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Preface

The autopilot and main engine governor of a ship are typical examples of feedback
systems that have a long history. Autopilot systems to maintain the heading angle of
a ship in order to hold a desired course were developed by the Sperry Corporation
in the 1910s, and since then helmsmen have become free from the arduous task of
steering in course navigation. A governor mechanism to maintain the revolution
rate of the engine shaft was invented much earlier than the autopilot system and can
be traced back to the centrifugal governor invented by James Watt for regulating a
steam engine in the eighteenth century. The classical control theory for designing
these analog control systems has contributed to control in numerous mechanical
systems.

In the latter half of the twentieth century, however, the circumstances of control
engineering have changed rapidly due to dramatic developments in digital com-
puters and microelectronics, and digital computers have overtaken analog systems
in several fields. In the first stage of digital control, the analog control law was
digitized to realize a digital control system. However, a more essential innovation in
control system design was to apply the modern control theory based on the state-
space model of the control system.

In the 1970s, modern control theory was also introduced, allowing innovations
in ship autopilot systems. The critical problem in designing an autopilot system,
however, is to obtain a model of the ship that can properly represent the compli-
cated and inherently stochastic behavior of a ship at sea. Without a reasonable
model of the control system, it is not possible to apply modern control theory,
which is a bottleneck when applying modern control theory to complicated large
systems with strong disturbance noise.

As a practical solution to this problem, Dr. Hirotugu Akaike proposed the use
of the autoregressive (AR) model in the analysis and control of complicated sys-
tems. The crucial problem in statistical modeling was the identification of the
model, including the selection of variables, model type, and model orders, and the
estimation of unknown parameters. For this problem, he proposed final prediction
errors (FPE) for identifying the stochastic behaviors of a cement rotary kiln system
using a multivariate autoregressive (MAR) model, and generalized FPE to the
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Akaike information criterion (AIC) for evaluating a more general statistical model.
Many successful applications of analysis and control of complicated stochastic
systems through statistical modeling based on AIC have appeared in the literature.

The purpose of this book is to present an appropriate time series modeling
method for the analysis and control of complicated systems, for which it is difficult
to obtain a precise model that can express the behavior of a controlled system based
on the theory of the domain. Throughout this book, we will use multivariate
autoregressive modeling with exogenous variables based on AIC. However, we will
also consider a nonstationary version and a nonlinear version of the model to cope
with real problems. A special feature of this book is to consider modeling, analysis,
and control of a real ship’s behavior at sea, and we herein develop various types of
autopilot systems. We present not only the results of simulation studies, but also
many results of actual sea tests. Although we treat only applications related to ships,
we hope that the readers of this book will gain a deeper general knowledge and
useful tools for the analysis and control of complicated systems and will be able to
apply these methods to solve problems in their own fields.

This book is the result of long and intensive collaboration of three researchers
who have different research fields. Kohei Ohtsu’s research interests include the
analysis, monitoring, and control of ship motions at sea using time series modeling
techniques. He developed a novel autopilot system using an autoregressive model
in cooperation with Genshiro Kitagawa in the 1970s. Hui Peng’s research interests
include nonlinear system modeling, nonlinear optimization, and optimal control. He
developed a practical modeling technique for nonlinear time series using a radial
bases function ARX model and, together with the two other authors of this book,
recently succeeded in developing tracking control of a ship using this model.
Genshiro Kitagawa's primary interests are in statistical modeling, nonstationary
time series analysis, and optimal control of stochastic systems. He developed a
Monte Carlo filter technique for a nonlinear state-space model which is now
referred to as a “particle filter”.

The authors would like to thank the numerous people who have supported our
research in its various stages. In particular, we would like to express our sincere
thanks to the late Dr. Hirotugu Akaike, former Director General of the Institute of
Statistical Mathematics, Japan, for his guidance and valuable suggestions regarding
our research. We are also grateful to Prof. Michio Horigome, Dr. Hiroyuki Oda,
Dr. Jun Wu, the crew members of Shioji-Maru, and numerous other people for their
collaboration and contributions to our research. Finally, we would like to thank
Ms. Michiko Oda for her help in editing this book.

Tokyo, Japan, January 2015 Kohei Ohtsu
Changsha, China Hui Peng
Tokyo, Japan Genshiro Kitagawa
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Chapter 1
Introduction

Abstract In the following, the necessity of statistical modeling for analysis and
control of complex, large systems with large disturbances and the aim of this book
are first presented. We then present the basic concepts of ship motion and course
keeping control problems, which are the primary applications of the time series
modeling treated in this book. A brief explanation of the real ships that were used in
actual sea tests is then presented. Finally, the organization of this book is described.

Keywords Ship motion ·Statistical modeling ·Autopilot ·Ship propelling ·Outline
of chapters

1.1 Necessity of Statistical Modeling
for Complex, Large Systems

In the identification of ship motion on the ocean, it is important to adopt a statistical
model because external disturbances caused by wind, waves, and the motion of
the hull itself in response to such oceanic disturbances are intrinsically irregular.
Moreover, the dynamic range of the external disturbances is very wide, from mirror-
like calm seas to rough seas with violent storms. Thus, changes of ship motions are
so large that they would not be imaginable in other vehicles. A method of practical
analysis of such irregular phenomena has been established in the frequency domain
(Blackman and Tukey 1959; Isobe 1960), and the ship motion under disturbances has
also been dealt with as a stochastic process in the field of ship-building engineering.

Statistical methods for analyzing time series obtained from model tests conducted
in irregular waves or using records of actual-sea tests in the frequency domain have
been established by 1960s (Yamanouchi 1961). However, there are few rigorous sta-
tistical methods by which to fit a model in the time domain (Åström and Wittenmark
1984). A breakthrough came with the development of objective model evaluation
criteria, such as the final prediction error, FPE, and the Akaike information criterion,
AIC, proposed by Akaike (Akaike 1971, 1974; Nakamura and Akaike 1988; Akaike
and Nakagawa 1988; Konishi and Kitagawa 2008), which enables identification of a
multivariate time series model for real data. The AIC was a useful tool for identifying
the actual irregular data observed onboard a ship and for controlling ship motions.

© The Author(s) 2015
K. Ohtsu et al., Time Series Modeling for Analysis and Control,
JSS Research Series in Statistics, DOI 10.1007/978-4-431-55303-8_1
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2 1 Introduction

The present authors have worked to identify actual onboard data and design a
marine control system similar to an autopilot or main engine governor. The purpose
of this book is to discuss a statistical approach by which to identify a time series
model, in particular, a multivariate autoregressive model of observed onboard data,
and to control ship motion and main engine behavior using statistical models. Since
the models of a ship’s autopilot and engine governor discussed herein are typical
feedback systems, the authors hope that the readers of this book will be able easily
understand the proposed method and apply it in solving problems in their own fields.

1.2 Model of Ship Motion and Main Engine

Before discussing the problems treated herein, we briefly explain a model of the ship
motion and main engine. The ship considered herein is a conventional vessel. Thus,
special vessels including high-speed launches are not considered herein. As shown
in Fig. 1.1, a ship navigating on the sea can be described as moving with six degrees
of freedom (Fossen 1994; Lewis 1988).

Roll, pitch, and heave are motions that have restoring forces, whereas sway,
surge, and yaw are motions having no restoring force. A ship generally installs with
a propeller to control surge motion. Moreover, it is usually not necessary to con-
trol sway motion for maneuvering the ship at ocean. However, it is important to
maintain and settle her course into a desired one. Thus, a ship is generally equipped
with an autopilot system in order to appropriately control yaw. The primary role of
autopilot system is to control yaw by rudder and steer the ship to directly follow a
desired course. The motion induced by such steering is referred to as a course keep-
ing motion. In this book, the heading deviation from the desired course is referred
to as yaw. The secondary role of the autopilot is to alter the course so as to fol-
low another desired course. Course-keeping motions require small-deviation control,

Fig. 1.1 Terms used to
describe ship motion
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Fig. 1.2 Terms used to
describe directions at sea
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whereas course-changing motions require large-deviation control. Another role of the
autopilot system is to maintain a ship’s trajectory along a desired track. Recently,
research on a ship’s tracking system has been conducted. We also discuss the tracking
system in this book.

A ship receives strong disturbances, especially, by wind and waves, from the sea.
The scale of the wind force is classified according to the Beaufort scale. However, a
general measurement instrument by which to measure the wave height and direction
has not yet been standardized. Figure 1.2 shows the terms used in described directions
at sea.

On the other hand, the thrusting force of ship is generally generated through
the propeller. The rotating force of the propeller is generated by the main engine
(Fig. 1.1). The rotation of the propeller cannot maintain a set rotational frequency
unless a regulator is properly applied. The engine governor is a device for regulating
the amount of fuel supplied to the engine (so that the propeller can maintain the
desired rotational frequency). At present, centrifugal governors, which have been
widely used as governors in ships, have been gradually replaced by electronic gov-
ernors because of rapid progress in electronic equipment.

1.3 Experimental Ships and Outline of Topics Discussed
in Remaining Chapters

In the following, we use various actual sea test data for modeling and designing
autopilot systems. The data were obtained primarily through experiments conducted
on “Shioji-Maru II” and “Shioji-Maru III”, training ships of Tokyo University of
Mercantile Marine. The principal dimensions and main engine specifications of both
ships are listed in Table 1.1. Figure 1.3 shows a photograph of T.S. Shioji-Maru III.
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Table 1.1 Principal dimensions of Shioji-Maru II and Shioji-Maru III

T.S. Shioji-Maru II T.S. Shioji-Maru III

Length 41.70 m 49.93 m

Breadth 8.00 m 10.00 m

Draft 2.575 m 3.01 m

Gross tonnage 331.37 tons 425 tons

Velocity (in voyage) 11.49 knots 14.12 knots

Engine type Diesel engine Diesel engine

Horse power 300 PS×2 1,400 PS

Rated rotation frequency 1,200 rpm 700 rpm

Fig. 1.3 T.S. Shioji-Maru III

We also used a time series that was obtained experimentally on a large container
ship. Table 1.2 shows the principal dimensions of the large container ship, referred
to herein as “Ship A”. Figure 1.4 depicts a typical example of the time history of the
ship’s yaw, rudder, roll, pitch, propeller shaft revolution, and thrust data. These data
are usually obtained through a motion gyro (roll, pitch), an autopilot (yaw, rudder),
and a main engine data logger (propeller RPM, thrust, torque, etc.). The sampling
rate is generally set to 1–2 s based on sampling theory.

Chapter 2 presents an autoregressive modeling method for both univariate and
multivariate stochastic systems. Section 2.1 presents the basic univariate autoregres-
sive (AR) model, its identification method, and the application of the fitted AR model
for the analysis of time series. Section 2.2 shows an application of AR modeling to
the analysis of a ship’s motion.

Section 2.3 presents a multivariate AR model, its identification, and ARX model-
ing for control systems. Section 2.4 presents a power contribution analysis method,
which is a powerful tool for the analysis of control system with feedback loops.

http://dx.doi.org/10.1007/978-4-431-55303-8_2
http://dx.doi.org/10.1007/978-4-431-55303-8_2
http://dx.doi.org/10.1007/978-4-431-55303-8_2
http://dx.doi.org/10.1007/978-4-431-55303-8_2
http://dx.doi.org/10.1007/978-4-431-55303-8_2
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Table 1.2 Principal
dimensions of “Ship A”

Length over all 266.65 m

Length between
perpendiculars

250.00 m

Breadth 35.40 m

Full load draught 12.72 m

Gross tonnage 44,459 G.T

Engine type Diesel engine × 1

Max engine power 40,680 kW

Service speed 24.00 knot
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Fig. 1.4 Typical example of time histories of ship motion and propeller and thrust motions on
“Ship A”

Section 2.5 shows a state-space representation of the AR model and the Kalman
filter, which is a powerful tool for prediction, state estimation, and parameter esti-
mation of the time series model. This state-space model also provides a base for
developing an optimal controller of the ship’s control system.

As the simplest nonstationary time series model, a locally stationary AR model
and its on-line identification method are presented in Sect. 2.6. This model will be
used in developing a noise-adaptive autopilot system in Sect. 4.1. A model-based
monitoring system will be presented in Sect. 2.7. A radial basis function type ARX

http://dx.doi.org/10.1007/978-4-431-55303-8_2
http://dx.doi.org/10.1007/978-4-431-55303-8_2
http://dx.doi.org/10.1007/978-4-431-55303-8_4
http://dx.doi.org/10.1007/978-4-431-55303-8_2
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model (RBF-ARX) will be presented in Sect. 2.8. This model provides a practical tool
for modeling nonlinear time series and will be used in developing a course tracking
autopilot system in Chap. 4.

Chapter 3 presents a method of statistical control and its application to a ship’s
autopilot system. An optimal control law for the state-space model based on the
ARX model and the quadratic loss function will be derived in Sect. 3.1. Two types
of criterion function will be used in this chapter. Applications of the stochastic opti-
mal controller for designing an AR-model-based autopilot system and the results of
simulations and experiments on an actual ship will be presented in Sect. 3.2.

A rudder-roll control system will be presented in Sect. 3.3. In this section, we
show that a proper rudder control enables reduction of both the yaw and roll motions.
Section 3.4 is concerned with the control of a marine engine governor.

Chapter 4 presents the extension of the standard statistical controller. A noise-
adaptive autopilot system that can adapt to changes in sea disturbances will be
presented in Sect. 4.1. An RBF-ARX-model-based nonlinear controller will be pre-
sented in Sect. 4.2. A GPS-signal-based computational approach to determining a
ship’s tracking error and course deviation for implementing tracking control will
be presented in Sect. 4.3. Finally, in Sect. 4.4, an RBF-ARX-model-based predic-
tive tracking controller for a marine vehicle will be developed, and the results of
simulations and experiments on a real ship will be presented.
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Chapter 2
Time Series Analysis Through AR Modeling

Abstract The features of dynamic phenomena can be described using time series
models. In this chapter, we present various types of autoregressive models for the
analysis of time series, such as univariate and multivariate autoregressive models, an
autoregressive model with exogenous variables, a locally stationary autoregressive
model, and a radial basis function autoregressive model. Various tools for analyzing
dynamic systems such as the impulse response function, the power spectrum, the
characteristic roots, and the power contribution are obtained through these models
(Akaike and Nakagawa 1989; Kitagawa 2010).

Keywords AR(X) modeling · Ship motion analysis · LSAR model · Ship motion
monitoring · RBF-ARX modeling for nonlinear system

2.1 Univariate Time Series Analysis Through AR Modeling

2.1.1 AR Model and Its Identification

A model that expresses a univariate time series yn as a linear combination of past
observations yn−i and white noise vn is referred to as an autoregressive model (AR
model) and has the form

yn =
m∑

i=1

ai yn−i + vn, (2.1)

where m and ai are the autoregressive order and the autoregressive coefficient (AR
coefficient), respectively. We assume that vn is a white noise that follows a normal
distribution with mean 0 and variance σ 2 and is independent of the past time series
yn−i . In other words, vn satisfies E[vn] = 0, E[v2

n] = σ 2, E[vnvm] = 0, for n �= m,
and E[vn ym] = 0, for n > m, where E denotes expectation.

© The Author(s) 2015
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8 2 Time Series Analysis Through AR Modeling

2.1.1.1 Autocovariance Function

Given the time series yn , the autocovariance function Ck is defined by Ck =
E[yn yn−k], k = 0,±1, . . ., where k is the lag and, for simplicity, the mean of the
time series is assumed to be 0. Taking the expectation after multiplying by yn−k on
both sides of (2.1) yields

E[yn yn−k] =
m∑

i=1

ai E[yn−i yn−k] + E[vn yn−k]. (2.2)

Therefore, we obtain the following Yule-Walker equation:

C0 =
m∑

i=1

ai Ci + σ 2, (2.3)

Ck =
m∑

i=1

ai Ck−i , k = 1, 2, . . . (2.4)

A time series is said to be stationary if the mean and the autocovariance function
exist and are invariant with time.

Note that, since for univariate time series, the autocovariance function satisfies
C−k = Ck , Eq. (2.4) also holds, even if Ck−i is replaced by Ck+i . This means that
the backward model satisfies the same equation, and that given the autocovariance
function, the forward and backward AR models are identical.

2.1.1.2 Estimation of the AR Model

In order to identify an AR model, it is necessary to determine the order m and estimate
the AR coefficients a1, . . . , am and the variance σ 2 based on the data. Given the time
series y1, . . . , yN , by computing the sample autocovariance functions

Ĉk = 1

N

N∑

n=k+1

yn yn−k, k = 0, 1, . . . , (2.5)

and substituting them into (2.4), we obtain a system of linear equations for the
unknown AR coefficients, a1, . . . , am ,

⎡

⎢⎢⎢⎣

Ĉ0 Ĉ1 · · · Ĉm−1

Ĉ1 Ĉ0 · · · Ĉm−2
...

...
. . .

...

Ĉm−1 Ĉm−2 · · · Ĉ0

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

a1
a2
...

am

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

Ĉ1

Ĉ2
...

Ĉm

⎤

⎥⎥⎥⎦ . (2.6)
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By solving this equation, the estimates âi of the AR coefficients are obtained.
Then, from (2.3), an estimate of the variance σ 2 is obtained as follows:

σ̂ 2 = Ĉ0 −
m∑

i=1

âi Ĉi . (2.7)

The estimates â1, . . . , âm , and σ̂ 2 obtained by this method are referred to as the
Yule-Walker estimates.

The log-likelihood of the estimated model is approximately given by

� = − N

2

(
log 2πσ̂ 2 + 1

)
. (2.8)

More precise estimates of the AR coefficients and the variance are obtained by the
least squares method based on the Householder transformation or the maximum
likelihood method (for details, see Kitagawa 2010).

Then, the Akaike information criterion (AIC) of the AR model is obtained approx-
imately as follows:

AIC = −2 (maximum log-likelihood) + 2 (number of parameters)

≈ N log 2πσ̂ 2 + N + 2(m + 1). (2.9)

In order to select the AR order m by the minimum AIC method, we calculate the
AICs of the AR models with orders of up to M, that is, AIC0, . . . , AICM , and select
the order that attains the minimum of the AIC values (Akaike 1974; Sakamoto et al.
1986; Konishi and Kitagawa 2008; Kitagawa 2010).

According to Levinson’s algorithm, these solutions can be obtained quite effi-
ciently. Hereinafter, the AR coefficients and the innovation variance of the AR model
of order m are denoted as am

i , i = 1, . . . , m, and σ 2
m , respectively. Then, Levinson’s

algorithm for obtaining the parameters of the AR models of orders m = 0, 1, . . . , M
is defined as follows (Kitagawa 2010):

1. Set σ̂ 2
0 = Ĉ0 and AIC0 = N (log 2πσ̂ 2

0 + 1) + 2.

2. Repeat the following steps (a)–(d) for m = 1, . . . , M :

(a) âm
m =

(
Ĉm −

m−1∑

j=1

âm−1
j Ĉm− j

)(
σ̂ 2

m−1

)−1
.

(b) âm
i = âm−1

i − âm
m âm−1

m−i , for i = 1, . . . , m − 1.

(c) σ̂ 2
m = σ̂ 2

m−1{1 − (âm
m )2}.

(d) AICm = N (log 2πσ̂ 2
m + 1) + 2(m + 1).

3. The AIC best order is defined as the minimizer of AIC0, . . . , AICM .
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2.1.2 Time Series Analysis Using the Univariate AR Model

The AR model estimated from the observed time series can be used to obtain various
kinds of information about the time series. In this subsection, we present the impulse
response function, the power spectrum, and the characteristic roots.

2.1.2.1 Impulse Response Function

The impulse response function (IRF) of a dynamic system is defined as the output
of the IRF when an impulsive input signal is added to the system. Since the impulse
function contains all frequencies, the impulse response defines the response of a
linear, time-invariant system for all frequencies. All dynamic features of a system
can be obtained from the IRF. Using the lag operator B defined by Byn ≡ yn−1, the
AR model can be expressed as follows:

a(B)yn ≡
(

1 −
m∑

i=1

ai Bi
)

yn = vn, (2.10)

where a(B) is called the AR operator. Dividing both sides of (2.10) by a(B), the AR
model can be expressed as yn = a(B)−1vn . Therefore, if we define a formal infinite
series g(B) as

g(B) ≡ a(B)−1 =
∞∑

i=0

gi Bi , (2.11)

the AR model can be expressed as a linear combination of present and past values
of white noise vn (a moving average model of infinite order):

yn = g(B)vn =
∞∑

i=0

gi vn−i . (2.12)

The coefficients gi ; i = 0, 1, . . ., reveal the influence of the noise at time n = 0
on the time series at time i , and is referred to as the impulse response function of the
AR model. Here, gi is obtained by the following recursive formula:

gi =
i∑

j=1

a j gi− j , i = 1, 2, . . . , (2.13)

where g0 = 1, a j = 0 for j > m. A linear, time-invariant system is completely
characterized by its impulse response. That is, for any input, we can calculate the
output in terms of the input and the impulse response.
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2.1.2.2 Power Spectrum of the AR Process

The Fourier transform of the autocovariance function is referred to as the power
spectrum (or spectrum) and expresses the power of the signal at each frequency. If
an AR model (2.1) of a time series is given, the power spectrum can be obtained as
follows:

p( f ) =
∞∑

k=−∞
Cke−2π ikf = σ 2

∣∣∣1 −
m∑

j=1

a j e
−2π ijf

∣∣∣
2
, (2.14)

where i is the imaginary unit.
There is a close relationship between the AR order and the number of peaks in the

spectrum (Kitagawa 2010). The logarithm of the spectrum, log p( f ), is expressible as

log p( f ) = log σ 2 − 2 log
∣∣∣1 −

m∑

j=1

a j e
−2π ijf

∣∣∣. (2.15)

The peaks of the spectrum appear at the local minima of |1 − ∑m
j=1 a j e−2π ijf|. The

number of peaks corresponds to the number of roots of the AR operator. Therefore,
in order to express k spectral peaks, the AR order must be greater than or equal to 2k.
As will be discussed below, the locations and heights of the peaks are determined by
the angles and absolute values, respectively, of the complex roots of the characteristic
equation.

2.1.2.3 Characteristic Roots

The characteristics of an AR model are determined by the roots of the following
polynomial equation:

a(B) = 1 −
m∑

j=1

a j B j = 0. (2.16)

Equation (2.16) is referred to as the characteristic equation associated with the AR
operator. The roots of this equation are called the characteristic roots. If all roots of
the characteristic equation a(B) = 0 lie outside the unit circle, or equivalently, the
roots of a(B−1) = 0 lie inside the unit circle, the influence of noise turbulence at a
certain time decays as time progresses. Therefore, the AR model becomes stationary,
and the system characterized by the AR model is stable.

As can be seen from Eq. (2.15), the positions of the roots of the characteristic
polynomial are closely related to the shape of the spectrum. The peak of the spectrum
appears at around f = θ/2π , if the complex root of the AR operator is expressed in
the following form:

z = α + iβ = reiθ . (2.17)
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Fig. 2.1 Relationship between the characteristic roots and the spectrum peak frequency

Figure 2.1 illustrates the relationship between θ and f . Furthermore, the more
closely the root r approaches 1, the higher the peak of the spectrum becomes.

2.2 Analysis of Ship Motion Through Univariate AR
Modeling

In this section, we present an example of time series analysis of ship motion through
univariate AR modeling. We discuss roll and pitch, which are typical angular motions
of a ship that are induced by restoration forces. For example, a ship is said to have roll
stability when the restoration moment is larger than the capsizing moment. Figure 2.2
illustrates the relationship between these moments. In Fig. 2.2, G indicates the center
of gravity, B

′
indicates the center of buoyancy, and M indicates the metacenter height,

which are all technical terms in naval architecture. As the distance GM increases,
the lateral stability of the ship increases. Pitch stability can be explained in a similar
manner.

Fig. 2.2 Roll stability. G:
center of gravity; B′: center
of buoyancy
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2.2.1 Features of Roll and Pitch

The salient features of roll and pitch are represented in the spectra as shown in
Fig. 2.3. The graph on the left shows the spectra of roll, and the graph on the right
shows the spectra of pitch. The data used to plot these graphs were obtained for a
large container ship. The dominant peaks of roll motion are concentrated at a specific
frequency, and the bandwidth is narrow. In contrast, the spectra for pitch scatter as the
bandwidth becomes broad. These observations indicate implicitly that the damping
force of the roll is weak, whereas that of the pitch is very strong. In other words, the
rolling motion with a natural period is strong, whereas the pitching motion with a
natural period is weak. Thus, the pitch responds significantly to external disturbances
such as wave forces. Therefore, seafarers know that pitch is an index of wave height.

Figure 2.4 represents the impulse response functions of roll and pitch motions
obtained by Eq. (2.13). The roll damping force countering an impulsive disturbance
is weak, as shown in Fig. 2.4 (left), whereas the pitch damping force countering an
impulsive disturbance is very strong, and the regular response disappears after 15 s.

Figure 2.5 shows the time changes of the roll spectra (left) and the locations of
the dominant characteristic roots (right) for successive 50 data sets each of which
includes 1,200 observations sampled at 1 s intervals. The power spectra are very
stable, and although the magnitudes of the characteristic roots are very close to one,
their locations are concentrated at 18-second-cycle movement.

