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Preface

Permutation Statistical Methods: An Integrated Approach provides a synthesis of a
number of statistical tests and measures, which, at first consideration, appear dis-
jointed and unrelated. No attempt is made to synthesize all of statistics—a daunting
undertaking—but a wide variety of commonly-used statistics illustrate an under-
lying commonality. Many years ago the authors realized that much of statistical
analysis could be integrated and condensed into a small set of methods that unified
many conventional tests and measures under a common rubric. Since our joint spe-
cialty is permutation methods, it was only natural that the organizing rubric be the
permutation model, as contrasted with the more popular population model, although
the two are compared and contrasted throughout the book.

Permutation statistical methods possess several advantages over classical sta-
tistical methods in that they are optimal for small samples, can be utilized to
analyze nonrandom samples, are completely data-dependent, are free of distribu-
tional assumptions, and yield exact probability values. Today, permutation statistical
tests are considered by many to be a gold standard against which conventional sta-
tistical tests should be evaluated and validated. An obvious drawback to permutation
statistical methods is the amount of computation required. While it took the advent
of high-speed computing to make permutation methods feasible for many problems,
today powerful computational algorithms and modern computers make permutation
analyses practical for many research applications.

This book begins with a description of a generalized Minkowski distance func-
tion, from which a five-dimensional model is constructed, each cell of which
contains a conventional statistic, a permutation analogue of a conventional statistic,
or the mathematical formulation for a new statistic. Originally, the authors thought
that most of the cells would describe existing statistical tests and measures, but as
the writing of the book progressed, it became apparent that a majority of the cells
contained entirely new and previously unknown statistics, many of which appear to
be quite useful.

The first of the five dimensions simply divides statistical models into the anal-
ysis of two data types: completely randomized data and randomized-block data;
for example, completely randomized one-way or between-subjects analysis of vari-
ance, on the one hand, and randomized-block analysis of variance, sometimes called
repeated-measures, or within-subjects analysis of variance, on the other.
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The second dimension divides data into three levels of measurement: nominal,
ordinal, and interval. Examples for nominal-level (categorical) data include statis-
tical tests such as the chi-squared goodness-of-fit test and the chi-squared test of
independence, Goodman and Kruskal’s ta and tb asymmetric measures of nomi-
nal association, and Cohen’s unweighted � measure of agreement. Ordinal-level
(rank) statistical tests include the Wilcoxon–Mann–Whitney two-sample rank-sum
test, Goodman and Kruskal’s � measure of ordinal association, and the Kruskal–
Wallis multi-sample rank-sum test. Interval-level statistical tests include Student’s t
test, the F test for the analysis of variance, and the Pearson product-moment corre-
lation coefficient.

The third dimension divides the analysis of data into two entirely different
approaches. One approach utilizes squared Euclidean distances between observa-
tions, as is customary with conventional statistical tests. The other approach utilizes
ordinary Euclidean (absolute) distances between observations. Examples of these
two approaches include ordinary least squares (OLS) regression and least absolute
deviation (LAD) regression.

The fourth dimension divides the focus of the statistical analysis into tests of
differences and measures of relationship, recognizing that one can often be trans-
formed into the other. For example, Student’s t test for differences between means
and one-way analysis of variance, on the one hand, and the Pearson product-moment
correlation between two variables and Spearman’s rank-order correlation coeffi-
cient, on the other.

Finally, the fifth dimension divides data into univariate and multivariate response
measurements. For example, analysis of variance (ANOVA) and simple linear
regression and correlation are appropriate for univariate data, and multivariate anal-
ysis of variance (MANOVA) and multiple regression and correlation are appropriate
for multivariate data.

Altogether, 48 five-dimensional cells are identified and explored using a gen-
eralized Minkowski distance function and two permutation-based derivatives. One
derivative, denoted as ı, provides for tests of differences, and the other, denoted as
<, provides for measures of relationships. The two permutation statistics are sem-
inal constructs for integrating a variety of statistical tests and measures. Figure 1
graphically displays the 24 analysis cells for completely randomized experimental
designs, shaded in gray, and Fig. 2 graphically displays the 24 analysis cells for
randomized-block experimental designs, also shaded in gray.

The foundation of the synthesizing model is a generalized Minkowski distance
function. Derived from the generalized Minkowski distance function are two per-
mutation approaches: multi-response permutation procedures (MRPP), designed
for analyzing completely-randomized data, and multivariate randomized-block per-
mutation (MRBP) procedures, designed for analyzing randomized-block data. The
generalized Minkowski distance function, together with MRPP and MRBP, provide,
for the analysis of completely randomized and randomized-block data, both univari-
ate and multivariate, at the nominal, ordinal, and interval levels of measurement,
utilizing either squared Euclidean distances or ordinary Euclidean distances.
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Completely-Randomized Experimental Designs

Interval-Level Data Analysis

Squared Euclidean Distance Ordinary Euclidean Distance

Tests of Differences Measures of Relationships Tests of Differences Measures of Relationships

Univariate Multivariate Univariate Multivariate Univariate Multivariate Univariate Multivariate

analysis analysis analysis analysis analysis analysis analysis analysis

Ordinal-Level Data Analysis

Squared Euclidean Distance Ordinary Euclidean Distance

Tests of Differences Measures of Relationships Tests of Differences Measures of Relationships

Univariate Multivariate Univariate Multivariate Univariate Multivariate Univariate Multivariate

analysis analysis analysis analysis analysis analysis analysis analysis

Nominal-Level Data Analysis

Squared Euclidean Distance Ordinary Euclidean Distance

Tests of Differences Measures of Relationships Tests of Differences Measures of Relationships

Univariate Multivariate Univariate Multivariate Univariate Multivariate Univariate Multivariate

analysis analysis analysis analysis analysis analysis analysis analysis

Fig. 1 Diagram for completely randomized experimental designs with analysis cells shaded in
gray

Randomized-Block Experimental Designs

Interval-Level Data Analysis

Squared Euclidean Distance Ordinary Euclidean Distance

Tests of Differences Measures of Relationships Tests of Differences Measures of Relationships

Univariate Multivariate Univariate Multivariate Univariate Multivariate Univariate Multivariate

analysis analysis analysis analysis analysis analysis analysis analysis

Ordinal-Level Data Analysis

Squared Euclidean Distance Ordinary Euclidean Distance

Tests of Differences Measures of Relationships Tests of Differences Measures of Relationships

Univariate Multivariate Univariate Multivariate Univariate Multivariate Univariate Multivariate

analysis analysis analysis analysis analysis analysis analysis analysis

Nominal-Level Data Analysis

Squared Euclidean Distance Ordinary Euclidean Distance

Tests of Differences Measures of Relationships Tests of Differences Measures of Relationships

Univariate Multivariate Univariate Multivariate Univariate Multivariate Univariate Multivariate

analysis analysis analysis analysis analysis analysis analysis analysis

Fig. 2 Diagram for randomized-block experimental designs with analysis cells shaded in gray

Both MRPP, illustrated in Fig. 1, and MRBP, illustrated in Fig. 2, generate
two test statistics, ı and <, providing for a number of statistical tests of differ-
ences and measures of association. For MRPP, test statistic ı is the weighted
mean of the average distance-function values for all distinct pairs of objects in
all treatment groups, and < is a chance-corrected within-group measure of effect
size. For MRBP, ı is the balanced mean of the distance-function values for all
distinct pairs of objects in all treatment groups, and < is a chance-corrected
within-blocks measure of effect size. Finally, test statistics ı and < are applied
to three levels of measurement that are commonly encountered in statistical
analyses: interval, ordinal, and nominal. Taken together, the five-dimensional
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structure contains 48 distinct analysis cells, many of which contain new sta-
tistical tests and measures. Most of the new statistics are based on ordinary
Euclidean distances as most conventional statistics are based on squared Euclidean
distances. However, other new statistics result from generalizing conventional
statistics designed for univariate data to statistics designed for multivariate
data.

The book is comprised of 11 chapters, each of which is designed to stand alone.
Thus, each chapter can be read independently of the other chapters without any
loss of understanding. Chapters 1–7 focus on MRPP and the analysis of completely
randomized data, and Chaps. 8–11 focus on MRBP and the analysis of randomized-
block data.

Chapter 1 of Permutation Statistical Methods provides an introduction to the
remaining 10 chapters, compares the population and permutation models of sta-
tistical analysis, and presents the three main approaches to permutation statistical
methods: exact, moment-approximation, and resampling-approximation permuta-
tion tests.

Chapter 2 develops a general set of synthesizing multi-response permutation
procedures (MRPP) for permutation statistical tests and measures, designed for
completely randomized data sets. The two MRPP test statistics, ı and <, are intro-
duced and derived from a generalized Minkowski distance function. The two test
statistics provide the mathematical foundation for the permutation tests and mea-
sures presented in Chaps. 3–7.

Chapter 3 applies the multi-response permutation procedures for completely ran-
domized data developed in Chap. 2 to permutation statistical tests and measures
designed to analyze univariate and multivariate response measurements at the inter-
val level of measurement. Permutation analogues of Student’s two-sample t test,
Hotelling’s two-sample T2 test, one-way fixed-effects analysis of variance, and one-
way multivariate analysis of variance illustrate the application of MRPP statistics ı

and < to interval-level response measurements.
Chapter 4 continues the analysis of interval-level response measurements pre-

sented in Chap. 3, analyzing the response measurements with appropriate regression
models, both ordinary least squares (OLS) and least absolute deviation (LAD) mod-
els. Included in Chap. 4 are permutation regression analyses of one-way randomized
designs, with and without a covariate, one-way randomized block, factorial, Latin
square, and nested analysis of variance designs.

Chapter 5 applies the multi-response permutation methods developed in Chap. 2
to univariate ordinal-level response measurements. Permutation analogues of the
Wilcoxon two-sample rank-sum test, the Kruskal–Wallis multi-sample rank-sum
test, the Ansari–Bradley and Mood rank-sum tests for dispersion, the Brown–Mood
median test, the Mielke power-of-rank function tests, and the Whitfield two-sample
rank sum test illustrate the application of MRPP statistics ı and < to ordinal-level
response measurements.

Chapter 6 continues the analysis of ordinal-level response measurements, gener-
alizing the univariate permutation procedures developed in Chap. 5 to multivariate
response measurements. As in Chap. 5, example statistical tests and measures
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include permutation versions of two-sample rank-sum tests, multiple sample rank-
sum tests, rank-sum tests for dispersion, sum-of-squared-rank tests, median tests,
and power-of-rank function tests.

Chapter 7 uses the multi-response permutation methods developed in Chap. 2 to
analyze nominal-level (categorical) response measurements. Permutation versions
of Goodman and Kruskal’s ta and tb asymmetric measures of nominal associa-
tion, Light and Margolin’s categorical analysis of variance, tests to analyze multiple
binary choices, and various multivariate measures of association for a nominal-level
independent variable and nominal-, ordinal-, and interval-level dependent variables
illustrate the application of statistics ı and < to categorical response measure-
ments.

Chapter 8 develops multivariate randomized-block permutation (MRBP) proce-
dures for analyzing randomized-block data, generates MRBP statistics ı and < from
a generalized Minkowski distance function, and provides the mathematical founda-
tion for the permutation tests and measures presented in Chaps. 9–11.

Chapter 9 applies the multivariate randomized-block permutation procedures
developed in Chap. 8 to interval-level response measurements. Permutation ana-
logues of Student’s matched-pairs t test, Hotelling’s matched-pairs T2 test, one-way
randomized-block analysis of variance with univariate response measurements, and
one-way randomized-block analysis of variance with multivariate response mea-
surements illustrate the application of MRPP statistics ı and < to interval-level
response measurements.

Chapter 10 applies the multivariate randomized-block methods developed in
Chap. 8 to ordinal-level response measurements. Permutation analogues of a vari-
ety of statistical tests illustrate the application of statistics ı and < to ordinal-level
response measurements, including the Wilcoxon signed-rank test, the sign test,
Spearman’s rank-order and footrule measures of correlation, Friedman’s analysis of
variance for ranks, Kendall’s coefficient of concordance, Cohen’s weighted kappa
measure of agreement, Kendall’s ta and tb measures of ordinal association, Stuart’s
tc statistic, Goodman and Kruskal’s � measure of ordinal association, Yule’s Q, and
Somers’ dyx and dxy asymmetric measures of ordinal association.

Chapter 11 applies the multivariate randomized-block methods developed in
Chap. 8 to nominal-level response measurements. Permutation analogues of a num-
ber of statistical tests and measures illustrate the application of statistics ı and < to
nominal-level response measurements, including Cohen’s unweighted kappa mea-
sure of chance-corrected agreement, McNemar’s and Cochran’s Q tests for change,
Kendall’s ta and Yule’s Q measures of association, the odds ratio, Somers’ dxy

and dyx asymmetric measures of association, Pearson’s product-moment correlation
coefficient, percentage differences, and chi-squared. Finally, the book closes with a
brief Epilogue.
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1Introduction

Commencing with the seminal contributions of R.A. Fisher, E.J.G. Pitman, and
other mathematicians and scientists in the 1920s and 1930s, permutation statisti-
cal methods were initially developed to validate the normality and homogeneity
assumptions of classical statistical methods, a point made repeatedly by Fisher in
his second book on statistics, The Design of Experiments [119, Chaps. 20 and 21].
Over the subsequent eighty or so years, permutation methods have emerged as a
statistical approach to hypothesis testing in their own right. Permutation statistical
methods possess several advantages over classical statistical methods in that they
are optimal for small data sets, can be utilized to analyze non-random samples, are
completely data-dependent, are free of distributional assumptions, and yield exact
probability values. These attributes make permutation statistical methods ideal for
research areas that often have to deal with small non-random samples; e.g., atmo-
spheric science, biology, ecology, medical research, and psychology.

This book presents a synthesis of permutation statistical methods that unifies
many previously described tests and measures, defines a continuous methodological
spectrum, and weaves together what are usually considered to be disjoint families of
statistical tests and measures. The incorporation of a large family of statistics into a
unifying statistical approach under a common rubric provides a new perspective on
traditional statistics composed of seemingly unrelated tests and measures.

While permutation tests have been developed as counterparts to a number of con-
ventional parametric tests, permutation tests are not limited to parametric analogues.
This book describes and illustrates a large number of new permutation tests with no
parametric complements. When available, a permutation test is compared with its
parametric alternative; otherwise, new permutation tests are presented as solutions
to statistical problems for which no corresponding parametric tests are currently
available.

The typical first course in statistics is often seen as an unorganized and confusing
maze of unconnected chapters because, frequently, the material is presented with-
out a synthesizing model with which to link and understand the disparate chapters.
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2 1 Introduction

Many first-year, non-mathematical courses in statistics, especially in the social and
behavioral sciences, are presented as a variety of ostensibly unrelated statistical tests
and measures, making those tests appear independent and disjointed, with little or
no discernible segue among topics. These various tests and measures often include
t tests, both independent and matched-pairs; simple correlation and regression, with
Spearman’s rank-order correlation coefficient sometimes included; chapters on the
analysis of variance covering completely randomized, randomized-block, and facto-
rial designs, with Latin squares, split-plot, and nested designs sometimes included;
and (usually) a final chapter on chi-squared containing tests of goodness-of-fit and
independence, which often includes such chi-squared-based measures of associa-
tion as Pearson’s �2, Tschuprov’s (Čhuprov’s) T2, and Cramér’s V2. Consequently,
students often do not see the important functional relationships between, for exam-
ple, the t test for two independent samples and the F test for a one-way analysis
of variance, the chi-squared test of independence and the product-moment corre-
lation coefficient, the analysis of variance and linear regression, or the percentage
difference and the unstandardized slope of a regression line.

The Argentine fabulist, Jorge Luis Borges, in a 1941 review of the movie Citizen
Kane quoted G.K. Chesterton as saying, “There is nothing more frightening than a
labyrinth that has no center.”1 In this book the authors hope to provide a center to a
piece of the statistical maze that often confronts and confounds beginning students
of statistics.

1.1 Models of Statistical Inference

Essentially, two models of statistical inference coexist: the population model and
the permutation model; see, for example, discussions by Curran-Everett [85], Hub-
bard [186], Kempthorne [204], Kennedy [212], Lachin [226], Ludbrook [247, 248],
and Ludbrook and Dudley [252]. The population model, formally proposed by Jerzy
Neyman and Egon Pearson in a seminal two-part article on statistical inference in
Biometrika in 1928, assumes random sampling from one or more specified popu-
lations [319, 320]. Under the population model, the level of statistical significance
that results from applying a statistical test to the results of an experiment or survey
corresponds to the frequency with which the null hypothesis would be rejected in
repeated random samplings from the same specified population(s). Because repeated
sampling of the specified population(s) is usually impractical, it is assumed that the
sampling distribution of the test statistics generated under repeated random sam-
pling conforms to an approximating theoretical distribution, such as the normal
distribution. The size of the statistical test, e.g., 0.05, is the probability under a
specified null hypothesis that repeated outcomes based on random samples of the
same size are equal to or more extreme than the observed outcome.

1The actual quote, from the Father Brown mystery “The Head of Caesar” by G. K Chesterton is
“What we all dread most is a maze with no centre” [68, p. 229].
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The permutation model was introduced by R.A. Fisher in 1925 [118], further
developed by R.C. Geary in 1927 [134] and T. Eden and F. Yates in 1933 [103],
and made explicit in three seminal articles by E.J.G. Pitman in 1937 and 1938
[340–342]. In a permutation statistical test the only assumption is that experimen-
tal variability has caused the observed result. That assumption, or null hypothesis,
is then tested as follows. A test statistic is computed for the observed data, then
the observations are permuted over all possible arrangements of the data and
the selected test statistic is computed for each equally-likely arrangement of the
observed data. The proportion of arrangements with test statistic values equal to
or more extreme than the observed test statistic yields the exact probability of the
observed test statistic value.

1.2 Permutation Statistical Tests

Permutation statistical tests are considered by many to be a gold standard against
which conventional statistical tests should be evaluated and validated. In 1940 Fried-
man, comparing tests of significance for multiple rankings, referred to an exact
permutation test as “the correct one” [129, p. 88]. In 1973 Feinstein remarked
that conventional statistical tests “yield reasonably reliable approximations of the
more exact results provided by permutation procedures” [113, p. 912]. In 1992
Good noted that Fisher himself regarded randomization as a technique for validat-
ing tests of significance, i.e., ensuring that conventional probability values were
accurate [144, p. 263].2 Bakeman, Robinson, and Quera remarked in 1996 that “like
Read and Cressie . . . we think permutation tests represent the standard against which
asymptotic tests must be judged” [18, p. 6]. And in 2007 Edgington and Onghena
observed that “randomization tests . . . have come to be recognized by many in the
field of medicine as the ‘gold standard’ of statistical tests for randomized experi-
ments” [109, p. 9].

The value of permutation statistical tests was recognized by early statisticians,
even during periods in which the computationally intensive nature of permutation
tests made them impractical. In 1955 Kempthorne wrote that “tests of significance
in the randomized experiment have frequently been presented by way of normal
law theory, whereas their validity stems from randomization theory” [202, p. 947]
and “there seems little point in the present state of knowledge in using [a] method
of inference other than randomization analysis” [202, p. 966]. Similarly, in 1959
Scheffé stated that the conventional analysis of variance F-ratio “can often be
regarded as a good approximation to a permutation test, which is an exact test under
a less restrictive model” [365, p. 313]. In 1966, Kempthorne re-emphasized that
“the proper way to make tests of significance in the simple randomized experiments
[sic] is by way of the randomization (or permutation) test” [203, p. 20] and “in the
randomized experiment one should, logically, make tests of significance by way of

2The terms “permutation test” and “randomization test” are often used interchangeably.
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the randomization test” [203, p. 21]. Later, in 1968, Bradley observed that “eminent
statisticians have stated that the randomization test is the truly correct one and that
the corresponding parametric test is valid only to the extent that it results in the same
statistical decision” [52, p. 85].

Because permutation statistical methods are inherently computationally inten-
sive, it took the development of high-speed computers for permutation methods to
achieve their potential. Computers, as we know them, did not exist in the 1920s
and 1930s, although mechanical calculators such as the Millionaire calculator used
by R.A. Fisher in the Statistical Laboratory at the Rothamsted Experimental Sta-
tion or the Brunsviga calculator used by K. Pearson in the Biometric Laboratory
at University College, London, were commonplace in large research centers. These
early mechanical calculators were eventually replaced by electro-mechanical cal-
culators such as those produced by the Burroughs, Victor, Monroe, Marchant, and
Sundstrand companies [156]. In turn, electro-mechanical calculators were largely
supplanted by early computers in the 1940s and 1950s.

The few computers that became available to researchers in the 1940s and 1950s
were large, slow, inefficient, very expensive to use, and located at only a few com-
puting centers. Moreover, in large part their use was restricted to military and
industrial applications and thus were not generally available to those involved in
the development of permutation statistical methods [192]. Today, a small netbook
computer outperforms even the largest mainframe computers of previous decades.
Consequently, in the 21st century permutation statistical methods have become both
feasible and practical and have found applications in diverse fields of research
ranging from agriculture to zoology. Fields of research that examine small non-
random samples, such as atmospheric science, psychology, ecology, biology, and
medicine, have been especially receptive to permutation methods. This is due in part
to strong advocates of permutation methods in these fields, including Hugh Dudley
[252–255], Eugene Edgington [104–109], Alvan Feinstein [113, 114], Phillip Good
[145–148], Oscar Kempthorne [201–204], John Ludbrook [247–250], Bryan Manly
[258–261], and John Tukey [57, 403–405].

Three types of permutation tests are common in the statistical literature: exact,
moment-approximation, and resampling-approximation permutation tests. To this
taxonomy might be added network-algorithm permutation tests. Although the three
types of permutation tests are methodologically quite different, all three types are
based on the same specified null hypothesis.

1.2.1 Exact Permutation Tests

An exact permutation test exhaustively enumerates all equally-likely arrangements
of the observed data. Then, for each arrangement, the desired test statistic is calcu-
lated. The observed data yield the observed value of the test statistic. The probability
of obtaining the observed value of the test statistic, or one more extreme, is the pro-
portion of the enumerated test statistics with values equal to or more extreme than
the value of the observed test statistic. For large samples the total number of possible
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arrangements can be considerable and exact permutation methods are quickly ren-
dered impractical. For example, permuting two small samples of sizes n1 D n2 D 25

yields

M D .n1 C n2/Š

n1Š n2Š
D .25 C 25/Š

.25Š/2
D 126;410;606;437;752

different arrangements of the observed data set—far too many statistical values to
compute in a reasonable amount of time.

The origin of exact permutation statistical methods is often traced back to the
early work of R.A. Fisher, but R.C. Geary, T. Eden, F. Yates, and E.J.G. Pitman also
played substantial roles in the early development of exact permutation methods. For
descriptions of their contributions, see A Chronicle of Permutation Statistical Meth-
ods by Berry, Johnston, and Mielke [41, pp. 31–33, 37–41, 78–82]. The following
three analyses by R.A. Fisher illustrate early exact permutation statistical analyses.

Example 1
On 18 December 1934, R.A. Fisher presented an invited paper describing the logic
of permutation statistical tests to the Royal Statistical Society, a paper that was sub-
sequently published in Journal of the Royal Statistical Society the following year
[120].3 Fisher described data on 30 criminal same-sex twins from a study origi-
nally conducted by Dr. Johannes Lange, Chief Physician at the Munich-Schwabing
Hospital in Schwabing, a northern suburb of Munich.

The Lange data analyzed by Fisher consisted of 13 pairs of monozygotic (iden-
tical) twins and 17 pairs of dizygotic (fraternal) twins [229]. For each of the 30
pairs of twins, one twin was known to be a convict. The study considered whether
the twin brother of the known convict was himself “convicted” or “not convicted,”
thus forming a 2�2 contingency table with 12 “convicted” and 18 “not convicted”
twins cross-classified by the 13 “monozygotic” and 17 “dizygotic” twins. The 2�2

contingency table, as analyzed by Fisher, is presented in Fig. 1.1.
Fisher determined all possible arrangements of the four cell frequencies, given

the observed marginal frequency totals; in this case, 13 different arrangements of
the cell frequencies. Fisher then calculated the hypergeometric probability value for
each of the 13 cell arrangements, summing those probability values that were equal
to or less than the hypergeometric probability value of the observed cell frequency
arrangement. Fisher concluded, “The test of significance is therefore direct, and

3As was customary in scientific societies at the time, these special papers were printed in advance
and circulated to the membership of the Society. Then, only a brief summary was made by the
author at the meeting and the remaining time was devoted to a discussion of the paper. By tradi-
tion, the “proposer of the vote of thanks” advanced what he thought was commendable about the
paper, and the seconder put forward what he thought was not so worthy. Subsequently, there was
a general discussion by the Fellows of the Society and often a number of prominent statisticians
offered comments, suggestions, or criticisms, all of which were subsequently printed along with
the published paper in the journal of the Society [50, p. 41].
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Fig. 1.1 Convictions of
like-sex twins of criminals;
data from Lange [229]

Twin type Convicted Not convicted Total

Monozygotic 10 3 13
Dizygotic 2 15 17

Total 12 18 30

Table 1.1 Listing of the 13
possible 2�2 contingency
tables from Lange’s data
[229], with associated
hypergeometric probability
values

Table 1 Probability Table 2 Probability

0 13 7:1543�10�5 1 12 1:8601�10�3

12 5 11 6

Table 3 Probability Table 4 Probability

2 11 1:7538�10�2 3 10 8:0384�10�2

10 7 9 8

Table 5 Probability Table 6 Probability

4 9 2:0096�10�1 5 8 2:8938�10�1

8 9 7 10

Table 7 Probability Table 8 Probability

6 7 2:4554�10�1 7 6 1:2277�10�1

6 11 5 12

Table 9 Probability Table 10 Probability

8 5 3:5414�10�2 9 4 5:6212�10�3

4 13 3 14

Table 11 Probability Table 12 Probability

10 3 4:4970�10�4 11 2 1:5331�10�5

2 15 1 16

Table 13 Probability

12 1 1:5030�10�7

0 17

exact for small samples. No process of estimation is involved” [120, p. 50]. The
13 arrangements of cell frequencies and the associated hypergeometric probability
values are listed in Table 1.1. Fisher observed, given that each table has only one
degree of freedom, it was only necessary to compute the probability of one of the
four cells; he chose the convicted dizygotic twins, the lower-left cell in Fig. 1.1 with
a frequency of 2.

For a 2�2 contingency table, such as depicted in Fig. 1.2, the hypergeometric
point probability of any specified cell, say cell (2,1), is given by

P.n21jn2:; n:1; N/ D n1:Š n2:Š n:1Š n:2Š

NŠ n11Š n12Š n21Š n22Š
;

where n1: and n2: denote the marginal frequency totals for rows 1 and 2, n:1 and
n:2 denote the marginal frequency totals for columns 1 and 2, nij denotes the cell
frequency for i; j D 1; : : : ; 2, and N D n11 C n12 C n21 C n22.
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Fig. 1.2 Conventional
notation for a 2�2

contingency table

n 11 n 12 n 1 .

n 21 n 22 n 2 .

n . 1 n . 2 N

Computing the discrepancies from proportionality as great or greater than the
observed cell frequency configuration in Fig. 1.1, Fisher computed for 2, 1, and 0
convicted dizygotic twins, a one-tailed hypergeometric probability value of

Pf2j17; 12; 30g C Pf1j17; 12; 30g C Pf0j17; 12; 30g

D 13Š 17Š 12Š 18Š

30Š 10Š 3Š 2Š 15Š
C 13Š 17Š 12Š 18Š

30Š 11Š 2Š 1Š 16Š
C 13Š 17Š 12Š 18Š

30Š 12Š 1Š 0Š 17Š

D 4:4970�10�4 C 1:5331�10�5 C 1:5030�10�7

D 4:6518�10�4 :

For the frequency data given in Fig. 1.1, a two-tailed hypergeometric probability
includes all probability values less than or equal to the probability of the observed
table, i.e., P D 4:4970�10�4. In this case, the additional probability value associ-
ated with Table 1 in Table 1.1 with 12 dizygotic convicts, i.e., P D 7:1543�10�5.
Thus, the two-tailed probability value is computed as

Pf2j17; 12; 30g C Pf1j17; 12; 30g C Pf0j17; 12; 30g C Pf12j17; 12; 30g

D 13Š 17Š 12Š 18Š

30Š 10Š 3Š 2Š 15Š
C 13Š 17Š 12Š 18Š

30Š 11Š 2Š 1Š 16Š
C 13Š 17Š 12Š 18Š

30Š 12Š 1Š 0Š 17Š
C 13Š 17Š 12Š 18Š

30Š 0Š 13Š 12Š 5Š

D 4:4970�10�4 C 1:5331�10�5 C 1:5030�10�7 C 7:1543�10�5

D 5:3672�10�4 :

The point of the twin analysis—that exact tests are possible for small samples,
eliminating the need for estimation—indicates an early understanding of the superi-
ority of exact probability values computed from discrete permutation distributions,
over approximations based on assumed theoretical distributions. It should also be
noted, however, that the exact solution proposed by Fisher was not without con-
troversy; see, for example, a 1992 article by Routledge in Canadian Journal of
Statistics [356]. Stephen Senn wryly observed in 2012 that “statisticians have caused
the destruction of whole forests to provide paper to print their disputes regarding the
analysis of 2�2 tables” [370, p. 33].
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Example 2
In 1935 Fisher described a hypothetical experiment in his second book on statistics,
The Design of Experiments, in which a woman claimed to be able to tell the differ-
ence between tea with milk added to the cup first and tea with milk added to the
cup second [119, Chap. 2]. He designed an experiment whereby the woman sam-
pled eight cups of tea, four of each type, and identified the point at which the milk
had been added—before the tea, or after.4 Again Fisher constructed a 2�2 contin-
gency table in which there were five possible arrangements of cell frequencies, given
the observed marginal frequency totals. The five possible arrangements of cell fre-
quencies tables are presented in Table 1.2. Fisher then calculated a hypergeometric
probability value for each of the five possible cell frequency arrangements, sum-
ming those probability values equal to or less than the hypergeometric probability
value of the observed arrangement.

The null hypothesis in the lady-tasting-tea experiment was that the judgments
of the lady were in no way influenced by the order in which the ingredients were
added. Fisher explained that the probability of correctly classifying all eight cups
of tea was one in 70, i.e., the hypergeometric point probability value for the cell
arrangement in Table 1 in Table 1.2 given by

Pf0j4; 4; 8g D 4Š 4Š 4Š 4Š

8Š 0Š 4Š 4Š 0Š
D 24

1;680
D 1

70
:

Fisher went on to note that only if every cup was correctly classified would the
lady be judged successful; a single mistake would reduce her performance below
the level of significance, in this case ˛ D 0:05. For example, with one misclassi-
fication the one-tailed hypergeometric probability value for the cell arrangements in

Table 1.2 Five possible arrangements of cell frequencies with N D 8 and identical marginal fre-
quency totals of 4, 4, 4, and 4

Table 1 Table 2 Table 3 Table 4 Table 5

0 4 1 3 2 2 3 1 4 0

4 0 3 1 2 2 1 3 0 4

4The experiment was obviously inspired by an actual tea-tasting experiment at the Rothamsted
Experimental Station some dozen years prior, where Fisher was employed as a statistician from
1919 to 1933. The woman tasting the tea was Dr. B. Muriel Bristol, an algologist at the Station.
For descriptions of the tea-tasting experiment at the Rothamsted Experimental Station, see dis-
cussions by Agresti, [2, pp. 91–97], Berry, Johnston, and Mielke [41, pp. 58–61, 429–432], Box
[48], Box [49, pp. 134–135], Fisher [119, pp. 11–29], Fisher [121, Chap. 6], Gridgeman [155], Hall
[165], Lehmann [236, pp. 63–64], Okamoto [324], Salsburg [361, pp. 1–2], Senn [369–371], and
Springate [384].



1.2 Permutation Statistical Tests 9

Tables 1 and 2 in Table 1.2 is given by

Pf1j4; 4; 8g C Pf0j4; 4; 8g D 4Š 4Š 4Š 4Š

8Š 1Š 3Š 3Š 1Š
C 4Š 4Š 4Š 4Š

8Š 0Š 4Š 4Š 0Š
D 16

70
C 1

70
D 17

70

and 17=70 D 0:2429 is much greater than ˛ D 0:05, whereas 1=70 D 0:0143 is
considerably less than ˛ D 0:05.

This procedure became widely known as the Fisher exact probability, or FEP,
test. It should be noted, however, that the test was independently developed by Frank
Yates in 1934 [433] and by Joseph Irwin in 1935 [191]. Thus, the test is sometimes
referred to as the Fisher–Yates exact test or the Fisher–Irwin exact test. Today, the
Fisher–Yates–Irwin test remains the iconic data-dependent, distribution-free, exact
permutation test.

Example 3
Fisher provided a second discussion of permutation statistical tests in The Design of
Experiments, describing a way to compare the arithmetic means of randomized pairs
of observations by permutation [119, Sect. 21]. For this more ambitious permutation
analysis, Fisher analyzed original data collected by Charles Darwin on N D 15 pairs
of planters containing Zea mays (“maize” in the United States) seeds in similar soils
and locations, with heights to be measured when the plants reached a predetermined
age [89]. The data from the experiment are given in the first two columns of Fig. 1.3
and are adapted from Table XCVII in Darwin’s 1876 book on The Effects of Cross
and Self Fertilisation in the Vegetable Kingdom [89, p. 234].

Zea mays is monoecious, so half of the plants were allowed to fertilize spon-
taneously, while the other (matching) half were crossed with pollen taken from a
separate plant. Astonishingly, Fisher calculated the sums of the differences for all
the 2N D 215 D 32;768 possible arrangements of the observed data. An exact prob-
ability value was computed as the proportion of differences in height as extreme, or
more extreme, than the observed differences in the heights of the observed plants.5

For the analysis of Darwin’s Zea mays data, Fisher also calculated a conventional
matched-pairs t test and compared the results of the two analyses. After a correction
for continuity was administered to the observed t value, Fisher noted that the Zea
mays example analysis served to demonstrate that an “independent check” existed
for the “more expeditious methods” that were typically in use, such as Student’s
matched-pairs t test [119, pp. 45–46]. In this regard, Fisher was fond of referring
to a 1931 article in The Journal of Agricultural Science by Olaf Tedin [395] in
which Tedin convincingly demonstrated that when the assumptions of the classical

5For a concise summary of the Zea mays experiment, see an informative discussion by Erich
Lehmann in his posthumously published 2011 book on Fisher, Neyman, and the Creation of Clas-
sical Statistics [236, pp. 65–66].
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Fig. 1.3 Heights of cross-
and self-fertilized Zea mays
plants in inches; data from
Darwin [89, p. 234]

Cross-
Pot fertilized fertilized (eighths)

I 23 4
8 17 3

8 +49

12 20 3
8 − 67

21 20 +8

II 22 20 +16

19 1
8 18 3

8 +6

21 4
8 18 5

8 +23

III 22 1
8 18 5

8 +28

20 3
8 15 2

8 +41

18 2
8 16 4

8 +14

21 5
8 18 +29

23 2
8 16 2

8 +56

IV 21 18 +24

22 1
8 12 6

8 +75

23 15 4
8 +60

12 18 −48

Self- Difference

analysis of variance F test are met in practice, the classical test and the correspond-
ing permutation test yield essentially identical probability values [338].6

Specifically, using the data in the last column of Fig. 1.3 where the differences
between the heights of the crossed- and self-fertilized plants were recorded in
eighths of an inch, Fisher first calculated a matched-pairs t test. He found the mean
difference (d) between the crossed- and self-fertilized Zea mays plants to be

Nd D 1

N

NX

iD1

di D 314

15
D 20:933

and the estimated standard error to be

s Nd D

vuuuut

NX

iD1

d2
i � Nd

NX

iD1

di

N.N � 1/
D
s

26;518 � .20:933/.314/

15.15 � 1/
D 9:746 :

6Olaf Tedin (1898–1966) was a Swedish geneticist who spent most of his professional career as
a plant breeder with the Swedish Seed Association, Svalöf, where he was in charge of breeding
barley and fodder roots in the Weibullsholm Plant Breeding Station, Landskrona.



1.2 Permutation Statistical Tests 11

Then, Student’s matched-pairs t test yielded an observed statistic of

t D
Nd

s Nd
D 20:933

9:746
D C2:148 :

Fisher pointed out that the 5 % critical value with 14 degrees of freedom was t D
˙2:145 and concluded that since C2:148 just exceeded C2:145, the result was
“significant” at the 5 % level.7

Fisher then turned his attention to an exact permutation test, calculating sums
of the differences for the 215 D 32;768 possible arrangements of the observed
measurements, based on the null hypothesis of no difference between self- and
cross-fertilized Zea mays plants. The exact probability value was calculated as the
proportion of values with differences as extreme, or more extreme, than the observed
value. Fisher found that in 835 out of 32,768 cases the deviations were greater than
the observed value of 314; in an equal number of cases, less than 314; and in 28
cases, exactly equal to 314. Fisher explained that in just 835 C 28 D 863 out of a
possible 32,768 cases, the total deviation would have a positive value as great or
greater than the observed value of 314, and in an equal number of cases it would
have as great a negative value. The two groups added together (863 C 863 D 1;726)
constituted 1;726=32;768 D 5:267 %, or slightly more than 5 % of the possibili-
ties available, a result very nearly equivalent to that obtained using Student’s t test,
where the two-tailed probability value for t D C2:148 under the null hypothesis
with 14 degrees of freedom is 4:970 % (slightly less than 5 %) [122, p. 47].

Finally, Fisher argued that, because the t distribution is continuous and the per-
mutation distribution is discrete, the t distribution was counting only half of the 28
cases that corresponded exactly with the observed total of 314. He went on to show
that making an adjustment corresponding to a correction for continuity provided a
probability value more in line with the exact probability value. The corrected value
was t D C2:139, yielding a value of 5:054 % which is closer to the exact value of
5:267 % than the unadjusted value of 4:970 %.

1.2.2 Moment-Approximation Permutation Tests

The moment-approximation of a test statistic requires computation of the exact
moments of the test statistic, assuming equally-likely arrangements of the observed
response measurements. The moments are then used to fit a specified distribution
that approximates the underlying discrete permutation distribution and provide an
approximate, but often highly accurate, probability value. Historically, the beta dis-
tribution was commonly used for the approximating distribution, but in recent years

7For a brief history of R.A. Fisher and the origins of ˛ D 0:05, see a 2011 book by Erich Lehmann
on Fisher, Neyman, and the Creation of Classical Statistics [236].
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the Pearson type III distribution has largely replaced the beta distribution.8 For many
years moment-approximation permutation tests provided an important intermediary
approximation when computers lacked the speed for calculating exact permutation
tests. In recent years, with the advent of high-speed computers, resampling-
approximation permutation tests have largely replaced moment-approximation
permutation procedures.

Moment-approximation permutation tests were popular from the early days
of permutation statistical methods. For example, E.J.G. Pitman used a moment
approach to obtain approximate probability values in each of his three seminal
papers published in 1937 and 1938 [340–342]. In these three papers on permu-
tation versions of two-sample tests, bivariate correlation, and randomized-block
analysis of variance, moments based on the observed data were equated to the
moments of the beta distribution to obtain the correspondence between the prob-
abilities obtained from observed response measurements and probabilities from the
associated beta distribution. A drawback to this approach was that use of the beta
distribution required standardization of the test statistic to ensure that the statistic
varied between 0 and 1, the limits of the beta distribution. For example, in his 1938
paper on randomized-block analysis of variance, Pitman defined statistic

W D SSBetween

SSBetween C SSWithin
;

which is a monotonic increasing function of F D SSBetween=SSWithin that is bounded
by 0 and 1. Other early researchers who utilized moments of the permutation
distribution to compare results to asymptotic distributions were Welch [418] and
Friedman [128] in 1937; Olds [325] and Kendall [205] in 1938; and Kendall
and Babington Smith [209], Kendall, Kendall, and Babington Smith [211], and
McCarthy in 1939 [269].

In a 1943 paper on “Statistical inference in the non-parametric case” in Annals
of Mathematical Statistics, Henry Scheffé sharply criticized the use of moments
to approximate discrete permutation distributions, stating that in his opinion the
justification for moment approximations had never been mathematically satisfactory
[364, p. 311]. Although Scheffé did not specifically mention the beta distribution,
it was so widely used at the time that it can be assumed with some confidence that
Scheffé included the beta distribution in his criticism of moment approximation
procedures.

From 1976 through 1980, P.W. Mielke and his many collaborators utilized the
beta distribution in a number of publications; however, in 1981 the beta distribu-
tion was replaced with the Pearson type III distribution due to the difficulty of
making simple associations between the parameters of the beta distribution and
the moments of the discrete permutation distribution, even after reparameterization

8It was the Pearson type III distribution that Student (W.S. Gosset) used to fit the distribution of
sample variances in his classic 1908 article on “The probable error of a mean” [390, p. 4].
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[283, 301].9 The first published paper by Mielke in which a Pearson type III distri-
bution was used was a 1981 article by Mielke, Berry, and Brier on “Application of
multi-response permutation procedures for examining seasonal changes in monthly
mean sea-level pressure patterns,” in Monthly Weather Review [301].

The Pearson type III distribution, as a three-parameter gamma distribution, has
the advantage of being totally characterized by the exact mean, variance, and
skewness, in the same manner that the normal distribution, as a two-parameter dis-
tribution, is fully characterized by the exact mean and variance—a property not
possessed by the beta distribution.10 An added advantage of the Pearson type III
distribution is when the skewness parameter is zero, the distribution is normal.11 In
describing the Pearson type III distribution, Pearson noted “This generalized prob-
ability curve fits with a high degree of accuracy a number of measurements and
observations hitherto not reduced to theoretical treatment” [332, p. 331]. With the
advent of high-speed computers, moment-approximation permutation tests have
largely been replaced by resampling-approximation permutation tests.

1.2.3 Resampling-Approximation Permutation Tests

Resampling-approximation (hereafter, resampling) permutation tests generate and
examine a Monte Carlo random subset of all possible, equally-likely arrangements
of the observed response measurements.12 For each resampled arrangement of the
observed data, the desired test statistic is calculated. The probability of obtaining
the observed value of the test statistic, or one more extreme, is the proportion of the
resampled test statistics with values equal to or more extreme than the value of the
observed test statistic. With a sufficient number of resamplings, a probability value
can be computed to any reasonable accuracy. The current recommended practice
is to use L D 1;000;000 resampled arrangements of the observed data to ensure a
probability value with three decimal places of accuracy [195].

9The Pearson type III distribution was one of four distributions introduced by Karl Pearson in
1895 [333], although the type III distribution had previously been presented without discussion by
Pearson in 1893 [332, p. 331]. The type V distribution introduced by Pearson in 1895 was simply
the normal distribution and the Pearson type I distribution was a generalized beta distribution.
10Mielke, Berry, and Brier were not the first to adopt the Pearson type III distribution to approx-
imate a discrete permutation distribution. For example, B.L. Welch utilized the Pearson type III
distribution in a 1936 paper on the specification of rules for rejecting too variable a product [417]
and used it again in a 1938 paper on testing the significance of differences between the means of
two independent samples when the population variances were unequal [419].
11For a one-way analysis of variance utilizing a moment-approximation approach, see a 1983 arti-
cle by Berry and Mielke [23].
12It is generally accepted that the term “Monte Carlo” method was coined by Stanislaw Ulam,
John von Neumann, and Nicholas Metropolis in 1946 while they were working on nuclear weapon
projects at the Los Alamos National Laboratory [278, 415]. However, in a 2012 book on Turing’s
Cathedral, George Dyson attributes the coining of the term “Monte Carlo” solely to Nicholas
Metropolis [102, p. 192].
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Meyer Dwass is usually credited with the formal development of resampling
permutation tests, first presented in an article on “Modified randomization tests for
nonparametric hypotheses” published in The Annals of Mathematical Statistics in
1957 [100]. While researchers prior to 1957 certainly utilized resampling permuta-
tion methods to provide approximate probability values—witness Eden and Yates
in their 1933 investigation into height measurements of Yeoman II wheat shoots
in which they analyzed a random sample of 1,000 out of a possible 4,586,471,424
arrangements—Dwass provided the first rigorous investigation into the precision of
resampling probability approximations.13

Presently, resampling permutation tests are the method of choice for most
researchers, with exact permutation tests reserved for smaller data sets. There are
three notable advantages to resampling permutation tests. First, resampling permu-
tation tests are highly efficient given the ready availability of high-speed computers
and the recent development of rapid pseudorandom number generators such as the
Mersenne Twister, on which resampling permutation tests are highly dependent.
Second, in some applications a resampling permutation test is much more effi-
cient than an exact permutation test, even for small samples. For example, in the
permutation analysis of contingency tables an exact permutation test must calcu-
late a hypergeometric probability value for each of, potentially, thousands of cell
frequency arrangements, while a resampling permutation test need only count the
number of cell arrangements as extreme or more extreme than the observed cell
arrangement. Third, algorithms for exact permutation tests are non-existent or com-
pletely impractical for analyzing certain problems, such as multi-way contingency
tables, while an efficient resampling algorithm is presently available for multi-way
tables; see, for example, a 2007 article by Mielke, Berry, and Johnston in Psycho-
logical Reports [307].

1.2.4 Mehta–Patel Network Algorithm

Finally, mention should be made of the Mehta–Patel network enumeration algorithm
for r�c contingency tables, a computer algorithm that cleverly circumvents the need
to completely enumerate all possible arrangements of the observed cell frequencies,
given the observed marginal frequency totals, yet still provides an exact probability
value; see, for example, a paper by Mehta, Patel, and Gray in 1985 [277] and two
papers by Mehta and Patel in 1986 [275, 276].14

13It should be noted that the 1957 Dwass article on modified randomization tests for non-parametric
hypotheses relied heavily on the theoretical contributions of an article titled “On the theory of
some non-parametric hypotheses” by Erich Lehmann and Charles Stein published in The Annals
of Mathematical Statistics in 1949 [237].
14The Mehta–Patel network algorithm was subsequently applied to many more statistical analyses
than the highly limited analysis of r�c contingency tables.
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The Mehta–Patel network algorithm is a directed non-cyclic network consisting
of nodes in a sequence of stages, corresponding to the reference set of r�c contin-
gency tables. Distances between the nodes, called arcs, are defined so that the total
distance of a path through the network corresponds to the value of the test statistic.
At each intermediary node, the network algorithm computes the longest and shortest
path for all paths passing through that node. The value of the test statistic is com-
pared with the longest and shortest paths to determine (1) if all paths through the
node contribute to the probability value, (2) if none of the paths through the node
contributes to the probability value, or (3) if neither of these situations occurs. The
Mehta–Patel network algorithm has greatly increased the range of exact permuta-
tion tests and, having been incorporated into various computer packages, is widely
available to researchers in a convenient and usable format.15

1.3 Permutation and Parametric Statistical Tests

Permutation statistical tests, based on the permutation model, differ from traditional
parametric tests, based on the population model, in several ways. First, permutation
tests are data-dependent in that all the information required for analysis is contained
within the observed data set.16 Implicit in this data-dependency is the understand-
ing that statistical inferences are limited to the actual experiment or survey that has
been performed. Second, permutation tests are appropriate for non-random sam-
ples, such as are common in many fields of research. Third, permutation tests are
distribution-free in that they do not depend on the assumptions associated with tra-
ditional parametric tests, such as normality and homogeneity of variance. Fourth,
permutation tests provide exact probability values based on the discrete permutation
distribution of equally-likely test statistic values, rather than approximate proba-
bility values based on a theoretical approximating distribution, such as a normal,
�2, t, or F distribution. Fifth, permutation tests are ideal for very small data sets,
whereas distribution functions often provide very poor fits.

1.3.1 Permutation Tests and Normality

The assumption of normality is so basic to classical statistics that it deserves special
attention. Two points should be emphasized. First, permutation tests make no distri-
butional assumptions and, therefore, do not depend on the assumption of normality.
Second, the assumption of normality by conventional tests is always unrealistic and
never justified in practice.

15For a detailed description of the Mehta–Patel network enumeration algorithm, see Berry, John-
ston, and Mielke [41, pp. 288–293].
16For the importance of data-dependent analysis, see a 1988 article by Biondini, Mielke, and Berry
on “Data-dependent permutation techniques for the analysis of ecological data” [44] and a 2002
article by Mielke and Berry on “Data-dependent analyses in psychological research” [296].
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In 1957 R.C. Geary famously proclaimed: “Normality is a myth; there never
has, and never will be, a normal distribution” [135, p. 241]. The French physicist
and Nobel laureate in physics, Gabriel Lippmann, once wrote in a letter to Henri
Poincaré à propos the normal curve:

Les expérimentateurs s’imaginent que c’est un théorèm de mathématiques, et les mathé-
maticiens d’être un fait expérimental.
Experimentalists think that it is a mathematical theorem, while mathematicians believe it to
be an experimental effect.

(Lippman, quoted in D’Arcy Wentworth Thompson’s On Growth and Form [396,
p. 121]). And in 1954 Bross pointed out that statistical methods “are based on certain
assumptions—assumptions which not only can be wrong, but in many situations are
wrong” [58, p. 815].17;18 Others have empirically demonstrated the prevalence of
highly skewed and heavy-tailed distributions in a variety of academic disciplines;
see, for example, discussions by Schmidt and Johnson [366], Bradley [53], Saal,
Downey, and Lahey [359], Bernardin and Beatty [22], Micceri, and Murphy and
Cleveland [314], the best known of which is Micceri’s widely quoted 1989 article on
“The unicorn, the normal curve, and other improbable creatures” in Psychological
Bulletin [280].

O’Boyle and Aguinis cautioned that “assuming normality . . . can lead to mis-
specified theories and misleading practices” [323, p. 116], noting that the assump-
tion of normality, like random sampling, belongs to the class of “received doctrines”
that are

taught in undergraduate and graduate classes, enforced by gatekeepers (e.g., grant pan-
els, reviewers, editors, dissertation committee members), discussed among colleagues, and
otherwise passed along among pliers of the trade far and wide and from generation to gen-
eration [228, p. 281].

The development of a cohesive methodology of basic tests by R.A. Fisher was
under the assumption of normality [235, p. 45]. Egon Pearson, in reviewing the
second edition of Fisher’s Statistical Methods for Research Workers in 1929 wrote:

There is one criticism, however, which must be made from the statistical point of view.
A large number of the tests developed are based upon the assumption that the population
sampled is of ‘normal’ form. That this is the case may be gathered from very careful reading
of the text, but the point is not sufficiently emphasized. It does not appear reasonable to
lay stress on the ‘exactness’ of tests, when no means whatever are given of appreciating
how rapidly they become inexact as the population sampled diverges from normality. That
the tests, for example, connected with the analysis of variance are far more dependent on
normality than those involving ‘Student’s’ z (or t) distribution is almost certain, but no clear
indication of the need for caution in their application is given . . . [335, pp. 866–867].

17Emphasis in the original.
18See also a short but comprehensive 2010 article on this topic by Tom Siegfried in Science News
[377].
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An obvious drawback to permutation statistical tests is the amount of compu-
tation required, with exact permutation tests being impractical for many statistical
analyses. Even resampling permutation tests often require the enumeration of tens
of millions of random permutations in order to guarantee sufficient accuracy. Two
features of permutation methods mitigate this problem: first, mathematical recursion
with an arbitrary initial value and, second, calculation of only the variable portion
of the selected test statistic.

1.3.2 Mathematical Recursion

Mathematical recursion, in a statistical context, is a process in which an initial prob-
ability value of a test statistic is calculated, then successive probability values are
generated from the initial value by a recursive process.19 The initial value need not
be an actual probability value, but can be a completely arbitrary positive value by
which the resultant relative probability values are adjusted for the initializing value
at the conclusion of the recursion process.

In 1934 Frank Yates used recursion with an arbitrary initial value to calculate
the Fisher–Yates exact test for 2�2 contingency tables [433]. Here, Yates was
able to generate all possible probability values without evaluating even a single
factorial expression, a process that was extremely efficient given that, under the
usual method, there are nine factorial expressions to be computed for each pos-
sible arrangement of the observed response measurements. Maurice Kendall, in
1938, was another early statistician who utilized a recursive process in the calcu-
lation of exact probability values for his new measure of rank correlation, � [205].
It is also true, however, that recursion methods were not new in the 1930s, hav-
ing been used historically by Blaise Pascal, Christiaan Huygens, James Bernoulli,
Willem ’sGravesande, Pierre Rémond de Montmort, and Adolphe Quetelet, among
others [162, 163]. Presently, computer algorithms employing recursion methods are
powerful tools for the efficient generation of exact probability values.

Mathematical recursion is so fundamental to permutation methods that a detailed
example of a recursion process is important to illustrate the procedure. Perhaps
no better example of the statistical recursion procedure exists than that provided
by Frank Yates. In 1934 Yates published an article on the analysis of contingency
tables containing small cell frequencies in Supplement to the Journal of the Royal
Statistical Society [433]. The stated purpose of the article was threefold: first, to
introduce statisticians to Fisher’s exact probability test, which was very new at the
time; second, to use Fisher’s exact probability test as a gold standard against which

19A recursive process is one in which items are defined in terms of items of similar kind. Using a
recursive relation, a class of items can be constructed from one or a few initial values (a base) and
a small number of relationships (rules). For example, given the base, F0 D 0 and F1 D F2 D 1,
the Fibonacci series f0; 1; 1; 2; 3; 5; 8; 13; 21; : : :g can be constructed by the recursive rule Fn D
Fn�1 C Fn�2 for n > 2.
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Fig. 1.4 Notation for a 2�2

contingency table as defined
by Yates [433]

a b N − n
c d n

N − n n N

the small-sample performance of the Pearson chi-squared test might be judged; and
third, to present a correction for continuity to the chi-squared test of independence,
resulting in a better approximation to Fisher’s exact probability test [177]. Yates
succinctly described the recursion process:

In cases where N is not too large the distribution with any particular numerical values of
the marginal totals can be computed quite quickly, using a table of factorials to determine
some convenient term, and working out the rest of the distribution term by term, by simple
multiplications and divisions. If a table of factorials is not available we may start with any
convenient term as unity, and divide by the sum of the terms so obtained [433, p. 219],

where N in this context denotes the total number of observations. Yates defined a
2�2 contingency table using the notation in Fig. 1.4, where n � n0 � N=2.

Giving due credit to Fisher, Yates showed that the probability value cor-
responding to any set of cell frequencies, a; b; c; d, was the hypergeometric
point-probability value given by

P D nŠ n0Š .N � n/Š .N � n0/Š
NŠ aŠ bŠ cŠ dŠ

:

Since the exact probability value of a 2�2 contingency table with fixed marginal
frequency totals and one degree of freedom is equivalent to the probability value of
any one cell, determining the probability value of cell a is sufficient. If

Pfa C 1jN � n; N � n0; Ng D PfajN � n; N � n0; Ng�f .a/ ;

then solving for f .a/ produces

f .a/ D Pfa C 1jN � n; N � n0; Ng
PfajN � n; N � n0; Ng D aŠ bŠ cŠ dŠ

.a C 1/Š .b � 1/Š .c � 1/Š .d C 1/Š

and, after cancelling, yields

f .a/ D bc

.a C 1/.d C 1/
: (1.1)

Yates provided an example analysis based on data from Milo Hellman on bot-
tle feeding and malocclusion that had been published in Dental Cosmos in 1914
[172]. The data are summarized in Fig. 1.5 and the six exhaustive 2�2 contingency
tables from Hellman’s data given in Fig. 1.5 are listed in Table 1.3. Yates generated
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Fig. 1.5 Hellman’s data on
breastfeeding and
malocclusion [172]

Teeth

Feeding type Normal Malocclusion Total

Breast-fed 4 16 20

Total

Bottle-fed 1 21 22

5 37 42

Table 1.3 Six possible arrangements of cell frequencies with N D 42 and marginal frequency
totals of 20, 22, 5, and 37

Table 1 Table 2 Table 3 Table 4 Table 5 Table 6

0 20 1 19 2 18 3 17 4 16 5 15

5 17 4 18 3 19 2 20 1 21 0 22

the entire exact probability distribution as follows.20 The probability of obtaining
zero normal breast-fed babies for the cell arrangement in Table 1 in Table 1.3 was
given by

Pfa D 0j20; 5; 42g D 5Š 37Š 20Š 22Š

42Š 0Š 20Š 5Š 17Š
D 0:030957

and calculated utilizing a table of factorials. Then, the probability values for a D
1; 2; 3; 4; and 5 in Table 1.3 were generated recursively utilizing Eq. (1.1). Thus,

Pfa D 1j20; 5; 42g D 0:030957�.20/.5/

.1/.18/
D 0:171982 ;

Pfa D 2j20; 5; 42g D 0:171982�.19/.4/

.2/.19/
D 0:343965 ;

Pfa D 3j20; 5; 42g D 0:343964�.18/.3/

.3/.20/
D 0:309568 ;

Pfa D 4j20; 5; 42g D 0:309568�.17/.2/

.4/.21/
D 0:125301 ;

and

Pfa D 5j20; 5; 42g D 0:125301�.16/.1/

.5/.22/
D 0:018226 ;

20Exact probability values in this example are given to six places to demonstrate the accuracy of
recursion processes with an arbitrary initial value.
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respectively. In this manner, Yates was able to generate the entire discrete per-
mutation distribution from min.a/ D max.0; N � n � n0/ D max.0; �17/ D 0 to
max.a/ D min.N � n; N � n0/ D min.20; 5/ D 5.

1.3.3 Calculation with an Arbitrary Initial Value

To illustrate Yates’ use of an arbitrary origin in a recursion procedure, consider
Table 1 in Table 1.3 and set Cfa D 0j20; 5; 42g to a small arbitrarily chosen value,
say 5.00; thus, Cfa D 0j20; 5; 42g D 5:00. Then, a recursion procedure produces

Cfa D 1j20; 5; 42g D 5:000000�.20/.5/

.1/.18/
D 27:777778 ;

Cfa D 2j20; 5; 42g D 27:777778�.19/.4/

.2/.19/
D 55:555556 ;

Cfa D 3j20; 5; 42g D 55:555556�.18/.3/

.3/.20/
D 50:000000 ;

Cfa D 4j20; 5; 42g D 50:000000�.17/.2/

.4/.21/
D 20:238095 ;

and

Cfa D 5j20; 5; 42g D 20:238095�.16/.1/

.5/.22/
D 2:943723 ;

for a total of Cf0; : : : ; 5j20; 5; 42g D 5:00 C 27:777778 C � � � C 2:943723 D
161:515152. The desired exact probability values are then obtained by dividing
each relative probability value by the recursively obtained total; for example,

Pfa D 0j20; 5; 42g D 5:000000

161:515152
D 0:030957 ;

Pfa D 1j20; 5; 42g D 27:777778

161:515152
D 0:171982 ;

Pfa D 2j20; 5; 42g D 55:555556

161:515152
D 0:343965 ;

Pfa D 3j20; 5; 42g D 50:000000

161:515152
D 0:309568 ;

Pfa D 4j20; 5; 42g D 20:238095

161:515152
D 0:125301 ;

and

Pfa D 5j20; 5; 42g D 2:943723

161:515152
D 0:018226 :



1.3 Permutation and Parametric Statistical Tests 21

In this manner, the entire analysis could be conducted utilizing an arbitrary initial
value and a recursion procedure, thereby eliminating all factorial expressions. When
the number of potential contingency tables given by max.a/ � min.a/ C 1 is large,
the computational savings can be substantial.

1.3.4 Variable Portion of a Test Statistic

Under permutation, only the variable portion of the test statistic need be computed
for each arrangement of the observed data. As this is often only a very small portion
of the desired test statistic, calculations can often be reduced by several factors; see,
for example, a discussion by Scheffé in 1959 [365, pp. 314–317]. For example, in
computing the permutation probability value of Student’s two-sample t test, only
the sum of the response measurements in the smaller of the two samples need be
calculated for each arrangement of the observed response measurements, thus elim-
inating a great deal of calculation for each random arrangement of the observed data,
a technique utilized by Pitman in his 1937 permutation analysis of two independent
samples [340].

For another example, in 1933 Thomas Eden and Frank Yates substantially
reduced calculations in their randomized-block analysis of Yeoman II wheat shoots
by recognizing that the block and total sums of squares would be constant for all
of their 1,000 random samples and, consequently, the value of z for each sample
would be uniquely defined by the treatment (between) sum of squares, i.e., the
treatment sum of squares was sufficient for a permutation analysis of variance test
[103].21 Also in 1937, Bernard Welch, in a permutation analysis of randomized-
block, considered a monotonically increasing function of z that contained only the
portion of z that varied under permutation [418]. In this case, as with Eden and
Yates, Welch calculated only the treatment sum of squares.

Furthermore, Maurice Kendall and Bernard Babington Smith, in their discussion
of the problem of m rankings, substantially reduced their calculations by recogniz-
ing that the number of rankings (m) and the number of ranks (N) were invariant over
permutation of the observed data and, therefore, calculated only the sum of squared
deviations from the mean of the ranks in their permutation analysis of m rankings
[209]. Likewise, Kendall, Kendall, and Babington Smith, in their permutation anal-
ysis of Spearman’s rank-order correlation coefficient, considered only the sum of
the squared differences between ranks, which reduced computation considerably
for each of the NŠ arrangements of the observed rank-order statistics [211].

21The letter F for the analysis of variance (variance-ratio) test statistic was introduced in 1934 by
George Snedecor at Iowa State University, much to the displeasure of R.A. Fisher [378, p. 15].
Prior to 1934 the test statistic was indicated by z, the letter originally assigned to it by Fisher.
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A few brief examples of analyzing test statistics using only the variable portion
illustrate the efficiency of the procedure. First, consider Spearman’s rank-order cor-
relation coefficient given by

� D 1 �
6

NX

iD1

.xi � yi/
2

N.N2 � 1/
; (1.2)

where xi and yi for 1 D 1; : : : ; N objects represent ranks on two ordinal variables
[381]. In this case, N, 1, and 6 are constants in Eq. (1.2) so it is only necessary to
calculate

PN
iD1.xi � yi/

2 for each arrangement of the ranks. Moreover, for a permu-
tation analysis it suffices to shuffle only the x or the y ranks, holding the other set of
ranks constant.

Second, consider the Pearson product-moment correlation coefficient for two
variables, x and y, given by

rxy D
N

NX

iD1

xiyi �
NX

iD1

xi

NX

iD1

yi
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<

:
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9
=

;

1=2
; (1.3)

where xi and yi for i D 1; : : : ; N objects represent bivariate response measurements
on two interval-level variables. Here, N and all the summations, with the exception
of
PN

iD1 xiyi in Eq. (1.3), are constants under permutation, so for any arrangement of
the observed data it is only necessary to calculate the sum of the products of xi and yi

for i D 1; : : : ; N. Like Spearman’s rank-order correlation coefficient, for efficiency
only the response measurement scores in variable x or y need be shuffled, while the
other variable is held constant.

Finally, consider Cohen’s unweighted kappa measure of inter-rater agreement
given by

O� D

rX

iD1

Oii �
rX

iD1

Eii

N �
rX

iD1

Eii

; (1.4)

where Oii and Eii for i D 1; : : : ; r denote the observed and expected cell frequen-
cies, respectively, on the principal diagonal of an r�r contingency (agreement) table
[70]. Since the Eii, i D 1; : : : ; r, are based on N and the row and column marginal
frequency totals, the variable portion of O� in Eq. (1.4) is simply the sum of the
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observed cell frequencies,
Pr

iD1 Oii, on the principal diagonal for each arrangement
of the cell frequencies, given the fixed marginal frequency totals.

These two features, mathematical recursion with an arbitrary initial value and
computation of only the variable portion under permutation, combined with pow-
erful resampling algorithms and high-speed computers, produce a highly efficient
permutation statistical approach that, today, makes permutation analyses both feasi-
ble and practical for many research applications.

1.4 Overviews of Chaps. 2–11

The book is organized into 11 chapters. This first chapter was an introduction to the
organization of the remaining ten chapters and presented the three main approaches
to permutation statistical methods: exact, moment-approximation, and resampling-
approximation permutation tests. In addition, recursion with an arbitrary initial
value and calculation of only the variable portion of test statistics under permutation
were shown to have distinct advantages in both exact and resampling permutation
methods.

Chapter 2 introduces a generalized Minkowski distance function and describes
the synthesizing algorithm under which various permutation statistical tests and
measures designed for completely randomized data are derived. Chapters 3 and 4
examine tests and measures designed for completely randomized response mea-
surements at the interval level of measurement. Chapters 5 and 6 examine tests
and measures for completely randomized response measurements at the ordinal
(ranked) level of measurement. Chapter 7 examines tests and measures for com-
pletely randomized response measurements at the nominal (categorical) level of
measurement. Both univariate and multivariate response measurements are consid-
ered in Chaps. 3–7.

Chapter 8 utilizes the generalized Minkowski distance function described in
Chap. 2 to develop a synthesizing algorithm under which various permutation
statistical tests and measures designed for randomized-block data are derived. Chap-
ters 9, 10, and 11 examine permutation statistical tests and measures designed for
randomized-block response measurements at the interval, ordinal, and nominal lev-
els of measurement, respectively. Like the completely randomized data analyzed in
Chaps. 3–7, both univariate and multivariate response measurements are considered
in Chaps. 8–11.

1.4.1 Chapter 2: Completely Randomized Data

Chapter 2 develops a general set of synthesizing Multi-Response Permutation
Procedures (MRPP) for permutation statistical tests and measures designed for
completely randomized data sets. Included within MRPP is a generalized chance-
corrected measure of effect size, <. The multi-response permutation procedures
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for completely randomized data are grounded in a generalized Minkowski dis-
tance function and are sufficiently general to accommodate interval-, ordinal-, and
nominal-level response measurements, both univariate and multivariate. Chapter 2
provides an introduction and mathematical foundation for the permutation statisti-
cal tests and measures for completely randomized data that are further developed in
Chaps. 3–7.

1.4.2 Chapter 3: Randomized Interval-Level Data

Chapter 3 applies the multi-response permutation procedures for completely ran-
domized data developed in Chap. 2 to permutation statistical tests and measures
designed to analyze univariate and multivariate responses at the interval level of
measurement. Example statistical tests and measures presented and illustrated in
Chap. 3 include permutation tests corresponding to Student’s t test for two inde-
pendent samples, Hotelling’s generalized T2 test for two independent samples, the
one-way analysis of variance F test (ANOVA), the one-way multivariate analysis of
variance F test (MANOVA), the Bartlett–Nanda–Pillai trace test, and the unbiased
correlation ratio. Also included in Chap. 3 are discussions of measures of effect size
and applications to multiple regression.

1.4.3 Chapter 4: Regression Analysis of Interval Data

Chapter 4 continues and expands the analyses described in Chap. 3, applying
multi-response permutation procedures to permutation statistical tests and measures
designed to analyze univariate and multivariate responses at the interval level of
measurement. In contrast to Chap. 3, Chap. 4 utilizes multi-response permutation
procedures to analyze regression residuals from ordinary least squares (OLS) and
least absolute deviation (LAD) regression models. Example designs presented and
analyzed in Chap. 4 include one-way completely randomized, one-way randomized
with a covariate, one-way randomized block, two-way randomized-block, two-
way factorial, Latin square, split-plot, and two-factor nested analysis-of-variance
designs.

1.4.4 Chapter 5: Randomized Ordinal-Level Data—I

Chapter 5 applies the multi-response permutation procedures for completely ran-
domized data developed in Chap. 2 to permutation statistical tests and measures
designed to analyze univariate and multivariate responses at the ordinal (ranked)
level of measurement. Example statistical tests and measures presented and
illustrated in Chap. 5 include permutation tests corresponding to the Wilcoxon
two-sample rank-sum test, the Kruskal–Wallis multi-sample rank-sum test, the
Ansari–Bradley rank-sum test for dispersion, the Taha sum-of-squared-ranks test,
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the Mood rank-sum test for dispersion, the Brown–Mood median test, the Mielke
power-of-rank function tests, the Whitfield two-sample rank-sum test, and the
Cureton rank-biserial test.

1.4.5 Chapter 6: Randomized Ordinal-Level Data—II

Chapter 6 generalizes the analyses described in Chap. 5 to multivariate responses
at the ordinal level of measurement. As in Chap. 5, example statistical tests and
measures presented and illustrated in Chap. 6 include permutation tests correspond-
ing to the Wilcoxon two-sample rank-sum test, the Kruskal–Wallis multiple-sample
rank-sum test, the Ansari–Bradley rank-sum test for dispersion, the Taha sum-of-
squared-ranks test, the Mood rank-sum test for dispersion, the Brown–Mood median
test, the Mielke power-of-rank function tests, the Whitfield two-sample rank-sum
test, and the Cureton rank-biserial test.

1.4.6 Chapter 7: Randomized Nominal-Level Data

Chapter 7 applies the multi-response permutation procedures for completely ran-
domized data developed in Chap. 2 to permutation statistical tests and measures
designed to analyze univariate and multivariate responses at the nominal (categor-
ical) level of measurement. Example statistical tests and measures presented and
illustrated in Chap. 7 include permutation tests corresponding to the Goodman and
Kruskal’s ta and tb measures of categorical association, Light and Margolin’s cat-
egorical analysis of variance, tests to analyze multiple binary choices, and various
multivariate measures of association for a nominal-level independent variable and
nominal-, ordinal-, and interval-level dependent variables.

1.4.7 Chapter 8: Randomized Block Data

Chapter 8 develops a general set of synthesizing Multivariate Randomized-
Block Permutation (MRBP) procedures for permutation statistical tests and
measures designed for randomized-block data sets. Included within MRBP is a
generalized chance-corrected within-block measure of effect size, <. The multi-
variate randomized-block permutation procedures are grounded in a generalized
Minkowski distance function and are sufficiently general to accommodate interval-,
ordinal-, and nominal-level response measurements, both univariate and multi-
variate. Chapter 8 provides an introduction and mathematical foundation for the
permutation statistical tests and measures that are further developed in Chaps. 9, 10,
and 11.
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1.4.8 Chapter 9: Blocked Interval-Level Data

Chapter 9 applies the multivariate randomized-block permutation procedures devel-
oped in Chap. 8 to permutation statistical tests and measures designed to analyze
univariate and multivariate responses at the interval level of measurement. Example
statistical tests and measures presented and illustrated in Chap. 9 include permuta-
tion tests corresponding to Student’s matched-pairs t test, Hotelling’s generalized
T2 test for two dependent samples, the randomized-block F test, the multivariate
randomized-block test, and Pearson’s product-moment correlation coefficient.

1.4.9 Chapter 10: Blocked Ordinal-Level Data

Chapter 10 applies the multivariate randomized-block permutation procedures
developed in Chap. 8 to permutation statistical tests and measures designed to
analyze univariate and multivariate responses at the ordinal (rank) level of measure-
ment. Example statistical tests and measures presented and illustrated in Chap. 10
include permutation tests corresponding to the Wilcoxon signed-ranks test, the
Friedman analysis of variance for ranks, Spearman’s rank-order and footrule mea-
sures of correlation, Kendall’s coefficient of concordance, Cohen’s weighted kappa
measure of chance-corrected agreement, Kendall’s ta and tb measures of ordinal
association, Stuart’s tc statistic, Goodman and Kruskal’s � measure of ordinal asso-
ciation, and Somers’ dxy and dyx measures of ordinal association.

