once the requested object is received, the client invokes the
print method on the object by passing the extrinsic data
(employee name and title).

Figure 17.7 shows the class association in the revised design.
The sequence diagram in Figure 17.8 depicts the message flow in the new

design during the creation and display of the visiting card data of an employee
working for a specific divisional office.

Because the extrinsic data is not designed as an object, this approach requires
the creation of only four objects, each corresponding to a divisional
office with no duplication. This substantially reduces the memory usage and the
time required for the object creation.

PRACTICE QUESTIONS

1. Let us consider an online job site that receives XML data files from different
employers with current openings in their organizations. When the number
of vacancies is small, employers can enter details online. When the number

Listing 17.5 Client Class

© 2004 by CRC Press LLC

y g

Figure 17.7 Design Approach II: Class Association

Figure 17.8 Message Flow: Design Approach II

lstFlyweight:HashMap
factory:FlyweightFactory

FlyweightFactory Flyweight

<<Interface>>
FlyweightIntr

getCompany():String
getAddress():String
getCity():String
getState():String
getZip():String
print(name:String,

title:String)

-$SingleInstance

getCompany():String
getAddress():String
getCity():String
getState():String
getZip():String
print(name:String,

title:String)

getFlyweight(division:String)
:FlyweightIntr

getInstance():FlyweightFactory

FlyweightTest

flyweight:FlyweightIntr
<<uses>>

FlyweightTest FlyweightFactory Flyweight

getInstance()

getFlyweight(division:String)

create()

print(name:String, title:String)

© 2004 by CRC Press LLC

g

of vacancies is large, employers upload details in the form of an XML file.
Once the XML file is received, it needs to be parsed and processed. Let us
assume the XML file to have the following details:
a. Job title
b. Minimum qualifications
c. Medical insurance
d. Dental insurance
e. Vision care
f. 401K
g. Minimum number of hours of work
h. Paid vacation
i. Employer name
j. Employer address

In general, details from (c) through (j) are all considered to be the same
for all jobs posted by a given employer. Apply the Flyweight pattern to
design the process of parsing the input XML file and creating different

objects.
2. A computer user in a typical organization is associated with a user account.

A user account can be part of one or more groups. Permissions on different
resources (such as servers, printers, etc.) are defined at the group level.
Users get all the permissions defined for all groups that their accounts are
part of. Let us consider an organization with three different user groups —

, and . Further assume
that the organization is in the process of migrating user accounts from one
server to a different server environment. As part of this process, all user
accounts are first exported to an XML file as follows.

© 2004 by CRC Press LLC

y g

It is to be noted that permissions for all accounts in a given group are the
same. This can be considered as the intrinsic data. The user name and the
password details vary from user to user and should be treated as extrinsic
data.
User accounts in the new server environment are created using the
exported XML file. Make any necessary assumptions and design an appli-
cation using the Flyweight pattern to parse the XML file to create different
user account objects.

© 2004 by CRC Press LLC

18

VISITOR

This pattern was previously described in GoF95.

DESCRIPTION

The Visitor pattern is useful in designing an operation across a heterogeneous
collection of objects of a class hierarchy. The Visitor pattern allows the operation
to be defined without changing the class of any of the objects in the collection.

To accomplish this, the Visitor pattern suggests defining the operation in a
separate class referred to as a visitor class. This separates the operation from the
object collection that it operates on. For every new operation to be defined, a
new visitor class is created. Since the operation is to be performed across a
set of objects, the visitor needs a way of accessing the public members of these
objects. This requirement can be addressed by implementing the following two
design ideas.

Design Idea 1

Every visitor class that operates on objects of the same set of classes can be
designed to implement a corresponding VisitorInterface interface. A typical
VisitorInterface declares a set of visit(ObjectType) methods, one for
each object type from the object collection. Each of these methods is meant for
processing instances of a specific class. For example, if the object collection
consists of objects of ClassA and ClassB, then the VisitorInterface
interface would declare the following two methods:

visit(ClassA objClassA)

for processing ClassA objects.

visit(ClassB objClassB)

for processing ClassB objects.
Every object from the object collection makes a call to the r espective

visit(ObjectType) method, passing itself as an argument. A typical

© 2004 by CRC Press LLC

g

implementer (visitor) of the VisitorInterface can access the information
required for the operation it is designed for by accessing the public members
(methods and attributes) of the object instance passed to it through the visit
method call.

Design Idea 2

Classes of objects from the object collection need to define a method:

accept(visitor)

A client interested in executing the visitor operation needs to:

� Create an instance of the implementer (visitor) of the VisitorInterface
interface that is designed to carry out the required operation.

� Create the object collection and invoke the accept(visitor) method
on every member of the object collection by passing the visitor instance
created above.

As part of the accept(visitor) method implementation, every object in
the object collection invokes the visit(ObjectType) method on the visitor
instance. Inside the visit(ObjectType) method, the visitor gathers the
required data from the object collection to perform the operation it is designed for.

DEFINING NEW OPERATIONS ON THE OBJECT COLLECTION

Whenever a new operation is to be defined across the object collection, a new
visitor class needs to be created with implementation for the new operation.
The visitor class needs to implement all of the visit(ObjectType)
methods declared in the VisitorInterface interface to process different types
of objects.

With this design, defining a new operation does not require any changes to
the classes of the object collection.

ADDING OBJECTS OF A NEW TYPE TO THE COLLECTION

Whenever a new type of object is to be added to the object collection and is to
be referred within the scope of an already existing visitor operation:

� The class of the object must provide a method similar to accept(vis-
itor) and as part of this method implementation it should invoke the
visit(ObjectType) method on the visitor object passing itself as
an argument to it.

� A corresponding visit(ObjectType) method needs to be added to
the VisitorInterface interface and needs to be implemented by all
the concrete visitor classes.

© 2004 by CRC Press LLC

This means that for objects of an existing class to be added to the object collection
and to be considered within the scope of an existing visitor operation, the class
needs to be altered to implement a method similar to accept(visitor), if one
does not already exist. This implies that when the Visitor pattern is applied for the
first time to a class, one should have access to its source code or the class needs to
be subclassed to add the accept(visitor) method implementation.

EXAMPLE

Let us design an application to define operations over a collection of different
Order objects. Orders can be of different types. Let us consider three different
types of orders as follows:

� Overseas order — Order from countries other than the United States.
Additional shipping and handling is charged for this type of order.

� California order — U.S. order with shipping address in California. Addi-
tional sales tax is charged on this type of order.

� Non-California order — U.S. order with shipping address not in California.
Additional sales tax is not applicable.

DESIGN APPROACH I

Let us assume that we would like to define an operation getMaxCAOrderAmount
to find the top dollar amount on a California order. We can define a generic
Order class as in the following Figure 18.1.

The Order class maintains a static member variable orderTotalCA to keep
track of the order amount. Whenever a new order is created, the orderTotalCA
member variable is updated with the order amount if the new order amount is
greater than the old order total already available in the orderTotalCA static
member variable.

Let us say that we would like to add more methods, such as getMinCA-
OrderAmount, getCAOrderTotal, getMinNonCAOrderAmount, getMax-
OverseasOrderAmount, etc., to find out different types of order amounts.

The Order class code needs to be altered for each such new operation. As
a result, the class can quickly become cluttered (Figure 18.2).

Figure 18.1 Order Class

Order

getMaxCAOrderAmount():double

orderTotalCA:double

© 2004 by CRC Press LLC

g

DESIGN APPROACH II

Since orders are of three different types, we can design three subclasses of the
Order class, each representing a specific order type (Figure 18.3).

With this new design, related operations can be kept within an appropriate
Order subclass. Although this class structure is more manageable and less
cluttered, it suffers from the following two limitations:

� There is no appropriate place to define operations involving different order
types.

� Whenever a new operation is to be defined in any Order class, it requires
a change to the class code.

DESIGN APPROACH III (COMPOSITE PATTERN)

During the discussion of the Composite pattern, we defined operations on an
object collection containing objects from a class hierarchy. A Composite object
is designed to maintain this object collection and operate on this collection.

Applying the Composite pattern, we can define a composite OrderCompos-
ite class as in Figure 18.4 to define operations on a collection of different order
objects.

Figure 18.2 Order Class with New Methods

Figure 18.3 Order Class Hierarchy

Order

getMaxCAOrderAmount():double
getMinCAOrderAmount():double
getMaxNonCAOrderAmount():double
getMinNonCAOrderAmount():double

orderTotalCA:double
orderTotalNonCA:double

CaliforniaOrder NonCaliforniaOrder OverseasOrder

Order

© 2004 by CRC Press LLC

The attribute orderColl can be used to store different types of Order objects
and the getOrderTotal iterates over this collection to retrieve and sum up
different order amounts.

This design does not fully address the limitations of the Design Approach II.
It allows the definition of an operation over a heterogeneous collection of objects,
but it requires changes to the OrderComposite hierarchy classes whenever a
new operation is to be added.

DESIGN APPROACH IV (THE VISITOR PATTERN)

Let us define an order class hierarchy as in Figure 18.5 with an interface Order
at the top of the hierarchy and three of its implementers — CaliforniaOrder,
NonCaliforniaOrder and OverseasOrder — each representing a specific
order type. The Order interface declares a method accept(OrderVisitor).
Each of the Order implementers pr ovides implementation for the
accept(OrderVisitor) method (Listings 18.1 through 18.4).

The VisitorInterface can be designed as a Java interface that declares
a set of visit(OrderType) methods, one for each class in the order class
hierarchy. In other words, these methods are meant to process different types of
orders.

public interface VisitorInterface {

public void visit(NonCaliforniaOrder nco);

public void visit(CaliforniaOrder co);

public void visit(OverseasOrder oo);

}

Figure 18.4 OrderComposite: Class Structure

<<interface>>
OrderComponent

getOrderTotal():double

OrderComposite

getOrderTotal():double

orderColl:Vector

*

© 2004 by CRC Press LLC

g

Let us define a visitor OrderVisitor as an implementer of the Visi-
torInterface (Figure 18.6 and Listing 18.5), to calculate the sum of all order
totals.

As part of its implementation of the VisitorInterface methods, the
OrderVisitor retrieves the order amount, any additional tax or shipping and
handling amounts from different Order objects and maintains a cumulative sum
of these amounts in a private instance variable orderTotal.

Application Flow

When run, the client OrderManager creates an instance of the OrderVisitor
and displays the necessary user interface to allow a user to create different types
of orders (Figure 18.7).

Figure 18.5 Order Class Hierarchy

Listing 18.1 Order Interface

public interface Order {

public void accept(OrderVisitor v);

}

<<interface>>
Order

accept(visitor:OrderVisitor)

CaliforniaOrder

getOrderAmount():double
getAdditionalTax():double
accept(v:OrderVisitor)

NonCaliforniaOrder

getOrderAmount():double
accept(v:OrderVisitor)

OverseasOrder

getOrderAmount():double
getAdditionalSH():double
accept(v:OrderVisitor)

© 2004 by CRC Press LLC

Listing 18.2 CaliforniaOrder Class

public class CaliforniaOrder implements Order {

private double orderAmount;

private double additionalTax;

public CaliforniaOrder() {

}

public CaliforniaOrder(double inp_orderAmount,

double inp_additionalTax) {

orderAmount = inp_orderAmount;

additionalTax = inp_additionalTax;

}

public double getOrderAmount() {

return orderAmount;

}

public double getAdditionalTax() {

return additionalTax;

}

public void accept(OrderVisitor v) {

v.visit(this);

}

}

Listing 18.3 NonCaliforniaOrder Class

public class NonCaliforniaOrder implements Order {

private double orderAmount;

public NonCaliforniaOrder() {

}

public NonCaliforniaOrder(double inp_orderAmount) {

orderAmount = inp_orderAmount;

}

public double getOrderAmount() {

return orderAmount;

}

public void accept(OrderVisitor v) {

v.visit(this);

}

}

© 2004 by CRC Press LLC

g

Every time a user enters the order data and clicks on the CreateOrder
button, the client OrderManager (Listing 18.6):

� Creates an Order object with the input data.
� Invokes the accept(OrderVisitor) method on the Order object by

passing the OrderVisitor object. The Order object internally calls the
OrderVisitor visit method by passing itself as an argument. The
OrderVisitor retrieves the required order amount, tax and shipping
amounts using the public methods defined by different Order classes and
adds these amounts, in a cumulative manner, to the order total kept inside
the private instance variable orderTotal.

When the GetTotal button is clicked, the client OrderManager invokes
the getOrderTotal method of the OrderVisitor. The OrderVisitor sim-
ply returns the value stored in the orderTotal instance variable, which is the
total value of all orders created.

The sequence diagram in Figure 18.8 depicts the message flow, when the
client OrderManager makes use of the visitor OrderVisitor to calculate the
grand total of a set of different order amounts. In order to keep the diagram
simple, only one type of order is included.

Listing 18.4 OverseasOrder Class

public class OverseasOrder implements Order {

private double orderAmount;

private double additionalSH;

public OverseasOrder() {

}

public OverseasOrder(double inp_orderAmount,

double inp_additionalSH) {

orderAmount = inp_orderAmount;

additionalSH = inp_additionalSH;

}

public double getOrderAmount() {

return orderAmount;

}

public double getAdditionalSH() {

return additionalSH;

}

public void accept(OrderVisitor v) {

v.visit(this);

}

}

© 2004 by CRC Press LLC

DEFINING A NEW OPERATION ON THE ORDER
OBJECT COLLECTION

Defining a new operation on the order object collection requires the creation of
a new visitor. The new visitor needs to implement the VisitorInterface
interface providing implementation for different visit(OrderType) methods
to process different types of Order objects.

ADDING A NEW ORDER TYPE TO THE COLLECTION

If a new type of object (a new class) is to be added to the object structure such
as a DiscountOrder that implements the Order interface, then a corresponding
visit(DiscountOrder) method needs to be added to the VisitorInter-
face and needs to be implemented by the OrderVisitor class.

PRACTICE QUESTIONS

1. As part of our discussion of the Composite pattern, we designed a composite
DirComponent class. Redesign the DirComponent class operations
applying the Visitor pattern.

2. The Practice Questions section of the Composite pattern discussion lists
three applications involving operations on a heterogeneous object collec-
tion. Apply the Visitor pattern in designing these operations.

Figure 18.6 OrderVisitor Class Structure

<<interface>>
VisitorInterface

visit(nco:NonCaliforniaOrder)
visit(co:CaliforniaOrder)
visit(oo:OverseasOrder)

OrderVisitor

visit(nco:NonCaliforniaOrder)
visit(co:CaliforniaOrder)
visit(oo:OverseasOrder)

© 2004 by CRC Press LLC

g

Listing 18.5 OrderVisitor Class

class OrderVisitor implements VisitorInterface {

private Vector orderObjList;

private double orderTotal;

public OrderVisitor() {

orderObjList = new Vector();

}

public void visit(NonCaliforniaOrder inp_order) {

orderTotal = orderTotal + inp_order.getOrderAmount();

}

public void visit(CaliforniaOrder inp_order) {

orderTotal = orderTotal + inp_order.getOrderAmount() +

inp_order.getAdditionalTax();

}

public void visit(OverseasOrder inp_order) {

orderTotal = orderTotal + inp_order.getOrderAmount() +

inp_order.getAdditionalSH();

}

public double getOrderTotal() {

return orderTotal;

}

}

Figure 18.7 Order Manager: User Interface to Create Orders

© 2004 by CRC Press LLC

Listing 18.6 OrderManager Class

…

…

public void actionPerformed(ActionEvent e) {

String totalResult = null;

if (e.getActionCommand().equals(OrderManager.EXIT)) {

System.exit(1);

}

if (e.getActionCommand().equals(OrderManager.CREATE_ORDER)

) {

//get input values

String orderType = objOrderManager.getOrderType();

String strOrderAmount =

objOrderManager.getOrderAmount();

String strTax = objOrderManager.getTax();

String strSH = objOrderManager.getSH();

double dblOrderAmount = 0.0;

double dblTax = 0.0;

double dblSH = 0.0;

if (strOrderAmount.trim().length() == 0) {

strOrderAmount = "0.0";

}

if (strTax.trim().length() == 0) {

strTax = "0.0";

}

if (strSH.trim().length() == 0) {

strSH = "0.0";

}

dblOrderAmount =

new Double(strOrderAmount).doubleValue();

dblTax = new Double(strTax).doubleValue();

dblSH = new Double(strSH).doubleValue();

//Create the order

Order order = createOrder(orderType, dblOrderAmount,

dblTax, dblSH);

(continued)

© 2004 by CRC Press LLC

g

Listing 18.6 OrderManager Class (Continued)

//Get the Visitor

OrderVisitor visitor =

objOrderManager.getOrderVisitor();

//accept the visitor instance

order.accept(visitor);

objOrderManager.setTotalValue(

" Order Created Successfully");

}

if (e.getActionCommand().equals(OrderManager.GET_TOTAL)) {

//Get the Visitor

OrderVisitor visitor =

objOrderManager.getOrderVisitor();

totalResult = new Double(

visitor.getOrderTotal()).toString();

totalResult = " Orders Total = " + totalResult;

objOrderManager.setTotalValue(totalResult);

}

}

public Order createOrder(String orderType,

double orderAmount, double tax, double SH) {

if (orderType.equalsIgnoreCase(OrderManager.CA_ORDER))
{

return new CaliforniaOrder(orderAmount, tax);

}

if (orderType.equalsIgnoreCase(

OrderManager.NON_CA_ORDER)) {

return new NonCaliforniaOrder(orderAmount);

}

if (orderType.equalsIgnoreCase(

OrderManager.OVERSEAS_ORDER)) {

return new OverseasOrder(orderAmount, SH);

}

return null;

}

…

…

© 2004 by CRC Press LLC

Figure 18.8 Application Message Flow

OrderManager OrderVisitor CaliforniaOrder

create()

accept(v:OrderVisitor)

visit(order:CaliforniaOrder)

getOrderAmount()

getAdditionalTax()

getOrderTotal()

invoke the sequence of accept,
visit methods for every new order
created.

operation defined on
the set of different
order objects

create()

© 2004 by CRC Press LLC

VI
STRUCTURAL PATTERNS

Structural patterns primarily:

� Deal with objects delegating responsibilities to other objects. This results
in a layered architecture of components with low degree of coupling.

� Facilitate interobject communication when one object is not accessible to
the other by normal means or when an object is not usable because of
its incompatible interface.

� Provide ways to structure an aggregate object so that it is created in full
and to reclaim system resources in a timely manner.

© 2004 by CRC Press LLC

Chapter Pattern Name Description

19 Decorator Extends the functionality of an object in a manner
that is transparent to its clients without using
inheritance.

20 Adapter Allows the conversion of the interface of a class to
another interface that clients expect. This allows
classes with incompatible interfaces to work
together.

21 Chain of
Responsibility

Avoids coupling a (request) sender object to a
receiver object. Allows a sender object to pass its
request along a chain of objects without knowing
which object will actually handle the request.

22 Façade Provides a higher-level interface to a subsystem of
classes, making the subsystem easier to use.

23 Proxy Allows a separate object to be used as a substitute
to provide controlled access to an object that is not
accessible by normal means.

24 Bridge Allows the separation of an abstract interface from
its implementation. This eliminates the
dependency between the two, allowing them to be
modified independently.

25 Virtual Proxy Facilitates the mechanism for delaying the creation
of an object until it is actually needed in a manner
that is transparent to its client objects.

26 Counting Proxy When there is a need to perform supplemental
operations such as logging and counting before or
after a method call on an object, recommends
encapsulating the supplemental functionality into
a separate object.

27 Aggregate Enforcer Recommends that when an aggregate object is
instantiated, all of its member variables
representing the set of constituting objects must
also be initialized. In other words, whenever an
aggregate object is instantiated it must be
constructed in full.

28 Explicit Object
Release

Recommends that when an object goes out of
scope, all of the system resources tied up with that
object must be released in a timely manner.

29 Object Cache Stores the results of a method call on an object in a
repository. When client objects invoke the same
method, instead of accessing the actual object,
results are returned to the client object from the
repository. This is done mainly to achieve a faster
response time.

© 2004 by CRC Press LLC

19

DECORATOR

This pattern was previously described in GoF95.

DESCRIPTION

The Decorator Pattern is used to extend the functionality of an object dynamically
without having to change the original class source or using inheritance. This is
accomplished by creating an object wrapper referred to as a Decorator around
the actual object.

CHARACTERISTICS OF A DECORATOR

� The Decorator object is designed to have the same interface as the
underlying object. This allows a client object to interact with the Deco-
rator object in exactly the same manner as it would with the underlying
actual object.

� The Decorator object contains a reference to the actual object.
� The Decorator object receives all requests (calls) from a client. It in

turn forwards these calls to the underlying object.
� The Decorator object adds some additional functionality before or after

forwarding requests to the underlying object. This ensures that the addi-
tional functionality can be added to a given object externally at runtime
without modifying its structure.

Typically, in object-oriented design, the functionality of a given class is
extended using inheritance. Table 19.1 lists the differences between the Decorator
pattern and inheritance.

EXAMPLE

Let us revisit the message logging utility we built while discussing the Factory
Method and the Singleton patterns earlier. Our design mainly comprised a Logger
interface and two of its implementers — FileLogger and ConsoleLogger —
to log messages to a file and to the screen, respectively. In addition, we had the
LoggerFactory class with a factory method in it.

© 2004 by CRC Press LLC

g

The LoggerFactory is not shown in Figure 19.1. This is because it is not
directly related to the current example discussion.

Let us suppose that some of the clients are now in need of logging messages
in new ways beyond what is offered by the message logging utility. Let us consider
the following two small features that clients would like to have:

� Transform an incoming message to an HTML document.
� Apply a simple encryption by transposition logic on an incoming message.

Table 19.1 Decorator Pattern versus Inheritance

Decorator Pattern Inheritance

Used to extend the functionality of a
particular object.

Used to extend the functionality of a class
of objects.

Does not require subclassing. Requires subclassing.
Dynamic. Static.
Runtime assignment of responsibilities. Compile time assignment of

responsibilities.
Prevents the proliferation of subclasses

leading to less complexity and
confusion.

Could lead to numerous subclasses,
exploding class hierarchy on specific
occasions.

More flexible. Less flexible.
Possible to have different decorator

objects for a given object simultaneously.
A client can choose what capabilities it
wants by sending messages to an
appropriate decorator.

Having subclasses for all possible
combinations of additional capabilities,
which clients expect out of a given class,
could lead to a proliferation of
subclasses.

Easy to add any combination of
capabilities. The same capability can even
be added twice.

Difficult.

Figure 19.1 Logging Utility Class Hierarchy

<<interface>>
Logger

log(msg:String)

FileLogger

log(msg:String)

ConsoleLogger

log(msg:String)

© 2004 by CRC Press LLC

Typically, in object-oriented design, without changing the code of an existing
class, new functionality can be added by applying inheritance, i.e., by subclassing
an existing class and overriding its methods to add the required new functionality.

Applying inheritance, we would subclass both the FileLogger and the
ConsoleLogger classes to add the new functionality with the following set of
new subclasses (Table 19.2).

As can be seen from the class diagram in Figure 19.2, a set of four new
subclasses are added in order to add the new functionality. If we had additional
Logger types (for example a DBLogger to log messages to a database), it would
lead to more subclasses. With every new feature that needs to be added, there
will be a multiplicative growth in the number of subclasses and soon we will
have an exploding class hierarchy.

Table 19.2 Subclasses of FileLogger and ConsoleLogger

Subclass Parent Class Functionality

HTMLFileLogger FileLogger Transform an incoming message to an
HTML document and store it in a log
file.

HTMLConsLogger ConsoleLogger Transform an incoming message to an
HTML document and display it on the
screen.

EncFileLogger FileLogger Apply encryption on an incoming
message and store it in a log file.

EncConsLogger ConsoleLogger Apply encryption on an incoming
message and display it on the screen.

Figure 19.2 The Resulting Class Hierarchy after Applying Inheritance to Add the New
Functionality

<<interface>>
Logger

log(msg:String)

FileLogger
ConsoleLogger

log(msg:String)

HTMLConsLogger

log(msg:String)

EncConsLogger

log(msg:String)

HTMLFileLogger

log(msg:String)

EncFileLogger

log(msg:String)

log(msg:String)

© 2004 by CRC Press LLC

g

The Decorator pattern comes to our rescue in situations like this. The Decorator
pattern recommends having a wrapper around an object to extend its functionality
by object composition rather than by inheritance.

Applying the Decorator pattern, let us define a default root decorator
LoggerDecorator (Listing 19.1) for the message logging utility with the follow-
ing characteristics:

� The LoggerDecorator contains a reference to a Logger instance. This
reference points to a Logger object it wraps.

� The LoggerDecorator implements the Logger interface and provides
the basic default implementation for the log method, where it simply
forwards an incoming call to the Logger object it wraps. Every subclass
of the LoggerDecorator is hence guaranteed to have the log method
defined in it.

It is important for every logger decorator to have the log method because a
decorator object must provide the same interface as the object it wraps. When clients
create an instance of the decorator, they interact with the decorator in exactly the
same manner as they would with the original object using the same interface.

Let us define two subclasses, HTMLLogger and EncryptLogger, of the
default LoggerDecorator as shown in Figure 19.3.

CONCRETE LOGGER DECORATORS

HTMLLogger

The HTMLLogger (Listing 19.2) overrides the default implementation of the log
method. Inside the log method, this decorator transforms an incoming message to
an HTML document and then sends it to the Logger instance it contains for logging.

Listing 19.1 LoggerDecorator Class

public class LoggerDecorator implements Logger {

Logger logger;

public LoggerDecorator(Logger inp_logger) {

logger = inp_logger;

}

public void log(String DataLine) {

/*

Default implementation

to be overriden by subclasses.

*/

logger.log(DataLine);

}

}//end of class

© 2004 by CRC Press LLC

EncryptLogger

Similar to the HTMLLogger, the EncryptLogger (Listing 19.3) overrides the
log method. Inside the log method, the EncryptLogger implements simple
encryption logic by shifting characters to the right by one position and sends it
to the Logger instance it contains for logging.

The class diagram in Figure 19.4 shows how different classes are arranged
while applying the Decorator pattern.

In order to log messages using the newly designed decorators a client object
(Listing 19.4) needs to:

� Create an appropriate Logger instance (FileLogger/ConsoleLogger)
using the LoggerFactory factory method.

� Create an appropriate LoggerDecorator instance by passing the Log-
ger instance created in Step 1 as an argument to its constructor.

� Invoke methods on the LoggerDecorator instance as it would on the
Logger instance.

Figure 19.5 shows the message flow when a client object uses the HTMLLogger
object to log messages.

Figure 19.3 The Decorator Class Structure for the Logging Utility to Add the New
Functionality

<<interface>>
Logger

log(msg:String)

LoggerDecorator

log(msg:String)

logger:Logger

HTMLLogger

log(msg:String)
makeHTML(dataLine:String)

EncryptLogger

log(msg:String)
encrypt(dataLine:String)

<
<
c
o
n
t
a
i
n
s
>
>

1

1

© 2004 by CRC Press LLC

g

ADDING A NEW MESSAGE LOGGER

In case of the message logging utility, applying the Decorator pattern does not
lead to a large number of subclasses with a fast growing class hierarchy as it
would if we apply inheritance. Let us say that we have another Logger type, say
a DBLogger, that logs messages to a database. In order to apply the HTML
transformation or to apply the encryption before logging to the database, all that
a client object needs to do is to follow the list of steps mentioned earlier. Because
the DBLogger would be of the Logger type, it can be sent to any of the
HTMLLogger or the EncryptLogger classes as an argument while invoking
their constructors.

Listing 19.2 HTMLLogger Class

public class HTMLLogger extends LoggerDecorator {

public HTMLLogger(Logger inp_logger) {

super(inp_logger);

}

public void log(String DataLine) {

/*

Added functionality

*/

DataLine = makeHTML(DataLine);

/*

Now forward the encrypted text to the FileLogger

for storage

*/

logger.log(DataLine);

}

public String makeHTML(String DataLine) {

/*

Make it into an HTML document.

*/

DataLine = "<HTML><BODY>" + "" + DataLine +

"" + "</BODY></HTML>";

return DataLine;

}

}//end of class

© 2004 by CRC Press LLC

ADDING A NEW DECORATOR

From the example it can be observed that a LoggerDecorator instance contains
a reference to an object of type Logger. It forwards requests to this Logger
object before or after adding the new functionality. Since the base LoggerDec-
orator class implements the Logger interface, an instance of LoggerDeco-
rator or any of its subclasses can be treated as of the Logger type. Hence a
LoggerDecorator can contain an instance of any of its subclasses and forward
calls to it. In general, a decorator object can contain another decorator object and
can forward calls to it. In this way, new decorators, and hence new functionality,
can be built by wrapping an existing decorator object.

Listing 19.3 EncryptLogger Class

public class EncryptLogger extends LoggerDecorator {

public EncryptLogger(Logger inp_logger) {

super(inp_logger);

}

public void log(String DataLine) {

/*

Added functionality

*/

DataLine = encrypt(DataLine);

/*

Now forward the encrypted text to the FileLogger

for storage

*/

logger.log(DataLine);

}

public String encrypt(String DataLine) {

/*

Apply simple encryption by Transposition…

Shift all characters by one position.

*/

DataLine = DataLine.substring(DataLine.length() - 1) +

DataLine.substring(0, DataLine.length() - 1);

return DataLine;

}

}//end of class

© 2004 by CRC Press LLC

g

Figure 19.4 Association between Different Logger Classes and Logger Decorators

Listing 19.4 Client DecoratorClient Class

class DecoratorClient {

public static void main(String[] args) {

LoggerFactory factory = new LoggerFactory();

Logger logger = factory.getLogger();

HTMLLogger hLogger = new HTMLLogger(logger);

//the decorator object provides the same interface.

hLogger.log("A Message to Log");

EncryptLogger eLogger = new EncryptLogger(logger);

eLogger.log("A Message to Log");

}

}//End of class

<<interface>>
Logger

log(msg:String)

LoggerDecorator

log(msg:String)

logger:Logger

HTMLLogger

log(msg:String)
makeHTML(dataLine:String)

EncryptLogger

log(msg:String)
encrypt(dataLine:String)

ConsoleLogger

log(msg:String)

FileLogger

log(msg:String)

<
<
c
o
n
t
a
i
n
s
>
>

1

1

© 2004 by CRC Press LLC

PRACTICE QUESTIONS

1. Create a FileReader utility class with a method to read lines from a file.
2. The EncryptLogger in the example application encrypts a given text by

shifting characters to the right by one position. Cr eate a Decorator
DecryptFileReader for the FileReader to add the decryption func-
tionality, after reading data from a file.

3. Enhance DecoratorClient class to do the following:
– Write a message to a file using the EncryptLogger.
– Read using the DecryptFileReader decorator to display the message

in an unencrypted form.

Figure 19.5 Message Flow When a Client Uses the HTMLLogger (Decorator) to Log a
Message

:DecoratorClient :LoggerFactory :FileLogger :HTMLLogger

LoggerFactory()

getLogger()

getLogger()

HTMLLogger(logger:Logger)

log(msg:String)

makeHTML(msg:String)

log(msg:String)

get access to the
singleton FileLogger
instance

© 2004 by CRC Press LLC

20

ADAPTER

This pattern was previously described in GoF95.

DESCRIPTION

In general, clients of a class access the services offered by the class through its
interface. Sometimes, an existing class may provide the functionality required by
a client, but its interface may not be what the client expects. This could happen
due to various reasons such as the existing interface may be too detailed, or it
may lack in detail, or the terminology used by the interface may be different from
what the client is looking for.

In such cases, the existing interface needs to be converted into another
interface, which the client expects, preserving the reusability of the existing class.
Without such conversion, the client will not be able to use the functionality offered
by the class. This can be accomplished by using the Adapter pattern. The Adapter
pattern suggests defining a wrapper class around the object with the incompatible
interface. This wrapper object is referred as an adapter and the object it wraps
is referred to as an adaptee. The adapter provides the required interface expected
by the client. The implementation of the adapter interface converts client requests
into calls to the adaptee class interface. In other words, when a client calls an
adapter method, internally the adapter class calls a method of the adaptee class,
which the client has no knowledge of. This gives the client indirect access to the
adaptee class. Thus, an adapter can be used to make classes work together that
could not otherwise because of incompatible interfaces.

The term interface used in the discussion above:

� Does not refer to the concept of an interface in Java programming language,
though a class’s interface may be declared using a Java interface.

� Does not refer to the user interface of a typical GUI application consisting
of windows and GUI controls.

� Does refer to the programming interface that a class exposes, which is
meant to be used by other classes. As an example, when a class is designed
as an abstract class or a Java interface, the set of methods declared in it
makes up the class’s interface.

© 2004 by CRC Press LLC

g

CLASS ADAPTERS VERSUS OBJECT ADAPTERS

Adapters can be classified broadly into two categories — class adapters and object
adapters — based on the way a given adapter is designed.

Class Adapter

A class adapter is designed by subclassing the adaptee class. In addition, a class
adapter implements the interface expected by the client object. When a client
object invokes a class adapter method, the adapter internally calls an adaptee
method that it inherited.

Object Adapter

An object adapter contains a reference to an adaptee object. Similar to a class
adapter, an object adapter also implements the interface, which the client expects.
When a client object calls an object adapter method, the object adapter invokes
an appropriate method on the adaptee instance whose reference it contains. Table
20.1 lists the differences between class and object adapters in detail.

EXAMPLE

Let us build an application to validate a given customer address. This application
can be part of a larger customer data management application.

Let us define a Customer class as in Figure 20.1 (Listing 20.1).
Different client objects can create a Customer object and invoke the isVal-

idAddress method to check the validity of the customer address. For the purpose
of validating the address, the Customer class expects to make use of an address
validator class that provides the interface declared in the AddressValidator
interface (Listing 20.2).

Let us define one such validator USAddress to validate a given U.S. address
as in Listing 20.3.

The USAddress class is designed to implement the AddressValidator
interface so that Customer objects can use USAddress instances as part of the
customer address validation process without any problems (Listing 20.4). Figure
20.2 shows the class association.

Let us say that the application needs to be enhanced to deal with customers
from Canada as well. This requires a validator for verifying the addresses of
Canadian customers. Let us assume that a utility class CAAddress, with the
required functionality to validate a given Canadian address, already exists.

From the CAAddress class implementation in Listing 20.5, it can be observed
that the CAAddress does offer the validation service required by the Customer
class, but the interface it offers is different from what the Customer class expects.

The CAAddress class offers an isValidCanadianAddr method, but the
Customer expects an isValidAddress method as declared in the Address-
Validator interface.

This incompatibility in the interface makes it difficult for a Customer object
to use the existing CAAddress class. One of the options is to change the interface

© 2004 by CRC Press LLC

p

Table 20.1 Class Adapters versus Object Adapters

Class Adapters Object Adapters

Based on the concept of inheritance. Uses object composition.
Can be used to adapt the interface of

the adaptee only. Cannot adapt the
interfaces of its subclasses, as the
adapter is statically linked with the
adaptee when it is created.

Can be used to adapt the interface of the
adaptee and all of its subclasses.

Because the adapter is designed as a
subclass of the adaptee, it is possible
to override some of the adaptee’s
behavior.

Note: In Java, a subclass cannot override a
method that is declared as final in its
parent class.

Cannot override adaptee methods.
Note: Literally, cannot “override” simply

because there is no inheritance. But
wrapper functions provided by the
adapter can change the behavior as
required.

The client will have some knowledge of
the adatee’s interface as the full public
interface of the adaptee is visible to the
client.

The client and the adaptee are completely
decoupled. Only the adapter is aware of
the adaptee’s interface.

In Java applications:
Suitable when the expected interface is

available in the form of a Java interface
and not as an abstract or concrete class.
This is because the Java programming
language allows only single inheritance.
Since a class adapter is designed as a
subclass of the adaptee class, it will not
be able to subclass the interface class
(representing the expected interface)
also, if the expected interface is available
in the form of an abstract or concrete
class.

In Java applications:
Suitable even when the interface that a

client object expects is available in the
form of an abstract class.

Can also be used if the expected interface
is available in the form of a Java interface.

Or
When there is a need to adapt the interface

of the adaptee and also all of its
subclasses.

In Java applications:
Can adapt methods with protected access

specifier.

In Java applications:
Cannot adapt methods with protected

access specifier, unless the adapter and
the adaptee are designed to be part of the
same package.

Figure 20.1 Customer Class

Customer

isValidAddress():boolean

© 2004 by CRC Press LLC

g

of the CAAddress class, but it is not advisable as there could be other applications
using the CAAddress class in its current form. Changing the CAAddress class
interface can affect all of those current clients of the CAAddress class.

Applying the Adapter pattern, a class adapter CAAddressAdapter can be
designed as a subclass of the CAAddress class implementing the AddressVal-
idator interface (Figure 20.3 and Listing 20.6).

Because the adapter CAAddressAdapter implements the AddressValida-
tor interface, client objects can access the adapter CAAddressAdapter objects
without any problems. When a client object invokes the isValidAddress method

Listing 20.1 Customer Class

class Customer {

public static final String US = "US";

public static final String CANADA = "Canada";

private String address;

private String name;

private String zip, state, type;

public boolean isValidAddress() {

…

…

}

public Customer(String inp_name, String inp_address,

String inp_zip, String inp_state,

String inp_type) {

name = inp_name;

address = inp_address;

zip = inp_zip;

state = inp_state;

type = inp_type;

}

}//end of class

Listing 20.2 AddressValidator as an Interface

public interface AddressValidator {

public boolean isValidAddress(String inp_address,

String inp_zip, String inp_state);

}//end of class

© 2004 by CRC Press LLC

p

Listing 20.3 USAddress Class

class USAddress implements AddressValidator {

public boolean isValidAddress(String inp_address,

String inp_zip, String inp_state) {

if (inp_address.trim().length() < 10)

return false;

if (inp_zip.trim().length() < 5)

return false;

if (inp_zip.trim().length() > 10)

return false;

if (inp_state.trim().length() != 2)

return false;

return true;

}

}//end of class

Listing 20.4 Customer Class Using the USAddress Class

class Customer {

…

…

public boolean isValidAddress() {

//get an appropriate address validator

AddressValidator validator = getValidator(type);

//Polymorphic call to validate the address

return validator.isValidAddress(address, zip, state);

}

private AddressValidator getValidator(String custType) {

AddressValidator validator = null;

if (custType.equals(Customer.US)) {

validator = new USAddress();

}

return validator;

}

}//end of class

© 2004 by CRC Press LLC

g

on the adapter instance, the adapter internally translates it into a call to the inherited
isValidCanadianAddr method.

Inside the Customer class, the getValidator private method needs to be
enhanced so that it returns an instance of the CAAddressAdapter in the case
of Canadian customers (Listing 20.7). The polymorphic call on the returned object
(inside the isValidAddress method) does not need to be changed as both the
USAddress and CAAddressAdapter implement the same AddressValida-
tor interface.

Figure 20.2 Customer/USAddress Validator: Class Association

Listing 20.5 CAAdress Class with Incompatible Interface

class CAAddress {

public boolean isValidCanadianAddr(String inp_address,

String inp_pcode, String inp_prvnc) {

if (inp_address.trim().length() < 15)

return false;

if (inp_pcode.trim().length() != 6)

return false;

if (inp_prvnc.trim().length() < 6)

return false;

return true;

}

}//end of class

<<interface>>
AddressValidator

isValidAddress(addr:String,
zip:String, state:String)
:boolean

USAddress

isValidAddress(addr:String,
zip:String, state:String)
:boolean

Customer
<<uses>>

© 2004 by CRC Press LLC

p

The combination of the CAAddressAdapter design and the polymorphic
call on an object of the AddressValidator (that declares the expected interface)
type object enables the Customer to make use of the services of the CAAddress
class that has an incompatible interface.

The class diagram in Figure 20.4 shows the overall class association.
The sequence diagram in Figure 20.5 depicts the message flow when the

CAAddressAdapter is designed as a class adapter.

ADDRESS ADAPTER AS AN OBJECT ADAPTER

While discussing the design of the address adapter as a class adapter, we saw
that the AddressValidator interface expected by the client is defined in the
form of a Java interface. Now let us assume that the client expects the Address-
Validator interface to be available as an abstract class instead of a Java interface
(Listing 20.8). Because the adapter CAAdapter has to provide the interface
declared by the AddressValidator abstract class, the adapter needs to be

Figure 20.3 Class Adapter for the CAAddress Class

Listing 20.6 CAAddressAdapter as a Class Adapter

public class CAAddressAdapter extends CAAddress

implements AddressValidator {

public boolean isValidAddress(String inp_address,

String inp_zip, String inp_state) {

return isValidCanadianAddr(inp_address, inp_zip,

inp_state);

}

}//end of class

<<interface>>
AddressValidator

isValidAddress(addr:String,
zip:String, state:String)
:boolean

CAAddressAdapter

isValidAddress(addr:String,
zip:String, state:String)
:boolean

CAAddress

isValidCanadianAddr(addr:String,
pcode:String, state:String)
:boolean

© 2004 by CRC Press LLC

g

designed to subclass the AddressValidator abstract class and implement its
abstract methods (Listing 20.9).

Because multiple inheritance is not supported in Java, now the adapter CAAd-
dressAdapter cannot subclass the existing CAAddress class as it has already
used its only chance to subclass from another class.

Applying the object Adapter pattern, the CAAddressAdapter can be designed
to contain an instance of the adaptee CAAddress (Figure 20.6 and Listing 20.10).
This adaptee instance is passed to the adapter by its clients, when the adapter is
first created. In general, the adaptee instance contained by an object adapter may
be provided in the following two ways:

� Clients of the object adapter may pass the adaptee instance to the adapter.
This approach is more flexible in choosing the class to adapt from, but
then the client may become aware of the adaptee or the fact of adaptation.
It is more suitable when the adapter needs any specific state from the
adaptee object besides its behavior.

� The adapter may create the adaptee instance on its own. This approach
is relatively less flexible and suitable when the adapter does not need any
specific state from the adaptee, but needs only its behavior.

Listing 20.7 Customer Class Using the CAAddressAdapter Class

class Customer {

…

…

public boolean isValidAddress() {

//get an appropriate address validator

AddressValidator validator = getValidator(type);

//Polymorphic call to validate the address

return validator.isValidAddress(address, zip, state);

}

private AddressValidator getValidator(String custType) {

AddressValidator validator = null;

if (custType.equals(Customer.US)) {

validator = new USAddress();

}

if (type.equals(Customer.CANADA)) {

validator = new CAAddressAdapter();

}

return validator;

}

}//end of class

© 2004 by CRC Press LLC

p

Figure 20.4 Address Validation Application: Using Class Adapter

Figure 20.5 Address Validation Message Flow: Using Class Adapter

Listing 20.8 AddressValidator as an Abstract Class

public abstract class AddressValidator {

public abstract boolean isValidAddress(String inp_address,

String inp_zip, String inp_state);

}//end of class

Customer

<<interface>>
AddressValidator

isValidAddress(addr:String,
zip:String, state:String)
:boolean

CAAddressAdapter

isValidAddress(addr:String,
zip:String, state:String)
:boolean

CAAddress

isValidCanadianAddr(addr:String,
pcode:String, prvnc:String)
:boolean

USAddress

isValidAddress(addr:String,
zip:String, state:String)
:boolean

<
<
u
s
e
s
>
>

Customer CAAddressAdapter

isValidAddress(address:String, zip:String, state:String)

isValidCanadianAddr(address:String, pcode:String, prvnc:String)

© 2004 by CRC Press LLC

g

When a client object invokes the isValidAddress method on a CAAd-
dressAdapter (adapter) instance, the adapter internally calls the isValidCa-
nadianAddr method on the CAAddress (adaptee) instance it contains.

