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For all who love truth





Preface

“In fact, I’m gonna show you what I mean with a little demonstration.”
(True Romance, 1993)

There is wide agreement that people who do not specialize in statistics or
mathematics do not like and have no need for a series of complicated mathematical
formulae or a succession of abstract theorems as tools for learning statistics for
practical purposes. Many points of view, however, are possible in determining
which other options are appropriate. If abstract mathematical concepts are not
important and the main purpose of practitioners is to learn methods for deriving
concrete decisions from data generated in the real world, perhaps beginners should
first become aware of the practical definitions of statistical methods and acquaint
themselves with statistical software for PCs. They can do this by familiarizing
themselves with examples of analyses of data obtained from natural and social
phenomena, following the flow of analyses, and by analyzing similar data.

The underlying concept of this book makes it slightly different from other books
in the field. The text does not treat data produced in real phenomena but, rather,
describes attempts at various statistical methods including regression analysis using
simulation data. This different approach is taken because populations generating
data of known background unlimitedly should be used to appreciate numbers
containing random errors as clear pictures cut from rich, tapestry-like images
created by probability processes. Although people who are not attuned to, or do
not have, a statistical sense tend to recognize a set of actual data as one reality, they
are highly conscious of countless data lying behind the simulation data.

A series of simulation data generated under slightly different conditions shows
how sensitively a statistical method responds to the varied nature of data. Addition-
ally, if an event that occurs theoretically with a 5 % probability is observed with a
similar probability on a PC, people will be convinced of the relationship between
statistical theories and real world numbers. That is, simulation data are of great
use for obtaining a clear understanding of the significance, purposes, features, and
limitations of each statistical method.
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viii Preface

When data produced in experiments and censuses are employed, it is not easy to
determine whether the results obtained using a statistical method reflect the essential
contents of the data in question, even if the analyst is well aware of the details and
definitions of the phenomenon generating the data. If the analyst is not familiar with
the data, the situation is all the worse, and results with different implications in more
than one statistical method complicate the statistical inference.

On the other hand, when we utilize simulations using the free software R, it
ensures the availability of diverse statistical methods ranging from the conventional
to the latest ones. Since its inception, this software has continually been improved
and its use has spread across the world. Therefore, with the advent of R and its
subsequent development, the time is ripe for publishing an introductory book for
learning statistical methods using simulations. This book is an attempt to introduce
statistics along the lines laid out above. Even the minimum mathematical concepts
for basic statistics can be understood through simulations using R. This approach
will facilitate learning the roles of statistical methods using a specific series of
numbers and acquiring the skills for analyzing actual data appropriately.
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Chapter 1
Linear Algebra

1.1 Starting Up and Executing R

Once the R statistical software has been downloaded and installed correctly, a
workspace image file (Fig. 1.1) (with file name “.RData”) will be located somewhere
on your PC. R programs can be saved in this file. More than one workspace
image file containing different R programs can be created on a PC by saving these
image files under different names, e.g., “myprog.RData”. Workspace image files can
continue to be used, even if the version of R is updated.

The R software package is executed by double-clicking on the workspace image
file, displaying the screen as shown in Fig. 1.2. The window labeled “R Console” is
called a console window. Various tasks can be carried out by inputting R commands
into this console window. The last line displayed in this console window is “>”,
which indicates “I am ready. Please input R commands.”

To create or edit an R program called prog1, inputfix(prog1) in the console
window (Fig. 1.3) and press the Enter key. An R editor is displayed on the screen
(Fig. 1.4). If R has been installed with the default settings, notepad is started as the
editor. Other editors can be used by changing the default settings.

“function () {}” appears in the R editor window. Now, a series of R
commands can be written within the curly brackets “{}” to create an R program.
Arguments can be included within the parenthesis “()” for use when the R program
is executed. Different constants or character strings can be passed as arguments
when the R program is executed, thus allowing the same program to be used to
compute different scenarios. If no arguments are set, the R commands given in the
curly brackets “{}” are executed as is. Such an R program always yields the same
result.

Figure 1.5 shows an example of an R program. The value of 3 is assigned to
aa in the first line. The symbol “<-” (representing an arrow and comprising a
“smaller than” sign (“<”) followed by a minus (“-”)) indicates that what is on the
right is assigned to what is on the left. Thus, aa is used to store various pieces
of information. That is, aa is a variable. In the context of R, aa is referred to as

K. Takezawa, Learning Regression Analysis by Simulation,
DOI 10.1007/978-4-431-54321-3 1, © Springer Japan 2014
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2 1 Linear Algebra

Fig. 1.1 Workspace image
file, with file name “.RData”

Fig. 1.2 Initial appearance of the screen when the R software is executed. A console window is
displayed

an object. “Object” has a wider meaning than “variable”. Even an R program is
considered a kind of object. The term “object oriented” is an important concept in
programing and system development. However, in the context of the R environment
for creating and executing R programs, objects should merely be thought of as
variables.

“=” can also be used to denote assignment, but this notation does not always
work in the same way as “<-”. Therefore, the use of “<-” is always recommended
for assignment. The value of -8 is assigned to bb in the second line. The result of
the addition of aa and bb is assigned to cc in the third line. Finally, the content
of cc is output to the console window in the fourth line. function () at the
top indicates that this R program does not make use of any arguments. Hence, this
R program always yields the same result unless the commands in the body of this
program are modified.

Click “�” in the upper right hand corner to quit the R editor (Fig. 1.6).
At this point a pop-up dialog window asking whether the edited R program

should be saved appears on the screen (Fig. 1.7). If “Yes” is selected, the edited
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Fig. 1.3 Construction of an R program

Fig. 1.4 The R editor
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Fig. 1.5 Example R program that adds two numbers and outputs the result

Fig. 1.6 Quitting the R
editor

Fig. 1.7 Pop-up dialog window asking whether the edited R program should be saved

R program is saved. Then, the R editor terminates leaving only the console window
(Fig. 1.8).

Input prog1() to execute prog1 (Fig. 1.9). Next, press the Enter key. The
result, giving the content of cc, is displayed as shown in Fig. 1.10. If prog1()
needs to be modified, input fix(prog1) again.

It should be noted that if “Yes” is selected in response to the question whether the
edited R program should be saved, the edited R program is in fact saved, but only
in volatile memory. Hence, even if this step is done correctly, the newly created or



1.1 Starting Up and Executing R 5

Fig. 1.8 Console window after quitting the R editor

Fig. 1.9 Executing prog1()
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Fig. 1.10 Result of executing prog1()

Fig. 1.11 Requesting help on the printcommand
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Fig. 1.12 Explanation of the print()command

updated R program could be lost by an abnormal termination of the R software.
You should therefore, quit R and then restart it to save the R programs you have
created or updated in the workspace image file (that is, on a hard disk, CD, or DVD);
this prevents them from being lost by an abnormal termination of the R software.
It is advisable to save the workspace before executing an R program that could cause
the R software to terminate abnormally. You can also save the workspace image by
selecting “Save Workspace” from the File menu. This avoids having to exit R and
restart it.

Executing help() in the console window displays information on the R
command given as the argument in the parentheses (Fig. 1.11). For example, if you
need information on print, execute help(print). This operation displays an
explanation of the print command (Fig. 1.12).

1.2 Vectors

The subsequent sections in this chapter describe basic concepts in linear algebra and
their numerical handling using R. These concepts and techniques form the basis of
understanding statistical calculation and the implementation thereof in R.
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−2 −1 0 1 2 3 4

−1.4 0.598 3.3Fig. 1.13 A number line

Numbers such as �1:4, 0:598, and 3:3 are called scalars. They are represented
as points on a number line (Fig. 1.13). Plain lower case letters (small letters) such
as a, b, x, and y are used to denote variables storing scalar values. This notation is
henceforth adopted in this book.

On the other hand, a combination of more than one number is often treated as a
single entity. For example, if the account balance of country A is minus 20,000
dollars, and that of country B is 50,000 dollars, it is natural to represent this
as .�20000; 50000/. In this notational convention, �20000 and 50000 are called
elements (or components) of a vector. Notation such as .�20000; 50000/ is called
the element form or component form). The combination of two numbers is referred
to as a 2-dimensional vector, while the combination of three numbers is referred to
as a 3-dimensional vector.

If a variable is required to represent .�20000; 50000/, a lower case letter in bold
face such as a, b, x, or y is commonly used. In high school mathematics, plain lower

case letters with arrows on top such as �!a ,
�!
b , �!x , or �!y are usually used to denote

vectors. In undergraduate mathematics, on the other hand, letters in bold type such
as a, b, x, or y are commonly used for this purpose. This notational difference arises
because a vector is considered to be a concept representing movement from one
point to another in high school mathematics, whereas it is understood as an abstract
concept based on axioms in university undergraduate or higher level mathematics.
Nevertheless, in pure mathematics at an undergraduate or higher level, vectors
usually do not need to be discriminated from scalars, and hence both scalars and
vectors are denoted by a, b, x, and y. Furthermore, if plain type and bold type are
used to distinguish scalars and vectors, respectively, text using this notation may be
hard to read and proofread. Therefore, letters such as a, b, x, and y are sometimes
used to depict vectors [1]. In R, scalars are treated as vectors with one element, and
hence scalars and vectors are denoted similarly.

A two-dimensional vector is represented as an arrow on a flat plain. Figure 1.14
(left) illustrates a vector, the element form of which is .4; 4:5/, while Fig. 1.14
(right) shows a vector, the element form of which is .�4; �4:5/. The length of a
vector is expressed as jaj. If the element form of a is .a1; a2/, it is defined as

jaj D
q

a2
1 C a2

2: (1.1)

If a is a q-dimensional vector with elements .a1; a2; : : : ; aq/, jaj is written as

jaj D
vuut

qX
iD1

a2
i : (1.2)
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4

4.5

(4,4.5)

4

4.5

(−4,−4.5)

Fig. 1.14 Examples of
vectors: (left) vector .4; 4:5/,
and (right) vector .�4; �4:5/

R Program [1 - 1]

The element form is used when a vector is constructed in R. For example, to
construct vector aa with two elements .�1:5; �4/, the appropriate R program is:
vec1()
function ()
{

aa <- c(-1.5, -4)
}

Here, c denotes the start of the combination of elements, and thus, in this case, c
must be a lower case letter. Since c is always used in this way, c cannot be used as
the name of a variable. For the same reason, names such as sin, cos, log, and if
have specific meanings, and hence problems are likely to occur if such names are
used to denote variables.

The content of aa is displayed by the R program:
vec2()
function ()
{

aa <- c(-1.5, -4)
print(aa)

}
Execution of vec2() gives the following results. The () in the command vec2()
is used to accommodate arguments when executing the program. Even if no
arguments are given, () is required.
-1.5 -4.0

R Program [1 - 1] End

Both addition and subtraction of vectors is defined. For example, assume two
vectors: a with elements .�3; 5/, and b with elements .1; �9/. Then, a C b gives
.�2; �4/. That is, the corresponding elements in the vectors are added. As another
example, a � b gives .�4; 14/. Since corresponding elements are needed for the
addition or subtraction operations, addition and subtraction between .�3; 5/ (a
vector consisting of two elements) and .1; �9; 8/ (a vector consisting of three
elements) cannot be realized. Furthermore, addition or subtraction between .�3; 5/

(a vector) and 2:5 (a scalar) cannot be done.



10 1 Linear Algebra

a

a⋅ 1.5

a

a⋅ (−1.5)

Fig. 1.15 Multiplication
between a vector and a scalar:
(a � 1:5) (left) and (a � .�1:5/)
(right)

Multiplication between a vector and a scalar, however, can be implemented. Let
a be a 2-dimensional vector (e.g., a D .a1; a2/), and q be a scalar. Then,

qa D aq D .qa1; qa2/: (1.3)

If the scalar is positive, the direction of the vector remains the same (Fig. 1.15 (left)).
If the scalar is negative, on the other hand, the direction of the resulting vector
changes to the opposite direction (Fig. 1.15 (right)). Definitions for a vector with
more than 2 dimensions are similar to those in Eq. (1.3).

The value representing the relationship between two vectors is referred to as the
inner product. Suppose the element form of a is .a1; a2/, and that of b is .b1; b2/.
Then the inner product of a and b is written as a � b. This is defined as

a � b D a1b1 C a2b2: (1.4)

If a and b are q-dimensional vectors with elements .a1; a2; : : : ; aq/ and
.b1; b2; : : : ; bq/, respectively, a � b is written as

a � b D
qX

iD1

ai bi : (1.5)

Another definition of a � b is given below using � , which is the angle between a and
b (Fig. 1.16).

a � b D jaj jbjcos.�/: (1.6)

Equations (1.4) and (1.6) formulate

cos.�/ D a1b1 C a2b2

jaj jbj : (1.7)

This relationship yields the angle between two vectors.
Equation (1.6) is valid if a and b are vectors with more than two dimensions.

Hence, Eq. (1.7) is a similar equation if a and b have more than two dimensions.
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a

b

θ

Fig. 1.16 Definition of �

R Program [1 - 2]

Addition and subtraction of vectors and displaying the results can be imple-
mented in R as follows:
vec3()
function ()
{

aa <- c(8, 7)
bb <- c(-5, 3)
cc <- aa + bb
dd <- aa - bb
print(cc)
print(dd)

}
The result is:

3 10
13 4
As mentioned above, addition or subtraction between a scalar and a vector cannot

be implemented. However, the R program given below can be executed.
vec4()
function ()
{

aa <- c(8, 7)
bb <- -5
cc <- aa + bb
dd <- aa - bb
print(cc)
print(dd)

}
The result is:

3 2
13 12

In other words, although bb denotes the scalar -5, it can be transformed into
c(-5, -5) when addition or subtraction between aa and bb is carried out. This
is because aa is a 2-dimensional vector.

Addition or subtraction between a 2-dimensional vector and a 3-dimensional
vector cannot be executed either. The following program shows what happens in R.
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vec5()

function ()
{

aa <- c(8, 7)
bb <- c(-5, 6, 10)
cc <- aa + bb
dd <- aa - bb
print(cc)
print(dd)

}
This R program yields:

3 13 18
13 1 -2
Warning messages:
1: In aa + bb :

longer object length is not a multiple of shorter
object length

2: In aa - bb :
longer object length is not a multiple of shorter
object length

aa is changed to c(8, 7, 8) when addition or subtraction between aa and
bb is carried out. However, the following warning message regarding the number
of elements of aa and bb appears: “Longer object length is not a multiple of
shorter object length”. Executing vec4(), on the contrary, does not result in such
a warning message because the number of elements of aa is 2, and that of bb is
1. In each case, if the lengths of the vectors in an addition or subtraction operation
differ, their lengths are equalized by repeating certain elements in the shorter vector.
Hence, it is safer to confirm that the lengths of the vectors are the same before
addition or subtraction is carried out.

R Program [1 - 2] End

R Program [1 - 3]

Multiplication between a vector and a scalar is carried out as follows:
vec11()

function ()
{

aa <- c(8, 7)
qq <- -1.5
cc <- aa * qq
dd <- qq * aa
print(cc)
print(dd)

}
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This program yields:
-12.0 -10.5
-12.0 -10.5

R Program [1 - 3] End

R Program [1 - 4]

The inner product between two vectors is calculated in the following way:
vec21()

function ()
{

aa <- c(1, -3)
bb <- c(-2, 9)
inn <- aa %*% bb
print(inn)

}

%*% calculates the inner product between two vectors. The result is:
-29

The inner product between vectors with different dimensions cannot be calcu-
lated. For example, calculation of the inner product between a 2-dimensional vector
and a 3-dimensional vector is attempted in the following R program:
vec22()

function ()
{

aa <- c(1, -3)
bb <- c(-2, 9, 1)
inn <- aa %*% bb
print(inn)

}

The result is:
Error in aa %*% bb : non-conformable arguments

R Program [1 - 4] End

1.3 Matrices

Examples of matrices are given below:

A D
��3:4

1:5

�
; B D �

2 9:9
�

; (1.8)
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C D
��1 4

1:5 4:2

�
; X D

0
@

7 �2:7

�0:5 �9:4

5 2:7

1
A ; (1.9)

Y D
�

7 �2:7 2

�0:5 �9:4 1:1

�
; Z D

0
@

0:2 �3:7 1:3

5 1:4 �2:8

9 7:2 4:1

1
A : (1.10)

A variable representing a matrix is usually denoted by a capital letter in bold face,
such as A, B, C, X, Y, and Z. This notation is henceforth adopted in this book. In
the above example, A is a matrix with 2 rows and 1 column. Simply put, it is a 2 � 1

matrix; this is read as “2-by-1 matrix”. In other words, the size of this matrix is 2
� 1, or the dimension of this matrix is 2 � 1. Similarly, B is a 1 � 2 matrix, C is
a 2 � 2 matrix, X is a 3 � 2 matrix, Y is a 2 � 3 matrix, and Z is a 3 � 3 matrix.
That is, the number of elements aligned vertically gives the number of rows, while
the number of elements aligned horizontally specifies the number of columns. If the
number of rows in a matrix is the same as the number of columns, such as C, the
matrix is called a square matrix.

A is a matrix consisting of only a single column; such a matrix is called a
column vector. Likewise, B is a matrix consisting of only a single row; such a
matrix is called a row vector. The image of a column in a newspaper serves as a
visual clue to remember the definition of a column vector, because both of these are
vertically long. On the other hand, the image of a rowing boat serves to remember
the definition of a row vector because both of these are horizontally long.

The term “vector” on its own, is sometimes used to refer to both these kinds of
vectors. In older literature, the term “vector” was used to refer to a row vector, which
is not its current meaning; “vector” is referred to a column vecor in newer literature.
Hence, the element form is something like A in Eq. (1.8). It should be noted that
descriptions of vectors such as .�3:4; 1:5/ or .�3:4 1:5/ (no commas between
numbers) are ecological sound owing to the fact that they use less paper. Hence,
expressions such as A D .�3:4 1:5/t , A D .�3:4 1:5/T , or A D .�3:4 1:5/0 are
often used. In these examples, the symbols “t ”, “T ”, and “0” indicate a transposed
matrix. Both “t ” and “T ” refer to the initial letter of “transpose”. Some examples are
given below:

A D
��3:4

1:5

�
D ��3:4 1:5

�t
; At D

��3:4

1:5

�t

D ��3:4 1:5
�

: (1.11)

Because At representing the transposed matrix of A could be mistaken for the t-th
power of A, the notation “t A” is occasionally adopted, although not in this book.

If the elements of a matrix are variables, the notation given below is commonly
used.

C D
�

c11 c12

c21 c22

�
; X D

0
@

x11 x12

x21 x22

x31 x32

1
A : (1.12)
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In other words, the elements of a matrix are represented as plain lower case letters
with subscripts. The subscripts of an element in a matrix or vector are called suffixes.
The first suffix is the index of the row to which the element belongs, while the second
is the index of the column to which the element belongs. The order of the suffixes is
“which row” followed by “which column”; the word “rococo style”, which sounds
like an abbreviated form of “row and column style”, can be used to remember this.
Using this notation with reference to variable c, expression of c11 as an element of
C could cause confusion. To avoid this problem, c11 is sometimes written as ŒC�11.

R Program [1 - 5]

In R, a vector, a column vector, and a row vector are distinguished.
vec31()

function ()
{
# (1)

xx <- c(1, -3)
print("xx")
print(xx)

# (2)
xxc <- matrix(xx, ncol = 1)
print("xxc")
print(xxc)

# (3)
xxr <- matrix(xx, nrow = 1)
print("xxr")
print(xxr)

}

R treats # and everything that follows until the end of the line, as a comment.
A comment does not affect the behavior of the R program. However, when # is
surrounded by quotation marks ("), it is regarded as a letter.

(1) xx is defined as a vector with elements .1; �3/. Next, xx is output as:
[1] "xx"
[1] 1 -3

Since “[1]” appears to the left of the elements only, it indicates that this is a
vector, which can be regarded as a series of numbers, and not a column vector
or a row vector.

(2) Transformation of xx into a column vector gives xxc. This is the result
of executing matrix(xx, ncol = 1). In this R command, ncol=1
specifies that a matrix with 1 column is constructed. The column vector in xxc
is output as:

[,1]
[1,] 1
[2,] -3
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[,1] means that the first column is displayed below. [1,] means that the
element displayed immediately to the right is that in the first row. Likewise,
[2,] means that the element displayed to the right is that in the second row.

(3) Transformation of xx into a row vector yields xxr. nrow = 1 specifies that
a matrix with 1 row is constructed. The row vector of xxr is output as:

[,1] [,2]
[1,] 1 -3

[,1] indicates that the element in the first column is given below. [,2]
indicates that the element in the second column is given below. [1,] means
that the elements displayed immediately to the right are those in the first row.

R Program [1 - 5] End

R Program [1 - 6]

In R, applying matrix() to a vector results in diverse matrices. Elements,
column vectors, or row vectors can be extracted from the resultant matrices.
vec36()

function ()
{
# (1)

yy <- c(-1, 9, 8, -4)
print("yy")
print(yy)

# (2)
yym <- matrix(yy, ncol = 2)
print("yym")
print(yym)

# (3)
yym21 <- yym[2, 1]
print("yym21")
print(yym21)

# (4)
yym2r <- yym[2, , drop = F]
print("yym2r")
print(yym2r)

# (5)
yym2r_drop <- yym[2, ]
print("yym2r_drop")
print(yym2r_drop)

# (6)
yym1c <- yym[,1, drop = F]
print("yym1c")
print(yym1c)
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# (7)
yym1c_drop <- yym[ ,1]
print("yym1c_drop")
print(yym1c_drop)

}

(1) yy denotes a vector consisting of 4 elements. The vector is displayed as follows:
[1] "yy"
[1] -1 9 8 -4

(2) Applying matrix() to yy gives a 2�2 matrix, called yym. In matrix(),
ncol = 2 specifies that the matrix comprises two column vectors. If
matrix() is used to transform a vector into a matrix, the elements of the
vector are aligned as vertical column vectors in the construction of the matrix.
Using matrix(yy,
ncol = 2, byrow = T), however, the elements of the vector are aligned
as horizontal row vectors in constructing the matrix. Matrix yym is displayed
below:

[1] "yym"
[,1] [,2]

[1,] -1 8
[2,] 9 -4

(3) The .2; 1/ element of yym (y21, if the elements of yym are referred to as fyij g)
is extracted and stored in yym21, which is displayed below:

[1] "yym21"
[1] 9

(4) The second row of yym is extracted as a row vector and stored in yym2r. If
“, drop = F” is omitted, the extracted vector is not a row vector, but merely
a vector. F can be written as FALSE, since both F and FALSE mean negative in
an R program. This means that a column vector is not transformed into merely
a vector. On the other hand, T or TRUE means the opposite of FALSE, in other
words, positive.

yym2r is displayed below:
[1] "yym2r"

[,1] [,2]
[1,] 9 -4

(5) The second row of yym is extracted as a row vector without “, drop = F”.
The result is stored in yym2r_drop. On outputting yym2r_drop, we see
that it is not a matrix, but a vector:

[1] "yym2r_drop"
[1] 9 -4

(6) The first column in yym is extracted as a column vector and stored in yym1c.
If “, drop = F” is omitted, the extracted vector is not a column vector, but
only a vector. yym1c is displayed below:
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[1] "yym1c"
[,1]

[1,] -1
[2,] 9

(7) When the first column of yym is extracted as a column vector, “, drop = F”
is not specified. The result is stored in yym1c_drop. On outputting
yym1c_drop, we see that it is not a matrix, but a vector:

[1] "yym1c_drop"
[1] -1 9

R Program [1 - 6] End

1.4 Addition of Two Matrices

Addition of two matrices is defined as

�
a11 a12

�C �
b11 b12

� D �
a11 C b11 a12 C b12

�
; (1.13)

�
a11

a21

�
C
�

b11

b21

�
D
�

a11 C b11

a21 C b21

�
; (1.14)

�
a11 a12

a21 a22

�
C
�

b11 b12

b21 b22

�
D
�

a11 C b11 a12 C b12

a21 C b21 a22 C b22

�
: (1.15)

Subtraction between two matrices is defined in a similar way.

R Program [1 - 7]

Addition and subtraction between two matrices is carried out using Eq. (1.13)
(page 18) and Eq. (1.14) (page 18).
vec38()

function ()
{
# (1)

pp <- c(2, -9)
ppr <- matrix(pp, ncol = 2)
print("ppr")
print(ppr)

# (2)
qq <- c(-5, -4)
qqr <- matrix(qq, ncol = 2)
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print("qqr")
print(qqr)

# (3)
rrr <- ppr + qqr
print("rrr")
print(rrr)

# (4)
ppc <- t(ppr)
print("ppc")
print(ppc)

# (5)
qqc <- t(qqr)
print("qqc")
print(qqc)

# (6)
rrc <- ppc - qqc
print("rrc")
print(rrc)

}

(1) Vector pp is transformed into a row vector, ppr. The resulting ppr is output
as:

[1] "ppr"
[,1] [,2]

[1,] 2 -9
(2) Vector qq is transformed into a row vector, qqr. The resulting qqr is output

as:
[1] "qqr"

[,1] [,2]
[1,] -5 -4

(3) The result of ppr + qqr is stored in rrr, which is output:
[1] "rrr"

[,1] [,2]
[1,] -3 -13

(4) The transposed matrix of ppr is obtained and the result is stored in ppc. t()
creates a transposed matrix. ppc is output:

[1] "ppc"
[,1]

[1,] 2
[2,] -9

(5) The transposed matrix of qqr is obtained and the result is stored in qqc, which
is output:

[1] "qqc"
[,1]

[1,] -5
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[2,] -4
(6) The result of ppc - qqc is stored in rrc and output as:

[1] "rrc"
[,1]

[1,] 7
[2,] -5

R Program [1 - 7] End

R Program [1 - 8]

Addition of two matrices is carried out using Eq. (1.15) (page 18).
vec39()

function ()
{
# (1)

pp <- c(-3, -1)
ppc <- matrix(pp, ncol = 1)
print("ppc")
print(ppc)

# (2)
qq <- c(-5, -4)
qqc <- matrix(qq, ncol = 1)
print("qqc")
print(qqc)

# (3)
pqmat <- cbind(ppc, qqc)
print("pqmat")
print(pqmat)

# (4)
rr <- c(7, -8)
rrc <- matrix(rr, ncol = 1)
print("rrc")
print(rrc)

# (5)
ss <- c(-2, 9)
ssc <- matrix(ss, ncol = 1)
print("ssc")
print(ssc)

# (6)
rsmat <- cbind(rrc, ssc)
print("rsmat")
print(rsmat)
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# (7)
sum1 <- pqmat + rsmat
print("sum1")
print(sum1)

}

(1) Vector pp is transformed into a column vector, ppc, which is output:
[1] "ppc"

[,1]
[1,] -3
[2,] -1

(2) Vector qq is transformed into a column vector, qqc, which is output:
[1] "qqc"

[,1]
[1,] -5
[2,] -4

(3) cbind() combines ppc and qqc to create a 2 � 2 matrix. The result is stored
in pqmat and output:

[1] "pqmat"
[,1] [,2]

[1,] -3 -5
[2,] -1 -4

The initial letter “c” in cbind() means “by column”. Hence, cbind()
combines two matrices horizontally by placing column vectors together. For
example, combining a 2 � 2 matrix and a 2 � 2 matrix using cbind() results
in a 2 � 4 matrix. Hence, the column numbers in the two matrices become the
serial number (i.e., [,1] [,2] [,3] [,4]).

(4) Vector rr is transformed into a column vector rrc, which is output:
[1] "rrc"

[,1]
[1,] 7
[2,] -8

(5) Vector ss is transformed into a column vector ssc, which is output:
[1] "ssc"

[,1]
[1,] -2
[2,] 9

(6) Combining rrr and ssr using cbind() yields a 2 � 2 matrix. The resultant
matrix is stored in rsmat and output as:

[1] "rsmat"
[,1] [,2]

[1,] 7 -2
[2,] -8 9
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(7) The result of pqmat + rsmat is stored in sum1 and output as:
[1] "sum1"

[,1] [,2]
[1,] 4 -7
[2,] -9 5

R Program [1 - 8] End

1.5 Multiplying Two Matrices

Multiplication of two matrices is defined as

�
a11 a12

� �b11

b21

�
D a11b11 C a12b21; (1.16)

�
a11

a21

� �
b11 b12

� D
�

a11b11 a11b12

a21b11 a21b12

�
; (1.17)

�
a11 a12

a21 a22

��
b11 b12

b21 b22

�
D
�

a11b11 C a12b21 a11b12 C a12b22

a21b11 C a22b21 a21b12 C a22b22

�
: (1.18)

Let us make this more general. Suppose that A is a l � m matrix with elements
aij .1 � i � l; 1 � j � m/. Moreover, suppose that B is an m � n matrix with
elements bij .1 � i � m; 1 � j � n/. If AB is stored in C, with the elements of C
defined as cij .1 � i � l; 1 � j � n/, we have

cij D
mX

kD1

aikbkj .1 � i � l; 1 � j � n/: (1.19)

An easy way to remember this equation is to note that in the suffixes of cij on the left
hand side and those of aikbkj on the right hand side, k is placed next to another k

in aikbkj , whereas cij does not refer to k, because
Pm

kD1 represents the summation
with respect to k. Moreover, if multiplication of two matrices A and B is possible,
the following transposition equation holds.

.AB/t D Bt At : (1.20)

This equation can be verified as follows:

Œ.AB/t �ij D ŒAB�j i
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D
mX

kD1

ŒA�jk ŒB�ki

D
mX

kD1

ŒB�ki ŒA�jk

D
mX

kD1

ŒBt �ikŒAt �kj

D ŒBt At �ij : (1.21)

R Program [1 - 9]

By using Eqs. (1.16) (page 22) and (1.17) (page 22), we can perform multiplica-
tion of matrices.
vec41()
function ()
{
# (1)

pp <- c(2, -9)
ppr <- matrix(pp, ncol = 2)
print("ppr")
print(ppr)

# (2)
qq <- c(-5, -4)
qqc <- matrix(qq, ncol = 1)
print("qqc")
print(qqc)

# (3)
rr <- ppr %*% qqc
print("rr")
print(rr)

# (4)
pp <- c(2, -9)
ppc <- matrix(pp, ncol = 1)
print("ppc")
print(ppc)

# (5)
qq <- c(-5, -4)
qqr <- matrix(qq, ncol = 2)
print("qqr")
print(qqr)

# (6)
rrm <- ppc %*% qqr
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print("rrm")
print(rrm)

}

(1) Vector pp is transformed into a row vector, ppr, which is output as:
[1] "ppr"

[,1] [,2]
[1,] 2 -9

(2) Vector qq is transformed into a column vector, qqc, which is output as:
[1] "qqc"

[,1]
[1,] -5
[2,] -4

(3) The result of ppr %*% qqc is stored in rr, which is output. %*% can be used
to multiply two matrices as well as two vectors (i.e., inner product).

[1] "rr"
[,1]

[1,] 26
(4) Vector pp is transformed into a column vector, ppc, which is output as:

[1] "ppc"
[,1]

[1,] 2
[2,] -9

(5) Vector qq is transformed into a row vector qqr, which is output as:
[1] "qqr"

[,1] [,2]
[1,] -5 -4

(6) %*% multiplies two matrices. The result of ppc %*% qqr is stored in rrm,
which is output as:

[1] "rrm"
[,1] [,2]

[1,] -10 -8
[2,] 45 36

R Program [1 - 9] End

R Program [1 - 10]

Using Eq. (1.18) (page 22), multiplication of matrices can be performed.
vec46()

function ()
{
# (1)

aa <- c(1, -3, 4, 2)
aam <- matrix(aa, ncol = 2)
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print("aam")
print(aam)

# (2)
bb <- c(-3, 1, 6, -4)
bbm <- matrix(bb, ncol = 2)
print("bbm")
print(bbm)

# (3)
ccm <- aam %*% bbm
print("ccm")
print(ccm)

# (4)
ddm <- bbm %*% aam
print("ddm")
print(ddm)

}

(1) Matrix aam is constructed and output as follows:
[1] "aam"

[,1] [,2]
[1,] 1 4
[2,] -3 2

(2) Matrix bbm is composed and output as follows:
[1] "bbm"

[,1] [,2]
[1,] -3 6
[2,] 1 -4

(3) The result of aam %*% bbm is stored in ccm, and output:
[1] "ccm"

[,1] [,2]
[1,] 1 -10
[2,] 11 -26

(4) The result of bbm %*% aam is stored in ddm and output. Comparing ddm
with the result of (3), ccm, shows the difference between bbm %*% aam and
aam %*% bbm.

[1] "ddm"
[,1] [,2]

[1,] -21 0
[2,] 13 -4

R Program [1 - 10] End

R Program [1 - 11]
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An example where multiplication between two matrices cannot be carried out is
shown below.
vec51()

function ()
{
# (1)

pp <- c(2, -9)
ppc <- matrix(pp, ncol = 1)
print("ppc")
print(ppc)

# (2)
qq <- c(-5, -4)
qqc <- matrix(qq, ncol = 1)
print("qqc")
print(qqc)

# (3)
rr <- ppc %*% qqc
print("rr")
print(rr)

}

(1) Vector pp is transformed into a column vector, ppc, which is output as follows:
[1] "ppc"

[,1]
[1,] 2
[2,] -9

(2) Vector qq is transformed into a column vector, qqc, which is output as follows:
[1] "qqc"

[,1]
[1,] -5
[2,] -4

(3) The result of ppc %*% qqc is stored in rr and output. Since a column vector
cannot be multiplied by another column vector, the result of vec51() is:

Error in ppc %*% qqc : non-conformable arguments

R Program [1 - 11] End

R Program [1 - 12]

Next, we verify Eq. (1.20) (page 22).
vec56()

function ()
{
# (1)

aa <- c(2, -9, 1, 3, -3, 6)
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aam <- matrix(aa, ncol = 2)
bb <- c(3, 4, -5, -9, 8, 4)
bbm <- matrix(bb, ncol = 3)

# (2)
ccm <- t(aam %*% bbm)
print("ccm")
print(ccm)
ddm <- t(bbm) %*% t(aam)
print("ddm")
print(ddm)

}

(1) aam and bbm are given.
(2) Both sides of Eq. (1.20) are calculated and the result is displayed.

vec56() yields:
[1] "ccm"

[,1] [,2] [,3]
[1,] 18 -39 27
[2,] -37 72 -59
[3,] 28 -84 32
[1] "ddm"

[,1] [,2] [,3]
[1,] 18 -39 27
[2,] -37 72 -59
[3,] 28 -84 32

R Program [1 - 12] End

1.6 Identity and Inverse Matrices

Any number (scalar) multiplied by 1 is equal to the original number. In the context
of matrices, the identity matrix plays much the same role as unity (1). An identity
matrix is usually denoted by I, following the initial letter of “identity”. It can also
be denoted by E, following the initial letter of “elementary”. Examples of identity
matrices are:

�
1 0

0 1

�
;

0
@

1 0 0

0 1 0

0 0 1

1
A : (1.22)

In other words, an identity matrix is a square matrix, where all its diagonal elements
are 1, and all the remaining elements are 0. If the element of a square matrix (X)
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is described as xij , the values of i and j are the same for the diagonal elements.
A 2 � 2 identity matrix is sometimes written as I2, while a 3 � 3 identity matrix is
sometimes written as I3.

If the result of multiplying two scalar numbers (a and b) is 1, b is called the
inverse number (reciprocal number) of a. For example, 0:2 is the inverse of 5. In the
context of matrices, if the following relationship between two square matrices (A
and B) holds, B is called the inverse matrix of A.

AB D BA D I (1.23)

This relationship can also be written as

A�1 D B: (1.24)

It should be noted that some matrices have inverse matrices, while others do not. A
matrix that has an inverse matrix is called a regular matrix.

For example, let A and B be defined as

A D
��2 1

�8 5

�
; B D

��2:5 0:5

�4 1

�
: (1.25)

Then, we have

��2 1

�8 5

���2:5 0:5

�4 1

�
D
�

1 0

0 1

�
; (1.26)

��2:5 0:5

�4 1

���2 1

�8 5

�
D
�

1 0

0 1

�
: (1.27)

Since Eq. (1.23) holds, B is the inverse matrix of A, and vice versa.
Equation (1.24) is represented in element form as

��2 1

�8 5

��1

D
��2:5 0:5

�4 1

�
: (1.28)

A 2 � 2 matrix (e.g., Eq. (1.28)), which consists of two rows, or alternatively
stated, which consists of two columns, is represented as

A D
�

ŒA�11 ŒA�12

ŒA�21 ŒA�22

�
: (1.29)

Then, A�1 (the inverse matrix of A) is written as

A�1 D 1

ŒA�11ŒA�22 � ŒA�12ŒA�21

�
ŒA�22 �ŒA�12

�ŒA�21 ŒA�11

�
: (1.30)
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The following calculation proves Eq. (1.30).

AA�1 D
�

ŒA�11 ŒA�12

ŒA�21 ŒA�22

�
1

ŒA�11ŒA�22 � ŒA�12ŒA�21

�
ŒA�22 �ŒA�12

�ŒA�21 ŒA�11

�

D 1

ŒA�11ŒA�22 � ŒA�12ŒA�21

�
ŒA�11 ŒA�12

ŒA�21 ŒA�22

��
ŒA�22 �ŒA�12

� ŒA�21 ŒA�11

�

D 1

ŒA�11ŒA�22 � ŒA�12ŒA�21

�
ŒA�11ŒA�22 � ŒA�12ŒA�21 �ŒA�11ŒA�12 C ŒA�12ŒA�11

ŒA�21 ŒA�22 � ŒA�22ŒA�21 �ŒA�21ŒA�12 C ŒA�22ŒA�11

�

D
�

1 0

0 1

�
: (1.31)

The following equation is also satisfied.

A�1A D
�

1 0

0 1

�
(1.32)

Furthermore, if the size of square matrix A is the same as that of B (that is,
both the number of rows and the number of columns in A are the same as those in
B), and both these matrices have inverse matrices, the following equation for the
multiplication of matrices and inverse matrices is satisfied.

.AB/�1 D B�1A�1 (1.33)

This equation can be proved as follows.
First, the following equation is defined.

.AB/�1 D P: (1.34)

It follows that if we take the inverse of both sides in the above equation, we obtain

AB D P�1: (1.35)

Multiplying both sides from the left by A�1 yields

B D A�1P�1: (1.36)

Then, by multiplying both sides from the right by P, we have

BP D A�1: (1.37)

Finally, multiplying both sides from the left by B�1 gives

P D B�1A�1: (1.38)

Thus, Eq. (1.33) holds.
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Moreover, the following equation is satisfied:

.At /�1 D .A�1/t : (1.39)

This equation can be proved as follows.
First, we set

.A�1/t At D Q: (1.40)

We transpose the matrix on the left hand side. Then, by applying Eq. (1.20) (page
22), we have

A.A�1/ D I: (1.41)

Therefore, the following equation holds:

Qt D I: (1.42)

By transposing the matrices on both sides, we have

Q D I: (1.43)

Substituting this equation into Eq. (1.40) yields

.A�1/t At D I: (1.44)

This equation indicates that .A�1/t is the inverse matrix of At . Thus, we can derive

.A�1/t D .At /�1: (1.45)

This concludes the proof of Eq. (1.39).

R Program [1 - 13]

An inverse matrix is constructed as follows.
vec61()

function ()
{
# (1)

aa <- matrix(c(-2, -8 ,1, 5), ncol = 2)
print("aa")
print(aa)

# (2)
bb <- solve(aa)
print("bb")
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print(bb)
# (3)

cc <- aa %*% bb
print("cc")
print(cc)

# (4)
dd <- bb %*% aa
print("dd")
print(dd)

}

(1) Matrix aa is created and output as:
[1] "aa"

[,1] [,2]
[1,] -2 1
[2,] -8 5

(2) solve() gives the inverse matrix of aa, and the result, stored in bb, is output:
[1] "bb"

[,1] [,2]
[1,] -2.5 0.5
[2,] -4.0 1.0

(3) aa %*% bb is calculated, and the result, stored in cc, is output:
[1] "cc"

[,1] [,2]
[1,] 1 0
[2,] 0 1

(4) bb %*% aa is derived, and the result, stored in dd, is output:
[1] "dd"

[,1] [,2]
[1,] 1 0
[2,] 0 1

R Program [1 - 13] End

R Program [1 - 14]

Equation (1.33) (page 29) can be verified as shown below.
vec66()

function ()
{
# (1)

aa <- c(2, -9, 1, 3)
aam <- matrix(aa, ncol = 2)
bb <- c(3, 4, -5, -9)
bbm <- matrix(bb, ncol = 2)
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# (2)
ccm <- solve(aam %*% bbm)
print("ccm")
print(ccm)
ddm <- solve(bbm) %*% solve(aam)
print("ddm")
print(ddm)

}

(1) Matrices aam and bbm are given.
(2) Both sides of Eq. (1.33) are calculated and the result is displayed.

vec66() gives:
[1] "ccm"

[,1] [,2]
[1,] -0.1714286 -0.1809524
[2,] -0.1428571 -0.0952381
[1] "ddm"

[,1] [,2]
[1,] -0.1714286 -0.1809524
[2,] -0.1428571 -0.0952381

R Program [1 - 14] End

1.7 Simultaneous Equations

Let us consider the following simultaneous equations:

(
�2x1 C x2 D 4

�8x1 C 5x2 D �11:
(1.46)

By transforming Eq. (1.46) into matrix form, we have

��2 1

�8 5

��
x1

x2

�
D
�

4

�11

�
: (1.47)

Both sides of Eq. (1.47) are multiplied from the left by

��2 1

�8 5

��1

. Then, we have

�
x1

x2

�
D
��2 1

�8 5

��1 �
4

�11

�
: (1.48)
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Using Eq. (1.28), we can derive

�
x1

x2

�
D
��2:5 0:5

�4 1

��
4

�11

�
D
��15:5

�27

�
: (1.49)

Thus, we have the solution of Eq. (1.46).

R Program [1 - 15]

Next, we explain how to solve simultaneous equations.
vec71()

function ()
{
# (1)

aa <- matrix(c(-2, -8 ,1, 5), ncol = 2)
print("aa")
print(aa)

# (2)
ff <- matrix(c(4, -11), ncol = 1)
print("ff")
print(ff)

# (3)
aain <- solve(aa)
print("aain")
print(aain)

# (4)
xx <- aain %*% ff
print("xx")
print(xx)

# (5)
dd <- aa %*% xx
print("dd")
print(dd)

# (6)
xx2 <- solve(aa, ff)
print("xx2")
print(xx2)

}

(1) Matrix aa (the matrix on the left hand side of Eq. (1.47) (page 32)) is given and
output as follows:

[1] "aa"
[,1] [,2]

[1,] -2 1
[2,] -8 5
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(2) Column vector ff (the matrix located on the right hand side of Eq. (1.47)) is
created and output as follows:

[1] "ff"
[,1]

[1,] 4
[2,] -11

(3) solve() derives the inverse matrix of aa. The result is stored in aain and is
output:

[1] "aain"
[,1] [,2]

[1,] -2.5 0.5
[2,] -4.0 1.0

(4) Using Eq. (1.48) (page 32), the simultaneous equations are solved. The result is
stored in xx and output:

[1] "xx"
[,1]

[1,] -15.5
[2,] -27.0

(5) xx is confirmed to be the correct solution.
[1] "dd"

[,1]
[1,] 4
[2,] -11

(6) solve(aa, ff) also yields the solution of the simultaneous equations. The
result is stored in xx2 and output. The R command, solve(aa, ff), gives
the solution of simultaneous equations in an easier way than following steps (3)
and (4).

[1] "xx2"
[,1]

[1,] -15.5
[2,] -27.0

R Program [1 - 15] End

1.8 Diagonalization of a Symmetric Matrix

A symmetric matrix is a specific type of square matrix, such as

�
5 �2

�2 0

�
;

0
@

1 �3 9

�3 2 4:5

9 4:5 �4

1
A : (1.50)
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In other words, if the elements of the square matrix H are referred to as hij .1 � i �
n; 1 � j � n/, a matrix that satisfies hij D hj i is called a symmetric matrix.

Assume that the 2 � 2 symmetric matrix H satisfies

U�1HU D �; (1.51)

where U is a 2 � 2 matrix and � is a 2 � 2 diagonal matrix. U and � are written as

U D
�

u11 u12

u21 u22

�
; � D

�
�1 0

0 �2

�
: (1.52)

Derivation of � satisfying Eq. (1.51) is termed diagonalization by U.
From Eqs. (1.51) and (1.52) we obtain

HU D
�

h11u11 C h12u21 h11u12 C h12u22

h21u11 C h22u21 h21u12 C h22u22

�
; (1.53)

U� D
�

u11 u12

u21 u22

��
�1 0

0 �2

�
D
�

�1u11 �2u12

�1u21 �2u22

�
: (1.54)

Hence, we have

�
h11u11 C h12u21 h11u12 C h12u22

h21u11 C h22u21 h21u12 C h22u22

�
D
�

�1u11 �2u12

�1u21 �2u22

�
: (1.55)

This can be transformed into

�
h11 � �1 h12

h21 h22 � �1

��
u11

u21

�
D
�

0

0

�
;

�
h11 � �2 h12

h21 h22 � �2

��
u12

u22

�
D
�

0

0

�
:

(1.56)

If either u11 or u21 is not zero and either u12 or u22 is not zero, the following equations
are satisfied:

h11 � �1

h12

D h21

h22 � �1

;
h11 � �2

h12

D h21

h22 � �2

: (1.57)

These equations can be transformed into

.h11 � �1/.h22 � �1/ � h12h21 D 0; .h11 � �2/.h22 � �2/ � h12h21 D 0: (1.58)

Equation (1.58) is transformed into a more general form in the context of matrices:

ˇ̌
ˇ̌h11 � �1 h12

h21 h22 � �1

ˇ̌
ˇ̌ D 0;

ˇ̌
ˇ̌h11 � �2 h12

h21 h22 � �2

ˇ̌
ˇ̌ D 0: (1.59)



36 1 Linear Algebra

These are sometimes written as

jH � �1Ij D 0; jH � �2Ij D 0; (1.60)

where I is an identity matrix and jH � �1Ij is called the determinant of .H � �1I/.
Since Eq. (1.60) consists of two equations with the same form, �1 and �2 are the
solutions of the equation jH � �Ij D 0. Thus, �1 and �2 are the solutions of the
quadratic equation:

.h11 � �/.h22 � �/ � h12h21 D 0: (1.61)

Since these are the solutions of the quadratic equation, �1 D �2 may hold.
Equation (1.61) is transformed into

�2 C .h11 C h22/� C h11h22 � h12h21 D 0: (1.62)

The discriminant of this quadratic equation is

D D .h11 C h22/
2 � 4.h11h22 � h12h21/

D .h11 � h22/2 C 4h12h21: (1.63)

Since H is a symmetric matrix, h12 D h21 is satisfied, and hence, h12h21 � 0 holds.
Therefore, we obtain D � 0. Thus, both �1 and �2 are real numbers.

Not only can the determinant of a 2 � 2 square matrix be defined, but also the
determinants of larger square matrices such as a 3�3 square matrix. Equations (1.59)
and (1.60) are called the eigenequations (characteristic equations) of H. �1 and �2

given by an eigenequation are called eigenvalues (or characteristic values) of H.

Once �1 and �2 have been obtained, substitution into Eq. (1.56) leads to

�
u11

u21

�

and

�
u12

u22

�
. These vectors are termed eigenvectors (or characteristic vectors). If we

have eigenvectors, diagonalization of a symmetric matrix is realized using Eq. (1.51)
(page 35).

The eigenvectors given by an eigenequation for a symmetric matrix formulate U
(Eq. (1.51) (page 35)), which satisfies

U�1 D Ut : (1.64)

In other words, when an inverse matrix of U is required, the transposed matrix of
U can be used. If U has this characteristic, it is called an orthogonal matrix. The
word “orthogonal” originates from the following characteristic of U: if the column
vectors constituting U are called u1 and u2 (u1 D .u11 u21/

t , u2 D .u12 u22/
t ), u1

and u2 are orthogonal. That is, the inner product of u1 and u2 is zero.
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Diagonalization of a symmetric matrix is applicable in various calculations. For
example, let both sides of Eq. (1.51) (page 35) be raised to the power m (m is a
positive integer). The result is

.U�1HU/m D �m: (1.65)

Since U�1U D I holds, we have

.U�1HU/m D U�1HmU D �m: (1.66)

Furthermore, we can obtain

Hm D U�mU�1: (1.67)

Since � is a diagonal matrix, �m is written as

�m D
�

�m
1 0

0 �m
2

�
: (1.68)

The same is true for a larger symmetric matrix than �. Hence, use of Eq. (1.67)
yields Hm by a simple calculation.

R Program [1 - 16]

Next, we explain how a symmetric matrix is diagonalized.
vec81()

function ()
{
# (1)

hh <- matrix(c(-2, -8 ,-8, 3), ncol = 2)
print("hh")
print(hh)

# (2)
eigen1 <- eigen(hh)

# (3)
lam <- eigen1$values
print("lam")
print(lam)

# (4)
uu <- eigen1$vectors
print("uu")
print(uu)

# (5)
det1 <- det(hh-lam[1] * diag(2))
print("det1")
print(det1)
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# (6)
det2 <- det(hh-lam[2] * diag(2))
print("det2")
print(det2)

}

(1) Matrix hh is given and displayed.
[1] "hh"

[,1] [,2]
[1,] -2 -8
[2,] -8 3

(2) eigen() solves the eigenequation of hh. The resultant eigenvalues and
eigenvectors are obtained and stored in eigen1.

(3) eigen1 is an object in the form of a list. An object in this form usually
contains several list components. One of the list components of eigen1 is
values. eigen1$values indicates that a component called values is
extracted from the list components stored in eigen1. The list component
values consists of eigenvalues. Then, eigen1$values is saved as lam
and is displayed as follows:

[1] "lam"
[1] 8.881527 -7.881527

(4) Eigenvectors stored in eigen1 are extracted. The result, which is stored in uu,
is displayed as follows:

[1] "uu"
[,1] [,2]

[1,] -0.5923365 -0.8056907
[2,] 0.8056907 -0.5923365

(5) The eigenequation (the equation on the left in Eq. (1.60) (page 36)) is con-
firmed. det() yields a determinant (Eq. (1.60)), lam[1] is the first eigen-
value, and diag(2) is a 2 � 2 identity matrix.

[1] "det1"
[1] 9.664738e-15

This value is very close to zero.

(6) The eigenequation (the equation on the left in Eq. (1.60) (page 36)) is con-
firmed. lam[2] is the second eigenvalue.

[1] "det2"
[1] -2.043504e-15

This value is very close to zero.

R Program [1 - 16] End

R Program [1 - 17]
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Here, we calculate the 5-th power of a symmetric matrix.
vec91()

function ()
{
# (1)

aa <- matrix(c(-2, -8 ,-8, 3), ncol = 2)
print("aa")
print(aa)

# (2)
aa5 <- aa %*% aa %*% aa %*% aa %*% aa
print("aa5")
print(aa5)

# (3)
eigen1 <- eigen(aa)

# (4)
lam <- eigen1$values
uu <- eigen1$vectors

# (5)
diag5 <- diag(c(lam[1]ˆ5, lam[2]ˆ5))
print("diag5")
print(diag5)

# (6)
aa5eigen <- uu %*% diag5 %*% t(uu)
print("aa5eigen")
print(aa5eigen)

}

(1) Matrix aa is given and calculated.
[1] "aa"

[,1] [,2]
[1,] -2 -8
[2,] -8 3

(2) The 5-th power of aa is stored in aa5 and displayed as follows:
[1] "aa5"

[,1] [,2]
[1,] -352 -40888
[2,] -40888 25203

(3) eigen() solves the eigenequation of aa. The eigenvalues and eigenvectors
are stored in eigen1.

(4) The eigenvalues stored in eigen1 are extracted into lam. The eigenvectors
stored in eigen1 are extracted into uu.

(5) The diagonal matrix diag5 is constructed. The first and second diagonal
elements are, respectively, lam[1]ˆ5 and lam[2]ˆ5 (ˆ5 means “to the
power of 5”). Matrix diag5 is displayed as follows:
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[1] "diag5"
[,1] [,2]

[1,] 55263.49 0.00
[2,] 0.00 -30412.49

(6) Using Eq. (1.67) (page 37), we calculate aa to the power of 5. This is stored in
aa5eigen and displayed as follows:

[1] "aa5eigen"
[,1] [,2]

[1,] -352 -40888
[2,] -40888 25203

R Program [1 - 17] End

1.9 Quadratic Forms

The following equation is a specific form of a function with two variables (x1 and
x2). This form is called the quadratic form. Similar definitions are used for functions
with more than two variables.

y D xtAx; (1.69)

where x and A are given as

x D
�

x1

x2

�
; A D

�
a11 a12

a21 a22

�
: (1.70)

A is a diagonal matrix. That is, a21 D a12 holds.
Equation (1.69) is written as

y D a11x
2
1 C .a12 C a21/x1x2 C a22x2

2

D a11x
2
1 C 2a12x1x2 C a22x

2
2 ; (1.71)

where if A is a diagonal matrix, it can be transformed into the form of Eq. (1.51)
(page 35) by solving the eigenequation of A. Thus, using Eq. (1.64) (page 36), we
have

A D U�U�1: (1.72)

By substituting this equation into Eq. (1.69), Eq. (1.64) (page 36) yields

y D xtU�U�1x

D .Ut x/t�.Ut x/: (1.73)
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Fig. 1.17 Graphs of a function in quadratic form, where both �1 and �2 (Eq. (1.76) (page 41)) are
positive: left contour with axes x1 and x2, and right contour with axes �1 and �2

When the second equation above is derived from the first equation, xtU is
transformed into .Utx/t (Eq. (1.20) (page 22)).

The following substitution is carried out in Eq. (1.73).

� D Ut x: (1.74)

Then, we have

y D �t ��: (1.75)

Using � D .�1; �2/t , the following equation is obtained:

y D �1�
2
1 C �2�

2
2 : (1.76)

Since this equation does not include the term �1�2, it can be dealt with easily. The
form of Eq. (1.75) is called the diagonal form.

If both �1 and �2 are positive in Eq. (1.76) (page 41), y is positive unless both
�1 and �2 are zero. In this instance, Eq. (1.69) (page 40) is called a positive definite
function and A is called a positive definite matrix. If A is a positive definite matrix,
the value of Eq. (1.76) takes the minimum value when �1 D �2 D 0. If both �1 and
�2 are positive or zero, A is called a positive semidefinite matrix. Furthermore, if
both �1 and �2 in Eq. (1.75) are negative, y is negative unless both �1 and �2 are
zero. In this instance, Eq. (1.69) is called a negative definite function and A is called
a negative definite matrix.

Figure 1.17 depicts the graphs for a function in quadratic form. Both �1 and
�2 (Eq. (1.76) (page 41)) are positive. Figure 1.17 (left) shows the contour with
axes x1 and x2, while Fig. 1.17 (right) shows the contour with axes �1 and �2. The
latter contour shows how the contour lines form vertical ovals because Eq. (1.76)
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Fig. 1.18 Graphs of a function in quadratic form, where both �1 and �2 (Eq. (1.76) (page 41)) are
negative: left contour with axes x1 and x2, and right contour with axes �1 and �2
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Fig. 1.19 Graphs of a function in quadratic form with �1 (Eq. (1.76) (page 41)) positive and �2

(Eq. (1.76)) negative: left contour with axes x1 and x2, and right contour with axes �1 and �2

includes terms �2
1 and �2

2 only. Moreover, the center point of the elliptically-shaped
lines (the original point) depicts the minimum value of Eq. (1.76) (page 41). On the
other hand, Fig. 1.18 illustrates the graphs for a function in quadratic form where
both �1 and �2 (Eq. (1.76) (page 41)) are negative. Although Fig. 1.18 (right) also
shows that the contour lines form vertical ovals, the center point of the elliptically-
shaped lines (the original point) depicts the maximal value of Eq. (1.76) (page 41).
In contrast, Fig. 1.19 depicts the graphs when �1(Eq. (1.76) (page 41)) is positive
and �2 is negative. The behavior of these contour lines is considerably different
from those of the previous two examples. The original point does not reflect either
the minimum or the maximum point of the function given by Eq. (1.76). This point
is called a saddle point. If a vertical straight line crossing the center point is drawn
in Fig. 1.19 (left), the value on the straight line varies as .�40; �30; �20; �10;

0; �10; �20; �30; �40/ from the top to the bottom. Hence, zero is the maximum
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value. However, if a horizontal straight line crossing the center point is drawn in the
same figure, the value on the straight line varies as .20; 10; 0; 10; 20/. Here, zero is
the minimum value. That is, the center point is considered both the maximum and
minimum point depending on the direction.

A necessary and sufficient condition for A to be a positive semidefinite matrix is
that A is written as (page 144 in [2]):

A D Ft F: (1.77)

This can be proved as follows.
If there exists F satisfying Eq. (1.77), the equation below holds for an arbitrary x.

xtAx D xt FtFx D jFxj2; (1.78)

where j � j indicates the length of a vector (Eq. (1.1) (page 8)). This value is always
positive or zero. Hence, A is a positive semidefinite matrix.

On the contrary, if A is a positive semidefinite matrix, diagonalization is realized
as given below (Eq. (1.51) (page 35)).

A D U�U�1; (1.79)

where all the diagonal elements of � are positive or zero. Hence, we obtain

� D
�

�1 0

0 �2

�
D
�p

�1 0

0
p

�2

��p
�1 0

0
p

�2

�
: (1.80)

Therefore, we set

Q� D
�p

�1 0

0
p

�2

�
: (1.81)

Thus, Eq. (1.78) (page 43) is transformed into

A D U Q� Q�U�1 D . Q�U�1/t . Q�U�1/: (1.82)

In other words, we have Eq. (1.77) (page 43).
From the above, a necessary and sufficient condition for A to be a positive

semidefinite matrix is that A is written as Eq. (1.77) (page 43). This proof is easily
generalized to any A with an arbitrary size.

Even a complex function can be approximated by a quadratic form (Eq. (1.69)
(page 40)) at points depicting maximal values (to be precise, local maximal values),
minimal values (or more precisely, local minimal values), or saddle points. Hence,
in order to understand the behavior of a function near such points, matrices
representing quadratic forms are classified into categories, such as positive definite
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or negative definite matrices. Thus, the points can be discerned from the three
different types described above. Therefore, the classification of a matrix used in a
quadratic form plays an important role in ascertaining the behavior of the function.

R Program [1 - 18]

The behavior of a positive definite function and its diagonal form is illustrated
below.
vec101()

function ()
{
# (1)

par(mfrow = c(1,2), mai = c(2, 1, 1.5, 0.1),
omi = c(0, 0, 0, 0))

# (2)
aa <- matrix(c(5, -3 , -3, 8), ncol = 2)
print("aa")
print(aa)

# (3)
n1 <- 21
xx1 <- seq(from = -2, to = 2, length = n1)
n2 <- 61
xx2 <- seq(from = -3, to = 3, length = n2)

# (4)
yym <- matrix(rep(0, length = n1 * n2), ncol = n2)
for(ii in 1:n1){

for(jj in 1:n2){
xx12 <- c(xx1[ii], xx2[jj])
yym[ii, jj] <- t(xx12) %*% aa %*% xx12
}

}
# (5)

contour(xx1, xx2, yym, xlab = expression(x[1]),
ylab = expression(x[2]), cex.axis = 0.95,
cex.lab = 0.9)

# (6)
eigen1 <- eigen(aa)

# (7)
lam <- eigen1$values
print("lam")
print(lam)
uu <- eigen1$vectors
print("uu")
print(uu)
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# (8)
lamm <- diag(lam)

# (9)
yyml <- matrix(rep(0, length = n1 * n2), ncol = n2)
for(ii in 1:n1){

for(jj in 1:n2){
xx12 <- c(xx1[ii], xx2[jj])
yyml[ii, jj] <- t(xx12) %*% lamm %*% xx12
}

}
# (10)

contour(xx1, xx2, yyml, xlab = expression(paste(xi,
scriptstyle(1))), ylab = expression(paste(xi,
scriptstyle(2))), cex.axis = 0.95, cex.lab =0.9)

}

(1) par() sets the graphics area. mfrow = c(1,2) specifies that two graphs
are aligned horizontally. mai = c(2, 1, 1.5, 0.1) assigns the sizes
of the margins around each graph starting at the lower margin, and then setting
the left, upper, and right margins, in order. omi = assigns the size of the outer
margin surrounding the two graphs.

(2) Matrix aa is given and displayed. Since aa is a symmetric matrix, it is an
example of A (Eq. (1.69) (page 40)).