Figure 2.6 shows the time changes of pitch spectra (left) and the locations of their
dominant characteristic roots (right) in the local stationary AR model fitting. In this
case, the power spectra fluctuate more than the roll spectra. Moreover, the magnitudes
of the characteristic roots of pitch are smaller than those of roll. The dominant periods
are scattered from 24 to 6 s. As mentioned in Sect. 2.1.2.3, the peak of the spectrum
appears at f = θ/2π .

Figure 2.7 shows the scatter plot of the dominant and subdominant periods of
roll with four typical wave patterns of roll in different positions. The horizontal axis
denotes the dominant period of roll, and the vertical axis indicates the subdominant
period of roll. As the dominant and subdominant periods approach each other, the
wave pattern of roll time history forms a “group wave”.
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Fig. 2.7 Locations of dominant and sub-dominant periods and patterns of roll

2.2.2 Roll Stability

Roll stability is an important matter not only for ship designers, but also for mariners.
When the roll period abruptly shifts longer during sailing, in other words, the mag-
nitude of the characteristic root exceeds a radius of 1 in the complex plane, the risk
of capsizing immediately increases.

We can use the scatter diagram of roll and pitch dominant periods to avoid the risk
of losing roll stability. Figure 2.8 shows a scatter diagram of the dominant period of
roll (horizontal axis) and the dominant period of pitch (vertical axis). This diagram
reveals important information on roll stability.

Points plotted on the 45-degree line in the diagram indicate that both motions
will be synchronized and that the shape of the roll motion will gradually form as a
group wave, which means that the risk of capsizing increases, as shown in Fig. 2.7.
We refer to this line as the synchronizing roll line.

On the other hand, for points plotted on the 22.5-degree line, along which the
roll period is equal to twice the pitch period, the rolling motion may become a
large rolling motion known as parametric rolling. This phenomenon is well known
in nonlinear vibration theory. We refer to the 22.5-degree line as the parametric
rolling line.
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Fig. 2.8 Scatter diagram of the period of roll (horizontal axis) and the period of pitch (vertical
axis)

2.2.3 Increasing Horizon Prediction of Roll and Pitch

Increasing horizon prediction of ship motion is important for safely operating a
ship. Applying Kalman filtering to the state-space representation of the AR model
described in Sect. 2.5.2, we can reasonably predict ship motion. Figure 2.9 shows the
long-term predictions of roll and pitch motions. In these figures, the AR models of
roll and pitch are fitted using data from the beginning until 340 s, and the roll and
pitch motions from 340 to 360 s are then predicted. The AR model can reasonably
predict the future values.

2.3 Multivariate AR Modeling of Controlled Systems

2.3.1 Multivariate AR Model

Assume that yn = (yn(1), . . . , yn(�))T is a stationary multivariate time series, where
� is the dimension of the time series and n is the time. For simplicity, the mean of the
time series, E[yn(i)], is assumed to be 0 for i = 1, . . . , �. A model that expresses the
present value of the time series as a linear combination of past values yn−1, . . . , yn−M
and the white noise vn

yn =
m∑

j=1

A jyn− j + vn, (2.18)
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Fig. 2.9 Long-term prediction of roll and pitch. Prediction starts at n = 610 for roll and n = 360

is referred to as a multivariate autoregressive model (MAR model), where m is the
order, A j is the autoregressive coefficient matrix whose (i, k)th element is given by
a j (i, k), and vn is an �-dimensional white noise that satisfies E[vn] = [0, . . . , 0]T ,

E[vnvT
n ] = W =

⎡

⎢⎣
σ11 · · · σ1�

...
. . .

...

σ�1 · · · σ��

⎤

⎥⎦ , (2.19)

E[vnvT
j ] = O, for n �= j and E[vn yT

j ] = O, for n > j . Here, O denotes the � × �

matrix with 0 elements, and W is an � × � symmetric positive semi-definite matrix
satisfying σij = σji.

The cross-covariance of yn(i) and yn( j) at time lag k is defined as Ck(i, j) =
E
[
yn(i)yn−k( j)

]
. Then, the �×� matrix Ck = E[ yn yT

n−k], k = 0, 1, · · · , the (i, j)th
component of which is given by Ck(i, j), is referred to as the cross-covariance
function. For the multivariate AR model, the cross-covariance function Ck satisfies
the Yule-Walker equation

C0 =
m∑

j=1

A j C− j + W (2.20)

Ck =
m∑

j=1

A j Ck− j (k = 1, 2, . . .). (2.21)
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Note that, unlike in the univariate case, the cross-covariance function is not sym-
metric with respect to time lag and satisfies C−k = CT

k .

2.3.2 Identification of Multivariate AR Model

In this subsection, identification methods, such as the parameter estimation and the
order selection of the multivariate AR model, are presented. The parameters of the
multivariate AR model of order m

yn =
m∑

i=1

Am
i yn−i + vn, vn ∼ N (0, Wm), (2.22)

are the variance-covariance matrix Wm of the innovation vn and the AR coefficient
matrices Am

1 , . . . , Am
m (Akaike and Nakagawa 1989). The number of unknown para-

meters is m�2 + �(� + 1)/2. In this subsection, since we consider AR models of
various orders, the order m is explicitly shown as the superscript of the coefficient.

If a multivariate AR model is given, the cross-covariance function is obtained by
Eqs. (2.20) and (2.21). Here, assume that the sample cross-covariance function Ĉk ,
k = 0, 1, . . . , m, is obtained from observed time series by

Ĉk(i, j) = 1

N

N∑

�=k+1

yn(i)yn−�( j). (2.23)

Then, by substituting these into Eq. (2.21), the AR coefficients of the parameters
of the multivariate AR model, Âm

j , can be obtained by solving the Yule-Walker
equation:

Ĉk =
m∑

j=1

Am
j Ĉk− j , (k = 1, . . . , m). (2.24)

Substituting the estimated AR coefficient matrices Âm
j into Eq. (2.20) yields the

estimate of the variance covariance matrix Wm , as follows:

Ŵm = Ĉ0 −
m∑

j=1

Âm
j Ĉ j . (2.25)

In actual modeling, the order m is unknown and must be determined based on the
data. The order m can be determined using the minimum AIC procedure (Akaike
1974, 1998; Konishi and Kitagawa 2008). In this method, we compute the AICm

m = 0, 1, . . . , M , for a properly selected highest-order M (Kitagawa 2010),
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AICm = − max(log-likelihood) + 2(number of parameters)

= N� log 2π + N log |Wm | + 2m�2 + �(� + 1). (2.26)

Then, the AIC best order m∗ is determined as the minimizer of the AICm from among
the orders m = 0, 1, . . . , M , i.e.,

m∗ = arg min
m=0,1,...,M

AICm . (2.27)

Therefore, in order to perform the minimum AIC procedure, it is necessary to fit
all AR models and compute the associated AIC values for the orders, 0, 1, . . . , M .
The AIC values can be obtained efficiently using the following algorithms. In the case
of a univariate time series, the forward AR model coincides with the backward AR
model, because the autocovariance function is an even function. The computationally
efficient Levinson’s algorithm is derived based on this property, which is not satisfied
by a multivariate time series. Therefore, in order to derive an efficient algorithm
similar to Levinson’s algorithm for multivariate time series, in addition to Eq. (2.22),
we should consider the backward multivariate AR model

yn =
m∑

i=1

Bm
i yn+i + un, un ∼ N (0, Um), (2.28)

and we need to estimate the variance-covariance matrix Um and the coefficients Bm
i ,

as well as Am
i and Wm , simultaneously (Whittle 1963; Kitagawa 2010).

Assume that the sample cross-covariance function Ĉ j , j = 0, . . . , M is given.
The minimum AIC procedure for fitting the multivariate AR model based on the
Levinson-Whittle algorithm is then defined as follows. In this recursive algorithm,
the mth AR coefficient Am

m plays a crucial role and is called the PARCOR (Partial
autocorrelation) matrix.

1. Set W0 = U0 = Ĉ0 and compute the AIC of the AR model of order 0 as
AIC0 = N (k log 2π + log |Ŵ0| + k) + �(� + 1).

2. For m = 1, . . . , M , repeat the following steps (a)–(e).

(a) Wm = Ĉm − ∑m−1
i=1 Am−1

i Ĉm−i .

(b) Obtain the PARCOR matrices of the forward and backward AR models by
Am

m = WmU−1
m−1 and Bm

m = W T
m V −1

m−1.
(c) Compute the AR coefficients of the forward and backward AR models by

Am
i = Am−1

i − Am
m Bm−1

m−i and Bm
i = Bm−1

i − Bm
m Am−1

m−i for i = 1, . . . , m −1.
(d) Estimate the innovation variance-covariance matrices by

Ŵm = Ĉ0 − ∑m
i=1 Am

i ĈT
i and Ûm = Ĉ0 − ∑m

i=1 Bm
i Ĉi .

(e) Compute the AIC value of the AR model of order m by
AICm = N (k log 2π + log |Ŵm | + k) + �(� + 1) + 2�2m.

3. Find the minimum of the AICm among m = 0, . . . , M . The AIC best order, m∗,
is the minimizer of the AICs, and m∗, Âm∗

j and Ŵm∗ are the identified model.
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Remark According to the above-mentioned algorithm, we compute AIC0, . . . ,

AICM , and select the m that attains the minimum of the AIC values as the best
order of the multivariate AR model. In this method, it is implicitly assumed that the
AR coefficients am(i, j) have common orders for all i and j . Using the least squares
method based on the Householder transformation, it is possible to determine the
AIC best order for each pair of (i, j) (Kitagawa 2010). Furthermore, applying this
method, it is possible to determine the best order without explicitly obtaining the AR
coefficient matrices. The FORTRAN program MULMAR in the program package
TIMSAC-78 (Akaike et al. 1979) can be used for this purpose. Furthermore, the
maximum likelihood estimates of the multivariate AR model are obtained using the
state-space representation of the model and the Kalman filter (Kitagawa 2010).

2.3.3 ARX Model for a Control System

Suppose that the �-dimensional time series yn consists of p-dimensional output
variables sn = (sn(1), . . . , sn(p))T and q-dimensional input variables rn =
(rn(1), . . . , r(q))T , so that � = p + q and yn = (sT

n , rT
n )T .

The autoregressive exogenous model (ARX model) with inputs rn and outputs sn

is given by

sn =
m∑

j=1

a j sn− j +
m∑

j=1

b j rn− j + un , (2.29)

where a j and b j are p × p and p × q matrices, and un is a p-dimensional white
noise with covariance matrix Wr,m .

Note that this ARX model is a part of the AR model for �-dimensional time series

yn =
m∑

j=1

A j yn− j + vn, (2.30)

with the relation

A j =
[

a j b j

∗ ∗
]

, vn =
[

un

∗
]

, Wm =
[

Wr,m ∗
∗ ∗

]
. (2.31)

The symbol ∗ indicates that this part of the matrix is not used in the ARX model. This
means that the parameters of the ARX model are obtained as part of the multivariate
AR model for the time series yn . Therefore, the Yule-Walker estimates of a j and b j ,
j = 1, . . . , m can be obtained from those of A j , j = 1, . . . , m.

However, the best order for this ARX model is not necessarily the same as that of
the multivariate AR model for yn . The AIC for the ARX model is given by

AICm = N log |Wr,m | + 2p(p + q)m + p(p + 1), (2.32)
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where N is the data length, and | Wr,m | is the determinant of the estimate of the
variance covariance matrix of the innovation un of the ARX model of order m.
Moreover, the sum of the second and third terms on the right-hand side is equal
to twice the number of parameters of this model. According to the minimum AIC
procedure, the order that attains the minimum of AICm is considered to be the best
model (Akaike 1974; Konishi and Kitagawa 2008).

Remark Similar to the case of the AR model, a more sophisticated model with a
different order for each variable can be obtained by the least squares method based
on the Householder transformation.

2.4 Power Contribution Analysis of a Feedback System

2.4.1 Power Contribution of a Feedback System

For multivariate time series, yn = (yn(1), . . . , yn(�))T , assume that a multivariate
autoregressive model (MAR model) is given as

yn =
m∑

j=1

A j yn− j + vn, (2.33)

where A j is the autoregressive coefficient matrix whose (i, j)th element is given by
am(i, j), and vn is an �-dimensional white noise with mean 0 and cross-covariance
matrix W .

The cross-covariance function of the time series yn(i) and yn( j) is defined as
Ck(i, j) = E

[
yn(i)yn−k( j)

]
for k = 0, 1, . . . , M and the � × � matrix whose (i, j)

component is Ck(i, j) is denoted by Ck .
The cross-spectrum matrix P( f ) is defined as

P( f ) =
⎡

⎢⎣
p11( f ) · · · p1�( f )

...
. . .

...

p�1( f ) · · · p��( f )

⎤

⎥⎦ =
∞∑

k=−∞
Cke−2π ik f . (2.34)

For time series that follow the multivariate AR model, the cross-spectrum can be
obtained by Whittle (1963), Akaike and Nakagawa (1989)

P( f ) = A( f )−1W
(

A( f )−1
)∗

, (2.35)

where A∗ denotes the complex conjugate matrix of A, and A( f ) denotes the � × �

matrix whose ( j, k)th component is defined by

Ajk( f ) =
M∑

m=0

am( j, k)e−2π imf, (2.36)
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with a0( j, j) = −1 and a0( j, k) = 0 for j �= k.
For convenience, A( f )−1 will be denoted as B( f ) = (bjk( f )) in the following.

If the components of the white noise vn are mutually uncorrelated and the variance-
covariance matrix becomes the diagonal matrix W = diag{σ 2

1 , . . . , σ 2
� }, then the

power spectrum of the i th component of the time series can be expressed as follows:

pii( f ) =
�∑

j=1

bij( f )σ 2
j bij( f )∗ ≡

�∑

j=1

|bij( f )|2σ 2
j . (2.37)

This indicates that the power of the fluctuation of yn(i) at frequency f can be
decomposed into the effects of � noises and the term |bij( f )|2σ 2

j is referred to as
the absolute power contribution. Therefore, if we define rij( f ) as follows:

rij( f ) = |bij( f )|2σ 2
j

pii( f )
, (2.38)

then rij( f ) represents the ratio of the power of fluctuation that can be expressed as
the effect of vn( j) to the power of the fluctuation of yn(i) at frequency f . Here, rij( f )

is referred to as the relative power contribution, which is a convenient tool for the
analysis of a feedback system (Akaike 1968; Akaike and Nakagawa 1989). When
drawing figures, it is convenient to use the cumulative power contribution defined by

sij( f ) =
j∑

k=1

rik( f ) = 1

pii( f )

j∑

k=1

|bik( f )|2σ 2
k . (2.39)

Remark For many real time series, the assumption of the diagonality of the variance
covariance matrix W of the white noise vn may be too restrictive. A general positive
definite matrix W can be expressed as follows:

W =
�∑

i=2

i−1∑

j=1

sij Jij J
T
ij +

�∑

i=1

si Ji J T
i . (2.40)

Using this expression, the generalized power contribution is defined as

rijk( f ) =

⎧
⎪⎪⎨

⎪⎪⎩

|ρjk||√σjjbij ± √
σkkbik|2

Pii( f )
( j = 2, . . . , �; k = 1, . . . , j − 1),

τ jσjk|bij|2
Pii

( j = 1, . . . , �; k = j).

(2.41)

For details and some applications to financial time series analysis, see Tanokura and
Kitagawa (2004) and Tanokura et al. (2012).
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Remark Most real-world systems have feedback loops. If significant feedback loops
exist, it is impossible to obtain unbiased estimates of the impulse response function
unless the noise input to the system is a white noise sequence. However, under
the assumption of diagonality of the noise covariance matrix W , it is possible to
obtain unbiased estimates of the impulse response function, even in the presence of
feedback loops (Akaike and Nakagawa 1989). Assume that the feedback system can
be expressed as

yn(i) =
�∑

j=1

∞∑

m=1

αm(i, j)yn−m( j) + un( j), (2.42)

where it is assumed that αm(i, i) = 0 and that the noise input un( j) can be expressed
by an AR model

un( j) =
m∑

i=1

ci ( j)un−i ( j) + εn( j), (2.43)

with εn( j) being mutually independent white noise.
In this situation, if a multivariate AR model of order m, Eq. (2.33), is given, we

can obtain estimates of the coefficients αm(i, j) and ci ( j) by

cm(i) = Am(i, i), m = 1, . . . , M and i = 1, . . . , �,

αm(i, j) = Am(i, j) +
m−1∑

k=1

ck(i)αm−k(i, j), m = 1, . . . , M (2.44)

αm(i, j) =
m−1∑

k=1

ck(i)αm−k(i, j), m = M + 1, . . . .

2.4.2 Analysis of Ship Feedback Motion

Table 2.1 and Fig. 2.10 shows the results of fitting multivariate AR models of orders
of up to 20 by the Yule-Walker method to the data obtained from a large con-
tainer ship. The determinant of the prediction error covariance matrix Wm decreases
monotonically with the order. However, the AIC is minimized at m∗ = 7, and grad-
ually increases for orders m > m∗. The identified multivariate AR model will be
used in the power contribution analysis mentioned in Sect. 2.2.

Figure 2.11 shows the power contribution obtained by fitting a multivariate AR
model to the five-variate time series composed of the yaw rate, the roll, the pitch
rate, the propeller revolutions per minute (RPM), and the rudder angle (N = 500
and 
t = 2 s). The AR order determined by the AIC criterion was 7 (see Table 2.1
and Fig. 2.10). Since the correlation matrix calculated from Wm is
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Table 2.1 AICs of multivariate AR models fitted to ship data

m |Wm | AICm m |Wm | AICm m |Wm | AICm

0 54107.23 12574.05 7 0.674 7277.31 14 0.429 7401.03

1 40.310 9023.00 8 0.611 7278.28 15 0.405 7422.76

2 2.397 7661.76 9 0.582 7307.31 16 0.388 7451.84

3 1.498 7476.90 10 0.537 7313.84 17 0.370 7477.29

4 0.965 7306.65 11 0.510 7338.02 18 0.346 7494.14

5 0.830 7281.64 12 0.474 7351.75 19 0.330 7520.22

6 0.749 7280.16 13 0.446 7370.59 20 0.316 7548.03
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Fig. 2.10 Changes in |Wm | and AICm of multivariate AR models for m = 0, 1, . . . , 20, fitted to
five-variate ship data under manual control

R =

⎡

⎢⎢⎢⎢⎣

1 −0.032 0.299 0.165 −0.001
−0.032 1 −0.107 0.156 0.036

0.299 −0.107 1 0.255 −0.043
0.165 0.156 0.255 1 0.083

−0.001 0.036 −0.043 0.083 1

⎤

⎥⎥⎥⎥⎦
, (2.45)

the assumption of the power contribution analysis seems reasonable.
Figure 2.11 shows the power contribution analysis of ship motions when a large

container ship was steered in manual mode. From top to bottom, the power contri-
butions to the power of the yaw rate, the roll, the pitch, the propeller RPM, and the
rudder angle from each motion are shown. The panels on the left-hand side show the
cumulative absolute power contributions defined in Eq. (2.38), whereas the panels
on the right-hand side show the cumulative relative power contribution defined in
Eq. (2.39). From these plots, we can see that the yaw rate, the pitch, the propeller
RPM, and the rudder angle have the same dominant frequency of the power spectra,
around a frequency of f = 0.04 Hz. On the other hand, the dominant frequency of
the roll is located at approximately f = 0.06 Hz. The yaw rate and the propeller
RPM have the second spectral peaks near this frequency.

Strong contributions to yaw rate are observed in the yaw rate itself, in their
dominant frequency range under these sea conditions. On the other hand, at 0.04 Hz,
the contribution to pitch is mostly due to the pitch itself and the propeller RPM.
Approximately 50 % of the contribution to the power of the propeller RPM at its
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Fig. 2.11 Power contribution analysis of ship motion under manual control
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Fig. 2.12 Power contribution analysis of ship motion under autopilot control
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dominant frequency is provided by the yaw rate and comes primarily from the yaw
rate around the second spectrum peak. At the frequency domain f < 0.07 Hz, the
contribution of the yaw rate to the power of the rudder angle is very strong, and is as
high as 50 %. This suggests that the human operator reasonably feeds back the yaw
rate at a frequency lower than 0.1 Hz.

Figure 2.12 shows the power contribution analysis of the same ship under a con-
ventional PID autopilot system. In this case, the yaw rate has the largest spectrum
power at frequency f = 0.12 Hz and smaller peaks at f = 0.07 Hz and 0.05 Hz.
The roll has its spectral peak at 0.05 Hz. On the other hand, the pitch, the propeller
RPM, and the rudder angle have the highest peaks at approximately 0.07 Hz. The
pitch and the propeller RPM have other peaks around 0.1 < f < 0.15 Hz.

Then, we can see from the figure that approximately 50 % of the power of roll is
contributed by the yaw rate and the rudder angle. It might be suggested that the ship
sailed under the condition of the well-known rudder-roll-yaw effect. Concerning the
propeller RPM, the effect of pitch is significant, e.g., approximately 60–80 % at the
dominant frequency and the second largest peak. This suggests that the pitch has an
especially strong influence on the change of the propeller RPM, and it is necessary
to take this effect into account in designing a new governor.

Approximately 50 % of the effect of pitch on the rudder angle is from the yaw
rate or the pitch at the dominant frequency, f = 0.07 Hz. On the other hand, at
lower frequencies, 0.02 Hz < f < 0.05 Hz, the effect of pitch on the rudder angle
is primarily from its own peak frequency. This suggests that the conventional PID
controller feeds back only in the frequency range of f > 0.05 Hz.

2.5 State-Space Model and Kalman Filter

Various time series models can be treated entirely within the state-space model frame-
work. Many problems in time series analysis can be formulated in terms of the state
estimation of a state-space model. This section presents algorithms for the Kalman
filter and a smoothing algorithm for efficient state estimation.

2.5.1 State-Space Model

Assume that yn is an �-variate time series. The following model for the time series
is called a state-space model.

xn = F xn−1 + Gvn, (system model) (2.46)

yn = H xn + wn, (observation model), (2.47)

where xn is a k-dimensional unobservable vector, referred to as the state (Anderson
and Moore 1979). vn and wn are m-dimensional and �-dimensional Gaussian white
noises with mean vector zero and variance-covariance matrices Q and R and are
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referred to as system noise and observation noise, respectively. Moreover, F , G, and
H are k × k, k × m, and � × k matrices, respectively. Many linear models used in
time series analysis are expressible in terms of state-space models.

2.5.1.1 State-Space Representation of an AR Model

Assume that an autoregressive (AR) model for �-dimensional time series yn

yn =
m∑

j=1

A j yn− j + vn , (2.48)

is given, where A j is an � × � matrix and vn is an �-dimensional white noise with
mean 0 and covariance matrix Q.

In order to obtain the state-space representation of an AR model, we define an

m�-dimensional vector xn by xn ≡ [
yT

n , yT
n−1, . . . , yT

n−m

]T
. Then, it can be eas-

ily confirmed that the MAR model can be expressed in state-space model form
(Kitagawa 2010):

{
xn = F xn−1 + Gvn

yn = H xn ,
(2.49)

where F , G, and H are defined as

F =

⎡

⎢⎢⎢⎣

A1 A2 · · · Am

I 0 · · · 0
...

. . .
...

...

0 · · · I 0

⎤

⎥⎥⎥⎦ , G =

⎡

⎢⎢⎢⎣

1
0
...

0

⎤

⎥⎥⎥⎦ , H = [ I 0 · · · 0 ] . (2.50)

This state-space representation is not unique, and another state-space representa-
tion of the AR model is obtained by defining a variable ỹn+k|n−1 by

ỹn+k|n−1 =
m∑

j=k+1

A j yn+k− j , (k = 1, . . . , m − 1). (2.51)

ỹn+k|n−1 is a part of yn+k that can be directly expressed by the time series and the
white noise until time n − 1. Whether the following relation holds can be confirmed

yn = A1 yn−1 + ỹn|n−2 + vn

ỹn+k|n−1 = Ak+1 yn−1 + ỹn+k|n−2, k = 1, . . . , m − 1 (2.52)

ỹn+m−1|n−1 = Am yn−1.
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Defining the m�-dimensional state vector xn as xn ≡ [ yT
n , ỹT

n+1|n−1, . . . ,

ỹT
n+m−1|n−1]T , the AR model (2.48) can be expressed in state-space model form

(2.49), where F , G, and H are defined as follows:

F =

⎡

⎢⎢⎢⎢⎣

A1 I · · · 0

A2 0
. . .

...
...

...
. . . I

Am 0 · · · 0

⎤

⎥⎥⎥⎥⎦
, G =

⎡

⎢⎢⎢⎣

1
0
...

0

⎤

⎥⎥⎥⎦ , H = [ I 0 · · · 0 ] . (2.53)

Furthermore, another state space representation is obtained by defining the state-
space as xn ≡ [ yT

n , yT
n+1|n, . . . , yn+m−1|n]T , where yn+k|n is the best predictor of

yn+k given the observations up to time n. In this case, the matrices are given by

F =

⎡

⎢⎢⎢⎣

0 I · · · 0
...

...
. . .