1.4.10 Chapter 11: Blocked Nominal-Level Data

Chapter 11 applies the multivariate randomized-block permutation procedures
developed in Chap. 8 to permutation statistical tests and measures designed to
analyze univariate and multivariate responses at the nominal (categorical) level of
measurement. Example statistical tests and measures presented and illustrated in
Chap. 11 include permutation tests corresponding to McNemar’s and Cochran’s Q
tests, Cohen’s unweighted kappa measure of chance-corrected agreement, Yule’s
Q and Y measures of association, percentage differences, the odds ratio, and chi-
squared.

1.5 Coda

Chapter 1 provided an introduction to the next ten chapters, compared the popu-
lation and permutation models of statistical analysis, and presented the three main
approaches to permutation statistical methods: exact, moment-approximation, and
resampling-approximation permutation tests. Chapters 2 and 8 introduce permu-
tation procedures for completely randomized and randomized-block data, respec-
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tively. The substantive material in Chaps. 3–7 for completely randomized data, and
Chaps. 9–11 for randomized-block data contain only an illustrative sample of possi-
ble applications of permutation statistical methods.

It is not the intent of the authors to provide a synthesis of all statistical methods,
but rather to derive and illustrate a common model under which many statistical
tests and measures can be understood. Interestingly, because of the organization
of the permutation model it was inevitable that some new statistical tests and
measures were uncovered that were previously unknown and for which applica-
tions might prove interesting. Finally, an emphasis on permutation-based statistical
methods throughout the book promotes permutation methods as a data-dependent,
distribution-free approach to statistical analysis that does not require random sam-
pling from a specified, well-defined population, and yields exact probability values.

Chapter 2
Chapter 2 introduces Multi-Response Permutation Procedures (MRPP) for
univariate and multivariate completely randomized response measurement data
and establishes the relationships between the MRPP test statistics, ı and < devel-
oped in Chap. 2, and selected conventional tests and measures designed for the
analysis of completely randomized data at the interval level of measurement in
Chaps. 3 and 4, the ordinal level of measurement in Chaps. 5 and 6, and the nominal
level of measurement in Chap. 7.
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This second chapter of Permutation Statistical Methods introduces a generalized
distance function that provides the foundation for a set of multi-response permu-
tation procedures specifically designed for univariate and multivariate completely
randomized data. Multi-Response Permutation Procedures (MRPP) were introduced
by Mielke, Berry, and Johnson in 1976 and constitute a class of permutation meth-
ods for one or more response measurements on each object that were initially
developed to distinguish possible differences among two or more groups of objects
[300].1 The multi-response permutation procedures presented here are based on a
generalized Minkowski distance function and provide a synthesizing foundation for
a variety of statistical tests and measures for completely randomized data that are
further developed in Chaps. 3–7.

2.1 Minkowski Distance Function

Hermann Minkowski (1864–1909), German mathematician and creator of the
geometry of numbers, utilized geometrical methods to solve problems in num-
ber theory, mathematical physics, and the theory of relativity. Minkowski was a
close friend of David Hilbert while teaching at Königsberg University and taught
Albert Einstein while employed at Eidgenössische Polytechnikum in Zürich (now,
ETH Zürich). In 1891 Minkowski introduced a measure of metric distance between

1The 1976 paper by Mielke, Berry, and Johnson was the first published account of MRPP [300].
Previously, Mielke utilized MRPP in a study sponsored by the National Communicable Disease
Center that involved comparisons of proportional contributions of five plague organism protein
bands based on electrophoresis measurements obtained from samples of organisms associated with
distinct geographical regions.
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two points in Crelle’s Journal [310].2 The Minkowski metric distance of order p
between two points in an r-dimensional Euclidean space, x0 D .x1; x2; : : : ; xr/ and
y0 D .y1; y2; : : : ; yr/ 2 R

r, is given by

d.x; y/ D
 

rX

iD1

ˇ̌
xi � yi

ˇ̌p
!1=p

;

where p � 1.
The Minkowski distance function is typically used with p D 1; 2, or 1. When

p D 1, the distance is a first-order Minkowski metric, often called a city-block,
Manhattan [231], rectilinear [54], or taxicab [222] metric, the latter named for the
distance between two points that a car or taxicab would drive in a city laid out in
square blocks. When p D 2, the distance is a second-order Minkowski metric and is
the ordinary Euclidean distance between points, a generalization of the Pythagorean
theorem to more than two coordinates. When p D 1, the Minkowski metric is
known as the Tchebycheff (Chebyshev), von Neumann, or, in the two-dimensional
case, the chess-board Minkowski distance [167].

Conventional statistical tests and measures, such as t tests, F tests, and ordinary
least-squares (OLS) regression and correlation, are based on squared Euclidean dis-
tances between response measurement scores, which are not metric. The Minkowski
distance function, however, is limited to metric distances and, under its standard def-
inition, cannot accommodate most conventional statistical tests. Therefore, consider
a generalized Minkowski distance function given by

	.x; y/ D
 

rX

iD1

ˇ̌
xi � yi

ˇ̌p
!v=p

; (2.1)

where p � 1 and v > 0 [297, p. 5]. When r � 2, p D 2, and v D 1, 	.x; y/ is
rotationally invariant in an r � 2 dimensional space. When v D p D 1, 	.x; y/ is
a city-block metric, which is not rotationally invariant. When v D 1 and p D 2,
	.x; y/ is an ordinary Euclidean distance metric. And when v D p D 2, 	.x; y/ is a
squared Euclidean distance, which is not a metric distance function since the trian-
gle inequality is not satisfied.3

2The Journal für die Reine und Angewandte Mathematik was founded by August Leopold Crelle
in 1826. It continues today, although it is more popularly known as Crelle’s Journal.
3A distance function is a metric if it satisfies three properties given by (1) 	.x; y/ � 0 and
	.x; x/ D 0, i.e., the distance is positive between two different points and is equal to zero from
any point to itself; (2) the distance is symmetric: 	.x; y/ D 	.y; x/, i.e., the distance between
points x and y is the same in either direction; and (3) the triangle inequality is satisfied: 	.x; y/ �
	.x; z/ C 	.z; y/, i.e., the distance between any two points is the shortest distance along any path.
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2.2 Multi-response Permutation Procedures

Multi-Response Permutation Procedures (MRPP) were originally designed to sta-
tistically determine possible differences among one or more response measure-
ment scores among two or more groups of objects or subjects [300]. Let 
 D
f!1; : : : ; !Ng denote a finite sample of N objects that represents a target population,
let x0

i D .x1i; : : : ; xri/ be a transposed vector of r commensurate response measure-
ment scores for object !i, i D 1; : : : ; N, and let S1; : : : ; Sg designate an exhaustive
partitioning of the N objects into g disjoint treatment groups.4 The MRPP test
statistic is a weighted mean given by

ı D
gX

iD1

Ci�i ; (2.2)

where Ci > 0 is a positive weight for treatment group Si, i D 1; : : : ; g,Pg
iD1 Ci D 1,

�i D
 

ni

2

!�1X

j<k

	.j; k/ ‰i.!j/ ‰i.!k/ (2.3)

is the average distance-function value for all distinct pairs of objects in treatment
group Si, i D 1; : : : ; g, ni � 2 is the number of a priori objects classified into treat-
ment group Si, i D 1; : : : ; g,

N D
gX

iD1

ni;

P
j<k is the sum over all j and k such that 1 � j < k � N, and ‰.�/ is an indicator

function given by

‰i.!j/ D
8
<

:
1 if !j 2 Si ,

0 otherwise .

The choice of the treatment-group weights, C1; : : : ; Cg, and the generalized
Minkowski distance function given in Eq. (2.1) on p. 30 specify the structure of

4Multi-response permutation procedures also provide for a group of unclassified response mea-
surement scores such as might result from a survey with question choices that include “none of the
above” or “not applicable.” See, for example, a 1983 article on lead concentrations in inner-city
soils by Mielke, Anderson, Berry, Mielke, Chaney, and Leech [302] and a discussion by Mielke
and Berry in 2007 [297, pp. 35–40].
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MRPP. The original choice of Ci given by Mielke, Berry, and Johnson in 1976 was

Ci D ni.ni � 1/
gX

jD1

nj.nj � 1/

for i D 1; : : : ; g [300]. However, a variety of other treatment-group weights can be
considered; for example,

Ci D ni

N
; Ci D ni � 1

N � g
; or Ci D 1

g

for i D 1; : : : ; g. The efficient choice of Ci D ni=N, i D 1; : : : ; g, forces the popu-
lation variance, �2

x , to be proportional to N�2 and eliminates all terms of order 1=N
in the variance of ı [297, pp. 26, 30].

The null hypothesis (H0) states that equal probabilities are assigned to each of
the

M D NŠ
gY

iD1

niŠ

possible, equally-likely allocations of the N objects to the g treatment groups,
S1; : : : ; Sg. Under H0 the N multi-response measurements are exchangeable multi-
variate random variables.5 The probability value associated with an observed value
of ı, ıo, is the probability under the null hypothesis (H0) of observing a value of ı

as extreme or more extreme than ıo. Thus, an exact probability value for ıo may be
expressed as

P
�
ı � ıojH0

� D number of ı values � ıo

M
:

When M is very large, an approximate probability value for ı may be obtained
from a resampling procedure, where

P
�
ı � ıojH0

� D number of ı values � ıo

L

5A sufficient condition for a permutation statistical test is the exchangeability of the random vari-
ables. Sequences that are independent and identically distributed (i.i.d.) are always exchangeable,
but so is sampling without replacement from a finite population. However, while i.i.d. implies
exchangeability, exchangeability does not imply i.i.d. [150, 168, 217].
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and L denotes the number of randomly sampled test statistic values. Typically, L is
set to a large number to ensure accuracy.

Number of Resamplings Necessary

Exact permutation tests are restricted to relatively small samples, given the large
number of possible permutations. On the other hand, resampling permutation tests
are not limited by the size of the samples. Resampling permutation tests also have
been shown to provide good approximations to exact probability values as a function
of the number of resamplings considered. An early concern regarding the system-
atic use of resampling permutation tests was the speed of the computers used for
calculating the probability values. Given modern high-speed computers, the ques-
tion of computational speed is moot when probability values are not too small. The
remaining question is: how many resamplings are required for a specified accuracy?

The number of resamplings suggested in books and articles on permutation meth-
ods is varied and likely dated due to previous limitations of computer speed and
memory. Some authors have proposed as few as 100 resamplings to as many as
5,000; for example, see discussions by Dwass in 1957 [100]; Hope in 1968 [180];
Edwards in 1985 [110]; Jockel in 1986 [193]; Keller-McNulty and Higgins in 1987
[199]; Bailer in 1989 [16]; Kim, Nelson, and Startz in 1991 [216]; Manly in 1991
[258, pp. 32–35]; McQueen in 1992 [274]; Rickerts and Berry in 1994 [347];
Kennedy in 1995 [212]; Maxim in 1999 [265, p. 356]; Lunneborg in 2000 [256,
pp. 210–213]; Good in 2001 [149, p. 47]; Higgins in 2004 [176]; and Edgington
and Onghena in 2007 [109, pp. 40–41]. On the other hand, examples provided by
Howell as recently as 2007 utilized as many as 10,000 resamplings [184, pp. 642–
646]. Resampling computing packages such as Resampling Stats [14] and StatXact
[15] typically use 10,000 resamplings as the default value.

The accuracy of a resampling probability value depends on both the probability
value (P) and the number of resamplings (L). Confidence limits on the probability
value can be obtained from the binomial distribution when L is large. The 1 � ˛

confidence limits of the binomial distribution are given by

OP ˙ Z˛=2

r
P.1 � P/

L
; (2.4)

where P is the probability value in question and OP denotes the estimated value of P.
Define

xi D
8
<

:
1 if OP � OPo ,

0 otherwise ,
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for i D 1; : : : ; L, where OPo denotes the observed value of OP. Then OP, the expected
value of OP, the variance of OP, and the skewness of OP are given by

OP D 1

L

LX

iD1

xi ;

EŒ OP D P ;

�2
OP D P.1 � P/

L
;

and

� OP D 1 � 2Pp
LP.1 � P/

;

respectively [195, p. 916]. If L is small and P is close to either 0 or 1, the skewness
term � OP becomes large and Eq. (2.4) may not be appropriate. For example, if L D
100 and P D 0:01,

� OP D 1 � 2Pp
LP.1 � P/

D 1 � 2.0:01/p
100.0:01/.1 � 0:01/

D 0:9849 :

Table 2.1 lists a selected number of probability values (P D 0:50, 0.25, 0.10,
0.05, and 0.01), a variety of resamplings (L D 100, 1000, 10,000, 1,000,000, and
100,000,000), computed skewness values, errors on the 95 % confidence limits
determined from Eq. (2.4), and the simulated lower and upper errors on the 95 %
confidence limits based on L resamplings and determined from the smallest value
for which the cumulative binomial distribution is equal to or less than 0.025 and
equal to or greater than 0.975, respectively. In general, as can be seen from Table 2.1,
two additional orders of magnitude are required to increase accuracy by just one
decimal place.

To illustrate the number of resamplings required to yield a predetermined num-
ber of decimal places of accuracy, given a known probability value, consider the
interval-level data listed in Fig. 2.1.

The data listed in Fig. 2.1 are adapted from Berry, Mielke, and Mielke [38]
and represent soil lead (Pb) quantities from two school districts in metropolitan
New Orleans. Elevated Pb levels have been linked to a number of physiological,
neurological, and endocrine effects in children, including difficulties in learning,
perception, social behavior, and fine motor skills. The n1 D 20 soil lead samples col-
lected in District 1 yielded a mean value of Nx1 D 203:9350 mg/kg and the n2 D 20

soil lead samples collected in District 2 yielded a mean value of Nx2 D 1;661:7800

mg/kg. There are

M D .n1 C n2/Š

n1Š n2Š
D .20 C 20/Š

20Š 20Š
D 137;846;528;820
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Table 2.1 Five probability (P) values, four levels of resampling (L), skewness (�
OP), and asymp-

totic and simulated errors on 95 % confidence limits; table adapted from Johnston, Berry, and
Mielke [195, p. 917]

Error on 95 % confidence limits
P L �

OP Asymptotic Lower Upper

0.50 100 0.00 0.10 0.10 0.10

10;000 0.00 0.010 0.010 0.010

1;000;000 0.00 0.0010 0.0010 0.0010

100;000;000 0.00 0.00010 0.00010 0.00010

0.25 100 0.11547 0.09 0.08 0.09

10;000 0.01155 0.009 0.009 0.009

1;000;000 0.00115 0.0009 0.0008 0.0008

100;000;000 0.00012 0.00009 0.00008 0.00008

0.10 100 0.26667 0.06 0.05 0.06

10;000 0.02667 0.006 0.006 0.006

1;000;000 0.00267 0.0006 0.0006 0.0006

100;000;000 0.00027 0.00006 0.00006 0.00006

0.05 100 0.41295 0.04 0.04 0.05

10;000 0.04129 0.004 0.004 0.004

1;000;000 0.00413 0.0004 0.0004 0.0004

100;000;000 0.00041 0.00004 0.00004 0.00004

0.01 100 0.98494 0.02 0.01 0.02

10;000 0.09849 0.002 0.002 0.002

1;000;000 0.00985 0.0002 0.0002 0.0002

100;000;000 0.00098 0.00002 0.00002 0.00002

possible permutations of the soil lead data listed in Fig. 2.1 to be considered. Under
the null hypothesis of no difference between the two group means in the popula-
tion, a Fisher–Pitman permutation F test [38] yields an exact two-sided probability
value of

P
�
F � FojH0

� D number of F values � Fo

M

D 2;056;423;782

137;846;528;820
D 0:0149182123

for the soil lead data listed in Fig. 2.1. Figure 2.2 summarizes the results for eight
different resamplings of the data listed in Fig. 2.1 and the associated two-sided
resampling probability values with ˛ D 0:05. Each of the probability values was
generated using a common seed and the same pseudorandom number generator
[197]. The last row of Fig. 2.2 contains the exact probability value based on all
M D 137;846;528;820 possible permutations of the soil lead data listed in Fig. 2.1.
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Fig. 2.1 Ordered soil Pb
data in mg/kg from two
school attendance districts in
metropolitan New Orleans

n District 1 District 2

1 16.0 4.7
2 34.3 10.8
3 34.6 35.7
4 57.6 53.1
5 63.1 75.6
6 88.2 105.5
7 94.2 200.4
8 111.8 212.8
9 112.1 212.9

10 139.0 215.2
11 165.6 257.6
12 176.7 347.4
13 216.2 461.9
14 221.1 566.0
15 276.7 984.0
16 362.8 1,040.0
17 373.4 1,306.0
18 387.1 1,908.0
19 442.2 3,559.0
20 706.0 21,679.0

Fig. 2.2 Comparison of
eight resampled probability
values with the exact
probability value given in the
last row, based on the soil
lead data listed in Fig. 2.1

Resampling (L)

100 0.06

1,000

10,000

0.020

0.0110

100,000 0.01556

1,000,000 0.014946

10,000,000 0.0149302

100,000,000

1,000,000,000

0.01488510

0.014917218

Exact P value 0.0149182123

Probability (P)

Given the results of the resampling probability analyses listed in Fig. 2.2, L D
1;000;000 is recommended whenever three decimal places of accuracy are required.
There are four reasons for promoting L D 1;000;000 resamplings: accuracy, practi-
cality, error, and consistency. First, inspection of Fig. 2.2 indicates that with an exact
probability value of P D 0:0149182123 and ˛ D 0:05, L D 1;000;000 resamplings
is the minimum number of resamplings necessary to ensure three decimal places
of accuracy. Second, given the speed of modern computers and the efficiency of
resampling algorithms, such as the Mersenne Twister, L D 1;000;000 resamplings
can be used on a routine basis. Third, there is the potential for additional type I
error, the magnitude of which is of concern when the number of resamplings (L)
is very small. Fourth, some researchers object to the use of resampling statistics
because different pseudorandom number generators and different seeds can produce
widely varying results. This is certainly true when L is very small. For example,
in Fig. 2.2, L D 100 yields a probability value of P D 0:06. Varying the seed with
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L D 100 and the same pseudorandom number generator produced observed prob-
ability values ranging from P D 0:01 to P D 0:11. However, with L D 1;000;000,
varying the seed produced no differences in the third decimal place.

When the number of possible arrangements (M) is very large and the exact prob-
ability value (P) is exceedingly small, a resampling permutation procedure may
produce no ı values equal to or less than ıo, even with L D 1;000;000, yielding
an approximate resampling probability value of P D 0:00. In such cases, moment-
approximation permutation procedures based on fitting the first three exact moments
of the discrete permutation distribution to a Pearson type III distribution provide
approximate probability values, as detailed in Chap. 1, Sect. 1.2.2; see also refer-
ences [284] and [300].

An Index of Agreement

It is oftentimes desirable to have an index of the amount of agreement among
response measurement scores within g treatment groups. A useful measure for this
purpose is a chance-corrected within-group coefficient of agreement given by

< D 1 � ı

�ı

; (2.5)

where �ı is the arithmetic average of the M ı values calculated on all possible
arrangements of the observed response measurement scores, given by

�ı D 1

M

MX

iD1

ıi : (2.6)

< is a chance-corrected measure of agreement since EŒ<jH0 D 0.6 Because �ı is
a constant under H0, the permutation distributions of ı and < are equivalent, viz.,

P
�
ı � ıojH0

� D P .< � <ojH0/ ;

where

<o D 1 � ıo

�ı

and ıo and <o denote the observed values of ı and <, respectively. Possible values
of < range from slightly negative values to a maximum of < D C1 for the extreme

6As will be shown in Chap. 3, < may also be interpreted as a chance-corrected measure of effect
size.
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case when all response measurements on objects within each of the g classified
treatment groups are identical, i.e., ı D 0.

The generalized Minkowski distance function, 	.x; y/, as defined in Eq. (2.1)
on p. 30, determines the analysis space of the MRPP test statistic, ı. The data
space in question for almost all statistical analyses is an ordinary Euclidean dis-
tance space. If the distance function of the MRPP test statistic is based on p D 2

and v D 1, then the data and analysis spaces are congruent, so that the resulting
statistical analyses represent the data in question. Unfortunately, commonly used
statistical analyses based on the arithmetic mean, such as Student’s two-sample t
test and Fisher’s one-way analysis of variance, are based on p D v D 2, yielding a
non-metric squared-distance analysis space that is not congruent with the data space.
The difference between the data and analysis spaces associated with the most pop-
ular statistical analyses is a reason that problems occur with what should be routine
analyses. Examples illustrating this problem are given elsewhere; see, for example,
references [41, pp. 404–410] and [297, pp. 50–53]. Any statistical analysis is ques-
tionable when the data and analysis spaces are not congruent.

2.2.1 Chance-Corrected Agreement Measures

Chance-corrected measures yield values that are interpreted as a proportion above
that expected by chance alone. Chance-corrected agreement measures provide clear
and meaningful interpretations of the amount of, or lack of, agreement present in
the data. In general, chance-corrected measures of agreement, such as <, are equal
to C1 when perfect agreement among the response measurement scores occurs, 0
when agreement is equal to that expected under independence, and negative when
agreement among the response measurement scores is less than that expected by
chance. For example, define a chance-corrected measure such that

Ai D 100

�
Oi � Ei

N � Ei

�
;

where Oi and Ei denote the Observed (earned) and Expected (chance) score from
purely guessing, respectively, on a multiple-choice examination with N questions
for the ith student in a class of m students [175, p. 912].

Thus, on a 50-question multiple-choice examination with five choices per ques-
tion, chance would indicate that a student could answer 50 � 0:20 D 10 questions
correctly simply by guessing. If a student answered only eight questions correctly,
then a chance-corrected measure of agreement would yield a grade of

A D 100

�
8 � 10

50 � 10

�
D 100

��2

40

�
D �5 ;

since the score was less than expected by chance, i.e., only eight of 50 questions
were answered correctly. The lowest grade would occur when a student answered
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all 50 questions incorrectly, yielding a score of

A D 100

�
0 � 10

50 � 10

�
D 100

��10

40

�
D �25 :

Note that while a student with the highest possible score of 50 correct answers would
score

A D 100

�
50 � 10

50 � 10

�
D 100

�
40

40

�
D 100 ;

the lowest possible score is �25, not �100. Thus, the distributions of chance-
corrected measures are usually asymmetric.

Since the mean value of < under H0 is 0, homogeneity of within-classified-
group response measurements is associated with < > 0, and heterogeneity of
within-classified-group response measurements is associated with < � 0 [28]. The
distribution of < is usually asymmetric and the upper and lower bounds depend on
both the nature of the data and the structure of ı. The degree of homogeneity or
heterogeneity depends on the discrete permutation distribution of <. If large values
of n1; : : : ; ng and N are involved, a very small value of P.ı � ıojH0/ may be asso-
ciated with a small positive observed value of <, say <o. Conversely, with small
values of n1; : : : ; ng and N, a large value of <o may be associated with a relatively
large value of P.ı � ıojH0/.

2.2.2 Example UnivariateMRPP Analysis with v D 2

Although multi-response permutation procedures were originally designed for
analyzing multivariate response measurement scores, they can also be used for
analyzing univariate data. Consider a comparison between two mutually exclusive
groups of objects, S1 and S2, where a single response measurement, x, has been
obtained from each object. For this example, there is r = 1 response measurement
score for each object, g D 2 disjoint groups, and a total of N D 6 objects with
n1 D 2 and n2 D 4 in treatment groups S1 and S2, respectively. Suppose that the
n1 D 2 observed response measurement scores for treatment group S1 are f5; 4g and
the n2 D 4 response measurement scores for treatment group S2 are f2; 3; 7; 9g.
The treatment-group sizes and the response measurement scores are deliberately
kept small to simplify the example analysis. The treatment-group sizes and the uni-
variate response measurement scores are listed in Fig. 2.3.

For this example analysis, let v D 2, p D 2, r D 1,

C1 D n1

N
D 2

6
; and C2 D n2

N
D 4

6
;
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Fig. 2.3 Example data with
g D 2, r D 1, n1 D 2,
n2 D 4, and
N D n1 C n2 D 6

Group Object Value

S1 1 5
2 4

S2 3 2
4 3
5 7
6 9

w
w

w
w
w
w

so that the S1 and S2 treatment groups are weighted proportional to their group sizes
of n1 D 2 and n2 D 4, respectively. For univariate response measurement scores
with r D 1, Eq. (2.1) on p. 30 reduces to

	.j; k/ D
�ˇ̌

xj � xk

ˇ̌p�v=p
: (2.7)

Thus, for treatment group S1 with n1 D 2 objects, p D 2, and v D 2, the generalized
Minkowski distance function yields

	.1; 2/ D
�ˇ̌

5 � 4
ˇ̌2 �2=2 D 1:00 ;

and for treatment group S2 with n D 4 objects, the generalized Minkowski distance
function yields

	.3; 4/ D
�ˇ̌

2 � 3
ˇ̌2 �2=2 D 1:00 ;

	.3; 5/ D
�ˇ̌

2 � 7
ˇ̌2 �2=2 D 25:00 ;

	.3; 6/ D
�ˇ̌

2 � 9
ˇ̌2 �2=2 D 49:00 ;

	.4; 5/ D
�ˇ̌

3 � 7
ˇ̌2 �2=2 D 16:00 ;

	.4; 6/ D
�ˇ̌

3 � 9
ˇ̌2 �2=2 D 36:00 ;

and

	.5; 6/ D
�ˇ̌

7 � 9
ˇ̌2 �2=2 D 4:00 :
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Then following Eq. (2.3) on p. 31, the average distance-function values for all
distinct pairs of objects in treatment groups Si, i D 1; 2, are

�1 D
 

n1

2

!�1h
	.1; 2/

i
D
 

2

2

!�1

.1:00/ D 1:00

and

�2 D
 

n2

2

!�1h
	.3; 4/ C 	.3; 5/ C 	.3; 6/ C 	.4; 5/ C 	.4; 6/ C 	.5; 6/

i

D
 

4

2

!�1

.1:00 C 25:00 C 49:00 C 16:00 C 36:00 C 4:00/ D 21:8333 :

Following Eq. (2.2) on p. 31, the observed weighted mean of the �1 and �2 values,
based on v D 2 and Ci D ni=N for i D 1; 2 is

ıo D C1�1 C C2�2 D
�

2

6

�
.1:00/ C

�
4

6

�
.21:8333/ D 14:8889 :

Smaller values of ıo indicate a concentration of response measurement scores
within the g treatment groups, whereas larger values of ıo indicate a lack of concen-
tration between response measurement scores among the g treatment groups [301].
The N D 6 objects can be partitioned into g D 2 treatment groups, S1 and S2, respec-
tively, with n1 D 2 and n2 D 4 response measurement scores preserved in

M D NŠ

n1Š n2Š
D 6Š

2Š 4Š
D 15

possible, equally-likely ways. The M D 15 possible arrangements of the observed
data in Fig. 2.3, along with the corresponding �1, �2, and ı values, are listed in
Table 2.2 and ordered by the ı values from lowest to highest. The observed MRPP
test statistic, ıo D 14:8889, obtained from the realized arrangement,

f5; 4g f2; 3; 7; 9g ;

(Order 9 in Table 2.2) is not unusual since five of the remaining ı values (ı11 to ı15)
exceed the observed value of ıo D 14:8889 and 10 values of ı (ı1 to ı10) are equal to
or less than the observed value. If all arrangements of the N D 6 observed response
measurement scores listed in Fig. 2.3 occur with equal chance, the exact probabil-
ity value of ıo D 14:8889 computed on the M D 15 possible arrangements of the
observed data with n1 D 2 and n2 D 4 response measurement scores preserved for
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Table 2.2 Permutations of
the observed data in Fig. 2.3
for treatment groups S1 and
S2 with values for �1, �2, and
ı based on v D 2, ordered by
values of ı from lowest to
highest

Order S1 S2 �1 �2 ı

1 {7, 9} {2, 5, 3, 4} 4:0000 3:3333 3:5556

2 {2, 3} {5, 4, 7, 9} 1:0000 9:8333 6:8889

3 {2, 4} {5, 3, 7, 9} 4:0000 13:3333 10:2222

4 {5, 9} {2, 3, 4, 7} 16:0000 9:3333 11:5556

5 {3, 4} {2, 5, 7, 9} 1:0000 17:8333 12:2222

6 {2, 5} {3, 4, 7, 9} 9:0000 15:1667 13:1111

7 {5, 3} {2, 4, 7, 9} 4:0000 19:3333 14:2222

8 {5, 7} {2, 3, 4, 9} 4:0000 19:3333 14:2222

9 {5, 4} {2, 3, 7, 9} 1:0000 21:8333 14:8889

10 {4, 9} {2, 5, 3, 7} 25:0000 9:8333 14:8889

11 {4, 7} {2, 5, 3, 9} 9:0000 19:1667 15:7778

12 {3, 7} {2, 5, 4, 9} 16:0000 17:3333 16:8889

13 {2, 7} {5, 3, 4, 9} 25:0000 13:8333 17:5556

14 {3, 9} {2, 5, 4, 7} 36:0000 8:6667 17:7778

15 {2, 9} {5, 3, 4, 7} 49:0000 5:8333 20:2222

each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 10

15
D 0:6667 :

For comparison, a conventional Student two-sample pooled t test calculated on
the N D 6 response measurement scores listed in Fig. 2.3 yields an observed value
of to D �0:3004. Assuming independence, normality, and homogeneity of variance,
t is approximately distributed as Student’s t under the null hypothesis with N � 2 D
6 � 2 D 4 degrees of freedom. Under the null hypothesis, the observed value of
to D �0:3004 yields an approximate two-sided probability value of P D 0:7789.

Following Eq. (2.6) on p. 37, the exact average value of the M D 15 ı values
listed in Table 2.2 is �ı D 13:60. Thus, the observed chance-corrected coefficient
of agreement, following Eq. (2.5) on p. 37, is

<o D 1 � ıo

�ı

D 1 � 14:8889

13:60
D �0:0948 ;

indicating that within-group agreement is well below that expected by chance.

2.2.3 Example UnivariateMRPP Analysis with v D 1

Permutation statistical tests and measures are data-dependent, distribution-free, and
non-parametric; consequently, they require no distributional assumptions and make
no estimates of population parameters. Thus, it is not necessary to set v D 2 and to
square the response-measurement differences between objects. While conventional



2.2 Multi-response Permutation Procedures 43

tests and measures that assume normality must estimate the mean and variance, �x

and �2
x , of the normal distribution, both of which are based on squared deviations

from the mean, permutation tests and measures do not assume normality and are
not restricted to v D 2, which is not a metric distance function. A distance function
based on v D 1 is an attractive alternative to v D 2 as it is a metric distance function,
satisfies the triangle inequality, is robust to extreme values, provides an easy-to-
understand ordinary Euclidean distance between objects, and ensures that the data
and analysis spaces are congruent [284–287,289,295]. In addition, choosing v D 1

over v D 2 can make a substantial difference in the results of an MRPP analysis;
see, for example, a discussion by Mielke and Berry in 2007 [297, pp. 45–50].

To illustrate the computation of ı with v D 1, consider the same finite sample of
N D 6 objects listed in Fig. 2.3 on p. 40 and let S1 and S2 denote an exhaustive par-
titioning of the N D 6 objects into g D 2 disjoint treatment groups. As previously,
let S1 consist of n1 D 2 objects, each with a single response measurement, and let
S2 consist of n2 D 4 objects, each with a single response measurement.

Given the univariate data listed in Fig. 2.3, let r D 1, p D 2,

C1 D n1

N
D 2

6
; and C2 D n2

N
D 4

6
;

but in this case set v D 1 instead of v D 2, employing ordinary Euclidean dis-
tance instead of squared Euclidean distance between objects. Following Eq. (2.7)
on p. 40 for treatment group S1 with n1 D 2 objects, p D 2, and v D 1, the general-
ized Minkowski distance function yields

	.1; 2/ D
�ˇ̌

.5 � 4
ˇ̌2 �1=2 D 1:00 ;

and for treatment group S2 with n D 4 objects, the generalized Minkowski distance
function yields

	.3; 4/ D
�ˇ̌

2 � 3
ˇ̌2 �1=2 D 1:00 ;

	.3; 5/ D
�ˇ̌

2 � 7
ˇ̌2 �1=2 D 5:00 ;

	.3; 6/ D
�ˇ̌

2 � 9
ˇ̌2 �1=2 D 7:00 ;

	.4; 5/ D
�ˇ̌

3 � 7
ˇ̌2 �1=2 D 4:00 ;

	.4; 6/ D
�ˇ̌

3 � 9
ˇ̌2 �1=2 D 6:00 ;
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and

	.5; 6/ D
�ˇ̌

7 � 9
ˇ̌2 �1=2 D 2:00 :

Then following Eq. (2.3) on p. 31, the average distance-function values for all dis-
tinct pairs of objects in treatment group Si, i D 1; 2, are

�1 D
 

n1

2

!�1h
	.1; 2/

i
D
 

2

2

!�1

.1:00/ D 1:00

and

�2 D
 

n2

2

!�1h
	.3; 4/ C 	.3; 5/ C 	.3; 6/ C 	.4; 5/ C 	.4; 6/ C 	.5; 6/

i

D
 

4

2

!�1

.1:00 C 5:00 C 7:00 C 4:00 C 6:00 C 2:00/ D 4:1667 :

Following Eq. (2.2) on p. 31, the observed weighted mean of the �1 and �2 values,
based on Ci D ni=N for i D 1; 2 is

ıo D C1�1 C C2�2 D
�

2

6

�
.1:00/ C

�
4

6

�
.4:1667/ D 3:1111 :

As in the previous MRPP example with v D 2, the N D 6 objects can be par-
titioned into g D 2 treatment groups, S1 and S2, with n1 D 2 and n2 D 4 response
measurement scores preserved for each arrangement of the observed data in

M D NŠ

n1Š n2Š
D 6Š

2Š 4Š
D 15

possible, equally-likely ways. The M D 15 possible arrangements of the observed
data in Fig. 2.3, along with the corresponding �1, �2, and ı values, are listed in
Table 2.3 and ordered by the ı values from lowest to highest. The observed MRPP
test statistic, ıo D 3:1111, obtained from the realized arrangement,

f5; 4g f2; 3; 7; 9g ;

(Order 5 in Table 2.3) is not unusual since eight of the remaining ı values (ı8 to ı15)
exceed the observed value of ıo D 3:1111 and seven values of ı (ı1 to ı7) are
equal to or less than the observed value. If all arrangements of the N D 6 observed
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Table 2.3 Permutations of
the observed data in Fig. 2.3
for treatment groups S1 and
S2 with values for �1, �2, and
ı based on v D 1, ordered by
values of ı from lowest to
highest

Order S1 S2 �1 �2 ı

1 {7, 9} {2, 5, 3, 4} 2:0000 1:6667 1:7778

2 {2, 3} {5, 4, 7, 9} 1:0000 2:8333 2:2222

3 {2, 4} {5, 3, 7, 9} 2:0000 3:3333 2:8889

4 {3, 4} {2, 5, 7, 9} 1:0000 3:8333 2:8889

5 {5, 4} {2, 3, 7, 9} 1:0000 4:1667 3:1111

6 {5, 7} {2, 3, 4, 9} 2:0000 3:6667 3:1111

7 {5, 9} {2, 3, 4, 7} 4:0000 2:6667 3:1111

8 {2, 5} {3, 4, 7, 9} 3:0000 3:5000 3:3333

9 {5, 3} {2, 4, 7, 9} 2:0000 4:0000 3:3333

10 {4, 7} {2, 5, 3, 9} 3:0000 3:8333 3:5556

11 {4, 9} {2, 5, 3, 7} 5:0000 2:8333 3:5556

12 {2, 7} {5, 3, 4, 9} 5:0000 3:1667 3:7778

13 {3, 7} {2, 5, 4, 9} 4:0000 3:6667 3:7778

14 {2, 9} {5, 3, 4, 7} 7:0000 2:1667 3:7778

15 {3, 9} {2, 5, 4, 7} 6:0000 2:6667 3:7778

response measurement scores listed in Fig. 2.3 occur with equal chance, the exact
probability value of ıo D 3:1111 computed on the M D 15 possible arrangements of
the observed data with n1 D 2 and n2 D 4 response measurement scores preserved
for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 7

15
D 0:4667 :

For comparison, for the univariate data listed in Fig. 2.3 the exact probability value
based on v D 2, M D 15, and Ci D ni=N for i D 1; 2 in the previous example is
P D 0:6667. No comparison is made with the conventional Student two-sample t
test as Student’s t test is undefined for v D 1.

Following Eq. (2.6) on p. 37, the exact average value of the M D 15 ı values
listed in Table 2.3 is �ı D 3:20. Thus, the observed chance-corrected coefficient of
agreement, following Eq. (2.5) on p. 37, is

<o D 1 � ıo

�ı

D 1 � 14:8889

3:20
D C0:0278 ;

indicating very little within-group agreement above that expected by chance.

2.2.4 Example Bivariate MRPP Analysis with v D 2

In this second example, bivariate response measurement scores are used for simplic-
ity to demonstrate a multivariate MRPP analysis. To illustrate the computation of
MRPP with bivariate response measurement scores for each object, consider a finite
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Fig. 2.4 Example data with
g D 2, r D 2, n1 D 4,
n2 D 3, and
N D n1 C n2 D 7

Values

Group Object x1 x2

S1 1 5 1
S1 2 4 6
S1 3 5 2
S1 4 6 3

S2 5 2 3
S2 6 3 4
S2 7 2 4

w
w
w
w

w
w
w

sample of N D 7 objects and let S1 and S2 denote an exhaustive partitioning of the N
objects into g D 2 disjoint treatment groups. Further, let S1 consist of n1 D 4 objects
with r D 2 commensurate response measurement scores (x1i and x2i) on each object
for i D 1; : : : ; 4, with x 0

1 D .5; 1/, x 0
2 D .4; 6/, x 0

3 D .5; 2/, and x 0
4 D .6; 3/, and

let S2 consist of n2 D 3 objects with r D 2 commensurate response measurement
scores (x1i and x2i) on each object for i D 1; 2; 3 with x 0

5 D .2; 3/, x 0
6 D .3; 4/,

and x 0
7 D .2; 4/. The treatment group sizes and the response measurement scores

are deliberately kept small to simplify the example analysis. The bivariate response
measurement scores for the N D 7 objects are listed in Fig. 2.4.

For this example analysis, let v D 2, p D 2, r D 2,

C1 D n1

N
D 4

7
; and C2 D n2

N
D 3

7
;

so that the S1 and S2 treatment groups are weighted proportional to their group sizes
of n1 D 4 and n2 D 3, respectively. Following Eq. (2.1) on p. 30 for treatment group
S1 with n1 D 4 objects, p D 2, and v D 2, the generalized Minkowski distance func-
tion yields

	.1; 2/ D
�ˇ̌

5 � 4
ˇ̌2 C ˇ̌

1 � 6
ˇ̌2 �2=2 D 26:00 ;

	.1; 3/ D
�ˇ̌

5 � 5
ˇ̌2 C ˇ̌

1 � 2
ˇ̌2 �2=2 D 1:00 ;

	.1; 4/ D
�ˇ̌

5 � 6
ˇ̌2 C ˇ̌

1 � 3
ˇ̌2 �2=2 D 5:00 ;

	.2; 3/ D
�ˇ̌

4 � 5
ˇ̌2 C ˇ̌

6 � 2
ˇ̌2 �2=2 D 17:00 ;

	.2; 4/ D
�ˇ̌

4 � 6
ˇ̌2 C ˇ̌

6 � 3
ˇ̌2 �2=2 D 13:00 ;
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and

	.3; 4/ D
�ˇ̌

5 � 6
ˇ̌2 C ˇ̌

2 � 3
ˇ̌2 �2=2 D 2:00 ;

and for treatment group S2 with n2 D 3 objects, the generalized Minkowski distance
function yields

	.5; 6/ D
�ˇ̌

2 � 3
ˇ̌2 C ˇ̌

3 � 4
ˇ̌2 �2=2 D 2:00 ;

	.5; 7/ D
�ˇ̌

2 � 2
ˇ̌2 C ˇ̌

3 � 4
ˇ̌2 �2=2 D 1:00 ;

and

	.6; 7/ D
�ˇ̌

3 � 2
ˇ̌2 C ˇ̌

4 � 4
ˇ̌2 �2=2 D 1:00 :

Then following Eq. (2.3) on p. 31, the average distance-function values for all
distinct pairs of objects in treatment group Si, i D 1; 2, are

�1 D
 

n1

2

!�1h
	.1; 2/ C 	.1; 3/ C 	.1; 4/ C 	.2; 3/ C 	.2; 4/ C 	.3; 4/

i

D
 

4

2

!�1

.26:00 C 1:00 C 5:00 C 17:00 C 13:00 C 2:00/ D 10:6667

and

�2 D
 

n2

2

!�1h
	.5; 6/ C 	.5; 7/ C 	.6; 7/

i

D
 

3

2

!�1

.2:00 C 1:00 C 1:00/ D 1:3333 :

Following Eq. (2.2) on p. 31, the observed weighted mean of the �1 and �2 values,
based on v D 2 and Ci D ni=N for i D 1; 2 is

ıo D C1�1 C C2�2 D
�

4

7

�
.10:6667/ C

�
3

7

�
.1:3333/ D 6:6667 :

The N D 7 objects can be partitioned into g D 2 treatment groups, S1 and
S2, with n1 D 4 and n2 D 3 response measurement scores preserved for each
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arrangement of the observed data in

M D NŠ

n1Š n2Š
D 7Š

4Š 3Š
D 35

possible, equally-likely ways. The M D 35 possible arrangements of the observed
bivariate data in Fig. 2.4, along with the corresponding �1, �2, and ı values, are listed
in Table 2.4 and ordered by the ı values from lowest to highest. The observed MRPP
test statistic, ıo D 6:6667, obtained from the realized arrangement,

f.5; 1/.4; 6/.5; 2/.6; 3/g f.2; 3/.3; 4/.2; 4/g ;

(Order 3 in Table 2.4) is unusual since 32 of the remaining ı values (ı4 to ı35)
exceed the observed value of ıo D 6:6667 and only two values of ı are less
than the observed value: ı1 D 4:0000 and ı2 D 6:4762. If all arrangements of the
N D 7 observed bivariate response measurement scores listed in Fig. 2.4 occur with
equal chance, the exact probability value of ıo D 6:6667 computed on the M D 35

possible arrangements of the observed data with n1 D 4 and n2 D 3 response mea-
surement scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 3

35
D 0:0857 :

A conventional Hotelling two-sample T2 test is given by

T2 D n1n2

N
.Ny1 � Ny2/

0 S�1 .Ny1 � Ny2/ ; (2.8)

where Ny1 and Ny2 denote vectors of mean differences between treatment groups S1

and S2, n1 and n2 are the number of interval-level multivariate response measure-
ment scores in treatment groups S1 and S2, and S is a pooled variance–covariance
matrix.

For the example data listed in Fig. 2.4, Ny11 D 5:00, s2
11 D 0:6167, Ny12 D

3:00, s2
12 D 4:6667, cov.1; 2/1 D �1:00, Ny21 D 2:3333, s2

21 D 0:3333, Ny22 D
3:6667, s2

22 D 0:3333, and cov.1; 2/2 D C0:1667. Then, Ny1 D Ny11 � Ny21 D 5:00 �
2:3333 D C2:6667 and Ny2 D Ny12 � Ny22 D 3:00 � 3:6667 D �0:6667.

The variance–covariance matrices for treatment groups S1 and S2 in Fig. 2.4 are

O†1 D
"

0:6667 �1:0000

�1:0000 4:6667

#
and O†2 D

"
0:3333 C0:1667

C0:1667 0:3333

#
;
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Table 2.4 Permutations of the observed data set in Fig. 2.4 for treatment groups S1 and S2 with
values for �1, �2, and ı based on v D 2, ordered by values of ı from lowest to highest

Order S1 S2 �1 �2 ı

1 {(4, 6) (2, 3) (3, 4) (2, 4)} {(5, 1) (5, 2) (6, 3)} 5:0000 2:6667 4:0000

2 {(5, 1) (5, 2) (6, 3) (2, 3)} {(4, 6) (3, 4) (2, 4)} 7:8333 4:6667 6:4762

3 {(5, 1) (4, 6) (5, 2) (6, 3)} {(2, 3) (3, 4) (2, 4)} 10:6667 1:3333 6:6667

4 {(5, 1) (5, 2) (6, 3) (3, 4)} {(4, 6) (2, 3) (2, 4)} 6:5000 7:3333 6:8571

5 {(5, 1) (5, 2) (6, 3) (2, 4)} {(4, 6) (2, 3) (3, 4)} 9:3333 6:6667 8:1905

6 {(4, 6) (6, 3) (3, 4) (2, 4)} {(5, 1) (5, 2) (2, 3)} 9:0000 8:0000 8:5714

7 {(5, 1) (2, 3) (3, 4) (2, 4)} {(4, 6) (5, 2) (6, 3)} 8:0000 10:6667 9:1429

8 {(5, 1) (5, 2) (2, 3) (2, 4)} {(4, 6) (6, 3) (3, 4)} 9:3333 9:3333 9:3333

9 {(5, 2) (2, 3) (3, 4) (2, 4)} {(5, 1) (4, 6) (6, 3)} 5:8333 14:6667 9:6190

10 {(4, 6) (6, 3) (2, 3) (2, 4)} {(5, 1) (5, 2) (3, 4)} 11:3333 7:3333 9:6190

11 {(4, 6) (5, 2) (6, 3) (3, 5)} {(5, 1) (2, 3) (2, 4)} 9:1667 10:6667 9:8095

12 {(4, 6) (5, 2) (3, 4) (2, 4)} {(5, 1) (6, 3) (2, 3)} 8:6667 11:3333 9:8095

13 {(5, 1) (5, 2) (2, 3) (3, 4)} {(4, 6) (6, 3) (2, 4)} 7:8333 12:6667 9:9048

14 {(4, 6) (5, 2) (2, 3) (2, 4)} {(5, 1) (6, 3) (3, 4)} 10:3333 9:3333 9:9048

15 {(4, 6) (6, 3) (2, 3) (3, 4)} {(5, 1) (5, 2) (2, 4)} 9:8333 10:6667 10:1905

16 {(5, 1) (4, 6) (6, 3) (3, 4)} {(5, 2) (2, 3) (2, 4)} 12:0000 8:0000 10:2857

17 {(5, 1) (4, 6) (2, 3) (2, 4)} {(5, 2) (6, 3) (3, 4)} 13:1667 6:6667 10:3810

18 {(4, 6) (5, 2) (6, 3) (2, 4)} {(5, 1) (2, 3) (3, 4)} 11:6667 9:3333 10:6667

19 {(6, 3) (2, 3) (3, 4) (2, 4)} {(5, 1) (4, 6) (5, 2)} 7:8333 14:6667 10:7619

20 {(5, 1) (4, 6) (3, 4) (2, 4)} {(5, 2) (6, 3) (2, 3)} 11:8333 9:3333 10:7619

21 {(5, 1) (6, 3) (2, 3) (2, 4)} {(4, 6) (5, 2) (3, 4)} 11:6667 10:0000 10:9524

22 {(4, 6) (5, 2) (2, 3) (3, 4)} {(5, 1) (6, 3) (2, 4)} 9:1667 13:3333 10:9524

23 {(5, 1) (6, 3) (2, 3) (3, 4)} {(4, 6) (5, 2) (2, 4)} 9:8333 12:6667 11:0476

24 {(5, 1) (5, 2) (3, 4) (2, 4)} {(2, 6) (6, 3) (2, 3)} 9:0000 14:0000 11:1429

25 {(5, 1) (4, 6) (6, 3) (2, 4)} {(5, 2) (2, 3) (3, 4)} 14:5000 6:6667 11:1429

26 {(4, 6) (5, 2) (6, 3) (2, 3)} {(5, 1) (3, 4) (2, 4)} 11:8333 10:6667 11:3333

27 {(5, 1) (4, 6) (6, 3) (2, 3)} {(5, 2) (3, 4) (2, 4)} 14:3333 7:3333 11:3333

28 {(5, 1) (4, 6) (2, 3) (3, 4)} {(5, 2) (6, 3) (2, 4)} 12:0000 10:6667 11:4286

29 {(5, 1) (4, 6) (5, 2) (3, 4)} {(6, 3) (2, 3) (2, 4)} 11:6667 11:3333 11:5238

30 {(5, 1) (4, 6) (5, 2) (2, 3)} {(6, 3) (3, 4) (2, 4)} 13:3333 9:3333 11:6190

31 {(5, 1) (6, 3) (3, 4) (2, 4)} {(4, 6) (5, 2) (2, 3)} 10:6667 13:3333 11:8095

32 {(5, 2) (6, 3) (2, 3) (2, 4)} {(5, 1) (4, 6) (3, 4)} 9:8333 14:6667 11:9048

33 {(5, 1) (4, 6) (5, 2) (2, 4)} {(6, 3) (2, 3) (3, 4)} 13:8333 9:3333 11:9048

34 {(5, 2) (6, 3) (2, 3) (3, 4)} {(5, 1) (4, 6) (2, 4)} 8:0000 17:3333 12:0000

35 {(5, 2) (6, 3) (3, 4) (2, 4)} {(5, 1) (4, 6) (2, 3)} 8:5000 17:3333 12:2857
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respectively, and the pooled variance–covariance matrix and its inverse are

S D
"

0:5333 �0:5333

�0:5333 2:9333

#
and S�1 D

"C2:9167 C0:4167

C0:4167 C0:4167

#
;

respectively.7

Following Eq. (2.8), the observed value of Hotelling’s T2 is

T2
o D n1n2

N
.Ny1 � Ny2/

0 S�1 .Ny1 � Ny2/

D .4/.3/

7

�C2:6667 �0:6667
	
"C2:2917 C0:4167

C0:4167 C0:4167

#"C2:6667

�0:6667

#

D .1:7143/.15:00/ D 25:7143

and the observed F-ratio for Hotelling’s T2 is

Fo D N � r � 1

r.N � r/
T2

o D 7 � 2 � 1

2.7 � 2/
.25:7145/ D 10:2858 :

Assuming independence, normality, and homogeneity of variance, F is approxi-
mately distributed as Snedecor’s F under the null hypothesis with �1 D r D 2 and
�2 D N � r � 1 D 7 � 2 � 1 D 4 degrees of freedom. Under the null hypothesis,
the observed value of Fo D 10:2858 yields an approximate probability value of
P D 0:0265. While there is a considerable difference between the exact probabil-
ity value of P D 0:0857 and the approximate probability value of P D 0:0265, it
is not surprising, as Hotelling’s T2 test was not designed for samples as small as
n1 D 4 and n2 D 3.

Following Eq. (2.6) on p. 37, the exact average value of the M D 35 ı values
listed in Table 2.4 is �ı D 10:0952. Thus, the observed chance-corrected coefficient
of agreement, following Eq. (2.5) on p. 37, is

<o D 1 � ıo

�ı

D 1 � 6:6667

10:0952
D C0:3396 ;

indicating approximately 34 % within-group agreement above that expected by
chance.

7Each element of the S matrix is constructed from two corresponding elements in the O† matrices,
weighted by the degrees of freedom, i.e., n � 1. For example, the first element of the S matrix is
0:5333 D Œ.4 � 1/.0:6667/ C .3 � 1/.0:3333/=.4 C 3 � 2/.
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Fig. 2.5 Example data with
g D 2, r D 2, n1 D 4,
n2 D 3, and
N D n1 C n2 D 7

Values

Group Object x1 x2

S1 1 5 1
S1 2 4 6
S1 3 5 2
S1 4 6 3

S2 5 2 3
S2 6 3 4
S2 7 2 4

w
w
w
w

w
w
w

2.2.5 Example Bivariate MRPP Analysis with v D 1

As mentioned in the univariate example on p. 43, the choice of v can make a sub-
stantial difference in the results of an MRPP analysis. To illustrate the computation
of MRPP with bivariate data and v D 1, consider the same finite sample of N D 7

objects listed in Fig. 2.4 on p. 46 and let S1 and S2 denote an exhaustive partitioning
of the N objects into g D 2 disjoint treatment groups. As previously, let S1 consist
of n1 D 4 objects with r D 2 commensurate response measurement scores (x1i and
x2i) on each object for i D 1; : : : ; 4, with x 0

1 D .5; 1/, x 0
2 D .4; 6/, x 0

3 D .5; 2/, and
x 0

4 D .6; 3/, and let S2 consist of n2 D 3 objects with r D 2 commensurate response
measurement scores (x1i and x2i) on each object for i D 1; 2; 3 with x 0

5 D .2; 3/,
x 0

6 D .3; 4/, and x 0
7 D .2; 4/.

The bivariate response measurement scores for the N D 7 objects are listed in
Fig. 2.4 on p. 46 and are replicated in Fig. 2.5 for convenience.

For this example analysis, let r D 2, C1 D n1=N D 4=7, C2 D n2=N D 3=7, and
p D 2, but in this case set v D 1 instead of v D 2, employing ordinary Euclidean
distance between objects. Following Eq. (2.1) on p. 30 for treatment group S1 with
n1 D 4 objects, p D 2, and v D 1, the generalized Minkowski distance function
yields

	.1; 2/ D
�ˇ̌

5 � 4
ˇ̌2 C ˇ̌

1 � 6
ˇ̌2 �1=2 D 5:0990 ;

	.1; 3/ D
�ˇ̌

5 � 5
ˇ̌2 C ˇ̌

1 � 2
ˇ̌2 �1=2 D 1:0000 ;

	.1; 4/ D
�ˇ̌

5 � 6
ˇ̌2 C ˇ̌

1 � 3
ˇ̌2 �1=2 D 2:2361 ;

	.2; 3/ D
�ˇ̌

4 � 5
ˇ̌2 C ˇ̌

6 � 2
ˇ̌2 �1=2 D 4:1231 ;

	.2; 4/ D
�ˇ̌

4 � 6
ˇ̌2 C ˇ̌

6 � 3
ˇ̌2 �1=2 D 3:6056 ;
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and

	.3; 4/ D
�ˇ̌

5 � 6
ˇ̌2 C ˇ̌

2 � 3
ˇ̌2 �1=2 D 1:4142 ;

and for treatment group S2 with n2 D 3 objects, the generalized Minkowski distance
function yields

	.5; 6/ D
�ˇ̌

2 � 3
ˇ̌2 C ˇ̌

3 � 4
ˇ̌2 �1=2 D 1:4142 ;

	.5; 7/ D
�ˇ̌

2 � 2
ˇ̌2 C ˇ̌

3 � 4
ˇ̌2 �1=2 D 1:0000 ;

and

	.6; 7/ D
�ˇ̌

3 � 2
ˇ̌2 C ˇ̌

4 � 4
ˇ̌2 �1=2 D 1:0000 :

Then, following Eq. (2.3) on p. 31, the average distance-function values for all dis-
tinct pairs of objects in treatment group Si, i D 1; 2, are

�1 D
 

n1

2

!�1h
	.1; 2/ C 	.1; 3/ C 	.1; 4/ C 	.2; 3/ C 	.2; 4/ C 	.3; 4/

i

D
 

4

2

!�1

.5:0990 C 1:0000 C 2:2361 C 4:1231 C 3:6056 C 1:4142/

D 2:9130

and

�2 D
 

n2

2

!�1h
	.5; 6/ C 	.5; 7/ C 	.6; 7/

i

D
 

3

2

!�1

.1:4142 C 1:0000 C 1:0000/ D 1:1381 :

Following Eq. (2.2) on p. 31, the observed weighted mean of the �1 and �2 values,
based on v D 1 and Ci D ni=N for i D 1; 2 is

ıo D C1�1 C C2�2 D
�

4

7

�
.2:9130/ C

�
3

7

�
.1:1381/ D 2:1523 :
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The N D 7 objects listed in Fig. 2.5 can be partitioned into g D 2 treatment
groups, S1 and S2, with n1 D 4 and n2 D 3 response measurement scores preserved
for each arrangement of the observed data in

M D NŠ

n1Š n2Š
D 7Š

4Š 3Š
D 35

possible, equally-likely ways. The M D 35 possible arrangements of the observed
data in Fig. 2.5, along with the corresponding �1, �2, and ı values, are listed in
Table 2.5 and ordered by the ı values from lowest to highest. The observed MRPP
test statistic, ıo D 2:1523, obtained from the realized arrangement,

f.5; 1/.4; 6/.5; 2/.6; 3/g f.2; 3/.3; 4/.2; 4/g ;

(Order 2 in Table 2.5) is unusual since 33 of the remaining ı values (ı3 to ı35) exceed
the observed value of ıo D 2:1523 and only one value is less than the observed
value: ı1 D 1:8152. If all arrangements of the N D 7 observed bivariate response
measurement scores listed in Fig. 2.5 occur with equal chance, the exact probabil-
ity value of ıo D 2:1523 computed on the M D 35 possible arrangements of the
observed data with n1 D 4 and n2 D 3 response measurement scores preserved for
each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 2

35
D 0:0571 :

For comparison, for the bivariate response measurement scores listed in Fig. 2.5
the exact probability value based on v D 2 and Ci D ni=N for i D 1; 2 in the first
example is P D 0:0857. No comparison is made with the conventional Hotelling T2

test as Hotelling’s T2 is undefined for v D 1.
Following Eq. (2.6) on p. 37, the exact average value of the M D 35 ı values

listed in Table 2.5 is �ı D 2:9475. Thus, the observed chance-corrected coefficient
of agreement, following Eq. (2.5) on p. 37, is

<o D 1 � ıo

�ı

D 1 � 2:1523

2:9475
D C0:2698 ;

indicating approximately 27 % within-group agreement above that expected by
chance.

2.3 Coda

Chapter 2 provided the foundation for Multi-Response Permutation Procedures
(MRPP), with special emphasis on the generalized Minkowski distance function,
	.x; y/, as defined in Eq. (2.1) on p. 30; ı, the weighted mean of the specified
distance function values for all distinct pairs of objects in treatment group Si for
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Table 2.5 Permutations of the observed data set in Fig. 2.5 for treatment groups S1 and S2 with
values for �1, �2, and ı based on v D 1, ordered by values of ı from lowest to highest

Order S1 S2 �1 �2 ı

1 {(4, 6) (2, 3) (3, 4) (2, 4)} {(5, 1) (5, 2) (6, 3)} 2:0140 1:5501 1:8152

2 {(5, 1) (4, 6) (5, 2) (6, 3)} {(2, 3) (3, 4) (2, 4)} 2:9130 1:1381 2:1523

3 {(5, 1) (5, 2) (6, 3) (2, 3)} {(4, 6) (3, 4) (2, 4)} 2:5697 2:0215 2:3347

4 {(5, 1) (5, 2) (6, 3) (3, 4)} {(4, 6) (2, 3) (2, 4)} 2:3744 2:4780 2:4188

5 {(5, 1) (5, 2) (6, 3) (2, 4)} {(4, 6) (2, 3) (3, 4)} 2:7703 2:4186 2:6196

6 {(5, 1) (2, 3) (3, 4) (2, 4)} {(4, 6) (5, 2) (6, 3)} 2:4780 3:0476 2:7221

7 {(4, 6) (6, 3) (3, 4) (2, 4)} {(5, 1) (5, 2) (2, 3)} 2:8259 2:5893 2:7245

8 {(5, 2) (2, 3) (3, 4) (2, 4)} {(5, 1) (4, 6) (6, 3)} 2:1684 3:6469 2:8020

9 {(6, 3) (2, 3) (3, 4) (2, 4)} {(5, 1) (4, 6) (5, 2)} 2:4499 3:4074 2:8603

10 {(5, 1) (5, 2) (2, 3) (2, 4)} {(4, 6) (6, 3) (3, 4)} 2:7693 3:0013 2:8687

11 {(4, 6) (6, 3) (2, 3) (2, 4)} {(5, 1) (5, 2) (3, 4)} 3:1938 2:4780 2:8870

12 {(4, 6) (5, 2) (6, 5) (3, 4)} {(5, 1) (2, 3) (2, 4)} 2:8949 2:9494 2:9183

13 {(4, 6) (6, 3) (2, 3) (3, 4)} {(5, 1) (5, 2) (2, 4)} 3:0039 2:9494 2:9806

14 {(4, 6) (5, 2) (3, 4) (2, 4)} {(5, 1) (6, 3) (2, 3)} 2:7703 3:2805 2:9890

15 {(5, 1) (5, 2) (2, 3) (3, 4)} {(4, 6) (6, 3) (2, 4)} 2:6027 3:5190 2:9954

16 {(5, 1) (4, 6) (2, 3) (2, 4)} {(5, 2) (6, 3) (3, 4)} 3:3969 2:4683 2:9989

17 {(5, 1) (4, 6) (6, 3) (3, 4)} {(5, 2) (2, 3) (2, 4)} 3:3241 2:5893 3:0092

18 {(4, 6) (5, 2) (2, 3) (2, 4)} {(5, 1) (6, 3) (3, 4)} 3:0542 3:0013 3:0315

19 {(5, 1) (4, 6) (3, 4) (2, 4)} {(5, 2) (6, 3) (2, 3)} 3:1686 2:8588 3:0359

20 {(5, 1) (4, 6) (5, 2) (3, 4)} {(6, 3) (2, 3) (2, 4)} 3:1487 3:0410 3:1026

21 {(4, 6) (5, 2) (6, 3) (2, 4)} {(5, 1) (2, 3) (3, 4)} 3:2833 2:8751 3:1084

22 {(5, 1) (6, 3) (2, 3) (2, 4)} {(4, 6) (5, 2) (3, 4)} 3:2012 3:0625 3:1418

23 {(5, 1) (4, 6) (5, 2) (2, 3)} {(6, 3) (3, 4) (2, 4)} 3:4326 2:7618 3:1451

24 {(5, 1) (5, 2) (3, 4) (2, 4)} {(2, 6) (6, 3) (2, 3)} 2:7137 3:7370 3:1523

25 {(4, 6) (5, 2) (6, 3) (2, 3)} {(5, 1) (3, 4) (2, 4)} 3:3184 2:9494 3:1603

26 {(5, 1) (4, 6) (6, 3) (2, 4)} {(5, 2) (2, 3) (3, 4)} 3:6891 2:4683 3:1659

27 {(4, 6) (5, 2) (2, 3) (3, 4)} {(5, 1) (6, 3) (2, 4)} 2:8949 3:5339 3:1688

28 {(5, 1) (4, 6) (2, 3) (3, 4)} {(5, 2) (6, 3) (2, 4)} 3:2610 3:0476 3:1695

29 {(5, 1) (4, 6) (6, 3) (2, 3)} {(5, 2) (3, 4) (2, 4)} 3:6920 2:4780 3:1717

30 {(5, 2) (6, 3) (2, 3) (2, 4)} {(5, 1) (4, 6) (3, 4)} 2:8842 3:6469 3:2111

31 {(5, 1) (4, 6) (5, 2) (2, 4)} {(6, 3) (2, 3) (3, 4)} 3:4831 2:8588 3:2156

32 {(5, 1) (6, 3) (2, 3) (3, 4)} {(4, 6) (5, 2) (2, 4)} 3:0039 3:5190 3:2247

33 {(5, 2) (6, 3) (2, 3) (3, 4)} {(5, 1) (4, 6) (2, 4)} 2:6636 4:0567 3:2606

34 {(5, 2) (6, 3) (3, 4) (2, 4)} {(5, 1) (4, 6) (2, 3)} 2:6889 4:1034 3:2951

35 {(5, 1) (6, 3) (3, 4) (2, 4)} {(4, 6) (5, 2) (2, 3)} 3:0616 3:6303 3:3053

i D 1; : : : ; g, as defined in Eq. (2.2) on p. 31; and <, the chance-corrected within-
group coefficient of agreement, as defined in Eq. (2.4) on p. 33. Chapters 3 and 4
provide applications of MRPP for completely randomized data at the interval level
of measurement, Chaps. 5 and 6 provide applications of MRPP for completely ran-
domized data at the ordinal (ranked) level of measurement, and Chap. 7 provides
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applications of MRPP for completely randomized data at the nominal (categorical)
level of measurement.

Chapter 3
Chapter 3 establishes the relationship between the MRPP test statistics, ı and <,
and selected conventional tests and measures designed for the analysis of com-
pletely randomized data at the interval level of measurement. Considered in Chap. 3
are Student’s two-sample t test with interval-level univariate response measurement
scores, Hotelling’s two-sample T2 test with interval-level multivariate response
measurement scores, one-way fixed-effects analysis of variance (ANOVA) with
interval-level univariate response measurement scores, and one-way multivariate
analysis of variance (MANOVA) with interval-level multivariate response measure-
ment scores.
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This third chapter of Permutation Statistical Methods utilizes the Multi-Response
Permutation Procedures (MRPP) presented in Chap. 2 to develop the analysis of
completely randomized data at the interval level of measurement. As detailed in
Chap. 2, the structure of the MRPP test statistic, ı, depends on the value of v in the
generalized Minkowski distance function given by

	.x; y/ D
 

rX

iD1

ˇ̌
xi � yi

ˇ̌p
!v=p

;

where p � 1, v > 0, and the treatment-group weights are given by

Ci D ni � 1

N � g
or Ci D ni

N
;

for i D 1; : : : ; g treatment groups. The choices of v and Ci for i D 1; : : : ; g permit
the MRPP test statistic, ı, to be transformed into a wide variety of tests and measures
and provide the flexibility for ı to analyze univariate and multivariate data at the
interval, ordinal, and nominal levels of measurement.

The genesis for Ci D .ni � 1/=.N � g/, i D 1; : : : ; g, as a treatment-group
weight is the assumption of normality that requires fitting estimates of population
means for each of the g treatment groups. Consequently, one degree of freedom
is lost for each estimate of a population parameter; here, the population means.
Because the assumption of normality is never satisfied in practice, Ci D ni=N,
i D 1; : : : ; g, simply weighting each treatment group proportional to its size, is
a more appropriate choice for weighting treatment-groups in a permutation anal-
ysis, as permutation tests negate the need for estimating population parameters
entirely. The weighting function, Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g, is use-
ful, however, when making direct comparisons of corresponding conventional and
permutation tests, such as the F test for a fully randomized analysis of variance, on
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the one hand, and the Fisher–Pitman permutation test for g treatment groups, on the
other.

Because multi-response permutation procedures are distribution-free, data-
dependent, and non-parametric, there is no reason to square differences between
response measurements, nor to weight treatment groups by degrees of freedom.
Therefore, v D 1 and Ci D ni=N for i D 1; : : : ; g are preferred for all applications
of MRPP [32, 293, 297].

Permutation analogues of four selected tests are examined in this chapter: (1)
Student’s two-sample t test with interval-level univariate response measurement
scores, (2) Hotelling’s two-sample T2 test with interval-level multivariate response
measurement scores, (3) one-way fixed-effects analysis of variance (ANOVA) with
interval-level univariate response measurement scores, and (4) one-way multivariate
analysis of variance (MANOVA) with interval-level multivariate response mea-
surement scores. The four tests are illustrated with examples analyzed with v D 2

and Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g, v D 1 and Ci D .ni � 1/=.N � g/ for
i D 1; : : : ; g, and v D 1 and Ci D ni=N for i D 1; : : : ; g.

As developed more completely in Chap. 2, let 
 D f!1; : : : ; !Ng denote a finite
sample of N objects and let S1; : : : ; Sg designate an exhaustive partitioning of the N
objects into g disjoint treatment groups. The MRPP test statistic is a weighted mean
given by

ı D
gX

iD1

Ci�i ; (3.1)

where Ci > 0 is a positive treatment-group weight for i D 1; : : : ; g,

�i D
 

ni

2

!�1X

j<k

	.j; k/ ‰i.!j/ ‰i.!k/ (3.2)

is the average distance-function value for all distinct pairs of objects in treatment
group Si for i D 1; : : : ; g, ni � 2 is the number of a priori objects classified into
treatment group Si for i D 1; : : : ; g,

N D
gX

iD1

ni;

P
j<k is the sum over all j and k such that 1 � j < k � N, and ‰i.�/ is an indicator

function given by

‰i.!j/ D
8
<

:
1 if !j 2 Si ,

0 otherwise .
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The null hypothesis (H0) states that equal probabilities are assigned to each of the

M D NŠ
gY

iD1

niŠ

possible, equally-likely allocations of the N objects to the g treatment groups,
S1; : : : ; Sg. The probability value associated with an observed value of ı, ıo, is the
probability under the null hypothesis (H0) of observing a value of ı as extreme or
more extreme than ıo. Thus, an exact probability value for ıo may be expressed as

P
�
ı � ıojH0

� D number of ı values � ıo

M
:

When M is large, an approximate probability value for ı may be obtained from a
resampling procedure, where

P
�
ı � ıojH0

� D number of ı values � ıo

L

and L denotes the number of randomly sampled test statistic values. Typically, L is
set to a large number to ensure accuracy, e.g., L D 1;000;000. Also, when M is very
large and P is exceedingly small, a resampling-approximation permutation proce-
dure may produce no ı values equal to or less than ıo, even with L D 1;000;000,
yielding an approximate resampling probability value of P D 0:00. In such cases,
moment-approximation permutation procedures based on fitting the first three exact
moments of the discrete permutation distribution to a Pearson type III distribu-
tion provide approximate probability values, as detailed in Chap. 1, Sect. 1.2.2
[284, 300].

A chance-corrected measure of agreement among response measurement scores
is given by

< D 1 � ı

�ı

; (3.3)

where �ı is the arithmetic average of the M ı values calculated on all possible
arrangements of the observed response measurement scores, i.e.,

�ı D 1

M

MX

iD1

ıi : (3.4)
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3.1 Permutation Analogue of Student’s t Test

A common research design calls for a test of difference between g D 2 independent
treatment groups when univariate (r D 1) response measurement scores have been
obtained for each object. The conventional approach to such research situations is
Student’s t test for two independent samples (groups of objects) given by

t D Nx1 � Nx2



s2
p

�
1

n1

C 1

n2

��1=2
;

where the pooled estimate of the population variance is given by

s2
p D s2

1.n1 � 1/ C s2
2.n2 � 1/

N � 2
; (3.5)

the sample estimate of the population variance for the ith treatment group is given by

s2
i D 1

ni � 1

niX

jD1

�
xij � Nxi

�2
; i D 1; : : : ; g ;

ni is the number of objects in the ith of g D 2 treatment groups,

N D
gX

iD1

ni

is the total number of objects in the g treatment groups, Nxi is the arithmetic mean of
the response measurement scores for the ith of g treatment groups, given by

Nxi D 1

ni

niX

jD1

xij ; i D 1; : : : ; g ;

and xij is a univariate response measurement score for the jth object in the ith treat-
ment group. Assuming independence, normality, and homogeneity of variance, t
is approximately distributed as Student’s t under the null hypothesis with N � 2

degrees of freedom.
When r D 1, v D 2, and the treatment-group weights are given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;
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it can easily be shown that ı, as defined in Eqs. (3.1) and (3.2) on p. 58, is the
permutation analogue of Student’s two-sample t test. The functional relationships
between test statistic ı and Student’s t statistic for two independent samples are
given by

ı D 2
�
NT � S2

�

N.N � 2 C t2/
and t D



2.NT � S2/

Nı
� N C 2

�1=2

;

where

S D
NX

iD1

xi ; T D
NX

iD1

x2
i ;

and xi is a univariate response measurement score for the ith of N objects. Also,
given r D 1, g D 2, v D 2, and treatment-group weights

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

the average distance-function values are related to the sample estimates of the pop-
ulation variance by

�i D 2s2
i ; i D 1; : : : ; g ; (3.6)

the MRPP test statistic is related to the pooled estimate of the population variance by

ı D 2s2
p ; (3.7)

and the arithmetic mean of the M ı values is related to SSTotal by

�ı D 2SSTotal

N � 1
; (3.8)

where SSTotal D T � S2=N.