(3) seq() gives a series of equally-spaced numbers. The result is stored
in xx1. seq(from = -2, to = 2, length = n1) indicates an
equally-spaced sequence from �2 to 2, with the length of the sequence
specified by n1. Thus, xx1 is set to �2:0; �1:8; �1:6; : : : ; 2:0. Another
seq() yields another equally-spaced sequence. The result is stored in xx2.
seq(from = -3, to = 3, length = 2) indicates an equally-spaced
sequence from �3 to 3, with the length of the sequence specified by n2. Thus,
xx2 is set to �3:0; �2:9; �2:8; : : : ; 3:0

(4) The values of a function in quadratic form (y in Eq. (1.69), Eq. (1.71),
and Eq. (1.75)) are calculated at the grid points formed by xx1 and xx2.
The resultant values are stored in yym. rep(0, length = n1 * n2)
yields a series of zeroes with length n1 * n2. matrix(, ncol = n2)
constructs a matrix with n2 columns.

(5) contour() depicts the contour of the values in yym. cex.axis = 0.95
specifies the size of the letters along the axes. cex.lab = 0.9 specifies the
size of the letters in the label.

(6) eigen() solves the eigenequation of aa. The resultant eigenvalues and
eigenvectors are stored in eigen1.

(7) The eigenvalues saved in eigen1 are extracted and stored in lam, which is
displayed.lam is � (Eq. (1.72) (page 40)). The eigenvectors saved in eigen1
are extracted and stored in uu, which is displayed. uu is U (Eq. (1.72)).
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(8) A diagonal matrix in which the diagonal elements are lam is created and
stored in lamm.

(9) The values of the function in quadratic form given by lamm are calculated at
grid points formed by xx1 and xx2. The resultant values are stored in yyml.
The values in yyml represent the values of the grid points formed by the
rotated axes.

(10) contour() illustrates the contour lines of the values in yyml.

vec101() results in:

[1] "aa"
[,1] [,2]

[1,] 5 -3
[2,] -3 8
[1] "lam"
[1] 9.854102 3.145898
[1] "uu"

[,1] [,2]
[1,] -0.5257311 -0.8506508
[2,] 0.8506508 -0.5257311

Executing vec101() also outputs Fig. 1.17 (page 41).
The code demarcated by (2) in vec101() is replaced by the following code and

the resultant R program is called vec111().

# (2)
aa <- matrix(c(-5, 1 , 1, -2), ncol=2)
print("aa")
print(aa)

The result of executing vec111() is:

[1] "lam"
[1] -1.697224 -5.302776
[1] "uu"

[,1] [,2]
[1,] -0.2897841 -0.9570920
[2,] -0.9570920 0.2897841

Executing vec111() also outputs Fig. 1.18 (page 42).
The code demarcated by (2) in vec101() is replaced by the following code and

the resultant R program is called vec121().

# (2)
aa <- matrix(c(4, 5 , 5, -2), ncol=2)
print("aa")
print(aa)

The result of executing vec121() is:

[1] "lam"
[1] 6.830952 -4.830952
[1] "uu"
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[,1] [,2]
[1,] -0.8701999 0.4926988
[2,] -0.4926988 -0.8701999

Executing vec121() outputs Fig. 1.19 (page 42).

R Program [1 - 18] End
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Chapter 2
Distributions and Tests

2.1 Sampling and Random Variables

A “population” denotes a set in which elements satisfy specific conditions, such as
all people in a country, or all small cars in a country. In statistical terms, extracting
part of the population is called “sampling from the population.” Instead of sampling,
we sometimes say we are conducting a trial. Hence, a sample is a subset of the
population. Measurements, surveys, or observations over the sample produce data.
Data consist of numbers, categories, images, and text. Data can also be called
realizations, observations (observed values), or measurements. The term “data set”
(or dataset) is used when the plurality of the data should be emphasized. In practical
data analysis, however, the distinction between the sample and the data (or dataset)
is not usually important.

The number of extracted samples is represented as the “sample size”. When 100

people have their weight measured, the sample size is 100. On the other hand, the
“number of samples” indicates the number of batches of samples. Hence, if the
weight measurement of 100 people is conducted once, the number of samples is 1.
Hence, a statistical test using the result of one survey with one condition is called
a one-sample test. However, if the result of the survey is classified into two groups
and a comparison between the two groups is conducted, it becomes a two-sample
test. Hence, the number of samples depends on the standpoint of the sampling.

Values representing the characteristics of a population are termed parameters.
For example, when a population is all of the people in a country, the percentage
of people in a specific age range is a parameter. In a narrow sense, however,
parameters indicate the values used in an equation for specifying the probability
density function, which describes the appearance of a specific population. If the
population is all of the people in a country, a sample (in this example, some people)
is extracted by sampling. Data are produced by checking the ages of the people
in the sample. In particular, sampling in social surveys is called a sample survey
(sampling survey). Values obtained by performing calculations with the data are
called statistics. Statistics depict the appearance of a sample. Hence, statistics are

K. Takezawa, Learning Regression Analysis by Simulation,
DOI 10.1007/978-4-431-54321-3 2, © Springer Japan 2014
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synonymous with estimated parameters. Since the results of sampling are affected
by chance, statistics are also affected by chance. Therefore, while parameters are
specific values associated with a population, most statistics change with every
sampling. For example, 100 people are sampled from all of the people in a country,
and the average (a kind of statistic) of their ages is calculated. If this procedure is
repeated several times, the resulting values are slightly different from one another.
Hence, collected statistics constitute a distribution. A particular statistic that gives
a result for estimating a parameter is termed an estimator. When the parameters
are defined to be all of the values representing the characteristics of a population, a
statistic is synonymous with an estimator.

On the other hand, an estimate is the value of an estimator in a context that
emphasizes that the value is given by the result of one sampling. That is, an estimate
is a value yielded by a specific sample. Hence, it is a fixed value that does not
accompany a distribution. Since an estimator is a set of estimates obtained by several
samplings, it is represented as a distribution. In a practical situation, however, we
do not usually need to distinguish between one sampling and several samplings.
Therefore, the terms of an estimate and an estimator are used interchangeably in
most situations.

In a usual sampling, we cannot extract all elements (or individuals) from a
population. For example, it is difficult to conduct a survey of all of the people
in a country. To overcome this situation, part of the population is collected and
extracted at random. If random sampling is conducted, the results change with
each sampling. Estimates derived from samples given by one or more samplings
depict the appearance of a population. Data analysis (or data mining) consists of: (a)
calculating estimates using samples; (b) estimating the appearance of a population
using the estimates; (c) making decisions, predictions, controls, and graphics using
the results of (b).

When we assume that the result of the first sampling is called x1, that of the
second sampling is called x2, that of the third sampling is called x3, and so forth,
these results are collectively called X . That is, when we write “This sampling results
in X ,” we mean that x1 may come out, x2 may come out, x3 may come out, and so
forth. This is not necessarily discursive knowledge. For example, let us assume that
x1, x2, x3, : : : are estimates. Let us also suppose that we obtain the value 2 as the
estimate from 70 out of 100 samplings, and the value 1 in the other 30 samplings.
We know that values other than 1 and 2 do not appear. In such a situation, although
X does not represent a specific value, it describes the probability of the value that X

provides. Such an X is called a random variable (stochastic variable). If sampling is
conducted several times, the estimates given by respective samplings are distributed.
Since the distributions are considered to depict probabilities, the estimators yielded
by the distributions of the estimates are random variables.

A random variable is usually represented as a capital letter (upper case letter),
such as X or Y . On the other hand, the values resulting from each sampling, which
are realizations, are nonrandom variables (nonstochastic variables). They are usually
represented as a lower case letter (small letter). Hence, if we need to emphasize that
a variable is a random variable, it is usually represented as a capital letter. If, on



2.2 Probability Distribution 51

the other hand, we wish to emphasize that a variable is not a random variable but a
number (nonrandom variable) yielded by data, it is usually represented as a lower
case letter.

On the premise that sampling is carried out several times, the values resulting
from a sample are random variables. On the contrary, the values given by a specific
sample are nonrandom variables. Hence, this distinction is sometimes not important.
However, the difference between values (estimates) given by a specific sampling
and estimators reflecting the distributions in a population plays a significant role in
equations of generalized linear regression or mixed models.

2.2 Probability Distribution

When a random variable (X ) gives a value (i.e., a realization) that is one of
fx1; x2; x3; : : : ; xmg, X is said to have a discrete type probability distribution, or
simply a discrete distribution. The probability that a random variable (X ) yields xk

is written as P.X D xk/. P.xk/ is another expression; it is used when the random
variable does not need to be named X as far as the probabilities of taking the values
of respective fxkg are known. When fxkg includes all the possible values given by
X , we have

mX
iD1

P.X D xk/ D 1: (2.1)

Assume that P.a � X � b/ stands for the possibility that the value yielded
by a random variable (X ) lies between a and b (a < b). When P.a � X �
b/ is represented as the following equation, X has a continuous type probability
distribution, or simply a continuous distribution.

P.a � X � b/ D
Z b

a

den.x/dx; (2.2)

where den.x/ is a function that takes a positive value or 0. It is called a probability
density function. Because the value provided by X should take a value between �1
and 1, we have

P.�1 � X � 1/ D
Z 1

�1
den.x/dx D 1: (2.3)

The function F.a/ defined below is termed a cumulative probability distribution
function or a distribution function.

F.a/ D
Z a

�1
den.x/dx: (2.4)
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Using a distribution function, Eq. (2.2) is written as

F.b/ � F.a/ D
Z b

a

den.x/dx: (2.5)

When X has a continuous type probability distribution, the expectation (expected
value) of X is represented as EŒX�. Its definition is:

EŒX� D
Z 1

�1
xden.x/dx: (2.6)

The expectation indicates the average of data obtained from a population with a
specific probability density function. In most settings, the average of the realizations
(fx1; x2; x3; : : : xmg) of X takes a value close to EŒX� when m is large.

2.3 Normal Distribution and the Central Limit Theorem

A diverse range of probability density functions have continuous distributions
(den.x/ in Eq. (2.2), page 51). A representative example is the normal distribution.
The probability density function of the normal distribution (den.x/) is written as

den.x/ D
�

1p
2��2

�
exp

�
� 1

2�2
.x � 	/2

�
; (2.7)

where 	 is the mean and �2 is the variance. The positive square root of the variance
is termed the standard deviation (�). When 	 is �2 and �2 is 9, the appearance
of den.x/ is illustrated in Fig. 2.1. Since Eq. (2.2) (page 51) holds for a normal
distribution, the equation below is satisfied (Fig. 2.1).

P.a � X � b/ D
Z b

a

�
1p

2��2

�
exp

�
� 1

2�2
.x � 	/2

�
dx: (2.8)

Since Eq. (2.3) also holds, we have

Z 1

�1

�
1p

2��2

�
exp

�
� 1

2�2
.x � 	/2

�
dx D 1: (2.9)

Regardless of the values of 	 and �2, a normal distribution gives the relationships
below (Fig. 2.2).

Z 	C�

	

�
1p

2��2

�
exp

�
� 1

2�2
.x � 	/2

�
dx
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Fig. 2.1 Probability density function of a normal distribution (den.x/). Equation (2.8) gives the
area colored gray

Fig. 2.2 Values of the integral of the probability density function of a normal distribution. The
integral ranges are defined by 	 and �

D
Z 	

	��

�
1p

2��2

�
exp

�
� 1

2�2
.x � 	/2

�
dx � 0:3413447; (2.10)

Z 	C2�

	C�

�
1p

2��2

�
exp

�
� 1

2�2
.x � 	/2

�
dx

D
Z 	��

	�2�

�
1p

2��2

�
exp

�
� 1

2�2
.x � 	/2

�
dx � 0:1359051: (2.11)

The central limit theorem states that the average of realizations yielded by a
random variable that obeys a probability density function with a finite variance is
distributed like a normal distribution. Figure 2.3 (top) shows a histogram of 50; 000

data. It indicates that these data obey a probability density function far from a normal
distribution. These data are then divided into 1; 000 groups, each with 50 elements.
The average of the elements in each respective group is calculated, and 1; 000 data
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Fig. 2.3 Histogram of 50; 000 data that obey a probability density function far from a normal
distribution (top). Histogram of the respective averages of sets of 50 data (bottom)

are obtained. The histogram of the resultant data is illustrated in Fig. 2.3 (bottom).
The appearance is pretty close to that of a normal distribution. That is, even if data
obey a probability density function far from a normal distribution, a new set of data
yielded by taking the average of respective subsets of the data obey a probability
density function close to a normal distribution. Using this characteristic, even when
the obtained data obey a probability density function far from a normal distribution,
a new data set given by averaging respective groups of data can be treated by
the theories of the normal distribution. However, the number of data is reduced
by averaging, and some information in the data is thus lost. Hence, this strategy
should be avoided as far as possible—it is preferable to retain the original data.
On the other hand, when a statistical theory is developed, use of the central limit
theorem sometimes leads to simple results because of the availability of theories for
the normal distribution (e.g., page 47 in [2]).

R Program [2 - 1]

The value of
R b

a den.x/dx in a normal distribution indicates the proportion of
all realizations of the normal distribution between a and b.
norm10()

function (){
# (1)
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set.seed(162)
nd <- 10000
xx <- rnorm(n = nd, mean = -2, sd = 3)

# (2)
aa <- -4
bb <- -2
xxab <- xx[xx >= aa & xx <= bb]

# (3)
pp1 <- length(xxab) / nd
print("pp1")
print(pp1)

# (4)
pp2 <- pnorm(q=-2, mean = -2, sd = 3) -
pnorm(q = -4, mean = -2, sd = 3)

print("pp2")
print(pp2)

}

(1) set.seed() sets an initial value for pseudo-random numbers. The number
of data (nd) is given. rnorm() produces the nd realizations of the normal
distribution with mean .�2/ and standard deviation 3, and they are stored in
xx. This procedure is equivalent to sampling from a population that obeys a
normal distribution with mean .�2/ and standard deviation 3.

(2) xx[xx>=aa & xx<=bb] extracts values between �4 and �2 from xx. The
results are stored in xxab. Using xx[xx>=aa & xx<=bb], values that
satisfy the conditions described in [] are selected from the elements of the
vector xx. “&” in xx>=aa & xx<=bb means “and”. On the other hand, “or”
is represented by “|.”

(3) The number of elements of xxab (a part of xx) is divided by the number of
data (nd). The result is stored in pp1. Then, pp1 is the proportion of xxab to
xx. length() yields the number of elements of a vector.

(4) The area from �4 through �2 in a normal distribution is calculated.

pnorm(q = -2, mean = -2, sd = 3) provides
Z �2

�1

�
1p

2��2

�n

exp
�� 1

2�2 .x � 	/2
�

dx when 	 D �2 and �2 D 32.
pnorm(q = -4, mean = -2, sd = 3) derivesZ �4

�1

�
1p

2��2

�n

exp

�
� 1

2�2
.x � 	/2

�
dx when 	 D �2 and �2 D 32.

Hence, pp2 is the value of
Z �2

�4

�
1p

2��2

�n

exp

�
� 1

2�2
.x � 	/2

�
dx

(Eq. (2.5), page 52).

The results of norm10() are as follows.

[1] "pp1"
[1] 0.246
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[1] "pp2"
[1] 0.2475075

Whereas pp1 is the value given by the simulation, pp2 is the theoretical value
calculated by the probability density function. These two values are close.

R Program [2 - 1] End

R Program [2 - 2]

Let us confirm that the averages of the subsets of realizations of a distribution
are distributed almost normally, even if the original distribution is far from a normal
distribution.
norm20e()

function (){
# (1)

set.seed(171)
# (2)

nd <- 50
nt <- 1000

# (3)
xx2all <- rep(0, length = nd * nt)
xx2mall <- NULL
for(ii in 1:nt){
xx <- rnorm(n = nd, mean = -2, sd = 3)
xx2 <- xxˆ2
xx2all[(ii * nd - nd + 1):(ii * nd)] <- xx2
xx2mall[ii] <- mean(xx2)

}
# (4)

par(mfrow = c(2,1), mai = c(1, 1, 0.5, 0.1),
omi = c(0, 0, 0, 0))

# (5)
br1 <- pretty(xx2all, n = 20)
bw1 <- br1[2] - br1[1]
xx2allh <- floor(xx2all / bw1) * bw1 + 0.01 * bw1
hist(xx2allh, breaks = br1, main="", xlab = "x",
ylab = "frequency")

br2 <- pretty(xx2mall, n = 20)
bw2 <- br2[2] - br2[1]
xx2mallh <- floor(xx2mall / bw2) * bw2 + 0.01 * bw2
hist(xx2mallh, breaks = br2, main="", xlab = "x",
ylab = "frequency")

}
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(1) set.seed() sets an initial value of pseudo-random numbers.
(2) nd is the number of data belonging to a subset of the data. nt is the number of

subsets. Hence, nd multiplied by nt is the total number of original data.
(3) rnorm() produces the nd realizations of the normal distribution with mean

.�2/ and standard deviation 3. They are stored in xx. xx is obtained nt times.
All of the given data are stored in xx2all. The average of each nd data is
taken. These are stored in xx2mall.

(4) par() sets the graphics area.
(5) pretty(xx2all, n = 20) results in equally-spaced values that cover the

range of all of the elements in xx2all. The interval of these equally-spaced
values is written as r � 10m (r is one of f1; 2; 5g, m is an integer), and hence
the interval is something like 0:02, 10, or 5; 000. The number of these equally-
spaced values is approximately 1 plus the value set by n =. The values of the
end points of these intervals are round numbers. hist() draws histograms of
xx2all and xx2mall. Before performing hist(), some preprocessing is
carried out using floor(). This is a necessary step for illustrating a histogram
in the usual sense (page 67 in [3]). These processes result in Fig. 2.3 (page 54).

R Program [2 - 2] End

2.4 Interval Estimation by t Distribution

It is assumed that n data (fxi g (1 � i � n)) are obtained by sampling from a
population. Each xi is a realization of a normal distribution. The average of these
data is written as Nx, and is calculated as

Nx D 1

n

nX
iD1

xi : (2.12)

If each xi is regarded as a random variable (Xi ), their average is also a random
variable ( NX). Then, we have

NX D 1

n

nX
iD1

Xi : (2.13)

The average of the population (	) is called the population mean. It is an intrinsic
and fixed value belonging to the population. On the other hand, the value of Nx
differs between samplings. Thus, it is difficult to calculate an exact value for 	.
A more realistic option is to estimate the approximate range of 	. This is known as
an interval estimation of the population. In contrast, an estimation of the value of
Nx is termed a point estimation of the population mean. Equation (2.12) is not the
only point estimation method for the population mean. For example, the median is
another point estimation of the population mean.
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The data given by the 1st sampling are denoted by fx.1/
1 ; x

.1/
2 ; x

.1/
3 ; : : : ; x

.1/
n g.

Those given by the 2nd sampling are then fx.2/
1 ; x

.2/
2 ; x

.2/
3 ; : : : ; x

.2/
n g, : : :, and those

given by the l-th sampling are fx.l/
1 ; x

.l/
2 ; x

.l/
3 ; : : : ; x

.l/
n g. The averages of these

data sets are specified as Nx.j /, .1 � j � l/. Thus, since Nx.j / is considered
a realization of a random variable, this random variable is called NX . NX obeys a
normal distribution because NX is the (constant multiplied) sum of realizations of
a normal distribution. It can be analytically proven that the sum of realizations of
a normal distribution is regarded as a random variable obeying a normal distribution.
This is confirmed by simulating a great many realizations of a normal distribution,
and illustrating the distribution of the averages of their subsets. The resulting
distribution approaches a normal distribution.

When the data yielded by the 1st sampling has been processed, the average given
by the data is denoted by Nx.1/. The estimate of variance (�2) is called .s.1//2. It is
defined as

.s.1//2 D 1

n � 1

nX
iD1

.x
.1/
i � Nx.1//2: (2.14)

This value is called the unbiased estimator of variance, or the unbiased variance.
To find the meaning of this value, a random variable that results in realizations
(f.s.1//2; .s.2//2; : : : ; g) is named S2. That is, we set

S2 D 1

n � 1

nX
iD1

.Xi � NX/2; (2.15)

where we assume

Xi D EŒX� C 
i : (2.16)

Xi is a random variable producing xi . EŒX� is the expectation (Eq. (2.6), page 52)
of X . Since we assume that sampling is conducted with the same population and the
same conditions, we have

EŒXi � D EŒX�: (2.17)

NX is obtained by Eq. (2.13). X is a random variable that yields the realization
fx1; x2; : : : ; g. Furthermore, f
i g are random variables satisfying the conditions
below, and they are independent of one another. These random variables do not
need to obey a normal distribution.

EŒ
i � D 0; (2.18)

EŒ
i 
j � D
(

�2 if i D j

0 if i ¤ j:
(2.19)
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�2 is the variance of X . Then, the following equation holds.

EŒS2� D 1

n � 1
E
h nX

iD1

.Xi � NX/2
i

D 1

n � 1
E
h nX

iD1

�
Xi �

nX
j D1

Xj

n

�2i

D 1

n � 1
E
h nX

iD1

�
EŒX� C 
i �

nX
j D1

EŒX� C 
j

n

�2i

D 1

n � 1
E
h nX

iD1

�
EŒX� C 
i � 
i

n
�

nX
j D1.j ¤i /


j

n
� n � EŒX�

n

�2i

D 1

n � 1
E
h nX

iD1

� .n � 1/
i

n
�

nX
j D1.j ¤i /


j

n

�2i

D 1

n � 1
E
h nX

iD1

� .n � 1/2
2
i

n2
� 2

.n � 1/
i

n

nX
j D1.j ¤i /


j

n
C 1

n2

� nX
j D1.j ¤i /


j

�� nX
kD1.k¤i /


k

��i

D 1

n � 1

nX
iD1

� .n � 1/2�2

n2
C .n � 1/�2

n2

�

D 1

n � 1

nX
iD1

.n � 1/�2

n

D �2; (2.20)

where
Pn

j D1.j ¤i / indicates that the sum is taken from j D 1 to n, but that
element i is excluded. The equality between the second and third lines is derived
from Eq. (2.16), and that between the sixth and seventh lines is obtained from
Eq. (2.19).

Equation (2.20) shows that when Eq. (2.14) (page 58) is used as the estimate of
EŒS2�, its expectation is �2 (the variance of X ). The name of the unbiased estimator
of variance (Eq. (2.14), page 58) serves to contrast it with the maximum likelihood
estimator of variance (i.e., the maximum likelihood variance) as below.

.s.1/0

/2 D 1

n

nX
iD1

.x
.1/
i � Nx.1//2: (2.21)
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When the number of data is large, the difference between the unbiased estimator of
variance and the maximum likelihood estimator of variance is negligible. Moreover,
if not otherwise specified, the positive square root of the unbiased estimator of
variance is called the standard deviation.

Next, let us examine the characteristics of the average given by the samples
obtained by sampling from a population ( NX defined in Eq. (2.13), page 57). First,
the expectation of NX is

EŒ NX� D
nX

iD1

E
hEŒX� C 
i

n

i
D 1

n

nX
iD1

EŒX� D EŒX�; (2.22)

using Eq. (2.18) (page 58). Writing the variance of NX as var. NX/, we have

var. NX/ D EŒ. NX � EŒ NX�/2�

D E
h�1

n

nX
iD1

.EŒX� C 
i / � EŒX�
�2i

D E
h�1

n

nX
iD1


i

�2i

D 1

n2
E
h
.
1 C 
2 C � � � C 
n/.
1 C 
2 C � � � C 
n/

i

D 1

n2
n�2

D �2

n
; (2.23)

where the equality between the first and second lines is derived from Eqs. (2.22) and
(2.16) (page 58). The equality between the fourth and fifth lines is obtained using
Eq. (2.19) (page 58).

Therefore, the mean of the normal distribution producing NX is EŒX�. Its variance

is
�2

n
. Hence, if the value of �2 is known, we can define a variable Z as below such

that it obeys a standard normal distribution with mean 0 and variance 1.

Z D
NX � 	

�p
n

; (2.24)

where 	 is identical to EŒX�. That is, it is the mean of the population.
Then, the probability density function of Z is illustrated by the solid line in

Fig. 2.4. The solid arrow indicates the central range covering 95 % of this probability
density function. This range indicated by the arrow is written as
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Fig. 2.4 Probability density function of the t -distribution with 1 degree of freedom (�) is shown
as a dashed line. Probability density function of the t -distribution with 3 degrees of freedom (�)
is shown as a dotted line. Probability density function of a normal distribution with mean 0 and
variance 1 is shown as a solid line; this probability density function is identical to the t -distribution
with � D 1 degrees of freedom. The dashed, dotted, and solid arrows indicate the central ranges,
which covers 95 % of the probability density function of the respective distributions

� 1:96 <
NX � 	

�p
n

< 1:96: (2.25)

In this equation, NX is a random variable. Replacing NX with a realization yields

�1:96 <
Nx.1/ � 	

�p
n

< 1:96;

�1:96 <
Nx.2/ � 	

�p
n

< 1:96;

:::
:::

:::

�1:96 <
Nx.l/ � 	

�p
n

< 1:96: (2.26)

Equation (2.25) indicates that the 95 % range of these equations holds. That is,
when fx.1/

1 ; x
.1/
2 ; x

.1/
3 ; : : : ; x

.1/
n g is obtained and used to calculate Nx.1/, Eq. (2.26)

is satisfied with 95 % probability.
If l D 1, Eq. (2.26) becomes

Nx.1/ � 1:96
�p
n

< 	 < Nx.1/ C 1:96
�p
n

: (2.27)
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This equation is satisfied with 95 % probability. However, in practice, sampling
is usually conducted only once. Hence, the expression “with 95 % probability” is
sometimes paraphrased as “the confidence coefficient is 95 % (or 0:95).” The range
of Eq. (2.27) is called the confidence interval. Although the confidence interval is
defined as the central range covering 95 % of the probability density function, other

percentages such as 99 % are sometimes employed. Nx.1/ � 1:96
s.1/

p
n

is called the

lower confidence limit, and Nx.1/ C 1:96
s.1/

p
n

is called the upper confidence limit.

Furthermore, Eq. (2.27) becomes

	 � 1:96
�p
n

< Nx.1/ < 	 C 1:96
�p
n

: (2.28)

Therefore, if further sampling is carried out under the same conditions, the resultant
Nx.j /(2 � j � l) lies in the range described below with 95 % probability.

	 � 1:96
�p
n

< Nx.j / < 	 C 1:96
�p
n

: (2.29)

Since Eq. (2.27) is equivalent to Eq. (2.28), the following descriptions are equiva-
lent:

(1) If repeat sampling is conducted under the same conditions, the resultant
Nx.j /(2 � j � l) lies in the range given by Eq. (2.28) with 95 % probability.

(2) The confidence interval of 	 is written as Eq. (2.27).

However, the value of � is usually unknown. In such an event, Z (Eq. (2.24),
page 60) obeys the t-distribution. This fact is expressed as

NX � 	

Sp
n

� t.�/; (2.30)

where S is a random variable that provides fs.j /g (1 � j � l) (Eq. (2.14), page 58).
� denotes the number of degrees of freedom. Although t.�/ is written in lower case,
it is a random variable. The probability density function obeyed by t.�/ is called the
t-distributionwith � degrees of freedom. A realization of t.�/ is termed the t-value.
It is defined as � D n � 1 (where n is the number of data). The shape of the t-
distribution depends on the number of degrees of freedom. Figure 2.4 illustrates
the probability density function of the t-distribution with � D 1 degree of freedom
(dashed line) and � D 3 degrees of freedom (dotted line). The t-distribution with
� D 1 is identical to the normal distribution with mean 0 and variance 1. That is, if
the number of data is infinite (n D 1), � D s.1/ D s.2/ D � � � D s.l/ holds exactly.
Hence, we can use Eq. (2.25) (page 61).
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The central 95 % range of the probability density function of the t-distribution
with � D 1 degree of freedom is described as

� 12:7 <
NX � 	

Sp
n

< 12:7: (2.31)

The central 95 % range of the probability density function of the t-distribution with
� D 3 degrees of freedom (Fig. 2.4) is described as

� 3:18 <
NX � 	

Sp
n

< 3:18: (2.32)

Equations such as Eqs. (2.31) and (2.32) are summarized as

t.�; 0:025/ <
NX � 	

Sp
n

< t.�; 0:975/; (2.33)

where t.�; 0:025/ (a nonrandom variable) is the t that satisfies the follow-
ing equation (where dent.x/ denotes the probability density function of the
t-distribution with � degrees of freedom):

Z t

�1
dent .x/dx D 0:025; (2.34)

and t.�; 0:975/ (nonrandom variable) is the t that satisfies:

Z t

�1
dent .x/dx D 0:975: (2.35)

Figure 2.5 illustrates the probability density function of the t-distribution (dent .t/)
with � D 3 degrees of freedom. The t-value that satisfies Eq. (2.34) is t.�; 0:025/

and the t-value satisfying Eq. (2.35) is t.�; 0:975/. Hence, the following equation
holds.

t.�; 0:025/ D �t.�; 0:975/: (2.36)

The simulation below confirms that the probability density function drawn in
Fig. 2.5 does actually result from Eq. (2.30) (page 62). The simulation data (fxig,
(1 � i � 4)) are 4 realizations of N.�2; 32/ (a normal distribution with mean �2

and variance 32). The t-values are calculated using the following equation.
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Fig. 2.5 Probability density function of the t -distribution with � D 3 degrees of freedom

(dent .t /). Because
R t.�;0:025/

�1
dent .t /dt D 0:025 holds, the thin area shown in gray is 0:025

units. Since
R

1

t.�;0:975/ dent.t /dt D 0:025, the thick gray area is also 0:025 units
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Fig. 2.6 Histogram of the t -values of 10; 000 data sets, each of which consists of 4 data, and the
constant-multiplied probability density function of the t -distribution with 3 degrees of freedom
(solid line)

t D Nx � .�2/
sp
4

: (2.37)

s (Eq. (2.14), page 58) and Nx are defined as

s D
r

.xi � Nx/2

3
; Nx D

P4
iD1 xi

4
: (2.38)

By altering the initial value of the pseudo-random numbers, 10; 000 simulation data
are produced, yielding the 10; 000 t-values. Figure 2.6 is a histogram illustrating
their distribution. The constant-multiplied probability density function of the t-
distribution with 3 degrees of freedom is also shown. The two distributions are
almost the same.
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When Eq. (2.33) (page 63) is represented using realizations, we have Eq. (2.26)
(page 61). However, s.1/ D s.2/ D � � � D s.l/ does not hold here. By transforming
Eq. (2.33) (page 63) into a form similar to that of Eq. (2.27) (page 61), we have

Nx.1/ � t.�; 0:975/
s.1/

p
n

< 	 < Nx.1/ � t.�; 0:025/
s.1/

p
n

: (2.39)

This equation holds with 95 % probability. In common with the above-mentioned
terminology, the expression “with 95 % probability” is sometimes paraphrased as
“the confidence coefficient is 95 % (or 0:95).” The terms of the lower confidence
limit and the upper confidence limit are defined in the same manner as in Eq. (2.27)
(page 61).

Equation (2.36) also gives

Nx.1/ � t.�; 0:975/
s.1/

p
n

< 	 < Nx.1/ C t.�; 0:975/
s.1/

p
n

: (2.40)

Because t.�; 0:975/ is positive, Eq. (2.40) has more intuitive appeal than Eq. (2.39)
in representing a confidence interval. It should be noted that the value of t.�; 0:975/

is not listed on the t-distribution table. Instead, the value of t.�; 0:025/ that satisfies
the equation below is listed.

Z 1

t

dent .x/ D 0:025: (2.41)

This value is the same as t.�; 0:975/ (Eq. (2.35), page 63).
Furthermore, Eq. (2.33) (page 63) is transformed into a similar form to Eq. (2.28)

(page 62). Then, we have

	 � t.�; 0:975/
s.1/

p
n

< Nx.1/ < 	 � .�; 0:025/
s.1/

p
n

: (2.42)

Using Eq. (2.36) (page 63), we derive

	 � t.�; 0:975/
s.1/

p
n

< Nx.1/ < 	 C t.�; 0:975/
s.1/

p
n

: (2.43)

Hence, if sampling is carried out under the same conditions hereafter, the resultant
Nx.j / (2 � j � l) has a 95 % probability of lying in the interval:

	 � t.�; 0:975/
s.j /

p
n

< Nx.j / < 	 C t.�; 0:975/
s.j /

p
n

: (2.44)

Nx.1/ in Eqs. (2.42) and (2.43) denotes a realization of NX . Therefore, NX falls in this
interval with 95 % probability. It may seem strange that the t-distribution is used to
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Fig. 2.7 Distribution of O	 when Nx.1/ (the average of the data) is 0. It is assumed that �2 in the
population is 1 (left). The arrow indicates the 95 % confidence interval (right)
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Fig. 2.8 Distribution of O	 when Nx.1/ (the average of the data) is 0. It is assumed that �2 in
the population is unknown. The heavy solid line shows the probability density function with
�2 D .s.1//2. As the thin solid lines indicate, the value of �2 is not limited to .s.1//2 but takes
various values around it (left). The arrow shows the 95 % confidence interval. The heavy solid
line indicates the probability density function obtained by averaging various probability density
functions illustrated in this figure (left) (right)

indicate the central 95 % range, although NX in Eqs. (2.42) and (2.43) obeys a normal
distribution. The reason can be understood intuitively by considering Figs. 2.7 and
2.8. Values of O	 are the estimates (realizations of NX) yielded by estimating the value
of 	 using n data several times. If the variance of the population (�2) is known, O	
is assumed to be distributed normally. Although 	 is a unique value, its estimate
is represented by a probability density function (Fig. 2.7 (left)). If the probability
density function obeyed by O	 can be identified, its 95 % confidence interval is
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obtained (Fig. 2.7 (right)). On the other hand, if the variance of a population (�2)
is unknown, its value must be estimated. Then, .s.1//2 (Eq. (2.14), page 58) can be
used as the value of �2. However, .s.2//2; .s.3//2; : : : take various values close to
.s.1//2. Each value of the variance yields a different normal distribution (Fig. 2.8
(left)). Therefore, by averaging these normal distributions, the probability density
function that O	 obeys can be derived. The resultant probability density function is
not distributed normally. The 95 % confidence interval is usually somewhat wider
than that of a normal distribution, although the probability density function has a
similar form to a normal distribution. That is, despite the normal distribution of
NX , its confidence interval is not represented by a normal distribution because it is

constructed by combining diverse confidence intervals.

R Program [2 - 3]

The central 95 % range of the probability density function of the t-distribution is
derived and compared with that of a normal distribution.
ttest12()

function (){
# (1)

p1 <- qt(p = 0.025, df = 3)
print("qt(p = 0.025, df = 3)")
print(p1)
p2 <- qt(p = 0.975, df = 3)
print("qt(p = 0.975, df = 3)")
print(p2)

# (2)
p1 <- qt(p = 0.025, df = 10000)
print("qt(p = 0.025, df = 10000)")
print(p1)
p2 <- qt(p = 0.975, df = 10000)
print("qt(p = 0.975, df = 10000)")
print(p2)

# (3)
p1 <- qnorm(p = 0.025, mean = 0, sd = 1)
print("qnorm(p = 0.025, mean = 0, sd = 1)")
print(p1)
p2 <- qnorm(p = 0.975, mean = 0, sd = 1)
print("qnorm(p = 0.975, mean = 0, sd = 1)")
print(p2)

}

(1) qt() calculates the value of t that satisfies Eq. (2.34) (page 63) given by the
t-distribution with � D 3 degrees of freedom. The result is stored in p1, and is
output. The value of t that satisfies Eq. (2.35) (page 63) is obtained. The result
is stored in p2, and is output. Then, the output is:



68 2 Distributions and Tests

"qt(p = 0.025, df = 3)"
-3.182446
"qt(p = 0.975, df = 3)"
3.182446

(2) qt() calculates the value of t that satisfies Eq. (2.34) (page 63) given by the
t-distribution with � D 10; 000 degrees of freedom; the result is stored in p1,
and is output. The value of t that satisfies Eq. (2.35) (page 63) is obtained. The
result is stored in p2, and is output. Then, the output is:

"qt(p = 0.025, df = 10000)"
-1.960201
"qt(p = 0.975, df = 10000)"
1.960201

(3) qnorm() calculates the value of t given by replacing dent.�/ in Eq. (2.34)
(page 63) with a probability density function of a normal distribution with mean
0 and variance 12; the result is stored in p1, and is output. The value of t given
by replacing dent .�/ in Eq. (2.35) (page 63) with a normal distribution with
mean 0 and variance 12 is stored in p2, and is output.

"qnorm(p = 0.025, mean = 0, sd = 1)"
-1.959964
"qnorm(p = 0.975, mean = 0, sd = 1)"
1.959964

The values yielded by the t-distribution with the 10; 000 degrees of freedom are
very close to those given by a normal distribution with mean 0 and variance 12.

R Program [2 - 3] End

R Program [2 - 4]

The central 95 % range of the t-distribution is obtained by realizations of
pseudo-random numbers.
ttest21e()

function (){
# (1)

nd <- 4
nt <- 10000
set.seed(176)

# (2)
tt <- NULL
for(ii in 1:nt){
xx <- rnorm(n = nd, mean = -2, sd = 3)
xxav <- mean(xx)
xxvar <- var(xx)
tt[ii] <- (xxav + 2)/(sqrt(xxvar)/sqrt(nd))

}
# (3)
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xxs <- sort(tt)
p1 <- xxs[ceiling(nt * 0.025)]
p2 <- xxs[ceiling(nt * 0.975)]
print("p1")
print(p1)
print("p2")
print(p2)

# (4)
par(mfrow = c(1,1), mai = c(2, 1, 1.5, 0.1),
omi = c(0, 0, 0, 0))

# (5)
tt2 <- tt[tt >= -5 & tt <= 5]
br1 <- pretty(tt2, n = 40)
bw1 <- br1[2] - br1[1]
tt2h <- floor(tt2/bw1) * bw1 + 0.01 * bw1
hist1 <- hist(tt2h, breaks = br1, main = "",
xlab = "x", ylab = "Frequency")

# (6)
curve(dt(x, df = nd - 1) * bw1 * nt, min(br1),
max(br1), xlab = "x", ylab = "p(x)", lwd = 2,
xlim = c(min(br1), max(br1)),
ylim = c(0, max(hist1$counts)), add = T)

}

(1) The number of data (nd) is given. The number of simulations (nt) is given.
(2) set.seed() sets an initial value for the pseudo-random numbers. tt is

prepared for storing realizations of the t-distribution. nt samplings are carried
out. The respective t-values are calculated and stored in tt. var() calculates
the unbiased estimator of variance (Eq. (2.14), page 58). sqrt() returns a
positive square root.

(3) sort() arranges xx in ascending order. The result is saved as xxs. The value
located closest to the 2:5 % point in xxs is denoted by p1. The value located
closest to the 97:5 % point in xxs is named p2. p1 and p2 are displayed.
ceiling() gives the smallest integers not less than all the arguments in
parentheses (()).

(4) par() sets the graphics area.
(5) Values between �5 and 5 are extracted from tt, and these are named tt2. The

histogram of tt2 is drawn. floor() returns the largest integers not greater
than all the arguments.

(6) dt() gives the values of the probability density function of the t-distribution
with (nd-1) degrees of freedom. The values are multiplied by a constant and
the resultant values are plotted by curve().

The results of ttest21e() are as follows.
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[1] "p1"
[1] -3.111366
[1] "p2"
[1] 3.16264

These are rather close to the results of ttest12() (�3:182318, 3:182318). In
addition, ttest21e() also outputs Fig. 2.6 (page 64).

R Program [2 - 4] End

R Program [2 - 5]

Let us confirm that Eq. (2.40) (page 65) holds with 95 % probability.
ttest22()

function (){
# (1)

nd <- 10
nt <- 10000
tta <- qt(0.975, df = nd - 1)
mu1 <- 6

# (2)
ct1 <- 0
for(ii in 1:nt){

# (3)
set.seed(180 + ii * 3)
xx <- rnorm(n = nd, mean = mu1, sd = 2)
xxav <- mean(xx)
xxvar <- var(xx)
uplim <- xxav + tta * sqrt(xxvar) / sqrt(nd)
lowlim <- xxav - tta * sqrt(xxvar) / sqrt(nd)

# (4)
if (uplim < mu1 | lowlim > mu1){

ct1 <- ct1 + 1
}

}
# (5)

print("p =")
print(ct1 / nt)

}

(1) The number of data (nd) is given. The number of simulations (nt) is given.
qt() calculates the value of t.�; 0:975/ (Eq. (2.35), page 63) with (nd - 1)
degrees of freedom, and the value is saved as tta.

(2) ct1 is prepared for recording the number of data that do not satisfy Eq. (2.40)
(page 65). Then, the simulation is executed nt times.
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(3) Simulation data (xx) are realizations of the normal distribution with mean
mu1 and variance 22. The average of xx is stored in xxav. The unbiased
estimator of the variance of xx is saved as xxvar. The upper confidence limit
of Eq. (2.40) is denoted by uplim. The lower confidence limit of Eq. (2.40) is
named lowlim.

(4) If Eq. (2.40) (page 65) is not satisfied, 1 is added to ct1. “|” means “or”.
(5) The probability that Eq. (2.40) is not satisfied is displayed.

ttest22() outputs:

"p ="
0.0495

This is approximately 0:05.

R Program [2 - 5] End

2.5 t-Test

As well as estimating confidence intervals, one application of the t-distribution is
the t-test. The t-test is a category of hypothesis testing; it is also simply referred
to as the test. Hypothesis testing uses data to determine whether a null hypothesis
holds. An example of a null hypothesis is:

H0 W 	 D �4:5: (2.45)

That is, we set a hypothesis that the mean of a population is equal to �4:5. An
alternative hypothesis is the hypothesis that holds when the null hypothesis is not
satisfied. A possible alternative hypothesis (H1) to H0 is:

H1 W 	 ¤ �4:5: (2.46)

In the process of testing a null hypothesis, we first assume that the null hypothesis
holds before proceeding with the data analysis. If the data analysis concludes that the
acquisition of these data should be regarded as a very rare event on the assumption
of the null hypothesis, the null hypothesis is rejected, and hence the alternative
hypothesis is accepted. In a reduction to absurdity, if theoretical developments
on the basis of a hypothesis lead to an unacceptable deduction, the hypothesis
is concluded to be wrong. On the other hand, the test does not declare that a
null hypothesis is wrong. It just concludes that the data at hand is generated with
only a low probability on the assumption of the null hypothesis. Then, when the
phenomenon that generates the data occurs with only a low probability, we should
not suppose that the event actually happened, but rather that the null hypothesis
does not hold, and hence the null hypothesis is rejected. However, even if we
conclude that the null hypothesis is not rejected because we cannot say that the
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phenomenon that generates the data at hand is a rare event, it does not indicate
that we have firm grounds to prove that the null hypothesis is correct. Therefore,
when the null hypothesis is not rejected, we do not state that “the null hypothesis is
proven correct” or “the null hypothesis is adopted.” Rather, we just say that the null
hypothesis is not rejected. This situation is similar to that of reduction to absurdity:
when theoretical developments on the basis of a hypothesis do not result in an
unacceptable deduction, it does not show that the hypothesis is proven correct.

Moreover, even when it is concluded that the data at hand are generated with only
a low probability if a null hypothesis is correct, this rare event may have actually
occurred and such scarce data may have been obtained. When this happens, the null
hypothesis should not have been rejected. This sort of error is called a “type I error”.
The probability of a type I error (˛), that is to say, the probability of concluding
that the data at hand have only a low probability of being generated, in spite of
the correctness of the null hypothesis, is termed the risk rate. That is, the risk rate
indicates the probability that the null hypothesis is rejected when it should not be.
Hence, the risk rate of a test should be low. The risk rate is also known as the level
of significance (significant level). Whereas the “risk rate” focuses on whether a type
I error occurs, the “level of significance” focuses on the firmness of the grounds for
rejecting the null hypothesis. A high risk rate means that the risk of rejecting the null
hypothesis erroneously is high; this is an intuitive wording. On the other hand, the
expression “the level of significance is high” gives the impression that firm grounds
are required to reject the null hypothesis. However, firm grounds for rejecting the
null hypothesis are needed when the level of significance is low.

On the other hand, the null hypothesis may not actually hold, but we do not
conclude that the data at hand is generated with only a low probability. This type
of error is called a “type II error”. The probability of concluding that the null
hypothesis cannot be rejected although it does not hold is denoted by ˇ; hence,
.1 � ˇ/ indicates the probability of obtaining the conclusion that the null hypothesis
should be rejected when the null hypothesis does not hold. We call .1 � ˇ/ the
power of the test. A lower risk rate and a larger power of test are desirable. The
concepts of the risk rate and the power of a test are illustrated in Fig. 2.9. When the
null hypothesis holds in a population, the null hypothesis should not be rejected. In
contrast, when the null hypothesis does not hold in a population, the null hypothesis
should be rejected. Therefore, the power of a test plays an important role in the
development of an experimental design.

Let us consider a problem where the correctness of H0 (Eq. (2.45), page 71) is
tested when n data (fxig (1 � i � n)) are obtained from a population that obeys
a normal distribution. The alternative hypothesis is set as H1 (Eq. (2.46), page 71).
When 	 D �4:5 is assigned in Eq. (2.33) (page 63) and the inequality does not
hold, we conclude that the fxi g were obtained with a low probability. Therefore,
if this inequality does not hold, H0 should be rejected. On the contrary, when the
inequality holds, H0 cannot be rejected. When H0 is rejected and the average of the
data is less than �4:5, we can say that the average of the data is “significantly” less
than �4:5. If the average of the data is larger than �4:5, we can say that the average
of the data is significantly larger than �4:5.
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Fig. 2.9 Concepts of the risk rate and the power of a test. Risk rate is the probability of rejecting
the null hypothesis when the null hypothesis holds in a population. The power of a test is the
probability of rejecting the null hypothesis when the null hypothesis does not hold in a population

Fig. 2.10 t -distribution with 6 degrees of freedom. The region where t is larger than 1:5 is colored
dark gray; the area is 0:09214037. The region where t is less than �1:5 is colored light gray; this
area is 0:09214037. In the context of a two-sided test, the p-value is the area colored dark gray
plus that colored light gray

In addition to deciding whether or not to reject the null hypothesis, the certainty
of rejecting the null hypothesis should be quantified in order to evaluate the grounds
for rejection. The value for this purpose is called the p-value. The p of p-value
means the probability. For example, the curve in Fig. 2.10 depicts the t-distribution
when the number of data is 7 and there are 6 degrees of freedom. When the t-value
given by these 7 data is 1:5, the area over which t is larger than 1:5 is calculated in
a similar way to Eq. (2.34) (page 63). That is,

Z 1

1:5

dent .x/ D 0:09214037: (2.47)
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The area over which t is less than �1:5 in this t-distribution is calculated in the
same way:

Z �1:5

�1
dent.x/ D 0:09214037: (2.48)

When a two-sided test is carried out, that is, H1 (Eq. (2.46)) is employed as the
alternative hypothesis, the sum of the two values (Eqs. (2.47) and (2.48)), i.e.,
0:1842807, is the probability that an absolute t-value larger than that at hand is
obtained when the null hypothesis holds. This value is called the p-value. If the
p-value is small, it is concluded that we have good grounds for rejecting the null
hypothesis. When the result of this hypothesis testing is shown, the p-value tells us
how good are the grounds for rejecting the null hypothesis as well as whether the
null hypothesis is rejected.

Assume that a specific value (e.g., 0:1842807) is employed as the p-value and
the central range of the t-values (the t-values between �1:5 and 1:5 in this example)
is set so that the sum of the areas under both tails of the t-distribution is equal
to this value. Then, if the t-value given by the data lies in either tail, we can say
that the t-value is located in the rejection region (critical region). On the other
hand, if the t-value falls in the central range, we say that the t-value is placed in
the acceptance region (Fig. 2.10). When the t-value is located in the acceptance
region, it indicates that this is a usual value if the null hypothesis holds. However,
as previously discussed, this does not mean that we have a result supporting the null
hypothesis and that we should adopt the null hypothesis. In that regard, the term
“acceptance region” is rather questionable. On the other hand, if the t-value falls in
the rejection region, it indicates that this is not a usual value if the null hypothesis
holds. When this occurs, we should conclude that the null hypothesis does not hold,
rather than that the unusual t-value is obtained although the null hypothesis holds.
Hence, we reject the null hypothesis. The p-value sets the boundary between the
rejection region and the acceptance region. We often adopt a p-value of 0:05. That
is, the risk rate is usually set at 5 %. Since we are using the t-distribution, this test
is called the t-test.

We sometimes set the alternative hypothesis such that 	 deviates in only one
direction from the value assumed in the null hypothesis. For example, the following
H 0

1 is set as the alternative hypothesis to H0 (Eq. (2.45)).

H 0
1 W 	 > �4:5: (2.49)

A test in which the tails of both sides are taken into account, such as Eq. (2.46),
is called a two-sided test. On the other hand, a test in which the tail of one side is
taken into account is called a one-sided test. When our present knowledge of the
phenomenon that generates the data shows that 	 of a population cannot be less
than �4:5, a one-sided test is employed. In this circumstance, the p-value is half of
that of the two-sided test, because the tail on the right-hand side is the only rejection
region. Even if 	 cannot be less than �4:5, the average of the data can be less than
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Fig. 2.11 The proportion for which the null hypothesis is rejected when a (two-sided) t -test is
conducted with a 5 % risk rate (the number of data is 10) (left). The proportion for which the null
hypothesis is rejected when a (two-sided) t -test is conducted with a 20 % risk rate (the number of
data is 10) (right)

�4:5. In this event, it cannot be concluded that the average of the data is significantly
smaller than �4:5, whatever p-value may be given. Hence, we conclude that the null
hypothesis is not rejected without needing to conduct a test.

On the other hand, suppose that our concern is whether or not the average of
the data is significantly larger than �4:5 when we do not know whether the mean
of the population is more or less than �4:5. In this situation, if the average of the
data is larger than �4:5, we carry out a two-sided test, and if the average of the
data is smaller than �4:5, our conclusion is that we cannot say that the mean of the
population is larger than �4:5. If we conduct a test to determine whether or not the
mean of the population is equal to �4:5 when the average of the data is less than
�4:5, the result is either: (1) we can say that the average of data is significantly less
than �4:5, or (2) we cannot say that the average of the data is significantly less than
�4:5. Whichever result is obtained, the conclusion is the same: we cannot say that
the average of the data is significantly larger than �4:5. Therefore, we do not have
to carry out the test when the average of the data is less than �4:5.

Let us conduct a simulation to illustrate the risk rate and the power of the test.
Simulation data (fxi g .1 � i � n/) are generated using

xi D 2:5 C � C 
i ; (2.50)

where f
i g are realizations of N.0; 22/ (a normal distribution with mean 0 and
variance 22). � is one of f0; 0:1; 0:2; : : : ; 2g. 1; 000 sets of simulation data (the
number of data (n) is 10) are produced and a two-sided test is carried out with
the following null hypothesis (H0) and alternative hypothesis (H1).

H0 W 	 D 2:5; (2.51)
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Fig. 2.12 The proportion for which the null hypothesis is rejected when a (two-sided) t -test is
conducted with a 5 % risk rate (the number of data is 20) (left). The proportion for which the null
hypothesis is rejected when a (two-sided) t -test is conducted with a 20 % risk rate (the number of
data is 20) (right)

H1 W 	 ¤ 2:5: (2.52)

When the risk rate is set at 5 %, Fig. 2.11 (left) is obtained. � D 0 indicates that
the null hypothesis holds. Hence, if the rejection proportion is 5 %, it means that
the risk rate (significant level) of this test is 5 %. That is, the probability that a type
I error will occur is 5 %. When � is positive, we should reject the null hypothesis
because it does not hold. For example, assume a value of � D 1:5. Since 51:2 %
of the simulation data are rejected when � D 1:5, the power of the test is 51:2 %.
That is, if the data are generated by Eq. (2.50) with � D 1:5, the null hypothesis is
rejected with a probability of 51:2 %. This also implies that a type II error occurs
with a probability of 48:8 %. When the risk rate is set at 20 %, we have Fig. 2.11
(right). This figure shows that the risk rate is actually about 20 %. Although a test
with a high risk rate is not desirable, the power of the test is around 79:9 % when
� D 1:5. In this sense, the test has become better. That is, there is a tradeoff between
a high risk rate and a high power of test.

Figure 2.12 shows the result when the number of data is 20. The risk rate is
5 % and the power of the test with � D 1:5 is 85:3 % in Fig. 2.12 (left). On the
contrary, the risk rate is 20 % and the power of the test with � D 1:5 is 98 % in
Fig. 2.12 (right). The power of the tests in these figures is higher than in Fig. 2.11.
This means that the number of data must be increased if we wish to enhance the
power of the test without increasing the risk rate.

The power of the test is small when � is small in both Figs. 2.11 and 2.12.
That is, when the difference between the mean of a population and the mean in
the null hypothesis is small, the probability of missing the difference is augmented.
To prevent this mistake, the number of data must be increased. However, when the
difference between the mean of a population and the mean in the null hypothesis is
small, correct rejection of the null hypothesis is not usually of high value.
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Fig. 2.13 The horizontal axis indicates the number of data and the vertical axis indicates the
number of data sets for which the null hypothesis is rejected; the total number of data sets is
1; 000 (left). The curve shows the probability density function (a normal distribution with mean 2

and variance 52) obeyed by the population; the mean in the null hypothesis (D 2:2) is also shown
(right)

Let us use a simulation to realize this. The simulation data fxi g (1 � i � n, n

is the number of simulation data) are realizations of N.2; 52/ (a normal distribution
with mean 2 and variance 52). These data are subjected to a t-test. The null hypoth-
esis is “	 D 2:2” (	 is the mean of the population). The alternative hypothesis is
“	 ¤ 2:2”. The number of data (n) is chosen from f10; 100; 1; 000; 10; 000g. This
simulation was conducted 1; 000 times by changing the initial value of the pseudo-
random numbers. The number of times the null hypothesis was rejected with a 5 %
risk rate was counted. The result is illustrated in Fig. 2.13 (left).

When n D 10, the null hypothesis is rejected 55 times out of 1; 000. This means
that the power of the test is 5:5 %. On the other hand, when n D 10; 000, the null
hypothesis is rejected 979 times out of 1; 000, which indicates that the power of the
test is 97:9 %. When the number of data is 10; 000, the null hypothesis “	 D 2:2”
is rejected using realizations of N.2; 52/ in most data sets. However, referring to
Fig. 2.13 (right), which shows the distribution of the data and the appearance of
the null hypothesis, the difference between the mean in the null hypothesis and the
average of the data is much smaller than the dispersion of data.

In cases like this, the importance of rejecting the null hypothesis depends on the
nature of the data. If an exact theory concerning the phenomenon that generates the
data gives “	 D 2:2,” the possibility of a phenomenon that denies the hypothesis is
of great value. Hence, the result provides incentives for further studies. For example,
if the null hypothesis that an object moves slower than the speed of light is rejected,
it has serious consequences, even if the speed of the object is only a little faster than
light speed. However, in some situations, even if the null hypothesis is rejected,
the result does not affect the understanding of the phenomenon, because of the
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small difference between 	 in the null hypothesis and the average of the data. The
rejection of the null hypothesis is not of high value for these data. In a psychological
test, for example, some test subjects may know the purpose of the test in advance and
give suitable responses in line with the purpose. This could cause the null hypothesis
to be rejected. We should take such effects into account. Furthermore, even if a new
mean value is employed for prediction or control, the adoption of the new mean
value is not of great use if the results of the prediction or the control remain almost
unchanged. Additionally, various costs of introducing this new mean value should
occasionally be considered.

In view of such circumstances, whether a null hypothesis with a risk rate of 5 %
is rejected is not the only thing that matters. If rejection of the null hypothesis does
not affect the understanding of the phenomenon that generates the data, or has no
impact on the prediction and the control, the test does not need to be carried out
if the difference between the mean in the null hypothesis and the data is small—at
least, the importance of the test result is small. Various concepts of the effect size
have been suggested to consider this (e.g., [1]).

R Program [2 - 6]

Let us investigate the meaning of the risk rate and the power of the test in the
t-test.
ttest61e()

function (){
# (1)

nd <- 10
mu1 <- 2.5
nt <- 1000
gamma1 <- seq(from = 0, to = 2, by = 0.1)

# (2)
reject1 <- NULL
for(ii in 1:length(gamma1)){

reject1[ii] <- 0
# (3)

for (kk in 1:nt){
set.seed(kk*915)
d1 <- rnorm(n = nd, mean = 0, sd = 2) + mu1 +
gamma1[ii]

tt1 <- t.test(x = d1, mu = mu1)
if(tt1$p.value <= 0.05){

reject1[ii] <- reject1[ii] + 1
}

}
}
reject1 <- reject1/nt

# (4)
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nd <- 10
reject2 <- NULL
for(ii in 1:length(gamma1)){

reject2[ii] <- 0
for (kk in 1:nt){
set.seed(kk*915)
d1 <- rnorm(n = nd, mean = 0, sd = 2) + mu1 +
gamma1[ii]

tt1 <- t.test(x = d1, mu = mu1)
if(tt1$p.value <= 0.2){

reject2[ii] <- reject2[ii] + 1
}

}
}

reject2 <- reject2/nt
# (5)

par(mfrow = c(1,2), mai = c(2, 1, 1.5, 0.1),
omi = c(0, 0, 0, 0))

plot(gamma1, reject1, xlab = expression(gamma),
ylab = "rejection rate",xlim = c(-0.12,2),
ylim = c(0,1))

arrows(0, 0, 0,reject1[1], angle = 90, code = 3,
length = 0.07)

text(0.39, 0.32, "significant level")
arrows(1.5, 0, 1.5,reject1[16], angle = 90,
code = 3, length = 0.07, lwd = 2)

text(0.89, 0.56, "power of test")
# (6)

plot(gamma1, reject2, xlab = expression(gamma),
ylab = "rejection rate", xlim = c(-0.12,2),
ylim=c(0,1))

arrows(0, 0, 0,reject2[1], angle = 90, code = 3,
length = 0.07)

text(0.6, 0.1, "significant level")
arrows(1.5, 0, 1.5,reject2[16], angle = 90,
code = 3, length = 0.07, lwd = 2)

text(0.92, 0.85, "power of test")
}

(1) The number of data (nd), the constant in Eq. (2.50) (page 75) (2:5, mu1),
and the number of simulations (nt) are given. gamma1 (f0; 0:1; 0:2; : : : ; 2g)
is prepared to provide values of � (Eq. (2.50), page 75).

(2) The vector reject1 is set to store the number of rejections of the null
hypothesis. The simulation is carried out using one of the elements of gamma1.
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(3) Simulation data, in which one of the elements of gamma1 is used as � , are
produced. The t-test is carried out using t.test(). The result is named tt1.
tt1$p.value is the p-value. Then, if tt1$p.value is less than or equal
to 0:05, 1 is added to reject1[ii]. The resultant reject1 is divided by
nt. This yields the proportion of times the null hypothesis is rejected.

(4) The risk rate for rejecting the null hypothesis is set to 0:2, and the same
simulation is conducted. Thus, reject2 is obtained.

(5) The result given by the risk rate of 0:05 is illustrated in a graph. arrows()
draws an arrow. Since angle = 90 is designated here, the angle from the
shaft of the arrow to the edge of the arrow head is 90ı; it constructs a flat arrow
tip. Since code = 3 is assigned here, arrows are drawn on both ends of the
straight line. length = 0.07 specifies the length of the edges of the arrow
head (in inches). text() writes some text. The arguments are the X-and Y-
coordinate values, and the text to be written, in this order. We obtain Fig. 2.11
(right) (page 75).

(6) The results of the simulation with a risk rate of 0:2 are illustrated in a graph.
We obtain Fig. 2.11 (right) (page 75).

R Program [2 - 6] End

R Program [2 - 7]

The power of the test is calculated using power.t.test().
The results given by ttest61e() are obtained analytically, rather than by

simulation. For example, the following R program is used.
ttest66()

function (){
# (1)

tp <- power.t.test(n = 10, sd = 2,sig.level = 0.05,
type = "one.sample", delta = 1.5, alternative =
"two.sided", strict = T)

# (2)
print(tp)

}

(1) power.t.test() outputs the power of the test. n = specifies the number
of data. sd = assigns the standard deviation (the positive square root of
the variance) of a population. type = ‘‘one.sample’’ specifies the
type of the test (‘‘one.sample’’ sets a one-sample test in which a
null hypothesis such as Eq. (2.51) (page 75) is used). delta = 1.5 pro-
vides the difference between the mean in the null hypothesis and that of a
population. alternative = ‘‘two.sided’’ denotes a two-sided test.
strict = T indicates that the exact calculation is carried out.