...

0 0 · · · I
Am Am−1 · · · A1

⎤

⎥⎥⎥⎦ , G =

⎡

⎢⎢⎢⎣

I
g1
...

gm−1

⎤

⎥⎥⎥⎦ , H = [ I 0 · · · 0 ] . (2.54)

where g j , j = 1, . . . , m − 1, is the impulse response of the AR model defied by

g0 = I and g j = ∑ j
i=1 Ai g j−i .

In general, given the state-space representation given by Eqs. (2.46) and (2.47),
for any non-singular k × k matrix T , by defining a new state x ′

n and the matrices F ′,
G ′, and H ′ by

x ′
n = T xn, F ′

n = TFnT −1, G ′
n = TGn, H ′

n = HT−1, (2.55)

we obtain an equivalent state-space model.

2.5.1.2 State-Space Representation of the ARX Model

Assume that the following autoregressive exogenous (ARX) model is given as

yn =
m∑

j=1

A j yn− j +
m∑

j=1

B j rn− j + vn , (2.56)

where yn and rn are p-dimensional output variables and q-dimensional input
variables, A j is a p × p matrix, B j is a p × q matrix and vn is p-dimensional
white noise.

In order to design an optimal controller for this ARX model based on the optimal
control theory, it is convenient to express the model in state-space model form. In
order to obtain the state-space representation of an ARX model, we define a new
variable ỹn+k|n−1 by
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ỹn+k|n−1 =
m∑

j=k+1

A j yn+k− j +
m∑

j=k+1

B j rn+k− j , (k = 1, . . . , m − 1). (2.57)

ỹn+k|n−1 is exactly the part of yn+k that can be directly expressed by the observations
of the output, the input, and the white noise until time n − 1. Whether the following
relation holds can be easily confirmed:

yn = A1 yn−1 + B1rn−1 + ỹn|n−2 + vn

yn+k|n−1 = Ak+1 yn−1 + Bk+1rn−1 + ỹn+k|n−2, k = 1, . . . , m − 1 (2.58)

yn+m−1|n−1 = Am yn−1 + Bm rn−1.

Defining the pm-dimensional state vector xn by xn ≡ [
yT

n , yT
n+1|n−1, . . . ,

yT
n+m−1|n−1

]T , the ARX model (2.56) is expressed as (Akaike 1971; Akaike and
Nakagawa 1988)

{
xn = Φxn−1 + Γ rn−1 + Gun

yn = H xn ,
(2.59)

where Φ, Γ , G, and H are defined by

Φ =

⎡

⎢⎢⎢⎣

A1 I · · · 0
...

...
. . .

...

Am−1 0 · · · I
Am 0 · · · 0

⎤

⎥⎥⎥⎦, Γ =

⎡

⎢⎢⎢⎣

B1
B2
...

Bm

⎤

⎥⎥⎥⎦, G =

⎡

⎢⎢⎢⎣

1
0
...

0

⎤

⎥⎥⎥⎦, H = [ I 0 · · · 0 ] .

(2.60)

Since we can restore the latest data in a form to be used in the future, the value of yn
in the next step can be predicted by a simple and small calculation when the newest
data are obtained.

2.5.2 State Estimation and Kalman Filter

The most important problem in state-space modeling is to estimating the state xn

based on the time series yn . The reason for this is that problems such as prediction,
signal extraction, and likelihood computation for the time series can be systematically
performed using the estimated state.

In this subsection, we shall consider the problem of estimating the state xn based
on the set of observations Y j = { y1, . . . , y j }. Depending on the relation between
j and n, the state estimation problem is classified into three categories: prediction
( j < n), filter ( j = n), and smoothing ( j > n).

For linear-Gaussian state-space model, it is sufficient to obtain the conditional
mean xn| j and the covariance matrix Vn| j , which can be efficiently obtained com-
putationally by means of the recursive computational algorithm shown below. This
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algorithm is known as the Kalman filter (Kalman 1960; Anderson and Moore 1979).
Nonlinear non-Gaussian extensions of the Kalman filter are given in Kitagawa (1996,
2010) and Doucet et al. (2001).

[One-step-ahead prediction]

xn|n−1 = F xn−1|n−1

Vn|n−1 = FVn−1|n−1 FT + G QGT . (2.61)

[Filter]

Kn = Vn|n−1 H T (H Vn∗n−1 H T + R)−1

xn|n = xn|n−1 + Kn( yn − H xn|n−1) (2.62)

Vn|n = (I − Kn H)Vn|n−1.

The fixed-interval smoothing yields the conditional mean and covariance matrix
based on the entirety of the observations.

Fixed-interval smoothing

An = Vn|n FT V −1
n+1|n

xn|N = xn|n + An(xn+1|N − xn+1|n) (2.63)

Vn|N = Vn|n + An(Vn+1|N − Vn+1|n)AT
n .

In order to perform fixed-interval smoothing, we first obtain xn|n−1, xn|n, Vn|n−1,
Vn|n , n = 1, . . . , N , by using the Kalman filter and compute x N−1|N , Vn−1|N through
x1|N , V1|N backward in time.

2.5.3 Likelihood Computation and Parameter Estimation
for a Time Series Model

The Kalman filter provides a convenient and computationally efficient tool for
estimating the parameters of the time series model. Assume that the state-space
representation for a time series model specified by a parameter vector θ is given.
When a time series Y j = { y1, . . . , yN } of length N is given, the N -dimensional joint
density function of YN specified by this time series model is denoted by fN (YN |θ).
Then, the likelihood of this model is given as follows:

L(θ) = fN (YN |θ). (2.64)

By repeatedly applying the relation
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fn(yn|θ) = fn−1(Yn−1|θ)gn( yn|Yn−1, θ),

for n = N , N − 1, . . . , 2, the likelihood of the time series model can be expressed
as a product of conditional density functions:

L(θ) =
N∏

n=1

gn( yn|Yn−1, θ). (2.65)

For simplicity of notation, we let Y0 = ∅ (empty set), and then f1( y1|θ) ≡
g1( y1|Y0, θ). By taking the logarithm of L(θ), the log-likelihood of the model is
obtained as

�(θ) = log L(θ) =
N∑

n=1

log gn( yn|Yn−1, θ). (2.66)

Since gn( yn|Yn−1, θ) is the conditional distribution of yn given the observation
Yn−1 and is, in fact, a normal distribution with mean yn|n−1 and variance-covariance
matrix dn|n−1, gn( yn|Yn−1, θ) can be expressed as follows (Kitagawa and Gersch
1996):

gn( yn|Yn−1, θ)

=
(

1√
2π

)�

|dn|n−1|− 1
2 exp

{
−1

2
( yn − yn|n−1)

T d−1
n|n−1( yn − yn|n−1)

}
. (2.67)

Therefore, by substituting this density function into Eq. (2.66), the log-likelihood
of this state-space model is obtained as

�(θ) = −1

2

{
�N log 2π +

N∑

n=1

log |dn|n−1|

+
N∑

n=1

( yn − yn|n−1)
T d−1

n|n−1( yn − yn|n−1)

}
. (2.68)

Stationary time series models, such as AR models, and many other nonstationary
time series models, such as trend and seasonal adjustment models, can be expressed
in the form of a linear Gaussian state-space model. Accordingly, for such time series
models, a unified algorithm for computing the log-likelihood can be obtained by using
the Kalman filter and Eq. (2.68). Furthermore, the maximum likelihood estimates
of the parameters of the time series model can be obtained by maximizing this log-
likelihood by a numerical optimization method.

The state-space model can be generalized to a nonlinear non-Gaussian version.
Although the Kalman filter cannot yield efficient estimates of the state, various types
of recursive filtering and smoothing algorithms have been developed (Kitagawa 1987,
1996, 2010; Kitagawa and Gersch 1996; Doucet et al. 2001).
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2.6 Piecewise Stationary Modeling

2.6.1 Locally Stationary AR Model

Assume that the �-dimensional time series y1, . . . , yN is nonstationary as a whole,
but if the time interval {1, . . . , N} is properly divided into several subintervals, it
becomes stationary on each subinterval. Then, it is natural to consider an AR model
for each stationary subseries, which are referred to as locally stationary AR models
(Ozaki and Tong 1975; Kitagawa and Akaike 1978; Kitagawa and Gersch 1996;
Kitagawa 2010) (Fig. 2.13).

More specifically, assume that k and N j denote the number of subintervals and
the number of observations in the j th subinterval (N1 +· · ·+ Nk = N ), respectively.
Note that the starting and end points of the i th subinterval [ni0, ni1] are respectively
given by

n j0 =
j−1∑

i=1

Ni + 1, n j1 =
j∑

i=1

Ni .

For a multivariate locally stationary AR model, the time series yn follows an AR
model

yn =
m j∑

i=1

A( j)
i yn−i + vnj, (2.69)

on the j th subinterval, where vnj is an �-dimensional Gaussian white noise with
E (vnj) = 0, E (vnjvT

nj) =  j , and E (vnj yT
n−m) = 0 for m = 1, 2, . . . Here,

the unknown parameters of the model include the number of subintervals, k, the
length of the j th interval, N j , the AR order, m j , the AR coefficient matrices,

A j = {A( j)
i , . . . , A( j)

m j }, and the variance covariance matrix of the white noise,  j .
The likelihood of the locally stationary AR model is given by

L = p( y1, . . . , yN ) =
k∏

j=1

n j1∏

n=n j0

p( yn| y1, . . . , yn−1), (2.70)

where p( yn| y1, . . . , yn−1) denotes the conditional distribution of yn given the past
observations y1, . . . , yn−1. Since the noise input is assumed to be Gaussian, the
conditional distribution also becomes Gaussian.

Therefore, for simplicity, ignoring the distributions of the first m1 data points and
replacing N1 by N1 −m1 and n10 by m1 +1, the likelihood of the multivariate locally
stationary AR model is approximated by

k∏

j=1

{ | j |
(2π)�

} N j
2

exp

{
−1

2

n j1∑

n=n j0

vT
nj

−1
j vnj

}
(2.71)
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Fig. 2.13 Subdivision of the time interval

Then, the log-likelihood function is given by

� (k, N j , m j , A j ,  j ; j = 1, . . . , k)

= −1

2

k∑

j=1

{
�N j log 2π + N j log | j | +

n j1∑

n=n j0

vT
nj

−1
j vnj

}
. (2.72)

Similar to the stationary multivariate AR model shown in Sect. 2.3, the AR coef-
ficients A( j)

i and the innovation variance covariance matrix  j on each interval can
be obtained by minimizing

N j log | j | +
n j1∑

n=n j0

vT
nj

−1
j vnj. (2.73)

A computationally efficient procedure for the fitting of these models is presented
in Takanami and Kitagawa (1991). Substituting these estimates into (2.72), the log-
likelihood becomes

� (k, N j , m j , Â j , ̂ j ; j = 1, . . . , k)

= −1

2

k∑

j=1

{
�N j log(2π) + N j log | j | + �N j

}

= −�(N − m1)

2
(log 2π + 1) − 1

2

k∑

j=1

N j log | j |. (2.74)

Since the number of estimated parameters is m j�
2 + �(� − 1)/2, the AIC value

for the locally stationary AR model is given by

AIC = (N −m1)(log 2π+1)+
k∑

j=1

N j log |̂ j |+
k∑

j=1

{
2m j�

2 + �(� − 1)
}

. (2.75)

This AIC value depends on the number of subintervals k, the length of the j th
subinterval N j , and the order of the AR model for the j th interval m j . Unknown
parameters are obtained by finding the combination of parameters that achieves the
minimum AIC value among all possible candidates.
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2.6.2 On-Line Identification of the Locally Stationary AR
Model

In on-line adaptive control, we can obtain a new dataset successively. A semi-on-
line identification procedure for fitting the locally stationary AR (LSAR) model was
developed by Ozaki and Tong (1979). According to this procedure, the homogeneity
of the data is checked by comparing the AICs of two models, namely, the divided
model and the pooled model.

Using this method, we shall determine the basic span L and the highest-order M of
the AR model fitted to the subinterval of length L . Here, L is set to a sufficient length
so that an AR model of order M can be fitted on an interval of length L . Then, only
points ni = iL are considered as candidates for dividing points. The dividing points
of the locally stationary AR model can automatically be decided by the following
procedure.

1. Fit the initial model: Fit AR models of orders of up to M to the initial time series
y1, . . . , yL , compute AIC0(0), . . . , AIC0(m), and find the minimum AIC order
m∗ = arg min j=0,1,...,M AIC0( j). Furthermore, set k = 1, n10 = m+1, n11 = L
and N1 = L − m.

2. Fit the divided model: Fit AR models with orders of up to M to the newly
obtained time series ynk1+1, . . . , ynk1+L , compute AIC1(0), . . ., AIC1(m), and
set AIC1 = min j AIC1( j). AIC1 is the AIC of a new model that was obtained
under the assumption that the model changed at time nk1 + 1. The AIC of the
locally stationary AR model that divides the interval [nk0, nk1 + L] into two
subintervals, [nko, nk1] and [nk1 + 1, nk1 + L], is given by

AICD = AIC0 + AIC1.

This model is referred to as the divided model.
3. Fit the pooled model: Assuming ynk0

, . . . , ynk1+L to be stationary, fit AR models
of orders of up to M , compute AICP (0), . . . , AICP (M), and find the minimum
AIC order AICP = min j AICP ( j). Under the assumption that the time series
on the entire interval [nk0, nk1 + L] is stationary, the model is referred to as the
pooled model.

4. Judge the homogeneity of data: In order to judge the homogeneity of the two
subintervals, compare the values of AICD and AICP .

Switch to the new model: If AICD < AICP , it is judged that the divided model
is better. In this case, nk1 + 1 becomes the initial point of the current subinterval,
and we put k ≡ k + 1, nk0 ≡ nk−1,1 + 1, nk1 = nk−1,1 + L , Nk = L , and
AIC0 = AICD .

Pool the new dataset: If AICD ≥ AICP , the pooled model is adopted. In this
case, the new subinterval [nk1+1, nk1+L] is merged with the former subinterval,
and [nk0, nk1 + L] becomes the new current subinterval. Therefore, we set nk1 ≡
nk1 + L , Nk = Nk + L , and AIC0 = AICP .
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Fig. 2.14 On-line identification of the LSAR model

5. Repeat the process: If we have additional time series with L observations, return
to step 2. Otherwise, the number of subintervals is k, and the stationary subinter-
vals are judged to be [1, n11], [n20, n21], . . . , [nk0, N ].
In addition, we fit two types of AR models whenever an additional time series of

length L remains to be modeled. This estimation process can be carried out efficiently
and precisely by the Householder least squares method (Kitagawa and Akaike 1978;
Kitagawa 2010) (Fig. 2.14).

2.7 Model-Based Monitoring System

Since actual sea conditions may change gradually or abruptly depending on various
factors, seafarers must carefully monitor such changes at all times. When abnormal-
ities occur at sea, installed marine controllers, such as autopilot systems and engine
governors, adaptively cope with such difficulties. In such situations, the monitoring
models are classified into nonstationary time series. The simplest and most practical
approach to modeling nonstationary time series is to subdivide the time interval into
several subintervals of appropriate size and then fit a stationary AR model to each
subinterval. Using this method, we can obtain a series of models that approximate
nonstationary time series. In this section, we develop an onboard model-based system
for monitoring ship states and a noise-adaptive autopilot system based on a locally
stationary AR model.

2.7.1 Motivation

Data loggers are installed in ships in order to maintain the safety of main engines
and reduce fuel consumption. The collected data are summarized every hour and
are recorded in the ship’s engine logbook. The data are used to estimate the ship’s
long-term performance. The International Maritime Organization (IMO) has recently
recommended an index for energy savings referred to as the Energy Efficiency Design
Index (EEDI) for ship builders and the Energy Efficiency Operational Indicator
(EEOI) for ship operators.
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Based on the recommendations of the IMO, we have designed an entirely new
ship-born model-based monitoring system (SBMMS) by applying an AR model to
satisfy the requirements of the EEOI (Ohtsu 2009). The proposed monitoring system
is designed to instantaneously provide information about the main engine state and
the ship motion to the mariners, because the most common reason for state changes
of the main engine is hull motion.

2.7.2 Ship-Born Model-Based Monitoring System (SBMMS)

The conditions around a ship at sea are constantly changing. However, the rate of
change is slow. As such, we apply the locally stationary fitting procedure described
in Sect. 2.6.1 to obtain the current AR model. Table 2.2 shows the state variables
used in the monitoring system. Among them, roll, pitch, and yaw are fundamental
information of ship motions, which are observed by a motion gyro sensor. The rudder
angle can be varied to control the course deviation, and the number of revolutions
per minute (RPM) of the propeller is the control variable for thrusting the ship body.

Engine power P is generated from the main engine according to the following
relation:

P = 2πnQ, (2.76)

Table 2.2 State variables for the monitoring system

Variable Recorder Variable Recorder

Time GPS Heave accel. Motion gyro

Latitude GPS Sway accel. Motion gyro

Longitude GPS Propeller RPM Shaft

Yaw Autopilot Torque Shaft

Command rudder Autopilot Thrust Shaft

Actual rudder Autopilot Power Engine

Roll Motion gyro Fuel oil Engine

Pitch Motion gyro

Monitor

Fig. 2.15 Time schedule for obtaining the model in the monitoring system
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where n denotes the propeller RPM/60, and Q is the generated shaft torque. There
are two measures of the ship’s speed, namely, the speed relative to the water (log
speed) and the speed relative to the ground (OG speed), which is usually observed
by the Global Positioning System (GPS). As wind resistance information, the wind
force W f and wind direction Wd are observed by ship-born wind meters. The wind
resistance, WR , that a ship experiences is simply calculated as follows:

WR = W f cos WD . (2.77)

In contrast, correct wave information has not yet been obtained in the proposed
measurement technique. Figure 2.15 shows the time schedule for obtaining the model
in the monitoring system designed herein. The fundamental sampling rate is set to
1 s. The length of one data batch is set to 600 s. for a small ship and 1,200 s for a
large ship.

Figure 2.16 shows the configuration of the ship-born model-based monitoring
system (SBMMS). The system includes a gain scheduling function of the autopilot
system, which will be discussed in a later chapter. Moreover, rather than sending
all of the raw data that are collected, only the statistical parameters gained from the
fitted model are sent from the ship. This means that the need for communication via
satellite is extremely rare.

Next, we present examples of the display of the designed SBMMS. The data in
all figures displayed here were collected on a large container ship sailing on the
Pacific Ocean. Figure 2.17 shows an example of the time history of the data sampled
every 1 s.

Figure 2.18 shows a scatter diagram of the periods of roll (horizontal axis) and
pitch (vertical axis). The pitch period is equal to the rolling period along the upper
red line. We have defined this line as the synchronizing line in Fig. 2.8. On the other
hand, twice the pitching period is equal to the rolling period along the lower line.

Fig. 2.16 Configuration of
the ship-born model-based
monitoring system
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Fig. 2.17 Real-time monitoring of ship and main engine motions (heading angle indicates yaw
motion)

When both of the periods are plotted along this line, the risk of large rolling motion
increases. We have defined this line as the parametric rolling line in Fig. 2.8.

The lowest two plots in Fig. 2.18 show the changes in the spectra of pitch (left) and
roll (right). As described in the previous section, the pitch motion spectrum is strongly
affected by wave spectra. According to the pitch spectra shown in bottom left plot,
the dominant peaks are located at approximately 18 s in the low-frequency domain.
The ship received strong swell wave disturbances from the sea during navigation.
However, we also detect other peaks in the higher-frequency domain. We can estimate
the peaks generated by wind and waves around the ship.

Figure 2.19 shows the power contribution to the engine power from the engine
power, the pitch, the yaw, and the rudder motion in a certain batch. The pie chart
shows the contribution from each variable integrated over the frequencies from 0
to 0.5 Hz. The light blue zone shows the contribution from the engine power. Thus,
if the light blue zone is larger than the other zones, the ship’s main engine is not
significantly affected by other motions such as rudder, pitch, and yaw motions. When
the contribution of other motions, especially pitch motion, is large, the main engine
receives strong effects caused by ship motion through the propeller shaft. Thus, the
main engine should not fall into the light blue zone. The lower plots show the time
histories of each variable in the latest batch.

Figure 2.20 shows the load diagram of the main engine. The plot shows the outputs
of the main engine power (KW) versus the engine RPM. The baseline is the propeller
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Pitching Period

Rolling Spectrum Pitching Spectrum

Rolling Period

Fig. 2.18 Batch time monitoring of pitch and roll motions

RPM. When the plotted point lies outside of the limit line (red line), the ship’s main
engine falls into “torque rich” territory.

2.8 RBF-ARX Modeling for a Nonlinear System

Many systems in the real world are inherently nonlinear. In such cases, it is necessary
to use a nonlinear model to represent the system behavior and design a controller.
This section presents a statistical modeling method for nonlinear systems, based
on the Redial Basis Function network-style coefficients AutoRegressive model with
eXogenous variable (RBF-ARX) model (Peng et al. 2003, 2004, 2009). In this
section, we derive the RBF-ARX model and its estimation method and present some
illustrative examples. In Chap. 4, dynamics modeling of a ship using the RBF-ARX
model, its application to tracking controller design, and the experiment results for a
real ship are presented.

http://dx.doi.org/10.1007/978-4-431-55303-8_4
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Fig. 2.19 Noise contribution to engine power of engine power, pitch, yaw (heading), and rudder
motion

2.8.1 Introduction: Use of the RBF-ARX Model
for Nonstationary Nonlinear Systems

There have been many significant advances in research and in the application of lin-
ear system modeling and control theory. However, if a system is strongly nonlinear
and operates in a wider working range, we should use a nonlinear model to rea-
sonably describe the system. Research on practical nonlinear system modeling and
control theory has recently become the focus of attention. Several models for con-
trol have been built using statistical methodology for complicated nonlinear system
modeling. These models are primarily completely nonlinear models, including var-
ious parametric and nonparametric models (such as the bilinear model, the Ham-
merstein model, the Volterra series model, and neural network models), and local
linearization models (such as the state-dependent AR model and piecewise linear
model set). Purely nonlinear model-based controller design usually requires solving
a nonlinear optimization problem online, which is still not possible, particularly for
shorter-sample-period cases.

Local linearization modeling and controller design approaches based on the frame-
work of relatively matured linear system modeling and control theory have many
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Fig. 2.20 Scattering diagram of the periods of roll and pitch

successful applications. However, some potential problems, such as on-line para-
meter estimation failure in approaches resorting to parameter estimation online and
higher identification cost in the approaches using piecewise linear model set, limit
the wider application of these approaches. This section presents a method by which
to alleviate these difficulties by using a global modeling and optimization method
for nonlinear real-time control, which does not require on-line parameter estimation.

In model-based real-time control strategies for nonlinear systems, radial basis
function (RBF) networks offer a framework for the modeling of the controlled system,
because of their simple topological structure, their precision in nonlinear dynamics
approximation, and their fast learning. However, in many real applications, a large
number of RBF centers are needed in order to obtain the required degree of pre-
cision, which leads to difficulties in parameter estimation. In modeling complex
nonlinear dynamics, a frequently used class of models is the state-dependent autore-
gressive (AR) model with functional coefficients (Priestley 1980). Using a set of
RBF networks to approximate the coefficients of a state-dependent AR model yields
an RBF-AR model (Vesin 1993; Ozaki et al. 1999), which has the advantages of both
the state-dependent AR models in the description of nonlinear dynamics and of RBF
networks in function approximation.

A natural extension of the ideas behind RBF-AR modeling leads us to the RBF-
ARX model (RBF-AR model with eXogenous variables) (Peng et al. 2003, 2004,
2009). In general, RBF-ARX models use far fewer RBF centers than a single RBF
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network model. The RBF-ARX model is actually a hybrid pseudo-linear model con-
structed based on the Gaussian RBF networks and linear ARX model structure, which
was proposed in order to characterize nonlinear systems having dynamic features that
depend on time-varying working-points and which may be locally linearized at each
working point. The RBF-ARX model is built as a global model and is estimated
off-line so as to avoid the possible failure of on-line parameter estimation during
real-time control based on the model.