The class diagram in Figure 20.7 shows the overall class association when the
address adapter is designed as an object adapter.

From the example application design it can be observed that an adapter enables
the Customer (client) class to access the services offered by the CAAddress
(adaptee) with an incompatible interface.

The sequence diagram in Figure 20.8 shows the message flow when the adapter
CAAddressAdapter is designed as an object adapter.

Listing 20.9 CAAddressAdapter Class

class CAAddressAdapter extends AddressValidator {

…

…

public CAAddressAdapter(CAAddress address) {

objCAAddress = address;

}

public boolean isValidAddress(String inp_address,

String inp_zip, String inp_state) {

…

…

}

}//end of class

Figure 20.6 Object Adapter for the CAAddress Class

CAAddress

isValidCanadianAddr(addr:String,
pcode:String, prvnc:String)
:boolean

AddressValidator

isValidAddress(addr:String,
zip:String, state:String)
:boolean

CAAddressAdapter

isValidAddress(addr:String,
zip:String, state:String)
:boolean

objCAAddress:CAAddress
<<contains>>

11..*

© 2004 by CRC Press LLC

p

Listing 20.10 CAAddressAdapter as an Object Adapter

class CAAddressAdapter extends AddressValidator {

private CAAddress objCAAddress;

public CAAddressAdapter(CAAddress address) {

objCAAddress = address;

}

public boolean isValidAddress(String inp_address,

String inp_zip, String inp_state) {

return objCAAddress.isValidCanadianAddr(inp_address,

inp_zip, inp_state);

}

}//end of class

Figure 20.7 Address Validation Application: Using Object Adapter

Customer

AddressValidator

isValidAddress(addr:String,
zip:String, state:String)
:boolean

CAAddressAdapter

isValidAddress(addr:String,
zip:String, state:String)
:boolean

objCAAddress:CAAddress

CAAddress

isValidCanadianAddr(addr:String,
pcode:String, prvnc:String)
:boolean

USAddress

isValidAddress(addr:String,
zip:String, state:String)
:boolean

1

1..*
<<contains>>

<
<
u
s
e
s
>
>

© 2004 by CRC Press LLC

Figure 20.8 Address Validation Message Flow: Using Object Adapter

Customer CAAddressAdapter

isValidAddress(address:String, zip:String, state:String)

CAAddress

isValidCanadianAddr(address:String, pcode:String, prvnc:String)

©
 2004 by C

R
C

 Press L
L

C

p

PRACTICE QUESTIONS

1. During the discussion of the Factory Method pattern, we designed a
message logging class FileLogger with a method log(String) that
can be used by client objects to log messages (Figure 20.9). Let us assume
that a client LoggerClient expects a message logging class to provide
an interface as follows:

public abstract class LoggerIntr{

public abstract boolean logMessage(String msg);

}//end of class

How would you design an adapter, say FileLoggerAdapter, to adapt
the FileLogger class’s existing interface?

2. In the above practice question, if the client LoggerClient expects a
message logging class to provide an interface as follows:

public interface LoggerIntr{

public boolean logMessage(String msg);

}//end of interface

Can you design the adapter FileLoggerAdapter as a class adapter,
an object adapter or both?

3. Design two subclasses — HTMLFileLogger and EncFileLogger — of
the FileLogger as in Table 20.2. Each of these subclasses override the
log(String) method of the parent FileLogger class to provide the
required functionality. Assume that the client LoggerClient requires the
functionality offered by the FileLogger and also its subclasses. If the
client LoggerClient expects the message logging class to provide an
interface as follows:

public interface LoggerIntr{

public boolean logMessage(String msg);

}//end of interface

Can you design the adapter FileLoggerAdapter as a class adapter, an
object adapter or both? Why?

© 2004 by CRC Press LLC

g

Figure 20.9 Messaging Logging Utility

Table 20.2 FileLogger Subclasses

Subclass Functionality

HTMLFileLogger Transform an incoming message into an HTML document
and store it in a log file.

EncFileLogger Apply encryption on an incoming message and store it in a
log file.

<<interface>>
Logger

log(msg:String)

FileLogger

log(msg:String)

© 2004 by CRC Press LLC

21

CHAIN OF RESPONSIBILITY

This pattern was previously described in GoF95.

DESCRIPTION

The Chain of Responsibility pattern (CoR) recommends a low degree of coupling
between an object that sends out a request and the set of potential request handler
objects.

When there is more than one object that can handle or fulfill a client request,
the CoR pattern recommends giving each of these objects a chance to process
the request in some sequential order. Applying the CoR pattern in such a case,
each of these potential handler objects can be arranged in the form of a chain,
with each object having a pointer to the next object in the chain. The first object
in the chain receives the request and decides either to handle the request or to
pass it on to the next object in the chain. The request flows through all objects
in the chain one after the other until the request is handled by one of the handlers
in the chain or the request reaches the end of the chain without getting processed.

As an example, if A Æ B Æ C are objects capable of handling the request,
in this order, then A should handle the request or pass on to B without determining
whether B can fulfill the request. Upon receiving the request, B should either
handle it or pass on to C. When C receives the request, it should either handle
the request or the request falls off the chain without getting processed. In other
words, a request submitted to the chain of handlers may not be fulfilled even
after reaching the end of the chain.

The following are some of the important characteristics of the CoR pattern:

� The set of potential request handler objects and the order in which these
objects form the chain can be decided dynamically at runtime by the client
depending on the current state of the application.

� A client can have different sets of handler objects for different types of
requests depending on its current state. Also, a given handler object may
need to pass on an incoming request to different other handler objects
depending on the request type and the state of the client application. For
these communications to be simple, all potential handler objects should
provide a consistent interface. In Java this can be accomplished by having

© 2004 by CRC Press LLC

g

different handlers implement a common interface or be subclasses of a
common abstract parent class.

� The client object that initiates the request or any of the potential handler
objects that forward the request do not have to know about the capabilities
of the object receiving the request. This means that neither the client object
nor any of the handler objects in the chain need to know which object
will actually fulfill the request.

� Request handling is not guaranteed. This means that the request may reach
the end of the chain without being fulfilled. The following example presents
a scenario where a purchase request submitted to a chain of handlers is
not approved even after reaching the end of the chain.

EXAMPLE

Let us consider an application to simulate the purchase request (PR) authorization
process in a typical organization. In general, a PR needs to be authorized by an
appropriate management representative before an order to a vendor can be
created. Let us consider an organization with four levels of management personnel
listed in Table 21.1 who can authorize a PR with an amount less than their
authorization limit.

We can define different classes (Listing 21.1) to represent each management
level listed in Table 21.1.

Let us define a PurchaseRequest class (Figure 21.1 and Listing 21.2) that
represents a purchase request.

A given PR could be authorized or handled by any of the management
representatives listed in Table 21.1. In other words, each of the four classes
representing different levels of management is a potential handler for a given
PR and hence it is not advisable to tie a PurchaseRequest instance to any
of the handlers. By using the CoR pattern, a low-coupling association between
a PurchaseRequest object and the set of potential handler objects can be
achieved.

Applying the CoR pattern, let us define an abstract PRHandler class (Listing
21.3) that declares the common interface to be offered by all of the potential PR
handlers (Figure 21.2).

Each of the handlers can now be redesigned as a subclass of the abstract
PRHandler class (Listing 21.4). As part of its implementation, each handler object
compares the PR amount with the authorization limit of the management repre-
sentative it represents. If the PR amount is less than the authorization limit, it

Table 21.1 Levels of PR Authorization

Management Level Authorization Limit

Branch Manager $25,000
Regional Director $100,000
Vice President $200,000
President and COO $400,000

© 2004 by CRC Press LLC

p y

authorizes the PR. If not, it passes the PR authorization request to the next handler
in the chain.

To authorize a PR, a client (Listing 21.5) would:

1. Create a set of potential PR authorization request handler objects and arrange
them in an ascending order by authorization limit. Connect each handler to
the next handler using the setNextHandler(PRHandler) method. This
results in a chain of potential PR authorization request handlers (Figure 21.3).

Listing 21.1 Classes Representing Different Management Levels

class BranchManager {

static double LIMIT = 25000;

…

…

}//End of class

class RegionalDirector {

static double LIMIT = 100000;

…

…

}//End of class

class VicePresident {

static double LIMIT = 200000;

…

…

}//End of class

class PresidentCOO {

static double LIMIT = 400000;

…

…

}//End of class

Figure 21.1 PurchaseRequest Class Representation

PurchaseRequest

getAmount():double

ID:int
description:String
amount:double

© 2004 by CRC Press LLC

g

Listing 21.2 PurchaseRequest Class

class PurchaseRequest {

private int ID;

private String description;

private double amount;

public PurchaseRequest(int id, String desc, double amt) {

ID = id;

description = desc;

amount = amt;

}

public double getAmount() {

return amount;

}

public String toString() {

return ID + ":" + description;

}

}

Listing 21.3 Abstract PRHandler Class

public abstract class PRHandler {

private PRHandler nextHandler;

private String handlerName;

public PRHandler(String name) {

handlerName = name;

}

public String getName() {

return handlerName;

 }

public abstract boolean authorize(PurchaseRequest request);

public PRHandler getNextHandler() {

return nextHandler;

}

public void setNextHandler(PRHandler handler) {

nextHandler = handler;

};

}

© 2004 by CRC Press LLC

p y

2. Send a PR authorization request to the first PRHandler object in the chain
by invoking the authorize method on that object, passing the purchase
request as an argument. As can be seen from the implementation of different
PRHandler subclasses, a PR is authorized if the PR amount is less than
the authorization limit of a specific handler. Otherwise, the authorization
request is passed on to the next potential handler in the chain. If the PR
is authorized by one of the handlers, it is not passed on to the next handler
in the chain. The PR authorization is not guaranteed in this example. If the
request reaches the last handler and the PR amount is higher than the
authorization limit of the last handler, an appropriate message is displayed
and the PR remains unauthorized.

When the client PRManager is run, output similar to the following is displayed:

Branch Manager Robin has authorized the PR - 1:Office Supplies

V.P. Kate has authorized the PR - 2:HardWare Procurement

PR - 3:AD Campaign couldn't be authorized.

Executive Board needs to be consulted for approval

reason: Amount too large

Figure 21.2 Purchase Request Approver Hierarchy

BranchManager

RegionalDirector

setNextHandler(handler:PRHandler)
authorize(request:PurchaseRequest)

nextHandler:PRHandler

PRHandler

setNetHandler(handler:PRHandler)
authorize(request:PurchaseRequest)

nextHandler:PRHandler

setNextHandler(handler:PRHandler)
authorize(request:PurchaseRequest)

nextHandler:PRHandler

VicePresident

setNextHandler(handler:PRHandler)
authorize(request:PurchaseRequest)

nextHandler:PRHandler

PresidentCOO

setNextHandler(handler:PRHandler)
authorize(request:PurchaseRequest)

nextHandler:PRHandler

1

<
<
l
i
n
k
s

t
o
>
>

© 2004 by CRC Press LLC

g

The sequence diagram in Figure 21.4 shows the message flow when a $150,000
PR authorization request is sent to the chain of potential handler objects.

Listing 21.4 PRHandler Concrete Subclasses

class BranchManager extends PRHandler {

static double LIMIT = 25000;

public BranchManager(String name) {

super(name);

}

public boolean authorize(PurchaseRequest request) {

double amount = request.getAmount();

if (amount <= LIMIT) {

System.out.println(" Branch Manager " + getName() +

" has authorized the PR - " + request);

return true;

} else {

//forward the request to the next handler

return getNextHandler().authorize(request);

}

}

}//End of class

class RegionalDirector extends PRHandler {

static double LIMIT = 100000;

public RegionalDirector(String name) {

super(name);

}

public boolean authorize(PurchaseRequest request) {

double amount = request.getAmount();

if (amount <= LIMIT) {

System.out.println(" Regional Director " + getName() +

" has authorized the PR - " +

request);

return true;

} else {

//forward the request to the next handler

return getNextHandler().authorize(request);

}

}

}//End of class

(continued)

© 2004 by CRC Press LLC

p y

Listing 21.4 PRHandler Concrete Subclasses (Continued)

class VicePresident extends PRHandler {

static double LIMIT = 200000;

public VicePresident(String name) {

super(name);

}

public boolean authorize(PurchaseRequest request) {

double amount = request.getAmount();

if (amount <= LIMIT) {

System.out.println(" V.P. " + getName() +

" has authorized the PR - " + request);

return true;

} else {

//forward the request to the next handler

return getNextHandler().authorize(request);

}

}

}//End of class

class PresidentCOO extends PRHandler {

static double LIMIT = 400000;

public PresidentCOO(String name) {

super(name);

}

public boolean authorize(PurchaseRequest request) {

double amount = request.getAmount();

if (amount <= LIMIT) {

System.out.println(" President & COO " + getName() +

" has authorized the PR - " + request);

return true;

} else {

System.out.println("PR - " + request +

" couldn't be authorized.\n " +

"Executive Board needs to be " +

"consulted for approval \n" +

"reason: Amount too large");

return false;

}

}

}//End of class

© 2004 by CRC Press LLC

g

Listing 21.5 Client PRManager Class

public class PRManager {

private BranchManager branchManager;

private RegionalDirector regionalDirector;

private VicePresident vicePresident;

private PresidentCOO coo;

public static void main(String[] args) {

PRManager manager = new PRManager();

manager.createAuthorizationFlow();

PurchaseRequest request =

new PurchaseRequest(1, "Office Supplies”,10000);

manager.branchManager.authorize(request);

request = new PurchaseRequest(2, "HardWare Procurement”,

175000);

manager.branchManager.authorize(request);

request = new PurchaseRequest(3, "AD Campaign”,800000);

manager.branchManager.authorize(request);

}

public void createAuthorizationFlow() {

branchManager = new BranchManager("Robin");

regionalDirector = new RegionalDirector("Oscar");

vicePresident = new VicePresident("Kate");

coo = new PresidentCOO("Drew");

branchManager.setNextHandler(regionalDirector);

regionalDirector.setNextHandler(vicePresident);

vicePresident.setNextHandler(coo);

}

}//End of class

Figure 21.3 Chain of PR Authorization Request Handlers

BranchManager RegionalDirector

VicePresidentPresidentCOO

© 2004 by CRC Press LLC

p y

PRACTICE QUESTIONS

1. In the example above, a given PR always needs to be approved by only
one person in the chain with a higher approval limit than the PR amount.
For example, a PR for $50,000 needs approval from a regional director
(with approval limit $100,000). It does not need the approval of a branch
manager (with approval limit $25,000). In general, if a PR is to be approved
by one person in the approval chain, it does not need the approval of any
other person in the chain. In some cases, it may be required that a given
purchase request be approved by all individuals with the approval limit
less than the purchase request amount until it is approved by an individual
with a higher approval limit than the PR amount. Modify the example
application to implement this purchase request approval process.

2. Let us consider an ISP (Internet service provider) with three levels of
technical support as follows:
a. Service Level I (Basic) — Aimed at resolving basic connectivity problems

such as incorrect/forgotten passwords, incorrect dial-up number, etc.
b. Service Level II — When the Basic Service Level I support team cannot

resolve a problem, it will be sent to the Service Level II team. For problem
resolution, the Service Level II team assumes the user to have a good
understanding of computer concepts.

c. Service Level III — When the Service Level I and II teams cannot resolve
a problem, it will be sent to the Service Level III team. A technician
schedules an appointment with the user for problem resolution at the
user site.

Figure 21.4 Purchase Request Authorization: Message Flow

PRManager BranchManager RegionalDirector VicePresident

createAuthorizationFlow()

authorize(request:PurchaseRequest)

authorize(request:PurchaseRequest)

authorize(request:PurchaseRequest)

© 2004 by CRC Press LLC

g

Create an application using the CoR pattern to simulate the three-layer
technical support structure explained above.

3. Let us consider an IT consulting firm with three levels of resource coordi-
nators as follows:
� Local resource manager
� Regional resource coordinator
� Corporate resource director
Whenever a consultant becomes available, that consultant’s profile is first
sent to the local resource manager to see if there is any requirement locally
that matches the skill set of the consultant. If there is no requirement that
matches with the consultant’s skill set, the consultant’s details are sent to
the regional resource coordinator.
The regional resource coordinator, with access to a much broader area of
current and prospective requirements within the region, will then look for
a possible match for the consultant’s skill set. If there is no match, the
consultant’s data is sent to the corporate resource director.
The corporate resource director will be able to look for a matching assign-
ment for the consultant’s skill set across all regions of the company operation.
Create an application using the CoR pattern to simulate this process.

© 2004 by CRC Press LLC

22

FAÇADE

This pattern was previously described in GoF95.

DESCRIPTION

The Façade pattern deals with a subsystem of classes. A subsystem is a set of
classes that work in conjunction with each other for the purpose of providing a
set of related features (functionality). For example, an Account class, Address
class and CreditCard class working together, as part of a subsystem, provide
features of an online customer.

In real world applications, a subsystem could consist of a large number of
classes. Clients of a subsystem may need to interact with a number of subsystem
classes for their needs. This kind of direct interaction of clients with subsystem
classes leads to a high degree of coupling between the client objects and the
subsystem (Figure 22.1). Whenever a subsystem class undergoes a change,
such as a change in its interface, all of its dependent client classes may get
affected.

The Façade pattern is useful in such situations. The Façade pattern provides
a higher level, simplified interface for a subsystem resulting in reduced complexity
and dependency. This in turn makes the subsystem usage easier and more
manageable.

A façade is a class that provides this simplified interface for a subsystem to
be used by clients. With a Façade object in place, clients interact with the
Façade object instead of interacting directly with subsystem classes. The Façade
object takes up the responsibility of interacting with the subsystem classes. In
effect, clients interface with the façade to deal with the subsystem. Thus the
Façade pattern promotes a weak coupling between a subsystem and its clients
(Figure 22.2).

From Figure 22.2, we can see that the Façade object decouples and shields
clients from subsystem objects. When a subsystem class undergoes a change,
clients do not get affected as before.

Even though clients use the simplified interface provided by the façade, when
needed, a client will be able to access subsystem components directly through the
lower level interfaces of the subsystem as if the Façade object does not exist. In
this case, they will still have the same dependency/coupling issue as earlier.

© 2004 by CRC Press LLC

g

Figure 22.1 Client Interaction with Subsystem Classes before Applying the Façade Pattern

Figure 22.2 Client Interaction with Subsystem Classes after Applying the Façade Pattern

Client A

Client B

SubSystem
Classes

Client A

Client B

SubSystem Classes

Facade

© 2004 by CRC Press LLC

EXAMPLE

Let us build an application that:

� Accepts customer details (account, address and credit card details)
� Validates the input data
� Saves the input data to appropriate data files

Let us say that there are three classes — Account, Address and Cred-
itCard — (Listing 22.1 through Listing 22.3) available in the system, each with
its own methods for validating and saving the respective data (Figure 22.3).

Let us build a client AccountManager (Listing 22.4) that displays the user
interface to a user to input the customer data.

When the client AccountManager is run, it displays the user interface shown
in Figure 22.4.

In order to validate and save the input data, the client AccountManager
would:

� Create Account, Address and CreditCard objects
� Validate the input data using these objects
� Save the input data using these objects

The sequence diagram in Figure 22.5 depicts the message flow between objects.
Applying the Façade pattern in this case can lead to a better design as it

promotes low coupling between the client and the subsystem components
(Address, Account and CreditCard classes in this case).

Applying the Façade pattern, let us define a Façade class CustomerFacade
(Figure 22.6 and Listing 22.5) that offers a higher level, simplified interface to the
subsystem consisting of customer data processing classes (Address, Account
and CreditCard).

The CustomerFacade class offers a higher level business service in the
form of the saveCustomerData method. Instead of interacting with each of the
subsystem components directly, the client AccountManager can make use of
the higher level, more simplified interface offered by the CustomerFacade
object to validate and save the input customer data (Figure 22.7).

In the revised design, to validate and save the input customer data, the client
needs to:

� Create or obtain an instance of the façade CustomerFacade class
� Send the data to be validated and saved to the CustomerFacade instance
� Invoke the saveCustomerData method on the CustomerFacade

instance

The CustomerFacade handles the details of creating necessary subsystem
objects and calling appropriate methods on those objects to validate and save the
customer data. The client is no longer required to directly access any of the
subsystem (Account/Address/CreditCard) objects.

Figure 22.8 shows the message flow in the revised design.

© 2004 by CRC Press LLC

g

Listing 22.1 Account Class

public class Account {

String firstName;

String lastName;

final String ACCOUNT_DATA_FILE = "AccountData.txt";

public Account(String fname, String lname) {

firstName = fname;

lastName = lname;

}

public boolean isValid() {

/*

Let's go with simpler validation

here to keep the example simpler.

*/

…

…

}

public boolean save() {

FileUtil futil = new FileUtil();

String dataLine = getLastName() + ”," + getFirstName();

return futil.writeToFile(ACCOUNT_DATA_FILE, dataLine,

true, true);

}

public String getFirstName() {

return firstName;

}

public String getLastName() {

return lastName;

}

}

© 2004 by CRC Press LLC

Listing 22.2 Address Class

public class Address {

String address;

String city;

String state;

final String ADDRESS_DATA_FILE = "Address.txt";

public Address(String add, String cty, String st) {

address = add;

city = cty;

state = st;

}

public boolean isValid() {

/*

The address validation algorithm

could be complex in real-world

applications.

Let's go with simpler validation

here to keep the example simpler.

*/

if (getState().trim().length() < 2)

 return false;

return true;

}

public boolean save() {

FileUtil futil = new FileUtil();

String dataLine = getAddress() + ”," + getCity() + ”," +

getState();

return futil.writeToFile(ADDRESS_DATA_FILE, dataLine,

true, true);

}

public String getAddress() {

return address;

}

public String getCity() {

return city;

}

public String getState() {

return state;

}

}

© 2004 by CRC Press LLC

g

Listing 22.3 CreditCard Class

public class CreditCard {

String cardType;

String cardNumber;

String cardExpDate;

final String CC_DATA_FILE = "CC.txt";

public CreditCard(String ccType, String ccNumber,

String ccExpDate) {

cardType = ccType;

cardNumber = ccNumber;

cardExpDate = ccExpDate;

}

public boolean isValid() {

/*

Let's go with simpler validation

here to keep the example simpler.

*/

if (getCardType().equals(AccountManager.VISA)) {

return (getCardNumber().trim().length() == 16);

}

if (getCardType().equals(AccountManager.DISCOVER)) {

return (getCardNumber().trim().length() == 15);

}

if (getCardType().equals(AccountManager.MASTER)) {

return (getCardNumber().trim().length() == 16);

}

return false;

}

public boolean save() {

FileUtil futil = new FileUtil();

String dataLine =

getCardType() + ,”" + getCardNumber() + ”," +

getCardExpDate();

return futil.writeToFile(CC_DATA_FILE, dataLine, true,

true);

}

(continued)

© 2004 by CRC Press LLC

Listing 22.3 CreditCard Class (Continued)

public String getCardType() {

return cardType;

}

public String getCardNumber() {

return cardNumber;

}

public String getCardExpDate() {

return cardExpDate;

}

}

Figure 22.3 Subsystem Classes to Provide the Necessary Functionality to Validate and
Save the Customer Data

Account

isValid():boolean
save():boolean
getFirstName():String
getLastName():String

firstName:String
lastName:String

Address

isValid():boolean
save():boolean
getAddress():String
getState():String

address:String
city:String
state:String

CreditCard

isValid():String
save():String
getCardType():String
getCardNumber():String
getCardExpDate():String

cardType:String
cardNumber:String
cardExpDate:String

© 2004 by CRC Press LLC

g

IMPORTANT NOTES

Here are few notes to consider while applying the Façade pattern:

� A façade should not be designed to provide any additional functionality.
� Never return subsystem components from Façade methods to clients. As

an example, having a method as follows:

CreditCard getCreditCard()

would expose the subsystem to clients and the application may not be able
to realize the full benefits of using the Façade pattern.

Listing 22.4 Client AccountManager Class

public class AccountManager extends JFrame {

public static final String newline = "\n";

public static final String VALIDATE_SAVE = "Validate & Save";

…

…

public AccountManager() {

super(" Facade Pattern - Example ");

cmbCardType = new JComboBox();

cmbCardType.addItem(AccountManager.VISA);

cmbCardType.addItem(AccountManager.MASTER);

cmbCardType.addItem(AccountManager.DISCOVER);

…

…

//Create buttons

JButton validateSaveButton =

new JButton(AccountManager.VALIDATE_SAVE);

…

…

}

public String getFirstName() {

return txtFirstName.getText();

}

…

…

}//End of class AccountManager

© 2004 by CRC Press LLC

� The objective of a façade is to provide a higher level interface and hence
most preferably a typical Façade method should offer a higher level
business service rather than performing a lower level individual task.

PRACTICE QUESTIONS

1. Design and implement a façade that can be used by different client objects
to create a purchase request consisting of different line items, header data
and other information.

2. Enhance the same Façade class to offer business services methods to:
� Retrieve a purchase request from a database
� Create a new purchase request by copying an existing purchase request

Figure 22.4 User Interface to Enter the Customer Data

© 2004 by CRC Press LLC

g

Figure 22.5 How a Client Would Normally Interact (Directly) with Subsystem Classes to
Validate and Save the Customer Data

:AccountManager :Account :Address :CreditCard

Account(fname:String, lname:String)

isValid()

Address(address:String, city:String, state:String)

isValid()

CreditCard(type:String, number:String, expDate:String)

isValid()

save()

save()

save()

© 2004 by CRC Press LLC

Figure 22.6 Façade Class to Be Used by the Client in the Revised Design

CustomerFacade

setAddress(inAddress:String)
setCity(inCity:String)
setState(inState:String)
setCardType(inCardType:String)
setCardNumber(inCardNumber:String)
setCardExpDate(inCardExpDate:String)
setFName(inFName:String)
setLName(inLName:String)
saveCustomerData()

address:String
city:String
state:String
cardType:String
cardNumber:String
cardExpDate:String
fname:String
lname:String

© 2004 by CRC Press LLC

g

Listing 22.5 CustomerFacade Class

public class CustomerFacade {

private String address;

private String city;

private String state;

private String cardType;

private String cardNumber;

private String cardExpDate;

private String fname;

private String lname;

public void setAddress(String inAddress) {

address = inAddress;

}

public void setCity(String inCity) {

city = inCity;

}

public void setState(String inState) {

state = inState;

}

public void setFName(String inFName) {

fname = inFName;

}

public void setLName(String inLName) {

lname = inLName;

}

public void setCardType(String inCardType) {

cardType = inCardType;

}

public void setCardNumber(String inCardNumber) {

cardNumber = inCardNumber;

}

public void setCardExpDate(String inCardExpDate) {

cardExpDate = inCardExpDate;

}

public boolean saveCustomerData() {

Address objAddress;

Account objAccount;

CreditCard objCreditCard;

/*

 (continued)

© 2004 by CRC Press LLC

Listing 22.5 CustomerFacade Class

client is transparent from the following

set of subsystem related operations.

*/

boolean validData = true;

String errorMessage = "";

objAccount = new Account(fname, lname);

if (objAccount.isValid() == false) {

validData = false;

errorMessage = "Invalid FirstName/LastName";

}

objAddress = new Address(address, city, state);

if (objAddress.isValid() == false) {

validData = false;

errorMessage = "Invalid Address/City/State";

}

objCreditCard = new CreditCard(cardType, cardNumber,

cardExpDate);

if (objCreditCard.isValid() == false) {

validData = false;

errorMessage = "Invalid CreditCard Info";

}

if (!validData) {

System.out.println(errorMessage);

return false;

}

if (objAddress.save() && objAccount.save() &&

objCreditCard.save()) {

return true;

} else {

return false;

}

}

}

© 2004 by CRC Press LLC

g

Figure 22.7 Class Association with the Façade Class in Place

Figure 22.8 In the Revised Design, Clients Interact with the Façade Instance to Interface
with the Subsystem

AccountManager CustomerFacade

Account

Address

CreditCard

:CustomerFacade :Account :Address :CreditCard

Account(fname:String, lname:String)

isValid()

Address(address:String, city:String, state:String)

isValid()

CreditCard(type:String, number:String, expDate:String)

isValid()

save()

save()

save()

:AccountManager

saveCustomerData()

© 2004 by CRC Press LLC

23

PROXY

This pattern was previously described in GoF95.

DESCRIPTION

Let us consider the following code sample:

//Client

class Customer{

public void someMethod(){

//Create the Service Provider Instance

FileUtil futilObj=new FileUtil();

//Access the Service

futilObj.writeToFile(“Some Data”);

}

}

As part of its implementation, the Customer class creates an instance of the
FileUtil class and directly accesses its services. In other words, for a client
object, the way of accessing a FileUtil object is fairly straightforward. From
the implementation it seems to be the most commonly used way for a client
object to access a service provider object. In contrast, sometimes a client object
may not be able to access a service provider object (also referred to as a target
object) by normal means. This could happen for a variety of reasons depending on:

� The location of the target object — The target object may be present in a
different address space in the same or a different computer.

� The state of existence of the target object —The target object may not exist
until it is actually needed to render a service or the object may be in a
compressed form.

� Special Behavior —The target object may offer or deny services based on
the access privileges of its client objects. Some service provider objects
may need special consideration when used in a multithreaded environment.

© 2004 by CRC Press LLC

g

In such cases, instead of having client objects to deal with the special require-
ments for accessing the target object, the Proxy pattern suggests using a separate
object referred to as a proxy to provide a means for different client objects to
access the target object in a normal, straightforward manner.

The Proxy object offers the same interface as the target object. The Proxy
object interacts with the target object on behalf of a client object and takes care
of the specific details of communicating with the target object. As a result, client
objects are no longer needed to deal with the special requirements for accessing
the services of the target object. A client can call the Proxy object through its
interface and the Proxy object in turn forwards those calls to the target object.
Client objects need not even know that they are dealing with Proxy for the
original object. The Proxy object hides the fact that a client object is dealing
with an object that is either remote, unknown whether instantiated or not, or
needs special authentication. In other words, a Proxy object serves as a trans-
parent bridge between the client and an inaccessible remote object or an object
whose instantiation may have been deferred.

Proxy objects are used in different scenarios leading to different types of
proxies. Let us take a quick look at some of the proxies and their purpose.

Note: Table 23.1 lists different types of Proxy objects. In this chapter, only
the remote proxy is discussed in detail. Some of the other proxy types are discussed
as separate patterns later in this book.

PROXY VERSUS OTHER PATTERNS

From the discussion of different Proxy objects, it can be observed that there are
two main characteristics of a Proxy object:

� It is an intermediary between a client object and the target object.
� It receives calls from a client object and forwards them to the target object.

In this context, it looks very similar to some of the other patterns discussed
earlier in this book. Let us see in detail the similarities and differences between
the Proxy pattern and some of the other similar patterns.

Proxy versus Decorator

� Proxy
– The client object cannot access the target object directly.
– A proxy object provides access control to the target object (in the case

of the protection proxy).
– A proxy object does not add any additional functionality.

� Decorator
– The client object does have the ability to access the target object directly,

if needed.
– A Decorator object does not control access to the target object.
– A Decorator adds additional functionality to an object.

© 2004 by CRC Press LLC

y

Proxy versus Façade

� Proxy
– A Proxy object represents a single object.
– The client object cannot access the target object directly.
– A Proxy object provides access control to the single target object.

Table 23.1 List of Different Proxy Types

Proxy Type Purpose

Remote Proxy To provide access to an object located in a different
address space.

Virtual Proxy To provide the required functionality to allow the on-
demand creation of a memory intensive object (until
required).

Cache Proxy/Server Proxy To provide the functionality required to store the results
of most frequently used target operations. The proxy
object stores these results in some kind of a repository.
When a client object requests the same operation, the
proxy returns the operation results from the storage area
without actually accessing the target object.

Firewall Proxy The primary use of a firewall proxy is to protect target
objects from bad clients.

A firewall proxy can also be used to provide the
functionality required to prevent clients from accessing
harmful targets.

Protection Proxy To provide the functionality required for allowing
different clients to access the target object at different
levels.

A set of permissions is defined at the time of creation of
the proxy. Subsequently, those permissions are used to
restrict access to specific parts of the proxy (in turn of
the target object). A client object is not allowed to access
a particular method if it does not have a specific right to
execute the method.

Synchronization Proxy To provide the required functionality to allow safe
concurrent accesses to a target object by different client
objects.

Smart Reference Proxy To provide the functionality to prevent the accidental
disposal/deletion of the target object when there are
clients currently with references to it.

To accomplish this, the proxy keeps a count of the
number of references to the target object. The proxy
deletes the target object if and when there are no
references to it.

Counting Proxy To provide some kind of audit mechanism before
executing a method on the target object.

© 2004 by CRC Press LLC

g

� Façade
– A Façade object represents a subsystem of objects.
– The client object does have the ability to access the subsystem objects

directly, if needed.
– A Façade object provides a simplified higher level interface to a

subsystem of components.

Proxy versus Chain of Responsibility

� Proxy
– A Proxy object represents a single object.
– Client requests are first received by the Proxy object, but are never

processed directly by the Proxy object.
– Client requests are always forwarded to the target object.
– Response to the request is guaranteed, provided the communication

between the client and the server locations is working.
� Chain of Responsibility

– Chain can contain many objects.
– The object that receives the client request first could process the request.
– Client requests are forwarded to the next object in the chain only if the

current receiver cannot process the request.
– Response to the request is not guaranteed. It means that the request

may end up reaching the end of the chain and still might not be
processed.

In Java, the concept of Remote Method Invocation (RMI) makes extensive use
of the Remote Proxy pattern. Let us take a quick look at the concept of RMI and
different components that facilitate the RMI communication process.

RMI: A QUICK OVERVIEW

RMI enables a client object to access remote objects and invoke methods on them
as if they are local objects (Figure 23.1).

RMI Components

The following different components working together provide the stated RMI
functionality:

� Remote Interface — A remote object must implement a remote interface
(one that extends java.rmi.Remote). A remote interface declares the

Figure 23.1 Client’s View of Its Communication with a Remote Object Using RMI

Client Remote Object

© 2004 by CRC Press LLC

y

methods in the remote object that can be accessed by its clients. In other
words, the remote interface can be seen as the client’s view of the remote
object.

Requirements:
– Extend the java.rmi.Remote interface.
– All methods in the remote interface must be declared to throw
java.rmi.RemoteException exception.

� Remote Object — A remote object is responsible for implementing the
methods declared in the associated remote interface.

Requirements:
– Must provide implementation for a remote interface.
– Must extend java.rmi.server.UnicastRemoteObject.
– Must have a constructor with no arguments.
– Must be associated with a server. The server creates an instance of the

remote object by invoking its zero argument constructor.
� RMI Registry — RMI registry provides the storage area for holding different

remote objects.
– A remote object needs to be stored in the RMI registry along with a

name reference to it for a client object to be able to access it.
– Only one object can be stored with a given name reference.

� Client — Client is an application object attempting to use the remote object.
– Must be aware of the interface implemented by the remote object.
– Can search for a remote object using a name reference in the RMI

Registry. Once the remote object reference is found, it can invoke
methods on this object reference.

� RMIC: Java RMI Stub Compiler — Once a remote object is compiled
successfully, RMIC, the Java RMI stub compiler can be used to generate
stub and skeleton class files for the remote object. Stub and skeleton classes
are generated from the compiled remote object class. These stub and
skeleton classes make it possible for a client object to access the remote
object in a seamless manner.

The following section describes how the actual communication takes place
between a client and a remote object.

RMI Communication Mechanism

In general, a client object cannot directly access a remote object by normal means.
In order to make it possible for a client object to access the services of a remote
object as if it is a local object, the RMIC-generated stub of the remote object class
and the remote interface need to be copied to the client computer.

The stub acts as a (Remote) proxy for the remote object and is responsible for
forwarding method invocations on the remote object to the server where the
actual remote object implementation resides. Whenever a client references the
remote object, the reference is, in fact, made to a local stub. That means, when
a client makes a method call on the remote object, it is first received by the local
stub instance. The stub forwards this call to the remote server. On the server the
RMIC generated skeleton of the remote object receives this call.

© 2004 by CRC Press LLC

g

The skeleton is a server side object and it does not need to be copied to the
client computer. The skeleton is responsible for dispatching calls to the actual
remote object implementation. Once the remote object executes the method,
results are sent back to the client in the reverse direction.

Figure 23.2 shows the actual RMI communication process.
For more information on the Java RMI technology, I recommend reading the

RMI tutorial at java.sun.com.

RMI AND PROXY PATTERN

It can be seen from the RMI communication discussion that the stub class, acting
as a remote proxy for the remote object, makes it possible for a client to treat a
remote object as if it is available locally. Thus, any application that uses RMI
contains an implicit implementation of the Proxy pattern.

EXAMPLE

During the discussion of the Façade pattern, we built a simple customer data
management application to validate and save the input customer data. Our design
consisted of a set of three subsystem classes — Account, Address and
CreditCard — representing different parts of the customer data.

Before applying the Façade pattern, the client AccountManager was designed
to directly interact with the three subsystem classes to validate and save the
customer data. Applying the Façade pattern, we defined a CustomerFacade
Façade object to deal with the three subsystem classes on behalf of the client
AccountManager (Figure 23.3).

In this application, both the subsystem components and the Façade object
are local to the AccountManager client object.

Figure 23.2 The Actual RMI Communication Process

Stub

Remote ObjectClient

Skeleton

Remote Reference
Mechanism

Remote Reference
Mechanism

Network Communication
Layer

© 2004 by CRC Press LLC

y

Let us build a different version of the same application that runs in the remote
mode. In the remote mode, the application makes use of remote objects using
the Java RMI technology.

In designing the application for the remote mode of operation, we would move
all of the subsystem components (Account, Address and CreditCard) and
the Façade (CustomerFacade) to a remote server (Figure 23.4) with the following
advantages:

� Objects on the server can be shared by different client applications. Clients
no longer have to maintain local copies of these classes and hence clients
will be light-weighted.

� Leads to centralized control over processes involving changes, enhance-
ments and monitoring.

Let us start designing our customer data management application for the remote
mode of operation using the RMI technology.

As the first step, let us define a remote interface CustomerIntr that:

� Declares the methods to be implemented by the Façade
� Declares all such methods to throw the RemoteException exception
� Extends the built-in java.rmi.Remote interface

public interface CustomerIntr extends java.rmi.Remote {

void setAddress(String inAddress) throws RemoteException;

void setCity(String inCity) throws RemoteException;

Figure 23.3 Customer Data Management Application for the Local Mode of Operation:
Class Association

AccountManager CustomerFacade

Account

Address

CreditCard

SubSystem

Local System

© 2004 by CRC Press LLC

g

void setState(String inState) throws RemoteException;

void setFName(String inFName) throws RemoteException;

void setLName(String inLName) throws RemoteException;

void setCardType(String inCardType) throws RemoteException;

void setCardNumber(String inCardNumber)

throws RemoteException;

void setCardExpDate(String inCardExpDate)

throws RemoteException;

boolean saveCustomerData() throws RemoteException;

}

Let us redesign the CustomerFacade Façade class (Listing 23.1) so that it
now implements the CustomerIntr remote interface. Different client objects can
interface with the subsystem objects by invoking the CustomerIntr methods on
the concrete CustomerFacade. Figure 23.5 shows the structure and the associ-
ation between the CustomerFacade and the remote interface CustomerIntr
it implements.

Because the subsystem components are local to the CustomerFacade class,
it continues to refer to them as local objects without any changes in the way it
instantiates and invokes methods on them. When executed, the CustomerFa-
cade creates an instance of itself and keeps it in the RMI registry with a reference
name. Client objects will be able to obtain this copy of the remote object using
the reference name.

Figure 23.4 Customer Data Management Application for the Remote Mode of Operation:
Class Association

AccountManager CustomerFacade

Account

Address

CreditCard

SubSystem

Local System Remote System

© 2004 by CRC Press LLC

y

Listing 23.1 CustomerFacade Class: Revised

public class CustomerFacade extends UnicastRemoteObject

implements CustomerIntr {

private String address;

private String city;

private String state;

private String cardType;

private String cardNumber;

private String cardExpDate;

private String fname;

private String lname;

public CustomerFacade() throws RemoteException {

super();

System.out.println("Server object created");

}

public static void main(String[] args) throws Exception {

String port = "1099";

String host = "localhost";

//Check for hostname argument

if (args.length == 1) {

host = args[0];

}

if (args.length == 2) {

port = args[1];

}

if (System.getSecurityManager() == null) {

System.setSecurityManager(new RMISecurityManager());

}

//Create an instance of the server

CustomerFacade facade = new CustomerFacade();

//Bind it with the RMI Registry

Naming.bind("//" + host + ":" + port + "/CustomerFacade”,

facade);

System.out.println("Service Bound…");

}

public void setAddress(String inAddress)

throws RemoteException {

address = inAddress;

}

 (continued)

© 2004 by CRC Press LLC

g

Listing 23.1 CustomerFacade Class: Revised (Continued)

public void setCity(String inCity)

throws RemoteException{ city = inCity;

}

public void setState(String inState)

throws RemoteException{ state = inState;

}

public void setFName(String inFName)

throws RemoteException{ fname = inFName;

}

public void setLName(String inLName)

throws RemoteException{ lname = inLName;

}

public void setCardType(String inCardType)

throws RemoteException {

cardType = inCardType;

}

public void setCardNumber(String inCardNumber)

throws RemoteException {

cardNumber = inCardNumber;

}

public void setCardExpDate(String inCardExpDate)

throws RemoteException {

cardExpDate = inCardExpDate;

}

public boolean saveCustomerData() throws RemoteException{

Address objAddress;

Account objAccount;

CreditCard objCreditCard;

/*

client is transparent from the following

set of subsystem related operations.

*/

boolean validData = true;

String errorMessage = "";

objAccount = new Account(fname, lname);

if (objAccount.isValid() == false) {

validData = false;

errorMessage = "Invalid FirstName/LastName";

}
 (continued)

© 2004 by CRC Press LLC

y

Because a client does not need to access any of the subsystem components
directly, none of the subsystem components undergoes any changes in the new
design for the remote mode of operation of the application.

Let us redesign the client AccountManager class (Listing 23.2).
Similar to the local mode of operation, AccountManager displays the nec-

essary user interface to accept the input customer data (Figure 23.6). When the
user enters the data and clicks on the Validate & Save button, it retrieves
the remote object reference from the RMI registry using the reference name.

Once the remote object reference is retrieved from the registry, the client can
invoke operations on the remote object reference as if it is a local object. Figure
23.7 depicts this behavior.

Note that the stub class corresponding to the compiled CustomerFacade
class must be copied onto the client AccountManager location before executing
the application. After the CustomerFacade is compiled, the stub and skeleton
classes can be generated using the RMIC compiler on the compiled Customer-
Facade class. Detailed instructions on compiling and deploying different appli-
cation components are provided under the following “Additional Notes” section.