(2) The result of (1) is displayed.
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ttest66() outputs:

One-sample t test power calculation
n = 10
delta = 1.5
sd = 2
sig.level = 0.05
power = 0.5619533
alternative = two.sided

R Program [2 - 7] End

R Program [2 - 8]

Let us confirm that the proportion of null hypothesis rejections is high when the
number of data is large by conducting a t-test in R.
ttest71e()

function (){
# (1)
par(mfrow = c(1,2), mai = c(2, 1, 1.5, 0.1),
omi = c(0, 0, 0, 0))

# (2)
ndv <- 10ˆseq(from = 1, to = 4, by = 1)

# (3)
mu1 <- 2.2
reject1 <- NULL
for(ii in 1:length(ndv)){

reject1[ii] <- 0
for (kk in 1:1000){
set.seed(kk*915)
d1 <- rnorm(n = ndv[ii], mean = 2, sd = 5)
tt1 <- t.test(x = d1, mu = mu1)
if(tt1$p.value <= 0.05){

reject1[ii] <- reject1[ii] + 1
}

}
}

# (4)
plot(ndv, reject1, log = "x", xlab =
"Number of data", ylab = "rejection", cex = 1.3)

# (5)
curve(dnorm(x, mean = 2, sd = 5), from = -8,
to = 11, n = 101, ylim = c(0, 0.09), xlab = "x",
ylab = "density")

lines(c(2, 2), c(0, 0.02))
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text(2, 0.03,"x=2")
lines(c(2.3, 2.2), c(0, 0.04))
text(2, 0.05,"x=2.2")

}

(1) par() sets the graphics area.
(2) The number of data is chosen as one of f10; 100; 1; 000; 10; 000g and stored in

ndv.
(3) The null hypothesis that “the mean of the population is 2:2” is set and the t-test

is conducted. The data set is d1. Every time the number of data is set, 1; 000

realizations are produced. The number of data sets in which the null hypothesis
is rejected is stored in reject1.

(4) The relationship between the total number of data sets and the number of data
sets in which the null hypothesis is rejected is illustrated in a graph. Figure 2.13
(left) (page 77) is obtained.

(5) The probability density function of the population which generates data is
drawn. When the mean of the probability density function is compared with
the hypothesis that “the mean is 2:2,” we find that the difference is very small
when compared with the variance of the data (Fig. 2.13 (right)).

R Program [2 - 8] End

2.6 Interval Estimation of Population Variance and the �2

Distribution

We obtain n data (fx.1/
i g (1 � i � n)) by sampling from a population. The respective

elements of fx.1/
i g are realizations of the same normal distribution. The �2-value of

these data is written as �2 and is defined as

�2 D
nX

iD1

.x
.1/
i � Nx.1//2

�2
D .n � 1/.s.1//2

�2
; (2.53)

where Nx.1/ is written as

Nx.1/ D 1

n

nX
iD1

x
.1/
i : (2.54)

.s.1//2 is defined in Eq. (2.14) (page 58). �2 is called the population variance. That
is, it gives the variance of the normal distribution that the population obeys (not the
estimate given by the data but the parameter of the population). When m samplings
result in fx.j /

i g (1 � i � n; 1 � j � m), the m values of �2 obey the �2-distribution
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Fig. 2.14 The probability density function of the �2-distribution with � D 1 degrees of freedom is
shown by a dashed line. The probability density function of the �2-distribution with � D 3 degrees
of freedom is shown by a dotted line. The probability density function of the �2-distribution with
� D 6 degrees of freedom is shown by a chain line. The dashed arrows show the acceptance
region of the probability density function of the �2-distribution with � D 1 when the risk rate is
set to 5 %; although the tip of the left arrow appears to point to x D 0:0, it is actually located
near x D 0:001. The dotted and chain-line arrows show the acceptance region of the probability
density function of the �2-distribution with � D 3 and � D 6, respectively, when the risk rate
is 5 %

with � degrees of freedom (� D n � 1). The expectation of the �2-distribution with
� degrees of freedom is written as EŒ�2

�� (�2
� is a random variable). The definition of

expectation is given by Eq. (2.6) (page 52). Then, using Eq. (2.20) (page 59), EŒ�2
��

is written as

EŒ�2
�� D E

h.n � 1/S2

�2

i
D n � 1 D �; (2.55)

where S2 is a random variable yielded by Eq. (2.15) (page 58).
Figure 2.14 illustrates the probability density of the �2-distribution with � D

1; 3; 6 degrees of freedom. The figure also shows the acceptance regions of these
probability density functions for a risk rate of 5 %. Using these regions, the
confidence interval given by the �2-value for n data (Eq. (2.53), page 82) is written
as

�2.�; 0:025/ <
.n � 1/.s.1//2

�2
< �2.�; 0:975/; (2.56)

where �2.�; 0:025/ is the x value indicated by the tip of the left arrow in Fig. 2.14,
and �2.�; 0:975/ is the x value indicated by the tip of the right arrow in the
same figure. The probability density function of the �2-distribution denoted by
�2.�; 0:025/ (a nonrandom variable) is the value of �2 that satisfies the following
equation (this definition is similar to Eq. (2.34), page 63):
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Z �2

�1
den�2.x/dx D 0:025: (2.57)

As with Eq. (2.35) (page 63), �2.�; 0:975/ (a nonrandom variable) is �2 satisfying

Z �2

�1
den�2.x/dx D 0:975: (2.58)

Equation (2.56) becomes

.n � 1/.s.1//2

�2.�; 0:025/
< �2 <

.n � 1/.s.1//2

�2.�; 0:975/
: (2.59)

This equation represents the confidence interval of �2 (the population variance).
This equation corresponds to Eq. (2.40) (page 65) in the context of the t-distribution.

We can realize a test of the population variance using the null hypothesis and the
alternative hypothesis. This is analogous to Eqs. (2.45) (page 71) and (2.46) (page
71). The null hypothesis, for example, is

H0 W �2 D 9: (2.60)

When a two-sided test is conducted using this null hypothesis, the alternative
hypothesis is

H1 W �2 ¤ 9: (2.61)

The p-value is defined in a similar way to that of the t-distribution. This test
is denoted by the “�2-test for homogeneity” or the “�2-test for variance in a
normal population”. The �2-test is also applied to test the goodness of fit and the
independence of a contingency table.

Next, let us perform a simulation to show the distribution of the �2-value
(Eq. (2.53), page 82). Simulation data (fxi g (1 � i � 4)) are prepared, where fxi g
are 4 realizations of N.�2; 32/ (a normal distribution with mean �2 and variance
32). The procedure of calculating �2-values for these 4 data is repeated 10; 000

times by changing the initial value of the pseudo-random numbers. The distribution
of the resulting 10; 000 �2-values is shown in Fig. 2.15. The constant-multiplied
probability density function of the �2-distribution with 3 degrees of freedom is
superimposed.

Furthermore, let us conduct a simulation to illustrate the implications of the risk
rate and the power of the test in the context of the �2-test. The simulation data
(fxig (1 � i � n)) are realizations of N.0; �2/ (a normal distribution with mean 0

and variance �2). �2 is set to one of f1; 2; 3; : : : ; 20g. A �2-test is carried out with
the null hypothesis that “the variance is 9.” The risk rate is assigned as either 5 or
20 %, and 1; 000 simulations are performed with each setting. The results are shown
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Fig. 2.15 Histogram of the �2-values of 10; 000 data sets, each consisting of 4 data, and the
probability density function of the �2-distribution with 3 degrees of freedom. The constant-
multiplied probability density function (solid line)
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Fig. 2.16 Proportion of times the null hypothesis is rejected when the (two-sided) �2-test is
conducted with risk rate 5 % using 10 data (left). Proportion of times the null hypothesis is rejected
when the (two-sided) �2-test is conducted with risk rate 20 % using 10 data (right)

in Fig. 2.16. When �2 is 9, the null hypothesis holds in the population. Hence, the
proportion of times the null hypothesis is rejected represents the risk rate (significant
level). The results are in line with the settings of 5 and 20 % for the risk rate. When
�2 differs from 9, the null hypothesis should be rejected. Then, the proportion of
times the null hypothesis is rejected is considered the power of the test. This shows
that the power of the test is higher the more �2 deviates from 9. A comparison
between Fig. 2.16 (left) and (right) shows that the power of the test is enhanced by
the higher risk rate in this case.

R Program [2 - 9]
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Realizations given by pseudo-random numbers result in the probability density
function of the �2-distribution and the acceptance region when the risk rate is 5 %.
chi21e()

function (){
# (1)

par(mfrow = c(1,1), mai = c(2, 1, 1.5, 0.1),
omi = c(0, 0, 0, 0))

# (2)
nd <- 4
nt <- 10000

# (3)
set.seed(181)
chi <- NULL
for(ii in 1:nt){

xx <- rnorm(n = nd, mean = -2, sd = 3)
xxvar <- var(xx)
chi[ii] <- (nd - 1) * xxvar/(nd - 1)ˆ2

}
# (4)

xxs <- sort(chi)
p1 <- xxs[ceiling(nt * 0.025)]
p2 <- xxs[ceiling(nt * 0.975)]
print("p1")
print(p1)
print("p2")
print(p2)

# (5)
print("qchisq(0.025, df = nd - 1)")
print(qchisq(0.025, df = nd - 1))
print("qchisq(0.975, df = nd - 1)")
print(qchisq(0.975, df = nd - 1))

# (6)
chi2 <- chi[ chi <= 15]
br1 <- pretty(chi2, n=40)
bw1 <- br1[2] - br1[1]
chi2h <- floor(chi2/bw1) * bw1 + 0.01 * bw1
hist1 <- hist(chi2h, breaks = br1, main = "",
xlab = "x", ylab = "Frequency")

# (7)
curve(dchisq(x, df = nd - 1) * bw1 * nt, min(br1),
max(br1), xlab = "x", ylab = "p(x)", lwd = 2,
xlim = c(min(br1), max(br1)),
ylim = c(0, max(hist1$counts)), add = T)

}
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(1) par() sets the graphics area.
(2) The number of data in one sampling is denoted by nd. This sampling is

conducted nt times.
(3) set.seed() sets the initial value for the pseudo-random numbers. chi is

prepared in order to store realizations of the �2-distribution. Sampling is carried
out nt times. The �2-values of the respective data are calculated. These �2-
values are stored in chi.

(4) sort() arranges the elements of xx in ascending order. The result is named
xxs. The value at the 2:5 % position in xxs is named p1. The value at the
97:5 % position in xxs is named p2. The values of p1 and p2 are displayed.

(5) qchisq() calculates the value of �2.�; 0:025/ (Eq. (2.56), page 83) based on
the �2-distribution. The resultant value is displayed. qchisq() calculates the
value of �2.�; 0:975/ (Eq. (2.56), page 83) based on the �2-distribution. The
resultant value is displayed.

(6) Values less than or equal to 15 are extracted from chi. The resultant values are
named chi2. hist() draws the histogram of chi2.

(7) The probability density function of the �2-distribution with (nd-1) degrees of
freedom is plotted.

The results of chi21e() are:

"p1"
0.2271126
"p2"
9.373766
"qchisq(0.025, df = nd - 1)"
0.2157953
"qchisq(0.975, df = nd - 1)"
9.348404

The values obtained by this simulation (i.e., p1 and p2) are close to those obtained
from the probability density function (qchisq(0.025, df = nd - 1)
and qchisq(0.975, df = nd - 1)). chi21e() also outputs Fig. 2.15
(page 85).

R Program [2 - 9] End

R Program [2 - 10]

Let us investigate the meaning of the �2-test and the power of the test.
chi61e()

function (){
# (1)

nd <- 10
gamma1 <- seq(from = 1, to = 20, by = 1)
nt <- 1000

# (2)
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q1 <- qchisq(0.025, df = nd -1)
q2 <- qchisq(0.975, df = nd -1)
v1 <- 9
reject1 <- NULL

# (3)
for(ii in 1:length(gamma1)){

reject1[ii] <- 0
# (4)

for (kk in 1:nt){
set.seed(kk*915 + 3)
d1 <- rnorm(n = nd, mean = 0, sd =
sqrt(gamma1[ii]))

chi2 <- (nd - 1) * var(d1)/v1
if(chi2 < q1 | chi2 > q2){

reject1[ii] <- reject1[ii] + 1
}

}
}
reject1 <- reject1/nt

# (5)
q1 <- qchisq(0.1, df = nd -1)
q2 <- qchisq(0.9, df = nd -1)
reject2 <- NULL
for(ii in 1:length(gamma1)){

reject2[ii] <- 0
# (6)

for (kk in 1:nt){
set.seed(kk*915 + 3)
d1 <- rnorm(n = nd, mean = 0, sd =
sqrt(gamma1[ii]))

chi2 <- (nd - 1) * var(d1)/v1
if(chi2 < q1 | chi2 > q2){

reject2[ii] <- reject2[ii] + 1
}

}
}
reject2 <- reject2/nt

# (7)
par(mfrow = c(1,2), mai = c(1, 1, 1, 0.1),
omi = c(0, 0, 0, 0))

plot(gamma1, reject1, xlab = expression(gamma),
ylab = "rejection rate",xlim = c(0,20),
ylim = c(0,1))

arrows(2, 0, 2,reject1[2], angle = 90, code = 3,
length = 0.07)
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text(15.3, 0.02, "significant level")
arrows(9, 0, 9, reject1[9], angle = 90, code = 3,
length = 0.07, lwd = 2)

text(8, 0.81, "power of test")
# (8)

plot(gamma1, reject2, xlab = expression(gamma),
ylab = "rejection rate", xlim = c(0,20),
ylim = c(0,1))

arrows(2, 0, 2,reject2[2], angle = 90, code = 3,
length = 0.07)

text(15, 0.09, "significant level")
arrows(9, 0, 9, reject2[9], angle = 90, code = 3,
length = 0.07, lwd = 2)

text(8, 0.98, "power of test")
}

(1) The number of data (nd) is given. Values of f1; 2; 3; : : : ; 20g are used for � .
The number of simulations (nt) is given.

(2) qchisq() calculates the value of �2 that satisfies Eq. (2.57) (page 84) (i.e.,
�2.�; 0:025/). The result is stored in p1. qchisq() calculates the value of �2

that satisfies Eq. (2.58) (page 84) (i.e., �2.�; 0:975/). The result is stored in p2.
v1 is set to 9 so that the null hypothesis is “the variance is 9.” reject1 is
prepared in order to store the number of times the null hypothesis is rejected.

(3) Simulations are carried out using the selected value of � .
(4) The simulation is conducted nt times. The simulation data (d1) is constructed

using one value of � from gamma1. d1 consists of realizations of a normal dis-
tribution with mean 0 and variance gamma1[ii]. The �2-value is calculated
and assigned to chi2. If the value of chi2 falls in the rejection region of the
�2-test (the two-sided test), 1 is added to reject1[ii]. reject1 is divided
by nt to give the proportion of rejections.

(5) �2.�; 0:1/ is calculated and the result is stored in p1. �2.�; 0:9/ is calculated
and the result is stored in p2. Simulations are carried out with one value
extracted from gamma1.

(6) The simulation is performed nt times. If the simulation data (d1) lie in the
rejection region of the �2-test (two-sided test), 1 is added to reject2[ii].
reject2 is divided by nt. Then, we have the proportion of times the null
hypothesis has been rejected.

(7) The relationship between � and the proportion of rejections when the risk rate
is 5 % is plotted and explanations are added. Figure 2.16 (left) (page 85) is
obtained.

(8) The relationship between � and the proportion of rejections when the risk rate
is 20 % is plotted and explanations are added. Figure 2.16 (right) (page 85) is
obtained.

R Program [2 - 10] End
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2.7 F Distribution and F -Test

Suppose that sampling from two populations is carried out. Let m data (fxi g (1 �
i � m)) be derived from population-A and let n data (fyig (1 � i � n)) be derived
from population-B. Each fxi g is a realization of a normal distribution (N.	; �2/ (a
normal distribution with mean 	 and variance �2)). Each fyig is a realization of the
same normal distribution. The averages of these two data sets are named Nx and Ny,
respectively. They are defined as follows.

Nx D 1

m

mX
iD1

xi ; Ny D 1

n

nX
iD1

yi ; (2.62)

s2
x D 1

m � 1

mX
iD1

.xi � Nx/2; s2
y D 1

n � 1

nX
iD1

.yi � Ny/2: (2.63)

In addition, F0 is defined as

F0 D s2
x

s2
y

: (2.64)

Another definition of F0 is

F0 D

8̂
ˆ̂̂
<
ˆ̂̂
:̂

s2
x

s2
y

if s2
x � s2

y

s2
y

s2
x

if s2
x < s2

y:

(2.65)

F0 is termed the F -value, the unbiased variance ratio, or the variance ratio. It should
be noted that F0 is a nonrandom variable, despite being represented in upper case.
The definition in Eq. (2.65) is of great use when a numerical table is referenced for
carrying out the F -test. However, Eq. (2.64) is preferable in the current era. The
default var.test() implemented in R is used without regard to the magnitude
relationship between the two variances.

When fxi g and fyig in Eq. (2.62) are regarded as random variables, sx and sy are
considered to be random variables. Then, F0 also comes to be a random variable.
When F0 is treated as a random variable, we write F0 as F . The distribution obeyed
by F is called the F -distribution. When we set �1 D m � 1 and �2 D n � 1, the use
of Eq. (2.53) (page 82) transforms Eq. (2.64) into

F D
�2

�1

�1

�2
�2

�2

; (2.66)
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Fig. 2.17 Relationship between �2 and the average of 100; 000 realizations of the F -distribution

with �1 D 7. The solid line indicates
�2

�2 � 2
(left). Result yielded by the F -distribution with

�1 D 200 (right)

where �2
�1

(a random variable) and �2
�2

(a random variable) are given by:

�2
�1

D
mX

iD1

.xi � Nx/2

�2
D .m � 1/s2

x

�2
; �2

�2
D

nX
iD1

.yi � Ny/2

�2
D .n � 1/s2

y

�2
:

(2.67)

�2
�1

and �2
�2

are independent of each other. The probability density function obeyed
by F in Eq. (2.66) is called the F -distribution with the first degree of freedom
(numerator degree of freedom, degree of freedom in the numerator) of �1 and the
second degree of freedom (denominator degree of freedom, degree of freedom in the
denominator) of �2. The expectation of F (i.e., EŒF �) is as follows (it is independent
of �1):

EŒF � D �2

�2 � 2
(2.68)

As the derivation of Eq. (2.68) is not simple, its validity is examined using a
simulation. We set �1 D 7 and �2 to one of f6; 8; 10; : : : ; 50g, and average 100; 000

realizations of the F -distribution. The result of this simulation is illustrated in

Fig. 2.17 (left). These averages agree well with the curve of
�2

�2 � 2
. When we set

�1 D 200, Fig. 2.17 (right) is obtained. These averages also correspond well to the

curve of
�2

�2 � 2
. Therefore, Eq. (2.68) appears to be valid.

If Eq. (2.68) is correct, F0 is close to
�2

�2 � 2
when the population variance of

population-A is equal to that of population-B. If F0 is very far from
�2

�2 � 2
, we
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must conclude that the population variance of population-A is different from that
of population-B. When this procedure is represented in a similar way to that of
Eqs. (2.45) (page 71) and (2.46) (page 71), the null hypothesis is

H0 W �2
a D �2

b ; (2.69)

and the alternative hypothesis is

H1 W �2
a ¤ �2

b : (2.70)

In these hypotheses, �2
a stands for the population variance of population-A and

�2
b stands for that of population-B. This test is called the “F -test of equality of

variances.”
In the context of analysis of variance, the subsequent analysis varies only when it

is concluded that �2
b is larger than �2

a . Hence, we employ the alternative hypothesis:

H 0
1 W �2

a < �2
b : (2.71)

For this situation, Eq. (2.64) (page 90) should be used; Eq. (2.65) (page 90) is not
suitable.

In a similar way to the t-test, the F -test proceeds on the assumption that the
null hypothesis is correct. Then, if we reach a result that makes us think that the
occurrence of a low probability event should be assumed, the null hypothesis is
rejected. If H0 (Eq. (2.69), page 92) holds, F0 obeys the F -distribution. Figure 2.18
illustrates the probability density functions given by a couple of F -distributions.
The acceptance region of the 5 % risk rate yielded by the null hypothesis (Eq. (2.69),
page 92) and the alternative hypothesis (Eq. (2.70), page 92) is superimposed. When
denf .x/ is defined as the probability density function of an F -distribution, the
upper limit of the left rejection region is the F (a nonrandom variable) that satisfies

Z F

�1
denf .x/dx D 0:025: (2.72)

The lower limit of the right rejection region is the F (a nonrandom variable) that
satisfies

Z F

�1
denf .x/dx D 0:975: (2.73)

Next, let us conduct a simulation to confirm that the F -value (Eq. (2.64), page 90)
obeys the F -distribution if the null hypothesis (Eq. (2.69)) holds. Assume that the
sample size (the number of data) of one sampling from population-A is 20 and that
from population-B is 10. Both populations obey N.2; 32/ (a normal distribution with
mean 2 and variance 32). The F -value (Eq. (2.64), page 90) is calculated 10; 000

times by altering the initial value of the pseudo-random numbers. The histogram of
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Fig. 2.18 The probability density function of the F -distribution with first degree of freedom �1 D
5 and the second degree of freedom �2 D 10 is shown by a dashed line. The probability density
function of the F -distribution with �1 D 20 and �2 D 10 is shown by a dotted line. The probability
density function of the F -distribution with �1 D 30 and �2 D 30 is shown by a chain line. The
dashed, dotted, and chain-line arrows indicate the acceptance region with a 5 % risk rate for the
respective probability density functions
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Fig. 2.19 Histogram of the F -values (Eq. (2.64), page 90) when the sample size (the number
of data) of one sampling from population-A is 20 and the sample size of one sampling from
population-B is 10. Both populations obey a normal distribution with mean 2 and variance 32. The
constant-multiplied probability density function of the F -distribution with �1 D 19 and �2 D 9 is
also drawn

the resultant distribution is shown in Fig. 2.19. The distribution of these F -values
should follow the F -distribution with the first degree of freedom 19 and the second
degree of freedom 9. The constant-multiplied probability density function of this
F -distribution is superimposed in Fig. 2.19. The two distributions agree well.

Next, let us conduct a simulation to examine the meaning of the risk rate and a
null hypothesis in carrying out the F -test. Assume that the size of the sample (the
number of data) in one sampling from population-A is 30 (n D 30) and the size of
the sample in one sampling from population-B is 40 (m D 40). The variance of the
data sampled from population-A (Vara) is written as
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Vara D 1

n � 1

� nX
iD1

xi � 1

n

nX
j D1

xj

�2 C �: (2.74)

The fxig (1 � i � 30) are realizations of N.0; 22/ (a normal distribution with mean
0 and variance 22). � is chosen to be one of f0; 0:5; 1:0; : : : ; 5:0g. When � D 0,
the variance of fxig is that of the normal distribution (N.0; 22/). When � ¤ 0, the
variance of fxi g differs from that of the normal distribution (N.0; 22/). This implies
that fxi g are realizations of a different distribution to N.0; 22/. The variance of the
data sampled from population-B (Varb) is written as

Varb D 1

m � 1

� mX
iD1

yi � 1

m

mX
j D1

yj

�2

: (2.75)

The fyi g (1 � i � 40) are the realizations of N.0; 22/ (a normal distribution with
mean 0 and variance 22). The variance of fyi g is that of the normal distribution
(N.0; 22/). The F -value for these data is defined as

F0 D Vara

Varb

: (2.76)

Then, the null hypothesis is set as “F0 obeys the F -distribution with the first degree
of freedom �1 D 29 and the second degree of freedom �2 D 39.” The alternative
hypothesis is set as “F0 does not obey the F -distribution with the first degree of
freedom �1 D 29 and the second degree of freedom �2 D 39.” Using these
hypotheses, the F -test (two-sided test) is conducted. This simulation is repeated
1; 000 times by altering the initial value of the pseudo-random numbers. The results
given by a risk rate (significant level) of 5 % are illustrated in Fig. 2.20 (left) and
those given by a risk rate of 20 % are illustrated in Fig. 2.20 (right). This simulation
also shows that a higher risk rate results in a higher power of the test.

R Program [2 - 11]

The acceptance region yielded by the probability density function of the F -
distribution with a 5 % risk rate is obtained by realizations given by pseudo-random
numbers.
f21e()

function (){
# (1)

nd1 <- 20
nd2 <- 10
nt <- 10000

# (2)
set.seed(199)
ff <- NULL
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Fig. 2.20 Proportion of times the null hypothesis is rejected when the (two-sided) F -test with
a 5 % risk rate is carried out after 30 simulation data are sampled from population-A and 40

simulation data are sampled from population-B (left). Results of a similar simulation with a 20 %
risk rate (right)

for(ii in 1:nt){
xx <- rnorm(n = nd1, mean = 2, sd = 3)
xxvar <- var(xx)
yy <- rnorm(n = nd2, mean = 2, sd = 3)
yyvar <- var(yy)
ff[ii] <- xxvar/yyvar

}
# (3)

xxs <- sort(ff)
p1 <- xxs[ceiling(nt * 0.025)]
print("p1")
print(p1)
p2 <- xxs[ceiling(nt * 0.975)]
print("p2")
print(p2)

# (4)
print("qf(p = 0.025, df1 = nd1 - 1, df2 = nd2 -1)")
print(qf(p = 0.025, df1 = nd1 - 1, df2 = nd2 -1))
print("qf(p = 0.975, df1 = nd1 - 1, df2 = nd2 -1)")
print(qf(p = 0.975, df1 = nd1 - 1, df2 = nd2 -1))

# (5)
par(mfrow = c(1,1), mai = c(2, 1, 1.5, 0.1),
omi = c(0, 0, 0, 0))

ff2 <- ff[ ff <= 8]
br1 <- pretty(ff2, n = 40)
bw1 <- br1[2] - br1[1]
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ff2h <- floor(ff2/bw1) * bw1 + 0.01 * bw1
hist1 <- hist(ff2h, breaks = br1, main="", xlab="x",
ylab = "Frequency")

# (6)
curve(df(x, df1 = nd1-1, df2 = nd2-1) * bw1 * nt,
min(br1), max(br1), xlab = "x", ylab = "p(x)",
lwd = 2, xlim = c(min(br1), max(br1)),
ylim = c(0, max(hist1$counts)), add = T)

}

(1) The sample size (the number of data) of one sampling from population-A
is nd1. The sample size of one sampling from population-B is nd2. This
simulation is repeated nt times.

(2) set.seed() sets an initial value for the pseudo-random numbers. ff is
prepared in order to store the realizations of the F -distribution. The simulation
is repeated nt times, with the F -values calculated and accumulated in ff.

(3) sort() arranges xx in ascending order. The result is stored in xxs. The value
located closest to the 2:5 % point in xxs is named p1. p1 is displayed. The
value located closest to the 97:5 % point in xxs is named p2. p2 is displayed.

(4) qf() calculates the value of F that satisfies Eq. (2.72) (page 92), and this
value is displayed. The value that satisfies Eq. (2.73) (page 92) is calculated
and displayed.

(5) Values less than or equal to 8 in ff are named ff2. The histogram of ff2 is
drawn.

(6) The constant-multiplied probability density function of the F -distribution with
the first degree of freedom nd1-1 and the second degree of freedom nd2-1 is
illustrated.

f21e() outputs:

"p1"
0.3400989
"p2"
3.674442
"qf(p = 0.025, df1 = nd1 - 1, df2 = nd2 -1)"
0.3472159
"qf(p = 0.975, df1 = nd1 - 1, df2 = nd2 -1)"
3.683338

The results of the simulation using pseudo-random numbers are close to the actual
values. f21e() also outputs Fig. 2.19 (page 93).

R Program [2 - 11] End

R Program [2 - 12]

Using a simulation, we can also appreciate the risk rate and the power of the test
in the F -test.
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f61e()
function (){
# (1)

nd1 <- 30
nd2 <- 40
gamma1 <- seq(from = 0, to = 5, by = 0.5)
nt <- 1000

# (2)
q1 <- qf(0.025, df1 = nd1 - 1, df2 = nd2 - 1)
q2 <- qf(0.975, df1 = nd1 - 1, df2 = nd2 - 1)

# (3)
reject1 <- NULL
for(ii in 1:length(gamma1)){

reject1[ii] <- 0
# (4)

for (kk in 1:nt){
set.seed(kk*915 + 7)
d1 <- rnorm(n = nd1, mean = 0, sd = 2)
v1 <- var(d1) + gamma1[ii]
d2 <- rnorm(n = nd2, mean = 0, sd = 2)
v2 <- var(d2)
ff <- v1/v2

# (5)
if(ff < q1 | ff > q2){

reject1[ii] <- reject1[ii] + 1
}

}
}

# (6)
reject1 <- reject1/nt

# (7)
q1 <- qf(0.1, df1 = nd1 -1, df2 = nd2 -1)
q2 <- qf(0.9, df1 = nd1 -1, df2 = nd2 -1)
reject2 <- NULL
for(ii in 1:length(gamma1)){

reject2[ii] <- 0
for (kk in 1:nt){
set.seed(kk*915 + 7)
d1 <- rnorm(n = nd1, mean = 0, sd = 2)
v1 <- var(d1) + gamma1[ii]
d2 <- rnorm(n = nd2, mean = 0, sd = 2)
v2 <- var(d2)
ff <- v1/v2
if(ff < q1 | ff > q2){

reject2[ii] <- reject2[ii] + 1
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}
}

}
reject2 <- reject2/nt

# (8)
par(mfrow = c(1,2), mai = c(2, 1, 1.5, 0.1),
omi = c(0, 0, 0, 0))

plot(gamma1, reject1, xlab = expression(gamma),
ylab = "rejection rate", xlim = c(-0.1, 5),
ylim = c(0,1))

arrows(0, 0, 0, reject1[1], angle = 90, code = 3,
length = 0.07)

text(1.5, 0.012, "significant level")
arrows(4, 0, 4, reject1[9], angle = 90, code = 3,
length = 0.07, lwd = 2)
text(2.3, 0.55, "power of test")

# (9)
plot(gamma1, reject2, xlab = expression(gamma),
ylab = "rejection rate", xlim = c(-0.1, 5),
ylim = c(0,1))

arrows(0, 0, 0, reject2[1], angle = 90, code = 3,
length = 0.07)

text(1.5, 0.1, "significant level")
arrows(4, 0, 4, reject2[9], angle = 90, code = 3,
length = 0.07, lwd = 2)

text(2.3, 0.85, "power of test")
}

(1) The number of data sampled from population-A is given as nd1. That sampled
from population-B is given as nd2. Values of gamma1 are selected from
f0; 0:5; 1:0; : : : ; 5:0g. The number of simulations is set as nt.

(2) qf() calculates the F value that satisfies Eq. (2.72) (page 92). The result is
stored in q1. qf() calculates the F values that satisfy Eq. (2.73) (page 92).
The result is saved in q2.

(3) Using one value in gamma1 as � (Eq. (2.76), page 94), the number of data
falling in the rejection region is counted.

(4) After sampling from population-A and population-B, the F -value (Eq. (2.76),
page 94) is calculated. The result is stored in ff.

(5) If the F -value lies in the rejection region, 1 is added to reject1[ii].
(6) reject1 is divided by nt to give the proportion of rejections.
(7) The risk rate is set to 0:2, and procedures (2)–(6) are carried out. The proportion

of rejections (reject2) is obtained.
(8) The result from setting the risk rate to 0:05 is plotted. Figure 2.20 (left) (page

95) is displayed.
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(9) The result from setting the risk rate to 0:2 is plotted. Figure 2.20 (right) (page
95) is displayed.

R Program [2 - 12] End

2.8 Wilcoxon Signed-Rank Sum Test

The statistical tests treated so far are used when data obey a normal distribution.
However, data are not always normally distributed. In addition, if the data contain
outliers, simply fitting a normal distribution may not represent the data appropri-
ately. To cope with such situations, it is possible to conduct tests for another specific
distribution or eliminate the outliers. However, it is often difficult to find the specific
probability distribution that the data obey. The identification of outliers is also not
easy in most situations. In such cases, nonparametric tests provide a convenient way
to deal with this diversity. Nonparametric tests do not assume that the data obey a
normal distribution or another specific distribution.

The simplest nonparametric test is the Wilcoxon signed-rank sum test. This test
is created by improving the t-test to cope with a population that does not obey a
normal distribution. However, this test does assume that the distribution obeyed by
the population is bilaterally symmetric. Let us take an example: consider the data
f�1:8; 1:5; 1:6; 0:5; �0:4; 1:2; �1:8; 1:6g and the null hypothesis that the mean of
the population is equal to �0:4. The algorithm for the Wilcoxon signed-rank sum
test is described as follows.

(1) Data values of �0:4 are eliminated from the data set. This yields f�1:8; 1:5; 1:6;

0:5; 1:2; �1:8; 1:6g. The number of data given by this procedure is named n. We
have n D 7 in this example.

(2) �0:4 is subtracted from each of the data in the set yielded by (1). Then, we have
f�1:4; 1:9; 2:0; 0:9; 1:6; �1:4; 2:0g.

(3) The absolute values of the data given by (2) are taken. The result is
f1:4; 1:9; 2:0; 0:9:1:6:1:4; 2:0g.

(4) The data set given by (3) is ranked in ascending order. The ranks of tied data
values are averaged. Thus, we have f2:5; 5; 6:5; 1; 4; 2:5; 6:5g.

(5) Data are removed from the set given by (4) if the corresponding values in the set
given by (2) are negative (that is, those ranks corresponding to positive values
in (2) are retained). This results in the set f5; 6:5; 1; 4; 6:5g. The summation of
these values is named v. Then, we have v D 23.

(6) When the mean of the population is �0:4, v given by (5) approximately
obeys a normal distribution. The mean (	) and variance (�2) of this normal
distribution are:

	 D 1

4
n.n C 1/; (2.77)
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Fig. 2.21 Histogram of v given by 5; 000 data sets, each consisting of 100 data. The constant-
multiplied probability density function of the normal distribution given by Eqs. (2.77) and (2.78)
(solid line) is superimposed

�2 D n.n C 1/.2n C 1/

24
: (2.78)

(7) If v is located in the rejection region, the null hypothesis is rejected.

Let us conduct a simulation to ascertain that the values of v yielded by (5) in the
above algorithm are close to the realizations of the normal distribution defined by
Eqs. (2.77) and (2.78). The simulation data are 100 realizations of uniform random
numbers between �2 and 8. The mean in the null hypothesis is set to 3. The
procedure of calculating v using this simulation data is repeated 5; 000 times by
changing the initial value of the pseudo-random numbers. The distribution of the
resultant values of v is illustrated in Fig. 2.21. The constant-multiplied probability
distribution function yielded by Eqs. (2.77) and (2.78) is superimposed. These two
distributions agree well.

However, when the number of data is small, we cannot say that v approximately
obey a normal distribution even if the null hypothesis holds. In this case, the exact
probability should be calculated. Furthermore, when the distribution of v on the
assumption of the null hypothesis is approximated by a normal distribution, a
correction known as a continuity correction is sometimes applied.

The Wilcoxon signed-rank sum test does not assume that data obey a normal
distribution. However, this test does not always surpass the t-test when data form a
distribution that is considerably different from a normal distribution. To investigate
this point, let us show the results of a simulation to compare the Wilcoxon signed-
rank sum test and the t-test. This simulation uses 20 data. These data are realizations
of the probability density function obtained by averaging the two probability density
functions of N.0:0; 3 C ˇ/ and N.0:0; �3 C ˇ/. The value of ˇ is selected from
f0; 0:2; 0:4; : : : ; 2:0g. An example histogram when ˇ D 1:0 is shown in Fig. 2.22.
For each value of ˇ, 10; 000 data sets are produced. The Wilcoxon signed-rank sum
test and t-test are carried out using these data sets to determine whether or not the
mean is 0. Both tests are two-sided, and the null hypothesis is that the mean of



2.8 Wilcoxon Signed-Rank Sum Test 101

x

F
re

qu
en

cy

−2 0 2 4 6

0.
0

1.
0

2.
0

3.
0

Fig. 2.22 Histogram of simulation data. These data are used to examine characteristics of the
Wilcoxon signed-rank sum test when data form a distribution considerably different from a normal
distribution (ˇ D 1:0)
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Fig. 2.23 Result of the numerical simulation for determining the nature of the Wilcoxon signed-
rank sum test and the t -test when data form a considerably different distribution from a normal
distribution. Open circle represent the rejection rate (the risk rate and the power of the test) given
by the Wilcoxon signed-rank sum test. Plus symbol represent the rejection rate (the risk rate and
the power of the test) given by the t -test. The number of data is 20 (left) and 100 (right)

the population is 0. The rates of data that make the p-value lower than 0:05 in the
10; 000 data sets are shown in Fig. 2.23 (left). When ˇ D 0, this value is the risk rate.
When ˇ ¤ 0, this value is the power of the test. The power of the test for the t-test
is larger for some values of ˇ. The risk rate is about 0:05, as expected. This result
shows that if the distribution of data appears to be far from a normal distribution, we
cannot always conclude that the Wilcoxon signed-rank sum test is the better choice.
On the other hand, Fig. 2.23 (right) shows the result when the number of data is 100.
The power of the test for the Wilcoxon signed-rank sum test is higher in this case.
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R Program [2 - 13]

A Wilcoxon signed-rank sum test can be carried out using R.
wil1()

function (){
# (1)

set.seed(148)
xx <- runif(20, min = -4, max = 8)
mu1 <- 1.9

# (2)
xx2 <- xx[xx != mu1]

# (3)
rank1 <- rank(abs(xx2 - mu1))
rank2 <- rank1[xx2 > mu1]
vv <- sum(rank2)
print("vv")
print(vv)

# (4)
wtest1 <- wilcox.test(xx, mu = mu1, correct = F,
exact = F)

print(wtest1)
v1 <- wtest1$statistic

# (5)
nd <- length(xx2)
m1 <- 0.25 * nd * (nd + 1)
sd1 <- sqrt(nd * (nd + 1) * (2 * nd + 1)/24)
p1 <- (1 - pnorm(v1, mean=m1, sd = sd1)) * 2
p2 <- pnorm(v1, mean = m1, sd = sd1) * 2
p3 <- min(c(p1, p2))
print("--- p3 ---")
print(p3)

}

(1) runif() produces realizations of uniform random numbers. The results are
stored in xx. The number of data is 20. The minimum value is �4, the maximum
value is 8. We test the null hypothesis that the mean of the population that
generates these data is mu1.

(2) Elements that are identical to mu1 are deleted from xx. The result is stored in
xx2.

(3) The absolute values of the differences between the values of elements of xx2
and the value of mu1 are given an order; the resultant ranks are stored in rank1.
If there are equal values, the average of the ranks is assigned to all equal values.
Elements for which the corresponding xx2 values are greater than mu1 are
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chosen from the ranked values. The selected values are summed, and the result
is named vv and is displayed.

(4) wilcox.test() conducts a Wilcoxon signed-rank sum test. correct = F
is set up; a continuity correction is not applied. Since exact = F is
assigned, it is assumed that v (given in Step (5) in the above algorithm, page
99) obeys a normal distribution, defined by Eqs. (2.77) and (2.78). Since
alternative = is not assigned, a two-sided test is carried out. The results
of the test are saved in wtest1. wtest1 is displayed. Statistics for the use
of the Wilcoxon signed-rank sum test, which corresponds to vv above, are
extracted from wtest1; the result is named v1.

(5) The number of elements in xx2 is named nd. The p-value (p3) of the two-sided
test corresponds to the position of v1 within the normal distribution defined by
Eqs. (2.77) and (2.78). p3 is displayed. The value that appears on the screen is
close to that given by (4). wil1() outputs:

"vv"
138
Wilcoxon signed rank test
data: xx
V = 138, p-value = 0.218
alternative hypothesis: true location is not
equal to 1.9
"--- p3 ---"
0.2179573

R Program [2 - 13] End

R Program [2 - 14]

Let us confirm that when the number of data is large, the value of v is close to a
realization of the normal distribution defined by Eqs. (2.77) and (2.78).
wil21e()

function (){
# (1)

nd <- 100
nt <- 5000

# (2)
ff <- NULL
vvt <- NULL
for(ii in 1:nt){

set.seed(144 + ii*6)
xx <- runif(nd, min = -2, max = 8)
mu1 <- 3

# (3)
xx2 <- xx[xx != mu1]
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# (4)
rank1 <- rank(abs(xx2 - mu1))
rank2 <- rank1[xx2 > mu1]

# (5)
vvt[ii] <- sum(rank2)

}
# (6)

par(mfrow = c(1,1), mai = c(2, 1, 1.5, 0.1),
omi = c(0, 0, 0, 0))

br1 <- pretty(vvt, n = 20)
bw1 <- br1[2] - br1[1]
vvth <- floor(vvt/bw1) * bw1 + 0.01 * bw1
hist1 <- hist(vvth, breaks = br1, main="", xlab="x",
ylab = "Frequency")

# (7)
curve(dnorm(x, mean = 0.25 * nd * (nd + 1), sd =
sqrt(nd * (nd + 1) * (2 * nd + 1)/24) ) * bw1 *
nt, min(br1), max(br1), xlab = "x", ylab = "p(x)",
lwd = 2, xlim = c(min(br1), max(br1)),
ylim = c(0, max(hist1$counts)), add = T)

}

(1) The number of data (nd) and the number of simulations (nt) are given.
(2) runif(nd, min = -2, max = 8) generates uniform random numbers

between �2 and 8; these are simulation data named xx. The mean of the null
hypothesis (mu1) is set to 3.

(3) Values that are identical to mu1 are deleted from the data.
(4) rank() yields the ranks of the data. These are saved in rank1. Values

corresponding to larger values than mu1 are extracted from rank1. The
obtained values are named rank2.

(5) The sum of rank2 is saved as vvt[ii].
(6) hist() draws a histogram of vvt.
(7) curve() plots the curve of the constant-multiplied probability density func-

tion defined by Eqs. (2.77) (page 99) and (2.78) (page 100).

wil21e() outputs Fig. 2.21 (page 100).

R Program [2 - 14] End

R Program [2 - 15]

The Wilcoxon signed-rank sum test is carried out when the data obey a
distribution that is far from a normal distribution.
wil71e()

function (){
# (1)
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nb <- 11
nd <- 20
nt <- 10000
pt1t <- NULL
pt2t <- NULL
be1t <- NULL

# (2)
for(jj in 1:nb){

pt1 <- 0
pt2 <- 0
be1 <- (jj - 1) * 0.2
be1t[jj] <- be1

# (3)
for(kk in 1:nt){
set.seed(904 + kk * 144)
uni1 <- runif(nd, min = 0, max = 1)
n1 <- length(uni1[uni1 >= 0.5])
n2 <- nd -n1
xx <- rnorm(n1, mean = 3 + be1, sd = 1)
xx <- c(xx, rnorm(n2, mean = -3 + be1, sd = 1))

# (4)
wtest1 <- wilcox.test(xx, mu = 0, correct = T,
exact = T)

p1 <- wtest1$p.value
if (p1 < 0.05){

pt1 <- pt1 +1
}

# (5)
ttest1 <- t.test(xx, mu = 0)
p2 <- ttest1$p.value
if (p2 < 0.05){

pt2 <- pt2 +1
}

}
# (6)

pt1t[jj] <- pt1/nt
pt2t[jj] <- pt2/nt

}
# (7)

par(mfrow = c(1, 1), mai = c(1, 1, 0.2, 0.2),
oma = c(1, 1, 1, 1))

plot(be1t, pt1t , type = "n", xlab = "beta",
ylab = "power of test", ylim = c(0,1))

lines(be1t, pt1t )
points(be1t, pt1t, pch = 1)
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lines(be1t, pt2t )
points(be1t, pt2t, pch = 3)

}

(1) It is assumed that ˇ takes nb different values. The number of data is set to
nd. Using nt sets of data, the simulations are conducted. pt1t is prepared in
order to store the values of the risk rate and the power of the test given by the
Wilcoxon signed-rank sum test for a value of ˇ. pt2t is prepared in order to
store the risk rate and the power of the test given by the t-test for each value of
ˇ. be1t is set in order to save the values of ˇ.

(2) The value of be1 (ˇ) is set to one of f0; 0:2; 0:4; : : : ; 2:0g to generate the
simulation data (xx). pt1 is prepared in order to store the number of simulation
data for which the null hypothesis is rejected by the Wilcoxon signed-rank sum
test. pt2 is prepared in order to store the number of simulation data for which
the null hypothesis is rejected by the t-test. The value of ˇ is given in be1. All
values used as be1 are collected in be1t.

(3) Simulation data that obey the distribution illustrated in Fig. 2.22 (page 101) are
generated and named xx.

(4) wilcox.test() executes the Wilcoxon signed-rank sum test. The results are
stored in wtest1. Since alternative = is not assigned, a two-sided test
is carried out. Since correct = T is set, a continuity correction is applied.
Furthermore, since exact = T is assigned, the exact p-value is calculated.
Even if exact = T is not assigned and there are no tied data, the exact
p-value is calculated if the number of data is less than 50. If the number
of data is equal to or greater than 50, the approximate p-value is obtained
using the normal distribution defined by Eqs. (2.77) (page 99) and (2.78) (page
100). When exact = F is set, the approximate p-value using the normal
distribution is calculated at all times. The component of “p.value” contained
in wtest1 is the p-value. This value is extracted and named p1. When the null
hypothesis is rejected with a 5 % risk rate, 1 is added to pt1.

(5) t.test() carries out the t-test. The result is stored in ttest1. Since
alternative = is not specified, a two-sided test is executed. The compo-
nent of p.value contained in ttest1 is the p-value. This value is extracted
and named p2. When the null hypothesis is rejected with a 5 % risk rate, 1 is
added to pt2.

(6) Values of pt1 divided by the number of simulation data sets are collected
in pt1t. Values of pt2 divided by the number of simulation data sets are
collected in pt2t.

(7) The impact of the value of ˇ on the risk rate and the power of the test is
illustrated in Fig. 2.23 (left).

R Program [2 - 15] End
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Chapter 3
Simple Regression

3.1 Derivation of Regression Coefficients

When the data f.xi ; yi /g (1 � i � n) are given, a0 and a1 are derived by minimizing
the residual sum of squares (RSS ) in a procedure called a simple regression:

RSS D
nX

iD1

.yi � a0 � a1xi /
2 D

nX
iD1

e2
i ; (3.1)

where .yi � a0 � a1xi / (D ei ) is a residual. This process yields the regression
equation:

y D Oa0 C Oa1x; (3.2)

where a0 is the intercept and a1 is the gradient (slope). Each data point is represented
as

yi D Oa0 C Oa1xi C ei : (3.3)

Values such as a0 and a1 are called regression coefficients. The “b” (hat) of Oa0 and
Oa1 indicates that these values are estimates.

Estimates are calculated using data (f.xi ; yi /g). Therefore, the estimated values
are different every time a sampling (trial) is carried out. A variable such as x is
called a predictor variable (predictor). A variable such as y, which is yielded using a
predictor variable and regression coefficients, is called a target variable. The method
of minimizing RSS and deriving regression coefficients is termed the least squares
method. Using Eq. (3.2), Eq. (3.1) becomes

RSS D
nX

iD1

.yi � Oa0 � Oa1xi /
2: (3.4)
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The regression coefficients given by the least squares method ( Oa0 and Oa1 here) are
described using matrix forms. Data (the number of data points is n) are represented
using X and y as

X D

0
BBB@

1 x1

1 x2

:::
:::

1 xn

1
CCCA ; y D

0
BBBBB@

y1

y2

y3

:::

yn

1
CCCCCA

D

0
BBBBB@

a0 C a1x1

a0 C a1x2

a0 C a1x3

:::

a0 C a1xn

1
CCCCCA

C

0
BBBBB@


1


2


3

:::


n

1
CCCCCA

; (3.5)

where the column consisting of 1s in X is used to derive the constant term ( Oa0 in
Eq. (3.2)) in a simple regression equation. The matrix X is called a design matrix.
The design matrix plays an important role in multiple regression by the least squares
method. A design matrix is also called a model matrix. The f
i g .1 � i � n/

are errors. These errors are realizations of a population with a mean of 0. a0 and
a1 (Eq. (3.5)) indicate the values (parameters) of a population (i.e., true values). A
residual is calculated by subtracting a corresponding estimate given by a regression
equation from the data value of the target variable. In contrast, an error is obtained
by subtracting the value of the target variable given by the true values of a0 and a1

from the data value of the target variable.
Thus, the following equation can be derived:

y D Qy C �; (3.6)

where Qy and � are defined as

Qy D

0
BBBBB@

a0 C a1x1

a0 C a1x2

a0 C a1x3

:::

a0 C a1xn

1
CCCCCA

; � D

0
BBBBB@


1


2


3

:::


n

1
CCCCCA

; (3.7)

where a0 and a1 are true values (parameters).
a and Oa are defined as

a D
�

a0

a1

�
; Oa D

� Oa0

Oa1

�
: (3.8)

Using Eqs. (3.4) and (3.8), regression coefficients are calculated by minimizing
RSS in Eq. (3.1) (page 109). Then, we have

Xt Xa D Xt y: (3.9)
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Equation (3.9) is termed a normal equation. “t” denotes the transpose of a matrix.
Then, Oa (an estimate of a) is written as

Oa D .Xt X/�1Xt y: (3.10)

Hence, the following equation is derived:

Oy D XOa D X.Xt X/�1Xt y: (3.11)

Oy is described as

Oy D

0
BBBBB@

Oy1

Oy2

Oy3

:::

Oyn

1
CCCCCA

D

0
BBBBB@

Oa0 C Oa1x1

Oa0 C Oa1x2

Oa0 C Oa1x3

:::

Oa0 C Oa1xn

1
CCCCCA

: (3.12)

Therefore, Eq. (3.11) is represented as

Oy D Hy: (3.13)

The hat matrix H is written as

H D X.Xt X/�1Xt : (3.14)

The term “hat matrix” means that this matrix leads to estimates, and is derived from
the fact that an estimate is usually represented by adding a hat (b ).

H is a symmetric matrix. This is proved by transposing the right-hand side of
Eq. (3.14) to give

.X.Xt X/�1Xt /t D ..Xt X/�1Xt /t Xt

D X..Xt X/�1/t Xt

D X..Xt X/t /�1Xt

D X.Xt X/�1Xt ; (3.15)

where Eq. (1.39) (page 30) is used to derive the equations on the second and third
lines. The equations on the third and fourth lines are a direct result of Xt X being a
symmetric matrix. The notion that Xt X is a symmetric matrix is proved by writing
Xt X as

Xt X D
�

n
Pn

iD1 xiPn
iD1 xi

Pn
iD1 x2

i

�
: (3.16)



112 3 Simple Regression

Furthermore, because H is given by the data of the predictor variable, it does not
depend on the data of the target variable. Then, let us assume that all values of fyi g
.1 � i � n/ are 1s. 1 is defined as a column vector in which the number of elements
is n and all elements are 1. That is,

1 D

0
BBBBB@

1

1

1
:::

1

1
CCCCCA

: (3.17)

Hence, when y D 1, Eq. (3.13) yields

Oy D H1: (3.18)

When all the data of the target variable are 1s, all the estimates given by the
regression using Eq. (3.1) (page 109) are 1s. Hence, we obtain

1 D H1: (3.19)

This equation indicates that

nX
j D1

ŒH�ij D 1 .1 � i � n/: (3.20)

Therefore, regardless of the values of the elements of y, each element of Oy is a
weighted average of the elements of y. That is, the following equations are obtained:

Oyi D
nX

j D1

wij yj .1 � i � n/; (3.21)

nX
j D1

wij D 1 .1 � i � n/: (3.22)

Although 0 � wij is satisfied in an ordinal weighted average, wij in Eq. (3.21) can
be negative. As the hat matrix of a simple regression is symmetric, Eq. (3.20) (page
112) results in

nX
j D1

ŒH�ij D
nX

j D1

ŒH�j i D
nX

iD1

ŒH�ij D 1; (3.23)

where the second equality is obtained by exchanging i and j .
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Equation (3.23) gives the relationship between fyi g, f Oyig, and Ny (an average of
fyig) as follows:

nX
iD1

Oyi D
nX

iD1

nX
j D1

ŒH�ij yj D
nX

j D1

1 � yj D
nX

j D1

yj : (3.24)

That is, the average fyi g is equal to the average f Oyi g. This relationship is satisfied
in a more general regression equation (page 41 in [4]). Equation (3.24) can be
transformed into

nX
iD1

.yi � Oyi / D 0: (3.25)

Hence, we obtain

nX
iD1

ei D 0: (3.26)

That is, the sum of the residuals is 0.
Using Eq. (3.26), the following equation, which is equivalent to Eq. (3.10) (page

111), is derived as follows: First, fx0
ig and fy0

i g are defined as

x0
i D xi � Nx; y0

i D yi � Ny; (3.27)

where Nx and Ny are defined as

Nx D
Pn

iD1 xi

n
; Ny D

Pn
iD1 yi

n
: (3.28)

The transformation of fxi g into fx0
i g using Eq. (3.27) is termed centering (pages 11

and 124 in [1], and page 128 in [3]). Then, Eq. (3.1) (page 109) is written as

RSS D
nX

iD1

�
y0

i C
Pn

iD1 yi

n
� a0 � a1

�
x0

i C
Pn

iD1 xi

n

��2

D
nX

iD1

�
y0

i � a0 � a1x
0
i C

Pn
iD1 yi

n
� a1

Pn
iD1 xi

n

�2

D
nX

iD1

�
y0

i � a0 � a1x
0
i C

Pn
iD1.yi � a1xi /

n

�2

D
nX

iD1

�
y0

i � a0 � a1x
0
i C

Pn
iD1.a0 C ei /

n

�2
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D
nX

iD1

�
y0

i � a0 � a1x
0
i C

Pn
iD1 a0

n

�2

D
nX

iD1

�
y0

i � a0 � a1x
0
i C na0

n

�2

D
nX

iD1

.y0
i � a1x

0
i /

2; (3.29)

where the equality on the fourth and fifth lines are derived using Eq. (3.26). The
RSS given by Eq. (3.29) is differentiated with respect to a1. We obtain

@

@a1

nX
iD1

.y0
i � a1x0

i /
2 D

nX
iD1

@

@a1

.y0
i � a1x

0
i /

2

D
nX

iD1

x0
i .y

0
i � a1x0

i /

D 0: (3.30)

Then, Oa1 is represented as

Oa1 D
Pn

iD1 x0
i y

0
iPn

iD1 x0
i x

0
i

D Sxy

Sxx

; (3.31)

where Sxx and Sxy are defined as

Sxx D
nX

iD1

.xi � Nx/2; Sxy D
nX

iD1

.xi � Nx/.yi � Ny/: (3.32)

Substituting Eq. (3.31) into Eq. (3.4) yields

ei D yi � Oa0 � Sxy

Sxx

xi .1 � i � n/: (3.33)

From Eq. (3.26) (page 113), summation with respect to i results in

nX
iD1

yi � Oa0n � Sxy

Sxx

nX
iD1

xi D 0: (3.34)

Hence, we have

Oa0 D Ny � Sxy

Sxx

Nx: (3.35)
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This equation leads to

Ny D Oa0 C Oa0 Nx; (3.36)

which gives the relationship between the average of the predictor variable data and
that of the target variable data.

Using Eqs. (3.4) and (3.14), the expectation of Eq. (3.4) (page 109) can be written
as

EŒRSS� D EŒ.y � Oy/t .y � Oy/�

D EŒyt .I � H/t .I � H/y�

D EŒyt .I � H/y�

D EŒ.Qyt C �t /.I � H/.Qy C �/�

D EŒ�t � � �t H��; (3.37)

where I is an identity matrix of size n � n. The above equation comes from the
fact that H is a symmetric matrix (i.e., Ht D H) (Eq. (3.38)), and the use of the
true values (Qy) as the values of the target variable gives the same true values as the
estimates (i.e., HQy D Qy).

We can intuitively understand that, when the true values (Qy) are used as target
variables, the same true values are obtained as estimates (i.e., HQy D Qy). That
is, using the true values as data yields a regression equation to which the data
are perfectly fitted. Hence, the estimated values of the target variable using the
predictor variable data are identical to the target variable data. This fact can be
derived analytically (page 40 in [4]).

Equation (3.37) can be extended using:

EŒ
i 
j � D
(

�2 if i D j

0 if i ¤ j:
(3.38)

This equation leads to

EŒ�t �� D E

� nX
iD1


i 
i

	
D n�2; (3.39)

EŒ�tH�� D E

� nX
iD1

nX
j D1


i ŒH�ij 
j

	
D trace.H/�2 D 2�2; (3.40)

where trace.H/ denotes the trace (the sum of diagonal elements (on-diagonal
elements) of a matrix) of H. In a simple regression, trace.H/ D 2 holds (page 43 in
[4]). Equations (3.17), (3.39), and (3.40) lead to
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EŒRSS� D .n � 2/�2: (3.41)

Hence, the following value is employed as the estimate of �2 (i.e., O�2), given by the
data at hand:

O�2 D RSS

n � 2
: (3.42)

However, this equation is valid only if Eqs. (3.6) (page 110) and (3.7) (page 110)
are satisfied. Equation (3.42) cannot be used if the data are not represented as values
given by a linear equation plus errors with identical variances, even approximately.
This is because HQy D Qy does not hold, meaning that Eq. (3.37) cannot be obtained.
On the other hand, if a1 is 0, that is, the equation generating the data is constant,
Eq. (3.41) can be used. Thus, if the equation producing the data is linear or contains
a linear equation as a special case, Eq. (3.42) is useful.

Equation (3.41) is the expectation of RSS . This is given by the values of the
target variable from a regression equation and the target variable data used to derive
the regression equation. If RSS is calculated using the values of the target variable
given by a regression equation and the target variable of new data, which are not
used for deriving the regression equation, the resultant expectation takes another
value. The new data (hereafter termed “data in the future”) y� are defined as

y� D Qy C ��; (3.43)

where �� can be described as

�� D

0
BBBBB@


�
1


�
2


�
3
:::


�
n

1
CCCCCA

: (3.44)

The f
�
i g .1 � i � n/ are errors given by the same probability density function as

that generating f
i g .1 � i � n/.
The residual sum of squares for this situation, RSS�, is written as

EŒRSS�� D EŒ.y� � Oy/t .y� � Oy/�

D EŒ.Qy C �� � H.Qy C �//t .Qy C �� � H.Qy C �//�

D EŒ.Qy.I � H/ C �� � H�/t .Qy.I � H/ C �� � H�/�

D EŒ��t �� C �H��

D n�2 C trace.H/�2

D .n C 2/�2: (3.45)



3.1 Derivation of Regression Coefficients 117

R Program [3 - 1]

Let us confirm that the regression coefficients given by Eq. (3.10), Eqs. (3.31)
(page 114) and (3.35) (page 114), and lm() are identical.
simp1e()

function ()
{
# (1)

set.seed(813)
nd <- 20
xx <- seq(from = 1, to = nd, by = 1)
yy <- xx *2.5 -14 + rnorm(nd, mean = 0, sd = 3)

# (2)
xxm <- matrix( c(rep(1, length = nd), xx), ncol = 2)
yym <- matrix(yy, ncol = 1)

# (3)
print("Result of Eq.(3.10)")
print("aa")
print(aa)
ey <- aa[1] + aa[2] * xx

# (4)
aa1 <- sum((xx - mean(xx)) * (yy - mean(yy))) /
sum((xx - mean(xx))ˆ2)

print("Result of Eq.(3.31)")
print("aa1")
print(aa1)
aa0 <- mean(yy) - aa1 * mean(xx)
print("Result of Eq.(3.35)")
print("aa0")
print(aa0)

# (5)
data1 <- data.frame(x = xx, y = yy)
lm1 <- lm(y˜x, data = data1)
print(lm1)

# (6)
par(mfrow = c(1,1), mai = c(2, 1, 1.5, 0.1),
omi = c(0, 0, 0, 0))

plot(xx, yy, xlab = "x", ylab = "y", type = "n")
points(xx, yy)
lines(xx, ey, lwd = 1)

}

(1) set.seed(813) sets an initial value for the generation of pseudo-random
numbers. The number of data points (nd) is given. The predictor variable data
are stored in xx and the target variable data are saved in yy.
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Fig. 3.1 Result using simple regression. Circle denotes data and the solid line depicts estimates

(2) xx is combined with 1 (Eq. (3.17) (page 112)) to produce X (Eq. (3.5) (page
110). The resultant matrix is called xxm. yy is transformed into a matrix form
to give y (Eq. (3.5) (page 110)); the result is named yym.