2.8.2 RBF-ARX Modeling

2.8.2.1 State-Dependent ARX Model for Nonlinear Systems

Consider a discrete-time nonstationary and nonlinear single-input single-output
(SISO) system, the dynamic features of which depend on time-varying working
points and which may be locally linearized at each working-point. This system can
be described by a nonlinear ARX model as follows:

yn = f̃ (yn−1, . . . , yn−ny , un−1, . . . , un−nu , vn−1, . . . , vn−nv) + ξn, (2.78)

where yn ∈ � is the output, un ∈ � is the input, vn is a measurable disturbance, and
ξn denotes a noise that is usually regarded as a Gaussian white noise, independent
of the observations. Defining the vector

xn−1 = (
yn−1, . . . , yn−ny , un−1, . . . , un−nu , vn−1, . . . , vn−nv

)T
, (2.79)

model (2.78) may then be rewritten as

yn = f (xn−1) + ξn . (2.80)

Assuming that the function f (·) in (2.80) is ( j +1)-times continuously differentiable
at an arbitrary equilibrium point x0, then f (·) can be expanded in a Taylor series
about x0, yielding

f (xn−1) = f (x0) + f ′(x0)
T (xn−1 − x0)

+1

2
(xn−1 − x0)

T f ′′(x0)(xn−1 − x0) + · · · + r j (xn−1), (2.81)

where f ′(x0) and f ′′(x0) are the first and second derivatives, respectively, of f with
respect to x0, and r j (xn−1) is (the Lagrangian form of) the remainder of the Taylor
expansion of f (·) (see, e.g., Bronshtein and Semendyayev 1998). Substituting the
above expression into model (2.80) yields
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yn = (ϕ0 + ϕ1(xn−1)) + (Φ0 + Φ1(xn−1)) xn−1 + ξn (2.82)

where

ϕ0 = f (x0) − f ′(x0)
T x0 + 1

2
xT

0 f ′′(x0)x0 + · · ·
ϕ1(xn−1) = r j (xn−1)

Φ0 = f ′(x0)
T − 1

2
xT

0 f ′′(x0) − 1

2
xT

0 f ′′(x0)
T + · · ·

Φ1(xn−1) = 1

2
xT

n−1 f ′′(x0) + · · · , (2.83)

The above equation can also be rewritten as follows:

yn = π0(xn−1) +
ny∑

i=1

π
y
i (xn−1)yn−i +

nu∑

i=1

πu
i (xn−1)un−i

+
nv∑

i=1

πv
i (xn−1)vn−i + ξn (2.84)

where

π0(xn−1) = ϕ0 + ϕ1(xn−1)[
π

y
1 (xn−1), . . . , π

y
ny (xn−1), π

u
1 (xn−1), . . . , π

u
nu

(xn−1), π
v
1 (xn−1), . . . , π

v
nv

(xn−1)
]

= Φ0 + Φ1(xn−1) (2.85)

Model (2.84) is in fact a local linearization of the nonlinear ARX model (2.80). Model
(2.84) has an autoregressive structure that is similar to that of a linear ARX model,
and its state-dependent coefficients enable the behavior of the model to change with
the system state. As such, this model may be regarded as a state-dependent ARX
model or a functional-coefficient ARX model. Model (2.84) is also an extension
of the state-dependent AR model derived in time series modeling (Priestley 1980;
Chen and Tsay 1993). Model (2.84) can reasonably treat both nonstationarity and
nonlinearity of the time series. Actually, Model (2.84) can deal with a non-stationary
process by splitting the parameter space into a large number of small segments and
regarding the process as locally stationary within each segment. On the other hand,
model (2.84) treats a nonlinear process by splitting the state space into a large number
of small segments and regarding the process as locally linear within each segment.

2.8.2.2 RBF-ARX Model

Although model (2.84) is actually a special version of the nonlinear ARX model
(2.80), a problem that remains is how to specify the functional coefficients of model
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(2.84). Specifying the state-dependent coefficients of model (2.84) may be consid-
ered to be a problem of function approximation from a multi-dimensional input space
x to a one-dimensional scalar space ωi = πi (x). An efficient approach to solving
the above problem, without loss of generality, is by the neural networks approxi-
mation. Note that RBF networks can be used to approximate the state-dependent
coefficients of model (2.84), because they are excellent for approximating nonlinear
scalar functions. Moreover, the locality of the basis functions makes RBF networks
very suitable for learning local variations. If Gaussian RBF networks are used as
approximations to the coefficients of model (2.84), the derived model is referred to
as the RBF-ARX model and is given by

yn = φ0(xn−1) +
ny∑

i=1

φy,i (xn−1)yn−i +
nu∑

i=1

φu,i (xn−1)un−i

+
nv∑

i=1

φv,i (xn−1)vn−i + ξn, (2.86)

where z j
k =

[
z j

k,1, z j
k,2, . . . , z j

k,nx

]T
for j = y, u, v and

φ0(xn−1) = c0
0 +

m∑

k=1

c0
k exp

{
−λ

y
k ||xn−1 − zy

k ||22
}

(2.87)

φy,i (xn−1) = c j
i,0 +

m∑

k=1

c j
i,k exp

{
−λ

j
k ||xn−1 − z j

k ||22
}

. (2.88)

Here ny , nu , nv, m, and nx = dim(xn−1) are the model orders, z j
k (k = 1, . . . , m; j =

y, u, v) are the centers of RBF networks, λk(k = 1, . . . , m) are the scaling parame-
ters, c0

k (k = 0, 1, . . . , m) and c j
i,k (i = 1, 2, . . . , n j ; j = y, u, v; k = 0, 1, . . . , m)

are the scalar weighting coefficients, and || · ||2 denotes the L2-norm.
In the general case, the RBF networks in model (2.86) may have different centers

for different variables. However, in some applications, all the RBF networks may
share the same centers, because model (2.86) possesses the autoregressive structure.
Thus, although the RBF centers are the same in this case, the coefficients of the
regression polynomials are different. In the RBF-ARX model (2.86), the signal xn−1
on which the time varying model coefficients depend may be the output signal, the
input signal, or any other measured signal in the system to be considered.

The RBF-ARX model (2.86) with Gaussian RBF network-style coefficients has
a basic structure that is similar to that of a linear ARX model. This model actually
includes a general RBF network as one of its components and may therefore be
regarded as a more general nonlinear model than the RBF neural network.

The RBF-ARX model is a rather general form of the working-point-dependent
ARX model by adding the time-varying local mean (offset term) φ0(xn−1), which
is needed in order to describe a non-stationary process in which the equilibrium
(working) point varies with time. It is easy to see that the local linearization of model



46 2 Time Series Analysis Through AR Modeling

(2.86) is a linear ARX model at each working point by fixing xn−1 at time n − 1 in
(2.86). It is natural and appealing to interpret model (2.86) as a locally linear ARX
model in which the evolution of the process at time n − 1 is governed by a set of
AR coefficients

{
φy,i , φu,i , φv,i

}
and a local mean φ0, all of which depend on the

“working point” of the process at time n − 1. This property is very useful and allows
us to use a linear model-based control method to design a controller. On the other
hand, this is not possible when we use RBF networks or other nonlinear models,
such as the Hammerstein model (see, e.g., Ljung 1999). Model (2.86) may also be
conveniently implemented in real-time control, because it avoids the need for on-line
parameter estimation.

Because of the satisfactory properties of RBF networks in function approxima-
tion, as well as in learning local variation, the use of the working-point-dependent
functional coefficients makes the RBF-ARX model capable of effectively represent-
ing the dynamic characteristics of the system at each working point. The RBF-ARX
model incorporates the advantages of the state-dependent ARX model in nonlinear
dynamics description and the RBF network in function approximation. In general,
the model does not need many RBF centers compared with a single RBF network
model, because the complexity of the model is dispersed into the lags of the autore-
gressive parts of the model. The SISO RBF-ARX model (2.86) can be extended to the
general multi-input multi-output (MIMO) case (Peng et al. 2009) that is presented
in Sect. 4.2, in which the RBF-net-type functional coefficients become matrices.

2.8.3 Identification of the RBF-ARX Model

Any kind of RBF and RBF-ARX model parameter estimation procedure must include
the selection of appropriate centers and scaling factors for the RBF networks, and
the estimation of all of the linear weights of the RBF networks in the model. There
are primarily three types of method by which to estimate RBF-type model para-
meters. The first method estimates all parameters of the model, regardless of para-
meter features, by using a nonlinear parameter optimization algorithm such as the
Levenberg-Marquardt method (LMM) (Marquardt 1963), which is generally based
on an exhaustive search in the solution space and therefore requires extensive com-
putation. The LMM is a commonly used method for approaching large problems
(McLoone et al. 1998). Gorinevsky (1997) and Gorinevsky et al. (1997) presented
some convincing results which were obtained using the Levenberg-Marquardt train-
ing algorithm for RBF networks.

The second method is to first select the basis function centers by selecting input
vectors either algorithmically or at random and setting them to be the centers (Ozaki
et al. 1999; Moody and Darken 1989; Chen et al. 1991). The linear weights may then
be estimated by the standard linear least squares method (LSM). Obviously, although
this method may provide a rough approximation, it cannot yield optimal parameters.

The third method, presented in this section, is an automatic estimation method that
can optimize all of the model parameters simultaneously and accelerate the computa-

http://dx.doi.org/10.1007/978-4-431-55303-8_4
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tional convergence of the optimization search process compared with the first method.
This method, which is implemented off-line, is referred to as the structured nonlinear
parameter optimization method (SNPOM) (Peng et al. 2003, 2004) for RBF-type
model estimation, which combines the LMM for estimating nonlinear parameters
and the LSM for linear weight estimation at each iteration. In the SNPOM, the linear
weights are updated several times at each iteration during the process of looking for
the search direction to update the nonlinear parameters. Therefore, the SNPOM is a
completely structured hybrid algorithm, which can obtain a faster convergence rate
and better modeling precision than McLoone’s algorithm (McLoone and Irwin 1997)
as is shown in Sect. 2.8.4. With the rapid development of computer technology, the
speed of convergence and improved modeling accuracy that can be provided by the
SNPOM, rather than the computational load, have become the foci of interest.

The RBF-ARX model (2.86) is constructed as a global model, and will be esti-
mated off-line from observation data so as to avoid the potential problem caused
by the failure of on-line parameter estimation during real-time control based on
the model. The off-line identification procedure for the RBF or RBF-ARX model
includes both order selection and estimation of all of the parameters. The order may
be selected by comparing the Akaike information criterion (AIC) (Akaike 1974) val-
ues for different orders and by looking at the model dynamics. Therefore, we must
first have a good model parameter estimation method, and then we can repeat the
method for models with different orders, before finally selecting the best model.

2.8.3.1 Model Parameters Estimation

In the general case, the number of linear weights is larger than the number of nonlinear
centers and scaling parameters in an RBF-ARX model. Therefore, applying a classi-
cal method, such as the Gauss-Newton method (GNM) or the Levenberg-Marquardt
method (LMM) (Marquardt 1963), to estimate all parameters simultaneously regard-
less of their special features may take too much computational time and might not
even provide a satisfactory level of modeling precision. In this subsection, an uncon-
strained structured nonlinear parameter optimization method (SNPOM) (Peng et al.
2003, 2004, 2009) for parameter estimation of RBF-based models is presented,
which is a hybrid method that consists of using the LMM for nonlinear parame-
ter estimation and the least squares method (LSM) for linear parameter estimation.
Therefore, the SNPOM can greatly accelerate the computational convergence of the
parameter optimization search process, especially for the RBF-ARX model with
more linear weights and fewer nonlinear parameters. Note that the SNPOM is not
a variable rotation method (VRM) (i.e., a method which rotationally fixes one set
of variables in order to optimize another set of variables). The main idea behind the
SNPOM is to divide the parameter search space into two subspaces (i.e., the linear
weight subspace and the nonlinear parameters subspace). The search centers on the
optimization in the nonlinear subspace. However, at each iteration in the optimiza-
tion process, a search in the nonlinear (or linear) subspace is executed based on the
estimated values just obtained in the linear (or nonlinear) subspace. The search in the
nonlinear subspace uses a method similar to the LMM, and the search in the linear
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subspace uses the LSM. The SNPOM for the RBF-ARX model (2.86) is implemented
as follows.

Step 1: Parameter classification
For the RBF-ARX model (2.86), the linear and nonlinear parameter sets are

respectively defined as follows:

θL ≡
{

c0
i , c j

k,i |i = 0, 1, . . . , m; k = 1, 2, . . . , n j , j = y, u, v
}

(2.89)

θN ≡
{
λ1, . . . , λm, zT

1 , . . . , zT
m

}T
.

In general, we can rewrite models (2.86) for estimation purposes as

yn = f (θL , θN ,Ωn−1) + ξn, (2.90)

or more specifically as

yn = Φ(θN ,Ωn−1)
T θL + ξn, (2.91)

where Ωn−1 = [
yT

n−1, uT
n−1, vT

n−1, xT
n−1

]T
, yn−1 = [

yn−1, yn−2, . . . , yn−ny

]T ,

un−1 = [
un−1, un−2, . . . , un−nu

]T and vn−1 = [
vn−1, vn−2, . . . , vn−nv

]T . Note
that Eq. (2.91) is the regression form of model (2.90), which is linear with respect to
the linear parameter vector.

Step 2: Initialization
For RBF-ARX model (2.86), the orders are ny , nu , nv, m, and nx = dim(xn−1). In

this step, these orders must first be chosen. The best approach for choosing a suitable
order is presented in Sect. 2.8.3.2. Then, a subset z0

k (k = 1, 2, . . . , m) in the vector
space of xn−1 is chosen randomly as an initial value for the RBF network centers.
The following formula is then used to compute the initial values of the scaling factors
in the model:

λ0
k = − log εk/ max

n−1

{
||xn−1 − z0

k ||22
}

, εk ∈ [0.1 ∼ 0.0001] (2.92)

These factors will ensure that the linear weights are bounded when the signal xn−1
moves far away from the centers. After selecting an initial nonlinear parameter vector
θ0

N , and keeping it fixed, use the LSM to compute initial linear weights θ0
L as follows:

θ0
L = R(θ0

N )+Ȳ (2.93)

where
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R(θ0
N )+ =

[
R(θ0

N )T R(θ0
N )

]−1
R(θ0

N )T

R(θ0
N ) =

[
Φ(θ0

N , Ω̄τ ),Φ(θ0
N , Ω̄τ+1), . . . Φ(θ0

N , θ̄M−1)
]

(2.94)

Ȳ = (ȳτ+1, ȳτ+2, . . . , ȳM )T

and {ȳi , Ω̄i−1|i = τ + 1, . . . , M} is the measured dataset, τ is the largest time lag
of the variables in Ωn−1, M is the data length, and R(θ0

N )+ is the pseudo-inverse of
R(θ0

N ), calculated using singular value decomposition (SVD) (Golub and Van Loan
1996) for overcoming ill-conditioned problems, which will improve the robustness
of the numerical computation.

Step 3: Estimation of θN and θL

Suppose that we take the following quadratic objective function:

V (θN , θL) ≡ 1

2
||F(θN , θL)||22, (2.95)

where

F(θN , θL) ≡

⎡

⎢⎢⎢⎣

ŷτ+1|τ − ȳτ+1
ŷτ+2|τ+1 − ȳτ+2

...

ŷM|M−1 − ȳM

⎤

⎥⎥⎥⎦ , (2.96)

ŷn+1|n = f (θL , θN , Ω̄n), n = τ, τ + 1, . . . , M − 1. (2.97)

Then, the parameters θN and θL are obtained as the minimizer of the optimization
problem

(θ̂N , θ̂L) = arg min
θN ,θL

V (θN , θL). (2.98)

Step 4: Updating the parameters to be estimated
Two (major and minor) iteration processes are used to update all of the parame-

ters to be estimated. The iteration step is denoted by k(= 1, 2, . . . , kmax). For the
nonlinear parameter vector θN , the updating formula is

θk+1
N = θk

N + βk dk, (2.99)

where dk is the search direction, and βk is a scalar step length parameter that gives
the distance to the next point, which is determined by a line search procedure after
determining the search direction dk at a minor iteration. In order to increase the
robustness of the search process, based on the LMM, the search direction dk in
(2.99) is obtained as the solution of the set of linear equations

[
J (θk

N )T J (θk
N ) + γk I

]
dk = −J (θk

N )T F(θk
N , θk

L), (2.100)

where
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J (θk
N ) =

(
∂ F(θk

N , θk
L)/∂θk

N

)T
, (2.101)

and the scalar γk controls both the magnitude and the direction of dk . When γk

tends toward zero, dk will tend toward the Gauss-Newton direction. As γk tends
toward infinity, dk tends toward the steepest descent direction. The magnitude of γk

is determined at each major iteration using a method similar to that of the “lsqnonlin”
function in the Matlab Optimization Toolbox (Coleman et al. 1999).

Following the determination of γk , (2.100) is solved in order to obtain a search
direction dk . A step length of unity βk in (2.99) is obtained by a line search procedure
similar to the mixed quadratic and cubic polynomial interpolation and extrapolation
method given in Coleman et al. (1999).

The optimization calculation centers on the search for θk+1
N in each iteration using

(2.99), followed by the immediate update of the linear weights θk+1
L using the LSM,

as follows:

θk+1
L = R(θk+1

N )+Ȳ , (2.102)

where

R(θk+1
N )+ =

[
R(θk+1

N )T R(θk+1
N )

]−1
R(θk+1

N )T (2.103)

R(θk+1
N ) =

[
Φ(θk+1

N , Ω̄τ ),Φ(θk+1
N , Ω̄τ+1), . . . , Φ(θk+1

N , Ω̄M−1)
]T

(2.104)

Ȳ = (ȳτ+1, ȳτ+2, . . . , ȳM )T , (2.105)

and the pseudo-inverse R(θk+1
N )+ of R(θk+1

N ) is also evaluated using SVD (Golub
and Van Loan 1996). The line search procedure for determining the step length βk

in (2.99) ensures that

V (θk+1
N , θk+1

L ) < V (θk
N , θk

L) (2.106)

holds at each major iteration with respect to the parameters θk+1
N and θk+1

L updated
by (2.99) and (2.102). Hence, θk+1

N and θk+1
L are the parameter choices for decreasing

the objective function (2.95) at the (k + 1)th iteration.

Remark 2.1 In the SNPOM described above, the global optimum of the linear
weights θL may easily be obtained using (2.102), which adjusts the search direction
and the step length to ensure that the objective function decreases in all parameters,
rather than only in the nonlinear part θN at each iteration. Note that if θk+1

N is only
changed based on the fixed θk+1

L during the process of looking for the search direction
and the step length to update θk+1

N at the (k + 1)th iteration, the objective function
that is used is then V (θk+1

N , θk
L) during the (k + 1)th iteration, which is only affected

by θk+1
N , and not by θk+1

L . Thus, the searched θk+1
N is not better, because it did not

consider the effect of θk+1
L . As a result, the convergence rate in this case would be
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slow compared to the SNPOM, where any change in θk+1
N will also change θk+1

L .
In the SNPOM, since the objective function V is affected by θk+1

N and θk+1
L , simul-

taneously at any time, the searched θk+1
N and θk+1

L , based on the V including “full
information”, should be better. This increases the convergence rate of the SNPOM.
In terms of computing efficiency, the SNPOM is much better than general methods
of optimizing all parameters regardless of parameter type, especially for the case in
which there are more linear parameters than nonlinear parameters in a model.

Remark 2.2 It may be beneficial to use formula (2.92) to re-compute the scaling
factor λk at any time after updating the RBF center θk

N during the search process,
in order to avoid divergence of the linear weights. This is a heuristic approach for
determining λk , but does not greatly affect the optimization effectiveness, because
the behavior of RBF-ARX model (2.86) is decided primarily by its RBF centers,
model orders, and linear weights.

2.8.3.2 Determination of the Order of the Model

An appropriate order for the identified model (2.90) may be determined by the Akaike
information criterion (AIC) (Akaike 1974). The procedure involves repeating the
above SNPOM for model (2.90) for different orders and choosing the final model by
looking for the smallest AIC value, together with appropriate model dynamics.

For RBF-ARX model (2.86), the AIC is defined as follows:

AIC = M log σ̂ 2
e + 2(s + 1), for M � p, (2.107)

where σ̂ 2
e is the residual variance of the model under the chosen orders, p is the

largest order of the regression part, and s is the total number of parameters to be
estimated.

2.8.4 Illustrative Examples

In order to illustrate the effectiveness of the RBF-ARX modeling, here we use the
Mackey-Glass equation (2.108) (a well-known chaotic benchmark time series)

ẋ(t) = ax(t − τ)

1 + xc(t − τ)
− bx(t) (2.108)

to generate a set of data, and use an RBF-AR model and an RBF network to fit the
data. The performance of the RBF-AR(p, m, l) model (2.109)

yn = φ0(xn−1) +
p∑

i=1

φy,i (xn−1)yn−i + ξn, (2.109)

where xn−1 = [
yn−1, yn−2, . . . , yn−l

]T , zk = [
zk,1, zk,2, . . . , zk,l

]T ,
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φ0(xn−1) = c0
0 +

m∑

k=1

c0
k exp

{
−λk ||xn−1 − zk ||22

}
(2.110)

φy,i (xn−1) = cy
i,0 +

m∑

k=1

cy
i,k exp

{
−λk ||xn−1 − zk ||22

}
(2.111)

and RBF(p, l) network

yn = θ0 +
p∑

k=1

θk exp
{
−λk ||xn−1 − zk ||22

}
+ ξn (2.112)

are compared. We also compare several optimization methods. In the Mackey-Glass
equation (2.108), the selected equation parameters a = 0.2, b = 0.1, c = 10, and
τ = 20 will be used.

The original Mackey-Glass series is shown in Fig. 2.21, in which the first 500 data
points are used to train the model, and the last 500 data points are used to test the
model. Figure 2.22 shows the convergence of the prediction error variance for the
RBF-ARX(5,3,2) and RBF(5,5) models during the parameter search iteration using
the SNPOM (as presented in this section), Levenberg-Marquardt method (LMM,
Marquardt 1963), Gauss-Newton method (GNM) (see, e.g., Coleman et al. 1999),
and the trust region method (TRM) (see, e.g., Coleman and Li 1996). It is clear that
the SNPOM has the fastest convergence rate, and the predictive error variance of the
estimated model using the SNPOM is also smaller than that of other methods.

For the RBF-network/RBF-AR-model and the training data/test data, respectively,
Table 2.3 lists the results obtained using the SNPOM and the evolutionary program-
ming algorithm (EPA) (Shi et al. 1999), which is a mutual estimation procedure based
on evolutionary programming and the standard linear least squares method, where
the AIC values are computed using Eq. (2.107). Table 2.3 shows that in all cases,
the estimation performance of the SNPOM is better than that of EPA, especially for

Fig. 2.21 A chaotic series
generated from the
Mackey-Glass equation



2.8 RBF-ARX Modeling for a Nonlinear System 53

Fig. 2.22 Results for
various optimization
methods

RBF networks. Table 2.3 also shows that an RBF-AR model with fewer model para-
meters may attain a better fitting precision than an RBF network. Figure 2.23 shows
the characteristic roots of the RBF-AR(5,3,2) model estimated by the SNPOM for
the Mackey-Glass series, which shows the complicated dynamics of the time series.
In Chap. 4, the RBF-ARX modeling result for a ship’s dynamic behavior will be
presented for implementing tracking control of a ship.

Table 2.3 Performance of the RBF-AR(p, m, l) model and the RBF(p, l) network estimated using
the proposed SNPOM and the evolutionary programming algorithm (EPA) (Shi et al. 1999) for the
Mackey-Glass series

Models Number of
centers

Total
number of
unknown
parameters

Training set Testing set

Predictive
error
variance

AIC Predictive
error
variance

AIC

RBF(5,5)a 25 31 2.92×10−4 −4007.4 3.50×10−4 −3916.8

RBF(5,5)b 25 31 1.16×10−7 −7921.5 1.38×10−7 −7835.7

RBF(20,5)a 100 121 4.32×10−5 −4782.8 1.02×10−4 −4353.3

RBF(20,5)b 100 121 9.46×10−8 −7848.6 1.16×10−7 −7739.2

RBF-AR(5,3,2)a 6 30 1.23×10−7 −7895.5 1.31×10−7 −7864.0

RBF-AR(5,3,2)b 6 30 1.08×10−7 −7960.0 1.26×10−7 −7880.3
a Estimated by the EPA
b Estimated by the SNPOM

http://dx.doi.org/10.1007/978-4-431-55303-8_4
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Fig. 2.23 Time-varying
eigenvalues of the estimated
RBF-AR(5,3,2) model
(2.3.22) for the
Mackey-Glass series
modeling
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Chapter 3
Design of a Model-Based Autopilot System
for Course Keeping Motion

Abstract A critical problem in applying the optimal control theory to a large-scale
complex system that is subject to large disturbances, such as a ship, an electric power
plant, or a large chemical plant, is that it is sometimes difficult to obtain a precise state-
space model from the theory of the subject area. For such systems, Akaike, H.: Ann.
Inst. Stat. Math. 23, 163–180 (1971) proposed the ARX model for the identification
of the controlled system. In this chapter, we propose a method for obtaining optimal
control laws based on the linear stationary state-space model of the controlled system
for two performance criteria. Based on this linear quadratic optimal controller, we
develop three types of optimal controllers for a ship: an AR model-based autopilot,
a roll reduction control system, and an engine governor control system.

Keywords ARX model based optimal control · Ship course keeping · Autopilot ·
Rudder roll control · Ship main engine governor

3.1 Statistical Optimal Controller Based on the ARX Model

In this section, we consider a standard optimal control problem which will be used
in designing the autopilot systems described in Sect. 3.2. A distinct feature of the
statistical control approach is that the controlled system model required in the for-
mulation of the optimal control problem is obtained by the state-space representation
of the ARX model. The same type of stochastic model was proposed by Åström and
Källström (1976). We then derive optimal control laws for two types of performance
criteria.