3.2 Measures of Effect Size

The fact that statistical tests of null hypotheses, such as Student’s two-sample t test,
produce low probability values indicates only that there are differences among the
response measurement scores in the g D 2 treatment groups that (possibly) cannot
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be attributed to error. The obtained probability values do not indicate whether these
differences are of any practical value.1

Statisticians have raised a number of issues and concerns with null hypothesis
statistical testing (NHST). There are literally hundreds of articles and chapters deal-
ing with the problems of NHST, far too many to be summarized here. However, a
brief overview of the limitations of null hypothesis statistical testing will suffice for
these purposes.2

First, the null hypothesis is almost never literally true, so rejection of the null
hypothesis is relatively uninformative; see, for example, articles by Baken [17],
Carver [66, 67], Levine, Weber, Hullett, Park, and Massi Lindsey [240], Levine,
Weber, Park, and Hullett [241], McLean and Ernest [272], and Nix and Barnette
[321,322]. Second, tests of significance are highly dependent on sample sizes. When
sample sizes are small, important effects can be non-significant, and when sample
sizes are large, even trivial effects can produce very small probability values; see, for
example, articles by Daniel [86] and Levine and Hullett [239]. Third, the require-
ment of obtaining a random sample from a well-defined population is seldom met in
practice; see, for example, articles by Altman and Bland [6], Bradbury [51], Fein-
stein [113], Frick [127], LaFleur and Greevy [227], Ludbrook [247], Ludbrook and
Dudley [254], and Still and White [388]. Fourth, the assumptions of normality and
homogeneity of variance are rarely satisfied in real-data situations; see, for exam-
ple, articles by Bernardin and Beatty [22], Bross [58], Feinstein [113], Geary [134],
Micceri [280], Murphy and Cleveland [314], Saal, Downey, and Lahey [359], and
Schmidt and Johnson [366].3

In February 2015, the Editor, David Trafimow, and Associate Editor, Michael
Marks, of Basic and Applied Social Psychology formally banned NHST procedures
from its pages, including probability values, t values, F values and other statements
about significant differences [401, p. 1]; the ban had been announced previously
with a one-year grace period [400]. The editors argued that NHST is logically
invalid and disallowed all null hypothesis statistical testing as well as the use of con-
fidence intervals as an alternative to reject null hypotheses [401, p. 1]. Instead, the
editors stated that the journal would henceforth favor “strong descriptive statistics,
including effect sizes,” and the use of larger sample sizes “because as the sample
size increases, descriptive statistics become increasingly stable and sampling error
is less of a problem” [401, p. 1].

1In the literature, “practical value” is often referred to as “practical significance” as contrasted with
“statistical significance” [219].
2A comprehensive bibliography for the limitations of null hypothesis statistical testing has been
compiled by William Thompson [397].
3William Thompson has compiled an extensive list of quotes from various authors detailing the
limits of null hypothesis statistical testing [398].
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Moreover, as Roger Kirk observed in 1968, test statistics such as t and F
and their associated probability values provide no information as to the size of
treatment effects, only whether they are statistically significant [218, p. 135]. As
Kirk explained in 1996 [219, p. 747], the one individual most responsible for
bringing the shortcomings of hypothesis testing to the attention of researchers
was the psychologist Jacob Cohen with two articles with unconventional titles in
American Psychologist: “Things I have learned (so far)” in 1990 and “The earth
is round (p < :05)” in 1994 [73, 74]. As a result of the identified challenges with
NHST and the reporting of probability values, various measures of effect size have
been designed to reflect the substantive importance and practical value of treat-
ment differences; see, for example, a 2000 book by Rosenthal, Rosnow, and Rubin
on Contrasts and Effect Sizes in Behavioral Research [353] and a 2005 book by
Grissom and Kim on Effect Sizes for Research [157].

Recent trends in the literature have stressed the importance of reporting a mea-
sure of effect size along with a test of significance when analyzing experimental
data [70,174,219,428]. For example, as far back as 1994 the 4th edition of the Pub-
lication Manual of the American Psychological Association strongly encouraged
reporting measures of effect size in conjunction with probability values. In 1999 the
American Psychological Association Task Force on Statistical Inference, under the
direction of Leland Wilkinson noted that “reporting and interpreting effect sizes in
the context of previously reported effects is essential to good research” [430, p. 599].
Today many journals require authors to provide measures of effect size in addition to
tests of significance [63,64]. As a result of increased attention to measures of effect
size, introductory statistics textbooks often include discussions of such measures as
Cohen’s Od, Pearson’s r2, Kelley’s �2, and Hays’ O!2; see, for example, references
[93, 153, 185, 239, 331, 421, 427].

The appropriate use of effect-size measures such as Od, r2, �2, and O!2 is restricted
to data with homogeneous variances [140].4 Micceri [280] and Wilcox [426] have
both argued that assuming normality for measures of effect size may not be real-
istic.5 However, the permutation-based chance-corrected measure of agreement, <,
as defined in Eq. (3.3) on p. 59, is a universal measure of effect size and is appropri-
ate for homogeneous or heterogeneous, normal or non-normal, data sets [194]. In
addition, < is suitable for any number of treatment groups. The various measures of
effect size and their relationships are described in this section and illustrated in the
following section with univariate response measurement scores for a two-sample
test of differences.

4As noted by Olejnik and Algina, if the variance equality assumption is not met, then the standard
deviation for one of the g treatment groups should be used as the standardizer [326, p. 246]. In
the context of comparing an experimental and a control group, Glass, McGraw, and Smith recom-
mended using the standard deviation for the control group [142].
5Scheffé noted that the usual measures of effect size do not assume normality [365]; see also, a
1969 article by Vaughan and Corballis [411].
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Currently, the most popular measures of effect size are Cohen’s Od, Pearson’s r2,
Kelley’s �2, and Hays’ O!2. There are, of course, many other useful measures of effect
size, such as Cohen’s f [72], Glass’s 	 [138], and Kirk’s Of [219]. For a comprehen-
sive list of effect-size measures, see an article by Kirk on “Practical significance:
A concept whose time has come” in 1996 and another article by Kirk on “Effect
magnitude: A different focus” in 2006 [219, 220], a book by Rosenthal, Rosnow,
and Rubin on Contrasts and Effect Sizes in Behavioral Research published in 2000
[353], and a book by Grissom and Kim on Effect Sizes for Research published in
2005 [157] with a second edition published in 2012 [158]. Assume for purposes of
exposition that the problem is to choose an appropriate measure of effect size for
Student’s two-sample t test.

3.2.1 Cohen’s Od
In 1969 Jacob Cohen [72] defined a new measure of effect size, Od, based on the
difference between two treatment-group means divided by the pooled estimate of the
population standard deviation, sp; consequently, Cohen’s standardized measure of
mean differences is only appropriate for populations with homogeneous variances.
While other measures of effect size preceded Cohen’s Od, Od was the first measure of
effect size that was explicitly labeled as such [219, p. 749]. Cohen’s Od is given by

Od D jNx1 � Nx2j
sp

;

where Nx1 and Nx2 are the sample means for treatment groups 1 and 2, respectively,
and sp is the pooled estimate of the population standard deviation given by

sp D



s2
1.n1 � 1/ C s2

2.n2 � 1/

N � 2

�1=2

; (3.9)

where n1 and n2 are the sample sizes for treatment groups 1 and 2, respectively,
N D n1 C n2 is the total size of the two treatment groups combined, and s2

1 and s2
2

are the sample estimates of the population variance for treatment groups 1 and 2
given by

s2
i D 1

ni � 1

niX

jD1

�
xij � Nxi

�2
; i D 1; 2 :

Cohen’s Od is expressed in standard deviation units and, in this context, measures the
effect size for Student’s t test for two independent samples.
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In 1969 Cohen [72] provided crude estimates with which to evaluate and interpret
Od values. Cohen proposed that if Od � 0:20, the effect should be considered “small”;
if 0:20 < Od � 0:80, the effect size should be considered “medium” or “moderate”;
and if Od > 0:80, the effect size should be considered “large.”6;7

3.2.2 Hedges’ g

Cohen’s Od was originally defined as

ıc D j�1 � �2j
�x

; (3.10)

where �1 and �2 denote the two population means and �x is the common population
standard deviation.8 In 1981 and 1982, Hedges proposed

g D jNx1 � Nx2jq
s2

p

;

where Nx1 and Nx2 denote the two sample means and s2
p is the pooled estimate of the

population variance, as given in Eq. (3.5) on p. 60 [170]. Hedges argued that g could
be made an unbiased estimator of ıc, showing that EŒg D ıc=c.m/, where

c.m/ D �.m=2/
p

m=2�� Œ.m � 1/=2

and m D n1 C n2 � 2. Hedges further showed that c.m/ could be closely approxi-
mated by c.m/ ' 1 � 3=.4m � 1/.

If m is even, then

�.m=2/ D
�

m � 2

2

�
Š and � Œ.m � 1/=2 D .m � 3/Š

p
�

2m�3

�
m � 4

2

�
Š

:

6In a 2006 article, McGrath and Meyer took issue with these values and suggested slightly higher
values for “medium” and “large” effect sizes [270].
7Cohen did not select his effect sizes capriciously. Effect size 0.20 was chosen to correspond to
15 % overlap (85 % non-overlap) between the sampling distributions of the two sample means, Nx1

and Nx2 , and effect size 0.80 was chosen to correspond to 50 % overlap (50 % non-overlap) between
the two sampling distributions.
8ıc is used in Eq. (3.10) so as not to confuse Cohen’s ı with the MRPP test statistic ı defined in
Eq. (3.9) on p. 64.
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Substituting and simplifying yields

c.m/ D

�
m � 2

2

�
Š

�
m � 4

2

�
Š 2m�3

.m � 3/Š

r
m�

2

:

If m is odd, then

� .m=2/ D .m � 2/Š
p

�

2m�2

�
m � 3

2

�
Š

and � Œ.m � 1/=2 D
�

m � 3

2

�
Š :

Substituting and simplifying yields

c.m/ D
.m � 2/Š

r
2�

m

2m�2


�
m � 3

2

�
Š

�2
:

To illustrate, if m is even, say 8, then

c.8/ D

�
8 � 2

2

�
Š

�
8 � 4

2

�
Š 28�3

.8 � 3/Š

r
.8/.3:1416/

2

D .3Š/.2Š/.32/

5Š
p

12:5664
D .6/.2/.32/

.120/.3:5449/
D 0:9027

and

c.8/ ' 1 � 3

4m � 1
D 1 � 3

.4/.8/ � 1
D 1 � 0:0968 D 0:9032 :

And, if m is odd, say 7, then

c.7/ D
.7 � 2/Š

r
.2/.3:1416/

7

27�2


�
7 � 3

2

�
Š

�2
D 5Š

p
0:8976

25 Œ2Š2
D .120/.0:9474/

.32/.4/
D 0:8882

and

c.7/ ' 1 � 3

4m � 1
D 1 � 3

.4/.7/ � 1
D 1 � 0:1111 D 0:8889 :
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3.2.3 Pearson’s r2

The second measure of effect size, r2, is the familiar squared Pearson product-
moment correlation coefficient. For Student’s two-sample t test, r2 may be
expressed as

r2 D t2

t2 C N � 2
: (3.11)

It is not uncommon for r2 in Eq. (3.11) to be labeled as r2
pb, indicating that

this measure of effect size is the point-biserial correlation between the response
measurement scores and a dummy-coded variable representing the two treatment
groups, i.e., the correlation between the response measurement scores and group
membership; see, for example, discussions by Friedman [130] and Howell [185, pp.
307–309]. In other applications, especially in the analysis of variance, r2 is desig-
nated as �2, where it is known as the “correlation ratio” and defined simply as

�2 D SSBetween

SSTotal
; (3.12)

i.e., the proportion of the total variability attributable to the treatment or interven-
tion. The measure of effect size, r2 (�2), however, has been criticized repeatedly in
the literature for its positive bias, especially for small sample sizes; see, for example,
articles by Levine and Hullett [239] and Maxwell, Camp, and Arvey [266].

3.2.4 Kelley’s �2

The third measure of effect size is Kelley’s �2 [200] and, defined for Student’s two-
sample t test, is given by

�2 D t2 � 1

t2 C N � 2
: (3.13)

Oftentimes in the literature �2 is designated as O�2, i.e., �2 adjusted for degrees of
freedom, and it is typically termed the “unbiased correlation ratio.” It has been well
established and is widely recognized that �2 is not, in fact, unbiased, but since the
title of Truman Kelley’s article was “An unbiased correlation ratio measure” [200],
the label has survived for over 80 years.

3.2.5 Hays’ O!2

The fourth measure of effect size is Hays’ O!2 [169, pp. 323–332]. Hay’s O!2 esti-
mates the proportion of total variance attributable to treatment. Thus O!2 is a ratio of
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variance estimates given by

O!2 D O�2
t

O�2
t C O�2

x

;

where O�2
t is an estimate of the treatment variance and O�2

x is an estimate of the popu-
lation variance. For Student’s two-sample t test, Hays’ O!2 is given by

O!2 D t2 � 1

t2 C N � 1
: (3.14)

Hays defined O!2 as the proportion of variance in the observations attributable to
group membership and, alternatively, as the relative reduction in uncertainty about
the observations given by knowledge of group membership [169, p. 325]. Note the
high degree of similarity between �2 in Eq. (3.13) and O!2 in Eq. (3.14). It has been
shown empirically by Carroll and Nordholm that �2 and O!2 will ordinarily differ
very little for a given set of response measurement scores [65]. In fact, as sample
sizes increase, Kelley’s �2 and Hays’ O!2 both converge to the same value [266,
p. 527]. There are actually two quite different O!2 measures of effect size: one for a
fixed-effects analysis-of-variance model and another for a random-effects analysis-
of-variance model. However, when g D 2, both measures yield the same result.9

3.2.6 Mielke and Berry’s <
Finally, a chance-corrected measure of effect size, <, is defined as

< D 1 � ı

�ı

;

as given in Eq. (3.3) on p. 59, where ı is the weighted mean of the observed response
measurement scores, as defined in Eq. (3.1) on p. 58, and �ı is the arithmetic aver-
age of the ı values calculated on all possible, equally-likely arrangements of the
observed response measurement scores, as defined in Eq. (3.4) on p. 59.

The five measures of effect size, Od, r2 (�2), �2 ( O�2), O!2, and < usually produce
similar results when r D 1, v D 2, and Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g and
are directly related to each other and to Student’s t test for two independent samples,
as detailed in Table 3.1 [194] . While r2 and �2 are equivalent measures of effect size,
convention dictates that r2 is used when g D 2 and �2 is used when g > 2. Also, �2

9Actually, there exist a large number of O!2 measures of effect size designed for a wide variety of
experimental designs; see, for example, articles by Dodd and Schultz [98], Dwyer [101], Fleiss
[123], Friedman [130], Gaebelein, Soderquist, and Powers [131], Golding [143], Hays [169], and
Vaughan and Corballis [411].
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Table 3.1 Equivalencies among the pooled t test statistic for two independent samples, <,
Cohen’s Od, Pearson’s r2, and Hays’ O!2 when r D 1, v D 2 and Ci D .ni � 1/=.N � g/ for
i D 1; : : : ; g [194]

Relationship Equivalencies

< and t < D t2 � 1

t2 C N � 2
t D


<.N � 2/ C 1

1 � <
�1=2

< and r2 < D r2 � �
t2 C N � 2

�
�1

r2 D < C �
t2 C N � 2

�
�1

< and O!2 < D O!2

�
t2 C N � 1

t2 C N � 2

�
O!2 D <

�
t2 C N � 2

t2 C N � 1

�

< and Od < D n1n2
Od2 � N

n1n2
Od2 C .N/.N � 2/

Od D

<.N/.N � 2/ C N

.1 � </.n1n2/

�1=2

t and Od t D Od



n1n2

N

�1=2

Od D t



N

n1n2

�1=2

t and r2 t D



r2.N � 2/

1 � r2

�1=2

r2 D t2

t2 C N � 2

Od and r2 Od D



r2.N/.N � 2/

.1 � r2/.n1n2/

�1=2

r2 D n1n2
Od2

n1n2
Od2 C .N/.N � 2/

O!2 and r2 O!2 D r2.N � 1/ � 1

N � .1 C r2/
r2 D O!2.N � 1/ C 1

O!2 C N � 1

O!2 and t O!2 D t2 � 1

t2 C N � 1
t D


 O!2.N � 1/ C 1

1 � O!2

�1=2

O!2 and Od O!2 D n1n2
Od2 � N

n1n2
Od2 C N.N � 1/

Od D



NŒ O!2.N � 1/ C 1

.1 � O!2/n1n2

�1=2

and O�2 are equivalent measures, but the �2 notation appears to be the choice of most
authors, especially in recent publications [239].

Note that the relationships between t and Od, t and r2, Od and r2, O!2 and r2, O!2 and
t, and O!2 and Od described in Table 3.1 hold only for Student’s pooled two-sample t
test. The measures of effect size, Od, r2, and O!2, all require homogeneity of variance
and the relationships given in Table 3.1 do not hold for Student’s non-pooled two-
sample t test. On the other hand, < does not require homogeneity of variance and is
appropriate for both pooled and non-pooled two-sample t tests.

It is widely recognized that r2 is a positively biased estimate of the squared
Pearson population correlation coefficient, �2. An adjusted r2 coefficient that
compensates for degrees of freedom was introduced by M.J.B. Ezekiel in 1930
[112]10; see also discussions by Larson [230] and Wherry in 1931 [422]. An
adjusted r2 value is produced by most statistical computer programs and is given by

Or2 D 1 � .1 � r2/.N � 1/

N � 2

10The formula for an adjusted r2 was actually first presented by Ezekiel at the December 1928
meeting of the American Mathematical Society in Chicago, Illinois.
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for g D 2 treatment groups.11 It can easily be shown that < D O�2 D �2 D Or2 when
r D 1, v D 2, and Ci D .ni � 1/=.N � g/, i D 1; : : : ; g; see, for example, discus-
sions by Cohen and Cohen [75, p. 188] and Maxwell, Camp, and Arvey [266]. Thus,
since < is a chance-corrected measure, O�2, �2, and Or2 are also chance-corrected mea-
sures of effect size. To clarify the relationship and emphasize that the adjustment is
for the degrees of freedom, O�2, �2, Or2, and < can be redefined in an analysis of
variance context as

< D O�2 D �2 D Or2 D 1 �
�

N � 1

N � g

�
SSWithin

SSTotal
(3.15)

and expressed in terms of the conventional F-ratio as

< D O�2 D �2 D Or2 D .F � 1/.g � 1/

F.g � 1/ C N � g
: (3.16)

As is evident in Eq. (3.16), when F < 1, <, O�2, �2, and Or2 are all negative. It is
disconcerting, to say the least, to try to interpret squared coefficients with negative
values, as a negative value does not constitute a valid estimate of the population
variance [379, p. 344]. It is also important to note that negative estimates of effect
size cannot be simply excluded on theoretical grounds [271, p. 1000]. In 1968 Fried-
man noted that �2 could sometimes be negative [130]. In 1981 Maxwell, Camp, and
Arvey also observed that Or2 could be negative and suggested that negative values of
Or2, O!2, and �2 be treated as zero [266], failing to recognize that negative values of �2

represent effect sizes less than expected by chance.12 As can be seen in Eq. (3.15),
when SSWithin D 0, < D �2 D Or2 D 1; and when SSWithin D SSTotal, then

< D O�2 D �2 D Or2 D 1 � N � 1

N � g
D �

�
g � 1

N � g

�
;

i.e., the negated ratio of the numerator and denominator degrees of freedom, which
is the most extreme negative value that can be obtained for these equivalent chance-
corrected measures of effect size; and when ı D �ı , i.e., the observed result is
expected only by chance, < D O�2 D �2 D Or2 D 0. Thus, positive reported values
of <, O�2, �2 and Or2 are to be interpreted as effect sizes greater than expected by
chance, and negative values are to be interpreted as effect sizes less than expected
by chance, i.e., the treatment group means are closer together than expected under
randomization of the N objects.

11In the literature, Or2 is variously termed “adjusted” or “shrunken” r2.
12As noted by Scheffé [365, pp. 112–119] and by Vaughan and Corballis [411, p. 212], replacing
a negative estimate by zero introduces a positive bias and both advise reporting the negative value.
See also a 2001 article by Fidler and Thompson [117].
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While Or2, O�2, and �2 are often reported as measures of effect size for two-sample
t tests and one-way analysis of variance, and although they all are estimates of the
population effect size, they are widely recognized as being difficult to interpret.
Cast in the light of agreement theory, Or2, O�2, and �2 are revealed as chance-corrected
measures of effect size. This previously undocumented feature provides a new and
improved interpretation of these three measures. The fact that Or2, O�2, and �2 can
yield negative values is recast as a favorable attribute and places the three measures
of effect size into the family of chance-corrected measures, which includes such
well-known members as Scott’s coefficient of inter-coder agreement [368], Cohen’s
coefficient of weighted agreement [71], Spearman’s footrule [382], and when the
two variables consist of ranks from 1 to N with no tied ranks, Spearman’s rank-
order correlation coefficient [381].

Hays’ O!2 also produces negative values—again, not appropriate for a squared
coefficient of effect size. The value of O!2 will be negative whenever the value of
the computed F is less than 1. Defining O!2 in terms of F makes this clear. For a
fixed-effects one-way analysis of variance,

O!2 D .F � 1/.g � 1/

.F � 1/.g � 1/ C N
: (3.17)

If F < 1, then the numerator of Eq. (3.17) will be negative and O!2 will ipso facto be
negative. For a random-effects one-way analysis of variance,

O!2 D F � 1

F C n � 1
; (3.18)

where n denotes the common number of objects in each of g treatments. Again, if
F < 1, then the numerator of Eq. (3.18) will be negative and O!2 will also be negative.

Negative values of O!2 have led many researchers to advocate treating negative
values as zero, including Hays [169, pp. 327, 383]; see also Kenny [213, p. 234].
Although O!2 does not norm properly between 0 and 1, i.e., its minimum value is
given by

�
�

g � 1

N � g C 1

�
;

it is in fact a chance-corrected measure of effect size like <, O�2, �2, and Or2. The
relationships between the chance-corrected measure of effect size, <, and Hays’ O!2

in terms of F, for a fixed-effects one-way analysis of variance, are given by

< D O!2

�
F C N � 1

F C N � 2

�
and O!2 D <

�
F C N � 2

F C N � 1

�
:

Finally, it should be noted that since < is completely data-dependent, it is irrelevant
whether the model is fixed or random.
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3.2.7 Biased Estimators

In general, statisticians prefer sample estimates of population parameters that are
unbiased, e.g., the sample mean, Nx, is an unbiased estimator of the population mean,
�x, and the sample variance, s2

x , is an unbiased estimator of the population vari-
ance, �2

x .13 It is well known that, under the population model of inference whereby
repeated random samples are hypothetically drawn from a normal population, mea-
sures of effect size such as r2, Or2, �2, O�2, �2, and O!2 are biased estimators of their
respective population parameters [219,348,379]. The terms “biased” and “unbiased”
possess quite different meanings under the permutation model of inference, as there
is no population parameter to be estimated. For the permutation model, an unbiased
measure simply means that the average value of the measure of effect size obtained
from all M possible arrangements of the observed response measurement scores is
zero. In the case of O�2 D �2 D Or2 D <, the expected values are indeed zero and all
four chance-corrected measures of effect size are unbiased under the permutation
model. On the other hand, while O!2 is a chance-corrected measure of effect size
like O�2, �2,Or2, and <, it is not an unbiased estimator under either the permutation or
population models of inference. That said, however, the positive bias of O!2 is typi-
cally quite small, within the context of a fixed-effects one-way analysis of variance.
Under the permutation model, it can be shown that while the expected value of O!2

is not zero, it is given by

E
� O!2

	 D 1

M

MX

iD1

�
Nıi

�ı.N � 1/ C ıi

�
;

where

M D

 
gX

iD1

ni

!
Š

gY

iD1

niŠ

and ni denotes the number of objects in the ith of g treatment groups.
It is important to note that conventional measures of effect size such as Od, Or2, O�2,

�2, and O!2 depend on homogeneity of variance [311, p. 96]. In this regard, Mitchell
and Hartmann documented this dependency and a number of additional weaknesses

13It should be noted that the sample standard deviation, sx, is not an unbiased estimator of the
population standard deviation, �x.
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of measures of effect size, leading them to conclude that

the uncritical use of magnitude of effects statistics as a cure for the problems of conventional
hypothesis testing methods of assessing treatment effectiveness may very well represent a
remedy as troublesome as the original problems [311, p. 99].14

In addition, these traditional measures require that v D 2 and the weighting factor be

Ci D ni � 1

N � g
; i D 1; : : : ; g :

Researchers have repeatedly called for an index of effect size that can quantify sub-
stantive importance in such a way that the index can be meaningfully interpreted
when population variances differ [175, p. 910]. To this end, < does not depend on
the assumption of homogeneity; moreover, < is sufficiently flexible to accommo-
date any v > 0 and any Ci, i D 1; : : : ; g.

3.3 Example Univariate MRPP Analyses with g D 2

In this section, three example analyses illustrate the permutation approach to typ-
ical two-sample problems. The first example is designed to correspond to the
conventional Student’s two-sample t test using a small set of univariate response
measurement scores with v D 2 and treatment-group weights given by Ci D .ni �
1/=.N � g/ for i D 1; : : : ; g; the second example analyzes the same small set of uni-
variate response measurement scores, but with v D 1 and treatment-group weights
given by Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g; and the third example analyzes
the same set of response measurement scores using v D 1, but adopts a simple pro-
portional treatment-group weighting function given by Ci D ni=N for i D 1; : : : ; g.

3.3.1 Example 1

Consider the univariate response measurement scores listed in Fig. 3.1 where r D 1,
g D 2, n1 D n2 D 10, and N D n1 C n2 D 20. For this analysis let v D 2, employ-
ing squared Euclidean distance between response measurement scores, and let the
treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

to correspond to Student’s two-sample t test.

14Emphasis in the original.
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Fig. 3.1 Example univariate
response measurement scores
with r D 1, g D 2,
n1 D n2 D 10, and
N D n1 C n2 D 20

Treatment

21

99 94 98 90
99 95 98 86
97 89 97 86
98 96 92 85
95 94 92 60

An exact solution is feasible for the univariate response measurement scores
listed in Fig. 3.1 since there are only

M D NŠ
gY

iD1

niŠ

D 20Š

10Š 10Š
D 184;756

possible, equally-likely arrangements of the N D 20 observed response measure-
ment scores listed in Fig. 3.1. Following Eq. (3.2) on p. 58, the univariate response
measurement scores listed in Fig. 3.1 yield g D 2 average distance-function val-
ues of

�1 D 17:8667 and �2 D 248:0889 :

Following Eq. (3.1) on p. 58, the observed value of the MRPP test statistic based on
v D 2 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 10 � 1

20 � 2

�
17:8667 C 248:0889

�D 132:9778 :

If all arrangements of the N D 20 observed response measurement scores listed
in Fig. 3.1 occur with equal chance, the exact probability value of ıo D 132:9778

computed on the M D 184;756 possible arrangements of the observed data with
n1 D n2 D 10 univariate response measurement scores preserved for each arrange-
ment is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 5;648

184;756
D 0:0306 :
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For comparison, a conventional pooled two-sample t test calculated on the uni-
variate response measurement scores listed in Fig. 3.1 yields Nx1 D 95:60, Nx2 D
88:40, s2

1 D 8:9333, s2
2 D 124:0444, s2

p D 66:4889, and an observed value of to D
C1:9744. Assuming independence, normality, and homogeneity of variance, t is
approximately distributed as Student’s t under the null hypothesis with N � 2 D
20 � 2 D 18 degrees of freedom. Under the null hypothesis, the observed value of
to D C1:9744 yields an approximate two-sided probability value of P D 0:0639.

Following Eq. (3.4) on p. 59, the exact expected value of the M D 184;756 ı

values is �ı D 153:2632 and, following Eq. (3.3) on p. 59, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 132:9778

153:2632
D C0:1324 ;

indicating approximately 13 % within-group agreement above that expected by
chance. For comparison, the conventional measures of effect size are Od D 0:8830,
r2 D �2 D 0:1780, O!2 D 0:1266, and �2 D O�2 D Or2 D 0:1324.

Note also that when v D 2 and the treatment-group weights are given by

Ci D ni � 1

N � g
; i D 1; 2 ;

�1 D 2s2
1 D 2.8:9333/ D 17:8667, �2 D 2s2

2 D 2.124:0444/ D 248:0889, ıo D
2s2

p D 2.66:4889/ D 132:9778, and �ı D 2SSTotal=.N � 1/ D 1;456=.20 � 1/ D
153:2632, as shown in Eqs. (3.6) on p. 61, (3.7) on p. 61, and (3.8) on p. 61, where
SSTotal D T � S2=N D 170;736 � .1;840/2=20 D 1;456.

Given the univariate response measurement scores listed in Fig. 3.1 on p. 74, the
observed values of S and T are

So D
NX

iD1

xi D 99 C 99 C 97 C � � � C 60 D 1;840

and

To D
NX

iD1

x2
i D 992 C 992 C 972 C � � � C 602 D 170;736 ;

and the identities relating Student’s two-sample t test and the MRPP test statistic are

to D



2.NTo � S2
o/

Nıo
� N C 2

�1=2

D
�

2Œ.20/.170;736/ � 1;8402

.20/.132:9778/
� 20 C 2

1=2

D 1:9744
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and

ıo D 2.NTo � S2
o/

N.N � 2 C t2o/
D 2Œ.20/.170;736/ � 1;8402

20.20 � 2 C 1:97442/
D 132:9778 :

Thus, Student’s t test for two independent samples may be considered a special case
of the MRPP test statistic, ı, with v D 2 and Ci D .ni � 1/=.N � g/ for i D 1; 2.

While the above analysis is based on Student’s pooled two-sample t test, it is
readily apparent that, given the univariate response measurement scores listed in
Fig. 3.1, the variances should not be pooled, as s2

1 D 8:9333 and s2
2 D 124:0444 are

markedly different, with a ratio of 13.8856. This discrepancy is also reflected in the
�i values with �1 D 17:8667 and �2 D 248:0889, also with a ratio of 13.8856 since
�i D 2s2

i for i D 1; 2. It is generally recognized that for a two-sample t test, minor
deviations from population normality are less important than inequality of popu-
lation variances. In general, if the larger of two samples has the greater variance,
there is increased risk of a type II or ˇ error: failure to reject a false null hypothesis.
However, if the smaller sample has the greater variance, there is increased risk of a
type I or ˛ error: rejection of a true null hypothesis [141]. In this instance, however,
the point is moot as the two samples are of equal size with n1 D n2 D 10.

A non-pooled t test yields to D 1:9744, the same as the pooled t test since n1 D
n2 in this example. However, the probability values of the two tests differ due to
different degrees of freedom. In the case of the non-pooled t test, t is approximately
distributed as Student’s t with an estimated 10:2896 degrees of freedom. Under
the null hypothesis, the observed value of to D 1:9744 yields an approximate two-
sided probability value of P D 0:0758, which is slightly larger than the pooled t test
probability value of P D 0:0639 and considerably greater than the exact probability
value of P D 0:0306. The estimated degrees of freedom is based on a solution by
Satterthwaite [363] that provides an approximate degrees of freedom given by

min.n1 � 1; n2 � 1/ �

�
s2
1

n1

C s2
2

n2

�2

�
s2
1

n1

�2

n1 � 1
C

�
s2
2

n2

�2

n2 � 1

� n1 C n2 � 2 :

Thus, for the data listed in Fig. 3.1, min.n1 � 1; n2 � 1/ D min.10 � 1; 10 � 1/ D
9, n1 C n2 � 2 D 10 C 10 � 2 D 18, and 9 � 10:2826 � 18.15

15An alternative approximation of the degrees of freedom was proposed by B.L. Welch in 1938
[419]. For the data listed in Fig. 3.1, the Welch procedure yields approximately 10.5762 degrees
of freedom, compared with the Satterthwaite procedure of approximately 10.2826 degrees of free-
dom, yielding an approximate two-sided probability value of P D 0:0750.
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Note that it is inconsequential to the permutation test whether the population vari-
ances are equal or unequal, as the permutation test is strictly a data-dependent test.
Therefore, the MRPP analysis does not change. This is not to say that heterogene-
ity of variances does not affect the value of the MRPP test statistic, but only that,
unlike Student’s t distribution, the discrete permutation distribution and the associ-
ated exact probability value are not dependent on the assumption of homogeneity of
variance.

3.3.2 Example 2

For a second example analysis of the univariate response measurement scores listed
in Fig. 3.1, let the treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

as in Example 1, but set v D 1 instead of v D 2, employing ordinary Euclidean dis-
tance between response measurement scores. The univariate response measurement
scores listed in Fig. 3.1 on p. 74 contain one extreme value of x2;10 D 60, relative to
the other values in Treatment 2. Permutation tests based on v D 1 are quite robust
to extreme values, while permutation tests (and conventional tests) based on v D 2

can be highly influenced by even a single extreme value due to squaring of the dif-
ferences between the response measurement scores [295, pp. 13–15].

Following Eq. (3.2) on p. 58, the univariate response measurement scores listed
in Fig. 3.1 on p. 74 yield g D 2 average distance-function values of

�1 D 3:3778 and �2 D 11:2889 :

Following Eq. (3.1) on p. 58, the observed value of the MRPP test statistic based on
v D 1 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 10 � 1

20 � 2

�
3:3778 C 11:2889

� D 7:3333 :

If all arrangements of the N D 20 observed response measurement scores listed
in Fig. 3.1 on p. 74 occur with equal chance, the exact probability value of ıo D
7:3333 computed on the M D 184;756 possible arrangements of the observed data
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with n1 D n2 D 10 univariate response measurement scores preserved for each
arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 5;288

184;756
D 0:0286 :

For comparison, the exact probability value based on v D 2, M D 184;756, and
Ci D .ni � 1/=.N � g/ for i D 1; 2 in Example 1 is P D 0:0306. No comparison is
made with Student’s two-sample t test as Student’s t test is undefined for v D 1, as
are the conventional measures of effect size for two-sample tests: Od, r2, Or2, �2, O�2,
�2, and O!2.

Following Eq. (3.4) on p. 59, the exact expected value of the M D 184;756 ı val-
ues is �ı D 8:0842 and, following Eq. (3.3) on p. 59, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 7:3333

8:0842
D C0:0929 ;

indicating approximately 9 % within-group agreement above that expected by
chance.

To demonstrate the robustness of statistical analyses based on v D 1, consider
again the single extreme value of x2;10 D 60 located in Treatment 2 in Fig. 3.1 on
p. 74, replicated in Fig. 3.2 for convenience. Successively diminishing the value of
x2;10 D 60 to 50, 40, 30, 20, 10, and finally to 0, does not change the exact permuta-
tion probability value of P D 0:0286. For comparison, Student’s two-sample pooled
t test with x2;10 D 0 yields an observed value of to D C1:4139 with an approximate
two-sided probability value of P D 0:1745, instead of P D 0:0639 with x2;10 D 60,
and a two-sample non-pooled t test with x2;10 D 0 yields an observed value of
to D C1:4139 with an approximate two-sided probability value of P D 0:1904,
instead of P D 0:0758 with x2;10 D 60. The probability values for the exact two-
sample analysis with v D 1, Student’s pooled t test, and the non-pooled t test, based
on Satterthwaite’s approximation, are listed in Fig. 3.3.

Fig. 3.2 Example univariate
response measurement scores
with r D 1, g D 2,
n1 D n2 D 10, and
N D n1 C n2 D 20

Treatment

21

99 94 98 90
99 95 98 86
97 89 97 86
98 96 92 85
95 94 92 60
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Fig. 3.3 Exact, pooled, and
non-pooled probability values
for x2;10 values of 60, 50, 40,
30, 20, 10, and 0

Probability

x 2 , 10 Exact Pooled Non-pooled

60 0.0286 0.0639 0.0758
50 0.0286 0.0876 0.1016
40 0.0286 0.1099 0.1249
30 0.0286 0.1296 0.1452
20 0.0286 0.1468 0.1626
10 0.0286 0.1616 0.1775
0 0.0286 0.1745 0.1904

3.3.3 Example 3

The treatment-group weighting function given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

is essential for the classical t test, but is not required for a permutation test, as
degrees of freedom are irrelevant for distribution-free permutation methods. Thus,
for this third analysis of the univariate response measurement scores listed in
Fig. 3.2, the treatment-group weighting function is set to

Ci D ni

N
; i D 1; : : : ; g ;

simply weighting each treatment group proportional to the number of observations
in the group, and setting v D 1, employing ordinary Euclidean distance between
response measurement scores, as in Example 2. Following Eq. (3.2) on p. 58,
the univariate response measurement scores listed in Fig. 3.2 yield g D 2 average
distance-function values of

�1 D 3:3778 and �2 D 11:2889 :

Following Eq. (3.1) on p. 58, the observed value of the MRPP test statistic based on
v D 1 and treatment-group weights

Ci D ni

N
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 10

20

�
3:3778 C 11:2889

� D 7:3333 :
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If all arrangements of the N D 20 observed response measurement scores listed
in Fig. 3.2 occur with equal chance, the exact probability value of ıo D 7:3333

computed on the M D 184;756 possible arrangements of the observed data with
n1 D n2 D 10 univariate response measurement scores preserved for each arrange-
ment is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 5; 288

184;756
D 0:0286 :

For comparison, the exact probability values based on v D 2, M D 184;756, and
Ci D .ni � 1/=.N � g/ for i D 1; 2 in Example 1 and v D 1, M D 184;756, and
Ci D .ni � 1/=.N � g/ for i D 1; 2 in Example 2 are P D 0:0306 and P D 0:0286,
respectively.16 No comparison is made with Student’s two-sample t test as Student’s
t test is undefined for both v D 1 and Ci D ni=N for i D 1; : : : ; g, as are the con-
ventional measures of effect size for two-sample tests: Od, r2, Or2, �2, O�2, �2, and O!2.

Following Eq. (3.4) on p. 59, the exact expected value of the M D 184;756 ı val-
ues is �ı D 8:0842 and, following Eq. (3.3) on p. 59, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 7:3333

8:0842
D C0:0929 ;

indicating approximately 9 % within-group agreement above that expected by
chance.

3.4 Permutation Analogue of Hotelling’s T2 Test

It is sometimes necessary to test for the difference between g D 2 independent
treatment-groups when r � 2 response measurements have been obtained for each
object. The usual approach to such research applications is Hotelling’s T2 test for
two independent samples given by

T2 D n1n2

N
.Ny1 � Ny2/

0 S�1 .Ny1 � Ny2/ ; (3.19)

where Ny1 and Ny2 denote vectors of mean differences between treatment groups 1
and 2, respectively, n1 and n2 are the number of interval-level multivariate response
measurement scores in treatment groups 1 and 2, respectively, N D n1 C n2, and S

16When n1 D n2, as in this case with n1 D n2 D 10, Ci D ni=N and Ci D .ni � 1/=.N � g/ for
i D 1; : : : ; g are equivalent, yielding the same ı and P values.
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is a variance–covariance matrix given by

S D

2
66666664

1

N

NX

ID1

.y1I � Ny1/
2 � � � 1

N

NX

ID1

.y1I � Ny1/ .yrI � Nyr/

:::
:::

1

N

NX

ID1

.yrI � Nyr/ .y1I � Ny1/ � � � 1

N

NX

ID1

.yrI � Nyr/
2

3
77777775

(3.20)

[291, p. 228].17 The observed value of Hotelling’s T2, T2
o , is conventionally trans-

formed into an observed F-ratio by

Fo D N � r � 1

r.N � 2/
T2

o ;

which is approximately distributed as Snedecor’s F under the null hypothesis with
�1 D r and �2 D N � r � 1 degrees of freedom.

Whenever the data consist of r � 2 response measurement scores for each object,
the response measurement scores may be expressed in entirely different units
of measurement, such as height in inches and weight in pounds. The disparate
response measurement scores must be made commensurate (i.e., standardized) prior
to analysis. Let y 0

i D .y1i; : : : ; yri/ for i D 1; : : : ; N denote N non-commensurate
r-dimensional values (r � 2). The corresponding N commensurate r-dimensional
values denoted by x 0

i D .x1i; : : : ; xri/ for i D 1; : : : ; N are given by xij D yij=�j,
where

�j D
"
X

I<J

ˇ̌
yjI � yjJ

ˇ̌v
#1=v

for j D 1; : : : ; r. The commensurated response measurement scores have the
desired property that

X

I<J

ˇ̌
xjI � xjJ

ˇ̌v D 1

for j D 1; : : : ; r and v > 0. The commensuration procedure is based on the distance
between the r response measurements of objects !I and !J and is given by the

17As noted by Anderson [8, p. 1], Hotelling’s original notation for the variance–covariance matrix
was “A,” while the current convention is “S.”
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generalized Minkowski distance function

	.I; J/ D
2

4
rX

jD1

�
xjI � xjJ

�2
3

5
v=2

;

where v > 0. The commensuration is termed Euclidean commensuration when
v D 1 and Hotelling commensuration when v D 2 [297, pp. 53–57]. Hotelling com-
mensuration with v D 2 is based on the distance function

	.I; J/ D �
.yI � yJ/0 S�1 .yI � yJ/

	v=2
;

where S is the r�r variance–covariance matrix given in Eq. (3.20).

3.5 Example BivariateMRPP Analyses with g D 2

In this section, three example analyses with bivariate response measurement scores
illustrate the permutation approach to two-sample problems with multivariate
response measurement scores. The first example is designed to correspond to the
conventional Hotelling two-sample T2 test using a small set of bivariate response
measurement scores with v D 2, Hotelling commensuration, and treatment-group
weights given by Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g; the second example
analyzes the same small set of bivariate response measurement scores, but with
v D 1, Euclidean commensuration, and treatment-group weights given by Ci D
.ni � 1/=.N � g/ for i D 1; : : : ; g; and the third example analyzes the same set of
bivariate response measurement scores using v D 1 and Euclidean commensuration,
but adopts a simple proportional treatment-group weighting given by Ci D ni=N for
i D 1; : : : ; g.

3.5.1 Example 1

Consider the bivariate response measurement scores listed in Fig. 3.4, where r D 2,
g D 2, n1 D 4, n2 D 6, and N D n1 C n2 D 10. For this first analysis, let v D 2,
employing squared Euclidean distance between response measurement scores, and
let the treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

to correspond to Hotelling’s two-sample T2 test [181]. An exact permutation solu-
tion is feasible for the bivariate response measurement scores listed in Fig. 3.4 since
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Fig. 3.4 Example bivariate
response measurement scores
with r D 2, g D 2, n1 D 4,
n2 D 6, and
N D n1 C n2 D 10

Treatment

1 2

(1.2, 3.1) (3.7, 6.1)
(2.9, 6.8) (6.1, 8.3)
(1.8, 2.1) (6.2, 7.9)
(5.2, 6.1) (4.8, 9.7)

(5.1, 9.9)
(4.2, 7.8)

there are only

M D NŠ
gY

iD1

niŠ

D 10Š

4Š 6Š
D 210

possible, equally-likely arrangements of the N D 10 observed bivariate response
measurement scores listed in Fig. 3.4. Following Eq. (3.2) on p. 58, the bivariate
response measurement scores listed in Fig. 3.4 yield g D 2 average distance-
function values of

�1 D 0:4862 and �2 D 0:2737 :

Following Eq. (3.1) on p. 58, the observed value of the MRPP test statistic based on
v D 2 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

10 � 2

�
.4 � 1/.0:4862/ C .6 � 1/.0:2737/

	 D 0:3534 :

If all arrangements of the N D 10 observed bivariate response measurement
scores listed in Fig. 3.4 occur with equal chance, the exact probability value of
ıo D 0:3534 computed on the M D 210 possible arrangements of the observed data
with n1 D 4 and n2 D 6 bivariate response measurement scores preserved for each
arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 12

210
D 0:0571 :
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For comparison, a conventional two-sample Hotelling T2 test of the N D 10

bivariate response measurement scores listed in Fig. 3.4 yields Ny11 D 2:7750, s2
11 D

3:1092, Ny12 D 4:5250, s2
12 D 5:1892, cov.1; 2/1 D C2:9042, Ny21 D 5:0167, s2

21 D
1:0057, Ny22 D 8:2833, s2

22 D 1:9537, and cov.1; 2/2 D C0:5323. Then, Ny1 and Ny2 in
Eq. (3.19) are

Ny1 D Ny11 � Ny21 D 2:7550 � 5:0167 D �2:2417

and

Ny2 D Ny12 � Ny22 D 4:5250 � 8:2833 D �3:7583 :

The variance–covariance matrices for Treatments 1 and 2 in Fig. 3.4 are

O†1 D
"

3:1092 C2:9042

C2:9042 5:1892

#
and O†2 D

"
1:0057 C0:5323

C0:5323 1:9537

#
;

respectively, and the pooled variance–covariance matrix and its inverse are

S D
"

1:7945 C1:4218

C1:4218 3:1670

#
and S�1 D

"C0:8649 �0:3883

�0:3883 C0:4901

#
;

respectively.18

Following Eq. (3.19) on p. 80, the observed value of Hotelling’s T2 is

T2
o D n1n2

N
.Ny1 � Ny2/

0 S�1 .Ny1 � Ny2/

D .4/.6/

10

��2:2417 �3:7583
	
"C0:8649 �0:3883

�0:3883 C0:4901

#"�2:2417

�3:7583

#

D .2:40/.4:7260/ D 11:3423

and the observed F-ratio for Hotelling’s T2 is

Fo D N � r � 1

r.N � 2/
T2

o D 10 � 2 � 1

2.10 � 2/
.11:3423/ D 4:9623 :

Assuming independence, normality, and homogeneity of variance, F is approxi-
mately distributed as Snedecor’s F under the null hypothesis with �1 D r D 2 and

18Each element of the S matrix is constructed from two corresponding elements in the O† matrices,
weighted by the degrees of freedom, i.e., n � 1. For example, the first element of the S matrix is
1:7945 D Œ.4 � 1/.3:1092/ C .6 � 1/.1:0057/=.4 C 6 � 2/.
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�2 D N � r � 1 D 10 � 2 � 1 D 7 degrees of freedom. Under the null hypothe-
sis, the observed value of Fo D 4:9623 yields an approximate probability value of
P D 0:0455.

Following Eq. (3.4) on p. 59, the exact expected value of the M D 210 ı values
is �ı D 0:4444 and, following Eq. (3.3) on p. 59, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 0:3534

0:4444
D C0:2049 ;

indicating approximately 20 % within-group agreement above that expected by
chance.

The identity relating Hotelling’s two-sample T2 test and the MRPP test statistic
is given by

ı D 2.r � V.s//

N � g
; (3.21)

where

V.s/ D T2

T2 C N � g
(3.22)

and s D min.g � 1; r/; in this case with g � 1 D 2 � 1 D 1 and r D 2, s D min.2 �
1; 2/ D 1. Thus, following Eqs. (3.21) and (3.22), the observed value of V.1/

o is

V.1/
o D 11:3423

11:3423 C 10 � 2
D 11:3423

19:3423
D 0:5864

and the observed value of ı is

ıo D 2.2 � 0:5864/

10 � 2
D 2:8272

8
D 0:3534 :

It is obvious from an inspection of Eq. (3.22) that V.1/ is simply the squared mul-
tiple correlation coefficient, R2

y1;y2:x, where the n1 D 4 objects in treatment-group
1 are dummy-coded by some numerical value, say 0, and the n2 D 6 objects in
treatment-group 2 are coded by some other numerical value, say 1.19 Figure 3.5
displays the multiple correlation data where variable x is the dummy-coded inde-
pendent variable, variable y1 is a dependent variable containing the first of the r D 2

response measurement scores for each object, and variable y2 is a second dependent
variable containing the second of the response measurement scores for each object.

19Actually, any two different numerical values will suffice for dummy coding, but 0 and 1 values
are conventional for two treatment groups.
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Fig. 3.5 Example bivariate
regression response
measurement scores with
N D 10 cases, independent
variable x, and dependent
variables y1 and y2

Variable

x y1 y2

0 1.2 3.1
0 2.9 6.8
0 1.8 2.1
0 5.2 6.1

1 3.7 6.1
1 6.1 8.3
1 6.2 7.9
1 4.8 9.7
1 5.1 9.9
1 4.2 2.8

For the bivariate response measurement scores listed in Fig. 3.5, R2
y1;y2:x D 0:5864.

More simply,

�2 D V.s/

s
D V.s/

min.g � 1; r/
D V.1/

1
D 0:5864

1
D 0:5864 :

This example analysis demonstrates that the Hotelling two-sample T2 test may
simply be considered a special version of the MRPP test statistic, ı, with v D 2 and
Ci D .ni � 1/=.N � g/ for i D 1; 2. Considering the distributional problems under
the multivariate normal assumptions that are rarely satisfied in practice [7], the exact
permutation analogue of Hotelling’s T2 test offers a vast improvement over any
approach in the current literature. In addition, the conventional Hotelling T2 test
fails if r > g, while ı processes such cases without any problems; see, for example,
a 1996 paper by Mielke, Berry, and Neidt in Psychological Reports [304].

3.5.2 Example 2

As with Student’s two-sample t test, it is not necessary to set v D 2, thereby squar-
ing the response-measurement differences between objects. For a second example
analysis of the bivariate response measurement scores listed in Fig. 3.4 on p. 83, let
the treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

as in Example 1, but set v D 1 instead of v D 2, employing ordinary Euclidean
distance between response measurement scores. Note that with v D 1, Euclidean
commensuration is selected. Following Eq. (3.2) on p. 58, the bivariate response
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measurement scores listed in Fig. 3.4 yield g D 2 average distance-function val-
ues of

�1 D 3:7865 and �2 D 2:2200 :

Following Eq. (3.1) on p. 58, the observed value of the MRPP test statistic based on
v D 1 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

10 � 2

�
.4 � 1/.3:7865/ C .6 � 1/.2:2200/

	 D 2:8074 :

If all arrangements of the N D 10 observed bivariate response measurement
scores listed in Fig. 3.4 occur with equal chance, the exact probability value of
ıo D 2:8074 computed on the M D 210 possible arrangements of the observed data
with n1 D 4 and n2 D 6 bivariate response measurement scores preserved for each
arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 4

210
D 0:0190 :

For comparison, the exact probability value based on v D 2, M D 210, and Ci D
.ni � 1/=.N � g/ for i D 1; 2 in Example 1 is P D 0:0571. No comparison is made
with Hotelling’s two-sample T2 test as Hotelling’s T2 is undefined for v D 1, as are
the conventional measures of effect size for two-sample tests: Od, r2, Or2, �2, O�2, �2,
and O!2.

Following Eq. (3.4) on p. 59, the exact expected value of the M D 210 ı values
is �ı D 3:7628 and, following Eq. (3.3) on p. 59, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 2:8074

3:7628
D C0:2539 ;

indicating approximately 25 % within-group agreement above that expected by
chance.
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3.5.3 Example 3

As with Student’s two-sample t test, the treatment-group weighting function
given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

is, from a permutation perspective, a relic from the classical t test and is not suitable
for a distribution-free permutation test, as degrees of freedom are never appropriate
for permutation methods, except when validating a corresponding conventional test.
Thus, for this third analysis of the bivariate response measurement scores listed in
Fig. 3.4, the treatment-group weighting function is set to

Ci D ni

N
; i D 1; : : : ; g ;

weighting each treatment group proportional to the number of observations in the
group, and the distance function is set to v D 1 as in Example 2, again selecting
Euclidean commensuration.

Following Eq. (3.2) on p. 58, the bivariate response measurement scores listed in
Fig. 3.4 yield g D 2 average distance-function values of

�1 D 3:7865 and �2 D 2:2200 :

Following Eq. (3.1) on p. 58, the observed value of the MRPP test statistic based on
v D 1 and treatment-group weights

Ci D ni

N
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

10

�
.4/.3:7865/ C .6/.2:2200/

	 D 2:8466 :

If all arrangements of the N D 10 observed bivariate response measurement
scores listed in Fig. 3.4 occur with equal chance, the exact probability value of
ıo D 2:8466 computed on the M D 210 possible arrangements of the observed data
with n1 D 4 and n2 D 6 bivariate response measurement scores preserved for each
arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 4

210
D 0:0190 :
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For comparison, the exact probability values based on v D 2, M D 210, and Ci D
.ni � 1/=.N � g/ for i D 1; 2 in Example 1 and v D 1, M D 210, and Ci D .ni �
1/=.N � g/ for i D 1; 2 in Example 2 are P D 0:0571 and P D 0:0190, respectively.
No comparison is made with the Hotelling two-sample T2 test as T2 is undefined
for both v D 1 and Ci D ni=N for i D 1; : : : ; g, as are the conventional measures
of effect size for two-sample tests: Od, r2, Or2, �2, O�2, �2, and O!2.

Following Eq. (3.4) on p. 59, the exact expected value of the M D 210 ı values
is �ı D 3:7628 and, following Eq. (3.3) on p. 59, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 2:8466

3:7628
D C0:2435 ;

indicating approximately 24 % within-group agreement above that expected by
chance.

3.6 Permutation Analogue of One-Way ANOVA

The one-way analysis of variance with g � 3 treatment groups and univariate
response measurements on each object is a popular statistical approach to test for
differences among treatment groups. Consider the conventional one-way analysis-
of-variance (ANOVA) test statistic,

F D MSBetween

MSWithin
; (3.23)

where

MSBetween D 1

g � 1

gX

iD1

ni.Nxi � NNx/2 ;

MSWithin D 1

N � g

gX

iD1

niX

jD1

.xij � Nxi/
2 ;

ni is the number of objects in the ith of g treatment groups, N D Pg
iD1 ni is the total

number of objects in the g treatment groups, xij is a univariate response measure-
ment score for the jth object in the ith treatment group, Nxi is the average response
measurement score for the ith treatment group, given by

Nxi D 1

ni

niX

jD1

xij ; i D 1; : : : ; g ;
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and NNx is the grand mean of the N response measurement scores, given by

NNx D 1

N

gX

iD1

niX

jD1

xij :

Assuming independence, normality, and homogeneity of variance, F is approx-
imately distributed as Snedecor’s F under the null hypothesis of no difference
among population means with �1 D g � 1 and �2 D N � g degrees of freedom.
When r D 1, v D 2, and the treatment-group weights are given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

it can easily be shown that ı is the permutation analogue of the conventional F-ratio
test statistic, as defined in Eq. (3.23). When v D 2, employing squared Euclidean
distance between response measurement scores, and the treatment-group weights
are given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

the relationships between the MRPP test statistic and the conventional F-ratio are
given by

ı D 2.NB � A2/

NŒN � g C .g � 1/F
and F D 2.NB � A2/

.g � 1/Nı
� N � g

g � 1
;

where

A D
NX

iD1

xi ; B D
NX

iD1

x2
i ;

and xi is a univariate response measurement score for the ith of N objects. The
permutation analogue of the F test given here is commonly called the Fisher–Pitman
permutation test [119, 342]. Note also that

�ı D 2SSTotal

N � 1
(3.24)

and

ı D 2MSWithin (3.25)
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yield the functional relationship

ı D 1

N � g

�
.N � 1/�ı � 2.g � 1/MSBetween

	
; (3.26)

where

SSTotal D .g � 1/MSBetween C .N � g/MSWithin D SSBetween C SSWithin :

As is readily apparent in Eq. (3.26), test statistic ı depends solely on the differences
among (between) the group means since �ı is fixed for a given univariate sample
and MSBetween depends only on the differences among group means. Thus, the per-
mutation statistical inference is completely unaffected by differences in scale among
the g treatment groups [33, 194].

3.6.1 Computing Efficiency

It should be noted that it is not necessary to calculate the F-ratio test statistic for
each permutation of the observed response measurement scores. As previously, let
ni denote the number of objects in the ith of g treatment groups, i D 1; : : : ; g, where

N D
gX

iD1

ni

is the total number of objects in the g treatment groups. Then the Fisher–Pitman test
statistic for g treatment groups, T, is given by

T D
gX

iD1

ni Nx2
i ;

where

Nxi D 1

ni

niX

jD1

xij

and xij denotes the univariate response measurement scores of the jth subject in the
ith of g treatment groups.

Under the Fisher–Pitman null hypothesis, T and F are equivalent since

F D MSBetween

MSWithin
D SSBetween=.g � 1/

SSWithin=.N � g/
D .T � N NNx2/=.g � 1/

.V � T/=.N � g/
:
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Note that

NNx D 1

N

gX

iD1

niNxi ; V D
gX

iD1

niX

jD1

x2
ij ;

N, and g are invariant under permutation. Consequently, T and F are equivalent test
statistics for testing the Fisher–Pitman null hypothesis; however, T is computation-
ally more efficient and, more importantly, does not depend on sample estimates of
the population variance [38].

3.7 Example Univariate MRPP Analyses with g D 4

In this section, three example analyses illustrate the permutation approach to typical
one-way analysis-of-variance (ANOVA) problems. The first example is designed to
correspond to the conventional F test using a small set of univariate response mea-
surement scores with v D 2 and treatment-group weights Ci D .ni � 1/=.N � g/

for i D 1; : : : ; g; the second example analyzes the same small set of univari-
ate response measurement scores, but uses v D 1 and treatment-group weights
Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g; and the third example analyzes the same
set of univariate response measurement scores using v D 1, but adopts a propor-
tional treatment-group weighting function given by Ci D ni=N for i D 1; : : : ; g.

3.7.1 Example 1

Consider the small set of univariate response measurement scores listed in Fig. 3.6,
where r D 1, g D 4, n1 D n2 D 3, n3 D 4, n4 D 5, and where N D n1 C n2 C n3 C
n4 D 15. For this first analysis, let v D 2, employing squared Euclidean distance
between response measurement scores, and let the treatment-group weights be
given by

Ci D ni � 1

N � g
; i D 1; : : : ; g :

Fig. 3.6 Example univariate
response measurement scores
with r D 1, g D 4,
n1 D n2 D 3, n3 D 4,
n4 D 5, and N D
n1 C n2 C n3 C n4 D 15

Treatment

1 2 3 4

10 11 12 14
11 12 13 15
12 13 14 16

15 17
33
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Because an exact solution would require generating

M D NŠ
gY

iD1

niŠ

D 15Š

3Š 3Š 4Š 5Š
D 12;612;600

possible, equally-likely arrangements of the N D 15 observed response measure-
ment scores listed in Fig. 3.6, a resampling solution is more practical. In this
example analysis, the number of random arrangements of the univariate response
measurement scores listed in Fig. 3.6 is set to L D 1;000;000 to ensure an approxi-
mate resampling probability value with three decimal places of accuracy. Following
Eq. (3.2) on p. 58, the univariate response measurement scores listed in Fig. 3.6 yield
g D 4 average distance-function values of

�1 D �2 D 2:00 ; �3 D 3:3333 ; and �4 D 125:00 :

Following Eq. (3.1) on p. 58, the observed value of the MRPP test statistic based on
v D 2 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; : : : ; 4 ;

is

ıo D
gX

iD1

Ci�i D 1

15 � 4

�
.3 � 1/.2:00/ C .3 � 1/.2:00/

C .4 � 1/.3:3333/ C .5 � 1/.125:00/
	 D 47:0909 :

If all M possible arrangements of the N D 15 observed response measurement
scores listed in Fig. 3.6 occur with equal chance, the approximate resampling prob-
ability value of ıo D 47:0909 computed on L D 1;000;000 random arrangements of
the observed data with n1 D n2 D 3, n3 D 4, and n4 D 5 univariate response mea-
surement scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

L
D 53;200

1;000;000
D 0:0532 :

Following Eq. (3.4) on p. 59, the exact expected value of the M D 12;612;600

ı values is �ı D 59:9619 and, following Eq. (3.3) on p. 59, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 47:0909

59:9619
D C0:2147 ;
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indicating approximately 21 % within-group agreement above that expected by
chance.

An Exact Test
Although an exact permutation analysis of the N D 15 univariate response measure-
ment scores listed in Fig. 3.6 is impractical, it is not impossible. Following Eq. (3.2)
on p. 58, an exact permutation analysis of the univariate response measurement
scores listed in Fig. 3.6 yields g D 4 average distance-function values of

�1 D �2 D 2:00 ; �3 D 3:3333 ; and �4 D 125:00 :

Following Eq. (3.1) on p. 58, the observed value of the MRPP test statistic based on
v D 2 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; : : : ; 4 ;

is

ıo D
gX

iD1

Ci�i D 1

15 � 4

�
.3 � 1/.2:00/ C .3 � 1/.2:00/

C .4 � 1/.3:3333/ C .5 � 1/.125:00/
	 D 47:0909 :

Note that the �i values, i D 1; : : : ; 4, and the observed ı value, ıo, are identical for
both the resampling and exact tests.

If all arrangements of the N D 15 observed response measurement scores listed
in Fig. 3.6 occur with equal chance, the exact probability value of ıo D 47:0909

computed on the M D 12;612;600 possible arrangements of the observed data with
n1 D n2 D 3, n3 D 4, and n4 D 5 univariate response measurement scores preserved
for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 673;490

12;612;600
D 0:0534 :

Carrying the resampling probability value based on L D 1;000;000 and the exact
probability value based on M D 12;612;600 to a few extra decimal places allows for
a more direct comparison of the resampling and exact permutation approaches. The
resampling approximate probability value to six decimal places is P D 0:053242

and the corresponding exact probability value is P D 0:053398 for a difference of
0:000156, demonstrating the efficiency and accuracy of a resampling approach for
permutation methods when L is large.
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Following Eq. (3.4) on p. 59, the exact expected value of the M D 12;612;600

ı values is �ı D 59:9619 and, following Eq. (3.3) on p. 59, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 47:0909

59:9619
D C0:2147 ;

indicating approximately 21 % within-group agreement above that expected by
chance.

A Conventional Test
For comparison, the univariate response measurement scores listed in Fig. 3.6
yield estimated population means of Nx1 D 11:00, Nx2 D 12:00, Nx3 D 13:50, and
Nx4 D 19:00; a grand mean based on all N D 15 response measurement scores of
NNx D 14:5333; and estimated population variances of s2

1 D 1:00, s2
2 D 1:00, s2

3 D
1:6667, and s2

4 D 62:50. A conventional F test on the univariate response mea-
surement scores listed in Fig. 3.6 yields MSBetween D 53:5778, MSWithin D 23:5455,
SSTotal D 419:7333, and an observed F-ratio value of Fo D 2:2755.

Assuming independence, normality, and homogeneity of variance, F is approx-
imately distributed as Snedecor’s F under the null hypothesis with �1 D g � 1 D
4 � 1 D 3 and �2 D N � g D 15 � 4 D 11 degrees of freedom. Under the null
hypothesis, the observed value of Fo D 2:2755 yields an approximate probability
value of P D 0:1366.

It is readily apparent that, for the N D 15 univariate response measurement
scores listed in Fig. 3.6, the assumption of homogeneity of variance has not been
met, e.g., s2

1 D 1:00 and s2
4 D 62:50. In 1951 B.L. Welch proposed an adjustment to

the conventional F-ratio that compensated for unequal variances [420]. Following
Welch, define an adjusted F-ratio as

F0 D

1

g � 1

gX

iD1

wi
�Nxi � NNx�2

1 C 2.g � 2/

g2 � 1

gX

iD1

�
1

ni � 1

�
0

B@
1 � wi

gX

iD1

wi

1

CA

2
; (3.27)

where Nxi is the mean of each of g treatments, i D 1; : : : ; g, NNx is the grand mean
over all treatments, and wi for i D 1; : : : ; g are weights assigned to each treatment
given by

wi D ni

s2
i

; i D 1; : : : ; g ;

where ni is the number of response measurement scores in each of g treatments and
s2

i is the estimated population variance for each treatment, i D 1; : : : ; g.
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For the N D 15 response measurement scores listed in Fig. 3.6 on p. 92, the g D 4

sample means are

Nx1 D 1

n1

n1X

iD1

xi D 33:00

3
D 11:00 ; Nx2 D 1

n2

n2X

iD1

xi D 36:00

3
D 12:00 ;

Nx3 D 1

n3

n3X

iD1

xi D 54:00

4
D 13:50 ; Nx4 D 1

n4

n4X

iD1

xi D 95:00

5
D 19:00 ;

and the grand mean is

NNx D 1

N

gX

iD1

niNxi D 1

15

h
.3/.11:00/ C .3/.12:00/ C .4/.13:50/ C .5/.19:00/

i

D 218:00

15
D 14:5333 :

Also, for the response measurement scores listed in Fig. 3.6, the g D 4 weights
specified by Welch in Eq. (3.27) are

w1 D n1

s2
1

D 3

1:00
D 3:00 ; w2 D n2

s2
2

D 3

1:00
D 3:00 ;

w3 D n3

s2
3

D 4

1:6667
D 2:40 ; w4 D n4

s2
4

D 5

62:50
D 0:08 ;

and the sum of the g D 4 weights is

gX

iD1

wi D 3:00 C 3:00 C 2:40 C 0:08 D 8:48 :

Then, for the response measurement scores listed in Fig. 3.6, the numerator of
Eq. (3.27) is

1

g � 1

gX

iD1

wi
�Nxi � NNx�2

D 1

4 � 1

h
.3:00/.11:00 � 14:53333/2 C .3:00/.12:00 � 14:5333/2

C .2:40/.13:50 � 14:53333/2 C .0:08/.19:00 � 14:5333/2
i

D 62:8654

3
D 20:2885 ;
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and the denominator of Eq. (3.27) is

1 C 2.g � 2/

g2 � 1

gX

iD1

�
1

ni � 1

�
0

B@
1 � wi

gX

iD1

wi

1

CA

2

D 1 C 2.4 � 2/

42 � 1

"�
1

3 � 1

��
1 � 3:00

8:48

�2

C
�

1

3 � 1

��
1 � 3:00

8:48

�2

C
�

1

4 � 1

��
1 � 2:40

8:48

�2

C
�

1

5 � 1

��
1 � 0:08

8:48

�2
#

D 1 C .0:2667/.0:2088 C 0:2088 C 0:1714 C 0:2453/

D 1 C .0:2667/.0:8343/ D 1:2225 :

Then, following Eq. (3.27), the observed value of Welch’s F0 is

F0
o D

1

g � 1

gX

iD1

wi
�Nxi � NNx�2

1 C 2.g � 2/

g2 � 1

gX

iD1

�
1

ni � 1

�
0

B@
1 � wi

gX

iD1

wi

1

CA

2

D 20:2885

1:2225
D 16:5963 :

Following Welch [420, p. 334], F0 is approximately distributed as Snedecor’s F
with �1 D g � 1 and �2 degrees of freedom, where �2 is given by

�2 D

2

6664
3

g2 � 1

gX

iD1

�
1

ni � 1

�
0
B@

1 � wi
gX

iD1

wi

1
CA

2

3

7775

�1

:

For the N D 15 response measurement scores listed in Fig. 3.5 on p. 86,

�2 D



3

42 � 1
.0:8343/

��1

D



2:5029

15

��1

D 5:99 :

Under the null hypothesis with �1 D g � 1 D 4 � 1 D 3 and �2 D 5:99 degrees of
freedom, the observed value of F0

o D 16:5963 yields an approximate probability
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value of P D 0:0026, which is markedly less than the unadjusted probability value
of P D 0:1366 based on the observed value of the conventional Fo D 2:2755 with
�1 D g � 1 D 3 and �2 D N � g D 15 � 4 D 11 degrees of freedom.

The F-Ratio andMRPP
Note that setting v D 2 and Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g yields
�1 D 2s2

1 D 2.1:00/ D 2:00, �2 D 2s2
2 D 2.1:00/ D 2:00, �3 D 2s2

3 D 2.1:6667/ D
3:3333, �4 D 2s2

4 D 2.62:50/ D 125:00, ı D 2MSWithin D 2.23:5455/ D 47:0909,
and �ı D 2SSTotal=.N � 1/ D 2.419:7333/=.15 � 1/ D 59:9619, as shown in
Eqs. (3.25) on p. 90 and (3.24) on p. 90.

Given the N D 15 univariate response measurement scores listed in Fig. 3.6, the
observed values of A and B are

Ao D
NX

iD1

xi D 10 C 11 C 12 C � � � C 33 D 218

and

Bo D
NX

iD1

x2
i D 102 C 112 C 122 C � � � C 332 D 3;588 ;

and the relationships between the F-ratio and the MRPP test statistic are

Fo D 2.NBo � A2
o/

.g � 1/Nıo
� N � g

g � 1
D 2Œ.15/.3;588/ � 2182

.4 � 1/.15/.47:0909/
� 15 � 4

4 � 1
D 2:2755

and

ıo D 2.NBo � A2
o/

NŒN � g C .g � 1/Fo
D 2Œ.15/.3;588/ � 2182

15Œ15 � 4 C .4 � 1/.2:2755/
D 47:0909 :

Cohen’s Measure of Effect Size
For a one-way analysis of variance, Cohen’s Od is given by

Od D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

1

g � 1

2

66664

gX

iD1

�Nxi � NNx�2

MSWithin

3

77775

9
>>>>=

>>>>;

1=2

; (3.28)

where Nxi is the arithmetic mean of the response measurement scores in the ith of g
treatment groups and NNx denotes the grand (weighted) mean of the g treatment groups.
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The observed response measurement scores listed in Fig. 3.5 yield Nx1 D 11:00,
Nx2 D 12:00, Nx3 D 13:50, Nx4 D 19:00, NNx D 14:5333, MSWithin D 23:5455, and

gX

iD1

�Nxi � NNx�2 D .11:00 � 14:5333/2 C .12:00 � 14:5333/2

C .13:50 � 14:5333/2 C .19:00 � 14:5333/2 D 39:9211 :

Then, following Eq. (3.28), the observed value of Od is

Od D



1

4 � 1

�
39:9211

23:5455

��1=2

D 0:7518 :

For comparison, the univariate response measurement scores listed in Fig. 3.6 yield
�2 D 0:3829, O�2 D Or2 D �2 D < D 0:2147, and O!2 D 0:2033 for a fixed-effects
model.

3.7.2 Example 2

For this second analysis of the univariate response measurement scores listed in
Fig. 3.6 on p. 92, replicated in Fig. 3.7 for convenience, let the treatment-group
weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

as in Example 1, but set v D 1 instead of v D 2, employing ordinary Euclidean
distance between response measurement scores, thereby reducing the effects of
any extreme values. The N D 15 univariate response measurement scores listed in
Fig. 3.7 contain one extreme value of x4;5 D 33, i.e., the fifth response measurement
in Treatment 4.

As noted in the discussion of Student’s two-sample t test in Sect. 3.3.2, permu-
tation tests based on v D 1 are robust to extreme values, while permutation tests

Fig. 3.7 Example univariate
response measurement scores
with r D 1, g D 4,
n1 D n2 D 3, n3 D 4,
n4 D 5, and N D
n1 C n2 C n3 C n4 D 15

Treatment

1 2 3 4

10 11 12 14
11 12 13 15
12 13 14 16

15
33
17
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based on v D 2 can be severely affected by even a single extreme value [295, pp.
13–15].