(3) The regression coefficients (a0, a1) are calculated using Eq. (3.10) (page 111).
The values of Oa (Eq. (3.8) (page 110)) are stored in aa. Using aa, estimates
corresponding to the respective elements of xx are calculated and saved as ey.

(4) Oa1, derived using Eq. (3.31) (page 114), is named aa1. This value is displayed
in the console window. Oa0 from Eq. (3.35) (page 114) is termed aa0. This value
is also displayed in the console window.

(5) xx and yy are combined in the data frame named data1. In this data frame,
xx is called x and yy is called y. lm() carries out a simple regression using
data1 as data. The result is stored in lm1. print() displays the contents of
lm1 in the console window.

(6) par() sets the graphics area. plot() draws coordinate axes. type = "n"
specifies that only coordinate axes are drawn. points() graphs the data
points. lines() draws estimates given by a simple regression, and Fig. 3.1
(page 118) is obtained.

simp1e() also outputs:

"Result of Eq.(3.10)"
"aa"
[,1]
-13.406846
2.464767
"Result of Eq.(3.31)"
"aa1"
2.464767
"Result of Eq.(3.35)"
"aa0"
-13.40685
Call:
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lm(formula = y ˜ x, data = data1)
Coefficients:
(Intercept) x

-13.407 2.465

R Program [3 - 1] End

3.2 Exchange Between Predictor Variable and Target
Variable

When a simple regression using the least squares method is carried out, we may
sometimes be unsure which variable should be adopted as the predictor variable.
For example, fxi g (1 � i � n) is assumed to be a series of observations by a
measurement device, and fyi g (1 � i � n) is assumed to be those by another
device. xi and yi are observations of the same object. If a linear relationship is found
between the two series of observations, we think of the two regression equations as
follows:

yi D a0 C a1xi C 
i ; (3.46)

xi D b0 C b1yi C 
0
i : (3.47)

It is not easy to choose one regression equation from the above two equations to
cope with this type of data.

For example, 40 sets of simulation data are produced using

yi D 2 C xi C 
i : (3.48)

Here, fxig (1 � i � 40) are f1; 2; 3; : : : ; 40g. The f
i g (1 � i � 20) are realizations
of N.0; 52/ (normal distribution; mean of 0 and variance of 52). Figure 3.2 shows
the distributions of Oa0 and Oa1 yielded by 2; 000 simulations using pseudo-random
numbers with varying the initial value. The mean Oa0 is 2:015736 and the mean Oa1

is 0:9999637. Figure 3.3 illustrates the distribution of Ob0 and Ob1 given by 2; 000

simulations using pseudo-random numbers with varying the initial value. The mean
Ob0 is 1:352609 and the mean Ob1 is 0:8504109. These outcomes indicate that, when
the predictor and target variables are exchanged, the resulting regression is not
simply inverted. Therefore, when a simple regression using two variables is carried
out, the choice of predictor variable can have a considerable impact on the results
and their interpretation.

R Program [3 - 2]
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â0

F
re

qu
en

cy

0.7 0.8 0.9 1.0 1.1 1.2

0
50

15
0

25
0

Fig. 3.2 Distributions of Oa0 and Oa1. The mean Oa0 is 2:015736. The mean Oa1 is 0:9999637.
Simulation data were produced using Eq. (3.48). 2; 000 simulations to obtain a regression equation
in the form of Eq. (3.46) were carried out
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Fig. 3.3 Distributions of Ob0 and Ob1 . The mean Ob0 is 1:352609. The mean Ob1 is 0:8504109.
Simulation data were produced using Eq. (3.48). 2; 000 simulations to obtain a regression equation
in the form of Eq. (3.47) were carried out
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When a predictor variable and a target variable are exchanged, the resultant
regression equation is not an inverse function.
simp3e()

function ()
{
# (1)

nd <- 40
xx <- seq(from = 1, to = nd, by = 1)
bb0v <- NULL
bb1v <- NULL

# (2)
for(kk in 1:2000){

set.seed(813 + kk * 7)
# (3)

yy <- 2 + xx + rnorm(nd, mean = 0, sd = 5)
data1 <- data.frame(x = yy, y = xx)
lm1 <- lm(y˜x, data = data1)
bb0v[kk] <- lm1$coef[1]
bb1v[kk] <- lm1$coef[2]

}
# (4)

par(mfrow = c(2,1), mai = c(1, 1, 0.5, 0.1),
omi = c(0, 0, 0, 0))

# (5)
br1 <- pretty(bb0v, n = 20)
bw1 <- br1[2] - br1[1]
bb0vh <- floor(bb0v / bw1) * bw1 + 0.01 * bw1
hist(bb0vh, breaks = br1, main = "", xlab =
expression(hat(b)[0]))

br2 <- pretty(bb1v, n=20)
bw2 <- br2[2] - br2[1]
bb1vh <- floor(bb1v / bw2) * bw2 + 0.01 * bw2
hist(bb1vh, breaks = br2, main = "", xlab =
expression(hat(b)[1]))

# (6)
print(mean(bb0v))
print(mean(bb1v))

}

(1) The number of data points (nd) is given. The values of the predictor variable
data (xx) are set as f1; 2; 3; : : : ; 40g. bb0v is used to store Ob0 (Eq. (3.47) (page
119)), and bb1v is used to store Ob1 (Eq. (3.47)).

(2) 2; 000 simulations are carried out using pseudo-random numbers with varying
the initial value.
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(3) The values of the target variable are saved in yy. The results of the simple
regression are saved as lm1. Regression coefficients are stored in bb0v and
bb1v.

(4) par() sets the graphics area.
(5) hist() draws a histogram illustrating the distribution of bb0v. Figure 3.3

(page 120) is obtained.
(6) The averages of bb0v and bb1v are displayed in the console window.

simp3() also outputs:
1.352609
0.8504109

R Program [3 - 2] End

3.3 Regression to the Mean

Let us assume that we have a set of plants or animals. The number of individuals is
n. Their weights and sizes (fx<1>

i g (1 � i � n)) are assumed to remain constant
over time. Each individual produces a child, and the sizes or weights of the children
are denoted by fx<2>

i g (1 � i � n). Thus, n weights or sizes of k generations
(fx<k>

i g (1 � i � n, 1 � k � K)) are observed. Assume the following equation for
describing this data:

x<kC1>
i D �x<k>

i C .1 � �/
Pn

j D1 x<k>
j

n
C 
<k>

i ; (3.49)

where � is a positive constant and f
<k>
i g are realizations of N.0; �2/ (normal

distribution; mean of 0 and variance of �2). We assume that there is no error in the
observation of an individual. Hence, f
<k>

i g are due to random impacts from genetic

uncertainty and environmental disorder. The term
.1 � �/

Pn
j D1 xj < k >

n
works to

make the average fx<k>
i g in terms of i independent of k. Then, the summation of

Eq. (3.49) in terms of i leads to

nX
iD1

x<kC1>
i D

nX
iD1

�x<k>
i C

nX
iD1

.1 � �/
Pn

j D1 x<k>
j

n
C

nX
iD1


<k>
i

D
nX

iD1

�x<k>
i C .1 � �/

nX
j D1

x<k>
j C

nX
iD1


<k>
i

D
nX

iD1

x<k>
i C

nX
iD1


<k>
i
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Fig. 3.4 Relationship between k and var.fx<k>
i g/ for a fixed � . Each curve corresponds, in

ascending order, to � D f0:8; 0:82; 0:84; : : : ; 1:0g

�
nX

iD1

x<k>
i : (3.50)

The approximation from the third to the fourth line is based on the equation
EŒ
<k>

i � D 0, where 
<k>
i is regarded as a random variable. Equation (3.50)

indicates that the average of fx<k>
i g in terms of i is independent of k. Next, the

variance of fx<k>
i g (var.fx<k>

i g/) for a fixed k is defined as

var.fx<k>
i g/ D 1

n � 1

nX
iD1

.x<k>
i � 1

n

nX
j D1

x<k>
j /2: (3.51)

Because Eq. (3.49) is assumed to hold, the average fx<k>
i g in each generation

remains the same. Therefore, if var.fx<k>
i g/ remains almost constant, the charac-

teristics as a set remain substantially the same, because the mean and variance are
nearly independent of k.

Now, let us conduct a simulation to find � (Eq. (3.49) (page 122)) such that the
variance is independent of k. The number of data points (n) is set at 10; 000. fx<1>

i g
are realizations of N.50; 102/ (normal distribution; mean of 50 and variance of 102).
f
<k>

i g are realizations of N.0; 4:32/ (normal distribution; mean of 0 and variance
of 4:32). � is set to one of the 11 numbers in the set f0:8; 0:82; 0:84; : : : ; 1:0g. The
simulated results from k D 2 through k D 10 are shown in Fig. 3.4. This figure
shows that var.fx<k>

i g/ remains almost constant when � D 0:9. Hence, assigning
� D 0:9 in Eq. (3.49) ensures that the characteristics as a set remain virtually
constant.

When � D 1 in Eq. (3.49), EŒx<kC1>
i � D x<k>

i holds. This indicates that no
hereditary direction is observed. The variance of the set, however, becomes larger.
Therefore, when � D 0:9, that is, when there is a hereditary direction towards the
mean, an equilibrium set is realized. Focusing on the case � D 0:9, it shows that
a larger individual brings a smaller child than his or her parent to the world, and a
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smaller individual brings a larger child than his or her parent to the world. Hence,
members of the set appear to get closer to the mean. However, the diversification
effect brought about by f
<k>

i g cancels this out. Therefore, when � D 0:9, a set
of almost constant variance is realized. This phenomenon is called “regression to
the mean” (regression towards the mean). This regression does not refer to the
production of a regression equation; it means “going back”.

In addition, when the characteristics of a set are almost independent of k,
Eq. (3.49) (page 122) is transformed into

x<k�1>
i D �x<k>

i C .1 � �/
Pn

j D1 x<k>
j

n
C 
<k>0

i ; (3.52)

where 
<k>0

i and 
<k>
i are realizations of N.0; �2/ (normal distribution; mean of 0

and variance of �2). When the data of the parents are represented using those of
the children, we obtain a linear equation with a slope of less than 1 plus a random
number obeying a normal distribution. That is, while some hereditary information
is lost from parents to children, some information that the children have is lost in
the parents.

Next, let fx<k>
i g be the score from the k-th examination of n students in a

school. The difficulty level of the examinations is assumed to be kept the same.
The problem is to predict the scores of the .k C 1/-th examination when the 1st to
k-th examinations have finished. The mean and variance of fx<k>

i g are assumed to
be identical to those of fx<kC1>

i g. The above simulation indicates that, if x<k>
i is

larger than the mean, the estimate of x<kC1>
i should be less than x<k>

i . However,
if the i -th student is a member of another school in which the average score is
higher than x<k>

i , the estimate of x<kC1>
i should be larger than x<k>

i . A similar
phenomenon is often observed when the Stein estimator (James–Stein estimator) is
employed. Whether or not this sort of estimation is justified is not a mathematical
problem, but is instead judged from the standpoint of the characteristics of the data
and the purpose of the estimation.

When it comes to examination results, a slightly different form may be appropri-
ate. We represent x<k>

1 as U1 (random variable) and assume

Ui D vi C 
i ; (3.53)

where vi indicates the intellectual ability of the i -th student. It is assumed that
the intellectual ability of the i -th student has a unique value depending only
on i . In other words, fvig takes the same value for every trial. However, fvig
(1 � i � n) are realizations of N.0; 12/ (normal distribution; mean of 0 and
variance of 12). f
i g (1 � i � n) are random errors caused by the characteristics
of a test. They are realizations of N.0; �2

2 / (normal distribution; mean of 0 and
variance of �2

2 ). Hence, the f
ig take different values in each trial. That is, they are
random variables. Therefore, the probability density function followed by 
i is as
below.
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den.
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�
: (3.54)

Let us assume that 	1 D 50 and U1 D 65. As the average of f
i g is roughly 0, the
average score of this test is about 50 and the score of the first student is 65. Thus,
we have

65 D v1 C 
1: (3.55)

Then, the following equation is obtained.


1 D 65 � v1: (3.56)

Therefore, the expectation of v1 is written as

EŒv1� D
Z 1

�1
v1

�
1q

2��2
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�
exp

�
� 1

2�2
1
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�� 1q
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2

�
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�
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2
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2
�
dv1

Z 1

�1

�
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1

�
exp

�� 1
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1
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�� 1q

2��2
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�
exp

�
� 1

2�2
2

.65 � v1/
2
�
dv1

:

(3.57)

When we assume �2
1 D 100 and �2

2 D 36, we have EŒv1� D 2075

34
.� 61:02941/;

this value was derived using Mathematica 3.0. However, when 	1 D 70 and the

other settings remain the same, EŒv1� D 2255

34
.� 66:32353/ is obtained; this value

was also derived using Mathematica 3.0. That is, whereas the intellectual ability of
student i D 1 is fixed at v1, the value of EŒv1� depends on which group student
i D 1 belongs to. This is another result of regression to the mean.

It may appear odd that, while v1 is assumed to take the same value in every trial,
this value is regarded as a random variable in Eq. (3.57). However, an unknown
nonrandom variable is often treated as a random variable in Bayesian Inference. On
the other hand, when it is emphasized that v1 is not a random variable, the value 65

is obtained by adding errors with mean 0 (
1) to v1. Then, the estimate of v1 comes
to be 65. In this situation, the group to which student i D 1 belongs to does not
affect the estimate of v1.

Estimation methods such as Eq. (3.57) are the origin of the linear mixed model
(page 95 in [2]). Hence, when the linear mixed model is used practically, the
estimates are affected by the group to which the individual or individuals who
generate the data belong. This point should be taken into account when interpreting
the results of the linear mixed model in practical situations.
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R Program [3 - 3]

Estimation of � (Eq. (3.49) (page 122)) such that the variance of a set remains
constant.
simp5()

function()
{
# (1)

nd <- 10000
nt <- 10

# (2)
v1m <- matrix(rep(0, length = 11 * nt), ncol = 11)

# (3)
for(jj in c(1:11)){

gamma1 <- 0.78 + jj * 0.02
set.seed(815)
xx <- rnorm(nd, mean = 50, sd = 10)
v1 <- NULL
v1[1] <- var(xx)

# (4)
for(ii in 1:(nt-1)){
xx2 <- gamma1 * xx + (1 - gamma1) *
sum(xx) / nd + rnorm(nd, mean = 0,
sd = 4.3)

v1[ii + 1] <- var(xx2)
xx <- xx2

}
# (5)

v1m[,jj] <- v1
}

# (6)
par(mfrow = c(1,1), mai = c(2, 1, 1.5, 0.1),
omi = c(0, 0, 0, 0))

yrange <- range(as.vector(v1m))
yrange1 <- min(pretty(yrange))
yrange2 <- max(pretty(yrange))
plot(c(1:nt), v1, pch = 1, type="n", xlab = "k",
ylab = "var", ylim=c(yrange1, yrange2))

for (jj in 1:11){
lines(c(1:nt), v1m[,jj])

}
}

(1) The number of data points (nd) and the number of simulations (the range of k,
nt) are given.
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(2) A matrix (v1m) for storing variances is prepared.
(3) � (Eq. (3.49) (page 122)) is set to one of f0:8; 0:82; 0:84; : : : ; 1:0g to carry out

a simulation. xx contains the data (fx<k>
i g). A vector (v1) for storing variances

is prepared. The variance of fx<1>
i g when k is 1 is saved as v1[1].

(4) Using Eq. (3.49), the values of fx<k>
i g when k is more than 1 are calculated and

saved as v1[ii + 1].
(5) The values in v1 are organized in v1m.
(6) The values of v1m are drawn in a graph (Fig. 3.4 (page 123)).

R Program [3 - 3] End

R Program [3 - 4]

The value of � (Eq. (3.49) (page 122)) for which the variance of a set remains
constant is obtained.
simp12()

function(){
# (1)

int1 <- function(x){
x <- 1 / sqrt(2 * pi * 100) * 1/sqrt(2 * pi *
36) * x * exp(-1/(2 * 100) * (x-50)ˆ2) *
exp(-1/(2 * 36) * (x - 65)ˆ2)

return(x)
}

# (2)
int2 <- function(x){
x <- 1 / sqrt(2 * pi * 100) * 1 /sqrt(2 * pi *
36) * exp(-1/(2 * 100) * (x-50)ˆ2) *
exp(-1/(2 * 36) * (x - 65)ˆ2)

return(x)
}

# (3)
an1 <- integrate(int1, lower = -Inf,
upper = Inf)$value

an2 <- integrate(int2, lower = -Inf,
upper = Inf)$value

an3 <- an1/an2
print(an3)

}

(1) The integrand of the numerator in Eq. (3.57) (page 125) is denoted by int1.
(2) The integrand of the denominator in Eq. (3.57) is denoted by int2.
(3) integrate() calculates the value of the numerator in Eq. (3.57). The result

is saved as an1. integrate() also calculates the value of the denominator.
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The result is saved as an2. The value of Eq. (3.57) is saved as an3. This value
is displayed in the console window.

simp12() outputs:

61.02941

This value is identical to that described below Eq. (3.57) (page 125); the latter value
is given by Mathematica 3.0.

R Program [3 - 4] End

3.4 Confidence Interval of Regression Coefficients in Simple
Regression

When sampling is carried out many times from the same population under identical
conditions, the values of Oa given by Eq. (3.10) (page 111) are different each time.
In this sense, the values of Oa are random variables. Part of the appearance of the
distribution of Oa is observed using the variance-covariance matrix. The variance-
covariance matrix of Oa, called C, is defined as

C D0
BBBB@

E

��
Oa0�EŒ Oa0�

��
Oa0�EŒ Oa0�

i	
E

��
Oa0�EŒ Oa0�

i�
Oa1�EŒ Oa1�

�	

E

��
Oa1�EŒ Oa1�

��
Oa0�EŒ Oa0�

�	
E

��
Oa1�EŒ Oa1�

��
Oa1�EŒ Oa1�

�	

1
CCCCA

; (3.58)

where Oa0 and Oa1 are random variables. EŒ�� denotes the expectation (expected
value). For example, EŒ Oa0� is the mean value of the values of Oa0 obtained by many
samplings. However, sampling is usually carried out only once to obtain n data, and
then Oa0 and Oa1 (which are nonrandom variables here) are calculated using the data.
Distributions of Oa0 and Oa1, which would be the result of many samplings, cannot
be produced. Accordingly, C should be estimated using Oa0 and Oa1 (nonrandom
variables) yielded by one sampling of n data. If this is realized, we will know to
what extent the resultant Oa0 and Oa1 are reliable. The estimate of C given by one
sampling of n data points is written as

C D �2.XtX/�1; (3.59)

where it is assumed that the following equation, in which the predictor variable is
represented by x and the target variable is represented by y, holds in a population.
Let 
 be a random variable representing an error. It obeys a normal distribution in
which the mean is 0 and the variance is �2.
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y D a0 C a1x C 
: (3.60)

Equation (3.59) is derived as follows:
First, Eqs. (4.96) (page 128) and (3.10) (page 111) lead to

C D EŒ.Oa � EŒOa�/.Oa � EŒOa�/t �

D EŒ..Xt X/�1Xt y � EŒ.XtX/�1Xt y�/..XtX/�1Xt y � EŒ.Xt X/�1Xt y�/t �

D EŒ..Xt X/�1Xt y � .XtX/�1Xt EŒy�/..XtX/�1Xt y � .Xt X/�1Xt EŒy�/t �

D EŒ..Xt X/�1Xt .Xa C �/ � .Xt X/�1Xt Xa/..XtX/�1Xt .Xa C �/

�.Xt X/�1Xt Xa/t �

D EŒ..Xt X/�1Xt �/..Xt X/�1Xt �/t �: (3.61)

We give the following definition.

U D .XtX/�1Xt : (3.62)

As a result, Eq. (3.61) becomes

C D EŒ.U�/.U�/t �

D EŒ.U��t Ut �: (3.63)

The i l element of the matrix defined in Eq. (3.63) is

E

�X
j

X
k

ŒU�ij Œ��j Œ��kŒU�lk

	
D �2

X
j

ŒU�ij ŒU�lj

D �2ŒUUt �i l : (3.64)

Equation (3.38) (page 115) is used to derive the equation on the first line. Using
Eq. (3.64), Eq. (3.62) becomes

C D �2UUt

D �2..Xt X/�1Xt /..Xt X/�1Xt /t

D �2.Xt X/�1Xt X..Xt X/�1/t

D �2..Xt X/�1/t

D �2..Xt X/t /�1

D �2.Xt X/�1: (3.65)

Equation (1.39) (page 30) is used to obtain the equality between the fourth and fifth
lines. Equation (3.65) yields Eq. (3.59) (page 128).
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Using Eq. (3.16) (page 111), Eq. (3.59) (page 128) becomes

C D �2

�
n

Pn
iD1 xiPn

iD1 xi

Pn
iD1 x2

i

��1

: (3.66)

Equation (1.30) (page 28) results in

C D �2

n
Pn

iD1 x2
i �Pn

iD1 xi

Pn
iD1 xi

� Pn
iD1 x2

i �Pn
iD1 xi

�Pn
iD1 xi n

�
: (3.67)

Next, Sxx is defined as

Sxx D
nX

iD1

.xi � Nx/2; (3.68)

where Nx is the average of fxig .1 � i � n/ (Eq. (3.28) (page 113)). Hence,
Eq. (3.68) is written as

Sxx D
nX
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nX
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D
nX
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D
nX

iD1

x2
i � 1

n
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nX
iD1

xi : (3.69)

Using this equation, Eq. (3.67) (page 130) becomes

C D �2

nSxx

� Pn
iD1 x2

i �Pn
iD1 xi

�Pn
iD1 xi n

�
: (3.70)

Because �2 is unknown in this equation, it is replaced by the estimate of �2 (i.e.,
O�2) given by n data. O�2 is written as follows (Eq. (3.42) (page 116)).

O�2 D
Pn

iD1.yi � a0 � a1xi /
2

n � 2
D RSS

n � 2
; (3.71)

where RSS is defined in Eq. (3.4). The value of O�2 given by Eq. (3.71) is termed an
unbiased estimator of �2.

Substituting Eq. (3.71) into Eq. (3.59) (page 128) yields

C D .Xt X/�1 O�2
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D .Xt X/�1
Pn

iD1.yi � a0 � a1xi /
2

n � 2
: (3.72)

All the elements of .Xt X/�1Xt on the right-hand side of Eq. (3.10) (page 111)
are nonrandom variables. All the elements of y are considered to be random
variables that obey a normal distribution. Hence, both of the elements of Oa (a0

and a1), which are written as the sum of random variables multiplied by constants
(i.e., a linear combination of random variables), are random variables obeying
normal distributions. As the variance of a1 is ŒC�22, the result in the last chapter
(Fig. 2.27 (page 61)) shows that the confidence interval of a1 (a nonrandom variable,
Eq. (3.69)) in the population is represented as

Oa1 � 1:96
p

ŒC�22 < a1 < Oa1 C 1:96
p

ŒC�22: (3.73)

Using Eq. (3.70) (page 130), we obtain

Oa1 � 1:96

s
�2

Sxx

< a1 < Oa1 C 1:96

s
�2

Sxx

: (3.74)

O�2 given by Eq. (3.71) is usually employed as �2.

3.5 t-Test in Simple Regression

A t-test is used to carry out a hypothesis test to determine whether a1 in a population
is regarded as a specific value (a1;0 here). The null hypothesis for this test is set as

H0 W a1 D a1;0: (3.75)

The alternative hypothesis is set as

H1 W a1 ¤ a1;0: (3.76)

In particular, when a1;0 D 0 is employed, the null hypothesis becomes

H0 W a1 D 0: (3.77)

The corresponding alternative hypothesis becomes

H1 W a1 ¤ 0: (3.78)

If this null hypothesis (Eq. (3.77)) is rejected, and hence the alternative hypothesis
is adopted, it invalidates the assumption that the population is described using the
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Fig. 3.5 The absolute value of the t -value (Eq. (3.81)) is calculated. The p-value is defined as
twice the area (filled in dark gray) where the value of the horizontal axis is greater than jt j

regression equation y D a0. This leads to the conclusion that the population is
represented using the regression equation y D a0 C a1x.

The t-value required to conduct a test using Eqs. (3.75) and (3.76) is defined as

t D Oa1 � a1;0p
ŒC�22

� t.�/: (3.79)

When the null hypothesis (Eq. (3.75)) holds, t obeys the t-distribution with .n � 2/

degrees of freedom in the same manner as Eq. (2.30) (page 62). That is, we write
the equation:

t � t.n � 2/: (3.80)

As a simple regression involves two regression coefficients, the value of � (degrees
of freedom) in a simple regression is .n � 2/. Hence, the t value is obtained as

t D Oa1 � a1;0p
ŒC�22

D . Oa1 � a1;0/
p

Sxxp
�2

� . Oa1 � a1;0/
p

SxxpO�2
: (3.81)

The p-value is obtained by comparing this t (nonrandom variable) with
the probability density function of the t-distribution with .n � 2/ degrees
of freedom. As shown in Fig. 3.5, because this is a two-sided test, the
p-value is given by twice the area (filled in dark gray) for which the value of
the horizontal axis is more than jt j. For example, we may take the stance that the
null hypothesis is rejected if the p-value is less than 0:05. Then, if the t-value is
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Fig. 3.6 Rejection region when null hypothesis is rejected by the p-value of less than 0:05. The
sum of the dark gray areas at both ends is 0:05

placed in the rejection regions (critical regions) in Fig. 3.6, the null hypothesis is
rejected. When the null hypothesis holds, the t-value has a 5 % probability of being
located in the rejection regions. Hence, the sum of the dark gray areas at both ends
of the probability density function (Fig. 3.6) is 0:05. In addition, if the confidence
interval given by Eq. (3.73) (page 131) does not contain 0, then it is equivalent to
finding that the p-value is less than 0:05.

The simulation data obtained using the following equation are generated to de-
termine the distributions of the regression coefficients given by a simple regression:

yi D �5 C 4xi C 
i : (3.82)

f
i g .1 � i � n/ are the realizations of N.0; 32/ (normal distribution; mean of
0 and variance of 32). The values of the predictor variable (fxig .1 � i � 4/)
are f1; 2; 3; 4g. Using Eq. (3.82), four simulation data points are produced. The
simulation was repeated 10; 000 times with a different initial value for the pseudo-
random numbers. This yields the t-value distribution in Fig. 3.7 (left). The null
hypothesis (H0) and the alternative hypothesis (H1) for this simulation data are
as follows:

H0 W a1 D 4; (3.83)

H1 W a1 ¤ 4: (3.84)

The t-values are calculated using

t D . Oa1 � 4/
p

Sxxp O�2
: (3.85)

The probability density function of the t distribution with 2 (D 4 � 2) degrees
of freedom, assuming that the null hypothesis (Eq. (3.83)) holds, multiplied by a
constant is also drawn in Fig. 3.7 (left). The two distributions are almost identical.
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Fig. 3.7 Distribution of the t -value of the regression coefficient (Oa1) calculated by simple
regression using simulation data given by Eq. (3.82), and the probability density function of
the t distribution, assuming that the null hypothesis (Eq. (3.83)) holds, multiplied by a constant
(rejection regions given by 5 % risk rate are also shown) (left). Distribution of the t -value of
the regression coefficient (Oa1) calculated by simple regression using simulation data given by
Eq. (3.86), and the probability density function of the t distribution, assuming that the null
hypothesis (Eq. (3.83)) holds, multiplied by a constant (rejection regions given by 5 % risk rate
are also shown) (right)

The rejection regions given by a 5 % risk rate are also illustrated. The number of
simulation data points located in the left rejection region is 271, and that located in
the right rejection region is 236. All 507 simulation data points are positioned in the
rejection regions. Therefore, although the simulation data satisfy the null hypothesis
(Eq. (3.83)), the null hypothesis is rejected for 5 % of the data. In other words, the
type I error occurs with a probability of approximately 5 %.

However, if we use

yi D �5 C 6xi C 
i ; (3.86)

to generate the simulation data, instead of Eq. (3.82), the result is as shown in
Fig. 3.7 (right). The t-value is calculated using Eq. (3.85). The curve representing
the t distribution, assuming that the null hypothesis holds, is the same as that drawn
in Fig. 3.7 (left). As the simulation data does not obey the null hypothesis, the
resulting distribution of the t-value deviates considerably from the t distribution
yielded using the null hypothesis. When a 5% risk rate for the null hypothesis is
set, 16 simulation data points are located in the left rejection region and 1; 424

simulation data points are located in the right one; all 1; 440 data fall within the
rejection regions. Therefore, the null hypothesis is not rejected by the remaining
8; 560 simulation data points, although the null hypothesis is not satisfied. This
means that the power of the test is about 15% and the probability of occurrence
of the type II error is roughly 85%.
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R Program [3 - 5]

The t-value and the p-value calculated using lm() are identical to those derived
according to their definitions.
simp13()

function()
{
# (1)

set.seed(814)
nd <- 20
xx <- seq(from = 1, to = nd, by = 1)
yy <- xx *0.2 -14 + rnorm(nd, mean = 0, sd = 3)

# (2)
data1 <- data.frame(x = xx, y = yy)
lm1 <- lm(y˜x, data = data1)
suma1 <- summary(lm1)
print(suma1)

# (3)
tt1 <- suma1$coef[2,3]
print("tt1")
print(tt1)
pval1 <- suma1$coef[2,4]
print("pval1")
print(pval1)

# (4)
xxm <- matrix( c(rep(1, length=nd), xx), ncol = 2)
yym <- matrix(yy, ncol = 1)
ey <- aa[1] + aa[2]*xx

# (5)
sig2 <- sum( (yy - ey)ˆ2 ) /(nd-2)

# (6)
tt2 <- aa[2] / sqrt(cc[2,2])
print("tt2")
print(tt2)

# (7)
pval2 <- (1 - pt(abs(tt2), df = nd-2)) * 2
print("pval2")
print(pval2)

}

(1) set.seed(814) sets an initial value for the pseudo-random numbers. The
number of data points (nd) is given. The simulation data of the predictor
variable are stored in xx, and the target variable data are saved in yy.

(2) xx and yy are organized in the data frame named data1. In this data frame,
xx is called x and yy is called y. Then, lm() carries out a simple regression.
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The result is stored in lm1. summary() takes the summary from lm1. The
result is named suma1, and suma1 is displayed in the console window.

(3) The t-value (Eq. (3.81) (page 132)) for Oa1 is obtained as suma1$coef[2,3]
(the .2; 3/ element of a matrix named coef, which is a component of suma1)
from suma1. This is named tt1 and is displayed in the console window. The
p-value (Eq. (3.81)) for Oa1 is taken as suma1$coef[2,4] (the .2; 4/ element
of the matrix coef, which is a component of suma1) from suma1. This is
named pval1 and is displayed in the console window.

(4) According to the definition described in the R program simp1(), a simple
regression is conducted. The resultant regression coefficients are called aa.
Estimates corresponding to xx are calculated using aa. The estimates are
named ey.

(5) O�2 calculated using Eq. (3.71) (page 130) is named sig2. The matrix of C
derived using Eq. (3.72) (page 130) is called cc.

(6) The t-value calculated using Eq. (3.81) is named tt2 and is displayed in the
console window.

(7) pt() calculates the p-value using tt2 given in (6). The resultant value is
named pval2 and is displayed in the console window.

simp13() outputs:

Call:
lm(formula = y ˜ x, data = data1)
Residuals:
Min 1Q Median 3Q Max
-5.1932 -1.5410 0.3925 1.6462 5.5685

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -13.5994 1.3822 -9.839 1.15e-08 ***
x 0.1874 0.1154 1.625 0.122
---
Signif. codes: 0‘***‘0.001‘**‘0.01‘*‘0.05‘.‘0.1‘ ‘1

Residual standard error:2.975 on 18 degrees of freedom
Multiple R-squared:0.1279, Adjusted R-squared: 0.07941
F-statistic: 2.639 on 1 and 18 DF, p-value: 0.1217

"tt1"
1.624502
"pval1"
0.1216501
"tt2"
1.624502
"pval2"
0.1216501
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The t-value and the p-value yielded by lm() are identical to those according to
their definitions.

R Program [3 - 5] End

R Program [3 - 6]

The regression coefficients of the simple regression obey the t-distribution.
simp22e()
function ()
{
# (1)

set.seed(814)
nt <- 10000
tt <- NULL
nd <- 4

# (2)
for (jj in 1:nt){

xx <- seq(from=1, to=nd, by=1)
yy <- -5 + xx * 6 + rnorm(nd, mean = 0, sd = 3)

# (3)
xxm <- matrix(c(rep(1, length = nd), xx),
ncol = 2)

yym <- matrix(yy, ncol=1)
ey <- aa[1] + aa[2]*xx
sig2 <- sum( (yy - ey)ˆ2 ) /(nd-2)

# tt[jj] <- aa[2]/sqrt(cc[2,2])
tt[jj] <- (aa[2] - 4)/sqrt(cc[2,2])

}
# (4)

qt1 <- qt(0.025, nd-2)
nr1 <- length(tt[qt1 > tt])
qt2 <- qt(0.975, nd-2)
nr2 <- length(tt[qt2 < tt])
print("qt1")
print(qt1)
print("qt2")
print(qt2)
print("nr1")
print(nr1)
print("nr2")
print(nr2)

# (5)
par(mfrow = c(1, 1), mai = c(1, 1, 0.2, 0.2),
oma = c(1, 1, 1, 1))
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tt <- tt[tt <=15 & tt >= -15]
br1 <- pretty(c(-15, 15), n=100)
bw1 <- br1[2] - br1[1]
tth <- floor(tt/bw1) * bw1 + 0.01 * bw1
hist1 <- hist(tth, breaks=br1, main="", xlab="t",
xlim = c(-15, 15), ylim = c(0, 1700))

# (6)
curve(dt(x, df = nd - 2) * bw1 * nt, min(br1),
max(br1), xlab = "x", ylab = "p(x)", lwd = 2,
xlim = c(min(br1), max(br1)),
ylim = c(0, max(hist1$counts)), add = T)

arrows(qt1, 500, -12, 500, code = 2, lty = 1,
length = 0.15)

lines(c(qt1, qt1), c(0, 500), lwd = 3)
text(qt1 - 4.8, 760, "rejection")
text(qt1 - 4.8, 650, "region")
arrows(qt2, 500, 12, 500, code = 2, lty = 1,
length = 0.15)

lines(c(qt2, qt2), c(0, 500), lwd = 3)
text(qt2 + 5.1, 760, "rejection")
text(qt2 + 5.1, 650, "region")

}

(1) The number of data points (nd) and the number of simulations (nt) are given.
(2) Simulation data are generated using Eq. (3.86) (page 134). Simulation data of

the predictor variable are stored in xx. Target variable data are stored in yy.
(3) A simple regression is carried out using the method of simp1(). The resulting

regression coefficients are named aa. solve() calculates the inverse matrix.
Estimates corresponding to xx are derived using aa. The resultant estimates
are called ey. O�2 is estimated using Eq. (3.71) (page 130). The result is named
sig2. The matrix C, obtained using Eq. (3.72) (page 130), is called cc. The
t-value calculated using Eq. (3.81) (page 132) is named tt[jj].

(4) qt() yields the rejection region. The result is stored in qt1. The number of
data falling in the rejection region is saved in nr. qt1 and nr are displayed in
the console window.

(5) Values that are greater than or equal to �8 or less than or equal to 12 are
retrieved from tt and used to form an updated tt. hist() draws a histogram
of tt.

(6) The probability density function of the t-distribution with 2 degrees of freedom
(nd-2) (2 in this example) multiplied by a constant is superimposed on the
histogram drawn in (5). Figure 3.7 (right) (page 134) is obtained.

simp22e() also outputs:
"qt1"
-4.302653
"qt2"
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4.302653
"nr1"
16
"nr2"
1424

R Program [3 - 6] End

3.6 F -Test on Simple Regression

When a statistical test employs H0 (Eq. (3.75) (page 131)) as a null hypothesis
and H1 (Eq. (3.76) (page 131)) as an alternative hypothesis, the use of Eq. (3.81)
(page 132) is based on the characteristic that a1 obeys the t-distribution with certain
degrees of freedom. Another method, in which the residual sum of squares given
by the regression equation of y D a0 and that given by the regression equation of
y D a0 C a1x are compared, can also be used. If the RSS given by y D a0 C a1x

is considerably smaller, y D a0 Ca1x is determined to be an appropriate regression
equation. Hence, H0 is rejected and H1 is adopted. This method is called the F -test.
The RSS given by y D a0 C a1x is obtained from Eq. (3.4) (page 109). The RSS

given by y D a0 is represented as follows.

RSS.a0/ D
nX

iD1

.yi � a0/2: (3.87)

Furthermore, RSS defined in Eq. (3.4) is denoted by RSS.a0; a1/. The F -value for
this setting is

F.H0; H1/ D
RSS.a0/ � RSS.a0; a1/

1
RSS.a0; a1/

n � 2

: (3.88)

This (nonrandom variable) F is called the F -value. This value cannot be negative.
The division by 1 in the numerator indicates that the difference between the number
of regression coefficients of y D a0 C a1x and that of y D a0 is 1. The division
by .n � 2/ in the denominator comes from the number of data (n) minus the
number of regression coefficients (D 2) of y D a0 C a1x. The F -value derived
from one sampling is accumulated by many repetitions of the sampling. Such F -
values constitute a distribution. This distribution is the F -distribution with the first
degree of freedom (or the numerator degree of freedom, degree of freedom in
the numerator) (�1 D 1) and the second degree of freedom (or the denominator
degree of freedom, degree of freedom in the denominator) (�2 D n � 2) (Eq. (2.66)
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Fig. 3.8 Probability density function of the F -distribution with the first degree of freedom 1 and
the second degree of freedom 10. The space of the dark gray area is the p-value

(page 90)) when the population obeys y D a0, that is, the null hypothesis (Eq. (3.75)
(page 131)) holds. This situation is represented by

F.H0; H1/ � F1;n�2: (3.89)

Figure 3.8 illustrates an example of the probability density function obeyed by
F1;n�2. Then, the following value is calculated.

p D
Z 1

F.H0;H1/

den.1; n � 2/dx; (3.90)

where den.1; n � 2/ is the probability density function of the F -distribution with
the first degree of freedom 1 and the second degree of freedom .n � 2/. The value
of p corresponding to the F -value given by Eq. (3.88) is the space of the dark gray
area in Fig. 3.8. For example, if the value of p is less than 0:05, the data rarely
seems to be obtained under the assumption that the null hypothesis holds. Then,
the null hypothesis is rejected. Therefore, the area in which the value of p is less
than, for example, 0:05 is set as the rejection region (Fig. 3.9). This is an example
of a one-sided test. When the F -value is a positive number close to 0, .RSS.a0/ �
RSS.a0; a1// given by Eq. (3.88) takes a positive value close to 0. That is, the RSS

given by y D a0 C a1x is close to that given by y D a0. In such an event, we have
little grounds for adopting y D a0 C a1x. Therefore, when the F -value is located
in the region where it takes a positive value close to 0, H0 (Eq. (3.75) (page 131)
cannot be rejected. Hence, a one-sided test is carried out. This test is considered
to be a type of analysis of variance (ANOVA). Furthermore, a test using the F -
value (Eq. (3.88)) yields exactly the same result as when a test using the t-value
(Eqs. (3.73) (page 131) and (3.81) (page 132)) is conducted. That is, the p-value
given by the t-value is identical to that given by the F -value. This can be rigorously
proved.

Let us conduct a simulation to illustrate that the test based on Eq. (3.90) is
rational. This test uses the F -values given by Eq. (3.88). First, 20 data are generated
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Fig. 3.9 Probability density function of the F -distribution with the first degree of freedom 1 and
the second degree of freedom 10. The region indicated by the arrow is the rejection region when
the risk rate is set at 5 %.

using the following equation.

yi D 3 C 
i ; (3.91)

where the f
ig .1 � i � n/ are realizations of N.0; 0:22/ (normal distribution; mean
of 0 and variance of 0:22). Then, the following values are calculated.

RSS.a0/ D
nX

iD1

.yi � a0/
2; (3.92)

RSS.a0; a1/ D
nX

iD1

.yi � a0 � a1xi /
2: (3.93)

We generate 2; 000 sets of simulation data from a different initial value for the
pseudo-random numbers. The F -values (Eq. (3.88)) of the respective data are
calculated. The histogram of the distribution of these values is shown in Fig. 3.10
(left). The probability density function of the F -distribution with the first degree of
freedom 1 and the second degree of freedom .n � 2/ (Eq. (3.90)) is superimposed.
The frequencies are normalized so that the sums of the respective frequencies are
equal. The F -values are distributed almost according to the probability density
function of the F -distribution with the first degree of freedom 1 and the second
degree of freedom .n � 2/. The rejection region for a 5 % risk rate is superimposed
The number of simulation data that fall within the rejection region is 123. This is
roughly 5 % of the total number of data. Moreover, Fig. 3.10 (right) shows a scatter
graph illustrating the relationship between the numerator and the denominator in
the right-hand side of Eq. (3.88). The relationship between the numerator and the
denominator in the right-hand side of Eq. (3.88) is also drawn using the first 50 of
the 2; 000 data sets. This graph shows the relationship between the two sets of 50

values. The first set consists of 50 realizations of the �2-distribution with 1 degree
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Fig. 3.10 Distribution of the F -value (Eq. (3.88)) given by 2; 000 sets of simulation data (open
circle) and the probability density function of the F -distribution with the first degree of freedom
1 and the second degree of freedom .n � 2/ (Eq. (3.90)) (solid line). The rejection region for a
5 % risk rate is superimposed (left). The relationship (open circle) between the numerator and
the denominator in the right-hand side of Eq. (3.88). This relationship is obtained from the first
50 of the 2; 000 data sets. The relationship (crosses) between two independent realizations of the
�2-distribution is superimposed (right)

of freedom multiplied by the variance of f
ig (D 0:22). The second set consists
of 50 realizations of the chi-squared distribution with .n � 2/ degrees of freedom
multiplied by the variance of f
ig (D 0:22) and divided by .n�2/. These two sets of
realizations of the chi-squared distribution are independent. The distribution given
by the relationship between the numerator and the denominator in the right-hand
side of Eq. (3.88) looks close to that given by the two chi-squared distributions. That
is, when the null hypothesis (Eq. (3.75) (page 131)) holds, the F -value (Eq. (3.88))
forms a random variable that obeys the probability density function defined by
Eq. (2.66) (page 90). This example shows the appropriateness of the test using the
F -value.

Another statistic may be used to determine whether a constant or simple regres-
sion equation is desirable. For example, the following statistic can be conceived.

F C.H0; H1/ D
RSS.a0/

n � 1
RSS.a0; a1/

n � 2

: (3.94)

When the null hypothesis defined in Eq. (3.75) (page 131) holds, the numerator is
the realization of the �2-distribution with .n � 1/ degrees of freedom multiplied
by the variance of f
i g and divided by .n � 1/. Moreover, the denominator is
the realization of the chi-squared distribution with .n � 2/ degrees of freedom
multiplied by the variance of f
i g and divided by .n � 2/. Therefore, when the
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Fig. 3.11 Distribution of F C.H0; H1/ (Eq. (3.94)) (open circle) yielded by the 2; 000 sets of
simulation data and the probability density function of the F -distribution with the first degree of
freedom .n � 1/ and the second degree of freedom .n � 2/ (Eq. (3.90)) (solid line) (left). The
relationship (open circle) between the numerator and the denominator in the right-hand side of
Eq. (3.94). This relationship is obtained from the first 50 of the 2; 000 data sets. The relationship
(crosses) between two independent realizations of the �2-distribution is superimposed (right)

data satisfies the null hypothesis defined by Eq. (3.77), F C.H0; H1/ may obey the
F -distribution with the first degree of freedom .n � 1/ and the second degree of
freedom .n � 2/. However, a simulation similar to Fig. 3.10 but using F C.H0; H1/

results in Fig. 3.11. The distribution of F C.H0; H1/ (Eq. (3.94)) differs greatly from
that of the F -distribution with the first degree of freedom .n � 1/ and the second
degree of freedom .n � 2/. In addition, the relationship between the numerator
and the denominator in Eq. (3.94) varies substantially from that given by the chi-
squared distribution. This implies that, as the numerator and the denominator in
the right-hand side of Eq. (3.94) are highly dependent, the data does not form an
F -distribution.

Next, let us estimate the rate of rejection of the null hypothesis on the basis of
the null hypothesis (Eq. (3.77) (page 131)) and the alternative hypothesis (Eq. (3.78)
(page 131)) when the simulation data (fyig .1 � i � n/) are given by the following
equation.

yi D 3 C �xi C 
i ; (3.95)

where the number of data (n) is 20. The f
i g are realizations of N.0; 0:22/ (normal
distribution; mean of 0 and variance of 0:22). � is one of f0:1; 0:15g and fxi g
.1 � i � n/ is set as f0:1; 0:2; 0:3; : : : ; 2g. F.H0; H1/ (Eq. (3.88)) given by the
simulation data with � D 0:1 is calculated 2; 000 times by altering the initial
value of the pseudo-random numbers. Figure 3.12 (left) shows the distribution
of the resulting F -values (F.H0; H1/). The probability density function of an
F -distribution with the first degree of freedom (�1) 1 and the second degree of
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Fig. 3.12 Distribution of the F -values (Eq. (3.88)) given by 2; 000 simulation data generated by
Eq. (3.95) with � D 0:1 (open circle). Probability density function of the F -distribution with the
first degree of freedom 1 and the second degree of freedom .n � 2/ (Eq. (3.90)) is superimposed
(solid line) (left). Results given by setting � D 0:15 (right)

freedom (�2) .n � 2/ (Fig. 3.8 (page 140)) is superimposed. In common with
Fig. 3.10 (left) (page 142), the distribution of the F -values is standardized to allow
a comparison with the probability density function of the F -distribution. The arrow
indicates the region where the value of p (Eq. (3.90)) is smaller than 0:05 (the
rejection region) in the probability density function of the F -distribution. The
number of simulation data that fall within the rejection region is 458. In principle,
the null hypothesis should be rejected for each of the data sets because all of
the 2; 000 sets of the data do not satisfy the null hypothesis. However, the null
hypothesis is rejected for 458 data sets only. This indicates that the power of test is
22:9 %. That is, the probability of occurrence of the type II error is 77:1 %.

When � D 0:15, we have Fig. 3.12 (right). The number of simulation data that
fall within the rejection region is 885. In this case, the power of test is 44:25 % and
the probability of occurrence of the type II error is 55:75 %.

R Program [3 - 7]

The result of anova(), which carries out the F -test to select between y D
a0 C a1x and y D a0, is identical to that of the selection according to the definition.
It is also identical to the result of the t-test.
simp31()

function()
{
# (1)

set.seed(815)
nd <- 20
xx <- seq(from = 1, to = nd, by = 1)
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yy <- xx * 0.2 - 14 + rnorm(nd, mean = 0, sd = 3)
# (2)

data1 <- data.frame(x = xx, y = yy)
lm0 <- lm(y˜1, data = data1)
lm1 <- lm(y˜x, data = data1)

# (3)
anova1 <- anova(lm0, lm1)
print(anova1)

# (4)
ff <- (sum(lm0$residualsˆ2) - sum(lm1$residualsˆ2))/
((sum(lm1$residualsˆ2))/(nd-2))
pval1 <- 1 - pf(ff, df1 = 1, df2 = nd-2)
print("pval1")
print(pval1)

# (5)
pval2 <- summary(lm1)$coef[2,4]
print("pval2")
print(pval2)

}

(1) The number of data (nd) is given. Simulation data (xx, yy) are generated.
(2) lm() carries out regression using the regression equation of y D a0. The result

is saved as lm0. lm() carries out regression using the equation y D a0 C a1x.
The result is saved as lm1.

(3) anova() conducts an analysis of variance to compare lm0 and lm1. The
result is saved as anova1. anova1 is output.

(4) The F -values are calculated using Eq. (3.88) (page 139). The result is saved as
ff. pf() calculates the integral of the probability density function from �1
to ff. This probability density function is given by an F -distribution with the
first degree of freedom 1 and the second degree of freedom nd-2. As this is
a one-sided test, the p-value is obtained by subtracting this value from 1. The
resulting p-value is saved as pval1 and displayed in the console window.

(5) The p-value of the t-test on a1 is extracted from lm1 and is saved as pval2.
This value is displayed in the console window.

The results of simp31() are as follows.

Analysis of Variance Table
Model 1: y ˜ 1
Model 2: y ˜ x

Res.Df RSS Df Sum of Sq F Pr(>F)
1 19 212.723
2 18 163.691 1 49.032 5.3917 0.03216 *
---
Signif. codes:0‘***‘0.001‘**‘0.01‘*‘0.05‘.‘0.1‘ ‘1
"pval1"
0.03216104
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"pval2"
0.03216104

The value 0.03216 described below Pr(>F) is the p-value given by
anova(lm0, lm1). The value described below pval1 is the p-value resulting
from the F -value, which is calculated according to its definition. The value below
pval2 is the p-value given by lm1. These values are identical.

R Program [3 - 7] End

R Program [3 - 8]

When the null hypothesis (Eq. (3.77) (page 131)) holds, the values of F.H0; H1/

(Eq. (3.88) (page 139)) forms a distribution close to the F -distribution.
simp151e()

function()
{
# (1)

nd <- 20
nt <- 2000
xx <-seq(from = 0.1, to = 2, length = nd)
sd1 <- 0.2

# (2)
ffv <- NULL
v1 <- NULL
v2 <- NULL

# (3)
for (kk in 1:nt){

set.seed(348 + kk * 5)
yy <- 3 + rnorm(nd, mean = 0, sd = sd1)
rss1 <- sum((yy - mean(yy))ˆ2)
data1 <- data.frame(x = xx, y = yy)
lm1 <- lm(y˜x, data = data1)
rss2 <- sum(lm1$residualˆ2)
v1[kk] <- rss1 - rss2
v2[kk] <- rss2/(nd-2)
ffv[kk] <- v1[kk]/v2[kk]

}
# (4)

br1 <- pretty(range(ffv), n=20)
bw1 <- br1[2] - br1[1]
ffh <- floor(ffv / bw1) * bw1 + 0.1 * bw1
his1 <- hist(ffh, breaks = br1, right = F, plot = F)
counts1 <- his1$counts
br2 <- br1 + bw1 * 0.5
br2 <- br2[1:(length(br2) - 1)]

# (5)
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fdis <- NULL
for (kk in 1:length(br2)){

fdis[kk] <- df(br2[kk], 1, nd - 2)
}

# (6)
qq1 <- qf(0.95, 1, nd - 2)
nr <- length(ffv[ffv > qq1])
print(nr)

# (7)
chi1 <- rchisq(50, 1) * sd1ˆ2
chi2 <- rchisq(50, nd - 2) * sd1ˆ2/(nd - 2)

# (8)
par(mfrow = c(1,2), mai = c(2, 1, 1.5, 0.1),
omi = c(0, 0, 0, 0))
cden1 <- counts1 / nt * sum(fdis)
plot(br2, cden1, type = "n", ylim = c(0,
max(cden1, fdis)), xlab = "F",
ylab = "density")

lines(br2, fdis)
points(br2, cden1)
lines(c(qq1, qq1), c(0, 0.15), lwd=2)
arrows(qq1, 0.15, 17, 0.15, angle = 30, code = 2,
length = 0.1)

text(10, 0.18, "rejection region")
# (9)

v1 <- v1[1:50]
v2 <- v2[1:50]
plot(v1, v2, xlim=range(v1, chi1),ylim = range(v2,
chi2), xlab = "numerator", ylab = "denominator")

points(chi1, chi2, pch = 4)
}

(1) The number of data (nd), the number simulations (nt), the values of the
predictor (xx), and the standard deviation of the errors contained in the data
(sd1) are given.

(2) The vectors ffv, which stores values of F.H0; H1/, v1, which stores values of
the numerator of F.H0; H1/, and v2, which stores values of the denominator
of F.H0; H1/, are prepared.

(3) Using Eq. (3.91) (page 141), the values of the target variable (yy) are calculated.
The residual sum of squares yielded by regression to a constant is saved as
rss1. The residual sum of squares yielded by simple regression is saved as
rss2. The numerator of the right-hand side of Eq. (3.88) (page 139) is saved
as v1[kk]. The denominator of the fraction is saved as v2[kk]. The value of
F.H0; H1/ (Eq. (3.88)) is saved as ffv[kk].

(4) The break points of the bins for drawing a histogram of ffv[kk] are stored
in br1. hist() derives the frequencies of ffv[kk] using br1. The result
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is saved as counts1. The locations of the central points of the respective bins
are stored in br2.

(5) The probability density function of an F -distribution with the first degree of
freedom 1 and the second degree of freedom .n � 2/ is obtained using df().
The result is saved as fdis.

(6) qf() yields the rejection region of the F -distribution. The number of simula-
tion data that fall within the rejection region is saved as nr. nr is displayed in
the console window.

(7) The equivalent value of the numerator of the right-hand side of Eq. (3.88) (page
139) is calculated using realizations of the �2-distribution. These realizations
are given by rchisq(). The result is saved as chi1. The equivalent value of
the denominator is calculated. The result is saved as chi2.

(8) counts1 is normalized for comparison with fdis. The result is saved as
cden1. cden1 and fdis are drawn in a graph. When such data are graphed,
the distribution of two random variables and the distributions of one random
variable are drawn together to illustrate the features of the distribution more
clearly (page 89 in [5]).

(9) The first 50 data are extracted from each of v1 and v2. The relationship
between the two data is drawn as a scatter graph. To show the relationship
between chi1 and chi2, the points are superimposed. Figure 3.10 (page 142)
is drawn.

simp151e() also outputs:

123

This is the number of data located in the rejection region.

R Program [3 - 8] End

3.7 Selection Between Constant and Nonconstant Regression
Equations

A method using the F -test is widely applied to choose between y D a0 C a1x

and y D a0 in practical data analysis. However, when we process actual data, we
rarely know whether either of y D a0 C a1x or y D a0 is the correct regression
equation. The relationship between x and y is possibly more complex. Therefore,
when the hypothesis test using the F -value given by Eq. (3.88) determines that the
null hypothesis “y D a0 is right” is rejected, and hence “y D a0 C a1x” is adopted,
this conclusion may lead to apparently inappropriate results.

For example, the data in Fig. 3.13 show a markedly upward trend accompanied
by periodic variation and random errors. However, when the F -test with a 5 % risk
rate is conducted, the null hypothesis “y D a0 is right” is not rejected. This seems
counterintuitive to the behavior of the data. This is because the two possibilities of
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Fig. 3.13 Polynomial equations fitted to 40 data (open circle). The solid line shows a zero degree
polynomial (y D a0). The dashed line shows a one degree polynomial (y D a0 C a1x)

y D a0 C a1x and y D a0 are inadequate for this data. Therefore, when the test to
choose between y D a0 C a1x and y D a0 is used to determine whether an upward
trend is present or not, an obvious upward trend can be overlooked. If an analyst
determines the behavior of the data visually, as well as by conducting the F -test,
this type of oversight is generally avoided. However, when large amounts of data
are processed automatically, such a problem may be unavoidable.

R Program [3 - 9]

The test for choosing between y D a0 C a1x and y D a0 is not always useful
for determining whether there is an upward or downward trend.
simp41()

function()
{
# (1)

set.seed(815)
nd <- 40
xx <- seq(from = 1, to = nd, by = 1)
yy <- xx + 40 * sin(pi * xx * 0.2) + 2 +
rnorm(nd, mean = 0, sd = 10)

# (2)
data1 <- data.frame(x = xx, y = yy)
lm0 <- lm(y˜1, data = data1)
lm1 <- lm(y˜x, data = data1)

# (3)
anova1 <- anova(lm0, lm1)
print("----- anova(lm0, lm1) -----")
print(anova1)

# (4)
par(mfrow = c(1,1), mai = c(2, 1, 1.5, 0.1),
omi = c(0, 0, 0, 0))
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plot(xx, yy, xlab = "x", ylab = "y")
lines(xx, lm0$fitted, lty = 1)
lines(xx, lm1$fitted, lty = 2)

}

(1) The values of the predictor variable of the simulation data (xx) and those of the
target variable (yy) are given. The number of data (nd) is given.

(2) The data are organized in the data frame of data1. lm() fits the data to the
zero degree polynomial (constant). The result is saved as lm0. lm() fits the
data to a one degree polynomial. The result is saved as lm1.

(3) anova() carries out the F -test (analysis of variance). The result is output.
(4) The estimates given by zero degree polynomial regression and those given by

one degree polynomial regression are drawn in a graph (Fig. 3.13 (page 149)).

simp41() also outputs:
"----- anova(lm0, lm1) -----"
Analysis of Variance Table
Model 1: y ˜ 1
Model 2: y ˜ x

Res.Df RSS Df Sum of Sq F Pr(>F)
1 39 31677
2 38 29849 1 1827 2.3264 0.1355

R Program [3 - 9] End

3.8 Prediction Error of Simple Regression

Statistical tests are not the only way to assess the appropriateness of a regression
equation. The standpoint of the predictions is also important. From the viewpoint of
prediction, when we use data in the future on the grounds of a regression equation,
that which results in a small value of the prediction error is considered to be highly
appropriate. However, as data in the future are not at hand, the prediction error given
by possible data in the future is estimated using only the data at hand. One method
for overcoming this problem is Cross-Validation (C V ). When the prediction error
of the regression equation Om.x/ is estimated using cross-validation, the result is
denoted by C V Œ Om.x/�. C V Œ Om.x/� is defined as

C V Œ Om.x/� D
Pn

kD1.yk � Om�k.xk//2

n
; (3.96)

where n is the number of data. Om�k.xk/ is an estimate for the predictor of xk when
the regression equation is constructed by eliminating the k-th data point. Eq. (3.96)
is not only useful for simple regression and linear regression, but also for other
regression equations and models.
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The n regression equations ( Om�k.xk/ (1 � k � n)) are produced to calculate
the prediction error using Eq. (3.96). When the number of data is large, the
computational cost is reasonably large. However, when we use linear regression,
which is defined as regression with the use of the hat matrix (Eq. (3.14) (page 111))
for estimation, the prediction error given by the cross-validation is obtained with a
small amount of computation. The equation below is used for this purpose.

C V Œ Om.x/� D
nX

iD1

.yi � Om.xi //
2

n � .1 � ŒH�i i /2
: (3.97)

As the estimates are obtained using a hat matrix, Eq. (3.97) is derived. It should be
noted that Eq. (3.97) is not an approximation of Eq. (3.96). The values given by the
two equations are exactly the same (page 117 in [4]).

It was realized that the prediction error given by this cross-validation can
be unsuitable, and so a Generalized Cross-Validation (GC V ) was developed to
alleviate this problem. This is defined as

GC V D
Pn

iD1.yi � Om.xi //
2

n �
�
1 �

Pn
iD1ŒH�i i

n

�2
: (3.98)

When a simple regression equation, multiple regression equation, or polynomial
equation is fitted by the least squares method, the following equation holds (page 43

in [4]).

nX
iD1

ŒH�i i D q C 1; (3.99)

where q is the number of regression coefficients, omitting a constant term. We have
q D 1 for simple regression.

R Program [3 - 10]

The value of C V given by Eq. (3.96) is identical to that given by Eq. (3.97).
Although the value of GC V given by Eq. (3.98) is slightly different from that of
C V , the difference is fairly small.
simp101()

function()
{
# (1)

set.seed(815)
nd <- 40
xx <- seq(from = 1, to = nd, by = 1)
yy <- xx + 2 + rnorm(nd, mean = 0, sd = 10)
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# (2)
cv1 <- 0
for (kk in 1:nd){

xxd <- xx[-kk]
yyd <- yy[-kk]
datad <- data.frame(x = xxd, y = yyd)
lmd <- lm(y˜x, data = datad)
levd <- lm.influence(lmd)$hat
datad2 <- data.frame(x=xx[kk])
eyd <- as.numeric(predict(lmd, newdata = datad2))
cv1 <- cv1 + (yy[kk]-eyd)ˆ2

}
cv1 <- cv1/nd

# (3)
data1 <- data.frame(x = xx, y = yy)
lm1 <- lm(y˜x, data = data1)
lev1 <- lm.influence(lm1)$hat
ey1 <- fitted(lm1)
fr1 <- sum(lev1)
cv2 <- sum(((yy - ey1)/(1 - lev1) )ˆ2)/nd
gcv1 <- sum( (yy - ey1)ˆ2 )/(nd * (1 - fr1 / nd)ˆ2)

# (4)
print("cv1")
print(cv1)
print("cv2")
print(cv2)
print("gcv1")
print(gcv1)

}

(1) The number of data (nd) is given. The values of the predictor variable (xx) of
the simulation data and those of the target variable (yy) of the simulation data
are given.