3.1.1 Statistical Optimal Control Problem

Assume that a control system is described by the linear model

xn = Φxn−1 + Γ rn−1 + Ψ vn, (3.1)

© The Author(s) 2015
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Fig. 3.1 Linear model of the controlled system

where xn denotes a k-dimensional state vector, rn is a q-dimensional control input,
and vn is an s-dimensional disturbance to the controlled system (Fig. 3.1).

The standard linear quadratic regulator (LQR) problem for a discrete-time-
controlled system (3.1) is to determine the control input sequence r0, . . . , r L−1
which minimizes the quadratic performance criterion:

JL(x0) =
L∑

n=1

{
xT

n Qxn + rT
n−1 Rrn−1

}
, (3.2)

where x0 is a given initial state, L is the time interval used for evaluating the perfor-
mance of the controlled system, Q is a k × k positive semi-definite matrix, and R is
a q × q positive definite matrix.

A crucial problem in applying the optimal control theory to a large-scale complex
system with large disturbances, such as a ship, an electric power plant, or a large
chemical plant, is that it is sometimes difficult to obtain a precise state-space model
from the theory of the subject area. For such systems, Akaike (1971) proposed the use
of the ARX model for the identification of the system. Many successful applications
of this method, which is usually referred to as the statistical controller, can be found
in the literature (Otomo et al. 1972; Ohtsu et al. 1979a, b; Nakamura and Akaike
1981; Akaike and Nakagawa 1988; Akaike and Kitagawa 1999).

Assume an autoregressive exogenous (ARX) model:

yn =
m∑

j=1

A jyn− j +
m∑

j=1

B j rn− j + vn , (3.3)

where yn and rn are a p-dimensional output variable and a q-dimensional input
variable, A j is a p × p matrix, B j is a p ×q matrix, and vn is a p-dimensional white
noise. Then, as shown in the previous chapter, the ARX model (3.3) has a state-space
representation (Akaike 1971; Akaike and Nakagawa 1988):

{
xn = Φxn−1 + Γ rn−1 + Ψ vn

yn = H xn ,
(3.4)
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3.1.2 Optimal Control Law

The optimal controller is an advanced control method, which deals with the problem
of finding a control law for a given system such that a certain performance criterion
is minimized. The performance criterion is usually defined as a cost functional that is
a function of state and control inputs. Optimal control is the sequence of the control
inputs that minimize the performance criterion.

Here, we present a method for designing an optimal control law that is obtained
as the solution to the linear quadratic optimal control problem:

min
r0,...,rL−1

JL(x0), (3.5)

with respect to the state-space model (3.4). As a performance criterion, we use the
following two criteria.

[Type 1] A quadratic performance criterion evaluating the expected quadratic loss
of a state variable xn and a control variable rn−1,

JL(x0) = E

[ L∑

n=1

{
xT

n Qxn + rT
n−1 Rrn−1

}]
. (3.6)

[Type 2] A performance criterion that also penalizes the difference of the control
input:

JL(x0) = E

[ L∑

n=1

{
xT

n Qxn + rT
n−1 Rrn−1 + ΔrT

n−1T Δrn−1

}]
, (3.7)

where Δrn−1 = rn−1 − rn−2, Q is a pm × pm positive semi-definite matrix, R
is a q × q positive definite matrix, and T is an q × q positive semi-definite matrix.
In designing an autopilot system, it is possible to reduce the mechanical loss of the
actuator by using the type-2 performance criterion.

3.1.2.1 Optimal Control Law for the Type-1 Criterion

We consider the optimal control input when we adopted the type-1 performance
criterion. In order to solve the optimal control problem by dynamic programming
(Bellman 2003), we define fn(x), (n = 1, . . . , N ) by

fn+1(x) = min
rn, . . . , r L−1

xn = x

E

[ L∑

i=n+1

{
xT

i Qxi + rT
i−1 Rr i−1

}]
. (3.8)
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Assume that this fn+1(x) can be expressed in simple quadratic form:

fn+1(x) = min
rn

xn = x

E
[

xT
n+1 Sn xn+1 + rT

n Rrn

]
, (3.9)

for some properly defined matrix Sn . Then, from (3.4), it holds that

E
[

xT
n+1Sn xn+1 + rT

n Rrn

]

= E
[
(Φxn + Γ rn + Ψ vn+1)

T Sn(Φxn + Γ rn + Ψ vn+1) + rT
n Rrn

]

= rT
n (Γ T SnΓ + R)rn + xT

n ΦT SnΓ rn + rT
n Γ T SnΦxn (3.10)

+xT
n ΦT SnΦxn + E

[
vT

n+1Ψ
T SnΨ vn+1

]

=
{

rn + (Γ TSnΓ + R)−1Γ TSnΦxn

}
)T (Γ TSnΓ +R)

{
rn + (Γ T SnΓ + R)−1Γ T SnΦxn

}
+ xT

n ΦT SnΦxn

−xT
n ΦT ST

n Γ (Γ T SnΓ + R)−1Γ T SnΦxn + E
[
vT

n+1Ψ
T SnΨ vn+1

]
.

Since the first term on the right-hand side of the above equation is non-negative
and the other terms are independent of the control input rn , the control input that
minimizes this quantity is obtained by

rn = −(Γ T SnΓ + R)−1Γ T SnΦxn . (3.11)

Furthermore, for this optimal input, the first term vanishes and fn(x) is reduced to

fn+1(xn) = xT
n ΦT SnΦxn − xT

n ΦT ST
n Γ (Γ T SnΓ + R)−1Γ T SnΦxn

+ constant. (3.12)

Then, by the principle of optimality of dynamic programming (Bellman 2003),
fn(x) satisfies the following relation:

fn(x) = min
yn−1

xn−1 = x

E
[

xT
n Qxn + rT

n−1 Rrn−1 + fn+1(xn)
]
. (3.13)

Here, since fn+1(x) is given by (3.12), fn(x) can be expressed as

fn(x) = min
yn−1

xn−1 = x

E
[
xT

n Sn−1 xn + rT
n−1 Rrn−1

]
, (3.14)
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where Sn is given by

Sn−1 = Q + ΦT {
Sn − ST

n Γ (Γ T SnΓ + R)−1Γ T Sn
}
Φ, (3.15)

with SL = Q.
The optimal control input r∗

n(n = 1, . . . L − 1) is given by multiplying the
feedback gain Gn by the state xn

r∗
n = Gn xn, (3.16)

where the control gain Gn is given by

Gn = −(Γ T Sn+1Γ + R)−1Γ T SnΦ. (3.17)

Remark The optimal control input given in Eq. (3.16) is seemingly the standard
feedback control and is obtained by the linear transformation of the current state
vector xn . However, since the state vector contains a type of predictor of the future
variable ỹn+k|n−1 and the performance criterion evaluates the current and future
states, the state vector can be considered to be a predictive controller.

3.1.2.2 Optimal Control Law for the Type-2 Criterion

Similarly, the optimal control input for the type-2 performance criterion is determined
by considering a generalized version of fn(x), (n = 1, . . . , N ),

fn(x) = min
rn−1, . . . , r L−1

xn−1 = x

E

[
L∑

i=n

{
[xT

i , rT
i−1]

[
S P
PT R

] [
xi

r i−1

]
+ ΔrT

i−1T Δr i−1

}]
.

(3.18)

For details of the derivation of the optimal control law for the criterion, refer to Ohtsu
et al. (1976a, b) and Ohtsu (2012).

The algorithm for obtaining the optimal control gains for the type-2 criterion is
summarized as follows:

1. Set the initial values, S0 = Q, R0 = R, and P0 = 0.
2. Compute Si , Pi , and Ri , recursively for i = 1, 2, . . . , L by

Si = Si−1 + ΦT
{

Si−1 − (ST
i−1Γ + Pi−1)(Γ

T Si−1Γ + PT
i−1Γ + Γ T Pi−1

+Ri−1 + T )−1(Γ T Si−1 + PT
i−1)

}
Φ (3.19)

Pi = P + ΦT (Si−1Γ + Pi−1)(Γ
T Si−1Γ + Γ T Pi−1 + PT

i−1Γ + Ri−1 + T )−1T

Ri = T + R − T T (Γ T Si−1Γ + Γ T Pi−1 + Pi−1Γ
T + Ri−1 + T )−1T .
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The optimal control input r i is then given by the feedback control law

r i = Gi xi + Fi r i−1 , (3.20)

where the optimal control gains Gi and Fi are obtained by

Gi = −(Γ T Si−1Γ + PT
i−1Γ + Γ T Pi−1 + Ri−1 + T )−1(Γ T Si−1 + PT

i−1)Φ

Fi = (Γ T Si−1Γ + PT
i−1Γ + Γ T Pi−1 + Ri−1 + T )−1T . (3.21)

Here, if the evaluation period L is taken to be long enough, then Gi and Fi converge
to some G and F , respectively. Therefore, the optimum control law for a stationary
state is determined as

r i = Gxi + F r i−1 . (3.22)

In actual autopilot system design, it will assuredly be reasonable and practical to use
this control law with constant gains.

Remark This algorithm, which is based on dynamic programming, is not stable and
may diverge due to the computational error at each time step if the evaluation period
L is taken to be too large. Therefore, it is recommended that L be taken as not so
large, e.g., L = 30. However, this problem can be mitigated by using the square root
algorithm (Kitagawa 1983).

3.2 AR Model-Based Autopilot System

3.2.1 Autopilot System for Ships

The autopilot of a ship is a typical example of a classical control system that was
designed based on the concept of feedback control. Figure 3.2 shows a schematic
diagram of an autopilot system, where ϕ0,n denotes the desired yaw deviation at time
n in the course commanded by a navigator. On the other hand, ϕn denotes the actual

Autopilot
System

Steering
Gear

Sea Disturbances

Fig. 3.2 Configuration of the autopilot system of a ship
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yaw angle at time n observed under the influence of strong external disturbances,
such as wind, current, or waves. Thus, the difference, en = ϕn − ϕ0,n , is the yaw
deviation from the desired course, and this angle is hereinafter referred to as the yaw
deviation, or simply the yaw. The yaw, en , is an input to the controller (autopilot
system), and the controller calculates an appropriate rudder angle δ0,n , which is then
used as an input to the actuator (steering gear) to compensate for the yaw deviation.
The actuator generates the actual rudder angle δn and applies a rudder force to the
hull of the ship.

By formulating the autopilot system as an optimal control problem, it is possible
to obtain the optimal feedback gain for the rudder to reduce the yaw deviation with a
smaller rudder angle with respect to the type-1 or type-2 performance criterion given
in Sect. 3.1.2.

3.2.2 Design of the ARX Model-Based Autopilot System

Here, we present a five-step procedure for designing a statistical optimal controller
based on the time series of the controlled system.

(1) Acquisition of Time Series under Random Steering
The design of an AR autopilot system starts with the acquisition of time series

data from an actual ship sailing at sea. During this experiment to obtain time series
data, the following two points must be taken into account. First, if a control input is
determined by a linear function of the output variable xn , it is impossible to identify
the input-output dynamics using the obtained data. Therefore, it is important that the
control input contains some “noise” during the actual sea experiment that cannot be
expressed as a linear feedback of the output. Second, it is desirable that the input
signal, namely the rudder motion, contains frequency components that are as broad
as possible. In order to satisfy these requirements, we recommend the method of
steering according to the commanded rudder angle rather than randomly in manual
mode. Figure 3.3 shows an example of using random steering to identify the AR
model for actual ship data observed on Shioji-Maru III.

(2) Selection of Variables
Figure 3.4 shows a record of actual ship motions observed on a middle-sized

container ship on the Pacific Ocean. The sea state was rough, and the observed wind
scale was 9 (strong gale) to 10 (storm). The sampling rate Δt was 1 s. The time series
of pitch, roll, yaw, sway acceleration (racc), and rudder motions are shown from
top to bottom. In designing an autopilot system, the selection of variables actually
used for modeling is a crucial problem. It is clear that the rudder angle is the input
variable, and yaw deviation is the output variable. However, it is possible to consider
other variables as input or output variables.

For this selection stage, important information might be obtained from the power
contribution analysis of the autopilot system, as discussed in Sect. 2.4.2, in which
the importance of the roll-yaw-rudder effect was emphasized. Furthermore, if we

http://dx.doi.org/10.1007/978-4-431-55303-8_2
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Fig. 3.3 “Random steering” data for Shioji-Maru III

Fig. 3.4 Example of the observed motion of a ship steered by a conventional autopilot system

attempt to avoid rapid changes in yaw and yaw magnitude, it is necessary to consider
the yaw rate signal, as well as the yaw. If we need to reduce the lateral drifting due
to the rudder motion, it might be important to select the lateral sway acceleration
(racc.). However, we should not select the lateral sway acceleration when it includes
harmful noise.
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(3) White Noise Simulation Study of an Optimal Controller
In order to select suitable variables and weighting matrices Q, R, and T in the

performance criterion for the selected variables of Eqs. (3.6) and (3.7), white noise
simulation is useful. The following state-space model is used in the white noise
simulation:

{
xn = Φxn−1 + Γ r∗

n−1 + Wn

r∗
n = Gxn + F r∗

n−1.
(3.23)

In this model, the variance covariance matrix of the residual of the fitted model is
used as the white noise Wn . Moreover, G and F denote the optimal feedback gains
determined by Eq. (3.21). See Kitagawa and Ohtsu (1976) and Ohtsu et al. (1979b)
for a semi-automatic procedure for obtaining appropriate weighting values in the Q,
R, and T matrices in Eq. (3.7). Table 3.1 shows the results of the simulation study.

Figure 3.5 shows an example of the white noise simulation for Q = diag(2,7,35,1),
T = 3, and R = 5. Figure 3.6 shows the spectra of rudder, roll, and yaw motions.
Repeating these simulations numerous times, we obtained the following results:

1. The AR model effectively fitted to the actual data represents the actual steering
dynamics of the ship,

2. Compared with manual control, optimal control of the rudder is effective for
significantly reducing both the yaw and roll, but is not so effective for reducing
the pitch or racc (lateral acceleration),

3. The weight T that penalizes the change of the rudder motion is effective for
making the rudder motion smoother.

Based on these results, the effect of rudder steering on roll motion is especially
important, because the roll may increase or decrease depending on the steering law,
i.e., on the selection of the Q and T weights.

(4) AR Autopilot
Next, we discuss the results of AR autopilot experiments performed onboard

Shioji-Maru II and Shioji-Maru III. The principal dimensions of the two ships and
photographs are presented in Chap. 1. The course deviation, i.e., the yaw, is selected
as the output, and rudder is selected as the input.

Table 3.1 Results of the simulation study

No. Q R Pitch Roll Yaw Yacc Rudder Diff.

(1) (2,7,35,1) 0.850 1.726 4.575 1.709 0.0063 18.72 4.546

(2) (3.6,7,40,1.67) 1.015 1.444 4.915 1.674 0.0062 19.12 5.052

(3) (0,6.33,57.8,0) 0.860 2.242 4.473 1.672 0.0068 18.66 4.931

(4) Manual 2.771 6.557 7.781 0.0081 17.62 0.832

Nos. (1) through (3): optimal controllers with various weighting matrices; No. (4): manual control

http://dx.doi.org/10.1007/978-4-431-55303-8_1
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Fig. 3.5 Example of the white noise simulation for Q = diag(2,7,35,1), T = 3, and R = 5

Fig. 3.6 Spectra of rudder, yaw, and roll motions in the white noise simulations (left conventional
autopilot, right optimal control)

Figure 3.7 shows the analog record of the actual data collected on Shioji-Maru II.
The plots on the left show the results for the AR autopilot, and the plots on the right
show the results for conventional PID autopilot steering, which was carried out soon
after the AR autopilot steering.

As shown in the figure, the AR autopilot can reduce the yaw motion and make
the rudder motion smoother. Furthermore, the roll motion is also reduced by the AR
autopilot steering.
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(5) Performance of the AR Autopilot
The performances of the AR autopilot were considered from various points of

view based on actual experiments onboard Shioji-Maru III. The plot on the left in
Fig. 3.8 shows the standard deviations of yaw and rudder angle in the white noise
simulations as the ratio Q/R is changed from 5 to 200. When the ratio is increased,
the standard deviation of the yaw decreases, but this reduction becomes marginal
for Q/R larger than 100. The plot on the right in Fig. 3.8 shows the corresponding
results for the actual experiments onboard Shioji-Maru III. Similar tendencies appear
in the simulation results. In this figure, ‘PID’ indicates the conventional ship autopilot
(Ogata 1990). Even in the case of Q/R = 160, for which the standard deviation of
yaw is less than 1/4 of the PID steering, the amount of rudder motion is approximately
the same as that for the PID autopilot.
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Figure 3.9 shows the spectra of the yaw and rudder motions. According to these
spectra, when Q/R increases, the peak frequency of the rudder shifts to a higher
frequency domain. In the power spectrum of the rudder angle shown in the right-
hand plot, a strong spectral peak appears around f = 0.15–0.2 Hz as Q/R increases.
The spectral peak of the yaw decreases, but its peak frequency shifts higher. This
means that the yaw is reduced but fluctuates more frequently. Figure 3.10 shows the
time histories of the AR autopilot with Q/R = 160.

During the series of experiments, the sea disturbances come from various direc-
tions. The three plots in Fig. 3.11 show the changes of the standard deviations of
roll rate, yaw, and rudder angle in the AR autopilot steering for various wave
encounter directions. The yaw and rudder angles become larger when the wave
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direction changes to follow sea (180 ◦ from the ship’s head), whereas the roll rate
becomes large in the beam sea (±90 ◦ from the ship’s head).

Figure 3.12 shows the effect of weight T of the type-2 performance criterion on
the standard deviations of the yaw and rudder motions. In these actual experiments,
Q/R was fixed to a constant value and only T was changed. This figure indicates
that in the case of the AR autopilot steering with Q/R = 50, the standard deviations
of the yaw are approximately the same as those the conventional autopilot steering,
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whereas the standard deviation of the rudder motion became 1/2–1/6 of that of the
conventional PID controller.

Figure 3.13 shows the course changing ability of the AR autopilot system. At
approximately 500 s, the ship’s course changes by 20 ◦ from the original course and
then returns to the original course at approximately 640 s. This figure shows that
the overshoot during this maneuvering is extremely small and that this autopilot
system, which was designed for course-keeping control, also provides reasonable
course-changing control.

Figure 3.14 shows the difference in properties between the AR autopilot and the
conventional PID autopilot. Namely, the top and bottom plots show the impulse
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response function of the rudder motion to the impulsive change of yaw for the AR
autopilot and the conventional autopilot, respectively. The AR autopilot has a quick
and sharp response compared with the PID autopilot, and the overshoot is signifi-
cantly smaller for the AR autopilot.

3.3 Rudder-Roll Control System

As discussed in Sect. 2.4, the rudder motion has a strong influence on both yaw and
roll. Figure 3.15 shows the absolute power contributions to the roll motion by the
roll, rudder, and yaw motions for a large container ship. This figure also indicates
that the rudder motion has a strong influence on roll motion at its significant peak
frequency. Figure 3.16 shows a physical explanation of the rudder-roll effect. In this
figure, Grudder is the center of gravity of the rudder control surface and Gship is the
center of gravity of the hull body. As can be understood from the locations of these
two points, as lever h between these two points becomes longer, the roll moment
generated by the rudder moment becomes stronger.

Fig. 3.15 Power contributions to roll from roll, rudder, and yaw (heading) motions

Fig. 3.16 Rudder effect on
roll motion

h

Gship

G rudder

http://dx.doi.org/10.1007/978-4-431-55303-8_2
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In this section, considering this effect, we design a rudder-roll controller to reduce
both the roll motion and the yaw motion (Oda et al. 1991). In this rudder-roll control
system (RRCS), we consider the rudder command as the input variable and both
yaw and roll as the output variables. Therefore, in the performance criterion, both
the variances of yaw and roll are penalized with properly determined weighting
coefficients.

However, inherent difficulties might arise in the above feedback control system.
Moreover, it is conceivable that too frequent rudder motions are used to suppress
the roll motion. According to the white noise simulations described in the previous
section, the following three countermeasures may suppress such frequent rudder
motions:

1. Select the roll rate signal rather than the roll angle as the state variable.
2. Adopt the type-2 performance criterion with weight T that penalizes the changes

of the rudder angle described in Sect. 3.1.2.
3. Speed up of the movement of rudder steering actuator.

The following are examples of the third type of countermeasure. Figure 3.17 and
Table 3.2 show the data obtained for the conventional PID autopilot and rudder-roll
control (RRCS) systems when the conventional steering actuator and the improved

Fig. 3.17 Course deviation, roll rate, and rudder angle obtained using the conventional PID autopi-
lot and the rudder-roll control system (MARCS). Left Conventional steering actuator, right EHS
steering actuator (Oda et al. 2008)
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Table 3.2 Results of the full-scale experiments on the rudder-roll controller

Test no. (platform) Control mode Yaw
(variance)

Roll rate
(variance)

Yaw
reduction (%)

Roll rate
reduction (%)

Ju32 (conventional) PID 3.178 2.525 – –

MARCS-1 0.886 1.291 72.13 48.87

MARCS-2 0.548 1.535 82.77 39.20

Ju35 (DDVC) PID 1.907 2.219 – –

MARCS-1 1.101 1.063 42.29 52.07

MARCS-2 1.167 0.945 38.84 57.41

(Modified from Table 4 of Oda et al. 2008)

direct drive volume type electronic hydraulic system (EHC) were used. In the exper-
iment, the ship was steered by the conventional PID autopilot for the first 200 s,
after which steering was performed by RRCS (MARCS), followed by RRCS with
different parameters at 400 s.

The table and figure indicate that on both platforms, the mean squared course
deviation by RRCS was reduced by 39–83 % and the variance of the roll rate was
suppressed by 39–57 % as compared to control by the PID autopilot. Furthermore,
Fig. 3.17 indicates that this reduction of yaw and roll rate was achieved with a sig-
nificantly smaller (say 50–10 %) rudder angle.

Figure 3.18 shows the results of an experiment to determine the effect of roll
reduction in the RRCS. In this figure, “Rudder neutral” indicates the results after
impulsively induced rolling by a fin stabilizer, after which the rudder is set to the
neutral position. On the other hand, “RRCS” indicates the results for the case in
which RRCS control is performed after the impulsively induced roll motion. The
roll motion is drastically decreased by RRCS.

Figure 3.19 shows the relative power contributions of roll rate motion from the
roll rate, rudder angle, and yaw. In this figure, the left-hand plot shows the results for

Fig. 3.18 Roll motions obtained by the RRCS steering and neutral rudder after impulsive forced
roll (experimental data)
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conventional autopilot steering and the right-hand plot shows the results for the case
of RRCS steering, both of which were carried out on Shioji-Maru III. Comparison
of the results reveals a significant reduction of rudder effect on roll motion in the
RRCS mode.

A major shipbuilding company in Japan has successfully used RRCS for practical
applications on various types of ships.

3.4 Application to the Marine Main Engine Governor
System

3.4.1 Marine Main Engine Governor

In addition to autopilot systems, the marine engine governor is another typical
feedback system in the field of marine engineering. Figure 3.20 shows a schematic
diagram of the marine main engine governor. The main engine transmits the revolu-
tion energy to the propeller through the propeller shaft. The function of the governor
is to suppress the fluctuation of propeller revolution by adjusting the quantity of fuel
supplied to piston cylinder in the main engine. Conventional governors are classified
as either mechanical governors, which use the centrifugal force on the propeller shaft
due to the propeller revolution, or electric governors. However, neither mechanical
nor electric governors directly take into account ship motion, which is the primary
cause of fluctuations in propeller revolution speed.
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Ship’s Motion

Fig. 3.20 Configuration of the main engine governor

3.4.2 Dynamic Characteristics of the Main Engine Governor
System

Larger marine engines have been developed, and the reliability of such engines has
increased. However, analysis of the dynamic characteristics of the main engine in
actual navigation has been limited. In this section, we analyze a main engine governor
system using the autoregressive model

xn =
M∑

m=1

Am xn−m + un , (3.24)

fitted to the data discussed in the previous section, using the MAICE method (Ishizuka
et al. 1991, 1992). Here, xn is a two-dimensional vector time series and is composed
of the propeller revolution speed and the governor command (hereinafter, the pro-
peller rotation speed shall be expressed in revolutions per minute, RPM). Using
this model, the frequency response function of the governor-propeller RPM and the
impulse response function are calculated. They can be easily calculated using the
autoregressive model (Akaike and Nakagawa 1988).

Figures 3.21 and 3.22 show the impulse response function and the frequency
response function of the propeller RPM to the desired signal of a governor (rack-bar
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Fig. 3.21 Impulse response function of the governor-propeller revolution system



76 3 Design of a Model-Based Autopilot System for Course Keeping Motion

20
15
10

5
0

-5
-10
-15
-20
-25
-30
-35
-40

0.01 0.10 1.00 10.00

0

-90

-180

-270

-360

]ged[ esahP]Bd[ niaG

Frequency [Hz]

Frequency Response Function
from FO Pump Rack Bar
to Propeller RPM

Fig. 3.22 Frequency response function of the governor-propeller revolution system (solid line
amplitude, dashed line phase)

position). Based on these figures, the transfer function of this system is expected to
be as follows:

D(s) = e−Ls K

s(T1s + 1)(T2s + 1)
. (3.25)

Such knowledge will become available as computer-aided control system design is
conducted using the PID control rule.