Listing 23.1 CustomerFacade Class: Revised (Continued)

objAddress = new Address(address, city, state);

if (objAddress.isValid() == false) {

validData = false;

errorMessage = "Invalid Address/City/State";

}

objCreditCard = new CreditCard(cardType, cardNumber,

cardExpDate);

if (objCreditCard.isValid() == false) {

validData = false;

errorMessage = "Invalid CreditCard Info";

}

if (!validData) {

System.out.println(errorMessage);

return false;

}

if (objAddress.save() && objAccount.save() &&

objCreditCard.save()) {

return true;

} else {

return false;

}

}

}

© 2004 by CRC Press LLC

g

In reality, when the client invokes a method such as saveCustomerData
on the CustomerFacade remote object, the CustomerFacade_stub object,
which is local to the client, first receives it. The CustomerFacade_stub then
transmits the method call to the server for processing.

On the server side the CustomerFacade_skel is responsible for receiving
the method call through the lower levels of the communication network. It then
dispatches it to the actual CustomerFacade object on the server. In case of the
saveCustomerData method, the CustomerFacade object creates the neces-
sary subsystem objects and invokes the required methods on these objects to
validate and save the customer data. The result of the processing is carried back
to the client in the reverse manner. Figure 23.8 depicts this actual communication
mechanism.

As can be seen from above, the CustomerFacade_stub class enables the
client object to invoke methods on the remote CustomerFacade object as if it
is present locally, which, otherwise, is not accessible by normal means. Thus the
stub functions as a remote proxy.

Figure 23.5 Façade Design: Remote Mode of Operation

<<interface>>
java.rmi.Remote

<<interface>>
CustomerIntr

setAddress(String inAddress)
setCity(String inCity)
setState(String inState)
setFName(String inFName)
setLName(String inLName)
setCardType(String inCardType)
setCardNumber(String inCardNumber)
setCardExpDate(String inCardExpDate)
saveCustomerData()

CustomerFacade

setAddress(String inAddress)
setCity(String inCity)
setState(String inState)
setFName(String inFName)
setLName(String inLName)
setCardType(String inCardType)
setCardNumber(String inCardNumber)
setCardExpDate(String inCardExpDate)
saveCustomerData()

UnicastRemoteObject

java.rmi.RemoteException
<<throws>>

© 2004 by CRC Press LLC

y

Listing 23.2 AccountManager Class: Revised

…

…

public void actionPerformed(ActionEvent e) {

…

…

if (e.getActionCommand().equals(

AccountManager.VALIDATE_SAVE)) {

//get input values

String firstName = objAccountManager.getFirstName();

String lastName = objAccountManager.getLastName();

String address = objAccountManager.getAddress();

…

…

try {

//Call registry for AddOperation

facade = (CustomerIntr) Naming.lookup ("rmi://" +

objAccountManager.getRMIHost() + ":" +

objAccountManager.getRMIPort() +

"/CustomerFacade");

facade.setFName(firstName);

facade.setLName(lastName);

facade.setAddress(address);

…

…

//Client is not required to access subsystem components.

boolean result = facade.saveCustomerData();

if (result) {

validateCheckResult =

" Valid Customer Data: Data Saved Successfully ";

} else {

validateCheckResult =

" Invalid Customer Data: Data Could Not Be Saved ";

}

(continued)

© 2004 by CRC Press LLC

g

ADDITIONAL NOTES

Compilation and Deployment Notes

Download the source code from the following Web site: http://www.crcpress.com/
e_products/downloads/download.asp.

1. Compile all Java files in the Proxy/Server folder.
2. Execute the following command from the Proxy/Server folder:

Rmic CustomerFacade

This command invokes the RMI stub compiler and creates the stub and
skeleton classes CustomerFacade_Skel.class and CustomerFacade_
Stub.class, respectively.

3. Copy the following files from the Proxy/Server folder to the Proxy/Client
folder:

CustomerIntr.class

CustomerFacade_Stub.class

4. Compile all Java files in the Proxy/Client folder.
5. Start the rmiregistry:

start rmiregistry <objectRegistryPort> (Windows)

rmiregistry & (Solaris)

� <objectRegistryPort> — This is where the RMI registry needs to
listen. The default port value is 1099.

� Example:

 start rmiregistry

Listing 23.2 AccountManager Class: Revised (Continued)

} catch (Exception ex) {

System.out.println(

"Error: Please check to ensure the " +

"remote server is running" +

ex.getMessage());

}

objAccountManager.setResultDisplay(

validateCheckResult);

}

}

…

…

© 2004 by CRC Press LLC

y

Figure 23.6 The User Interface: Remote Mode of Operation

Figure 23.7 AccountManager View of Its Communication with the Remote Custom-
erFacade

AccountManager CustomerFacade

© 2004 by CRC Press LLC

g

6. Run the following command:

java -Djava.security.policy=<PolicyFile> CustomerFacade

<RemoteRegistryHost> <RemoteRegistryPort>

� Example:

java -Djava.security.policy=java.policy CustomerFacade

localhost 1099

� <policyFile> — This is the name of the security file with permissions
set for the application. The location of the file in the file system of the
underlying operating system needs to be specified.
Note: The java.policy policy file is available in the server folder.

� <RemoteRegistryHost> — This is the DNS (Domain Name System)
name or the IP address of the host machine where the object registry
is running. For the same computer, use “localhost.”

� <RemoteRegistryPort> — This is the port where the object registry is
listening on the specified RemoteRegistryHost. The default is 1099.

7. The following output will be displayed:

Server object created

Service bound…

8. Go to the folder Proxy/client and execute the following command to run
the client:

java -Djava.security.policy=<PolicyFile> AccountManager

<RemoteRegistryHost> <RemoteRegistryPort>

Figure 23.8 The Actual Flow of Communication

CustomerFacade_Stub

CustomerFacadeAccountManager

CustomerFacade_Skel

Remote Reference
Mechanism

Remote Reference
Mechanism

Network Communication
Layer

© 2004 by CRC Press LLC

y

� Example:

java -Djava.security.policy=java.policy AccountManager
localhost 1099

� <policyFile> — This is the name of the security file with permissions
set for the application. The location of the file in the file system of the
underlying operating system needs to be specified.
Note: The java.policy policy file is available in the client folder.

� <RemoteRegistryHost> — This is the DNS name or the IP address
of the host machine where the object registry is running. For the same
computer, use “localhost.”

� <RemoteRegistryPort> — This is the port where the object registry
is listening on the specified RemoteRegistryHost. The default is 1099.

This executes the client AccountManager and the user interface will be
displayed.

PRACTICE QUESTIONS

1. In our example design, a client can access only the CustomerFacade
remote object. The CustomerFacade internally interacts with the remote
subsystem components directly. But a client cannot access any of the
subsystem components (Account, Address or the CreditCard). Make
necessary changes to the Account, Address and the CreditCard
classes and to the deployment process, to enable a client to access these
subsystem components directly without having to go through the Cus-
tomerFacade.

2. Design and implement the purchase request Façade as a remote object.
(Refer to Practice Questions 1 and 2 of Chapter 22 — Façade.)

© 2004 by CRC Press LLC

24

BRIDGE

This pattern was previously described in GoF95.

DESCRIPTION

The Bridge pattern promotes the separation of an abstraction’s interface from its
implementation. In general, the term abstraction refers to the process of identifying
the set of attributes and behavior of an object that is specific to a particular usage.
This specific view of an object can be designed as a separate object omitting
irrelevant attributes and behavior. The resulting object itself can be referred to as
an abstraction. Note that a given object can have more than one associated
abstraction, each with a distinct usage.

A given abstraction may have one or more implementations for its methods
(behavior). In terms of implementation, an abstraction can be designed as an
interface with one or more concrete implementers (Figure 24.1).

Figure 24.1 Abstraction as an Interface with a Set of Concrete Implementers

method_1()
method_2()

<<interface>>
Abstraction

method_1()
method_2()

Implementer_2

method_1()
method_2()

Implementer_1

© 2004 by CRC Press LLC

g

In the class hierarchy shown in Figure 24.1, the Abstraction interface
declares a set of methods that represent the result of abstracting common features
from different objects. Both Implementer_1 and Implementer_2 represent
the set of Abstraction implementers. This approach suffers from the following
two limitations:

1. When there is a need to subclass the hierarchy for some other reason, it
could lead to an exponential number of subclasses and soon we will have
an exploding class hierarchy.

2. Both the abstraction interface and its implementation are closely tied
together and hence they cannot be independently varied without affecting
each other.

Using the Bridge pattern, a more efficient and manageable design of an
abstraction can be achieved. The design of an abstraction using the Bridge pattern
separates its interfaces from implementations. Applying the Bridge pattern, both
the interfaces and the implementations of an abstraction can be put into separate
class hierarchies as in Figure 24.2.

From the class diagram in Figure 24.2, it can be seen that the Abstraction
maintains an object reference of the Implementer type. A client application can

Figure 24.2 Interface and Implementations in Two Separate Class Hierarchies

impl:Implementer

method_1()
method_2()

<<interface>>
Abstraction

methodImpl_1()
methodImpl_2()

<<interface>>
Implementer

method_1()
method_2()
someOtherMethod_2()

AbstractionType_2

methodImpl_1()
methodImpl_2()
someNewMethod()

Implementer_1

Client

method_1()
method_2()
someOtherMethod_1()

AbstractionType_1

Interface class
hierarchy Implementation class

hierarchy

© 2004 by CRC Press LLC

g

choose a desired abstraction type from the Abstraction class hierarchy. The
abstraction object can then be configured with an instance of an appropriate
implementer from the Implementer class hierarchy. This ability to combine
abstractions and implementations dynamically can be very useful in terms of
extending the functionality without subclassing. When a client object invokes a
method on the Abstraction object, it forwards the call to the Implementer
object it contains. The Abstraction object may offer some amount of processing
before forwarding the call to the Implementer object.

This type of class arrangement completely decouples the interface and the
implementation of an abstraction and allows the classes in the interface and the
implementation hierarchy to vary without affecting each other.

EXAMPLE

We designed the message logging functionality for an application during the
discussion of the Factory Method pattern. Logging can be used for various
purposes at different stages of an application and hence many different objects
that are part of the application may need to have the ability to log messages.
Because many different objects within an application may need the ability to log
messages, the logging feature may be put into a separate class. The resulting class
is an abstraction of the message logging functionality. From here on, we use the
phrase logger abstraction to refer to the abstraction of the message logging
functionality.

A message can be logged to different types of destinations such as a file,
console and others. Depending on the destination type, a different implementation
of the logger abstraction is needed. This requirement can be designed with a
common Logger interface that declares the interface (methods) of the abstraction
and different implementers corresponding to different destination types provide
implementation for the logger abstraction. Let us define two such implementers
— FileLogger and ConsoleLogger — to log messages to a file and console,
respectively. Figure 24.3 depicts the resulting class hierarchy.

Figure 24.3 Logger Abstraction before Applying the Bridge Pattern

<<interface>>
Logger

log(msg:String)

FileLogger

log(msg:String)

ConsoleLogger

log(msg:String)

© 2004 by CRC Press LLC

g

Different client objects can use one of the implementer (FileLogger or
ConsoleLogger) objects to log messages to a desired destination in plain text
format. After this design is implemented, let us suppose that an application object
needs to log messages in a different format (e.g., in an encrypted form). The
existing messaging logging functionality design is not sufficient without either:

� Modifying different implementers
� Extending the entire class hierarchy

Having to modify the existing code in order to extend the functionality is not
advisable and violates the basic object-oriented open-closed principle.

The open-closed principle states that a software module should be:

� Open for extension — It should be possible to alter the behavior of a module or add
new features to the module functionality.

� Closed for modification — Such a module should not allow its code to be modified.

In a nutshell, the open-closed principle helps in designing software modules whose
functionality can be extended without having to modify the existing code.
This also means that whenever there is a change to be made to the Logger

(Java)interface for a different type of (application)interface, each of its implemen-
tations needs to be modified, making the logger abstraction interface and its
implementation dependent on each other.

Subclassing the class hierarchy for every different type of message format is
also not recommended as it could result in an exponential number of subclasses
and soon there will be an exploding class hierarchy. The Bridge pattern can be
used in this case to provide the ability to add new message formats and new
types of implementations to the logger abstraction. The Bridge pattern separates
the interface and implementations into two separate class hierarchies so that they
both can be modified without affecting each other.

Applying the Bridge pattern the interface and the implementation of the logger
abstraction can be arranged into two separate class hierarchies.

Abstraction Implementation Design

Implementers of the logger abstraction need to provide the actual implementation
required to log messages to different destination types. Let us define two such
implementers — FileLogger and ConsoleLogger — to log messages to a
file and console, respectively. These abstraction implementers can be designed
as two concrete implementers of a common MessageLogger (Java)interface
(Listing 24.1).

The common MessageLogger interface declares a method logMsg(String
msg), which can be used by objects that represent the interface of the logger
abstraction. Figure 24.4 depicts the resulting abstraction implementation class
hierarchy.

As part of its implementation of the logMsg method (Listing 24.2):

© 2004 by CRC Press LLC

g

� The FileLogger writes a given message to a log file using a helper
FileUtil class.

� The ConsoleLogger writes a given message on the screen.

Note that client objects should not directly access the message logging service
offered by different logger abstraction implementers. To log a message, different

Listing 24.1 MessageLogger Interface

public interface MessageLogger {

public void logMsg(String msg);

}

Figure 24.4 Logger Abstraction: Implementer Hierarchy

Listing 24.2 MessageLogger Implementers: FileLogger and ConsoleLogger

public class FileLogger implements MessageLogger {

public void logMsg(String msg) {

FileUtil futil = new FileUtil();

futil.writeToFile("log.txt”,msg, true, true);

}

}

public class ConsoleLogger implements MessageLogger {

public void logMsg(String msg) {

System.out.println(msg);

}

}

<<interface>>
MessageLogger

logMsg(msg:String)

FileLogger

logMsg(msg:String)

ConsoleLogger

logMsg(msg:String)

© 2004 by CRC Press LLC

g

client objects interact with instances of the classes representing the logger abstrac-
tion interface. These abstraction interface objects in turn use the services of the
abstraction implementer classes.

Abstraction Interface Design

The interface for the logger abstraction can be designed in the form of a set of
classes representing different types of messages that a client object would like to
log. These classes can be designed as implementers of a common Message
(Java)interface (Listing 24.3).

The Message interface declares a method log(String msg), which can
be used by different client objects to log messages.

Let us define two logger abstraction interface classes — TextMessage and
EncryptedMessage — (Listing 24.4) representing a plain text message and an
encrypted message, respectively. These abstraction interface classes can be
designed as concrete implementers of a common Message (Java)interface.

Figure 24.5 shows the resulting logger abstraction interface class hierarchy.

Design Highlights of the Abstraction Interface Classes

� Logger abstraction interface classes — TextMessage and Encrypted-
Message — do not provide implementation for the actual message logging
service. As seen earlier, classes such as the FileLogger and Console-
Logger in the abstraction implementer class hierarchy provide the actual
message logging implementation.

� Client objects do not directly use the interface exposed by the abstraction
implementer classes.

� Each abstraction interface class maintains an object reference of the Mes-
sageLogger (abstraction implementer) type. Whenever a client object
creates an abstraction interface object, it configures the interface object
with a MessageLogger object.

� Whenever a client object invokes the log method on an abstraction interface
object, the interface object does any required preprocessing and uses the
message logging service of the MessageLogger object it contains.

� The preprocessing functionality is meant to be used internally by abstrac-
tion interface objects only and it should not be available to client objects.
To ensure this, the preProcess method in both the TextMessage and
EncryptedMessage abstraction interface classes is designed as a private
method. As part of its implementation of the preProcess method, the

Listing 24.3 Message Interface

public interface Message {

public void log(String msg);

}

© 2004 by CRC Press LLC

g

EncryptedMessage encrypts an incoming message by shifting all char-
acters to the right by one position.

As a result of keeping the interface and the implementation of the logger
abstraction in two separate class hierarchies, the interfaces and the implementa-
tions of the logger abstraction are completely decoupled.

Whenever a client (Listing 24.5) needs to log a message:

1. It creates an instance of an appropriate MessageLogger implementer
class such as FileLogger or ConsoleLogger.

Listing 24.4 Message Implementers: TextMessage and EncryptedMessage

public class TextMessage implements Message {

private MessageLogger logger;

public TextMessage(MessageLogger l) {

logger = l;

}

public void log(String msg) {

String str = preProcess(msg);

logger.logMsg(str);

}

private String preProcess(String msg) {

return msg;

};

}

public class EncryptedMessage implements Message {

private MessageLogger logger;

public EncryptedMessage(MessageLogger l) {

logger = l;

}

public void log(String msg) {

String str = preProcess(msg);

logger.logMsg(str);

}

private String preProcess(String msg) {

msg = msg.substring(msg.length() - 1) +

msg.substring(0, msg.length() - 1);

return msg;

};

}

© 2004 by CRC Press LLC

g

2. It creates an instance of an appropriate Message implementer class such
as TextMessage or EncryptedMessage.

3. It configures the Message implementer object with the MessageLogger
implementer object created in Step 1. This object is maintained inside the
Message implementer object.

4. It calls the log(String) method on the Message implementer object
created in Step 2.

5. The Message implementer object carries out the required processing to
transform the incoming message to the desired format (encrypt the input
message in the case of the EncryptedMessage) and forwards the trans-
formed message to the MessageLogger implementer object it contains
by invoking its logMessage(String) method. This relationship between
classes in the interface and the implementer class hierarchy can be viewed
as a Bridge in this case.

Figure 24.5 Logger Abstraction: Interface Hierarchy

Listing 24.5 Test Client Class

public class Client {

public static void main(String[] args) {

//Create an appropriate implementer object

MessageLogger logger = new FileLogger();

//Choose required interface object and

//configure it with the implementer object

Message msg = new EncryptedMessage(logger);

msg.log("Test Message");

}

}

<<interface>>
Message

log(msg:String)

TextMessage

preProcess(s:String):String
log(msg:String)

EncryptedMessage

preProcess(s:String):String
log(msg:String)

© 2004 by CRC Press LLC

g

Figure 24.6 shows the overall class association.
The message flow when an application object uses the logger abstraction to

log an encrypted message can be depicted as in Figure 24.7.
The separation of the logger abstraction interface from its implementation

allows them to be modified independently without having to modify the other.
After the design is implemented, if a client object needs to log messages in a

new format, say HTML, this requirement can be addressed easily by designing a
new logger abstraction interface class HTMLMessage as an implementer of the
existing Message interface. The HTMLMessage class can be designed to provide
the required processing to transform an incoming message to HTML text and use
an abstraction implementer class to actually log the transformed message. This
addition of a new interface class does not affect any existing abstraction imple-
menters. In addition, adding a new class for every new type of message format
keeps the class growth linear.

Similarly, a new logger abstraction implementation such as a DBLogger to
log messages to a database can be added without having to modify or subclass
the class hierarchy.

Figure 24.6 Logger Abstraction after Applying the Bridge Pattern

<<interface>>
MessageLogger

logMsg(msg:String)

FileLogger

logMsg(msg:String)

ConsoleLogger

logMsg(msg:String)

<<interface>>
Message

log(msg:String)

TextMessage

preProcess(s:String):String
log(msg:String)

logger:MessageLogger

EncryptedMessage

preProcess(s:String):String
log(msg:String)

logger:MessageLogger

© 2004 by CRC Press LLC

g

BRIDGE PATTERN VERSUS ADAPTER PATTERN

Similarities:
� Both the Adapter pattern and the Bridge pattern are similar in that they

both work towards concealing the details of the underlying implementation
from the client.

Differences:
� The Adapter pattern aims at making classes work together that could not

otherwise because of incompatible interfaces. An Adapter is meant to
change the interface of an existing object. As we have seen during our
discussion on the Adapter pattern, an Adapter requires an (existing) adap-
tee class, indicating that the Adapter pattern is more suitable for needs
after the initial system design.

� The Bridge pattern is more of a design time pattern. It is used when the
designer has control over the classes in the system. It is applied before a
system has been implemented to allow both abstraction interfaces and its
implementations to be varied independently without affecting each other.

� In the context of the Bridge pattern, the issue of incompatible interfaces
does not exist. Client objects always use the interface exposed by the
abstraction interface classes. Thus both the Bridge pattern and the Adapter
pattern are used to solve different design issues.

PRACTICE QUESTIONS

1. Design an application that reads and writes different types of data (plain
text, binary, etc.) to and from different destinations such as a file, a URL
or a database. Apply the Bridge pattern in designing the data read/write
abstraction.

Figure 24.7 Message Flow When an Application Logs an Encrypted Message

Client EncryptedMessage FileLogger

create()

create(logger:FileLogger)

log(msg:String)

preProcess()

logMsg(msg:String)

© 2004 by CRC Press LLC

g

2. Many applications with a database backend use ODBC/JDBC drivers from
different vendors. Identify how the Bridge pattern is applied when an
application uses an ODBC/JDBC driver.

3. Design a code formatting application using the Bridge pattern. In general,
programs can be written in any computer language (e.g., Java, VB, etc.)
and a given program can be formatted in different ways such as simple text
formatting, HTML formatting, color formatting and others. In effect, the
interface for code formatting can be implemented in many different ways.
Apply the Bridge pattern to separate the interface from its implementations.

© 2004 by CRC Press LLC

25

VIRTUAL PROXY

This pattern was previously described in GoF95.

DESCRIPTION

The Virtual Proxy pattern is a memory saving technique that recommends post-
poning an object creation until it is needed: when creating such an object is
expensive in terms of the memory usage or the processing involved. In a typical
application, different objects make up different parts of the functionality. When
an application is started, it may not need all of its objects to be available
immediately. In such cases, the Virtual Proxy pattern suggests deferring object
creation until it is needed by the application. The object is created the first time
it is referenced in the application and the same instance is reused from that point
onwards. This approach has advantages and disadvantages.

Advantage

The advantage of this approach is a faster application start-up time, as it is not
required to create and load all of the application objects.

Disadvantage

Because there is no guarantee that a given application object is created, everywhere
the application object is accessed it needs to be checked to make sure that it is
not null, i.e., the object is created. The time penalty associated with this check
is the main disadvantage.

Applying the Virtual Proxy pattern, a separate object referred to as a virtual proxy
can be designed with its interface the same as that of the actual object. Different
client objects can create an instance of the corresponding virtual proxy and use
it in place of the actual object. The Virtual Proxy object maintains a reference
to the actual object as one of its instance variables. The proxy does not automat-
ically create the actual object. When a client invokes a method on the Virtual
Proxy object that requires the services of the actual object, it checks to see if
the actual object is created.

© 2004 by CRC Press LLC

g

� If the actual object is already created, the proxy forwards the method call
to the actual object.

� If the actual object is not already created:
– It creates the actual object.
– It assigns the object to its object reference variable.
– It forwards the call to the actual object.

With this arrangement, details such as the existence of the actual object and
the method forwarding are hidden from client objects. Client objects interact only
with the Proxy object as if it is the actual object. As a result, client objects are
free from checking if the actual object is null. Also, because the time and the
processing overhead is less to create a virtual proxy than the actual object it is
associated with, the virtual proxy can be instantiated at the beginning of a client
application in place of the actual object.

EXAMPLE

Suppose that you are creating an IDE (Integrated Development Environment) for
editing Java programs with features to compile, execute and generate javadocs.
Most often when a Java program is created or edited, it is compiled and run, but
javadocs may not be generated for every Java program. Hence, instead of creating
and loading all the application objects that provide the entire IDE functionality,
it might be a good idea to create only those objects that are required for editing,
compiling and executing programs, leaving the other objects that offer the service
of generating javadocs. This type of object creation strategy results in an efficient
memory usage model and the IDE application can be started quickly as there is
no need to load all of the application objects.

Let us suppose that the compile, run and javadoc generation functionalities
are offered by three utility classes — Compiler, Runtime and JavaDoc —
respectively. The interface for different IDE operations to be accessed by client
objects can be designed in the form of an abstract IDEOperation class.

public abstract class IDEOperation {

private Compiler cmp;

private Runtime rtime;

public void compile(String javaFile) {

cmp.compile(javaFile);

}

public void run(String classFile) {

rtime.run (classFile);

}

//to be delayed until needed.

public abstract void generateDocs(String javaFile);

public IDEOperation() {

cmp = new Compiler();

rtime = new Runtime();

© 2004 by CRC Press LLC

y

}

}

The IDEOperation class provides implementation for methods to compile
and run Java programs. As part of its constructor, the IDEOperation creates
and loads Compiler and Runtime objects required for the compile and execute
operations. The javadoc generation method generateDocs is designed as an
abstract method to be implemented by its subclasses.

Let us define a concrete subclass RealProcessor of the abstract IDEOp-
eration class. The RealProcessor, as part of its constructor, creates a Jav-
aDoc object that offers the javadoc generation service and implements the
generateDocs method by using the JavaDoc object functionality.

public class RealProcessor extends IDEOperation {

JavaDoc jdoc;

public RealProcessor() {

super();

jdoc = new JavaDoc();

}

public void generateDocs(String javaFile) {

jdoc.generateDocs(javaFile);

}

}

With this implementation, the RealProcessor contains all the functionality
to compile, run and generate javadocs for any Java program and can be readily
used by client objects. As discussed earlier, however, the javadoc generation
functionality may not be required for every Java program and the set of objects
created when the RealProcessor is instantiated includes a JavaDoc object
that is responsible for the javadoc generation. Creation of the JavaDoc objects
can be deferred with the following advantages:

� Faster creation time of a RealProcessor object, as it needs to create
fewer objects as part of its constructor.

� Efficient memory usage, as there is no need to hold an object in memory
when there may be no need for its services.

Without altering the RealProcessor implementation, this can be accom-
plished by defining another subclass ProxyProcessor of the IDEOperation
class. Because both the RealProcessor and the ProxyProcessor share the
same interface, client objects can use the ProxyProcessor in place of the
RealProcessor. Figure 25.1 shows the resulting class hierarchy.

public class ProxyProcessor extends IDEOperation {

private RealProcessor realProcessor;

public void generateDocs(String javaFile) {

© 2004 by CRC Press LLC

g

/*

In order to generate javadocs

the proxy loads the actual object and

invokes its methods.

*/

if (realProcessor == null) {

realProcessor = new RealProcessor();

}

realProcessor.generateDocs(javaFile);

}

}

The ProxyProcessor maintains an object reference of the RealProcessor
type as one of its instance variables. As part of the generateDocs method, the
ProxyProcessor checks to see if this reference variable has been initialized
with a RealProcessor object. If not, it creates a RealProcessor object and
assigns it to the object reference instance variable. Once the RealProcessor
object has been created, it invokes the generateDocs method on it.

In effect, it means that the RealProcessor is instantiated and loaded into
the memory the first time when the javadoc generation functionality is requested

Figure 25.1 IDEOperation Class Hierarchy

Client

RealProcessor

compile(javaFile:String)
run(javaFile:String)
generateDocs(javaFile:String)

<<uses>>

ProxyProcessor

compile(javaFile:String)
run(javaFile:String)
generateDocs(javaFile:String)

IDEOperation

compile(javaFile:String)
run(javaFile:String)
generateDocs(javaFile:String)

<<accesses>>

JavaDoc

<<creates>>

Compiler Runtime

<<creates>><<creates>>

© 2004 by CRC Press LLC

y

by a client object. In turn, this means that the JavaDoc object is not created
and loaded into the memory until a client needs to generate javadocs for a Java
program.

Client objects do not need to know the existence of the RealProcessor
and can invoke methods on the ProxyProcessor as if it is the real processor.
Details such as the validations and checks involved and the communication
between the ProxyProcessor and the RealProcessor are completely hidden
from client objects.

public class Client {

public static void main(String[] args) {

/*

At this point objects required for

the compile and run operations are

created, but not the objects that provide the

generate Javadoc functionality.

*/

IDEOperation IDE = new ProxyProcessor();

IDE.compile("test.java");

IDE.run("test.class");

/*

The Javadoc functionality is accessed

For the first time and hence the

Object offering the Javadoc generation

Functionality is loaded at this point.

*/

IDE.generateDocs("test.java");

}

}

PRACTICE QUESTIONS

1. Consider an application that uses a DBManager class, which encapsulates
all of the database access details. As soon as the application is run, the
DBManager may not be needed. Because creating a database connection
is considered as an expensive operation, it might be a good idea to defer
the instantiation of the DBManager class until the application needs to
access the database for the first time. Design a virtual proxy for the
DBManager class, which allows the postponement of the DBManager
object creation, at the same time hiding such details from client objects.

2. Identify how the virtual proxy is involved in the following examples:
� When a word processor such as Microsoft® Word is installed, it does not

automatically create the index for help topics. When the help is accessed

© 2004 by CRC Press LLC

g

for the first time, it builds the help topics index (in the case of MS Word,
it clearly displays a message to this effect).

� Consider an application that uses JavaServer Pages™ technology. JSP
scripts are not compiled automatically when they are placed in an
application server specified directory. A JSP script is compiled the first
time it is accessed.

© 2004 by CRC Press LLC

26

COUNTING PROXY

This pattern was previously described in GoF95.

DESCRIPTION

The Counting Proxy pattern is useful in designing a set of additional operations
such as logging and counting that need to be performed before and/or after
a client object invokes a method on a service provider object. Instead of
keeping these additional operations’ implementation inside the service provider
object, the Counting Proxy pattern suggests encapsulating the additional func-
tionality in a separate object referred to as a counting proxy. One of the
characteristics of a well-designed object is that it offers focused functionality.
In other words, an object, ideally, should not do various unr elated things.
Encapsulating the logging, counting and other similar functionality into a
separate object leaves the service provider object with only the functionality
that it is designed to offer. In other words, it allows the service provider object
to perform a well-defined, definite task.

A counting proxy is designed to have the same interface as the service provider
object that a client accesses. Instead of accessing the service provider object
directly, client objects invoke methods on the counting proxy. The proxy performs
the required logging and counting and forwards the method call to the service
provider object (Figure 26.1).

The following example illustrates how a counting proxy can be used in an
application scenario.

EXAMPLE

Let us design an Order class hierarchy as in Figure 26.2. The OrderIF interface
declares a single method getAllOrders to read all orders from a database.

public interface OrderIF {

public Vector getAllOrders();

}

© 2004 by CRC Press LLC

g

As part of its implementation of the getAllOrders method, the Order class
makes use of the FileUtil utility class to read order items from a data file
orders.txt.

public class Order implements OrderIF {

public Vector getAllOrders() {

FileUtil fileUtil = new FileUtil();

Vector v = fileUtil.fileToVector("orders.txt");

return v;

}

}

Figure 26.1 Generic Class Association When the Counting Proxy Pattern Is Applied

Figure 26.2 Order Class Hierarchy

Client

CountingProxy

service()
-loggingOperation()
-countingOperation()

<<requests service>>

ServiceProvider

service()

<<interface>>
CommonInterface

service()

<<forwards calls>>

Order

getAllOrders()

<<interface>>
OrderIF

getAllOrders()

© 2004 by CRC Press LLC

g y

Let us suppose that the time it takes to read the data file and the number of
times the getAllOrders operation is invoked need to be logged to a log file.

This additional functionality can be designed as a separate class OrderProxy
that implements the same OrderIF interface as the actual Order object. This
ensures that the OrderProxy offers the same interface to client objects as the
actual Order object (Figure 26.3).

public class OrderProxy implements OrderIF {

private int counter = 0;

public Vector getAllOrders() {

Order order = new Order();

counter++;

long t1 = System.currentTimeMillis ();

Vector v = order.getAllOrders();

long t2 = System.currentTimeMillis();

long timeDiff = t2 - t1;

String msg =

"Iteration=" + counter + "::Time=" + timeDiff +

"ms";

//log the message

FileUtil fileUtil = new FileUtil();

fileUtil.writeToFile("log.txt”,msg, true, true);

return v;

}

}

The client object MainApp can make use of the OrderProxy object as if it
is the real Order object and invoke the OrderIF method getAllOrders on

Figure 26.3 Order Class Hierarchy with the Counting Proxy

OrderProxy

getAllOrders()

<<interface>>
OrderIF

getAllOrders()

Order

getAllOrders()

<<forwards calls>>

© 2004 by CRC Press LLC

g

it. The OrderProxy forwards the call to the actual Order object, calculates the
time it takes to read all orders and logs these details to a log file using the
FileUtil helper class. In this process, the OrderProxy plays the role of a
counting proxy.

public class MainApp {

public static void main(String[] args) {

OrderIF order = new OrderProxy();

Vector v = order.getAllOrders();

v = order.getAllOrders();

v = order.getAllOrders();

v = order.getAllOrders();

}

}

PRACTICE QUESTIONS

1. Design a counting proxy that keeps track of the number of orders created
and provides the average order amount.

2. Consider items in a library. Library items can be divided into four categories
— magazines, books, videos and DVDs. Design a proxy to keep track of
the number of items of each category that are checked out every day.

© 2004 by CRC Press LLC

27

AGGREGATE ENFORCER

DESCRIPTION

In general, classes are designed to carry related data and offer focused function-
ality. Sometimes an object may contain other objects as part of it. Such an object,
which is a union of other objects, is called an aggregate object. For example, a
computer is an Aggregate object that contains other objects such as a CPU unit
and memory units. The Aggregate Enforcer pattern recommends that when an
Aggregate object is constructed, it must be constructed in full. That means that
when an Aggregate class is instantiated, all of its member variables representing
the set of constituting objects must also be initialized. The idea is to make sure
that an Aggregate object is created in full or is not created at all.

There are two types of aggregate relationships — aggregation and composition.
In both of the relationships, an Aggregate object is composed of several
constituting objects.

In the case of aggregation, the parts that make up the Aggregate object can
exist meaningfully without the parent Aggregate object. Composition is a
stronger form of aggregation. The set of constituting objects in a composition
relationship with the parent Aggregate object cannot exist meaningfully on their
own without the Aggregate object.

A member variable representing a constituting object can be initialized either
at the time of creating the Aggregate object (early initialization) or on demand
when there is a need to use the variable. Early initialization of constituting objects
has the following advantages:

� An Aggregate object is always treated as a union of constituting objects.
That means an Aggregate object cannot exist without its constituting objects.
Hence, it follows the semantics of an Aggregate object to construct the
Aggregate object in full by initializing all of its constituting objects.

� Early initialization reveals any problems with the construction of any of
the constituting objects at the time of constructing the parent aggregate
itself.

� All other client objects and different member functions within the Aggregate
object can assume that the member variables representing constituting objects
are always fully initialized. This eliminates the need for unwanted conditional
statements to check if a member variable is initialized.

© 2004 by CRC Press LLC

g

EXAMPLE

Let us design an Aggregate class representation for a typical computer with
the CPU class as its constituting part (Figure 27.1). For simplicity, let us consider
single processor computers only.

Design Approach I (On-Demand Initialization)

The object variable cpu can be initialized only when it is needed.
From the Computer class design in Listing 27.1 it can be observed that

whenever the cpu object reference variable is accessed, a check is made to ensure
that the object reference variable is properly initialized. Since there is no guarantee
that the cpu variable is initialized, this check is crucial to prevent potential runtime
errors.

Design Approach II (Early Initialization)

Initializing the cpu object reference variable with in the constructor (Listing 27.2)
eliminates the need for a check to make sure that this object reference variable
is properly initialized.

This does eliminate the need for the null value checking. But it does not
always force the initialization of the cpu member variable when the Aggregate
Computer object is created. In other words, even though it helps in eliminating
the need for the null value checking, it is not an absolute requirement to initialize
the cpu variable to be able to create an instance of the Aggregate Computer
class. The Computer class must be designed in such a way that it becomes
mandatory to initialize the cpu variable in its constructor. In general, what is
needed is a way to make it mandatory to initialize the set of member variables
that represent the objects constituting the Aggregate object.

Design Approach III (Final Variables)

A slight modification to the way the member variable cpu is declared, as in Listing
27.3, will do the trick. In Java, declaring a member variable as final ensures that
the variable gets initialized fully as part of the object constructor (Figure 27.2).
The compiler does not compile a class that does not fully initialize all of its final
member variables.

Figure 27.1 Computer Class Representation as an Aggregate

Computer

cpu:CPU
name:String

CPU

name:String
<<contains>>

1 1

© 2004 by CRC Press LLC

gg g

Listing 27.1 Computer Class (On-Demand Initialization)

public class Computer {

//Constituting Object

private CPU cpu;

private String name;

//Constructor

public Computer(String n) {

name = n;

}

public boolean start() {

//…

initCPU();

System.out.println("CPU activated");

return true;

}

public boolean executeTask() {

//…

initCPU();

System.out.println("CPU is Executing the Task");

return true;

}

public boolean stop() {

//…

initCPU();

System.out.println("CPU is stopped");

return true;

}

private void initCPU() {

if (cpu == null) {

cpu = new CPU("Intel");

}

}

}

class CPU {

private String name;

public CPU(String n) {

name = n;

}

}

© 2004 by CRC Press LLC

g

Because the member variable initialization is guaranteed, different methods
can safely eliminate the check for variable initialization.

The example deals with the construction of a single, small object as part of
the Aggregate object creation. Sometimes, an Aggregate object may be
composed of a number of large, complex objects. This could make it extremely
expensive to construct all of the constituting objects when the Aggregate object
is created. In such cases, the Virtual Proxy pattern can be used to design a proxy
corresponding to each of the constituting objects. These Proxy objects can be
constructed in place of actual constituting objects, as part of the Aggregate
object creation.

PRACTICE QUESTIONS

1. Design a class representation for a country, which contains its capital.
Ensure that the aggregate entity country is constructed in full at the time
of its creation.

2. A general hospital consists of different departments. Design a representation
for this relationship. Ensure that all constituting department objects are
initialized when the aggregate hospital object is created.

Listing 27.2 Computer Class (Early Initialization)

public class Computer {

//Constituting Object

private CPU cpu;

private String name;

//Constructor

public Computer(String n) {

name = n;

cpu = new CPU("Intel");

}

public boolean start() {

//…

System.out.println("CPU activated");

return true;

}

…

…

}

© 2004 by CRC Press LLC

gg g

Listing 27.3 Computer Class: Revised

public class Computer {

//Constituting Object

private final CPU cpu;

private String name;

//Constructor

public Computer(String n) {

name = n;

cpu = new CPU("Intel");

}

public boolean start() {

//…

System.out.println("CPU activated");

return true;

}

public boolean executeTask() {

//…

System.out.println("CPU is Executing the Task");

return true;

}

public boolean stop() {

//…

System.out.println("CPU is stopped");

return true;

}

}

class CPU {

private String name;

public CPU(String n) {

name = n;

}

}

© 2004 by CRC Press LLC

g

Figure 27.2 Revised Computer Class Representation as an Aggregate

Computer

final cpu:CPU
name:String

CPU

name:String
<<contains>>

1 1

© 2004 by CRC Press LLC

28

EXPLICIT OBJECT RELEASE

DESCRIPTION

In general, an object may need to deal with external resources such as files,
databases and network connections as part of its implementation to provide the
services it is designed for. The Explicit Object Release pattern suggests that when
such an object is no longer needed, the external resources tied up with the object
should be released explicitly, in a timely manner.

The Java programming language provides the following two ways to design
the mechanism to release external resources explicitly:

� The finalize() method
� The finally statement

The finalize Method

Some object-oriented programming languages require a programmer to explicitly
destroy objects when they are no longer needed. In the Java programming
language, a programmer does not need to explicitly destroy objects. The Java
Virtual Machine (JVM) is responsible for reclaiming the memory allocated to
different objects when they go out of scope. This process is known as garbage
collection. There are two main characteristics of the garbage collection process.

When an Object Goes Out of Scope, It Is Believed to Be Garbage
Collected Immediately

This understanding is not entirely accurate. When an object goes out of scope,
it is marked as eligible for garbage collection, but the process of garbage collection
may not begin immediately. The garbage collection process runs periodically to
reclaim the memory occupied by objects that are out of scope and no longer
referenced. This happens in a recursive manner. But there is no exact specification
as to when the JVM should run the garbage collection process.

When the garbage collection process runs, before an object is garbage collected,
the Java runtime system invokes the object’s finalize() method. Any required
clean up operations to release any system resources such as open files or open

© 2004 by CRC Press LLC

g

sockets can be implemented as part of the finalize() method. The final-
ize() method must be declared as:

protected void finalize() throws Throwable

The Garbage Collection Process Runs as a Low-Level Background
Daemon Thread

In general, it is not essential that a process running on a daemon thread be
allowed to complete before an application terminates.

From these details of the garbage collection process, it can be seen that even
though the finalize() method can be used to perform clean-up operations,
it is not a reliable option to free system resources in a timely manner. This is
mainly because the garbage collection process, which invokes the finalize()
method on an object, runs at unpredictable times.

The finally Statement

Java provides another way of performing clean-up operations. This involves having
a finally code block, where the implementation for explicitly releasing any
external resources can be kept. Unlike the finalize() method, the finally
statement code block is not dependent on the garbage collection process. Releas-
ing resources inside the finally block is more advisable as the code inside the
finally is always guaranteed to be executed even when there is an unexpected
runtime exception.

The following example demonstrates how the finally statement can be used
to release resources when an object goes out of scope.

EXAMPLE

Suppose that we are writing an application to write order data to a file.
One of the simplest ways of designing this functionality is to have an Order-

Log utility class with a method such as log that takes the order data as input
and writes it to a data file.

public class OrderLog {

public void log (Order order) {

PrintWriter dataOut = null;

try {

dataOut =

new PrintWriter (new FileWriter("order.txt"));

String dataLine =

order.getID() + ”," + order.getItem() +

”," + order.getQty();

dataOut.println(dataLine);

dataOut.close();

} catch (IOException e) {

© 2004 by CRC Press LLC

p j

System.err.println("IOException Occurred: " +

e.getMessage());

}

}

}

This implementation of the OrderLog class provides the mandatory exception
handling as required by the compiler to compile successfully. Let us consider
different possibilities when an application uses an OrderLog object to log
different orders.

Best Case Scenario

In the best case scenario:

� The application invokes the log method on an OrderLog object by
passing a fully initialized Order object.

� The OrderLog successfully retrieves different Order attribute values and
writes them to the data file inside a try block using a PrintWriter object.

� The PrintWriter object is closed at the end of the try block.

Exception Scenario 1

Similar to the best case scenario:

� The application using an OrderLog object fully initializes an Order object
and invokes the log method.

� An IOException occurs inside the try block when the OrderLog
attempts to create a PrintWriter object.

� When the application is run, the application does not end abnormally as
the IOException is caught inside the catch block.

Exception Scenario 2

Unlike both the above scenarios, if the Order object passed to the log method
is not fully initialized, it could result in a NullPointerException. Because
this is a runtime exception, the compiler cannot warn the user — even if it is
not handled using a catch block. Because the log method implementation does
not catch the NullPointerException, the application exits abnormally without
closing the PrintWriter object. This can be avoided by declaring handlers for
all possible runtime exceptions using individual catch statements and closing
the PrintWriter object inside each of these handlers.

public class OrderLog {

public void log (Order order) {

PrintWriter dataOut = null;

try {

© 2004 by CRC Press LLC

g

dataOut =

new PrintWriter (new FileWriter("order.txt"));

String dataLine =

order.getID() + ”," + order.getItem() +

”," + order.getQty();

dataOut.println(dataLine);

dataOut.close();//duplicate code

}

catch (IOException e) {

System.err.println("IOException Occurred: " +

e.getMessage());

}

catch (NullPointerException ne) {

dataOut.close();//duplicate code

}

catch (AnotherRuntimeException ne) {

dataOut.close();//duplicate code

}

}

}

The implementation of the log method contains duplicate code segments for
closing the PrintWriter object in each of the runtime exception handlers.
Besides this disadvantage, it may not be possible for a typical programmer to
anticipate all possible runtime exceptions, as the compiler does not require runtime
exceptions to be handled to compile a Java class successfully.