(2) Values of C V are obtained using Eq. (3.96) (page 150). The result is saved as
cv1.

(3) The component of hat contained in the output of lm.influence(lm1)
stores the diagonal elements of the hat matrix. The diagonal elements of the hat
matrix are called leverages. fitted(lm1) yields the estimates corresponding
to the values of the target variable of the data. Using these values, C V

(Eq. (3.97) (page 151)) corresponding to lm1 is calculated. The result is saved
as cv2. GC V (Eq. (3.98) (page 151)) is calculated. The result is saved as
gcv1.

(4) cv1, cv2, and gcv1 are output.
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simp101() outputs:

"cv1"
105.2033
"cv2"
105.2033
"gcv1"
105.7198

R Program [3 - 10] End

R Program [3 - 11]

Let us choose between y D a0 C a1x and y D a0 by GC V (Eq. (3.98) (page
151)) using the same data as in simp41().
simp61()

function()
{
# (1)

set.seed(815)
nd <- 40
xx <- seq(from = 1, to = nd, by = 1)
yy <- xx + 40*sin(pi * xx * 0.2) + 2 +
rnorm(nd, mean = 0, sd = 10)

# (2)
data1 <- data.frame(x = xx, y = yy)
lm0 <- lm(y˜1, data = data1)
lm1 <- lm(y˜x, data = data1)

# (3)
lev0 <- lm.influence(lm0)$hat
ey0 <- fitted(lm0)
fr0 <- sum(lev0)
gcv0 <- sum( (yy - ey0)ˆ2 )/(nd * (1 - fr0 / nd)ˆ2)

# (4)
lev1 <- lm.influence(lm1)$hat
ey1 <- fitted(lm1)
fr1 <- sum(lev1)
gcv1 <- sum( (yy - ey1)ˆ2 )/(nd * (1 - fr1 / nd)ˆ2)

# (5)
print("gcv0")
print(gcv0)
print("gcv1")
print(gcv1)

}
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(1) The number of data (nd) is given. The values of the predictor variable (xx) of
the simulation data and those of the target variable (yy) of the simulation data
are given.

(2) lm() carries out regression using the equation y D a0. The result is saved as
lm0. lm() carries out regression using the equation y D a0 C a1x. The result
is saved as lm1.

(3) The component of hat contained in the output of lm.influence(lm1)
stores the diagonal elements of the hat matrix. fitted(lm0) yields estimates
corresponding to the values of the target variable of the data. Using these values,
GC V (Eq. (3.98) (page 151)) corresponding to lm0 is calculated. The result is
saved as gcv0.

(4) GC V corresponding to lm1 is calculated. The result is saved as gcv1.
(5) gcv0 and gcv1 are output.

simp61() outputs:
"gcv0"
833.0509
"gcv1"
826.8523

The result above shows that the one degree polynomial equation is preferable
because it gives a smaller prediction error. This conclusion is different from that
of simp41(). This is because GC V accommodates more predictors than the F -
test with a 5 % risk rate (page 250).

R Program [3 - 11] End

3.9 Weighted Regression

Even if the errors f
i g (1 � i � n) (Eq. (3.7) (page 110)) contained in the data are
considered to obey a normal distribution and have mean 0, the variance of the errors
can be nonconstant. This situation implies that the variance should be represented as
f�2

i g (1 � i � n) instead of �2. If this is the case, the least squares method should
not be used in the form we presented earlier. Equation (3.1) (page 109) should be
replaced with the following equation.

RSS D
nX

iD1

1

�2
i

.yi � a0 � a1xi /
2 D

nX
iD1

e2
i : (3.100)

When the squared residuals are weighted and their sum is minimized, the regression
is called a weighted regression.

Let us conduct a simulation to estimate f�2
i g (1 � i � n) (Eq. (3.100)) using a

smoothing spline (smoothing splines) (a method of nonparametric regression). The
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Fig. 3.14 An example of the simulation data given by Eq. (3.101) (left). Results of ordinary simple
regression using Eq. (3.1) (page 109) for 10 sets of simulation data

number of data are set to 30. The values of the predictor variable (fxig (1 � i � n))
are set to f0:1; 0:2; 0:3; : : : ; 3:0g. The values of the target variable (fyig(1 � i � n))
are generated using the equation below.

yi D �4xi C 3 C 
i x
2
i ; (3.101)

where f
ig are realizations of N.0; 0:52/ (normal distribution; mean of 0 and
variance of 0:52). Hence, the absolute values of the errors increase with i . The

squared residual for each i multiplied by a constant (
n

n � 2
), which provides

unbiasedness, is represented as the following equation. Multiplication by
n

n � 2
does not affect the final results.

r2
i D n

n � 2
.yi � Oa0 C Oa1xi /

2: (3.102)

r2
i is regarded as a function of i . The natural logarithms of fr2

i g are subjected
to smoothing by the smoothing spline. The resulting estimates are transformed
by exponential transformation to be used as f�2

i g. These values are then applied
to a simple regression by Eq. (3.100). Thus, there are three steps to estimating
f�2

i g: (1) transformation by natural logarithm, (2) smoothing, and (3) exponential
transformation. This is because �2

i should not be negative, and even if the estimate of
�2

i varies dramatically with i , problematic values should be dealt with appropriately.
An example of the simulation data (fxig and fyi g) is shown in Fig. 3.14 (left).

We generate 10 sets of simulation data by varying the initial value of the pseudo-
random numbers. The regression equations yielded by ordinary simple regression
using Eq. (3.1) (page 109) are depicted in Fig. 3.14 (right). On the other hand, the
values of f�2

i g estimated using a smoothing spline are shown in Fig. 3.15 (left).
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Fig. 3.15 Values of f�2

i g given by the 10 sets of simulation data (left). Results of weighted simple
regression (Eq. (3.100)) for the 10 sets of simulation data

Using these f�2
i g, simple regression using Eq. (3.100) is carried out. The results are

drawn in Fig. 3.15 (right). The variation of the regression equations is smaller than
that in Fig. 3.14 (right). This result indicates that a reliable regression equation is
obtained by weighting the data appropriately.

The transformation of variables is a conventional method for coping with
inhomogeneous errors contained in data. The Box-Cox transformation is a typical
example. Although it is true that such a method handles the inhomogeneity of errors
by transforming variables, it may lead to a regression that does not give a one
degree polynomial equation, or it may assume that errors do not follow a normal
distribution (pages 286 and 293 in [1]). Therefore, the inhomogeneity of errors and
use of regression equations that are not linear should be treated separately. In this
way, we can cope with the situation in which a linear equation is preferable but some
inhomogeneity of errors is present, or that in which regression equations other than
a linear equation are preferable but there is no inhomogeneity of errors.

Then, if a regression equation other than one degree polynomial is desirable,
this problem is addressed by choosing one with an appropriate form or using
nonparametric regression. Moreover, if there is some inhomogeneity of errors, it
is dealt with using RSS , such as in Eq. (3.100) (page 154). Such strategies enable
independent processes to handle these two problems. Therefore, we can facilitate the
solution of one or both problems. On the other hand, when the distribution obeyed
by the errors is not a normal distribution, generalized linear regression can be used
successfully in most situations. Broadly speaking, generalized linear regression is a
type of weighted regression.

R Program [3 - 12]

Weighted regression is conducted by calculating weights using a smoothing
spline.
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simp182()
function()
{
# (1)

nd <- 30
nt <- 10

# (2)
xx <- seq(from = 0.1, to = 3, length = nd)

# (3)
yym <- matrix(rep(0, length = nd * nt), ncol = nt)
sig2sm <- matrix(rep(0, length = nd * nt),
ncol = nt)

ey2m <- matrix(rep(0, length = nd * nt), ncol = nt)
# (4)

for(jj in 1:nt){
set.seed(6964 + jj * 17)
yy <- - xx * 4 + 3 + rnorm(nd, mean = 0,
sd = 0.5) * xxˆ2

yym[, jj] <- yy
data1 <- data.frame(x = xx, y = yy)
lm1 <- lm(y˜x, data = data1)
ey <- lm1$fitted

# (5)
sig2 <- (yy - ey)ˆ2 * nd / (nd-2)
sig2s <- exp(smooth.spline(xx, log(sig2))$y)
sig2sm[, jj] <- sig2s
ww2 <- 1/sig2s
data2 <- data.frame(x = xx, y = yy)
lm2 <- lm(y˜x, data = data1, weights = ww2)
ey2 <- lm2$fitted
ey2m[, jj] <- ey2

}
# (6)

par(mfrow = c(1,2), mai = c(2, 1, 1.5, 0.1),
omi = c(0, 0, 0, 0))

yrange <- range(as.vector(sig2sm))
yrange1 <- min(pretty(yrange))
yrange2 <- max(pretty(yrange))
plot(xx, yy, pch = 1, type="n", xlab = "x",
ylab = expression(sigma[i]ˆ2), ylim=c(yrange1,
yrange2))

for(jj in 1:nt){
lines(xx, sig2sm[,jj])

}
yrange <- range(as.vector(yym))
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yrange1 <- min(pretty(yrange))
yrange2 <- max(pretty(yrange))
plot(xx, yy, pch = 1, type="n", xlab = "x",
ylab = "y", ylim = c(yrange1, yrange2))

for(jj in 1:nt){
lines(xx, ey2m[,jj])

}
}

(1) The number of data (nd) and the number of simulations (nt) are given.
(2) The values of the predictor variable of the simulation data (xx) are given.
(3) The matrix (yym) for storing all values of the predictor variable of the

simulation data, the matrix (sig2sm) for storing the estimates of f
i g, and
the matrix (ey2m) for storing estimates given by the regression equation based
on RSS (Eq. (3.100) (page 154)) are prepared.

(4) lm() carries out unweighted simple regression (Eq. (3.1) (page 109)). The
result is stored in lm1. Estimates corresponding to the data are saved as ey.

(5) The fr2
i g are estimated using Eq. (3.102) (page 155). Then, the natural loga-

rithms of these values are smoothed by smooth.spline(). The resultant
values are transformed by exponential transformation. The result is saved
as sig2s. sig2s is organized in the form of sig2sm[, jj]. Simple
regression (Eq. (3.100) (page 154)) is carried out using sig2s. The result is
stored in lm2. Estimates corresponding to the data are saved as ey2. ey2 is
organized in the form of ey2m[, jj].

(6) Values of sig2s corresponding to the 10 simulations are drawn.
(7) The regression equations given by the 10 simulations are drawn.

simp182() outputs Fig. 3.15 (page 156).

R Program [3 - 12] End

3.10 Least Squares Method and Prediction Error

When the errors contained in the data are close to an independent and identically
distributed (i.i.d.) normal distribution, the least squares method is most often used.
The least squares method is backed by the method of maximum likelihood (page 121

in [4]). However, when the purpose of producing a regression equation is to estimate
values of the target variable with minimum prediction error using the specific values
of the predictors, the method of maximum likelihood is not always the best choice.
This is because, although the least squares method or the method of maximum
likelihood yields a regression equation that fits the data well, the resulting regression
equation is not guaranteed to give the best fit to data in the future.
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Fig. 3.16 Effect of biasing the slope of the prediction error. The slope is that of the simple
regression equation given by the least squares method if the bias is not present. Open circle is
the average of S . Filled circle indicates the minimum value. 
 D 1 corresponds to the regression
without this bias

We conduct the following simulation. When the data f.xi ; yi /g (1 � i � n) is
given, the resultant regression coefficients given by the least squares method are
denoted by Oa0 and Oa1. The other realizations sampled from the population that gave
f.xi ; yi /g are represented as f.xi ; y�

i /g (1 � i � n). K sets of these realizations are
generated, and the following value is calculated.

S D 1

K � n

KX
kD1

nX
iD1

.y�
i � Oyi /

2; (3.103)

where the f Oyig are defined as

Oyi D Oa0 � Oa1xi : (3.104)

In Eq. (3.103), S is the prediction error obtained from the simple regression equation
given by the least squares method.

Next, an alternative regression equation given by f.xi ; yi /g is depicted as

y D 
 Oa1x C Oa0 C .1 � 
/
Pn

j D1 xj

n
Oa1; (3.105)

where 
 is a constant satisfying 0 � 
 � 1. This value is generally close to 1.
The regression equation represented by Eq. (3.105) is yielded by giving some bias
to the simple regression equation by the least squares method. This bias reduces
the absolute value of the slope. The value of S (Eq. (3.103)) is calculated using the
f Oyig obtained by substituting fxi g into Eq. (3.105). S is the prediction error of a
regression equation in which the slope is biased.

Then, simulation data are generated using the following equation.

yi D 2xi � 4 C 
i : (3.106)
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Here, f
ig (1 � i � 100) are realizations of N.0; 152/ (normal distribution; mean
of 0 and variance of 152) and the fxi g (1 � i � 100) are f0:1; 0:2; 0:3; : : : ; 10g.
The procedure of calculating S with K D 10 is carried out 500 times by altering
the initial value of the pseudo-random numbers. The relationship between 
 and
S is examined 5 times using one value from among f0:86; 0:88; : : : ; 1:14g for 
 in
Eq. (3.105). The result is shown in Fig. 3.16. The prediction error takes a smaller
value when 
 is smaller than 1. This instance shows that the regression coefficients
yielded by the least squares method are not considered to be optimal in terms of
prediction.

R Program [3 - 13]

On some occasions, the optimal coefficients of a simple regression in terms of
prediction are not obtained by the least squares method.
simp201e()

function()
{
# (1)

nd <- 100
sd1 <- 15
nk <- 10
nt <- 500
nl <- 5

# (2)
xxa <- seq(from = 0.1, to = 10, length = nd)
rho1t <- seq(from = 0.86, to = 1.14, by = 0.02)
rssam <- NULL

# (3)
for (ll in 1:nl){

rssa <- NULL
# (4)

for (ii in 1:length(rho1t)){
# (5)

rho1 <- rho1t[ii]
rss1 <- 0

# (6)
for (jj in 1:nt){

# (7)
set.seed(6964*ll + jj * 14)
yya <- xxa * 2 - 4 + rnorm(nd, mean = 0,
sd = sd1)

sxy <- sum((xxa - mean(xxa)) *
(yya - mean(yya)))

sxx <- sum((xxa - mean(xxa))ˆ2)
aa <- sxy/sxx
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bb <- mean(yya) - aa * mean(xxa)
bbd <- (1 - rho1) * sum(xxa) / nd
ey <- rho1 * aa * xxa + bb + bbd * aa

# (8)
for(kk in 1:nk){

set.seed(3201*ll + kk * 48 + jj * 13)
yyb <- xxa * 2 - 4 + rnorm(nd, mean = 0,
sd = sd1)
rss1 <- rss1 + sum((yyb - ey)ˆ2)/(nk * nd)

}
}

# (9)
rssa[ii] <- rss1/nt

}
rssam <- cbind(rssam, rssa)

}
# (10)

par(mfrow = c(1,1), mai = c(2, 1, 1.5, 0.1),
omi = c(0, 0, 0, 0))

yrange <- range(as.vector(rssam))
yrange1 <- min(pretty(yrange))
yrange2 <- max(pretty(yrange))
plot(rho1t, rssam[,1], pch = 1, type="n", xlab =
expression(rho), ylab = "Prediction error",
ylim = c(yrange1, yrange2))

for (ll in 1:nl){
lines(rho1t, rssam[,ll], lwd = 1)
points(rho1t, rssam[,ll])
wh2 <- which(rssam[,ll] == min(rssam[,ll]))
rh2 <- rho1t[wh2]
min2 <- rssam[wh2,ll]
points(rh2, min2, pch=16, cex=2)

}
}

(1) The number of data (nd), standard deviation of errors (sd1), value of K

in Eq. (3.103) (page 159) (nk), number of times the procedure is repeated
to calculate S (Eq. (3.103)) (nt), and the number of times the relationship
between 
 and S is examined (nl) are given.

(2) The values of the predictor variable (xxa) are given. The values used as 


(rho1t) are given. The matrix rssam for storing the results of the numerical
simulation is prepared.

(3) The numerical simulation is carried out nl times. The vector rssa for storing
the values of S corresponding to respective values of 
 is prepared.

(4) The value of S corresponding to each value of 
 is calculated.
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(5) The value of 
 is saved as rho1.
(6) The procedure of calculating S (Eq. (3.103) (page 159)) is carried outnt times.
(7) mean(yya) gives the average of yya. The estimates given by Eq. (3.105)

(page 159) are calculated. The result is saved as ey.
(8) The value of S is obtained using the nk sets of future data (f.xi ; y�

i /g). The
result is saved as rss1.

(9) The average of the nt values of rss1 is saved as rssa[ii]. The values of
rssa are organized in rssam.

(10) range(rssam) yields the minimum and maximum values of rssam. The
relationship between rho1t and rssam is illustrated in a graph.

R Program [3 - 13] End
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Chapter 4
Multiple Regression

4.1 Derivation of Regression Coefficients

When data f.xi1; xi2; : : : ; xiq; yi /g .1 � i � n/ are given, multiple regression
derives the values of faj g(1 � j � q) by minimizing

RSS D
nX

iD1

.yi � a0 �
qX

j D1

aj xij /2 D
nX

iD1

e2
i : (4.1)

Here ei D yi � a0 �Pq
j D1 aj xij are called residuals. The acronym RSS stands for

the residual sum of squares. Equation (4.1) yields the regression equation:

Oy D Oa0 C
qX

j D1

Oaj xj ; (4.2)

where f Oaj g are estimates of the regression coefficients, fxj g the predictor variables,
and Oy the estimates of target variables. Using Eq. (4.2), Eq. (4.1) is transformed into

RSS D
nX

iD1

.yi � Oa0 �
qX

j D1

Oaj xij /2: (4.3)

The procedures described above can be represented in a matrix form as follows.
First, the n sets of data are arrayed as matrices denoted by X and y,

X D

0
BBB@

1 x11 x12 : : : x1q

1 x21 x22 : : : x2q

:::
:::

:::
: : :

:::

1 xn1 xn2 : : : xnq

1
CCCA ; y D

0
BBBBB@

y1

y2

y3

:::

yn

1
CCCCCA

: (4.4)
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Here X is called the design matrix. Next, we set

y D Qy C �; (4.5)

where Qy and � are defined as

Qy D

0
BBBBBB@

a0 CPq
j D1 aj x1j

a0 CPq
j D1 aj x2j

a0 CPq
j D1 aj x3j

:::

a0 CPq
j D1 aj xnj ;

1
CCCCCCA

; � D

0
BBBBB@


1


2


3

:::


n

1
CCCCCA

: (4.6)

These faj g .0 � j � q/ are values which represent a population (a.k.a. parameters
or true values).

Then, a and Oa are defined as

a D

0
BBB@

a0

a1

:::

aq

1
CCCA ; Oa D

0
BBB@

Oa0

Oa1

:::

Oaq

1
CCCA : (4.7)

Regression coefficients are derived by minimizing the RSS (Eq. (4.1)) in a manner
similar to that for simple regression. Thus, we have

Xt Xa D Xt y; (4.8)

Oa D .Xt X/�1Xty; (4.9)

Oy D XOa D X.Xt X/�1Xt y; (4.10)

where Oy is defined as

Oy D

0
BBBBB@

Oy1

Oy2

Oy3

:::

Oyn

1
CCCCCA

D

0
BBBBBB@

Oa0 CPq
j D1 Oaj x1j

Oa0 CPq
j D1 Oaj x2j

Oa0 CPq
j D1 Oaj x3j

:::

Oa0 CPq
j D1 Oaj xqj

1
CCCCCCA

: (4.11)

Equation (4.10) is rewritten as

Oy D Hy; (4.12)

with H, called a hat matrix, which is defined as

H D X.Xt X/�1Xt : (4.13)
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H is a symmetric matrix for the same reason leading to Eq. (3.15) (page 111).
Furthermore, following a similar discussion to that of simple regression

(Eq. (3.26) (page 113)), we have

nX
iD1

ei D 0: (4.14)

That is, the sum of the residuals (feig .1 � i � n/) is 0.
Using Eq. (4.14), the equation equivalent to Eq. (4.9) can be derived: For

simplicity let q D 2 here. First, fx0
i1g, fx0

i2g, and fy0
i g are defined as

x0
i1 D xi1 � Nx1; x0

i2 D xi2 � Nx2; y0
i D yi � Ny; (4.15)

where Nx1, Nx2, and Ny are

Nx1 D
Pn

iD1 xi1

n
; Nx2 D

Pn
iD1 xi2

n
; Ny D

Pn
iD1 yi

n
: (4.16)

The transformation of fx1i g into fx0
1i g and that of fx2i g into fx0

2i g using Eq. (4.15)
are called centering. Using Eq. (4.15), Eq. (4.1) (page 163) becomes

RSS D
nX

iD1

�
y0

i C
Pn

iD1 yi

n
� a0 � a1

�
x0

i1 C
Pn

iD1 xi1

n

�
� a2

�
x0

i2 C
Pn

iD1 xi2

n

��2

D
nX

iD1

�
y0

i � a0 � a1x0
i1 � a1x0

i2 C
Pn

iD1 yi

n
� a1

Pn
iD1 xi1

n
� a2

Pn
iD1 xi2

n

�2

D
nX

iD1

�
y0

i � a0 � a1x0
i1 � a2x0

i2C
Pn

iD1.yi � a1xi1/

n
C
Pn

iD1.yi � a1xi2/

n

�2

D
nX

iD1

�
y0

i � a0 � a1x0
i1 � a2x0

i2 C
Pn

iD1.a0 C ei /

n

�2

D
nX

iD1

�
y0

i � a0 � a1x0
i1 � a1x0

i2 C
Pn

iD1 a0

n

�2

D
nX

iD1

�
y0

i � a0 � a1x0
i1 � a2x0

i2 C na0

n

�2

D
nX

iD1

.y0
i � a1x0

i1 � a2x0
i2/

2: (4.17)
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Differentiation of this RSS with respect to a1 results in

nX
iD1

x0
i1.y0

i � a1x
0
i1 � a2x0

i2/ D 0: (4.18)

Conversely, differentiation with respect to a2 yields

nX
iD1

x0
i2.y

0
i � a1x

0
i1 � a2x0

i2/ D 0: (4.19)

That is, we have

S1y � a1S11 � a2S12 D 0; S2y � a1S21 � a2S22 D 0; (4.20)

where S11, S12, S22, S1y , and S2y are defined as

S11 D
nX

iD1

.xi1 � Nx1/2; S12 D S21 D
nX

iD1

.xi1 � Nx1/.xi2 � Nx2/;

S22 D
nX

iD1

.xi2 � Nx2/
2; S1y D

nX
iD1

.xi1 � Nx1/.yi � Ny/;

S2y D
nX

iD1

.xi2 � Nx2/.yi � Ny/: (4.21)

Equation (4.20) is represented in a matrix form as

�
S11 S12

S21 S22

��
a1

a2

�
D
�

S1y

S2y

�
: (4.22)

If

�
S11 S12

S21 S22

�
has an inverse matrix; that is, it is a regular matrix, we obtain

�
a1

a2

�
D
�

S11 S12

S21 S22

��1 �
S1y

S2y

�
: (4.23)

Using Eq. (1.30) (page 28), we have

�
a1

a2

�
D 1

S11S22 � S12S21

�
S22 �S12

�S21 S11

��
S1y

S2y

�
: (4.24)

Extraction of the a1 component of the above equation gives

Oa1 D S22S1y � S12S2y

S11S22 � S12S21

; (4.25)
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where a1 becomes Oa1 because a1 is estimated. When S12 D S21 D 0 is satisfied, we
obtain

Oa1 D S1y

S11

: (4.26)

This equation is the same as Eq. (3.31) (page 114), and shows that when there is
no correlation between fx1i g .1 � i � n/ and fx2i g .1 � i � n/, a regression
coefficient for each predictor of a multiple regression equation is identical to that of
simple regression. The same argument holds when q is larger than 2.

Moreover, the following relationship is obtained using the properties of the hat
matrix (page 40 in [4]).

Oyt .y � Oy/ D .Hy/t .y � Hy/

D yt Ht .y � Hy/

D yt .Hy � HHy/

D yt .Hy � Hy/

D 0; (4.27)

where the following equation is used to proceed between the third identity to the
fourth.

HHy D Hy: (4.28)

The left-hand side of this equation is HOy. Hence, the elements of this vector are
estimates of a regression equation which is obtained when estimates by the original
regression equation are employed as data. Because the estimates (HOy) are intuitively
identical to Oy (i.e., Hy), Eq. (4.28) holds. However, Eq. (4.28) can be derived from
Eq. (4.10) (page 164).

Using Eqs. (4.14) (page 165) and (4.27), we have

nX
iD1

. Oyi � Ny/2 C
nX

iD1

.yi � Oyi /
2

D
nX

iD1

. Oy2
i � 2 Oyi Ny C Ny2 C y2

i � 2yi Oyi C Oy2
i /

D
nX

iD1

.y2
i � 2 Oyi Ny C Ny2 C 2 Oy2

i � 2yi Oyi /

D
nX

iD1

.y2
i � 2yi Ny C Ny2/
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D
nX

iD1

.yi � Ny/2; (4.29)

where the relationship �2 NyPn
iD1 Oyi D �2 NyPn

iD1 yi , which is used to derive the
fourth line from the third line, follows from Eq. (4.14) (page 165). The equation
2
Pn

iD1 Oy2
i � 2

Pn
iD1 yi Oyi D 0 is obtained from Eq. (4.27). On the one hand,Pn

iD1.yi � Ny/2 in Eq. (4.29) denotes the total variability in target variable. On
the other hand,

Pn
iD1. Oyi � Ny/2 represents the variability explained by regression

equation. Thus,
Pn

iD1.yi � Oyi /
2 is interpreted as the variability not explained by

the regression equation; that is, it is the residual sum of squares. Equation (4.29)
holds between these three values. It should be noted, however, that this relationship
does not always hold for all regressions; it may not hold even for regressions using
least squares. Even if the regression equation is obtained by least squares, the sum
of residuals can be nonzero. That is, Eq. (4.14) might not be satisfied. If it does,
Eq. (4.29) usually does not hold.

When both sides of Eq. (4.29) are divided by
Pn

iD1.yi � Ny/2, we obtain

Pn
iD1. Oyi � Ny/2

Pn
iD1.yi � Ny/2

C
Pn

iD1.yi � Oyi /
2

Pn
iD1.yi � Ny/2

D 1: (4.30)

Pn
iD1. Oyi � Ny/2

Pn
iD1.yi � Ny/2

is represented as R2. The following equation is then obtained;

R2 D
Pn

iD1. Oyi � Ny/2

Pn
iD1.yi � Ny/2

D 1 �
Pn

iD1.yi � Oy/2

Pn
iD1.yi � Ny/2

: (4.31)

This R2 is called the coefficient of determination. The right-hand side of the first
line of Eq. (4.31) signifies the proportion of variability explained by the regression
equation. As both denominator and numerator in this fraction are positive, we have
0 � R2. Furthermore, as both denominator and numerator of the second term on
the right-hand side of the second line of Eq. (4.31) are also positive, R2 � 1 holds.
Hence, we obtain the inequality 0 � R2 � 1. The coefficient of determination in
multiple regression can be geometrically interpreted (page 41 in [4]), which makes
this concept clearer. Even if Eqs. (4.14) and (4.27) do not hold, the values using the
definitions of the first line and that of the second line can be calculated. The two
values are, however, not necessarily identical.

R Program [4 - 1]

The regression coefficients of multiple regression are calculated.
mul1e()
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function ()
{
# (1)

set.seed(813)
nd <- 5
xx1 <- runif(n = nd, min = 0, max = 10)
xx2 <- runif(n = nd, min = -5, max = 5)
yy <- xx1 * 2.5 - xx2 * 4 + 7.7 + rnorm(nd,
mean = 0, sd = 3)

# (2)
xxm <- matrix( c(rep(1, length=nd), xx1, xx2),
ncol = 3)

print("---------- (2) ----------")
print("xxm(design matrix)")
print(xxm)
yym <- matrix(yy, ncol = 1)
print("yym")
print(yym)

# (3)
print("---------- (3) ----------")
print("Regression coefficient given by Eq.(4.9)")
aa <- solve(t(xxm) %*% xxm) %*% t(xxm) %*% yym
print("aa")
print(aa)
hat1 <- xxm %*% solve(t(xxm) %*% xxm) %*% t(xxm)
print("hat1(hat matrix)")
print(hat1)

# (4)
print("---------- (4) ----------")
print("Regression coefficient given by Eq.(4.24)")
s11 <- sum((xx1 - mean(xx1))ˆ2)
s12 <- sum((xx1 - mean(xx1)) * (xx2 - mean(xx2)))
s21 <- s12
s22 <- sum((xx2 - mean(xx2))ˆ2)
smat <- matrix(c(s11, s12, s21,s22), ncol = 2)
s1y <- sum((xx1 - mean(xx1)) * (yy - mean(yy)))
s2y <- sum((xx2 - mean(xx2)) * (yy - mean(yy)))
svec <- c(s1y, s2y)
aas <- solve(smat, svec)
print(aas)

# (5)
print("---------- (5) ----------")
data1 <- data.frame(x1 = xx1, x2 = xx2, y = yy)
lm1 <- lm(y˜x1 + x2, data = data1)
print("Regression coefficient given by lm()")
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print(lm1)
hat1 <- influence(lm1)$hat
print("leverages(the on-diagonal element")
print("(diagonal element) of the hat matrix given")
print("by lm() and influence()")
print(hat1)

# (6)
print("---------- (6) ----------")
xxm2 <- matrix(c(xx1, xx2), ncol = 2)
print("xxm2")
print(xxm2)
ls1 <- lsfit(xxm2, yy)
print("Regression coefficient given by lsfit()")
print(ls1$coef)

}

(1) The number of data (nd) is given. Data of the predictors (xx1, xx2) and that
of the target variable (yy) are generated.

(2) The design matrix (Eq. (4.4) (page 163)) is produced as xxm; it is output. yy is
transformed into a matrix form and is denoted by yym; it is output.

(3) The regression coefficients are obtained using Eq. (4.9) (page 164) and are
output. solve() calculates the inverse matrix. The hat matrix is derived using
Eq. (4.13) (page 164) and is output.

(4) The regression coefficients (except a0) are derived using Eq. (4.24) (page 166).
The result is output.

(5) lm() constructs a multiple regression equation. The regression coefficients and
the leverages (the on-diagonal element (diagonal element) of the hat matrix) are
calculated and output.

(6) The design matrix to be used in lsfit(), in which the column corresponding
to the constant term is deleted, is constructed; it is named xxm2. lsfit()
pruduces a multiple regression equation. The resultant regression coefficients
are output.

mul1e() outputs:
"---------- (2) ----------"
"xxm(design matrix)"

[,1] [,2] [,3]
[1,] 1 6.140967 2.1283981
[2,] 1 2.102733 0.9101128
[3,] 1 1.377456 0.1709478
[4,] 1 5.444335 2.9343503
[5,] 1 2.389563 -1.1456652
"yym"

[,1]
[1,] 18.839410
[2,] 7.682364
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[3,] 9.547659
[4,] 11.680424
[5,] 18.811897
"---------- (3) ----------"
"Regression coefficient given by Eq.(4.9)"
"aa"

[,1]
[1,] 4.171011
[2,] 3.974723
[3,] -4.736220
"hat1(hat matrix)"

[,1] [,2] [,3] [,4]
[,5]

[1,] 0.63548334 -0.08884695 -0.15599454 0.38761732
0.2217408

[2,] -0.08884695 0.45039481 0.44451482 0.20477932
-0.0108420
[3,] -0.15599454 0.44451482 0.49221212 0.06506651
0.1542011

[4,] 0.38761732 0.20477932 0.06506651 0.56477325
-0.2222364
[5,] 0.22174083 -0.01084200 0.15420109 -0.22223640
0.8571365

"---------- (4) ----------"
"Regression coefficient given by Eq.(4.24)"
3.974723 -4.736220

"---------- (5) ----------"
"Regression coefficient given by lm()"
Call:
lm(formula = y ˜ x1 + x2, data = data1)
Coefficients:
(Intercept) x1 x2

4.171 3.975 -4.736
"leverages(the on-diagonal element"
"(diagonal element) of the hat matrix given"
"by lm() and influence()"

1 2 3 4 5
0.6354833 0.4503948 0.4922121 0.5647732 0.8571365
"---------- (6) ----------"
"xxm2"

[,1] [,2]
[1,] 6.140967 2.1283981
[2,] 2.102733 0.9101128
[3,] 1.377456 0.1709478
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[4,] 5.444335 2.9343503
[5,] 2.389563 -1.1456652
"Regression coefficient given by lsfit()"
Intercept X1 X2
4.171011 3.974723 -4.736220

R Program [4 - 1] End

R Program [4 - 2]

When Eq. (4.14) (page 165) does not hold, Eq. (4.29) (page 167) does not hold,
either. The following R program exemplifies this point.
mul3()

function ()
{
# (1)

set.seed(3967)
nd <- 10
xx1 <- runif(n = nd, min = 0, max = 10)
xx2 <- runif(n = nd, min = -5, max = 5)
yy <- -xx1 *5 + xx2*4 + 9.4 + rnorm(nd,
mean = 0, sd = 2)

# (2)
data1 <- data.frame(x1 = xx1, x2 = xx2, y = yy)
lm1 <- lm(y˜x1 + x2, data = data1)
print("lm1$coef")
print(lm1$coef)
print("sum(lm1$residuals)")
print(sum(lm1$residuals))

# (3)
sa1 <- sum((yy - mean(yy))ˆ2)
sb1 <- sum((lm1$fitted - mean(yy))ˆ2)
sc1 <- sum(lm1$residualsˆ2)
print("sa1")
print(sa1)
print("sb1 + sc1")
print(sb1 + sc1)

# (4)
lm2 <- lm(y˜x1 + x2 - 1, data = data1)
print("lm2$coef")
print(lm2$coef)
print("sum(lm2$residuals)")
print(sum(lm2$residuals))

# (5)
sa2 <- sum((yy - mean(yy))ˆ2)
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sb2 <- sum((lm2$fitted - mean(yy))ˆ2)
sc2 <- sum(lm2$residualsˆ2)
print("sa2")
print(sa2)
print("sb2 + sc2")
print(sb2 + sc2)

}

(1) The number of data (nd) is given. The simulation data (values of the predictors
are saved as xx1 and xx2, values of the target variable are as yy) are generated.

(2) lm() conducts multiple regression. The result is stored in lm1. The
regression equation is described as .a0 C a1x1 C a2x2/. The resultant
regression coefficients (lm1$coef) are displayed. The sum of the residuals
(sum(lm1$residuals)) is displayed.

(3) The value of the right-hand side of Eq. (4.29) (page 167) (the total variability
in target variable) is calculated, here denoted by sa1. The first term of the
left-hand side of Eq. (4.29) (the variability explained by regression equation)
is calculated, here denoted by sb1. The second term of the left-hand side of
Eq. (4.29) (the variability not explained by regression equation; i.e., the residual
sum of squares) is calculated, here denoted by sc1. sa1 is displayed as well
as sb1+sc1.

(4) lm() carries out the multiple regression with the result saved in lm2. The
regression equation is .a1x1Ca2x2/ (a constant term is excluded). The resulting
regression coefficients (lm2$coef) are displayed. The sum of residuals
(sum(lm2$ residuals)) is displayed.

(5) The total variability in target variable is calculated and saved as sa2. The
variability explained by regression equation is calculated and saved as sb2. The
variability not explained by regression equation (i.e., residual sum of squares)
is calculated and saved as sc2. sa2 is displayed along with sb2+sc2.

mul3() outputs:
"lm1$coef"
(Intercept) x1 x2

8.100117 -4.785944 4.001354
"sum(lm1$residuals)"
-5.551115e-17
"sa1"
4242.92
"sb1 + sc1"
4242.92

"lm2$coef"
x1 x2

-3.663849 4.519819
"sum(lm2$residuals)"
16.36483
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"sa2"
4242.92
"sb2 + sc2"
3655.579

When the regression equation .a0 C a1x1 C a2x2/ is employed, Eqs. (4.14) (page
165) and (4.29) (page 167) hold. However, if the regression equation .a1x1 C a2x2/

is adopted, neither of the two equations hold.

R Program [4 - 2] End

4.2 Test on Multiple Regression

Using Eqs. (4.3) and (4.13), the expectation of Eq. (4.3) is represented as

EŒRSS� D EŒ.y � Oy/t .y � Oy/�

D EŒyt .I � H/t .I � H/y�

D EŒyt .I � H/y�

D EŒ.Qyt C �t /.I � H/.Qy C �/�

D EŒ�t � � �t H��; (4.32)

where I is an identity matrix (the size is n � n). This equation is obtained using the
properties: H is a symmetric matrix (Ht D H), and if the values of the target variable
are true values (Qy), the estimates are also true values (HQy D Qy). Equation (3.38)
(page 115) yields

EŒ�t �� D E

� nX
iD1


i 
i

	
D n�2: (4.33)

The equation below is obtained in a way analogous to Eq. (3.40) (page 115).

EŒ�t H�� D E

� nX
iD1

nX
j D1


i ŒH�ij 
j

	
D trace.H/�2 D .q C 1/�2; (4.34)

where trace.H/ stands for the trace (sum of the diagonal elements of a matrix) of H.
Equations (4.32)–(4.34) yield

EŒRSS� D .n � q � 1/�2: (4.35)
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Lying behind this equation is the following probability density function which
RSS=�2 obeys.

RSS=�2 � �2
n�q�1: (4.36)

This equation indicates that RSS=�2 obeys the �2-distribution with .n � q � 1/

degrees of freedom. However, Eqs. (4.35) and (4.36) can be used when Eq. (4.6)
(page 164) holds. When the data do not even approximately satisfy the condition
that the data are the sum of the value given by Eq. (4.6) and the equal variance error,
Eqs. (4.35) and (4.36) cannot be used. On the other hand, if one or more elements
of faj g .1 � j � q/ are 0, Eqs. (4.35) and (4.36) can be used. That is, if the form
of the equation which generated the data is as in Eq. (4.6) or contains Eq. (4.6) as a
special case, Eqs. (4.35) and (4.36) are valid.

Equation (4.3) (page 163) defines the residual sum of squares given by estimates
of the target variable calculated by a regression equation and values of the target
variable of the data used for constructing the regression equation. We also need
another residual sum of squares given by estimates of the target variable calculated
by a regression equation and values of the target variable of the new data which was
not used for constructing the regression equation. The values of the target variable
of the new data are denoted by y� and are defined as

y� D Qy C ��; (4.37)

where �� is given as

�� D

0
BBBBB@


�
1


�
2


�
3
:::


�
n

1
CCCCCA

: (4.38)

f
�
i g .1 � i � n/ are errors which are generated by the same probability density

function as that of f
i g .1 � i � n/.
The residual sum of squares for this occasion is denoted by RSS�. RSS� is written

as

EŒRSS�� D EŒ.y� � Oy/t .y� � Oy/�

D EŒ.Qy C �� � H.Qy C �//t .Qy C �� � H.Qy C �//�

D EŒ.Qy.I � H/ C �� � H�/t .Qy.I � H/ C �� � H�/�

D EŒ��t �� C �H��

D n�2 C trace.H/�2

D .n C q C 1/�2: (4.39)
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The background of this equation is that the probability density function which
RSS�=�2 obeys is represented as

RSS�=�2 � �2
nCqC1: (4.40)

This equation indicates that RSS�=�2 obeys the �2-distribution with .n C q C 1/

degrees of freedom.
As for simple regression (Eq. (3.58) (page 128)), the variance-covariance matrix

of Oa (the elements of Oa are regarded as random variables) is called C. Then, C is
written as

C D

0
BBBBBBB@

E

��
Oa0 � EŒ Oa0�

��
Oa0 � EŒ Oa0�

i	
: : : E

��
Oa0 � EŒ Oa0�

i�
Oaq � EŒ Oaq�

�	

:::
: : :

:::

E

��
Oaq � EŒ Oaq�

��
Oa0 � EŒ Oa0�

�	
: : : E

��
Oaq � EŒ Oaq�

��
Oaq � EŒ Oaq�

�	

1
CCCCCCCA

:

(4.41)

In a manner analogous to that of simple regression, C is estimated using the
following:

C D .Xt X/�1 O�2

D .Xt X/�1
Pn

iD1.yi � a0 �Pq
j D1 aj xij /2

n � q � 1
: (4.42)

One of the properties of the variance-covariance matrix is that the variance-
covariance matrix is a symmetric matrix, and all of the eigenvalues (characteristic
values) are positive or 0. This property of the variance-covariance matrix is called
positive semidefiniteness; refer to the description associated with Eq. (1.77) (page
43). The proof is as follows.

C is written as

C D E

"0
B@

Oa0 � EŒ Oa0�
:::

Oaq � EŒ Oaq�

1
CA� � Oa0 � EŒ Oa0�

�
: : :

� Oaq � EŒ Oaq�
� �
#

: (4.43)

An arbitrary vector v is defined as

v D

0
BBB@

v0

v1

:::

vq

1
CCCA : (4.44)
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Then, vtCv becomes

vtCv D

�
v0 : : : vq

�
E

"0
B@

Oa0 � EŒ Oa0�
:::

Oaq � EŒ Oaq�

1
CA
� � Oa0 � EŒ Oa0�

�
: : :

� Oaq � EŒ Oaq�
� �
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:::

vq

1
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"
�
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0
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Oaq � EŒ Oaq�

1
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� � Oa0 � EŒ Oa0�

�
: : :

� Oaq � EŒ Oaq�
� �
0
B@
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:::

vq

1
CA
#

D E
h qX

j D0

v2
j . Oaj � EŒ Oaj �/2

i
: (4.45)

As the content of EŒ�� is positive or 0, vtCv is positive or 0, indicating that when
vtCv is transformed into diagonal form as in Eq. (1.76) (page 41), all of eigenvalues
are positive or 0. Then, C is positive semidefinite (Q.E.D).

When we choose which regression equation we should use: y D a0Ca1x1Ca2x2

or y D a0 C a1x1, the t-test is applicable. That is, the null hypothesis is set as

H0 W a2 D 0; (4.46)

with the alternative hypothesis set as

H1 W a2 ¤ 0: (4.47)

If the null hypothesis is rejected and the alternative hypothesis is adopted, the null
hypothesis that a2 D 0 holds in the population is then denied. That is, y D a0 C
a1x1 C a2x2 is used as a regression equation. To carry out this test of hypothesis,
the t-value is defined in a manner analogous to Eq. (3.79) (page 132), that is to say,

t D Oa2p
ŒC�33

: (4.48)

If the null hypothesis (Eq. (4.46)) is satisfied, the t-value obeys the t-distribution
with � degrees of freedom in a fashion similar to Eq. (3.80) (page 132). This is
described as

t � t.�/: (4.49)

� (degrees of freedom) in this equation is .n � 3/ because this regression equation
uses three regression coefficients: a0, a1, and a2.
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The F -test is carried out in a way similar to that for simple regression. The
multiple regression equation which we assume is set as

y D a0 C
rX

j D1

aj xj C
qX

j DrC1

aj xj

D a0 C a1
t � x1 C a2

t � x2; (4.50)

where r < q. a1, x1, a2, and x2 are defined as follows.

a1 D

0
BBB@

a1

a2

:::

ar

1
CCCA ; a2 D

0
BBB@

arC1

arC2

:::

aq

1
CCCA ; x1 D

0
BBB@

x1

x2

:::

xr

1
CCCA ; x2 D

0
BBB@

xrC1

xrC2

:::

xq

1
CCCA : (4.51)

The null hypothesis (H0) and the alternative hypothesis (H1) are set as below.

H0 W a1 D 0; (4.52)

H1 W a1 ¤ 0; (4.53)

where 0 is a r-length column vector in which all elements are 0. As seen above,
if F -test is used for multiple regression, the null hypothesis and the alternative
hypothesis can be set up as plural predictors. This is different from the t-test for
multiple regression. F -value for this setting is obtained as

F.H0; H1/ D
RSS.a2/ � RSS.a1; a2/

r
RSS.a1; a2/

n � q � 1

; (4.54)

where RSS.a1; a2/ is the residual sum of squares when y D a0 C a1
t x1 C a2

t x2 is
employed. RSS.a2/ is the residual sum of squares when y D a0 C a2

tx2 is used.
When the null hypothesis (Eq. (4.52)) holds, we have

F.H0; H1/ � Fr;n�q�1; (4.55)

which is an F -distribution with the first degree of freedom (r) and the second degree
of freedom .n � q � 1/. Next, we calculate

p D
Z 1

F.H0;H1/

den.x; r; n � q � 1/dx; (4.56)

where den.x; r; n � q � 1/ is the probability density function Fr;n�q�1. If the p-
value is less than 0:05, the null hypothesis is rejected and the alternative hypothesis
is adopted.
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However, problems can arise if the t-test or F -test is carried out to produce a
multiple regression equation. This is easily demonstrated when the degrees of the
polynomial equation is selected as we will discuss later.

R Program [4 - 3]

One predictor of a multiple regression is tested using the t-test.
mul6()

function ()
{
# (1)

set.seed(813)
nd <- 100
xx1 <- runif(nd, min = -2, max = 3)
xx2 <- runif(nd, min = -1, max = 5)
yy <- xx1*0.4 - xx2*0.07 -8 + rnorm(nd, mean = 0,
sd = 1)

# (2)
xxm <- matrix(c(rep(1, length = nd), xx1, xx2),
ncol = 3)

yym <- matrix(yy, ncol = 1)
# (3)

aa <- solve(t(xxm) %*% xxm) %*% t(xxm) %*% yym
ey <- aa[1] + aa[2]*xx1 + aa[3]*xx2

# (4)
data1 <- data.frame(x1 = xx1, x2 = xx2, y = yy)
lm2 <- lm(y˜., data = data1)
sum2 <- summary(lm2)
print(sum2)
ey <- lm2$fitted

# (5)
sig2 <- sum((yy - ey)ˆ2)/(nd-3)
cc <- sig2 * solve(t(xxm) %*% xxm)

# (6)
tt2 <- aa[3]/sqrt(cc[3,3])
print("tt2")
print(tt2)

# (7)
pval2 <- (1- pt(abs(tt2), df = nd-3))*2
print("pval2")
print(pval2)

}
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(1) The number of data (nd) is given. The simulation data for the first predictor are
stored in xx1. Those for the second predictor are stored in xx2. The data for
the target variable are stored in yy.

(2) The data are transformed into matrix form as in Eq. (4.4) (page 163). The design
matrix is denoted by xxm. The matrix of the target variable is denoted by yym.

(3) The regression coefficients (Oa) are calculated using Eq. (4.9) (page 164). The
result is denoted by aa. Estimates corresponding to respective elements of yy
are derived using aa. The estimates are named ey.

(4) xx1, xx2, and yy are organized in the data frame of data1. In the data frame,
xx1 is called x1, xx2 is called x2, and yy is called y. Then, lm() conducts
a multiple regression. The result is saved in lm2. summary() extracts the
outline of lm2. The summary is called suma2 which is then displayed.

(5) C (Eq. (4.42) (page 176)) is obtained and denoted by cc.
(6) The t-value is calculated using Eq. (4.48) (page 177). The result is stored in

tt2.
(7) pt() yields the p-value corresponding to tt2, and the result is then saved as

pval2 and displayed.

mul6() outputs:

Call:
lm(formula = y ˜ ., data = data1)

Residuals:
Min 1Q Median 3Q Max
-1.72155 -0.69734 -0.07087 0.76642 2.06612

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -8.04273 0.14459 -55.623 < 2e-16 ***
x1 0.46549 0.06000 7.759 8.7e-12 ***
x2 -0.09178 0.05311 -1.728 0.0872 .
---
Signif. codes:0 ’***’0.001’**’0.01’*’0.05’.’0.1’ ’1

Residual standard error: 0.8875 on 97 degrees
of freedom

Multiple R-squared:0.3895, Adjusted R-squared:0.3769
F-statistic:30.94 on 2 and 97 DF, p-value:4.045e-11

"tt2"
-1.728031
"pval2"
0.08716502
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The value (-1.251) on the row of x2 and the column of t value is identical to
tt2. The value (0.872) on the row of x2 and the column of Pr(>|t|) is the
same as pval2.

R Program [4 - 3] End

R Program [4 - 4]

The one predictor of a multiple regression equation is tested by the F -test.
mul11()

function ()
{
# (1)

set.seed(813)
nd <- 100
xx1 <- runif(nd, min = -2, max = 3)
xx2 <- runif(nd, min = -1, max = 5)
yy <- xx1*0.4 - xx2*0.07 -8 + rnorm(nd, mean = 0,
sd = 1)

# (2)
data1 <- data.frame(x1=xx1, x2=xx2, y=yy)
lm2 <- lm(y˜., data=data1)
lm1 <- lm(y˜x1, data=data1)

# (3)
anova1 <- anova(lm1, lm2)
print("anova1")
print(anova1)

# (4)
ff3 <- (sum(lm1$residualsˆ2) - sum(lm2$residualsˆ2
))/1/((sum(lm2$residualsˆ2))/(nd-3))

print("ff3")
print(ff3)

# (5)
pval3 <- 1- pf(ff3, df1=1, df=nd-3)
print("pval3")
print(pval3)

}

(1) Simulation data are generated. The simulation data for the first predictor are
denoted by xx1, those for the second are denoted by xx2, and those for the
target variable are denoted by yy.

(2) xx1, xx2, and yy are organized in the data frame of data1. lm() carries out
the regression to obtain regression equation y D a0 Ca1x1 Ca2x2. The result is
stored in lm2. Then, lm() conducts a regression to obtain regression equation
y D a0 C a1x1. The result is saved as lm1.
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(3) anova() carries out the F -test (another saying is analysis of variance) for
comparing lm1 and lm2.

(4) The F -value (Eq. (4.54) (page 178)) is calculated. The result is saved as ff3.
(5) The p-value corresponding to ff3 is derived using Eq. (4.56) (page 178).

mul11() outputs:

"anova1"
Analysis of Variance Table
Model 1: y ˜ x1
Model 2: y ˜ x1 + x2

Res.Df \mathit{RSS} Df Sum of Sq F Pr(>F)
1 98 78.748
2 97 76.396 1 2.3518 2.9861 0.08717.
---
Signif. codes: 0’***’0.001’**’0.01’*’0.05’.’0.1’ ’1
"ff3"
2.986089
"pval3"
0.08716502

The value (2.9861) on the row of 2 and the column of F in anova1 is the same as
ff3. The value (0.08717) on the row of 2 and the column of Pr(>F) in anova1
is the same as pval3. pval3 is identical to pval2 resulted from mul6().

R Program [4 - 4] End

R Program [4 - 5]

Two predictors of the multiple regression equation are tested using F -test.
mul12()

function ()
{
# (1)

set.seed(813)
nd <- 100
xx1 <- runif(nd, min = -2, max = 3)
xx2 <- runif(nd, min = -1, max = 5)
yy <- xx1*0.4 - xx2*0.07 -8 + rnorm(nd, mean = 0,
sd = 1)

# (2)
data1 <- data.frame(x1=xx1, x2=xx2, y=yy)
lm2 <- lm(y˜., data=data1)
lm0 <- lm(y˜1, data=data1)

# (3)
anova1 <- anova(lm0, lm2)
print("anova1")
print(anova1)
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# (4)
ff4 <- (sum(lm0$residualsˆ2) - sum(lm2$residualsˆ2))/
2/((sum(lm2$residualsˆ2))/(nd-3))
print("ff4")
print(ff4)

# (5)
pval4 <- 1- pf(ff4, df1=2, df=nd-3)
print("pval4")
print(pval4)

}

(1) Simulation data are generated. The simulation data of the first predictor are
given as xx1, those of the second predictor as xx2, and those of the target
variable as yy.

(2) xx1, xx2, and yy are organized in the data frame of data1. Then, lm()
carries out the regression to obtain regression equation y D a0 C a1x1 C a2x2.
The result is stored as lm2. Next, lm() carries out regression to obtain
regression equation of y D a0. The result is stored in lm0.

(3) anova() conducts an F -test (that is to say, a variance analysis ) for comparing
lm0 and lm2.

(4) F -value (Eq. (4.54) (page 178)) is calculated; the result is denoted by ff4.
(5) p-value corresponding to ff4 is obtained using Eq. (4.56) (page 178).

mul12() outputs:

"anova1"
Analysis of Variance Table
Model 1: y ˜ 1
Model 2: y ˜ x1 + x2

Res.Df \mathit{RSS} Df Sum of Sq F Pr(>F)
1 99 125.130
2 97 76.396 2 48.734 30.939 4.045e-11 ***
---
Signif. codes: 0’***’0.001’**’0.01’*’0.05’.’0.1’ ’1
"ff4"
30.93876
"pval4"
4.044831e-11

The value (30.939) on the row of 2 and the column of F in anova1 is identical
to ff4. The value (4.045e-11) on the row of 2 and the column of Pr(>F) in
anova1 is identical to pval4. ff4 and pval4 coincides with the content below
yielded by mul6().

F-statistic: 30.94 on 2 and 97 DF, p-value: 4.045e-11

R Program [4 - 5] End
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4.3 Prediction Error on Multiple Regression

Predictors in statistics are chosen on the ground of prediction error in multiple
regression in a manner similar to that of simple regression. One such predictor for
giving prediction error is GC V (Generalized Cross-Validation). GC V is defined in
a way similar to that for simple regression:

GC V D
Pn

iD1.yi � Om.xi1; xi2; : : : ; xiq//2

n �
�
1 �

Pn
iD1ŒH�i i

n

�2
; (4.57)

where Om.xi1; xi2; : : : ; xiq/ is the estimate corresponding to yi (the result of the
multiple regression equations). H is the hat matrix (Eq. (4.13) (page 164)). The value
of
Pn

iD1ŒH�i i in multiple regression is obtained from Eq. (3.99) (page 151). The
all-possible-regression procedure (all-possible-subsets-regression procedure) calcu-
lates statistics such as the GC V for all combinations of predictors and compares
the resultant statistical values in selecting the best combination of predictors.

Two methods are available for choosing predictors of a regression equation
such as a multiple regression equation: one is the method using a statistical test
such as the F -test; the other is the method using statistics like GC V . Because
methods using statistical tests do not check out all combinations of predictors,
we have no certainty that the resultant regression equation is actually optimal
despite the computational cost being relatively small. Furthermore, the procedure
for proceeding with a selection of predictors varies with methodology such as
the forward selection method, the backward selection method, and the forward
and backward selection method. It can lead to differences in results. Conversely,
the method to select a regression equation by minimizing statistics such as GC V

assures the optimality of the chosen regression equation with respect to the standard
of the criterion if the values of statistics, such as GC V , are calculated for all
combinations of the predictors. Indeed, this method chooses the optimal regression
equation in terms of a specific statistics by covering every conceivable regression
equations. Although there are diverse statistics available for this purpose, selection
of the statistics usually does not affect the result substantially. Therefore, if the
computational capability permits, the all-possible-regression procedure is usually
a preferable option; it calculates the values of statistics such as GC V for all
(.2q � 1/) combinations of predictors. If this method is not practical because
of heavy computational load, one idea is that predictors which are most likely
needed are always selected. Alternatively, when correlation between two predictors
is high, the number of applicant predictors is reduced by adopting one of these two
predictors. It should be noted, however, that the regression equation given by the
all-possible-regression procedure using statistics such as GC V may contain non-
essential predictors; this possibility should not be neglected in some cases. This
point is covered in the next section.
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R Program [4 - 6]

The R program below constructs multiple regression equations for all combina-
tions of predictors and chooses the optimal combination of predictors by GC V .
mul31()
function ()
{
# (1)

set.seed(45)
np <- 4
nd <- 50
xxa <- runif(nd, min = -3, max = 4)
xxb <- runif(nd, min = -2, max = 1)
xxc <- runif(nd, min = 0, max = 4)
xxd <- runif(nd, min = -4, max = -1)
xxm <- cbind(xxa, xxb, xxc, xxd)
yy <- -xxa *0.001 + xxb*2.1 -xxc *0.03 +
xxd *3.3 + 4 + rnorm(nd, mean = 0, sd = 3)

# (2)
ns <- 2ˆnp-1
aint <- ns
cd <- rep(0, length = np)
cdm <- NULL
for (aint in 1:ns){

for(kk in 1:1E7){
amod <- aint %% 2
aint <- aint %/% 2
cd[kk] <- amod
if (aint==0) break

}
cd <- cd == 1
cdm <- cbind(cdm, cd)
}
cdm <- cbind(cdm, rep(FALSE, length = np) )

# (3)
gcvt <- NULL
for(ii in 1:ns){

cd <- cdm[, ii]
xxs <- xxm[, cd, drop = F]
data1 <- data.frame(x = xxs, y = yy)
lm.out <- lm(y˜., data=data1)
lev1 <- lm.influence(lm.out)$hat
ey <- fitted(lm.out)
fr <- sum(lev1)
gcvt[ii] <- sum( (yy - ey)ˆ2 )/(nd * (1 - fr /
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nd)ˆ2)
}

# (4)
gcvcon <- sum((yy-mean(yy))ˆ2 )/
(nd * (1 - 1/nd)ˆ2)

gcvt <- c(gcvt, gcvcon)
# (5)

bestcd <- cdm[, gcvt == min(gcvt)]
if (is.vector(bestcd) == TRUE){

nbest <- 1
bestcd <- as.matrix(bestcd)

}
else
{

nbest <- dim(bestcd)[2]
}

# (6)
for(kk in 1:nbest){

bestcd2 <- bestcd[,kk]
print( bestcd2 )
if(all(bestcd2 == rep(FALSE, length = np))){
print("function = constant")
print(mean(yy))

}
else
{
xxt <- xxm[, bestcd2]
data2 <- data.frame(x = xxt, y = yy)
lm.out <- lm(y˜., data = data2)
print(lm.out$coefficients)

}
}

}

(1) Simulation data are generated. As each of xxa, xxb, xxc, and xxd are data
corresponding to one of the predictors, xxm obtained by combining these using
cbind() is the design matrix. The values of the target variable is given as yy.
The number of predictors is given as np. The number of data is given as nd.

(2) The number of all combinations of preditors (except the regression equation of
a constant function) is saved as ns. %% yields a remainder of the division. %/%
performs integer division in which the remainder (fractional part) is truncated.
In this example, both %% and %/% treat positive values and hence the results
follow intuitively. When negative values are dealt, however, be forewarned
that -14 %% 5 results in 1, -14 %% -5 results in -4, -14 %/% 5 results
in -3, and -14 %/% -5 results in 2, for example. All combinations of
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the predictors, including the regression equation of a constant function, are
described in cdm.

(3) The values of GC V are calculated as to all combinations of predictors obtained
in (2) (the regression equation of a constant function is omitted). The results are
stored in gcvt.

(4) The values of GC V for the regression equation of a constant function are stored
in gcvt.

(5) The optimal combination of predictors which corresponds to the minimal
element (or elements) of gcvt is selected. It is saved as bestcd. The number
of the minimal element (or elements) of gcvt is saved as nbest. If nbest
is 1, bestcd has a vector form and hence it is transformed into a matrix
form.

(6) If the selected regression equation is the regression equation of a constant
function, the constant (i.e., the average of the values of the target variable)
is calculated and displayed. If the selected regression equation is not the
regression equation of a constant function, a regression equation is constructed
using bestcd2. The resultant regression equation is stored in lm.out. The
regression coefficients of the regression equation are displayed.

The result of mul31() is:

FALSE TRUE FALSE TRUE
(Intercept) x.xxb x.xxd

3.977132 1.966888 3.388904

The predictors, which are designed to have a large impact on the target variable
when the simulation data were generated, are selected here.

R Program [4 - 6] End

4.4 Notes on Model Selection Using Prediction Error

When the selection of predictors using GC V in the manner of mul31() (page
185) are performed, we basically believe that there are functional relationships
represented by a multiple linear regression between the predictors and the target
variable. However, we have to think of the possibility that the predictors are chosen
for use in the multiple linear regression even though the selected predictors actually
do not have functional relationships with the target variable. The simulation for
estimating this possibility is shown below.