Figure 3.23 shows the noise contribution of the roll, pitch, and yaw to the change
of the propeller RPM. The figure shows that the change in propeller RPM is subject
to strong effects from pitch motion.

3.4.3 Design of the ARX Model-Based Governor

Considering the abovementioned theory, we designed the following two types of
governor, applying the optimal controller based on the ARX model. The first governor
is a SISO-type feedback controller (type-1 AR governor) that considers the actuator
(the rack bar position for supplying fuel to the piston cylinder) as the input and the
change of the propeller revolution as the output. The sampling rate is set to 0.1 s.
First, random signal through the actuator is inlet to the main engine. Then, using the
response of the propeller revolution to the input, the SISO AR model is constructed
and the optimal gains are computed.

Figure 3.24 shows the results of an experiment using a middle-sized marine engine.
The upper plots show the propeller RPM and fuel oil pump rack position of a con-
ventional ship governor. The target RPM was 700 RPM. The lower plots show the
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corresponding results for the optimal AR governor. The fluctuation of the propeller
RPM became smaller with smaller governor changes for the optimal AR governor,
as compared to the conventional governor.

Table 3.3 shows the variances of the engine RPM and the rack bar (Governor)
motions for three values of Q/R in the performance criterion (3.6). The bottom row
shows the results for the conventional governor. Figure 3.25 plots these results. In the
case of Q/R = 0.001, the gain is relatively weak, and the change in RPM becomes
greater than that for the conventional governor. In other cases, however, a significant
reduction in RPM fluctuation is achieved by very small rack bar motions.

3.4.4 Design of the AR Governor Considering Pitch Motion

In the second type of marine engine governor, the ship’s pitch rate signal is added
to increase the accuracy of prediction of the change in the propeller revolution. The
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Table 3.3 Variances of the RPM and rack bar position of the optimal governor for three values of
Q/R and those of the conventional governor obtained through a sea experiment

Gain’s name Q/R Variance of RPM Variance of rack bar

A0001 0.001 7.195 0.0196

A0005 0.005 2.251 0.0254

A0010 0.010 1.273 0.0756

Ship’s governor – 4.012 0.1710
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Fig. 3.25 Change of variances of engine RPM with respect to the change in Q/R. Horizontal axis
Q/R, vertical axis variances of RPM and governor (FO pump rack position)

reason for this is that the pitch motion changes the depth of the propeller, which
significantly affects the load on the engine. In this case, the weight to pitch motion
in the performance criterion vanishes, because the pitch motion is not supposed to
be reduced by the governor. The results of an experiment using the two types of
governors are shown in Fig. 3.26. In this figure, the results for the type-2 governor,
which took into account the pitch motion, are shown on the right, and the results for
the type-1 governor, which did not use information on pitch motion, are shown on
the left.

Comparing the results for two types of governors reveals that the propeller RPM
is reduced significantly for the type-2 governor, and so the inclusion of pitch motion
yields better engine governor control performance. The reason for this is likely
because the inclusion of pitch motion allows more accurate prediction of the fluctu-
ation of the RPM.
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Fig. 3.26 Results for the type-1 and type-2 governors taking into account the pitch rate and the
engine RPM
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Chapter 4
Advanced Autopilot Systems

Abstract In the previous chapter, we presented three types of autopilot system
based on the stationary linear AR model. However, actual sea conditions may change
gradually or abruptly due to various factors, and in such a situation, we must consider
a nonstationary time series. Furthermore, it may become necessary to consider the
nonlinear response of the ship, which will be of particular importance to tracking
control. In this chapter, we propose extensions of our statistical optimal controller
based on the locally stationary AR model and the RBF-ARX model and develop a
noise-adaptive autopilot and a path-tracking autopilot.

Keywords Noise adaptive autopilot · RBF-ARX model based predictive con-
trol · Ship tracking control · GPS signal based ship tracking error measuring ·
Ship trajectory tracking dynamics modeling

4.1 Noise-Adaptive Autopilot System

The simplest and most practical approach to modeling nonstationary time series is
to subdivide the time interval into several subintervals of appropriate size and fit a
stationary AR model to each subinterval. Using this method, we can obtain a series
of models that approximate nonstationary time series. In this section, we develop a
noise-adaptive autopilot system based on the locally stationary AR model.

4.1.1 Construction of a Noise-Adaptive Control System

The noise-adaptive controller is an extension of the optimal controller, which has the
ability to adapt to the changes in the characteristics of an external disturbance. We
assume the ARX model for the system dynamics

yn =
m∑

i=1

Aiyn−1 +
�∑

i=1

Bi rn−i + un, (4.1)

© The Author(s) 2015
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where yn is the p-dimensional output, rn is the q-dimensional control input, and
un is the p-dimensional system noise. It is assumed that the ship’s dynamics is time
invariant and known but the external disturbance un is not necessarily a white noise
and its characteristics change gradually with time. Therefore, we consider a locally
stationary AR model for the system noise:

un =
k∑

j=1

Cj un− j + εn, (4.2)

where εn is a p-dimensional Gaussian white noise with mean 0 and variance covari-
ance matrix W . Substituting (4.1) into (4.2) yields the overall behavior model:

yn =
m+k∑

i=1

A′
i yn−i +

�+k∑

i=1

B ′
i rn−i + εn, (4.3)

where A′
n and B ′

n are given by

A′
i = Ai + Ci −

i∑

j=1

CjAi− j , B ′
i = Bi + Ci −

i∑

j=1

CjBi− j (4.4)

with Ai = O for i > m, Bi = O for i > �, and Ci = O for i > k.
As shown in Fig. 4.1, the noise-adaptive controller is composed of the following

five modules:

External Disturbance Estimator: The external disturbance estimator estimates
the external disturbance un from the observations of the output yn and the input
rn using Eq. (4.1).

Nonstationary Noise Model Builder: The nonstationary noise model builder fits
a locally stationary AR model to un and obtains the current noise model (4.2).

Overall Behavior Model Modifier: The overall behavior model modifier com-
putes the current overall behavior model (4.3) using the original system dynamics
model (4.1) and the current model of the external disturbance (4.2). The state-
space representation of the overall behavior model is then obtained.

Optimal Controller Designer: The optimal controller designer designs the opti-
mal feedback gain (3.21) with respect to a predetermined quadratic performance
criterion.

Optimal Controller: The optimal controller controls the system using the optimal
feedback gain by (3.20).

http://dx.doi.org/10.1007/978-4-431-55303-8_3
http://dx.doi.org/10.1007/978-4-431-55303-8_3
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Fig. 4.1 Construction of the
noise-adaptive controller Ship

External Disturbance
Estimator

Optimal Controller

Optimal Controller
Designer

Overall Behavior
Model Modifier

Nonstationary Noise
Model Builder

Output
yn

Noise
un

rn Input

4.1.2 Actual Sea Test of the Noise-Adaptive Autopilot System

In order to realize a noise-adaptive ship’s autopilot system based on the method
described in the previous section, it is necessary to run two programs simultane-
ously. The first program, which should be primarily executed, inputs the ship’s yaw
deviation, calculates the optimal control input using Eq. (3.20), and sends the com-
mands to the ship’s steering gear. Usually, this program is executed at sampling rate
Δt = 1 in the autopilot system.

The second program builds the current overall model based on the on-line iden-
tification procedure of the locally stationary AR model for the noise sequence and
calculates the optimal gain to be used for the next stage at every NΔt s (N ≥ 200
points).

Figure 4.2 shows a record of the data collected on the training ship with similar size
with Shioji-Maru III, used to demonstrate the effect of using the on-line identification
procedure of the locally stationary AR model. The principal dimensions of the ship
are listed in Table 1.1. In this experiment, the length of the basic span for fitting the
AR model is fixed to N1 = N2 = · · · = 200 s.

Just before the start point of the results in Fig. 4.2, the ship navigated into open
sea from leeward side of a peninsula and large deviation from the desired course
occurred. The model of the disturbance was switched to a new model in order to

http://dx.doi.org/10.1007/978-4-431-55303-8_3
http://dx.doi.org/10.1007/978-4-431-55303-8_1
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Fig. 4.2 Actual experiment using a noise-adaptive autopilot on a small ship

Fig. 4.3 Data obtained
using the noise-adaptive
autopilot on a large container
ship. Top yaw deviation,
bottom rudder angle

adapt to this change in the environment, and the ship’s deviations were gradually
reduced after approximately 300 s under the updated optimal gains.

Figure 4.3 shows another example of data obtained on a large container ship
having a length of 250 m, a breadth of 35.40 m, a gross tonnage of 44,459, and
4,432 TEU. Two upper plots in this figure show the course deviation by the noise-
adaptive autopilot (left: BNAAC) and the conventional autopilot (right: PT500A).
The lower two plots show the corresponding rudder motions. The noise-adaptive
autopilot system exhibited an excellent ability to suppress the yaw deviations by
significantly smoother rudder motions, far better than the conventional autopilot
system.

The noise-adaptive ship’s autopilot gained formal approval from the Det Norske
Veritas (DNV) as a trademark, the batch noise-adaptive autopilot controller (BNAAC)
has been installed in approximately 500 ships worldwide.
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4.2 RBF-ARX Model-Based Predictive Control

The principal role of the classical autopilot of a ship is primarily concerned with
maintaining the yaw at a desired course angle. However, nowadays by making use
of the position feedback signals obtained from a Global Positioning System (GPS)
navigation device, a ship guidance system, namely, a tracking control system, can
be designed to make the ship track a desired trajectory. This section introduces a
multi-input and multi-output (MIMO) RBF-ARX model-based predictive controller
design method for general nonlinear plant control, including ship tracking control
issues (Peng et al. 2009). In Sect. 4.3, a GPS signal-based calculation approach to
the tracking error and course deviation of a ship for better implementation of the
arc trajectory tracking of a ship is presented, and the dynamics modeling of the ship
using the RBF-ARX model and tracking controller design along with its application
are described in Sect. 4.4.

4.2.1 MIMO RBF-ARX Model and Its State-Space Form

Based on the idea of building the SISO RBF-ARX model described in Sect. 2.8, the
multivariable form of the model is introduced in this section (Peng et al. 2009). Con-
sider a MIMO nonlinear and nonstationary system with a measurable disturbance,
which is represented by the following nonlinear autoregressive model:

yn = f (wn−1) + ζ n, (4.5)

where

wn−1 =
[

yT
n−1 · · · yT

n−ka
, uT

n−1 · · · uT
n−kb

, vT
n−1 · · · vT

n−kd

]T
(4.6)

yn ∈ �k is the output, un ∈ �m is the input, vn ∈ �l is the measurable disturbance,
and ζ n ∈ �k denotes the white noise sequence. If the function f (·) in (4.5) is
assumed to be continuously differentiable at an arbitrary equilibrium point, f (·)
may be expanded in a Taylor series, and model (4.5) may then be rewritten as the
following state (wn−1)-dependent autoregressive model, as describe for the SISO
case in Sect. 2.8:

yn = π0(wn−1) +
ka∑

i=1

πyi (wn−1) yn−i +
kb∑

i=1

πui (wn−1)un−i

+
kd∑

i=1

πvi (wn−1)vn−i + ζ n, (4.7)

where π0, πyi , πui , and πvi are state-dependent coefficients matrices of suitable
dimensions. The above problem may be rewritten by allowing wn to be the process
variables causing the working point of the system to change with time. wn may be

http://dx.doi.org/10.1007/978-4-431-55303-8_2
http://dx.doi.org/10.1007/978-4-431-55303-8_2
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directly or indirectly related to the input or output of the system, in some cases being
the input or output itself. For example, in a nonlinear thermal power plant, wn could
be the load demand of the plant (Peng et al. 2009). Similar to the derivation of the
SISO RBF-ARX model as described in Sect. 2.8, if Gaussian RBF networks are used
to approximate the functional elements of the coefficient matrices of model (4.7),
the MIMO RBF-ARX model can then be obtained as follows:

yn = φ0(w̄n−1) +
ka∑

i=1

φyi (w̄n−1) yn−i +
kb∑

i=1

φui (w̄n−1)un−i

+
kd∑

i=1

φvi (w̄n−1)vn−i + ξn, (4.8)

where

φ0(w̄n−1) = c0
0 +

h∑

p=1

c0
p exp

{
−||w̄n−1 − zyp||2λyp

}
(4.9)

φ j i (w̄n−1) = c j
i0 +

h∑

p=1

c j
ip exp

{
−||w̄n−1 − z j p||2λ j p

}
, j = y, u, v

w̄n−1 =
[
wT

n−1, wT
n−2, . . . , wT

n−nw

]T

z j p =
[
zT

jp1, zT
jp2, . . . , zT

jpnw

]T
, j = y, u, v (4.10)

and ka , kb, kd , h, and nw are the model orders, z jk’s are the centers of RBF networks,

c j
ik’s and c0

k’s are the weighting coefficient matrices of suitable dimension, ||x||2
λ̂

=
xT λ̂x, λ̂ = diag

(
λ̂2

1, . . . , λ̂
2
dim(x)

)
,
{
λ̂1, . . . , λ̂dim(x)

}
are the scaling factors, and

{
ξn ∈ �k

}
denotes the white noise sequence that is assumed to satisfy

E
{
ξn|Fn−1

} = 0, E
{
ξn ξ T

n

}
= Ω, (4.11)

in which Ft denotes the σ -algebra generated by the data up to and including time n,
and Ω is a positive definite matrix. The off-line estimation approach to the SISO RBF-
ARX model, referred to as the structured nonlinear parameter optimization method
(SNPOM) introduced in Sect. 2.8, may be applied to off-line estimation of the para-
meters of MIMO RBF-ARX model (4.8) after a minor alteration (Peng et al. 2009).

In order to design the MIMO RBF-ARX model-based (4.8) predictive controller,
we need to obtain the state-space form of the model. To this end, we can rewrite
model (4.8) in the following matrix polynomial form:

yn =
kn∑

i=1

ai,n−1 yn−i +
kn∑

i=1

bi,n−1un−i + φn−1 + ξn (4.12)

http://dx.doi.org/10.1007/978-4-431-55303-8_2
http://dx.doi.org/10.1007/978-4-431-55303-8_2
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where kn = max {ka, kb} and

ai,n−1 =

⎧
⎪⎨

⎪⎩
cy

i0 +
h∑

p=1

cy
ip exp

{
−||wn−1 − zyp||2λyp

}
, i ≤ ka

0, i > ka

.

bi,n−1 =

⎧
⎪⎨

⎪⎩
cu

i0 +
h∑

p=1

cu
ip exp

{
−||wn−1 − zup||2λup

}
, i ≤ kb

0, i > kb

.

φn−1 = φ0(wn−1) +
kd∑

i=1

φvi (wn−1)vn−i . (4.13)

Defining the state vector as

xn =
[

xT
1,n · · · xT

kn ,n

]T

x1,n = yn (4.14)

x j,n =
kn+1− j∑

i=1

ai+ j−1,n−1 yn−i +
kn+1− j∑

i=1

bi+ j−1,n−1un−i , j = 2, 3, . . . , kn,

a state-space model corresponding to model (4.8) or (4.12) can be then obtained by

{
xn+1 = An xn + Bnun + Φn + Ξn+1
yn = C xn

, (4.15)

where

An =

⎡

⎢⎢⎢⎢⎢⎢⎣

a1,n 1 0 · · · 0

a2,n 0 1 · · · ...
...

...
...

. . .
...

akn−1,n 0 0 · · · 1
akn ,n 0 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎦
, Bn =

⎡

⎢⎢⎢⎣

b1,n

b2,n
...

bkn ,n

⎤

⎥⎥⎥⎦

Φn =

⎡

⎢⎢⎢⎣

φn
0
...

0

⎤

⎥⎥⎥⎦ , Ξn+1 =

⎡

⎢⎢⎢⎣

ξn+1
0
...

0

⎤

⎥⎥⎥⎦ , C =

⎡

⎢⎢⎢⎣

1
0
...

0

⎤

⎥⎥⎥⎦

T

. (4.16)

The model given by (4.15) and (4.16) is a state-space representation of MIMO RBF-
ARX model (4.8). Note that the state xn at time n in (4.15) can be easily calculated by
(4.14) according to the present output yn , the past input/output data, and the off-line
estimated MIMO RBF-ARX model (4.8).
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4.2.2 MIMO RBF-ARX Model-Based Nonlinear MPC

Model predictive control (MPC) refers to a class of computer control algorithms
that use an explicit process model to predict the future response of a plant. At each
control interval, an MPC algorithm attempts to optimize future plant behavior by
computing a sequence of future control variables and taking systematic account of
equipment and safety constraints. The first input in the optimal sequence is sent
to the plant, and the entire calculation is repeated at subsequent control intervals.
Model predictive control has had a significant and widespread impact on industry.
Originally developed to meet the specialized control needs of power plants and petro-
leum refineries, MPC technology is currently used in a wide variety of application
areas, including chemicals, food processing, automotive, and aerospace applications
(Qin and Badgwell 2003).

Linear model-based MPC has numerous theoretical and practical applications.
At present, the nonlinear model-based MPC is the focus of a great deal of research
and application. There are three basic types of method for coping with nonlinear
system modeling and predictive control problems. The first type of method (e.g.,
Bloemen et al. 2001; Kothare 1996; Prasad et al. 1998) involves using a piecewise
linearization technique to describe the nonlinear behavior of a system, so that the
model is linearized in each sampling interval. This results in the solution of quadratic
programming problems or linear matrix inequalities (LMIs) for each interval, as in
case of linear-model-based predictive control (MPC). However, the identification of
numerous linear models that are only effective in a small region is not easy.

The second type of method (e.g., Sentoni et al. 1996; Mahfouf and Linkens 1998;
Mizuno et al. 2007) is based on the direct use of nonlinear models, which involve the
on-line solution of a higher-order nonlinear optimization problem with constraints,
which is usually computationally expensive and may not even guarantee a feasible
solution in real-time control.

The third type of method involves using a local linearization approach for
representing a nonlinear plant using an on-line estimated affine model (e.g., Lakhdari
et al. 1995) or an off-line estimated globally nonlinear and locally linear RBF-ARX
model (Peng et al. 2003, 2004, 2009) and then solving a quadratic programming
problem on-line in order to obtain optimal control. In the former case, however, fast
and accurate on-line estimation of a complicated model providing a good fit to a
nonlinear process may be difficult in actual application.

RBF-ARX model-based nonlinear MPC algorithms have been investigated both
in simulation and in real industrial applications (Peng et al. 2004, 2006, 2007,
2009, 2010, 2011; Qin et al. 2014; Zeng et al. 2014; Wu et al. 2012), where the
satisfactory nonlinear modeling accuracy and significant effectiveness and feasibility
of the algorithms have been verified. Furthermore, some stability conclusions on the
RBF-ARX model-based nonlinear MPC were also given in Peng et al. (2007, 2011).

This section introduces the framework of the RBF-ARX model-based nonlinear
MPC algorithm. A unified form of the MIMO RBF-ARX model-based MPC strategy
using only quadratic programming routines to solve an optimization problem on-line
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for a class of nonlinear systems is presented in this section. In the first case, the global
MIMO RBF-ARX model is used for predicting the future output of the system when
the knowledge of the future working point state prediction is available. In the second
case, in which a local linearization ARX model that is easily obtained from the global
MIMO RBF-ARX model must be used to obtain an affine output prediction in control
when the working point state prediction is not available.

In order to design the MIMO RBF-ARX model-based (4.8) or (4.15) MPC strat-
egy, the following vectors of signals are first defined:

x̂n =
[

x̂T
n+1|n, x̂T

n+2|n, . . . , x̂T
n+N |n

]T
, x p,n =

[
xT

n+1|n, xT
n+2|n, . . . , xT

n+N |n
]T

,

ŷn =
[

ŷT
n+1|n, ŷT

n+2|n, . . . , ŷT
n+N |n

]T
, yp,n =

[
yT

n+1|n, yT
n+2|n, . . . , yT

n+N |n
]T

(4.17)

ûn =
[
uT

n , uT
n+1, . . . , uT

n+Nu−1

]T
, Φ̄n =

[
ΦT

n ,ΦT
n+1, . . . ,Φ

T
n+N−1

]T

where N is the prediction horizon, whereas Nn (Nn ≤ N ) is the control horizon after
which control signals are assumed to have no variation, i.e., un+ j = un+Nu−1 ( j ≥
Nu). If {un+ j−1| j = 1, 2, . . . , Nu} is assumed to be Ft -measurable, then, based on
model (4.15) at time n, the j ( j = 1, 2, . . . , N ) step ahead optimal predictive state
and output may be obtained as follows:

{
x̂n = E

{
x p,n

} = Ān xn + B̄n ûn + Γ̄ nΦ̄n

ŷn = E
{

yp,n

} = C̄n x̂n,
(4.18)

where the following system matrices may be defined:

Ān =
[( 0∐

j=0

An+ j

)T

,

( 1∐

j=0

An+ j

)T

. . . . ,

(N−1∐

j=0

An+ j

)T ]T

q∐

j=i

An+ j =
{

An+q An+q−1 . . . An+i , i ≤ q
1, i > q

B̄n =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bn 0 0 · · · 0
⎛

⎝
1∐

j=1

An+ j

⎞

⎠ Bn Bn+1 0 · · · 0

.

.

.

.

.

.
. . .

. . .
.
.
.⎛

⎝
Nu−1∐

j=1

An+ j

⎞

⎠ Bn

⎛

⎝
Nu−1∐

j=2

An+ j

⎞

⎠ Bn+1 · · ·
⎛

⎝
Nu−1∐

j=Nu−1

An+ j

⎞

⎠ Bn+Nu−2 Bn+Nu−1

⎛

⎝
Nu∐

j=1

An+ j

⎞

⎠ Bn

⎛

⎝
Nu∐

j=2

An+ j

⎞

⎠ Bn+1 · · ·
⎛

⎝
Nu∐

j=Nu−1

An+ j

⎞

⎠ Bn+Nu−2

Nu∑

i=Nu−1

⎛

⎝
Nu∐

j=i+1

An+ j

⎞

⎠ Bn+i

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.⎛

⎝
N−1∐

j=1

An+ j

⎞

⎠ Bn

⎛

⎝
N−1∐

j=2

An+ j

⎞

⎠ Bn+1 · · ·
⎛

⎝
N−1∐

j=Nu−1

An+ j

⎞

⎠ Bn+Nu−2

N−1∑

i=Nu−1

⎛

⎝
N−1∐

j=i+1

An+ j

⎞

⎠ Bn+i

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Γ̄ n =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
1∐

j=1

An+ j 1 0 · · · 0

2∐

j=1

An+ j

2∐

j=2

An+ j 1 · · · 0

...
...

. . .
. . .

...
N−1∐

j=1

An+ j

N−1∐

j=2

An+ j · · ·
N−1∐

j=N−1

An+ j 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C̄ =

⎡

⎢⎢⎢⎣

C 0 · · · 0
0 C · · · 0
...

...
. . .

...

0 0 · · · C

⎤

⎥⎥⎥⎦. (4.19)

The system matrices Ān , B̄n , C̄ , and Γ̄ n in (4.18) are calculated using Eq. (4.19), for
which the knowledge of the working point state prediction ŵn+ j |n ( j = 1, 2, . . . ,

N − 1) is required. It is possible to obtain the knowledge for some controlled
processes, such as thermal power plants, under the load-pattern operating condi-
tion and regarding the load as wn in (4.8) to describe the working point state. If the
working point state prediction is not available, we may have to replace ŵn+ j |n with
wn in order to compute Ān , B̄n , C̄ , and Γ̄ n in (4.18) and (4.19). From (4.18), the
output prediction may also be represented as follows:

ŷn = Gn ûn + y0,n (4.20)

where

Gn = C̄B̄n

y0,n = C̄Ān xn + C̄Γ̄ nΦ̄n
(4.21)

Define the control move sequence Δûn and the desired output sequence ŷr,n as

Δûn = [ΔuT
n ,ΔuT

n+1, . . . , ΔuT
n+Nu−1]T

ŷr,n = [ yT
r,n+1, yT

r,n+2, . . . , yT
r,n+N ]T , (4.22)

where Δun = un − un−1. Now consider the following optimization problem:

min
ûn

J = || ŷn − ŷr,n||21n×n
+ ||ûn||2R1

+ ||Δûn||2R2
(4.23)

s.t. ymin ≤ ŷn ≤ ymax, umin ≤ ûn ≤ umax, Δumin ≤ Δûn ≤ Δumax,

where ||x||2R ≡ xT Rx, R = diag(r1, r2, . . . , rdim(x)) is a positive definite diag-
onal weighting matrix, and both control levels and control moves are penalized.
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Substituting (4.20) into (4.23), after removing the constant terms, a quadratic form
of optimization problem that is equivalent to (4.23) may be obtained as follows:

min
ûn

J̃ = 1

2
ûT

n

[
GT

n Gn + R1 + E−T R2 E−1
]

ûn

+
[

yT
0,n Gn − ŷT

r,n Gn − uT
0,n−1 E−T R2 E−1

]
ûn

s.t.