Another solution is to define a generic exception handler to catch all possible
exceptions — both checked and unchecked ones. Every Java exception is an
instance of Throwable or a subclass of Throwable. The Exception class is
high in the Throwable class hierarchy. Hence, declaring a handler to catch
exceptions of the Exception class type can catch almost all of the checked and
unchecked exceptions.

public class OrderLog {

public void log (Order order) {

PrintWriter dataOut = null;

try {

dataOut =

new PrintWriter (new FileWriter("order.txt"));

String dataLine =

order.getID() + ,”" + order.getItem() +

”," + order.getQty();

dataOut.println(dataLine);

© 2004 by CRC Press LLC

p j

dataOut.close();//duplicate code

} catch (Exception e) {

//Identify the type of runtime

//exception occurred.

if (e instanceof NullPointerException) {

dataOut.close();//duplicate code

}

if (e instanceof IOException) {

System.err.println("IOException Occurred: ");

}

}

}

}

Ideally, an exception handler should be more specialized to handle a specific
type of exception. In the case of a generalized exception handler, the handler
needs to further identify the exact type of the exception that occurred to determine
the recovery strategy. This results in a set of conditional statements in the catch
block implementation corresponding to the set of all possible runtime exceptions.
Having to check for all possible runtime exceptions defeats the purpose of having
a generalized exception handler.

Another option is to provide the implementation for closing the PrintWriter
object using the finally statement.

public class OrderLog {

public void log (Order order) {

PrintWriter dataOut = null;

try {

dataOut =

new PrintWriter (new FileWriter("order.txt"));

String dataLine =

order.getID() + ”," + order.getItem() +

”," + order.getQty();

dataOut.println(dataLine);

} catch (IOException e) {

System.err.println("IOException Occurred: ");

}

catch (NullPointerException ne) {

System.err.println("NullPointerException Occurred: ");

}

finally{//Guaranteed to get executed

if (dataOut != null) {

dataOut.close();

© 2004 by CRC Press LLC

g

}

}

}

}

The implementation looks similar to declaring multiple exception handlers,
but using the finally statement to close the PrintWriter object does not
require that the same code to close the PrintWriter instance be put in each
of the exception handlers. This eliminates the code duplication. In addition, the
code implementation to close the PrintWriter object inside the finally
statement is guaranteed to always get executed. That means, even if an uncaught
runtime exception occurs, the PrintWriter object will still be closed as a result
of executing the finally statement code.

PRACTICE QUESTIONS

1. Design and implement an application to log messages to a database. Ensure
that the database connection is released in a timely manner.

2. Design and implement an application to write messages to a remote server
using a network socket. Ensure that the socket connection is released even
for unhandled runtime exceptions.

© 2004 by CRC Press LLC

29

OBJECT CACHE

This pattern was previously described in Grand98.

DESCRIPTION

During the discussion of the Counting Proxy we had developed an application
to read all order records from a data file and log the time it takes to read these
records. When the application is executed multiple times with a large number of
orders in the data file, it can be observed that compared to the time taken to
read orders from the data file during the first time execution, it takes less time
to read the data file in subsequent application executions.

Every time the operation to read all orders is performed in the application,
from the program code point of view, it should take exactly the same amount of
time. This is because the code that gets executed and the data file remain the
same every time orders are read from the data file. But the observation shows
that it is not the case.

The reason for this behavior is that when the data file is read for the first time,
the computer (the operating system) reads the file contents into the computer’s
memory. When the next immediate request is to read the same unchanged file,
the operating system does not actually read the file again. Instead, it gives back
the file contents that are already available in its memory. This results in a much
faster response time to a client request.

The concept of keeping a copy of an object in the memory, in some form,
with the goal of providing a faster response time to a client request is called
caching. This is often done when the construction of a new object is expensive
in terms of the processing involved. The object in the memory is not kept in the
memory forever. Maintaining a large number of objects for a long time could
have a negative effect on the application’s performance. A strategy must be
developed to decide on the optimal number of objects to be cached and how
long these objects are to be kept in the memory. Such decisions constitute the
cache management strategy. The following example shows how caching can be
applied in an application scenario to improve the response time.

© 2004 by CRC Press LLC

g

EXAMPLE

Let us design an application for product activation at a department store. Period-
ically, the store receives different product items from the distribution center. Before
the items arrive, the department store receives the item data from the distribution
center. These details include the item bar code, description and other related data.
When the items arrive, the department store personnel need to scan each item
bar code to activate it. Once an item is marked as active, it will be available for
sale. The sequence of steps in this process can be summarized as follows:

� Department store personnel use a bar code reader to read an item’s bar
code.

� The bar code value is sent to an application object that updates the
corresponding database entry with the current date as the date-of-activa-
tion.

One problem with this approach is that, every time the bar code of an item
is scanned, the item gets updated in the database. This is true, even if the same
item is scanned multiple times. Sometimes, department store personnel may doubt
that an item is scanned properly and rescan the item to ensure that it gets activated.
Scanning the same item more than once does not create any data integrity issues,
but it results in waste of processing time due to redundant database updates. This
can be avoided by applying the Object Cache pattern.

Let us begin our design with a representation for caching some of the most
recently activated items. This can be designed in the form of a class ItemCache
as in Listing 29.1.

The ItemCache offers two methods — getItem and addItem — which
can be used by other objects to read item codes from and add item codes to the
item cache. The ItemCache uses a vector to store different item bar codes.
There is a limit on how many items can be maintained in the cache. For simplicity,
the example defines a hard coded-value for the maximum limit. A more optimal
number for the limit can be decided based on various application and infrastructure
details. Details such as the duration for which these item bar codes should be
maintained and what should be done when the maximum limit is r eached
constitute the application cache management strategy. In this example, when the
maximum limit is reached, the least recently activated item is purged from the
cache. Many different criteria can be taken into account to decide which one of
the cached bar codes should be purged. For example, a cached item may be
selected to be purged based upon the frequency of its access by other objects.
That is, the least frequently referred cache entry needs to be purged.

Let us further define an ItemManager (Listing 29.2), which is responsible for
the overall item management.

The ItemManager offers an activate method that can be used by other
application objects to activate an item. The ItemManager maintains a cache of
some of the most recently activated item bar codes in the form of an instance variable
of the ItemCache type. Whenever a client needs to activate an item, it:

1. Creates an ItemManager instance.

© 2004 by CRC Press LLC

j

2. Invokes the activate method on the ItemManager object passing the
item bar code as an argument.

The ItemManager checks to see if the item already exists in the cache.

� If it exists then, it means that the item has been activated recently. The
ItemManager simply returns with an appropriate message.

� If the item does not exist, then the ItemManager accesses the database
using a helper class DBManager to check if the item is already in the
active state.
– If the item is already activated, the ItemManager returns with an

appropriate message.
– If not, the ItemManager updates the item as active with the current

date as the date-of-activation and adds it to the item cache.

This approach eliminates the need for redundant database updates. Figure 29.1
shows the structure and the association of different classes in the application
design.

Listing 29.1 ItemCache Class

public class ItemCache {

private final static int Max_cache_size = 5;

Vector cache;

public ItemCache() {

cache = new Vector();

}

public String getItem(String code) {

String barCode = null;

int pos = cache.indexOf(code);

if (pos != -1)

barCode = (String) cache.get(pos);

return barCode;

}

public void addItem(String code) {

//if the max limit is reached

//remove the LRU item

if (cache.size() == Max_cache_size) {

cache.remove(0);

}

cache.add(code);

}

}

© 2004 by CRC Press LLC

g

The existence of the item cache remains transparent to the client object. The
client can invoke methods on the ItemManager without having to know how
the ItemManager uses the ItemCache internally.

public class Client {

public static void main(String[] args) {

ItemManager manager = new ItemManager();

manager.activate("1001001000");

manager.activate("1001001001");

manager.activate("1001001002");

manager.activate("1001001000");

manager.activate("1001001004");

manager.activate("1001001005");

manager.activate("1001001006");

Listing 29.2 ItemManager Class

public class ItemManager {

ItemCache cache;

DBManager manager;

public ItemManager() {

cache = new ItemCache();

manager = new DBManager();

}

public void activate(String code) {

if (cache.getItem(code) != null) {

System.out.println("Item Already Activated - cache");

} else {

if (manager.isActiveItem(code)) {

System.out.println(

"Item Already Activated - DB Access");

} else {

manager.activateItem(code);

System.out.println(

"Item Activated successfully");

//add to the cache

cache.addItem(code);

}

}

}

}

© 2004 by CRC Press LLC

j

manager.activate("1001001002");

manager.activate("1001001004");

manager.activate("1001001002");

manager.activate("1001001000");

}

}

When the client application is run the following output will be displayed:

Item Activated successfully

Item Activated successfully

Item Activated successfully

Item Already Activated - cache

Item Activated successfully

Item Activated successfully

Item Activated successfully

Item Already Activated - cache

Item Already Activated - cache

Item Already Activated - cache

Item Activated successfully

PRACTICE QUESTIONS

1. Design an application to query the features of different items. Maintain the
details of a set of recently read items in a cache. When a client object

Figure 29.1 Class Association

Client

ItemCache

getItem(code:String):String
addItem(code:String)

cache:Vector

DBManager

activateItem(code:String)
isActiveItem(code:String)

:boolean

ItemManager

activate(code:String)

cache:ItemCache
1 1..*

<<uses>>

<
<
c
o
n
t
a
i
n
s
>
>

© 2004 by CRC Press LLC

g

requests the details of an item that are already available in the cache, they
can be sent back to the client without retrieving details from the database.

2. Implement the purge criteria based on the frequency of access, i.e., each
object in the cache is associated with a counter. When a cache object is
returned to a client, its counter is incremented. When the maximum cache
limit is reached and a new item needs to be added to the cache, one of
the existing cached items needs to be purged. Using the access frequency
as the criteria, the item in the cache with the least value for its frequency
counter can be deleted. If there is more than one item with the same lower
frequency counter value, then one of them can be chosen at random.

© 2004 by CRC Press LLC

VII
BEHAVIORAL PATTERNS

Behavioral Patterns mainly:

� Deal with the details of assigning responsibilities between different objects
� Describe the communication mechanism between objects
� Define the mechanism for choosing different algorithms by different objects

at runtime

© 2004 by CRC Press LLC

Chapter Pattern Name Description

30 Command Allows a request to be encapsulated into an object
giving control over request queuing, sequencing and
undoing.

31 Mediator Encapsulates the direct object-to-object communication
details among a set of objects in a separate (mediator)
object. This eliminates the need for these objects to
interact with each other directly.

32 Memento Allows the state of an object to be captured and stored.
The object can be put back to this (previous) state,
when needed.

33 Observer Promotes a publisher–subscriber communication model
when there is a one-to-many dependency between
objects so that when one object changes state, all of
its dependents are notified so they can update their
state.

34 Interpreter Useful when the objective is to provide a client program
or a user the ability to specify operations in a simple
language. Helps in interpreting operations specified
using a language, using its grammar.

More suitable for languages with simple grammar.
35 State Allows the state-specific behavior of an object to be

encapsulated in the form of a set of state objects. With
each state-specific behavior mapped onto a specific
state object, the object can change its behavior by
configuring itself with an appropriate state object.

36 Strategy Allows each of a family of related algorithms to be
encapsulated into a set of different subclasses (strategy
objects) of a common superclass.

For an object to use an algorithm, the object needs to
be configured with the corresponding strategy object.

With this arrangement, algorithm implementation can
vary without affecting its clients.

37 Null Object Provides a way of encapsulating the (usually do nothing)
behavior of a given object type into a separate null
object. This object can be used to provide the default
behavior when no object of the specific type is
available.

(continued)

© 2004 by CRC Press LLC

Chapter Pattern Name Description

38 Template Method When there is an algorithm that could be implemented
in multiple ways, the template pattern enables keeping
the outline of the algorithm in a separate method
(Template Method) inside a class (Template Class),
leaving out the specific implementations of this
algorithm to different subclasses.

In other words, the Template Method pattern is used
to keep the invariant part of the functionality in one
place and allow the subclasses to provide the
implementation of the variant part.

39 Object
Authenticator

Useful when access to an application object is restricted
and requires a client object to furnish proper
authentication credentials.

Uses a separate object with the responsibility of
verifying the access privileges of different client
objects instead of keeping this responsibility on the
application object.

40 Common Attribute
Registry

Provides a way of designing a repository to store the
common transient state of an application.

© 2004 by CRC Press LLC

30

COMMAND

This pattern was previously described in GoF95.

DESCRIPTION

In general, an object-oriented application consists of a set of interacting objects
each offering limited, focused functionality. In response to user interaction, the
application carries out some kind of processing. For this purpose, the application
makes use of the services of different objects for the processing requirement. In
terms of implementation, the application may depend on a designated object that
invokes methods on these objects by passing the required data as arguments
(Figure 30.1). This designated object can be referred to as an invoker as it invokes
operations on different objects. The invoker may be treated as part of the client
application. The set of objects that actually contain the implementation to offer
the services required for the request processing can be referred to as Receiver
objects.

In this design, the application that forwards the request and the set of
Receiver objects that offer the services required to process the request are
closely tied to each other in that they interact with each other directly. This
could result in a set of conditional if statements in the implementation of the
invoker.

…

if (RequestType=TypeA){

//do something

}

Figure 30.1 Object Interaction: Before Applying the Command Pattern

Client Invoker Receiver

© 2004 by CRC Press LLC

g

if (RequestType=TypeB){

//do something

}

…

When a new type of feature is to be added to the application, the existing
code needs to be modified and it violates the basic object-oriented open-closed
principle.

…

if (RequestType=TypeA){

//do something

}

…

if (RequestType=NewType){

//do something

}

…

The open-closed principle states that a software module should be:

� Open for extension — It should be possible to alter the behavior of a module or add
new features to the module functionality.

� Closed for modification — Such a module should not allow its code to be modified.

In a nutshell, the open-closed principle helps in designing software modules whose
functionality can be extended without having to modify the existing code.

Using the Command pattern, the invoker that issues a request on behalf of
the client and the set of service-rendering Receiver objects can be decoupled.
The Command pattern suggests creating an abstraction for the processing to be
carried out or the action to be taken in response to client requests.

This abstraction can be designed to declare a common interface to be imple-
mented by different concrete implementers referred to as Command objects. Each
Command object represents a different type of client request and the correspond-
ing processing. In Figure 30.2, the Command interface represents the abstraction.
It declares an execute method, which is implemented by two of its implementer
(command) classes — ConcreteCommand_1 and ConcreteCommand_2.

A given Command object is responsible for offering the functionality required
to process the request it represents, but it does not contain the actual implemen-
tation of the functionality. Command objects make use of Receiver objects in
offering this functionality (Figure 30.3).

When the client application needs to offer a service in response to user (or
other application) interaction:

© 2004 by CRC Press LLC

1. It creates the necessary Receiver objects.
2. It creates an appropriate Command object and configures it with the

Receiver objects created in Step 1.
3. It creates an instance of the invoker and configures it with the Command

object created in Step 2.
4. The invoker invokes the execute() method on the Command object.
5. As part of its implementation of the execute method, a typical Command

object invokes necessary methods on the Receiver objects it contains
to provide the required service to its caller.

Figure 30.2 Command Object Hierarchy

Figure 30.3 Class Association: After the Command Pattern Is Applied

<<interface>>
Command

execute()

ConcreteCommand_1

execute()

ConcreteCommand_2

execute()

<
<
c
r
e
a
t
e
s
>
>

<<interface>>
Command

execute()

ConcreteCommand_1

execute()

ConcreteCommand_2

execute()

Client

Invoker

Receiver

<<creates>>

<<creates>>

<
<
c
r
e
a
t
e
s
>
>

<<uses>>

<
<
u
s
e
s
>
>

0..*

0..*1..*

1..*

© 2004 by CRC Press LLC

g

In the new design:

� The client/invoker does not directly interact with Receiver objects and
therefore, they are completely decoupled from each other.

� When the application needs to offer a new feature, a new Command object
can be added. This does not require any changes to the code of the
invoker. Hence the new design conforms to the open-closed principle.

� Because the request is designed in the form of an object, it opens up a
whole new set of possibilities such as:
– Storing a Command object to persistent media:

– To be executed later.
– To apply reverse processing to support the undo feature.

– Grouping together different Command objects to be executed as a single
unit.

The following FTP (File Transfer Protocol) client example application provides
a good understanding of how the Command pattern can be applied in real world
applications.

EXAMPLE I

Let us build an application that simulates the working of an FTP client. In Java,
a simple FTP client user interface can be designed using:

� Two JList objects for the local and remote file systems display
� Four JButton objects for initiating different types of requests such as

upload, download, delete and exit

Once the user interface controls are arranged in a frame, the UI display looks
as in Figure 30.4.

When each of the JButton objects is created, an instance of the Button-
Handler class that implements the built-in ActionListener interface is set as
its ActionListener. This means that whenever a JButton object in the UI
display is clicked, the actionPerformed method of the ButtonHandler object
gets executed.

public class FTPGUI extends JFrame {

…

…

//Create buttons

btnUpload = new JButton(FTPGUI.UPLOAD);

btnUpload.setMnemonic(KeyEvent.VK_U);

…

…

ButtonHandler vf = new ButtonHandler();

btnUpload.addActionListener(vf);

btnDownload.addActionListener(vf);

© 2004 by CRC Press LLC

btnDelete.addActionListener(vf);

btnExit.addActionListener(vf);

…

…

}//end of class

Because the same instance of the ButtonHandler is set as the Action-
Listener for all JButton objects in the UI display, the actionPerformed
method is called for all JButton objects. Hence the ButtonHandler object
must check which button is clicked and carry out the appropriate processing.

From Listing 30.1, it can be seen that code in the actionPerformed method
is a little inelegant with a set of conditional statements and as more button and
menu item objects are added to the FTP UI, the code could quickly become
cluttered. Also, when a new button object is to be added, the existing code in
the actionPerformed method needs to be modified. This violates the object-
oriented open-closed principle.

Let us redesign the application using the Command pattern. Applying the
Command pattern, let us define an abstraction in the form of a CommandInter-
face interface for the functionality associated with different button objects in the
FTP client UI.

interface CommandInterface {

public void processEvent();

}

Figure 30.4 Simple FTP Client UI Display

© 2004 by CRC Press LLC

g

Listing 30.1 ButtonHandler Class

class ButtonHandler implements ActionListener {

public void actionPerformed(ActionEvent e) {

//if statements - for different types of client requests

if (e.getActionCommand().equals(FTPGUI.EXIT)) {

System.exit(1);

}

if (e.getActionCommand().equals(FTPGUI.UPLOAD)) {

int index = localList.getSelectedIndex();

String selectedItem =

localList.getSelectedValue().toString();

((DefaultListModel) localList.getModel()).remove(

index);

((DefaultListModel) remoteList.getModel()).

addElement(selectedItem);

}

if (e.getActionCommand().equals(FTPGUI.DOWNLOAD)) {

int index = remoteList.getSelectedIndex();

String selectedItem =

remoteList.getSelectedValue().toString();

((DefaultListModel) remoteList.getModel()).remove(

index);

((DefaultListModel) localList.getModel()).

addElement(selectedItem);

}

if (e.getActionCommand().equals(FTPGUI.DELETE)) {

int index = localList.getSelectedIndex();

if (index >= 0) {

((DefaultListModel) localList.getModel()).

remove(index);

}

 index = remoteList.getSelectedIndex();

if (index >= 0) {

((DefaultListModel) remoteList.getModel()).

remove(index);

}

}

}

}

© 2004 by CRC Press LLC

Different button objects themselves can implement this interface and behave
as individual command objects. But this is not recommended as:

� The JButton class is a highly reusable class and is used on many occasions
where the Java Swing library is used to create an application user interface.
Implementation specific to the CommandInterface may not be applica-
ble in all such cases.

� If the JButton class is redesigned to implement the CommandInterface
interface, it needs to implement the functionality required to process
different types of requests such as upload, download and others corre-
sponding to different JButton objects in the user interface. This results
in adding unrelated functionality to the JButton class — low cohesion.
In addition:
– This could lead to inelegant conditional statements.
– Every time a new button is added to the user interface, it would require

changes to the existing implementation of the processEvent method,
which is a violation of the object-oriented open-closed principle.

To overcome these problems, a set of new button classes, each corresponding
to a different type of request, can be designed as subclasses of the JButton
class (Listing 30.2). These subclasses can be designed to implement the Com-
mandInterface. As part of its implementation of the processEvent method,
each subclass of the JButton class offers the functionality required to process
the request it represents (Figure 30.5).

The FTP UI can be built using objects of this new set of JButton subclasses.
The rest of the application remains unchanged and the actionPerformed
method gets highly simplified to a mere two lines of code.

class buttonHandler implements ActionListener {

public void actionPerformed(ActionEvent e) {

CommandInterface CommandObj =

(CommandInterface) e.getSource();

CommandObj.processEvent();

}

}

In the new design whenever a new button or a menu item is to be added, a
new Command object needs to be created as an implementer of the Command-
Interface. The new Command object can be added to the application in a
seamless manner without requiring changes to the existing actionPerformed
method code. On the negative side, this results in a larger number of classes.

© 2004 by CRC Press LLC

g

Listing 30.2 JButton Subclasses to Perform Different FTP Operations

class UploadButton extends JButton

implements CommandInterface {

public void processEvent() {

int index = localList.getSelectedIndex();

String selectedItem =

localList.getSelectedValue().toString();

((DefaultListModel) localList.getModel()).remove(

index);

((DefaultListModel) remoteList.getModel()).addElement(

selectedItem);

}

public UploadButton(String name) {

super(name);

}

}

class DownloadButton extends JButton

implements CommandInterface {

public void processEvent() {

int index = remoteList.getSelectedIndex();

String selectedItem =

remoteList.getSelectedValue().toString();

((DefaultListModel) remoteList.getModel()).remove(

index);

((DefaultListModel) localList.getModel()).addElement(

selectedItem);

}

public DownloadButton(String name) {

super(name);

}

}

class DeleteButton extends JButton

implements CommandInterface {

public void processEvent() {

int index = localList.getSelectedIndex();

if (index >= 0) {

((DefaultListModel) localList.getModel()).remove(

index);

}

(continued)

© 2004 by CRC Press LLC

Listing 30.2 JButton Subclasses to Perform Different FTP Operations (Continued)

index = remoteList.getSelectedIndex();

if (index >= 0) {

((DefaultListModel) remoteList.getModel()).remove(

index);

}

}

public DeleteButton(String name) {

super(name);

}

}

class ExitButton extends JButton

implements CommandInterface {

public void processEvent() {

System.exit(1);

}

public ExitButton(String name) {

super(name);

}

}

Figure 30.5 FTP UI: Command Object Hierarchy

<<interface>>
Command

processEvent()

UploadButton

processEvent()

DownloadButton

processEvent()

DeleteButton

processEvent()

ExitButton

processEvent()

java.swing.JButton

© 2004 by CRC Press LLC

g

EXAMPLE II

Let us build an application to manage items in a library item database. Typical
library items include books, CDs, videos and DVDs. These items are grouped into
categories and a given item can belong to one or more categories. For example,
a new movie video may belong to both the Video category and the NewRe-
leases category.

Let us define two classes — Item and Category — (Listing 30.3) representing
a typical library item and a category of items, respectively (Figure 30.6).

From the design and the implementation of the Item and the Category
classes, it can be seen that a Category object maintains a list of its current
member items. Similarly, an Item object maintains the list of all categories which
it is part of. For simplicity, let us suppose that the library item management
application deals only with adding and deleting items. Applying the Command
pattern, the action to be taken to process add item and delete item requests can
be designed as implementers of a common CommandInterface interface. The
CommandInterface provides an abstraction for the processing to be carried
out in response to a typical library item management request such as add or
delete item. The CommandInterface implementers — AddCommand and
DeleteCommand — in Figure 30.7 represent the add and the delete item request,
respectively.

Let us further define an invoker ItemManager class.

public class ItemManager {

CommandInterface command;

public void setCommand(CommandInterface c) {

command = c;

}

public void process() {

command.execute();

}

}

The ItemManager:

� Contains a Command object within
� Invokes the Command object’s execute method as part of its process

method implementation
� Provides a setCommand method to allow client objects to configure it

with a Command object

The client CommandTest uses the invoker ItemManager to get its add item
and delete item requests processed.

Application Flow

To add or delete an item, the client CommandTest (Listing 30.4):

© 2004 by CRC Press LLC

1. Creates the necessary Item and Category objects. These objects act as
receivers.

2. Creates an appropriate Command object that corresponds to its current
request. The set of Receiver objects created in Step 1 is passed to the
Command object at the time of its creation.

3. Creates an instance of the ItemManager and configures it with the
Command object created in Step 2.

4. Invokes the process() method of the ItemManager. The ItemMan-
ager invokes the execute method on the Command object. The Command
object in turn invokes necessary Receiver object methods. Different Item
and Category Receiver objects perform the actual request processing.
To keep the example simple, no database access logic is implemented.
Both Item and Category objects are implemented to simply display a
message.

When the client program is run, the following output is displayed:

Item 'A Beautiful Mind' has been added to the 'CD' Category

Item 'Duet' has been added to the 'CD' Category

Item 'Duet' has been added to the 'New Releases' Category

Item 'Duet' has been deleted from the 'New Releases'
Category

The class diagram in Figure 30.8 depicts the overall class association.
The sequence diagram in Figure 30.9 shows the message flow when the client

CommandTest uses a Command object to add an item.

PRACTICE QUESTIONS

1. In Example I above, different concrete Command classes are designed as
inner classes. Redesign and implement the example application with dif-
ferent Command classes as external classes.

2. Add a new method undo() to the CommandInterface in Examples I
and II. Enhance different command classes implementing this method to
offer the functionality required to undo the effect of the execute()
method.

3. Enhance the Example II application to include the ability to log the data
and time when a specific add or delete operation is performed.

4. Enhance the Example II application to add the move functionality that
allows an item to be moved from one category to another. Implement the
move functionality as a combination of delete followed by an add operation.
Both delete and add operations must be executed together as a unit to
provide the move functionality.

© 2004 by CRC Press LLC

g

Listing 30.3 Item and Category Classes

public class Item {

private HashMap categories;

private String desc;

public Item(String s) {

desc = s;

categories = new HashMap();

}

public String getDesc() {

return desc;

}

public void add(Category cat) {

categories.put(cat.getDesc(), cat);

}

public void delete(Category cat) {

categories.remove(cat.getDesc());

}

}

public class Category {

private HashMap items;

private String desc;

public Category(String s) {

desc = s;

items = new HashMap();

}

public String getDesc() {

return desc;

}

public void add(Item i) {

items.put(i.getDesc(), i);

System.out.println("Item '" + i.getDesc() +

"' has been added to the '" +

getDesc() + "' Category ");

}

(continued)

© 2004 by CRC Press LLC

Listing 30.3 Item and Category Classes (Continued)

public void delete(Item i) {

items.remove(i.getDesc());

System.out.println("Item '" + i.getDesc() +

"' has been deleted from the '" +

getDesc() + "' Category ");

}

}

Figure 30.6 Item-Category Association

Figure 30.7 Command Object Hierarchy

Item

getDesc():String
add(cat:Category)
delete(cat:Category)

categories:HashMap
desc:String

Category

getDesc():String
add(i:Item)
delete(i:Item)

items:HashMap
desc:String

1..*0..*

<<interface>>
CommandInterface

execute()

AddCommand

execute()

DeleteCommand

execute()

© 2004 by CRC Press LLC

g

Listing 30.4 Client CommandTest Class

public class CommandTest {

public static void main(String[] args) {

//Add an item to the CD category

//create Receiver objects

Item CD = new Item("A Beautiful Mind");

Category catCD = new Category("CD");

//create the command object

CommandInterface command = new AddCommand(CD, catCD);

//create the invoker

ItemManager manager = new ItemManager();

//configure the invoker

//with the command object

manager.setCommand(command);

manager.process();

//Add an item to the CD category

CD = new Item("Duet");

catCD = new Category("CD");

command = new AddCommand(CD, catCD);

manager.setCommand(command);

manager.process();

//Add an item to the New Releases category

CD = new Item("Duet");

catCD = new Category("New Releases");

 command = new AddCommand(CD, catCD);

 manager.setCommand(command);

 manager.process();

//Delete an item from the New Releases category

 command = new DeleteCommand(CD, catCD);

manager.setCommand(command);

manager.process();

}

}

© 2004 by CRC Press LLC

Figure 30.8 Class Association

<
<
c
r
e
a
t
e
s
>
>

<<interface>>
Command

execute()

AddCommand

execute()

DeleteCommand

execute()

CommandTest

ItemManager

process()
setCommand(cmd:Command)

cmd:Command

Item

<<creates>>

<<creates>>

<
<
c
r
e
a
t
e
s
>
>

Category

<<creates>>

<<uses>>

<
<
u
s
e
s
>
>

<<uses>>

<
<
u
s
e
s
>
>0..*

0..*

0..*

0..*

1

1

1 1

© 2004 by CRC Press LLC

g

Figure 30.9 Message Flow When an Item Is Added to a Category

CommandTest ItemManager AddCommand Item Category

create(desc:String)

create(desc:String)

create(i:Item, c:Category)

create()

setCommand(cmd:Command)

process()

execute()

add(c:Category)

add(i:Item)

© 2004 by CRC Press LLC

31

MEDIATOR

This pattern was previously described in GoF95.

DESCRIPTION

In general, object-oriented applications consist of a set of objects that interact
with each other for the purpose of providing a service. This interaction can be
direct (point-to-point) as long as the number of objects referring to each other
directly is very low. Figure 31.1 depicts this type of direct interaction where

ObjectA

 and

ObjectB

 refer to each other directly.
As the number of objects increases, this type of direct interaction can lead to

a complex maze of references among objects (Figure 31.2), which affects the
maintainability of the application. Also, having an object directly referring to other
objects greatly reduces the scope for reusing these objects because of higher
coupling.

Figure 31.1

Point-to-Point Communication in the Case of Two Objects

Figure 31.2

Point-to-Point Communication: Increased Number of Objects

ObjectBObjectA

ObjectB

ObjectD

ObjectA

ObjectC

© 2004 by CRC Press LLC

In such cases, the Mediator pattern can be used to design a controlled,
coordinated communication model for a group of objects, eliminating the need
for objects to refer to each other directly (Figure 31.3).

The Mediator pattern suggests abstracting all object interaction details into a
separate class, referred to as a Mediator, with knowledge about the interacting
group of objects. Every object in the group is still responsible for offering the
service it is designed for, but objects do not interact with each other directly for
this purpose. The interaction between any two different objects is routed through
the Mediator class. All objects send their messages to the mediator. The mediator
then sends messages to the appropriate objects as per the application’s require-
ments. The resulting design has the following major advantages:

� With all the object interaction behavior moved into a separate (mediator)
object, it becomes easier to alter the behavior of object interrelationships,
by replacing the mediator with one of its subclasses with extended or
altered functionality.

� Moving interobject dependencies out of individual objects results in
enhanced object reusability.

� Because objects do not need to refer to each other directly, objects can
be unit tested more easily.

� The resulting low degree of coupling allows individual classes to be
modified without affecting other classes.

MEDIATOR VERSUS FAÇADE

In some aspects the Mediator pattern looks similar to the Façade pattern discussed
earlier. Table 31.1 lists the similarities and differences between the two.

During the discussion of the Command pattern, we built two example appli-
cations. Let us revisit these applications and see how the direct object-to-object
interaction can be avoided by applying the Mediator pattern.

Figure 31.3 Object Interaction: Mediator as a Communication Hub

Mediator

ObjectB

ObjectD

ObjectA

ObjectC

© 2004 by CRC Press LLC

EXAMPLE I

The FTP client simulation application built in the previous chapter has the
following list of UI controls (Table 31.2) in the client display.

Figure 31.4 depicts the interaction between different UI objects.
Let us consider the following minor enhancements to the existing application

to make it more user-friendly:

� When the UI is first displayed, all buttons except the Exit button should
be disabled.

� When a file name is selected from the JList control displaying the local
file system:
– The Upload and Delete buttons should be enabled.
– Any selected item in the remote file system display should be deselected.
– The Download button should be disabled.

� When a file name is selected from the JList control displaying the remote
file system:
– The Download and Delete buttons should be enabled.
– Any selected item in the local file system display should be deselected.
– The Upload button should be disabled.

Table 31.1 Mediator versus Façade

Mediator Façade

A Mediator is used to abstract the
necessary functionality of a group of
objects with the aim of simplifying the
object interaction.

A Façade is used to abstract the required
functionality of a subsystem of
components, with the aim of providing a
simplified, higher level interface.

All objects interact with each other
through the Mediator. The group of
objects knows the existence of the
Mediator.

Clients use the Façade to interact with
subsystem components. The existence of
the Façade is not known to the subsystem
components.

Because the Mediator and all the
objects that are registered with it can
communicate with each other, the
communication is bidirectional.

Clients can send messages (through the
Façade) to the subsystem but not vice versa,
making the communication unidirectional.

A Mediator can be assumed to stay in
the middle of a group of interacting
objects.

Using a Mediator allows the
implementation of any of the
interacting objects to be changed
without any impact on the other
objects that interact with it only
through the Mediator.

A Façade lies in between a client object and
the subsystem.

Using a Façade allows the implementation of
the subsystem to be changed completely
without any impact on its clients, provided
the clients are not
given direct access to the subsystem’s
classes.

By subclassing the Mediator, the
behavior of the object
interrelationships can be extended.

By subclassing the Façade, the
implementation of the higher level
interface can be changed.

© 2004 by CRC Press LLC

g

– After executing the necessary upload/download operation, the Upload,
Download and Delete buttons should be disabled. Similarly, after
deleting the specified file, the Delete button should be disabled along
with any Upload and Download buttons that are currently enabled.
Both the local and remote file system displays should get refreshed after
a delete, download or upload operation.

Figure 31.5 shows the resulting object interaction.

Table 31.2 List of User Interface Objects and the Associated Functionality

UI Control Object Functionality

JList Displays the local file system.
JList Displays the remote file system.
JButton Provides the upload functionality.

When the Upload button is clicked, the selected file from the
local file system is uploaded to the remote server and the file
name is added to the remote file system JList control.

JButton Provides the download functionality.
When the Download button is clicked, the selected file from

the remote file system is downloaded to the local system and
the file name is added to the local file system display JList
control.

JButton Provides the delete functionality.
When the Delete button is clicked, the selected file from the

remote or local file system is deleted. The JList control is
updated accordingly.

Figure 31.4 Object Interaction

DownloadButton

DeleteButton

LocalList

UploadButton

RemoteList

© 2004 by CRC Press LLC

As more controls are added for additional functionality such as file rename,
FTP server connect, disconnect and others, the direct communication between
objects creates a complex maze of references among objects. This greatly reduces
the maintainability of the application.

The Mediator pattern can be used in this case for a more efficient design of
the object interaction. Applying the Mediator pattern, an abstraction for the object
interaction details can be created. This abstraction can be designed as a separate
Mediator class as in Figure 31.6 and Listing 31.1.

From the Mediator class implementation it can be seen that the Mediator
offers methods for different UI objects to register themselves with the Mediator.
The set of object interactions to be executed when each UI control is activated
(or clicked) is designed as a separate method inside the Mediator.

Client Usage of the Mediator

The client (Listing 31.2) creates an instance of the Mediator. Whenever a UI
object is created, the client passes the Mediator instance to it. The UI object
registers itself with this instance of the Mediator.

User Interface Objects: Mediator Interaction

Because all the object interaction details are removed from individual UI
objects to the Mediator object, the processEvent method of each of these
UI objects gets reduced to a simple call to an appropriate Mediator method
(Listing 31.3). Figure 31.7 shows the UI object interaction after the Mediator
pattern is applied.

Figure 31.5 Object-to-Object Communication with Increased Direct Reference to Each
Other

DownloadButton

DeleteButton

LocalList

UploadButton

RemoteList

© 2004 by CRC Press LLC

g

Figure 31.6 Mediator

Figure 31.7 Object Interaction: Mediator as a Communication Hub

Mediator

registerUploadButton(inp_ib:UploadButton)
registerDownloadButton(inp_dnb:DownloadButton)
registerDeleteButton(inp_db:DeleteButton)
registerLocalList(inp_arl:LocalList)
registerRemoteList(inp_drl:RemoteList)

UploadItem()
DownloadItem()
DeleteItem()
LocalListSelect()
RemoteListSelect()

btnUpload:UploadButton
btnDownload:DownloadButton
btnDelete:DeleteButton
localList:LocalList
remoteList:RemoteList

DownloadButton

DeleteButton

LocalList

UploadButton

RemoteList

Mediator

© 2004 by CRC Press LLC

Listing 31.1 Mediator Class

class Mediator {

private UploadButton btnUpload;

private DownloadButton btnDownload;

private DeleteButton btnDelete;

private LocalList localList;

private RemoteList remoteList;

public void registerUploadButton(UploadButton inp_ib) {

btnUpload = inp_ib;

}

public void registerDownloadButton(

DownloadButton inp_dnb) {

btnDownload = inp_dnb;

}

public void registerDeleteButton(DeleteButton inp_db) {

btnDelete = inp_db;

}

public void registerLocalList(LocalList inp_arl) {

localList = inp_arl;

}

public void registerRemoteList(RemoteList inp_drl) {

remoteList = inp_drl;

}

public void UploadItem() {

int index = localList.getSelectedIndex();

String selectedItem =

localList.getSelectedValue().toString();

((DefaultListModel) localList.getModel()).remove(

index);

((DefaultListModel) remoteList.getModel()).addElement(

selectedItem);

btnUpload.setEnabled(false);

btnDelete.setEnabled(false);

btnDownload.setEnabled(false);

}

(continued)

© 2004 by CRC Press LLC

g

EXAMPLE II

During the discussion of the Command pattern, we built an application to add
and delete items to a library item database. A given item can be part of one or
more categories. Each Item object maintains a list of all categories which it is
part of. Similarly, each Category object maintains a list of all items that currently
are part of it. The class association diagram in Figure 31.8 depicts this relationship.

When an application has to deal with many items that belong to one or more
categories, the object interactions can get complicated. The diagram in Figure 31.9
depicts a scenario where different Item and Category objects refer to each
other directly.

The direct interaction between different Item objects and Category objects
can be eliminated by moving the object interaction details out of the Item and
Category classes to a separate Mediator class (Figure 31.10). The Mediator
can be designed with the following two sets of methods:

� A set of methods to allow different Item and Category objects to
register with the Mediator.

� A set of methods for adding and deleting items. The Mediator is respon-
sible for implementing interactions between different objects as part of
these methods.

Listing 31.1 Mediator Class (Continued)

public void DownloadItem() {

…

…

}

public void DeleteItem() {

…

…

}

public void LocalListSelect() {

…

…

}

public void RemoteListSelect() {

localList.setSelectedIndex(-1);

btnUpload.setEnabled(false);

btnDelete.setEnabled(true);

btnDownload.setEnabled(true);

}

}

© 2004 by CRC Press LLC

The Mediator can maintain the Item-Category association in the item-
CatAssoc instance variable. Item objects do not need to refer to Category
objects directly. Hence an Item object does not need to maintain the list of
Categories it belongs to and vice versa. Similarly, both add and delete oper-
ations are not required to be implemented by the Item and the Category classes.

The execute method of the AddCommand and DeleteCommand Command
objects gets reduced to a call to the addItem and deleteItem Mediator
methods, respectively.

Listing 31.2 Client FTPGUI Class

public class FTPGUI extends JFrame {

…

…

private Mediator mdtr = new Mediator();

public FTPGUI() throws Exception {

…

…

//Create controls

defLocalList = new DefaultListModel();

defRemoteList = new DefaultListModel();

localList = new LocalList(defLocalList, mdtr);

remoteList = new RemoteList(defRemoteList, mdtr);

pnlFTPUI = new JPanel();

…

…

//Create buttons

UploadButton btnUpload =

new UploadButton(FTPGUI.UPLOAD, mdtr);

btnUpload.setMnemonic(KeyEvent.VK_U);

DownloadButton btnDownload =

new DownloadButton(FTPGUI.DOWNLOAD, mdtr);

btnDownload.setMnemonic(KeyEvent.VK_N);

DeleteButton btnDelete =

new DeleteButton(FTPGUI.DELETE, mdtr);

btnDelete.setMnemonic(KeyEvent.VK_D);

…

…

}

…

…

}//end of class

© 2004 by CRC Press LLC

g

Listing 31.3 Simplified UI Object Classes

…

…

class UploadButton extends JButton

implements CommandInterface {

Mediator mdtr;

public void processEvent() {

mdtr.UploadItem();

}

public UploadButton(String name, Mediator inp_mdtr) {

super(name);

mdtr = inp_mdtr;

mdtr.registerUploadButton(this);

}

}

class DownloadButton extends JButton

implements CommandInterface {

Mediator mdtr;

public void processEvent() {

mdtr.DownloadItem();

}

public DownloadButton(String name, Mediator inp_mdtr) {

super(name);

mdtr = inp_mdtr;

mdtr.registerDownloadButton(this);

}

}

…

…

© 2004 by CRC Press LLC

Figure 31.8 Item-Category Association

Figure 31.9 Item-Category Object Interaction

Figure 31.10 Mediator

Item

getDesc():String
add(cat:Category)
delete(cat:Category)

categories:HashMap
desc:String

Category

getDesc():String
add(i:Item)
delete(i:Item)

items:HashMap
desc:String

1..*0..*

Item

Category

Item

Item

Item

Item

Category

Category

Mediator

registerItem(i:Item)
registerCategory(c:Category)

add(c:Category,i:Item)
delete(c:Category,i:Item)

itemCatAssoc:HashMap

© 2004 by CRC Press LLC

g

PRACTICE QUESTIONS

1. Customer service representatives at some commercial banks handle queries
from their existing and potential customers using an online chat application.
At peak times, each representative may need to work with more than one
customer simultaneously. Design this communication mechanism with a
Mediator object between different User objects and Representative
objects.

2. Implement the Example II application.

© 2004 by CRC Press LLC

32

MEMENTO

This pattern was previously described in GoF95.

DESCRIPTION

The state of an object can be defined as the values of its properties or attributes
at any given point of time. The Memento pattern is useful for designing a
mechanism to capture and store the state of an object so that subsequently, when
needed, the object can be put back to this (previous) state. This is more like an
undo operation. The Memento pattern can be used to accomplish this without
exposing the object’s internal structure. The object whose state needs to be
captured is referred to as the originator. When a client wants to save the state
of the originator, it requests the current state from the originator. The originator
stores all those attributes that are required for restoring its state in a separate
object referred to as a Memento and returns it to the client. Thus a Memento can
be viewed as an object that contains the internal state of another object, at a
given point of time. A Memento object must hide the originator variable values
from all objects except the originator. In other words, it should protect its internal
state against access by objects other than the originator. Towards this end, a
Memento should be designed to provide restricted access to other objects while
the originator is allowed to access its internal state.

When the client wants to restore the originator back to its previous state, it
simply passes the memento back to the originator. The originator uses the state
information contained in the memento and puts itself back to the state stored in
the Memento object.

EXAMPLE

Data conversion is almost always an integral part of any application that involves
converting a legacy system to newer technologies. Let us consider one such
application where customer data needs to be moved from a flat file to a relational
database. The process validates every customer record before sending it to the
database.