The number of data is 100. All of the five predictors are realizations of uniform
random numbers between 0 and 1. Values of the target variable are derived using
the equation,

yi D 
i ; (4.58)
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Fig. 4.1 Number of predictors selected by the all-possible-regression procedure using GCV when
the predictors have no functional relationships with the target variable (left). Number of predictors
selected by the forward and backward selection method using AIC (right)

where f
i g are realizations of N.0; 22/ (normal distribution; the mean is 0 and
the variance is 22). Using these data, all-possible-regression procedure chooses
predictors by GC V . The simulation was repeated 500 times by changing the initial
value of the pseudo-random numbers. The result is shown in Fig. 4.1 (left). Although
there are no functional relationships between the predictors and the target variable
in these data, only 199 data sets resulted in a constant function as an appropriate
regression equation while 301 data sets chose one or more predictors. With the
same simulation data, the forward and backward selection method using Akaike’s
Information Criterion (AIC ) were preformed. The result is Fig. 4.1 (right). 193

data sets selected a constant function. Therefore, we should not assume that the
selection of a multiple regression equation other than a constant function by the all-
possible-regression procedure using GC V directly prove the presence of functional
relationships between the predictors and the target variable. A new method is clearly
needed for identifying the existence of functional relationships [5].

R Program [4 - 7]

Using simulation data in which no relationships is conceivable between the
predictors and the target variable, the R program below performs the forward and
backward selection method using AIC for choosing the optimal combination of
predictors.
mul511e()

function ()
{
# (1)

library(MASS)
# (2)

nd <- 100
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np <- 5
nt <- 500

# (3)
bestp <- rep(0, np+1)
for(kk in 1:nt){

# (4)
set.seed(1400 + kk * 8)
xx1 <- runif(nd, min = 0, max = 1)
xx2 <- runif(nd, min = 0, max = 1)
xx3 <- runif(nd, min = 0, max = 1)
xx4 <- runif(nd, min = 0, max = 1)
xx5 <- runif(nd, min = 0, max = 1)
xxm <- cbind(xx1, xx2, xx3, xx4,xx5)
yy <- rnorm(nd, mean = 0, sd = 2)

# (5)
data1 <- data.frame(x = xxm, y = yy)
lm1 <- lm(y˜., data = data1)
r1 <- stepAIC(lm1, trace = 0)
fr <- length(r1$coef)
bestp[fr] <- bestp[fr] + 1

}
# (6)

par(mfrow = c(1, 1), mai = c(1.5, 1.5, 0.5, 0.5),
oma = c(1, 1, 1, 1))

barplot(bestp, xlab = "Counts", ylab = "Number of
predictors", names.arg = as.character(seq(from = 0,
to = np)), horiz = T, las = 1)

}

(1) The use of package “MASS” is described.
(2) The number of data (nd), the number of predictor (np), and the number of times

of simulation (nt) are given.
(3) A matrix form of bestp is prepared for storing the number of the selected

matrix. Simulation is carried out nt times.
(4) The simulated values of predictors (xx1, xx2, xx3, xx4, and xx4) are given

by uniform random numbers between 0 and 1. The values are organized in xxm.
The values of the target variable are saved as yy.

(5) lm() derives a multiple linear regression with all predictors. The result is
saved as lm1. lm1 is entered in stepAIC() to select the predictors using
the forward and backward selection method.

(6) barplot() draws a bar chart (bar graph). Setting of horiz = T specifies
horizontal bars. Setting of las = 1 indicates that the numbers of the scale
along the abscissa axis are written horizontally. Setting of las = 2 makes the
numbers of the scale vertical.

R Program [4 - 7] End
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4.5 Polynomial Regression

When the data f.xi ; yi /g (1 � i � n) are given, polynomial regression derives the
values of faj g .1 � j � q/ by minimizing the value below.

RSSpoly D
nX

iD1

.yi � a0 �
qX

j D1

aj x
j
i /2: (4.59)

This procedure gives the following regression equation:

y D Oa0 C
qX

j D1

Oaj xj : (4.60)

Comparison with Eq. (4.2) (page 163) indicates that a multiple regression equation
is transformed into a polynomial equation by altering xij into x

j
i . As the functional

relationship between x and y can be other than y D a0 and y D a0 C a1x, the use
of polynomial equations allows us to express diverse functional relationships.

Selection of the degrees of the polynomial equation (q in Eqs. (4.59) and (4.60))
can use a test of hypothesis. For example, when we select between y D a0 and
y D a0 C a1x as a regression equation, the null hypothesis and the alternative
hypothesis are set as follows.

H0 W a1 D 0; (4.61)

H1 W a1 ¤ 0: (4.62)

As this is the same as the null hypothesis ((Eq. 3.77) (page 131)) and the alternative
hypothesis (Eq. (3.78) (page 131)) for simple regression, the procedure is identical
to the t-test for simple regression or the F -test for it.

However, various forms of tests are possible for a polynomial equation. One of
these is the following settings of the null hypothesis and the alternative hypothesis.

H0 W a2 D 0; (4.63)

H1 W a2 ¤ 0: (4.64)

That is, these aim to compare a linear equation (y D a0 C a1x) and a quadratic
equation (y D a0 C a1x C a2x2). The corresponding F -value (Eq. (4.54) (page
178)) is

F.H0; H1/ D
RSSlin � RSSquad

1
RSSquad

n � 3

; (4.65)
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Fig. 4.2 Distribution of F -values given by Eq. (4.65) and the probability density function of F -
distribution with the first degrees of freedom of 1 and the second degrees of freedom of .40 � 3/

where RSSlin is the residual sum of squares given by a linear equation whereas
RSSquad is the residual sum of squares given by a quadratic equation.

The simulation to be described below shows that when the null hypothesis
(Eq. (4.63)) holds, the F -value (Eq. (4.65)) obeys

F.H0; H1/ � F1;n�3: (4.66)

First, values of the target variable for 40 data are generated using

yi D 3 � 4xi C 
i ; (4.67)

where f
i g .1 � i � n/ are realizations of N.0; 0:32/ (normal distribution; the
mean is 0 and the variance is 0:32). The values of the predictors (fxi g .1 � i � n/)
are given as f1; 2; : : : ; 40g. Next, values of RSSlin and RSSquad are calculated, and
as a result, the value of F.H0; H1/ (Eq. (4.65)) are obtained. The distribution of
F.H0; H1/ calculated using 1; 000 sets of simulation data given by changing the
initial value of pseudo-random numbers is drawn in Fig. 4.2. The probability density
function of the F -distribution with the first degrees of freedom (1) and the second
degrees of freedom .40 � 3/ is also illustrated.

Alternatively, other settings of the null hypothesis and the alternative hypothesis
from Eqs. (4.63) (page 190) and (4.64) (page 190) are possible. For example, the
following setting is one such choice:

H0 W a1 D 0 and a2 D 0; (4.68)

H1 W a1 ¤ 0 or a2 ¤ 0: (4.69)

That is, a zero degree polynomial equation (a constant function) (y D a0) and a
quadratic equation (y D a0 C a1x C a2x2) are compared. The F -value (Eq. (4.54)
(page 178)) for this comparison is
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Fig. 4.3 Distribution of F -values given by Eq. (4.70) and the probability density function of F -
distribution with the first degrees of freedom of 2 and the second degrees of freedom of .40 � 3/

F.H0; H1/ D
RSSconst � RSSquad

2
RSSquad

n � 3

; (4.70)

where RSSconst is the residual sum of squares given by a zero degree polynomial
equation, whereas RSSquad is the residual sum of squares given by a quadratic
equation as defined above.

Let us perform the simulation that confirms the F -value (Eq. (4.70)) follows

F.H0; H1/ � F1;n�3; (4.71)

when the null hypothesis (Eq. (4.68)) holds. First, the values of the target variable
for 40 data are generated using the following equation.

yi D �14 C 
i ; (4.72)

where f
i g .1 � i � n/ are realizations of N.0; 0:32/ (normal distribution; the
mean is 0 and the variance is 0:32). The values of the predictors (fxi g .1 � i � n/)
are set as f1; 2; : : : ; 40g. Next, the values of RSSconst and RSSquad are calculated.
Using these values, the value of F.H0; H1/ (Eq. (4.70)) is derived. The distribution
of F.H0; H1/ calculated using 1; 000 sets of simulation data given by changing
the initial value of pseudo-random numbers is drawn in Fig. 4.3. The constant-
multiplied probability density function of the F -distribution with the first degree
of freedom (2) and the second degree of freedom .40 � 3/ is superimposed.

However, the selection of the degrees of a polynomial equation is based on the
following:

(1) The F -test (i.e., the test by Eqs. (4.61) (page 190) and (4.62) (page 190))
is conducted to compare the zero degree polynomial equation (a constant
function) and the linear equation.
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Fig. 4.4 Polynomial equations are fitted to the 40 data (open circle). The solid line indicates the
zero degree polynomial equation (y D a0). The dashed line indicate a linear equation (y D a0 C
a1x, the p-value, obtained by comparing with the zero degree polynomial equation, is 0:09144).
The dotted line indicates the quadratic equations (y D a0 C a1x C a2x

2, the p-value, similarly
obtained, is 1:399 � 10�5)

(2) If the linear equation is selected, the F -test (i.e., the test given by Eqs. (4.63)
(page 190) and (4.64) (page 190)) is conducted to compare the linear equation
and the quadratic equation.

That is, the degree of the polynomial equation is increased one by one. A test to
compare a polynomial equation with another of two or more degrees (i.e., using
Eqs. (4.68) (page 191) and (4.69) (page 191)) is seldom performed.

Nevertheless, the simulation below shows that a method involving increasing
the degrees of the polynomial equation one by one possibly results in an unlikely
optimal polynomial equation. Figure 4.4 illustrates the result of fitting a zero degree
polynomial equation, a linear equation, and a quadratic equation to the 40 data using
least squares. The F -value based on the null hypothesis “H0 W y D a0” and the
alternative hypothesis “H1 W y D a0Ca1x” is calculated using Eq. (3.88) (page 139)
and the corresponding p-value is calculated to be 0:09144. Therefore, we cannot
deny the hypothesis that a1 D 0 should be used as a regression equation because
the null hypothesis is not rejected. Alternatively, if we assume the null hypothesis
“H0 W y D a0” and the alternative hypothesis “H1 W y D a0 C a1x C a2x

2”, the
F -value (Eq. (4.70) (page 192)) can be calculated and the corresponding p-value
found to be 1:399 � 10�5. That is, the null hypothesis is rejected. We conclude that
the quadratic equation should be employed.

As seen above, although the null hypothesis “y D a0 should be used” is rejected
when a specific alternative hypothesis is assigned, this null hypothesis is not rejected
when another alternative hypothesis is assigned. Let us suppose, therefore, that
we adopt the policy that although we should use a regression equation with as
small number of regression coefficients as possible, if the comparison between null
hypothesis “a regression equation with a small number of regression coefficients
should be employed” and alternative hypothesis “a regression equation with a larger
number of regression coefficients should be employed” rejects the null hypothesis,
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the alternative hypothesis should be adopted. If the test with the null hypothesis
y D a0 and the alternative hypothesis y D a0 C a1x is conducted, we conclude that
y D a0 should be employed because the null hypothesis is not rejected. Hence, we
need not examine the regression equation y D a0 C a1x C a2x2, which contains
a larger number of regression coefficients than y D a0 C a1x. This means that
we usually pay no attention to the truth that use of the null hypothesis y D a0

and the alternative hypothesis y D a0 C a1x C a2x2 leads to the conclusion that
y D a0 C a1x C a2x2 should be employed. The method to select a regression
equation that minimizes GC V is desirable in this respect.

R Program [4 - 8]

The degree of the polynomial equation is selected using the F -test.
poly41()

function ()
{
# (1)

par(mai = c(1, 1, 1, 1), omi = c(0, 0, 0, 0))
#(2)

set.seed(815)
nd <- 40
xx <- seq(from=1, to=nd, by=1)
yy <- sin(xx*0.07) + 2 + rnorm(nd, mean=0, sd=0.3)

# (3)
data1 <- data.frame(x=xx, y=yy)
lm0 <- lm(y˜1, data=data1)
lm1 <- lm(y˜x, data=data1)
lm2 <- lm(y˜poly(x, degree=2), data=data1)

# (4)
anova1 <- anova(lm0, lm1)
print("----- anova(lm0, lm1) -----")
print(anova1)
anova2 <- anova(lm0, lm2)
print("----- anova(lm0, lm2) -----")
print(anova2)

# (5)
ff1 <- (sum(lm0$residualsˆ2) - sum(lm1$residualsˆ2
))/((sum(lm1$residualsˆ2))/(nd-2))

pval1 <- 1 - pf(ff1, df1=1, df2=nd-2)
print("pval1")
print(pval1)

# (6)
ff2 <- (sum(lm0$residualsˆ2) - sum(lm2$residualsˆ2
))/2/((sum(lm2$residualsˆ2))/(nd-3))

pval2 <- 1 - pf(ff2, df1=2, df2=nd-3)
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print("pval2")
print(pval2)

# (7)
plot(xx, yy, xlab="x", ylab="y")
lines(xx, lm0$fitted, lty=1)
lines(xx, lm1$fitted, lty=2)
lines(xx, lm2$fitted, lty=3)

}

(1) par() sets the graphics area.
(2) The number of data (nd) is given. The values of the predictors of the simulation

data are given as xx. Those of the target variable are given as yy.
(3) xx and yy are organized in a data frame of data1. xx is called x and yy is

called y in the data frame. Next, the result of the regression to the zero degree
regression equation using lm() is stored in lm0. The result of the simple
regression using lm() is stored in lm1. The result of the quadratic regression
using lm()is stored in lm2. poly(x, degree=2) stands for a quadratic
equation. When a polynomial equation is specified in lm(), poly() specifies
the use of an orthogonal polynomial to increase the accuracy of the calculation.

(4) anova(lm0, lm1) carries out an analysis of variance for comparing the
result of the regression to the zero degree regression equation and that of simple
regression. The result is stored in anova1 and is output. anova(lm0, lm2)
carries out analysis of variance for comparing the result of the regression to the
zero regression equation and that of quadratic regression. The result is stored in
anova2 and is output.

(5) The F -value for comparing the result of the regression to the zero degree
regression equation and that of simple regression are saved as ff1. The p-value
is calculated using ff1. The result is saved as pval1 and is displayed.

(6) The F -value for comparing the result of the regression to the zero degree
regression equation and that of quadratic regression are saved as ff2. The p-
value is calculated using ff2. The result is saved as pval2 and is displayed.

(7) The original data, the estimates given by the regression to the zero degree
regression equation, those given by simple regression, and those given by
quadratic regression are drawn in a graph.

The result of poly41() is:
[1] "----- anova(lm0, lm1) -----"
Analysis of Variance Table
Model 1: y ˜ 1
Model 2: y ˜ x

Res.Df \mathit{RSS} Df Sum of Sq F Pr(>F)
1 39 6.1290
2 38 5.6807 1 0.4483 2.9988 0.09144 .
---
Signif. codes: 0’***’0.001’**’0.01’*’0.05’.’0.1’ ’1
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[1] "----- anova(lm0, lm2) -----"
Analysis of Variance Table
Model 1: y ˜ 1
Model 2: y ˜ poly(x, degree = 2)

Res.Df \mathit{RSS} Df Sum of Sq F Pr(>F)
1 39 6.1290
2 37 3.3496 2 2.7794 15.351 1.399e-05 ***
---
Signif. codes: 0’***’0.001’**’0.01’*’0.05’.’0.1’ ’1
[1] "pval1"
[1] 0.09143803
[1] "pval2"
[1] 1.398627e-05

poly41() also outputs Fig. 4.4 (page 193).

R Program [4 - 8] End

R Program [4 - 9]

When the null hypothesis is “y D a0” and the alternative hypothesis is “y D
a0Ca1xCa2x2”, the distribution of the F -values (Eq. (4.70) (page 192)) is graphed.
poly57e()

function ()
{
# (1)

set.seed(815)
nd <- 40
nt <- 1000

# (2)
ff2 <- NULL
for (jj in 1:nt){

# (3)
xx <- seq(from = 1, to = nd, by = 1)
yy <- -14 + rnorm(nd, mean = 0, sd = 0.3)

# (4)
data1 <- data.frame(x = xx, y = yy)
lm0 <- lm(y˜1, data = data1)
lm2 <- lm(y˜poly(x, degree = 2), data = data1)

# (5)
ff2[jj] <- (sum(lm0$residualsˆ2) -
sum(lm2$residualsˆ2)) / 2 /
((sum(lm2$residualsˆ2))/(nd - 3))

}
# (6)

par(mfrow = c(1,1), mai = c(2, 1, 1.5, 0.1),
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omi = c(0, 0, 0, 0))
# (7)

br1 <- pretty(ff2, n = 40)
bw1 <- br1[2] - br1[1]
ff2h <- floor(ff2 / bw1) * bw1 + 0.01 * bw1
hist1 <- hist(ff2h, breaks = br1, main = "",
xlab = "F", ylab = "Frequency", ylim = c(0, 200))

# (8)
xxa <- seq(from = min(xx), to = max(xx),
length = 1000)

curve(df(x, df1 = 2, df2 = nd - 3) * bw1 * nt,
min(br1), max(br1), xlab = "", ylab = "p(x)",
lwd = 2, xlim = c(min(br1), max(br1)),
ylim = c(0, max(hist1$counts)), add = T)

}

(1) The initial value of the pseudo-random numbers is given. The number of data
(nd) is set. The number of times of the simulation (nt) is specified.

(2) ff2 is prepared for storing the F -values. Sampling is conducted nt times.
(3) Simulation data are generated. The values of the predictors of the simulation

data are stored in xx. Those of the target values are stored in yy.
(4) xx and yy are organized in the data frame of data1. xx is called x and yy

is called y in the data frame. Then, the result of the regression to a zero degree
polynomial equation (a constant function) using lm() is stored in lm0. The
result of regression to the quadratic equation using lm() is stored in lm2.

(5) The F -value is calculated using Eq. (4.70) (page 192). The result is saved as
ff2.

(6) par() sets the graphics area.
(7) hist() draws the histogram of ff2.
(8) curve() superimposes the graph of the probability density function of the

F -distribution with the first degree of freedom of 5 and the second degree of
freedom of .40 � 6/. df(x, df1 = 2, df2 = nd-3) gives the values
of the probability density function of the F -distribution. bw1 * nt is the
constant to assist the comparison with the histogram. poly57e() outputs
Fig. 4.3.

R Program [4 - 9] End

4.6 Variance of Regression Coefficient and Multicollinearity

One of the things that should be taken into consideration when constructing a
multiple regression equation is multicollinearity. This situation occurs when the
predictors are not fully independent of one another. The term “multicollinearity”
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combines “multi-” implying large number and “-collinearity” meaning linear
dependency (page 123 in [2]).

To understand the properties concerning multicollinearity, the following fx0
ij g

.1 � i � n; 1 � j � q/ are used instead of fxij g .1 � i � n; 1 � j � q/; this
transformation is similar to Eq. (4.15) (page 165),

x0
ij D xij �

Pn
iD1 xij

n
.1 � i � n; 1 � j � q/;

y0
i D yi �

Pn
iD1 yi

n
.1 � i � n/: (4.73)

Note, the summation of fx0
ij g with respect to i gives 0. Similarly summation of fy0

ij g
with respect to i also gives 0.

The definition of the multiple regression equation yields the following equation:

yi D Oa0 C
qX

j D1

Oaj xij C ei

D Oyi C ei ; (4.74)

where feig .1 � i � n/ are residuals (refer to Eq. (4.1) (page 163) and the
explanations below the equation). Summing Eq. (4.74) with respect to i and dividing
by n gives

Oa0 D 1

n

nX
iD1

yi � 1

n

nX
iD1

qX
j D1

Oaj xij ; (4.75)

where Eq. (4.14) (page 165) is used. The term
1

n

nX
iD1

yi is subtracted from the both

sides of Eq. (4.74) giving the result:

yi � 1

n

nX
iD1

yi D Oa0 C
qX

j D1

Oaj xij � 1

n

nX
iD1

yi C ei

D Oa0 C
qX

j D1

Oaj xij � 1

n

nX
iD1

. Oa0 C
qX

j D1

Oaj xij C ei / C ei

D Oa0 C
qX

j D1

Oaj xij � Oa0 � 1

n

nX
iD1

qX
j D1

Oaj xij C ei
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D
qX

j D1

Oaj xij � 1

n

nX
iD1

qX
j D1

Oaj xij C ei

D
qX

j D1

Oaj

�
xij � 1

n

nX
iD1

xij

�
C ei : (4.76)

In deriving the third line from the second,
Pn

iD1 ei D 0 is used. Then, by Eq. (4.73),
we obtain

y0
i D

qX
j D1

Oaj x0
ij C ei : (4.77)

Hence, when a regression equation expressed in terms of fx0
ij g .1 � i � n; 1 � i �

q/ and fy0
ig .1 � i � n/ is compared with that given by fxij g and fyig, we find that

the regression coefficients, with the exception of the constant term of the regression
equation, are the same whereas the constant term derived from fx0

ij g and fy0
ig is 0.

Thus, the properties of the regression equation given by fx0
ij g and fy0

ig are identical
to those given by fxij g and fyi g.

Therefore, the interpretation and properties of multicollinearity is shown below
using fx0

ij g and fy0
i g. First, linear dependence of fx0

j g .1 � j � q/ is defined by:

qX
j D1

cj x0
j D 0; (4.78)

where x0
j .1 � j � q/ is

x0
j D

0
BBBB@

x0
1j

x0
2j

:::

x0
nj

1
CCCCA

.1 � j � q/: (4.79)

Furthermore, one or more of the fcj g .1 � j � q/ are nonzero. Based on the
properties of linear independency in linear algebra, Eq. (4.78) indicates that fx0

j g
.1 � j � q/ are linearly dependent.

Equation (4.78) is rewritten as

X0c D 0; (4.80)

where X0 is defined as
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X0 D

0
BBB@

x11 x12 : : : x1q

x21 x22 : : : x2q

:::
:::

: : :
:::

xn1 xn2 : : : xnq

1
CCCA ; (4.81)

and c is a column vector defined as

c D

0
BBB@

c1

c2

:::

cq

1
CCCA : (4.82)

Multiplying Eq. (4.80) by X0t from the left results in

X0t X0c D 0: (4.83)

As X0t X0 is a square matrix, then under the condition that at least one of the fcj g
.1 � j � q/ is nonzero, Eq. (4.83) is equivalent to the following equation.

jX0t X0j D 0; (4.84)

where jX0t X0j is the determinant (Eq. (1.60) (page 36)) of X0t X0. That is, when
Eq. (4.78) holds, the regression coefficients (f Oa1; Oa2; : : : ; Oaqg) cannot be obtained
using the following equation (refer to Eq. (4.9) (page 164)) because .X0t X0/�1 is not
unique:

Oa0 D .X0t X0/�1X0t y0; (4.85)

where Oa0 and y0 are defined as

Oa0 D

0
BBB@

Oa1

Oa2

:::

Oaq;

1
CCCA ; y0 D

0
BBBBB@

Oy0
1

Oy0
2

Oy0
3
:::

Oy0
n

1
CCCCCA

: (4.86)

Conversely, when there are multiple regression equations that minimize Eq. (4.1)
(page 163), Eq. (4.78) (page 199) is satisfied. Then, for the two sets of values of the
regression coefficients here denoted by Oa0.1/ and Oa0.2/ (Oa0.1/ ¤ Oa0.2/), we have

k y0 � X0 Oa0.1/ k2Dk y0 � X0 Oa0.2/ k2 : (4.87)
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This equation indicates:

k y0 � X0 Oa0.1/ k2 � k y0 � X0 Oa0.2/ k2

D .y0 � X0 Oa0.1/t /.y0 � X0 Oa0.1// � .y0 � X0 Oa0.2//t .y0 � X0 Oa0.2//

D �Oa0.1/tX0t y0 � y0t X0 Oa0.1/ C Oa0.1/tX0t X0 Oa0.1/t C Oa0.2/t X0t y0

C y0tX0 Oa0.2/ � Oa0.2/tX0t X0 Oa0.2/

D �Oa0.1/tX0t X0 Oa0.1/ � y0tX0 Oa0.1/t C Oa0.1/tX0t X0 Oa0.1/ C Oa0.2/tX0t XOa0.2/

Cy0t X0 Oa0.2/ � Oa0.2/tX0t X0 Oa0.2/

D �Oa0.1/tX0t X0 Oa0.2/ � y0tX0 Oa0.1/ C Oa0.1/tX0t X0 Oa0.1/ C y0tX0 Oa0.2/

D �Oa0.1/tX0t X0 Oa0.2/ � Oa0.2/tX0t X0 Oa0.1/ C Oa0.1/tX0t X0 Oa0.1/ C Oa0.2/tX0t X0 Oa0.2/

D k X0.Oa0.2/ � Oa0.1// k2

D 0; (4.88)

where k k represents the Euclidean length of a vector (the square root of the sum
of squares of the elements of a vector). The following two equations, which are
obtained in a way similar to that of Eq. (4.8) (page 164), are used in deriving line
eight from line seven:

X0t y0 D X0t X0 Oa0.1/; X0t y0 D X0t X0 Oa0.2/: (4.89)

The equality of Eq. (4.88) (k X0.Oa0.2/ � Oa0.1// k2D 0) is equivalent to that of the
equation below.

X0.Oa0.2/ � Oa0.1// D 0: (4.90)

As Oa0.1/ ¤ Oa0.2/ holds, the column vectors constituting X are linearly dependent
(Eq. (4.80) (page 199)). Thus, it is proved that when Eq. (4.82) (page 200) holds,
multicollinearity (Eq. (4.78) (page 199)) exists.

In the context of multiple regression equations, however, when Eq. (4.78) holds
approximately, we say that the predictors have multicollinearity. That is, when the
following equation holds approximately, the data has multicollinearity.

qX
j D1

cj x0
j � 0: (4.91)

This approximate equation is equivalent to

jX0t X0j � 0: (4.92)
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One problem that multicollinearity of a multiple regression equation causes is that it
augments the variances of the regression coefficients. Therefore, if multicollinearity
exists, slight variations in errors contained in the values of the target variables in data
can change the values of the regression coefficients significantly. Hence, statistics
are developed to quantify these variations:

EŒ.Oa0 � a0/t .Oa0 � a0/�
�2

D
Pq

j D0 EŒ. Oaj � aj /2�

�2
; (4.93)

where a0 is defined as

a0 D

0
BBB@

a1

a2

:::

aq

1
CCCA : (4.94)

That is, EŒ.Oa0 � a0/t .Oa0 � a0/� represents the expectation of the sum of the variances
of q regression coefficients. Equation (4.42) (page 176) yields

C0 D �2.X0t X0/�1; (4.95)

where C0 is the variance-covariance matrix of Oa0, which is written in the form:

C0 D

0
BBBBBB@

E

��
Oa1�E. Oa1/

��
Oa1�E. Oa1/

��
: : : E

��
Oa1�E. Oa1/

��
Oaq�E. Oaq/

��

:::
: : :

:::

E

��
Oaq�E. Oaq/

��
Oa1�E. Oa1/

��
: : : E

��
Oaq�E. Oaq/

��
Oaq�E. Oaq/

��

1
CCCCCCA

:

(4.96)

Hence, the ij -element of C0 is EŒ. Oai � ai /. Oaj � aj /�. Then, using Eq. (4.95),
the variance of Oaj (EŒ. Oaj � aj /. Oaj � aj /�) is obtained. However, this does not
show the direct relationship between multicollinearity (Eq. (4.92) (page 201)) and
the variances of the regression coefficients. Then, using Eq. (4.94), Eq. (4.93) is
rewritten as

EŒ.Oa0 � a0/t .Oa0 � a0/�
�2

D trace..X0t X0/�1/: (4.97)

As X0t X0 is a symmetric matrix, there exists an orthogonal matrix U that performs
diagonalization in such a way that

.X0t X0/�1 D .U�U�1/�1
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D .U�1/�1.U�/�1

D U��1U�1; (4.98)

where � is given as

� D

0
BBB@

�1 0 0 : : : 0

0 �2 0 : : : 0
:::

:::
:::

: : :
:::

0 0 0 : : : �q

1
CCCA : (4.99)

As � is a diagonal matrix, ��1 is represented as

��1 D

0
BBBBBBBB@

1

�1

0 0 : : : 0

0
1

�2

0 : : : 0

:::
:::

:::
: : :

:::

0 0 0 : : :
1

�q

1
CCCCCCCCA

: (4.100)

Thus, the trace of .X0t X0/�1 is as follows:

trace..X0t X0/�1/ D trace.U��1U�1/

D
qX

iD1

qX
j D1

qX
kD1

ŒU�ij Œ��1�jkŒU�1�ki

D
qX

iD1

qX
j D1

ŒU�ij Œ��1�jj ŒU�1�j i

D
qX

iD1

qX
j D1

ŒU�ij ŒU�1�j i Œ�
�1�jj

D
qX

iD1

qX
j D1

ıij Œ��1�jj

D
qX

iD1

Œ��1�i i

D
qX

iD1

1

�i

: (4.101)
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Therefore, we have

E..Oa0 � a0/t .Oa0 � a0//
�2

D
qX

j D1

1

�j

: (4.102)

This equation gives the sum of the variances of the regression coefficients with the
exception of the constant term of the regression equation. Equation (4.45) (page
177) shows that all of f�j g .1 � j � q/ are positive. Therefore, when the sum
of the variances of the regression coefficients (not including the constant term) is
small, one or more among the f�j g take small positive values. Implications of this
finding are shown by deriving the equation below from Eq. (4.98) (page 202).

jX0tX0j D jU�U�1j
D jUjj�jjU�1j
D jUU�1jj�j
D j�j

D
qY

j D1

�j ; (4.103)

where ıij is the Kronecker delta defined as

ıij D



1 if i D j

0 if i ¤ j:
(4.104)

Hence, when Eq. (4.92) (page 201) holds, one or more among f�j g takes small
positive values. Therefore, when multicollinearity is present, variances of one or
more regression coefficients among f Oaj g .1 � j � q/ are large.

However, it should be noted that Eq. (4.102) yields the sum of variances of the
regression coefficients but not including the constant term. For example, when Oa1 D
200 and Oa2 D �0:3 are assumed, then a variance of Oa1 of 10 differs in meaning
from the variance of Oa2 of 10. Nevertheless, the value that Eq. (4.102) gives does not
reflect the difference in meaning between the two things. To handle this problem,
the fx0

ij g with specified value j are multiplied by a constant to make the variance

of fx0
ij g equal

1

n
. This transformation is referred to as scaling (page 124 in [2],

page 124 in [3]). Scaling makes X0t X0 a correlation matrix of X0; all of its diagonal
elements are unity. However, as the predictors of a multiple regression equation are
usually not regarded as random variables but fixed values, the word correlation is to
some extent inappropriate in the situation (page 125 in [2]).

Figure 4.5 shows regression planes given by a regression equation when mul-
ticollinearity occurs. The five regression planes are the results of constructing
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Fig. 4.5 Values of predictors of the simulation data; f
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i g .1 � i � 20/ are realizations of the

uniform distribution between �2 and 2 (left). Regression planes each of which is produced by one
set of simulation data out of five sets of simulation data (right)

multiple regression equations by the least squares method. The simulation data for
these regression equations are generated by

yi D xi1 C 2xi2 C 5 C 
a
i ; (4.105)

where f
a
i g .1 � i � 20/ are realizations of the normal distribution N.0; 4:92/; the

mean is 0 and the variance is 4:92. fxi1g .1 � i � 20/ is set as f1; 2; 3; : : : ; 20g.
fxi2g .1 � i � 20/ are generated using

xi2 D xi1 C 
b
i : (4.106)

f
b
i g .1 � i � 20/ are realizations of the uniform distribution between �2 and 2.

Five sets of simulation data are generated by altering the initial value of the pseudo-
random numbers. Figure 4.5 which shows multiple regression equations constructed
by these simulation data indicates that the values of the regression coefficients vary
dramatically.

In distinct contrast, Fig. 4.6 shows the results when f
b
i g .1 � i � 20/

are realizations of a uniform distribution between �9 and 9. As the correlation
between the two predictors is large in Fig. 4.5, Eq. (4.91) (page 201) holds with
high accuracy. That is, multicollinearity is present. This augments the variances of
the regression coefficients. Conversely, as the correlation between the two predictors
is small in Fig. 4.6, Eq. (4.91) (page 201) does not hold very much. Therefore, the
variances in the regression coefficients are small. These results lead to the prediction
that the value of Eq. (4.102) in Fig. 4.5 is large and the value of Eq. (4.102) in Fig. 4.6
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is small. Indeed, the value of Eq. (4.102) corresponding to Fig. 4.5 is 2:138052 but
for Fig. 4.6 is 0:1340991.

The simulation data used in Fig. 4.5 are generated 100 times by changing the
initial value of the pseudo-random numbers. The distribution of the values of Oa1 and
Oa2 given by each simulation data yields Fig. 4.7. This graph indicates that there is a
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large negative correlation between Oa1 and Oa2 and the sum of the variance of Oa1 and
that of Oa2 are almost identical to 2:138052 obtained from Eq. (4.102).

R Program [4 - 10]

The theoretical value of the variance of each regression coefficient (Eq. (4.95)
(page 202)) nearly equals the value given by simulation, as does obviously the
sum of the variances of the regression coefficients not including the constant term
(Eq. (4.102) (page 204)).
col21e()

function ()
{
# (1)

nd <- 20
xx1 <- seq(from = 1, to = nd, by = 1)
set.seed(911)
xx2 <- xx1 + runif(nd, min = -2, max = 2)

# (2)
par(mai = c(1, 1, 1, 1), omi = c(0, 0, 0, 0))

# (3)
var0 <- 0
var1 <- 0
var2 <- 0
nt <- 20000
sd1 <- 4.9

# (4)
for(kk in 1:nt){

set.seed(kk * 3 + 429)
aa0 <- 5
aa1 <- 1
aa2 <- 2
yy <- aa1 * xx1 + aa2 * xx2 + aa0 +
rnorm(nd, mean = 0, sd = sd1)
data1 <- data.frame(x1 = xx1, x2 = xx2, y = yy)
lm1 <- lm(y ˜ x1 + x2, data = data1)
coef1 <- lm1$coef

# (5)
if (kk ==1) {
plot(coef1[2], coef1[3], xlab = expression(a[1]),
ylab = expression(a[2]), type = "n",
xlim = c(-3,5), ylim = c(-1,6))

}
if (kk <= 100) {
points(coef1[2], coef1[3])

}
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# (6)
var0 <- var0 + (aa0 - coef1[1])ˆ2
var1 <- var1 + (aa1 - coef1[2])ˆ2
var2 <- var2 + (aa2 - coef1[3])ˆ2

}
# (7)

var0 <- var0/nt
var1 <- var1/nt
var2 <- var2/nt
print("Variance of each regression coefficient")
print("(simulation)")
print(var0)
print(var1)
print(var2)
print("Sum of the variaces of the regression")
print("coefficients except the regression")
print("coefficient of the constant")
print("term (simulation)")
print(var1+var2)

# (8)
xx1d <- xx1 - mean(xx1)
xx2d <- xx2 - mean(xx2)
xx12d <- cbind(xx1d, xx2d)
xx12di <- solve(t(xx12d) %*% xx12d)
cc1 <- sd1ˆ2 * xx12di
var1a <- cc1[1, 1]
var2a <- cc1[2, 2]
print("Variance of each regression coefficient")
print("except the regression coefficient of")
print("the constant term (theoretical values")
print("given by the variance-covariance matrix)")
print(var1a)
print(var2a)
print("Sum of the variaces of the regression")
print("coefficients except the regression")
print("coefficient of the constant")
print("term (theoretical values given by")
print("the variance-covariance matrix)")
print(var1a + var2a)

# (9)
xxad <- t(xx12d) %*% xx12d
eigen1d <- eigen(xxad)$values
vv1d <- sum(1/eigen1d)*sd1ˆ2
print("Sum of the variaces of the regression")
print("coefficients except the regression")
print("coefficient of the constant term")
print("(theoretical values given by")



4.6 Variance of Regression Coefficient and Multicollinearity 209

print("the eigenvalues)")
print(vv1d)

}

(1) The number of data (nd) is given. The values of predictors of the simulation
data (xx1 and xx2) are generated.

(2) par() sets the graphics area.
(3) For storing the variances of regression coefficients given by simulation data,

var0 (variance of a0), var1 (variance of a1), and var2 (variance of a2)
are prepared. The number of simulations (nt) is given. The standard deviation
(sd1) of the errors contained in the predictor values in the simulation data is
set at 4.9.

(4) The values of the target variable (yy) of the simulation data are generated.
lm() constructs a multiple regression equation. The resultant regression
coefficients are stored in lm().

(5) The values of the regression coefficients yielded by the first 100 sets of
simulation data are graphed. Figure 4.7 (page 206) is obtained.

(6) The sum of the variances of the regression coefficients given by the simulation
data is calculated.

(7) The average of the variances of the regression coefficients given by the simu-
lation data is calculated. The average of variances of the regression coefficients
and their sum are output.

(8) The variances of the regression coefficients are calculated using Eq. (4.95) (page
202). These values and their sum are displayed. solve() yields the inverse
matrix.

(9) The sum of the variances of the regression coefficients are calculated using
Eq. (4.102) (page 204). The result is displayed. eigen() uses the eigenequa-
tion of hh to derive eigenvalues and eigenvectors. The component of values
in the output from eigen() stores the eigenvalues.

col21e() also outputs:

"Variance of each regression coefficient"
"(simulation)"
(Intercept)
5.729675

x1
0.7881854

x2
0.8117826
"Sum of the variaces of the regression"
"coefficients except the regression"
"coefficient of the constant"
"term (simulation)"

x1
1.599968
"Variance of each regression coefficient"
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"except the regression coefficient of"
"the constant term (theoretical values"
"given by the variance-covariance matrix)"
0.783627
0.8056918
"Sum of the variaces of the regression"
"coefficients except the regression"
"coefficient of the constant"
"term (theoretical values given by"
"the variance-covariance matrix)"
1.589319
"Sum of the variaces of the regression"
"coefficients except the regression"
"coefficient of the constant term"
"(theoretical values given by"
"the eigenvalues)"
1.589319

The result of Eq. (4.95) (page 202) is completely identical to that of Eq. (4.102)
(page 204). It is similar to the result produced by the simulation data.

R Program [4 - 10] End

4.7 Detection of Multicollinearity Using Variance Inflation
Factors

To detect the presence and degree of multicollinearity, Variance Inflation Factor
(VIF) is another option defined as

VIFj D 1

1 � R2
j

.1 � j � q/; (4.107)

where R2
j is the coefficient of determination (Eq. (4.31) (page 168)) of the multiple

regression equation given by the least squares method when the j -th predictor is
used as the target variable and the remaining predictors are used as predictors. For
example, the following multiple regression equation is constructed for calculating
R2

2 when the number of predictors is 3 (q D 3).

x2 D b0 C b1x1 C b3x3; (4.108)

where b0, b1, and b3 are regression coefficients produced by the least squares
method. We are in habit of supposing that, if VIF for a specific value of j is equal to
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Fig. 4.8 Boxplot showing the values of VIF when the first and the second predictors among the
three predictors are involved in bringing about multicollinearity (left). Boxplot when the second
predictor is removed (right)

or larger than 10, the j -th predictor is involved in bringing about multicollinearity.
However, this criterion is not always reliable (page 369 in [2]).

To determine the importance of VIF , the values of VIF for the simulation data
are calculated. The result is illustrated in Fig. 4.8. The values of the target variable
of the simulation data are generated using

yi D 2xi1 � 3xi2 � 6xi3 C 0:5 C 
a
i ; (4.109)

where f
a
i g .1 � i � 20/ are realizations of a normal distribution; the mean is 0 and

the variance is 4:92. fxi1g .1 � i � 20/ is set as f1; 2; 3; : : : ; 20g. fxi2g .1 � i � 20/

are given by the equation below.

xi2 D xi1 C 
b
i ; (4.110)

where f
b
i g .1 � i � 20/ are random values obtained from a uniform distribution

over the range �2 and 2. fxi3g .1 � i � 20/ are obtained using

xi3 D xi1 C 
c
i ; (4.111)

where f
c
i g .1 � i � 20/ take values between 10 and 40 following a uniform

distribution. 100 sets of simulation data are generated by altering the initial value of
the pseudo-random numbers. A multiple regression equation is produced using each
one set of the simulation data. fVIFj g .1 � j � 3/ are calculated for the respective
multiple regression equations. The respective distributions of resulting fVIFj g are
shown as a boxplot (Fig. 4.8 (left)). This boxplot reflects the involvement of the first
and the second predictors in multicollinearity. When multiple regression equations
without the second predictor are constructed, the resultant fVIF1; VIF3g gives
Fig. 4.8 (right). Apparently, multicollinearity is removed.
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However, as the definition of VIF (Eq. (4.106) (page 205)) shows, VIF is
calculated using the values of the predictors of data. Hence, the values of the target
variable have no impact on it. Conversely, Eq. (4.95) (page 202) and Eq. (4.97)
(page 202) indicate that the variances of regression coefficients are influenced by the
amount of errors contained in the values of the target variable in data. For example,
whereas Fig. 4.5 (page 205) is given if the errors contained in the values of the target
variable in the simulation data are obtained from a normal distribution (with mean
0 and variance 4:92), Fig. 4.9 is obtained if the errors are realizations of the normal
distribution (mean 0 and variance 12). Although the values of the predictors of data
are the same as those for Fig. 4.5, the variances of the regression coefficients are
small. That is, as the variances of the regression coefficients are not determined
by the values of VIF only, we are unable to know the degree of multicollinearity
simply by the VIF values if the variances of the regression coefficients are the main
concern.

R Program [4 - 11]

The definition of VIF (Eq. (4.106) (page 205)) is confirmed.
col31()

function ()
{
# (1)

library(HH)
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# (2)
nd <- 20
xx1 <- seq(from = 1, to = nd, by = 1)
set.seed(911)
xx2 <- xx1 + runif(nd, min = -2, max = 2)
xx3 <- xx1 + runif(nd, min = 10, max = 40)
yy <- 2 * xx1 - 3 * xx2 - 6 * xx3 + 0.5 + rnorm(nd,
mean = 0, sd = 4.9)

data0 <- data.frame(x1 = xx1, x2 = xx2, x3 = xx3,
y = yy)

# (3)
lm0 <- lm(y ˜ x1 + x2 + x3, data = data0, x = T)
vif0 <- vif(lm0)
print("vif0")
print(vif0)

# (4)
lm1 <- lm(x1 ˜ x2 + x3, data = data0)
r1 <- summary(lm1)$r.squared
vif1 <- 1/(1-r1)
print("vif1")
print(vif1)

# (5)
lm2 <- lm(x2 ˜ x1 + x3, data = data0)
r2 <- summary(lm2)$r.squared
vif2 <- 1/(1-r2)
print("vif2")
print(vif2)

# (6)
lm3 <- lm(x3 ˜ x1 + x2, data = data0)
r3 <- summary(lm3)$r.squared
vif3 <- 1/(1-r3)
print("vif3")
print(vif3)

}

(1) The use of package “HH” is described. It aims to use vif().
(2) The number of data (nd) is given. The values of the predictors of the simulation

data are given as xx1, xx2, and xx3. The values of the target variable of the
simulation data are given. The simulation data are organized in data0.

(3) lm() conducts multiple regression using x1 and x2, and x3 as predictors and y

as the target variable. The result is stored in lm0. x = T is set in lm() because
this setting makes lm0 contain the design matrix of this multiple regression as
its component. This assignment is requisite in using vif(). Using this lm0,
vif() calculates the value of VIF . The result is stored in vif0 and then
output.
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(4) lm() carries out multiple regression using x2 and x3 as predictors and x1 as the
target variable. The result is stored in lm1. VIF1 is calculated using Eq. (4.106)
(page 205). The result is stored in vif1 and is output.

(5) lm() conducts multiple regression using x1 and x3 as predictors and x2 as the
target variable. The result is stored in lm2. VIF2 is calculated using Eq. (4.106).
The result is stored in vif2 and then output.

(6) lm() conducts multiple regression using x1 and x2 as predictors and x3 as the
target variable. The result is stored in lm3. VIF3 is calculated using Eq. (4.106).
The result is stored in vif3 and then output.

col31() outputs:

"vif0"
x1 x2 x3
23.484225 22.082298 1.555468
"vif1"
23.48422
"vif2"
22.0823
"vif3"
1.555468

Values given by vif() are identical to those obtained by Eq. (4.106) (page 205).

R Program [4 - 11] End

R Program [4 - 12]

VIF (Eq. (4.106) (page 205)) indicates the presence of multicollinearity.
col32()

function ()
{
# (1)

library(HH)
# (2)

nd <- 20
xx1 <- seq(from = 1, to = nd, by = 1)

# (3)
nt <- 100

# (4)
vif0m <- matrix(rep(0, length = nt * 3), ncol = nt)
for (kk in 1:nt){

set.seed(kk*2 + 23)
xx2 <- xx1 + runif(nd, min = -2, max = 2)
xx3 <- xx1 + runif(nd, min = 10, max = 40)
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yy <- 2 * xx1 -3 * xx2 - 6 * xx3 + 0.5 +
rnorm(nd, mean = 0, sd = 4.9)

data0 <- data.frame(x1 = xx1, x2 = xx2,
x3 = xx3, y = yy)

# (5)
lm0 <- lm(y ˜ x1 + x2 + x3, data = data0, x = T)
vif0 <- vif(lm0)
vif0m[, kk] <- vif0

}
# (6)

par(mai = c(1, 1, 1, 1), omi = c(0, 0, 0, 0))
boxplot(t(vif0m), names = c("x1", "x2", "x3"),
ylab = "VIF", ylim = c(0,80))

}

(1) The use of package “HH” is described. It aims to use vif().
(2) The number of data (nd) is given. The values of the first predictor of the

simulation data (xx1) are generated.
(3) The number of simulations (nt) is given.
(4) vif0m in the form of matrix is prepared for storing the values of VIF . The

values of the second predictor (xx2), those of the third predictor (xx3), and
those of the target variable (yy) are generated by changing the initial value of
the pseudo-random numbers. These values are organized in data0.

(5) lm() produces a multiple regression equation. The result is stored in lm0.
vif() calculates fVIFj g .1 � j � 3/ using lm0. The resultant values are
stored in vif0m.

(6) Distributions of the values of VIF of respective predictors are graphed in the
form of the boxplot using boxplot(). Figure 4.8 (page 211) is obtained.

R Program [4 - 12] End

4.8 Hessian Matrix of Log-Likelihood

When a random variable of Y follows a normal distribution, the associated
probability density function (Eq. (2.7) (page 52)) is written as

f .y/ D
�

1p
2��2

�
exp

�
� 1

2�2
.y � 	/2

�
: (4.112)

A variable of y in this probability density function is a nonrandom variable
(nonstochastic variable). If this is the case, we assume that we derive one sample (y1;
y1 is also a nonrandom variable) from the population. Our problem is whether we
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can regard Eq. (4.112) as the probability density function of the population. One the
one hand, when y1 is substituted into y in Eq. (4.112), the value given by Eq. (4.112)
is large if y1 is close to 	. The large value given by Eq. (4.112) indicates that y1 is
located where the value of the probability density function is large. That is, y1 is an
all-too-common value in this probability density function. Therefore, we can fairly
believe the assumption that y1 is derived from this probability density function. In
other words, this assumption is likely. On the other hand, when y1 is far from 	,
the value given by Eq. (4.112) is small. This means that y1 is placed where the
value of the probability density function is small. Hence, the assumption that y1 is
derived from this probability density function is not very likely. Therefore, when y1

is given as a value of y in f .y/ (Eq. (4.112)), the values given by diverse values
of 	 show the likelihoods of the respective 	. Hence, when y in f .y/ is fixed at
y1 and 	 is varied, f .y1/ is considered a function of 	. If we enlarge the value of
f .y1/ by adjusting 	, the probability density function which makes y1 look likely is
obtained.

As just described, when we assume that the data are fixed but the parameters
are varied in the probability density function, the function is called the likelihood
function or simply the likelihood. As the natural logarithm of the likelihood is
usually easier to deal with than the likelihood as it is, we refer to the logarithm
(natural logarithm) of the likelihood as the log-likelihood.

Moreover, generalization of Eq. (4.112) yields the probability density function
of a normal distribution for the random variable of the vector of .Y1; Y2; : : : ; Yn/.
When random variables are independent of one another and the variances are equal,
we have

f .y1; y2; : : : ; yn/ D
�

1p
2��2

�n nY
iD1

exp

�
� 1

2�2
.yi � 	/2

�

D
�

1p
2��2

�n

exp

 
� 1

2�2

nX
iD1

.yi � 	/2

!
: (4.113)

The variable of this probability density function is the vector of .y1; y2; : : : ; yn/

and this vector is a nonrandom variable. In this situation, when a sampling gives
n data and .y1; y2; : : : ; yn/ are replaced with real data, the large value given by
Eq. (4.113) with the data of .y1; y2; : : : ; yn/ indicates a large likelihood of the
assumption that the data of .y1; y2; : : : ; yn/ are obtained with this density function.
Then, we derive the probability density function which makes .y1; y2; : : : ; yn/ look
likely by adjusting 	 with fixed values of .y1; y2; : : : ; yn/. Furthermore, when �2 is
varied, the probability density function which makes .y1; y2; : : : ; yn/ more likely is
produced by adjusting �2 as well as 	.

Next, we assume that n data sets of f.x11; : : : ; x1q; y1/; : : : ; .xn1; : : : ; xnq; yn/g
are sampled from a population and the data satisfy the following equation.
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Qyi D a0 C
qX

j D1

aj xij C 
i ; (4.114)

where fxij g .0 � j � q/ represent the conditions of the experiment or the
observation when Qyi are obtained. faj g .0 � j � q/ are regression coefficients
to determine 	i using the conditions of the experiment or the observation. f
i g
.1 � i � n/ are errors. When values for faj g .0 � j � q/ are set, we have

	i D a0 C
qX

j D1

aj xij : (4.115)

Then, when f
ig in Eq. (4.114) obeys Eq. (4.113), we obtain

f . Qy1; Qy2; : : : ; Qyn/ D
�

1p
2��2

�n

exp

 
� 1

2�2

nY
iD1


2
i

!

D
�

1p
2��2

�n

exp

0
@� 1

2�2

nY
iD1

. Qyi � a0 �
qX

j D1

aj xij /2

1
A :

(4.116)

If the value of this equation given by specific values of faj g and �2 is large, the
assumption that fyi g is calculated using the values, given by substituting �2 and
faj g into Eq. (4.114), is very likely. Hence, Eq. (4.116) is considered to be a function
which gives the likelihood of �2 and faj g. We then write

L.f Oaj g; �2jf.xi ; yi /g/ D
�

1p
2��2

�n

exp

0
@� 1

2�2

nX
iD1

.yi � a0 �
qX

j D1

aj xij /2

1
A :

(4.117)

This is the likelihood function when we assume Eq. (4.114) in which the mean of
f
i g is 0 and the variance is �2. L.f Oaj g; �2jf.xi ; yi /g/ indicates the likelihood of
f Oaj g and �2 when f.xi ; yi /g are fixed. The log-likelihood is then written as

l.faj g; �2jf.xi ; yi /g/ D �n

2
log.2�/ � n

2
log.�2/ � 1

2�2

nX
iD1

.yi � a0 �
qX

j D1

aj xij /2:

(4.118)

To obtain faj g which maximizes this value, this equation is differentiated with
respect to aj and the result is set to 0 as
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@l.faj g; �2jf.xi ; yi /g/
@aj

D �n

2
log.2�/�n

2
log.�2/� 1

2�2

nX
iD1

.yi �a0�
qX

j D1

aj xij /2 D 0:

(4.119)
In this equation, �Pn

iD1.yi � a0 � Pq
j D1 aj xij /2 is the only part which depends

on faj g. This is identical to RSS (Eq. (4.1) (page 163)) multiplied by �1. Therefore,
faj g which maximizes Eq. (4.119) is given by Eq. (4.9) (page 164).

When j D 0 holds, Eq. (4.119) is written as

@l.faj g; �2jf.xi ; yi /g/
@a0

D � 1

�2

nX
iD1

.yi � a0 �
qX

j D1

aj xij / D 0: (4.120)

Otherwise, when j ¤ 0 holds, we have

@l.faj g; �2jf.xi ; yi /g/
@aj

D � 1

�2

nX
iD1

xij .yi � a0 �
qX

j D1

aj xij / D 0: (4.121)

The second derivatives of l.faj g; �2jf.xi ; yi /g/ (Eq. (4.118) (page 217)) are given as
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D � n
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D � 1

�2

nX
iD1

xij xik .j ¤ 0; k ¤ 0/: (4.122)

When q D 2 and l.faj g; �2jf.xi ; yi /g/ is denoted more simply by l , we have
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4.8 Hessian Matrix of Log-Likelihood 219

This X is a design matrix (Eq. (4.4) (page 163)). The second line of Eq. (4.123)
equals the product of the inverse matrix of Eq. (4.42) (page 176) and (�1).
It indicates that this matrix is closely bound up with the reliability of the regression
coefficients. It is further explained in Fig. 4.10 (page 221) and surrounding text. The

matrix in which the jk-element is
@2l

@aj @ak

is referred to as the Hessian matrix. It is

not limited for use as a multiple regression equation. In general, even if l does not
stand for the log-likelihood, the matrix constructed by the second derivatives of a
scalar function is called the Hessian matrix in mathematics.

Moreover, faj g which satisfies Eqs. (4.120) (page 218) and (4.121) (page 218)
(that is, faj g are obtained by the least squares method) are represented as f Oaj g.
When q D 2, l is expanded in a Taylor series at f Oaj g yielding:

l.a0; a1; a2/ � l. Oa0; Oa1; Oa2/
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@l

@a0
0

ˇ̌
ˇ̌
a0

0Da0
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Equations (4.120) and (4.121) implies

@l

@a0
0

ˇ̌
ˇ̌
a0

0Da0

D 0;
@l

@a0
1

ˇ̌
ˇ̌
a0

1Da1

D 0;
@2

@a0
2

ˇ̌
ˇ̌
a0

2Da2

D 0: (4.125)

Substitution of Eqs. (4.123) (page 218) and (4.125) (page 219) into Eq. (4.124) gives
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: (4.126)
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Use of Eq. (4.123) (page 218) leads to

l.a0; a1; a2/ � l. Oa0; Oa1; Oa2/ � .a � Oa/tXt X.a � Oa/

�2
; (4.127)

where a and Oa are defined as

a D
0
@

a0

a1

a2

1
A ; Oa D

0
@

Oa0

Oa1

Oa2

1
A : (4.128)

Equation (1.77) (page 43) shows that Xt X is a positive semidefinite matrix.
Hence, diagonalization of Xt X is realized by an orthogonal mtrix U (Eq. (1.51)
(page 35)).

Xt X D U�U�1: (4.129)

All of the diagonal elements of � are positive or 0. Then, we have

l.a0; a1; a2/ � l. Oa0; Oa1; Oa2/ � bt �b
�2

; (4.130)

where b is defined as

b D U�1.a � Oa/: (4.131)

When a D Oa, the derivative of l.a0; a1; a2/ with respect to a0 is 0 (Eq. (4.120) (page
218)), as for a1 (Eq. (4.121) (page 218)) and a2 (Eq. (4.121)). Hence, if diagonal
elements of � are positive, that is, XtX is a positive definite matrix, the value of
Eq. (4.130) takes the maximum value when a D Oa is assigned (refer to Eq. (1.76)
(page 41) and surrounding text).

The Fisher information matrix (or simply information matrix) is a similar
construct like the Hessian matrix. Denoting the jk-element of Fisher information
matrix as Injk , it is defined as

Injk D �E

�
@2l

@�j @�k

	
; (4.132)

or equivalently (page 185 in [1])

Injk D E

�
@l

@�j

@l

@�k

	
: (4.133)
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Fig. 4.10 Constant-height surface of �450 of the log-likelihood given by Eq. (4.118) when the
simulation data generated by Eq. (4.134) is used (left). Constant-height surface with the same
settings except that fxi2g are uniform random numbers between �1 and 0:5; note that the scale
of a2 is different from that of Fig. 4.10 (left) (right)

f�j g are regression coefficients contained in l (log-likelihood). With
@2l

@�j @�k

for a

multiple regression defined as in Eq. (4.122) (page 218), it does not contain random
variables. Hence, the following equation holds:

Injk D �E

�
@2l

@aj @ak

	
D � @2l

@aj @ak

: (4.134)

That is, the Hessian matrix multiplied by .�1/ is Fisher information matrix.
However, Eq. (4.134) does not hold exactly in a generalized linear regression
because the Hessian matrix depends on fyi g.

To understand the behavior of Eq. (4.118) (page 217), simulation data are
generated using

yi D 2xi1 � 3xi2 C 4 C 
i ; (4.135)

where fxi1g .1 � i � 100/ are uniform random numbers between �1 and 2,
fxi2g .1 � i � 100/ uniform random numbers between �2 and 1, and f
i g are
obtained from a normal distribution (with mean 0 and variance 22). With �2 D 4

in Eq. (4.118), various values are assigned as a0, a1, and a2. The constant-height
surface of �450 of l is illustrated in Fig. 4.10 (left); the value of l is larger
than �450 inside this constant-height surface. Next, fxi2g are changed to uniform
random numbers between �1 and 0:5 and the same simulation is performed. The
result is illustrated in Fig. 4.10 (right). The range of the constant-height surface
turns out to be larger in direction a2, implying that the area where l is close
to maximum l spreads out in that direction. This is an accurate reflection of the
difficulty in estimating a2 when the variation of fxi2g is small. In other words, when
the range of x2 is narrow, the amount of information we have about a2 is small.
Thus, the information matrix indicates how much information about the regression
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Fig. 4.11 Result of orthogonal transformation of Fig. 4.10

coefficients is contained in the data. This is what “information” signifies here and is
different from that of Akaike’s Information Criterion (AIC ). It is also different to
that in Shannon’s Information Theory. For this reason, each diagonal element of the
information matrix is called Fisher information.

Using the same data as those used to generate Fig. 4.10 (left), the constant-
height surface of �450 of l is drawn with various values of b0, b1, and b2 in
Eq. (4.130) (page 220) (Fig. 4.11 (left)). When the data in Fig. 4.10 (right) are
used, the transformation generates the illustration in Fig. 4.11 (right). The constant-
height surfaces drawn in Fig. 4.11 show that the orthogonal transformation of the
coordinates used in Fig. 4.10 constructs the spheroid for which the axes of the
rotation become new coordinates. The transformation of Fig. 1.17 (left) (page 41)
into Fig. 1.17 (right) is extended to the three-dimensional case in this manner.

R Program [4 - 13]

Constant-height surface of the log-likelihood of multiple regression is illustrated
in three-dimensional graph (Fig. 4.10 (left)).
hess1()
function() {
# (1)

library(misc3d)
library(rgl)

# (2)
fun1 <- function(af0, af1, af2) {

# (3)
nn <- length(af0)

# (4)
set.seed(1526)
nd <- 100
xx1 <- runif(n=nd, min=-1, max=2)
xx2 <- runif(n=nd, min=-2, max=1)
yy <- 2*xx1 - 3*xx2 + 4 +rnorm(n = nd,



4.8 Hessian Matrix of Log-Likelihood 223

mean = 0, sd = 2)
llf <- NULL
for(ii in 1:nn){
ss <- sum((yy - af0[ii] - af1[ii]*xx1 -
af2[ii]*xx2)ˆ2)

llf[ii] <- -nd*0.5*log(2*pi) -
nd*0.5*log(sig2) - ss*0.5/sig2

}
return(llf)

}
# (5)

th1 <- -450
sig2 <<- 4

# (6)
a0 <- seq(from = -30, to = 40, by = 1)
a1 <- seq(from = -8, to = 14, by = 2)
a2 <- seq(from = -10, to = 6, by = 2)

# (7)
clear3d(type = "all")
rgl.light(theta = -40, phi = 50,
viewpoint.rel = T, ambient = "white",
diffuse = "white", specular = "white")

rgl.light(theta = -60, phi = 10,
viewpoint.rel = T, ambient = "white",
diffuse = "white", specular = "white")

rgl.light(theta = 130, phi = -30,
viewpoint.rel = T, ambient = "white",
diffuse = "white", specular = "white")

# (8)
contour3d(fun1, th1, a0, a1, a2,
color = "blue", engine = "rgl", scale = T,
color2 = "red", fill = T, smooth=T)

# (9)
axes3d()
title3d(xlab = "a0", ylab = "a1", zlab = "a2")
box3d()

# (10)
aspect3d(x = 3.5, y = 2.2, z = 2)

# (11)
rm(sig2, envir = .GlobalEnv)

}

(1) The use of package “misc3d” and the package “rgl” is described (page 226
in [6]).