[
Gn

−Gn

]
ûn ≤

[
ymax − y0,n
− ymin + y0,n

]
(4.24)

umin ≤ ûn ≤ umax ,

u0,n−1 + EΔumin ≤ ûn ≤ u0,n−1 + EΔumax ,

where ûn = u0,n−1 + EΔûn , u0,n−1 = [uT
n−1, uT

n−1, . . . , uT
n−1]T , and

E =

⎡

⎢⎢⎣

1 0
1 1
1 1 1
1 1 1 1

⎤

⎥⎥⎦ . (4.25)

The on-line optimization problem (4.24) may be solved by the quadratic program-
ming (QP) routines. In the solution for optimal control ûn , only the first component
un is used as a control input. Note that the MIMO RBF-ARX model-based predictive
controller proposed for underlying nonlinear systems does not rely on on-line para-
meter estimation, because its internal model, i.e., MIMO RBF-ARX model (4.8), is
a globally nonlinear and locally linear model that can be estimated off-line.

In the MPC optimization problem (4.24), the desired output sequence ŷr,n in
(4.22) is used to make the control process smooth and to avoid an excessively large
variation of the control (input) variable un . For the ship’s tracking control, the con-
trolled (output) variables are usually the ship cross track error and the yaw deviation.
This means that the target values of the output variables are zeros, so the desired
output sequence ŷr,n in (4.22) for the ship’s tracking control may be designed as an
exponential decay curve, as follows:

yr,n+ j = α yr,n+ j−1, yr,n = yn, j = 1, 2, . . . , N , 0 ≤ α < 1. (4.26)

If the sample period of a control system is not very short, and the number of
input variables in the MPC is not very large, i.e., the on-line optimization problem
(4.23) based on the nonlinear global MIMO RBF-ARX model without using the
local linearization technique used in (4.24) can be solved on-line within the sample
period, we can obtain a globally optimized input variable by solving optimization
problem (4.23) based on the MIMO RBF-ARX model (4.8). The MPC algorithm
introduced in this section will be applied to the design of the ship’s tracking control
described in Sect. 4.4.
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4.3 GPS Signal-Based Computation of a Ship’s Tracking
Error and Course Deviation

For a ship’s tracking control problem, Fig. 4.4 shows the relationships between the
ship’s desired trajectory, the cross track error Dy, and the yaw deviation Ψ , in which
U0 is the velocity [m/s] of the ship (Peng et al. 2010). The purpose of the ship’s
tracking control is to regulate the rudder in order to minimize the ship cross track
error Dy and the yaw deviation Ψ . Based on the GPS signals of a ship, we can use
an Earth-fixed coordinate system to compute the ship’s position, yaw deviation, and
tracking error (Wu et al. 2012). Without loss of generality, the setting trajectory for
the ship’s tracking control can be designed in three parts, namely, two straight lines
and one circular arc BC, the radius of which is BR (or RC), as shown in Fig. 4.5.

The coordinate system XOY shown in Fig. 4.5 is an earth-fixed north-up coordi-
nate system centered at the executing point O. The ship first sails from point O to point
B along a straight line and then sails to point C along a circular arc trajectory. After
that, the ship sails along another straight-line trajectory. ∠BRC is the turning angle.

Note that in the actual experiments, we filtered the GPS signals using a navi-
gation Kalman filter as a pre-filter in order to increase the accuracy of the ship’s
position calculation. We transform the coordinate values (x, y) into (x ′, y′), which
are the coordinate values in the X

′
OY

′
coordinate frame depicted in Fig. 4.6, using

the following equation:

Fig. 4.4 Desired trajectory,
tracking error, and yaw
deviation Target trajectory 

Dy
0U



Fig. 4.5 Earth-fixed
coordinate XOY and ship’s
setting trajectory



4.3 GPS Signal-Based Computation of a Ship’s Tracking Error and Course Deviation 95

Fig. 4.6 Relative coordinate
system X

′
OY

′
, OB = L ,

BR = R

x ′ = x cos
απ

180
+ y sin

απ

180

y′ = y cos
απ

180
− x sin

απ

180
, (4.27)

where α is the turning angle of the two coordinate systems, XOY and X
′
OY

′
. After

that, in the relative coordinate system X
′
OY

′
, the calculation of the ship’s tracking

error and the yaw deviation will be divided into three cases as follows.

A. Case 1 (Straight-line tracking from point O to point B)
In Fig. 4.7, the ship sails from point O straight to point B along the X

′
axis. Point

A(x ′, y′) is the present ship position. Also, α is the desired course angle, and θ is
the measured present yaw angle. In this straight-line tracking segment, the ship’s
tracking error and yaw deviation can be computed as follows:

Ψ = θ − α, Ψ ∈ (−180◦, 180◦]
Dy = y′. (4.28)

B. Case 2 (Curve tracking)
After arriving at point B, the ship will sail to point C along a circular arc of

radius BR (see Fig. 4.8). The coordinate values of points O, B, and R in the X
′
OY

′

coordinate system are shown in Fig. 4.8 assuming that OB = L and BR = R. In this
curve tracking segment, the desired course is constantly changing with the variation
of the ship’s positions. For example, if point A is the ship’s present position and θ is
its present yaw angle, then the present desired course can be chosen as α + γ , which



96 4 Advanced Autopilot Systems

Fig. 4.7 Calculation of the
tracking error and yaw
deviation in the straight-line
tracking from point O to
point B (Note that this figure
was created by the head-up
system.)

Fig. 4.8 Calculation of the
tracking error and yaw
deviation in the curve
tracking segment from point
B to point C (Note that this
figure was created by the
head-up system.)

is the tangent direction of the intersection point of AR and BC in Fig. 4.8. Therefore,
in this curve tracking segment, the ship’s tracking error and yaw deviation can be
computed as follows:

Dy = R −
√

(x ′ − L)2 + (R − y′)2

Ψ = θ ′ − γ, Ψ ∈ (−180◦, 180◦], (4.29)
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where θ is the observed yaw angle, θ ′ = θ − α, θ ′ ∈ (−180◦, 180◦], and

γ = arctan

(
x ′ − L

R − y′

)
· 180

π
, γ ∈ (−180◦, 180◦]. (4.30)

C. Case 3 (Straight-line tracking from point C)
Starting from point C, the ship track follows another straight-line trajectory, as

shown in Fig. 4.9, and the ship’s desired course is α + γ (γ = 90◦), which is the
tangent direction of the intersection point of BC and RC. Actually, this is the direction
of the straight-line starting from C, as shown in Fig. 4.9.

In Fig. 4.9, the point A(x ′, y′) is the present position of the ship, and θ is the
present observed yaw. Therefore, the yaw deviation is

Ψ = θ ′ − γ, Ψ ∈ (−180◦, 180◦] (4.31)

where θ ′ = θ − α. The coordinate values of point C in the X
′
OY

′
coordinate

system are

x
′
c = R sin

βπ

180
+ L

y
′
c = R

(
1 − cos

βπ

180

)
(4.32)

Fig. 4.9 Calculation of the
tracking error and yaw
deviation in the second
straight-line tracking
segment (Note that this
figure was created by the
head-up system.)
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For obtaining the cross track error Dy in this case, it is necessary to rotate the X
′
OY

′

coordinate system by β degrees, as in Eq. (4.27). Therefore, the ordinates of points
C and A in the new relative coordinate system are

y
′′
c = y

′
c cos

γπ

180
− x

′
c sin

γπ

180

y
′′ = y′ cos

γπ

180
− x

′
sin

γπ

180
. (4.33)

Then, in the second straight-line tracking segment, the cross track error should be

Dy = y
′′ − y

′′
C . (4.34)

Finally, a multi-step-ahead forecast strategy can be designed for reducing the
overshoot around points B and C in Fig. 4.10. As shown in Fig. 4.10, point A is the
present position of the ship, AT is the desired direction shown in Fig. 4.8, and AT′
is the k-step-ahead desired yaw direction. We start the curve tracking at point B′
and use the k-step-ahead desired yaw direction as the new desired course that can
reduce the cross track error in the curve tracking segment. Therefore, we end the
curve tracking at point C′, and from point C′, set the desired course to be the same
as the course of the straight line starting from point C, as shown in Fig. 4.9. Thus,
the additional course angle is ∠TAT

′
, which is given by

∠TAT′ = ∠C′RC = k · BB′ 360

2π R
, (4.35)

where BB′ = V · Δt , V is the ship’s speed [m/s], Δt is the sampling period [s], and
k is the step number, which can be adjusted online. In the simulation studies and
the real-time control experiments presented in Sect. 4.4.3, k is chosen to be 7. If a
smaller value of k is used, the controller may not be able to effectively reduce the

Fig. 4.10 Multi-step-ahead
forecast in the curve tracking
segment
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cross track error when the ship is on the left-hand side of the curve tracking segment.
If a larger value for k is set, a larger oscillation could occur when the ship is on the
right-hand side of the curve.

4.4 Tracking Control Approach to Marine Vehicles

As GPS navigation technologies have become to be widely adopted in ships, the
ship’s tracking control method has become an area of increasing interest. One of the
main reasons why ship owners want to use tracking control technologies is to save
fuel. In order to save fuel, the captain needs to determine the optimum route using
weather routing techniques considering the ship’s resistance due to wind, waves,
and current. Namely, in real navigation, a ship must track along the selected route
as precisely as possible by means of efficient rudder control. This is an important
role of the ship’s tracking system. The simplest way of realizing tracking control is
to change the ship’s course in order to maintain its trajectory to follow the desired
trajectory. The principles in many commercial-based tracking systems follow this
type of control (Fossen 1994). However, this type of control does not directly consider
rudder motion. Thus, unnecessarily large rudder angles might be used in many cases.

Holzhüter (1997) presented a linear-quadratic Gaussian (LQG) approach to high-
precision tracking control of a ship, which can avoid unnecessary rudder motions
by imposing an appropriate penalty to the rudder motion in the performance crite-
rion. However, the ship’s model in their paper contains numerous hydro-dynamic
parameters, which were assumed to be known or must be estimated by troublesome
maneuvering tank tests. Kvam et al. (2000) and Fukuda et al. (2001) also proposed
this type of tracking control based on the Bryson and Ho’s time varying control
theory. However, these controllers did not consider the roll motion induced by the
rudder motion and did not provide a general method of tracking a circular route.

There have been numerous studies on ship tracking control based on ship physical
models. Pettersen and Nijmeijer (2001) and Lefeber et al. (2003) studied a complete
state-tracking problem for an under-actuated ship that has only a surge control force
and a yaw control moment. Using the same physical model, Jiang (2002) designed
two systematic tracking controllers with the aid of Lyapunov’s direct method. Do
and Pan (2005) proposed a method by which to design a controller that forces the
position and the orientation of an underactuated ship to globally track a reference
trajectory. The reference trajectory is not required to be generated by the ship model.
Moreiraa et al. (2007) designed a PID yaw controller and a speed controller to real-
ize the path following control. The guidance system was designed using a way-point
guidance scheme based on a line-of-sight projection algorithm. Do et al. (2002) pro-
posed a universal controller that simultaneously solves the stabilization and tracking
problems of underactuated surface ships under certain assumptions. Miyoshi et al.
(2007) designed a linear optimal controller for tracking control. Du and Guo (2004)
established an uncertain nonlinear mathematical model and designed a nonlinear
adaptive controller for course-tracking control.
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However, these methods were based on simplified physical models and it is not
easy to obtain accurate parameters of a physical model for an actual ship, particularly
for a large commercial ocean vehicle.

In order to overcome this difficulty, system identification techniques using actual
ship sailing data for obtaining ship dynamics models are attractive approaches. Ohtsu
et al. (1979), Ohtsu (1999), and Ohtsu and Kitagawa (1984) proposed a multi-variable
autoregressive model to describe a ship’s motion at sea. Using the fitted model, the
ship’s behavior was analyzed, and an optimal controller was designed for the ship’s
autopilot system. Park et al. (2000) proposed a practical batch-adaptive identification
for a locally stationary process using an on-line minimum AIC procedure and based
on the procedure and designed a roll-reducible autopilot system and a noise-adaptive
system. Statistical modeling methods for describing ship motion and course-keeping
control have been verified to be very effective and feasible in real applications. This
section introduces a statistical modeling method to identify ship’s dynamics for the
purpose of tracking control along the desired track based on the RBF-ARX modeling
method presented in Sects. 2.8 and 4.2.

Following the framework of the RBF-ARX modeling method, in this section, we
first construct an RBF-ARX model for characterizing the dynamic behavior of the
yaw deviation and the rudder angle of a training ship (Peng et al. 2010). Since yaw
motion is strongly affected by the rolling motion, which is referred to as the yaw-heel
effect, the rolling angle is used as the RBF-ARX model index to make the model
parameters vary with the ship sailing state (Lewis 1967). The ship’s dynamic model
for tracking control is identified off-line using the real data observed from the ship,
and the model parameters may be estimated using the structured nonlinear parameter
optimization method (SNPOM) presented in Sect. 2.8. After that, in order to represent
the ship’s tracking behavior, a state-space model expressing the relationship between
the yaw deviations and the tracking position errors, which is used to predict the future
movement of the ship for the purpose of tracking control, is introduced (Peng et al.
2010). The ship’s state-space model-based predictive controller is then designed to
maneuver the ship sailing forward at a constant velocity along a predefined reference
tracking path (Peng et al. 2010). Finally, in this section, we present the results of
simulation studies and real-time control of “T.S. Shioji-Maru III”, which demonstrate
the effectiveness of the presented modeling and control methods (Peng et al. 2010;
Wu et al. 2012).

4.4.1 RBF-ARX Model-Based Ship Motion Modeling
for Tracking Control

As mentioned in Sect. 4.4 and shown in Fig. 4.4, the purpose of the ship’s tracking
control is to make the ship cross track error Dy and the yaw angle deviation Ψ

as small as possible by controlling the rudder angle. For this purpose, we first use
the RBF-ARX modeling method, which is introduced in Sect. 2.8, to describe the
dynamic behavior between the yaw deviations and the rudder angles considering

http://dx.doi.org/10.1007/978-4-431-55303-8_2
http://dx.doi.org/10.1007/978-4-431-55303-8_2
http://dx.doi.org/10.1007/978-4-431-55303-8_2
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the yaw-heel effect, which is usually nonlinear and its accurate physical model is
difficult to obtain. The following SISO RBF-ARX model is constructed in order to
represent the nonlinear dynamic behavior:

Ψn = a0(sn−1) +
M∑

i=1

ai (sn−1)Ψn−i +
L∑

i=1

bi (sn−1)δn−1 + ξn, (4.36)

where Ψn is the yaw deviation [deg], δn is the rudder angle [deg], sn is the roll [deg],
ξn denotes the noise, which is usually regarded as Gaussian white noise independent
of the observations, ai and bi are the Gaussian RBF-net style nonlinear time-varying
parameters of the ARX structure-type model,

ai (sn−1) = ca
i,0 +

m∑

k=1

ca
i,k exp

(
−λa

k ||sn−1 − za
k ||22

)

bi (sn−1) = cb
i,0 +

m∑

k=1

cb
i,k exp

(
−λb

k ||sn−1 − zb
k ||22

)
(4.37)

sn−1 = (
sn−1, sn−2, . . . , sn−nw

)T

z j
k =

(
z j

k,1, z j
k,2, . . . , z j

k,nw

)T
, j = a, b,

and z j
k is the center of the RBF network, λ j

k is the scaling factor, and M , L , m, and nw

are the model orders. The RBF-ARX model (4.36) is constructed as a global model
and is estimated off-line from observation data so as to avoid the potential problem
caused by the failure of on-line parameter estimation during real-time control. It is
easy to see that the local linearization of model (4.36) is a linear ARX model at each
working point by fixing sn−1 at time n − 1 in (4.36). The RBF-ARX model (4.36)
may be estimated off-line by the structured nonlinear parameter optimization method
(SNPOM) presented in Sect. 2.8.

From Fig. 4.4, the following formula (4.38), representing the relation between the
yaw deviation and the increment of cross track error within a sample period, can be
derived as

Dyn − Dyn−1 = U0Δt sin(Ψn−1), (4.38)

where Dyn is the cross track error [m] at sample instant n, U0 is the sailing velocity
[m/s], and Δt is the sample period [s] of the tracking control system to be designed.
From the RBF-ARX model (4.36) and formula (4.38), by defining the state variable
xn and the output variable yn as

xn = [
Ψn, Ψn−1, . . . , Ψn−M+1, δn−1, δn−2, . . . , δn−L+1, Dyn

]T

yn = [Ψn, Dyn]T , (4.39)

http://dx.doi.org/10.1007/978-4-431-55303-8_2
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we can obtain the state-space model that characterizes the tracking motion as follows:

{
xn = An−1xn−1 + Bn−1δn−1 + Φn−1 + Ξn

yn = Cxn
(4.40)

where the matrices and vectors in Eq. (4.40) are given as

An−1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1(sn−1) · · · aM−1(sn−1) aM (sn−1) b2(sn−1) · · · bL−1(sn−1) bL (sn−1) 0

1 · · · 0 0 0 · · · 0 0 0
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

0 · · · 1 0 0 · · · 0 0 0
0 · · · 0 0 0 · · · 0 0 0
0 · · · 0 0 1 · · · 0 0 0
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

0 · · · 0 0 0 · · · 1 0 0
dyn−1(xn−1) · · · 0 0 0 · · · 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.41)

dyn−1(xn−1) =
⎧
⎨

⎩

U0Δt sin(Ψn−1π/180)

Ψn−1
, Ψn−1 	= 0

U0Δtπ/180. Ψn−1 = 0
(4.42)

Bn−1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1(sn−1)

0
...

0
1
0
...

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Φn−1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0(sn−1)

0
...
...
...
...

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Ξn =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξn

0
...
...
...
...

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C =
[

1 0 · · · 0 0
0 0 · · · 0 1

]
. (4.43)

After identifying the RBF-ARX model (4.36), the state-space representation of track-
ing error dynamic model (4.40) can be constructed. Note that model (4.40) can be
used to represent the dynamic behavior of tracking error within a large variation range
of yaw deviation, because of the introduction of the accurate nonlinear formula (4.42)
instead of its linear approximation.
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4.4.2 Predictive Controller Design for Path Tracking of a Ship

Model (4.40) is a SIMO state-space model, which is similar to model (4.15).
Therefore, using the model (4.15)-based MPC approach presented in Sect. 4.2, we
can design a predictive controller based on model (4.40) to implement the ship’s
tracking control. To do this, the following vectors of signals must first be defined

x̂(n) =
[

x̂T
n+1|n, . . . , x̂T

n+L|n
]T

x p(n) =
[

xT
n+1|n, . . . , xT

n+L|n
]T

ŷ(n) =
[

ŷT
n+1|n, . . . , ŷT

n+L|n
]T

yp(n) =
[

yT
n+1|n, . . . , yT

n+L|n
]T

u(n) = [
δn, . . . , δn+Lu−1

]T
Φ̄n = [

ΦT
n , . . . , ΦT

n+L−1

]T

(4.44)

where L is the prediction horizon, whereas Lu (Lu ≤ L) is the control horizon after
which control signals are assumed to have no variation, i.e., δn+ j = δn+Lu−1( j ≥
Lu). Assuming that {δn+ j−1| j = 1, 2, . . . , Lu} is Ft -measurable, based on model
(4.40) at instant n, the j-step ( j = 1, . . . , L) ahead optimal predictive state and
output may be obtained as follows:

x̂(n) = E
{

x p(n)
} = Ān xn + B̄nu(n) + Γ̄ nΦ̄n

ŷ(n) = E
{

yp(n)
} = C̄ x̂(n) = Gnu(n) + y0(n), (4.45)

where

Gn = C̄B̄n

y0(n) = C̄Ān x(n) + C̄Γ̄ nΦ̄n (4.46)

and E{x} denotes the mathematical expectation of x, and matrices Ān , B̄n , C̄, and
Γ̄ n in Eq. (4.45) can be calculated by Eq. (4.19), for which the prediction of the
working point state sn+ j |n ( j = 1, 2, . . . , L − 1) is required. It is possible to obtain
the prediction by using a model to predict the future values of the rolling angle signal.
If the working point state prediction is not available, sn+ j |n ( j = 1, 2, . . . , L − 1)

can be replaced by sn for computing Ān , B̄n , C̄, and Γ̄ n in Eq. (4.45).
Define the control move by the difference of control inputs sequence ΔU (n) and

the reference output sequence Yr (n) as follows:

Δûn = [Δδn,Δδn+1, . . . , Δδn+Lu−1]T

yr (n) = [ yT
r,n+1, yT

r,n+2, . . . , yT
r,n+L ]T , (4.47)

where Δδn = δn − δn−1. Now consider the following optimization problem, which
is similar to optimization problem (4.23):

min
u(n)

J = || ŷ(n) − yr (n)||2Q + ||u(n)||2R1
+ ||Δu(n)||2R2

(4.48)

s.t. ymin ≤ ŷ(n) ≤ ymax, umin ≤ Δu(n) ≤ umax, Δumin ≤ Δun ≤ Δumax,
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where ||x||2Ω ≡ xT Ωx, R1 = diag(r1,1, . . . , r1,Lu ) , R2 = diag(r2,1, . . . , r2,Lu ),

and Q = diag
{

Q̄
T
1 , Q̄

T
2 , . . . , Q̄

T
L

}
, Q̄i = [Q1 Q2]T are the positive definite

diagonal weighting matrices, and both control levels and control moves are penalized.
In the simulation studies and the real-time experiments described in the present
paper, we set Q1 = 1 and determine the other variables using the reciprocal of
the permissible variance of error (Akaike and Nakagawa 1988; Kwakernaak and
Sivan 1972).

Substituting (4.45) into (4.48), after removing the constant terms, a quadratic form
of the optimization problem that is equivalent to (4.48) may be obtained as follows:

min
u(n)

J̃ = 1

2
u(n)T [GT

n QGn + R1 + F−T R2 F−1]u(n)

+ ( y0(n)T QGn − yr (n)T QGn − u0(n − 1)T F−T R2 F−1)u(n) (4.49)

s.t.

[
Gn

−Gn

]
u(n) ≤

[
ymax − y0(n)

− ymin + y0(n)

]

umin ≤ u(n) ≤ umax ,

u0(n − 1) + FΔumin ≤ u(n) ≤ u0(n − 1) + FΔumax ,

where u(n) = u0(n − 1) + FΔu(n), u0(n − 1) = [δn−1, δn−1, . . . , δn−1]T and

F =

⎡

⎢⎢⎢⎣

1 0
1 1
...

...
. . .

1 1 · · · 1

⎤

⎥⎥⎥⎦ . (4.50)

The on-line optimization problem (4.49) may be solved by the quadratic program-
ming (QP) routines. In the solution of the optimal control series u(n), only the first
component δn is used as the control input, namely, the rudder command. Note that
this RBF-ARX model-based predictive controller does not require on-line parame-
ter estimation, because its internal model, i.e., RBF-ARX model (4.36), is a global
model estimated off-line.

4.4.3 Simulation Study and Real-Time Experiment

In this section, we first introduce the simulation study and then present the
experimental results obtained onboard the training ship, i.e., Shioji-Maru III. A pho-
tograph and the principal particulars of Shioji-Maru III are given in Fig. 1.3 and
Table 1.1, respectively.

http://dx.doi.org/10.1007/978-4-431-55303-8_1
http://dx.doi.org/10.1007/978-4-431-55303-8_1
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4.4.3.1 Simulation Study

The simulation study was performed according to the following procedures. First,
a set of observation data from the ship is used to estimate the RBF-ARX model
(4.36) by applying the SNPOM introduced in Sect. 2.8, and the state-space model
(4.40), which is also used for controlling the system in the simulation study, is
then constructed. After that, the predictive control signal obtained by solving the
optimization problem (4.49) is used to perform the tracking control simulation. The
observation data with a sampling period of Δt = 1 s are shown in Fig. 4.11. The yaw
signals and the ruder signals were sampled from the ship’s autopilot, and the rolling
signals were sampled from a high-accuracy fiber optical gyro. Figure 4.11 shows that
in order to obtain data containing the global dynamic character information of the
sailing ship, an experienced seaman steered the rudder as randomly as possible. The
modeling results are shown in Figs. 4.12 and 4.13, where the orders of the identified
model (4.36) are M = 11, L = 7, m = 1, and nw = 3. Figure 4.13 shows the poles of
the estimated model (4.36) changing with the variation of the roll shown in Fig. 4.11,
from which we can see that the model dynamic behavior changes with the ship state.
Therefore, the model could be used to represent the locally linearized dynamics of
the ship at different working points.