In reality, a customer record would contain many attributes, but for simplicity,
let us consider only three attributes — first name, last name and the credit card

© 2004 by CRC Press LLC

g

number. The validations are also kept very simple. A customer record is considered
as valid if the last name is not blank and the credit card number is composed of
only digits (0 through 9). Whenever an invalid customer record is found, the
process stops and prompts the user to correct the data and restart the process.
At this point, the state of the data conversion process is saved inside a Memento
object. When the user restarts the process, the conversion process state is restored
from the Memento object and the process resumes from where it stopped, instead
of starting from the beginning of the source data file. In general, a Memento
object can be stored either in the memory or to persistent media. In this application,
the state needs to be saved even after the application has been terminated and
needs to be restored when the application is run subsequently. Hence, storing
the Memento in the memory is not an option in this case. The Memento needs
to be stored to persistent media instead.

Instead of storing valid customer records in a relational database, the appli-
cation generates a text file consisting of SQL insert statements, which can be
executed to insert data into any relational database.

Let us design different components required for this process to work.

DataConverter (Originator)

The DataConverter class (Figure 32.1 and Listing 32.1) is the implementer of
the data conversion process.

ID

The instance variable ID constitutes the state of the DataConverter. It represents
the customer ID of the last successfully processed customer record.

Figure 32.1 DataConverter Class: The Originator

<<interface>>
java.io.Serializable

DataConverter

createMemento():Memento
setMemento(memento:Memento)
getLastProcessedID():long
process():boolean

ID:long

Memento

getID():long

lastProcessedID:long

© 2004 by CRC Press LLC

Listing 32.1 DataConverter Class

public class DataConverter {

public static final String DATA_FILE = "Data.txt";

public static final String OUTPUT_FILE = "SQL.txt";

private long ID = 0;

public Memento createMemento() {

return (new Memento(ID));

}

public void setMemento(Memento memento) {

if (memento != null)

ID = memento.getID();

}

public long getLastProcessedID() {

return ID;

}

public void setLastProcessedID(long lastID) {

ID = lastID;

}

public boolean process() {

boolean success = true;

String inputLine = "";

long currID = 0;

try {

File inFile = new File(DATA_FILE);

BufferedReader br = new BufferedReader(

new InputStreamReader(

new FileInputStream(inFile)));

long lastID = getLastProcessedID();

while ((inputLine = br.readLine()) != null) {

StringTokenizer st =

new StringTokenizer(inputLine, ”,");

String strID = st.nextToken();

currID = new Long(strID).longValue();

if (lastID < currID) {

(continued)

© 2004 by CRC Press LLC

g

Listing 32.1 DataConverter Class (Continued)

Customer c =

new Customer(strID, st.nextToken(),

st.nextToken(), st.nextToken());

if (!(c.isValid())) {

success = false;

break;

}

ID = new Long(strID).longValue();

FileUtil util = new FileUtil();

util.writeToFile(OUTPUT_FILE, c.getSQL(),

true, true);

}

}

br.close();

}//Try

catch (Exception ex) {

System.out.println(" An error has occurred " +

ex.getMessage());

System.exit(1);

}

if (success == false) {

System.out.println("An error has occurred at ID=" +

currID);

System.out.println("Data Record=" + inputLine);

return false;

}

return true;

}

class Memento implements java.io.Serializable {

private long lastProcessedID;

private Memento(long ID) {

lastProcessedID = ID;

}

private long getID() {

return lastProcessedID;

}

}//end of class

}//end of class

© 2004 by CRC Press LLC

Memento

The Memento class is defined as an inner class within the DataConverter. The
Memento is defined with its constructor and other methods as private.

In Java, a class can access the private members of its inner classes.

The DataConverter will be able to access these methods while they
remain inaccessible to other objects. Because the state of the DataConverter
needs to be preserved even after the application ends, the Memento object
needs to be serialized to a file. Hence the Memento is designed to implement
the java.io.Serializable interface to identify itself as a Serializable
class.

In Java, a Serializable class must:

� Explicitly specify nonserializable attributes using the transient keyword
� Implement the java.io.Serializable interface
� Have access to the first zero argument constructor of its first non-Serializable

super class

process

The process method reads from the source data file, validates the customer
data using a Customer helper class. For every valid customer record, a corre-
sponding SQL insert statement is written to the output file. When a customer
record with invalid data is encountered, the data conversion process stops.

createMemento

As the method name suggests, this method is responsible for the creation of the
Memento object. It stores the DataConverter current state inside a Memento
instance and returns it.

setMemento

Retrieves the state information from the input Memento object and resets the
DataConverter back to this state.

DCClient (Client)

The client DCClient (Listing 32.2) first instantiates the DataConverter and
starts the data conversion process by invoking the process method on this
DataConverter instance. If the process method returns without processing
the entire source data file due to invalid customer data, it invokes the create-
Memento method on the DataConverter to capture its current state. The
createMemento method returns a Memento object (See createMemento

© 2004 by CRC Press LLC

g

method description above). The client DCClient uses a helper MementoHan-
dler object to serialize this Memento instance to a file.

Once the data is corrected and the client DCClient is run again:

� The client DCClient invokes the getMemento method on the Memen-
toHandler requesting it for the stored Memento object.

� The MementoHandler deserializes the previously serialized Memento
object from the file and returns it to the client.

� The client passes it to the DataConverter as an argument to its set-
Memento method. The DataConverter puts itself back to the state
stored in the memento and resumes with the data conversion process from
where it stopped during the previous run.

MementoHandler

The MementoHandler (Listing 32.3) contains an object reference of Memento
type. It is passed as a Memento instance by the client DCClient.

As discussed above, whenever the data conversion process returns without
processing the entire source data file, the client captures the DataConverter
state in a Memento and the application ends. For this Memento to be available
during the next run of the application, it must be saved to persistent media. This
involves object serialization. Also during the subsequent run if the DataCon-
verter is to be put back to its previous state, this Memento needs to be
reconstructed. This involves object deserialization. These details of Memento
handling are maintained inside the MementoHandler class, freeing all clients

Listing 32.2 DCClient Class

public class DCClient {

public static void main(String[] args) {

MementoHandler objMementoHandler = new MementoHandler();

DataConverter objConverter = new DataConverter();

objConverter.setMemento(objMementoHandler.getMemento());

if (!(objConverter.process())) {

System.out.println("Description: Invalid data - " +

"Process Stopped");

System.out.println("Please correct the Data and " +

"Run the Application Again");

objMementoHandler.setMemento(

objConverter.createMemento());

}

}

}

© 2004 by CRC Press LLC

Listing 32.3 MementoHandler Class

public class MementoHandler {

public static final String ID_FILE = "ID.txt";

private DataConverter.Memento objMemento = null;

public DataConverter.Memento getMemento() {

ObjectInputStream objStream = null;

FileUtil util = new FileUtil();

if (util.isFileExists(ID_FILE)) {

//read the object from the file

try {

objStream = new ObjectInputStream(

new FileInputStream(new File(ID_FILE)));

objMemento = (DataConverter.Memento)

objStream.readObject();

objStream.close();

} catch (Exception e) {

System.out.println("Error Reading Memento");

System.exit(1);

}

//delete the old memento

util.deleteFile(ID_FILE);

}

return objMemento;

}

public void setMemento(DataConverter.Memento memento) {

ObjectOutputStream objStream = null;

//write the object to the file

try {

objStream = new ObjectOutputStream(

new FileOutputStream(new File(ID_FILE)));

objStream.writeObject(memento);

objStream.close();

} catch (Exception e) {

System.out.println("Error Writing Memento");

System.exit(1);

}

}

}//end of class

© 2004 by CRC Press LLC

g

(that deal with the DataConverter and the associated Memento object) from
having to deal with these details.

This also makes it easy to change the way the Memento is saved. For example,
if the Memento needs to be saved to a database instead of a file, changes need
to be made only to the MementoHandler, without having to alter the imple-
mentation of any client class that works with the Memento.

Figure 32.2 shows the association between different classes in the example
data conversion application.

Figure 32.3 shows the application message flow.

PRACTICE QUESTIONS

1. Design and implement a Java applet that allows users to design a customized
wedding gown. A preview of the dress should be displayed with default
settings. Users should be able to select from a set of different neck and
sleeve types. After every selection, the preview image should be updated.
Users should be able to undo a selection to go back to their previous
selection and the preview should get updated accordingly. Apply the
Memento pattern in designing the undo operation.

2. Consider a simple shopping cart application that remembers shopping cart
contents even after a user has logged out. Next time, when the user logs
onto the Web site, the shopping cart should be shown with previously
selected items and the user should be allowed to continue to shop in the
new session. Identify how the Memento pattern can be used in preserving
and restoring the state of an unfinished order.

Figure 32.2 Data Conversion Application: Class Association

Memento

MementoHandler

getMemento():Memento
setMemento(memento:Memento)

objMemento:Memento

DataConverter

<
<
s
t
o
r
e
s
>
>

© 2004 by CRC Press LLC

Figure 32.3 Application Message Flow

DCClient DCConverter Memento MementoHandler

create()

process()

create()

setMemento(m:Memento)

getMemento()

setMemento(m:Memento)

getID()

process()

when the
process() method
fails

createMemento()

when the data is
corrected and the
application is re-run

resume from where
the process has
stopped

© 2004 by CRC Press LLC

33

OBSERVER

This pattern was previously described in GoF95.

DESCRIPTION

The Observer pattern is useful for designing a consistent communication model
between a set of dependent objects and an object that they are dependent on.
This allows the dependent objects to have their state synchronized with the object
that they are dependent on. The set of dependent objects are referred to as
observers and the object that they are dependent on is referred to as the subject.
In order to accomplish this, the Observer pattern suggests a publisher-subscriber
model leading to a clear boundary between the set of Observer objects and
the Subject object.

A typical observer is an object with interest or dependency in the state of the
subject. A subject can have more than one such observer. Each of these observers
needs to know when the subject undergoes a change in its state.

The subject cannot maintain a static list of such observers as the list of observers
for a given subject could change dynamically. Hence any object with interest in
the state of the subject needs to explicitly register itself as an observer with the
subject. Whenever the subject undergoes a change in its state, it notifies all of its
registered observers. Upon receiving notification from the subject, each of the
observers queries the subject to synchronize its state with that of the subject’s.
Thus a subject behaves as a publisher by publishing messages to all of its
subscribing observers.

In other words, the scenario contains a one-to-many relationship between a
subject and the set of its observers. Whenever the subject instance undergoes a
state change, all of its dependent observers are notified and they can update
themselves. Each of the observer objects has to register itself with the subject to
get notified when there is a change in the subject’s state. An observer can register
or subscribe with multiple subjects. Whenever an observer does not wish to be
notified any further, it unregisters itself with the subject.

For this mechanism to work:

� The subject should provide an interface for registering and unregistering
for change notifications.

© 2004 by CRC Press LLC

g

� One of the following two must be true:
– In the pull model — The subject should provide an interface that enables

observers to query the subject for the required state information to
update their state.

– In the push model — The subject should send the state information that
the observers may be interested in.

� Observers should provide an interface for receiving notifications from the
subject.

The class diagram in Figure 33.1 describes the structure of different classes
and their association, catering to the above list of requirements.

From this class diagram it can be seen that:

� All subjects are expected to provide implementation for an interface similar
to the Observable interface.

� All observers are expected to have an interface similar to the Observer
interface.

Several variations can be thought of while applying the Observer pattern, leading
to different types of subject-observers such as observers that are interested only in
specific types of changes in the subject.

ADDING NEW OBSERVERS

After applying the Observer pattern, different observers can be added dynamically
without requiring any changes to the Subject class. Similarly, observers remain
unaffected when the state change logic of the subject changes.

Figure 33.1 Generic Class Association When the Observer Pattern Is Applied

<<interface>>
Observable

register(obs:Observer)
unRegister(obs:Observer)
notify()

Subject

getState()

<<interface>>
Observer

synchronizeState()

ConcreteObserver

synchronizeState()

<<notifies>>

<<retrieves
state info>>

1..*

1..*

1..*

1..*

© 2004 by CRC Press LLC

EXAMPLE

Let us build a sales reporting application for the management of a store with
multiple departments. The features of the application include:

� Users should be able to select a specific department they are interested in.
� Upon selecting a department, two types of reports are to be displayed:

– Monthly report — A list of all transactions for the current month for the
selected department.

– YTD sales chart — A chart showing the year-to-date sales for the selected
department by month.

� Whenever a different department is selected, both of the reports should
be refreshed with the data for the currently selected department.

From the proposed functionality described above, we can easily see that two
of the reporting objects are dependent upon the object that carries the user-
selected department. We can apply the Observer pattern in this case to design a
consistent communication model between the object holding the user selection
and both of the dependent report objects.

Let us define three classes with the stated functionality as in Table 33.1.
Applying the Observer pattern, let us define an Observable interface to be

implemented by the ReportManager (Figure 33.2).

public interface Observable {

public void notifyObservers();

public void register(Observer obs);

public void unRegister(Observer obs);

}

Table 33.1 Subject-Observer Classes

Class Role Functionality

ReportManager Subject Displays the necessary UI for the user to select a
department.

Maintains the user selected department in an
instance variable.

MonthlyReport Observer Displays the monthly report for the selected
department.

YTDChart Observer Displays the YTD sales chart for the selected
department.

© 2004 by CRC Press LLC

g

The ReportManager class (Listing 33.1) provides implementation for methods
declared in the Observable interface. Both of the dependent report objects can
use these methods to register themselves as observers. The ReportManager
stores each of these registered observers in the observersList vector. The
currently selected department constitutes the state of the ReportManager object
and is maintained in the form of an instance variable named department.
Whenever a new value is set for the department variable (this constitutes a
change in the state), the notifyObservers method is invoked. As part of the
notifyObservers method, the ReportManager invokes the refresh-
Data(Observable) method on each of its currently registered observers.

Besides providing an implementation for the Observable interface methods,
the ReportManager displays the necessary user interface as in Figure 33.3 to
allow a user to select a specific department of interest.

Let us also define an interface Observer to be implemented by both the
MonthlyReport and the YTDChart classes (Figure 33.4 and Listing 33.2):

public interface Observer {

public void refreshData(Observable subject);

}

The ReportManager makes use of this interface to notify its observers.

Figure 33.2 Observable Interface and Its Implementer

<<interface>>
Observable

notifyObservers()
register(obs:Observer)
unRegister(obs:Observer)

ReportManager

getDepartment():String
setDepartment(dept:String)
notifyObservers()
register(obs:Observer)
unRegister(obs:Observer)

department:String
obsversList:Vector

© 2004 by CRC Press LLC

Listing 33.1 ReportManager Class

public class ReportManager extends JFrame

implements Observable {

…

…

private Vector observersList;

private String department;

public ReportManager() throws Exception {

…

…

observersList = new Vector();

…

…

}

public void register(Observer obs) {

//Add to the list of Observers

observersList.addElement(obs);

}

public void unRegister(Observer obs) {

//remove from the list of Observers

}

public void notifyObservers() {

//Send notify to all Observers

for (int i = 0; i < observersList.size(); i++) {

Observer observer =

(Observer) observersList.elementAt(i);

observer.refreshData(this);

}

}

public String getDepartment() {

return department;

}

public void setDepartment(String dept) {

department = dept;

}

 (continued)

© 2004 by CRC Press LLC

g

Listing 33.1 ReportManager Class (Continued)

class ButtonHandler implements ActionListener {

ReportManager subject;

public void actionPerformed(ActionEvent e) {

if (e.getActionCommand().equals(ReportManager.EXIT)) {

System.exit(1);

}

if (e.getActionCommand().equals(ReportManager.SET_OK)) {

String dept = (String)

cmbDepartmentList.getSelectedItem();

//change in state

subject.setDepartment(dept);

subject.notifyObservers();

}

}

public ButtonHandler() {

}

public ButtonHandler(ReportManager manager) {

subject = manager;

}

}

}//end of class

Figure 33.3 ReportManager User Interface

© 2004 by CRC Press LLC

Subject–Observer Association

Typically, a client would first create an instance of the subject (ReportManager).
Whenever an Observer (e.g., MonthlyReport, YTDChart) object is created,
it passes the Subject instance reference to it as part of its Constructor method
call. The Observer object registers itself with this Subject instance.

//Client Code

public class SupervisorView {

…

…

public static void main(String[] args) throws Exception {

//Create the Subject

ReportManager objSubject = new ReportManager();

//Create Observers

new MonthlyReport(objSubject);

new YTDChart(objSubject);

}

}//end of class

The resulting class association can be depicted as in Figure 33.5.

Figure 33.4 Observer Class Hierarchy

<<interface>>
Observer

refreshData(subject:Observable)

MonthlyReport

refreshData(subject
:Observable)

YTDChart

refreshData(subject
:Observable)

© 2004 by CRC Press LLC

g

Listing 33.2 MonthlyReport Class as an Observer

public class MonthlyReport extends JFrame implements Observer {

…

…

private ReportManager objReportManager;

public MonthlyReport(ReportManager inp_objReportManager)

throws Exception {

super("Observer Pattern - Example");

objReportManager = inp_objReportManager;

//Create controls

…

…

//Create Labels

…

…

objReportManager.register(this);

}

public void refreshData(Observable subject) {

if (subject == objReportManager) {

//get subject's state

String department = objReportManager.getDepartment();

lblTransactions.setText(

"Current Month Transactions - " +

department);

Vector trnList =

getCurrentMonthTransactions(department);

String content = "";

for (int i = 0; i < trnList.size(); i++) {

content = content +

trnList.elementAt(i).toString() + "\n";

}

taTransactions.setText(content);

}

}

private Vector getCurrentMonthTransactions(String department

) {

 (continued)

© 2004 by CRC Press LLC

Logical Flow

1. Using the ReportManager user interface (Figure 33.3), whenever a user
selects a particular department and clicks on the OK button, the Report-
Manager undergoes a change in its internal state (i.e., the value of its
instance variable department changes).

2. As soon as the new state is set, the ReportManager invokes the
refreshData(Observable) method on both the currently registered
MonthlyReport and the YTDChart objects.

3. As part of refreshData method, both the report objects:
a. Check to make sure that the subject that invoked the refreshData

method is in fact the same Subject instance they have registered with.
This is to prevent the observers from responding to unintended calls.

Listing 33.2 MonthlyReport Class as an Observer (Continued)

Vector v = new Vector();

FileUtil futil = new FileUtil();

Vector allRows = futil.fileToVector("Transactions.date");

//current month

Calendar cal = Calendar.getInstance();

cal.setTime(new Date());

int month = cal.get(Calendar.MONTH) + 1;

String searchStr = department + ”," + month + ”,";

int j = 1;

for (int i = 0; i < allRows.size(); i++) {

String str = (String) allRows.elementAt(i);

if (str.indexOf(searchStr) > -1) {

StringTokenizer st =

new StringTokenizer(str, ”,");

st.nextToken();//bypass the department

str = " " + j + ”. " + st.nextToken() + "/" +

st.nextToken() + "~~~" +

st.nextToken() + "Items" + "~~~" +

st.nextToken() + " Dollars";

j++;

v.addElement(str);

}

}

return v;

}

}//end of class

© 2004 by CRC Press LLC

g

b. Query the ReportManager for its current state using the getDepart-
ment method.

c. Retrieve appropriate data from the data file for display (Figures 33.6 and
33.7).

The sequence diagram in Figure 33.8 shows the communication between
different objects when the application is run.

Whenever the state change logic implementation of the ReportManager
changes, none of the observers will be affected. Similarly, when a new observer
is added, the ReportManager class does not need to be changed.

Figure 33.5 Example Application: Class Association

Figure 33.6 MonthlyReport View

<<interface>>
Observable

ReportManager

<<interface>>
Observer

MonthlyReport YTDChart

1..* 1..*

1

1..*
1 1..*

<<request
state info>>

<<request state info>>

<<sync. state>>

© 2004 by CRC Press LLC

PRACTICE QUESTIONS

1. Provide an implementation for the unRegister method of the Report-
Manager class.

2. In general, it could lead to different problems if an observer changes the
state of the subject (directly or indirectly) while attempting to update its
state as part of its refreshData(Observable) method. Think of dif-
ferent ways of handling a scenario like this.

Figure 33.7 YTDChart View

© 2004 by CRC Press LLC

g

3. Design and implement an application for searching a jobs database that:
� Allows a user to select a specific software skill and the number of years

of experience.
� Displays a list of all jobs that require the specific skill and the experience

selected in one window with details.
� Displays a list of all candidates with the specific skill and the experience

selected in a third window.
4. Design and implement an application for monitoring and reporting different

events with the following functionality:
a. Whenever an event occurs, it is first sent to an EventManager object

which functions as a publisher.
b. Whenever the EventManager receives an event, it stores it to the

database and sends notifications to the following three objects to take
necessary action:
i. An AlertSender object that sends notifications (e-mail or page) to

different users depending on the event that occurred.
ii. Two reporting objects that display the event data in different formats.

Figure 33.8 Application Message Flow

SupervisorView ReportManager MonthlyReport YTDChart

create()

create(obj:ReportManager)

register(objMonthlyReport:MonthlyReport)

create(obj:ReportManager)

register(objYTDChart:YTDChart)

refreshData()

refreshData()

getDepartment()

getDepartment()

when a department
is selected.

© 2004 by CRC Press LLC

34

INTERPRETER

This pattern was previously described in GoF95.

DESCRIPTION

In general, languages are made up of a set of grammar rules. Different sentences
can be constructed by following these grammar rules. Sometimes an application
may need to process repeated occurrences of similar requests that are a combi-
nation of a set of grammar rules. These requests are distinct but are similar in
the sense that they are all composed using the same set of rules. A simple example
of this sort would be the set of different arithmetic expressions submitted to a
calculator program. Though each such expression is different, they are all con-
structed using the basic rules that make up the grammar for the language of
arithmetic expressions.

In such cases, instead of treating every distinct combination of rules as a
separate case, it may be beneficial for the application to have the ability to interpret
a generic combination of rules. The Interpreter pattern can be used to design this
ability in an application so that other applications and users can specify operations
using a simple language defined by a set of grammar rules.

Applying the Interpreter pattern:

� A class hierarchy can be designed to represent the set of grammar rules
with every class in the hierarchy representing a separate grammar rule.

� An Interpreter module can be designed to interpret the sentences
constructed using the class hierarchy designed above and carry out the
necessary operations.

Because a different class represents every grammar rule, the number of classes
increases with the number of grammar rules. A language with extensive, complex
grammar rules requires a large number of classes. The Interpreter pattern works
best when the grammar is simple. Having a simple grammar avoids the need to
have many classes corresponding to the complex set of rules involved, which are
hard to manage and maintain.

© 2004 by CRC Press LLC

g

EXAMPLE

Let us build a calculator application that evaluates a given arithmetic expression.
For simplicity, let us consider only add, multiply and subtract operations. Instead
of designing a custom algorithm for evaluating each arithmetic expression, the
application could benefit from interpreting a generic arithmetic expression. The
Interpreter pattern can be used to design the ability to understand a generic
arithmetic expression and evaluate it.

The Interpreter pattern can be applied in two stages:

1. Define a representation for the set of rules that make up the grammar for
arithmetic expressions.

2. Design an interpreter that makes use of the classes that represent different
arithmetic grammar rules to understand and evaluate a given arithmetic
expression.

The set of rules in Table 34.1 constitutes the grammar for arithmetic expressions.

From Table 34.1, it can be observed that arithmetic expressions are of two
types — individual (e.g., ConstantExpression) or composite (e.g., AddEx-
pression). These expressions can be arranged in the form of a tree structure,
with composite expressions as nonterminal nodes and individual expressions as
terminal nodes of the tree.

Let us define a class hierarchy as Figure 34.1 to represent the set of arithmetic
grammar rules.

Each of the classes representing different rules implements the common
Expression interface and provides implementation for the evaluate method
(Listing 34.1 through Listing 34.5).

The Context is a common information repository that stores the values of
different variables (Listing 34.6). For simplicity, values are hard-coded for variables
in this example.

While each of the NonTerminalExpression classes performs the arithmetic
operation it represents, the TerminalExpression class simply looks up the
value of the variable it represents from the Context.

Table 34.1 Grammar Rules for Arithmetic Expressions

Arithmetic Expressions – Grammar
ArithmeticExpression::= ConstantExpression | AddExpression |
MultiplyExpression | SubtractExpression
ConstantExpression::= Integer/Double Value
AddExpression::= ArithmeticExpression ‘+’
ArithmeticExpression
MultiplyExpression::= ArithmeticExpression ‘*’
ArithmeticExpression
SubtractExpression::= ArithmeticExpression ‘-’
ArithmeticExpression

© 2004 by CRC Press LLC

p

public class TerminalExpression implements Expression {

private String var;

public TerminalExpression(String v) {

var = v;

}

public int evaluate(Context c) {

return c.getValue(var);

}

}

The application design can evaluate any expression. But for simplicity, the
main Calculator (Listing 34.7) object uses a hard-coded arithmetic expression
(a + b) * (c – d) as the expression to be interpreted and evaluated.

Figure 34.1 Class Hierarchy Representing Grammar Rules for Arithmetic Expressions

Listing 34.1 Expression Interface

public interface Expression {

public int evaluate(Context c);

}

Calculator

<<interface>>
Expression

evaluate(c:context):int

SubtractExpression

evaluate(c:context)

NonTerminalExpression

setLeftNote(node:Expression)
setRightNote(node:Expression)
getLeftNote():Expression
getRightNote():Expression
evaluate(c:context)

leftNote:Expression
rightnote:Expression

TerminalExpression

evaluate(c:context):int

MultiplyExpression

evaluate(c:context)

Context

assign(var:String,value:int)
getValue(var:String):int

AddExpression

evaluate(c:context)

2 1

<<consists
 of>>

<<evaluates>>

<<uses>>

1

1..*

1

1

© 2004 by CRC Press LLC

g

The Calculator object carries out the interpretation and evaluation of the
input expression in three stages:

Listing 34.2 NonTerminalExpression Class

public abstract class NonTerminalExpression

implements Expression {

private Expression leftNode;

private Expression rightNode;

public NonTerminalExpression(Expression l, Expression r) {

setLeftNode(l);

setRightNode(r);

}

public void setLeftNode(Expression node) {

leftNode = node;

}

public void setRightNode(Expression node) {

rightNode = node;

}

public Expression getLeftNode() {

return leftNode;

}

public Expression getRightNode() {

return rightNode;

}

}//NonTerminalExpression

Listing 34.3 AddExpression Class

class AddExpression extends NonTerminalExpression {

public int evaluate(Context c) {

return getLeftNode().evaluate(c) +

getRightNode().evaluate(c);

}

public AddExpression(Expression l, Expression r) {

super(l, r);

}

}//AddExpression

© 2004 by CRC Press LLC

p

1. Infix-to-postfix conversion — The input infix expression is first translated
into an equivalent postfix expression.

2. Construction of the tree structure — The postfix expression is then scanned
to build a tree structure.

3. Postorder traversal of the tree — The tree is then postorder traversed for
evaluating the expression.

public class Calculator {

…

…

public int evaluate() {

//infix to Postfix

String pfExpr = infixToPostFix(expression);

Listing 34.4 SubtractExpression Class

class SubtractExpression extends NonTerminalExpression {

public int evaluate(Context c) {

return getLeftNode().evaluate(c) -

getRightNode().evaluate(c);

}

public SubtractExpression(Expression l, Expression r) {

super(l, r);

}

}//SubtractExpression

Listing 34.5 MultiplyExpression Class

class MultiplyExpression extends NonTerminalExpression {

public int evaluate(Context c) {

return getLeftNode().evaluate(c) *

getRightNode().evaluate(c);

}

public MultiplyExpression(Expression l, Expression r) {

super(l, r);

}

}//MultiplyExpression

© 2004 by CRC Press LLC

g

//build the Binary Tree

Expression rootNode = buildTree(pfExpr);

//Evaluate the tree

return rootNode.evaluate(ctx);

}

…

…

}//End of class

Infix-to-Postfix Conversion (Listing 34.8)

An expression in the standard form is an infix expression.

Example: (a + b) * (c – d)

An infix expression is more easily understood by humans but is not suitable for
evaluating expressions by computers. The usage of precedence rules and parentheses
in the case of complex expressions makes it difficult for computer evaluation of

Listing 34.6 Context Class

class Context {

private HashMap varList = new HashMap();

public void assign(String var, int value) {

varList.put(var, new Integer(value));

}

public int getValue(String var) {

Integer objInt = (Integer) varList.get(var);

return objInt.intValue();

}

public Context() {

initialize();

}

//Values are hardcoded to keep the example simple

private void initialize() {

assign("a”,20);

assign("b”,40);

assign("c”,30);

assign("d”,10);

}

}

© 2004 by CRC Press LLC

p

these expressions. A postfix expression does not contain parentheses, does not
involve precedence rules and is more suitable for evaluation by computers.

The postfix equivalent of the example expression above is ab+cd–*.
A detailed description of the process of converting an infix expression to its

postfix form is provided in the Additional Notes section.

Listing 34.7 Calculator Class

public class Calculator {

private String expression;

private HashMap operators;

private Context ctx;

public static void main(String[] args) {

Calculator calc = new Calculator();

//instantiate the context

Context ctx = new Context();

//set the expression to evaluate

calc.setExpression("(a+b)*(c-d)");

//configure the calculator with the

//Context

calc.setContext(ctx);

//Display the result

System.out.println(" Variable Values: " +

"a=" + ctx.getValue("a") +

”, b=" + ctx.getValue("b") +

”, c=" + ctx.getValue("c") +

”, d=" + ctx.getValue("d"));

System.out.println(" Expression = (a+b)*(c-d)");

System.out.println(" Result = " + calc.evaluate());

}

public Calculator() {

operators = new HashMap();

operators.put("+”,"1");

operators.put("-”,"1");

operators.put("/”,"2");

operators.put("*”,"2");

operators.put("(”,"0");

}

…

…

}//End of class

© 2004 by CRC Press LLC

g

Listing 34.8 Calculator Class Performing the Infix-to-Postfix Conversion

public class Calculator {

…

…

private String infixToPostFix(String str) {

Stack s = new Stack();

String pfExpr = "";

String tempStr = "";

String expr = str.trim();

for (int i = 0; i < str.length(); i++) {

String currChar = str.substring(i, i + 1);

if ((isOperator(currChar) == false) &&

(!currChar.equals("(")) &&

(!currChar.equals(")"))) {

pfExpr = pfExpr + currChar;

}

if (currChar.equals("(")) {

s.push(currChar);

}

//for ')' pop all stack contents until '('

if (currChar.equals(")")) {

tempStr = (String) s.pop();

while (!tempStr.equals("(")) {

pfExpr = pfExpr + tempStr;

tempStr = (String) s.pop();

}

tempStr = "";

}

//if the current character is an

//operator

if (isOperator(currChar)) {

if (s.isEmpty() == false) {

tempStr = (String) s.pop();

String strVal1 =

 (continued)

© 2004 by CRC Press LLC

p

Construction of the Tree Structure (Listing 34.9)

The postfix equivalent of the input infix expression is scanned from left to right
and a tree structure is built using the following algorithm:

1. Initialize an empty stack.
2. Scan the postfix string from left to right.

Listing 34.8 Calculator Class Performing the Infix-to-Postfix Conversion
(Continued)

(String) operators.get(tempStr);

int val1 = new Integer(strVal1).intValue();

String strVal2 =

(String) operators.get(currChar);

int val2 = new Integer(strVal2).intValue();

while ((val1 >= val2)) {

pfExpr = pfExpr + tempStr;

val1 = -100;

if (s.isEmpty() == false) {

tempStr = (String) s.pop();

strVal1 = (String) operators.get(

tempStr);

val1 = new Integer(strVal1).intValue();

}

}

if ((val1 < val2) && (val1 != -100))

s.push(tempStr);

}

s.push(currChar);

}//if

}//for

while (s.isEmpty() == false) {

tempStr = (String) s.pop();

pfExpr = pfExpr + tempStr;

}

return pfExpr;

}

…

…

}//End of class

© 2004 by CRC Press LLC

g

3. If the scanned character is an operand:
a. Create an instance of the TerminalExpression class by passing the

scanned character as an argument.
b. Push the TerminalExpression object to the stack.

Listing 34.9 Calculator Class Building a Tree with Operators as Nonterminal Nodes
and Operands as Terminal Nodes

public class Calculator {

…

…

public void setContext(Context c) {

ctx = c;

}

public void setExpression(String expr) {

expression = expr;

}

…

…

private Expression buildTree(String expr) {

Stack s = new Stack();

for (int i = 0; i < expr.length(); i++) {

String currChar = expr.substring(i, i + 1);

if (isOperator(currChar) == false) {

Expression e = new TerminalExpression(currChar);

s.push(e);

} else {

Expression r = (Expression) s.pop();

Expression l = (Expression) s.pop();

Expression n =

getNonTerminalExpression(currChar, l, r);

s.push(n);

}

}//for

return (Expression) s.pop();

}

…

…

}//End of class

© 2004 by CRC Press LLC

p

4. If the scanned character is an operator:
a. Pop two top elements from the stack.
b. Create an instance of an appropriate NonTerminalExpression sub-

class by passing the two stack elements retrieved above as arguments.
5. Repeat Step 3 and Step 4 for all characters in the postfix string.
6. The only remaining element in the stack is the root of the tree structure.

The example postfix expression ab+cd–* results in the following tree structure
as in Figure 34.2.

Postorder Traversal of the Tree

The Calculator traverses the tree structure and evaluates different Expression
objects in its postorder traversal path. There are four major tree traversal tech-
niques. These techniques are discussed as part of the Additional Notes section.
Because the binary tree in the current example is a representation of a postfix
expression, the postorder traversal technique is followed for the expression
evaluation. The Calculator object makes use of a helper Context object to
share information with different Expression objects constituting the tree struc-
ture. In general, a Context object is used as a global repository of information.
In the current example, the Calculator object stores the values of different
variables in the Context, which are used by each of different Expression
objects in evaluating the part of the expression it represents.

The postorder traversal of the tree structure in Figure 34.2 results in the
evaluation of the leftmost subtree in a recursive manner, followed by the rightmost
subtree, then the NonTerminalExpression node representing an operator.

ADDITIONAL NOTES

Infix-to-Postfix Conversion

Infix Expression

An expression in the standard form is an infix expression.

Example: a * b + c/d

Sometimes, an infix expression is also referred to as an in-order expression.

Figure 34.2 Example Expression: Tree Structure

*

-+

dcba

© 2004 by CRC Press LLC

g

Postfix Expression

The postfix (postorder) form equivalent of the above example expression is
ab*cd/+.

Conversion Algorithm

See Table 34.2 for the conversion algorithm.

Table 34.2 Conversion Algorithm

1. Define operator precedence rules — In general arithmetic, the descending order
of precedence is as shown in the rules below:

Precedence Rules
*, / Same

precedence
+, – Same

precedence
Expressions are evaluated

from left to right.

2. Initialize an empty stack.
3. Initialize an empty postfix expression.
4. Scan the infix string from left to right.
5. If the scanned character is an operand, add it to the postfix string.
6. If the scanned character is a left parenthesis, push it to the stack.
7. If the scanned character is a right parenthesis:

a. Pop elements from the stack and add to the postfix string until the stack
element is a left parenthesis.

b. Discard both the left and the right parenthesis characters.
8. If the scanned character is an operator:

a. If the stack is empty, push the character to the stack.
b. If the stack is not empty:

i. If the element on top of the stack is an operator:
A. Compare the precedence of the character with the precedence of

the element on top of the stack.
B. If top element has higher or equal precedence over the scanned

character, pop the stack element and add it to the Postfix string.
Repeat this step as long as the stack is not empty and the element
on top of the stack has equal or higher precedence over the
scanned character.

C. Push the scanned character to stack.
ii. If the element on top of the stack is a left parenthesis, push the scanned

character to the stack.
9. Repeat Steps 5 through 8 above until all the characters are scanned.

10. After all characters are scanned, continue to pop elements from the stack and
add to the postfix string until the stack is empty.

11. Return the postfix string.

© 2004 by CRC Press LLC

p

Example

As an example, consider the infix expression (A + B) * (C – D). Let us apply the
algorithm described above to convert this expression into its postfix form.

Initially the stack is empty and the postfix string has no characters. Table 34.3
shows the contents of the stack and the resulting postfix expression as each
character in the input infix expression is processed.

Binary Tree Traversal Techniques

There are four different tree traversal techniques — Preorder, In-Order, Postorder
and Level-Order. Let us discuss each of these techniques by using the following
binary tree in Figure 34.3 as an example.

Table 34.3 Infix-to-Postfix Conversion Algorithm Tracing

Infix Expression
Character Observation and Action to Be Taken Stack Postfix String

(Push to the stack. (
A Operand. Add to the postfix string. (A
+ Operator. The element on top of the stack is a

left parenthesis and hence push + to the
stack.

(+ A

B Operand. Add to the postfix string. (+ AB
) Right parenthesis. Pop elements from the stack

until a left parenthesis is found.
Add these stack elements to the postfix string.
Discard both left and right parentheses.

AB+

* Operator. The element on top of the stack is +.
The precedence of + is less than the precedence

of *.
Push the operator to the stack.

* AB+

(Push to the stack. *(AB+
C Operand. Add to the postfix string. *(AB + C
– Operator. The element on top of the stack is a

left parenthesis and hence push + to the
stack.

*(– AB + C

D Operand. Add to the Postfix string. *(– AB + CD
) Right parenthesis. Pop elements from the stack

until a left parenthesis is found.
Add these stack elements to the postfix string.
Discard both left and right parentheses.

* AB + CD–

All characters in
the infix
expression are
scanned

Add all remaining stack elements to the postfix
string.

AB + CD–*

© 2004 by CRC Press LLC

g

Preorder (Node-Left-Right)

Start with the root node and follow the algorithm as follows:

� Visit the node first.
� Traverse the left subtree in preorder.
� Traverse the right subtree in preorder.

A preorder traversal of the above sorted tree structure to print the contents of
the nodes constituting the tree results in the following display:

KDAGFSMPU

In-Order (Left-Node-Right)

Start with the root node and follow the algorithm as follows:

� Traverse the left subtree in in-order.
� Visit the node.
� Traverse the right subtree in in-order.

An in-order traversal of the above sorted tree structure to print the contents
of the nodes constituting the tree results in the following display:

ADFGKMPSU

Postorder (Left-Right-Node)

Start with the root node and follow the algorithm as follows:

� Traverse the left subtree in in-order.
� Traverse the right subtree in in-order.
� Visit the node.

A postorder traversal of the above sorted tree structure to print the contents
of the nodes constituting the tree results in the following display:

Figure 34.3 Example Sorted Tree Structure

K

SD

UMGA

PF

© 2004 by CRC Press LLC

p

AFGDPMUSK

Level-Order

Start with the root node level and follow the algorithm as follows:

� Traverse different levels of the tree structure from top to bottom.
� Visit nodes from left to right with in each level.

A level-order traversal of the above sorted tree structure to print the contents
of the nodes constituting the tree results in the following display:

KDSAGMUFP

PRACTICE QUESTIONS

1. Enhance the example application to include the division and the unary
arithmetic negation operations.

2. Design an interpreter for the DOS copy command. The copy command
can be used to create a new file with the contents of a single or multiple files:

� The Copy a.txt c.txt command copies the contents of the a.txt
file to the new c.txt file.

� The Copy a.txt + b.txt c.txt command copies the contents of
both the files a.txt and b.txt to the new c.txt file.

3. Design and develop an interpreter to display a given integer value in words.
4. Redesign the example application using the Visitor pattern.

a. Design a Visitor with different visit(ExpressionObjectType)
methods and a getResult() method.

b. Convert the input infix expression to postfix expression.
c. Scan the postfix expression from left to right.

i. When an operand is found push to stack.
ii. When an operator is found:

A. Pop two operands from the stack.
B. Create an appropriate Expression object.
C. When the Expression object is created, it invokes an appropriate
visit method on the Visitor instance by passing itself as an
argument. The Visitor in turn calls the evaluate method on
the Expression object. The integer result of the evaluate
method call is then pushed to the stack.

D.Once the postfix expression is scanned from left to right, the
getResult() method can be invoked on the Visitor to get the
final result. The Visitor can retrieve the only remaining stack element
and return it.

© 2004 by CRC Press LLC

35

STATE

This pattern was previously described in GoF95.

DESCRIPTION

The state of an object can be defined as its exact condition at any given point
of time, depending on the values of its properties or attributes. The set of methods
implemented by a class constitutes the behavior of its instances. Whenever there
is a change in the values of its attributes, we say that the state of an object has
changed.

A simple example of this would be the case of a user selecting a specific font
style or color in an HTML editor. When a user selects a different font style or
color, the properties of the editor object change. This can be considered as a
change in its internal state.

The State pattern is useful in designing an efficient structure for a class, a
typical instance of which can exist in many different states and exhibit different
behavior depending on the state it is in. In other words, in the case of an object
of such a class, some or all of its behavior is completely influenced by its current
state. In the State design pattern terminology, such a class is referred to as a
Context class. A Context object can alter its behavior when there is a change
in its internal state and is also referred as a Stateful object.

STATEFUL OBJECT: AN EXAMPLE

Most of the HTML editors available today offer different views of an HTML page
at the time of creation. Let us consider one such editor that offers three views of
a given Web page as follows:

1. Design view — In this view, a user is allowed to visually create a Web page
without having to know about the internal HTML commands.

2. HTML view — This view offers a user the basic structure of the Web page
in terms of the HTML tags and lets a user customize the Web page with
additional HTML code.

3. Quick page view — This view provides a preview of the Web page being
created.

g

When a user selects one of these views (change in the state of the Editor
object), the behavior of the Editor object changes in terms of the way the
current Web page is displayed.

The State pattern suggests moving the state-specific behavior out of the
Context class into a set of separate classes referred to as State classes. Each of
the many different states that a Context object can exist in can be mapped into
a separate State class. The implementation of a State class contains the
context behavior that is specific to a given state, not the overall behavior of the
context itself.

The context acts as a client to the set of State objects in the sense that it
makes use of different State objects to offer the necessary state-specific behavior
to an application object that uses the context in a seamless manner.

In the absence of such a design, each method of the context would contain
complex, inelegant conditional statements to implement the overall context behav-
ior in it. For example,

public Context{

…

…

someMethod(){

if (state_1){

//do something

}else if (state_2){

//do something else

}

…

…

}

…

…

}

By encapsulating the state-specific behavior in separate classes, the context
implementation becomes simpler to read: free of too many conditional statements
such as if-else or switch-case constructs. When a Context object is first created,
it initializes itself with its initial State object. This State object becomes the
current State object for the context. By replacing the current State object with
a new State object, the context transitions to a new state. The client application
using the context is not responsible for specifying the current State object for
the context, but instead, each of the State classes representing specific states
are expected to provide the necessary implementation to transition the context
into other states.

When an application object makes a call to a Context method (behavior),
it forwards the method call to its current State object.

public Context{

…

…

someMethod(){

objCurrentState.someMethod();

}

…

…

}

EXAMPLE

The following State pattern example takes advantage of polymorphism to imple-
ment such state-specific behavior. Polymorphism allows two objects with the same
method signatures and completely different implementations to be treated in an
identical manner.

To use polymorphism, classes that implement the same method differently are
derived from a common parent class. Let us say that a client program is written
to operate on objects of the superclass type. What the client program thinks of
as a parent class object could in reality be an instance of any of its subclasses.
The client remains oblivious to this fact. When the client program invokes a
method defined in the superclass, the method that gets called is actually the
subclass method that overrides the superclass version. In other words, polymor-
phism encapsulates (hides) the type of the object.

Let us consider a business account at a bank with the overdraft facility. Such
an account can exist in any one of the following three states at any given point
of time:

1. No transaction fee state — As long as the account balance remains greater
than the minimum balance, no transaction fee will be charged for any
deposit or withdrawal transaction. The example application has the mini-
mum balance as $2,000.