(2) The function (fun1()) which gives log-likelihood is defined. af0, af1, and
af2 are values of the regression coefficients.
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(3) The number of lattice points where the value of log-likelihood is calculated is
given as nn.

(4) nd data (xx1, xx2, and yy) are given. The values of log-likelihood are
calculated at lattice points. The results are stored in llf.

(5) The values on the constant-height surface are saved as th1. The variance
(sig2) of the errors which obey a normal distribution is set as 4. Because
sig2 is referred to in fun1(), <<- is used here.

(6) The value of equally-spaced points (a0, a1, and a2) for constructing lattice
points are given.

(7) clear3d(type = ‘‘all’’) deletes all the graphs. rgl.light() sets
the positions and colors of lights.

(8) contour3d() draws a constant-height surface. As this three-dimensional
graph can be rotated using a mouse, this constant-height surface is observable
from various directions.

(9) axes3d() adds coordinate axes to the three-dimensional graph.
title3d() writes explanations of the coordinate axes. box3d() draws
a box which surrounds the area of the three-dimensional graph.

(10) aspect3d() adjusts the ratio of the lengths of the three directions of the
three-dimensional graph.

(11) sig2 is deleted from the global environment.

R Program [4 - 13] End
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Chapter 5
Akaike’s Information Criterion (AIC )
and the Third Variance

5.1 Cp and FPE

One statistic in selecting a multiple regression equation is Mallows’ Cp , which is an
approximation of the error variance of the estimates given by a multiple regression
equation. This error variance multiplied by n is written as

E
h nX

iD1

. Oyi � EŒyi �/
2
i

D E
h�

H.Qy C �/ � Qy�t �H.Qy C �/ � Qy�
i

D E
h�

.H � I/Qy C H�
�t�

.H � I/Qy C H�
�i

D Qyt .I � H/Qy C EŒ�t H��

D Qyt .I � H/Qy C .q C 1/�2; (5.1)

where H is a hat matrix (Eq. (4.13) (page 164)) and Qy are true values, that is, Qyi D
EŒyi � holds. The relation H2 D H (Eq. (4.28) (page 167)) is used here, along with
Eq. (4.34) (page 174). In deriving Eq. (4.32) (page 174), HQy D Qy was assumed.
However, this relationship is not assumed here.

On the other hand, the expectation of the residual sum of squares is written as

E
h nX

iD1

. Oyi � yi /
2
i

D E
h�

H.Qy C �/ � .Qy C �/
�t �

H.Qy C �/ � .Qy C �/
�i

D
h�

.H � I/.Qy C �/
�t �

.H � I/.Qy C �/
�i

D Qyt .I � H/Qy C EŒ�t .I � H/��

D Qyt .I � H/Qy C .n � q � 1/�2: (5.2)
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The relation HQy D Qy is not assumed here, either. The following equation is obtained
from Eq. (5.2).

Qyt .I � H/Qy D E
h nX

iD1

. Oyi � yi /
2
i

� .n � q � 1/�2: (5.3)

Substitution of this equation into Eq. (5.1) gives

E
h nX

iD1

. Oyi � EŒyi �/
2
i

D E
h nX

iD1

. Oyi � yi /
2
i

� .n � q � 1/�2 C .q C 1/�2

D E
h nX

iD1

. Oyi � yi /
2
i

� .n � 2q � 2/�2

�
nX

iD1

. Oyi � yi /
2 � .n � 2q � 2/�2: (5.4)

Dividing the previous equation by �2 determines Mallows’ Cp [5] which is defined
as

Cp D
Pn

iD1. Oyi � yi /
2

�2
� n C 2q C 2: (5.5)

As a regression equation that yields a small error variance of the estimates is
considered to be beneficial, we choose a regression equation with a small value
of Cp. However, �2 is needed to estimate Cp . When �2 is unknown, the multiple
regression equation with all predictors is constructed and O�2 given by the following

O�2 D
Pn

iD1. Oyi � yi /
2

n � qmax � 1
(5.6)

is used. Here qmax is the number of all predictors. When Eq. (5.6) is used instead
of �2 in Eq. (5.5), Cp no longer is precisely an unbiased estimator of the value of

Eq. (5.4) divided by �2 because
1

O�2
is not an unbiased estimator of

1

�2
(20 page in

[6]).
Alternatively, if HQy D Qy holds, Eq. (5.1) (page 225) becomes

E
h nX

iD1

. Oyi � EŒyi �/
2
i

D .q C 1/�2: (5.7)

Therefore, when we only use regression equations that satisfy HQy D Qy in the
selection of regression equation, estimates closer to the true values are obtained by
a smaller value of q. For example, when the true values follow a quadratic equation,
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whichever one of the quadratic equation and the cubic equation is used, HQy D Qy
holds. However, a quadratic equation gives closer estimates to the true values.

One other statistic used in selecting a multiple regression equation is the final
prediction error (FPE) ([1], 247 page of [4]). This is an approximation of the
residual sum of squares for data in the future (fy�

i g .1 � i � n/, i.e., f Qyi C 
�g).
That is, the following values are obtained in a manner analogous to Eq. (3.45)
(page 116).

E
h nX

iD1
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i � Oyi /
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i

D E
h�Qy C �� � H.Qy � �/
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D E
h
Qyt .I � H/Qy C ��t �� C �t H�

i

D .n C q C 1/�2: (5.8)

In deriving the expression on the third line from the preceding, HQy D Qy is assumed.
This assumption is not set in the derivation of Cp (Eq. (5.5)).

HQy D Qy is equivalent to the condition that the form of a regression equation
either is identical to that of the equation that generates the data or contains that
of the equation that generates the data as a special case. As a simple example to
illustrate the point, let us assume that the elements of Qy obey a quadratic equation.
That is, the elements of Qy (f Qyig .1 � i � n/) satisfy

Qyi D Qa0 C Qa1xi C Qa2x2
i ; (5.9)

where fxig .1 � i � n/ are values of predictors of the data, and Qa0, Qa1, and Qa2 are
constants. In this situation, the following cubic equation

y D a0 C a1x C a2x2 C a3x3 (5.10)

is fitted to the data of f.xi ; Qyi /g .1 � i � n/ by the least squares method. Then, we
have Oa0 D Qa0, Oa1 D Qa1, Oa2 D Qa2, and Oa3 D 0. As a result, the estimates given by this
regression equation are identical to the data (f Qyi g). Hence, HQy D Qy holds because
the form of the cubic equation is identical to the form of the equation (the quadratic
equation) that generates the data or contains the equation as a special case.

Conversely, when a regression is performed using a cubic equation, f Qyi g is
represented using a cubic equation if HQy D Qy holds. In this instance, the form
of cubic equation is identical to that of the equation that generates f Qyi g or contains
the equation as a special case.

Therefore, when a regression is performed by the least squares method, the
validity of HQy D Qy is equivalent to the condition that the form of cubic equation
is identical to that of the equation that generates the data or contains the equation as
a special case. However, as Qy is unknown in normal data, it is difficult to determine
whether HQy D Qy is satisfied.
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If �2 is known, the value given by Eq. (5.8) is reduced when q is smaller. This
equation requires the same condition as that for Eq. (5.7) (page 226). Hence, when
the form of the regression equation is identical to that of the equation that generates
the data, errors of the estimates given by data in the future are smaller than those
given by a more complicated regression equation that contains the former regression
equation as a special case. While Eq. (5.7) is derived with the objective of bringing
the estimates close to their true values, Eq. (5.8) is intended to bring the estimates
close to the data in the future. These two objectives lead to the same conclusion
though. This does not mean, however, that when we know the form of the equation
that generates the data, the form of the correct equation is guaranteed to yield the
best result in terms of prediction. This conclusion is valid only if HQy D Qy holds.
We cannot rule out the possibility that, when we use a regression equation that does
not satisfy this equation, we could obtain a better regression equation, in terms of
prediction, than the regression equation with the form of the equation that generates
the data. In fact, it may happen that when we use data that a 7th-degree polynomial
generates, fitting with a quadratic equation gives better results in terms of prediction
than fitting with a 7th-degree polynomial (16 page in [11]).

On the other hand, when �2 is unknown, the following equation is substituted
into Eq. (5.8);

O�2 D
Pn

iD1. Oyi � yi /
2

n � q � 1
: (5.11)

The statistic given by this equation is called FPE (247 page in [4]), and is defined
as

FPE D n C q C 1

n � q � 1

nX
iD1

. Oyi � yi /
2: (5.12)

FPE assumes that �2 is obtained using the regression equation for which we
estimate the errors for data in the future; the multiple regression equation with all
predictors is not used. This point also differentiates FPE from Cp. Equation (5.12)
is useful for automating for example the selection of the order of time-series model.
However, we usually do not know whether HQy D Qy holds. Indeed, we find it strange
that FPE is used with �2 unknown without concern for the validity of this equation
in yielding results of practical value. However, when n 	 q holds, an approximate
value for FPE can be obtained,

FPE D
1 C q C 1

n

1 � q C 1

n

nX
iD1

. Oyi � yi /
2

� 1

1 � 2q C 2

n

nX
iD1

. Oyi � yi /
2
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� 1�
1 � q C 1

n

�2

nX
iD1

. Oyi � yi /
2: (5.13)

That is, FPE takes values close to the Generalized Cross-Validation (GC V )
(Eqs. (3.98) (page 151) and (4.57) (page 184)) multiplied by n. Hence, FPE works
well for the selection of the regression equation regardless of whether HQy D Qy holds.

5.2 AIC of a Multiple Regression Equation with
Independent and Identical Normal Distribution

We assume that the data of X and y (Eq. (4.4) (page 163)) are given, and the errors
in the target variable are realizations of N.0; �2/ (normal distribution; the mean is
0 and the variance is �2. �2 is also known as the error variance). The likelihood
of the multiple regression equation (a0 C Pq

j D1 aj xij with faj g .0 � j � q/ the
regression coefficients) in light of X and y is expressible as

L.faj g; �2jX; y/ D
�

1p
2��2

�n

exp

�
� 1

2�2

nX
iD1

.a0 C
qX

j D1

aj xij � yi /
2

�
; (5.14)

where a0 C Pq
j D1 aj xij gives an estimate corresponding to yi . L.faj g; �2jX; y/

indicates how likely the regression equation is in light of the data X and y when
the regression equation is represented using faj g and �2. Large values mean that
there is a high possibility that the data are obtained by this regression equation;
small values mean that there is a low possibility that the data are obtained by this
regression equation. In data analysis, we should not consider the data at hand to
have been given by just a coincidental accident but we should consider it to have
been given by common practice. Hence, the values of faj g and �2 which lead
to a high likelihood are desirable. Therefore, we adjust the values of faj g and
�2 to maximize L.faj g; �2jX; y/. This method is called the maximum likelihood
procedure (maximum likelihood method).

Because the derivation of conditions to maximize a function is equivalent to
that in maximizing the natural logarithm of the function, the natural logarithm
of Eq. (5.14) denoted by l.faj g; �2jX; y/ and called the log-likelihood, is more
convenient. It is defined as

l.faj g; �2jX; y/ D �n

2
log.2�/�n

2
log.�2/� 1

2�2

nX
iD1

.a0C
qX

j D1

aj xij �yi /
2: (5.15)

It is maximized by differentiating with respect to �2 and setting the result to zero.
We then have
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@l.faj g; �2jX; y/

@�2
D � n

2�2
C 1

2.�2/2

nX
iD1

.a0 C
qX

j D1

aj xij � yi /
2 D 0: (5.16)

As a result, O�2 (the estimate of �2) is written as

O�2 D 1

n

nX
iD1

.a0 C
qX

j D1

aj xij � yi /
2: (5.17)

This O�2 is the result of estimating error variance using the maximum likelihood
procedure; that is, this is the maximum likelihood estimator of error variance. This
is different from the unbiased estimator (Eq. (3.71) (page 130)). Hence, Eq. (5.15)
becomes

l.faj g; O�2jX; y/ D �n

2
log.2�/ � n

2
log. O�2/ � n

2

D �n

2
log.2�/ � n

2
log
� 1

n

nX
iD1

.a0 C
qX

j D1

aj xij � yi /
2
�

� n

2
: (5.18)

Maximizing l.faj g; O�2jX; y/ is equivalent to minimizing O�2. That is, when the
likelihood is defined as in Eq. (5.14) (page 229), the calculation of faj g using
the maximum likelihood procedure is the same as using the least squares method.
Moreover, O�2 given by f Oaj g (estimates of faj g) which are obtained by the least
squares method is the maximum likelihood estimator of �2. Therefore, denoting by
l.f Oaj g; O�2jX; y/ those values for l.faj g; O�2jX; y/ calculated using f Oaj g that have
been obtained by the least squares method, then l.f Oaj g; O�2jX; y/ can be written as

l.f Oaj g; O�2jX; y/ D �n

2
log.2�/� n

2
log
�1

n

nX
iD1

. Oa0 C
qX

j D1

Oaj xij �yi /
2
�

� n

2
; (5.19)

which represents the log-likelihood of f Oaj g and O�2 in light of the data at hand
(data in hand; X; y); f Oaj g and O�2 are obtained using data at hand (X; y). However,
when the data of the same number of those at hand are obtained by sampling from
the same population with the same conditions, the resultant log-likelihood is not
likely to be close to l.f Oaj g; O�2jX; y/. Whereas the distribution of the population
does not change, the data at hand can vary from one sampling to another. Hence,
these regression coefficients (f Oaj g and O�2) are pulled toward the direction in which
the data at hand look likely from faj g and �2 in population. Hence, the likelihood
of f Oaj g and O�2 in light of the emerging data derived from the same population is
usually poorer than that in light of the original data at hand. Therefore, the log-
likelihood of f Oaj g and O�2 in light of the emerging data is usually smaller than that
in light of the original data at hand.
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Then, the data in the future, labeled X and y� (the number of data being n), are
assumed to be obtained using the function y�

i D a0 C Pq
j D1 aj xij C 
� (
� is a

realization of N.0:0; �2/) given in the same manner as that of the data at hand. The
values of predictors of the data are the same as those of the data at hand (X). If this
is the case, the likelihood of f Oaj g and O�2 in light of X and y� is represented by the
following equation in a fashion similar to Eq. (5.15) (page 229);

l.f Oaj g; O�2jX; y�/ D �n

2
log.2�/ � n

2
log. O�2/ � 1

2 O�2

nX
iD1

. Oa0 C
qX

j D1

Oaj xij � y�
i /2:

(5.20)
Multiplying both sides by (�2), we then have

� 2l.f Oaj g; O�2jX; y�/ D nlog.2�/ C nlog. O�2/ C 1

O�2

nX
iD1

. Oa0 C
qX

j D1

Oaj xij � y�
i /2:

(5.21)
Future data are required for obtaining l.f Oaj g; O�2jX; y�/; the data at hand alone

cannot give this value. However, if there is simple relationship between l.f Oaj g; O�2j
X; y�/ and l.f Oaj g; O�2jX; y/, l.f Oaj g; O�2jX; y�/ is estimated using l.f Oaj g; O�2jX; y/.
Then, we assume

d D 2

�
l.f Oaj g; O�2jX; y/ � EŒl.f Oaj g; O�2jX; y�/�

�
: (5.22)

The factor of 2 arises from convention. The historical background for this is that
as the constant part of the essential term given by the Taylor expansion of the

log-likelihood is
�
�1

2

�
, this factor is removed in the subsequent development.

EŒl.f Oaj g; O�2jX; y�//� indicates the mean of various values of l.f Oaj g; O�2jX; y�//,
each of which results from one set of data in the future. Specifically, it is the
expectation (expected value) of l.f Oaj g; O�2jX; y�//. The expectation is calculated
here because the errors in y� (data in the future) take various values. The likelihood
of the resultant regression equation in light of the data in the future is usually
considered to be smaller than that in light of the data at hand. Therefore, this d is
expected to be positive in many situations. When the form of the regression equation
is identical to that of the equation that generates the data or contains the equation
as a special case (or such relations approximately hold), the approximate equation
below holds (proof to be given later);

d � 2.q C 2/: (5.23)

This relation holds even when a regression equation is not a multiple regression
equation or the data obey a distribution other than a normal distribution so long as
the number of regression coefficients contained in a regression equation is .q C 1/

[2, 4]. In fact, when the data follow a distribution other than a normal distribution,
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the estimation of the error variance or similar procedure might not be needed. That
is, whereas the shape of the probability density function of a normal distribution is
determined by two values, the mean and the variance, that of another distribution is
determined by one value. In this situation, the number of regression coefficients to
be estimated is smaller by one; that is,

d � 2.q C 1/: (5.24)

Equations (5.22) and (5.23) lead to

� 2EŒl.f Oaj g; O�2jX; y�//� � �2l.f Oaj g; O�2jX; y/ C 2.q C 2/: (5.25)

As with EŒl.f Oaj ; O�2jX; y�//�, if the log-likelihood of the regression equation
obtained by data at hand is estimated in light of the data in the future, the log-
likelihood is called the expected log-likelihood (page 35 in [4]).

The left hand side of Eq. (5.25) determines the definition of the Akaike’s
Information Criterion (AIC ). It can also be written as

AIC D �2l.f Oaj g; O�2jX; y/ C 2.q C 2/: (5.26)

Substitution of Eq. (5.18) (page 230) into this equation results in

AIC D nlog.2�/ C nlog
�1

n

nX
iD1

. Oa0 C
qX

j D1

Oaj xij � yi /
2
�

C n C 2.q C 2/: (5.27)

Another definition of AIC found in older literature is

AIC D �2l.f Oaj g; O�2jX; y/ C 2.q C 1/: (5.28)

As this definition is obtained using a less precise approximation, Eq. (5.26) is
preferable.

Let us conduct a simulation to ascertain whether Eq. (5.23) actually holds. First,
let us assume that data are given by a constant plus an error; the error obeys a normal
distribution. The simulation data are realizations of N.1; 52/ (normal distribution
with mean 1 and variance 52). The number of data is 100. These data are fitted to
a constant. Namely, the average of these data is the estimate. The log-likelihood in
light of data at hand for this situation is given by Eq. (5.18) (page 230). To calculate
the expectation of the value yielded by Eq. (5.20) (page 231), 100 sets of data in
the future are generated in the same manner as that of the simulation data (data at
hand) described above. The value given by the following equation is calculated for
each set of data in the future. The average of the resultant values is regarded as the
approximation of the expectation.
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Fig. 5.1 Distribution of d (Eq. (5.22)) given by a simulation performed 5;000 times in which 100

simulation data are obtained using y D 1C
 and regression is conducted with constant regression
equation y D a0. The mean of the distribution is 4:042123

l. Oa0; O�2jX; y�/ D �n

2
log.2�/ � n

2
log. O�2/ � 1

2 O�2

nX
iD1

. Oa0 � y�
i /2: (5.29)

This simulation is repeated 5;000 times by varying the initial values of the pseudo-
random numbers. The resulting distribution of d (Eq. (5.22) (page 231)) is shown in
Fig. 5.1. As the average of the d values turned out to be 4:042123, Eq. (5.23) (page
231) with q D 0 holds.

Next, 100 simulation data (f.xi ; yi /g .1 � i � n/) were generated; they consist
of the values of the predictors f0:1; 0:2; 0:3; : : : ; 10g and those of the target variables
subject to the following

yi D 3:9xi C 1 C 
i ; (5.30)

where f
i g are realizations of N.0; 12/ (normal distribution with mean 0 and
variance 12). A linear equation is fitted to these data. The log-likelihood for this
case is represented by Eq. (5.18) (page 230) with setting q D 1. To calculate the
expectation of the value given by Eq. (5.20) (page 231), 100 sets of data in the future
were generated in the same manner as that of the data at hand noted previously and
values from Eq. (5.20) (page 231) were obtained. The average of these values is
used as an approximation of the expectation. The distribution of d (Eq. (5.22) (page
231)), drawn in Fig. 5.2, was given by a simulation that was performed 5;000 times
by varying the initial values of the pseudo-random numbers. As the average of the
values of d turned out to be 6:127781, Eq. (5.23) (page 231) holds assuming q D 1.

Alternatively, the simulation data used in Fig. 5.2 can be fitted to a constant
instead of a linear equation. The result, illustrated in Fig. 5.3, gives an average of
0:0572068 for this distribution. Clearly, Eq. (5.23) (page 231) with q D 0 does not
hold, as the form of the regression equation is not identical to that of the equation
that generated the data and does not contain that of the equation that generated the
data as a special case, either.
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Fig. 5.2 Distribution of d (Eq. (5.22)) given by a simulation performed 5;000 times in which
100 simulation data are obtained using y D 3:9x C 1 C 
 and regression is performed with the
regression equation (y D a0 C a1x). The mean of the distribution is 6:127781
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Fig. 5.3 Distribution of d (Eq. (5.22)) given by 5;000 times simulation in which 100 simulation
data are obtained using y D 3:9x C 1 C 
 and the data are modeled by the regression equation
(y D a0). The mean of the distribution is 0:0572068

When the error variance of the population (�2) is known, Eq. (5.15) (page 229)
is written as

l.f Oaj jX; yg/ D �n

2
log.2�/ � n

2
log.�2/ � 1

2�2

nX
iD1

. Oa0 C
qX

j D1

Oaj xij � yi /
2; (5.31)

where �2 is a parameter representing error variance. Furthermore, Eq. (5.20) (page
231) is represented as

l.f Oaj gjX; y�/ D �n

2
log.2�/� n

2
log.�2/� 1

2�2

nX
iD1

. Oa0 C
qX

j D1

Oaj xij �y�
i /2: (5.32)



5.2 AIC of a Multiple Regression Equation with Independent : : : 235

Multiplying Eqs. (5.31) and (5.32) by factor �2 gives

�2l.f Oaj gjX; y/ D nlog.2�/ C nlog.�2/ C 1

�2

nX
iD1

. Oa0 C
qX

j D1

Oaj xij � yi /
2; (5.33)

�2l.f Oaj gjX; y�/ D nlog.2�/ C nlog.�2/ C 1

�2

nX
iD1

. Oa0 C
qX

j D1

Oaj xij � y�
i /2:

(5.34)

Therefore, Eq. (5.22) (page 231) yields

d D �2EŒl.f Oaj gjX; y�/� C 2l.f Oaj gjX; y/

D E
h 1

�2

nX
iD1

. Oa0 C
qX

j D1

Oaj xij � y�
i /2
i

� 1

�2

nX
iD1

. Oa0 C
qX

j D1

Oaj xij � yi /
2

� .n C q C 1/ � .n � q � 1/

D 2q C 2: (5.35)

The first term in the third line of this derivation comes from Eq. (4.35) (page 174).
The last term is derived from Eq. (4.39) (page 175). We then obtain

� 2EŒl.f Oaj gjX; y�/� � �2l.f Oaj gjX; y/ C 2.q C 1/: (5.36)

Hence, using Eq. (5.33) (page 235), AIC for multiple regression is written as

AIC D �2l.f Oaj g; O�2jX; y/C2.qC1/

D nlog.2�/Cnlog.�2/C 1

�2

nX
iD1

. Oa0C
qX

j D1

Oaj xij �yi /
2C2.qC1/: (5.37)

Comparison between Eqs. (5.26) and (5.37) implies that 2.q C 2/ on the right-
hand side of Eq. (5.25) is based on the fact that �2 is considered to be an unknown
regression coefficient.

R Program [5 - 1]

The simulation data given by y D 1 C 
 (
 representing a normally distributed
error) are modeled by the regression equation y D a0 in deriving the mean of d

(Eq. (5.22) (page 231)) on the assumption that the error variance is unknown.
aic41e()

function ()
{
# (1)
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nd <- 100
nt <- 5000

# (2)
dif <- NULL

# (3)
set.seed(2494)
for(kk in 1:nt){

yya <- 1 + rnorm(nd, mean = 0, sd = 5)
ava <- mean(yya)
sig2 <- sum((ava - yya)ˆ2) / nd
la <- nd * log(2*pi) + nd * log(sig2) + nd

# (4)
lb <- 0
for(ii in 1:100){
yyb <- 1 + rnorm(nd, mean = 0, sd = 5)
sig2b <- sum((ava - yyb)ˆ2) / nd
lb <- nd * log(2 * pi) + nd * log(sig2) +
sig2b * nd / sig2 + lb

}
lb <- lb/100

# (5)
dif[kk] <- lb - la

}
# (6)

print("mean(dif)")
print(mean(dif))

# (7)
par(mfrow = c(1, 1), mai = c(1.5, 1.5, 0.5, 0.5),
oma = c(1, 1, 1, 1))

br1 <- pretty(dif, n=50)
bw1 <- br1[2] - br1[1]
difh <- floor(dif/bw1) * bw1 + 0.01 * bw1
hist(difh, breaks = br1, main = "", xlab = "d",
ylab = "Frequency")

}

(1) The number of data (nd) and the number of times the simulation (nt) is
performed are given.

(2) dif is prepared to store the value d (Eq. (5.22) (page 231)).
(3) After setting the initial value of the pseudo-random numbers, the simulation is

performed nt times. yya stores values of the target variable of the data. ava
stores Oa0. As this is regression to a constant, Oa0 is the average of the values of
the target variable of the data. sig2 stores O�2. �2l.f Oaj gg; O�2jX; y/ (Eq. (5.15)
(page 229)) is stored in la.
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(4) The average of the values of �2l.f Oaj gg; O�2jX; y�/ (Eq. (5.21) (page 231)) is
stored in lb.

(5) The value of d (Eq. (5.22) (page 231)) is stored in dif[kk].
(6) The average of the elements of dif is displayed.
(7) The histogram of dif is drawn (Fig. 5.1 (page 233)).

aic41e() also outputs:

"mean(dif)"
4.042123

R Program [5 - 1] End

R Program [5 - 2]

The simulation data given by y D 3:9x C 1 C 
 (
 representing a normally
distributed error) are modeled by the regression equation of y D a0 C a1x to derive
the mean d (Eq. (5.22) (page 231)) on the assumption that the error variance is
unknown. aic51e()

function ()
{
# (1)

nd <- 100
nt <- 5000

# (2)
dif <- NULL

# (3)
xx <- seq(from = 0.1, to = 10, length = nd)
xxm <- matrix( c(rep(1, length = nd), xx), ncol = 2)
xxq <- xxm %*% solve(t(xxm) %*% xxm) %*% t(xxm)

# (4)
set.seed(2494)
for(kk in 1:nt){

yya <- xx * 3.9 + 1 + rnorm(nd, mean = 0, sd = 1)
yyam <- matrix(yya, ncol = 1)
yyhat <- xxq %*% yyam
sig2 <- sum((yya - yyhat)ˆ2)/nd
la <- nd * log(2 * pi) + nd * log(sig2) + nd

# (5)
lb <- 0
for(ii in 1:100){
yyb <- xx * 3.9 + 1 + rnorm(nd, mean = 0,
sd = 1)

sig2b <- sum((yyhat - yyb)ˆ2) / nd
lb <- nd * log(2 * pi) + nd * log(sig2)+
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sig2b * nd / sig2 + lb
}
lb <- lb/100

# (6)
dif[kk] <- lb - la

}
# (7)

print("mean(dif)")
print(mean(dif))

# (8)
par(mfrow = c(1, 1), mai = c(1.5, 1.5, 0.5, 0.5),
oma = c(1, 1, 1, 1))
br1 <- pretty(dif, n = 50)
bw1 <- br1[2] - br1[1]
difh <- floor(dif / bw1) * bw1 + 0.01 * bw1
hist1 <- hist(difh, breaks = br1, main = "",
xlab = "d", ylab = "Frequency")

}

(1) The number of data (nd) and the number of times the simulation (nt) is
performed are given,

(2) dif is prepared to store the value d (Eq. (5.22) (page 231)).
(3) The values of the predictor of the data are stored in xx. Transforming it into the

form of column vector produces xxm. xxq is defined by removing y from the
right-hand side of Eq. (4.9) (page 164).

(4) After the initial values of the pseudo-random numbers are set, the simulation is
performednt times. The elements of yyhat are estimates corresponding to the
target variable of the data. sig2 stands for O�2. The value of �2l.f Oaj g; O�2jX; y/

(Eq. (5.15) (page 229)) is saved as la.
(5) The average of the values of �2l.f Oaj g; O�2jX; y�/ (Eq. (5.21) (page 231)) is

saved as lb.
(6) The value of d (Eq. (5.22) (page 231)) given by each simulation is saved as

dif[kk].
(7) The average of the elements of dif is displayed.
(8) The histogram of the elements of dif is drawn (Fig. 5.2 (page 234)).

aic51e() also outputs:
"mean(dif)"
6.127781

R Program [5 - 2] End

R Program [5 - 3]

The simulation data given by y D 3:9x C 1 C 
 (
 representing a normally
distributed error) are modeled by the regression equation of y D a0 to derive
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the mean of d (Eq. (5.22) (page 231)) on the assumption that the error variance
is unknown.
aic56e()

function ()
{
#(1)

nd <- 100
nt <- 5000

# (2)
dif <- NULL

# (3)
xx <- seq(from = 0.1, to = 10, length = nd)
set.seed(2494)
for(kk in 1:nt){

yya <- xx * 3.9 + 1 + rnorm(nd, mean = 0, sd = 1)
ava <- mean(yya)
sig2 <- sum((ava - yya)ˆ2) / nd
la <- nd*log(2 * pi) + nd * log(sig2) + nd

# (4)
lb <- 0
for(ii in 1:100){
yyb <- xx * 3.9 + 1 + rnorm(nd, mean = 0,
sd = 1)

sig2b <- sum((ava - yyb)ˆ2)/nd
lb <- nd * log(2 * pi) +nd * log(sig2) +
sig2b * nd / sig2 + lb

}
lb <- lb / 100

# (5)
dif[kk] <- lb - la

}
# (6)

print("mean(dif)")
print(mean(dif))

# (7)
par(mfrow = c(1, 1), mai = c(1.5, 1.5, 0.5, 0.5),
oma = c(1, 1, 1, 1))

br1 <- pretty(dif, n = 50)
bw1 <- br1[2] - br1[1]
difh <- floor(dif/bw1) * bw1 + 0.01 * bw1
hist1 <- hist(difh, breaks = br1, main = "",
xlab = "d", ylab = "Frequency")

}
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(1) The number of data (nd) and the number of times the simulation (nt) is
performed are given,

(2) dif is initialized to store d (Eq. (5.22) (page 231)).
(3) After the initial values of the pseudo-random numbers are set, the simulation is

performed nt times. The elements of yya are values of the target variable. ava
receives values of Oa0 and sig2 that of O�2. The value of �2l.f Oaj gg; O�2jX; y/

(Eq. (5.15) (page 229)) is stored in la.
(4) The average of the values of �2l.f Oaj gg; O�2jX; y�/ (Eq. (5.21) (page 231)) is

saved as lb.
(5) The value of d (Eq. (5.22) (page 231)) is saved as dif[kk].
(6) The average of the elements of dif is displayed.
(7) The histogram of the elements of dif is drawn (Fig. 5.3 (page 234)).

aic56e() also outputs:
"mean(dif)"
0.0572068

R Program [5 - 3] End

5.3 Derivation of AIC for Multiple Regression

Equation (4.32) (page 174) shows that the expectation given in Eq. (4.3) (page
163) is

EŒRSS� D EŒ.y � Oy/t .y � Oy/�

D EŒ�t � � �tH��: (5.38)

Then, Eq. (4.36) (page 175) gives the following relation,

RSS � �2
n�q�1; (5.39)

where �2
n�q�1 is a random variable which obeys the �2-distribution with .n� q � 1/

degrees of freedom.
On the other hand, �2l.f Oaj g; O�2jX; y�/ (Eq. (5.21) (page 231)) for the multiple

regression is expressed as

� 2l.f Oaj g; O�2jX; y�/ D nlog.2�/ C nlog. O�2/ C 1

O�2

nX
iD1

�
Oa0 C

qX
j D1

Oaj xij � y�
i

�2

D nlog.2�/ C nlog

�
RSS

n

�
C nRSS�

RSS
; (5.40)
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where RSS� is defined as

RSS� D
nX

iD1

. Oa0 C
qX

j D1

Oaj xij � y�
i /2: (5.41)

Therefore, in view of Eqs. (5.39) (page 240) and (4.40) (page 176), the third term
on the right-hand side of Eq. (5.40) is written as

nRSS�

RSS
D n�2

nCqC1

�2
n�q�1

D n
n C q C 1

n � q � 1
FnCqC1;n�q�1; (5.42)

where �2
nCqC1 is a random variable which obeys the �2-distribution with .nCqC1/

degrees of freedom. As the errors of the data at hand are independent of those of the
data in the future, �2

n�q�1 is independent of �2
nCqC1 in Eq. (5.42). FnCqC1;n�q�1 is

a random variable which obeys the F -distribution with the first degree of freedom
of .n C q C 1/ and the second degree of freedom of .n � q � 1/. Using Eq. (2.68)
(page 91), the expectation of the random variable given by Eq. (5.42) is represented
as

E

�
n

n C q C 1

n � q � 1
FnCqC1;n�q�1

	
D n

n C q C 1

n � q � 1
� n � q � 1

n � q � 1 � 2
D n

n C q C 1

n � q � 3
:

(5.43)

Hence, Eq. (5.40) is written as

�2EŒl.f Oaj g; O�2jX; y�/� D nlog.2�/Cnlog. O�2/C 1

O�2

nX
iD1

�
a0C

qX
j D1

aj xij �y�
i

�2

D nlog.2�/Cnlog

�
RSS

n

�
Cn

nCqC1

n�q�3
: (5.44)

This expression on the right-hand side is denoted by AICc (the subscripted “c”
meaning “corrected”). Thus, we have [3, 10]

AICc D nlog.2�/ C nlog

�
RSS

n

�
C n

n C q C 1

n � q � 3
: (5.45)

If n is large, the third term is approximated as

n
n C q C 1

n � q � 3
D n

1 C q C 1

n

1 � q C 3

n

� n

�
1 C q C 1

n
C q C 3

n

�
� n

�
1 C 2q C 4

n

�
:

(5.46)
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Now we have Eq. (5.25) (page 232). Therefore, using Eq. (5.18) (page 230),
Eq. (5.40) (page 240) is approximately

� 2EŒl.faj g; O�2jX; y�/� � �2l.faj g; O�2jX; y/ C 2q C 4: (5.47)

This equation is identical to Eq. (5.26) (page 232). Hence, the AIC defined below
is approximately the expectation of minus two times the log-likelihood in light of
the data in the future.

AIC D nlog.2�/ C nlog

�
RSS

n

�
C n C 2q C 4: (5.48)

Note, however, that this equation is derived on the assumption that the form of
the regression equation either is identical to the equation that generates the data
or contains the equation as a special case. This does not mean that, when several
regression equations are compared using AIC , the containment relation between
these is required. It actually means that the containment relation between the form
of the regression equation and that of the equation that generates the data must
satisfy the condition on which AIC is based.

The significance of AIC lies in the fact that the expectation of the log-likelihood
in light of the data in the future is approximated using only data at hand. Its
validity though is limited to situations where the form of the regression equation
either is identical to the equation that generates the data or contains the equation
as a special case. When this condition is not satisfied, even approximately, or the
fulfillment of the condition is not established, we do not know whether AIC is
a good approximation to minus-two times the expectation of the log-likelihood in
light of the data in the future. Then, AIC seems tricky to use unless we have a
criterion for knowing how this condition is met and the criterion lets us determine
whether Eq. (5.25) holds with high accuracy. In practice, if data are generated by
what we consider to be major candidates among regression equations given by
the data at hand, the distribution of the resultant data is usually similar to that
of the data at hand and that of the data in the future. It is, however, difficult to
be sure of this. Alternatively, selection of a regression equation using AIC is
asymptotically equivalent to that using GC V regardless of whether AIC works as
an approximation of minus-two times the expectation of the log-likelihood in light
of the data in the future. Hence, the two statistics lead to similar results (page 121 in
[11]). Therefore, regardless of whether AIC is a good approximation of minus-two
times the expectation of the log-likelihood in light of the data in the future, AIC

(Eq. (5.26)) is useful in selecting a regression equation when errors are normally
distributed and the error variance is unknown.

As long as AIC and GC V lead approximately to the same results, the
major focus will be on which statistics delivers more valid results. It is true that
GC V is derived from weaker conditions. It does not indicate, however, that the
practical value of GC V is always higher than that of AIC . For example, when
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a nonparametric probability density function is produced using generalized linear
model (GLM), AIC is sometimes a better statistic than GC V in optimizing
smoothness.

Furthermore, much literature on AIC states that the measurement of the distance
between the true probability density function and that derived from data using the
Kullback-Leibler information divergence (Kullback-Leibler divergence) to derive
AIC is the key methodology underlying AIC . However, this does not mean that,
although there are many methods for measuring the distance between probability
density functions, selection of the Kullback-Leibler information divergence for this
purpose gives birth to AIC . As is described above, the basic idea in developing
AIC is:

(1) We would like to estimate the log-likelihood in light of the data in the future
using the log-likelihood given by the probability density function which is
derived from the data at hand by the maximum likelihood procedure.

(2) Unfortunately, we do not have the data in the future.
(3) Then, the value is approximately estimated using only the data at hand.

The equation with the same form as that of the Kullback-Leibler information
divergence emerges necessarily by the definition of log-likelihood.

Moreover, comparison between Eqs. (5.5) (page 226) and (5.37) (page 235)
shows that when the error variance is known, AIC is equivalent to Cp. This relation
implies that even if AIC does not work effectively as the approximation of the
expectation of minus-two times the log-likelihood in light of the data in the future,
we can use AIC for selecting a regression equation.

That is, even when AIC does not function effectively as the approximation of the
expectation of minus-two times the log-likelihood in light of the data in the future,
AIC works for selection of a regression function because the effectiveness of AIC

is backed by GC V when error variance is unknown and it is backed by Cp when
error variance is known. Because we are not sure even of the approximate validity
of the assumption that the form of a regression equation is equivalent to that of the
equation that generates the data or contains the equation which generates the data
as a special case, the theory of AIC alone does not explain its effectiveness for
selection of a regression equation when errors are normally distributed.

5.4 AIC with Unbiased Estimator for Error Variance

The previous sections use the maximum likelihood estimator of �2 (Eq. (5.17) (page
230)) as error variance. The unbiased estimator of �2 ( O�2

ub), however, is available for
this purpose. It is defined as

O�2
ub D RSS

n � q � 1
: (5.49)
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Substitution of O�2
ub into �2 in Eq. (5.15) (page 229) yields

l.f Oaj g; O�2
ubjX; y/ D �n

2
log.2�/ � n

2
log. O�2

ub/ � n � q � 1

2

D �n

2
log.2�/ � n

2
log

�
RSS

n � q � 1

�
� n � q � 1

2
: (5.50)

Hence, the expectation of minus-two times the log-likelihood in light of the data in
the future is

�2EŒl.f Oaj g; O�2
ubjX; y�/�

D E

�
nlog.2�/ C nlog

�
RSS

n � q � 1

�
C .n � q � 1/RSS�

RSS

	
: (5.51)

Then, the third term of the right-hand side of Eq. (5.51) becomes

E

�
.n � q � 1/RSS�

RSS

	

D .n � q � 1/
n C q C 1

n � q � 1
E

�
FnCqC1;n�q�1

	

D .n � q � 1/
n C q C 1

n � q � 1
� n � q � 1

n � q � 3

D .n � q � 1/
n C q C 1

n � q � 3
: (5.52)

Therefore, Eq. (5.51) is written as

�2EŒl.f Oaj g; O�2
ubjX; y�/�

D E

�
nlog.2�/ C nlog

�
RSS

n � q � 1

�
C .n � q � 1/RSS�

RSS

	

D nlog.2�/ C nlog

�
RSS

n � q � 1

�
C .n � q � 1/.n C q C 1/

n � q � 3
: (5.53)

As this is equivalent to AICc when the unbiased estimator is used as error variance,
it is denoted by AICc0 and defined as

AICc0 D nlog.2�/ C nlog

�
RSS

n � q � 1

�
C .n � q � 1/.n C q C 1/

n � q � 3
: (5.54)
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For large n, AICc0 approximates to

AICc0 D nlog.2�/ C nlog

�
RSS

n � q � 1

�
C .n � q � 1/.n C q C 1/

n � q � 3

D nlog.2�/ C nlog

�
RSS

n � q � 1

�
C n

�
1 � q C 1

n

��
1 C q C 1

n

�

1 � q C 3

n

� nlog.2�/ C nlog

�
RSS

n � q � 1

�
C n

��
1 � .q C 1/2

n2

�
C q C 3

n

�

D nlog.2�/ C nlog

�
RSS

n � q � 1

�
C n

�
1 C q C 3

n

�

D nlog.2�/ C nlog

�
RSS

n � q � 1

�
C n C q C 3: (5.55)

Hence, denoting AICc0 for large n as AIC 0, AIC 0 becomes

AIC 0 D nlog.2�/ C nlog

�
RSS

n � q � 1

�
C n C q C 3: (5.56)

Substitution of Eq. (5.50) (page 244) into this equation gives

AIC 0 D �2l.f Oaj g; O�2
ubjX; y/ C 2q C 4: (5.57)

Note that although the form of Eq. (5.47) is the same as that of Eq. (5.57),
their interpretation differs because l.f Oaj g; O�2jX; y/ for AIC is different from
l.f Oaj g; O�2

ubjX; y/ for AIC 0.

5.5 Error Variance by Maximizing Expectation
of Log-Likelihood in Light of the Data in the Future
and the “Third Variance”

As described above, whereas AIC and AICc use the maximum likelihood estimator
as error variance, AIC 0 and AICc0 use the unbiased estimator. Therefore, let us
entertain the possibility that another value is employed as error variance. This value
of error variance, denoted by �2

AIC , is defined as

�2
AIC D RSS

n � ˛
; (5.58)
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where ˛ is a constant. Substitution of this �2
AIC into �2 in Eq. (5.15) (page 229)

yields

l.f Oaj g; O�2
AIC jX; y/ D �n

2
log.2�/ � n

2
log. O�2

AIC / � n � ˛

2

D �n

2
log.2�/ � n

2
log

�
RSS

n � ˛

�
� n � ˛

2
: (5.59)

Using this result, a similar calculation to that for the derivation of AICc (Eq. (5.45)
(page 241)) is conducted. Then, we have AIC a

c (the “adjustable AIC ”), defined as

AIC a
c D nlog.2�/ C nlog

�
RSS

n � ˛

�
C .n � ˛/

n C q C 1

n � q � 3
: (5.60)

Hence, the Ǫ that minimizes AIC a
c is

Ǫ D n

�
1 � n � q � 3

n C q C 1

�
: (5.61)

Substitution of this Ǫ into Eq. (5.60) gives AIC u
c (the “ultimate AIC ”) [12], which

is defined as

AIC u
c D nlog.2�/ C nlog

 
RSS

n � n

�
1 � n � q � 3

n C q C 1

�
!

C
�

n � n

�
1 � n � q � 3

n C q C 1

��
n C q C 1

n � q � 3

D nlog.2�/ C nlog

�
RSS.n C q C 1/

n � q � 3

�
C n: (5.62)

The essential part of AIC u
c is

RSS.n C q C 1/

n � q � 3
which is similar to FPE (Eq. (5.12)

(page 228)).
Furthermore, substitution of Eq. (5.61) into Eq. (5.58) leads to

O�2
AIC D RSS

n � n

�
1 � n � q � 3

n C q C 1

�

D RSS.n C q C 1/

n.n � q � 3/
: (5.63)
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If n (the number of data) is large, O�2
AIC becomes

O�2
AIC D

RSS

�
1 C q C 1

n

�

n

�
1 � q C 3

n

�

� RSS

n

�
1 � q C 3

n
� q C 1

n

�

D RSS

n

�
1 � 2q C 4

n

�

D RSS

n � 2q � 4
: (5.64)

Setting q D 0, namely, performing a fit of a normal distribution to several data, the
resultant O�2

AIC denoted by O�2
third , is written as

O�2
third D RSS

n � 4
: (5.65)

This O�2
third for historical reasons is called the “third variance” [12]; its discovery

followed error variances of the maximum likelihood estimator and the unbiased
estimator.

Whereas the maximum likelihood estimator of error variance is based on the
maximization of the log-likelihood in light of the data at hand, the unbiased
estimator of error variance is based on the intention that the average of the variances
given by several samples from a population should be equal to the true variance. In
contrast, whereas the third variance is on equal footing with the unbiased estimator
of error variance in the sense that another sampling from the population is assumed,
it pays little attention to unbiasedness but is produced by maximization of the
expectation of the log-likelihood in light of the data in the future given by other
samplings. The variance derived by this methodology is a little larger than the
unbiased estimator of error variance.

Let us describe a simulation to establish that the third variance (Eq. (5.65))
minimizes the expectation of minus-two times the log-likelihood in light of the data
in the future. As this simulation fits the data to a normal distribution, Eq. (5.40)
(page 240) is replaced with the following:

� 2l. Oa0; O�2jfy�
i g/ D nlog.2�/ C nlog. O�2/ C 1

O�2

nX
iD1

. Oa0 � y�
i /2



248 5 Akaike’s Information Criterion (AIC ) and the Third Variance

−10 −5 0 5 10

56
2.

8
56

3.
2

56
3.

6

α

−
2*

(lo
g 

lik
el

ih
oo

d)

Fig. 5.4 Relationship between ˛ and the average of �2l.Oa0; O�2jX; y�/ in this simulation. The
symbol open circle shows the minimum points of the averages of �2l.Oa0; O�2jX; y�/ for each of
the five simulations

D nlog.2�/ C nlog

�
RSS

n � ˛

�
C .n � ˛/RSS�

RSS
: (5.66)

The data at hand in this simulation are fyig .1 � i � 100/ (realizations of N.�13:0;

42/); the data in the future are fy�
i g .1 � i � 100/ (realizations of N.�13:0; 42/).

Oa0, O�2, RSS , and RSS� are defined as

Oa0 D
Pn

iD1 yi

n
; O�2 D RSS

n � ˛
; (5.67)

RSS D
nX

iD1

.yi � Oa0/2

n
; RSS� D

nX
iD1

.y�
i � Oa0/2

n
; (5.68)

where in this simulation n D 100, and 2;000 sets fyig and fy�
i g are obtained by

varying the initial values of the pseudo-random numbers. Using these data, 2; 000

values of �2l. Oa0; O�2jfy�
i g/ are calculated. Then, 2;000 values of �2l. Oa0; O�2jfy�

i g/
are averaged. This task is performed using ˛ (Eq. (5.58) (page 245)) which is set to
one value among the sequence �9:8; �9:6; �9:4; : : : ; 10. In this way, we obtain the
value of ˛ (Eq. (5.58) (page 245)) that minimizes the expectation of minus-two times
the log-likelihood in light of the data in the future. The results from five simulations
are graphed in Fig. 5.4. When ˛ is approximately 4, the expectation of minus-two
times the log-likelihood in light of the data in the future takes a minimum value.
This is a convincing result because Eq. (5.61) (page 246) yields ˛ D 3:96.

R Program [5 - 4]

The existence of the third variance is confirmed using a simulation.
aic106()

function ()
{
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# (1)
nd <- 100
ne <- 100
nt <- 2000

# (2)
like2m <- matrix(rep(0, length = 500), ncol = 5)
like2al <- NULL
like2min <- NULL
for (jj in 1:5){

like2t <- NULL
alt <- NULL
for(ii in 1:100){
alt[ii] <- (ii- 50) * 0.2
al <- alt[ii]

# (3)
like2 <- 0
for (kk in 1:nt){

set.seed(6961 + kk * 14 + jj * 4)
yya <- rnorm(nd, mean = -13, sd = 4)
av1 <- mean(yya)
sig2a <- sum((yya - av1)ˆ2)/(nd - al)
set.seed(6201 + kk * 97)
yyf <- rnorm(ne, mean = -13, sd = 4)
rss1 <- sum((yyf - av1)ˆ2)
like2 <- ne * log(2 * pi) + ne * log(sig2a) +
rss1 / sig2a + like2

}
like2t[ii] <- like2/nt

}
# (4)

like2wh <- which(like2t == min(like2t))
like2al[jj] <- alt[like2wh]
like2min[jj] <- like2t[like2wh]
like2m[,jj] <- like2t

}
# (5)

par(mfrow = c(1, 1), mai = c(1, 1, 0.2, 0.2),
oma = c(1, 1, 1, 1))

ymin1 <- min(as.vector(like2m))
ymax1 <- max(as.vector(like2m))
plot(alt, like2m[,1] , type = "n", xlab =
expression(alpha), ylab = "-2*(log likelihood)",
ylim = c(ymin1, ymax1))

for (jj in 1:5){
lines(alt, like2m[,jj])
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points(like2al[jj], like2min[jj], pch = 1,
cex = 2)

}
}

(1) The number of simulation data (data at hand) (nd) is given. The number of
simulation data (data in the future) (ne) is given. nt (the number of times the
simulation is performed) is set to be 2; 000.

(2) A matrix (like2m) for storing the average of minus-two times the log-
likelihood in light of the data in the future is initialized. A vector (like2al)
for storing the value of ˛ that minimizes the average of minus-two times the log-
likelihood in light of the data in the future is initialized. A vector (like2min)
for storing the minimum value of the average of minus-two times the log-
likelihood in light of the data in the future is initialized. alt (the value of ˛) is
set to one of the values �9:8; �9:6; �9:4; : : : ; 10.

(3) Realizations of N.�13:0; 42/ are generated and stored in yya (fyig) and yyf
(fy�

i g). The value of �2l. Oa0; O�2jfy�
i g/ (Eq. (5.66) (page 247)) is calculated and

stored as like2. The average of the values of like2 is saved as like2t.
(4) The value of alt (˛) which gives the minimum value of like2t is

saved as like2al[jj]. The minimum value of like2t is saved as
like2min[jj]. The value of like2t is stored as like2m[,jj].

(5) The relationship between alt and like2m[,jj] are graphed. The position
given by like2al[jj] and like2min[jj] is plotted (Fig. 5.4 (page 248)).

R Program [5 - 4] End

5.6 Relationship Between AIC (or GCV ) and F -Test

The selection of a regression equation using a test such as F -test is closely
related to that using statistics such as GC V . This relationship reveals some of the
characteristics of these statistics.

Let us consider whether the q-th predictor should be added to the multiple
regression equation with .q � 1/ predictors (i.e., r D 1 in Eq. (4.54) (page 178)).
The F -value for this situation, here denoted by F.n; q/, is defined as

F.n; q/ D
RSS.q � 1/ � RSS.q/

1
RSS.q/

n � q � 1

D .n � q � 1/

�
RSS.q � 1/

RSS.q/
� 1

�
; (5.69)
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where RSS.q/ is defined as

RSS.q/ D
( Pn

iD1.yi � a0/
2 if q D 0Pn

iD1.yi � a0 �Pq
j D1 aj xij /2 if q � 1:

(5.70)

Equation (5.69) leads to

RSS.q � 1/

RSS.q/
D F.n; q/

n � q � 1
C 1: (5.71)

Furthermore, GC V (Eqs. (3.98) (page 151) and (4.57) (page 184)) is defined as

GC V.q/ D RSS.q/

n
�
1 � q C 1

n

�2
: (5.72)

This equation yields

GC V.q/

GC V.q � 1/
D

RSS.q/�
�
1 � q

n

�2

RSS.q � 1/�
�
1 � q C 1

n

�2
: (5.73)

Substitution of Eq. (5.71) into this equation gives

GC V.q/

GC V.q � 1/
D
�

F.n; q/

n � q � 1
C 1

��1
.n � q/2

.n � q � 1/2
: (5.74)

Thus, when we have a multiple regression equation with .q � 1/ predictors, the
condition determining whether the q-th predictor should be added is written as

�
F.n; q/

n � q � 1
C 1

��1
.n � q/2

.n � q � 1/2
< 1: (5.75)

Rearranging, we have

F.n; q/ > .n � q � 1/

�
.n � q/2

.n � q � 1/2
� 1

�
: (5.76)

When the inequality sign is replaced with an equal sign, the graph of F.n; q/ can
be drawn; Figs. 5.5 (left top) and 5.6 (left top) illustrate F -values for n D 100 and
n D 20, respectively. We find that when we use GC V to determine whether the
q-th predictor should be added to the regression equation with .q � 1/ predictors,
the corresponding F.n; q/ is almost independent of q.
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Fig. 5.5 Relationship between q and F.100; q/ corresponding to GCV , AIC , AICc , or AIC u
c

When the regression equation with .q�1/ predictors is a true regression function,
F.n; q/ for this situation is written as (Eq. (5.69) (page 250))

F.n; q/ D .n � q � 1/

�
RSS.q � 1/

RSS.q/
� 1

�
� F1;n�q�1: (5.77)

F1;n�q�1 stands for the F -distribution with the first degree of freedom set to 1 and
the second degree of freedom set to .n � q � 1/. Then, p can be derived from

p D
Z 1

F.n;q/

f .1; n � q � 1; x/dx; (5.78)

where f .1; n�q�1; x/ is the probability density function of the F -distribution with
the first degree of freedom set to 1 and the second degree of freedom set to .n�q�1/.
Here, p stands for the value of integral of the probability density function over the
region where x is larger than F.n; q; p/. This p is the probability that the F -value
takes a larger value than F.n; q/ when the regression equation with .q�1/ predictor
is the true regression equation. Substitution of the values of F.n; q/ graphed in
Fig. 5.5 (left top) into Eq. (5.78) gives the values of p shown in Fig. 5.7 (left top).
The values of p which correspond to the values of F.n; q/ graphed in Fig. 5.7 (left
top) are shown in Fig. 5.8 (left top). These values of p give the probability that
the p-th predictor is erroneously added when the regression equation with .q � 1/
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Fig. 5.7 Relationship between q and p corresponding to GCV , AIC , AICc or AIC u
c (n D 100)
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Fig. 5.8 Relationship between q and p corresponding to GCV , AIC , AICc , and AIC u
c (n D 20)

predictors is the true regression equation. In other words, it is the probability that
the type I error occurs. This probability is fixed in the process of the forward and
backward selection method. For example, this value is between 0:25 and 0:5 (e.g.,
page 188 of [8]), between 0:15 and 0:2, or 0:05 (314 page of [7]). Therefore, because
the values of p in Figs. 5.7 (left top) and 5.8 (left top) are almost independent of q,
the selection characteristics for predictors using GC V are similar to the forward
and backward selection method using the F -value. Figure 5.9 compares the two
rejection regions (critical region) : one is the area where the selection of predictors
using GC V erroneously adds the p-th predictor to the true regression equation with
.q � 1/ predictors, and the other is that of the F -test when p D 0:05 (p indicates
the risk rate) is set.

Next, AIC (Eq. (5.25) (page 232)) for this situation is written as

AIC.q/ D nlog.2�/ C nlog

�
RSS.q/

n

�
C n C 2q C 4: (5.79)

Hence, we obtain

AIC.q/ � AIC.q � 1/ D nlog

�
RSS.q/

n

�
� nlog

�
RSS.q � 1/

n

�
C 2

D nlog

�
RSS.q/

RSS.q � 1/

�
C 2: (5.80)
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Fig. 5.9 Plot of the probability density function of the F -distribution with the first degree of
freedom (�1) set to 1 and the second degree of freedom (�1) set to 16. Specifically, the distribution
of the F -values on the assumption that the null hypothesis “the number of the predictor is 3” is true
(i.e., F.20; 3/) is drawn (the number of data (n) is 20). The regions where GCV and the F -test
reject this null hypothesis are shown by a dashed and solid arrows, respectively

Substitution of Eq. (5.71) (page 251) yields

AIC.q/ � AIC.q � 1/ D nlog

 �
F.n; q/

.n � q � 1/
C 1/

��1
!

C 2 < 0: (5.81)

Thus, when we have a regression equation with .q � 1/ predictors, the condition to
determine whether the q-predictor should be added is

�
F.n; q/

n � q � 1
C 1

��1

< exp

 
�2

n

!
: (5.82)

Rearranging gives

F.n; q/ > .n � q � 1/

 
exp

�
2

n

�
� 1

!
: (5.83)

Replacing the inequality with an equal sign, values of F.n; q/ can be plotted. For
n D 100 and n D 20, the corresponding graphs of F.n; q/ are presented in Figs. 5.5
(right top) and 5.6 (right top). The values of p corresponding to values in these
graphs are illustrated in Figs. 5.7 (right top) and 5.8 (right top). When AIC is
adopted, the value of p increases as q becomes larger; the value of p determines
whether the q-th predictor should be added given a regression equation with .q � 1/

predictors. This tendency shows that the selection of a regression equation using
AIC takes a slightly different tack from that in the forward and backward selection
method with a fixed value of p.
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With AICc (Eq. (5.45) (page 241)) defined as

AICc.q/ D nlog.2�/ C nlog

�
RSS

n

�
C n

n C q C 1

n � q � 3
; (5.84)

we have

AICc.q/ � AICc.q � 1/ D nlog

�
RSS.q/

n

�
� nlog

�
RSS.q � 1/

n

�

Cn
n C q C 1

n � q � 3
� n

n C q

n � q � 2

D nlog

�
RSS.q/

RSS.q � 1/

�
C n

n C q C 1

n � q � 3
� n

n C q

n � q � 2
: (5.85)

Substitution of Eq. (5.71) (page 251) leads to

AICc.q/ � AICc.q � 1/

D nlog

 �
F.n; q/

n � q � 1
C 1

��1
!

C n
n C q C 1

n � q � 3
� n

n C q

n � q � 2
< 0: (5.86)

Then, the condition for determining whether the q-th predictor should be added
given a regression equation with .q � 1/ predictors is

F.n; q/ >

�
exp

 
n C q C 1

n � q � 3
� n C q

n � q � 2

!
� 1

�
.n � q � 1/: (5.87)

Replacing the inequality with an equal sign, values of F.n; q/ with the setting of
n D 100 and n D 20 are graphed in Figs. 5.5 (left bottom) and 5.6 (left bottom),
respectively. The p values corresponding to the values in these graphs are illustrated
in Figs. 5.7 (left bottom) and 5.8 (left bottom). When AICc is adopted, the value
of p decreases as q becomes larger; the value of p determines whether the q-
th predictor should be added given a regression equation with .q � 1/ predictors.
This phenomenon conforms with the well-known tendency that when AICc is
employed, the criterion for adding a new predictor to a regression equation with
many predictors is strict. Moreover, AICc take a slightly different tack from that by
the forward and backward selection method with p fixed.

Adopting AIC u
c .q/ which is defined as (also refer to Eq. (5.62) (page 246))

AIC u
c .q/ D log.2�/ C nlog

�
RSS.q/.n C q C 1/

n � q � 3

�
C n; (5.88)
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we obtain the following

AIC u
c .q/ � AIC u

c .q � 1/ D nlog

�
RSS.q/.n C q C 1/

n � q � 3

�

� nlog

�
RSS.q � 1/.n C q/

n � q � 2

�
: (5.89)

That is,

AIC u
c .q/ � AIC u

c .q � 1/ D nlog

�
RSS.q/.n C q C 1/.n � q � 2/

RSS.q � 1/.n � q � 3/.n C q/

�
: (5.90)

Substitution of Eq. (5.71) leads to

AIC u
c .q/ � AIC u

c .q � 1/ D nlog

 �
F.n; q/

n � q � 1
C 1

��1
.n C q C 1/.n � q � 2/

.n � q � 3/.n C q/

!
:

(5.91)
Then, given a multiple regression equation with .q �1/ predictors, the condition for
determining whether to add the q-th predictor is written as

F.n; q/ >

�
.n C q C 1/.n � q � 2/

.n � q � 3/.n C q/
� 1

�
.n � q � 1/: (5.92)

Replacing the inequality with an equal sign, graphs of F.n; q/ with n D 100 and
n D 20 are plotted in Figs. 5.5 (right top) and 5.6 (right bottom). The values
of p corresponding to the values in these graphs are presented in Figs. 5.7 (right
bottom) and 5.8 (right bottom). When AIC u

c is adopted, the value of p increases as
q becomes larger; the value of p determines whether the q-th predictor should be
added given a regression equation with .q � 1/ predictors. This tendency, however,
is not as strong as found for AIC but does make a difference for AICc . These
considerations indicate that the considerable change with AIC u

c results from the
modification of AICc by introducing the “third variance”.