Following Eq. (3.2) on p. 58, the univariate response measurement scores listed
in Fig. 3.7 yield g D 4 average distance-function values of

�1 D �2 D 1:3333 ; �3 D 1:6667 ; and �4 D 8:00 :

Following Eq. (3.1) on p. 58, the observed value of the MRPP test statistic based on
v D 1 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; : : : ; 4 ;

is

ıo D
gX

iD1

Ci�i D 1

15 � 4

�
.3 � 1/.1:3333/ C .3 � 1/.1:3333/

C .4 � 1/.1:6667/ C .5 � 1/.8:00/
	 D 3:8485 :

Note that the �i values, i D 1; : : : ; 4, and the observed ı value, ıo, are identical for
both the resampling and exact tests.

If all M possible arrangements of the N D 15 observed response measurement
scores listed in Fig. 3.7 occur with equal chance, the approximate resampling prob-
ability value of ıo D 3:8485 computed on L D 1;000;000 random arrangements of
the observed data with n1 D n2 D 3, n3 D 4, and n4 D 5 univariate response mea-
surement scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

L
D 18;000

1;000;000
D 0:0180 :

For comparison, the approximate resampling probability value based on v D 2,
L D 1;000;000, and Ci D .ni � 1/=.N � g/ for i D 1; : : : ; 4 in Example 1 is P D
0:0532. No comparison is made with the F-ratio as Fisher’s F is undefined for
v D 1, as are the conventional measures of effect size: Od, r2, Or2, �2, O�2, �2, and
O!2.

Following Eq. (3.3) on p. 59, the exact expected value of the M D 12;612;600

ı values is �ı D 4:7238 and, following Eq. (3.3) on p. 59, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 3:8485

4:7238
D C0:1853 ;

indicating approximately 19 % within-group agreement above that expected by
chance.



3.7 Example Univariate MRPP Analyses with g D 4 101

An Exact Test
Following Eq. (3.2) on p. 58, an exact permutation analysis of the univariate
response measurement scores listed in Fig. 3.7 on p. 99 yields g D 4 average
distance-function values of

�1 D �2 D 1:3333 ; �3 D 1:6667 ; and �4 D 8:00 :

Following Eq. (3.1) on p. 58, the observed value of the MRPP test statistic based on
v D 1 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; : : : ; 4 ;

is

ıo D
gX

iD1

Ci�i D 1

15 � 4

�
.3 � 1/.1:3333/ C .3 � 1/.1:3333/

C .4 � 1/.1:6667/ C .5 � 1/.8:00/
	 D 3:8485 :

As always, the �i values, i D 1; : : : ; g, and the observed ı value, ıo, are identical
for both the resampling and exact tests.

If all arrangements of the N D 15 observed response measurement scores listed
in Fig. 3.7 occur with equal chance, the exact probability value of ıo D 3:8485

computed on the M D 12;612;600 possible arrangements of the observed data with
n1 D n2 D 3, n3 D 4, and n4 D 5 univariate response measurement scores preserved
for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 225;720

12;612;600
D 0:0179 :

Based on L D 1;000;000, the approximate resampling probability value of P D
0:0180 compares favorably with the exact probability value of P D 0:0179 based
on M D 12;612;600. No comparison is made with the F-ratio as Fisher’s F test is
undefined for v D 1, as are the conventional measures of effect size: Od, r2, Or2, �2,
O�2, �2, and O!2.

Following Eq. (3.4) on p. 59, the exact expected value of the M D 12;612;600

ı values is �ı D 4:7238 and, following Eq. (3.3) on p. 59, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 3:8485

4:7238
D C0:1853 ;

indicating approximately 19 % within-group agreement above that expected by
chance.
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Note the effect of the single extreme value (x4;5 D 33) in Group 4 on the anal-
ysis based on v D 1, compared with the analysis based on v D 2. In the analysis
with v D 2, the value for �4 was 125.00, but with v D 1, �4 was reduced to only
�4 D 8:00. Also, with v D 2 the exact probability value was P D 0:0534, but with
v D 1 the exact probability value was only P D 0:0180, a substantial reduction of
approximately 66 %.

3.7.3 Example 3

As noted in the discussion of Student’s two-sample t test in Sect. 3.3.3, the
treatment-group weights given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

are based on degrees of freedom, are holdovers from the classical F test, and are not
appropriate for distribution-free permutation tests. Thus, for this third analysis of
the univariate response measurement scores listed in Fig. 3.7, the treatment-group
weighting function is set to

Ci D ni

N
; i D 1; : : : ; g ;

simply weighting each treatment group proportional to its group size, and v is set to
v D 1 as in Example 2, employing ordinary Euclidean distance between response
measurement scores. Following Eq. (3.2) on p. 58, the univariate response measure-
ment scores listed in Fig. 3.7 yield g D 4 average distance-function values of

�1 D �2 D 1:3333 ; �3 D 1:6667 ; and �4 D 8:00 :

Following Eq. (3.1) on p. 58, the observed value of the MRPP test statistic based on
v D 1 and treatment-group weights

Ci D ni

N
i D 1; : : : ; 4 ;

is

ıo D
gX

iD1

Ci�i D 1

15

�
.3/.1:3333/.C.3/.1:3333/

C .4/.1:6667/ C .5/.8:00/
	 D 3:6444 :
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If all M possible arrangements of the N D 15 observed response measurement
scores listed in Fig. 3.7 occur with equal chance, the approximate resampling prob-
ability value of ıo D 3:6444 computed on L D 1;000;000 random arrangements of
the observed data with n1 D n2 D 3, n3 D 4, and n4 D 5 univariate response mea-
surement scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

L
D 33;000

1;000;000
D 0:0033 :

For comparison, the approximate resampling probability values based on v D 2,
L D 1;000;000, and Ci D .ni � 1/=.N � g/ for i D 1; : : : ; 4 in Example 1 and
v D 1, L D 1;000;000, and Ci D .ni � 1/=.N � g/ for i D 1; : : : ; 4 in Example 2
are P D 0:0532 and P D 0:0179, respectively. No comparison is made with the con-
ventional F-ratio as Fisher’s F test is undefined for both v D 1 and Ci D ni=N for
i D 1; : : : ; g, as are the conventional measures of effect size: Od, r2, Or2, �2, O�2, �2,
and O!2.

Following Eq. (3.4) on p. 59, the exact expected value of the M D 12;612;600

ı values is �ı D 4:7238 and, following Eq. (3.3) on p. 59, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 3:6444

4:7238
D C0:2285 ;

indicating approximately 23 % within-group agreement above that expected by
chance.

An Exact Test
An exact permutation analysis of the univariate response measurement scores listed
in Fig. 3.7 with v D 1 and proportional treatment-group weights given by

Ci D ni

N
; i D 1; : : : ; g ;

yields g D 4 average distance-function values of

�1 D �2 D 1:3333 ; �3 D 1:6667 ; and �4 D 8:00 :

Following Eq. (3.1) on p. 58, the observed value of the MRPP test statistic based on
v D 1 and treatment-group weights

Ci D ni

N
; i D 1; : : : ; 4 ;
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is

ıo D
gX

iD1

Ci�i D 1

15

�
.3/.1:3333/ C .3/.1:3333/

C .4/.1:6667/ C .5/.8:00/
	 D 3:6444 :

If all arrangements of the N D 15 observed response measurement scores listed
in Fig. 3.7 occur with equal chance, the exact probability value of ıo D 3:6444

computed on the M D 12;612;600 possible arrangements of the observed data with
n1 D n2 D 3, n3 D 4, and n4 D 5 univariate response measurement scores preserved
for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 41;172

12;612;600
D 0:0033 ;

which is the same, to four decimal places, as the approximate resampling probability
value based on L D 1;000;000. For comparison, the exact probability values based
on v D 2, M D 12;612;600, and Ci D .ni � 1/=.N � g/ for i D 1; 2 in Example 1
and v D 1, M D 12;612;600, and Ci D .ni � 1/=.N � g/ for i D 1; 2 in Example
2 are P D 0:0532 and P D 0:0534, respectively. No comparison is made with the
F-ratio as Fisher’s F test is undefined for both v D 1 and Ci D ni=N, as are the
conventional measures of effect size, Od, r2, Or2, �2, O�2, �2, and O!2.

Following Eq. (3.4) on p. 59, the exact expected value of the M D 12;612;600

ı values is �ı D 4:7238 and, following Eq. (3.3) on p. 59, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 3:6444

4:7238
D C0:2285 ;

indicating approximately 23 % within-group agreement above that expected by
chance.

3.8 Permutation Analogue of One-WayMANOVA

It is sometimes desirable to test for differences among g � 3 independent treat-
ment groups where r � 2 response measurement scores have been obtained for
each object. The conventional approach is one-way multivariate analysis of variance
(MANOVA) for which a number of statistical tests have been proposed, including
the Bartlett–Nanda–Pillai (BNP) trace test [21, 316, 339], Wilks’ likelihood-ratio
test [431], Roy’s maximum-root test [357,358], and the Lawley–Hotelling trace test
[182, 232, 233]. The Bartlett–Nanda–Pillai trace test is considered to be the most
powerful and robust of the four tests [327, 328, 392, p. 269].
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To illustrate a multivariate analysis of variance, consider the Bartlett–Nanda–
Pillai trace test given by

V.s/ D trace
�
H.E C H/�1

	

where E is the error matrix summarizing within-object variability, H is the hypothe-
sized matrix summarizing between-object variability, and s D min.r; g � 1/.20 For
a conventional test of significance, the BNP trace statistic, V.s/, can be transformed
into a conventional F-ratio by

F D 2u C s C 1

2t C s C 1

�
V.s/

s � V.s/

�
; (3.29)

where s D min.r; g � 1/, u D 0:50.N � g � r � 1/, t D 0:50.jr � qj � 1/, and q D
g � 1. Assuming independence, normality, and homogeneity of variance and covari-
ance, F is approximately distributed as Snedecor’s F under the null hypothesis with
�1 D s.2t C s C 1/ and �2 D s.2u C s C 1/ degrees of freedom.

3.9 Example BivariateMRPP Analyses with g D 3

In this section, three example analyses with bivariate response measurement scores
illustrate the permutation approach to g-sample problems with multivariate response
measurement scores. As with the two-sample example with multivariate response
measurement scores illustrated on p. 82, the response measurement scores must be
made commensurate prior to analysis (q.v. p. 82). The first example is designed to
correspond to the conventional Bartlett–Nanda–Pillai trace test using a small set of
bivariate response measurement scores with v D 2, Hotelling commensuration, and
treatment-group weights given by Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g; the sec-
ond example analyzes the same small set of bivariate response measurement scores,
but with v D 1, Euclidean commensuration, and treatment-group weights given by
Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g; and the third example analyzes the same
set of bivariate response measurement scores using v D 1 and Euclidean commen-
suration, but adopts proportional treatment-group weighting given by Ci D ni=N for
i D 1; : : : ; g.

3.9.1 Example 1

Consider the bivariate response measurement scores listed in Fig. 3.8, where r D 2,
g D 3, n1 D 5, n2 D 4, n3 D 3, and N D n1 C n2 C n3 D 12. For this first analysis,

20In many textbook presentations, the error matrix, E, is denoted as W for the within-objects
matrix, and the hypothesized matrix, H, is denoted as B for the between-objects matrix.
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Fig. 3.8 Example bivariate
response measurement scores
with r D 2, g D 3, n1 D 5,
n2 D 4, n3 D 3, and
N D n1 C n2 C n3 D 12

Treatment

1 2 3

(5.8, 6.0) (4.1, 2.9) (4.2, 7.8)
(6.2, 3.9) (3.9, 4.1) (5.1, 5.9)
(3.9, 4.1) (4.9, 3.9) (4.8, 7.2)
(5.1, 5.2) (2.1, 5.1)
(3.0, 2.8)

let v D 2, employing squared Euclidean distance between response measurement
scores, and let the treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

to correspond to the BNP trace test. An exact permutation solution is feasible for
the response measurement scores listed in Fig. 3.8 since there are only

M D NŠ
gY

iD1

niŠ

D 12Š

5Š 4Š 3Š
D 27;720

possible, equally-likely arrangements of the N D 12 observed scores listed in
Fig. 3.8.

Following Eq. (3.2) on p. 58, the bivariate response measurement scores listed in
Fig. 3.8 yield g D 3 average distance-function values of

�1 D 0:3242 ; �2 D 0:2994 ; and �3 D 0:1207 :

Following Eq. (3.1) on p. 58, the observed value of the MRPP test statistic based on
v D 2 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2; 3 ;

is

ıo D
gX

iD1

Ci�i D 1

12 � 3

�
.5 � 1/.0:3242/ C .4 � 1/.0:2994/

C .3 � 1/.0:1207/
	 D 0:2707 :

If all arrangements of the N D 12 observed bivariate response measurement
scores listed in Fig. 3.8 occur with equal chance, the exact probability value of
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ıo D 0:2707 computed on the M D 27;720 possible arrangements of the observed
data with n1 D 5, n2 D 4, and n3 D 3 bivariate response measurement scores pre-
served for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 967

27;720
D 0:0349 :

For comparison, a conventional BNP analysis of the bivariate response measure-
ment scores listed in Fig. 3.8 yields

E D
"

11:71000 1:17000

1:17000 10:42667

#
; H D

"
2:75250 3:19755

3:19755 17:30242

#
;

E C H D
"

14:46250 4:36755

4:36755 27:72909

#
;

.E C H/�1 D
"

0:07260 �0:01143

�0:01143 0:03786

#
;

H.E C H/�1 D
"

0:16328 0:08960

0:03476 0:61852

#
;

and V.2/ D traceŒH.E C H/�1 D 0:16328 C 0:61852 D 0:7818.
Alternatively, V.2/ can be defined as

V.2/ D
sX

iD1

�i

1 � �i
; (3.30)

where �i for i D 1; : : : ; s are the eigenvalues of the HE�1 matrix given by

HE�1 D
"

0:20673 0:28347

0:10847 1:64727

#
:

The s D 2 eigenvalues of HE�1 are �1 D 0:18570 and �2 D 1:66831, and following
equation Eq. (3.30),

V.2/ D 0:18570

1 C 0:18570
C 1:68831

1 C 1:68831
D 0:15661 C 0:62523 D 0:7818 :

Then, q D g � 1 D 3 � 1 D 2, s D min.r; q/ D min.2; 3 � 1/ D 2, u D
0:50.N � g � r � 1/ D 0:50.12 � 3 � 2 � 1/ D 3, t D 0:50.jr � qj � 1/ D 0:50
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.j2 � 2j � 1/ D �0:50, and following Eq. (3.29) on p. 105, the observed F-ratio is

Fo D 2.3/ C 2 C 1

2.�0:50/ C 2 C 1

�
0:7818

2 � 0:7818

�
D 9

2
.0:6414/ D 2:8879 :

Assuming independence, normality, and homogeneity of variance and covari-
ance, F is approximately distributed as Snedecor’s F with �1 D s.2t C s C 1/ D
2Œ.2/.�0:50/ C 2 C 1 D 4 and �2 D s.2u C s C 1/ D 2Œ.2/.3/ C 2 C 1 D 18

degrees of freedom. Under the null hypothesis, the observed value of Fo D 2:8879

yields an approximate probability value of P D 0:0521. For comparison, the exact
probability value of the observed MRPP test statistic ıo D 0:2707 based on v D 2,
M D 27;720, and Ci D .ni � 1/=.N � g/ for i D 1; 2; 3 is P D 0:0349.

Following Eq. (3.3) on p. 59, the exact expected value of the M D 27;720 ı values
is �ı D 0:3636 and, following Eq. (3.3) on p. 59, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 0:2707

0:3636
D C0:2556 ;

indicating approximately 26 % within-group agreement above that expected by
chance.

A convenient, although positively biased, measure of effect size for the BNP
trace test is given by

�2 D V.2/

s
D 0:7818

2
D 0:3909 ;

which can be compared with the unbiased chance-corrected measure of effect size,
< D C0:2665. It is perhaps not readily apparent that V.2/=s D 0:3909 is simply
the squared canonical correlation coefficient, R2

y1;y2:x1;x2
, where two sets of dummy-

coded variables are required. Figure 3.9 displays the canonical correlation data
where variables x1 and x2 are the two dummy-coded independent variables and
variable y1 is a dependent variable containing the first of the r D 2 response mea-
surement scores for each object, and variable y2 is a second dependent variable,
containing the second of the response measurement scores for each object.

Finally, in this application the MRPP test statistic, ı, is based on the generalized
Minkowski distance function given by

	.I; J/ D
2

4
rX

jD1

�
xjI � xjJ

�2
3

5
v=2

;
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Fig. 3.9 Example regression
data with N D 12 cases,
independent variables x1 and
x2, and dependent variables
y1 and y2

Variable

x 1 x 2 y1 y2

1 0 5.8 6.0

1 0 6.2 3.9

1 0 3.9 4.1

1 0 5.1 5.2

1 0 3.0 2.8

0 1 4.1 2.9

0 1 3.9 4.1

0 1 4.9 3.9

0 1 2.1 5.1

0 0 4.2 7.8

0 0 5.1 5.9

0 0 4.8 7.2

and the functional relationship of the V.2/ BNP trace statistic to the MRPP ı test
statistic [297, pp. 53–57] is

ı D 2.r � V.2//

N � g
D 2.2 � 0:7818/

12 � 3
D 2:4364

9
D 0:2707 :

Alternatively,

ı D 2

N � g
trace

�
E.E C H/�1

	
; (3.31)

where

E.E C H/�1 D
"

0:83677 �0:08955

�0:03423 0:38138

#

and the observed value of ı, following Eq. 3.31, is

ıo D 2

12 � 3
.0:83677 C 0:38138/ D 0:2707 :

This first example analysis demonstrates that the BNP trace test may be consid-
ered a special case of the MRPP test statistic, ı, with v D 2. Unlike the conventional
multivariate analysis of variance tests such as Roy’s maximum-root test [357, 358],
Wilks’ likelihood-ratio test [431], the Lawley–Hotelling trace test [182, 232, 233],
and the Bartlett–Nanda–Pillai trace test [21, 316, 339], the permutation approach
illustrated here is not dependent on the assumptions of normality and homogene-
ity of variance and covariance, making the MRPP ı test statistic and its associated
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chance-corrected measure of effect size, <, valuable tools for the analysis of
interval-level multivariate data.

3.9.2 Example 2

For a second example analysis of the response measurement scores listed in Fig. 3.8
on p. 106, let the treatment-group weights again be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

as in Example 1, but set v D 1 instead of v D 2, employing ordinary Euclidean
distance between response measurement scores. Following Eq. (3.2) on p. 58,
the bivariate response measurement scores listed in Fig. 3.8 yield g D 3 average
distance-function values of

�1 D 2:3933 ; �2 D 1:9326 ; and �3 D 1:4284 :

Following Eq. (3.1) on p. 58, the observed value of the MRPP test statistic based on
v D 1 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2; 3 ;

is

ıo D
gX

iD1

Ci�i D 1

12 � 3

�
.5 � 1/.2:3933/ C .4 � 1/.1:9326/

C .3 � 1/.1:4284/
	 D 2:0253 :

If all arrangements of the N D 12 observed bivariate response measurement
scores listed in Fig. 3.8 occur with equal chance, the exact probability value of
ıo D 2:0253 computed on the M D 27;720 possible arrangements of the observed
data with n1 D 5, n2 D 4, and n3 D 3 bivariate response measurement scores pre-
served for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 618

27;720
D 0:0223 :

For comparison, the exact probability value based on v D 2, M D 27;720, and
Ci D .ni � 1/=.N � g/ for i D 1; 2; 3 in Example 1 is P D 0:0349. No comparison
is made with the Bartlett–Nanda–Pillai trace test as the BNP test is undefined for
v D 1, as is the conventional measure of effect size, �2.
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Following Eq. (3.4) on p. 59, the exact expected value of the M D 27;720 ı values
is �ı D 2:5200 and, following Eq. (3.3) on p. 59, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 2:0253

2:5200
D C0:1963 ;

indicating approximately 20 % within-group agreement above that expected by
chance.

3.9.3 Example 3

For a third example analysis of the bivariate response measurement scores listed in
Fig. 3.8 on p. 106, let the treatment-group weights be given by

Ci D ni

N
; i D 1; : : : ; g ;

weighting each treatment group proportional to its group size, and let v D 1,
employing ordinary Euclidean distance between response measurement scores, as
in Example 2. Following Eq. (3.2) on p. 58, the bivariate response measurement
scores listed in Fig. 3.8 yield g D 3 average distance-function values of

�1 D 2:3933 ; �2 D 1:9326 ; and �3 D 1:4284 :

Following Eq. (3.1) on p. 58, the observed value of the MRPP test statistic based on
v D 1 and treatment-group weights

Ci D ni

N
; i D 1; 2; 3 ;

is

ıo D
gX

iD1

Ci�i D 1

12

�
.5/.2:3933/ C .4/.1:9326/ C .3/.1:4284/

	 D 1:9985 :

If all arrangements of the N D 12 observed bivariate response measurement
scores listed in Fig. 3.8 occur with equal chance, the exact probability value of
ıo D 1:9985 computed on the M D 27;720 possible arrangements of the observed
data with n1 D 5, n2 D 4, and n3 D 3 bivariate response measurement scores pre-
served for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 518

27;720
D 0:0187 :
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For comparison, the exact probability values based on v D 2, M D 27;720, and
Ci D .ni � 1/=.N � g/ for i D 1; 2; 3 in Example 1 and v D 1, M D 27;720, and
Ci D .ni � 1/=.N � g/ for i D 1; 2; 3 in Example 2 are P D 0:0349 and P D
0:0223, respectively. No comparison is made with the Bartlett–Nanda–Pillai trace
test as the BNP test is undefined for both v D 1 and Ci D ni=N for i D 1; : : : ; g, as
is the conventional measure of effect size, �2.

Following Eq. (3.4) on p. 59, the exact expected value of the M D 27;720 ı values
is �ı D 2:5200 and, following Eq. (3.3) on p. 59, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 1:9985

2:5200
D C0:2070 ;

indicating approximately 21 % within-group agreement above that expected by
chance.

3.10 Coda

Chapter 3 utilized the Multi-Response Permutation Procedures developed in Chap. 2
to establish relationships between the test statistics of MRPP, ı and <, and selected
conventional tests and measures designed for the analysis of completely randomized
data at the interval level of measurement. Considered in this chapter were Stu-
dent’s two-sample t test with interval-level univariate response measurement scores,
Hotelling’s two-sample T2 test with interval-level multivariate response measure-
ment scores, one-way fixed-effects analysis of variance (ANOVA) with interval-
level univariate response measurement scores, and one-way multivariate analysis of
variance (MANOVA) with interval-level multivariate response measurement scores.
Also included in Chap. 3 was an introduction of a comprehensive chance-corrected
measure of effect size, <, which is distribution-free, data-dependent, easily inter-
pretable, and applicable to many research designs.

Also discussed in Chap. 3 were several popular measures of effect size, including
Cohen’s Od, Hedges’ g, Pearson’s r2, Kelley’s �2, and Hays’ O!2. These five measures
were shown to be chance-corrected measures of effect size and, under the population
model of statistical inference, biased estimates of the associated population param-
eters. A permutation-based, unbiased, chance-corrected measure of effect size, <,
was introduced as a universal replacement for five conventional measures of effect
size.

Chapter 4
Chapter 4 continues the analysis of interval-level response measurement scores in
Chap. 3, applying the test statistics of MRPP, ı and <, to regression residuals gen-
erated by either ordinary least squares (OLS) or least absolute deviation (LAD)
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regression models. Considered in Chap. 4 are one-way randomized, one-way ran-
domized with a covariate, one-way randomized-block, two-way randomized-block,
two-way factorial, Latin square, split-plot, and two-factor nested analysis of vari-
ance designs.
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Multi-Response Permutation Procedures (MRPP) were introduced in Chap. 2 and
applied to interval-level, completely randomized data in Chap. 3. While multi-
response permutation procedures are generally thought of as providing tests of
differences among g treatment groups as demonstrated in Chap. 3, they also have
applications in ordinary least squares (OLS) linear regression analyses with v D 2

and least absolute deviations (LAD) linear regression analyses with v D 1. In
this fourth chapter of Permutation Statistical Methods, MRPP analyses of LAD
regression residuals are illustrated with a variety of experimental designs, includ-
ing one-way completely randomized with and without a covariate, one-way and
two-way randomized-block, two-way factorial, Latin square, and two-factor nested
analysis-of-variance designs. Also considered are multivariate multiple regression
designs.

4.1 LAD Linear Regression

OLS linear regression has long been recognized as a useful tool in many fields of
research. The optimal properties of OLS regression are well known when the errors
are normally distributed. However, in practice the assumption of multivariate nor-
mality is rarely justified. LAD linear regression is an attractive alternative to OLS
regression as it is extremely robust to deviations from normality as well as to the
presence of extreme values [297, p. 172].

It is widely recognized that estimators of OLS regression parameters can be
severely affected by unusual values in either the criterion variable or in one or
more of the predictor variables. This is due in large part to the weight given to each
data point when minimizing the sum of squared errors. In contrast, LAD regres-
sion is much less sensitive to the effects of unusual-value errors due to the fact
that the errors are not squared. Moreover, LAD regression has been shown to be
superior to OLS regression when errors are generated from heavy-tailed or outlier-
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producing distributions, such as the Cauchy and double-exponential distributions;
see, for example, articles by Blattburg and Sargent [46], Dielman [94, 95], Diel-
man and Pfaffenberger [96], Dielman and Rose [97], Mathew and Nordström [264],
Mielke, Berry, Landsea, and Gray [303], Pfaffenberger and Dinkel [337], Rice and
White [346], Rosenberg and Carlson [352], Rousseeuw [355], Taylor [394], and
Wilson [432].

As described by Sheynin, the initial known use of regression by Daniel Bernoulli
(c. 1734) for astronomical prediction problems involved LAD regression based on
ordinary Euclidean distances between the observed and predicted response values
[372]. Further developments in LAD regression were due to Roger Joseph (Rogerius
Josephus) Boscovich (c. 1755), Pierre-Simon Laplace (c. 1789), and Carl Friedrich
Gauss (c. 1809). The American mathematician and astronomer Nathaniel Bowditch
(c. 1809) was highly critical of OLS regression because, as he argued, squared
regression residuals unduly emphasized questionable observations in comparison
with the absolute regression residuals associated with LAD regression [372].

Consider the general multivariate regression model given by

yi D h .ˇ; xi/ C ei ;

where y 0
i D .y1i; : : : ; yri/ denotes the row vector of r observed response measure-

ments for the ith of N objects, x 0
i D .x1i; : : : ; xsi/ is the row vector of s predictor

values for the ith object, ˇ0 D .ˇ1; : : : ; ˇt/ is the row vector of t parameters,
h0 D .h1; : : : ; hr/ is the row vector of r model functions of ˇ and xi for the ith
object, and e 0

i D .e1i; : : : ; eri/ denotes the r errors between the response variables
and model functions for the ith object, i D 1; : : : ; N objects. The special case of a
multivariate linear regression model is given by

yi D Bf .xi/ C ei ;

where f .xi/ denotes a column vector of p distinct functions of s predictors (xi)
for the ith object, i D 1; : : : ; N, and B is an r�p matrix of parameters in which
(Bj1; : : : ; Bjp) is the row vector of p parameters associated with the jth response
measurement, j D 1; : : : ; r.

Let yi denote a column vector of r observed response measurement scores and
let Qyi denote a column vector of r predicted response values for the ith object, i D
1; : : : ; N. Thus, the general and linear predicted multivariate regression models are
given by

Qyi D h
� Q̌; xi

�

and

Qyi D QBf .xi/ ;
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respectively, where Q̌ and QB are estimated parameters that are intended to provide
good fits between the yi and Qyi values relative to a selected goodness-of-fit criterion.
The null hypothesis (H0) underlying each criterion dictates that each of the NŠ pos-
sible, equally-likely pairings of the predicted sequential ordering (Qy1; : : : ; QyN) with
the fixed observed sequential ordering (y1; : : : ; yN) occurs with equal probability,
i.e., 1=NŠ.

Let 	.Qyi; yi/ for i D 1; : : : ; N denote the distance function between the pre-
dicted and observed response measurement values and consider the generalized
Minkowski distance function given by

	.Qyi; yi/ D
0

@
rX

jD1

ˇ̌Qyij � yij

ˇ̌w
1

A
v=w

;

where w � 1 and v > 0. Since v D 1 yields the Minkowski metric [12], the choice
of v D 1 is preferred since v > 1 yields distance functions that do not satisfy the tri-
angle inequality property of a metric. Consequently, the distance function of choice
utilizes v D 1 and w D 2, i.e., an ordinary Euclidean distance function.

Let the average distance function between .Qy1; : : : ; QyN/ and .y1; : : : ; yN/ be
given by

ı D 1

N

NX

iD1

	
�Qyi; yi

�
: (4.1)

As noted previously, a distance function with v > 1 is not a metric function. If the
distance function associated with LAD regression is squared (i.e., v D 2), then the
estimated parameters that minimize ı yield an OLS regression model.

The criterion for fitting multivariate regression models based on ı is the chance-
corrected measure of agreement between the observed and predicted response
measurement values given by

< D 1 � ı

�ı

; (4.2)

where �ı is the expected value of ı over the NŠ possible pairings under the null
hypothesis. An efficient computational expression for obtaining �ı that involves a
sum of N2 rather than NŠ terms is given by

�ı D 1

N2

NX

iD1

NX

jD1

	
�Qyi; yj

�
: (4.3)
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Fig. 4.1 Graphic depicting a
regression line with perfect
agreement between y and Qy
with intercept equal to 0.00
and slope equal to +1.00
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ỹ

4.1.1 Linear Regression and Agreement

A simple interpretation of < can be described for r D s D 1 since the same inter-
pretation holds for any r and s. In the case involving perfect agreement, Qyi D yi for
i D 1; : : : ; N, ı D 0:00, and < D 1:00. This implies that the functional relationship
between Qy and y can be described by a straight line that passes through the origin
with a slope of 45ı, as depicted in Fig. 4.1 with N D 5 bivariate .y; Qy/ values: .2; 2/,
.4; 4/, .6; 6/, .8; 8/, and .10; 10/. For the N D 5 data points depicted in Fig. 4.1,
the intercept is Q̌

0 D 0:00, the unstandardized slope is Q̌
1 D C1:00, the squared

Pearson product-moment correlation coefficient is r2
yQy D C1:00, and the agreement

percentage is also 1:00, i.e., all five of the y and Qy paired values agree.
In this context, the squared Pearson product-moment correlation coefficient, r2

yQy,

has also been used as a measure of agreement. However, r2
yQy D C1:00 implies a

linear relationship between y and Qy, where both the intercept and slope are arbi-
trary. While perfect agreement is described by < D C1:00, r2

yQy D C1:00 describes
a linear relationship that may or may not reflect perfect agreement as depicted in
Fig. 4.2 with N D 5 .y; Qy/ values: .2; 4/, .4; 5/, .6; 6/, .8; 7/, and .10; 8/. For the
N D 5 bivariate data points depicted in Fig. 4.2, the intercept is Q̌

0 D C3:00, the
unstandardized slope is Q̌

1 D C0:50, the squared Pearson product-moment correla-
tion coefficient is r2

yQy D C1:00, and the agreement percentage is 0:20, i.e., only one
.6; 6/ of the N D 5 y and Qy paired values agree. Comparisons of < with other mea-
sures of agreement and the advantages of < relative to the other agreement measures
were detailed in a 1996 article by Watterson [416].

While the agreement measure < provides a description of the functional relation-
ship between .Qy1; : : : ; QyN/ and .y1; : : : ; yN/, it does not indicate how extreme an
observed value of <, say <o, is relative to the NŠ possible values of < under the null
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Fig. 4.2 Graphic depicting a
regression line with perfect
correlation between y and Qy
with intercept equal to +3.00
and slope equal to +0.50
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hypothesis. Since �ı is invariant under the null hypothesis and the observed value
of ı is given by

ıo D �ı.1 � <o/ ;

the exact probability value for <o is given by

P
�< � <ojH0

� D P
�
ı � ıojH0

� D number of ı values � ıo

M
;

where M D NŠ. Because an exact probability value requires generating NŠ arrange-
ments of the observed data, calculation of an exact value is prohibitive even for
small values of N, e.g., M D NŠ D 15Š D 1;307;674;368;000.

When M is very large, an approximate probability value for ı may be obtained
from a resampling permutation procedure. Let L denote a random sample of all
possible arrangements of the observed data, where L is typically a large number,
e.g., L D 1;000;000. Then, an approximate resampling probability value is given by

P
�< � <ojH0

� D P
�
ı � ıojH0

� D number of ı values � ıo

L
:

Also, when M is very large and P is exceedingly small, a resampling-approximation
permutation procedure based on fitting the first three exact moments of the discrete
permutation distribution to a Pearson type III distribution provides approximate
probability values, as detailed in Chap. 1, Sect. 1.2.2; see also references [284] and
[300].
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4.2 Example LAD Regression Analyses

In this section, example analyses illustrate the permutation approach to typical mul-
tiple regression problems. The first example analyzes a small set of multivariate
response measurement scores using LAD regression and generates a resampling
permutation probability value; the second example analyzes the same small set of
multivariate response measurement scores using OLS regression and also generates
a resampling permutation probability value; the third example analyzes the same set
of multivariate response measurement scores using OLS regression, but provides a
conventional approximate probability value based on Snedecor’s F distribution.

4.2.1 Example Analysis 1

Consider the multiple regression data listed in Fig. 4.3 where s D 2 observed
response measurement scores have been obtained for each of N D 12 objects,
y1; : : : ; yN denotes the observed response measurement scores for the N objects,
and x 0

i D .x1i; : : : ; x2i/ is the row vector of s D 2 predictor variables for the ith
of N objects. Because there are M D 12Š D 479;001;600 possible, equally-likely
arrangements of the N D 12 multivariate response measurement scores in Fig. 4.3,
an exact permutation approach is impractical and a resampling procedure is man-
dated.

A LAD regression analysis of the multivariate response measurement scores
listed in Fig. 4.3 yields estimated regression coefficients of

Q̌
0 D C3:8571 ; Q̌

1 D C0:4286 ; and Q̌
2 D C0:1429 :1

Fig. 4.3 Example data with
s D 2 independent variables
on N D 12 objects

Variable

Object x 1 x 2 y

1 11 22 11
2 11 24 12
3 11 26 13
4 11 26 15
5 12 28 13
6 12 26 11
7 13 22 15
8 13 22 10
9 14 20 16

10 14 22 13
11 15 20 17
12 15 26 14

1For the remainder of this chapter, a tilde over a ˇ ( Q̌) indicates an unstandardized LAD regression
coefficient, while a caret over a ˇ ( Ǒ) indicates an unstandardized OLS regression coefficient.
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Fig. 4.4 Observed,
predicted, and residual LAD
regression values for the
example data listed in Fig. 4.3

Object y i ỹ i ei

1 11 11.7143 −0.7143

2 12 12.0000

3 13 12.2857 +0.7143

4 15 12.2857 +2.7143

5 13 13.0000

6 11 12.7143 −1.7143

7 15 12.5714

8 10 12.5714 −2.5714

9 16 12.7143

10 13 13.0000

11 17 13.1429
12 14 14.0000

0.0000

0.0000

+2.4286

+3.2857

0.0000

+3.8571
0.0000

Figure 4.4 lists the observed yi values, LAD predicted Qyi values, and residual ei

values for i D 1; : : : ; 12. Following Eq. (4.1) on p. 117 with v D 1, the observed
value of the MRPP test statistic calculated on the LAD regression residuals listed in
Fig. 4.4 is ıo D 1:50.

If all M possible arrangements of the N D 12 observed LAD regression residuals
listed in Fig. 4.4 occur with equal chance, the approximate resampling probabil-
ity value of ıo D 1:50 calculated on L D 1;000;000 random arrangements of the
observed LAD regression residuals is

P
�
ı � ıojH0

� D number of ı values � ıo

L
D 191;128

1;000;000
D 0:0191 :

Following Eq. (4.3) on p. 117, the exact expected value of the M D 479;001;600

ı values is �ı D 1:8294 and, following Eq. (4.2) on p. 117, the observed chance-
corrected measure of effect size for the yi and Qyi values, i D 1; : : : ; N, is

<o D 1 � ıo

�ı

D 1 � 1:50

1:8294
D C0:1800 ;

indicating 18 % agreement between the observed and predicted y values above that
expected by chance.

4.2.2 Example Analysis 2

For a second example analysis of the multivariate response measurement scores
listed in Fig. 4.3 on p. 120, consider an OLS regression analysis based on a
resampling permutation procedure. An OLS regression analysis of the multivariate
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Fig. 4.5 Observed,
predicted, and residual OLS
regression values for the
example data listed in Fig. 4.3

Object yi i ei

1 11 12.3823 −1.3823

2 12 12.2524 −0.2524

3 13 12.1226

4 15 12.1226

5 13 12.6282

6 11 12.7581 −1.7581

7 15 13.6534

8 10 13.6534 −3.6534

9 16 14.4188

10 13 14.2890 −1.2890

11 17 15.0544

12 14 14.6648 −0.6648

+0.8774

+2.8774

+0.3718

+1.3466

+1.5812

+1.9456

response measurement scores listed in Fig. 4.3 yields estimated regression coeffi-
cients of

Ǒ
0 D C6:8198 ; Ǒ

1 D C0:6356 ; and Ǒ
2 D �0:0649 :

Figure 4.5 lists the observed yi values, OLS predicted Oyi values, and residual ei

values for i D 1; : : : ; 12.
Following Eq. (4.1) on p. 117 with v D 2, the observed value of the MRPP test

statistic computed on the OLS regression residuals listed in Fig. 4.5 is ıo D 3:1502.
If all M possible arrangements of the N D 12 observed OLS regression residuals
listed in Fig. 4.5 occur with equal chance, the approximate resampling probabil-
ity value of ıo D 3:1502 computed on L D 1;000;000 random arrangements of the
observed OLS regression residuals is

P
�
ı � ıojH0

� D number of ıo values � ıo

L
D 96;104

1;000;000
D 0:0961 :

For comparison, the approximate resampling probability value based on LAD
regression in Example 1 is P D 0:0191.

Following Eq. (4.3) on p. 117, the exact expected value of the M D 479;001;600

ı values is �ı D 5:2942 and, following Eq. (4.2) on p. 117, the observed chance-
corrected measure of effect size for the yi and Oyi values, i D 1; : : : ; N, is

<o D 1 � ıo

�ı

D 1 � 3:1502

5:2942
D C0:4050 ;

indicating approximately 41 % agreement between the observed and predicted y
values above that expected by chance.
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4.2.3 Example Analysis 3

Finally, consider a conventional OLS regression analysis of the multivariate
response measurement scores listed in Fig. 4.3 on p. 120. An OLS regression
analysis yields estimated regression coefficients of

Ǒ
0 D C6:8198 ; Ǒ

1 D C0:6356 ; and Ǒ
2 D �0:0649 ;

the regression residuals are listed in Fig. 4.5, and the observed squared multiple
correlation coefficient is R2

y:x1;x2
D 0:2539. R2

y:x1;x2
may be transformed into an F-

ratio by

F D .N � s � 1/R2
y:x1;x2

s.1 � R2
y:x1;x2

/
D .12 � 2 � 1/.0:2539/

.2/.1 � 0:2539/
D 1:5313 :

Assuming independence, normality, and homogeneity of variance, F is approxi-
mately distributed as Snedecor’s F under the null hypothesis with �1 D s D 2 and
�2 D N � s � 1 D 12 � 2 � 1 D 9 degrees of freedom. Under the null hypothe-
sis, the observed value of Fo D 1:5313 yields an approximate probability value of
P D 0:2677.

Note that the asymptotic probability value based on OLS regression in Example
3 is P D 0:2677, while a resampling analysis of the same data in Example 2 yielded
a probability value, again based on OLS regression, of P D 0:0961, a marked differ-
ence. Moreover, a LAD regression analysis of the same data in Example 1 yielded
an approximate resampling probability value of P D 0:0191, once again demon-
strating the different results possible with v D 1 and v D 2, both with and without
a permutation analysis.

4.3 LAD Regression and Analysis of Variance Designs

It is well known that experimental designs that would ordinarily be analyzed by
some form of analysis of variance can also be analyzed by OLS multiple regres-
sion using either dummy- or effect-coding schemes. The same is true of LAD
regression. In this section a variety of analysis-of-variance designs are analyzed
using MRPP, LAD regression, and either dummy or effect coding of treatment
groups; included are one-way randomized, one-way randomized with a covariate,
one-way randomized-block, two-way randomized-block, two-way factorial, Latin
square, split-plot, and two-factor nested analysis-of-variance designs.
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Fig. 4.6 Example data for a
one-way randomized design
with g D 3 treatment groups
and univariate response
measurement scores on
N D 26 objects

Treatment

1 2 3

15 17 6

18 22 9

12 15 12

12 12 11

9 20 11

10 13 8

12 15 13

20 20 30

21 7

4.3.1 One-Way Randomized Design

Consider a one-way completely randomized experimental design with fixed effects
in which N D 26 objects have been randomly assigned to one of g D 3 treatment
groups with n1 D 8 and n2 D n3 D 9. The design and data are adapted from Stevens
[387, p. 70] and are given in Fig. 4.6.

For a one-way randomized experimental design, the appropriate regression
model is given by

yi D
mX

jD1

xijˇj C ei ;

where yi denotes the ith of N responses possibly affected by a treatment; xij is the jth
of m covariates associated with the ith response, where xi1 D 1 if the model includes
an intercept; ˇj denotes the jth of m regression parameters; and ei designates the
error associated with the ith of N responses. If the estimates of ˇ1; : : : ; ˇm that
minimize

NX

iD1

jeij

are denoted by Q̌
1; : : : ; Q̌

m, then the N residuals of the LAD regression model are
given by ei D yi � Qyi for i D 1; : : : ; N, where the predicted value of yi is given by

Qyi D
mX

jD1

xij
Q̌
j ; i D 1; : : : ; N :
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In contrast, OLS regression estimators of ˇ1; : : : ; ˇm minimize

NX

iD1

e2
i ;

the N residuals of the OLS regression model are given by ei D yi � Oyi for i D
1; : : : ; N, and the predicted value of yi is given by

Oyi D
mX

jD1

xij
Ǒ
j ; i D 1; : : : ; N :

If the N regression residuals are partitioned into g disjoint treatment groups of
sizes n1; : : : ; ng, where ni � 2 for i D 1; : : : ; g and

N D
gX

iD1

ni ;

then the permutation test depends on test statistic

ı D
gX

iD1

Ci�i ; (4.4)

where

Ci D ni

N
; i D 1; : : : ; g ;

is a positive weight for the ith of g treatment groups that minimizes the variability
of ı,

gX

iD1

Ci D 1 ;

and �i is the average pairwise Euclidean difference among the ni residuals in the ith
of g treatment groups defined by

�i D
 

ni

2

!�1 N�1X

jD1

NX

kDjC1

h�
ej � ek

�2iv=2

‰ji ‰ki ; (4.5)
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where v D 1 for LAD regression and

‰ji D
8
<

:
1 if ei is in the ith treatment group ,

0 otherwise .

The null hypothesis specifies that each of the

M D NŠ
gY

iD1

niŠ

allocations of the N residuals to the g treatment groups is equally likely with ni,
i D 1; : : : ; g, residuals preserved for each arrangement of the observed data. The
exact probability value of an observed value of ı, ıo, is given by

P
�
ı � ıojH0

� D number of ı values � ıo

M
:

As previously, when M is large, an approximate probability value of ı may be
obtained from a resampling procedure, where

P
�
ı � ıojH0

� D number of ı values � ıo

L

and L denotes the number of resampled test statistic values. Typically, L is set to
a large number to ensure accuracy, e.g., L D 1;000;000. When M is very large and
P is exceedingly small, a resampling-approximation permutation procedure may
produce no ı values equal to or less than ıo, even with L D 1;000;000, yielding
an approximate resampling probability value of P D 0:00. In such cases, moment-
approximation permutation procedures based on fitting the first three exact moments
of the discrete permutation distribution to a Pearson type III distribution provide
approximate probability values, as detailed in Chap. 1, Sect. 1.2.2 [284, 300].

An index of the effect size for the yi and Qyi values, i D 1; : : : ; N, is given by the
chance-corrected measure

< D 1 � ı

�ı

; (4.6)

where �ı is the arithmetic average of the ı values calculated on all M equally-likely
arrangements of the observed response measurements, i.e.,

�ı D 1

M

MX

iD1

ıi : (4.7)
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Fig. 4.7 Design matrix and
data for a one-way
randomized design with
g D 3 treatment groups and
univariate response
measurement scores on
N D 26 objects

Matrix

1 15 1 17 1 16

1 18 1 22 1 9

1 12 1 15 1 12

1 12 1 12 1 11

1 9 1 20 1 11

1 10 1 14 1 8

1 12 1 15 1 13

1 20 1 20 1 30

1 21 1 7

Score Matrix Score Matrix Score

A design matrix of dummy codes for an MRPP regression analysis of the N D 26

response measurement scores in Fig. 4.6 is given in Fig. 4.7 where the first columns
of 1 values provide for an intercept. The second columns contain the N D 26

univariate response measurement scores listed according to the original random
assignment of the N D 26 objects to the g D 3 treatment groups with the first n1 D 8

scores, the next n2 D 9 scores, and the last n3 D 9 scores associated with the first,
second, and third treatment groups, respectively.

Because the purpose of the analysis is to test for possible differences among the
g D 3 treatment groups, a reduced regression model is constructed without a variate
for treatments. Therefore, for a single-factor experiment the design matrix for the
reduced model is composed solely of a code for the intercept. The MRPP regres-
sion analysis examines the N D 26 regression residuals for possible differences
among the g D 3 treatment levels; consequently, no dummy codes for treatments
are included in Fig. 4.7 as this information is implicit in the ordering of the g D 3

treatment groups in the three columns labeled “Score” with n1 D 8 and n2 D n3 D 9

values.
An exact permutation solution is impractical for the univariate response measure-

ments listed in Fig. 4.7 since there are

M D NŠ
gY

iD1

niŠ

D 26Š

8Š 9Š 9Š
D 75;957;810;500

possible, equally-likely arrangements of the N D 26 univariate response measure-
ment scores; consequently, a resampling procedure is the default in this case.

LAD Regression Analysis
An MRPP resampling analysis of the LAD regression residuals calculated on the
univariate response measurement scores listed in Fig. 4.7 yields an estimated LAD
regression coefficient of Q̌

0 D C12:00. Figure 4.8 lists the observed yi values, LAD
predicted Qyi values, and residual ei values for i D 1; : : : ; 26.
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Fig. 4.8 Observed,
predicted, and residual LAD
regression values for the
example one-way randomized
data listed in Fig. 4.7

Object yi ỹ i ei

1 15 12.00 +3.00

2 18 12.00 +6.00

3 12 12.00

4 12 12.00

5 9 12.00 −3.00

6 10 12.00 −2.00

7 12 12.00

8 20 12.00

9 17 12.00

10 22 12.00

11 15 12.00

12 12 12.00

13 20 12.00

14 14 12.00

15 15 12.00

16 20 12.00

17 21 12.00

18 6 12.00 −6.00

19 9 12.00 −3.00

20 12 12.00

21 11 12.00 −1.00

22 11 12.00 −1.00

23 8 12.00 −4.00

24 13 12.00

25 30 12.00

26 7 12.00 −5.00

0.00

0.00

0.00

+8.00

+5.00

+10.00

+3.00

0.00

+8.00

+2.00

+3.00

+8.00

+9.00

0.00

+1.00

+18.00

Following Eq. (4.5) on p. 125 and employing ordinary Euclidean distance
between residuals with v D 1, the N D 26 LAD regression residuals listed in
Fig. 4.8 yield g D 3 average distance-function values of

�1 D 4:50 ; �2 D 4:2222 ; and �3 D 6:8889 :

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the LAD regression residuals listed in Fig. 4.8 with v D 1 and
treatment-group weights

Ci D ni

n
; i D 1; 2; 3 ;

is

ıo D
gX

iD1

Ci�i D 1

26

�
.8/.4:50/ C .9/.4:2222/ C .9/.6:8889/

	 D 5:2308 :
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If all M possible arrangements of the N D 26 observed LAD regression residuals
listed in Fig. 4.8 occur with equal chance, the approximate resampling probabil-
ity value of ıo D 5:2308 computed on L D 1;000;000 random arrangements of the
observed LAD regression residuals with n1 D 8 and n2 D n3 D 9 residuals pre-
served for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

L
D 12;062

1;000;000
D 0:0121 :

Following Eq. (4.7) on p. 126, the exact expected value of the M ı values is �ı D
6:1262 and, following Eq. (4.6) on p. 126, the observed chance-corrected measure
of effect size for the yi and Qyi values, i D 1; : : : ; N, is

<o D 1 � ıo

�ı

D 1 � 5:2308

6:1262
D C0:1462 ;

indicating approximately 15 % agreement between the observed and predicted y
values above that expected by chance.

OLS Regression Analysis
For comparison, consider an MRPP resampling analysis of OLS regression residuals
calculated on the N D 26 univariate response measurement scores listed in Fig. 4.7
on p. 127. The MRPP regression analysis yields an estimated OLS regression coef-
ficient of Ǒ

0 D C14:2692. Figure 4.9 lists the observed yi values, OLS predicted Oyi

values, and residual ei values for i D 1; : : : ; 26.
Following Eq. (4.5) on p. 125 and employing squared Euclidean distance

between residuals with v D 2, the N D 26 OLS regression residuals listed in
Fig. 4.9 yield g D 3 average distance-function values of

�1 D 29:7143 ; �2 D 25:00 ; and �3 D 103:2222 :

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the OLS regression residuals listed in Fig. 4.9 with v D 2 and
treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2; 3 ;

is

ıo D
gX

iD1

Ci�i D 1

26 � 3

�
.8 � 1/.29:7143/ C .9 � 1/.25:00/

C .9 � 1/.103:2222/
	D 53:6425 :
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Fig. 4.9 Observed,
predicted, and residual OLS
regression values for the
example one-way randomized
data listed in Fig. 4.7

Object yi i ei

1 15 14.2692

2 18 14.2692

3 12 14.2692 −2.2692

4 12 14.2692 −2.2692

5 9 14.2692 −5.2692

6 10 14.2692 −4.2692

7 12 14.2692 −2.2692

8 20 14.2692

9 17 14.2692

10 22 14.2692

11 15 14.2692

12 12 14.2692 −2.2692

13 20 14.2692

14 14 14.2692 −0.2692

15 15 14.2692

16 20 14.2692

17 21 14.2692

18 6 14.2692 −8.2692

19 9 14.2692 −5.2692

20 12 14.2692 −2.2692

21 11 14.2692 −3.2692

22 11 14.2692 −3.2692

23 8 14.2692 −6.2692

24 13 14.2692 −1.2692

25 30 14.2692

26 7 14.2692 −7.2692

+0.7308

+3.7308

+5.7308

+2.7308

+7.7308

+0.7308

+5.7308

+0.7308

+5.7308

+6.7308

+15.7308

If all M possible arrangements of the N D 26 observed OLS regression residuals
listed in Fig. 4.9 occur with equal chance, the approximate resampling probabil-
ity value of ıo D 53:6425 computed on L D 1;000;000 random arrangements of
the observed OLS regression residuals with n1 D 8 and n2 D n3 D 9 residuals pre-
served for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

L
D 91;842

1;000;000
D 0:0918 :

For comparison, the approximate resampling probability value based LAD regres-
sion, v D 1, L D 1;000;000, and Ci D ni=N for i D 1; 2; 3 is P D 0:0121.

Following Eq. (4.7) on p. 126, the exact expected value of the M D
75;957;810;500 ı values is �ı D 60:5692 and, following Eq. (4.6) on p. 126,
the observed chance-corrected measure of effect size for the yi and Oyi values,
i D 1; : : : ; N, is

<o D 1 � ıo

�ı

D 1 � 53:6425

60:5692
D C0:1144 ;
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indicating approximately 11 % agreement between the observed and predicted y
values above that expected by chance.

Conventional ANOVA Analysis
A conventional fixed-effects one-way analysis of variance calculated on the N D 26

univariate response measurement scores listed in Fig. 4.6 on p. 124 yields an
observed F-ratio of Fo D 2:6141. Assuming independence, normality, and homo-
geneity of variance, F is approximately distributed as Snedecor’s F under the null
hypothesis with �1 D g � 1 D 3 � 1 D 2 and �2 D N � g D 26 � 3 D 23 degrees
of freedom. Under the null hypothesis, the observed value of Fo D 2:6141 yields an
approximate probability value of P D 0:0948, which is similar to that produced by
the MRPP resampling analysis of the OLS regression residuals.

4.3.2 One-Way Randomized Design with a Covariate

A covariate experimental design permits the testing of differences among the treat-
ment groups after the effect of the covariate has been removed from the analysis.
Consider a one-way completely randomized design with a covariate in which
N D 47 objects are randomly assigned to one of g D 5 treatment groups. The exper-
imental data are listed in Table 4.1 and are adapted from a 1984 study by Conti and
Musty [78].

A design matrix of dummy codes for analyzing treatments is given in Fig. 4.10,
where the first column of 1 values provides for an intercept, the second column con-
tains the covariate (Pre-test) values, and the third column contains the (Post-test)
scores listed according to the original random assignment of the N D 47 objects to

Table 4.1 Example data for a one-way randomized design with a covariate, consisting of pre-test
(Pre) and post-test (Post) response measurement scores on N D 47 randomly assigned objects to
g D 5 treatment groups

Treatment

1 2 3 4 5

Pre Post Pre Post Pre Post Pre Post Pre Post

4.34 1.30 1:55 0.93 7:18 5.10 6.94 2.29 4.00 2.93

3.50 0.94 10:56 4.44 8:33 4.16 6.10 4.75 4.10 1.11

4.33 2.25 8:39 4.03 4:05 1.54 4.90 3.48 3.62 2.17

2.76 1.05 3:70 1.92 10:78 6.36 3.69 2.76 3.92 2.00

4.62 0.92 2:40 0.67 6:09 3.96 4.76 1.67 2.90 0.84

5.40 1.90 1:83 1.70 7:78 4.51 4.30 1.51 2.90 0.99

3.95 0.32 2:40 0.77 5:08 3.76 2.32 1.07 1.82 0.44

1.55 0.64 7:67 3.53 2:86 1.92 7.35 2.35 4.94 0.84

1.42 0.69 5:79 3.65 6:30 3.84 5.69 2.84

1.90 0.93 9:58 4.22 5.54 2.93
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Fig. 4.10 Design matrix and
data, consisting of an
intercept and pre- and
post-test measurement scores
for a one-way randomized
design with a covariate

Matrix

1 4.34 1.30 1 6.94 2.29

1 3.50 0.94 1 6.10 4.75

1 4.33 2.25 1 4.90 3.48

1 2.76 1.05 1 3.69 2.76

1 4.62 0.92 1 4.76 1.67

1 5.40 1.90 1 4.30 1.51

1 3.95 0.32 1 2.32 1.07

1 1.55 0.64 1 7.35 2.35

1 1.42 0.69

1 1.90 0.93 1 4.00 1.44

1 4.10 1.11

1 1.55 0.93 1 3.62 2.17

1 10.56 4.44 1 3.92 2.00

1 8.39 4.03 1 2.90 0.84

1 3.70 1.92 1 2.90 0.99

1 2.40 0.67 1 1.82 0.44

1 1.83 1.70 1 4.94 0.84

1 2.40 0.77 1 5.69 2.84

1 7.67 3.53 1 5.54 2.93

1 5.79 3.65

1 9.58 4.22

1 7.18 5.10

1 8.33 4.16

1 4.05 1.54

1 10.78 6.36

1 6.09 3.96

1 7.78 4.51

1 5.08 3.76

1 2.86 1.92

1 6.30 3.84

Pre Post Matrix Pre Post

the g D 5 treatment groups with the first n1 D 10 scores, the next n2 D 10 scores,
the next n3 D 9 scores, the next n4 D 8 scores, and the last n5 D 10 scores associ-
ated with the g D 5 treatment groups, respectively.

The MRPP regression analysis examines the N D 47 regression residuals for pos-
sible differences among the g D 5 treatment levels; consequently, no dummy codes
for treatments are included in Fig. 4.10 as this information is implicit in the ordering
of the g D 5 treatment groups in the two paired columns labeled “Pre” and “Post.”

Because there are

M D NŠ
gY

iD1

niŠ

D 47Š

10Š 10Š 9Š 8Š 10Š
D 369;908;998;147;203;213;613;129;815;600
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possible, equally-likely arrangements of the N D 47 univariate response measure-
ment scores listed in Table 4.1, an exact permutation approach is not possible and a
resampling analysis is mandated.

LAD Regression Analysis
An MRPP resampling analysis of the LAD regression residuals calculated on the
N D 47 response measurement scores listed in Fig. 4.10 yields estimated LAD
regression coefficients of

Q̌
0 D �0:1282 and Q̌

1 D C0:4956 :

Table 4.2 lists the observed yi values, LAD predicted Qyi values, and residual ei values
for i D 1; : : : ; 47.

Following Eq. (4.5) on p. 125 and employing ordinary Euclidean distance
between residuals v D 1, the LAD regression residuals listed in Table 4.2 yield

Table 4.2 Observed, predicted, and residual LAD regression values for the example covariate
data listed in Fig. 4.10

Object yi Qyi ei Object yi Qyi ei

1 1.30 2.0228 �0:7228 25 3.96 2.8901 C1:0699

2 0.94 1.6064 �0:6664 26 4.51 3.7277 C0:7823

3 2.25 2.0178 C0:2322 27 3.76 2.3895 C1:3705

4 1.05 1.2397 �0:1897 28 1.92 1.2893 C0:6307

5 0.92 2.1615 �1:2415 29 3.84 2.9942 C0:8458

6 1.90 2.5481 �0:6481 30 2.29 3.3114 �1:0214

7 0.32 1.8295 �1:5095 31 4.75 2.8950 C1:8550

8 0.64 0.6400 0:0000 32 3.48 2.3003 C1:1797

9 0.69 0.5756 C0:1144 33 2.76 1.7006 C1:0594

10 0.93 0.8135 C0:1165 34 1.67 2.2309 �0:5609

11 0.93 0.6400 C0:2900 35 1.51 2.0029 �0:4929

12 4.44 5.1055 �0:6655 36 1.07 1.0216 C0:0484

13 4.03 4.0300 0:0000 37 2.35 3.5146 �1:1646

14 1.92 1.7056 C0:2144 38 1.44 1.8543 �0:4143

15 0.67 1.0613 �0:3913 39 1.11 1.9038 �0:7938

16 1.70 0.7788 C0:9212 40 2.17 1.6659 C0:5041

17 0.77 1.0613 �0:2913 41 2.00 1.8146 C0:1854

18 3.53 3.6732 �0:1432 42 0.84 1.3091 �0:4691

19 3.65 2.7414 C0:9086 43 0.99 1.3091 �0:3191

20 4.22 4.6198 �0:3998 44 0.44 0.7738 �0:3338

21 5.10 3.4303 C1:6697 45 0.84 2.3201 �1:4801

22 4.16 4.0003 C0:1597 46 2.84 2.6918 C0:1482

23 1.54 1.8790 �0:3390 47 2.93 2.6175 C0:3125

24 6.36 5.2145 C1:1455
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g D 5 average distance-function values of

�1 D 0:7072 ; �2 D 0:6335 ; �3 D 0:7213 ; �4 D 1:3409 ; and �5 D 0:6795 :

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the LAD regression residuals listed in Table 4.2 with v D 1 and
treatment-group weights

Ci D ni

N
; i D 1; : : : ; 5 ;

is

ıo D
gX

iD1

Ci�i D 1

47

�
.10/.0:7072/ C .10/.0:6335/ C .9/.0:7213/

C .8/.1:3409/ C .10/.0:6795/
	D 0:7962 :

If all M possible arrangements of the observed LAD regression residuals listed
in Table 4.2 occur with equal chance, the approximate resampling probability value
of ıo D 0:7962 computed on L D 1;000;000 random arrangements of the observed
LAD regression residuals with n1 D n2 D n5 D 10, n3 D 9, and n4 D 8 residuals
preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

L
D 4;095

1;000;000
D 0:0041 :

Following Eq. (4.7) on p. 126, the exact expected value of the M ı values is �ı D
0:9178 and, following Eq. (4.6) on p. 126, the observed chance-corrected measure
of effect size for the yi and Qyi values, i D 1; : : : ; N, is

<o D 1 � ıo

�ı

D 1 � 0:7962

0:9178
D C0:1326 ;

indicating approximately 13 % agreement between the observed and predicted y
values above that expected by chance.

OLS Regression Analysis
For comparison, consider an MRPP resampling analysis of the OLS regression
residuals calculated on the N D 47 univariate response measurement scores listed in
Fig. 4.10 on p. 132. The MRPP regression analysis yields estimated OLS regression
coefficients of

Ǒ
0 D �0:2667 and Ǒ

1 D C0:5311 :
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Table 4.3 Observed, predicted, and residual OLS regression values for the example covariate
data listed in Fig. 4.10

Object yi Oyi ei Object yi Oyi ei

1 1.30 2.0383 �0:7383 25 3.96 2.9677 C0:9923

2 0.94 1.5922 �0:6522 26 4.51 3.8652 C0:6448

3 2.25 2.0330 C0:2170 27 3.76 2.4313 C1:3287

4 1.05 1.1991 �0:1491 28 1.92 1.2523 C0:6677

5 0.92 2.1870 �1:2670 29 3.84 3.0792 C0:7608

6 1.90 2.6012 �0:7012 30 2.29 3.4191 �1:1291

7 0.32 1.8311 �1:5111 31 4.75 2.9730 C1:7770

8 0.64 0.5565 C0:0835 32 3.48 2.3357 C1:1443

9 0.69 0.4875 C0:2025 33 2.76 1.6931 C1:0669

10 0.93 0.7424 C0:1876 34 1.67 2.2613 �0:5913

11 0.93 0.5565 C0:3735 35 1.51 2.0170 �0:5070

12 4.44 5.3417 �0:9017 36 1.07 0.9655 C0:1045

13 4.03 4.1892 �0:1592 37 2.35 3.6369 �1:2869

14 1.92 1.6984 C0:2216 38 1.44 1.8577 �0:4177

15 0.67 1.0080 �0:3380 39 1.11 1.9108 �0:8008

16 1.70 0.7052 C0:9948 40 2.17 1.6559 C0:5141

17 0.77 1.0080 �0:2380 41 2.00 1.8152 C0:1848

18 3.53 3.8068 �0:2768 42 0.84 1.2735 �0:4335

19 3.65 2.8084 C0:8416 43 0.99 1.2735 �0:2835

20 4.22 4.8212 �0:6012 44 0.44 0.6999 �0:2599

21 5.10 3.5466 C1:5534 45 0.84 2.3569 �1:5169

22 4.16 4.1573 C0:0027 46 2.84 2.7553 C0:0847

23 1.54 1.8843 �0:3443 47 2.93 2.6756 C0:2544

24 6.36 5.4585 C0:9015

Table 4.3 lists the observed yi values, OLS predicted Oyi values, and residual ei values
for i D 1; : : : ; 47.

Following Eq. (4.5) on p. 125 and employing squared Euclidean distance
between residuals with v D 2, the OLS regression residuals listed in Table 4.3
yield g D 5 average distance-function values of

�1 D 0:8067 ; �2 D 0:7407 ; �3 D 0:7073 ; �4 D 2:6035 ; and �5 D 0:6906 :

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the OLS regression residuals listed in Table 4.3 with v D 2 and
treatment-group weights

Ci D ni � 1

N � g
; i D 1; : : : ; 5 ;
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is

ıo D
gX

iD1

Ci�i D 1

47 � 5

�
.10 � 1/.0:8067/ C .10 � 1/.0:7407/

C .9 � 1/.0:7073/ C .8 � 1/.2:6035/ C .10 � 1/.0:6906/
	 D 1:0482 :

If all M possible arrangements of the N D 47 observed OLS regression residuals
listed in Table 4.3 occur with equal chance, the approximate resampling probabil-
ity value of ıo D 1:0482 computed on L D 1;000;000 random arrangements of the
observed OLS regression residuals with n1 D n2 D n5 D 10, n3 D 9, and n4 D 8

residuals preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

L
D 15;301

1;000;000
D 0:0153 :

For comparison, the approximate resampling probability value based on LAD
regression, v D 1, L D 1;000;000, and Ci D ni=N for i D 1; : : : ; 5 is P D 0:0041.

Following Eq. (4.7) on p. 126, the exact expected value of the M ı values is �ı D
1:2761 and, following Eq. (4.6) on p. 126, the observed chance-corrected measure
of effect size for the yi and Oyi values, i D 1; : : : ; N, is

<o D 1 � ıo

�ı

D 1 � 1:0482

1:2761
D C0:1785 ;

indicating approximately 18 % agreement between the observed and predicted y
values above that expected by chance.

Conventional ANOVA Analysis
A conventional fixed-effects one-way analysis of covariance calculated on the
N D 47 univariate response measurement scores listed in Table 4.1 on p. 131 yields
an observed F-ratio of Fo D 4:6978. Assuming independence, normality, and homo-
geneity of variance, F is approximately distributed as Snedecor’s F under the null
hypothesis with �1 D g � 1 D 5 � 1 D 4 and �2 D N � g � 1 D 47 � 5 � 1 D 41

degrees of freedom. Under the null hypothesis, the observed value of Fo D 4:6978

yields an approximate probability value of P D 0:0033.

4.3.3 One-Way Randomized-Block Design

One-way randomized-block designs are common in experimental research and have
long been valuable statistical tools in such fields as agriculture and genetics. E.J.G.
Pitman, for example, developed a permutation approach for one-way randomized-
block designs in 1938 [342]. With modern developments in embryo transplants and
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cloning where subjects can be genetically matched on a large number of important
characteristics, randomized-block designs have become very practical and efficient.2

Consider a one-way randomized-block design where b D 6 objects (blocks) are
evaluated over a D 3 treatments with r D 1 response measurement. The design and
data are adapted from a study by Anderson, Sweeney, and Williams [9, p. 471] and
are given in Fig. 4.11.

A design matrix of dummy codes for an MRPP regression analysis is given in
Fig. 4.12, where the first column of 1 values provides for an intercept, the next five
columns contain dummy codes for the b D 6 blocks, and the last column contains
the univariate response measurement scores listed according to the original ran-
dom assignment of the N D 18 objects to the a D 3 treatment levels of Factor A
with the first nA1 D 6 objects, the next nA2 D 6 objects, and the last nA3 D 6 objects

Fig. 4.11 Example data for a
one-way randomized-block
design with b D 6 blocks,
a D 3 treatments, and r D 1

response measurement

Factor A
Object A 1 A 2 A 3

1 15 15 18

2 14 14 14

3 10 11 15

4 13 12 17

5 16 13 16

6 13 13 13

Fig. 4.12 Design matrix and
data for a one-way
randomized-block design
with b D 6 blocks, a D 3

treatments, and r D 1

response measurement

erocSxirtaM

1 0 0 0 0 0 15

1 1 0 0 0 0 14

1 0 1 0 0 0 10

1 0 0 1 0 0 13

1 0 0 0 1 0 16

1 0 0 0 0 1 13

1 0 0 0 0 0 15

1 1 0 0 0 0 14

1 0 1 0 0 0 11

1 0 0 1 0 0 12

1 0 0 0 1 0 13

1 0 0 0 0 1 13

1 0 0 0 0 0 18

1 1 0 0 0 0 14

1 0 1 0 0 0 15

1 0 0 1 0 0 17

1 0 0 0 1 0 16

1 0 0 0 0 1 13

2All the biologically inherited information is not carried in the genes of a cell’s nucleus. A small
number of genes are carried by intra-cellular bodies, the mitochondria. Thus, the result of cloning
is not, strictly speaking, a perfect genetic clone of the donor organism.
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associated with treatment levels A1, A2, and A3, respectively. The MRPP regression
analysis examines the N D 18 regression residuals for possible differences in the
a D 3 treatment levels; consequently, there are no dummy codes for treatments in
Fig. 4.12 as this information is implicit in the ordering of the a D 3 treatment levels
of Factor A in the last column.

Because there are

M D NŠ
aY

iD1

nAiŠ

D 18Š

.6Š/3
D 17;153;136

possible, equally-likely arrangements of the N D 18 univariate response measure-
ment scores listed in Fig. 4.11, an exact permutation approach is not practical.

LAD Regression Analysis
An MRPP resampling analysis of the LAD regression residuals calculated on the
univariate response measurement scores listed in Fig. 4.12 yields estimated LAD
regression coefficients of

Q̌
0 D C15:00 ; Q̌

1 D �1:00 ; Q̌
2 D �4:00 ; Q̌

3 D �2:00 ;

Q̌
4 D C1:00 ; and Q̌

5 D �2:00

for Factor A. Figure 4.13 lists the observed yi values, LAD predicted Qyi values, and
residual ei values for i D 1; : : : ; 18.

Fig. 4.13 Observed,
predicted, and residual LAD
regression values for the
example randomized-block
data listed in Fig. 4.12

Object yi ỹ i ei

1 15 15.00

2 14 14.00

3 10 11.00 −1.00

4 13 13.00

5 16 16.00

6 13 13.00

7 15 15.00

8 14 14.00

9 11 11.00

10 12 13.00 −1.00

11 13 16.00 −3.00

12 13 13.00

13 18 15.00

14 14 14.00

15 15 11.00

16 17 13.00

17 16 16.00

18 13 13.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

+3.00

0.00

+4.00

+4.00

0.00

0.00
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Following Eq. (4.5) on p. 125 and employing ordinary Euclidean distance
between residuals with v D 1, the N D 18 LAD regression residuals listed in
Fig. 4.13 yield a D 3 average distance-function values of

�A1 D 0:3333 ; �A2 D 1:20 ; and �A3 D 2:3333 :

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the LAD regression residuals listed in Fig. 4.13 with v D 1 and
treatment-group weights

Ci D nAi

N
; i D 1; 2; 3 ;

is

ıA D
aX

iD1

Ci�i D 6

18

�
0:3333 C 1:20 C 2:3333

� D 1:2889 :

If all M possible arrangements of the N D 18 observed LAD regression residuals
listed in Fig. 4.13 occur with equal chance, the approximate resampling probabil-
ity value of ıA D 1:2889 computed on L D 1;000;000 random arrangements of the
observed LAD regression residuals with nA1 D nA2 D nA3 D 6 residuals preserved
for each arrangement is

P
�
ı � ıAjH0

� D number of ı values � ıA

L
D 56;035

1;000;000
D 0:0560 :

Following Eq. (4.7) on p. 126, the exact expected value of the M D 17;153;136

ı values is �ı D 1:6078 and, following Eq. (4.6) on p. 126, the observed chance-
corrected measure of effect size for the yi and Qyi values, i D 1; : : : ; N, is

<A D 1 � ıA

�ı

D 1 � 1:2889

1:6078
D C0:1984 ;

indicating approximately 20 % agreement between the observed and predicted y
values above that expected by chance.