2. Transaction fee state — An account is considered to be in the transaction
fee state when the account balance is positive but below the minimum
balance. A transaction fee will be charged for any deposit or withdrawal
transaction in this state. The example application has the transaction fee
in this state as $2.

3. Overdrawn state — This is the state of the account when an account balance
is negative but within the overdraft limit. A transaction fee will be charged
for any deposit or withdrawal transactions in this state. The example
application has the transaction fee in this state as $5 and the overdraft limit
is maintained as $1,000.

In all three states, a withdrawal transaction that exceeds the overdraft limit is
not allowed. Figure 35.1 depicts possible state transitions for an account and Table
35.1 shows how these transitions can occur.

g

Let us design a representation for the business account in the form of the
BusinessAccount class as in Figure 35.2 and Listing 35.1.

The BusinessAccount class offers the basic functionality in the form of
methods to enable a client object to perform deposit and withdrawal operations.
In addition, the BusinessAccount class defines some of the transaction limits
and offers accessor methods to read its state.

Figure 35.1 State Transitions among Different Account States

Table 35.1 State Transitions among Different Account States

From To What Causes the Transition

No transaction
fee state

Transaction
fee state

A withdrawal that can make the balance positive
but less than the minimum balance.

Overdrawn
state

A withdrawal that can make the balance
negative.

Transaction fee
state

No transaction
fee state

A deposit that can make the balance greater than
the minimum balance.

Overdrawn state A withdrawal that can make the balance
negative.

Overdrawn state No transaction
fee state

A deposit that can make the balance greater than
the minimum balance.

Transaction fee
state

A deposit that can make the balance positive but
less than the minimum balance.

Figure 35.2 BusinessAccount Representation

NoTransactionFeeState

TransactionFeeState OverDrawnState

BusinessAccount

deposit(amount:double):boolean
withdraw(amount:double):boolean
getAccountNumber():String
getBalance():double
setBalance(double newBalance)

accountNumber:String
balance:double

Listing 35.1 BusinessAccount Class

public class BusinessAccount {

public static final double MIN_BALANCE = 2000.00;

public static final double OVERDRAW_LIMIT = -1000.00;

public static final double TRANS_FEE_NORMAL = 2.00;

public static final double TRANS_FEE_OVERDRAW = 5.00;

public static final String ERR_OVERDRAW_LIMIT_EXCEED =

"Error: Transaction cannot be processed. " +

"Overdraw limit exceeded.";

private State objState;

private String accountNumber;

private double balance;

public void setState(State newState) {

objState = newState;

}

public State getState() {

return objState;

}

public String getAccountNumber() {

return accountNumber;

}

public boolean deposit(double amount) {

//…

}

public boolean withdraw(double amount) {

//…

}

public BusinessAccount(String accountNum) {

accountNumber = accountNum;

objState = State.InitialState(this);

}

public double getBalance() {

return balance;

}

public void setBalance(double newBalance) {

balance = newBalance;

}

}

g

Let us define a common State class (Listing 35.2) that contains the business
account behavior that is common across all states.

Instead of keeping the state-specific behavior inside the BusinessAccount
class, by applying the State pattern, the behavior specific to each of the three
states can be implemented in the form of three separate subclasses — NoTrans-
actionFeeState, TransactionFeeState and OverDrawnState (Listing
35.3 through Listing 35.5) — of the State class. Figure 35.3 shows the resulting
class hierarchy. The common parent State class declares the interface to be
used by different client objects to access the services of the objects in the State
class hierarchy. If a client object is designed to use the services of an object of
the common parent State class type, it can access the services offered by its
subclasses in a seamless manner.

Each of the State subclasses is designed to contain the behavior specific to
a given state of the business account. In addition, these subclasses know the state
it should transition to and when to make that transition. Each of these State
subclasses implements this state transition functionality by overriding the parent
class transitionState method as per the state transition rules detailed in
Table 35.1.

While the state-specific behavior is separated out from the BusinessAc-
count, the state (i.e., the account balance) is still maintained within the Busi-
nessAccount class. Because the behavior contained in each of the State
objects is specific to a state of the business account represented by the Busi-
nessAccount class, a State object should be able to read the BusinessAc-
count object state. To facilitate this, each of the State objects is designed to
contain an object reference of the BusinessAccount type. When a State
object is created, it is configured with a BusinessAccount instance. Using this
BusinessAccount object, a state object can check or alter the state of the
business account it represents.

Because the state-specific behavior of a business account is contained in the
State class hierarchy, the BusinessAccount needs a way to access the
behavior specific to its current state. This requirement can be addressed by
enhancing the BusinessAccount class design so that a BusinessAccount
object maintains an object reference instance variable of type State to store its
current state object. When a BusinessAccount object is first created, it sets an
instance of the NoTransactionFeeState class (the default state) as its current
State object. Whenever a client object invokes a method such as deposit or
withdraw on the BusinessAccount object, it forwards the method call to its
current State object. Figure 35.4 and Listing 35.6 show the revised Business-
Account class representation.

The BusinessAccount class represents the business account and acts as the
context in this example. Figure 35.5 shows the overall class association.

Let us design a test client AccountManager to allow a user to perform different
transactions on a business account. When executed, the AccountManager:

� Creates a BusinessAccount object that represents a business account.
� Displays the necessary user interface as in Figure 35.6 to allow a user to

perform deposit and withdrawal transactions that can make the business
account go through different states.

Listing 35.2 State Class

public class State {

private BusinessAccount context;

public BusinessAccount getContext() {

return context;

}

public void setContext(BusinessAccount newAccount) {

context = newAccount;

}

public State transitionState() {

return null;

}

public State(BusinessAccount account) {

setContext(account);

}

public State(State source) {

setContext(source.getContext());

 }

public static State InitialState(BusinessAccount account) {

return new NoTransactionFeeState(account);

}

public boolean deposit(double amount) {

double balance = getContext().getBalance();

getContext().setBalance(balance + amount);

transitionState();

System.out.println("An amount " + amount +

" is deposited ");

return true;

}

public boolean withdraw(double amount) {

double balance = getContext().getBalance();

getContext().setBalance(balance - amount);

transitionState();

System.out.println("An amount " + amount +

" is withdrawn ");

 return true;

}

}

g

Listing 35.3 NoTransactionFeeState Class

public class NoTransactionFeeState extends State {

public NoTransactionFeeState(BusinessAccount account) {

super(account);

}

public NoTransactionFeeState(State source) {

super(source);

}

public boolean deposit(double amount) {

return super.deposit(amount);

}

public boolean withdraw(double amount) {

double balance = getContext().getBalance();

if ((balance - amount) >

BusinessAccount.OVERDRAW_LIMIT) {

super.withdraw(amount);

return true;

} else {

System.out.println(

BusinessAccount.ERR_OVERDRAW_LIMIT_EXCEED);

return false;

}

}

public State transitionState() {

double balance = getContext().getBalance();

if (balance < 0) {

getContext().setState(new OverDrawnState(this));

} else {

if (balance < BusinessAccount.MIN_BALANCE) {

getContext().setState(

new TransactionFeeState(this));

}

}

return getContext().getState();

}

}

Listing 35.4 TransactionFeeState Class

public class TransactionFeeState extends State {

public TransactionFeeState(BusinessAccount account) {

super(account);

}

public TransactionFeeState(State source) {

super(source);

}

public State transitionState() {

double balance = getContext().getBalance();

if (balance < 0) {

getContext().setState(new OverDrawnState(this));

} else {

if (balance >= BusinessAccount.MIN_BALANCE) {

getContext().setState(

new NoTransactionFeeState(this));

}

}

return getContext().getState();

}

public boolean deposit(double amount) {

double balance = getContext().getBalance();

getContext().setBalance(balance -

BusinessAccount.TRANS_FEE_NORMAL);

System.out.println(

"Transaction Fee was charged due to " +

"account status " +

"(less than minimum balance)");

return super.deposit(amount);

}

public boolean withdraw(double amount) {

double balance = getContext().getBalance();

if ((balance - BusinessAccount.TRANS_FEE_NORMAL -

amount) > BusinessAccount.OVERDRAW_LIMIT) {

getContext().setBalance(balance -

BusinessAccount.TRANS_FEE_NORMAL);

(continued)

g

Every deposit or withdrawal transaction initiated through the user interface trans-
lates to a deposit(double) or withdraw(double) method call on the Busi-
nessAccount object that is created when the AccountManager is executed. The
BusinessAccount object in turn forwards this call to its internal current State
object. The current State object executes the behavior it contains and sets an
appropriate State object as the BusinessAccount object’s current State object.
In this manner the Context class (BusinessAccount) and its state-specific
behavior (State class hierarchy) are completely separated from each other. When
a new state-specific behavior is added or the behavior specific to a state is altered,
the actual Context class BusinessAccount remains unaffected.

Listing 35.4 TransactionFeeState Class (Continued)

System.out.println(

"Transaction Fee was charged due to " +

"account status " +

"(less than minimum balance)");

return super.withdraw(amount);

} else {

System.out.println(

BusinessAccount.ERR_OVERDRAW_LIMIT_EXCEED);

return false;

}

}

}

Listing 35.5 OverDrawnState Class

public class OverDrawnState extends State {

public void sendMailToAccountHolder() {

System.out.println (

"Attention: Your Account is Overdrawn");

}

public OverDrawnState(BusinessAccount account) {

super(account);

sendMailToAccountHolder();

}

public OverDrawnState(State source) {

super(source);

sendMailToAccountHolder();

}

(continued)

Listing 35.5 OverDrawnState Class (Continued)

public State transitionState() {

double balance = getContext().getBalance();

if (balance >= BusinessAccount.MIN_BALANCE)

getContext().setState(

new NoTransactionFeeState(this));

else if (balance >= 0)

getContext().setState(new TransactionFeeState(this));

return getContext().getState();

}

public boolean deposit(double amount) {

double balance = getContext().getBalance();

getContext().setBalance(balance -

BusinessAccount.TRANS_FEE_OVERDRAW);

System.out.println("Transaction Fee was charged " +

"due to account status(Overdrawn)");

return super.deposit(amount);

}

public boolean withdraw(double amount) {

double balance = getContext().getBalance();

if ((balance - BusinessAccount.TRANS_FEE_OVERDRAW -

amount) > BusinessAccount.OVERDRAW_LIMIT) {

getContext().setBalance(balance -

BusinessAccount.TRANS_FEE_OVERDRAW);

System.out.println(

"Transaction Fee was charged due to " +

"account status(Overdrawn)");

return super.withdraw(amount);

} else {

System.out.println(

BusinessAccount.ERR_OVERDRAW_LIMIT_EXCEED);

return false;

}

}

}

g

Figure 35.3 BusinessAccount State Class Hierarchy

State

getContext():BusinessAccount
setContext(newAccount:BusinessAccount)
transitionState():State
InitialState(accountBusinessAccount):State
deposit(amount:double)
withdraw(amount:double)

context:BusinessAccount

NoTransactionFeeState

deposit(amount:double)
withdraw(amount:double)
transitionState():State

TransactionFeeState

deposit(amount:double)
withdraw(amount:double)
transitionState():State

OverDrawnState

deposit(amount:double)
withdraw(amount:double)
transitionState():State
sendMailToAccountHolder()

Figure 35.4 BusinessAccount Representation: Revised

Figure 35.5 Class Association

BusinessAccount

deposit(amount:double):boolean
withdraw(amount:double):boolean
getAccountNumber():String
getBalance():double
setBalance(double newBalance)
setState(State newState)
getState():State

accountNumber:String
balance:double
objState:State

State

NoTransactionFeeState TransactionFeeState

OverDrawnStateBusinessAccount

g

Listing 35.6 BusinessAccount Class: Revised

public class BusinessAccount {

public static final double MIN_BALANCE = 2000.00;

public static final double OVERDRAW_LIMIT = -1000.00;

public static final double TRANS_FEE_NORMAL = 2.00;

public static final double TRANS_FEE_OVERDRAW = 5.00;

public static final String ERR_OVERDRAW_LIMIT_EXCEED =

"Error: Transaction cannot be processed. " +

"Overdraw limit exceeded.";

private State objState;

private String accountNumber;

private double balance;

public void setState(State newState) {

objState = newState;

}

public State getState() {

return objState;

}

public String getAccountNumber() {

return accountNumber;

}

public boolean deposit(double amount) {

return getState().deposit(amount);

}

public boolean withdraw(double amount) {

return getState().withdraw(amount);

}

public BusinessAccount(String accountNum) {

accountNumber = accountNum;

objState = State.InitialState(this);

}

public double getBalance() {

return balance;

}

public void setBalance(double newBalance) {

balance = newBalance;

}

}

PRACTICE QUESTIONS

1. Assume that a membership account at a Web site can exist in one of four
different states:
� Active — This is the state of an account when it is in good standing.
� Due — Every account is supposed to be paid for by the 5th of every

month, but members are given up to the 10th to make the payment. An
account remains in the due state until the 10th of every month, if not
paid before the 10th.

� Unpaid — If the payment is not made by the 10th of every month, the
account enters into the unpaid state. In this state, members are not
allowed to use premium services. But the membership still remains active
and members can use basic services.

Figure 35.6 AccountManager User Interface

Table 35.2 Membership Account State Transitions

From To What Causes the Transition

Active Due From the 5th to the 10th of every month.
Canceled If a member wants to cancel the account explicitly.

Due Active If payment is made before the 10th of the month.
Unpaid If payment is not made before the 10th of the month.
Canceled If a member wants to cancel the account explicitly.

Unpaid Active If payment is made before the account is canceled.
Canceled If a member wants to cancel the account explicitly.

If the account stays in the unpaid state for more than 15
days.

Canceled Active If all previous payment dues are cleared.

g

� Canceled — If an account remains in the unpaid state for more than 15
days then it is canceled. Table 35.2 lists different membership account
state transitions.

a. Design a MemberAccount class whose instances can be used to rep-
resent membership accounts.

b. Apply the State pattern to design the state-specific behavior of a mem-
bership account in the form of a group of State classes that are part
of a class hierarchy with a common parent.

2. An order at an online store can be in one of the following states:
� Not Submitted
� Submitted
� Received
� Processed
� Shipped
� Canceled
a. Define a state transition table (similar to Table 35.1) for an order.
b. Design an Order class whose instances can be used to represent orders.

Design the state-specific behavior of an order in the form of a set of
State classes with a common parent class.

36

STRATEGY

This pattern was previously described in GoF95.

DESCRIPTION

The Strategy pattern is useful when there is a set of related algorithms and a
client object needs to be able to dynamically pick and choose an algorithm from
this set that suits its current need.

The Strategy pattern suggests keeping the implementation of each of the
algorithms in a separate class. Each such algorithm encapsulated in a separate
class is referred to as a strategy. An object that uses a Strategy object is often
referred to as a context object.

With different Strategy objects in place, changing the behavior of a Context
object is simply a matter of changing its Strategy object to the one that
implements the required algorithm.

To enable a Context object to access different Strategy objects in a
seamless manner, all Strategy objects must be designed to offer the same
interface. In the Java programming language, this can be accomplished by design-
ing each Strategy object either as an implementer of a common interface or
as a subclass of a common abstract class that declares the required common
interface.

Once the group of related algorithms is encapsulated in a set of Strategy
classes in a class hierarchy, a client can choose from among these algorithms by
selecting and instantiating an appropriate Strategy class. To alter the behavior
of the context, a client object needs to configure the context with the selected
strategy instance. This type of arrangement completely separates the implemen-
tation of an algorithm from the context that uses it. As a result, when an existing
algorithm implementation is changed or a new algorithm is added to the group,
both the context and the client object (that uses the context) remain unaffected.

STRATEGIES VERSUS OTHER ALTERNATIVES

Implementing different algorithms in the form of a method using conditional
statements violates the basic object-oriented, open-closed principle. Designing
each algorithm as a different class is a more elegant approach than designing all

© 2004 by CRC Press LLC

g

different algorithms as part of a method in the form of a conditional statement.
Because each algorithm is contained in a separate class, it becomes simpler and
easier to add, change or remove an algorithm.

Another approach would be to subclass the context itself and implement
different algorithms in different subclasses of the context. This type of design
binds the behavior to a context subclass and the behavior executed by a context
subclass becomes static. With this design, to change the behavior of the context,
a client object needs to create an instance of a different subclass of the context
and replace the current Context object with it.

Having different algorithms encapsulated in different Strategy classes decou-
ples the context behavior from the Context object itself. With different Strat-
egy objects available, a client object can use the same Context object and
change its behavior by configuring it with different Strategy objects. This is a
more flexible approach than subclassing.

Also, sometimes subclassing can lead to a bloated class hierarchy. We have
seen an example of this during the discussion of the Decorator pattern. Designing
algorithms as different Strategy classes keeps the class growth linear.

STRATEGY VERSUS STATE

From the discussion above, the Strategy pattern looks very similar to the State
pattern discussed earlier. One of the differences between the two patterns is that
the Strategy pattern deals with a set of related algorithms, which are more similar
in what they do as opposed to different state-specific behavior encapsulated in
different State objects in the State pattern.

Table 36.1 provides a detailed list of similarities and differences between the
State and the Strategy patterns.

EXAMPLE

During the discussion of the Decorator pattern we designed a decorator class
EncryptLogger that encrypts an incoming message before sending it to the
FileLogger instance it contains for logging. For encrypting the message text,
the EncryptLogger calls its encrypt(String) method. The encryption
algorithm implemented inside the encrypt(String) method is very simple
in that the characters of the message text are all shifted to the right by one
position.

In general, there are many different ways of encrypting a message text using
different encryption algorithms. Let us consider four different encryption algo-
rithms including the simple encryption used by the EncryptLogger in the
existing design.

SimpleEncryption

When this encryption is applied, characters in the plain text message are shifted
to the right or left by one position.

© 2004 by CRC Press LLC

gy

Table 36.1 State versus Strategy

State Pattern Strategy Pattern

Different types of possible behavior of an
object are implemented in the form of a
group of separate objects (State objects).

Similar to the State pattern, specific
behaviors are modeled in the form
of separate classes (Strategy
objects).

The behavior contained in each State object
is specific to a given state of the associated
object.

The behavior contained in each
Strategy object is a different
algorithm (from a set of related
algorithms) to provide a given
functionality.

An object that uses a State object to change
its behavior is referred to as a Context
object.

A Context object needs to change its
current State object to change its
behavior.

An object that uses a Strategy object
to alter its behavior is referred to as a
Context object.

Similar to the State pattern, for a
Context object to behave differently,
it needs to be configured with a
different Strategy object.

Often, when an instance of the context is
first created, it is associated with one of the
default State objects.

Similarly, a context is associated with a
default Strategy object that
implements the default algorithm.

A given State object itself can put the
context into a new state. This makes a new
State object as the current State object of
the context, changing the behavior of the
Context object.

A client application using the context
needs to explicitly assign a strategy
to the context. A Strategy object
cannot cause the context to be
configured with a different
Strategy object.

The choice of a State object is dependent
on the state of the Context object.

The choice of a Strategy object is
based on the application need. Not on
the state of the Context object.

A given Context object undergoes state
changes. The order of transition among
states is well defined. These are the
characteristics of an application where the
State pattern could be applied.

Example: A bank account behaves differently
depending on the state it is in when a
transaction to withdraw money is
attempted.

When the minimum balance is maintained —
no transaction fee is charged.

When the minimum balance is not
maintained — transaction fee is charged.

When the account is overdrawn — the
transaction is not allowed.

A given Context object does not
undergo state changes.

Example: An application that needs to
encrypt and save the input data to a
file. Different encryption algorithms
can be used to encrypt the data.
These algorithms can be designed
as Strategy objects. The client
application can choose a strategy
that implements the required
algorithm.

© 2004 by CRC Press LLC

g

Example:
Plain text:This is a message
Cipher text:eThis is a messag

CaesarCypher

In its simplest form, the Caesar cipher is a rotation-substitution cipher where
characters are shifted to the right by one position. It involves replacing the letter
A with B, B with C, and so on, up to Z, which is replaced by A. This is called
the rotate-1 Caesar cipher because it involves rotating the alphabet in the plain
text by one position.

Example:
Plain text:This is a message
Cipher text:Uijt jt b nfttbhf

Similarly, a rotate-2 Caesar cipher replaces letter A with C, B with D, … Z
with B.

Julius Caesar is known to have used this simple rotate-n replacement cipher
and hence the name Caesar cipher.

SubstitutionCypher

This encryption algorithm uses a letter substitution table to replace different letters
in the plain text with corresponding entries from the substitution table.

Table 36.2 shows an example letter substitution table.
To encrypt a given plain text, look up letters from the plain text in the top

row of the letter substitution table and replace it with the corresponding letter
from the bottom row in the same column.

Example:
Plain text: This is a Message
Cipher text: mWNR NR T DXRRTnX

CodeBookCypher

This algorithm involves replacing words from the plain text with corresponding
word entries from a code-book table.

Table 36.3 shows an example code-book table.

Table 36.2 Sample Letter Substitution Table

A T i B h s a e m X Y M P C g F Q w r t
s m N o W R T X Y A B D F I n d i a U S

© 2004 by CRC Press LLC

gy

To encrypt a given plain text message, look up every word from the plain
text message in the first column of the code-book table and replace it with the
corresponding word from the second column of the same row.

Example:
Plain text:This Is A True Statement
Cipher text:Design Patterns Are Really Useful

Let us suppose that clients of the EncryptLogger would like to be able to
dynamically select and use any of the aforementioned encryption algorithms.

This requirement can be designed in different ways, including:

� Implementing all algorithms inside the existing encrypt(String)
method of the EncryptLogger class using conditional statements

� Applying inheritance, with each subclass of the EncryptLogger imple-
menting a specific encryption algorithm

Though these options look straightforward, as discussed earlier under the
“Strategies versus Other Alternatives” section, applying the Strategy pattern results
in a more elegant and efficient design.

Applying the Strategy pattern, each of the encryption algorithms can be
encapsulated in a separate (strategy) class (Listing 36.1 through Listing 36.4). Table
36.4 shows the list of these strategy classes and the algorithms they implement.

Let us define a common interface to be implemented by each of the strategy
classes, in the form of a Java interface EncryptionStrategy, as follows:

public interface EncryptionStrategy {

public String encrypt(String inputData);

}

Figure 36.1 shows the resulting class hierarchy.

Table 36.3 Sample
Code-Book Table

This Design
Is Patterns
Book CD
A Are
Sun Hello
True Really
Moon Country
Statement Useful
Discovery Old
Channel Vaccum

© 2004 by CRC Press LLC

g

Each of the strategy classes listed in Table 36.4 provides the implementation
of the algorithm it represents as part of the encrypt method declared by the
EncryptionStrategy interface.

Because all of the strategy classes listed in Table 36.4 share the same interface,
a client object that is designed to use an object of the EncryptionStrategy
type will be able to access the encryption services offered by different strategy
objects in a seamless manner.

Listing 36.1 SimpleEncryption Class

public class SimpleEncryption implements EncryptionStrategy {

public String encrypt(String inputData) {

inputData = inputData.substring(inputData.length() - 1) +

inputData.substring(0, inputData.length() - 1);

return inputData;

}

}

Listing 36.2 CaesarCypher Class

public class CaesarCypher implements EncryptionStrategy {

public String encrypt(String inputData) {

char[] chars = inputData.toCharArray();

for (int i = 0; i < chars.length; i++) {

char c = chars[i];

if (c == 'z') {

c = 'a';

}

if ((c >= 'a') && (c < 'z')) {

++c;

}

chars[i] = c;

}

return new String(new String(chars));

}

}

© 2004 by CRC Press LLC

gy

With each encryption algorithm encapsulated in a separate strategy class, the
EncryptLogger is no longer required to contain any implementation to encrypt
an input message. The idea is that the EncryptLogger can make use of the
services of any of the strategy objects as required to encrypt a message. To
facilitate the usage of different strategy objects by the EncryptLogger in a
seamless manner, the EncryptLogger needs to be redesigned (Figure 36.2 and
Listing 36.5) so that:

� It contains an object reference variable currEncryptionStrategy of
the EncryptionStrategy type. This variable is used to hold its current
encryption strategy.

� It configures itself with the default encryption Strategy object when it
is first created.

� It offers a method setEncryptionStrategy to enable a client object
to configure it with a different Strategy object.

� As part of the encrypt method implementation, it accesses the encryption
services offered by the EncryptionStrategy object that it is configured

Listing 36.3 SubstitutionCypher Class

public class SubstitutionCypher implements EncryptionStrategy {

char[] source = {'a','b','c','d','e','f','g','h','i','j','k',

'l','m','n','o','p','q','r','s','t','u','v',

'w','x','y','z'};

char[] dest = {'m','n','o','p','q','r','a','b','c','d','e',

'f','g','h','i','j','k','l','y','z','s','t',

'u','v','w', 'x'};

public String encrypt(String inputData) {

char[] chars = inputData.toCharArray();

for (int i = 0; i < chars.length; i++) {

char c = chars[i];

for (int j = 0; j < source.length; j++) {

if (source[j] == chars[i]) {

c = dest[j];

}

}

chars[i] = c;

}

return new String(chars);

}

}

© 2004 by CRC Press LLC

g

with. In other words, the implementation of its encrypt method trans-
forms to a simple method call to the encrypt method of its current
encryption Strategy object stored in the currEncryptionStrategy
instance variable.

Figure 36.3 shows the overall class association.

Listing 36.4 CodeBookCypher Class

public class CodeBookCypher implements EncryptionStrategy {

HashMap codeContents = new HashMap();

private void populateCodeEntries() {

codeContents.put("This”,"Design");

codeContents.put("is”,"Patterns");

codeContents.put("a”,"are");

codeContents.put("true”,"really");

codeContents.put("statement”,"useful");

//………

//……..

}

public String encrypt(String inputData) {

populateCodeEntries();

String outStr = "";

StringTokenizer st = new StringTokenizer(inputData);

while (st.hasMoreTokens()) {

outStr = outStr + " " +

codeContents.get(st.nextToken());

}

return new String(outStr);

}

}

Table 36.4 Different Encryption Strategies

Strategy Encryption Algorithm

CaesarCypher Caesar
CodeBookCypher Code-Book
SimpleEncryption Basic
SubstitutionCypher Substitution

© 2004 by CRC Press LLC

gy

Note: The EncryptLogger contains an object reference of FileLogger
type. This relationship is not included in the Figure 36.3 class diagram as it is not
part of the pattern implementation.

The EncryptLogger uses different Strategy objects and hence acts as the
context. A client object such as the LoggerClient that wants to log an encrypted
message needs to create an instance of the EncryptLogger and invoke its log
method. When the EncryptLogger is first instantiated, its current encryption
strategy is set to SimpleEncryption inside its constructor. The EncryptLog-
ger uses this strategy until the client explicitly changes the strategy to be used.

The client can create a different Strategy object and set it to be used as
the current strategy by passing it to the EncryptLogger as part of the

Figure 36.1 EncryptionStrategy Class Hierarchy

Figure 36.2 EncryptLogger

<<interface>>
EncryptionStrategy

encrypt(inputData:String)

SimpleEncryption

encrypt(inputData:String)

SubstitutionCypher

encrypt(inputData:String)

CaesarCypher

encrypt(inputData:String)

CodeBookCypher

encrypt(inputData:String)

EncryptLogger

log(fileName:String, msg:String)
encrypt(msg:String)
setEncryptionStrategy(str:EncryptionStrategy)

currEncryptionStrategy:EncryptionStrategy

© 2004 by CRC Press LLC

g

setEncryptionStrategy method call. The EncryptLogger uses this new
strategy until again changed by the client.

class LoggerClient {

public static void main(String[] args) {

FileLogger logger = new FileLogger();

EncryptLogger eLogger = new EncryptLogger(logger);

eLogger.log("log1.txt”,

"this message is to be encrypted & logged");

EncryptionStrategy strategy = new SubstitutionCypher();

Listing 36.5 EncryptLogger Class: Revised

public class EncryptLogger {

private EncryptionStrategy currEncryptionStrategy;

private FileLogger logger;

public EncryptLogger(FileLogger inp_logger) {

logger = inp_logger;

//set the default encryption strategy

setEncryptionStrategy(new SimpleEncryption());

}

public void log(String fileName, String msg) {

/*Added functionality*/

msg = encrypt(msg);

/*

Now forward the encrypted text to the FileLogger

for storage

*/

logger.log(fileName, msg);

}

public String encrypt(String msg) {

/*

Apply encryption using the current encryption strategy

*/

return currEncryptionStrategy.encrypt(msg);

}

public void setEncryptionStrategy(

EncryptionStrategy strategy) {

currEncryptionStrategy = strategy;

}

}

© 2004 by CRC Press LLC

gy

eLogger.setEncryptionStrategy(strategy);

eLogger.log("log2.txt”,

"this message is to be encrypted & logged");

strategy = new CodeBookCypher();

eLogger.setEncryptionStrategy(strategy);

eLogger.log("log3.txt”,"This is a true statement");

}

}//End of class

In the new design, the EncryptLogger (the context) is not affected when
changes such as adding, changing or removing an algorithm are made. In addition,
making such changes will be simpler as each algorithm is contained in a separate
class.

The sequence diagram in Figure 36.4 depicts the message flow when a client
uses the CodeBookCypher to encrypt a message.

PRACTICE QUESTIONS

1. Identify how the Strategy pattern is used when you build an applet setting
its layout manager.

2. Design and implement an application to search for an item from a list of
items. The application should decide the search algorithm to be used and

Figure 36.3 Class Association

EncryptLogger
<<interface>>

EncryptionStrategy

encrypt(inputData:String)

SimpleEncryption

encrypt(inputData:String)

SubstitutionCypher

encrypt(inputData:String)

CaesarCypher

encrypt(inputData:String)

CodeBookCypher

encrypt(inputData:String)

© 2004 by CRC Press LLC

g

configure a search manager object (context) with this algorithm. For exam-
ple, if the list is already sorted, the application should use the binary search
algorithm as opposed to the linear search algorithm. Implement each
algorithm as a different Strategy class.

3. The tax calculation varies from state to state in the United States. Design
an application using the Strategy pattern to calculate taxes for different
states in the United States.

4. Design an application that calculates simple and the compound interest.
Identify the advantages and disadvantages of using the Strategy pattern in
this case, compared to other alternatives.

Figure 36.4 Client Object Using CodeBookCypher for Encryption

LoggerClient EncryptLogger CodeBookCypher

create()

create()

setEncryptionStrategy(strategy:EncryptionStrategy)

log(msg:String)

encrypt(msg:String)

encrypt(msg:String)

© 2004 by CRC Press LLC

37

NULL OBJECT

This pattern was previously described in Woolf96, Grand98.

DESCRIPTION

The term null is used in most computer programming languages to refer to a
nonexisting object. The Null Object pattern is applicable when a client expects
to use different subclasses of a class hierarchy to execute different behavior and
refers these subclasses as objects of the parent class type. At times, it may be
possible that a subclass instance may not be available when the client expects
one. In such cases, what a client object receives is a nonexisting object or null.
When a null is returned, the client cannot invoke methods as it would if a real
object is returned. Hence the client needs to check to make sure that the object
is not null before invoking any of its methods. In the case of a null, the client
can either provide some default behavior or do nothing.

Applying the Null Object pattern in such cases eliminates the need for a client
to check if an object is null every time the object is used.

The Null Object pattern recommends encapsulating the default (or usually the
do nothing) behavior into a separate class referred to as a Null Object. This class
can be designed as one of the subclasses in the class hierarchy. Thus the Null
Object provides the same set of methods as other subclasses do, but with the
default (or do nothing) implementation for its methods. With the Null Object in
place, when no subclass with real implementation is available, the Null Object is
made available to the client. This type of arrangement eliminates the possibility
of a client receiving a nonexisting object and hence the client does not need to
check if the object it received is null (or nonexisting). Because the Null Object
offers the same interface as other subclass objects, the client can treat them all
in a uniform manner.

The following example shows how the Null Object pattern can be used to
address a special case requirement of the message logging utility we built as an
example of the Factory Method pattern.

© 2004 by CRC Press LLC

g

EXAMPLE

Our design of the message logging utility is mainly composed of a
interface and two of its implementers — and —
to log messages to a file and to the console, respectively. In addition, we had
the class (Listing 37.1) with a factory method in it. The factory
method, when requested by the client, creates an instance of one of the
implementers based on the property value specified in the

file and returns it to the client.
Hence the message logging utility requires:

� The property file to exist.
� The property file to contain a value for the

property as per the values in Table 37.1.

Listing 37.1 Class

© 2004 by CRC Press LLC

j

As can be seen from the implementation in Listing 37.1, the
makes an assumption that the properties file always exists
with a value for the property.

Let us enhance the message logging utility as in Listing 37.2 so that the utility
works properly, even when the properties file does not exist.

The enhanced version of the returns a null, when either
the properties file is not available or when the parameter is not
given a value inside the property file.

With this new design, a client that uses the has the possibility
of receiving a null when it invokes the factory method. Because the
client cannot invoke the method when a null is returned, it needs to check
if the returned object reference is null before invoking the method. In other
words, it needs to treat the returned object reference differently depend-
ing on whether the reference is null or it refers to a real object.

With the client having to check for null every time it tries to log a message,
the code could quickly become very cluttered. The Null Object pattern can be
applied in this case, eliminating the need for the client to check if
the returned instance is null.

Applying the Null Object pattern, let us define a new implementer
of the interface as follows:

Figure 37.1 shows the class hierarchy.
The does not do anything as part of its implementation of the

method. Let us redesign the class (Listing 37.3) so that

Table 37.1 Property Values

Messages are logged to a file.
Messages are displayed on the console.

© 2004 by CRC Press LLC

g

instead of returning a simple null, it now returns a instance when
either the property file is not available or when the parameter is
not given a value inside the property file.

Listing 37.2 Enhanced Class

© 2004 by CRC Press LLC

j

With this new design, the client is always assured of receiving an object of
type , which is not null. This in turn eliminates the need for a client to
check for null. This reduces the clutter in the client code.

Also, because the implements the interface, the client
can treat all objects in the same manner as the other
objects, without any special considerations.

PRACTICE QUESTIONS

During the discussion of the Strategy pattern, we built a message encryption
application.

1. Design a new encryption strategy that returns the input text
as it is without applying any encryption.

2. Design a factory method that creates an appropriate
encryption object and returns it as an object of
type. This factory method is to be used by the client .

3. Is it more advantageous to use a null encryption strategy such as
(as in practice question 1 above) or to have a check for null

as part of the client implementation?

Figure 37.1 Message Logging Utility: Class Hierarchy

<<interface>>
Logger

log(msg:String)

FileLogger

log(msg:String)

ConsoleLogger

log(msg:String)

NullLogger

log(msg:String)

© 2004 by CRC Press LLC

g

Listing 37.3 Revised Class

© 2004 by CRC Press LLC

38

TEMPLATE METHOD

This pattern was previously described in GoF95.

DESCRIPTION

The Template Method pattern is one of the simplest and most frequently used
design patterns in object-oriented applications.

The Template Method pattern can be used in situations when there is an
algorithm, some steps of which could be implemented in multiple different ways.
In such scenarios, the Template Method pattern suggests keeping the outline of
the algorithm in a separate method referred to as a template method inside a class,
which may be referred to as a template class, leaving out the specific implemen-
tations of the variant portions (steps that can be implemented in multiple different
ways) of the algorithm to different subclasses of this class.

The Template class does not necessarily have to leave the implementation
to subclasses in its entirety. Instead, as part of providing the outline of the
algorithm, the Template class can also provide some amount of implementation
that can be considered as invariant across different implementations. It can even
provide default implementation for the variant parts, if appropriate. Only specific
details will be implemented inside different subclasses. This type of implementa-
tion eliminates the need for duplicate code, which means a minimum amount of
code to be written.

Using the Java programming language, the Template class can be designed
in one of the following two ways.

Abstract Class

This design is more suitable when the Template class provides only the outline
of the algorithm without any default implementation for its variant parts. Assuming
that different steps of the algorithm can be made into individual methods:

� The Template method can be a concrete, nonabstract method with calls
to other methods that represent different steps of the algorithm.

� The Template class can implement invariant parts of the algorithm as a
set of nonabstract methods.

© 2004 by CRC Press LLC

g

� The set of variant steps can be designed as abstract methods. Specific
implementations can be provided for these abstract methods inside a set
of concrete subclasses of the abstract Template class.

In this design, the Abstract class declares methods and each of the subclasses
implement these methods in a manner that is specific to it without altering the
outline of the algorithm.

Concrete Class

This design is more suitable when the Template class provides, besides the
outline of the algorithm, the default implementation for its variant parts. Assuming
that different steps of the algorithm can be made into individual methods:

� The Template method can be a concrete, nonabstract method with calls
to other methods that represent different steps of the algorithm.

� The Template class can implement invariant parts of the algorithm as a
set of nonabstract methods.

� The set of variant steps can be designed as nonabstract methods with the
default implementation. Subclasses of the Template class can override
these methods to provide specific implementations without altering the
outline of the algorithm.

From both the design strategies, it can be seen that the Template pattern
implementation relies heavily on inheritance and function overriding. Hence,
whenever inheritance is used for implementing the specifics, it can be said that
Template Method pattern is used in its simplest form.

EXAMPLE

Let us design an application to check the validity of a given credit card. For
simplicity, let us consider only three types of credit cards — Visa, MasterCard
and Diners Club. The application carries out a series of validations on the input
credit card information. Table 38.1 lists different steps in the process of validating
different credit cards.

As can be seen from Table 38.1, some steps of the validation algorithm are
the same across all three of the credit cards while some are different. The Template
Method pattern can be applied in designing this process.

Let us define an abstract CreditCard class (Figure 38.1 and Listing 38.1) with:

� The Template method isValid that outlines the validation algorithm.
� A set of concrete methods implementing Step 1, Step 4 and Step 5 from

Table 38.1.
� A set of abstract methods designated to implement Step 2, Step 3 and Step

6 from Table 38.1. It is to be noted that even after the CheckSum validation
is successful, it cannot be guaranteed that a given credit card is valid. It
is possible that the account may have been revoked or over the limit.

© 2004 by CRC Press LLC

p

Hence, a check with the credit card company (Visa, MasterCard, Diners
Club) is required to make sure that the account is in good standing. This
step requires custom programming to interface with the credit card com-
pany database and is considered to be different for different credit card
types. Hence the isAccountInGoodStand method is designed as an
abstract method to be implemented by different subclasses.

The most significant method in the design is the isValid Template method.
This method invokes different methods designed to implement different steps of
the algorithm. It is to be noted that the Template method isValid is specified
as a final method to prevent subclasses from overriding it. Subclasses are expected
to override only abstract methods to provide specific implementation and are not
supposed to alter the outline of the algorithm.

Table 38.1 Different Steps in the Validation Process

Step Check Visa MasterCard Diners Club

1 Expiration date >Today >Today >Today
2 Length 13, 16 16 14
3 Prefix 4 51 through 55 30, 36, 38
4 Valid characters 0 through 9 0 through 9 0 through 9
5 Check digit

algorithm
Mod 10 Mod 10 Mod 10

6 Account in good
standing

Use custom
Visa API

Use custom
MasterCard
API

Use custom
Diners Club
API

Figure 38.1 CreditCard Template Class

CreditCard

final isValid():boolean

isExpDtValid():boolean
hasValidChars():boolean
isValidCheckSum():boolean
isNumofDigitsValid():boolean
isValidPrefix():boolean
isAccountInGoodStand():boolean

cardNum:String
expMM:int
expYY:int

Template
Method

© 2004 by CRC Press LLC

g

Listing 38.1 Abstract CreditCard Class

public abstract class CreditCard {

protected String cardNum;

protected int expMM, expYY;

public CreditCard(String num, int expMonth, int expYear) {

cardNum = num;

expMM = expMonth;

expYY = expYear;

}

public boolean isExpDtValid() {

Calendar cal = Calendar.getInstance();

cal.setTime(new Date());

int mm = cal.get(Calendar.MONTH) + 1;

int yy = cal.get(Calendar.YEAR);

boolean result =

(yy > expYY) || ((yy == expYY) && (mm > expMM));

return (!result);

}

private boolean hasValidChars() {

String validChars = "0123456789";

boolean result = true;

for (int i = 0; i < cardNum.length(); i++) {

if (validChars.indexOf(cardNum.substring(i, i + 1)) <

0) {

result = false;

break;

}

}

return result;

}

private boolean isValidCheckSum() {

boolean result = true;

int sum = 0;

int multiplier = 1;

int strLen = cardNum.length();

for (int i = 0; i < strLen; i++) {

String digit = cardNum.substring(strLen - i - 1,

strLen - i);

(continued)

© 2004 by CRC Press LLC

p

Listing 38.1 Abstract CreditCard Class (Continued)

int currProduct =

new Integer(digit).intValue() * multiplier;

if (currProduct >= 10)

sum += (currProduct% 10) + 1;

else

sum += currProduct;

if (multiplier == 1)

multiplier++;

else

multiplier — ;

}

if ((sum% 10) != 0)

result = false;

return result;

}

/* methods to be overridden by sub-classes. */

public abstract boolean isNumOfDigitsValid();

public abstract boolean isValidPrefix();

public abstract boolean isAccountInGoodStand();

/* Final method - subclasses cannot override

TEMPLATE METHOD

*/

public final boolean isValid() {

if (!isExpDtValid()) {

System.out.println(" Invalid Exp Dt. ");

return false;

}

if (!isNumOfDigitsValid()) {

System.out.println(" Invalid Number of Digits ");

return false;

}

if (!isValidPrefix()) {

System.out.println(" Invalid Prefix ");

return false;

}

(continued)

© 2004 by CRC Press LLC

g

In Java programming language, a subclass cannot override the following two types of
methods of its parent class:

� private methods
� final methods irrespective of the associated access specifier

Let us define three subclasses —VisaCard, MasterCard and DinersCard
— of the CreditCard Template class, each providing implementation for all
abstract methods declared in the parent class (Listing 38.2 through Listing 38.4).

The resulting class association can be depicted as in Figure 38.2.
With the above design in place, any client looking to validate credit card

information would simply create an instance of an appropriate CreditCard
subclass and invoke the isValid method.

public class Client {

public static void main(String[] args) {

CreditCard cc =

new VisaCard("1234123412341234,”11, 2004);

if (cc.isValid())

System.out.println("Valid Credit Card Information");

}

}

Listing 38.1 Abstract CreditCard Class (Continued)

if (!hasValidChars()) {

System.out.println(" Invalid Characters ");

return false;

}

if (!isValidCheckSum()) {

System.out.println(" Invalid Check Sum ");

return false;

}

if (!isAccountInGoodStand()) {

System.out.println(

" Account is Inactive/Revoked/Over the Limit ");

return false;

}

return true;

}

}

© 2004 by CRC Press LLC

p

ADDITIONAL NOTES

Mod 10 Check Digit Algorithm

In general, a check digit is a digit added to a number that helps in checking the
authenticity of the number. The Mod 10 check digit algorithm can be used to
validate such a number associated with a check digit.

Listing 38.2 VisaCard Class

public class VisaCard extends CreditCard {

public VisaCard(String num, int expMonth, int expYear) {

super(num, expMonth, expYear);

}

public boolean isNumOfDigitsValid() {

if ((cardNum.length() == 13) ||

(cardNum.length() == 16)) {

return true;

} else {

return false;

}

}

public boolean isValidPrefix() {

String prefix = cardNum.substring(0, 1);

if (prefix.equals("4")) {

return true;

} else {

return false;

}

}

public boolean isAccountInGoodStand() {

/*

Make necessary VISA API calls to

perform other checks.