To understand certain characteristics of GC V , AIC , AICc , and AIC u
c , let us

develop an example of a simulation which chooses between a multiple regression
equation with one predictor (i.e., simple regression equation) and that with two
predictors. The number of data is assumed to be 20 and the values of the both of
the predictors (fxi1; xi2g .1 � i � n/) are generated from a distribution of uniform
random numbers between �1 and 1. The values of the target variable are calculated
using

yi D 5xi1 C �xi2 C 1 C 
i ; (5.93)

where f
i g .1 � i � n/ are generated from N.0; 82/ (normal distribution with mean
0 and variance 82). � is chosen from the set f0; 0:1; 0:2; : : : ; 5g. An appropriate
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Fig. 5.10 Results of the selection of predictors using GCV , AIC , AICc , and AIC u
c when the

number of data is 20. The solid lines indicate the values of respective statistics when the number of
predictors is one. The dashed lines indicate the values of the respective statistics when the number
of predictors is two. The approximate values of � are shown at the intersection of the two lines

regression equation is then selected between that with one predictor and that with
two predictors using one of GC V , AIC , AICc , and AIC u

c . This simulation is
performed 500 times by varying the initial values of the pseudo-random numbers.
The result, shown in Fig. 5.10, implies that AIC adopts a permissive policy with
respect to addition of the second predictor, whereas AICc takes a strict policy. GC V

and AIC u
c fall somewhere in between the two.

R Program [5 - 5]

A graph is drawn to show how GC V , AIC , AICc , and AIC u
c are related to the

value of p of the F -test.
aic254e()

function ()
{
# (1)

nd <- 20
qq <- seq(from = 1, to = 10, by = 1)
nq <- length(qq)

# (2)
gcv1p <- NULL
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aic1p <- NULL
aicc1p <- NULL
aicu1p <- NULL

# (3)
for(ii in 1:nq){

fr1 <- 1
fr2 <- nd - qq[ii] - 1

# (4)
gcv1f <- (nd - qq[ii] - 1) * ((nd - qq[ii])ˆ2 /
(nd - qq[ii] - 1)ˆ2 - 1)

gcv1p[ii] <- 1 - pf(gcv1f, fr1, fr2)
aic1f <- (nd - qq[ii] - 1) * (exp(2 / nd) - 1)
aic1p[ii] <- 1 - pf(aic1f, fr1, fr2)
aicc1f <- (exp((nd + qq[ii] + 1)/(nd - qq[ii] -
3) - (nd + qq[ii])/(nd - qq[ii] - 2)) - 1) *
(nd - qq[ii] - 1)

aicc1p[ii] <- 1 - pf(aicc1f, fr1, fr2)
aicu1f <- ((nd + qq[ii] + 1) * (nd - qq[ii] - 2) /
((nd - qq[ii] - 3) * (nd + qq[ii])) - 1) *
(nd - qq[ii] - 1)

aicu1p[ii] <- 1 - pf(aicu1f, fr1, fr2)
}

# (5)
par(mfrow = c(2, 2), mai = c(1, 1, 0.2, 0.2),
oma = c(1, 1, 1, 1))

plot(qq, gcv1p , xlab = expression(q), ylab =
"p_value", ylim = c(0,0.4))

text(5, 0.37, "GCV")
plot(qq, aic1p , xlab = expression(q), ylab =
"p_value", ylim = c(0,0.4))

text(5, 0.37, "AIC")
plot(qq, aicc1p , xlab = expression(q), ylab =
"p_value", ylim = c(0, 0.4))

text(5, 0.37, expression(AIC[c]))
plot(qq, aicu1p , xlab = expression(q), ylab =
"p_value", ylim = c(0,0.4))

text(5, 0.37, expression(AIC[c]ˆu))
}

(1) The number of data (nd), the numbers of predictors (qq), and the number of
elements of qq (nq) are given.

(2) gcv1p is initialized to store values of p corresponding to GC V.q/. aic1p is
initialized to store values of p corresponding to AIC.q/. aicc1p is initialized
to store values of p corresponding to AICc.q/. aicu1p is initialized to store
values of p corresponding to AIC u

c .q/.
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(3) q is set to a value in the range 1 to nq; the corresponding value of p is
calculated. The first degree of freedom is set to fr1. The second degree of
freedom is set to fr2.

(4) The F -value given by Eq. (5.76) is saved as gcv1f. Using this value,
gcv1p[ii] (the value of p) is calculated. Values of F.n; q/ are stored in
gcv1f, df1 in fr1, and df2 in fr2; pf(gcv1f, fr1, fr2) takes the
value calculated from

Qp D
Z F.n;q/

0

f .x; df1; df2/dx; (5.94)

where f .x; df1; df2/ is the probability density function of the F -distribution
with the first degree of freedom of df1 and the second degree of freedom of
df2. Hence, when df1 D 1 and df2 D n � q � 1 are set, this value along with
that of p given by Eq. (5.78) (page 252) satisfies

p C Qp D 1: (5.95)

Therefore, 1 - pf(gcv1f, fr1, fr2) yields the value of p given by
Eq. (5.78) (page 252). If lower.tail = FALSE is added to the arguments
of pf(), the value of p is obtained directly. In a similar fashion, the F -
value calculated by Eq. (5.83) (page 255) is saved as aic1f. Using this value,
aic1p[ii] (the value of p) is derived. The F -value calculated by Eq. (5.87)
(page 256) is saved as aicc1f. Using the value, aicc1p[ii] (the value
of p) is derived. The F -value calculated by Eq.(5.92) (page 257) is saved as
aicu1f. Using the value, aicu1p[ii] (the value of p) is derived.

(5) The values of p obtained in (4) are graphed (Fig. 5.8 (page 254)).

R Program [5 - 5] End

R Program [5 - 6]

GC V yields the boundary to choose between a regression equation with a1 and
a regression equation with a1 and a2.
aic313()

function ()
{
# (1)

nd <- 20
nt <- 500
nc <-51
gam1v <- seq(from = 0, to = 5, length = nc)

# (2)
gcv1v <- NULL
gcv2v <- NULL



5.6 Relationship Between AIC (or GCV ) and F -Test 261

# (3)
for(jj in 1:nc){

gcv1 <- 0
gcv2 <- 0

# (4)
for(kk in 1:nt){
set.seed(237 + kk*14)
xx1 <- runif(nd, min = -1, max = 1)
xx2 <- runif(nd, min = -1, max = 1)
yy <- 5 * xx1 + gam1v[jj] * xx2+ 1 +
rnorm(nd, mean = 0, sd = 8)

# (5)
data1 <- data.frame(x1 = xx1,x2 = xx2, y = yy)
lm1 <- lm(y˜x1, data = data1)
rss1 <- sum(lm1$residualsˆ2)
lm2 <- lm(y˜x1 + x2, data = data1)
rss2 <- sum(lm2$residualsˆ2)

# (6)
gcv1 <- gcv1 + rss1 / (nd * (1 - 2 / nd)ˆ2) / nt
gcv2 <- gcv2 + rss2 / (nd * (1 - 3 / nd)ˆ2) / nt

}
# (7)

gcv1v[jj] <- gcv1 / nt
gcv2v[jj] <- gcv2 / nt

}
# (8)

par(mfrow = c(1, 1), mai = c(1, 1, 0.2, 0.2),
oma = c(1, 1, 1, 1))

wh1 <- which(abs(gcv1v - gcv2v) ==
min(abs(gcv1v - gcv2v)) )

gam2 <- gam1v[wh1]
plot(gam1v, gcv1v , type = "n", xlab =
expression(gamma[2]), ylab = "GCV",
ylim = range(gcv1v, gcv2v))

lines(gam1v, gcv1v)
lines(gam1v, gcv2v, lty = 2)
len1 <- (range(gcv1v)[2] - range(gcv1v)[1]) * 0.1
text(gam2, gcv1v[wh1] + len1, as.character(gam2))

}

(1) The number of data (nd), the number of times the simulation (nt) is performed,
the number of � values used in the simulation (nc), and the values of � (gam1v)
are set.
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(2) gcv1v receives the values of GC V when a regression equation constructed
with only a1 is prepared. Similarly, gcv2v receives the values of GC V when
a regression equation constructed with a1 and a2 is prepared.

(4) Simulation data are generated. The values of both of the predictors (xx1, xx2)
are generated from a distribution of uniform random numbers between �1 and
1. The uniform random numbers are given by runif(). The values of the
target variable are calculated using Eq. (5.93) (page 257).

(5) The resulting regression equation with a1 is stored in lm1. The resulting
residual sum of squares is saved as rss1. The resulting regression equation
with a1 and a2 is stored in lm2. The resulting residual sum of squares is saved
as rss2.

(6) The values of GC V yielded by the regression equation with a1 are summed up
in gcv1. The values of GC V yielded by the regression equation with a1 and
a2 are summed up in gcv2.

(7) The average of the values of GC V given by the regression equation with a1

is saved as gcv1v[jj]. The average of the values of GC V given by the
regression equation with a1 and a2 is saved as gcv2v[jj].

(8) The averages of the values of GC V when only a1 is employed and those when
a1 and a2 are employed are graphed with the respective values of gam1v. One
value of the elements of gam1v is plotted. This value provides the closest
estimates of the averages of GC V for the two regression equations. Figure 5.10
(page 258) (left top) is obtained.

R Program [5 - 6] End

5.7 AIC on Poisson Regression

The random variable of Y which obeys the Poisson distribution is given. Its
probability density function is written as

f .y/ D exp.�	/	y

yŠ

D exp.ylog.	/ � 	 � log.yŠ//; (5.96)

where “Š” stands for factorial and 	 denoted by the mean of the Poisson distribution
(e.g., page 160 of [9]), that is,

EŒy� D 	: (5.97)

The data of f.xi ; yi /g .1 � i � n/ are given. Each yi is assumed to be a realization
of the Poisson distribution. We then have the following:
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f .yi / D exp.yi log.	i / � 	i � log.yi Š//; (5.98)

where 	i is the mean of the Poisson distribution which generates the values of yi .
Next, let us assume that 	i is written in the form:

	i D exp.a0 C a1xi /: (5.99)

Substitution of this equation into Eq. (5.98) results in

f .yi / D exp.yi .a0 C a1xi / � exp.a0 C a1xi / � log.yi Š//: (5.100)

Then, the discrete probability density function (also known as the probability mass
function or the probability function) which the set fy1; y2; y3; : : : ; yng obeys is
given as

f .fy1; y2; y3; : : : ; yng/ D
nY

iD1

exp.yi .a0 C a1xi / � exp.a0 C a1xi / � log.yi Š//:

(5.101)
When Oa0 and Oa1, which are estimates of a0 and a1, respectively, are obtained, we
have the regression equation:

EŒy� D 	 D exp. Oa0 C Oa1x/: (5.102)

This equation allows us to calculate the expectation of the target variable when an
arbitrary value of x is set. Using Eq. (5.101), the log-likelihood of a0 and a1 in light
of f.xi ; yi /g is written as (e.g., page 132 of [9])

l.a0; a1jf.xi ; yi /g/ D
nX

iD1

.yi .a0 C a1xi / � exp.a0 C a1xi / � log.yi Š//: (5.103)

The values of a0 and a1 are optimized to maximize the above value. As exemplified
in the above example, regression based on a Poisson distribution is called Poisson
regression. Poisson regression is a sort of generalized linear regression (e.g., [9]).

The values of a0 and a1 which maximize Eq. (5.103) are denoted by Oa0 and
Oa1, respectively. The value given by substituting Oa0 and Oa1 into Eq. (5.103) is
represented as

l. Oa0; Oa1jf.xi ; yi /g/ D
nX

iD1

.yi . Oa0 C Oa1xi / � exp. Oa0 C Oa1xi / � log.yi Š//: (5.104)

f.xi ; yi /g used in the above equation are the data which are used for obtaining Oa0 and
Oa1; namely, these are the data at hand. However, a regression equation that generates
highly likely data in the future is usually considered to be of more practical use. With
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the data in the future denoted by f.xi ; y�
i /g .1 � i � n/, the log-likelihood which

shows the likelihood of Oa0 and Oa1 in light of the data in the future is written as

l. Oa0; Oa1jf.xi ; y�
i /g/ D

nX
iD1

.y�
i . Oa0 C Oa1xi / � exp. Oa0 C Oa1xi / � log.y�

i Š//: (5.105)

Hence, if the difference between Eqs. (5.104) and (5.105) is estimated, the log-
likelihood in light of the data in the future is estimated using only the data at hand.
Then, d which has meaning similar to that in Eq. (5.22) (page 231) is defined as

d D 2

�
l. Oa0; Oa1jf.xi ; yi /g/ � EŒl. Oa0; Oa1jf.xi ; y�

i /g/�
�

: (5.106)

A simulation for estimating this d is shown below. The simulation data are
f.xi ; yi /g .1 � i � n/. The number of data (n) is 30. The values of the predictor is
given by

xi D i: (5.107)

The values of the target variable are the realizations of the Poisson distributions in
which the mean is written as

	i D exp.0:2xi � 4/: (5.108)

Rearranging gives

log.	i / D 0:2xi � 4; (5.109)

where the logarithmic function transforms the mean into a linear equation (0:2xi �
4). In the context of generalized linear regression, the function which undertakes
this role is called the link function. The values of Oa0 and Oa1 are then estimated
using f.xi ; yi /g which are generated by the procedure above. To estimate the value
of EŒl. Oa0; Oa1jf.xi ; y�

i /g/� (Eq. (5.106)) using the values available, 100 sets of data
in the future (f.xi ; yi /g (1 � i � n)) are generated in the same manner as for
f.xi ; yi /g. The values of l. Oa0; Oa1jf.xi ; y�

i /g/ given by these 100 sets of data in the
future are averaged. The result is used as EŒl. Oa0; Oa1jf.xi ; y�

i /g/�.
This simulation given by this procedure is conducted 1; 000 times by varying

the initial values of the pseudo-random numbers. The resultant distribution of d is
illustrated in Fig. 5.11. The mean of this distribution is 3:893834. As the Poisson
distribution does not need the equivalent estimation of variance, Eq. (5.24) (page
232) gives AIC . The result of the simulation setting q D 1 indicates d D 3:893834

inferring that AIC works appropriately.
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Fig. 5.11 After a regression by maximizing the value of Eq. (5.103) has been performed using
30 sets of simulation data, the value of d (Eq. (5.106)) is estimated using the data in the future.
This distribution of d is obtained by conducting this simulation 1;000 times. The mean of this
distribution is 3:893834

R Program [5 - 7]

AIC approximately holds for the Poisson distribution if the form of the
regression equation is identical to that of the equation that either generates the data
or contains the equation as a special case.
aic341e()

function ()
{
# (1)

nd <- 30
nt <- 1000

# (2)
dif <- NULL
for(kk in 1:nt){

set.seed(2494 + kk * 29)
xxa <- seq(from = 1, to = 30, length = nd)
yya <- NULL
for(ii in 1:nd){
yya[ii] <- rpois(1, lambda = exp(xxa[ii] *
0.2 - 4))

}
# (3)

data1 <- data.frame(x = xxa, y = yya)
glm1 <- glm(y˜x, data=data1, family =
poisson(log))

ey <- glm1$fitted
la <- -2*(sum( -ey + yya * log(ey) -
lgamma(yya + 1) ))

# (4)
lb <- 0
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for(jj in 1:100){
yyb <- NULL
for(ii in 1:nd){

yyb[ii] <- rpois(1, lambda = exp(xxa[ii] *
0.2 - 4))

}
lb <- lb - 2 * (sum( -ey + yyb * log(ey) -
lgamma(yyb + 1) ) )

}
lb <- lb/100

# (5)
dif[kk] <- lb - la

}
# (6)

print("mean(dif)")
print(mean(dif))

# (7)
par(mfrow = c(1, 1), mai = c(1.5, 1.5, 0.5, 0.5),
oma = c(1, 1, 1, 1))

br1 <- pretty(dif, n = 40)
bw1 <- br1[2] - br1[1]
difh <- floor(dif/bw1) * bw1 + 0.01 * bw1
hist(difh, breaks = br1, main = "", xlab = "d",
ylab = "Frequency")

}

(1) The number of data (nd) is given. The number of times of the simulation (nt)
is given.

(2) The values of the predictors of the simulation data (xxa) are given. The values
of the target variable of the simulation data (yya) are generated by the Poisson
distribution defined in Eq. (5.99); rpois() is used for this purpose.

(3) Using the simulation data generated in (2), glm() performs the generalized
linear regression. As family = poisson(log) is assigned in this exam-
ple, the regression is conducted assuming a Poisson distribution and logarithmic
function used as link function; that is, a Poisson regression assuming Eq. (5.102)
(page 263) is performed. The estimates corresponding to the data are obtained
using the resultant regression equation. The estimates are stored as ey and
yield the value of l. Oa0; Oa1jf.xi ; yi /g/ (Eq. (5.104) (page 263)). This value is
multiplied by .�2/ with the result saved as la.

(4) The expectation of minus-two times the l. Oa0; Oa1jf.xi ; y�
i /g/ (Eq. (5.105) (264

page)) is approximated by generating 100 sets of data in the future in the same
manner as that of the data at hand.

(5) Using the results of (3) and (4), an approximation of d (Eq. (5.106) (page 264))
is calculated and the result saved as dif[kk].

(6) The average of dif is obtained with the result then displayed.
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(7) The histogram presenting the distribution of dif is drawn (Fig. 5.11 (page
265)).

aic341e() also outputs:

"mean(dif)"
3.893834

R Program [5 - 7] End
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Chapter 6
Linear Mixed Model

6.1 Random-Effects Model

The simplest form of the linear mixed model is the random-effects model, which
represents data using the regression equation:

yi D ˛ C bi C �i .1 � i � m/; (6.1)

where ˛, yi , bi , and �i are column matrices for which the lengths are ni and can be
expressed in the form:

˛ D

0
BBBBB@

˛

˛

˛
:::

˛

1
CCCCCA

; yi D

0
BBBBB@

y1i

y2i

y3i

:::

yni i

1
CCCCCA

; bi D

0
BBBBB@

bi

bi

bi

:::

bi

1
CCCCCA

; �i D

0
BBBBB@


1i


2i


3i

:::


ni i

1
CCCCCA

: (6.2)

Here, fyj ig .1 � j � ni / are observations of the i -th treatment .1 � i � m/; fbig
.1 � i � m/ are realizations from N.0; d 2/ (normal distribution with mean 0 and
variance d 2). To specify the i-th treatment, one has to fix the value of i. Because
all elements of bi for the i -th treatment take the same value, bi is intrinsic to a
specific treatment. The values of bi , however, vary among the treatments, although
these are not independent of one another because fbi g are realizations of B (random
variable (stochastic variable)). The distribution that B follows is N.0; d 2/ (normal
distribution with mean 0 and variance d 2). f
j ig .1 � i � m; 1 � j � ni / are
realizations of N.0; �2/ (normal distribution with mean 0 and variance �2). That is,
an experiment with m treatments is conducted with the i -th treatment repeated ni

times. The j -th observation in the i -th treatment is denoted by yj i . For example,
consider an experiment where crop yields per area are recorded for m successive
years. In the i -th year, ni repetitions are performed and the crop yield for each

K. Takezawa, Learning Regression Analysis by Simulation,
DOI 10.1007/978-4-431-54321-3 6, © Springer Japan 2014
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Fig. 6.1 Random-effects model (Eq. (6.1) (page 269) i.e., Eq. (6.3) (page 270)) obtained for
simulation data (m D 6 and fni g D f2; 3; 4; 5; 6; 3g). The six symbols sort data by year. The solid,
dashed, dotted and dot-dash lines for each year show the respective values f Ǫ C Obi g, f Ǫ C Obi C O�g,
f Ǫ C Obi � O�g, and Ǫ for .1 � i � 6/

repetition is recorded. In such circumstances, the crop yield for the j -th repetition
of the i -th year (yj i ) is written as

yj i D ˛ C bi C 
j i : (6.3)

Here, bi takes a specific value (nonrandom variable (nonstochastic variable)) for
each year. Although bi depends on i , bi is not just an intrinsic value for the i -th year.
fbig are realizations of N.0; d 2/ (normal distribution with mean 0 and variance d 2).
That is, this fbi g is based on the assumption that the influence of meteorological
phenomena and others on crop varies yearly at random and it obeys N.0; d 2/. In
contrast, 
j i takes a different value for each observation (yj i ). It is a realization of
N.0; �2/ (normal distribution with mean 0 and variance �2). Therefore, f
j ig is the
random error contained in corresponding observation (fyj ig).

Figure 6.1 shows the results of constructing the random-effects model in the
form of Eq. (6.1) (i.e., Eq. (6.3)) using the simulation data, with m D 6 and fni g D
f2; 3; 4; 5; 6; 3g. The values of the target variable are generated using

yj i D 9:9 C bi C 
j i : (6.4)

fbig are generated using N.0; 0:52/ (normal distribution with mean 0 and variance
0:52). f
j ig are generated using N.0; 0:72/ (normal distribution with mean 0 and

variance 0:72). In Fig. 6.1, the values of . Ǫ C Obi / for each i are not identical to the
averages of the data belonging to the i -th group. This is because the value of bi

(Eq. (6.3)) is not determined by only the data belonging to the i -th group but the
entire data.
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Fig. 6.2 Result of the simulation data used in Fig. 6.1 when Eq. (6.5) (page 271) is adopted. The
solid line for each year indicates the value of fOci g .1 � i � 6/

Using the same data as that used in Fig. 6.1, Fig. 6.2 shows the result of fitting
the following regression equation:

yj i D ci C ej i ; (6.5)

where fci g .1 � i � 6/ denotes the annual average of the data of the corresponding
year. That is, we have

Oci D
Pni

j D1 yj i

ni

: (6.6)

Hence, the values of Oci in Fig. 6.2 are identical to the averages of the data belonging
to the i -th group. fej ig .1 � j � ni / are realizations of N.0; �2

i / .1 � i � m/

(normal distribution with mean 0 and variance �2
i ).

To see the difference between the results shown in Fig. 6.1 and those in Fig. 6.2,
f Obig and f Oci g are compared using the bootstrap method. That is, f Ǫ C Obi g and f Oci g are
calculated using bootstrap data produced by resampling data of the corresponding
year. This procedure is repeated 100 times by altering the initial value of the
pseudo-random numbers. Distributions of the respective f Ǫ C Obi g are then obtained.
The distributions are shown in Fig. 6.3 using a boxplot. Respective distributions of
f Ocig are drawn in Fig. 6.4. Comparison between Figs. 6.3 and 6.4 shows that the
variations in f Oci g are larger than those in f Ǫ C Obi g. This behavior reflects the fact
that whereas fbi g .1 � i � m/ are realizations of N.0; d 2/ in Eq. (6.1) (page 269)
(i.e., Eq. (6.3) (page 270)), fcig .1 � i � m/ are determined independently of
one another in Eq(6.5) (page 271). Small variations of the respective f Obig indicate
that the reliabilities of the estimates are high. This is one of the significances for
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Fig. 6.3 Result of the bootstrap method by resampling the data of each year using the same
simulation data as that used in Fig. 6.1. The distributions of f Ǫ C Obi g given by the random-effects
model (Eq. (6.1) (page 269) (i.e., Eq. (6.3) (page 270))) are illustrated by a boxplot
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Fig. 6.4 Result of the bootstrap method by resampling the data of each year using the same
simulation data as that used in Fig. 6.1. The distributions of fOci g given by Eq. (6.5) (page 271)
are represented by a boxplot

using the random-effects model. The small variations in f Ǫ C Obi g, however, imply
that the regression equation used here is based on a strong assumption. In practical
situations, we rarely know before-hand whether the f Obig are realizations of a normal
distribution. Hence, if a regression equation in the form of Eq. (6.1) (page 269) is
constructed when this assumption does not hold, we cannot avoid producing results
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that do not mirror reality due to the unreasonable constraints, although the resultant
regression equation might be preferable to use given small variations in f Ǫ C Obig.

R Program [6 - 1]

Random-effects model in the form of Eq. (6.1) (page 269) (i.e., Eq. (6.3) (page
270)) is produced.
rem1()

function (){
# (1)

library(nlme)
# (2)

al <- 9.9
ni <- c(2, 3, 4, 5, 6, 3)
nyear <- length(ni)
set.seed(198)
bbi <- rnorm(nyear, mean = 0, sd = 0.5)

# (3)
yyall <- NULL
yearall <- NULL
for (ii in 1:nyear){

yy <- rep(al + bbi[ii], length = ni[ii]) +
rnorm(ni[ii], mean = 0, sd = 0.7)

yyall <- c(yyall, yy)
year <- rep(ii, length = ni[ii])
yearall <- c(yearall, year)

}
# (4)

data1 <- data.frame(yyall = yyall, yearall =
yearall)

# (5)
lme1 <- lme(yyall ˜ 1, random=˜1 | yearall,
data = data1)

print(summary(lme1))
# (6)

coef1 <- lme1$coef[[1]]
coef2 <- lme1$coef[[2]]$yearall
sigma1 <- lme1$sigma

# (7)
par(mai = c(1, 1, 1, 1), omi = c(0, 0, 0, 0))
plot(c(1:length(yyall)), yyall, xlab = "Data ID",
ylab = "y", type = "n", ylim = c(8,13))

ct1 <- 0
for(kk in 1:nyear){

points(c((ct1 + 1):(ct1 + ni[kk])),
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yyall[(ct1 + 1):(ct1 + ni[kk])], pch = kk)
lines(c((ct1 + 1),(ct1 + ni[kk])),
c(coef1 + coef2[kk], coef1 + coef2[kk]),
lwd = 3)

lines(c((ct1 + 1),(ct1 + ni[kk])),
c(coef1 + coef2[kk] + sigma1, coef1 +
coef2[kk] + sigma1), lwd = 2, lty = 2)

lines(c((ct1 + 1),(ct1 + ni[kk])),
c(coef1 + coef2[kk] - sigma1, coef1
+ coef2[kk] - sigma1), lwd = 2, lty = 3)

ct1 <- ct1 + ni[kk]
}
lines(c(1,length(yyall)), c(coef1, coef1),
lwd = 3, lty = 4)

}

(1) The use of the package “nlme” is described.
(2) The values of al (˛ (Eq. (6.1) (page 269)), ni (fni g .1 � i � m/, nyear (m),

and bbi (fbig) are given.
(3) yyall is obtained by combining all values of fyj ig. The values of years

corresponding to yyall are set as yearall.
(4) yearall and yyall are organized in a data frame of data1.
(5) lme() produces a random-effects model using data1 as data. The result

is stored in lme1. Setting yyall ˜ 1 in lme() indicates that a random-
effects model is constructed. random=˜1 | yearall signifies that the
constant part (fbig (Eq. (6.3) (page 270)) in the regression equation obeys a
normal distribution and the values of multiple bi ’s are identical when their
corresponding elements yearall are equal, although bi is random. Fur-
thermore, print(summary(lme1)) displays the contents of lme1 using
summary() on a screen.

(6) As Ǫ is contained in lme1$coef[[1]], the value is saved as coef1.
Similarly, as the f Obi g are contained in lme1$coef[[2]]$yearall, the
values are stored in coef2. As O� is contained in lme1$sigma, the value
is saved as sigma1.

(7) The resultant random-effects model is displayed (Fig. 6.1).

rem1() also outputs:
Linear mixed-effects model fit by REML
Data: data1

AIC BIC logLik
51.87572 55.14884 -22.93786

Random effects:
Formula: ˜1 | yearall

(Intercept) Residual
StdDev: 0.2822163 0.5972811 Fixed effects: yyall ˜ 1
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Value Std.Error DF t-value p-value
(Intercept) 9.878649 0.1723041 17 57.33263 0

Standardized Within-Group Residuals:
Min Q1 Med Q3

-1.66686214 -0.68671152 0.05043881 0.44364603
Max

2.65994762

Number of Observations: 23
Number of Groups: 6

This output shows that the restricted maximum likelihood estimation (REML)
is used for obtaining the regression equation. Moreover, Akaike’s Information
Criterion (AIC ) and Bayesian Information Criterion (BIC ) given by this random-
effects model are also displayed in this output. We also know from this output that
the estimate of the variance of fbi g ( Od 2) is 0:07964604 (D 0:28221632).

To obtain the reliability of the result produced by rem1(), the number of
simulation data is increased drastically. For example, (2) in rem1() is replaced
with the following (2)’.

# (2)’
al <- 9.9
ni <- c(20, 30, 40, 50, 60, 30)
ni <- rep(ni, times = 100)
nyear <- length(ni)
set.seed(198)
bbi <- rnorm(nyear, mean = 0, sd = 0.5)
yyall <- NULL
yearall <- NULL

Then, the part of the output on a screen is replaced with:

Random effects:
Formula: ˜1 | yearall

(Intercept) Residual
StdDev: 0.494839 0.6938775

This result reflects the settings of 0:5 as the standard deviation for fbig and 0:7 for
the standard deviation of f
j ig.

R Program [6 - 1] End

R Program [6 - 2]

The variations for f Ǫ C Obig are estimated by the bootstrap method.
rem3()

function (){
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# (1)
library(nlme)

# (2)
nb <- 100

# (3)
al <- 9.9
ni <- c(2, 3, 4, 5, 6, 3)
nyear <- length(ni)
set.seed(198)
bbi <- rnorm(nyear, mean = 0, sd = 0.5)
yyall <- NULL
yearall <- NULL

# (4)
coef1v <- NULL
coef2v <- NULL
for(jj in 1:nb){

yyall <- NULL
yearall <- NULL
for (ii in 1:nyear){
yy <- rep(al + bbi[ii], length = ni[ii]) +
rnorm(ni[ii], mean = 0, sd = 0.7)

yyb <- sample(yy, size = length(yy),
replace = T)

yyall <- c(yyall, yyb)
year <- rep(ii, length = ni[ii])
yearall <- c(yearall, year)

}
data1 <- data.frame(yyall = yyall,
yearall = yearall)

lme1 <- lme(yyall ˜ 1, random = ˜1 | yearall,
data = data1)

coef1 <- lme1$coef[[1]]
coef1v <- c(coef1v, coef1)
coef2 <- lme1$coef[[2]]$yearall
coef2v <- cbind(coef2v, coef2)

}
# (5)

par(mai = c(1, 1, 1, 1), omi = c(0, 0, 0, 0))
boxplot(coef1v + coef2v[1,], coef1v + coef2v[2,],
coef1v + coef2v[3,], coef1v + coef2v[4,],
coef1v + coef2v[5,], coef1v + coef2v[6,],
ylim = c(8,13), xlab="year", names =
as.character(c(1:6)), ylab="y" )

}
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(1) The use of the package “nlme” is described.
(2) The number of times of the regression using bootstrap data is performed is given

as nb.
(3) Simulation data are generated.
(4) The procedure generating the bootstrap data and constructing a random-effects

model is performed nb times. The nb values of coef1 ( Ǫ ) are combined to
produce the vector of coef1v. The nb values of coef2 (f Obig) are combined
to produce the vector of coef2v.

(5) Using a boxplot, coef1v and coef2v draw the respective variations for f Ǫ C
Obi g (Fig. 6.3 (page 272)).

R Program [6 - 2] End

6.2 Random Intercept Model

Instead of Eq. (6.1), the random intercept model represents data using the following
regression equation,

yi D ˛ C axi C bi C �i .1 � i � m/; (6.7)

where a is not a vector but a scalar regression coefficient and xi is defined as

xi D

0
BBBBB@

x1i

x2i

x3i

:::

xni i

1
CCCCCA

: (6.8)

As in Eq. (6.1) (page 269), all elements of bi take the same value (i.e., bi ). Moreover,
fbig .1 � i � m/ are realizations of N.0; d 2/ (normal distribution with mean 0 and
variance d 2). fxj ig .1 � i � m; 1 � j � ni / are values of the predictors of the
data. For example, we assume that a certain crop is grown in a number ni of fields
over a period of m years with different amounts of fertilizer applied to each field.
Crop yields are measured each year. Thus this experiment is performed m times
with the amounts of fertilizer set at xj i .1 � i � m; 1 � j � ni /. That is, we
have ni treatments recording crop yields in the i -th year. Then, with the amount of
fertilizer in the j -th treatment of the i -th year denoted by xj i , the crop yield (yj i )
is written as

yj i D ˛ C axj i C bi C 
j i : (6.9)
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Fig. 6.5 Random intercept model given by the simulation data setting m D 6 and fni g D
f12; 13; 14; 15; 16; 13g (Eq. (6.7), i.e., Eq. (6.9)). The six symbols represent data of different years.
The solid, dashed, dotted, and dot-dash lines of successive years show the respective linear trends
in f Ǫ C Oaxji C Obi g .1 � i � 6/, f Ǫ C Oaxji C Obi C O�g, f Ǫ C Oaxji C Obi � O�g, and f Ǫ C Oaxji g

Figure 6.5 presents data analyzed with respect to the random intercept model
(Eq. (6.7), specifically, Eq. (6.9)) given by simulation data with m D 6 and fni g D
f12; 13; 14; 15; 16; 13g. The values of the predictors are determined from uniform
random numbers between 1 and 5. ˛ is set at 9:9. The simulation data is generated
using the equation:

yj i D 9:9 C 2xj i C bi C 
j i : (6.10)

The distribution of fbig is N.0; 102/ (normal distribution with mean 0 and variance
102); that of f
j ig is N.0; 0:52/ (normal distribution with mean is 0 and variance
0:52).

R Program [6 - 3]

A random intercept model as expressed by Eq. (6.7) (page 277) (i.e., Eq. (6.9)
(page 277)) is constructed.
rem21()

function (){
# (1)

library(nlme)
# (2)

al <- 9.9
ni <- c(12, 13, 14, 15, 16, 13)
nyear <- length(ni)
set.seed(205)
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xx <- matrix(rep(0, length=max(ni) * nyear),
ncol = nyear)

for (ii in 1:nyear){
xx[1:ni[ii], ii] <- runif(ni[ii], min = 1,
max = 5)

xx[1:ni[ii], ii] <- sort(xx[1:ni[ii], ii])
}
bbi <- rnorm(nyear, mean = 0, sd = 10)

# (3)
xxall <- NULL
yyall <- NULL
yearall <- NULL
for (ii in 1:nyear){

xxall <- c(xxall, xx[1:ni[ii], ii])
yy <- rep(al + bbi[ii], length = ni[ii]) +
2 * xx[1:ni[ii],ii] +
rnorm(ni[ii], mean = 0, sd = 0.5)

yyall <- c(yyall, yy)
year <- rep(ii, length = ni[ii])
yearall <- c(yearall, year)

}
# (4)

data1 <- data.frame(yyall = yyall, yearall =
yearall, xxall = xxall)

# (5)
lme1 <- lme(yyall ˜ xxall, random=˜1 | yearall,
data = data1)

print(summary(lme1))
# (6)

coef1a <- lme1$coef$fixed[1]
coef1b <- lme1$coef$fixed[2]
coef2 <- lme1$coef$random$yearall
sigma1 <- lme1$sigma

# (7)
par(mai = c(1, 1, 1, 1), omi = c(0, 0, 0, 0))
plot(xxall, yyall, xlab = "x", ylab = "y",
type = "n")

ct1 <- 0
for(kk in 1:nyear){

points(xxall[(ct1 + 1):(ct1 + ni[kk])],
yyall[(ct1 + 1):(ct1 + ni[kk])], pch = kk)

lines(xxall[(ct1 + 1):(ct1 + ni[kk])],
coef1a + coef2[kk] + coef1b *
xxall[(ct1 + 1):(ct1 + ni[kk])], lwd = 1)

lines(xxall[(ct1 + 1):(ct1 + ni[kk])],
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coef1a + sigma1 + coef2[kk] + coef1b *
xxall[(ct1 + 1):(ct1 + ni[kk])] , lwd = 1,
lty = 2)

lines(xxall[(ct1 + 1):(ct1 + ni[kk])],
coef1a - sigma1 + coef2[kk] + coef1b *
xxall[(ct1 + 1):(ct1 + ni[kk])] , lwd = 1,
lty = 3)

ct1 <- ct1 + ni[kk]
}
xxalls <- sort(xxall)
lines(xxalls, coef1a + coef1b * xxalls,
lwd = 3, lty = 4)

}

(1) The use of the package “nlme” is described.
(2) The values of al (˛ (Eq. (6.9)), ni (fni g .1 � i � m/), nyear (m), xx (xj i

(Eq. 6.9) (page 277)), and bbi (fbig) are given.
(3) The set of all elements of fxj ig gives the vector xxall. Similarly, the set of all

the elements of fyj ig gives the vector yyall. The index values for the years
corresponding to the elements of yyall are saved as yearall.

(4) yearall, yyall, and xxall are organized in the data frame of data1.
(5) lme() produces the random intercept model using data1 as data. The

result is stored in lme1. yyall ˜ xxall indicates that a linear equa-
tion is constructed. random=˜1 | yearall shows that the constant (fbig
(Eq. (6.9) (page 277))) in the regression equation obeys a normal distribution
and although the value of the constant (bi ) is random, the values of multiple
bi ’s are identical if their corresponding elements of yearall are equal.
print(summary(lme1)) displays the summarized contents of lme1 using
summary().

(6) Since lme1$coef$fixed[1] contains the value of Ǫ , the value is saved
as coef1a. Since lme1$coef$fixed[2] contains the value of f Oag, the
value is saved as coef1b. Since lme1$coef$random$yearall contains
the value of f Obig, the value is saved as coef2. Since lme1$sigma contains
the value of O� , the value is saved as sigma1.

(7) The resultant analysis for this random intercept model is displayed (Fig. 6.5).

rem21() also outputs:
Linear mixed-effects model fit by REML
Data: data1

AIC BIC logLik
187.1187 196.6965 -89.55934

Random effects:
Formula: ˜1 | yearall

(Intercept) Residual
StdDev: 4.55324 0.5597792 Fixed effects: yyall ˜ xxall



6.3 Random Intercept and Slope Model 281

Value Std.Error DF t-value p-value
(Intercept) 10.069990 1.8662977 76 5.39570 0
xxall 2.069596 0.0519939 76 39.80463 0
Correlation:

(Intr)
xxall -0.083

Standardized Within-Group Residuals:
Min Q1 Med Q3

-1.98630124 -0.71470221 -0.09567211 0.57004773
Max

2.83644093

Number of Observations: 83
Number of Groups: 6

Correlation represents correlation coefficient between the intercept and the
slope.

R Program [6 - 3] End

6.3 Random Intercept and Slope Model

The random intercept and slope model represents data using the following regres-
sion equation instead of Eq. (6.7) (page 277).

yi D ˛ C .ˇ C ai /xi C bi C �i .1 � i � m/; (6.11)

where ˇ is a regression coefficient. f.ai ; bi /
t g .1 � i � m/ are realizations of

.A; B/t ; both A and B are random variables in the form of scalars. .A; B/t obeys
N..0; 0/t ; D/ (a normal distribution in which the mean is .0; 0/t and the variance-
covariance matrix is D).

As used in Eq. (6.7), fxj ig .1 � i � m; 1 � j � ni / is the data. For example, we
assume that a crop has been grown with various amounts of fertilizer applied and the
crop yields (per area) had been recorded each year. This experiment is performed
m times (i.e., m years). The amount of fertilizer applied over the i -th year is set to
xj i .1 � i � m; 1 � j � ni /. That is, a certain crop is grown in ni identical fields
under different fertilizer applications and crop yields for respective conditions are
measured in the i -th year. Then, given the amount of fertilizer is xj i measured in
the i -th year, the crop yield (yj i ) is written as

yj i D ˛ C .ˇ C ai /xj i C bi C 
j i : (6.12)
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Fig. 6.6 Random intercept and slope model (Eq. (6.11), i.e., Eq. (6.12)) by the simulation data
with the setting of m D 6 and fni g D f12; 13; 14; 15; 16; 13g. The six symbols represent data from
different years. The solid, dashed, dotted, and dot-dash lines for each year show the trend values
for f Ǫ C . Ǒ C Oai /xji C Obi g .1 � i � 6/, f Ǫ C . Ǒ C Oai /xji C Obi C O�g, f Ǫ C . Ǒ C Oai /xji C Obi � O�g,

and Ǫ C Ǒxji

Figure 6.6 displays the data as analyzed using the random intercept and slope
model (Eq. (6.11), i.e., Eq. (6.12)) given with simulation data setting m D 6 and
fni g D f12; 13; 14; 15; 16; 13g. The values of the predictors are uniform random
numbers between 1 and 5. The values of the target variable are given by

yj i D 9:9 C ai xj i C bi C 
j i ; (6.13)

where fai g are realizations from N.2:5; 0:52/ (normal distribution with mean 2:5

and variance 0:52). fbig are realizations from N.0; 102/ (normal distribution with
mean 0 and variance 102). Therefore, D is a diagonal matrix. The distribution of
f
j ig is N.0; 0:52/ (normal distribution with mean 0 and variance 0:52).

R Program [6 - 4]

The following R program produces a random intercept and slope model described
by Eq. (6.11) (i.e., Eq. (6.12)).
rem31()

function (){
# (1)

library(nlme)
# (2)

al <- 9.9
ni <- c(12, 13, 14, 15, 16, 13)
nyear <- length(ni)
set.seed(205)
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aai <- rnorm(nyear, mean = 2.5, sd = 0.5)
xx <- matrix(rep(0, length = max(ni) * nyear),
ncol = nyear)

for (ii in 1:nyear){
xx[1:ni[ii], ii] <- runif(ni[ii], min = 1,
max = 5)

xx[1:ni[ii], ii] <- sort(xx[1:ni[ii], ii])
}
bbi <- rnorm(nyear, mean = 0, sd = 10)
xxall <- NULL
yyall <- NULL
yearall <- NULL

# (3)
for (ii in 1:nyear){

xxall <- c(xxall, xx[1:ni[ii], ii])
yy <- rep(al + bbi[ii], length = ni[ii]) +
2 * aai[ii] * xx[1:ni[ii],ii] +
rnorm(ni[ii], mean = 0, sd = 0.5)

yyall <- c(yyall, yy)
year <- rep(ii, length = ni[ii])
yearall <- c(yearall, year)

}
# (4)

data1 <- data.frame(yyall = yyall,
yearall = yearall, xxall = xxall)

# (5)
lme1 <- lme(yyall ˜ xxall, random=˜xxall | yearall,
data = data1)

print(summary(lme1))
# (6)

coef1b <- lme1$coef$fixed[1]
coef1a <- lme1$coef$fixed[2]
coef2b <- lme1$coef$random$yearall[,1]
coef2a <- lme1$coef$random$yearall[,2]
sigma1 <- lme1$sigma

# (7)
par(mai = c(1, 1, 1, 1), omi = c(0, 0, 0, 0))
plot(xxall, yyall, xlab = "x", ylab = "y",
type = "n")

ct1 <- 0
for(kk in 1:nyear){

points(xxall[(ct1 + 1):(ct1 + ni[kk])],
yyall[(ct1 + 1):(ct1 + ni[kk])], pch = kk)

lines(xxall[(ct1 + 1):(ct1 + ni[kk])],
coef1b + coef2b[kk] + (coef1a + coef2a[kk]) *
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xxall[(ct1 + 1):(ct1 + ni[kk])], lwd = 1)
lines(xxall[(ct1 + 1):(ct1 + ni[kk])],
coef1b + sigma1 + coef2b[kk] +
(coef1a + coef2a[kk]) *
xxall[(ct1 + 1):(ct1 + ni[kk])], lwd = 1,
lty = 2)

lines(xxall[(ct1 + 1):(ct1 + ni[kk])],
coef1b - sigma1 + coef2b[kk] + (coef1a +
coef2a[kk]) * xxall[(ct1 + 1):(ct1 + ni[kk])],
lwd = 1, lty = 3)

ct1 <- ct1 + ni[kk]
}
xxalls <- sort(xxall)
lines(xxalls, coef1b + coef1a * xxalls,
lwd = 3, lty = 4)

}

(1) The use of the package “nlme” is described.
(2) The values of al (˛ (Eq. (6.12) (page 281)), ni (fnig .1 � i � m/), nyear

(m), xx (xj i (Eq. (6.9) (page 277)), and bbi (fbig) are given.
(3) xxall is formed from all the fxj ig values. yyall is formed from all the fyj ig

values. The index values of the respective years corresponding to yyall are
assigned to yearall.

(4) yearall, yyall, and xxall are organized into data frame of data1.
(5) lme() produces a random intercept and slope model using data1 as data. The

result is stored in lme1. yyall ˜ xxall indicates that a linear equation has
been constructed. random=˜xxall | yearall indicates that although
each of ai and bi (Eq. (6.12) (page 281)) obey a normal distribution, the values
of multiple ai ’s are identical when their corresponding elements in yearall
are equal, and similarly for the bi ’s. Furthermore,print(summary(lme1))
displays the contents of lme1 on a screen using summary().

(6) Since lme1$coef$fixed[1] contains Ǫ , the value is saved as coef1b.
Since lme1$coef$fixed[2] contains Ǒ, the value is saved as coef1a.
lme1$ coef$random$yearall[,1] contains f Oai g, the value is saved
as coef2b. Since lme1$coef$random$yearall[,2] contains f Obg, the
values are saved as coef2a. Since lme1$sigma contains O� , the value is
saved as sigma1.

(7) The resultant random intercept and slope model is illustrated (Fig. 6.6).

rem31() also outputs:

Linear mixed-effects model fit by REML
Data: data1
AIC BIC logLik
219.8885 234.2552 -103.9443

Random effects:
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Formula: ˜xxall | yearall
Structure: General positive-definite, Log-Cholesky
parametrization

StdDev Corr
(Intercept) 6.3758133 (Intr)
xxall 1.3696860 -0.436
Residual 0.5747867

Fixed effects: yyall ˜ xxall
Value Std.Error DF t-value p-value

(Intercept) 8.283355 2.6095145 76 3.174290 0.0022
xxall 5.118007 0.5625145 76 9.098444 0.0000
Correlation:
(Intr)
xxall -0.439

Standardized Within-Group Residuals:
Min Q1 Med Q3
-1.82440197 -0.64977127 -0.05953078 0.58494805
Max
2.54107581
Number of Observations: 83
Number of Groups: 6

The output above includes the fact that the correlation coefficient between A and
B is �0:436. Although the correlation between A and B is set to zero when the
simulation data is generated, this correlation is not negligible because the number
of data is small.

R Program [6 - 4] End

6.4 Generalized Linear Mixed Model

If the constant term is assumed to be random, the regression equation of the
generalized linear mixed model (GLMM) is written as

E.Yi / D g�1.˛ C axi C bi / .1 � i � m/; (6.14)

where E.�/ stands for expectation (expected value), Yi a random variable which is
constructed by obtaining the data of yi (vector) many times, and g�1.�/ is the inverse
function of a link function. It is, for example, the inverse function of the logarithmic
function (Eq. (5.109) (page 264)). This equation is similar to Eq. (6.7) (page 277).
Whereas the regression equation is written as a linear equation plus f
j ig, which
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obeys a normal distribution, if a normal distribution is assumed, the regression
equation in general cannot be represented in this form if another distribution is
assumed. A regression equation such as Eq. (6.14) is usually needed for such a
situation.

For example, let us consider an experiment in which animals are given a stimulus
with a specific level to observe the presence or absence of a response. If a stimulus
of level xj i .1 � i � m; 1 � j � ni / is applied, the result (yj i ) is represented
as 1 (presence of the response), or 0 (absence of the response). A random variable
constructed from the yj i ’s that are observed in many experimental runs is denoted
by Yj i . Then, we have

E.Yj i / D g�1.˛ C axj i C bi /: (6.15)

We denote the elements of Yi are fYj ig .1 � j � ni / and the elements of xi are
fxj ig .1 � j � ni /. When the realization of Yj i is written as yj i , the value of yj i

is 1 or 0. Hence, Yj i fulfils the Bernoulli distribution. As the Bernoulli distribution
is a special case of the binomial distribution, the regression equation of Eq. (6.15) is
obtained if we execute software developed for the generalized linear mixed model
with the assumption that the target variable satisfies the binomial distribution. If the
target variable fulfills the Bernoulli distribution, the logistic function is a common
choice for g.�/ (the link function). The logistic function is written as

g.p/ D log

�
p

1 � p

�
: (6.16)

This transformation is also called the logit transformation. Setting g.p/ to �, we
have

p D g�1.�/ D exp.�/

1 C exp.�/
: (6.17)

We show a simulation to construct a generalized linear mixed model
(Eq. (6.14), i.e., Eq. (6.15)) using simulation data with m D 10 and fni g D
f12; 13; 14; 15; 16; 13; 11; 17; 13; 16g. The target variable of the simulation data
is assumed to obey the Bernoulli distribution. The values of the predictors (fxj ig)
are realizations of the uniform random numbers between 1 and 5. The values of the
target variable is obtained using the following equation.

�j i D 2:1xj i � 6 C bi ; (6.18)

where fbig are realizations of N.0; 12/ (normal distribution with mean 0 and
variance 12). If we define

p D exp.�j i /

1 C exp.�j i /
; (6.19)
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Fig. 6.7 Generalized linear mixed model (Eq. (6.14), i.e., Eq. (6.15)) for the simulation data with
m D 10 and fni g D f12; 13; 14; 15; 16; 13; 11; 17; 13; 16g. The target variable for the simulation
data obeys the Bernoulli distribution. The logistic function is used as the link function. The
dot-dash line represents g�1. Ǫ C Oax/. The 10 solid lines are graphs of fg�1. Ǫ C Oax C Obi /g
.1 � i � 10/

then Yj i is the random variable which takes the value 1 with probability p and 0 with
probability .1 � p/. The realization of Yj i is denoted by yj i (the value of the target
variable). Figure 6.7 shows the result of constructing the generalized linear mixed
model assuming a binomial distribution. The simulation data (fxj i ; yj ig) obtained
above and the logistic function as a link function are used.

R Program [6 - 5]

A random intercept model in the form of Eq. (6.14) (i.e., Eq. (6.15) is constructed.
rem41()

function ()
{
# (1)

library(lme4)
# (2)

set.seed(820)
ni <- c(12, 13, 14, 15, 16, 13, 11, 17, 13, 16)
ndset <- length(ni)
xx <- matrix(rep(0, length = max(ni) * ndset),
ncol = ndset)

bbi <- rnorm(ndset, mean = 0, sd = 1)
for (ii in 1:ndset){

xx[1:ni[ii], ii] <- runif(ni[ii], min = 1,
max = 5)
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xx[1:ni[ii], ii] <- sort(xx[1:ni[ii], ii])
}

# (3)
xxall <- NULL
yyall <- NULL
zz <- NULL
for (ii in 1:ndset){

xxall <- c(xxall, xx[1:ni[ii], ii])
yy <- NULL
for(jj in 1:ni[ii]){
eta1 <- 2.1 * xx[jj, ii] - 6 + bbi[ii]
yy <- c(yy, rbinom(n = 1, size = 1,
prob = exp(eta1)/(exp(eta1) + 1)))

}
yyall <- c(yyall, yy)
zz <- c(zz, rep(paste(letters[ii], letters[ii],
sep = ""), length = ni[ii]))

}
# (4)

data1 <- data.frame(x = xxall, z = zz, y = yyall)
lmer1 <- lmer(y˜ x+(1|z), data = data1,
family = binomial)

print(summary(lmer1))
# (5)

coef1b <- fixef(lmer1)[1]
coef1a <- fixef(lmer1)[2]
coef2b <- ranef(lmer1)$z[,1]

# (6)
par(mai = c(1, 1, 1, 1), omi = c(0, 0, 0, 0))
plot(xxall, yyall, xlab = "x", ylab = "y",
type = "n")

ct1 <- 0
ex <- seq(from = min(xxall), to = max(xxall),
length = 100)

for (ii in 1:ndset){
eta2 <- coef1b + coef2b[ii] + coef1a * ex
ey <- exp(eta2)/(exp(eta2) + 1)
lines(ex, ey)
ct1 <- ct1 + ni[ii]

}
eta3 <- coef1b + coef1a* sort(xxall)
ey <- exp(eta3)/(exp(eta3) + 1)
lines(sort(xxall), ey, lwd = 3, lty = 4)

}
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(1) The use of the package “lme4” is described.
(2) The values of ni (fnig) are given. The number of elements in ni is given as

ndset. ˛ in Eq. (6.15) (page 286) is set to �6. rnorm(ndset, mean = 0,
sd = 1) generates the values of fbig. a is set to 2:1. rbinom() generates
realizations of the binomial distribution. n = 1 is the number of data.
size = 1 is the number of times of the trial (when this value is 1, Bernoulli
distribution is set).

(3) The simulation data given in (2) are reconstructed as the vector of the predictors
of data (xxall), that of the target variable (yyall), and that which specifies
the group (in the above example, it is an individual animal) which each data
belongs to (zz. The element of zz is one of "aa", "bb", : : :, "jj").

(4) lmer() performs the regression that constructs the generalized linear mixed
model. The result is stored in lmer1. The assigning of y˜x + (1|z)
indicates the derivation of a linear equation. The constant part in the regression
equation consists of a constant and a random value with mean 0. However, the
constant part takes an identical value in the same group which is specified by
zz. If family = binomial is set, the binomial distribution is asssumed. If
the link function is not specified, the logistic function, which is the default for
the binomial distribution, is employed.print(summary(lmer1)) displays
the content of lmer1 using summary() in the console window.

(5) fixef(lmer1)[1] extracts the value of the intercept from lmer1.
This intercept is that of the nonrandom part of the linear equation.
fixef(lmer1)[2] extracts the slope from lmer1. This slope is that
of the nonrandom part of the linear equation. ranef(lmer1)$z[,1]
extracts the realizations of the random part of the regression equation
from lmer1. The values of these realizations are given for the respective
groups. The output of lmer() (lmer1 in this example) belongs to the
class of mer. Extracting the content of lmer1 is explained by typing
help("mer-class", package="lme4") to the console window.

(6) The result of the regression using a generalized linear mixed model is graphed
(Fig. 6.7).

rem41() also outputs:

Generalized linear mixed model fit by the Laplace
approximation
Formula: y ˜ x + (1 | z)
Data: data1
AIC BIC logLik deviance
134.4 143.2 -64.19 128.4

Random effects:
Groups Name Variance Std.Dev.
z (Intercept) 0.80658 0.8981

Number of obs: 140, groups: z, 10

Fixed effects:
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Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.6629 1.0001 -5.662 1.49e-08 ***
x 1.8196 0.2976 6.114 9.72e-10 ***
---
Signif. codes: 0‘***’0.001‘**’0.01‘*’0.05‘.’0.1‘ ’1

Correlation of Fixed Effects:
(Intr)

x -0.931
Correlation of Fixed Effects indicates the correlation coefficient
between the intercept and the slope.

R Program [6 - 5] End

6.5 Generalized Additive Mixed Model

The generalized additive mixed model (GAMM) contains the category of models in
which the intercept is assumed to be random; it constructs the following regression
equation,

E.Yi / D g�1.s.xi / C bi / .1 � i � m/; (6.20)

where s.�/ signifies a nonparametric function. The spline function is often used for
this function but, otherwise is the same as Eq. (6.14) (page 285). The elements of Yi

are represented as fYj ig .1 � j � ni /. Those of xi are depicted as fxj ig .1 � j �
ni /. We then have

E.Yj i / D g�1.s.xj i / C bi /: (6.21)

We present a simulation to illustrate the construction of a generalized additive
mixed model (Eq. (6.20), i.e., Eq. (6.21)). The simulation data inputs are m D 10

and fni g D f32; 33; 34; 35; 36; 33; 31; 37; 33; 36g. The target variable obeys the
Bernoulli distribution. The values of the predictor (fxj ig) form realizations of the
uniform random numbers between 1 and 5. The values of the target variable are
generated using the following equation.

�j i D 2sin.1:3xj i / � 1 C bi ; (6.22)

where fbig are realizations of N.0; 1:52/ (normal distribution with mean 0 and
variance 1:52). Setting

p D exp.�j i /

1 C exp.�j i /
; (6.23)
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Fig. 6.8 Generalized additive mixed model (Eq. (6.20), i.e., Eq. (6.21)) given by the simulation
data with m D 10 and fni g D f32; 33; 34; 35; 36; 33; 31; 37; 33; 36g. The target variable obeys the
Bernoulli distribution. The link function is taken to be the logistic function. The solid line shows
the values of fg�1.s.x//g (s.�/ gives the values of the true function). The dot-dash line shows the
values of fg�1.Os.x//g (Os.�/ is a function estimated using data)

Yj i is a random variable which takes 1 with probability p given by the above
equation and 0 with probability .1 � p/; the realization of Yj i is denoted by yj i

(the value of the target variable). The simulation data (fxj i ; yj i g) generated by the
procedure described above is used with the logistic function as link function. A
generalized additive mixed model is constructed assuming a binomial distribution
for which we obtain Fig. 6.8.

R Program [6 - 6]

A regression equation for the generalized additive mixed model in the form of
Eq. (6.20) (i.e., Eq. (6.21)) is constructed.
rem51()

function ()
{
# (1)

library(mgcv)
# (2)

set.seed(816)
ni <- c(32, 33, 34, 35, 36, 33, 31, 37, 33, 36)
ndset <- length(ni)
xx <- matrix(rep(0, length = max(ni) * ndset),
ncol = ndset)

bbi <- rnorm(ndset, mean = 0, sd = 1.5)
for (ii in 1:ndset){

xx[1:ni[ii], ii] <- runif(ni[ii], min = 1,
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max = 5)
xx[1:ni[ii], ii] <- sort(xx[1:ni[ii], ii])

}
# (3)

xxall <- NULL
yyall <- NULL
zz <- NULL
for (ii in 1:ndset){

xxall <- c(xxall, xx[1:ni[ii], ii])
yy <- NULL
for(jj in 1:ni[ii]){
eta1 <- 2* sin(xx[jj, ii]*1.3) -1 + bbi[ii]
yy <- c(yy, rbinom(1, size = 1, prob =
exp(eta1)/(exp(eta1)+1)))

}
yyall <- c(yyall, yy)
zz <- c(zz, rep(paste(letters[ii], letters[ii],
sep = ""), length = ni[ii]))

}
# (4)

data1 <- data.frame(x = xxall, z = zz, y = yyall)
gamm1 <- gamm(y˜s(x), random = list(z = ˜1),
data = data1, family = binomial)

print(gamm1)
# (5)

par(mai = c(1, 1, 1, 1), omi = c(0, 0, 0, 0))
plot(xxall, yyall, xlab = "x", ylab = "y",
type = "n")

ex <- seq(from = min(xxall), to = max(xxall),
length = 100)

data2 <- data.frame(x = ex, z = rep("aa",
length = 100))

ey <- predict(gamm1$gam, newdata = data2,
type = "response")

lines(ex, ey, lwd = 2, lty = 4)
eta2 <- 2* sin(ex * 1.3) -1
yy <- exp(eta2)/(exp(eta2)+1)
lines(ex, yy, lwd = 2)

}

(1) The use of the package “mgcv” is described.
(2) Simulation data are generated.
(3) The simulation data obtained in (2) are arranged as the vector of the values of

the predictor (xxall), that of the values of the target variable (yyall), and
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that of the group names (individual names in the above example) of data (zz.
Each element of zz is one of "aa", "bb", : : :, "jj").

(4) gamm() performs a regression based on a generalized additive mixed model.
The result is stored in gamm1. Setting y˜s(x) in gamm() indicates
that the nonrandom part in the regression equation is a spline function
given by the smoothing spline (smoothing splines) technique. Setting
random=list(z=˜1) indicates that the normally distributed part of the
regression equation is a constant which is contained in x of the spline function
(s.x/ (Eq. (6.21) (page 290))). The constant is a random value with mean 0 but
takes the same value in a group specified by z. If family = binomial
is specified, the binomial distribution is assumed. A link function is not
specified here. Hence, the logistic function, which is the default for the binomial
distribution, is employed. Moreover, print(gamm1) displays a summary of
gamm1 on the screen.

(5) The result of the regression using the generalized additive mixed model is drawn
as a graph (Fig. 6.8).

rem51() also outputs:

Maximum number of PQL iterations: 20
iteration 1
iteration 2
iteration 3
iteration 4
iteration 5
$lme
Linear mixed-effects model fit by maximum likelihood

Data: data
Log-likelihood: -807.5422
Fixed: fixed

X(Intercept) Xs(x)Fx1
-0.8722551 1.5339778

Random effects:
Formula: ˜Xr.1 - 1 | g.1
Structure: pdIdnot

Xr.11 Xr.12 Xr.13 Xr.14 Xr.15
StdDev: 18.53512 18.53512 18.53512 18.53512 18.53512
Xr.16 Xr.17
18.53512 18.53512

Xr.18
StdDev: 18.53512

Formula: ˜1 | z %in% g.1
(Intercept) Residual

StdDev: 1.060032 0.9076563
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Variance function:
Structure: fixed weights
Formula: ˜invwt

Number of Observations: 340
Number of Groups:

g.1 z %in% g.1
1 10

$gam
Family: binomial
Link function: logit
Formula:
y ˜ s(x)
<environment: 0x034f1e94>
Estimated degrees of freedom:
4.0548 total = 5.054785

R Program [6 - 6] End
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