An Exact Test
Although an exact permutation analysis of the N D 18 LAD regression residuals
listed in Fig. 4.13 is impractical, it is not impossible. In fact, exact permutation meth-
ods are oftentimes more efficient than resampling permutation methods because the
L D 1;000;000 calls to a pseudorandom number generator, necessary for a resam-
pling test, are not required by an exact test.
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Following Eq. (4.5) on p. 125, an exact permutation analysis of the N D 18 LAD
regression residuals listed in Fig. 4.13 yields a D 3 average distance-function val-
ues of

�A1 D 0:3333 ; �A2 D 1:20 ; and �A3 D 2:3333 :

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D nAi

N
; i D 1; 2; 3 ;

is

ıA D
aX

iD1

Ci�i D 6

18

�
0:3333 C 1:20 C 2:3333

� D 1:2889 :

If all arrangements of the N D 18 observed LAD regression residuals listed
in Fig. 4.13 occur with equal chance, the exact probability value of ıA D 1:2889

computed on the M D 17;153;136 possible arrangements of the observed LAD
regression residuals with nA1 D nA2 D nA3 D 6 residuals preserved for each arrange-
ment is

P
�
ı � ıAjH0

� D number of ı values � ıA

M
D 961;884

17;153;136
D 0:0561 :

For comparison, the resampling probability value computed on L D 1;000;000 ran-
dom arrangements of the observed LAD regression residuals listed in Fig. 4.13 is
P D 0:0560.

OLS Regression Analysis
For comparison, consider an MRPP resampling analysis of OLS regression residuals
calculated on the N D 18 univariate response measurement scores listed in Fig. 4.12
on p. 137. The MRPP regression analysis yields estimated OLS regression coeffi-
cients of

Ǒ
0 D C16:00 ; Ǒ

1 D �2:00 ; Ǒ
2 D �4:00 ; Ǒ

3 D �2:00 ;

Ǒ
4 D �1:00 ; and Ǒ

5 D �3:00

for Factor A. Figure 4.14 lists the observed yi values, OLS predicted Oyi values, and
residual ei values for i D 1; : : : ; 18.
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Fig. 4.14 Observed,
predicted, and residual OLS
regression values for the
example randomized-block
data listed in Fig. 4.12

Object yi y i ei

1 15 16.00 −1.00

2 14 14.00

3 10 12.00 −2.00

4 13 14.00 −1.00

5 16 15.00

6 13 13.00

7 15 16.00 −1.00

8 14 14.00

9 11 12.00 −1.00

10 12 14.00 −2.00

11 13 15.00 −2.00

12 13 13.00

13 18 16.00

14 14 14.00

15 15 12.00

16 17 14.00

17 16 15.00

18 13 13.00

0.00

+1.00

0.00

0.00

0.00

+2.00

0.00

+3.00

+3.00

+1.00

0.00

Following Eq. (4.5) on p. 125 and employing ordinary Euclidean distance
between residuals with v D 2, the N D 18 OLS regression residuals listed in
Fig. 4.14 yield a D 3 average distance-function values of

�A1 D 2:20 ; �A2 D 1:60 ; and �A3 D 3:80 :

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the OLS regression residuals listed in Fig. 4.14 with v D 2 and
treatment-group weights

Ci D nAi � 1

N � a
; i D 1; 2; 3 ;

is

ıA D
aX

iD1

Ci�i D 6 � 1

18 � 3

�
2:20 C 1:60 C 3:80

� D 2:5333 :

If all M possible arrangements of the N D 18 observed OLS regression residuals
listed in Fig. 4.14 occur with equal chance, the approximate resampling probabil-
ity value of ıA D 2:5333 computed on L D 1;000;000 random arrangements of the
observed OLS regression residuals with nA1 D nA2 D nA3 D 6 residuals preserved
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for each arrangement is

P
�
ı � ıAjH0

� D number of ı values � ıA

L
D 4;974

1;000;000
D 0:0050 :

For comparison, the approximate resampling probability value based on LAD
regression, v D 1, L D 1;000;000, and Ci D nAi=N for i D 1; 2; 3 is P D 0:0560.

Following Eq. (4.7) on p. 126, the exact expected value of the M D 17;153;136

ı values is �ı D 5:5556 and, following Eq. (4.6) on p. 126, the observed chance-
corrected measure of effect size for the yi and Oyi values, i D 1; : : : ; N, is

<A D 1 � ıo

�ı

D 1 � 2:5333

5:5556
D C0:5440 ;

indicating approximately 54 % agreement between the observed and predicted y
values above that expected by chance.

An Exact Test
Although an exact permutation analysis of the N D 18 OLS regression residuals
listed in Fig. 4.14 is impractical, it is not impossible. Following Eq. (4.5) on p. 125,
an exact permutation analysis of the N D 18 OLS regression residuals listed in
Fig. 4.14 yields a D 3 average distance-function values of

�A1 D 2:20 ; �A2 D 1:60 ; and �A3 D 3:80 :

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic based
on v D 2 and treatment-group weights

Ci D nAi � 1

N � a
; i D 1; 2; 3 ;

is

ıA D
aX

iD1

Ci�i D 6 � 1

18 � 3

�
2:20 C 1:60 C 3:80

� D 2:5333 :

If all arrangements of the N D 18 observed OLS regression residuals listed
in Fig. 4.14 occur with equal chance, the exact probability value of ıA D 2:5333

computed on the M D 17;153;136 possible arrangements of the observed OLS
regression residuals with nA1 D nA2 D nA3 D 6 residuals preserved for each arrange-
ment is

P
�
ı � ıAjH0

� D number of ı values � ıA

M
D 85;188

17;153;136
D 0:0050 :
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For comparison, the approximate resampling probability value computed on L D
1;000;000 random arrangements of the observed OLS regression residuals listed in
Fig. 4.14 is also P D 0:0050.

Conventional ANOVA Analysis
A conventional randomized-block analysis of variance calculated on the N D 18

univariate response measurement scores listed in Fig. 4.11 on p. 137 yields an
observed F-ratio of FA D 5:5263. Assuming independence and normality, FA is
approximately distributed as Snedecor’s F under the null hypothesis with �1 D a �
1 D 3 � 1 D 2 and �2 D .b � 1/.a � 1/ D .6 � 1/.3 � 1/ D 10 degrees of free-
dom. Under the null hypothesis, the observed value of FA D 5:5263 yields an
approximate probability value of P D 0:0242.

4.3.4 Two-Way Randomized-Block Design

Consider a balanced two-way randomized-block design in which n D 3 subjects (S )
are tested over a D 3 levels of Factor A and the experiment is repeated b D 3 times
for Factor B. The design and data are adapted from Myers and Well [315, p. 260] and
are given in Table 4.4. A complete permutation analysis of a two-way randomized-
block design requires three separate analyses comprised of (1) the main effect of
Factor A, (2) the main effect of Factor B, and (3) the A�B interaction effect.

Analysis of Factor A
A design matrix of dummy codes for analyzing Factor A is given on the left side
of Table 4.5, where the first column of 1 values provides for an intercept and the
second and third columns contain dummy codes for Factor B. The last column on
the left side of Table 4.5 lists the N D 9 response measurement summations over the
b D 3 levels of Factor B (e.g., 3:10 C 1:90 C 1:60 D 6:60) and ordered by the a D 3

treatment levels of Factor A with the first nA1 D 3 summations, the next nA2 D 3

summations, and the last nA3 D 3 summations associated with treatment levels A1,
A2, and A3, respectively. The MRPP regression analysis examines the N D 9 regres-
sion residuals for possible differences in the a D 3 treatment levels of Factor A;
consequently, no dummy codes are provided for Factor A as this information is

Table 4.4 Example univariate data for a balanced two-way randomized-block design with n D 3

subjects, a D 3 levels of Factor A, and b D 3 levels of Factor B

B1 B2 B3

Subject A1 A2 A3 A1 A2 A3 A1 A2 A3

S1 3.10 2:90 2.40 1.90 2:00 1.70 1.60 1.90 1.50

S2 5.70 6:80 5.30 4.50 5:70 4.40 4.40 5.30 3.90

S3 9.70 10:90 8.00 7.40 10:50 6.60 6.90 8.90 6.00
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Table 4.5 Design matrices
and summation data for
Factors A and B in a two-way
analysis of variance
randomized-block design

Factor A Factor B

Matrix Sum over B Matrix Sum over A

1 0 0 6:60 1 0 0 8:40

1 1 0 14:60 1 1 0 17:80

1 0 1 24:00 1 0 1 28:60

1 0 0 6:80 1 0 0 5:60

1 1 0 17:80 1 1 0 14:60

1 0 1 30:30 1 0 1 24:50

1 0 0 5:60 1 0 0 5:00

1 1 0 13:60 1 1 0 13:60

1 0 1 20:60 1 0 1 21:80

implicit in the ordering of the a D 3 treatment levels of Factor A in the last column
on the left side of Table 4.5.

An exact permutation solution is reasonable for the response measurement sum-
mations listed on the left side of Table 4.5 since there are only

M D NŠ
aY

iD1

nAiŠ

D 9Š

.3Š/3
D 1;680

possible, equally-likely arrangements of the N D 9 response measurement summa-
tions for Factor A with nA1 D nA2 D nA3 D 3 response measurement summations
preserved for each arrangement of the observed data.

LAD Regression Analysis
An MRPP analysis of the LAD regression residuals calculated on the N D 9

response measurement summations on the left side of Table 4.5 yields estimated
LAD regression coefficients of

Q̌
0 D C6:60 ; Q̌

1 D C8:00 ; and Q̌
2 D C17:40

for Factor A. Figure 4.15 lists the observed yi values, LAD predicted Qyi values, and
residual ei values for i D 1; : : : ; 9.

Following Eq. (4.5) on p. 125 and employing squared Euclidean distance
between residuals with v D 1, the N D 9 LAD regression residuals listed in
Fig. 4.15 yield a D 3 average distance-function values of

�A1 D 0:00 ; �A2 D 4:0667 ; and �A3 D 1:60 :
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Fig. 4.15 Observed,
predicted, and residual LAD
regression values for the
summations over Factor B on
the left side of Table 4.5

Object y i ỹ i ei

1 6.60 6.60

2 14.60 14.00

3 24.00 24.00

4 6.80 6.80

5 17.70 17.80

6 30.30 30.30

7 5.60 5.60 −1.00

8 13.60 13.60 −1.00

9 20.60 20.60 −3.40

0.00

0.00

0.00

+0.20

+3.20

+6.30

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the LAD regression residuals listed in Fig. 4.15 with v D 1 and
treatment-group weights

Ci D nAi

N
; i D 1; 2; 3 ;

is

ıA D
aX

iD1

Ci�i D 3

9

�
0:00 C 4:0667 C 1:60

� D 1:8889 :

If all arrangements of the N D 9 observed LAD regression residuals listed in
Fig. 4.15 occur with equal chance, the exact probability value of ıA D 1:8889 com-
puted on the M D 1;680 possible arrangements of the observed LAD regression
residuals with nA1 D nA2 D nA3 D 3 residuals preserved for each arrangement is

P
�
ı � ıAjH0

� D number of ı values � ıA

M
D 6

1;680
D 0:0036 :

Following Eq. (4.7) on p. 126, the exact expected value of the M D 1;680 ı values
is �ı D 2:9889 and, following Eq. (4.6) on p. 126, the observed chance-corrected
measure of effect size for the yi and Qyi values, i D 1; : : : ; N, is

<A D 1 � ıA

�ı

D 1 � 1:8889

2:9889
D C0:3680 ;

indicating approximately 37 % agreement between the observed and predicted y
values above that expected by chance.

OLS Regression Analysis
For comparison, consider an MRPP analysis of OLS regression residuals calculated
on the N D 9 response measurement summations for Factor A listed on the left
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Fig. 4.16 Observed,
predicted, and residual OLS
regression values for the
summations over Factor B on
the left side of Table 4.5

Object y i y i ei

1 6.60 6.3333

2 14.60 15.3333 −0.7333

3 24.00 24.9667 −0.9667

4 6.80 6.3333

5 17.80 15.3333

6 30.30 24.9667

7 5.60 6.3333 −0.7333

8 13.60 15.3333 −1.7333

9 20.60 24.9667 −4.3667

+0.2667

+0.4667

+2.4667

+5.3333

side of Table 4.5. Again, since there are only M D 1;680 possible arrangements of
the response measurement summations, an exact permutation test is selected. The
MRPP regression analysis yields estimated OLS regression coefficients of

Ǒ
0 D C6:3333 ; Ǒ

1 D C9:00 ; and Ǒ
2 D C18:6333

for Factor A. Figure 4.16 lists the observed yi values, OLS predicted Oyi values, and
residual ei values for i D 1; : : : ; 9.

Following Eq. (4.5) on p. 125 and employing squared Euclidean distance
between residuals with v D 2, the N D 9 OLS regression residuals listed in Fig. 4.16
yield a D 3 average distance-function values of

�A1 D 0:8585 ; �A2 D 11:9674 ; and �A3 D 7:0452 :

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the OLS regression residuals listed in Fig. 4.16 with v D 2 and
treatment-group weights

Ci D nAi � 1

N � a
; i D 1; 2; 3 ;

is

ıA D
aX

iD1

Ci�i D 3 � 1

9 � 3

�
0:8585 C 11:9674 C 7:0452

� D 6:6237 :

If all arrangements of the N D 9 observed OLS regression residuals listed in
Fig. 4.16 occur with equal chance, the exact probability value of ıA D 6:6237 com-
puted on the M D 1;680 possible arrangements of the observed OLS regression
residuals with nA1 D nA2 D nA3 D 3 residuals preserved for each arrangement is

P
�
ı � ıAjH0

� D number of ı values � ıA

M
D 18

1;680
D 0:0107 :
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For comparison, the exact probability value based on LAD regression, v D 1, M D
1;680, and Ci D nAi=N for i D 1; 2; 3 is P D 0:0036.

Following Eq. (4.7) on p. 126, the exact expected value of the M D 1;680 ı values
is �ı D 14:7250 and, following Eq. (4.6) on p. 126, the observed chance-corrected
measure of effect size for the yi and Oyi values, i D 1; : : : ; N, is

<A D 1 � ıA

�ı

D 1 � 6:6237

14:7250
D C0:5512 ;

indicating approximately 55 % agreement between the observed and predicted y
values above that expected by chance.

Conventional ANOVA Analysis
A conventional randomized-block analysis of variance calculated on the N D 27

univariate response measurement scores for Factor A in Table 4.4 on p. 143 yields
an observed F-ratio of FA D 3:9282. Assuming independence and normality, FA is
approximately distributed as Snedecor’s F under the null hypothesis with �1 D a �
1 D 3 � 1 D 2 and �2 D .n � 1/.a � 1/ D .3 � 1/.3 � 1/ D 4 degrees of freedom.
Under the null hypothesis, the observed value of FA D 3:9282 yields an approximate
probability value of P D 0:1138.

Analysis of Factor B
The right side of Table 4.5 on p. 144 contains a design matrix of dummy codes
for analyzing Factor B, where the first column of 1 values provides for an intercept
and the next two columns contain dummy codes for Factor A. The last column on
the right side of Table 4.5 lists the N D 9 response measurement summations over
the a D 3 levels of Factor A (e.g., 3:10 C 2:90 C 2:40 D 8:40) and ordered by the
b D 3 treatment levels with the first nB1 D 3 summations, the next nB2 D 3 sum-
mations, and the last nB3 D 3 summations associated with treatment levels, B1, B2,
and B3, respectively. The MRPP regression analysis examines the N D 9 regression
residuals for possible differences among the b D 3 treatment levels of Factor B; con-
sequently, no dummy codes are provided for Factor B as this information is implicit
in the ordering of the b D 3 treatment levels of Factor B in the last column on the
right side of Table 4.5.

An exact permutation solution is ideal for the response measurement summations
on the right side of Table 4.5 since there are only

M D NŠ

bY

iD1

nBiŠ

D 9Š

.3Š/3
D 1;680

possible, equally-likely arrangements of the N D 9 response measurement sum-
mations for Factor B with nB1 D nB2 D nB3 response measurement summations
preserved for each arrangement of the observed data.
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Fig. 4.17 Observed,
predicted, and residual LAD
regression values for the
summations over Factor A on
the right side of Table 4.5

Object y i y i e i

1 8.40 5.60

2 17.80 14.60

3 28.60 24.50

4 5.60 5.60

5 14.60 14.60

6 24.50 24.50

7 5.00 5.60 −0.60

8 13.60 14.60 −1.00

9 21.80 24.50 −2.70

+2.80

+3.20

+4.10

0.00

0.00

0.00

LAD Regression Analysis
An MRPP analysis of the LAD regression residuals calculated on the N D 9

response measurement summations on the right side of Table 4.5 on p. 144 yields
estimated LAD regression coefficients of

Q̌
0 D C5:60 ; Ǒ

1 D C9:00 ; and Q̌
2 D C18:90

for Factor B. Figure 4.17 lists the observed yi values, LAD predicted Qyi values, and
residual ei values for i D 1; : : : ; 9.

Following Eq. (4.5) on p. 125 and employing ordinary Euclidean distance
between residuals with v D 1, the N D 9 LAD regression residuals listed in
Fig. 4.17 yield b D 3 average distance-function values of

�B1 D 0:8667 ; �B2 D 0:00 ; and �B3 D 1:40 :

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the LAD regression residuals listed in Fig. 4.17 with v D 1 and
treatment-group weights

Ci D nBi

N
; i D 1; 2; 3 ;

is

ıB D
bX

iD1

Ci�i D 3

9

�
0:8667 C 0:00 C 1:40

� D 0:7556 :

If all arrangements of the N D 9 observed LAD regression residuals listed in
Fig. 4.17 occur with equal chance, the exact probability value of ıB D 0:7556 com-
puted on the M D 1;680 possible arrangements of the observed LAD regression
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residuals with nB1 D nB2 D nB3 D 3 residuals preserved for each arrangement is

P
�
ı � ıBjH0

� D number of ı values � ıB

M
D 6

1;680
D 0:0036 :

Following Eq. (4.7) on p. 126, the exact expected value of the M D 1;680 ı values
is �ı D 2:5889 and, following Eq. (4.6) on p. 126, the observed chance-corrected
measure of effect size for the yi and Qyi values, i D 1; : : : ; N, is

<B D 1 � ıB

�ı

D 1 � 0:7556

2:5889
D C0:7082 ;

indicating approximately 71 % agreement between the observed and predicted y
values above that expected by chance.

OLS Regression Analysis
For comparison, consider an MRPP analysis of OLS regression residuals calculated
on the N D 9 response measurement summations for Factor B listed on the right side
of Table 4.5 on p. 144. Again, since there are only M D 1;680 possible arrangements
of the response measurement summations, an exact permutation test is preferred.
The MRPP regression analysis yields estimated OLS regression coefficients of

Ǒ
0 D C6:3333 ; Ǒ

1 D C9:00 ; and Ǒ
2 D C18:6333

for Factor B. Figure 4.18 lists the observed yi values, OLS predicted Oyi values, and
residual ei values for i D 1; : : : ; 9.

Following Eq. (4.5) on p. 125 and employing squared Euclidean distance
between residuals with v D 2, the N D 9 OLS regression residuals listed in Fig. 4.18
yield b D 3 average distance-function values of

�B1 D 1:3252 ; �B2 D 0:0474 ; and �B3 D 1:8585 :

Fig. 4.18 Observed,
predicted, and residual OLS
regression values for the
summations over Factor A on
the right side of Table 4.5

Object y i y i ei

1 8.40 6.3333

2 17.80 15.3333

3 28.60 24.9667

4 5.60 6.3333 − 0.7333

5 14.60 15.3333 − 0.7333

6 24.50 24.9667 − 0.4667

7 5.00 6.3333 − 1.3333

8 13.60 15.3333 − 1.7333

9 21.80 24.9667 − 3.1667

+2.4667

+3.6333

+2.0667
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Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the OLS regression residuals listed in Fig. 4.18 with v D 2 and
treatment-group weights

Ci D nBi � 1

N � b
; i D 1; 2; 3 ;

is

ıB D
bX

iD1

Ci�i D 3 � 1

9 � 3

�
1:3252 C 0:0474 C 1:8585

� D 1:0770 :

If all arrangements of the N D 9 observed OLS regression residuals listed in
Fig. 4.18 occur with equal chance, the exact probability value of ıB D 1:0770 com-
puted on the M D 1;680 possible arrangements of the observed OLS regression
residuals with nB1 D nB2 D nB3 D 3 residuals preserved for each arrangement is

P
�
ı � ıBjH0

� D number of ı values � ıB

M
D 6

1;680
D 0:0036 :

For comparison, the exact probability value based on LAD regression, v D 1, M D
1;680, and Ci D nBi=N for i D 1; 2; 3 is also P D 0:0036.

Following Eq. (4.7) on p. 126, the exact expected value of the M D 1;680 ı values
is �ı D 9:9150 and, following Eq. (4.6) on p. 126, the observed chance-corrected
measure of effect size for the yi and Oyi values, i D 1; : : : ; N, is

<B D 1 � ıB

�ı

D 1 � 1:0770

9:9150
D C0:8914 ;

indicating approximately 89 % agreement between the observed and predicted y
values above that expected by chance.

Conventional ANOVA Analysis
A conventional randomized-block analysis of variance calculated on the N D 27

univariate response measurement scores for Factor B listed in Table 4.4 on p. 143
yields an observed F-ratio of FB D 22:5488. Assuming independence and normal-
ity, FB is approximately distributed as Snedecor’s F under the null hypothesis with
�1 D b � 1 D 3 � 1 D 2 and �2 D .n � 1/.b � 1/ D .3 � 1/.3 � 1/ D 4 degrees of
freedom. Under the null hypothesis, the observed value of FB D 22:5488 yields an
approximate probability value of P D 0:0066, which is similar to the LAD and OLS
regression probability value of P D 0:0036.

Analysis of the A�B Interaction
A design matrix of dummy codes for analyzing the interaction of Factors A and B is
given in Table 4.6, where the first column of 1 values provides for an intercept and
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Table 4.6 Design matrix
and univariate response
measurement scores for the
interaction of Factors A and B
in a two-way
randomized-block design
with N D 27 objects

Matrix Score

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3:10

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 5:70

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 9:70

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2:90

1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 6:80

1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 10:90

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2:40

1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 5:30

1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 8:00

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1:90

1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 4:50

1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 7:40

1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 2:00

1 1 0 1 0 1 0 1 0 0 0 1 0 0 0 5:70

1 0 1 1 0 1 0 0 0 1 0 0 0 1 0 10:50

1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1:70

1 1 0 0 1 1 0 0 1 0 0 1 0 0 0 4:40

1 0 1 0 1 1 0 0 0 0 1 0 0 1 0 6:60

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1:60

1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 4:40

1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 6:90

1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1:90

1 1 0 1 0 0 1 1 0 0 0 0 1 0 0 5:30

1 0 1 1 0 0 1 0 0 1 0 0 0 0 1 8:90

1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1:50

1 1 0 0 1 0 1 0 1 0 0 0 1 0 0 3:90

1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 6:00

the second and third columns contain dummy codes for subjects (S ). The fourth and
fifth columns contain dummy codes for Factor A, the sixth and seventh columns con-
tain dummy codes for Factor B, and the next eight columns contain dummy codes
for the S�A and S�B interactions. The last column in Table 4.6 lists the response
measurement scores ordered by the ab D .3/.3/ D 9 levels of the A�B interaction.

The MRPP regression analysis examines the N D 27 regression residuals for
possible differences among the nine treatment levels of the A�B interaction; conse-
quently, no dummy codes are provided for the A�B interaction as this information
is implicit in the ordering of the treatment levels of the A�B interaction in the last
column of Table 4.6.
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Because there are

M D NŠ

abY

iD1

n.A�B/i Š

D 27Š

.3Š/9
D 1;080;491;954;750;208;000;000

possible, equally-likely arrangements of the N D 27 univariate response measure-
ment scores for the A�B interaction listed in Table 4.6, an exact permutation solution
is not possible.

LAD Regression Analysis
An MRPP resampling analysis of the LAD regression residuals calculated on the
N D 27 univariate response measurement scores listed in Table 4.6 yields estimated
LAD regression coefficients of

Q̌
0 D C2:70 ; Q̌

1 D C3:00 ; Q̌
2 D C6:20 ; Q̌

3 D C0:20 ;

Q̌
4 D �0:20 ; Q̌

5 D �0:80 ; Q̌
6 D �1:00 ; Q̌

7 D C0:90 ;

Q̌
8 D �0:20 ; Q̌

9 D C1:80 ; Q̌
10 D �0:70 ; Q̌

11 D �0:30 ;

Q̌
12 D �0:40 ; Q̌

13 D �0:60 ; and Q̌
14 D �1:00

for the interaction of Factors A and B. Figure 4.19 lists the observed yi values, LAD
predicted Qyi values, and residual ei values for i D 1; : : : ; 27.

Following Eq. (4.5) on p. 125 and employing ordinary Euclidean distance
between residuals with v D 1, the N D 27 LAD regression residuals listed in
Fig. 4.19 yield ab D .3/.3/ D 9 average distance-function values of

�.A�B/1 D 0:5333 ; �.A�B/2 D 0:00 ; �.A�B/3 D �.A�B/4 D 0:0667 ;

�.A�B/5 D 0:7333 ; �.A�B/6 D �.A�B/7 D 0:1333 ; �.A�B/8 D 0:0667 ;

and �.A�B/9 D 0:00 :

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the LAD regression residuals listed in Fig. 4.19 with v D 1 and
treatment-group weights

Ci D n.A�B/i

N
; i D 1; : : : ; 9 ;

is

ıA�B D
abX

iD1

Ci�i D 3

9

�
0:5333 C 0:00 C � � � C 0:0667 C 0:00

� D 0:1926 :
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Fig. 4.19 Observed,
predicted, and residual LAD
regression values for the
univariate response
measurement scores listed in
Table 4.6

Object y i y i ei

1 3.10 2.70

2 5.70 5.70

3 9.70 8.90

4 2.90 2.90  0.00

5 6.80 6.80 0.00

6 10.90 10.90 0.00

7 2.40 2.50 −0.10

8 5.30 5.30 0.00

9 8.00 8.00 0.00

10 1.90 1.90 0.00

11 4.50 4.60 −0.10

12 7.40 7.50 −0.10

13 2.00 2.10 −0.10

14 5.70 5.70 0.00

15 10.50 9.50 +1.00

16 1.70 1.70 0.00

17 4.40 4.20 +0.20

18 6.60 6.60 0.00

19 1.60 1.70 −0.10

20 4.40 4.30 +0.10

21 6.90 6.90 0.00

22 1.90 1.90 0.00

23 5.30 5.40 −0.10

24 8.90 8.90 0.00

25 1.50 1.50 0.00

26 3.90 3.90 0.00

27 6.00 6.00 0.00

+0.40

0.00

+0.80

If all M possible arrangements of the N D 27 observed LAD regression residuals
listed in Fig. 4.19 occur with equal chance, the approximate resampling probability
value of ıA�B D 0:1926 computed on L D 1;000;000 random arrangements of the
observed LAD regression residuals with n.A�B/1 D � � � D n.A�B/9 D 3 residuals pre-
served for each arrangement is

P
�
ı � ıA�BjH0

� D number of ı values � ıA�B

L
D 235;542

1;000;000
D 0:2355 :

Following Eq. (4.7) on p. 126, the exact expected value of the M ı values is �ı D
0:2063 and, following Eq. (4.6) on p. 126, the observed chance-corrected measure
of effect size for the yi and Qyi values, i D 1; : : : ; N, is

<A�B D 1 � ıA�B

�ı

D 1 � 0:1926

0:2063
D C0:0663 ;

indicating approximately 7 % agreement between the observed and predicted y val-
ues above that expected by chance.
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OLS Regression Analysis
For comparison, consider an MRPP analysis of OLS regression residuals calcu-
lated on the N D 27 univariate response measurement scores for the A�B interaction
listed in Table 4.6. The MRPP regression analysis yields estimated OLS regression
coefficients of

Ǒ
0 D C2:8889 ; Ǒ

1 D C2:80 ; Ǒ
2 D C6:3222 ; Ǒ

3 D C0:0667 ;

Ǒ
4 D �0:3333 ; Ǒ

5 D �0:9333 ; Ǒ
6 D �1:1333 ; Ǒ

7 D C1:00 ;

Ǒ
8 D 0:00 ; Ǒ

9 D C2:0333 ; Ǒ
10 D �0:80 ; Ǒ

11 D �0:1333 ;

Ǒ
12 D �0:2667 ; Ǒ

13 D �0:4333 ; and Ǒ
14 D �1:1333

for the interaction of Factors A and B. Figure 4.20 lists the observed yi values, OLS
predicted Oyi values, and residual ei values for i D 1; : : : ; 27.

Fig. 4.20 Observed,
predicted, and residual OLS
regression values for the
univariate response
measurement scores listed in
Table 4.6

Object y i y i ei

1 3.10 2.8889 +0.2111

2 5.70 5.6889 +0.0111

3 9.70 9.2111 +0.4889

4 2.90 2.9556 −0.0556

5 6.80 6.7556 +0.0444

6 10.90 11.3111 −0.4111

7 2.40 2.5556 −0.1556

8 5.30 5.3556 −0.0556

9 8.00 8.0778 −0.0778

10 1.90 1.9556 −0.0556

11 4.50 4.6222 −0.1222

12 7.40 7.8444 −0.4444

13 2.00 2.0222 −0.2222

14 5.70 5.6889 +0.0111

15 10.50 9.9444 +0.5556

16 1.70 1.6222 +0.0778

17 4.40 4.2889 +0.1111

18 6.60 6.7111 −0.1111

19 1.60 1.7556 −0.1556

20 4.40 4.2889 +0.1111

21 6.90 6.9444 −0.0444

22 1.90 1.8222 +0.0778

23 5.30 5.3556 −0.0556

24 8.90 9.0444 −0.1444

25 1.50 1.4222 +0.0778

26 3.90 3.9556 −0.0556

27 6.00 5.8111 +0.1889
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Following Eq. (4.5) on p. 125 and employing squared Euclidean distance
between residuals with v D 2, the N D 27 OLS regression residuals listed in
Fig. 4.20 yield ab D .3/.3/ D 9 average distance-function values of

�.A�B/1 D 0:1151 ; �.A�B/2 D 0:1147 ; �.A�B/3 D 0:0055 ;

�.A�B/4 D 0:0865 ; �.A�B/5 D 0:2105 ; �.A�B/6 D 0:0287 ;

�.A�B/7 D 0:0359 ; �.A�B/8 D 0:0250 ; and �.A�B/9 D 0:0300 :

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the OLS regression residuals listed in Fig. 4.20 with v D 2 and
treatment-group weights

Ci D n.A�B/i � 1

N � ab
; i D 1; : : : ; 9 ;

is

ıA�B D
abX

iD1

Ci�i D 3 � 1

27 � 9

�
0:1151 C 0:1147 C 0:0055

C � � � C 0:0250 C 0:0300
� D 0:0724 :

If all M possible arrangements of the N D 27 observed OLS regression residuals
listed in Fig. 4.20 occur with equal chance, the approximate resampling probabil-
ity value of ıA�B D 0:0724 computed on L D 1;000;000 random arrangements of
the observed OLS regression residuals with n.A�B/1 D � � � D n.A�B/9 D 3 residuals
preserved for each arrangement is

P
�
ı � ıA�BjH0

� D number of ı values � ıA�B

L
D 141;960

1;000;000
D 0:1420 :

For comparison, the approximate resampling probability value based on LAD
regression, v D 1, L D 1;000;000, and Ci D n.A�B/i=N for i D 1; : : : ; 9 is P D
0:2355.

Following Eq. (4.7) on p. 126, the exact expected value of the M ı values is �ı D
8:9231 and, following Eq. (4.6) on p. 126, the observed chance-corrected measure
of effect size for the yi and Oyi values, i D 1; : : : ; N, is

<A�B D 1 � ıA�B

�ı

D 1 � 0:0724

8:9231
D C0:1883 ;

indicating approximately 19 % agreement between the observed and predicted y
values above that expected by chance.
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Conventional ANOVA Analysis
A conventional randomized-block analysis of variance calculated on the N D 27

response measurement scores for the A�B interaction listed in Table 4.4 on p. 143
yields an observed F-ratio of FA�B D 1:5591. Assuming independence and normal-
ity, FA�B is approximately distributed as Snedecor’s F under the null hypothesis with
�1 D .a � 1/.b � 1/ D .3 � 1/.3 � 1/ D 4 and �2 D .n � 1/.a � 1/.b � 1/ D .3 �
1/.3 � 1/.3 � 1/ D 8 degrees of freedom. Under the null hypothesis, the observed
value of FA�B D 1:5591 yields an approximate probability value of P D 0:2744.

4.3.5 Two-Way Factorial Design

Consider a 2�3 fixed-effects factorial design with n D 4 subjects in each treatment
combination for a total of N D 24 subjects. The univariate response measurement
scores for Factors A and B are listed in Fig. 4.21, and the design matrices and data
for Factors A and B are given in Table 4.7; the design and data are adapted from
Keppel [214, p. 197]. While design matrices of either dummy or effect codes are
appropriate for one-way completely randomized and randomized-block designs, the
main effects of factorial designs are best analyzed with effect codes when estimation
of the effects of each factor is adjusted for all other factors in the model to obtain the
unique contribution of each factor [31,37,294].3 A permutation analysis of factorial
designs requires three separate analyses comprising (1) the main effect of Factor A,
(2) the main effect of Factor B, and (3) the A�B interaction effect.

Fig. 4.21 Example
univariate response
measurement scores for
Factors A and B in a two-way
factorial design

A1 A2 B1 B2 B3

1 15 1 13 9

4 6 1 5 16

0 10 0 7 18

7 13 7 15 13

13 6 15 6 14

5 18 6 18 7

7 9 10 9 6

15 15 13 15 13

9 14

16 7

18 6

13 13

Factor A Factor B

3This method of estimation is known as Method I as presented in a seminal article by Overall and
Spiegel in 1969 [330].
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Table 4.7 Design matrices
and univariate response
measurement scores for the
main effects of Factors A and
B in a two-way factorial
design with N D 24 subjects

Factor A Factor B

Matrix Score Matrix Score

1 1 0 1 0 1 1 1 1 0 1

1 1 0 1 0 4 1 1 1 0 4

1 1 0 1 0 0 1 1 1 0 0

1 1 0 1 0 7 1 1 1 0 7

1 0 1 0 1 13 1 �1 �1 0 15

1 0 1 0 1 5 1 �1 �1 0 6

1 0 1 0 1 7 1 �1 �1 0 10

1 0 1 0 1 15 1 �1 �1 0 13

1 �1 �1 �1 �1 9

1 �1 �1 �1 �1 16 1 1 0 1 13

1 �1 �1 �1 �1 18 1 1 0 1 5

1 �1 �1 �1 �1 13 1 1 0 1 7

1 1 0 1 15

1 1 0 �1 0 15 1 �1 0 �1 6

1 1 0 �1 0 6 1 �1 0 �1 18

1 1 0 �1 0 10 1 �1 0 �1 9

1 1 0 �1 0 13 1 �1 0 �1 15

1 0 1 0 �1 6

1 0 1 0 �1 18 1 1 �1 �1 9

1 0 1 0 �1 9 1 1 �1 �1 16

1 0 1 0 �1 15 1 1 �1 �1 18

1 �1 �1 1 1 14 1 1 �1 �1 13

1 �1 �1 1 1 7 1 �1 1 1 14

1 �1 �1 1 1 6 1 �1 1 1 7

1 �1 �1 1 1 13 1 �1 1 1 6

1 �1 1 1 13

Analysis of Factor A
A design matrix of effect codes for analyzing Factor A is given on the left side of
Table 4.7, where the first column of 1 values provides for an intercept. The second
and third columns contain effect codes for Factor B, the fourth and fifth columns
contain effect codes for the A�B interaction, and the last column on the left side
of Table 4.7 contains the N D 24 univariate response measurement scores listed
according to the original random assignment of the subjects to the a D 2 levels of
Factor A with the first nA1 D 12 scores and the last nA2 D 12 scores associated with
treatment levels A1 and A2, respectively. The MRPP regression analysis examines
the N D 24 regression residuals for possible differences between the a D 2 treat-
ment levels of Factor A; consequently, no effect codes are provided for Factor A as
this information is implicit in the ordering of the a D 2 treatment levels of Factor A
in the last column on the left side of Table 4.7.
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An exact permutation solution is feasible for the univariate response measure-
ment scores listed on the left side of Table 4.7 since there are only

M D NŠ
aY

iD1

nAiŠ

D 24Š

.12Š/2
D 2;704;156

possible, equally-likely arrangements of the N D 24 response measurement scores
for Factor A.

LAD Regression Analysis
An MRPP analysis of the LAD regression residuals calculated on the N D 24 uni-
variate response measurement scores on the left side of Table 4.7 yields estimated
LAD regression coefficients of

Q̌
0 D C9:6667 ; Q̌

1 D �1:1667 ; Q̌
2 D C0:8333 ; Q̌

3 D �4:50 ; and

Q̌
4 D C1:50

for Factor A. Figure 4.22 lists the observed yi values, LAD predicted Qyi values, and
residual ei values for i D 1; : : : ; 24.

Fig. 4.22 Observed,
predicted, and residual LAD
regression values for the
univariate response
measurement scores listed on
the left side of Table 4.7

Object y i ỹ i ei

1 1 4.00 −3.00

2 4 4.00 0.00

3 0 4.00 −4.00

4 7 4.00 +3.00

5 13 12.00 +1.00

6 5 12.00 −7.00

7 7 12.00 −5.00

8 15 12.00 +3.00

9 9 13.00 −4.00

10 16 13.00 +3.00

11 18 13.00 +5.00

12 13 13.00 0.00

13 15 13.00 +2.00

14 6 13.00 −7.00

15 10 13.00 −3.00

16 13 13.00 0.00

17 6 9.00 −3.00

18 18 9.00 +9.00

19 9 9.00 0.00

20 15 9.00 +6.00

21 14 7.00 +7.00

22 7 7.00 0.00

23 6 7.00 −1.00

24 13 7.00 +6.00
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Following Eq. (4.5) on p. 125 and employing ordinary Euclidean distance
between residuals with v D 1, the N D 24 LAD regression residuals listed in
Fig. 4.22 yield a D 2 average distance-function values of

�A1 D 4:5455 and �A2 D 5:6061 :

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the LAD regression residuals listed in Fig. 4.22 with v D 1 and
treatment-group weights

Ci D nAi

N
; i D 1; 2 ;

is

ıA D
aX

iD1

Ci�i D 12

24

�
4:5455 C 5:6061

� D 5:0758 :

If all arrangements of the N D 24 observed LAD regression residuals listed in
Fig. 4.22 occur with equal chance, the exact probability value of ıA D 5:0758 com-
puted on the M D 2;704;156 possible arrangements of the observed LAD regression
residuals with nA1 D nA2 D 12 residuals preserved for each arrangement is

P
�
ı � ıAjH0

� D number of ı values � ıA

M
D 1;039;084

2;704;156
D 0:3843 :

Following Eq. (4.7) on p. 126, the exact expected value of the M D 2;704;156 ı

values is �ı D 5:0725 and, following Eq. (4.6) on p. 126, the observed chance-
corrected measure of effect size for the yi and Qyi values, i D 1; : : : ; N, is

<A D 1 � ıA

�ı

D 1 � 5:0758

5:0725
D �0:6494�10�3 ;

indicating slightly less than chance agreement between the observed and predicted
y values.

OLS Regression Analysis
For comparison, consider an MRPP analysis of OLS regression residuals calculated
on the N D 24 univariate response measurement scores for Factor A on the left
side of Table 4.7. The MRPP regression analysis yields estimated OLS regression
coefficients of

Ǒ
0 D C10:00 ; Ǒ

1 D �3:00 ; Ǒ
2 D C1:00 ; Ǒ

3 D �3:00 ; and Ǒ
4 D 0:00
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Fig. 4.23 Observed,
predicted, and residual OLS
regression values for the
univariate response
measurement scores listed on
the left side of Table 4.7

Object yi y i ei

1 1 4.00 −3.00

2 4 4.00 0.00

3 0 4.00 −4.00

4 7 4.00 +3.00

5 13 11.00 +2.00

6 5 11.00 −6.00

7 7 11.00 −4.00

8 15 11.00 +4.00

9 9 15.00 −6.00

10 16 15.00 +1.00

11 18 15.00 +3.00

12 13 15.00 −2.00

13 15 10.00 +5.00

14 6 10.00 −4.00

15 10 10.00 0.00

16 13 10.00 +3.00

17 6 11.00 −5.00

18 18 11.00 +7.00

19 9 11.00 −2.00

20 15 11.00 +4.00

21 14 9.00 +5.00

22 7 9.00 −2.00

23 6 9.00 −3.00

24 13 9.00 +4.00

for Factor A. Figure 4.23 lists the observed yi values, OLS predicted Oyi values, and
residual ei values for i D 1; : : : ; 24.

Following Eq. (4.5) on p. 125 and employing squared Euclidean distance
between residuals with v D 2, the N D 24 OLS regression residuals listed in
Fig. 4.23 yield a D 2 average distance-function values of

�A1 D 26:1818 and �A2 D 33:8182 :

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the OLS regression residuals listed in Fig. 4.23 with v D 2 and
treatment-group weights

Ci D nAi � 1

N � a
; i D 1; 2 ;

is

ıA D
aX

iD1

Ci�i D 12 � 1

24 � 2

�
26:1818 C 33:8182

� D 30:00 :
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If all arrangements of the N D 24 observed OLS regression residuals listed in
Fig. 4.23 occur with equal chance, the exact probability value of ıA D 30:00 com-
puted on the M D 2;704;156 possible arrangements of the observed OLS regression
residuals with nA1 D nA2 D 12 residuals preserved for each arrangement is

P
�
ı � ıAjH0

� D number of ı values � ıA

M
D 637;454

2;704;156
D 0:2357 :

For comparison, the exact probability value based on LAD regression, v D 1, M D
2;704;156, and Ci D nAi=N for i D 1; 2 is P D 0:3843.

Following Eq. (4.7) on p. 126, the exact expected value of the M D 2;704;156

ı values is �ı D 30:7826 and, following Eq. (4.6) on p. 126, the observed chance-
corrected measure of effect size for the yi and Oyi values, i D 1; : : : ; N, is

<A D 1 � ıA

�ı

D 1 � 30:00

30:7826
D C0:0254 ;

indicating approximately 3 % agreement between the observed and predicted y val-
ues above that expected by chance.

Conventional ANOVA Analysis
A conventional fixed-effects factorial analysis of variance calculated on the N D 24

Factor A response measurement scores listed in Fig. 4.21 on p. 156 yields an
observed F-ratio of FA D 1:3091. Assuming independence, normality, and homo-
geneity of variance, FA is approximately distributed as Snedecor’s F under the
null hypothesis with �1 D a � 1 D 2 � 1 D 1 and �2 D N � ab D 24 � .2/.3/ D
18 degrees of freedom. Under the null hypothesis, the observed value of FA D
1:3091 yields an approximate probability value of P D 0:2675, which is similar
to the OLS regression probability value of P D 0:2357.

Analysis of Factor B
The right side of Table 4.7 on p. 157 contains a design matrix of effect codes for
analyzing Factor B, where the first column of 1 values provides for an intercept.
The second column contains effect codes for Factor A, the third and fourth columns
contain effect codes for the A�B interaction, and the last column on the right side
of Table 4.7 contains the N D 24 univariate response measurement scores listed
according to the original random assignment of the subjects to the b D 3 levels of
Factor B with the first nB1 D 8 scores, the next nB2 D 8 scores, and the last nB3 D 8

scores associated with treatment levels, B1, B2, and B3, respectively. The MRPP
regression analysis examines the N D 24 regression residuals for possible differ-
ences among the b D 3 treatment levels of Factor B; consequently, no effect codes
are provided for Factor B as this information is implicit in the ordering of the b D 3

treatment levels of Factor B in the last column on the right side of Table 4.7.
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Because there are

M D NŠ

bY

iD1

nBiŠ

D 24Š

.8Š/3
D 9;465;511;770

possible, equally-likely arrangements of the N D 24 response measurement scores
for Factor B listed on the right side of Table 4.7, an exact permutation approach is
not practical.

LAD Regression Analysis
An MRPP resampling analysis of the N D 24 LAD regression residuals calculated
on the univariate response measurement scores on the right side of Table 4.7 on
p. 157 yields estimated LAD regression coefficients of

Q̌
0 D C9:50 ; Q̌

1 D C0:1667 ; Q̌
2 D �3:6667 ; and Q̌

3 D C0:3333

for Factor B. Figure 4.24 lists the observed yi values, LAD predicted Qyi values, and
residual ei values for i D 1; : : : ; 24.

Fig. 4.24 Observed,
predicted, and residual LAD
regression values for the
univariate response
measurement scores listed on
the right side of Table 4.7

Object yi y i ei

1 1 6.00 − 5.00

2 4 6.00 − 2.00

3 0 6.00 − 6.00

4 7 6.00 +1.00

5 15 13.00 +2.00

6 6 13.00 −7.00

7 10 13.00 −3.00

8 13 13.00 0.00

9 13 10.00 +3.00

10 5 10.00 −5.00

11 7 10.00 −3.00

12 15 10.00 +5.00

13 6 9.00 −3.00

14 18 9.00 +9.00

15 9 9.00 0.00

16 15 9.00 +6.00

17 9 13.00 −4.00

18 16 13.00 +3.00

19 18 13.00 +5.00

20 13 13.00 0.00

21 14 6.00 +8.00

22 7 6.00 +1.00

23 6 6.00 0.00

24 13 6.00 +7.00
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Following Eq. (4.5) on p. 125 and employing ordinary Euclidean distance
between residuals with v D 1, the N D 24 LAD regression residuals listed in
Fig. 4.24 yield b D 3 average distance-function values of

�B1 D 4:0714 ; �B2 D 6:0714 ; and �B3 D 4:8571 :

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the LAD regression residuals listed in Fig. 4.24 with v D 1 and
treatment-group weights

Ci D nBi

N
; i D 1; 2; 3 ;

is

ıB D
bX

iD1

Ci�i D 12

24

�
4:0714 C 6:0714 C 4:8571

� D 5:00 :

If all M possible arrangements of the N D 24 observed LAD regression residuals
listed in Fig. 4.24 occur with equal chance, the approximate resampling probabil-
ity value of ıB D 5:00 computed on L D 1;000;000 random arrangements of the
observed LAD regression residuals with nB1 D nB2 D nB3 D 8 residuals preserved
for each arrangement is

P
�
ı � ıBjH0

� D number of ı values � ıB

L
D 125;031

1;000;000
D 0:1250 :

Following Eq. (4.7) on p. 126, the exact expected value of the M ı values is �ı D
5:3333 and, following Eq. (4.6) on p. 126, the observed chance-corrected measure
of effect size for the yi and Qyi values, i D 1; : : : ; N, is

<B D 1 � ıB

�ı

D 1 � 5:00

5:3333
D C0:0625 ;

indicating approximately 6 % agreement between the observed and predicted y val-
ues above that expected by chance.

OLS Regression Analysis
For comparison, consider an MRPP analysis of OLS regression residuals calculated
on the N D 24 univariate response measurement scores for Factor B listed on the
right side of Table 4.7 on p. 157. The MRPP regression analysis yields estimated
OLS regression coefficients of

Ǒ
0 D C10:00 ; Ǒ

1 D �1:00 ; Ǒ
2 D �3:00 ; and Ǒ

3 D 0:00
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Fig. 4.25 Observed,
predicted, and residual OLS
regression values for the
univariate response
measurement scores listed on
the right side of Table 4.7

Object yi y i ei

1 1 6.00 −5.00

2 4 6.00 −2.00

3 0 6.00 −6.00

4 7 6.00 +1.00

5 15 14.00 +1.00

6 6 14.00 −8.00

7 10 14.00 −4.00

8 13 14.00 −1.00

9 13 9.00 +4.00

10 5 9.00 −4.00

11 7 9.00 −2.00

12 15 9.00 +6.00

13 6 11.00 −5.00

14 18 11.00 +7.00

15 9 11.00 −2.00

16 15 11.00 +4.00

17 9 12.00 −3.00

18 16 12.00 +4.00

19 18 12.00 +6.00

20 13 12.00 +1.00

21 14 8.00 +6.00

22 7 8.00 −1.00

23 6 8.00 −2.00

24 13 8.00 +5.00

for Factor B. Figure 4.25 lists the observed yi values, OLS predicted Oyi values, and
residual ei values for i D 1; : : : ; 24.

Following Eq. (4.5) on p. 125 and employing squared Euclidean distance
between residuals with v D 2, the N D 24 OLS regression residuals listed in
Fig. 4.25 yield b D 3 average distance-function values of

�B1 D 21:7143 ; �B2 D 45:1429 ; and �B3 D 27:4286 :

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the OLS regression residuals listed in Fig. 4.25 with v D 2 and
treatment-group weights

Ci D nBi � 1

N � b
; i D 1; 2; 3 ;

is

ıB D
bX

iD1

Ci�i D 8 � 1

24 � 3

�
21:7143 C 45:1429 C 27:4286

� D 31:4286 :



4.3 LAD Regression and Analysis of Variance Designs 165

If all M possible arrangements of the N D 24 observed OLS regression residuals
listed in Fig. 4.25 occur with equal chance, the approximate resampling probability
value of ıB D 31:4286 computed on L D 1;000;000 random arrangements of the
observed OLS regression residuals with nB1 D nB2 D nB3 D 8 residuals preserved
for each arrangement is

P
�
ı � ıBjH0

� D number of ı values � ıB

L
D 49;168

1;000;000
D 0:0492 :

For comparison, the approximate resampling probability value based on LAD
regression, v D 1, L D 1;000;000, and Ci D nBi=N for i D 1; 2; 3 is P D 0:1250:

Following Eq. (4.7) on p. 126, the exact expected value of the M D
9;465;511;770 ı values is �ı D 38:4348 and, following Eq. (4.6) on p. 126,
the observed chance-corrected measure of effect size for the yi and Oyi values,
i D 1; : : : ; N, is

<B D 1 � ıB

�ı

D 1 � 31:4286

38:4348
D C0:1823 ;

indicating approximately 18 % agreement between the observed and predicted y
values above that expected by chance.

Conventional ANOVA Analysis
A conventional fixed-effects factorial analysis of variance calculated on the N D 24

Factor B response measurement scores listed in Fig. 4.21 on p. 156 yields an
observed F-ratio of FB D 3:0545. Assuming independence, normality, and homo-
geneity of variance, FB is approximately distributed as Snedecor’s F under the
null hypothesis with �1 D b � 1 D 3 � 1 D 2 and �2 D N � ab D 24 � .2/.3/ D
18 degrees of freedom. Under the null hypothesis, the observed value of FB D
3:0545 yields an approximate probability value of P D 0:0721.

Analysis of the A�B Interaction
A design matrix of effect codes for analyzing the A�B interaction of the data listed in
Fig. 4.21 on p. 156 is given in Fig. 4.26, where the first column of 1 values provides
for an intercept, the second column contains effect codes for Factor A, the third and
fourth columns contain effect codes for Factor B, and the last column lists the N D
24 univariate response measurement scores listed according to the original random
assignment of the subjects to the ab D .2/.3/ D 6 levels of the A�B interaction. The
MRPP regression analysis examines the N D 24 regression residuals for possible
differences among the six treatment levels of the A�B interaction; consequently, no
effect codes are provided for the A�B interaction as this information is implicit in
the ordering of the treatment levels of the A�B interaction in the last column of
Fig. 4.26.
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Fig. 4.26 Design matrix and
univariate response
measurement scores for the
A�B interaction in a 2�3

factorial design with N D 24

subjects

Matrix Score

1 1 1 0 1

1 1 1 0 4

1 1 1 0 0

1 1 1 0 7

1 − 1 1 0 15

1 − 1 1 0 6

1 − 1 1 0 10

1 − 1 1 0 13

1 1 0 1 13

1 1 0 1 5

1 1 0 1 7

1 1 0 1 15

1 − 1 0 1 6

1 − 1 0 1 18

1 − 1 0 1 9

1 − 1 0 1 15

1 1 − 1 − 1 9

1 1 − 1 − 1 16

1 1 − 1 − 1 18

1 1 − 1 − 1 13

1 − 1 − 1 − 1 14

1 − 1 − 1 − 1 7

1 − 1 − 1 − 1 6

1 − 1 − 1 − 1 13

Because there are

M D NŠ

abY

iD1

n.A�B/iŠ

D 24Š

.4Š/6
D 118;569;536;025;665;614;982;267;535;360;000

possible, equally-likely arrangements of the N D 24 univariate response measure-
ment scores for the A�B interaction listed in Fig. 4.26, an exact permutation
approach is clearly not possible.

LAD Regression Analysis
An MRPP resampling analysis of the LAD regression residuals calculated on the
univariate response measurement scores in Fig. 4.26 yields estimated LAD regres-
sion coefficients of

Q̌
0 D C8:3333 ; Q̌

1 D �1:00 ; Q̌
2 D �3:3333 ; and Q̌

3 D �0:3333

for the interaction of Factors A and B. Figure 4.27 lists the observed yi values, LAD
predicted Qyi values, and residual ei values for i D 1; : : : ; 24.
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Fig. 4.27 Observed,
predicted, and residual LAD
regression values for the
univariate response
measurement scores listed in
Fig. 4.26

Object yi ỹ i ei

1 1 4.00 −3.00

2 4 4.00 0.00

3 0 4.00 −4.00

4 7 4.00 +3.00

5 15 6.00 +9.00

6 6 6.00 0.00

7 10 6.00 +4.00

8 13 6.00 +7.00

9 13 7.00 +6.00

10 5 7.00 −2.00

11 7 7.00 0.00

12 15 7.00 +8.00

13 6 9.00 −3.00

14 18 9.00 +9.00

15 9 9.00 0.00

16 15 9.00 +6.00

17 9 11.00 −2.00

18 16 11.00 +5.00

19 18 11.00 +7.00

20 13 11.00 +2.00

21 14 13.00 +1.00

22 7 13.00 −6.00

23 6 13.00 −7.00

24 13 13.00 0.00

Following Eq. (4.5) on p. 125 and employing ordinary Euclidean distance
between residuals with v D 1, the N D 24 LAD regression residuals listed in
Fig. 4.27 yield ab D .2/.3/ D 6 average distance-function values of

�.A�B/1 D 4:00 ; �.A�B/2 D 5:00 ; �.A�B/3 D 6:00 ; �.A�B/4 D 7:00 ;

and �.A�B/5 D �.A�B/6 D 5:00 :

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the LAD regression residuals listed in Fig. 4.27 with v D 1 and
treatment-group weights

Ci D n.A�B/i

N
; i D 1; : : : ; 6 ;

is

ıA�B D
abX

iD1

Ci�i D 4

24

�
4:00 C 5:00 C 6:00 C 7:00 C 5:00 C 5:00

� D 5:3333 :
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If all M possible arrangements of the N D 24 observed LAD regression residuals
listed in Fig. 4.27 occur with equal chance, the approximate resampling probability
value of ıA�B D 5:3333 computed on L D 1;000;000 random arrangements of the
observed LAD regression residuals with n.A�B/1 D � � � D n.A�B/6 D 4 residuals pre-
served for each arrangement is

P
�
ı � ıA�BjH0

� D number of ı values � ıA�B

L
D 347;675

1;000;000
D 0:3477 :

Following Eq. (4.7) on p. 126, the exact expected value of the M ı values is �ı D
5:50 and, following Eq. (4.6) on p. 126, the observed chance-corrected measure of
effect size for the yi and Qyi values, i D 1; : : : ; N, is

<A�B D 1 � ıA�B

�ı

D 1 � 5:3333

5:50
D C0:0303 ;

indicating approximately 3 % agreement between the observed and predicted y val-
ues above that expected by chance.

OLS Regression Analysis
For comparison, consider an MRPP analysis of OLS regression residuals calculated
on the N D 24 univariate response measurement scores of the A�B interaction listed
in Fig. 4.26. The MRPP regression analysis yields estimated OLS regression coeffi-
cients of

Ǒ
0 D C10:00 ; Ǒ

1 D �1:00 ; Ǒ
2 D �3:00 ; and Ǒ

3 D C1:00

for the interaction of Factors A and B. Figure 4.28 lists the observed yi values, OLS
predicted Oyi values, and residual ei values for i D 1; : : : ; 24.

Following Eq. (4.5) on p. 125 and employing squared Euclidean distance
between residuals with v D 2, the N D 24 OLS regression residuals listed in
Fig. 4.28 yield ab D .2/.3/ D 6 average distance-function values of

�.A�B/1 D 20:00 ; �.A�B/2 D 30:6667 ; �.A�B/3 D 45:3333 ;

�.A�B/4 D 60:00 ; �.A�B/5 D 30:6667 ; and �.A�B/6 D 33:3333 :

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the OLS regression residuals listed in Fig. 4.28 with v D 2 and
treatment-group weights

Ci D n.A�B/i � 1

N � ab
; i D 1; : : : ; 6 ;
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Fig. 4.28 Observed,
predicted, and residual OLS
regression values for the
univariate response
measurement scores listed in
Fig. 4.26

Object yi y i ei

1 1 6.00 −5.00

2 4 6.00 −2.00

3 0 6.00 −6.00

4 7 6.00 +1.00

5 15 8.00 +7.00

6 6 8.00 −2.00

7 10 8.00 +2.00

8 13 8.00 +5.00

9 13 10.00 +3.00

10 5 10.00 −5.00

11 7 10.00 −3.00

12 15 10.00 +5.00

13 6 12.00 −6.00

14 18 12.00 +6.00

15 9 12.00 −3.00

16 15 12.00 +3.00

17 9 11.00 −2.00

18 16 11.00 +5.00

19 18 11.00 +7.00

20 13 11.00 +2.00

21 14 13.00 +1.00

22 7 13.00 −6.00

23 6 13.00 −7.00

24 13 13.00 0.00

is

ıA�B D
abX

iD1

Ci�i D 4 � 1

24 � 6

�
20:00 C 30:6667 C 45:3333 C 60:00

C 30:6667 C 33:3333
� D 36:6667 :

If all M possible arrangements of the observed OLS regression residuals listed in
Fig. 4.28 occur with equal chance, the approximate resampling probability value of
ıA�B D 36:6666 computed on L D 1;000;000 random arrangements of the observed
OLS regression residuals with n.A�B/1 D � � � D n.A�B/6 D 4 residuals preserved for
each arrangement is

P
�
ı � ıA�BjH0

� D number of ı values � ıA�B

L
D 224;204

1;000;000
D 0:2242 :

For comparison, the approximate resampling probability value based on LAD
regression, v D 1, L D 1;000;000, and Ci D n.A�B/i=N for i D 1; : : : ; 6 is
P D 0:3477.
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Following Eq. (4.7) on p. 126, the exact expected value of the M ı values is
�ı D 41:2174 and, following Eq. (4.6) on p. 126, the observed chance-corrected
measure of effect size for the yi and Oyi values, i D 1; : : : ; N, is

<A�B D 1 � ıA�B

�ı

D 1 � 36:6667

41:2174
D C0:1104 ;

indicating approximately 11 % agreement between the observed and predicted y
values above that expected by chance.

Conventional ANOVA Analysis
A conventional fixed-effects factorial analysis of variance calculated on the N D
24 univariate response measurement scores listed in Fig. 4.21 on p. 156 yields
an observed F-ratio of FA�B D 3:9273. Assuming independence, normality, and
homogeneity of variance, FA�B is approximately distributed as Snedecor’s F
under the null hypothesis with �1 D .a � 1/.b � 1/ D .2 � 1/.3 � 1/ D 2 and �2 D
ab.n � 1/ D .2/.3/.4 � 1/ D 18 degrees of freedom. Under the null hypothesis,
the observed value of FA�B D 3:9273 yields an approximate probability value of
P D 0:0384, which differs greatly from the LAD and OLS regression probability
values of P D 0:3477 and P D 0:2242, respectively.

4.3.6 Latin Square Design

A Latin square experimental design assigns treatments to subjects so the treatments
occur in a balanced fashion within a square block or field; thus, n treatments appear
once in each of n rows and n columns. The Latin square is the design of choice when
controlling for two blocking factors. Consider an ordinary balanced Latin square
experiment involving repeated measurements in which n D 4 subjects (S ) are each
tested b D 4 times on Factor A. The design and data are adapted from Ferguson
[115, p. 349] and are given in Table 4.8, where B refers to the ordinal position in
which the levels of Factor A are administered. Thus, the first subject, S1, receives the
b D 4 treatments in the order A2, A4, A1, A3, and so on. Due to the balanced nature of
Latin square designs, the assumption is that there is no interaction between blocking
Factors A and B, or between either blocking factor and the treatments.

Table 4.8 Design and data
for a Latin square design with
four subjects (S), four
treatments (A), and four
orders (B)

Design Scores
Subject B1 B2 B3 B4 Subject B1 B2 B3 B4

S1 A2 A4 A1 A3 S1 10 21 5 14

S2 A3 A1 A2 A4 S2 12 7 11 19

S3 A1 A3 A4 A2 S3 6 16 24 12

S4 A4 A2 A3 A1 S4 22 8 17 9
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Fig. 4.29 Design matrix and
univariate response
measurement scores for
treatment (A) in a Latin
square design

ScoreMatrix

1 0 0 0 0 1 0 5

1 1 0 0 1 0 0 7

1 0 1 0 0 0 0 6

1 0 0 1 0 0 1 9

1 0 0 0 0 0 0 10

1 1 0 0 0 1 0 11

1 0 1 0 0 0 1 12

1 0 0 1 1 0 0 8

1 0 0 0 0 0 1 14

1 1 0 0 0 0 0 12

1 0 1 0 1 0 0 16

1 0 0 1 0 1 0 17

1 0 0 0 1 0 0 21

1 1 0 0 0 0 1 19

1 0 1 0 0 1 0 24

1 0 0 1 0 0 0 22

Analysis of Factor A
A design matrix of dummy codes for analyzing Factor A is given in Fig. 4.29, where
the first column of 1 values provides for an intercept, the second through fourth
columns contain dummy codes for Subjects, the fifth through seventh columns con-
tain dummy codes for Factor B, and the last column lists the univariate response
measurement scores ordered by the a D 4 levels of Factor A, with the first nA1 D 4

scores, the next nA2 D 4 scores, the next nA3 D 4 scores, and the last nA4 D 4 scores
associated with treatment levels A1, A2, A3, and A4, respectively. The MRPP regres-
sion analysis examines the N D 16 regression residuals for possible differences
among the a D 4 treatment levels of Factor A; consequently, no dummy codes are
provided for Factor A as this information is implicit in the ordering of the a D 4

treatment levels of Factor A in the last column of Fig. 4.29.
Because there are

M D NŠ
aY

iD1

nAiŠ

D 16Š

.4Š/4
D 63;063;000

possible, equally-likely arrangements of the N D 16 univariate response measure-
ment scores listed in Fig. 4.29, an exact permutation approach is not practical.

LAD Regression Analysis
An MRPP resampling analysis of the N D 16 LAD regression residuals calculated
on the univariate response measurement scores listed in Fig. 4.29 yields estimated
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Fig. 4.30 Observed,
predicted, and residual LAD
regression values for the
univariate response
measurement scores listed in
Fig. 4.29

Object yi y i ei

1 5 22.00 −17.00

2 7 20.00 −13.00

3 6 8.00 −2.00

4 9 9.00 0.00

5 10 10.00 0.00

6 11 24.00 −13.00

7 12 12.00 0.00

8 8 13.00 −5.00

9 14 14.00 0.00

10 12 12.00 0.00

11 16 16.00 0.00

12 17 17.00 0.00

13 21 18.00 +3.00

14 19 16.00 +3.00

15 24 20.00 +4.00

16 22 5.00 +17.00

LAD regression coefficients of

Q̌
0 D C10:00 ; Q̌

1 D C2:00 ; Q̌
2 D �2:00 ; Q̌

3 D �5:00 ;

Q̌
4 D C8:00 ; Q̌

5 D C12:00 ; and Q̌
6 D C4:00

for Factor A. Figure 4.30 lists the observed yi values, LAD predicted Qyi values, and
residual ei values for i D 1; : : : ; 16.

Following (4.5) on p. 125 and employing ordinary Euclidean distance between
residuals with v D 1, the N D 16 LAD regression residuals listed in Fig. 4.30 yield
a D 4 average distance-function values of

�A1 D 10:3333 ; �A2 D 7:3333 ; �A3 D 0:00 ; and �A4 D 7:1667 :

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the LAD regression residuals listed in Fig. 4.30 with v D 1 and
treatment-group weights

Ci D nAi

N
; i D 1; : : : ; 4 ;

is

ıA D
aX

iD1

Ci�i D 4

16

�
10:3333 C 7:3333 C 0:00 C 7:1667

� D 6:2083 :
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If all M possible arrangements of the N D 16 observed LAD regression residuals
listed in Fig. 4.30 occur with equal chance, the approximate resampling probabil-
ity value of ıA D 6:2083 computed on L D 1;000;000 random arrangements of the
observed LAD regression residuals with nA1 D � � � D nA4 D 4 residuals preserved
for each arrangement is

P
�
ı � ıAjH0

� D number of ı values � ıA

L
D 27;289

1;000;000
D 0:0273 :

Following Eq. (4.7) on p. 126, the exact expected value of the M D 63;063;000

ı values is �ı D 8:2750 and, following Eq. (4.6) on p. 126, the observed chance-
corrected measure of effect size for the yi and Qyi values, i D 1; : : : ; N, is

<A D 1 � ıA

�ı

D 1 � 6:2083

8:2750
D C0:2497 ;

indicating approximately 25 % agreement between the observed and predicted y
values above that expected by chance.

OLS Regression Analysis
For comparison, consider an MRPP resampling analysis of the OLS regression
residuals calculated on the N D 16 univariate response measurement scores listed in
Fig. 4.29 on p. 171. The MRPP regression analysis yields estimated OLS regression
coefficients of

Ǒ
0 D C11:6875 ; Ǒ

1 D �0:2500 ; Ǒ
2 D C2:00 ; Ǒ

3 D C1:50 ;

Ǒ
4 D C0:50 ; Ǒ

5 D C1:7500 ; and Ǒ
6 D C1:00

for Factor A. Figure 4.31 lists the observed yi values, OLS predicted Oyi values, and
residual ei values for i D 1; : : : ; 16.

Following Eq. (4.5) on p. 125 and employing squared Euclidean distance
between residuals with v D 2, the N D 16 OLS regression residuals listed in
Fig. 4.31 yield a D 4 average distance-function values of

�A1 D 6:2083 ; �A2 D 6:4583 ; �A3 D 0:8750 ; and �A4 D 2:3750 :

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the OLS regression residuals listed in Fig. 4.31 with v D 2 and
treatment-group weights

Ci D nAi � 1

N � a
; i D 1; : : : ; 4 ;
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Fig. 4.31 Observed,
predicted, and residual LAD
regression values for the
univariate response
measurement scores listed in
Fig. 4.29

Object yi y i ei

1 5 13.4375 −8.4375

2 7 11.9375 −4.9375

3 6 13.6875 −7.6875

4 9 14.1875 −5.1875

5 10 11.6875 −1.6875

6 11 13.1875 −2.1875

7 12 14.6875 −2.6875

8 8 13.6875 −5.6875

9 14 12.6875 +1.3125

10 12 11.4375 +0.5625

11 16 14.1875 +1.8125

12 17 14.9375 +2.0625

13 21 12.1875 +8.8125

14 19 12.4375 +6.5625

15 24 15.4375 +8.5625

16 22 13.1875 +8.8125

is

ıA D
aX

iD1

Ci�i D 4 � 1

16 � 4

�
6:2083 C 6:4583 C 0:8750 C 2:3750

� D 3:9792 :

If all M possible arrangements of the N D 16 observed OLS regression residuals
listed in Fig. 4.31 occur with equal chance, the approximate resampling probabil-
ity value of ıA D 3:9792 computed on L D 1;000;000 random arrangements of the
observed OLS regression residuals with nA1 D � � � D nA4 D 4 residuals preserved
for each arrangement is

P
�
ı � ıAjH0

� D number of ı values � ıA

L
D 1

1;000;000
D 0:10�10�5 :

For comparison, the approximate resampling probability value based on LAD
regression, v D 1, L D 1;000;000, and Ci D nAi=N for i D 1; : : : ; 4 is P D 0:0273.

Following Eq. (4.7) on p. 126, the exact expected value of the M D 63;063;000

ı values is �ı D 68:0083 and, following Eq. (4.6) on p. 126, the observed chance-
corrected measure of effect size for the yi and Oyi values, i D 1; : : : ; N, is

<A D 1 � ıA

�ı

D 1 � 3:9792

68:0083
D C0:9415 ;

indicating approximately 95 % agreement between the observed and predicted y
values above that expected by chance.
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Conventional ANOVA Analysis
A conventional Latin square analysis of variance calculated on the N D 16 univari-
ate response measurement scores listed in Table 4.8 on p. 170 yields an observed
F-ratio of FA D 40:7277. Assuming independence and normality, FA is approxi-
mately distributed as Snedecor’s F under the null hypothesis with �1 D a � 1 D 4 �
1 D 3 and �2 D .a � 2/.a � 1/ D .4 � 2/.4 � 1/ D 6 degrees of freedom. Under
the null hypothesis, the observed value of FA D 40:7277 yields an approximate
probability value of P D 0:2204�10�3.

Analysis of Factor B
A design matrix of dummy codes for analyzing Factor B is given in Fig. 4.32, where
the first column of 1 values provides for an intercept, the second through fourth
columns contain dummy codes for Subjects, the fifth through seventh columns con-
tain dummy codes for Factor A, and the last column lists the univariate response
measurement scores ordered by the b D 4 treatment levels of Factor B, with the
first nB1 D 4 scores, the next nB2 D 4 scores, the next nB3 D 4 scores, and the
last nB4 D 4 associated with treatment levels B1, B2, B3, and B4, respectively. The
MRPP regression analysis examines LAD regression residuals for possible differ-
ences among the b D 4 treatment levels of Factor B; consequently, no dummy codes
are provided for Factor B as this information is implicit in the ordering of the b D 4

treatment levels of Factor B in the last column of Fig. 4.32.
Because there are

M D NŠ

bY

iD1

nBiŠ

D 16Š

.4Š/4
D 63;063;000

Fig. 4.32 Design matrix and
univariate response
measurement scores for order
(B) in a Latin square design

ScoreMatrix

1 0 0 0 1 0 0 10

1 1 0 0 0 1 0 12

1 0 1 0 0 0 0 6

1 0 0 1 0 0 1 22

1 0 0 0 0 0 1 21

1 1 0 0 0 0 0 7

1 0 1 0 0 1 0 16

1 0 0 1 1 0 0 8

1 0 0 0 0 0 0 5

1 1 0 0 1 0 0 11

1 0 1 0 0 0 1 24

1 0 0 1 0 1 0 17

1 0 0 0 0 1 0 14

1 1 0 0 0 0 1 19

1 0 1 0 1 0 0 12

1 0 0 1 0 0 0 9
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possible, equally-likely arrangements of the N D 16 univariate response measure-
ment scores listed in Fig. 4.32, an exact permutation approach is not practical.