The simulation results for the tracking control for the ship are shown in Figs. 4.14,
4.15 and 4.16, in which the controlled system is the estimated model (4.36), and
L = 27 and Lu = 15. The noise series, shown in Fig. 4.17, the standard deviation
of which is the same as that of the modeling residual in Fig. 4.12, is added to the
controlled system, and the roll is also set to vary with time, as in Fig. 4.12, in order to
simulate the real sailing situation. Figure 4.14 shows the tracking control performance
for the case in which the ship sails forward at a constant velocity along a straight line

Fig. 4.11 Real-time observation data from Shioji-Maru III

http://dx.doi.org/10.1007/978-4-431-55303-8_2
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Fig. 4.12 Real value (dotted line) and one-step-ahead model predictive output (solid line) of the
yaw deviation, and the modeling residual and its histogram from the estimated RBF-ARX model
(4.36). The standard deviation of the modeling residual is 0.1621

Fig. 4.13 Poles of the estimated RBF-ARX model (4.36) changing with the variation of the rolling
angle (Different colors indicate different poles.)

and with a large initial position deviation. Figures 4.15 and 4.16 show the tracking
control performance along the desired trajectory. The dynamic process and the steady
process in two tracking control simulations show good results with a quick response,
a small overshoot, and a slight tracking error.

Figures 4.15 and 4.16 show that, especially at turning points B and C shown
in Fig. 4.10, no large overshoot occurred when using the multi-step-ahead forecast
approach presented in Sect. 4.3, and in the curve tracking segment, because of using
the seven-step-ahead desired yaw as the desired course, the cross track error Dy is
effectively reduced. In other words, from Figs. 4.14 and 4.16, we can see that the
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Fig. 4.14 Cross track error, yaw deviation, and rudder angle in the tracking control simulation
sailing along a straight line at a constant velocity of 10.7 knots. The initial position error is 30 m;
controller parameters: Q2 = 200, r1 = 120, r2 = 160, −15 ≤ δ ≤ 15, and −3 ≤ Δδ ≤ 3

Fig. 4.15 Ship position in tracking control simulation, initially sailing forward at a constant velocity
of 11.7 knots along a straight line in the negative x direction for 600 m, along a half circle of radius
600 m, and finally along a vertical line in the positive x direction. Controller parameters: Q2 = 400,
r1 = 120, r2 = 160, −15 ≤ δ ≤ 15, and −3 ≤ Δδ ≤ 3 (dotted line reference trajectory; solid line
ship position)



108 4 Advanced Autopilot Systems

Fig. 4.16 Cross track error, yaw deviation, and rudder angle in tracking control simulation sailing
forward at a constant velocity of 11.7 knots along the reference trajectory shown in Fig. 4.15

proposed approach can achieve both the straight-line tracking goal and the curve
tracking goal very well.

The RBF-ARX model-based MPC and the reference trajectory design used in the
simulation studies and the following real-time control are identical. In the above-
described simulation studies, the ship’s rolling angle is a sequence of data points
sampled from the Shioji-Maru III and is used as the RBF-ARX model’s index to
make the model parameters vary with the sailing states of the ship. However, the
model parameters are independent of the ship’s rudder movement in the simulation.
In the real-time control, the roll motion is not only affected by the sea condition, but
is also directly and continuously influenced by the rudder motion. Large roll motion
is always dangerous and should be avoided. Therefore, the controller parameters
must be readjusted in order to suppress the rudder motion in the real-time control
environment, as described in the next section.

4.4.3.2 Real-Time Experiment

A real-time tracking control experiment on the Shioji-Maru III using the RBF-ARX
modeling and MPC design techniques was performed in Tokyo Bay. During the
experiment, the sea condition was calm and there was a light breeze (wind force 2).
Note that the roll signal in the following figures is used as the ship’s state-dependent
variables. Figures 4.17, 4.18, 4.19 and 4.20 show the real-time tracking control results
of straight-line tracking for Shioji-Maru III under different controller parameters and
different initial conditions using the RBF-ARX modeling and MPC design method
presented in Sects. 2.8, 4.2–4.4.

http://dx.doi.org/10.1007/978-4-431-55303-8_2
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Fig. 4.17 Cross track error, yaw deviation, and rudder angle in real-time tracking control sailing
forward at a constant velocity of 9.8 knots along a straight line. Controller parameters: Q2 = 550,
r1 = 600, r2 = 500, −5 ≤ δ ≤ 5, and −2.5 ≤ Δδ ≤ 2.5

Fig. 4.18 Cross track error, yaw angle deviation, and rudder angle in real-time tracking control
sailing forward at a constant velocity of 10.6 knots along a straight line. Controller parameters:
Q2 = 600, r1 = 550, r2 = 1, 000, −10 ≤ δ ≤ 10, and −3 ≤ Δδ ≤ 3

Figure 4.17 shows the real-time straight-line tracking control results obtained
using the present method. Before the method was applied to the ship, the ship was
steered by a course keeping controller until the 74th second, as shown in Fig. 4.17,
and the desired course was set to 210◦. After shifting the control mode to the present
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Fig. 4.19 Cross track error, yaw deviation, and rudder angle in tracking control. The solid-line
shows the real-time tracking control results. The dotted-lines show the simulation results, which
are for sailing along a straight line at a constant velocity of 10.7 knots. The initial position error is
30 m, and the controller parameters are set as Q2 = 600, r1 = 550, and r2 = 5,000

Fig. 4.20 Cross track error, yaw deviation, and rudder angle in real-time tracking control sailing
forward at a constant velocity of 10.0 knots along a straight line. Controller parameters: Q2 = 550,
r1 = 600, r2 = 500, −5 ≤ δ ≤ 5, and −2.5 ≤ Δδ ≤ 2.5

tracking control strategy starting from the 74th second, we can see that the controller
enables a quick response to reduce the gradually increased cross track error Dy, and
the ship entered the steady state in approximately 200 s.
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Figure 4.18 shows the real-time straight-line tracking control results for another
desired course, which was 10◦, and using another set of controller parameters. The
large initial rudder change in Fig. 4.18 is caused by a large course change. Figures 4.17
and 4.18 show that the control performance is very good in the straight-line tracking
control case under different control parameters and initial conditions. The cross track
error in the tracking process after the course change can be controlled within ±2 m, as
shown in Figs. 4.17 and 4.18. The ship breadth is 10 m (see Table 1.1), which means
that the cross track error for the present approach was controlled to within ±0.2B
(B is the ship breadth). To our knowledge, the obtained result is better than the results
of previous studies, such as Holzhüter (1997) and Fukuda et al. (2001).

Figures 4.18, 4.19 and 4.20 show the control performance in the dynamic process
more clearly. In Fig. 4.18, in order to investigate the large initial tracking error can-
celing ability, the ship is controlled by a helmsman from the 50th second to the 100th
second in order to make an initial cross track error. From the 100th second, the con-
trol mode is again shifted from manual control to automatic control mode with the
RBF-ARX model-based predictive controller. The controller can quickly eliminate
the large offset of the cross track error Dy, as shown in Fig. 4.18.

In order to compare the simulation and the real-time control results for large
initial tracking error canceling ability, the simulation results are shown in Fig. 4.19
for the same controller parameters in the real-time control in Fig. 4.18. The dynamic
behaviors for the two records shown in Fig. 4.19 are very similar. In other words,
Fig. 4.19 also demonstrates the effectiveness of the RBF-ARX modeling and MPC
method presented in this book.

In Fig. 4.20, a large oscillation of Dy, which was caused by the change in the ocean
current direction, occurred from the 300th s to the 400th s. As shown in Fig. 4.20,
the presented control strategy also provides good control performance under the
influence of a large disturbance.

The results of the curve tracking experiments are shown in Figs. 4.21, 4.22, 4.23
and 4.24. We conducted turning experiments tracking along a circular arc. Since the
length of the experimental ship Shioji-Maru III is 46.0 m, the turning radiuses were
chosen as 500 and 600 m, which are approximately ten times the ship length. The
desired course design approach for tracking control is shown in Sect. 4.3. The setting
trajectory and the real-time tracking control results obtained using the RBF-ARX
modeling and MPC method are given in Figs. 4.21, 4.22, 4.23 and 4.24, which also
show very good curve tracking control performance. Note that in the middle turning
process of the 180◦ circle tracking in Figs. 4.23 and 4.24, since the ship sailed in
the opposite direction after turning 180◦, the sea condition could gradually influence
the ship motion in the opposite manner. This may explain the larger roll motion
after approximately 240 s in Fig. 4.24. Even in this special case, the present control
strategy can also achieve very good curve tracking control performance, because the
parameters of the RBF-ARX model can vary with the ship state on-line.

http://dx.doi.org/10.1007/978-4-431-55303-8_1
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Fig. 4.21 Ship’s trajectory of the 30◦ turning test, whose radius is 500 m; Q2 = 600; r1 = 550;
r2 = 1,000; dotted line setting trajectory, solid line real-time tracking control trajectory

Fig. 4.22 Real-time control results of the 30◦ turning test: −15 ≤ δ ≤ 15 and −3 ≤ Δδ ≤ 3
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Fig. 4.23 Ship’s trajectory of the 180◦ turning test, the radius of which is 600 m. Controller para-
meters: Q2 = 600, r1 = 550, and r2 = 1,000; dotted line setting trajectory, solid line real-time
tracking control trajectory

Fig. 4.24 Real-time control results of the 180◦ turning test: −10 ≤ δ ≤ 10 and −3 ≤ Δδ ≤ 3



114 4 Advanced Autopilot Systems

References

Akaike, H., Nakagawa, T.: Statistical Analysis and Control of Dynamic Systems. Kluwer, Dordrecht
(1988)

Bloemen, H.H.J., Boom, T.J.V.D., Verbruggen, H.B.: Model-based predictive control for
Hammerstein-Wiener systems. Int. J. Control 74, 482–485 (2001)

Bowditch, N.: The American Practical vol. 9. Navigator, National Imagery and Mapping Agency,
(2002)

Do, D., Jiang, Z.P., Pan, J.: Universal controllers for stabilization and tracking of underactuated
ships. Syst Control Lett 47, 299–317 (2002)

Do, K.D., Pan, J.: Global tracking control of underactuated ships with nonzero off-diagonal terms
in their system matrices. Automatica 41, 87–95 (2005)

Du, J., Guo, C.: Nonlinear adaptive ship course tracking control based on backstepping and nuss-
baum gain. In: Proceeding of the 2004 American Control Conference, pp. 3845–3850 (2004)

Fossen, T.I.: Guidance and Control of Ocean Vehicles. Wiley, New York (1994)
Holzhüter, T.: LQG approach for the high-precision track control of ships. IEE Proc. Control Theory

Appl, 144, 121–127 (1997)
Fukuda, H., Ohtsu, K., Tasaki, T., Okazaki, T.: Study on tracking control system using the time

varying gain theory. Soc. Nav. Archit. Jpn. 190 (2001)
Iseki, T., Ohtsu, K.: Bayesian estimation of directional wave spectra based on ship motions. Control

Eng. Pract. 8, 215–219 (2000)
Jiang, Z.P.: Global tracking control of underactuated ships by Lyapunov’s direct method. Automatica

38, 301–309 (2002)
Kothare, M.V.: Robust constrained model predictive control using linear matrix inequalities. Auto-

matica 32, 1361–1379 (1996)
Kvam, K., Ohtsu, K., Fossen, T.I.: Optimal ship maneuvering using Bryson and Ho’s time varying

LQ controller. In: Proceedings of the IFAC Conference on Maneuvering and Control of Marine
Craft (MCMC’00), Aalborg (2000)

Kwakernaak, H., Sivan, R.: Linear Optimal Control Systems, vol. 1. Wiley, New York (1972)
Lakhdari, Z., Mokhtari, M., Lécluse, Y., Provost, J.: Adaptive predictive control of a class of

nonlinear systems—a case study. In: IFAC Proceedings of Adaptive Systems in Control and
Signal Processing, 209–214, Budapest, (1995)

Lefeber, E., Pettersen, K.Y., Nijmeijer, H.: Tracking control of an underactuated ship. IEEE Trans.
Control Syst. Technol. 11, 52–61 (2003)

Lewis, E.V.: Principle of Naval Architecture. The Society of Naval Architects and Marine Engi-
neering, Chap. 9 (1967)

Mahfouf, M., Linkens, D.A.: Non-linear generalized predictive control (NLGPC) applied to muscle
relaxant anaesthesia. Int. J. Control 71, 239–257 (1998)

Miyoshi, S., Hara, Y., Ohtsu, K.: Study on optimum tracking control with linearized model for
vessel (in Japanese). Jpn. Inst. Navig. 117, 183–189 (2007)

Mizuno, N., Kuroda, M., Okazaki, T., Ohtsu, K.: Minimum time ship maneuvering method using
neural network and nonlinear model predictive compensator. Control Eng. Pract. 15(6), 757–765
(2007)

Moreiraa, L., Fossenb, T.I., Soares, C.G.: Path following control system for a tanker ship model.
Ocean Eng. 34, 2074–2085 (2007)

Oda, H., Ohtsu, K., Hotta, T.: Statistical analysis and design of a rudder roll stabilization system.
Control Eng. Pract. 4, 351–358 (1996)

Oda, H., Ohtsu, K., Sasaki, M., Seki, Y., Hotta, T.: Roll stabilization by rudder control through
multivariate auto-regressive model. J. Kansai Soc. Nav. Archit. 216, 165–173 (1991)

Ohtsu, K.: Recent development of analysis and control of ship’s motions. In: Proceedings of the
1999 IEEE International Conference Control Applications, pp. 1096–1103, Hawaii (1999)

Ohtsu, K., Horigome, M., Kitagawa, G.: A new ship’s auto pilot through a stochastic model. Auto-
matica 15–3, 255–268 (1979)



References 115

Ohtsu, K., Kitagawa, G.: Statistical analysis of the AR type ship’s autopilot system. J. Dyn. Syst.
Meas. Control 106, 193–202 (1984)

Park, J.S., Ohtsu, K., Kitagawa, G.: Batch-adaptive ship’s autopilot. Int. J. Adapt. Control Signal
Process. 14, 427–439 (2000)

Peng, H., Gui, W., Shioya, H., Zou, R.: A predictive control strategy for nonlinear NOx decompo-
sition process in thermal power plants. IEEE Trans. Syst. Man Cybern. Part A 36(5), 904–921
(2006)

Peng, H., Kitagawa, G., Wu, J., Ohtsu, K.: Multivariable RBF-ARX model-based robust MPC
approach and application to thermal power plant. Appl. Math. Model. 35–7, 3541–3551 (2011)

Peng, H., Nakano, K., Shioya, H.: Nonlinear predictive control using neural nets-based local lin-
earization ARX model—stability and industrial application. IEEE Trans. Control Syst. Technol.
15, 130–143 (2007)

Peng, H., Ohtsu, K., Kitagawa, G., Oda, H.: A statistical modeling and tracking control approach
to marine vehicle. In: 2010 IEEE International Conference on Control Applications (CCA), pp.
640–645 (2010)

Peng, H., Ozaki, T., Haggan-Ozaki, V., Toyoda, Y.: A parameter optimization method for the radial
basis function type models. IEEE Trans. Neural Netw. 14, 432–438 (2003)

Peng, H., Ozaki, T., Toyoda, Y., Shioya, H., Nakano, K., Haggan-Ozaki, V., Mori, M.: RBF-ARX
model based nonlinear system modeling and predictive control with application to a NOx decom-
position process. Control Eng. Pract. 12, 191–203 (2004)

Peng, H., Wu, J., Inoussa, G., Deng, Q., Nakano, K.: Nonlinear system modeling and predictive
control using RBF nets-based quasi-linear ARX model. Control Eng. Pract. 17, 59–66 (2009)

Pettersen, K.Y., Nijmeijer, H.: Underactuated ship tracking control: theory and experiments. Int. J.
Control 74, 1435–1446 (2001)

Prasad, G., Swdenbank, E., Hogg, B.W.: A local model networks based multivariable long-range
predictive control strategy for thermal power plants. Automatica 34, 1185–1204 (1998)

Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Eng.
Pract. 11(7), 733–764 (2003)

Qin, Y., Peng, H., Ruan, W., Wu, J., Gao, J.: A modeling and control approach to magnetic levitation
system based on state-dependent ARX model. J. Process. Control 24–1, 93–112 (2014)

Sentoni, G., Agamennoni, O., Desages, A., Romagnoli, J.: Approximate models for nonlinear
process control. AIChE J. 42, 2240–2250 (1996)

Wu, J., Peng, H., Ohtsu, K., Kitagawa, G., Itoh, T.: Ship’s tracking control based on nonlinear time
series model. Appl. Ocean Res. 36, 1–11 (2012)

Zeng, X., Peng, H., Wu, J., Wei, J.: Quad-rotor modeling and attitude control using state-dependent
ARX type model. Asian J. Control 16–6, 1–13 (2014)



Index

A
Absolute power contribution, 22
Akaike information criterion (AIC), 1, 9, 18,

20, 34
AR autopilot, 66
AR coefficient, 7
AR model, 7
ARX model, 20, 58, 76
Autocovariance function, 8
Autopilot, 2
Autopilot system, 36
Autoregressive coefficient, 7
Autoregressive exogenous model, 20, 58
Autoregressive model, 7
Autoregressive order, 7

B
Beam sea, 69
Beaufort scale, 3

C
Characteristic equation, 11
Characteristic root, 11, 53
Controller, 88
Conventional PID autopilot, 27
Cross track error, 93, 94
Cross-covariance function, 17, 18
Cross-spectrum matrix, 21
Cumulative power contribution, 22
Curve tracking, 95
Curve tracking experiment, 111

D
Damping force of roll, 13

Data logger, 36
Desired course, 95
Divided model, 35
Dominant characteristic root, 13
Dynamic programming, 59, 60

E
Earth-fixed north-up coordinate system, 94
EEDI, 36
EEOI, 36
Engine governor, 3, 36, 74
Engine power, 37
External disturbance, 84

F
Filter, 30, 31
Fixed-interval smoothing, 31
Follow sea, 69
FPE, 1
Frequency response function, 75

G
Global positioning system, 87
GM, 12
Governor, 2
GPS, 38
Group wave, 13

H
Heave, 2
Householder transformation, 9, 20

© The Author(s) 2015
K. Ohtsu et al., Time Series Modeling for Analysis and Control,
JSS Research Series in Statistics, DOI 10.1007/978-4-431-55303-8

117



118 Index

I
Identification, 18
Impulse response function, 10, 75
Increasing horizon prediction, 16
Input variable, 58

K
Kalman filter, 31

L
Lag operator, 10
Least squares method, 9, 20
Levinson’s algorithm, 9
Levinson-Whittle algorithm, 19
Likelihood, 31
Load diagram, 39
Local linearization ARX model, 91
Locally stationary AR model, 33, 83
Log-likelihood, 32

M
Mackey-Glass equation, 51
Main engine, 2, 75
MAR model, 17, 21
Maximum likelihood estimate, 32
Maximum likelihood method, 9
Metacenter height, 12
MIMO, 87
MIMO RBF-ARX model, 88
Minimum AIC procedure, 18
Model based monitoring system, 36
Model parameters, 47
Model predictive control, 90
Motion gyro, 4
MPC, 90
Multi-input and multi-output, 87
Multi-step-ahead forecast strategy, 98
Multivariate AR model, 16, 18
Multivariate autoregressive model, 17, 21
Multivariate time series, 16

N
NADCON-autopilot, 85
Natural period, 13
Navigation Kalman filter, 94
Noise-adaptive controller, 83
Nonlinear ARX model, 44
Nonstationary time series, 36, 83

O
Observation model, 27
Observation noise, 28
OMO, 36
On-line identification, 35
On-line identification of the locally station-

ary AR model, 35
On-line identification procedure, 85
One-step-ahead prediction, 31
Optimal AR governor, 77
Optimal control, 59
Optimal control law, 59
Order, 17
Output variable, 58
Overall behavior model, 84

P
Parameter estimation, 31
Parametric rolling line, 15
Performance criterion, 59
PID, 67
PID autopilot, 66
Pitch, 2, 12, 79
Pooled model, 35
Power contribution, 23
Power contribution analysis, 24
Power spectrum, 11
Prediction, 30
Prediction horizon, 91
Principle of optimality, 60
Propeller, 3
Propeller revolution, 74

Q
QP, 93
Quadratic programming, 90, 93

R
RBF-ARX model, 40, 45, 87, 101
RBF-ARX model-based nonlinear MPC al-

gorithm, 90
RBF-ARX modeling, 43
Real-time tracking control, 108
Relative power contribution, 22
Restoring force, 2
Roll, 2, 12
Roll stability, 12, 15
RPM, 23, 37
Rudder-roll-yaw effect, 27



Index 119

S
SBMMS, 37
Shioji-Maru, 3
Shioji-Maru III, 63, 85
Ship motion, 2
Ship’s tracking control, 100
Simulation study, 105
SISO, 76
SISO RBF-ARX model, 87
Smoothing, 30
SNPOM, 47, 88, 100
Square root algorithm, 62
State, 27
State estimation, 30
State-dependent ARX model, 43
State-space model, 27, 89, 102
State-space representation, 28, 29, 58
Stationary, 8, 11
Statistical optimal control problem, 57
Straight-line tracking, 95, 97
Straight-line tracking control, 109
Surge, 2
Sway, 2
Synchronizing roll line, 15
System model, 27
System noise, 28

T
TIMSAC-78, 20
Torque rich, 40
Trackig control, 87
Tracking system, 3
Type 1 AR governor, 76
Type 1 performance criterion, 59
Type 2 governor, 79
Type 2 performance criterion, 61

U
Univariate time series, 7

W
Weather routing, 99
Weight T , 65
Weighting values, 65
White noise simulation, 65
Wind resistance, 38

Y
Yaw, 2
Yaw deviation, 62, 63, 94
Yule-Walker equation, 8, 17
Yule-Walker estimate, 9


	Preface
	Contents
	1 Introduction
	1.1 Necessity of Statistical Modeling  for Complex, Large Systems
	1.2 Model of Ship Motion and Main Engine
	1.3 Experimental Ships and Outline of Topics Discussed  in Remaining Chapters
	References

	2 Time Series Analysis Through AR Modeling
	2.1 Univariate Time Series Analysis Through AR Modeling
	2.1.1 AR Model and Its Identification
	2.1.2 Time Series Analysis Using the Univariate AR Model

	2.2 Analysis of Ship Motion Through Univariate AR Modeling
	2.2.1 Features of Roll and Pitch
	2.2.2 Roll Stability
	2.2.3 Increasing Horizon Prediction of Roll and Pitch

	2.3 Multivariate AR Modeling of Controlled Systems
	2.3.1 Multivariate AR Model
	2.3.2 Identification of Multivariate AR Model 
	2.3.3 ARX Model for a Control System

	2.4 Power Contribution Analysis of a Feedback System
	2.4.1 Power Contribution of a Feedback System
	2.4.2 Analysis of Ship Feedback Motion

	2.5 State-Space Model and Kalman Filter
	2.5.1 State-Space Model
	2.5.2 State Estimation and Kalman Filter
	2.5.3 Likelihood Computation and Parameter Estimation  for a Time Series Model

	2.6 Piecewise Stationary Modeling
	2.6.1 Locally Stationary AR Model
	2.6.2 On-Line Identification of the Locally Stationary AR Model

	2.7 Model-Based Monitoring System
	2.7.1 Motivation
	2.7.2 Ship-Born Model-Based Monitoring System (SBMMS)

	2.8 RBF-ARX Modeling for a Nonlinear System
	2.8.1 Introduction: Use of the RBF-ARX Model  for Nonstationary Nonlinear Systems
	2.8.2 RBF-ARX Modeling
	2.8.3 Identification of the RBF-ARX Model
	2.8.4 Illustrative Examples

	References

	3 Design of a Model-Based Autopilot System for Course Keeping Motion
	3.1 Statistical Optimal Controller Based on the ARX Model
	3.1.1 Statistical Optimal Control Problem
	3.1.2 Optimal Control Law

	3.2 AR Model-Based Autopilot System
	3.2.1 Autopilot System for Ships
	3.2.2 Design of the ARX Model-Based Autopilot System

	3.3 Rudder-Roll Control System
	3.4 Application to the Marine Main Engine Governor System
	3.4.1 Marine Main Engine Governor
	3.4.2 Dynamic Characteristics of the Main Engine Governor System
	3.4.3 Design of the ARX Model-Based Governor
	3.4.4 Design of the AR Governor Considering Pitch Motion

	References

	4 Advanced Autopilot Systems
	4.1 Noise-Adaptive Autopilot System
	4.1.1 Construction of a Noise-Adaptive Control System
	4.1.2 Actual Sea Test of the Noise-Adaptive Autopilot System

	4.2 RBF-ARX Model-Based Predictive Control
	4.2.1 MIMO RBF-ARX Model and Its State-Space Form
	4.2.2 MIMO RBF-ARX Model-Based Nonlinear MPC

	4.3 GPS Signal-Based Computation of a Ship's Tracking Error and Course Deviation 
	4.4 Tracking Control Approach to Marine Vehicles
	4.4.1 RBF-ARX Model-Based Ship Motion Modeling  for Tracking Control
	4.4.2 Predictive Controller Design for Path Tracking of a Ship
	4.4.3 Simulation Study and Real-Time Experiment

	References

	Index