*/

return true;

}

}

© 2004 by CRC Press LLC

g

Listing 38.3 MasterCard Class

public class MasterCard extends CreditCard {

public MasterCard(String num, int expMonth, int expYear) {

super(num, expMonth, expYear);

}

public boolean isNumOfDigitsValid() {

if (cardNum.length() == 16) {

return true;

} else {

return false;

}

}

public boolean isValidPrefix() {

String prefix = cardNum.substring(0, 1);

String nextChar = cardNum.substring(1, 2);

String validChars = "12345";

//51-55

if ((prefix.equals("5")) &&

(validChars.indexOf(nextChar) >= 0)) {

return true;

} else {

return false;

}

}

public boolean isAccountInGoodStand() {

/*

Make necessary MASTER CARD API calls to

perform other checks.

*/

return true;

}

}

© 2004 by CRC Press LLC

p

Listing 38.4 DinersCard Class

public class DinersCard extends CreditCard {

public DinersCard(String num, int expMonth, int expYear) {

super(num, expMonth, expYear);

}

public boolean isNumOfDigitsValid() {

if (cardNum.length() == 14) {

return true;

} else {

return false;

}

}

public boolean isValidPrefix() {

String prefix = cardNum.substring(0, 1);

String nextChar = cardNum.substring(1, 2);

String validChars = "068";

//51-55

if ((prefix.equals("3")) &&

(validChars.indexOf(nextChar) >= 0)) {

return true;

} else {

return false;

}

}

public boolean isAccountInGoodStand() {

/*

Make necessary DINERS CARD API calls to

perform other checks.

*/

return true;

}

}

© 2004 by CRC Press LLC

g

The following steps describe the validation process:

1. Use 194774915 (check digit 5 included) as an example.
1 9 4 7 7 4 9 1 5

2. Starting from the second digit from right, multiply every alternate digit by 2.
1 9x2 4 7x2 7 4x2 9 1x2 5
Result:
1 18 4 14 7 8 9 2 5

3. Add individual digits in the newly formed products.
1 1+8 4 1+4 7 8 9 2 5
Result:
1 9 4 5 7 8 9 2 5

4. Now sum up all digits in the resultant number from the above step.
1 +9 +4 +5 +7 +8 +9 +2 +5 = 50

5. Now divide the sum by 10.
Result:
50/10 leaves no remainder and a zero remainder proves that the number is

valid.

Figure 38.2 CreditCard Class Hierarchy

MasterCard

isNumOfDigitsValid():boolean
isValidPrefix():boolean
isAccountInGoodStand():boolean

VisaCard

isNumOfDigitsValid():boolean
isValidPrefix():boolean
isAccountInGoodStand():boolean

DinersCard

isNumOfDigitsValid():boolean
isValidPrefix():boolean
isAccountInGoodStand():boolean

CreditCard

isExpDtValid():boolean
hasValidChars():boolean
isValidCheckSum():boolean
final isValid():boolean
isNumofDigitsValid():boolean
isValidPrefix():boolean
isAccountInGoodStand():boolean

cardNum:String
expMM:int
expYY:int

© 2004 by CRC Press LLC

p

PRACTICE QUESTIONS

1. Identify how the Template Method pattern is used when you design an
applet with custom code in any of the applet life-cycle methods (init, start,
paint, stop and destroy).

2. Some scenarios involving many different implementations for different
steps of an algorithm could lead to a fast growing class hierarchy with a
large number of subclasses. What alternatives would you consider in such
cases?

© 2004 by CRC Press LLC

39

OBJECT AUTHENTICATOR

The Object Authenticator pattern is also known as the Protection Proxy and was
previously described in GoF95.

DESCRIPTION

In general, objects in an application interact with each other to offer the overall
application functionality. Most application objects are generally accessible to all
the other objects in the application. At times, it may be necessary to restrict the
accessibility of an object only to a limited set of client objects based on their
access rights. When a client object tries to access such an object, the client is
given access to the services provided by the object only if the client can furnish
proper authentication credentials. In such cases, a separate object can be desig-
nated with the responsibility of verifying the access privileges of different client
objects when they access the actual object. In other words, every client must
successfully authenticate with this designated object to get access to the actual
object functionality. Such an object with which a client needs to authenticate to
get access to the actual object can be referred as an object authenticator. The
following example demonstrates how an object authenticator can be used in an
application scenario.

EXAMPLE

Let us design the order creation functionality of an order management application.
This functionality can be designed as part of an Order object.

Let us define an OrderIF interface that declares the functionality to be offered
by Order objects.

public interface OrderIF {

public void create(String item,

int qty) throws UnAuthorizedUserException;

}

© 2004 by CRC Press LLC

g

The OrderIF interface declares a create method that can be used by client
objects to create orders. The actual Order object can be designed as an
implementer of the OrderIF interface.

public class Order implements OrderIF {

public void create(String item, int qty) {

System.out.println(qty + " Units of Item " + item +

" has been ordered. ");

}

}

In this example, the Order object is kept simple, as the primary focus is to
demonstrate the use of the authenticator object. As part of its implementation of
the create method, an Order object simply writes the input order data to the
console. In real world applications that order data is normally saved to a database.

By default, any other object in the order management application can freely
access an Order object and invoke its create method without any problem.

Let us suppose that the access to the Order objects needs to be restricted
only to authorized client objects. This can be easily accomplished by modifying
the Order class’s current implementation to include the responsibility of verifying
the access privileges of different client objects.

One of the characteristics of a well-designed object is that it performs a well-
defined, definite task. In other words, an object ideally should not do various
unrelated things. Hence, instead of making an Order object responsible for client
object access privilege verification and also to represent an order in the system, it
might be a good idea to move the client object access privilege verification respon-
sibility from the Order object to a separate designated object. This designated object
serves as an object authenticator to the corresponding Order object. This leaves
the Order object with only the order related functionality, rather than with the
additional responsibility of authentication also.

The designated Order object authenticator, OrderAuthenticator, can be
designed as an implementer of the same OrderIF interface, which the actual
Order object also implements (Figure 39.1). As a result, both the Order and its
authenticator offer the same interface and allow a client object to access both the
Order and OrderAuthenticator in a seamless manner.

public class OrderAuthenticator implements OrderIF {

private OrderManager client;

private String accessCode;

private String clientCode;

public OrderAuthenticator(String aCode, String cCode) {

accessCode = aCode;

clientCode = cCode;

}

public void create(String item,

int qty) throws UnAuthorizedUserException {

© 2004 by CRC Press LLC

j

if (clientCode.equals(accessCode)) {

Order ord = new Order();

ord.create(item, qty);

} else {

throw new UnAuthorizedUserException();

}

}

}

When an OrderAuthenticator object is created, it is configured with two
types of access codes:

1. Authentication code — This is a valid code that a client object needs to
provide to access the services offered by an Order object. Client objects
that do not provide the right code are denied access to the Order object
services.

2. Client code — This is the access code submitted by a client object that
intends to use the Order object functionality. The client object is provided
with the requested services only if this code matches with the authentication
code.

As part of its implementation of the create method, the OrderAuthenti-
cator checks to see if the client object has submitted the correct access code.
If the client has submitted the correct access code, the authenticator creates an
Order object and invokes the create method on the Order instance. The
existence of the Order object is completely hidden from the client object. If the
client has submitted an incorrect access code, the authenticator throws a custom
UnAuthorizedUserException exception.

Figure 39.1 Order and OrderAuthenticator as Implementers of the OrderIF
Interface

OrderAuthenticator

create(item:String,qty:int)

<<interface>>
OrderIF

create(item:String,qty:int)

Order

create(item:String,qty:int)

© 2004 by CRC Press LLC

g

Further, let us define a factory object AuthManager, which is responsible for
the creation of authenticator objects corresponding to different application objects.
When the AuthManager creates an instance of an authenticator, it configures
the authenticator with the correct authentication code. Every client object must
authenticate by submitting the same access code with the authenticator to access
the functionality offered by the actual object. In this example, the access code is
hard-coded for simplicity. In real world applications, access codes are normally
retrieved from a database.

public class AuthManager {

public OrderIF getOrderAuthenticator(String clientCode) {

return new OrderAuthenticator("xYzAbC”, clientCode);

}

}

When the client OrderManager needs to access an Order object to create
an order (Figure 39.2):

1. It creates an instance of the AuthManager and requests an OrderAu-
thenticator object by invoking the getOrderAuthenticator
method. As part of the getOrderAuthenticator method call the
OrderManager object sends its access code as an argument.

2. The AuthManager creates an instance of the OrderAuthenticator and
configures it with the correct authentication code and also the access code

Figure 39.2 Message Flow

OrderManager AuthManager

create()

getOrderAuthenticator(clientCode:String)

OrderAuthenticator

create(item:String, qty:int)

only if the
client
OrderManager
is authorized

Ordercreate()

create()

© 2004 by CRC Press LLC

j

submitted by the client OrderManager in Step 1. The OrderAuthen-
ticator does not offer any methods for external client objects to read
the authentication code it is configured with.

3. The client OrderManager invokes the create method on the Order-
Authenticator with appropriate parameters.

4. The client OrderManager the OrderAuthenticator verifies the access
code submitted by the client OrderManager.
� If the OrderManager has submitted the correct access code, the

authenticator creates an actual Order object and forwards the method
call to the corresponding Order object to create an order with the
order data submitted by the OrderManager. The client OrderManager
does not need to be aware of the existence of the Order object.

� If the OrderManager has submitted an incorrect access code, the
OrderAuthenticator throws an exception indicating a denial of
service.

public class OrderManager {

public void createOrder(String item,

int qty) throws UnAuthorizedUserException {

AuthManager manager = new AuthManager();

OrderIF authenticator =

manager.getOrderAuthenticator("xYzAbC");

authenticator.create(item, qty);

}

}

public class MainApp {

public static void main(String[] args) {

OrderManager manager = new OrderManager();

try {

manager.createOrder("CDs”, 10);

} catch (Exception e) {

System.out.println(e.getMessage());

}

}

}

Figure 39.3 depicts the structure and the associations between different classes.

PRACTICE QUESTIONS

1. Create an object authenticator for an Employee object.

© 2004 by CRC Press LLC

g

2. In the example application discussed above, the access code used during
the creation of the authenticator object is hard-coded. Enhance the appli-
cation to read access codes from a database.

Figure 39.3 Order Management Application Using an Authenticator: Class Association

OrderAuthenticator

create(item:String,qty:int)

<<interface>>
OrderIF

create(item:String,qty:int)

Order

create(item:String,qty:int)

<<gives
access to>>

OrderManager

AuthManager

getOrderAutenticator(
clientCode:String)
:OrderAuthenticator

<<uses>>

<<uses>>

<
<
c
r
e
a
t
e
s
>
>

© 2004 by CRC Press LLC

40

COMMON ATTRIBUTE REGISTRY

DESCRIPTION

In general, objects in an application are designed to carry related data and perform
well-defined tasks with clearly defined responsibilities. In an application, these
objects interact with each other to provide the overall application functionality.
During such interactions, instances of different classes may need to access the
same set of data items or attributes. For example, different business objects in an
application often use the same database connection string to connect to the
application backend database. These common attributes are not always read-only.
Consider the example of an application that operates in local and remote modes.
While the application is operating in the remote mode, if an application object
detects a problem in communicating with the remote server, it immediately informs
all the other application objects so that they can take appropriate action such as
changing to the local mode of operation. The remote server current status
information is relevant and common for all objects in the application. Application
objects both read and update this type of common information. The Common
Attribute Registry (or CAR) is an object that is designated exclusively to handle
the set of common data items or attributes in an application.

In a nutshell, CAR is an object that offers methods to allow different application
objects to set and retrieve different attribute values and is not persistent. The data
stored in CAR is available only during the lifetime of the application that is using
CAR. As soon as the application execution is complete or in case of a system
crash, the information stored in CAR is lost. In other words, CAR can be used to
store only the common transient state of an application.

Because the purpose of CAR is to provide service to all the objects in an
application, it requires that CAR be:

� Designed as a singleton, as there is a need for only one instance of CAR
during the entire lifetime of an application. Applications can be built using
more than one CAR instance as well. But in such cases, each client object
needs to query every CAR instance in the application, which could become
an overhead.

� Capable of handling concurrent updates to an attribute without problems.
This ensures that CAR can safely be used in a multithreaded environment.

© 2004 by CRC Press LLC

g

� Capable of handling name collisions: When two objects try to store two
different attributes with the same name, it should allow both operations
to go through without any problems as long as the values are relevant
and meaningful in two different parallel contexts.

With these specifications, a generic CAR can be designed as in Figure 40.1.
For the purpose of allowing the storage of more than one attribute with the

same name, CAR can be thought of as consisting of a set of groups, which can
be represented by instances of the CARGroup class in Figure 40.1. Each group
in turn can hold a set of attributes along with their corresponding values. This
allows two attributes with the same name to be stored in two groups. This is
similar to storing two files with the same file name under two different directories
in the file system and eliminates the possibility of name collisions.

The CARGroup (Listing 40.1) uses its instance variable named attributes
of the Hashtable type to store different attributes and offers two methods —
setAttribute and getAttribute — to set and retrieve the values of different
attributes stored in the attributes instance variable. These methods internally
use the built-in get and put Hashtable methods, which are designed as
synchronized methods. This ensures that race conditions do not occur when the
setAttribute and getAttribute methods are invoked in a multithreaded
environment.

The CAR (Listing 40.2) class itself is designed as a singleton with a private
constructor and a class-level method getCAR to return the singleton CAR instance.
CAR stores CARGroup objects corresponding to different groups in its instance
variable named groups of the Hashtable type. Similar to the CARGroup,
CAR provides two methods — createGroup and deleteGroup — to allow

Figure 40.1 Generic CAR Design

CAR

groups:Hashtable

CARGroup

attributes:Hashtable

-$SingleInstance

getCAR():CAR
createGroup(String name):CARGroup
deleteGroup(String name)

setAttribute(String name, Object val)
getAttribute(String name):Object

0..*

1

© 2004 by CRC Press LLC

g y

client objects to create and delete a group. Internally, these methods make use
of the synchronized put and get Hashtable methods. This overall structure
ensures that the singleton CAR object can safely be used in a multithreaded
environment. Figure 40.2 provides the logical representation of CAR with internal
CARGroup objects.

When a client object needs to store an attribute in a group inside CAR, it
needs to:

1. Invoke the static getCAR method to get access to the singleton CAR object.
2. Invoke the createGroup method on the singleton CAR instance to obtain

a reference to the required CARGroup object. This requires creating a
CARGroup instance if a CARGroup instance corresponding to the required
group does not already exist.

3. Create an attribute and set its value in CAR using the CARGroup object
reference obtained in Step 2.

CAR is only useful to store simple data values and not suitable for storing
large objects. Because the data stored within CAR is ephemeral, it is not recom-
mended to store any data in CAR that is expected to be available after a system
crash or after the application execution is complete.

Listing 40.1 CARGroup Class

public class CAR {

private static CAR car;

private Hashtable groups;

…

…

class CARGroup {

private Hashtable attributes;

private String name;

private CARGroup(String grpName) {

name = grpName;

attributes = new Hashtable();

}

public void setAttribute(String name, Object val) {

attributes.put(name, val);

}

public Object getAttribute(String name) {

return attributes.get(name);

}

}

}

© 2004 by CRC Press LLC

g

This design of CAR is generic and may be used directly in an application as
a common data repository.

EXAMPLE

Let us build an application to query the details of different items in a library.
Library items can be classified into five different categories — books, magazines,
videos, DVDs and CDs. One of the simplest ways of designing the required
functionality is to design a separate object, e.g., ItemManager (Listing 40.3),
with the responsibility of retrieving the details of an item. Client objects can make
use of the ItemManager to retrieve the details of an item. A client object may
need to pass such information as the category and the item name to the Item-
Manager to retrieve the details of an item. The ItemManager can be designed
to make use of helper classes to access the database to retrieve the requested
item details. Figure 40.3 provides a pictorial representation of this design.

Listing 40.2 CAR Class

public class CAR {

private static CAR car;

private Hashtable groups;

public static CAR getCAR() {

if (car == null)

car = new CAR();

return car;

}

private CAR() {

groups = new Hashtable();

}

public CARGroup createGroup(String name) {

CARGroup group = (CARGroup) groups.get(name);

if (group == null) {

group = new CARGroup(name);

groups.put(name, group);

}

return group;

}

public void deleteGroup(String name) {

}

…

…

}

© 2004 by CRC Press LLC

g y

In this approach, every client request for item details results in a database
operation. Because the item details do not change frequently, to improve the
application performance some kind of a caching mechanism can be introduced
so that every client request does not require the database to be accessed for details.

Because CAR offers a thread-safe mechanism to store data that is common
across objects, details of some of the most recently queried items can be stored
in CAR. The idea is to return the details of an item from CAR itself without having
to access the database, if the requested item details are available in CAR. The
requirement of storing the details of different items belonging to different cate-
gories maps well with the storage structure of CAR, where individual attributes
or values are stored in groups. The generic CAR designed earlier in this section

Figure 40.2 CAR: Logical Representation

Listing 40.3 ItemManager Class

public class ItemManager {

public String getItemDetails(String item, String category) {

DBManager objDBManager = new DBManager();

String details =

objDBManager.getItemDetails(item, category);

return details;

}

}

Attribute=Value
Attribute=Value
 ...
 ...

CAR

Group_1

Attribute=Value
Attribute=Value
 ...
 ...

Group_2

Attribute=Value
Attribute=Value
 ...
 ...

Group_n

© 2004 by CRC Press LLC

g

can be used as-is in this case by the ItemManager (Listing 40.4). Because CAR
is designed as a singleton, all client objects can share the single instance of CAR.
Figure 40.4 shows the revised application design using CAR to improve the
application responsiveness.

In the new design (Figure 40.4, Listing 40.4), when a client object requests
the ItemManager for the details of an item in a category, the ItemManager
invokes the createGroup method on the singleton CAR object to obtain a
reference to the CARGroup object corresponding to the specified item category.
Inside the createGroup method, the CAR checks to see if a CARGroup object
corresponding to the requested item category already exists.

� If the CARGroup object exists, the CARGroup object reference is returned
to the ItemManager.

� If the CARGroup object does not exist, CAR:
– Creates a new CARGroup instance.
– Associates it with the specified item category.
– Returns it to the ItemManager.

Once the CARGroup instance is received, the ItemManager checks to see
if an attribute corresponding to the specified item exists in the group.

� If the attribute exists, item details are retrieved from CAR and returned to
the client object.

� If the attribute does not exist:
– The ItemManager retrieves item details from the database using helper

objects.
– The ItemManager creates an attribute with the item name by invoking

the setAttribute method on the CARGroup corresponding to the
item category. This essentially stores the item details in the CARGroup
object.

– Item details are returned to the client object.

Figure 40.3 Item Details Query without Caching

Helper
Classes

Client-2

Client-1 ItemManager

ItemManager
Helper
Classes

DB

© 2004 by CRC Press LLC

g y

Listing 40.4 ItemManager Class Using CAR

public class ItemManager {

private CAR car;

public ItemManager() {

car = CAR.getCAR();

}

public String getItemDetails(String item, String category) {

String value =

(String) car.createGroup(category).getAttribute(

item);

if (value == null) {

DBManager objDBManager = new DBManager();

String details =

objDBManager.getItemDetails(item, category);

CAR.CARGroup group = car.createGroup(category);

group.setAttribute(item, details);

value = details;

System.out.println("From DB");

} else {

System.out.println("From Cache");

}

return value;

}

}

Figure 40.4 Item Details Query with Caching

Helper
Classes

Client-2

Client-1 ItemManager

ItemManager
Helper
Classes

CAR
(Item Details

Cache) DB

© 2004 by CRC Press LLC

g

Let us design the main application client TestClient (Listing 40.5) to make
use of the ItemManager services to retrieve item details. For simplicity, different
item and category details are hard-coded in the TestClient implementation.
When executed, the TestClient interacts with the ItemManager to retrieve
item details without having to know the presence of CAR and the role it plays
in caching and retrieving item details.

The class diagram in Figure 40.5 shows the overall class association.

PRACTICE QUESTIONS

1. Redesign the example application to use a nonsingleton version of CAR.
What changes are required to the application design to prevent unpredict-
able results when an application object attempts to read attribute values
from CAR?

2. Enhance the example CAR design so that it can be used to share data
across applications.

3. Design an application that uses a CAR instance to store the authentication
credentials of different users.

Listing 40.5 TestClient Class

public class TestClient {

public static void main(String[] args) {

ItemManager manager = new ItemManager();

System.out.println(

manager.getItemDetails("Commando”,"Video"));

System.out.println(

manager.getItemDetails("Commando”,"DVD"));

System.out.println(

manager.getItemDetails("Jaws”,"Video"));

System.out.println(

manager.getItemDetails("Jaws”,"Electronics"));

System.out.println(

manager.getItemDetails("Interview Tips”,"CD"));

System.out.println(

manager.getItemDetails("Jaws”,"Video"));

System.out.println(

manager.getItemDetails("Interview Tips”,"CD"));

}

}

© 2004 by CRC Press LLC

g y

Figure 40.5 Class Association

ItemManager

getItemDetails(category:String,
item:String):Item

TestClient

CAR

groups:Hashtable

CARGroup

attributes:Hashtable

-$SingleInstance

getCAR():CAR
createGroup(String name)

:CARGroup
deleteGroup(String name)

setAttribute(String name, Object val)
getAttribute(String name):Object

0..*

1

1

© 2004 by CRC Press LLC

VIII
CONCURRENCY PATTERNS

Concurrency patterns deal with:

� Ways to lock class code and an order of locking objects to prevent the
occurrence of race conditions and deadlocks

� The details of streamlining access to an application resource to improve
the overall application responsiveness

� The details of method execution while a required precondition is not met

Chapter Pattern Name Description

41 Critical Section Stricter form of Monitor. Used to lock the code at the
class level to keep multiple threads from executing
the locked code even on two different instances of
the same class.

42 Consistent Lock
Order

Recommends identifying and documenting a well-
defined order of locking objects to be followed
consistently during the design and the development
of an application to eliminate the possibility of the
occurrence of a deadlock.

43 Guarded
Suspension

Recommends a method to be designed to suspend its
execution until the object is in a state that makes a
required precondition true.

44 Read-Write Lock Recommends allowing simultaneous read operations
while preventing simultaneous updates to the values
of an application resource in order to improve the
overall application responsiveness.

© 2004 by CRC Press LLC

41

CRITICAL SECTION

DESCRIPTION

A Critical Section is a segment of code that must be executed by only one thread
at a time to produce the expected results. When more than one thread is allowed
to execute this code segment, it could produce unpredictable results. By this
definition, a critical section looks very similar to the concept of a Monitor discussed
in Section III — Basic Patterns. The following is the list of similarities and
differences between Monitors and Critical Sections:

� A Critical Section is a stricter form of a Monitor.
� A Monitor locks a single object whereas a Critical Section requires a lock

on an entire class of objects.
� In Java:

– The implementation of a Monitor on a method requires the method to
be declared using the synchronized keyword.

– A Critical Section can be implemented by using the combination of both
the static and the synchronized keywords.

� In the case of a Monitor, no two threads are allowed to execute the
synchronized code on the same object. Two threads can execute the same
synchronized code on two different objects. In contrast, in the case of a
critical section, no two threads are allowed to execute the code on two
different objects. This is because the code is locked at the class level, not
at the object level.

EXAMPLE

During the discussion of the Singleton pattern, we designed a message logging
class FileLogger as a singleton. The FileLogger class maintains a class
variable logger of the FileLogger type. This variable is used to hold the singleton
FileLogger instance. The FileLogger class offers a class-level method get-
FileLogger that can be used by different client objects to access the singleton
FileLogger instance. As part of the getFileLogger method implementation,
the FileLogger checks to see if the singleton instance has already been created.
Checking to see if the class variable logger is null does this. If logger is found

© 2004 by CRC Press LLC

to be uninitialized, a FileLogger instance is created by invoking its private
constructor and is assigned to the logger class variable. This implementation of
the getFileLogger method works fine in a single-threaded environment. In
a multithreaded environment, it is possible for two threads to simultaneously
execute the getFileLogger method to see if the class variable logger is null
and, as a result, initialize logger twice. This means that the FileLogger private
constructor gets invoked twice.

public class FileLogger implements Logger {

private static FileLogger logger;

private FileLogger() {

}

public static FileLogger getFileLogger() {

if (logger == null) {

logger = new FileLogger();

}

return logger;

}

public synchronized void log(String msg) {

FileUtil futil = new FileUtil();

futil.writeToFile("log.txt”,msg, true, true);

}

}

Initializing the logger variable twice in this example does not result in an error.
This is because the FileLogger private constructor does not do any complex,
critical initialization. In contrast, if the singleton constructor method executes such
operations as opening a socket connection on a particular port, executing the
constructor twice could result in an error.

Let us enhance the design of the FileLogger class to make it suitable for
use in multithreaded environments. This can be accomplished in two ways.

Approach I (Critical Section)

This involves making the getFileLogger method a Critical Section so that
only one thread can ever execute it at any given point in time. This can be
accomplished by simply declaring the class-level method getFileLogger as
synchronized.

public class FileLogger implements Logger {

private static FileLogger logger;

private FileLogger() {

}

© 2004 by CRC Press LLC

public static synchronized FileLogger getFileLogger() {

if (logger == null) {

logger = new FileLogger();

}

return logger;

}

public synchronized void log(String msg) {

FileUtil futil = new FileUtil();

futil.writeToFile("log.txt”,msg, true, true);

}

}

This simple change turns the getFileLogger method into a Critical
Section and guarantees that no two threads ever execute the getFileLogger
method at the same time. This completely eliminates the possibility of the
FileLogger constructor getting invoked more than once inside the get-
FileLogger method.

Approach II (Static Early Initialization)

It is to be noted that synchronizing methods can have a significant effect on the
overall application performance. In general, synchronized methods run much
slower, as much as 100 times slower than their nonsynchronized counterparts. As
an alternative to declaring the getFileLogger method as synchronized, the
logger variable can be early initialized.

public class FileLogger implements Logger {

//Early Initialization

private static FileLogger logger = new FileLogger();

private FileLogger() {

}

public static FileLogger getFileLogger() {

return logger;

}

public synchronized void log(String msg) {

FileUtil futil = new FileUtil();

futil.writeToFile("log.txt”,msg, true, true);

}

}

This eliminates the need for any check or initialization inside the getFile-
Logger method. As a result, the getFileLogger becomes thread-safe auto-
matically without having to declare it as synchronized.

© 2004 by CRC Press LLC

PRACTICE QUESTIONS

1. Design a database connection class as a thread-safe singleton.
2. Design a printer spooler class as a thread-safe singleton.

© 2004 by CRC Press LLC

42

CONSISTENT LOCK ORDER

DESCRIPTION

During the discussion of the Monitor and the Critical Section patterns earlier, we
have seen that when the synchronized keyword is used to ensure single-threaded
execution of a code block, a thread needs to wait while trying to acquire the
lock associated with the specified object. Consider a scenario where two threads
hold locks on two different objects and each one is waiting for a lock on the
object that is locked by the other thread. Both threads will be waiting forever
and are said to be in a state of deadlock. In terms of implementation, this type
of situation most often occurs due to an inconsistent order of locking objects. Let
us consider the code segment in Listing 42.1 to illustrate how inconsistent locking
in a multithreaded environment can cause a deadlock.

Consider a scenario where:

� Two threads, A and B, simultaneously invoke methods — Method_A and
Method_B — respectively on the same SomeClass object.

� Thread A acquires a lock on objectA and Thread B acquires a lock on
objectB at the same time. At this point, each of the threads waits for a
lock on the object locked by the other thread and this puts Thread A and
Thread B in a deadlocked condition.

To address such deadlock issues, the Consistent Lock Order pattern recom-
mends designing an object locking order to be followed consistently across an
application. Simply following an object locking order consistently across the
application (where objects of a particular class are to be locked before locking
other class instances) can eliminate the deadlock problem associated with the
example code block. In other words, by ensuring that objects are locked in a
consistent order all across the application, the problem of deadlocks can be
addressed.

The example code block in Listing 42.1 can be modified so that ClassA
objects are locked prior to locking ClassB objects.

© 2004 by CRC Press LLC

g

Listing 42.1 Class with Inconsistent Locking Order

public class SomeClass {

private ClassA objectA;

private ClassB objectB;

public SomeClass() {

objectA = new ClassA();

objectB = new ClassB();

}

public void Method_A() {

synchronized (objectA) {

synchronized (objectB) {

process_A();

}

}

}

public void Method_B() {

synchronized (objectB) {

synchronized (objectA) {

process_B();

}

}

}

private void process_A() {

//

}

private void process_B() {

//

}

}

class ClassA {

}

class ClassB {

}

© 2004 by CRC Press LLC

public void Method_A() {

synchronized (objectA) {

synchronized (objectB) {

process_A();

}

}

}

public void Method_B() {

synchronized (objectA) {

synchronized (objectB) {

process_B();

}

}

}

This type of object locking order based on the class type does not work when
the objects to be locked are instances of the same class. A more sophisticated
algorithm may be needed to decide the object locking order. The following
example illustrates one such mechanism.

EXAMPLE

Let us build a utility class that offers the functionality to move the contents of a
directory to a different directory in the file system.

Let us create a class Directory, instances of which can be used to represent
directories in the file system.

public class Directory {

private String name;

public Directory(String n) {

name = n;

}

}

The utility class FileSysUtil in its simplest form can be designed with a
method to move the contents between directories.

public class FileSysUtil {

public void moveContents(Directory src, Directory dest) {

synchronized (src) {

synchronized (dest) {

System.out.println("Contents Moved Successfully");

}

}

}

}

© 2004 by CRC Press LLC

g

To move the contents of a directory to another, a client object or thread needs
to:

1. Create Directory objects corresponding to the source and destination
directories.

2. Invoke the moveContents method by passing both the Directory
objects created in Step 1.

As part of its implementation of the moveContents method, the File-
SysUtil locks the Directory objects representing the source and destination
directories in sequence before actually moving the directory contents. This is to
prevent threads from changing or deleting the source or destination directories
while the current thread is in the process of moving the source directory contents
to the destination directory. For simplicity, the example application displays an
appropriate message instead of actually moving the source directory contents.

Let us suppose that there exist two directories — dir1 and dir2 — in the
file system. To move the contents of dir1 to dir2, a thread (e.g., Thread_A)
needs to create two Directory objects — objDir_1 and objDir_2 —
corresponding to dir1 and dir2, respectively and pass them as arguments to
the moveContents method.

//For Thread_A objDir_1 is the source directory

moveContents(objDir_1, objDir_2);

While executing the moveContents method, Thread_A attempts to acquire
locks on objDir_1 and objDir_2 in sequence.

At the same time, a different thread (e.g., Thread_B) invokes the moveCon-
tents method on the same FileSysUtil object to move dir2 contents to
dir1. Using the same Directory objects used by Thread_A, Thread_B
makes a call as follows:

//For Thread_B objDir_2 is the source directory

moveContents(objDir_2, objDir_1);

Similar to Thread_A, while executing the moveContents method,
Thread_B also attempts to acquire locks on objDir_1 and objDir_2 but in
the reverse order.

If Thread_A and Thread_B acquire locks at the same time on objDir_1
and objDir_2, respectively, then each thread continues to wait for a lock on
the Directory object locked by the other thread and this causes a deadlock.
Because both objDir_1 and objDir_2 are of the same Directory class
type, defining an object locking order based on the class type does not work in
this case. As an alternative, the built-in Java hashCode method can be used to
define an order of locking Directory objects. The hashCode method is defined
in the topmost java.lang.Object class and is inherited by all classes in Java.

© 2004 by CRC Press LLC

The hashCode method returns the unique ID or hash code associated with an
object. An object locking scheme can be defined based on some kind of order
of the hash codes of the objects to be locked.

To eliminate the possibility of a deadlock situation, the moveContents
method can be modified so that the objects representing the source and the
destination directories are locked in the ascending order of their associated hash
codes. This ensures that the Directory objects are always locked in the same
order, even if they are passed to the moveContents method by two different
threads in different order.

…

…

public void moveContents(Directory src, Directory dest) {

if (src.hashCode() > dest.hashCode()) {

synchronized (src) {

synchronized (dest) {

System.out.println("Contents Moved Successfully");

}

}

} else {

synchronized (dest) {

synchronized (src) {

System.out.println("Contents Moved Successfully");

}

}

}

}

…

…

With this change in place, when two threads invoke the moveContents
method at the same time to move the contents of two different directories in
opposite directions, only one thread is granted lock on the first Directory
object to be locked. The second thread simply waits for the lock on the first
Directory object itself. The possibility of the second thread locking the second
Directory object while the first thread locks the first Directory object does
not arise.

The example application uses a simple mechanism to define the locking order
for Directory objects. In the case of a real world application, a locking order
that is suitable for the application needs to be identified and documented. This
locking order can then be followed consistently during the design and the
development of the application.

© 2004 by CRC Press LLC

g

PRACTICE QUESTIONS

1. Design a class AccountManager with a method to transfer money from
one bank account to another. For this class to be used in a multithreaded
environment, it must lock both the account objects before performing the
actual transfer. Implement a method to transfer money so that when two
different threads attempt to transfer money between two different accounts
at the same time in opposite directions, it does not result in a deadlock in
a multithreaded environment.

2. Design a class InventoryManager with a method to move products from
one distribution center to another. For this class to be used in a multi-
threaded environment, it must lock the objects representing the two distri-
bution centers that are participating in the transaction before performing
actual updates to their inventory levels. The method to move products
should be implemented in a manner that does not cause a deadlock when
two different threads attempt to move items between two distribution
centers at the same time in opposite directions.

© 2004 by CRC Press LLC

43

GUARDED SUSPENSION

This pattern was previously described in Grand98 and is based on the material
that appeared in Lea97.

DESCRIPTION

In general, each method in an object is designed to execute a specific task. Sometimes,
when a method is invoked on an object, the object may need to be in a certain
state, which is logically necessary for the method to carry out the action it is designed
for. In such cases, the Guarded Suspension pattern suggests suspending the method
execution until such a precondition becomes true. In other words, the requirement
for the object to be in a particular state becomes a precondition for the method to
execute its implementation of the intended task.

Every class in Java inherits the wait, notify and notifyAll methods from the
base java.lang.Object class. When a thread invokes an object’s wait method:

� It makes the thread release the synchronization lock it holds on the object.
� The thread remains in the waiting state until it is notified to return via the notify or

notifyAll method.

Using these built-in wait, notify and notifyAll methods, the Guarded Suspen-
sion pattern can be implemented in Java.

The generic structure of a Java class when the Guarded Suspension pattern is
applied using the built-in wait, notify and notifyAll methods is represented
in Listing 43.1.

The class SomeClass consists of two synchronized methods — guarded-
Method and alterObjectStateMethod. The guardedMethod represents a
method that requires some kind of a precondition to become true before pro-
ceeding with its execution. Hence, it checks if the precondition is true and as
long as the precondition is not true, it waits using the wait method.

The alterObjectStateMethod method enables different client objects
(threads) to change the state of a SomeClass instance. This, in turn, could result
in the required precondition becoming true. Once the state of the object is

© 2004 by CRC Press LLC

g

changed, this method notifies any waiting thread that is waiting inside the
guardedMethod using the notify method. If the change in the object state
makes the precondition true, the waiting thread resumes with the execution of
the guardedMethod. Otherwise, it continues to wait till the precondition
becomes true.

Both the guardedMethod and alterObjectStateMethod methods are
designed as synchronized methods to prevent race conditions in a multithreaded
environment.

EXAMPLE

Let us build an application to simulate the parking mechanism at a health club.
A member can park his car if there is an empty parking slot. If there is no empty
parking slot, a member needs to wait until one of the parking slots becomes
available.

Listing 43.1 Generic Class Structure

public class SomeClass {

synchronized void guardedMethod() {

while (!preCondition()) {

try {

//Continue to wait

wait();

//…

} catch (InterruptedException e) {

//…

}

}

//Actual task implementation

}

synchronized void alterObjectStateMethod() {

//Change the object state

//…..

//Inform waiting threads

notify();

}

private boolean preCondition() {

//…

return false;

}

}

© 2004 by CRC Press LLC

p

A simple representation for the parking lot can be designed in the form of
the ParkingLot class shown in Listing 43.2.

The ParkingLot maintains the total number of currently parked cars in its
instance variable totalParkedCars. This constitutes the state of a ParkingLot
object.

The existence of an empty slot is the precondition for a member to proceed
with parking his car. It can be seen that the park method first checks to see if
this precondition is satisfied. If the number of currently parked members is greater
than or equal to the total number of available slots, it can be inferred that there
is no empty parking slot available and the member needs to wait until this
condition does not exist. When a member leaves the parking lot, the total number
of currently parked members is decremented and the leave method notifies
one of the waiting threads at random. Once the notification is received, the notified
thread attempts to get a lock on the object. Once the lock is obtained, it checks

Listing 43.2 ParkingLot Class

class ParkingLot {

//Assume 4 parking slots for simplicity

public static final int MAX_CAPACITY = 4;

private int totalParkedCars = 0;

public synchronized void park(String member) {

while (totalParkedCars >= MAX_CAPACITY) {

try {

System.out.println(" The parking lot is full " +

member + " has to wait ");

wait();

} catch (InterruptedException e) {

//

}

}

//precondition is true

System.out.println(member + " has parked");

totalParkedCars = totalParkedCars + 1;

}

public synchronized void leave(String member) {

totalParkedCars = totalParkedCars - 1;

System.out.println(member +

" has left, notify a waiting member");

notify();

}

}

© 2004 by CRC Press LLC

g

to see if the precondition is satisfied by reentering the while loop. If the
precondition is satisfied, it proceeds with the parking action. The example code
simply displays a message and increments the total number of currently parked
cars. Checking for the precondition by the notified thread may seem redundant
but it is required in a multithreaded environment. This is because of the possibility
of a different thread altering the object state between the time the waiting thread
attempts to obtain a lock on the object and the time it obtains it, so that the
precondition becomes false.

Use of wait() and notify() in the ParkingLot Class Design

� The park method uses the built-in java.lang.Object wait()
method to keep a Member thread waiting while the precondition is not
true. When the wait() method is called, the currently executed thread
(in this case a Member) is placed in the wait queue and its lock on the
ParkingLot object is released (it had a lock on the ParkingLot object
because park is synchronized). The next Member thread is then free to
enter the park method and checks if totalParkedCars >=
MAX_CAPACITY, which if true, is also placed into the wait queue.

� The leave method uses the built-in java.lang.Object notify
method to notify a single waiting thread at random. The choice of the
thread is at the discretion of the specific JVM implementation. The notified
thread regains a lock on the ParkingLot object and returns to executing
in the park method where the wait() method was invoked. Using the
built-in notifyAll method the leave method could also be imple-
mented to notify all waiting threads at once. The waiting threads then
contend for the ParkingLot object lock. Whatever thread obtains the
lock continues execution in the park method where the wait() method
was called.

The representation of a member can be designed as a Java Thread (Listing
43.3) to facilitate the simulation of more than one member looking to park their
cars at the same time.

Let us design a test driver GSTest to make use of the Member class to simulate
a real world scenario of multiple members trying to park their cars at the same time.

public class GSTest {

public static void main(String[] args) {

ParkingLot parking = new ParkingLot();

new Member("Member1”, parking);

new Member("Member2”, parking);

new Member("Member3”, parking);

new Member("Member4”, parking);

new Member("Member5”, parking);

new Member("Member6”, parking);

}

}

© 2004 by CRC Press LLC

p

PRACTICE QUESTIONS

1. Design a queue data structure to be used by multiple threads in an
application. A thread can retrieve an object from the queue only if the
queue contains any elements. Apply the Guarded Suspension pattern in
designing the queue class so that when a thread attempts to retrieve an
object from the queue and the queue is empty, the thread is made to wait
until an object is put into the queue by a different thread.

2. Apply the Guarded Suspension pattern to design the item check-out func-
tionality at a library. Typically, a library maintains multiple copies of an
item such as a movie or a book. Member A can check out an item only if
the total number of its copies is greater than the number of members prior
to Member A with interest in the same item.

Listing 43.3 Member Class

class Member extends Thread {

private ParkingLot parking;

private String name;

Member(String n, ParkingLot p) {

name = n;

parking = p;

start();

}

public void run() {

System.out.println(name + " is ready to park");

parking.park(name);

try {

sleep(500);

} catch (InterruptedException e) {

//

}

//leave after 500ms

parking.leave(name);

}

}

© 2004 by CRC Press LLC

44

READ-WRITE LOCK

This pattern was previously described in Grand98 and is based on the material
that appeared in Lea97.

DESCRIPTION

During the discussion of the Monitor and the Critical Section patterns earlier, we
saw that when multiple threads in an application simultaneously access a resource
it could result in unpredictable behavior. Hence the resource must be protected
so that only one thread at a time is allowed to access the resource. Though this
may be required in most cases, it may lead to unwanted CPU overhead when
some of the threads accessing the resource are interested only in reading the
values or state of the resource but not in changing it. In such cases, it can be
inefficient to prevent a thread from accessing the resource solely to read its values
while a different thread is currently reading the same resource values. Because a
read operation does not alter the values of the resource, multiple threads can
safely be allowed to access the resource at the same time if all of these threads
are interested only in reading the resource values. This kind of design improves
the overall application responsiveness with reduced CPU overhead. That means,
when a thread obtains a lock to simply read the values of a resource, it should
not prevent other threads from accessing the resource to read its values. In other
words, a read lock should be shared. If a thread is allowed to read a resource’s
data while a different thread is updating the same resource, the thread that is
reading the data may receive an inconsistent view. Allowing more than one thread
to update the values of a resource could also result in unpredictable results.

While some threads are interested only in reading the resource values, some
other threads may access the resource to read and update its values. To eliminate
concurrency problems, when such a thread needs to access the resource to update
its values, it must get a write lock on the object representing the resource. A
write lock is an exclusive lock on the object and prevents all other threads from
accessing the resource at the same time. Further, if a read and a write lock are
requested on an object at the same time, the write lock request should be granted
first. The write lock is issued only if there are no threads currently holding a read
lock on the same object.

Table 44.1 summarizes the criteria for issuing a read-write lock.

© 2004 by CRC Press LLC

g

In Java, there is no readily available feature for implementing read-write locks.
But a custom class can be built (Listing 44.1) with the responsibility of issuing
read-write locks on an object to different threads in an application.

Design Highlights of the ReadWriteLock Class

Lock Statistics

The ReadWriteLock maintains different lock statistics in a set of instance
variables as follows:

� totalReadLocksGiven — To store the number of read locks already
issued on the object.

� writeLockIssued — To indicate if a write lock has been issued or not.
� threadsWaitingForWriteLocks — To keep track of the number of

threads currently waiting for a write lock.

These values are in turn used by the lock issuing methods — getReadLock
and getWriteLock.

Lock Methods

The ReadWriteLock offers two methods — getReadLock and getWrite-
Lock — which can be used by client objects to get read and write locks on an
object, respectively. As part of its implementation of these two methods, the
ReadWriteLock issues read-write locks as per the rules listed in Table 44.1.

Lock Release

A client object that currently holds a read-write lock can release the lock by
invoking the done method. The done method updates appropriate lock statistics
and allows the lock to be issued to any waiting thread as per the rules listed in
Table 44.1.