LAD Regression Analysis
An MRPP resampling analysis of the N D 16 LAD regression residuals calculated
on the univariate response measurement scores in Fig. 4.32 yields estimated LAD
regression coefficients of

Q̌
0 D C21:00 ; Q̌

1 D �2:00 ; Q̌
2 D C2:00 ; Q̌

3 D C1:00 ;

Q̌
4 D �13:00 ; Q̌

5 D �11:00 ; and Q̌
6 D �7:00

for Factor B. Figure 4.33 lists the observed yi values, LAD predicted Qyi values, and
residual ei values for i D 1; : : : ; 16.

Following Eq. (4.5) on p. 125 and employing ordinary Euclidean distance
between residuals with v D 1, the N D 16 LAD regression residuals listed in
Fig. 4.33 yield b D 4 average distance-function values of

�B1 D 2:00 ; �B2 D 2:00 ; �B3 D 3:1667 ; and �B4 D 0:00 :

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the LAD regression residuals listed in Fig. 4.33 with v D 1 and
treatment-group weights

Ci D nBi

N
; i D 1; : : : ; 4 ;

Fig. 4.33 Observed,
predicted, and residual LAD
regression values for the
univariate response
measurement scores listed in
Fig. 4.32

Object yi y i ei

1 10 10.00 0.00

2 12 12.00 0.00

3 6 10.00 −4.00

4 22 22.00 0.00

5 21 21.00 0.00

6 7 6.00 +1.00

7 16 16.00 0.00

8 8 11.00 −3.00

9 5 8.00 −3.00

10 11 8.00 +3.00

11 24 23.00 +1.00

12 17 15.00 +2.00

13 14 14.00 0.00

14 19 19.00 0.00

15 12 12.00 0.00

16 9 9.00 0.00
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is

ıB D
bX

iD1

Ci�i D 4

16

�
2:00 C 2:00 C 3:1667 C 0:00

� D 1:7917 :

If all M possible arrangements of the N D 16 observed LAD regression residuals
listed in Fig. 4.33 occur with equal chance, the approximate resampling probabil-
ity value of ıB D 1:7917 computed on L D 1;000;000 random arrangements of the
observed LAD regression residuals with nB1 D � � � D nB4 D 4 residuals preserved
for each arrangement is

P
�
ı � ıBjH0

� D number of ı values � ıB

L
D 495;269

1;000;000
D 0:4953 :

Following Eq. (4.7) on p. 126, the exact expected value of the M D 63;063;000

ı values is �ı D 1:8583 and, following Eq. (4.6) on p. 126, the observed chance-
corrected measure of effect size for the yi and Qyi values, i D 1; : : : ; N is

<B D 1 � ıB

�ı

D 1 � 1:7917

1:8583
D C0:0359 ;

indicating approximately 4 % agreement between the observed and predicted y val-
ues above that expected by chance.

OLS Regression Analysis
For comparison, consider an MRPP resampling analysis of the OLS regression
residuals calculated on the N D 16 univariate response measurement scores listed in
Fig. 4.29 on p. 171. The MRPP regression analysis yields estimated OLS regression
coefficients of

Ǒ
0 D C20:6875 ; Ǒ

1 D �0:2500 ; Ǒ
2 D C2:00 ; Ǒ

3 D C1:50 ;

Ǒ
4 D �14:7500 ; Ǒ

5 D �11:2500 ; and Ǒ
6 D �6:7500

for Factor B. Figure 4.34 lists the observed yi values, OLS predicted Oyi values, and
residual ei values for i D 1; : : : ; 16.

Following Eq. (4.5) on p. 125 and employing squared Euclidean distance
between residuals with v D 2, the N D 16 OLS regression residuals listed in
Fig. 4.34 yield b D 4 average distance-function values of

�B1 D 2:8750 ; �B2 D 6:7083 ; �B3 D 3:2083 ; and �B4 D 3:1250 :
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Fig. 4.34 Observed,
predicted, and residual OLS
regression values for the
univariate response
measurement scores listed in
Fig. 4.32

Object yi y i ei

1 10 9.4375 +0.5625

2 12 13.6875 −1.6875

3 6 7.9375 −1.9375

4 22 22.1875 −0.1875

5 21 20.6875 +0.3125

6 7 5.6875 +1.3125

7 16 15.9375 +0.0625

8 8 10.9375 −2.9375

9 5 5.9375 −0.9375

10 11 9.1875 +1.8125

11 24 22.6875 +1.3125

12 17 15.4375 +1.5625

13 14 13.9375 +0.0625

14 19 20.4375 −1.4375

15 12 11.4375 +0.5625

16 9 7.4375 +1.5625

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the OLS regression residuals listed in Fig. 4.34 with v D 2 and
treatment-group weights

Ci D nBi � 1

N � b
; i D 1; : : : ; 4 ;

is

ıB D
bX

iD1

Ci�i D 4 � 1

16 � 4

�
2:8750 C 6:7083 C 3:2083 C 3:1250

� D 3:9792 :

If all M possible arrangements of the N D 16 observed OLS regression residuals
listed in Fig. 4.34 occur with equal chance, the approximate resampling probabil-
ity value of ıB D 3:9792 computed on L D 1;000;000 random arrangements of the
observed OLS regression residuals with nB1 D nB2 D nB3 D nB4 D 4 residuals pre-
served for each arrangement is

P
�
ı � ıBjH0

� D number of ı values � ıB

L
D 378;875

1;000;000
D 0:3789 :

For comparison, the approximate resampling probability value based on LAD
regression, v D 1, L D 1;000;000, and Ci D nBi=N for i D 1; : : : ; 4 is P D 0:4953.
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Following Eq. (4.7) on p. 126, the exact expected value of the M D 63;063;000

ı values is �ı D 4:0750 and, following Eq. (4.6) on p. 126, the observed chance-
corrected measure of effect size for the yi and Oyi values, i D 1; : : : ; N, is

<B D 1 � ıB

�ı

D 1 � 1:7917

4:0750
D C0:0235 ;

indicating only approximately 2 % agreement between the observed and predicted y
values above that expected by chance.

Conventional ANOVA Analysis
A conventional Latin square analysis of variance calculated on the N D 16 univari-
ate response measurement scores listed in Table 4.8 on p. 170 yields an observed
F-ratio of FB D 0:5602. Assuming independence and normality, FB is approxi-
mately distributed as Snedecor’s F under the null hypothesis with �1 D b � 1 D 4 �
1 D 3 and �2 D .b � 2/.b � 1/ D .4 � 2/.4 � 1/ D 6 degrees of freedom. Under
the null hypothesis, the observed value of FB D 0:5602 yields an approximate prob-
ability value of P D 0:6606. The LAD regression, OLS regression, and F-ratio
probability values of P D 0:4953, P D 0:3789, and P D 0:6606, respectively, all
indicate that the order in which the treatments were distributed did not matter.

4.3.7 Split-Plot Design

Imagine a testing experiment with two treatment factors, A and B, with a and b
treatment levels, respectively, so that there are ab treatment combinations. If each
testing session requires h hours of a subject’s time and every subject is to be treated
under all treatment conditions, each subject will require ab testing sessions and abh
hours of testing time. When this is unreasonable, then with S subjects available,
assign n D S=A subjects to each level of Factor A and test each subject under all
levels of Factor B. The design is a repeated-measures split-plot design in which
subjects are randomly assigned to the a treatment levels of Factor A (i.e., plots), and
each subject is then tested under all b levels of Factor B (i.e., subplots). The design
is also called a mixed factorial design with one between-subjects factor (A) and one
within-subjects factor (B), or an A�.B�S/ design [214].

Consider a split-plot experiment in which Factor A has a D 3 treatment levels,
Factor B has b D 3 treatment levels, n D 12 subjects are randomly assigned to each
of the a D 3 levels of Factor A, and each subject is tested at all b D 3 levels of
Factor B. The design and data are adapted from Keppel and Zedeck and are given in
Fig. 4.35 [215, p. 303].

Analysis of Factor A
A design matrix of effect codes for an MRPP regression analysis of Factor A is
given in Fig. 4.36, where the first column of 1 values provides for an intercept and
the second column lists the total of response measurement summations over the b
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Fig. 4.35 Example
univariate response
measurements for a split-plot
design

Factor B
Factor A Subject B1 B2 B3

A1 S1 53 51 35

S2 49 34 18

S3 47 44 32

S4 42 48 27

A2 S5 47 42 16

S6 42 33 10

S7 39 13 11

S8 37 16 6

A3 S9 45 35 29

S10 41 33 21

S11 38 46 30

S12 36 40 20

Fig. 4.36 Design matrix and
response measurement
summations for the main
effects of Factor A in a
split-plot design

Matrix Sum over B

1 139

1 101

1 123

1 117

1 105

1 85

1 63

1 59

1 109

1 95

1 114

1 96

levels of Factor B (e.g., 53 C 51 C 35 D 139). The summations are ordered by the
a D 3 treatment levels of Factor A with the first nA1 D 4 summations, the second
nA2 D 4 summations, and the last nA3 D 4 summations associated with treatment
levels A1, A2, and A3, respectively. The MRPP regression analysis examines the
N D 12 regression residuals for possible differences among the a D 3 treatment
levels of Factor A; consequently, no effect codes are provided for Factor A as this
information is implicit in the ordering of the a D 3 treatment levels of Factor A in
the second column of Fig. 4.36.

An exact permutation solution is feasible for the response measurement summa-
tions listed in Fig. 4.36 since there are only

M D NŠ
aY

iD1

nAiŠ

D 12Š

.4Š/3
D 34;650
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Fig. 4.37 Observed,
predicted, and residual LAD
regression values for the
response measurement
summations listed in Fig. 4.36

Object yi ỹ i ei

1 139 101.00 +38.00

2 101 101.00 0.00

3 123 101.00 +22.00

4 117 101.00 +16.00

5 105 101.00 +4.00

6 85 101.00 −16.00

7 63 101.00 −38.00

8 59 101.00 −42.00

9 109 101.00 +8.00

10 95 101.00 −6.00

11 114 101.00 +13.00

12 96 101.00 −5.00

possible, equally-likely arrangements of the N D 12 response measurement sum-
mations for Factor A.

LAD Regression Analysis
An MRPP analysis of the N D 12 LAD regression residuals calculated on the
response measurement summations in Fig. 4.36 yields an estimated LAD regression
coefficient of Q̌

0 D C101:00 for Factor A. Figure 4.37 lists the observed yi values,
LAD predicted Qyi values, and residual ei values for i D 1; : : : ; 12.

Following Eq. (4.5) on p. 125 and employing ordinary Euclidean distance
between residuals with v D 1, the N D 12 LAD regression residuals listed in
Fig. 4.37 yield a D 3 average distance-function values of

�A1 D 20:00 ; �A2 D 26:6667 ; and �A3 D 11:6667 :

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the LAD regression residuals listed in Fig. 4.37 with v D 1 and
treatment-group weights

Ci D nAi

N
; i D 1; 2; 3 ;

is

ıA D
aX

iD1

Ci�i D 4

12

�
20:00 C 26:6667 C 11:6667

� D 19:4444 :

If all arrangements of the N D 16 observed LAD regression residuals listed in
Fig. 4.37 occur with equal chance, the exact probability value of ıA D 19:4444 cal-
culated on the M D 34;650 possible arrangements of the observed LAD regression
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residuals with nA1 D nA2 D nA3 D 4 residuals preserved for each arrangement is

P
�
ı � ıAjH0

� D number of ı values � ıA

M
D 672

34;650
D 0:0194 :

Following Eq. (4.7) on p. 126, the exact expected value of the M D 34;650 ı values
is �ı D 27:00 and, following Eq. (4.6) on p. 126, the observed chance-corrected
measure of effect size for the yi and Qyi values, i D 1; : : : ; N, is

<A D 1 � ıA

�ı

D 1 � 19:4444

27:00
D C0:2798 ;

indicating approximately 28 % agreement between the observed and predicted y
values above that expected by chance.

OLS Regression
For comparison, consider an MRPP analysis of OLS regression residuals calculated
on the response measurement summations for Factor A in Fig. 4.36. The MRPP
regression analysis yields an estimated OLS regression coefficient of Ǒ

0 D C100:50

for Factor A. Figure 4.38 lists the observed yi values, OLS predicted Oyi values, and
residual ei values for i D 1; : : : ; 12.

Following Eq. (4.5) on p. 125 and employing squared Euclidean distance
between residuals with v D 2, the N D 12 OLS regression residuals listed in
Fig. 4.38 yield a D 3 average distance-function values of

�A1 D 493:3333 ; �A2 D 909:3333 ; and �A3 D 179:3333 :

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the OLS regression residuals listed in Fig. 4.38 with v D 2 and

Fig. 4.38 Observed,
predicted, and residual OLS
regression values for the
response measurement
summations listed in Fig. 4.36

Object yi y i ei

1 139 100.50 +38.50

2 101 100.50 +0.50

3 123 100.50 +22.50

4 117 100.50 +16.50

5 105 100.50 +4.50

6 85 100.50 −15.50

7 63 100.50 −37.50

8 59 100.50 −41.50

9 109 100.50 +8.50

10 95 100.50 −5.50

11 114 100.50 +13.50

12 96 100.50 −4.50
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treatment-group weights

Ci D nAi � 1

N � a
; i D 1; 2; 3 ;

is

ıA D
aX

iD1

Ci�i D 4 � 1

12 � 3

�
493:3333 C 909:3333 C 179:3333

� D 527:3333 :

If all arrangements of the N D 12 observed OLS regression residuals listed in
Fig. 4.38 occur with equal chance, the exact probability value of ıA D 527:3333

computed on the M D 34;650 possible arrangements of the observed OLS regres-
sion residuals with nA1 D nA2 D nA3 D 4 residuals preserved for each arrangement
is

P
�
ı � ıAjH0

� D number of ı values � ıA

M
D 564

34;650
D 0:0163 :

For comparison, the exact probability value based on LAD regression, v D 1, M D
34;650, and Ci D nAi=N for i D 1; 2; 3 is P D 0:0194.

Following Eq. (4.7) on p. 126, the exact expected value of the M D 34;650 ı

values is �ı D 1;082:7273 and, following Eq. (4.6) on p. 126, the observed chance-
corrected measure of effect size for the yi and Oyi values, i D 1; : : : ; N, is

<A D 1 � ıA

�ı

D 1 � 527:3333

1;082:7273
D C0:5130 ;

indicating approximately 51 % agreement between the observed and predicted y
values above that expected by chance.

Conventional ANOVA Analysis
A conventional split-plot analysis of variance calculated on the N D 12 univari-
ate response measurement scores listed in Fig. 4.35 on p. 180 yields an observed
F-ratio of FA D 6:7927. Assuming independence, normality, and homogeneity of
variance, FA is approximately distributed as Snedecor’s F under the null hypoth-
esis with �1 D a � 1 D 3 � 1 D 2 and �2 D a.n � 1/ D 3.4 � 1/ D 9 degrees of
freedom. Under the null hypothesis, the observed value of FA D 6:7927 yields an
approximate probability value of P D 0:0159.

Analysis of Factor B
A design matrix of effect codes for an MRPP regression analysis of Factor B is given
in Table 4.9, where the first column of 1 values provides for an intercept, the next 11
columns contain effect codes for Subjects nested within Factor A, and the next four
columns contain effect codes for the A�B interaction. The last column lists the N D
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Table 4.9 Design matrix and univariate response measurement scores for the main effects of
Factor B

Matrix Score

1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 53

1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 49

1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 47

1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 42

1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 47

1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 42

1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 39

1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 37

1 0 0 0 0 0 0 0 0 1 0 0 �1 �1 0 0 45

1 0 0 0 0 0 0 0 0 0 1 0 �1 �1 0 0 41

1 0 0 0 0 0 0 0 0 0 0 1 �1 �1 0 0 38

1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 0 0 36

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 51

1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 34

1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 44

1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 48

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 42

1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 33

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 13

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 16

1 0 0 0 0 0 0 0 0 1 0 0 0 0 �1 �1 35

1 0 0 0 0 0 0 0 0 0 1 0 0 0 �1 �1 33

1 0 0 0 0 0 0 0 0 0 0 1 0 0 �1 �1 46

1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 0 0 �1 �1 40

1 1 0 0 0 0 0 0 0 0 0 0 �1 0 �1 0 35

1 0 1 0 0 0 0 0 0 0 0 0 �1 0 �1 0 18

1 0 0 1 0 0 0 0 0 0 0 0 �1 0 �1 0 32

1 0 0 0 1 0 0 0 0 0 0 0 �1 0 �1 0 27

1 0 0 0 0 1 0 0 0 0 0 0 0 �1 0 �1 16

1 0 0 0 0 0 1 0 0 0 0 0 0 �1 0 �1 10

1 0 0 0 0 0 0 1 0 0 0 0 0 �1 0 �1 11

1 0 0 0 0 0 0 0 1 0 0 0 0 �1 0 �1 6

1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 29

1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 21

1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 30

1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 1 1 1 1 20

36 univariate response measurement scores ordered by the b D 3 treatment levels
of Factor B, with the first nB1 D 12 scores, the next nB2 D 12 scores, and the last
nB3 D 12 scores associated with treatment levels B1, B2, and B3, respectively. The
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MRPP regression analysis examines the N D 36 regression residuals for possible
differences among the b D 3 treatment levels of Factor B; consequently, no effect
codes are provided for Factor B as this information is implicit in the ordering of the
b D 3 treatment levels of Factor B in the last column of Table 4.9.

Because there are

M D NŠ

bY

iD1

nBiŠ

D 36Š

.12Š/3
D 3;384;731;762;521;200

possible, equally-likely arrangements of the N D 36 univariate response measure-
ment scores listed in Table 4.9, an exact permutation approach is not possible.

LAD Regression Analysis
An MRPP resampling analysis of the LAD regression residuals calculated on the
N D 36 univariate response measurement scores in Table 4.9 yields estimated LAD
regression coefficients of

Q̌
0 D C35:50 ; Q̌

1 D C9:8333 ; Q̌
2 D �7:1667 ; Q̌

3 D C2:8333 ;

Q̌
4 D C5:8333 ; Q̌

5 D C4:8333 ; Q̌
6 D �0:1667 ; Q̌

7 D �20:1667 ;

Q̌
8 D �17:1667 ; Q̌

9 D C2:8333 ; Q̌
10 D C0:8333 ; Q̌

11 D C9:8333 ;

Q̌
12 D C0:6667 ; Q̌

13 D C6:6667 ; Q̌
14 D C5:6667 ; and

Q̌
15 D �2:3333

for Factor B. Figure 4.39 lists the observed yi values, LAD predicted Qyi values, and
residual ei values for i D 1; : : : ; 36.

Following Eq. (4.5) on p. 125 and employing ordinary Euclidean distance
between residuals with v D 1, the N D 36 LAD regression residuals listed in
Fig. 4.39 yield b D 3 average distance-function values of

�B1 D 8:6061 ; �B2 D 1:3182 ; and �B3 D 13:5606 :

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the LAD regression residuals listed in Fig. 4.39 with v D 1 and
treatment-group weights

Ci D nBi

N
; i D 1; 2; 3 ;
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Fig. 4.39 Observed,
predicted, and residual LAD
regression values for the
univariate response
measurement scores listed in
Table 4.9

Object yi ỹ i ei

1 53 46.00 +7.00

2 49 29.00 +20.00

3 47 39.00 +8.00

4 42 42.00 0.00

5 47 47.00 0.00

6 42 42.00 0.00

7 39 22.00 +17.00

8 37 25.00 +12.00

9 45 31.00 +14.00

10 41 29.00 +12.00

11 38 38.00 0.00

12 36 36.00 0.00

13 51 51.00 0.00

14 34 34.00 0.00

15 44 44.00 0.00

16 48 47.00 +1.00

17 42 38.00 +4.00

18 33 33.00 0.00

19 13 13.00 0.00

20 16 16.00 0.00

21 35 35.00 0.00

22 33 33.00 0.00

23 46 42.00 +4.00

24 40 40.00 0.00

25 35 39.00 −4.00

26 18 22.00 −4.00

27 32 32.00 0.00

28 27 35.00 −8.00

29 16 36.00 −20.00

30 10 31.00 −21.00

31 11 11.00 0.00

32 6 14.00 −8.00

33 29 49.00 −20.00

34 21 47.00 −26.00

35 30 56.00 −26.00

36 20 54.00 −34.00

is

ıB D
bX

iD1

Ci�i D 12

36

�
8:6061 C 1:3182 C 13:5606

� D 7:8283 :

If all M possible arrangements of the N D 36 observed LAD regression residuals
listed in Fig. 4.39 occur with equal chance, the approximate resampling probabil-
ity value of ıB D 7:8283 computed on L D 1;000;000 random arrangements of the
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observed LAD regression residuals with nB1 D nB2 D nB3 D 12 residuals preserved
for each arrangement is

P
�
ı � ıBjH0

� D number of ı values � ıB

L
D 0

1;000;000
D 0:00 ;

which may be interpreted as a probability of less than one in a million.
When M is very large and the probability of an observed ı is extremely small,

as in this case, resampling permutation procedures sometimes result in zero proba-
bility, even with L D 1;000;000 random arrangements of the observed regression
residuals. A reanalysis of Factor B using L D 10;000;000 random arrangements
of the observed data yielded an identical resampling probability value of P D
0:00. Moment-approximation permutation procedures, described briefly in Chap. 1,
Sect. 1.2.2, can often provide results in these extreme situations. The moment-
approximation of a test statistic requires computation of the exact moments of the
test statistic, assuming equally-likely arrangements of the observed regression resid-
uals [284, 300]. Usually, the first three exact moments are used: the exact mean,
�ı , the exact variance, �2

ı , and the exact skewness, �ı, of ı. The three moments
are then used to fit a specified distribution, such as a Pearson type III distribution,
that approximates the underlying discrete permutation distribution and provides an
approximate probability value. For Factor B, a moment-approximation procedure
yields ıB D 7:8283, �ı D 12:5460, �2

ı D 0:1675, �ı D �1:3580, a standardized
test statistic of

TB D ıB � �ı

�ı

D 7:8283 � 12:5460p
0:1675

D �11:5272 ;

and a Pearson type III approximate probability value of P D 0:1495�10�6.
Following Eq. (4.7) on p. 126, the exact expected value of the M ı values is

�ı D 12:5460 and, following Eq. (4.6) on p. 126, the observed chance-corrected
measure of effect size for the yi and Qyi values, i D 1; : : : ; N, is

<B D 1 � ıB

�ı

D 1 � 7:8283

12:5460
D C0:3760 ;

indicating approximately 38 % agreement between the observed and predicted y
values above that expected by chance.

OLS Regression Analysis
For comparison, consider an MRPP analysis of OLS regression residuals calcu-
lated on the N D 36 response measurement summations for Factor B in Table 4.9
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on p. 184. The MRPP regression analysis yields estimated OLS regression coeffi-
cients of

Ǒ
0 D C33:50 ; Ǒ

1 D C12:8333 ; Ǒ
2 D C0:1667 ; Ǒ

3 D C7:50 ;

Ǒ
4 D C5:50 ; Ǒ

5 D C1:50 ; Ǒ
6 D �5:1667 ; Ǒ

7 D �12:50 ;

Ǒ
8 D �13:8333 ; Ǒ

9 D C2:8333 ; Ǒ
10 D �1:8333 ; Ǒ

11 D C4:50 ;

Ǒ
12 D �1:7500 ; Ǒ

13 D C5:7500 ; Ǒ
14 D C1:50 ; and

Ǒ
15 D �2:7500

for Factor B. Figure 4.40 lists the observed yi values, OLS predicted Oyi values, and
residual ei values for i D 1; : : : ; 36.

Following Eq. (4.5) on p. 125 and employing squared Euclidean distance
between residuals with v D 2, the N D 36 OLS regression residuals listed in
Fig. 4.40 yield b D 3 average distance-function values of

�B1 D 30:2727 ; �B2 D 46:4394 ; and �B3 D 16:5606 :

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the OLS regression residuals listed in Fig. 4.40 with v D 2 and
treatment-group weights

Ci D nBi � 1

N � b
; i D 1; 2; 3 ;

is

ıB D
bX

iD1

Ci�i D 12 � 1

36 � 3

�
30:2727 C 46:4394 C 16:5606

� D 31:0909 :

If all M possible arrangements of the N D 36 observed OLS regression residuals
listed in Fig. 4.40 occur with equal chance, the approximate resampling probability
value of ıB D 31:0909 computed on L D 1;000;000 random arrangements of the
observed OLS regression residuals with nB1 D nB2 D nB3 D 12 residuals preserved
for each arrangement is

P
�
ı � ıBjH0

� D number of ı values � ıB

L
D 0

1;000;000
D 0:00 ;

i.e., a probability of less than one in a million. For comparison, the approximate
resampling probability value based on LAD regression, v D 1, L D 1;000;000, and
Ci D nBi=N for i D 1; 2; 3 is also P D 0:00.

As with the analysis of the LAD regression residuals listed in Fig. 4.39 on p. 186,
when M is large and the probability of an observed ı is very small, an alternative
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Fig. 4.40 Observed,
predicted, and residual OLS
regression values for the
response measurement scores
listed in Table 4.9

Object yi y i ei

1 53 44.5833 +8.4167

2 49 31.9167 +17.0833

3 47 39.2500 +7.7500

4 42 37.2500 +4.7500

5 47 40.7500 +6.2500

6 42 34.0833 +7.9167

7 39 26.7500 +12.2500

8 37 25.4167 +11.5833

9 45 32.3333 +12.6667

10 41 27.6667 +13.3333

11 38 34.0000 +4.0000

12 36 28.0000 +8.0000

13 51 47.8333 +3.1667

14 34 35.1667 −1.1667

15 44 42.5000 +1.5000

16 48 40.5000 +7.5000

17 42 32.2500 +9.7500

18 33 25.5833 +7.4167

19 13 18.2500 −5.2500

20 16 16.9167 −0.9167

21 35 37.5833 −2.5833

22 33 32.9167 +0.0833

23 46 39.2500 +6.7500

24 40 33.2500 +6.7500

25 35 46.5833 −11.5833

26 18 33.9167 −15.9167

27 32 41.2500 −9.2500

28 27 39.2500 −12.2500

29 16 32.0000 −16.0000

30 10 25.3333 −15.3333

31 11 18.0000 −7.0000

32 6 16.6667 −10.6667

33 29 39.0833 −10.0833

34 21 34.4167 −13.4167

35 30 40.7500 −10.7500

36 20 34.7500 −14.7500

moment procedure based on the exact mean, �ı , exact variance, �2
ı , and exact skew-

ness, �ı, of ı can be employed to obtain approximate probability values; see Chap. 1,
Sect. 1.2.2. For Factor B, a moment-approximation procedure yields ıB D 31:0909,
�ı D 199:2857, �2

ı D 134:8578, �ı D �1:7697, a standardized test statistic of

TB D ıB � �ı

�ı

D 31:0909 � 199:2857p
134:8578

D �14:4835 ;

and a Pearson type III approximate probability value of P D 0:5420�10�7.
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Following Eq. (4.7) on p. 126, the exact expected value of the M ı values is
�ı D 199:2857 and, following Eq. (4.6) on p. 126, the observed chance-corrected
measure of effect size for the yi and Oyi values, i D 1; : : : ; N, is

<B D 1 � ıB

�ı

D 1 � 31:0909

199:2857
D C0:8440 ;

indicating approximately 84 % agreement between the observed and predicted y
values above that expected by chance.

Conventional ANOVA Analysis
A conventional split-plot analysis of variance calculated on the N D 36 univariate
response measurement scores listed in Fig. 4.35 on p. 180 yields an observed F-ratio
of FB D 52:1842. Assuming independence and normality, FB is approximately dis-
tributed as Snedecor’s F under the null hypothesis with �1 D b � 1 D 3 � 1 D 2

and �2 D a.n � 1/.b � 1/ D 3.4 � 1/.3 � 1/ D 18 degrees of freedom. Under the
null hypothesis, the observed value of FB D 52:1842 yields an approximate proba-
bility value of P D 0:3224�10�7.

Analysis of the A�B Interaction
A design matrix of effect codes for an MRPP regression analysis of the A�B inter-
action is given in Table 4.10, where the first column of 1 values provides for
an intercept, the next 11 columns contain effect codes for Subjects nested within
Factor A, and the next two columns contain effect codes for Factor B. The last
column lists the N D 36 univariate response measurement scores ordered by the
ab D .3/.3/ D 9 levels of the A�B interaction. The MRPP regression analysis
examines the N D 36 regression residuals for possible differences among the nine
treatment levels of the A�B interaction; consequently, no effect codes are provided
for the A�B interaction as this information is implicit in the ordering of the treat-
ment levels of the A�B interaction in the last column of Table 4.10.

Because there are

M D NŠ

abY

iD1

n.A�B/iŠ

D 36Š

.4Š/9
D 140;810;154;080;474;667;338;550;000;000

possible, equally-likely arrangements of the N D 36 univariate response measure-
ment scores listed in Table 4.10, an exact permutation approach is not possible.
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Table 4.10 Design matrix and univariate response measurement scores for the interaction effects
of Factors A and B

Matrix Score

1 1 0 0 0 0 0 0 0 0 0 0 1 0 53

1 0 1 0 0 0 0 0 0 0 0 0 1 0 49

1 0 0 1 0 0 0 0 0 0 0 0 1 0 47

1 0 0 0 1 0 0 0 0 0 0 0 1 0 42

1 0 0 0 0 1 0 0 0 0 0 0 1 0 47

1 0 0 0 0 0 1 0 0 0 0 0 1 0 42

1 0 0 0 0 0 0 1 0 0 0 0 1 0 39

1 0 0 0 0 0 0 0 1 0 0 0 1 0 37

1 0 0 0 0 0 0 0 0 1 0 0 1 0 45

1 0 0 0 0 0 0 0 0 0 1 0 1 0 41

1 0 0 0 0 0 0 0 0 0 0 1 1 0 38

1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 1 0 36

1 1 0 0 0 0 0 0 0 0 0 0 0 1 51

1 0 1 0 0 0 0 0 0 0 0 0 0 1 34

1 0 0 1 0 0 0 0 0 0 0 0 0 1 44

1 0 0 0 1 0 0 0 0 0 0 0 0 1 48

1 0 0 0 0 1 0 0 0 0 0 0 0 1 42

1 0 0 0 0 0 1 0 0 0 0 0 0 1 33

1 0 0 0 0 0 0 1 0 0 0 0 0 1 13

1 0 0 0 0 0 0 0 1 0 0 0 0 1 16

1 0 0 0 0 0 0 0 0 1 0 0 0 1 35

1 0 0 0 0 0 0 0 0 0 1 0 0 1 33

1 0 0 0 0 0 0 0 0 0 0 1 0 1 46

1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 0 1 40

1 1 0 0 0 0 0 0 0 0 0 0 �1 �1 35

1 0 1 0 0 0 0 0 0 0 0 0 �1 �1 18

1 0 0 1 0 0 0 0 0 0 0 0 �1 �1 32

1 0 0 0 1 0 0 0 0 0 0 0 �1 �1 27

1 0 0 0 0 1 0 0 0 0 0 0 �1 �1 16

1 0 0 0 0 0 1 0 0 0 0 0 �1 �1 10

1 0 0 0 0 0 0 1 0 0 0 0 �1 �1 11

1 0 0 0 0 0 0 0 1 0 0 0 �1 �1 6

1 0 0 0 0 0 0 0 0 1 0 0 �1 �1 29

1 0 0 0 0 0 0 0 0 0 1 0 �1 �1 21

1 0 0 0 0 0 0 0 0 0 0 1 �1 �1 30

1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 �1 20

LAD Regression Analysis
An MRPP resampling analysis of the N D 36 LAD regression residuals calculated
on the univariate response measurement scores in Table 4.10 yields estimated LAD
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regression coefficients of

Q̌
0 D C34:00 ; Q̌

1 D C12:6667 ; Q̌
2 D �3:3333 ; Q̌

3 D C6:6667 ;

Q̌
4 D C4:6667 ; Q̌

5 D C4:6667 ; Q̌
6 D �4:3333 ; Q̌

7 D �11:3333 ;

Q̌
8 D �16:3333 ; Q̌

9 D C2:6667 ; Q̌
10 D �1:3333 ; Q̌

11 D C7:6667 ;

Q̌
12 D C8:3333 ; and Q̌

13 D C3:3333

for the interaction of Factors A and B. Figure 4.41 lists the observed yi values, LAD
predicted Qyi values, and residual ei values for i D 1; : : : ; 36.

Following Eq. (4.5) on p. 125 and employing ordinary Euclidean distance
between residuals with v D 1, the N D 36 LAD regression residuals listed in
Fig. 4.41 yield ab D .3/.3/ D 9 average distance-function values of

�.A�B/1 D 7:50 ; �.A�B/2 D 6:1667 ; �.A�B/3 D 6:6667 ;

�.A�B/4 D 3:1667 ; �.A�B/5 D 7:3333 ; �.A�B/6 D 5:6667 ;

�.A�B/7 D 2:00 ; �.A�B/8 D 6:8333 ; and �.A�B/9 D 2:00 :

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the LAD regression residuals listed in Fig. 4.41 with v D 1 and
treatment-group weights

Ci D n.A�B/i

N
; i D 1; : : : ; 9 ;

is

ıA�B D
abX

iD1

Ci�i D 4

36

�
7:50 C 6:1667 C 6:6667

C � � � C 6:8333 C 2:00
� D 5:2593 :

If all M possible arrangements of the N D 36 observed LAD regression residuals
listed in Fig. 4.41 occur with equal chance, the approximate resampling probability
value of ıA�B D 5:2593 computed on L D 1;000;000 random arrangements of the
observed LAD regression residuals with n.A�B/1 D � � � D n.A�B/9 D 4 residuals pre-
served for each arrangement is

P
�
ı � ıA�BjH0

� D number of ı values � ıA�B

L
D 140;219

1;000;000
D 0:1402 :

Following Eq. (4.7) on p. 126, the exact expected value of the M ı values is �ı D
5:6825 and, following Eq. (4.6) on p. 126, the observed chance-corrected measure
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Fig. 4.41 Observed,
predicted, and residual LAD
regression values for the
univariate response
measurement scores listed in
Table 4.10

Object yi ỹ i ei

1 53 55.00 −2.00

2 49 39.00 +10.00

3 47 49.00 −2.00

4 42 47.00 −5.00

5 47 47.00 0.00

6 42 38.00 +4.00

7 39 31.00 +8.00

8 37 26.00 +11.00

9 45 45.00 0.00

10 41 41.00 0.00

11 38 50.00 −12.00

12 36 40.00 −4.00

13 51 50.00 +1.00

14 34 34.00 0.00

15 44 44.00 0.00

16 48 42.00 +6.00

17 42 42.00 0.00

18 33 33.00 0.00

19 13 26.00 −13.00

20 16 21.00 −5.00

21 35 40.00 −5.00

22 33 36.00 −3.00

23 46 45.00 +1.00

24 40 35.00 +5.00

25 35 35.00 0.00

26 18 19.00 −1.00

27 32 29.00 +3.00

28 27 27.00 0.00

29 16 27.00 −11.00

30 10 18.00 −8.00

31 11 11.00 0.00

32 6 6.00 0.00

33 29 25.00 +4.00

34 21 21.00 0.00

35 30 30.00 0.00

36 20 20.00 0.00

of effect size for the yi and Qyi values, i D 1; : : : ; N, is

<A�B D 1 � ıA�B

�ı

D 1 � 5:2593

5:6825
D C0:0745 ;

indicating approximately 7 % agreement between the observed and predicted y val-
ues above that expected by chance.
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OLS Regression Analysis
For comparison, consider an MRPP analysis of OLS regression residuals calculated
on the N D 36 response measurement scores for the A�B interaction in Table 4.10.
The MRPP regression analysis yields estimated OLS regression coefficients of

Ǒ
0 D C33:50 ; Ǒ

1 D C12:8333 ; Ǒ
2 D C0:1667 ; Ǒ

3 D C7:50 ;

Ǒ
4 D C5:50 ; Ǒ

5 D C1:50 ; Ǒ
6 D �5:1667 ; Ǒ

7 D �12:50 ;

Ǒ
8 D �13:8333 ; Ǒ

9 D C2:8333 ; Ǒ
10 D �1:8333 ; Ǒ

11 D C4:50 ;

Ǒ
12 D C9:50 ; and Ǒ

13 D C2:7500

for the interaction of Factors A and B. Figure 4.42 lists the observed yi values, OLS
predicted Oyi values, and residual ei values for i D 1; : : : ; 36.

Following Eq. (4.5) on p. 125 and employing squared Euclidean distance
between residuals with v D 2, the N D 36 OLS regression residuals listed in
Fig. 4.42 yield ab D .3/.3/ D 9 average distance-function values of

�.A�B/1 D 56:2037 ; �.A�B/2 D 16:6481 ; �.A�B/3 D 38:1481 ;

�.A�B/4 D 26:4259 ; �.A�B/5 D 98:8148 ; �.A�B/6 D 45:0370 ;

�.A�B/7 D 15:2593 ; �.A�B/8 D 35:7593 ; and �.A�B/9 D 9:7037 :

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the OLS regression residuals listed in Fig. 4.42 with v D 2 and
treatment-group weights

Ci D n.A�B/i � 1

N � ab
; i D 1; : : : ; 9 ;

is

ıA�B D
abX

iD1

Ci�i D 4 � 1

36 � 9

�
56:2037 C 16:6481 C 38:1481

C � � � C 35:7593 C 9:7037
� D 38:00 :

If all M possible arrangements of the N D 36 observed OLS regression residuals
listed in Fig. 4.42 occur with equal chance, the approximate resampling probabil-
ity value of ıA�B D 38:00 calculated on L D 1;000;000 random arrangements of
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Fig. 4.42 Observed,
predicted, and residual OLS
regression values for the
univariate response
measurement scores listed in
Table 4.10

Object yi y i ei

1 53 55.8333 −2.8333

2 49 43.1667 +5.8333

3 47 50.5000 −3.5000

4 42 48.5000 −6.5000

5 47 44.5000 +2.5000

6 42 37.8333 +4.1667

7 39 30.5000 +8.5000

8 37 29.1667 +7.8333

9 45 45.8333 −0.8333

10 41 41.1667 −0.1667

11 38 47.5000 −9.5000

12 36 41.5000 −5.5000

13 51 49.0833 +1.9167

14 34 36.4167 −2.4167

15 44 43.7500 +0.2500

16 48 41.7500 +6.2500

17 42 37.7500 +4.2500

18 33 31.0833 +1.9167

19 13 23.7500 −10.7500

20 16 22.4167 −6.4167

21 35 39.0833 −4.0833

22 33 34.4167 −1.4167

23 46 40.7500 +5.2500

24 40 34.7500 +5.2500

25 35 34.0833 +0.9167

26 18 21.4167 −3.4167

27 32 28.7500 +3.2500

28 27 26.7500 +0.2500

29 16 22.7500 −6.7500

30 10 16.0833 −6.0833

31 11 8.7500 +2.2500

32 6 7.4167 −1.4167

33 29 24.0833 +4.9167

34 21 19.4167 +1.5833

35 30 25.7500 +4.2500

36 20 19.7500 +0.2500

the observed OLS regression residuals with n.A�B/1 D � � � D n.A�B/9 D 4 residuals
preserved for each arrangement is

P
�
ı � ıA�BjH0

� D number of ı values � ıA�B

L
D 72;276

1;000;000
D 0:0723 :

For comparison, the approximate resampling probability value based on LAD
regression, v D 1, L D 1;000;000, and Ci D n.A�B/i=N for i D 1; : : : ; 9 is P D
0:1402.
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Following Eq. (4.7) on p. 126, the exact expected value of the M ı values is
�ı D 47:6286 and, following Eq. (4.6) on p. 126, the observed chance-corrected
measure of effect size for the yi and Oyi values, i D 1; : : : ; N, is

<A�B D 1 � ıA�B

�ı

D 1 � 38:00

47:6286
D C0:2022 ;

indicating approximately 20 % agreement between the observed and predicted y
values above that expected by chance.

Conventional ANOVA Analysis
A conventional split-plot analysis of variance calculated on the N D 36 univariate
response measurement scores listed in Fig. 4.35 on p. 180 yields an observed F-
ratio of FA�B D 2:8114. Assuming independence, normality, and homogeneity of
variance, FA�B is approximately distributed as Snedecor’s F under the null hypoth-
esis with �1 D .a � 1/.b � 1/ D .3 � 1/.3 � 1/ D 4 and �2 D a.n � 1/.b � 1/ D
3.4 � 1/.3 � 1/ D 18 degrees of freedom. Under the null hypothesis, the observed
value of FA�B D 2:8114 yields an approximate probability value of P D 0:0565,
which is similar to the probability value of P D 0:0723 obtained with the OLS
regression analysis.

4.3.8 Nested Design

It is sometimes necessary to compare treatment groups when one independent
variable is nested under a second independent variable. Two-factor nested analysis-
of-variance designs occur whenever one factor is not completely crossed with the
second factor. Consider a nested design to compare a D 3 levels of Factor A on
scores obtained from b D 3 levels of Factor B, with B1, B2, and B3 of Factor B in
level A1; B4, B5, and B6 of Factor B in level A2, and B7, B8, and B9 of Factor B in
level A3. Thus, Factor B is said to be nested under Factor A. The univariate data for
this example are listed in Table 4.11 for a sample of n D 4 objects randomly chosen
from each of the ab D .3/.3/ D 9 levels of Factors A and B.

Table 4.11 Example
univariate response
measurement scores for a
nested design with b D 3

levels of Factor B nested
under a D 3 levels of
Factor A

A1 A2 A3

B1 B2 B3 B4 B5 B6 B7 B8 B9

29 30 28 27 33 30 31 27 35

31 32 30 29 35 32 33 29 37

31 32 30 29 35 36 33 29 37

33 34 32 31 37 30 35 31 39
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Table 4.12 Design matrix
and univariate response
measurement scores for an
analysis of Factor A with
Factor B nested under
Factor A

Level A1 Level A2 Level A3

Matrix Score Matrix Score Matrix Score

1 1 0 29 1 0 1 27 1 �1 �1 31

1 1 0 31 1 0 1 29 1 �1 �1 33

1 1 0 31 1 0 1 29 1 �1 �1 33

1 1 0 33 1 0 1 31 1 �1 �1 35

1 1 0 30 1 0 1 33 1 �1 �1 27

1 1 0 32 1 0 1 35 1 �1 �1 29

1 1 0 32 1 0 1 35 1 �1 �1 29

1 1 0 34 1 0 1 37 1 �1 �1 31

1 1 0 28 1 0 1 30 1 �1 �1 35

1 1 0 30 1 0 1 32 1 �1 �1 37

1 1 0 30 1 0 1 32 1 �1 �1 37

1 1 0 32 1 0 1 34 1 �1 �1 39

Analysis of Factor A
A design matrix of effect codes for an MRPP regression analysis of Factor A is
given in Table 4.12, where the first column of 1 values provides for an intercept,
the next two columns contain the effect codes for Factor B, and the third column
contains the univariate response measurement scores listed according to the original
random assignment of the n D 36 objects to the a D 3 levels of Factor A with the
first nA1 D 12 scores, the next nA2 D 12 scores, and the last nA3 D 12 scores associ-
ated with the a D 3 levels of Factor A, respectively. The MRPP regression analysis
examines the N D 36 regression residuals for possible differences among the a D 3

treatment levels of Factor A; consequently, no effect codes are provided for Factor
A as this information is implicit in the ordering of the a D 3 levels of Factor A in
the rightmost columns of Table 4.12.

Because there are

M D NŠ
aY

iD1

nAiŠ

D 36Š

.12Š/3
D 3;384;731;762;521;200

possible, equally-likely arrangements of the N D 36 univariate response measure-
ment scores listed in Table 4.11, an exact permutation approach is not possible.

LAD Regression Analysis
An MRPP resampling analysis of the N D 36 LAD regression residuals calculated
on the univariate response measurement scores listed in Table 4.12 yields estimated
LAD regression coefficients of

Q̌
0 D C32:00 ; Q̌

1 D �1:00 ; and Q̌
2 D 0:00
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Fig. 4.43 Observed,
predicted, and residual LAD
regression values for the
nested response measurement
scores listed in Table 4.12

Object yi ỹ i ei

1 29 31.00 −2.00

2 31 31.00 0.00

3 31 31.00 0.00

4 33 31.00 +2.00

5 30 31.00 −1.00

6 32 31.00 +1.00

7 32 31.00 +1.00

8 34 31.00 +3.00

9 28 31.00 −3.00

10 30 31.00 −1.00

11 30 31.00 −1.00

12 32 31.00 +1.00

13 27 32.00 −5.00

14 29 32.00 −3.00

15 29 32.00 −3.00

16 31 32.00 −1.00

17 33 32.00 +1.00

18 35 32.00 +3.00

19 35 32.00 +3.00

20 37 32.00 +5.00

21 30 32.00 −2.00

22 32 32.00 0.00

23 32 32.00 0.00

24 34 32.00 +2.00

25 31 33.00 −2.00

26 33 33.00 0.00

27 33 33.00 0.00

28 35 33.00 +2.00

29 27 33.00 −6.00

30 29 33.00 −4.00

31 29 33.00 −4.00

32 31 33.00 −2.00

33 35 33.00 +2.00

34 37 33.00 +4.00

35 37 33.00 +4.00

36 39 33.00 +6.00

for Factor A. Figure 4.43 lists the observed yi values, LAD predicted Qyi values, and
residual ei values for i D 1; : : : ; 36.

Following Eq. (4.5) on p. 125 and employing ordinary Euclidean distance
between residuals with v D 1, the N D 36 LAD regression residuals listed in
Fig. 4.43 yield a D 3 average distance-function values of

�A1 D 2:00 ; �A2 D 3:5152 ; and �A3 D 4:4242 :

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the LAD regression residuals listed in Fig. 4.43 with v D 1 and
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treatment-group weights

Ci D nAi

N
; i D 1; 2; 3 ;

is

ıA D
aX

iD1

Ci�i D 12

36

�
2:00 C 3:5152 C 4:4242

� D 3:3131 :

If all M possible arrangements of the N D 36 observed LAD regression residuals
listed in Fig. 4.43 occur with equal chance, the approximate resampling probabil-
ity value of ıA D 3:3131 computed on L D 1;000;000 random arrangements of the
observed LAD regression residuals with nA1 D nA2 D nA3 D 12 residuals preserved
for each arrangement is

P
�
ı � ıAjH0

� D number of ı values � ıA

L
D 704;848

1;000;000
D 0:7048 :

Following Eq. (4.7) on p. 126, the exact expected value of the M ı values is �ı D
3:2508 and, following Eq. (4.6) on p. 126, the observed chance-corrected measure
of effect size between the yi and Qyi values, i D 1; : : : ; N, is

<A D 1 � ıA

�ı

D 1 � 3:3131

3:2508
D �0:0192 ;

indicating slightly less than chance agreement between the observed and predicted
y values.

OLS Regression Analysis
For comparison, consider an MRPP resampling analysis of OLS regression resid-
uals calculated on the N D 36 univariate response measurement scores listed in
Table 4.12. The MRPP regression analysis yields estimated OLS regression coef-
ficients of

Ǒ
0 D C32:00 ; Ǒ

1 D �1:00 ; and Ǒ
2 D 0:00

for Factor A. Figure 4.44 lists the observed yi values, OLS predicted Oyi values, and
residual ei values for i D 1; : : : ; 36.4

Following Eq. (4.5) on p. 125 and employing squared Euclidean distance
between residuals with v D 2, the N D 36 OLS regression residuals listed in

4Note that in the case of Factor A, LAD regression and OLS regression yield the same regression
coefficients. Therefore, the observed regression residuals are the same for both analyses.
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Fig. 4.44 Observed,
predicted, and residual OLS
regression values for the
nested response measurement
scores listed in Table 4.12

Object yi y i ei

1 29 31.00 −2.00

2 31 31.00 0.00

3 31 31.00 0.00

4 33 31.00 +2.00

5 30 31.00 −1.00

6 32 31.00 +1.00

7 32 31.00 +1.00

8 34 31.00 +3.00

9 28 31.00 −3.00

10 30 31.00 −1.00

11 30 31.00 −1.00

12 32 31.00 +1.00

13 27 32.00 −5.00

14 29 32.00 −3.00

15 29 32.00 −3.00

16 31 32.00 −1.00

17 33 32.00 +1.00

18 35 32.00 +3.00

19 35 32.00 +3.00

20 37 32.00 +5.00

21 30 32.00 −2.00

22 32 32.00 0.00

23 32 32.00 0.00

24 34 32.00 +2.00

25 31 33.00 −2.00

26 33 33.00 0.00

27 33 33.00 0.00

28 35 33.00 +2.00

29 27 33.00 −6.00

30 29 33.00 −4.00

31 29 33.00 −4.00

32 31 33.00 −2.00

33 35 33.00 +2.00

34 37 33.00 +4.00

35 37 33.00 +4.00

36 39 33.00 +6.00

Fig. 4.44 yield a D 3 average distance-function values of

�A1 D 5:8182 ; �A2 D 17:4545 ; and �A3 D 27:6364 :

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the OLS regression residuals listed in Fig. 4.44 with v D 2 and
treatment-group weights

Ci D nAi � 1

N � a
; i D 1; 2; 3 ;
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is

ıA D
aX

iD1

Ci�i D 12 � 1

36 � 3
.5:8182 C 17:4545 C 27:6364/ D 16:9697:

If all M possible arrangements of the N D 36 observed OLS regression residuals
listed in Fig. 4.44 occur with equal chance, the approximate resampling probability
value of ıA D 16:9697 computed on L D 1;000;000 random arrangements of the
observed OLS regression residuals with nA1 D nA2 D nA3 D 12 residuals preserved
for each arrangement is

P
�
ı � ıAjH0

� D number of ı values � ıA

L
D 1;000;000

1;000;000
D 1:00 :

A reanalysis of the data based on L D 10;000;000 random arrangements of the
N D 36 observed regression residuals listed in Fig. 4.44 with nA1 D nA2 D nA3 D 12

residuals preserved for each arrangement also yields an approximate resampling
probability value of P D 1:00.

A probability value of P D 1:00 is not very informative. In such cases, an alter-
native moment procedure based on the exact mean, �ı, exact variance, �2

ı , and
exact skewness, �ı, of ı can be employed to obtain approximate probability values;
see Chap. 1, Sect. 1.2.2. For Factor A, a moment-approximation procedure yields
ıA D 16:9697, �ı D 16:00, �2

ı D 0:8472, �ı D �1:7012, an observed standardized
test statistic of

TB D ıB � �ı

�ı

D 16:9697 � 16:00p
0:8472

D C0:0535 ;

and a Pearson type III approximate probability value of P D 0:9487.
For comparison, the approximate resampling probability value based on LAD

regression, v D 1, L D 1;000;000, and Ci D nAi=N for i D 1; : : : ; a is P D 0:7048.
Following Eq. (4.7) on p. 126, the exact expected value of the M ı values is �ı D

16:00 and, following Eq. (4.6) on p. 126, the observed chance-corrected measure of
effect size for the yi and Oyi values, i D 1; : : : ; N, is

<A D 1 � ıA

�ı

D 1 � 16:9697

16:00
D �0:0606 ;

indicating slightly less than chance agreement between the observed and predicted
y values.

Conventional ANOVA Analysis
A conventional fixed-effects nested analysis of variance calculated on the N D 36

response measurement scores for Factor A listed in Table 4.11 on p. 196 yields an
observed F-ratio of FA D 3:6818. Assuming independence, normality, and homo-
geneity of variance, FA is approximately distributed as Snedecor’s F under the null
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Fig. 4.45 Design matrix and
univariate response
measurement scores for an
analysis of Factor B with
Factor B nested under Factor
A

ScoreMatrix

1 1 0 1 0 0 0 29

1 1 0 1 0 0 0 31

1 1 0 1 0 0 0 31

1 1 0 1 0 0 0 33

1 1 0 0 0 1 0 30

1 1 0 0 0 1 0 32

1 1 0 0 0 1 0 32

1 1 0 0 0 1 0 34

1 1 0 −1 0 −1 0 28

1 1 0 −1 0 −1 0 30

1 1 0 −1 0 −1 0 30

1 1 0 −1 0 −1 0 32

1 0 1 0 1 0 0 27

1 0 1 0 1 0 0 29

1 0 1 0 1 0 0 29

1 0 1 0 1 0 0 31

1 0 1 0 0 0 1 33

1 0 1 0 0 0 1 35

1 0 1 0 0 0 1 35

1 0 1 0 0 0 1 37

1 0 1 0 −1 0 −1 30

1 0 1 0 −1 0 −1 32

1 0 1 0 −1 0 −1 36

1 0 1 0 −1 0 −1 30

1 −1 −1 −1 −1 0 0 31

1 −1 −1 −1 −1 0 0 33

1 −1 −1 −1 −1 0 0 33

1 −1 −1 −1 −1 0 0 35

1 −1 −1 0 0 −1 −1 27

1 −1 −1 0 0 −1 −1 29

1 −1 −1 0 0 −1 −1 29

1 −1 −1 0 0 −1 −1 31

1 −1 −1 1 1 1 1 35

1 −1 −1 1 1 1 1 37

1 −1 −1 1 1 1 1 37

1 −1 −1 1 1 1 1 39

hypothesis with �1 D a � 1 D 3 � 1 D 2 and �2 D ab.n � 1/ D .3/.3/.4 � 1/ D
27 degrees of freedom. Under the null hypothesis, the observed value of FA D
3:6818 yields an approximate probability value of P D 0:0386.

Analysis of Factor BjA
A design matrix of effect codes for an MRPP regression analysis of Factor B, nested
under Factor A, is given in Fig. 4.45, where the first column of 1 values provides for
an intercept, the next two columns contain effect codes for Factor A, the next four
columns contain effect codes for the A�B interaction, and the last column contains
the univariate response measurement scores listed according to the b D 3 levels of
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Factor B with the first nBjA1
D 12 scores, the next nBjA2

D 12 scores, and the last
nBjA3

D 12 scores associated with the b D 3 levels of Factor B, respectively. The
MRPP regression analysis examines the N D 36 regression residuals for possible
differences among the b D 3 treatment levels of Factor B; consequently, no effect
codes are provided for Factor B as this information is implicit in the ordering of the
b D 3 levels of Factor B in the last column of Fig. 4.45.

LAD Regression Analysis
Again, because there are

M D NŠ

bY

iD1

nBjAiŠ

D 36Š

.12Š/3
D 3;384;731;762;521;200

possible, equally-likely arrangements of the N D 36 response measurement scores
listed in Fig. 4.45, an exact permutation approach is not possible. An MRPP resam-
pling analysis of the N D 36 LAD regression residuals calculated on the univariate
response measurement scores in Fig. 4.45 yields estimated LAD regression coeffi-
cients of

Q̌
0 D C32:00 ; Q̌

1 D �1:00 ; Q̌
2 D 0:6667 ; Q̌

3 D C1:00 ;

Q̌
4 D �1:6667 ; Q̌

5 D C1:00 ; and Q̌
6 D C2:3333

for Factor BjA. Figure 4.46 lists the observed yi values, LAD predicted Qyi values,
and residual ei values for i D 1; : : : ; 36.

Following Eq. (4.5) on p. 125 and employing ordinary Euclidean distance
between residuals with v D 1, the N D 36 LAD regression residuals listed in
Fig. 4.46 yield a D 3 average distance-function values of

�BjA1
D 2:00 ; �BjA2

D 2:00 ; and �BjA3
D 2:00 :

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the LAD regression residuals listed in Fig. 4.46 with v D 1 and
treatment-group weights

Ci D nBjAi

N
; i D 1; 2; 3 ;

is

ıBjA D
bX

iD1

Ci�i D 12

36

�
2:00 C 2:00 C 2:00

� D 2:00 :
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Fig. 4.46 Observed,
predicted, and residual LAD
regression values for the
nested response measurement
scores listed in Table 4.12

Object yi ỹ i ei

1 29 32.00 −3.00

2 31 32.00 −1.00

3 31 32.00 −1.00

4 33 32.00 +1.00

5 30 32.00 −2.00

6 32 32.00 0.00

7 32 32.00 0.00

8 34 32.00 +2.00

9 28 29.00 −1.00

10 30 29.00 +1.00

11 30 29.00 +1.00

12 32 29.00 +3.00

13 27 31.00 −4.00

14 29 31.00 −2.00

15 29 31.00 −2.00

16 31 31.00 0.00

17 33 35.00 −2.00

18 35 35.00 0.00

19 35 35.00 0.00

20 37 35.00 +2.00

21 30 32.00 −2.00

22 32 32.00 0.00

23 32 32.00 0.00

24 34 32.00 +2.00

25 31 33.00 −2.00

26 33 33.00 0.00

27 33 33.00 0.00

28 35 33.00 +2.00

29 27 29.00 −2.00

30 29 29.00 0.00

31 29 29.00 0.00

32 31 29.00 +2.00

33 35 35.00 0.00

34 37 35.00 +2.00

35 37 35.00 +2.00

36 39 35.00 +4.00

If all M possible arrangements of the N D 36 observed LAD regression residuals
listed in Fig. 4.46 occur with equal chance, the approximate resampling probabil-
ity value of ıBjA D 2:00 computed on L D 1;000;000 random arrangements of the
observed LAD regression residuals with nBjA1

D nBjA2
D nBjA3

D 12 residuals pre-
served for each arrangement is

P
�
ı � ıBjAjH0

� D number of ı values � ıBjA
L

D 361;575

1;000;000
D 0:3616 :
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Following Eq. (4.7) on p. 126, the exact expected value of the M ı values is �ı D
2:0127 and, following Eq. (4.6) on p. 126, the observed chance-corrected measure
of effect size for the yi and Qyi values, i D 1; : : : ; N, is

<BjA D 1 � ıBjA
�ı

D 1 � 2:00

2:0127
D C0:0063 ;

indicating approximately chance agreement between the observed and predicted y
values.

OLS Regression Analysis
For comparison, consider an MRPP resampling analysis of OLS regression residu-
als calculated on the N D 36 response measurement scores listed in Table 4.12 on
p. 197. The MRPP regression analysis yields estimated OLS regression coefficients
of

Ǒ
0 D C32:00 ; Ǒ

1 D �1:00 ; Ǒ
2 D 0:00 ; Ǒ

3 D C1:00 ;

Ǒ
4 D �2:00 ; Ǒ

5 D C1:00 ; and Ǒ
6 D C3:00

for Factor BjA. Figure 4.47 lists the observed yi values, OLS predicted Oyi values, and
residual ei values for i D 1; : : : ; 36.

Following Eq. (4.5) on p. 125 and employing squared Euclidean distance
between residuals with v D 2, the N D 36 OLS regression residuals listed in
Fig. 4.47 yield a D 3 average distance-function values of

�BjA1
D 5:8182 ; �BjA2

D 5:8182 ; and �BjA3
D 5:8182 :

Following Eq. (4.4) on p. 125, the observed value of the MRPP test statistic
calculated on the OLS regression residuals listed in Fig. 4.47 with v D 2 and
treatment-group weights

Ci D nBjAi � 1

N � b
; i D 1; 2; 3 ;

is

ıBjA D
bX

iD1

Ci�i D 12 � 1

36 � 3

�
5:8182 C 5:8182 C 5:8182

� D 5:8182 :

If all M possible arrangements of the N D 36 observed OLS regression residuals
listed in Fig. 4.47 occur with equal chance, the approximate resampling probability
value of ıBjA D 5:8182 computed on L D 1;000;000 random arrangements of the
observed OLS regression residuals with nBjA1

D nBjA2
D nBjA3

D 12 residuals pre-
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Fig. 4.47 Observed,
predicted, and residual OLS
regression values for the
nested response measurement
scores listed in Table 4.12

Object yi y i ei

1 29 32.00 −3.00

2 31 32.00 −1.00

3 31 32.00 −1.00

4 33 32.00 +1.00

5 30 32.00 −2.00

6 32 32.00 0.00

7 32 32.00 0.00

8 34 32.00 +2.00

9 28 29.00 −1.00

10 30 29.00 +1.00

11 30 29.00 +1.00

12 32 29.00 +3.00

13 27 30.00 −3.00

14 29 30.00 −1.00

15 29 30.00 −1.00

16 31 30.00 +1.00

17 33 35.00 −2.00

18 35 35.00 0.00

19 35 35.00 0.00

20 37 35.00 +2.00

21 30 31.00 −1.00

22 32 31.00 +1.00

23 32 31.00 +1.00

24 34 31.00 +3.00

25 31 34.00 −3.00

26 33 34.00 −1.00

27 33 34.00 −1.00

28 35 34.00 +1.00

29 27 29.00 −2.00

30 29 29.00 0.00

31 29 29.00 0.00

32 31 29.00 +2.00

33 35 36.00 −1.00

34 37 36.00 +1.00

35 37 36.00 +1.00

36 39 36.00 +3.00

served for each arrangement is

P
�
ı � ıBjAjH0

� D number of ı values � ıBjA
L

D 7;600

1;000;000
D 0:0076 :

For comparison, the approximate resampling probability value based on LAD
regression, v D 1, L D 1;000;000, and Ci D nBjAi=N for i D 1; 2; 3 is P D 0:3616.

Following Eq. (4.7) on p. 126, the exact expected value of the M ı values is �ı D
5:4857 and, following Eq. (4.6) on p. 126, the observed chance-corrected measure
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of effect size for the yi and Oyi values, i D 1; : : : ; N, is

<BjA D 1 � ıBjA
�ı

D 1 � 5:8182

5:4857
D �0:0606 ;

indicating slightly less than chance agreement between the observed and predicted
y values.

Conventional ANOVA Analysis
A conventional fixed-effects nested analysis of variance calculated on the N D 36

univariate response measurement scores for Factor BjA listed in Table 4.11 on
p. 196 yields an observed F-ratio of FBjA D 10:6362. Assuming independence,
normality, and homogeneity of variance, FBjA is approximately distributed as
Snedecor’s F under the null hypothesis with �1 D a.b � 1/ D 3.3 � 1/ D 6 and
�2 D ab.n � 1/ D .3/.3/.4 � 1/ D 27 degrees of freedom. Under the null hypoth-
esis, the observed value of FBjA D 10:6362 yields an approximate probability value
of P D 4:5461�10�6.

4.4 Multivariate Multiple Regression Designs

An extension of LAD multiple regression to include multiple dependent variables, as
well as multiple independent variables, i.e., multivariate multiple LAD regression,
is developed in this section. The extension was prompted by a multivariate Least
Sum (of) Euclidean Distances (LSED) algorithm developed by Kaufman, Taylor,
Mielke, and Berry in 2002 [198].

Consider the multivariate multiple regression model given by

yik D
mX

jD1

xijˇjk C eik

for i D 1; : : : ; N and k D 1; : : : ; r, where yik represents the ith of N measurements
for the kth of r response variables, possibly affected by a treatment; xij is the jth of
m covariates associated with the ith response, where xi1 D 1 if the model includes
an intercept; ˇjk denotes the jth of m regression parameters for the kth of r response
variables; and eik designates the error associated with the ith of N measurements for
the k of r response variables.

If estimates of ˇjk that minimize

NX

iD1

 
rX

kD1

e2
ik

!1=2
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are denoted by Q̌
jk for j D 1; : : : ; m and k D 1; : : : ; r, then the N r-dimensional

residuals of the LSED multivariate multiple regression model are given by

eik D yik �
mX

jD1

xij
Q̌
jk

for i D 1; : : : ; N and k D 1; : : : ; r.
Let the N r-dimensional residuals, (ei1; : : : ; eir) for i D 1; : : : ; N obtained from

an LSED multivariate multiple regression model, be partitioned into g treatment
groups of sizes n1; : : : ; ng, where ni � 2 for i D 1; : : : ; g and

N D
gX

iD1

ni :

The MRPP analysis of the multivariate multiple regression residuals depends on
statistic

ı D
gX

iD1

Ci�i ; (4.8)

where Ci D ni=N is a positive weight for the ith of g treatment groups and �i is the
average pairwise Euclidean distance among the ni r-dimensional residuals in the ith
of g treatment groups defined by

�i D
 

ni

2

!�1 N�1X

kD1

NX

lDkC1

2

4
rX

jD1

�
ekj � elj

�2
3

5
1=2

‰ki ‰li ; (4.9)

where

‰ki D
8
<

:
1 if (ek1; : : : ; ekr) is in the ith treatment group ,

0 otherwise .

The null hypothesis specifies that each of the

M D NŠ
gY

iD1

niŠ

possible allocations of the N r-dimensional residuals to the g treatment groups is
equally likely. An exact MRPP probability value associated with the observed value
of ı, ıo, is given by

P
�
ı � ıojH0

� D number of ı values � ıo

M
:
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As previously, when M is large an approximate probability value may be obtained
from a resampling permutation procedure. Let L denote a large random sample
drawn from all M possible arrangements of the observed data, then an approximate
resampling probability value is given by

P
�
ı � ıojH0

� D number of ı values � ıo

L
:

As with univariate multiple regression models, the criterion for fitting multivari-
ate multiple regression models based on ı is the chance-corrected measure of effect
size between the observed and predicted response measurement values given by

< D 1 � ı

�ı

; (4.10)

where �ı is the expected value of ı over the NŠ possible pairings under the null
hypothesis, given by

�ı D 1

M

MX

iD1

ıi : (4.11)

4.4.1 Example Analysis

To illustrate a multivariate LSED multiple regression analysis, consider an unbal-
anced two-way randomized-block experimental design in which N D 16 subjects
(S ) are tested over a D 3 levels of Factor A, the experiment is repeated b D 2 times
for Factor B, and there are r D 2 response measurement scores for each subject. The
design and data are adapted from Mielke and Berry [297, p. 184] and are given in
Fig. 4.48. The design is intentionally kept small to illustrate the multivariate multiple
regression procedure.

Analysis of Factor A
A design matrix of dummy codes for an MRPP regression analysis of Factor A
is given in Fig. 4.49, where the first column of 1 values provides for an intercept,
the next column contains the dummy codes for Factor B, and the third and fourth
columns contain the bivariate response measurement scores listed according to the
original random assignment of the N D 16 subjects to the a D 3 levels of Factor A
with the first nA1 D 5 scores, the next nA2 D 7 scores, and the last nA3 D 4 scores
associated with the a D 3 levels of Factor A, respectively. The MRPP regression
analysis examines the N D 16 regression residuals for possible differences among
the a D 3 treatment levels of Factor A; consequently, no dummy codes are provided
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Fig. 4.48 Example data for a
two-way randomized-block
design with a D 3 blocks and
b D 2 treatments

Factor A
Factor B A1 A2 A3

B1 (49, 102) (63, 84) (45, 107)

(60, 89) (50, 100)

(42, 111)

(46, 104)

B2 (48, 103) (27, 114)

(58, 94) (66, 83)

(51, 100) (74, 79)

(55, 97) (69, 88)

(71, 82)

Fig. 4.49 Example design
matrix and bivariate response
measurement scores for a
multivariate LSED multiple
regression analysis of Factor
A with N D 16

Matrix Scores

1 1 49 102

1 0 48 103

1 0 58 94

1 0 51 100

1 0 55 97

1 1 63 84

1 1 60 89

1 0 27 114

1 0 66 83

1 0 74 79

1 0 69 88

1 0 71 82

1 1 45 107

1 1 50 100

1 1 42 111

1 1 46 104

for Factor A as this information is implicit in the ordering of the a D 3 levels of
Factor A in the last two columns of Fig. 4.49.

Because there are only

M D NŠ
aY

iD1

nAiŠ

D 16Š

5Š 7Š 4Š
D 1;441;440

possible, equally-likely arrangements of the N D 16 bivariate response measure-
ment scores listed in Fig. 4.49, an exact permutation approach is feasible. An
MRPP analysis of the N D 16 LAD regression residuals calculated on the bivariate
response measurements for Factor A in Fig. 4.49 yields estimated LAD regression
coefficients of

Q̌
1;1 D C58:00 ; Q̌

2;1 D �9:00 ; Q̌
1;2 D C94:00 ; and Q̌

2;2 D C8:00
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Fig. 4.50 Observed,
predicted, and residual values
for a multivariate LSED
multiple regression analysis
of Factor A with N D 16

yi 1 yi 2 ỹ i 1 ỹ i 2 ei 1 ei 2

49 102 49.00 102.00 0.00 0.00

48 103 58.00 94.00 −10.00 +9.00

58 94 58.00 94.00 0.00 0.00

51 100 58.00 94.00 −7.00 +6.00

55 97 58.00 94.00 −3.00 +3.00

63 84 49.00 102.00 +14.00 −18.00

60 89 49.00 102.00 +11.00 −13.00

27 114 58.00 94.00 −31.00 +20.00

66 83 58.00 94.00 +8.00 −11.00

74 79 58.00 94.00 +16.00 −15.00

69 88 58.00 94.00 +11.00 −6.00

71 82 58.00 94.00 +13.00 −12.00

45 107 49.00 102.00 −4.00 +5.00

50 100 49.00 102.00 +1.00 −2.00

42 111 49.00 102.00 −7.00 +9.00

46 104 49.00 102.00 −3.00 +2.00

for Factor A. Figure 4.50 lists the observed yik values, LAD predicted Qyik values, and
residual eik values for i D 1; : : : ; 16 and k D 1; 2.

Following Eq. (4.9) on p. 208 and employing ordinary Euclidean distance
between residuals with v D 1, the N D 16 LAD regression residuals listed in
Fig. 4.50 yield a D 3 average distance-function values of

�A1 D 7:2294 ; �A2 D 20:0289 ; and �A3 D 7:3475 :

Following Eq. (4.8) on p. 208, the observed value of the MRPP test statistic
calculated on the LAD regression residuals listed in Fig. 4.50 with v D 1 and
treatment-group weights

Ci D nAi

N
; i D 1; 2; 3 ;

is

ıA D
aX

iD1

Ci�i D 1

16

�
.5/.7:2294/ C .7/.20:0289/ C .4/.7:3475/

	D 12:8587 :

If all arrangements of the N D 16 observed LAD regression residuals listed in
Fig. 4.50 occur with equal chance, the exact probability value of ıA D 12:8587 com-
puted on the M D 1;441;440 possible arrangements of the observed LAD regression
residuals with nA1 D 5, nA2 D 7, and nA3 D 4 residuals preserved for each arrange-
ment is

P
�
ı � ıAjH0

� D number of ı values � ıA

M
D 6;676

1;441;440
D 0:0046 :
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Following Eq. (4.11) on p. 209, the exact expected value of the M D 1;441;440 ı

values is �ı D 18:1020 and, following Eq. (4.10) on p. 209, the observed chance-
corrected measure of effect size for the yi and Qyi values, i D 1; : : : ; N, is

<A D 1 � ıA

�ı

D 1 � 12:8587

18:1020
D C0:2897 ;

indicating approximately 29 % agreement between the observed and predicted val-
ues above that expected by chance.

Analysis of Factor B
A design matrix of dummy codes for an MRPP regression analysis of Factor B
is given in Fig. 4.51, where the first column of 1 values provides for an intercept,
the next two columns contain the dummy codes for Factor A, and the fourth and
fifth columns contain the bivariate response measurement scores listed according
to the original random assignment of the N D 16 subjects to the b D 2 levels of
Factor B with the first nB1 D 7 scores and the last nB2 D 9 scores associated with the
b D 2 levels of Factor B, respectively. The MRPP regression analysis examines the
N D 16 regression residuals for possible differences between the b D 2 treatment
levels of Factor B; consequently, no dummy codes are provided for Factor B as this
information is implicit in the ordering of the b D 2 levels of Factor B in the last two
columns of Fig. 4.51.

Because there are only

M D NŠ

bY

iD1

nBiŠ

D 16Š

7Š 9Š
D 11;440

Fig. 4.51 Example design
matrix and bivariate response
measurement scores for a
multivariate LSED multiple
regression analysis of Factor
B with N D 16

Matrix Scores

1 1 0 49 102

1 0 1 63 84

1 0 1 60 89

1 0 0 45 107

1 0 0 50 100

1 0 0 42 111

1 0 0 46 104

1 1 0 48 103

1 1 0 58 94

1 1 0 51 100

1 1 0 55 97

1 0 1 27 114

1 0 1 66 83

1 0 1 74 79

1 0 1 69 88

1 0 1 71 82
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Fig. 4.52 Observed,
predicted, and residual values
for a multivariate LSED
multiple regression analysis
of Factor B with N D 16

yi 1 yi 2 ỹ i 1 ỹ i 2 ei 1 ei 2

49 102 51.00 100.00 −2.00 +2.00

63 84 66.00 84.00 −3.00 0.00

60 89 66.00 84.00 −6.00 +5.00

45 107 46.00 104.00 −1.00 +3.00

50 100 46.00 104.00 +4.00 −4.00

42 111 46.00 104.00 −4.00 +7.00

46 104 46.00 104.00 0.00 0.00

48 103 51.00 100.00 −3.00 +3.00

58 94 51.00 100.00 +7.00 −6.00

51 100 51.00 100.00 0.00 0.00

55 97 51.00 100.00 +4.00 −3.00

27 114 66.00 84.00 −39.00 +30.00

66 83 66.00 84.00 0.00 −1.00

74 79 66.00 84.00 −8.00 −5.00

69 88 66.00 84.00 +3.00 +4.00

71 82 66.00 84.00 +5.00 −2.00

possible, equally-likely arrangements of the N D 16 response measurement scores
listed in Fig. 4.51, an exact permutation approach is feasible. An MRPP analysis of
the N D 16 LAD regression residuals calculated on the bivariate response measure-
ments for Factor B in Fig. 4.51 yields estimated LAD regression coefficients of

Q̌
1;1 D C46:00 ; Q̌

2;1 D C5:00 ; Q̌
3;1 D C20:00 ; Q̌

1;2 D C104:00 ;

Q̌
2;2 D �4:00 ; and Q̌

3;2 D �20:00

for Factor B. Figure 4.52 lists the observed yik values, LAD predicted Qyik values, and
residual eik values for i D 1; : : : ; 16 and k D 1; 2.

Following Eq. (4.9) on p. 208 and employing ordinary Euclidean distance
between residuals with v D 1, the N D 16 LAD regression residuals listed in
Fig. 4.52 yield b D 2 average distance-function values of

�B1 D 6:0229 and �B2 D 16:7440 :

Following Eq. (4.4) on p. 208, the observed value of the MRPP test statistic
calculated on the LAD regression residuals listed in Fig. 4.52 with v D 1 and
treatment-group weights

Ci D nBi

N
; i D 1; 2 ;

is

ıB D
bX

iD1

Ci�i D 1

16

�
.7/.6:0229/ C .9/.16:7440/

	 D 12:0535 :
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If all arrangements of the N D 16 observed LAD regression residuals listed in
Fig. 4.52 occur with equal chance, the exact probability value of ıB D 12:0535 com-
puted on the M D 11;440 possible arrangements of the observed LAD regression
residuals with nB1 D 7 and nB2 D 9 residuals preserved for each arrangement is

P
�
ı � ıBjH0

� D number of ı values � ıB

M
D 2;090

11;440
D 0:1827 :

Following Eq. (4.11) on p. 209, the exact expected value of the M D 11;440 ı values
is �ı D 12:2923 and, following Eq. (4.10) on p. 209, the observed chance-corrected
measure of effect size for the yi and Qyi values, i D 1; : : : ; N, is

<B D 1 � ıB

�ı

D 1 � 12:0535

12:2923
D C0:0194 ;

indicating approximately 2 % agreement between the observed and predicted values
above that expected by chance.

4.5 Coda

Chapter 4 applied the Multi-Response Permutation Procedures (MRPP) developed
in Chap. 2 to interval-level response measurements, utilizing dummy and effect
coding of treatment groups to generate regression residuals from LAD regres-
sion models, subsequently analyzed with MRPP. Considered in this chapter were
one-way randomized, one-way randomized with a covariate, one-way randomized-
block, two-way randomized-block, two-way factorial, Latin square, split-plot, and
two-factor nested designs. Chapter 4 concluded with example multivariate multiple
regression designs.

Comparisons of permutation-based LAD regression with ordinary Euclidean dis-
tance between response measurements, permutation-based OLS regression with
squared Euclidean distance between response measurements, and conventional OLS
regression with squared Euclidean distance between response measurements in
Chap. 4, revealed that considerable differences can exist among the three approaches
that are not systematic. Oftentimes, one of the three approaches yielded the lowest of
the three probability values, while other times the same approach yielded the highest
probability value. Sometimes the three approaches yielded the same, or nearly the
same, probability value, as was the case with the analysis of Factor B in the two-way
randomized-block design example, and other times the three probability values were
markedly different, as was the case with the analysis of the A�B interaction in the
two-way factorial design example. In general, permutation-based LAD regression,
coupled with MRPP and ordinary Euclidean distance between response measure-
ments, is recommended due to the lack of restrictive assumptions and robustness
that is possible with extreme values.
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Chapter 5
Chapter 5 establishes the relationships between the MRPP test statistics, ı and <,
and selected conventional tests and measures designed for the analysis of completely
randomized data at the ordinal level of measurement. Considered in Chap. 5 are
the Wilcoxon two-sample rank-sum test, the Kruskal–Wallis multiple-sample rank-
sum test, the Mood rank-sum test for dispersion, the Brown–Mood median test, the
Mielke power-of-rank functions, the Whitfield two-sample rank-sum test, and the
Cureton rank-biserial test.
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This fifth chapter of Permutation Statistical Methods utilizes the Multi-Response
Permutation Procedures (MRPP) presented in Chap. 2 to develop the functional
relationships between the test statistics of MRPP, ı and <, and selected conven-
tional tests and measures designed for the analysis of completely randomized data
at the ordinal level of measurement. A number of statistical tests and measures are
considered in this chapter, including the Wilcoxon two-sample rank-sum test, the
Kruskal–Wallis multiple-sample rank-sum test, the Ansari–Bradley rank-sum test
for dispersion, the Taha sum-of-squared-ranks test, the Mood rank-sum test for dis-
persion, the Brown–Mood median test, the Mielke power-of-rank function tests, the
Whitfield two-sample rank-sum test, and the Cureton rank-biserial test. Analyses in
this chapter are largely limited to univariate rank data. Multivariate extensions for
the various tests and measures discussed in Chap. 5 are presented in Chap. 6.

5.1 Introduction

As detailed more completely in Chap. 2, let 
 D f!1; : : : ; !Ng denote a finite
sample of N objects, let x0

j D .x1j; : : : ; xrj/ be a transposed vector of r commen-
surate response measurements for object !j, j D 1; : : : ; N, and let S1; : : : ; Sg

designate an exhaustive partitioning of the N objects into g disjoint treatment
groups. The MRPP test statistic given by

ı D
gX

iD1

Ci�i ; (5.1)
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where Ci > 0 is a positive treatment-group weight for group Si, i D 1; : : : ; g,

gX

iD1

Ci D 1 ;

and

�i D
 

ni

2

!�1X

j<k

	.j; k/ ‰i.!j/ ‰i.!k/ (5.2)

is the average distance-function value for all distinct pairs of objects in treatment
group Si for i D 1; : : : ; g, ni � 2 is the number of objects classified into treatment
groups S1; : : : ; Sg,

N D
gX

iD1

ni ;

P
j<k is the sum over all j and k such that 1 � j < k � N, 	.j; k/ is the generalized

Minkowski distance function,

	.j; k/ D
 

rX

iD1

ˇ̌
xij � xik

ˇ̌p
!v=p

; (5.3)

p � 1, v > 0, and ‰i.�/ is an indicator function given by

‰i.!j/ D
8
<

:
1 if !j 2 Si ,

0 otherwise .

The null hypothesis (H0) states that equal probabilities are assigned to each of
the

M D NŠ
gY

iD1

niŠ

possible, equally-likely allocations of the N objects to treatment groups S1; : : : ; Sg.
The probability value associated with an observed value of ı, ıo, is the probability

under the null hypothesis (H0) of observing a value of ı as extreme or more extreme
than ıo. Thus, an exact probability value for ıo may be expressed as

P
�
ı � ıojH0

� D number of ı values � ıo

M
:
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When M is very large, an approximate probability value for ı may be obtained from
a resampling procedure, where

P
�
ı � ıojH0

� D number of ı values � ıo

L
;

and L denotes the number of randomly sampled test statistic values. Typically, L is
set to a large number to ensure accuracy, e.g., L D 1;000;000. Also, when M is very
large and P is exceedingly small, a resampling-approximation permutation proce-
dure may produce no ı values equal to or less than ıo, even with L D 1;000;000,
yielding an approximate resampling probability value of P D 0:00. In such cases,
moment-approximation permutation procedures based on fitting the first three exact
moments of the discrete permutation distribution to a Pearson type III distribu-
tion provide approximate probability values, as detailed in Chap. 1, Sect. 1.2.2
[284, 300].

A chance-corrected within-group coefficient of agreement is given by

< D 1 � ı

�ı

; (5.4)

where �ı is the arithmetic average of the M ı values calculated on all possible,
equally-likely arrangements of the observed response measurements given by

�ı D 1

M

MX

iD1

ıi : (5.5)

5.2 Rank-Order Statistics

The conversion of raw scores to rank scores has long been a controversial topic in
the statistical literature. In general, two reasons have been advanced for converting
raw scores to rank scores: (1) minimize the effect of extreme values and (2) avoid the
assumption of normality. Consequently, a plethora of rank tests were proposed dur-
ing the late 1930s and the 1940s, prior to the advent of high-speed computing and
the subsequent development of efficient permutation statistical methods.1 During
this period, many rank tests were proffered by Hotelling and Pabst [183], Friedman
[128], Wilcoxon [429], Festinger [116], Kendall [205], Wallis [414], and others.
Milton Friedman, in particular, advocated rank tests to avoid the assumption of nor-
mality and for parsimony, arguing that the loss of information when converting raw
scores to rank scores might be more than compensated for by the greater economy
of the rank test [128, p. 675]. W. Allen Wallis echoed Friedman’s arguments in a

1As Erich Lehmann noted, permutation tests are very tedious to carry out, and as a result they only
came into their own after computers made multitudinal calculations possible [235, p. 66].
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1939 article wherein he argued for rank tests because of their ease of calculation
and the relaxation of the assumption of normality [414].

In general, it is widely recognized that there are two kinds of rank tests: those that
analyze pure ranks that have been gathered experimentally, such as when N subjects
rank a series of m items, and those that analyze ranks based on transformations of
raw scores in order to avoid the assumption of normality or to reduce the effect of
outliers. Regarding the latter, many researchers have decried the loss of information
in converting raw scores into rank scores.

As early as 1906 Spearman, commenting on the conversion of raw scores to rank
scores, stated that “the disadvantage of conversion into rank scores is that thereby a
certain amount of the experimental information is lost” [382, p. 92]. In 1940 Kendall
and Babington Smith acknowledged that “the use of ranking . . . destroys what may
be valuable information,” pointing out that ranking methods suffer from a serious
drawback when the data considered are not representable by a linear variable [210,
p. 324]. In 1943 Wald and Wolfowitz published a seminal paper on serial correlation
in which they noted that observed values could be replaced by their corresponding
ranks, but questioned the wisdom in using rank-transformed values instead of the
original observations due to the loss of information involved [413, p. 387]. In 1950
F.N. David, in a review of Kendall’s Rank Correlation Methods, commented:

It is interesting to note in the univariate case . . . that while many order statistics have been
proposed (all of which are easy to apply and interesting mathematically) . . . it is rare indeed
to find the need to use them in practice. It is customary to twist the observations about
and/or to make various assumptions in order that existing techniques may be applied. This,
the writer would suggest, is because of the instinctive feeling that tests based on ranks
cannot be very discriminating. If, on the other hand, we consider the bivariate case, the order
statistics proposed by Spearman and latterly by Kendall are used fairly frequently with little
thought of the undoubted loss of information which using them implies [90, p. 190].

In 1952 Kruskal and Wallis observed that a disadvantage of rank methods is the
“loss of information about exact magnitudes” [225, p. 601]. In 1954 Bross labeled
rank-order statistics as a “mutation” of conventional statistics, observing that rank
transformations were first suggested by Spearman in 1904 [381], but were so criti-
cized by mathematical statisticians that no one dared use them for 25 years [58].2 In
1968 Borgatta concluded that reality is distorted by assigning ranks and performing
arithmetic operations on a set of numbers that is not isomorphic with the arithmetic
system [47]. In 1973 Feinstein, in an article promoting permutation tests, empha-
sized the loss of information incurred when converting raw scores to rank scores for
the sake of constructing a non-parametric test for analyzing rank scores rather than
the observed raw scores [113, p. 911], and in 1975 Arbuckle and Aiken bemoaned
the conversion of raw observations to rank scores as a “sacrifice of desirable qual-
ities” [13, p. 381]. In 1993 May and Hunter went so far as to label the practice of

2See in this regard, a 2004 article on “Geometric representation of association between categories”
in Psychometrika by Willem Heiser [171, p. 514].
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replacing observations with rank numbers as a “degrading of the original data” [267,
p. 404].

In a strongly worded statement in 2000 in reference to converting raw scores
to rank scores for the Wilcoxon two-sample rank-sum test, Ludbrook and Dud-
ley argued that “although the [Wilcoxon two-sample rank-sum] test was a brilliant
invention by Frank Wilcoxon in the pre-computer era as a way of overcoming the
computation difficulties of executing a permutation test for equality of means, it
should have little relevance today” [255, p. 87] and in 2008 Ludbrook noted that
rank tests are the poor man’s substitute for computer-intensive measures, concluding
“I see no merit in using this class of test on interval-scale data” [251, p. 673]. Finally,
in 2011 Mielke, Berry, and Johnston published an article in Journal of Applied
Statistics on the robustness of various two-sample statistics. Based on computer
simulations, they concluded that permutation methods based on ordinary Euclidean
distances between response measurements performed as well or better than methods
based on converting raw observations to rank scores [309].

For other similar criticisms of rank transformations, see articles by Friedman in
1937 [128], Feinstein in 1973 [113], Still and White in 1981 [388], Gebhard and
Schmitz in 1998 [136], and Lehmann in 2009 [235]. Also, the use of rank trans-
formations can be carried to extremes as noted in the infinite classes of rank tests
described by Mielke in 1972 [281].

5.3 Two-Sample Rank-SumTests

In the 1940s and 1950s, a variety of two-sample rank-sum tests were developed
by a number of different researchers. Among the researchers were chemist Frank
Wilcoxon [429], psychologist Leon Festinger [116], mathematicians Henry Mann
and Donald Whitney [262], experimental psychologist John Whitfield, geneticists
John Haldane and Cedric Smith [164], and statistician Dirk van der Reyden [409].
The tests were essentially variations on a theme and each could easily be transposed
into another [41, pp. 132–152].

In 1945 Frank Wilcoxon, at the time a chemist employed by the American
Cyanamid Company, published a short article in the first volume of Biometrics
Bulletin in which he described a new test: the rank-sum test for two independent
(unpaired) samples [429].3 The Wilcoxon test was limited to two samples of equal
size, i.e., n1 D n2. The following year Leon Festinger, a psychologist and statis-
tician at the Massachusetts Institute of Technology at the time, developed a new
statistical test to evaluate differences between two independent means by first con-
verting the data to rank scores [116]. The test was equivalent to the Wilcoxon
two-sample rank-sum test, but improved upon Wilcoxon’s test as Festinger’s test

3Included in this very brief three-page article was a second new test: the matched-pairs (signed
ranks) rank-sum test for two dependent (paired) samples. The Wilcoxon signed-ranks test is dis-
cussed in Chap. 10, Sect. 10.2.
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could accommodate unequal sample sizes, i.e., n1 6D n2. The two-sample rank-sum
test developed by Festinger went largely unnoticed by statisticians because it was
published in the psychology journal Psychometrika, which was not generally read
by mathematical statisticians.

In 1947 Henry Mann and Donald Whitney, mathematicians and statisticians at
The Ohio State University, published a two-sample rank-sum test that was equiv-
alent to the rank-sum test proposed by Wilcoxon and Festinger,4 but was easier
to calculate, allowed for unequal sample sizes, and permitted larger samples than
Wilcoxon’s test [262]. That same year John Whitfield, an experimental psychologist
at Cambridge University, proposed a measure of rank-order correlation between two
variables wherein one variable was composed of ranks and the other variable was
dichotomous [424]. Whitfield’s proposed rank-sum test was directly related to the
Mann–Whitney and Wilcoxon two-sample rank-sum tests, although Whitfield was
apparently unaware of the Wilcoxon and Mann–Whitney tests as neither is refer-
enced in Whitfield’s 1947 article.

In 1948 John Burdon Sanderson (J.B.S.) Haldane, Professor of Genetics at Uni-
versity College, London, and Cedric Smith, a statistical geneticist at The Francis
Galton Laboratory for National Eugenics,5 proposed a recursively obtained two-
sample rank-sum test for birth-order effects, complete with tables [164]. This was
an exact permutation test designed to test whether the probability of a child inherit-
ing a certain medical condition, such as phenylketonuria, increased with birth order,
and was equivalent to the Wilcoxon two-sample rank-sum test. Like the 1946 Fes-
tinger article published in Psychometrika, the Haldane–Smith paper went largely
unnoticed by statisticians, as it was published in Annals of Eugenics.6

In 1952 Dirk van der Reyden, an experimental statistician for the Tobacco
Research Board of Southern Rhodesia, developed a two-sample rank-sum test that
was equivalent to the tests of Wilcoxon, Festinger, Mann and Whitney, Whitfield,
and Haldane and Smith [409]. Like the Festinger and Haldane–Smith articles, the
van der Reyden article was published in a journal not usually read by statisticians,
the Rhodesia Agricultural Journal, and went unnoticed for many years. Apparently,
the test was independently developed by van der Reyden as the articles by Wilcoxon,
Festinger, Mann and Whitney, Whitfield, and Haldane and Smith were not refer-
enced.7

4Consequently, the test is often referred to as the Wilcoxon–Mann–Whitney (WMW) two-sample
rank-sum test.
5In 1963 The Francis Galton Laboratory for National Eugenics was renamed The Galton Labora-
tory of Human Genetics and Biometry.
6The Annals of Eugenics was renamed the Annals of Human Genetics in 1954.
7As a matter of fact, there are no references cited in the van der Reyden article whatsoever.
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5.4 Example Analyses

Consider g samples with ni rank scores in each sample, i D 1; : : : ; g, and let

N D
gX

iD1

ni :

In this section, three example analyses illustrate a permutation approach to typi-
cal two-sample rank-sum problems. The first example is designed to correspond
to the conventional Wilcoxon–Mann–Whitney two-sample rank-sum test using
a small set of univariate rank scores with v D 2 and treatment-group weights
Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g; the second example analyzes the same
small set of univariate rank scores, but uses v D 1 and treatment-group weights
Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g; and the third example analyzes the same
set of univariate rank scores using v D 1, but adopts a proportional treatment-group
weighting function given by Ci D ni=N for i D 1; : : : ; g.8

5.4.1 Example 1

Consider a two-sample linear rank test for N univariate rank scores with n1 and
n2 rank scores in the first and second samples, respectively. The Wilcoxon–Mann–
Whitney two-sample rank-sum test statistic is given by

W D
n1X

iD1

Ri ;

where Ri denotes the rank function of the ith response measurement and n1 is, typi-
cally, the smaller of the two sample sizes. The identities relating statistic W and the
MRPP test statistic ı were first published by Mielke in 1984 [284, p. 818] and are
given by

ı D 2

N.N � 2/

"
NT � S2 � .NW � n1S/2

n1n2

#
(5.6)

and

W D n1S

N
�
(

n1n2

N2



NT � S2 � N.N � 2/ı

2

� )1=2

; (5.7)

8For detailed descriptions of the Wilcoxon and Mann–Whitney two-sample rank-sum tests, see
discussions by Berry, Johnston, and Mielke [41, pp. 134–137, 143–147].
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where

S D
NX

iD1

Ri and T D
NX

iD1

R2
i :

Note that in Eqs. (5.6) and (5.7), N, S, T, n1, and n2 are all invariant under permuta-
tion.

In the absence of any tied rank scores, it is well known that S and T may simply
be expressed as

S D
NX

iD1

i D N.N C 1/

2
and T D

NX

iD1

i2 D N.N C 1/.2N C 1/

6
;

as explained in any elementary textbook.9 Because of the relationship between
statistics W and ı, the exact probability value of the realized value of W is given
by

P
�
W � WojH0

� D P
�
ı � ıojH0

� D number of ı values � ıo

M
;

where Wo and ıo denote the observed values of W and ı, respectively.
For an example analysis, consider the univariate rank response measurements

listed in Table 5.1, where r D 1, g D 2, N D n1 C n2 D 20, and there are no tied
rank scores. For this application, let n1 D 8 denote the A rank scores and n2 D 12

denote the B rank scores. The data are adapted from Neave and Worthington [317,
pp. 111, 113]. For this first analysis, let v D 2, employing squared Euclidean dis-
tance between the rank scores, and let the treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

Table 5.1 Example univariate rank-score data for a Wilcoxon–Mann–Whitney two-sample
rank-sum test with n1 D 8 A rank scores and n2 D 12 B rank scores

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A A A A A A B A B B A B B B B B B B B B

9Technically, S D N.N C 1/=2 holds for both tied and untied rank scores, but T D ŒN.N C
1/.2N C 1/=6 holds only for untied rank scores.
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to correspond to the Wilcoxon–Mann–Whitney two-sample rank-sum test [262,
429]. Because there are only

M D NŠ

n1Š n2Š
D 20Š

8Š 12Š
D 125;970

possible, equally-likely arrangements of the N D 20 univariate rank scores listed in
Table 5.1, an exact solution is feasible. Following Eq. (5.2) on p. 218 with v D 2,
the N D 20 univariate rank scores listed in Table 5.1 yield g D 2 average distance-
function values of

�1 D 21:7143 and �2 D 33:7576 :

Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 2 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

20 � 2

�
.8 � 1/.21:7143/ C .12 � 1/.33:7576/

	 D 29:0741 :

If all arrangements of the N D 20 observed rank scores listed in Table 5.1 on
p. 224 occur with equal chance, the exact probability value of ıo D 29:0741 com-
puted on the M D 125;970 possible arrangements of the observed data with n1 D 8

A univariate rank scores and n2 D 12 B univariate rank scores preserved for each
arrangement is

P.ı � ıojH0/ D number of ı values � ıo

M
D 24

125;970
D 0:1905�10�3 :

For comparison, the conventional Wilcoxon two-sample rank-sum test on the
N D 20 univariate rank scores listed in Table 5.1 yields an observed Wilcoxon test
statistic value of

Wo D
n1X

iD1

Ri D 1 C 2 C 3 C 4 C 5 C 6 C 8 C 11 D 40 ;

where Wilcoxon’s W is approximately distributed as N.0; 1/ under the null hypoth-
esis as N ! 1. For the rank scores listed in Table 5.1, the mean value of W is

�W D n1.N C 1/

2
D 8.20 C 1/

2
D 84 ;
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the variance of W is

�2
W D n1n2.N C 1/

12
D .8/.12/.20 C 1/

12
D 168 ;

the observed standard score, corrected for continuity, is

zo D Wo � 0:5 � �Wq
�2

W

D 40 � 0:5 � 84p
168

D �3:4332 ;

and the approximate two-tailed N.0; 1/ probability value is P D 0:5965�10�3.
The exact probability value of Wo D 40 is

P.W � WojH0/ D number of W values � Wo

M

D 24

125;970
D 0:1905�10�3 :

Following Eq. (5.5) on p. 219, the exact expected value of the M D 125;970 ı val-
ues is �ı D 70:00 and, following Eq. (5.4) on p. 219, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 29:0741

70:00
D C0:5847 ;

indicating approximately 58 % within-group agreement above that expected by
chance.

The relationships between the MRPP test statistic and Wilcoxon’s W are con-
firmed as follows. For the N D 20 univariate rank scores listed in Table 5.1 with no
tied values, the observed value of S is

So D
NX

iD1

i D N.N C 1/

2
D 20.20 C 1/

2
D 210

and the observed value of T is

To D
NX

iD1

i2 D N.N C 1/.2N C 1/

6
D 20.20 C 1/Œ2.20/ C 1

6
D 2;870 :
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Then, following Eq. (5.6) on p. 223, the observed value of ı for the rank scores listed
in Table 5.1 is

ıo D 2

20.20 � 2/

(
20.2;870/ � .210/2 �

�
20.40/ � 8.210/

	2

.8/.12/

)

D 2

360

�
13;300 � 774;400

96

�
D 29:0741

and, following Eq. (5.7) on p. 223, the observed value of Wilcoxon’s W is

Wo D .8/.210/

20
�
(

.8/.12/

202



.20/.2;870/ � 2102

�20.20 � 2/.29:0741/

2

� ) 1=2

D 84 � �
0:24.8;066:6667/

	1=2 D 40 :

5.4.2 Example 2

For this second analysis of the N D 20 univariate rank response measurements listed
in Table 5.1 on p. 224, let the treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

as in Example 1, but set v D 1 instead of v D 2, employing ordinary Euclidean dis-
tance between the rank scores. Following Eq. (5.2) on p. 218, the N D 20 univariate
rank scores listed in Table 5.1 yield g D 2 average distance-function values of

�1 D 3:9286 and �2 D 4:9091 :

Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

20 � 2

�
.8 � 1/.3:9286/ C .12 � 1/.4:9091/

	 D 4:5278 :
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If all arrangements of the N D 20 observed rank scores listed in Table 5.1 occur
with equal chance, the exact probability value of ıo D 4:5278 computed on the M D
125;970 possible arrangements of the observed data with n1 D 8 A univariate rank
scores and n2 D 12 B univariate rank scores preserved for each arrangement is

P.ı � ıojH0/ D number of ı values � ıo

M
D 24

125;970
D 0:1905�10�3 :

For comparison, the exact probability value based on v D 2, M D 125;970, and
Ci D .ni � 1/=.N � g/ for i D 1; 2 in Example 1 is also P D 0:1905�10�3. No
comparison is made with the conventional Wilcoxon–Mann–Whitney two-sample
rank-sum test as the Wilcoxon–Mann–Whitney two-sample test is undefined for
v D 1.

Following Eq. (5.5) on p. 219, the exact expected value of the M D 125;970 ı val-
ues is �ı D 7:00 and, following Eq. (5.4) on p. 219, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 4:5278

7:00
D C0:3532 ;

indicating approximately 35 % within-group agreement above that expected by
chance.

5.4.3 Example 3

The treatment-group weights given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

are based on degrees of freedom, are holdovers from classical parametric tests,
and are neither necessary nor appropriate for distribution-free permutation methods.
Consequently, for this third analysis of the N D 20 univariate rank response mea-
surements listed in Table 5.1 on p. 224, let the treatment-group weights be given by

Ci D ni

N
; i D 1; : : : ; g ;

i.e., simply weighting each treatment group proportional to its size, and set v D 1,
employing ordinary Euclidean distance between the rank scores, as in Example 2.
Following Eq. (5.2) on p. 218, the N D 20 univariate rank scores listed in Table 5.1
yield g D 2 average distance-function values of

�1 D 3:9286 and �2 D 4:9091 :
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Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni

N
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

20

�
.8/.3:9286/ C .12/.4:9091/

	 D 4:5169 :

If all arrangements of the N D 20 observed rank scores listed in Table 5.1 occur
with equal chance, the exact probability value of ıo D 4:5169 computed on the M D
125;970 possible arrangements of the observed data with n1 D 8 A univariate rank
scores and n2 D 12 B univariate rank scores preserved for each arrangement is

P.ı � ıojH0/ D number of ı values � ıo

M
D 26

125;970
D 0:2064�10�3 :

For comparison, the exact probability values based on v D 2, M D 125;970, and
Ci D .ni � 1/=.N � g/ for i D 1; 2 in Example 1 and v D 1, M D 125;970, and
Ci D .ni � 1/=.N � g/ for i D 1; 2 in Example 2 are both P D 0:1905�10�3. No
comparison is made with the conventional Wilcoxon–Mann–Whitney two-sample
rank-sum test as the Wilcoxon–Mann–Whitney two-sample test is undefined for
both v D 1 and Ci D ni=N, i D 1; : : : ; g.

Following Eq. (5.5) on p. 219, the exact expected value of the M D 125;970 ı val-
ues is �ı D 7:00 and, following Eq. (5.4) on p. 219, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 4:5169

7:00
D C0:3547 ;

indicating approximately 35 % within-group agreement above that expected by
chance.

5.5 MRPP and the Kruskal–Wallis Rank-Sum Test

In 1952 William Kruskal and W. Allen Wallis published an exact multi-sample rank-
sum test in Journal of the American Statistical Association that they denoted as H
[225]. Kruskal and Wallis explained that test statistic H stemmed from two statisti-
cal methods: rank transformations of the original raw response measurements and
permutations of the rank-order statistics.
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Consider g random samples of possibly different sizes and denote the size of the
ith sample by ni, i D 1; : : : ; g. Let

N D
gX

iD1

ni

denote the total number of response measurements, assign rank 1 to the smallest of
the N measurements, rank 2 to the next smallest measurement, and continue on up
to the largest measurement, which is assigned rank N, and let Ri denote the sum of
the rank scores in the ith sample, i D 1; : : : ; g. When there are no tied rank scores,
the Kruskal–Wallis test statistic is given by

H D 12

N.N C 1/

gX

iD1

R2
i

ni
� 3.N C 1/ : (5.8)

Kruskal and Wallis showed that when r D 1 and g D 2, H was equivalent to the
Wilcoxon [429], Festinger [116], Mann–Whitney [262], and Haldane–Smith [164]
two-sample rank-sum tests [225]. In 1953, in an erratum to their 1952 paper, Kruskal
and Wallis documented the equivalence of H with the two-sample rank-sum test
developed by van der Reyden in 1952 [409], which had only recently come to their
attention.

5.6 Example Analyses

In this section, three example analyses illustrate a permutation approach to typ-
ical g-sample rank-sum problems. The first example is designed to correspond
to the conventional Kruskal–Wallis g-sample rank-sum test using a small set of
univariate rank scores with v D 2 and treatment weights Ci D .ni � 1/=.N � g/

for i D 1; : : : ; g; the second example analyzes the same small set of univariate
rank scores, but uses v D 1 and treatment-group weights Ci D .ni � 1/=.N � g/

for i D 1; : : : ; g; and the third example analyzes the same set of univariate rank
scores using v D 1, but adopts a proportional treatment-group weighting given by
Ci D ni=N for i D 1; : : : ; g.

5.6.1 Example 1

Consider a g-sample rank-sum test for N rank scores with ni rank scores in
each of the g samples, i D 1; : : : ; g. The functional relationships between the
Kruskal–Wallis test statistic H and the MRPP test statistic ı, as defined in Eq. (5.1)
on p. 217, are given by

ı D
2

�
T �

�
S

6

h
H C 3.N C 1/

i�

N � g
(5.9)
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and

H D 6

S



T � ı

2
.N � g/

�
� 3.N C 1/ ; (5.10)

where, if no rank scores are tied, S and T may simply be expressed as

S D
NX

iD1

i D N.N C 1/

2
and T D

NX

iD1

i2 D N.N C 1/.2N C 1/

6
:

Note that in Eqs. (5.9) and (5.10), S, T, N, and g are invariant under permutation,
along with the constants 2, 3, and 6.

Because of the relationship between statistics H and ı, the exact probability value
of the realized value of H is given by

P
�
H � HojH0

� D P
�
ı � ıojH0

� D number of ı values � ıo

M
;

where Ho and ıo denote the observed values of H and ı, respectively.
For an example analysis, consider the univariate rank response measurement

scores listed in Fig. 5.1 where r D 1, g D 3, n1 D n2 D n3 D 6, N D n1 C n2 C
n3 D 18, and there are no tied rank scores. The data are adapted from Kenny [213,
p. 317]. For this first analysis, let v D 2, employing squared Euclidean distance
between the rank scores, and let the treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

to correspond to the Kruskal–Wallis g-sample rank-sum test.
Because there are only

M D NŠ

n1Š n2Š n3Š
D 18Š

.6Š/3
D 6;402;373;705;728;000

373;248;000
D 17;153;136

Fig. 5.1 Ranking of three
treatments with r D 1, g D 3,
n1 D n2 D n3 D 6, and
N D n1 C n2 C n3 D 18

Treatment

1 2 3

4 2 17

7 3 14

10 11 12

15 1 13

9 8 16

18 5 6

Total 63 30 78
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possible, equally-likely arrangements of the N D 18 univariate rank scores listed
in Fig. 5.1, an exact solution is feasible. Following Eq. (5.2) on p. 218, the N D
18 univariate rank scores listed in Fig. 5.1 yield g D 3 average distance-function
values of

�1 D 53:40 ; �2 D 29:60 ; and �3 D 30:40 :

Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 2 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2; 3 ;

is

ıo D
gX

iD1

Ci�i D 1

18 � 3

�
.6 � 1/.53:40/ C .6 � 1/.29:60/

C .6 � 1/.30:40/
	 D 37:80 :

If all arrangements of the N D 18 observed rank scores listed in Fig. 5.1 occur
with equal chance, the exact probability value of ıo D 37:80 computed on the M D
17;153;136 possible arrangements of the observed data with n1 D n2 D n3 D 6 uni-
variate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 376;704

17;153;136
D 0:0220 :

For comparison, the totals of the rank scores for Treatments 1, 2, and 3 given
in Fig. 5.1 are 63, 30, and 78, respectively, and following Eq. (5.8) on p. 230, the
observed value of H is

Ho D 12

18.18 C 1/

�
632

6
C 302

6
C 782

6

�
� 3.18 C 1/ D 7:0526 ;

where H is approximately distributed as chi-squared under the null hypothesis with
g � 1 D 3 � 1 D 2 degrees of freedom. Under the null hypothesis, the observed
value of Ho D 7:0526 yields an approximate probability value of P D 0:0294. The
exact probability value of Ho D 7:0526 is

P
�
H � HojH0

� D number of H values � Ho

M
D 376;704

17;153;136
D 0:0220 :
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Note that whereas the Kruskal–Wallis test statistic H, as defined in Eq. (5.8) on
p. 230, does not allow for tied rank scores, ı as defined in Eq. (5.1) on p. 217 auto-
matically accommodates tied rank scores.10

Following Eq. (5.5) on p. 219, the exact expected value of the M D 17;153;136

ı values is �ı D 57:00 and, following Eq. (5.4) on p. 219, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 37:80

57:00
D C0:3368 ;

indicating approximately 34 % within-group agreement above that expected by
chance.

The relationships between statistics ı and H are confirmed as follows. For the
univariate rank scores listed in Fig. 5.1 with no tied values, the observed value of S is

So D
NX

iD1

i D N.N C 1/

2
D 18.18 C 1/

2
D 171 ;

and the observed value of T is

To D
NX

iD1

i2 D N.N C 1/.2N C 1/

6
D 18.18 C 1/Œ.2/.18/ C 1

6
D 2;109 :

Then following Eq. (5.9) on p. 230, the observed value of the MRPP test statistic for
the univariate rank scores listed in Fig. 5.1 is

ıo D
2

�
2;109 �

�
171

6

h
7:0526 C 3.18 C 1/

i�

18 � 3
D 567

15
D 37:80

and, following Eq. (5.10) on p. 231, the observed value of the Kruskal–Wallis test
statistic is

Ho D 6

171



2;109 � 37:80

2
.18 � 3/

�
� 3.18 C 1/

D .0:0351/.1825:50/ � 57 D 7:0526 :

10Many textbooks present rather cumbersome adjustments, permitting H to accommodate tied rank
scores.
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5.6.2 Example 2

For this second example of the univariate rank response measurements listed in
Fig. 5.1, let the treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

as in Example 1, but set v D 1 instead of v D 2, employing ordinary Euclidean dis-
tance between the rank scores. Following Eq. (5.2) on p. 218, the N D 18 univariate
rank scores listed in Fig. 5.1 yield g D 3 average distance-function values of

�1 D 6:3333 ; �2 D 4:6667 ; and �3 D 4:5333 :

Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2; 3 ;

is

ıo D
gX

iD1

Ci�i D 6 � 1

18 � 3

�
6:3333 C 4:6667 C 4:5333

� D 5:1778 :

If all arrangements of the N D 18 observed rank scores listed in Fig. 5.1 occur
with equal chance, the exact probability value of ıo D 5:1778 computed on the M D
17;153;136 possible arrangements of the observed data with n1 D n2 D n3 D 6 uni-
variate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 547;662

17;153;136
D 0:0319 :

For comparison, the exact probability value based on v D 2, M D 17;153;136, and
Ci D .ni � 1/=.N � g/ for i D 1; 2; 3 in Example 1 is P D 0:0220. No compari-
son is made with the conventional Kruskal–Wallis g-sample rank-sum test as the
Kruskal–Wallis test is undefined for v D 1.

Following Eq. (5.5) on p. 219, the exact expected value of the M D 17;153;136

ı values is �ı D 6:3333 and, following Eq. (5.4) on p. 219, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 5:1778

6:3333
D C0:1825 ;

indicating approximately 18 % within-group agreement above that expected by
chance.
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5.6.3 Example 3

For this third example, let the treatment-group weights be given by

Ci D ni

N
; i D 1; : : : ; g ;

simply weighting each treatment group proportional to its size, and set v D 1,
employing ordinary Euclidean distance between the rank scores, as in Example 2.
Following Eq. (5.2) on p. 218, the N D 18 univariate rank scores listed in Fig. 5.1
on p. 231 yield g D 3 average distance-function values of

�1 D 6:3333 ; �2 D 4:6667 ; and �3 D 4:5333 :

Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni

N
; i D 1; 2; 3 ;

is

ıo D
gX

iD1

Ci�i D 6

18

�
6:3333 C 4:6667 C 4:5333

� D 5:1778 :

If all arrangements of the N D 18 observed rank scores listed in Fig. 5.1 occur
with equal chance, the exact probability value of ıo D 5:1778 computed on the M D
17;153;136 possible arrangements of the observed data with n1 D n2 D n3 D 6 uni-
variate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 547;662

17;153;136
D 0:0319 :

For comparison, the exact probability values based on v D 2, M D 17;153;136, and
Ci D .ni � 1/=.N � g/ for i D 1; 2; 3 in Example 1 and v D 1, M D 17;153;136,
and Ci D .ni � 1/=.N � g/ for i D 1; 2; 3 in Example 2 are P D 0:0220 and P D
0:0319, respectively. No comparison is made with the conventional Kruskal–Wallis
g-sample rank-sum test as the Kruskal–Wallis test is undefined for both v D 1 and
Ci D ni=N, i D 1; : : : ; g.

Note that the results in Example 2 with Ci D .ni � 1/=.N � g/ and v D 1 are
identical to the results of Example 3 with Ci D ni=N and v D 1. When n1 D n2 D
� � � D ng, the two weighting functions yield the same result. Thus, for the example
data listed in Fig. 5.1 with g D 3 and n1 D n2 D n3 D 6,

Ci D ni � 1

N � g
D 6 � 1

18 � 3
D 0:3333 and Ci D ni

N
D 6

18
D 0:3333

for i D 1; : : : ; g.
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Following Eq. (5.5) on p. 219, the exact expected value of the M D 17;153;136

ı values is �ı D 6:3333 and, following Eq. (5.4) on p. 219, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 5:1778

6:3333
D C0:1825 ;

indicating approximately 18 % within-group agreement above that expected by
chance.

5.7 Three Two-Sample Classes of Rank Tests

In 1972 P.W. Mielke introduced three classes of two-sample tests based on power-
of-rank functions [281]. The three classes of tests were described as asymptotically
optimum against either scale or location alternatives for specific distributions and
designated as ANs, BNs, and CNs, where s denoted the power to which the rank
scores were to be raised. Following Mielke, in all three cases let X1; : : : ; Xn1 and
Y1; : : : ; Yn2 denote exchangeable values from N D n1 C n2 objects that can be
arranged in exactly

M D NŠ

n1Š n2Š

ways [281].
Function ANs is defined as

ANs D
NX

iD1

Rs
i ZNi ; (5.11)

where Rs
i is the rank function of the ith response measurement, s > 0, and ZNi D 1

or 0 if the ith smallest value in the combined sample of X and Y values is an X or Y,
respectively. Mielke showed that the Wilcoxon two-sample rank-sum test [429] and
the Taha two-sample sum-of-squared-ranks test [393] were associated with AN1 and
AN2, respectively [281, p. 850].

Function BNs is defined as

BNs D
NX

iD1

ˇ̌
ˇ̌Ri � N C 1

2

ˇ̌
ˇ̌
s

ZNi ; (5.12)

where Ri is the rank function of the ith response measurement, s > 0, and

N C 1

2
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is the median value of the consecutive integers, 1; 2; : : : ; N. Mielke demonstrated
that the Ansari–Bradley rank-sum test for dispersion [10] and the Mood rank-
sum test for dispersion [312] were associated with BN1 and BN2, respectively
[281, p. 850].

Function CNs is defined as

CNs D
NX

iD1

h.Ri; N; s/ ZNi ; (5.13)

where

h.Ri; N; s/ D

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

C
ˇ̌
ˇ̌i � N C 1

2

ˇ̌
ˇ̌
s

if i >
N C 1

2
,

0 if i D N C 1

2
,

�
ˇ̌
ˇ̌i � N C 1

2

ˇ̌
ˇ̌
s

if i <
N C 1

2
,

(5.14)

Ri is the rank function of the ith response measurement, and s > �1. Mielke showed
that the Brown–Mood median test [59], the Wilcoxon two-sample rank-sum test
[429], and the Mielke two-sample sum-of-squared-ranks test [282] were associated
with CN0, CN1, and CN2, respectively [281, p. 852].11

5.8 MRPP and Two-Sample Power-of-Rank Functions

Let

H D
NX

iD1

f .i/ZNi ;

where f .i/ is a score function of the rank-order value of Xi from below, relative to the
finite population of N univariate response measurements. If H variously represents
AN1, AN2, BN1, BN2, CN0, CN1, and CN2, then the functional relationships between
the MRPP test statistic ı and H are given by

ı D 2

N.N � 2/

"
NT � S2 � .NH � n1S/2

n1n2

#
(5.15)

11Two constants have been deleted from the original formulae in Mielke [281] with no loss of
generality, as both constants are invariant under permutation.
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and

H D n1S

N
�
(

n1n2

N2



NT � S2 � N.N � 2/ı

2

� )1=2

; (5.16)

where

S D
NX

iD1

f .i/ and T D
NX

iD1

�
f .i/

	2
:

Let ni denote the number of univariate response measurements in each of g sam-
ples, i D 1; : : : ; g. Then, following Eq. (5.5) on p. 219, the arithmetic average of
the ı values calculated on all

M D NŠ
gY

iD1

niŠ

possible arrangements of the observed response measurements is given by

�ı D 1

M

MX

iD1

ıi (5.17)

and, following Eq. (5.4) on p. 219, a chance-corrected within-group coefficient of
effect size is given by

< D 1 � ı

�ı

: (5.18)

5.9 Example ANs Analyses with s D 1

Consider g D 2 samples with n1 rank scores in the first sample, n2 rank scores in the
second sample, and N D n1 C n2. In this section, three example analyses illustrate
the ANs rank function test with s D 1. The first example is designed to correspond
to the conventional Wilcoxon two-sample rank-sum test using a small set of uni-
variate rank scores with v D 2 and treatment-group weights Ci D .ni � 1/=.N � g/

for i D 1; : : : ; g; the second example analyzes the same small set of univariate
rank scores, but uses v D 1 and treatment-group weights Ci D .ni � 1/=.N � g/ for
i D 1; : : : ; g; and the third example analyzes the same set of univariate rank scores
using v D 1, but adopts a proportional treatment-group weighting function given by
Ci D ni=N for i D 1; : : : ; g.
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Rank: 1 2 3 4 5 6 7 8 9

Sample: A A B A A B B B B

Fig. 5.2 Example univariate rank-score data for two-sample rank tests with n1 D 4, n2 D 5, and
N D n1 C n2 D 9

5.9.1 Example 1

Consider the small set of univariate rank scores listed in Fig. 5.2 composed of two
samples labeled A and B. For convenience let n1 denote the smaller of the two sam-
ple sizes; in this case, sample A. For this example analysis, n1 D 4, n2 D 5, and
N D n1 C n2 D 9.

The Wilcoxon two-sample rank-sum test statistic is simply the sum of the rank
scores in the smaller of the two sample sizes; in this case, n1 [429]. For the univariate
rank scores listed in Fig. 5.2, the observed value of W is

Wo D
n1X

iD1

Ri D 1 C 2 C 4 C 5 D 12 ; (5.19)

where Ri denotes a rank score for variable A and n1 D 4 is the smaller of the two
sample sizes. For comparison, consider ANs with s D 1, where following Eq. (5.11)
on p. 236, the observed value of AN1 is

AN1o D
NX

iD1

R1
i ZNi

D .11/.1/ C .21/.1/ C .31/.0/ C .41/.1/ C .51/.1/

C .61/.0/ C .71/.0/ C .81/.0/ C .91/.0/

D 1 C 2 C 0 C 4 C 5 C 0 C 0 C 0 C 0 D 12 : (5.20)

It is readily apparent from Eqs. (5.19) and (5.20) that Mielke’s AN1 and Wilcoxon’s
W are identical.

Following Eqs. (5.15) on p. 237 and (5.16) on p. 238, the functional relationships
between statistics AN1 and ı are given by

ı D 2

N.N � 2/

"
NT � S2 � .NAN1 � n1S/2

n1n2

#
(5.21)

and

AN1 D n1S

N
�
(

n1n2

N



NT � S2 � N.N � 2/ı

2

� )1=2

; (5.22)
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where

S D
NX

iD1

Ri ; T D
NX

iD1

R2
i ;

and Ri is the rank function of the ith response measurement, i D 1; : : : ; N. Thus,
for the univariate rank scores listed in Fig. 5.2, the observed values of S and T are

So D 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 D 45

and

To D 12 C 22 C 32 C 42 C 52 C 62 C 72 C 82 C 92 D 285 ;

respectively. If no rank scores are tied, then S and T may simply be expressed as

S D
NX

iD1

i D N.N C 1/

2
and T D

NX

iD1

i2 D N.N C 1/.2N C 1/

6
:

Utilizing the univariate rank scores listed in Fig. 5.2, where there are no tied rank
scores, the relationships between statistics ı and AN1 can be confirmed. Thus, the
observed values of S and T are

So D
NX

iD1

i D 9.9 C 1/

2
D 90

2
D 45

and

To D
NX

iD1

i2 D 9.9 C 1/Œ2.9/ C 1

6
D 1;710

6
D 285 ;

respectively. Then, following Eq. (5.21) on p. 239, the observed value of the MRPP
test statistic for the univariate rank scores listed in Fig. 5.2 is

ıo D 2

9.9 � 2/

(
9.285/ � .45/2 �

�
9.12/ � 4.45/

	2

.4/.5/

)

D 2

63

�
540 � 5;184

20

�
D 8:9143
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and, following Eq. (5.22) on p. 239, the observed value of AN1 is

AN1o D .4/.45/

9
�
(

.4/.5/

92



9.285/ � 452 � 9.9 � 2/.8:9143/

2

� )1=2

D 20 � Œ0:2469.540 � 280:8005/1=2 D 20 � 8 D 12 :

Because of the relationship between statistics AN1 and ı, the exact probability
value of the realized value of AN1 is given by

P
�
AN1 � AN1ojH0

� D P
�
ı � ıojH0

� D number of ı values � ıo

M
;

where AN1o and ıo denote the observed values of AN1 and ı, respectively. In addition,
because of the relationships among W, AN1, and ı, the exact probability value of
Wilcoxon’s W test statistic is given by

P
�
W � WojH0

� D P
�
ı � ıojH0

� D number of ı values � ıo

M
;

where Wo and ıo denote the observed values of W and ı, respectively.
Consider again the univariate rank response measurements listed in Fig. 5.2

where r D 1, g D 2, n1 D 4, n2 D 5, N D n1 C n2 D 9, and there are no tied
rank scores. In this application, let v D 2, employing squared Euclidean distance
between the rank scores, and let the treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

to correspond to the Wilcoxon two-sample rank-sum test. Because there are only

M D NŠ

n1Š n2Š
D 9Š

4Š 5Š
D 126

possible, equally-likely arrangements of the N D 9 rank scores, an exact solution is
preferred. Following Eq. (5.2) on p. 218, the N D 9 univariate rank scores listed in
Fig. 5.2 yield g D 2 average distance-function values of

�1 D 6:6667 and �2 D 10:60 :

Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 2 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;
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is

ıo D
gX

iD1

Ci�i D 1

9 � 2

�
.4 � 1/.6:6667/ C .5 � 1/.10:60/

	 D 8:9143 :

If all arrangements of the N D 9 observed rank scores listed in Fig. 5.2 occur with
equal chance, the exact probability value of ıo D 8:9143 computed on the M D 126

possible arrangements of the observed data with n1 D 4 A univariate rank scores
and n2 D 5 B univariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 8

126
D 0:0635 :

For comparison, the conventional Wilcoxon two-sample rank-sum test computed
on the univariate rank scores listed in Fig. 5.2 yields an observed Wilcoxon test
statistic value of

Wo D
n1X

iD1

Ri D 1 C 2 C 4 C 5 D 12

and the exact probability value of Wo D 12 is

P
�
W � WojH0

� D number of W values � Wo

M
D 8

126
D 0:0635 :

Alternatively, test statistic W is approximately distributed as N.0; 1/ under the
null hypothesis as N ! 1. For the rank scores listed in Fig. 5.2, the mean value
of W is

�W D n1.N C 1/

2
D 4.9 C 1/

2
D 20 ;

the variance of W is

�2
W D n1n2.N C 1/

12
D .4/.5/.9 C 1/

12
D 16:6667 ;

the observed standard score is

zo D Wo � �Wq
�2

W

D 12 � 20p
16:6667

D �1:9596 ;

and the approximate two-tailed N.0; 1/ probability value is P D 0:0500.
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Following Eq. (5.17) on p. 238, the exact expected value of the M D 126 ı values
is �ı D 15:00 and, following Eq. (5.18) on p. 238, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 8:9143

15:00
D C0:4057 ;

indicating approximately 41 % within-group agreement above that expected by
chance.

5.9.2 Example 2

As discussed in Chap. 2, permutation statistical tests and measures are distribution-
free, data-dependent, and non-parametric; consequently, they require no distribu-
tional assumptions and make no estimates of population parameters. Thus, it is not
necessary to set v D 2 and thereby square the differences between the rank scores.
While conventional tests and measures that assume normality must estimate the
two parameters of the normal distribution, �x and �2

x , both of which are based on
squared deviations, permutation tests and measures do not assume normality and
are not restricted to v D 2, whose corresponding distance function is not metric.
A distance function based on v D 1 is an attractive alternative to v D 2 as it is a
metric, satisfies the triangle inequality, is robust to extreme values, provides an easy
to understand Euclidean distance between the rank scores, and ensures that the data
and analysis spaces are congruent. Thus, for this second analysis of the univariate
rank scores listed in Fig. 5.2 on p. 239, replicated in Fig. 5.3 for convenience, the
distance function is set to v D 1.

For this second example of the univariate rank scores, let the treatment-group
weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

as in Example 1, but set v D 1 instead of v D 2, employing ordinary Euclidean
distance between the rank scores.

Rank: 1 2 3 4 5 6 7 8 9

Sample: A A B A A B B B B

Fig. 5.3 Example univariate rank-score data for two-sample rank tests with n1 D 4, n2 D 5, and
N D n1 C n2 D 9
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Following Eq. (5.2) on p. 218, the N D 9 univariate rank scores listed in Fig. 5.3
yield g D 2 average distance-function values of

�1 D 2:3333 and �2 D 2:80 :

Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

9 � 2

�
.4 � 1/.2:3333/ C .5 � 1/.2:80/

	 D 2:60 :

If all arrangements of the N D 9 observed rank scores listed in Fig. 5.3 occur with
equal chance, the exact probability value of ıo D 2:60 computed on the M D 126

possible arrangements of the observed data with n1 D 4 A univariate rank scores
and n2 D 5 B univariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 6

126
D 0:0476 :

For comparison, the exact probability value based on v D 2, M D 126, and Ci D
.ni � 1/=.N � g/ for i D 1; 2 in Example 1 is P D 0:0635. No comparison is made
with the conventional Wilcoxon two-sample rank-sum test as Wilcoxon’s two-
sample test is undefined for v D 1.

Following Eq. (5.17) on p. 238, the exact expected value of the M D 126 ı values
is �ı D 3:3333 and, following Eq. (5.18) on p. 238, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 2:60

3:3333
D C0:2200 ;

indicating 22 % within-group agreement above that expected by chance.

5.9.3 Example 3

As discussed in Chap. 3, the treatment-group weighting function given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

is, in a permutation context, an unnecessary artifact left over from classical tests
and is not appropriate for a distribution-free permutation test, as degrees of freedom
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are not applicable to permutation methods, except when validating a corresponding
statistical test, such as Wilcoxon’s two-sample rank-sum test.

For this third example of the univariate rank response measurements listed in
Fig. 5.3, let the treatment-group weights be given by

Ci D ni

N
; i D 1; : : : ; g ;

simply weighting each treatment group proportional to its size, and set v D 1,
employing ordinary Euclidean distance between the rank scores, as in Example 2.

Following Eq. (5.2) on p. 218, the N D 9 univariate rank scores listed in Fig. 5.3
yield g D 2 average distance-function values of

�1 D 2:3333 and �2 D 2:80 :

Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni

N
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

9

�
.4/.2:3333/ C .5/.2:80/

	 D 2:5926 :

If all arrangements of the N D 9 observed rank scores listed in Fig. 5.3 occur with
equal chance, the exact probability value of ıo D 2:5926 computed on the M D 126

possible arrangements of the observed data with n1 D 4 A univariate rank scores
and n2 D 5 B univariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 6

126
D 0:0476 :

For comparison, the exact probability values based on v D 2, M D 126, and
Ci D .ni � 1/=.N � g/ for i D 1; 2 in Example 1 and v D 1, M D 126, and Ci D
.ni � 1/=.N � g/ for i D 1; 2 in Example 2 are P D 0:0635 and P D 0:0476,
respectively. No comparison is made with the conventional Wilcoxon two-sample
rank-sum test as Wilcoxon’s two-sample test is undefined for both v D 1 and
Ci D ni=N, i D 1; : : : ; g.12

12Note that the results in Examples 2 and 3 are nearly identical. This occurs whenever n1 and n2

are approximately the same and, also, Ci D .ni � 1/=.N � g/ and Ci D ni=N are equivalent when
n1 D n2.
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Following Eq. (5.17) on p. 238, the exact expected value of the M D 126 ı values
is �ı D 3:3333 and, following Eq. (5.18) on p. 238, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 2:5926

3:3333
D C0:2222 ;

indicating approximately 22 % within-group agreement above that expected by
chance.

5.10 Example ANs Analyses with s D 2

Consider g D 2 samples with n1 rank scores in the first sample, n2 rank scores in the
second sample, and N D n1 C n2. In this section, three example analyses illustrate
the ANs rank function test with s D 2. The first example is designed to correspond
to the conventional Taha two-sample sum-of-squared-ranks test using a small set of
univariate rank scores with v D 2 and treatment-group weights Ci D .ni � 1/=.N �
g/ for i D 1; : : : ; g; the second example analyzes the same small set of univariate
rank scores, but uses v D 1 and treatment-group weights Ci D .ni � 1/=.N � g/ for
i D 1; : : : ; g; and the third example analyzes the same set of univariate rank scores
using v D 1, but adopts a proportional treatment-group weighting function given by
Ci D ni=N for i D 1; : : : ; g.

5.10.1 Example 1

In 1964 Mohamed A.H. Taha developed a two-sample test statistic based on squared
rank scores, given by

L D
n1X

iD1

R2
i ;

where n1 denotes the smaller of the two sample sizes and R2
i denotes a squared rank

score for i D 1; : : : ; n1 [393]. Consider again the univariate rank scores listed in
Fig. 5.2 on p. 239, replicated in Fig. 5.4 for convenience, where n1 D 4, n2 D 5, and
N D 9. Then, the observed value of Taha’s rank-sum test statistic is

Lo D
n1X

iD1

R2
i D 12 C 22 C 42 C 52 D 46 ;

where n1 D 4 is the smaller of the two sample sizes and R2
i denotes a squared rank

score for i D 1; : : : ; n1.
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Rank: 1 2 3 4 5 6 7 8 9

Sample: A A B A A B B B B

Fig. 5.4 Example univariate rank-score data for two-sample rank tests with n1 D 4, n2 D 5, and
N D n1 C n2 D 9

For comparison, following Eq. (5.11) on p. 236, consider ANs with s D 2, where
the observed value of AN2 is

AN2o D
NX

iD1

R2
i ZNi

D .12/.1/ C .22/.1/ C .32/.0/ C .42/.1/

C .52/.1/ C .62/.0/ C .72/.0/ C .82/.0/ C .92/.0/

D 1 C 4 C 0 C 16 C 25 C 0 C 0 C 0 C 0 D 46 :

Thus, Mielke’s AN2 and Taha’s L are shown to be identical.
Following Eqs. (5.15) on p. 237 and (5.16) on p. 238, the functional relationships

between statistics AN2 (and L) and ı are given by

ı D 2

N.N � 2/

"
NT � S2 � .NAN2 � n1S/2

n1n2

#
(5.23)

and

AN2 D n1S

N
�
(

n1n2

n2



NT � S2 � N.N � 2/ı

2

� )1=2

; (5.24)

where

S D
NX

iD1

R2
i ; T D

NX

iD1

�
R2

i

�2 D
NX

iD1

R 4
i ;

and Ri is the rank function of the ith response measurement. Thus, for the univariate
rank scores listed in Fig. 5.4, the observed values of S and T are

So D 12 C 22 C 32 C 42 C 52 C 62 C 72 C 82 C 92

D 1 C 4 C 9 C 16 C 25 C 36 C 49 C 64 C 81 D 285
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and

To D 14 C 24 C 34 C 44 C 54 C 64 C 74 C 84 C 94

D 1 C 16 C 81 C 256 C 625 C 1;296 C 2;401 C 4;096 C 6;561 D 15;333 :

If no rank scores are tied, then S and T may simply be expressed as

S D
NX

iD1

i2 D N.N C 1/.2N C 1/

6
(5.25)

and

T D
NX

iD1

i4 D N.N C 1/.2N C 1/.3N2 C 3N � 1/

30
: (5.26)

Utilizing the univariate rank scores listed in Fig. 5.4, where there are no tied
rank scores, the relationships between statistics ı and AN2 can be confirmed. Thus,
following Eq. (5.25), the observed value of S is

So D
NX

iD1

i2 D 9.9 C 1/Œ2.9/ C 1

6
D 1;710

6
D 285

and, following Eq. (5.26), the observed value of T is

To D
NX

iD1

i4 D 9.9 C 1/Œ2.9/ C 1Œ3.92/ C 3.9/ � 1

30
D 459;990

30
D 15;333 :

Then, following Eq. (5.23) on p. 247, the observed value of the MRPP test statistic
for the univariate rank scores listed in Fig. 5.4 is

ıo D 2

9.9 � 2/

(
9.15;333/ � .285/2 �

�
9.46/ � 4.285/

	2

.4/.5/

)

D 2

63

�
56;772 � 527;076

20

�
D 965:6571



5.10 Example ANs Analyses with s D 2 249

and, following Eq. (5.24) on p. 247, the observed value of AN2 is

AN2o D .4/.285/

9
�
(

.4/.5/

92



.9/.15;333/ � 2852

� 9.9 � 2/.965:6571/

2

� )1=2

D 126:6667 � �
.0:2469/.26;303:8013/

	1=2

D 46 :

Because of the relationship between statistics AN2 and ı, the exact probability
value of the realized value of AN2 is given by

P
�
AN2 � AN2ojH0

� D P
�
ı � ıojH0

� D number of ı values � ıo

M
;

where AN2o and ıo denote the observed values of AN2 and ı, respectively. In addition,
because of the relationships among L, AN2, and ı, the exact probability value of
Taha’s L test statistic is given by

P
�
L � LojH0

� D P
�
ı � ıojH0

� D number of ı values � ıo

M
;

where Lo and ıo denote the observed values of L and ı, respectively.
Consider again the univariate rank response measurements listed in Fig. 5.4

where r D 1, g D 2, n1 D 4, n2 D 5, N D n1 C n2 D 9, and there are no tied
rank scores. In this application, let v D 2, employing squared Euclidean distance
between the rank scores, and let the treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

to correspond to the Taha two-sample sum-of-squared-ranks test [393]. Because
there are only

M D NŠ

n1Š n2Š
D 9Š

4Š 5Š
D 126

possible, equally-likely arrangements of the N D 9 rank scores, an exact solution is
preferred. Following Eq. (5.2) on p. 218, the N D 9 univariate rank scores listed in
Fig. 5.4 yield g D 2 average distance-function values of

�1 D 246:00 and �2 D 1;505:40 :
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Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 2 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

9 � 2

�
.4 � 1/.246:00/ C .5 � 1/.1;505:40/

	 D 965:6571 :

If all arrangements of the N D 9 observed rank scores listed in Fig. 5.4 occur
with equal chance, the exact probability value of ıo D 965:6571 computed on the
M D 126 possible arrangements of the observed data with n1 D 4 A univariate rank
scores and n2 D 5 B univariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 6

126
D 0:0476 :

For comparison, a conventional Taha two-sample sum-of-squared-ranks test
computed on the univariate rank scores listed in Fig. 5.4 yields an observed Taha
test statistic value of

Lo D
n1X

iD1

R2
i D 12 C 22 C 42 C 52 D 46

and the exact probability value of Lo D 46 is

P.L � LojH0/ D number of L values � Lo

M
D 6

126
D 0:0476 :

Following Eq. (5.17) on p. 238, the exact expected value of the M D 126 ı values
is �ı D 1;577:00 and, following Eq. (5.18) on p. 238, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 965:6571

1;577:00
D C0:3877 ;

indicating approximately 39 % within-group agreement above that expected by
chance.
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Rank: 1 2 3 4 5 6 7 8 9

Sample: A A B A A B B B B

Fig. 5.5 Example univariate rank-score data for two-sample rank tests with n1 D 4, n2 D 5, and
N D n1 C n2 D 9

5.10.2 Example 2

For this second analysis of the univariate rank response measurements listed in
Fig. 5.2 on p. 239, replicated in Fig. 5.5 for convenience, let the treatment-group
weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

as in Example 1, but set v D 1 instead of v D 2, employing ordinary Euclidean
distance between the rank scores.

Following Eq. (5.2) on p. 218, the N D 9 univariate rank scores listed in Fig. 5.5
yield g D 2 average distance-function values of

�1 D 14:00 and �2 D 34:40 :

Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

9 � 2

�
.4 � 1/.14:00/ C .5 � 1/.34:40/

	 D 25:6571 :

If all arrangements of the N D 9 observed rank scores listed in Fig. 5.5 occur
with equal chance, the exact probability value of ıo D 25:6571 computed on the
M D 126 possible arrangements of the observed data with n1 D 4 A univariate rank
scores and n2 D 5 B univariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 6

126
D 0:0476 :

For comparison, the exact probability value based on v D 2, M D 126, and
Ci D .ni � 1/=.N � g/ for i D 1; 2 in Example 1 is also P D 0:0476. No
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comparison is made with the conventional Taha two-sample squared-ranks test
as Taha’s two-sample test is undefined for v D 1.

Following Eq. (5.17) on p. 238, the exact expected value of the M D 126 ı values
is �ı D 33:3333 and, following Eq. (5.18) on p. 238, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 25:6571

33:3333
D C0:2303 ;

indicating approximately 23 % within-group agreement above that expected by
chance.

5.10.3 Example 3

The treatment-group weighting function given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

is essential for classical tests, but is not required for a permutation test, as degrees
of freedom need never enter into distribution-free permutation methods. Thus, for
this third analysis of the univariate rank scores listed in Fig. 5.5, the treatment-group
weighting function is set to

Ci D ni

N
; i D 1; : : : ; g ;

simply weighting each treatment group proportional to its size, and setting v D 1,
employing ordinary Euclidean distance between the rank scores, as in Example 2.
Following Eq. (5.2) on p. 218, the N D 9 univariate rank scores listed in Fig. 5.5
yield g D 2 average distance-function values of

�1 D 14:00 and �2 D 34:40 :

Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni

N
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

9

�
.4/.14:00/ C .5/.34:40/

	 D 25:3333 :
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If all arrangements of the N D 9 observed rank scores listed in Fig. 5.5 occur
with equal chance, the exact probability value of ıo D 25:3333 computed on the
M D 126 possible arrangements of the observed data with n1 D 4 A univariate rank
scores and n2 D 5 B univariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 5

126
D 0:0397 :

For comparison, the exact probability values based on v D 2, M D 126, and Ci D
.ni � 1/=.N � g/ for i D 1; 2 in Example 1 and v D 1, M D 126, and Ci D .ni �
1/=.N � g/ for i D 1; 2 in Example 2 are both P D 0:0476. No comparison is made
with the conventional Taha two-sample sum-of-squared-ranks test as Taha’s two-
sample test is undefined for both v D 1 and Ci D ni=N, i D 1; : : : ; g.

Following Eq. (5.17) on p. 238, the exact expected value of the M D 126 ı values
is �ı D 33:6077 and, following Eq. (5.18) on p. 238, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 25:3333

33:6077
D C0:2462 ;

indicating approximately 25 % within-group agreement above that expected by
chance.

5.11 Example BNs Analyses with s D 1

In 1960 Sidney Siegel and John Tukey published a sum-of-ranks test for unpaired
samples in Journal of the American Statistical Association [376]. The procedure for
the Siegel–Tukey test for two samples is:

1. Arrange the observations in the combined data set from smallest to largest.
2. Assign rank 1 to the smallest observation, rank 2 to the largest observation, rank

3 to the next largest observation, rank 4 to the next smallest observation, rank 5
to the next smallest observation, and so on.

3. Apply the Wilcoxon two-sample rank-sum test using the Siegel–Tukey alternat-
ing ranking scheme.

4. Evaluate the resulting rank-sum using tables of the Wilcoxon two-sample rank-
sum test.

An inherent difficulty with the Siegel–Tukey sum-of-ranks test is that the ranking
could just as well start its alternating pattern with the largest observation receiv-
ing a rank of 1, instead of the smallest observation. In general, these two ranking
procedures yield different values for the Wilcoxon test statistic.
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In 1960 Abdur R. Ansari and Ralph A. Bradley, both at the Virginia Agri-
cultural Experiment Station, published a competing rank-sum test for unpaired
samples.13 The Ansari–Bradley two-sample rank-sum test for dispersion overcomes
the problem associated with the Siegel–Tukey test by assigning rank 1 to the small-
est and largest observations, rank 2 to the next smallest and largest observations,
and so on [11]. Specifically:

1. Arrange the observations in the combined data set from smallest to largest.
2. Assign rank 1 to the smallest observation and largest observations, rank 2 to the

next smallest and next largest observations, rank 3 to the next smallest and largest
observations, and so on.

3. Apply the Wilcoxon two-sample rank-sum test using the Ansari–Bradley alter-
nating ranking scheme.

4. Evaluate the resulting rank-sum using tables of the Ansari–Bradley rank-sum test
[376, pp. 1178–1179].

Note that critical values for the Ansari–Bradley rank-sum test can no longer be
obtained from the published tables for the Wilcoxon two-sample rank-sum test. Fig-
ure 5.6 illustrates the Ansari–Bradley assignment of rank scores applied to the two
samples described in Fig. 5.2 on p. 239.

In this section, three example analyses illustrate the BNs rank function test with
s D 1. The first example is designed to correspond to the conventional Ansari–
Bradley two-sample rank-sum test using a small set of univariate rank scores with
v D 2 and treatment-group weights Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g; the
second example analyzes the same small set of univariate rank scores, but uses
v D 1 and treatment-group weights Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g; and
the third example analyzes the same set of univariate rank scores using v D 1, but
adopts a proportional treatment-group weighting function given by Ci D ni=N for
i D 1; : : : ; g.