The ReadWriteLock class is a generic implementation for issuing read-write
locks and can be readily used in any application.

Table 44.1 Rules for Issuing Read-Write Locks

Lock Rules

Read Lock A read lock should be issued if there is no currently issued write lock
and there are no threads waiting for the write lock.

Write Lock A write lock should be issued if no thread is currently issued a (read
or write) lock on the object.

© 2004 by CRC Press LLC

Listing 44.1 Generic ReadWriteLock Implementation

public class ReadWriteLock {

private Object lockObj;

private int totalReadLocksGiven;

private boolean writeLockIssued;

private int threadsWaitingForWriteLock;

public ReadWriteLock() {

lockObj = new Object();

writeLockIssued = false;

}

/*

A read lock can be issued if

there is no currently issued

write lock and

there is no thread(s) currently waiting for the

write lock

*/

public void getReadLock() {

synchronized (lockObj) {

while ((writeLockIssued) ||

(threadsWaitingForWriteLock != 0)) {

try {

lockObj.wait();

} catch (InterruptedException e) {

//

}

}

//System.out.println(" Read Lock Issued");

totalReadLocksGiven++;

}

}

/*

A write lock can be issued if

there is no currently issued

read or write lock

*/

(continued)

© 2004 by CRC Press LLC

g

Listing 44.1 Generic ReadWriteLock Implementation (Continued)

public void getWriteLock() {

synchronized (lockObj) {

threadsWaitingForWriteLock++;

while ((totalReadLocksGiven != 0) ||

(writeLockIssued)) {

try {

lockObj.wait();

} catch (InterruptedException e) {

//

}

}

//System.out.println(" Write Lock Issued");

threadsWaitingForWriteLock —— ;

writeLockIssued = true;

}

}

//used for releasing locks

public void done() {

synchronized (lockObj) {

//check for errors

if ((totalReadLocksGiven == 0) &&

(!writeLockIssued)) {

System.out.println(

" Error: Invalid call to release the lock");

return;

}

if (writeLockIssued)

writeLockIssued = false;

else

totalReadLocksGiven —— ;

lockObj.notifyAll();

}

}

}

© 2004 by CRC Press LLC

EXAMPLE

Applying the Read-Write Lock pattern, let us design an application to allow
members of a library to:

� View details of different library items
� Check out an item if it is currently available

The application must ensure that multiple members are allowed to view an
item status at the same time, but only one member is allowed to check out an
item at a time. In other words, the application must support multiple simultaneous
member transactions without producing unpredictable results.

The overall application design becomes much simpler using the ReadWrite-
Lock class designed earlier. The representation of a library item can be designed
in the form of an Item class (Listing 44.2) with methods to allow members to
check the status of an item and to check in or check out an item.

Because the status check of an item does not involve changes to its status,
the getStatus method acquires a read lock. This allows more than one thread
to invoke the getStatus method to check the status of an item.

In contrast, both the checkIn and checkOut methods involve changes to
the item status and hence acquire a write lock before changing the item status.
This ensures that only one thread is allowed to alter the item status even though
more than one thread invokes the checkIn/checkOut method at the same
time. The Item class makes use of the services of a ReadWriteLock object to
acquire an appropriate lock.

By using the exclusive write lock only when needed, the Item class allows
multiple threads to access an item in a more controlled manner without the
overhead of any unwanted waiting and eliminates the scope for unpredictable
behavior at the same time.

The representation of a member transaction can be designed as a Java Thread
(Listing 44.3) to facilitate the reflection of the real world scenario of different
members accessing an item simultaneously.

The MemberTransaction class is designed in its simplest form and can be
configured with an operation to check an item status or to check in or check out
an item when it is instantiated.

To simulate a real world scenario, a test program RWTest can be designed
to create multiple MemberTransaction objects to perform different operations
to read the status of an item or check in or check out an item.

public class RWTest {

public static void main(String[] args) {

Item item = new Item("CompScience-I");

new MemberTransaction("Member1”, item, "StatusCheck");

new MemberTransaction("Member2”, item, "StatusCheck");

new MemberTransaction("Member3”, item, "CheckOut");

new MemberTransaction("Member4”, item, "CheckOut");

© 2004 by CRC Press LLC

g

new MemberTransaction("Member5”, item, "CheckOut");

new MemberTransaction("Member6”, item, "StatusCheck");

}

}

When the RWTest is executed, the order in which different read-write locks
are issued will be displayed.

Listing 44.2 Item Class

public class Item {

private String name;

private ReadWriteLock rwLock;

private String status;

public Item(String n) {

name = n;

rwLock = new ReadWriteLock();

status = "N";

}

public void checkOut(String member) {

rwLock.getWriteLock();

status = "Y";

System.out.println(member +

" has been issued a write lock-ChkOut");

rwLock.done();

}

public String getStatus(String member) {

rwLock.getReadLock();

System.out.println(member +

" has been issued a read lock");

rwLock.done();

return status;

}

public void checkIn(String member) {

rwLock.getWriteLock();

status = "N";

System.out.println(member +

" has been issued a write lock-ChkIn");

rwLock.done();

}

}

© 2004 by CRC Press LLC

PRACTICE QUESTIONS

1. Design an application to allow different customers to buy airline tickets.
Apply the Read-Write Lock pattern to ensure that multiple customers are
allowed to check the seat availability on the same flight, but only one
customer is allowed to buy the ticket at a time.

2. Design an application to allow different customers to bid on auctioned
items. Apply the Read-Write Lock pattern to ensure that multiple customers
are allowed to check the current bid but no two customers are allowed to
alter the bid amount at the same time.

Listing 44.3 MemberTransaction Class

public class MemberTransaction extends Thread {

private String name;

private Item item;

private String operation;

public MemberTransaction(String n, Item i, String p) {

name = n;

item = i;

operation = p;

start();

}

public void run() {

//all members first read the status

item.getStatus(name);

if (operation.equals("CheckOut")) {

System.out.println("\n" + name +

" is ready to checkout the item.");

item.checkOut(name);

try {

sleep(1);

} catch (InterruptedException e) {

//

}

item.checkIn(name);

}

}

}

© 2004 by CRC Press LLC

IX
CASE STUDY

© 2004 by CRC Press LLC

45

CASE STUDY:
A WEB HOSTING COMPANY

OBJECTIVE

We have discussed 42 design patterns in earlier chapters in different sections of
this book. Now it is time for us to see how some of these design patterns can
be applied together in building a software solution. The objective of this case
study is to identify and apply some of the design patterns discussed in this book
in developing a software solution for the business requirements of a fictitious
Web hosting company, KPS Hosting Solutions.

KPS HOSTING SOLUTIONS: A BRIEF OVERVIEW

� About KPS Hosting Solutions — KPS Hosting Solutions is a mid-sized Web
hosting services provider based in the United States.

� Customers — KPS has customers from the United States and Canada. KPS
expects to serve customers from Asia as well in the near future.

� Hosting packages — KPS currently hosts a few thousand Web sites and
offers Web hosting on both Windows and UNIX platforms. KPS offers three
different types of hosting packages — Basic, Premium and PremiumPlus
— on both platforms.

� Payment plans — KPS allows its customers to pay for the hosting services
on a monthly, quarterly, half-yearly or annual basis using credit cards. KPS
intends to accept checking accounts and personal checks in the near future.

� Employees — KPS has both full-time and part-time employees. KPS guar-
antees an uptime of 99.99 percent to its customers. This requires some of
the KPS employees to be available during night shifts.

� Domain registration — KPS does not serve as a domain registrar on its
own. KPS works with different domain registrars to register new domains
or transfer existing domains. KPS offers this complimentary service based
on customer requests.

� Resellers — KPS attributes its fast growth to its committed, goal-oriented
resellers. KPS classifies its resellers into two categories — Basic and

© 2004 by CRC Press LLC

g

Premium. Resellers with more than 100 domains are considered Premium
resellers and receive a higher rate of commission.

REQUIREMENTS

Functional

� Customer management — The system should have the ability to create a
new customer profile, which includes the customer’s personal information,
Web site(s) information and the payment information. The system should
allow modifications and deletions of the customer profile. Whenever the
customer address or the credit card information is submitted, the system
should validate it before saving it to the database. Because KPS expects
to serve customers from Asia in the near future, the system should be able
to accommodate any enhancements specific to customers from Asia with
minimum or no changes to the existing design or implementation.

� Search management — The system should have the ability to search for
customers, employees and resellers. Search results should be displayed
with minimum details. The system should allow filtering from within the
displayed search results based on user specified criteria. Upon selecting
an item from the search results, a more detailed view of the selected item
should be presented.

� Billing — The system should have the ability to charge the billing amount
of a Web site to the associated credit card. KPS currently accepts Visa,
MasterCard, Discover and Diners Club. KPS bills direct customers, including
resellers. Resellers are responsible for billing their customers.

� Reports — The KPS management would like to see a set of predefined
reports. In addition, the system should have an ad hoc report generation
capability.

� Employee management — The system should have the ability to create,
modify or delete an employee profile.

� Data migration — Currently, some of the tasks are accomplished using
application software that is based on antiquated technology and is poorly
architected. When the new system is built, data from the legacy system
needs to be migrated to the new system. KPS intends to use the same
data migration set up with minimum or no changes:
– To migrate data from any other hosting firms it acquires.
– To accept data from resellers (in case of bulk hosting requests) and

move to the new system database.
� Registrar interface — KPS would like to submit domain registration requests

in a batch to domain registrars. These requests are normally sent to different
registrars in the form of an XML string. The system should have the ability
to generate and submit the request.

� Reseller management — The system should have the ability to create,
modify or delete a reseller profile. The system should provide the ability
to calculate the commission to be paid to each reseller and generate checks
to be mailed.

© 2004 by CRC Press LLC

y g p y

� Trouble ticket management — All Web site related issues are first received
by the tech support team that creates a trouble ticket for each reported
issue. Within the KPS tech support, there are different service levels that
are responsible for different areas of tech support. Once a trouble ticket
is issued, it gets routed through these service levels until it gets resolved.

Technical

� The overall system design should be component-based, manageable and
reusable. System enhancements should be easy to apply.

� The system architecture and design must make use of best design practices
to optimize the system performance and maintainability.

� Proper, consistent naming conventions must be followed.
� Reuse of any existing or available software is encouraged. For instance,

KPS has access to a Java class that validates a given Canadian address.
But the interface provided by the class is not compatible with the naming
conventions of the development team.

� KPS Hosting Solutions currently uses only one database server with no
secondary database server for fail-over. Sometimes the database server may
be brought down for maintenance reasons. In the case of a new business
request, if the database is down, the application should write the data to
a flat file. The goal is not to turn down a customer request due to technical
reasons. Because the customer information contains such sensitive data as
the credit card information, the data must be encrypted before writing to
the file.

BUSINESS OBJECTS AND THEIR ASSOCIATION

� Whenever a new customer is created, the personal information is collected.
� Whenever a customer requests hosting service for a Web site, the credit

card information is collected from the customer and an account is created
that allows the customer to access the Web site. Figure 45.1 shows the
association of a Customer with other business objects such as Cred-
itCard, Website, Account and Address.

Figure 45.1 Customer Association with Other Business Objects

Customer Account

Address CreditCard Website

1 1..*

1

1

1

1..*

1

1..*

1..*

0..*

© 2004 by CRC Press LLC

g

� Whenever a customer contacts a reseller for hosting services, the reseller
in turn contacts the KPS customer service for hosting the Web site. In this
aspect, the system can treat resellers the same as a direct customer. Figure
45.2 depicts the association of a reseller with other business objects.

� KPS offers Basic, Premium and PremiumPlus Web hosting packages on
both the Windows and UNIX platforms. Figure 45.3 shows the represen-
tation of hosting plans in the form of a class hierarchy.

� KPS provides tech support only for direct customers, not for those cus-
tomers who have requested hosting services through a reseller. Resellers
are responsible for providing billing and support services to their custom-
ers. Figure 45.4 depicts the relationship between a Web site and any
associated trouble tickets.

FRAMEWORK FOR APPLICATION PROCESSING

As can be seen from the business requirements section, the application function-
ality consists of a set of services — customer management, search management,
credit card services, address validation, employee management, etc. The overall
application functionality may be modularized at two levels.

Enterprise Service Level

The first level of modularization can be accomplished at the service level. In other
words, each of the services can be designed as an individual module. To provide
client objects with a uniform interface to access these services, each service can
be designed either as an implementer of an interface or as a subclass of an abstract
or concrete class that declares the interface to be used by client objects. Figure
45.5 shows the design of different service modules as implementers of a common
EnterpriseService interface.

Figure 45.2 Reseller Association with Other Business Objects

Customer Account

Address CreditCard Website

1 1..*

1

1

1

1..*

1

1

1..*

0..*

Reseller

1..*

1

1

1..*

1

1..*

© 2004 by CRC Press LLC

y g p y

An enterprise service offers a group of related lower-level services to its
clients. In other words, an enterprise service allows the processing of a set of
related tasks. The terms “lower-level service” and “task” are used synonymously
in this discussion. Each of the EnterpriseService implementers expects
to receive a client request in the form of an XML request. One of the advantages
of sending the request as an XML string is that it does not bind the client to
a particular method signature on the service module. Another advantage is that
it provides language independence. That means, clients and service implement-
ers can be implemented in different programming languages and thus allow

Figure 45.3 Hosting Plan Class Hierarchy

Figure 45.4 Website–TroubleTicket-Employee Association

HostingPlan

WinPlan UnixPlan

WinBasic UnixBasic

WinPremium UnixPremiumWinPremPlus UnixPremPlus

Website

1

0..*

Website

0..1

0..*

EmployeeTroubleTicket
10..*

© 2004 by CRC Press LLC

g

for the integration of legacy applications written in Fortran, COBOL, C++ and
other programming languages.

A service implementer is responsible for defining the required interface contract
details to be used by different clients. This involves defining the request and the
response structures for the service.

Generic Interface Contract

Request:

<ENT_SERVICE_NAME>

<Task name='specificService'>

<Input_1>abc</Input_1>

<Input_2>xyz</Input_2>

…

…

<Input_n>something else</Input_n>

</Task>

</ENT_SERVICE_NAME>

Figure 45.5 Service Module Class Hierarchy with Each Module as an Implementor of a
Common Interface

<<interface>>
EnterpriseService

execute(req:String):String

Client

CustomerManagement

execute(req:String):String

SearchManagement

execute(req:String):String

AddressValidation

execute(req:String):String

CreditCardService

execute(req:String):String

© 2004 by CRC Press LLC

y g p y

Response:

<ENT_SERVICE_NAME ErrorMsg=’N’>

<RESPONSE>

<Output_1>abc</Output _1>

<Output _2>xyz</Output _2>

…

…

<Output _n>something else</Output _n>

</RESPONSE>

</ENT_SERVICE_NAME>

or

<ENT_SERVICE_NAME ErrorMsg=’Y’>

<ERRORS>

<ERROR>

<CODE>01</CODE>

<MESSAGE> Error Message 1</MESSAGE>

</ERROR>

…

…

…

<ERROR>

<CODE>0n</CODE>

<MESSAGE> Error Message n</MESSAGE>

</ERROR>

</ERRORS>

</ENT_SERVICE_NAME>

Where:

<ENT_SERVICE_NAME> is the name of the enterprise service.
<Task> is the lower level service offered by the service.

Sample Interface Contract

Request:

<CREDIT_CARD_SERVICE>

<Task name=‘validateCard’>

<CardNumber>1234123412341234</CardNumber>

<CardType>VISA</CardType>

© 2004 by CRC Press LLC

g

<ExpDate>01-12-2008</ExpDate>

<CardHolderName>CardHolder</CardHolderName>

</Task>

</CREDIT_CARD_SERVICE>

Response:

<CREDIT_CARD_SERVICE ErrorMsg=’N’>

<RESPONSE>

<CardNumber>************1234</CardNumber>

<Status>Valid</Status>

</RESPONSE>

</CREDIT_CARD_SERVICE>

or

<CREDIT_CARD_SERVICE ErrorMsg=’Y’>

<ERRORS>

<ERROR>

<CODE>05</CODE>

<MESSAGE>Unable to Connect to the Provider For

Verification</MESSAGE>

</ERROR>

</ERRORS>

</CREDIT_CARD_SERVICE>

Whenever a client needs to access the services of an EnterpriseService
implementer, it needs to:

� Create an instance of the class representing the required enterprise service.
The name of a service along with the corresponding implementation class
can be specified using a Constant Data Manager.

� Construct the service request as an XML string specifying the task name
along with any data to be passed to the service as input as per the
predefined contract.

Task Level

As mentioned earlier, an enterprise service component offers a set of related
lower-level services (tasks). If the enterprise service module itself is made respon-
sible for implementing these lower-level services, it could lead to a design that
is very restrictive and hard to maintain. Whenever a new task needs to be added
to the enterprise service or a task needs to be removed, it requires changes to
the enterprise service module. To avoid these problems, an enterprise service
module can be designed to make use of a set of predefined objects to handle

© 2004 by CRC Press LLC

y g p y

the set of tasks that it is designed to process. The mapping between a lower-
level task and its processor or handler can be specified in the form of an XML file.

Generic Task-Handler Mapping

<TaskMappings service=’ENT_SERVICE_NAME‘>

<Task name=’Task_Name’>

<handler>package.class</handler>

</Task>

</TaskMappings>

Sample Task-Handler Mapping

<TaskMappings service=’CREDIT_CARD_SERVICE‘>

<Task name=’validateCard’>

<handler>com.company.entservices.ccservice.CardValidator

</handler>

</Task>

</TaskMappings>

Whenever an enterprise service component is initialized, it needs to read the
corresponding Task-Handler mapping into memory. Maintaining a separate Task-
Mapping XML file for each enterprise service works better in an environment
where individual teams are responsible for developing specific enterprise services
modules. When a client request is received, the service component can check
the mapping list to find the handler. Once the handler is found, the service
component instantiates the handler class and submits the request XML file to it.
To make it possible for all enterprise service components to treat all handlers in
the same manner, every handler must offer the same interface for an enterprise
service module to forward a client request. Towards this end, every processor
class can be designed as an implementer of a common Interface (Figure 45.6).

A handler can in turn make use of other helper classes in accomplishing the
task it is designed for. The mapping between a task and a handler is one-to-
many. In other words, a handler may process more than one task. For every task
that a processor processes, there must be a method with the exact same name
as the Task name specified in the mapping XML file.

Defining a Task-Handler mapping does not completely prevent the enterprise
service module from offering any services on its own. For instance, in the case
of a small but highly useful service such as the AddressValidation service,
it may not be required to designate a separate object to receive the client request.
In such cases, the service provider may intend to process the service on its own
with the help of other utility or helper objects. Such a service provider needs to
implement a method with same name as the Task name. In addition, the Task-
Handler mapping must specify the processor as itself.

Because each of the enterprise service components needs to provide the same
implementation to read the corresponding Task-Mapping XML file, it is likely to

© 2004 by CRC Press LLC

g

result in duplicate implementation across enterprise service modules. To avoid
this problem, the EnterpriseService can be designed as an abstract class
with the implementation to read the mapping XML file into memory. This requires
each of the service modules to be redesigned as subclasses of the Enterprise-
Service class (Figure 45.7).

Throughout the life of the application there will be a need for only one copy
of the mapping data and it needs to be available to all service modules and it
should not result in any concurrency problems. To accommodate these require-
ments, when the mapping XML file is read, mapping details can be stored inside
a Common Attribute Registry where each service can be treated as a CARGroup
with Task-Handler values as individual name-value pairs within the CARGroup.
This allows the storing of the same Task-Handler combination across multiple
service modules.

Error Processing

The method signatures of both the service module’s execute() method and the
handler’s process method indicate that they return a string back to the caller.
Any errors that occur during the processing can be communicated back to the
caller in the form of an XML string. The caller can parse the returned XML string
to check for specific errors and carry out any required error handling.

Enterprise Services Design

In accordance with the application framework discussed earlier, every service
module needs to define an interface contract to be used by the clients that intend
to access its services.

Figure 45.6 Client Accessing a Task-Handler Object

<<interface>>
Handler

process(req:String):String

Client

ConcreteHandler

process(req:String):String
taskName_1(req:String):String
taskName_2(req:String):String
...
taskName_n(req:String):String

HelperClass
<<uses>>

© 2004 by CRC Press LLC

y g p y

Address Validation

Using the enterprise services architecture discussed above, the address validation
can be designed as a service module subclass of the EnterpriseServices
class. Using the interface contract, clients can send the address to be validated
to the service module. The service returns the validation results by way of the
response structure defined in the interface contract.

When the service module receives a validation request, it can be forwarded
to a designated handler, ValidationHandler instance. From the technical
requirements section, it can be seen that there exists a utility to validate Canadian
addresses that has a method name which is not in conformance with KPS IT
standards. While it is possible to create an address validator for U.S. addresses
with the method name following the naming standards, it may not be possible
to alter the existing utility to validate Canadian addresses to follow the naming
standards. Without having to recreate the utility from scratch, using the Adapter
pattern, an adapter can be designed to make it possible to leverage the existing
utility functionality. This same procedure can be used for validation of Asian
addresses if there exists a predefined validation module that may not have a
compatible interface.

The ValidationHandler can be designed to make use of a designated
method to accept a country code and return the appropriate address validator.
Once the validator is received, the handler can access its service in a seamless
manner irrespective of the concrete class of the validator that is returned.

Figure 45.7 Service Module Class Hierarchy with Each Module as a Subclass of a Com-
mon Parent Class

EnterpriseService

execute(req:String):String

Client

CustomerManagement

execute(req:String):String

SearchManagement

execute(req:String):String

AddressValidation

execute(req:String):String

CreditCardService

execute(req:String):String

CAR

<
<
u
s
e
s
>
>

<<uses>>

© 2004 by CRC Press LLC

g

Credit Card Service

The two services that the credit card service offers are credit card validation and
credit card charging. Let us design the credit card validation functionality here.

Validation

From the business requirements section, it can be seen that the system should
have the ability to validate Visa, MaterCard, Discover and Diners Club cards. All
of these cards have a definite set of steps in checking their validity. Some of the
steps in validating these cards are identical across all these cards while some are
carried out differently. Using the Template Method pattern, the outline of the
validation steps and the common invariant parts of the overall algorithm can be
kept inside an abstract class leaving the implementation of variant parts of the
algorithm to its subclasses (see the example discussion in Chapter 38 — Template
Method).

Search Management

The search management should allow users to search for resellers, customers and
Web sites. For performance reasons only a limited set of search results are to be
displayed on the screen. Such parameters can be specified using the Constant
Data Manager. The necessary UI panel can be designed using the Builder pattern
(see the example in Chapter 14 — Builder Pattern) where each concrete Builder
is responsible for creating the necessary UI for allowing a user to specify the
search criteria. This allows the same series of steps to construct the UI panel
specific to a search type. This gives the flexibility to use the same UI building
logic when a new search, say an employee search, is to be added to the system.
Without altering the existing implementation, a new concrete Builder specific to
the employee search user-interface can be designed.

One of the requirements is to select an item from the result set on the screen
and view more details on the selected item. Whenever an item is selected, a
database query can be executed to retrieve its details. One of the ways of
improving the performance is to introduce some amount of caching where some
of the most recently accessed item details are kept in the memory. This can be
designed as an Object Cache using a Common Attribute Registry (see the example
discussion in Chapter 29 — Object Cache). Whenever a search results item is
selected to view more details, item details are fetched from the cache, if it exists.
Otherwise, details are fetched from the database for display and are also stored
in the cache for later access.

Customer Management

Let us design one of the important tasks to be supported by the customer
management service, the creation of a new customer profile. From the business
requirements section above, it can be seen that the application must function
even if the database is down. This means that the application must have the
ability to write to files as well as to the database.

© 2004 by CRC Press LLC

y g p y

The functionality to save data to a file and the database can be encapsulated
in two different classes — FileManager and DBManager, respectively. To allow
client objects to deal with both the FileManager and DBManager in a seamless
manner, they can be designed as implementers of a common interface Persis-
tenceManager to provide the same interface to its clients. By virtue of poly-
morphism, client objects will be able to treat both the implementers as the
PersistenceManager type.

Instead of having every client object to dealing with the choice of instantiating
either FileManager or DBManager, the implementation of this decision logic
can be kept inside a separate Factory Method. If there is a change in the way
one of the PersistenceManager objects is to be selected, the Factory Method
can be overridden in a subclass of the class that contains the Factory Method.

One of the important steps in creating a new customer profile is the selection
of a hosting plan for the customer Web site. From the “Business Objects” section,
it can be seen that there exist two families of hosting plans — Windows and UNIX.
Instead of requiring client objects to be aware of the existence of the families of
concrete classes (such as WinBasic, WinPremium,…, UnixPremium and
UnixPremPlus) and have the knowledge of the concrete HostingPlan class to
be instantiated, the Abstract Factory pattern can be used to encapsulate these details
into a set of concrete factories that share a common interface. Clients can get access
to an appropriate HostingPlan instance using the common interface without
having to know the class type of the object returned.

In addition to the hosting plan selection, the customer profile creation involves
address validation, credit card validation, account creation and saving customer
data to the database or file. For address and credit card validation, the handler
makes use of the AddressValidation and the CreditCardService enter-
prise services, respectively. While performing these lower-level tasks, the handler
presents a very high level interface to its clients. In other words, client objects
do not need to directly deal with the details of creating an account, validating
addresses, credit card information and saving the data using an appropriate
PersistenceManager. A client only needs to formulate its request to create a
new customer profile in accordance with the interface contract defined by the
CustomerManagement service and forward the request to the CustomerMan-
agement enterprise service. In this aspect the handler functions as a Façade object.

The FileManager can be designed to make use of a utility to write data to
the file. While designing the utility to write data to the file may seem like a trivial
task, it requires special care to ensure that the utility functions as desired in a
multithreaded environment. Applying the concept of the Critical Section ensures
this by allowing only a single thread to access the utility method to write to the
file. Such a utility can be used in other parts of the application for other purposes
such as logging messages. From the requirements section, it can be seen that
when the data is written to the file, it must be encrypted to avoid easy exposure.
It may not be a good idea to alter the utility to implement the necessary encryption
to the data being written. This is because encrypting the data before writing to
a file may not be required everywhere the utility is used. As a work around, a
Decorator object may be designed to provide the necessary encryption imple-
mentation before sending data to the utility to write to the file.

© 2004 by CRC Press LLC

g

CONCLUSION

As part of the preceding discussion, we have designed:

� The address validation service
� The credit card service
� The new customer profile creation part of the customer management

service
� The search management services

Interested readers may enhance the business requirements and design the rest
of the system.

© 2004 by CRC Press LLC

X
APPENDICES

© 2004 by CRC Press LLC

Appendix A

LIST OF DESIGN PATTERNS

Basic:

� Interface
� Abstract Parent Class
� Private Methods
� Accessor Methods
� Constant Data Manager
� Immutable Object
� Monitor

Creational:

� Factory Method
� Abstract Factory
� Singleton
� Prototype
� Builder

Collectional:

� Composite
� Iterator
� Flyweight
� Visitor

Concurrency:

� Critical Section
� Consistent Lock Order
� Guarded Suspension
� Read-Write Lock

© 2004 by CRC Press LLC

g

Structural:

� Decorator
� Adapter
� Chain of Responsibility
� Façade
� Proxy
� Bridge
� Virtual Proxy
� Counting Proxy
� Aggregate Enforcer
� Explicit Object Release
� Object Cache

Behavioral:

� Command
� Mediator
� Memento
� Observer
� Interpreter
� State
� Strategy
� Null Object
� Template Method
� Object Authenticator
� Common Attribute Registry

© 2004 by CRC Press LLC

Appendix B

REFERENCES

Alexander, Christopher. A Timeless Way of Building. Oxford, England: Oxford University Press,
1979.

Alexander, Christopher, S. Ishikawa and Murray Silverstein. A Pattern Language: Towns, Build-
ings, Construction. Oxford, England: Oxford University Press, 1977.

Alpert, Sherman, Kyle Brown and Bobby Woolf. The Design Patterns Smalltalk Companion.
Reading, MA: Addison-Wesley, 1988.

Arnold, Ken and James Gosling. The Java™ Programming Language. Reading, MA: Addison-
Wesley, 1988.

Bertrand, Meyer. Object Oriented Software Construction. New York: Prentice Hall, 1988.
Booch, Grady, James Rumbaugh and Ivar Jacobson. The Unified Modeling Language User Guide.

Reading, MA: Addison-Wesley, 1999.
Buschman, Frank, Regine Meunier, Hans Rohnert, Peter Sommerlad and Michael Stal. Pattern-

Oriented Software Architecture: A System of Patterns. New York: John Wiley and Sons,
1996.

Cooper, James W. Java™ Design Patterns. Boston, MA: Addison-Wesley, 2000.
Coplien, James O. Advanced C++ Programming Styles and Idioms. Reading, MA: Addison-

Wesley, 1992.
Coplien, James O. and Douglas Schmidt. Pattern Languages of Program Design. Reading, MA:

Addison-Wesley, 1995.
Fowler, Martin and Kendall Scott. UML Distilled: A Brief Guide to the Standard Object Modeling

Language. Reading, MA: Addison-Wesley, 1997.
Gamma, Erich, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. Reading, MA: Addison-Wesley, 1995. [GoF95].
Grand, Mark. Patterns in Java™ Vol.1. New York: John Wiley and Sons, 1998. [Grand98].
Kuchana, Partha. Create Your Own Web Server. http://members.itjobslist.com/partha/Web-

Server.pdf
Lea, Doug. Concurrent Programming in Java™. Reading, MA: Addison-Wesley, 1997. [Lea97].
Metsker, Steven J. Design Patterns: Java™ Workbook. Boston, MA: Addison-Wesley, 2002.
Pree, Wolfgang. Design Patterns for Object-Oriented Software Development. Reading, MA: Add-

ison-Wesley, 1994.
Riel, Arthur J. Object-Oriented Design Heuristics. Reading, MA: Addison-Wesley, 1996.
Vlissides, John. Pattern Hatching: Design Patterns Applied. Reading, MA: Addison-Wesley, 1998.
Woolf, Bobby. The Null Object Pattern. PLoP’96 Final Papers. [Woolf96].

WEB REFERENCES

http://www.sqlsecurity.com/faq-inj.asp
http://www.objectmentor.com/mentoring/OOPrinciples
http://www.object-arts.com/EducationCentre/Patterns/AccessorMethods.htm

© 2004 by CRC Press LLC

g

http://www.object-arts.com/OldStuff/Patterns/PrivateMethods.htm
http://java.sun.com
http://www.javaworld.com/javaworld/jw-10-2001/jw-1012-deadlock.html
Discussions with www.ITJobsList.com web administrator
http://www.research.ibm.com/designpatterns/pubs/7habits.html
http://www.w3.org/TR/REC-html40/present/frames.html

© 2004 by CRC Press LLC

	Software architecture design patterns in Java
	DEDICATION
	FOREWORD
	ABOUT THE AUTHOR
	ACKNOWLEDGMENTS

	Table of Contents
	SECTION I. AN INTRODUCTION TO DESIGN PATTERNS
	CHAPTER 1. DESIGN PATTERNS: ORIGIN AND HISTORY
	ARCHITECTURAL TO SOFTWARE DESIGN PATTERNS
	WHAT IS A DESIGN PATTERN?
	MORE ABOUT DESIGN PATTERNS
	ABOUT THIS BOOK
	Source Code
	Source Code Disclaimer

	SECTION II. UNIFIED MODELING LANGUAGE (UML)
	CHAPTER 2. UML: A QUICK REFERENCE
	STRUCTURE DIAGRAMS
	BEHAVIOR DIAGRAMS
	MODEL MANAGEMENT DIAGRAMS
	CLASS DIAGRAMS
	Class
	Inner Class
	Access Speci.ers
	Static
	Abstract Class/Method
	Exception
	Note
	Generalization
	Interface
	Realization
	Dependency
	Class Association
	Multiplicity
	Navigability
	Composition
	Aggregation

	SEQUENCE DIAGRAMS
	Object
	Message
	Self Call

	SECTION III. BASIC PATTERNS
	CHAPTER 3. INTERFACE
	DESCRIPTION
	EXAMPLE
	PRACTICE QUESTIONS

	CHAPTER 4. ABSTRACT PARENT CLASS
	DESCRIPTION
	EXAMPLE
	Abstract Parent Class versus Interface

	PRACTICE QUESTIONS

	CHAPTER 5. PRIVATE METHODS
	DESCRIPTION
	EXAMPLE
	PRACTICE QUESTIONS

	CHAPTER 6. ACCESSOR METHODS
	DESCRIPTION
	ACCESSOR METHOD NOMENCLATURE
	EXAMPLE
	DIRECT REFERENCE VERSUS ACCESSOR METHODS
	PRACTICE QUESTIONS

	CHAPTER 7. CONSTANT DATA MANAGER
	DESCRIPTION
	EXAMPLE
	PRACTICE QUESTIONS

	CHAPTER 8. IMMUTABLE OBJECT
	DESCRIPTION
	EXAMPLE
	PRACTICE QUESTIONS

	CHAPTER 9. MONITOR
	DESCRIPTION
	EXAMPLE
	PRACTICE QUESTIONS

	SECTION IV. CREATIONAL PATTERNS
	CHAPTER 10. FACTORY METHOD
	DESCRIPTION
	EXAMPLE
	PRACTICE QUESTIONS

	CHAPTER 11. SINGLETON
	DESCRIPTION
	WHO SHOULD BE RESPONSIBLE?
	EXAMPLE
	Make the Constructor Private
	Static Public Interface to Access an Instance

	PRACTICE QUESTIONS

	CHAPTER 12. ABSTRACT FACTORY
	DESCRIPTION
	ABSTRACT FACTORY VERSUS FACTORY METHOD
	EXAMPLE I
	EXAMPLE II
	Logical Flow When the Application Is Run

	PRACTICE QUESTIONS

	CHAPTER 13. PROTOTYPE
	DESCRIPTION
	SHALLOW COPY VERSUS DEEP COPY
	Shallow Copy Example
	Deep Copy Example

	EXAMPLE I
	Design Highlights of the
	Class

	EXAMPLE II
	Redesign the
	Class
	Create a Prototype Factory Class

	PRACTICE QUESTIONS

	CHAPTER 14. BUILDER
	DESCRIPTION
	EXAMPLE I
	A Side Note …
	Back to the Example Application …

	EXAMPLE II
	EXAMPLE III
	PRACTICE QUESTIONS

	SECTION V. COLLECTIONAL PATTERNS
	CHAPTER 15. COMPOSITE
	DESCRIPTION
	EXAMPLE
	DESIGN APPROACH I
	FileComponent
	getComponentSize()

	DirComponent
	addComponent(FileSystemComponent)
	getComponent(int)
	getComponentSize()

	DESIGN APPROACH II
	PRACTICE QUESTIONS

	CHAPTER 16. ITERATOR
	DESCRIPTION
	ITERATORS IN JAVA
	FILTERED ITERATORS
	INTERNAL VERSUS EXTERNAL ITERATORS
	EXAMPLE: INTERNAL ITERATOR
	CLIENT/CONTAINER INTERACTION
	EXAMPLE: EXTERNAL FILTERED ITERATOR
	PRACTICE QUESTIONS

	CHAPTER 17. FLYWEIGHT
	DESCRIPTION
	HOW TO DESIGN A FLYWEIGHT IN JAVA
	DESIGN HIGHLIGHTS
	EXAMPLE
	DESIGN APPROACH I
	DESIGN APPROACH II
	PRACTICE QUESTIONS

	CHAPTER 18. VISITOR
	DESCRIPTION
	Design Idea 1
	Design Idea 2

	DEFINING NEW OPERATIONS ON THE OBJECT COLLECTION
	ADDING OBJECTS OF A NEW TYPE TO THE COLLECTION
	EXAMPLE
	DESIGN APPROACH I
	DESIGN APPROACH II
	DESIGN APPROACH III (COMPOSITE PATTERN)
	DESIGN APPROACH IV (THE VISITOR PATTERN)
	Application Flow

	DEFINING A NEW OPERATION ON THE ORDER OBJECT COLLECTION
	ADDING A NEW ORDER TYPE TO THE COLLECTION
	PRACTICE QUESTIONS

	SECTION VI. STRUCTURAL PATTERNS
	CHAPTER 19. DECORATOR
	DESCRIPTION
	CHARACTERISTICS OF A DECORATOR
	EXAMPLE
	CONCRETE LOGGER DECORATORS
	HTMLLogger
	EncryptLogger

	ADDING A NEW MESSAGE LOGGER
	ADDING A NEW DECORATOR
	PRACTICE QUESTIONS

	CHAPTER 20. ADAPTER
	DESCRIPTION
	CLASS ADAPTERS VERSUS OBJECT ADAPTERS
	Class Adapter
	Object Adapter

	EXAMPLE
	ADDRESS ADAPTER AS AN OBJECT ADAPTER
	PRACTICE QUESTIONS

	CHAPTER 21. CHAIN OF RESPONSIBILITY
	DESCRIPTION
	EXAMPLE
	PRACTICE QUESTIONS

	CHAPTER 22. FAÇADE
	DESCRIPTION
	EXAMPLE
	IMPORTANT NOTES
	PRACTICE QUESTIONS

	CHAPTER 23. PROXY
	DESCRIPTION
	PROXY VERSUS OTHER PATTERNS
	Proxy versus Decorator
	Proxy versus Façade
	Proxy versus Chain of Responsibility

	RMI: A QUICK OVERVIEW
	RMI Components
	RMI Communication Mechanism

	RMI AND PROXY PATTERN
	EXAMPLE
	ADDITIONAL NOTES
	Compilation and Deployment Notes

	PRACTICE QUESTIONS

	CHAPTER 24. BRIDGE
	DESCRIPTION
	EXAMPLE
	Abstraction Implementation Design
	Abstraction Interface Design
	Design Highlights of the Abstraction Interface Classes

	BRIDGE PATTERN VERSUS ADAPTER PATTERN
	PRACTICE QUESTIONS

	CHAPTER 25. VIRTUAL PROXY
	DESCRIPTION
	Advantage
	Disadvantage

	EXAMPLE
	PRACTICE QUESTIONS

	CHAPTER 26. COUNTING PROXY
	DESCRIPTION
	EXAMPLE
	PRACTICE QUESTIONS

	CHAPTER 27. AGGREGATE ENFORCER
	DESCRIPTION
	EXAMPLE
	Design Approach I (On-Demand Initialization)
	Design Approach II (Early Initialization)
	Design Approach III (Final Variables)

	PRACTICE QUESTIONS

	CHAPTER 28. EXPLICIT OBJECT RELEASE
	DESCRIPTION
	The finalize Method
	When an Object Goes Out of Scope, It Is Believed to Be Garbage Collected Immediately
	The Garbage Collection Process Runs as a Low-Level Background Daemon Thread

	The finally Statement

	EXAMPLE
	Best Case Scenario
	Exception Scenario 1
	Exception Scenario 2

	PRACTICE QUESTIONS

	CHAPTER 29. OBJECT CACHE
	DESCRIPTION
	EXAMPLE
	PRACTICE QUESTIONS

	SECTION VII. BEHAVIORAL PATTERNS
	CHAPTER 30. COMMAND
	DESCRIPTION
	EXAMPLE I
	EXAMPLE II
	Application Flow

	PRACTICE QUESTIONS

	CHAPTER 31. MEDIATOR
	MEDIATOR VERSUS FAÇADE
	EXAMPLE I
	Client Usage of the Mediator
	User Interface Objects: Mediator Interaction

	EXAMPLE II
	PRACTICE QUESTIONS

	CHAPTER 32. MEMENTO
	DESCRIPTION
	EXAMPLE
	DataConverter
	ID
	Memento
	process
	createMemento
	setMemento

	DCClient
	MementoHandler

	PRACTICE QUESTIONS

	CHAPTER 33. OBSERVER
	DESCRIPTION
	ADDING NEW OBSERVERS
	EXAMPLE
	Subject–Observer Association
	Logical Flow

	PRACTICE QUESTIONS

	CHAPTER 34. INTERPRETER
	DESCRIPTION
	EXAMPLE
	Infix-to-Postfix Conversion (Listing 34.8)
	Construction of the Tree Structure (Listing 34.9)
	Postorder Traversal of the Tree

	ADDITIONAL NOTES
	Infix-to-Postfix Conversion
	Infix Expression
	Postfix Expression

	Conversion Algorithm
	Example

	Binary Tree Traversal Techniques
	Preorder (Node-Left-Right)
	In-Order (Left-Node-Right)
	Postorder (Left-Right-Node)
	Level-Order

	PRACTICE QUESTIONS

	CHAPTER 35. STATE
	DESCRIPTION
	STATEFUL OBJECT: AN EXAMPLE
	EXAMPLE
	PRACTICE QUESTIONS

	CHAPTER 36. STRATEGY
	DESCRIPTION
	STRATEGIES VERSUS OTHER ALTERNATIVES
	STRATEGY VERSUS STATE
	EXAMPLE
	SimpleEncryption
	CaesarCypher
	SubstitutionCypher
	CodeBookCypher

	PRACTICE QUESTIONS

	CHAPTER 37. NULL OBJECT
	DESCRIPTION
	EXAMPLE
	PRACTICE QUESTIONS

	CHAPTER 38. TEMPLATE METHOD
	DESCRIPTION
	Abstract Class
	Concrete Class

	EXAMPLE
	ADDITIONAL NOTES
	Mod 10 Check Digit Algorithm

	PRACTICE QUESTIONS

	CHAPTER 39. OBJECT AUTHENTICATOR
	DESCRIPTION
	EXAMPLE
	PRACTICE QUESTIONS

	CHAPTER 40. COMMON ATTRIBUTE REGISTRY
	DESCRIPTION
	EXAMPLE
	PRACTICE QUESTIONS

	SECTION VIII. CONCURRENCY PATTERNS
	CHAPTER 41. CRITICAL SECTION
	DESCRIPTION
	EXAMPLE
	Approach I (Critical Section)
	Approach II (Static Early Initialization)

	PRACTICE QUESTIONS

	CHAPTER 42. CONSISTENT LOCK ORDER
	DESCRIPTION
	EXAMPLE
	PRACTICE QUESTIONS

	CHAPTER 43. GUARDED SUSPENSION
	DESCRIPTION
	EXAMPLE
	Use of wait() and notify() in the ParkingLot Class Design

	PRACTICE QUESTIONS

	CHAPTER 44. READ-WRITE LOCK
	DESCRIPTION
	Design Highlights of the ReadWriteLock Class
	Lock Statistics
	Lock Methods
	Lock Release

	EXAMPLE
	PRACTICE QUESTIONS

	SECTION IX. CASE STUDY
	CHAPTER 45. CASE STUDY: A WEB HOSTING COMPANY
	OBJECTIVE
	KPS HOSTING SOLUTIONS: A BRIEF OVERVIEW
	REQUIREMENTS
	Functional
	Technical

	BUSINESS OBJECTS AND THEIR ASSOCIATION
	FRAMEWORK FOR APPLICATION PROCESSING
	Enterprise Service Level
	Generic Interface Contract
	Sample Interface Contract

	Task Level
	Generic Task-Handler Mapping
	Sample Task-Handler Mapping

	Error Processing
	Enterprise Services Design
	Address Validation
	Credit Card Service
	Validation

	Search Management
	Customer Management

	CONCLUSION

	SECTION X. APPENDICES
	APPENDIX A. LIST OF DESIGN PATTERNS
	APPENDIX B. REFERENCES
	WEB REFERENCES

	Team DDU