Rank: 1 2 3 4 5 4 3 2 1

Sample: A A B A A B B B B

Fig. 5.6 Example univariate rank-score data for the Ansari–Bradley two-sample rank test with
n1 D 4, n2 D 5, and N D n1 C n2 D 9

13Earlier that year, Ralph Bradley accepted a position as Chair of the Department of Statistics at
Florida State University in Tallahassee.
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5.11.1 Example 1

Consider the univariate rank response measurements listed in Fig. 5.6 with n1 D 4 A
rank scores, n2 D 5 B rank scores, and N D n1 C n2 D 9. For the rank scores listed
in Fig. 5.6, the observed Ansari–Bradley test statistic is

Wo D
n1X

iD1

Ri D 1 C 2 C 4 C 5 D 12 ;

where Ri denotes a rank score for variable A and n1 D 4 is the smaller of the two
sample sizes. For comparison, consider BNs with s D 1, where the median rank is
given by

N C 1

2
D 9 C 1

2
D 5

and, following Eq. (5.12) on p. 236, the observed value of BN1 is

BN1o D
NX

iD1

ˇ̌
ˇ̌Ri � N C 1

2

ˇ̌
ˇ̌
1

ZNi

D ˇ̌
1 � 5

ˇ̌1
.1/ C ˇ̌

2 � 5
ˇ̌1

.1/ C ˇ̌
3 � 5

ˇ̌1
.0/ C ˇ̌

4 � 5
ˇ̌1

.1/ C ˇ̌
5 � 5

ˇ̌1
.1/

C ˇ̌
6 � 5

ˇ̌1
.1/ C ˇ̌

7 � 5
ˇ̌1

.0/ C ˇ̌
8 � 5

ˇ̌1
.0/ C ˇ̌

9 � 5
ˇ̌1

.0/

D 4 C 3 C 0 C 1 C 1 C 0 C 0 C 0 C 0 D 8 :

The relationships between Mielke’s BN1 and the Ansari–Bradley W test statistic
are given by

BN1 D n1.N C 1/

2
� W and W D n1.N C 1/

2
� BN1 :

Thus, the observed values of BN1 and W are

BN1o D 4.9 C 1/

2
� 12 D 20 � 12 D 8

and

Wo D 4.9 C 1/

2
� 8 D 20 � 8 D 12 ;

respectively.
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Following Eqs. (5.15) on p. 237 and (5.16) on p. 238, the functional relationships
between BN1 and ı are given by

ı D 2

N.N � 2/

"
NT � S2 � .NBN1 � n1S/2

n1n2

#
(5.27)

and

BN1 D n1S

N
�
(

n1n2

N2



NT � S2 � N.N � 2/ı

2

� )1=2

; (5.28)

where

S D
NX

iD1

ˇ̌
ˇ̌Ri � N C 1

2

ˇ̌
ˇ̌
1

and T D
NX

iD1

ˇ̌
ˇ̌Ri � N C 1

2

ˇ̌
ˇ̌
2

:

Thus, the median of the N D 9 rank scores listed in Fig. 5.6 is

N C 1

2
D 9 C 1

2
D 5

and the observed values of S and T are

So D j1 � 5j1 C j2 � 5j1 C j3 � 5j1 C j4 � 5j1 C j5 � 5j1 C j6 � 5j1

C j7 � 5j1 C j8 � 5j1 C j9 � 5j1
D 4 C 3 C 2 C 1 C 0 C 1 C 2 C 3 C 4 D 20

and

To D j1 � 5j2 C j2 � 5j2 C j3 � 5j2 C j4 � 5j2 C j5 � 5j2 C j6 � 5j2

C j7 � 5j2 C j8 � 5j2 C j9 � 5j2
D 16 C 9 C 4 C 1 C 0 C 1 C 4 C 9 C 16 D 60 ;

respectively.
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Then, following Eq. (5.27), the observed value of the MRPP test statistic for the
univariate rank scores listed in Fig. 5.6 is

ıo D 2

9.9 � 2/

(
9.60/ � 202 �

�
9.8/ � 4.20/

	2

.4/.5/

)

D 2

63

�
140 � 64

20

�
D 4:3429

and, following Eq. (5.28), the observed value of BN1 is

BN1o D .4/.20/

9
�
(

.4/.5/

92



.9/.60/ � 202 � 9.9 � 2/.4:3429/

2

� )1=2

D 8:8889 � �
0:2469.140:00 � 136:80/

	1=2 D 8:00 :

Because of the relationship between BN1 and ı, the exact probability value of the
realized value of BN1 is given by

P
�
BN1 � BN1ojH0

� D P
�
ı � ıojH0

� D number of ı values � ıo

M
;

where BN1o and ıo denote the observed values of BN1 and ı, respectively. In addition,
because of the relationships among W, BN1, and ı, the exact probability value of
Ansari–Bradley’s W test statistic is given by

P
�
W � WojH0

� D P
�
ı � ıojH0

� D number of ı values � ıo

M
;

where Wo and ıo denote the observed values of W and ı, respectively.
Consider again the univariate rank response measurement scores listed in Fig. 5.6

where r D 1, g D 2, n1 D 4, n2 D 5, N D n1 C n2 D 9, and there are no tied
rank scores. In this application, let v D 2, employing squared Euclidean distance
between the rank scores, and let the treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

to correspond to the Ansari–Bradley two-sample rank-sum test. Because there are
only

M D NŠ

n1Š n2Š
D 9Š

4Š 5Š
D 126
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possible, equally-likely arrangements of the N D 9 rank scores, an exact solution is
preferred. Following Eq. (5.2) on p. 218, the N D 9 univariate rank scores listed in
Fig. 5.6 yield g D 2 average distance-function values of

�1 D 6:6667 and �2 D 2:60 :

Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 2 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

9 � 2

�
.4 � 1/.6:6667/ C .5 � 1/.2:60/

	 D 4:3429 :

If all arrangements of the N D 9 observed rank scores listed in Fig. 5.6 occur with
equal chance, the exact probability value of ıo D 4:3429 computed on the M D 126

possible arrangements of the observed data with n1 D 4 A univariate rank scores
and n2 D 5 B univariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 104

126
D 0:8254 :

For comparison, a conventional Ansari–Bradley two-sample rank-sum test on
the univariate rank scores listed in Fig. 5.6 yields an observed Ansari–Bradley test
statistic value of

Wo D
n1X

iD1

Ri D 1 C 2 C 4 C 5 D 12

and the exact probability value of Wo D 12 is

P.W � WojH0/ D number of W values � Wo

M
D 104

126
D 0:8254 :

Alternatively, test statistic W is approximately distributed as N.0; 1/ under the
null hypothesis as N ! 1. For the rank scores listed in Fig. 5.6, the mean value of
W is given by

�W D n1.N C 2/

4
; if N is even ;
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or

�W D n1.N C 1/2

4N
; if N is odd ;

the variance of W is given by

�2
W D n1n2.N C 2/.N � 2/

48.N � 1/
; if N is even ;

or

�2
W D n1n2.N C 1/.3 C N2/

48N2
; if N is odd ;

and the standard score is given by

z D W � �Wq
�2

W

:

Since, for this example N D 9 is odd, the mean value of W is

�W D n1.N C 1/2

4N
D 4.9 C 1/2

.4/.9/
D 11:1111 ;

the variance of W is

�2
W D n1n2.N C 1/.3 C N2/

48N2
D .4/.5/.9 C 1/.3 C 92/

.48/.92/
D 4:3210 ;

the observed standard score is

zo D Wo � �Wq
�2

W

D 12 � 11:1111p
4:3210

D C0:4276 ; (5.29)

and the approximate two-tailed N.0; 1/ probability value is P D 0:6689. A correc-
tion for continuity applied to Eq. (5.29), as suggested by Ansari and Bradley [10,
p. 1181], yields an observed standard score of zo D C0:1871 and an approximate
two-tailed N.0; 1/ probability value of P D 0:8516, which is closer to the exact
probability value of P D 0:8254.
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Following Eq. (5.17) on p. 238, the exact expected value of the M D 126 ı values
is �ı D 3:8889 and, following Eq. (5.18) on p. 238, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 4:3429

3:8889
D �0:1167 ;

indicating substantially less than chance within-group agreement.

5.11.2 Example 2

For this second analysis of the univariate rank scores listed in Fig. 5.6 on p. 254,
replicated in Fig. 5.7 for convenience, let the treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

as in Example 1, but set v D 1 instead of v D 2, employing ordinary Euclidean
distance between the rank scores.

Following Eq. (5.2) on p. 218, the N D 9 univariate rank scores listed in Fig. 5.7
yield g D 2 average distance-function values of

�1 D 2:3333 and �2 D 1:40 :

Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

9 � 2

�
.4 � 1/.2:3333/ C .5 � 1/.1:40/

	 D 1:80 :

Rank: 1 2 3 4 5 6 7 8 9

Sample: A A B A A B B B B

Fig. 5.7 Example univariate rank-score data for two-sample rank tests with n1 D 4, n2 D 5, and
N D n1 C n2 D 9
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If all arrangements of the N D 9 observed rank scores listed in Fig. 5.7 occur with
equal chance, the exact probability value of ıo D 1:80 computed on the M D 126

possible arrangements of the observed data with n1 D 4 A univariate rank scores
and n2 D 5 B univariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 98

126
D 0:7778 :

For comparison, the exact probability value based on v D 2, M D 126, and Ci D
.ni � 1/=.N � g/ for i D 1; 2 in Example 1 is P D 0:8254. No comparison is made
with the conventional Ansari–Bradley two-sample rank-sum test as the Ansari–
Bradley test is undefined for v D 1.

Following Eq. (5.17) on p. 238, the exact expected value of the M D 126 ı values
is �ı D 1:6667 and, following Eq. (5.18) on p. 238, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 1:80

1:6667
D �0:0800 ;

indicating slightly less than chance within-group agreement.

5.11.3 Example 3

The treatment-group weighting function given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

is not required for a permutation test. Thus, for this third analysis of the univariate
rank scores listed in Fig. 5.7, the treatment-group weighting function is set to

Ci D ni

N
; i D 1; : : : ; g ;

weighting each treatment group proportional to its size, and setting v D 1, employ-
ing ordinary Euclidean distance between the rank scores, as in Example 2. Fol-
lowing Eq. (5.2) on p. 218, the N D 9 univariate rank scores listed in Fig. 5.7 yield
g D 2 average distance-function values of

�1 D 2:3333 and �2 D 1:40 :

Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni

N
; i D 1; 2 ;
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is

ıo D
gX

iD1

Ci�i D 1

9

�
.4/.2:3333/ C .5/.1:40/

	 D 1:8148 :

If all arrangements of the N D 9 observed rank scores listed in Fig. 5.7 occur with
equal chance, the exact probability value of ıo D 1:8148 computed on the M D 126

possible arrangements of the observed data with n1 D 4 A univariate rank scores
and n2 D 5 B univariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 102

126
D 0:8095 :

For comparison, the exact probability values based on v D 2, M D 126, and
Ci D .ni � 1/=.N � g/ for i D 1; 2 in Example 1 and v D 1, M D 126, and Ci D
.ni � 1/=.N � g/ for i D 1; 2 in Example 2 are P D 0:8254 and P D 0:7778, respec-
tively. No comparison is made with the conventional Ansari–Bradley two-sample
rank-sum test as the Ansari–Bradley two-sample test is undefined for both v D 1

and Ci D ni=N, i D 1; : : : ; g.
Following Eq. (5.17) on p. 238, the exact expected value of the M D 126 ı values

is �ı D 1:6667 and, following Eq. (5.18) on p. 238, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 1:8148

1:6667
D �0:0889 ;

indicating slightly less than chance within-group agreement.

5.12 Example BNs Analyses with s D 2

In 1954 Alexander Mood published a two-sample rank-sum test for dispersion,
given by

W D
n1X

iD1

�
Ri � N C 1

2

�2

; (5.30)

where n1 is the smaller of the two samples size, N is the total number of rank scores
in both samples, and Ri denotes a rank score for i D 1; : : : ; n1 [312]. In this sec-
tion, three example analyses illustrate the BNs rank function test with s D 2. The
first example is designed to correspond to the conventional Mood two-sample rank-
sum test using a small set of univariate rank scores with v D 2 and treatment-group
weights Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g; the second example analyzes the
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same small set of univariate rank scores, but uses v D 1 and treatment-group
weights Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g; and the third example analyzes the
same set of univariate rank scores using v D 1, but adopts a proportional treatment-
group weighting function given by Ci D ni=N for i D 1; : : : ; g.

5.12.1 Example 1

Consider the univariate rank scores listed in Fig. 5.2 on p. 239, replicated in Fig. 5.8
for convenience, where n1 D 4, n2 D 5, and N D n1 C n2 D 9. The median of the
N D 9 rank scores listed in Fig. 5.8 is

N C 1

2
D 9 C 1

2
D 5

and, following Eq. (5.30) on p. 262, the observed value of Mood’s W is

Wo D
n1X

iD1

�
Ri � N C 1

2

�2

D .1 � 5/2 C .2 � 5/2 C .4 � 5/2 C .5 � 5/2

D 16 C 9 C 1 C 0 D 26 ;

where n1 D 4 is the smaller of the two sample sizes.
For comparison, following Eq. (5.12) on p. 236, consider BNs with s D 2, where

the observed value of BN2 is

BN2o D
NX

iD1

ˇ̌
ˇ̌Ri � N C 1

2

ˇ̌
ˇ̌
2

ZNi

D j1 � 5j2.1/ C j2 � 5j2.1/ C j3 � 5j2.0/ C j4 � 5j2.1/ C j5 � 5j2.1/

C j6 � 5j2.0/ C j7 � 5j2.0/ C j8 � 5j2.0/ C j9 � 5j2.0/

D 16 C 9 C 0 C 1 C 0 C 0 C 0 C 0 C 0 D 26 :

Thus, Mielke’s BN2 and Mood’s W are shown to be identical.

Rank: 1 2 3 4 5 6 7 8 9

Sample: A A B A A B B B B

Fig. 5.8 Example univariate rank-score data for two-sample rank tests with n1 D 4, n2 D 5, and
N D n1 C n2 D 9
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Following Eqs. (5.15) on p. 237 and (5.16) on p. 238, the functional relationships
between statistics ı and BN2 are given by

ı D 2

N.N � 2/

"
NT � S2 � .NBN2 � n1S/2

n1n2

#
(5.31)

and

BN2 D n1S

N
�
(

n1n2

N2
�



NT � S2 � N.N � 2/ı

2

� )1=2

; (5.32)

where

S D
NX

iD1

ˇ̌
ˇ̌Ri � N C 1

2

ˇ̌
ˇ̌
2

;

T D
NX

iD1

" ˇ̌
ˇ̌Ri � N C 1

2

ˇ̌
ˇ̌
2
#2

D
NX

iD1

ˇ̌
ˇ̌Ri � N C 1

2

ˇ̌
ˇ̌
4

;

and Ri is the rank function of the ith response measurement, i D 1; : : : ; N. Thus,
the median of the N D 9 rank scores listed in Fig. 5.8 is

N C 1

2
D 9 C 1

2
D 5

and the observed values of S and T are

So D j1 � 5j2 C j2 � 5j2 C j3 � 5j2 C j4 � 5j2 C j5 � 5j2

C j6 � 5j2 C j7 � 5j2 C j8 � 5j2 C j9 � 5j2
D 16 C 9 C 4 C 1 C 0 C 1 C 4 C 9 C 16 D 60

and

To D j1 � 5j4 C j2 � 5j4 C j3 � 5j4 C j4 � 5j4 C j5 � 5j4

C j6 � 5j4 C j7 � 5j4 C j8 � 5j4 C j9 � 5j4
D 256 C 81 C 16 C 1 C 0 C 1 C 16 C 81 C 256 D 708 :
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Utilizing the univariate rank scores listed in Fig. 5.8, where there are no tied
rank scores, the relationship between statistics ı and BN2 can be confirmed. Thus,
following Eq. (5.31) on p. 264, the observed value of the MRPP test statistic for the
univariate rank scores listed in Fig. 5.8 is

ıo D 2

9.9 � 2/

(
9.708/ � .60/2 �

�
9.26/ � 4.60/

	2

.4/.5/

)

D 2

63

�
2;772 � 36

20

�
D 87:9429

and, following Eq. (5.32) on p. 264, the observed value of BN2 is

BN2o D .4/.60/

9
�
(

.4/.5/

92



.9/.708/ � 602 � 9.9 � 2/.87:9429/

2

� )1=2

D 26:6667 � �
0:2469.2;772:00 � 2770:20/

	1=2 D 26:00 :

Because of the relationship between statistics BN2 and ı, the exact probability
value of the realized value of BN2 is given by

P
�
BN2 � BN2ojH0

� D P
�
ı � ıojH0

� D number of ı values � ıo

M
;

where BN2o and ıo denote the observed values of BN2 and ı, respectively. In addition,
because of the relationships among W, BN2, and ı, the exact probability value of
Mood’s W is given by

P
�
W � WojH0

� D P
�
ı � ıojH0

� D number of ı values � ıo

M
;

where Wo and ıo denote the observed values of W and ı, respectively.
Consider again the univariate rank scores listed in Fig. 5.8 where r D 1, g D 2,

n1 D 4, n2 D 5, N D n1 C n2 D 9, and there are no tied rank scores. In this applica-
tion, let v D 2, employing squared Euclidean distance between the rank scores, and
let the treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

to correspond to Mood’s two-sample rank-sum test. Because there are only

M D NŠ

n1Š n2Š
D 9Š

4Š 5Š
D 126
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possible, equally-likely arrangements of the N D 9 rank scores, an exact solution is
preferred. Following Eq. (5.2) on p. 218, the N D 9 univariate rank scores listed in
Fig. 5.8 yield g D 2 average distance-function values of

�1 D 112:6667 and �2 D 69:40 :

Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 2 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

9 � 2

�
.4 � 1/.112:6667/ C .5 � 1/.69:40/

	 D 87:9429 :

If all arrangements of the N D 9 observed rank scores listed in Fig. 5.8 occur
with equal chance, the exact probability value of ıo D 87:9429 computed on the
M D 126 possible arrangements of the observed data with n1 D 4 A univariate rank
scores and n2 D 5 B univariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 122

126
D 0:9683 :

For comparison, a conventional Mood two-sample rank-sum test computed on the
univariate rank scores listed in Fig. 5.8 yields an observed test statistic value of

Wo D
n1X

iD1

�
Ri � N C 1

2

�2

D .1 � 5/2 C .2 � 5/2 C .4 � 5/2 C .5 � 5/2

D 16 C 9 C 1 C 0 D 26

and the exact probability value of Wo D 26 is

P.W � WojH0/ D number of W values � Wo

M
D 122

126
D 0:9683 :

For comparison, Mood’s test statistic W is approximately distributed under the
null hypothesis as N.0; 1/ as N !1 with mean given by

�W D n1.N C 1/.N � 1/

12
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and variance given by

�2
W D n1n2.N C 1/.N C 2/.N � 2/

180
;

where n1 denotes the smaller of the two sample sizes. Thus, for the univariate rank
scores listed in Fig. 5.8 on p. 263,

�W D 4.9 C 1/.9 � 1/

12
D 320

12
D 26:6667 ;

�2
W D .4/.5/.9 C 1/.9 C 2/.9 � 2/

180
D 15;400

180
D 85:5556 ;

and the observed standard score is

zo D Wo � �W

�W
D 26 � 26:6667p

85:5556
D �0:0721 ;

yielding an approximate two-sided probability value of P D 0:9425 under the null
hypothesis, which is not far removed from the exact probability value of P D
0:9683.

Following Eq. (5.17) on p. 238, the exact expected value of the M D 126 ı values
is �ı D 77:00 and, following Eq. (5.18) on p. 238, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 87:9429

77:00
D �0:1421 ;

indicating substantially less than chance within-group agreement.

5.12.2 Example 2

For this second analysis of the N D 9 univariate rank response measurements listed
in Fig. 5.2 on p. 239, replicated in Fig. 5.9 for convenience, let the treatment-group
weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

as in Example 1, but set v D 1 instead of v D 2, employing ordinary Euclidean
distance between the rank scores.
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Rank: 1 2 3 4 5 6 7 8 9

Sample: A A B A A B B B B

Fig. 5.9 Example univariate rank-score data for two-sample rank tests with n1 D 4, n2 D 5, and
N D n1 C n2 D 9

Following Eq. (5.2) on p. 218, the N D 9 univariate rank scores listed in Fig. 5.9
yield g D 2 average distance-function values of

�1 D 9:3333 and �2 D 7:00 :

Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

9 � 2

�
.4 � 1/.9:3333/ C .5 � 1/.7:00/

	 D 8:00 :

If all arrangements of the N D 9 observed rank scores listed in Fig. 5.9 occur with
equal chance, the exact probability value of ıo D 8:00 computed on the M D 126

possible arrangements of the observed data with n1 D 4 A univariate rank scores
and n2 D 5 B univariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 98

126
D 0:7778 :

For comparison, the exact probability value based on v D 2, M D 126, and Ci D
.ni � 1/=.N � g/ for i D 1; 2 in Example 1 is P D 0:9683. No comparison is made
with the conventional Mood two-sample rank-sum test as Mood’s two-sample test
is undefined for v D 1.

Following Eq. (5.17) on p. 238, the exact expected value of the M D 126 ı values
is �ı D 7:2222 and, following Eq. (5.18) on p. 238, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 8:00

7:2222
D �0:1077 ;

indicating less than chance within-group agreement.
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5.12.3 Example 3

The treatment-group weighting function given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

is not required for a permutation test. Thus, for this third analysis of the univariate
rank scores listed in Fig. 5.9, the treatment-group weighting function is set to

Ci D ni

N
; i D 1; : : : ; g ;

simply weighting each treatment group proportional to its size, and setting v D 1,
employing ordinary Euclidean distance between the rank scores, as in Example 2.
Following Eq. (5.2) on p. 218, the N D 9 univariate rank scores listed in Fig. 5.9
yield g D 2 average distance-function values of

�1 D 9:3333 and �2 D 7:00 :

Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni

N
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

9

�
.4/.9:3333/ C .5/.7:00/

	 D 8:0370 :

If all arrangements of the N D 9 observed rank scores listed in Fig. 5.9 occur with
equal chance, the exact probability value of ıo D 8:0370 computed on the M D 126

possible arrangements of the observed data with n1 D 4 A univariate rank scores
and n2 D 5 B univariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 102

126
D 0:8095 :

For comparison, the exact probability values based on v D 2, M D 126, and
Ci D .ni � 1/=.N � g/ for i D 1; 2 in Example 1 and v D 1, M D 126, and Ci D
.ni � 1/=.N � g/ for i D 1; 2 in Example 2 are P D 0:9683 and P D 0:7778, respec-
tively. No comparison is made with the conventional Mood two-sample rank-sum
test as Mood’s two-sample test is undefined for both v D 1 and Ci D ni=N, i D
1; : : : ; g.
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Following Eq. (5.17) on p. 238, the exact expected value of the M D 126 ı values
is �ı D 7:2222 and, following Eq. (5.18) on p. 238, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 8:0370

7:2222
D �0:1128 ;

indicating less than chance within-group agreement.

5.13 Example CNs Analyses with s D 0

The Brown–Mood median test provides a test of the null hypothesis that the medians
of the populations from which two (or more) samples are drawn are identical [59].
In the case of two independent samples, the data in each sample are assigned to two
groups, one consisting of observations with values higher than the median value of
the two groups combined, and the other consisting of observations with values equal
to or less than the median of the combined samples [77, pp. 218–219].14

In this section, three example analyses illustrate the CNs rank function test
with s D 0. The first example is designed to correspond to the conventional
Brown–Mood median test using a small set of univariate rank scores with v D 2

and treatment-group weights Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g; the second
example analyzes the same small set of univariate rank scores, but uses v D
1 and treatment-group weights Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g; and the
third example analyzes the same set of univariate rank scores using v D 1, but
adopts a proportional treatment-group weighting function given by Ci D ni=N for
i D 1; : : : ; g.

5.13.1 Example 1

Consider the univariate rank scores listed in Fig. 5.2 on p. 239, replicated in Fig. 5.10
for convenience. The combined median is

N C 1

2
D 9 C 1

2
D 5

14An alternative median test that could be considered in this context is the Hodges–Lehmann
median test, introduced by Hodges and Lehmann in 1963 [179]. As noted by Newson [318, p. 59],
the Hodges–Lehmann median test was later popularized by Conover [77], Campbell and Gardner
[62], and Gardner and Altman [133].
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Rank: 1 2 3 4 5 6 7 8 9

Sample: A A B A A B B B B

Fig. 5.10 Example univariate rank-score data for two-sample rank tests with n1 D 4, n2 D 5, and
N D n1 C n2 D 9

Variable

A B

> Median 0 4

≤ Median 4 1

Fig. 5.11 Counts of rank-score values above and below the combined median of 5

and all four A rank scores are equal to or less than the combined median of 5 (ranks
1, 2, 4, and 5) and no A rank scores are greater than the combined median of 5.
Likewise, one B rank score is equal to or less than the combined median of 5 (rank
3) and four B rank scores are greater than the combined median of 5 (ranks 6, 7, 8,
and 9).

As Brown and Mood explained, the values obtained by counting the positive and
negative deviations in each group form a contingency table with all marginal totals
fixed and may be evaluated by the ordinary chi-squared criterion when N is large
[59, p. 164]. Figure 5.11 displays the deviations obtained from the univariate rank
scores listed in Fig. 5.10.

For comparison, following Eq. (5.13) on p. 237, consider CNs with s D 0, where
the combined median is given by

N C 1

2
D 9 C 1

2
D 5

and the observed value of CN0 is

CN0o D
NX

iD1

h.R0
i ; N; 0/ZNi

D �j1 � 5j0.1/ � j2 � 5j0.1/ � j3 � 5j0.0/ � j4 � 5j0.1/ � j5 � 5j0.1/

C j6 � 5j0.0/ C j7 � 5j0.0/ C j8 � 5j0.0/ C j9 � 5j0.0/

D �1 � 1 � 0 � 1 � 0 C 0 C 0 C 0 C 0 D �3 :

The relationship between CN0 and the Brown–Mood median test is complicated
by standard presentations in textbooks, e.g., Conover [77, pp. 218–219]. Define D
as the number of rank scores greater than the combined median minus the number of
rank scores less than or equal to the combined median. For the frequencies listed in
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Fig. 5.11, D D 0 � 4 D �4 for variable A. This is the standard textbook presentation
and it is obviously inconsistent with CN0 D �3. However, in the original article by
Brown and Mood, it was tacitly assumed that no rank score would be exactly equal
to the combined median, in this case 5. As seen in Fig. 5.10, A D 5 is equal to the
combined median and, as noted in Eq. (5.14) on p. 237, j5 � 5j0.1/ is defined as
zero.

For comparison, consider variable B in Fig. 5.10 instead of variable A, where no
B rank score is equal to the combined median of 5. Then following Eq. (5.13) on
p. 237, the observed value of CN0 is

CN0o D
NX

iD1

h.R0
i ; N; 0/ZNi

D �j1 � 5j0.0/ � j2 � 5j0.0/ � j3 � 5j0.1/ � j4 � 5j0.0/ � j5 � 5j0.0/

C j6 � 5j0.1/ C j7 � 5j0.1/ C j8 � 5j0.1/ C j9 � 5j0.1/

D �0 � 0 � 1 � 0 � 0 C 1 C 1 C 1 C 1 D C3 ;

which corresponds to D D 4 � 1 D C3 for variable B in Fig. 5.11. Thus, CN0 is
identical to the Brown–Mood median test when no rank is equal to the combined
median, as originally described by Brown and Mood [59].

Following Eqs. (5.15) on p. 237 and (5.16) on p. 238, the functional relationships
between CN0 and ı are given by

ı D 2

N.N � 2/

"
NT � S2 � .NCN0 � n1S/2

n1n2

#
(5.33)

and

CN0 D n1S

N
�
(

n1n2

N2



NT � S2 � N.N � 2/ı

2

� )1=2

; (5.34)

where

S D
NX

iD1

h.Ri; N; 0/ ; T D
NX

iD1

�
h.Ri; N; 0/

	2
;

and h.Ri; N; 0/ is the rank function of the ith response measurement.
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Utilizing the univariate rank scores listed in Fig. 5.10, the relationship between
statistics ı and CN0 can be confirmed. Thus, for the univariate rank scores listed in
Fig. 5.10, the observed values of S and T are

So D �j1 � 5j0 � j2 � 5j0 � j3 � 5j0 � j4 � 5j0 � j5 � 5j0

C j6 � 5j0 C j7 � 5j0 C j8 � 5j0 C j9 � 5j0
D �1 � 1 � 1 � 1 � 0 C 1 C 1 C 1 C 1 D 0

and

To D .�j1 � 5j0/2 C .�j2 � 5j0/2 C .�j3 � 5j0/2 C .�j4 � 5j0/2

C .�j5 � 5j0/2 C .Cj6 � 5j0/2 C .Cj7 � 5j0/2 C .Cj8 � 5j0/2

C .Cj9 � 5j0/2 D 1 C 1 C 1 C 1 C 0 C 1 C 1 C 1 C 1 D 8 :

Then, following Eq. (5.33), the observed value of the MRPP test statistic for the
univariate rank scores listed in Fig. 5.10 is

ıo D 2

9.9 � 2/

(
9.8/ � .0/2 �

�
9.�3/ � 4.0/

	2

.4/.5/

)

D 2

63

�
72 � 729

20

�
D 1:1286

and, following Eq. (5.34), the observed value of CN0 is

CN0o D .4/.0/

9
�
(

.4/.5/

92



9.8/ � 02 � 9.9 � 2/.1:1286/

2

� )1=2

D 0 � �
0:2469.72:00 � 35:5509/

	1=2 D �3:00 :

Because of the relationship between statistics CN0 and ı, the exact probability
value of the realized value of CN0 is given by

P
�
CN0 � CN0ojH0

� D P
�
ı � ıojH0

� D number of ı values � ıo

M
;
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where CN0o and ıo denote the observed values of CN0 and ı, respectively. In addition,
because of the relationships among D, CN0, and ı, the exact probability value of
Brown–Mood’s test statistic D is given by

P
�
D � DojH0

� D P
�
ı � ıojH0

� D number of ı values � ıo

M
;

where Do and ıo denote the observed values of D and ı, respectively.
Consider again the univariate rank response measurement scores listed in

Fig. 5.10 where r D 1, g D 2, n1 D 4, n2 D 5, N D n1 C n2 D 9, and there are no
tied rank scores. In this application, let v D 2, employing squared Euclidean dis-
tance between the rank scores, and let the treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

to correspond to the Brown–Mood median test. Because there are only

M D NŠ

n1Š n2Š
D 9Š

4Š 5Š
D 126

possible, equally-likely arrangements of the N D 9 rank scores, an exact solution is
preferred. Following Eq. (5.2) on p. 218, the N D 9 univariate rank scores listed in
Fig. 5.10 yield g D 2 average distance-function values of

�1 D 0:50 and �2 D 1:60 :

Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 2 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

9 � 2

�
.4 � 1/.0:50/ C .5 � 1/.1:60/

	 D 1:1286 :

If all arrangements of the N D 9 observed rank scores listed in Fig. 5.10 occur
with equal chance, the exact probability value of ıo D 1:1286 computed on the M D
126 possible arrangements of the observed data with n1 D 4 A univariate rank scores
and n2 D 5 B univariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 10

126
D 0:0794 :
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For comparison, the Brown–Mood median test is conventionally evaluated by the
chi-squared test for independence with g � 1 degrees of freedom, when N is large.
For the frequency data listed in Fig. 5.11, �2 D 5:76, and with g � 1 D 2 � 1 D
1 degree of freedom, the approximate probability value is P D 0:0164. However,
in this analysis N D 9 rank scores is not considered to be “large.” An alternative
is an exact chi-squared test based on the sum of the hypergeometric probability
values associated with the observed chi-squared value or those chi-squared values
that are larger [26]. For the frequency data given in Fig. 5.11 on p. 271, the exact
chi-squared probability value is P D 0:0476. These probability values (P D 0:0164

and P D 0:0476) may be compared with the exact probability value of ıo, which is
P D 0:0794.

Following Eq. (5.17) on p. 238, the exact expected value of the M D 126 ı values
is �ı D 2:00 and, following Eq. (5.18) on p. 238, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 1:1286

2:00
D C0:4357 ;

indicating approximately 44 % within-group agreement above that expected by
chance.

5.13.2 Example 2

For this second analysis of the univariate rank scores listed in Fig. 5.2 on p. 239,
replicated in Fig. 5.12 for convenience, let the treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

as in Example 1, but set v D 1 instead of v D 2, employing ordinary Euclidean
distance between the rank scores.

Following Eq. (5.2) on p. 218, the N D 9 univariate rank scores listed in Fig. 5.12
yield g D 2 average distance-function values of

�1 D 0:50 and �2 D 0:80 :

Rank: 1 2 3 4 5 6 7 8 9

Sample: A A B A A B B B B

Fig. 5.12 Example univariate rank-score data for two-sample rank tests with n1 D 4, n2 D 5, and
N D n1 C n2 D 9
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Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

9 � 2

�
.4 � 1/.0:50/ C .5 � 1/.0:80/

	 D 0:6714 :

If all arrangements of the N D 9 observed rank scores listed in Fig. 5.12 occur
with equal chance, the exact probability value of ıo D 0:6714 computed on the M D
126 possible arrangements of the observed data with n1 D 4 A univariate rank scores
and n2 D 5 B univariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 10

126
D 0:0794 :

For comparison, the exact probability value based on v D 2, M D 126, and Ci D
.ni � 1/=.N � g/ for i D 1; 2 in Example 1 is also P D 0:0794. No comparison is
made with the conventional Brown–Mood median test as the Brown–Mood test is
undefined for v D 1.

Following Eq. (5.17) on p. 238, the exact expected value of the M D 126 ı values
is �ı D 1:1111 and, following Eq. (5.18) on p. 238, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 0:6714

1:1111
D C0:3957 ;

indicating approximately 40 % within-group agreement above that expected by
chance.

5.13.3 Example 3

The treatment-group weighting function given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

is not required for a permutation test. Thus, for this third analysis of the univariate
rank scores listed in Fig. 5.12, the treatment-group weighting function is set to

Ci D ni

N
; i D 1; : : : ; g ;
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simply weighting each treatment group proportional to its size, and setting v D 1,
employing ordinary Euclidean distance between the rank scores, as in Example 2.
Following Eq. (5.2) on p. 218, the N D 9 univariate rank scores listed in Fig. 5.12
yield g D 2 average distance-function values of

�1 D 0:50 and �2 D 0:80 :

Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni

N
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

9

�
.4/.0:50/ C .5/.0:80/

	 D 0:6667 :

If all arrangements of the N D 9 observed rank scores listed in Fig. 5.12 occur
with equal chance, the exact probability value of ıo D 0:6667 computed on the M D
126 possible arrangements of the observed data with n1 D 4 A univariate rank scores
and n2 D 5 B univariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 10

126
D 0:0794 :

For comparison, the exact probability values based on v D 2, M D 126, and
Ci D .ni � 1/=.N � g/ for i D 1; 2 in Example 1 and v D 1, M D 126, and Ci D
.ni � 1/=.N � g/ for i D 1; 2 in Example 2 are both P D 0:0794. No comparison is
made with the conventional Brown–Mood median test as the Brown–Mood test is
undefined for both v D 1 and Ci D ni=N, i D 1; : : : ; g.

Following Eq. (5.17) on p. 238, the exact expected value of the M D 126 ı values
is �ı D 1:1111 and, following Eq. (5.18) on p. 238, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 0:6667

1:1111
D C0:40 ;

indicating 40 % within-group agreement above that expected by chance.
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5.14 Example CNs Analyses with s D 1

The Wilcoxon–Mann–Whitney two-sample rank-sum test statistic is defined as the
sum of the rank scores in the smaller of the two sample sizes. Consider g D 2 sam-
ples with n1 rank scores in the first sample, n2 rank scores in the second sample, and
N D n1 C n2. In this section, three example analyses illustrate the CNs rank func-
tion test with s D 1. The first example is designed to correspond to the conventional
Wilcoxon–Mann–Whitney two-sample rank-sum test using a small set of univari-
ate rank scores with v D 2 and treatment-group weights Ci D .ni � 1/=.N � g/

for i D 1; : : : ; g; the second example analyzes the same small set of univariate
rank scores, but uses v D 1 and treatment-group weights Ci D .ni � 1/=.N � g/ for
i D 1; : : : ; g; and the third example analyzes the same set of univariate rank scores
using v D 1, but adopts a proportional treatment-group weighting function given by
Ci D ni=N for i D 1; : : : ; g.

5.14.1 Example 1

Consider the N D 9 univariate rank response measurements listed in Fig. 5.2 on
p. 239, replicated in Fig. 5.13 for convenience. For the univariate rank scores listed
in Fig. 5.13, the observed Wilcoxon–Mann–Whitney test statistic is given by

Wo D
n1X

iD1

Ri D 1 C 2 C 4 C 5 D 12 ;

where n1 D 4 is the smaller of the two sample sizes (variable A) and Ri denotes a
rank score for i D 1; : : : ; n1.

For comparison, consider CNs with s D 1, where for variable A the observed
value of CN1 is

CN1o D
NX

iD1

h.R1
i ; N; 1/ ZNi

D �ˇ̌1 � 5
ˇ̌1

.1/ � ˇ̌
2 � 5

ˇ̌1
.1/ � ˇ̌

3 � 5
ˇ̌1

.0/ � ˇ̌
4 � 5

ˇ̌1
.1/ � ˇ̌

5 � 5
ˇ̌1

.1/

C ˇ̌
6 � 5

ˇ̌1
.0/ C ˇ̌

7 � 5
ˇ̌1

.0/ C ˇ̌
8 � 5

ˇ̌1
.0/ C ˇ̌

9 � 5
ˇ̌1

.0/

D �4 � 3 � 0 � 1 � 0 C 0 C 0 C 0 C 0 D �8 :

Rank: 1 2 3 4 5 6 7 8 9

Sample: A A B A A B B B B

Fig. 5.13 Example univariate rank-score data for two-sample rank tests with n1 D 4, n2 D 5, and
N D n1 C n2 D 9
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The relationships between CN1 and the Wilcoxon–Mann–Whitney test statistic
are given by

CN1 D W � n1.N C 1/

2
and W D CN1 C n1.N C 1/

2
:

Thus, the observed values of CN1 and W are

CN1o D 12 � 4.9 C 1/

2
D 12 � 20 D �8

and

Wo D �9 C 4.9 C 1/

2
D �8 C 20 D 12 :

Also, since CN1 and AN1 are both identical to the Wilcoxon–Mann–Whitney two-
sample rank-sum test, then CN1 and AN1 are necessarily identical to each other. The
relationships between statistics CN1 and AN1 are given by

CN1 D AN1 � n1.N C 1/

2
and AN1 D CN1 C n1.N C 1/

2
;

where n1 is the smaller of the two sample sizes.
Following Eqs. (5.15) on p. 237 and (5.16) on p. 238, the functional relationships

between statistics CN1 and ı are given by

ı D 2

N.N � 2/

"
NT � S2 � .NCN1 � n1S/2

n1n2

#
(5.35)

and

CN1 D n1S

N
�
(

n1n2

N2



NT � S2 � N.N � 2/ı

2

� )1=2

; (5.36)

where

S D
NX

iD1

h.Ri; N; 1/ ; T D
NX

iD1

�
h.Ri; N; 1/

	2
;

and h.Ri; N; 1/ is the rank function of the ith response measurement.
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Utilizing the univariate rank scores listed in Fig. 5.13, the relationships between
statistics ı and CN1 can be confirmed. Thus, for the univariate rank scores listed in
Fig. 5.13, the observed values of S and T are

So D �j1 � 5j1 � j2 � 5j1 � j3 � 5j1 � j4 � 5j1 � j5 � 5j1

C j6 � 5j1 C j7 � 5j1 C j8 � 5j1 C j9 � 5j1
D �4 � 3 � 2 � 1 � 0 C 1 C 2 C 3 C 4 D 0

and

To D .�j1 � 5j1/2 C .�j2 � 5j1/2 C .�j3 � 5j1/2 C .�j4 � 5j1/2

C .�j5 � 5j1/2 C .Cj6 � 5j1/2 C .Cj7 � 5j1/2 C .Cj8 � 5j1/2

C .Cj9 � 5j1/2 D 16 C 9 C 4 C 1 C 0 C 1 C 4 C 9 C 16 D 60 :

Then, following Eq. (5.35), the observed value of the MRPP test statistic for the
univariate rank scores listed in Fig. 5.13 is

ıo D 2

9.9 � 2/

(
9.60/ � .0/2 �

�
9.�8/ � 4.0/

	2

.4/.5/

)

D 2

63

�
540 � 5;184

20

�
D 8:9143

and, following Eq. (5.36), the observed value of CN1 is

CN1o D .4/.0/

9
�
(

.4/.5/

92



.9/.60/ � 02 � 9.9 � 2/.8:9143/

2

� )1=2

D 0 � �
0:2469.540:00 � 280:8005/

	1=2 D �8:00 :

Because of the relationship between statistics CN1 and ı, the exact probability
value of the realized value of CN1 is given by

P
�
CN1 � CN1ojH0

� D P
�
ı � ıojH0

� D number of ı values � ıo

M
;

where CN1o and ıo denote the observed values of CN1 and ı, respectively.
Consider again the univariate rank response measurements listed in Fig. 5.13

where r D 1, g D 2, n1 D 4, n2 D 5, N D n1 C n2 D 9, and there are no tied
rank scores. In this application, let v D 2, employing squared Euclidean distance
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between the rank scores, and let the treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

to correspond to the Wilcoxon–Mann–Whitney two-sample rank-sum test. Because
there are only

M D NŠ

n1Š n2Š
D 9Š

4Š 5Š
D 126

possible, equally-likely arrangements of the N D 9 rank scores, an exact solution is
preferred. Following Eq. (5.2) on p. 218, the N D 9 univariate rank scores listed in
Fig. 5.13 yield g D 2 average distance-function values of

�1 D 6:6667 and �2 D 10:60 :

Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 2 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

9 � 2

�
.4 � 1/.6:6667/ C .5 � 1/.10:60/

	 D 8:9143 :

If all arrangements of the N D 9 observed rank scores listed in Fig. 5.13 occur
with equal chance, the exact probability value of ıo D 8:9143 computed on the M D
126 possible arrangements of the observed data with n1 D 4 A univariate rank scores
and n2 D 5 B univariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 8

126
D 0:0635 :

For comparison, the conventional Wilcoxon–Mann–Whitney two-sample rank-
sum test computed on the univariate rank scores listed in Fig. 5.13 yields an
observed test statistic value of

Wo D
n1X

iD1

Ri D 1 C 2 C 4 C 5 D 12
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and the exact probability value of Wo D 12 is

P
�
W � WojH0

� D number of W values � Wo

M
D 8

126
D 0:0635 :

Alternatively, test statistic W is approximately distributed as N.0; 1/ under the
null hypothesis as N ! 1. For the rank scores listed in Fig. 5.13 on p. 278, the
mean value of W is

�W D n1N C 1

2
D 4.9 C 1/

2
D 20 ;

the variance of W is

�2
W D n1n2.N C 1/

12
D .4/.5/.9 C 1/

12
D 16:6667 ;

the observed standard score is

zo D Wo � �Wq
�2

W

D 12 � 20p
16:6667

D �1:9596 ;

and the approximate two-tailed N.0; 1/ probability value is P D 0:0500.
Following Eq. (5.17) on p. 238, the exact expected value of the M D 126 ı values

is �ı D 15:00 and, following Eq. (5.18) on p. 238, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 8:9143

15:00
D C0:4057 ;

indicating approximately 41 % within-group agreement above that expected by
chance.

5.14.2 Example 2

For this second analysis of the univariate rank scores listed in Fig. 5.2 on p. 239,
replicated in Fig. 5.14 for convenience, let the treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

as in Example 1, but set v D 1 instead of v D 2, employing ordinary Euclidean
distance between the rank scores.
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Rank: 1 2 3 4 5 6 7 8 9

Sample: A A B A A B B B B

Fig. 5.14 Example univariate rank-score data for two-sample rank tests with n1 D 4, n2 D 5, and
N D n1 C n2 D 9

Following Eq. (5.2) on p. 218, the N D 9 univariate rank scores listed in Fig. 5.14
yield g D 2 average distance-function values of

�1 D 2:3333 and �2 D 2:80 :

Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

9 � 2

�
.4 � 1/.2:3333/ C .5 � 1/.2:80/

	 D 2:60 :

If all arrangements of the N D 9 observed rank scores listed in Fig. 5.14 occur
with equal chance, the exact probability value of ıo D 2:60 computed on the M D
126 possible arrangements of the observed data with n1 D 4 A univariate rank scores
and n2 D 5 B univariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 6

126
D 0:0476 :

For comparison, the exact probability value based on v D 2, M D 126, and Ci D
.ni � 1/=.N � g/ for i D 1; 2 in Example 1 is P D 0:0635. No comparison is made
with the conventional Wilcoxon–Mann–Whitney two-sample rank-sum test as the
Wilcoxon–Mann–Whitney test is undefined for v D 1.

Following Eq. (5.17) on p. 238, the exact expected value of the M D 126 ı values
is �ı D 3:3333 and, following Eq. (5.18) on p. 238, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 2:60

3:3333
D C0:2200 ;

indicating 22 % within-group agreement above that expected by chance.



284 5 Randomized Designs: Ordinal Data, I

5.14.3 Example 3

The treatment-group weighting function given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

is not required for a permutation test. Thus, for this third analysis of the univariate
rank scores listed in Fig. 5.14, the treatment-group weighting function is set to

Ci D ni

N
; i D 1; : : : ; g ;

weighting each treatment group proportional to its size, and setting v D 1, employ-
ing ordinary Euclidean distance between the rank scores, as in Example 2. Follow-
ing Eq. (5.2) on p. 218, the N D 9 univariate rank scores listed in Fig. 5.14 yield
g D 2 average distance-function values of

�1 D 2:3333 and �2 D 2:80 :

Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni

N
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

9

�
.4/.2:3333/ C .5/.2:80/

	 D 2:5926 :

If all arrangements of the N D 9 observed rank scores listed in Fig. 5.14 occur
with equal chance, the exact probability value of ıo D 2:5926 computed on the M D
126 possible arrangements of the observed data with n1 D 4 A univariate rank scores
and n2 D 5 B univariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 6

126
D 0:0476 :

For comparison, the exact probability values based on v D 2, M D 126, and
Ci D .ni � 1/=.N � g/ for i D 1; 2 in Example 1 and v D 1, M D 126, and Ci D
.ni � 1/=.N � g/ for i D 1; 2 in Example 2 are P D 0:0635 and P D 0:0476, respec-
tively. No comparison is made with the conventional Wilcoxon–Mann–Whitney
two-sample rank-sum test as the Wilcoxon–Mann–Whitney two-sample test is unde-
fined for both v D 1 and Ci D ni=N, i D 1; : : : ; g.
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Following Eq. (5.17) on p. 238, the exact expected value of the M D 126 ı values
is �ı D 3:3333 and, following Eq. (5.18) on p. 238, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 2:5926

3:3333
D C0:2222 ;

indicating approximately 22 % within-group agreement above that expected by
chance.

5.15 Example CNs Analyses with s D 2

In 1972 P.W. Mielke proposed a new two-sample test based on powers of ranks
termed CNs [281]. In this section, three example analyses illustrate the CNs rank
function test with s D 2. The first example uses a small set of univariate rank scores
with v D 2 and treatment-group weights Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g;
the second example analyzes the same small set of univariate rank scores, but uses
v D 1 and treatment-group weights Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g; and
the third example analyzes the same set of univariate rank scores using v D 1, but
adopts a proportional treatment-group weighting function given by Ci D ni=N for
i D 1; : : : ; g.

5.15.1 Example 1

Utilizing the univariate rank scores listed in Fig. 5.2 on p. 239, replicated in Fig. 5.15
for convenience, consider CNs with s D 2, where for variable A the observed value
of CN2 is

CN2o D
NX

iD1

h.Ri; N; 2/ ZNi

D �ˇ̌1 � 5
ˇ̌2

.1/ � ˇ̌
2 � 5

ˇ̌2
.1/ � ˇ̌

3 � 5
ˇ̌2

.0/ � ˇ̌
4 � 5

ˇ̌2
.1/ � ˇ̌

5 � 5
ˇ̌2

.1/

C ˇ̌
6 � 5

ˇ̌2
.0/ C ˇ̌

7 � 5
ˇ̌2

.0/ C ˇ̌
8 � 5

ˇ̌2
.0/ C ˇ̌

9 � 5
ˇ̌2

.0/

D �16 � 9 � 0 � 0 � 1 C 0 C 0 C 0 C 0 D �26 :

Rank: 1 2 3 4 5 6 7 8 9

Sample: A A B A A B B B B

Fig. 5.15 Example univariate rank-score data for two-sample rank tests with n1 D 4, n2 D 5, and
N D n1 C n2 D 9
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Following Eqs. (5.15) on p. 237 and (5.16) on p. 238, the functional relationships
between statistics CN2 and ı are given by

ı D 2

N.N � 2/

"
NT � S2 � .NCN2 � n1S/2

n1n2

#
(5.37)

and

CN2 D n1S

N
�
(

n1n2

n2



NT � S2 � N.N � 2/ı

2

� )1=2

; (5.38)

where

S D
NX

iD1

h.Ri; N; 2/ ; T D
NX

iD1

�
h.Ri; N; 2/

	2
;

and h.Ri; N; 2/ is the rank function of the ith response measurement.
Utilizing the univariate rank scores listed in Fig. 5.15, the relationship between

statistics ı and CN2 can be confirmed. Thus, for the univariate rank scores listed in
Fig. 5.15, the observed values of S and T are

So D �j1 � 5j2 � j2 � 5j2 � j3 � 5j2 � j4 � 5j2 � j5 � 5j2

C j6 � 5j2 C j7 � 5j2 C j8 � 5j2 C j9 � 5j2
D �16 � 9 � 4 � 1 � 0 C 1 C 4 C 9 C 16 D 0

and

To D .�j1 � 5j/4 C .�j2 � 5j/4 C .�j3 � 5j/4 C .�j4 � 5j/4

C .�j5 � 5j/4 C .Cj6 � 5j/4 C .Cj7 � 5j/4 C .Cj8 � 5j/4

C .Cj9 � 5j/4 D 256 C 81 C 16 C 1 C 0 C 1 C 16 C 81 C 256 D 708 :

Then, following Eq. (5.37), the observed value of the MRPP test statistic for the
univariate rank scores listed in Fig. 5.15 is

ıo D 2

9.9 � 2/

(
9.708/ � .0/2 �

�
9.�26/ � 4.0/

	2

.4/.5/

)

D 2

63

�
6;372 � 54;756

20

�
D 115:3714
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and, following Eq. (5.38), the observed value of CN2 is

CN2o D .4/.0/

9
�
(

.4/.5/

92



.9/.708/ � 02 � 9.9 � 2/.115:3714/

2

� )1=2

D 0 � �
0:2469.6;372:00 � 3;634:1991/

	1=2 D �26:00 :

Because of the relationship between statistics CN2 and ı, the exact probability
value of the realized value of CN2 is given by

P
�
CN2 � CN2ojH0

� D P
�
ı � ıojH0

� D number of ı values � ıo

M
;

where CN2o and ıo denote the observed values of CN2 and ı, respectively.
Consider again the univariate rank response measurements listed in Fig. 5.15

where r D 1, g D 2, n1 D 4, n2 D 5, N D n1 C n2 D 9, and there are no tied
rank scores. In this application, let v D 2, employing squared Euclidean distance
between the rank scores, and let the treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

to correspond to the Mielke two-sample sum-of-squared-ranks test. Because there
are only

M D NŠ

n1Š n2Š
D 9Š

4Š 5Š
D 126

possible, equally-likely arrangements of the N D 9 rank scores, an exact solution is
preferred. Following Eq. (5.2) on p. 218, the N D 9 univariate rank scores listed in
Fig. 5.15 yield g D 2 average distance-function values of

�1 D 112:6667 and �2 D 117:40 :

Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 2 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

9 � 2

�
.4 � 1/.112:6667/ C .5 � 1/.117:40/

	 D 115:3714 :
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If all arrangements of the N D 9 observed rank scores listed in Fig. 5.15 occur
with equal chance, the exact probability value of ıo D 115:3714 computed on the
M D 126 possible arrangements of the observed data with n1 D 4 A univariate rank
scores and n2 D 5 B univariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 8

126
D 0:0635 :

Following Eq. (5.17) on p. 238, the exact expected value of the M D 126 ı values
is �ı D 177:00 and, following Eq. (5.18) on p. 238, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 115:3714

177:00
D C0:3482 ;

indicating approximately 35 % within-group agreement above that expected by
chance.

5.15.2 Example 2

For this second analysis of the univariate rank scores listed in Fig. 5.2 on p. 239,
replicated in Fig. 5.16 for convenience, let the treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

as in Example 1, but set v D 1 instead of v D 2, employing ordinary Euclidean
distance between the rank scores.

Following Eq. (5.2) on p. 218, the N D 9 univariate rank scores listed in Fig. 5.16
yield g D 2 average distance-function values of

�1 D 9:3333 and �2 D 9:60 :

Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

Rank: 1 2 3 4 5 6 7 8 9

Sample: A A B A A B B B B

Fig. 5.16 Example univariate rank-score data for two-sample rank tests with n1 D 4, n2 D 5, and
N D n1 C n2 D 9



5.15 Example CNs Analyses with s D 2 289

is

ıo D
gX

iD1

Ci�i D 1

9 � 2

�
.4 � 1/.9:3333/ C .5 � 1/.9:60/

	 D 9:4857 :

If all arrangements of the N D 9 observed rank scores listed in Fig. 5.16 occur
with equal chance, the exact probability value of ıo D 9:4857 computed on the M D
126 possible arrangements of the observed data with n1 D 4 A univariate rank scores
and n2 D 5 B univariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 8

126
D 0:0635 :

For comparison, the exact probability value based on v D 2, M D 126, and Ci D
.ni � 1/=.N � g/ for i D 1; 2 in Example 1 is also P D 0:0635. No comparison
is made with the conventional Mielke two-sample sum-of-squared-ranks test as
Mielke’s CN2 test is undefined for v D 1.

Following Eq. (5.17) on p. 238, the exact expected value of the M D 126 ı values
is �ı D 11:1111 and, following Eq. (5.18) on p. 238, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 9:4857

11:1111
D C0:1463 ;

indicating approximately 15 % within-group agreement above that expected by
chance.

5.15.3 Example 3

The treatment-group weighting function given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

is not required for a permutation test. Thus, for this third analysis of the univariate
rank scores listed in Fig. 5.16, the treatment-group weighting function is set to

Ci D ni

N
; i D 1; : : : ; g ;

simply weighting each treatment group proportional to its size, and setting v D 1,
employing ordinary Euclidean distance between the rank scores, as in Example 2.
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Following Eq. (5.2) on p. 218, the N D 9 univariate rank scores listed in Fig. 5.16
yield g D 2 average distance-function values of

�1 D 9:3333 and �2 D 9:60 :

Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni

N
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

9

�
.4/.9:3333/ C .5/.9:60/

	 D 9:4815 :

If all arrangements of the N D 9 observed rank scores listed in Fig. 5.16 occur
with equal chance, the exact probability value of ıo D 9:4815 computed on the M D
126 possible arrangements of the observed data with n1 D 4 A univariate rank scores
and n2 D 5 B univariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 8

126
D 0:0635 :

For comparison, the exact probability values based on v D 2, M D 126, and Ci D
.ni � 1/=.N � g/ for i D 1; 2 in Example 1 and v D 1, M D 126, and Ci D .ni �
1/=.N � g/ for i D 1; 2 in Example 2 are also P D 0:0635. No comparison is made
with the conventional Mielke two-sample sum-of-squared-ranks test as Mielke’s
CN2 test is undefined for both v D 1 and Ci D ni=N, i D 1; : : : ; g.

Following Eq. (5.17) on p. 238, the exact expected value of the M D 126 ı values
is �ı D 11:1111 and, following Eq. (5.18) on p. 238, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 9:4815

11:1111
D C0:1467 ;

indicating approximately 15 % within-group agreement above that expected by
chance.
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5.16 MRPP and Kendall’s S Statistic

In 1947 John Whitfield, an experimental psychologist at Cambridge Univer-
sity,15 proposed a measure of correlation between two variables in which one
variable was composed of N rank scores and the other variable was dichotomous
[424]. Whitfield considered the dichotomous variable as composed entirely of two
sets of tied rankings. An example will illustrate the Whitfield procedure. Consider
the univariate rank scores listed in Fig. 5.17 where the dichotomous variable cate-
gories are two samples indicated by the letters A and B and the rank scores are from
1 to 6. Let n1 D 4 denote the number of rank scores in the A category, let n2 D 2

denote the number of rank scores in the B category, and let N D n1 C n2.16

Whitfield designed a procedure to calculate a statistic that he labeled S, following
Kendall’s notation in a 1945 Biometrika article on “The treatment of ties in ranking
problems” [206]. Given the N D 6 rank scores listed in Fig. 5.17, consider the n1 D
4 rank scores in the category identified by the letter A: 1, 3, 4, and 5. Beginning with
rank score 1 with the letter A, there are no rank scores with the letter B to the left
of A D 1 and two rank scores with the letter B to the right of A D 1 (ranks 2 and
6); so Whitfield calculated 0 � 2 D �2. For rank score 3 with the letter A, there is
one rank score to the left of A D 3 with the letter B (rank 2) and one rank score to
the right of A D 3 with the letter B (rank 6); so 1 � 1 D 0. For rank score 4 with
the letter A, there is one rank score to the left of A D 4 with the letter B (rank 2)
and one rank score to the right of A D 4 with the letter B (rank 6); so 1 � 1 D 0.
Finally, for rank score 5 with the letter A, there is one rank score to the left of A D 5

with the letter B (rank 2) and one rank score to the right of A D 5 with the letter
B (rank 6); so 1 � 1 D 0. The sum of the differences between variables A and B
is S D �2 C 0 C 0 C 0 D �2. In this manner, Whitfield’s approach accommodated
unequal sample sizes with n1 6D n2 as well as tied rank scores.

Since the number of possible pairs of N consecutive integers is given by

N.N � 1/

2
;

Rank: 1 2 3 4 5 6

Sample: A B A A A B

Fig. 5.17 Ranking of a dichotomous variable with n1 D 4, n2 D 2, and N D n1 C n2 D 6

15Officially, the University of Cambridge, but universally known simply as Cambridge.
16Note that in this example, n2 D 2 is the smaller of the two sample sizes.
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Whitfield defined and calculated a measure of rank-order association between vari-
ables A and B as

� D 2S

N.N � 1/
D 2.�2/

.6/.6 � 1/
D �4

30
D �0:1333 :

Whitfield’s S is identical to Kendall’s S [206], and is directly related to the two-
sample rank-sum U statistic of Mann and Whitney [262] and, hence, to the two-
sample rank-sum W statistic of Wilcoxon [429].17 This can be demonstrated with
a simple comparison. For the univariate rank scores listed in Fig. 5.17, there are
n1 D 4 A rank scores and n2 D 2 B rank scores, so considering the smaller of the
two sample sizes (the n2 D 2 B rank scores), the first letter B (rank 2) precedes three
letter A rank scores (ranks 3, 4, and 5) and the second letter B (rank 6) precedes no
letter A, so U D 3 C 0 D 3. The relationships between Whitfield’s S and Mann and
Whitney’s U statistics are given by

S D 2U � n1n2 and U D S C n1n2

2
:

Thus, for the rank scores given in Fig. 5.17 the observed values of S and U are

So D 2.3/ � .4/.2/ D �2 and Uo D �2 C .4/.2/

2
D 3 ;

respectively [60, 224]. Also, for the example univariate rank scores listed in
Fig. 5.17, the observed Wilcoxon W statistic for the smaller of the two sums (the
n2 D 2 B rank scores) is Wo D 2 C 6 D 8 and the relationships between Whitfield’s
S and Wilcoxon’s W are given by

S D n2.N C 1/ � 2W and W D n2.N C 1/ � S

2
:

Thus, the observed values of S and W are

So D 2.6 C 1/ � .2/.8/ D �2 and Wo D 2.6 C 1/ � .�2/

2
D 8 ;

respectively [60, 224].
As Whitfield noted, the calculation of S was fashioned after a procedure intro-

duced by Maurice Kendall in 194518 and Whitfield might have been unaware of
the two-sample rank-sum tests previously published by Wilcoxon in 1945 [429],

17For clarification, S as used by Whitfield and Kendall should not be confused with S used as the
sum of rank scores earlier in the chapter.
18Whitfield lists the date of the Kendall article as 1946, but Kendall’s article was actually published
in Biometrika in 1945.
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Table 5.2 Fifteen pairs of
observations with
concordant/discordant (C=D)
pairs and associated rank-pair
values

Number Pair C=D Value Number Pair C=D Value

1 1–2 �; C �1 9 2–6 C; C 0

2 1–3 �; � 0 10 3–4 �; � 0

3 1–4 �; � 0 11 3–5 �; � 0

4 1–5 �; � 0 12 3–6 �; C �1

5 1–6 �; C �1 13 4–5 �; � 0

6 2–3 C; � C1 14 4–6 �; C �1

7 2–4 C; � C1 15 5–6 �; C �1

8 2–5 C; � C1

Festinger in 1946 [116], and Mann and Whitney in 1947 [262], as they are not ref-
erenced in the 1947 Whitfield article. Kendall considered the number of concordant
(C) and discordant (D) pairs, of which there is a total of N.N � 1/=2 pairs when
there are no ties among the N integers [206]. For the example univariate rank scores
listed in Fig. 5.17 there are

N.N � 1/

2
D 6.6 � 1/

2
D 15

pairs of rank scores. Table 5.2 lists and numbers the 15 rank pairs, the con-
cordant/discordant classification of rank pairs, and the rank-pair values, where
concordant pairs (�; � and C; C) are given a value of 0, and discordant pairs (C; �
and �; C) are given values of C1 and �1, respectively. The observed sum of the
pair values listed in Table 5.2 for the 15 pairs is So D �5 C 3 D �2.

Today it is well known, although poorly documented, that when one classifi-
cation is a dichotomy and the other classification is ordered, with or without tied
values, the S statistic of Kendall is equivalent to the Mann–Whitney U statistic; see
articles on this topic by Lincoln Moses in 1956 [313] and Edmund John Burr in
1960 [60]. Whitfield apparently was the first to uncover the relationship between
S, the statistic underlying Kendall’s � rank-order correlation coefficient, and U, the
Mann–Whitney two-sample rank-sum statistic for two independent samples.

However, it was Hemelrijk in 1952 [173] and Jonckheere in 1954 [196] who
made the relationship between S and U explicit; see also a discussion by Leach
in 1979 [234, p. 183]. Because the Jonckheere–Terpstra test, when restricted to
two independent samples, is mathematically identical in reverse application to the
Wilcoxon and Mann–Whitney tests, see references [196, p. 138] and [343, p. 396],
the two-sample rank-sum test is sometimes referred to as the Kendall–Wilcoxon–
Mann–Whitney–Jonckheere–Festinger test [313, p. 246].

Because, as Whitfield demonstrated, Kendall’s S is related to Wilcoxon’s W and
Mann and Whitney’s U, then Kendall’s S is ipso facto related to Mielke’s AN1 and
CN1, when Ci D .ni � 1/=.N � g/ and v D 2. The relationships between statistics
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Rank: 1 2 3 4 5 6

Sample: A B A A A B

Fig. 5.18 Ranking of a dichotomous variable with n1 D 4, n2 D 2, and N D n1 C n2 D 6

AN1 and S are given by

AN1 D n2.N C 1/ � S

2
and S D n2.N C 1/ � 2AN1 ;

and the relationships between statistics CN1 and S are given by

CN1 D �
�

S

2

�
and S D �2CN1 :

Consider the univariate rank response measurements listed in Fig. 5.17 on p. 291,
replicated in Fig. 5.18 for convenience, where n1 D 4, n2 D 2, N D n1 C n2 D 6,
and S D �2. For the univariate rank scores listed in Fig. 5.18, and following
Eq. (5.11) on p. 236, the observed value of AN1 is

AN1o D
NX

iD1

R1
i ZNi

D .11/.0/ C .21/.1/ C .31/.0/ C .41/.0/ C .51/.0/ C .61/.1/

D 0 C 2 C 0 C 0 C 0 C 6 D 8 :

Alternatively, the observed value of AN1o is given by

AN1o D n2.N C 1/ � So

2
D 2.6 C 1/ � .�2/

2
D 16

2
D 8 ;

where the observed value of S is

So D n2.N C 1/ � 2AN1 D 2.6 C 1/ � .2/.8/ D �2 :

Also, following Eq. (5.13) on p. 237, the observed value of CN1 is

CN1o D
NX

iD1

h.Ri; N; 1/ ZNi

D �ˇ̌1 � 3:50
ˇ̌1

.0/ � ˇ̌
2 � 3:50

ˇ̌1
.1/ � ˇ̌

3 � 3:50
ˇ̌1

.0 C ˇ̌
4 � 3:50

ˇ̌1
.0/

C ˇ̌
5 � 3:50

ˇ̌1
.0/ C ˇ̌

6 � 3:50
ˇ̌1

.1/

D �0 � 1:50 � 0 C 0 C 0 C 2:50 D C1 :
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Alternatively, the observed value of CN1o is given by

CN1o D �
�

So

2

�
D �

��2

2

�
D 2

2
D C1 ;

and the observed value of S is given by

So D �2CN1o D .�2/.1:00/ D �2 :

5.17 Example Analyses

In this section, three example analyses illustrate Whitfield’s S test statistic. The first
example is designed to correspond to Whitfield’s S statistic using a small set of
univariate rank scores with v D 2 and treatment-group weights Ci D .ni � 1/=.N �
g/ for i D 1; : : : ; g; the second example analyzes the same small set of univariate
rank scores, but uses v D 1 and treatment-group weights Ci D .ni � 1/=.N � g/ for
i D 1; : : : ; g; and the third example analyzes the same set of univariate rank scores
using v D 1, but adopts a proportional treatment-group weighting function given by
Ci D ni=N for i D 1; : : : ; g.

5.17.1 Example 1

Consider the univariate rank scores listed in Table 5.3 consisting of n1 D 9 rank
scores from Sample A and n2 D 6 rank scores from Sample B.19 Calculating Mann
and Whitney’s U statistic for the data listed in Table 5.3, the number of A rank scores
to the left of (less than) the first B rank score (rank 3) is 2; the number of A rank
scores to the left of the second and third B rank scores (ranks 7 and 8) is 5 each; and
the number of A rank scores to the left of the last three B rank scores (ranks 13, 14,
and 15) is 9 each. Then U D 2 C 5 C 5 C 9 C 9 C 9 D 39. To calculate Wilcoxon’s
W statistic for the rank data listed in Table 5.3, the sum of the rank scores in Sample
A is W D 1 C 2 C 4 C 5 C 6 C 9 C 10 C 11 C 12 D 60.20

Table 5.3 Listing of the n1 D 9 and n2 D 6 univariate rank scores from Samples A and B, respec-
tively

Rank: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sample: A A B A A A B B A A A A B B B

19Note that in this example, n2 D 6 is the smaller of the two sample sizes.
20Coincidentally, in this example the sum of the n1 D 9 rank scores in Sample B is also 60.
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Fig. 5.19 Contingency table
of the frequencies of rank
scores in Table 5.3

A : 2 0 3 0 4 0

B : 0 1 0 2 0 3

To calculate Whitfield’s S statistic for the data listed in Table 5.3, there are two
A rank scores to the left of B D 3 (ranks 1 and 2) and seven A rank scores to the
right of B D 3 (ranks 4, 5, 6, 9, 10 11, and 12), so 2 � 7 D �5. There are five A rank
scores to the left of B D 7 and B D 8 (ranks 1, 2, 4, 5, and 6) and four A rank scores
to the right of B D 7 and B D 8 (ranks 9, 10, 11, and 12), so .5 � 4/ C .5 � 4/ D 2.
There are nine A rank scores to the left of B D 13, 14, and 15 (ranks 1, 2, 4, 5,
6, 9, 10, 11, and 12) and zero A rank scores to the right of B D 13, 14, and 15,
so .9 � 0/ C .9 � 0/ C .9 � 0/ D 27. Then S D �5 C 2 C 27 D 24. Note that the
relationships among Whitfield’s S, Mann and Whitney’s U, and Wilcoxon’s W are
given by

S D 2U � n1n2 D 2.39/ � .9/.6/ D 78 � 54 D C24 ;

U D S C n1n2

2
D 24 C .9/.6/

2
D 78

2
D 39 ;

S D n1.N C 1/ � 2W D 9.15 C 1/ � .2/.60/ D 144 � 120 D C24 ;

and

W D n1.N C 1/ � S

2
D 9.15 C 1/ � 24

2
D 120

2
D 60 :

Alternatively, as Whitfield suggested, arrange the two samples into a contingency
table with two rows and columns equal to the frequency distribution of the combined
samples, as depicted in Fig. 5.19. Here the first row of frequencies in Fig. 5.19 rep-
resents the runs in the list of rank scores in Table 5.3 labeled as A, i.e., there are two
occurrences of A in ranks 1 and 2; no occurrence of A in rank 3; three occurrences of
A in ranks 4, 5, and 6; no occurrence of A in ranks 7 and 8; four occurrences of A in
ranks 10, 11, and 12; and no occurrence of A in ranks 13, 14, and 15. The second row
of frequencies in Fig. 5.19 represents the runs in the list of rank scores in Table 5.3
labeled as B, i.e., there are no occurrences of B in ranks 1 and 2, one occurrence of
B in rank 3, no occurrences of B in ranks 4, 5, and 6, two occurrences of B in ranks
7 and 8, no occurrence of B in ranks 9, 10, 11, and 12, and three occurrences of B in
ranks 13, 14, and 15.

Given the r�c contingency table in Fig. 5.19 with r D 2 rows and c D 6 columns,
let xij indicate a cell frequency for i D 1; : : : ; r and j D 1; : : : ; c. Then, as Kendall
showed in 1948 [207], the number of concordant pairs is given by

C D
r�1X

iD1

c�1X

jD1

xij

0

@
rX

kDiC1

cX

lDjC1

xkl

1

A (5.39)
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and the number of discordant pairs is given by

D D
r�1X

iD1

c�1X

jD1

xi;c�jC1

 
rX

kDiC1

c�jX

lD1

xkl

!
: (5.40)

Thus, for the cell frequencies given in Fig. 5.19, C is calculated by proceeding
from the upper-left cell with frequency x11 D 2 downward and to the right, multi-
plying each cell frequency by the sum of all cell frequencies below and to the right,
and summing the products. Thus, following Eq. (5.39) the observed value of C is

Co D 2.1 C 0 C 2 C 0 C 3/ C 0.0 C 2 C 0 C 3/

C 3.2 C 0 C 3/ C 0.0 C 3/ C .4/.3/

D 12 C 0 C 15 C 0 C 12 D 39 ;

and D is calculated by proceeding from the upper-right cell with frequency x16 D 0

downward and to the left, multiplying each cell frequency by the sum of all cell
frequencies below and to the left, and summing the products. Thus, following
Eq. (5.40) the observed value of D is

Do D 0.0 C 1 C 0 C 2 C 0/ C 4.0 C 1 C 0 C 2/

C 0.0 C 1 C 0/ C 3.0 C 1/ C .0/.0/

D 0 C 12 C 0 C 3 C 0 D 15 :

Then, as defined by Kendall, the observed value of S is So D Co � Do D 39 � 15 D
C24.

Now consider the MRPP test statistic ı, as defined in Eq. (5.1) on p. 217, where
for this first analysis

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

and v D 2 in Eq. (5.3) on p. 218, employing squared Euclidean distance between
rank scores to correspond to the Kendall–Whitfield S statistic. The functional rela-
tionships between statistics ı and S are given by

ı D N

2.N � 2/



N2 � 1

3
� S2

n1n2

�
(5.41)
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and

S D
�

n1n2

3N

h
N.N2 � 1/ � 6.N � 2/ ı

i1=2

; (5.42)

where n1 and n2 denote the sizes of the two samples and N D n1 C n2. Thus,

P
�
S � SojH0

� D P
�
ı � ıojH0

� D number of ı values � ıo

M
;

where So and ıo denote the observed values of S and ı, respectively.
For the univariate rank scores listed in Table 5.3 on p. 295, there are only

M D NŠ

n1Š n2Š
D 15Š

9Š 6Š
D 5;005

possible, equally-likely arrangements of the observed rank scores; thus, an exact
solution is feasible. Following Eq. (5.2) on p. 218, the N D 15 univariate rank scores
listed in Table 5.3 yield g D 2 average distance-function values of

�1 D 32:00 and �2 D 44:80 :

Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 2 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

15 � 2

�
.9 � 1/.32:00/ C .6 � 1/.44:80/

	 D 36:9231 :

If all arrangements of the N D 15 observed rank scores listed in Table 5.3 on
p. 295 occur with equal chance, the exact probability value of ıo D 36:9231 com-
puted on the M D 5;005 possible arrangements of the observed data with n1 D 9

A univariate rank scores and n2 D 6 B univariate rank scores preserved for each
arrangement is

P.ı � ıojH0/ D number of ı values � ıo

M
D 906

5;005
D 0:1810 :
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For comparison, assuming no tied rank scores, the Whitfield test statistic S is
approximately distributed under the null hypothesis as N.0; 1/ as N !1 with mean
�S D 0 and variance given by

�2
S D 1

18

�
N.N � 1/.2N C 5/

	
:

Thus, for the univariate rank scores listed in Table 5.3 on p. 295,

�2
S D 15.15 � 1/Œ.2/.15/ C 5

18
D 7;350

18
D 408:3333

and the observed standard score is

zo D So � �S

�S
D 24 � 0p

408:3333
D C1:1877 ;

yielding an approximate two-sided N.0; 1/ probability value of P D 0:2350.
Following Eq. (5.20) on p. 239, the exact expected value of the M D 5;005 ı

values is �ı D 40:00 and, following Eq. (5.18) on p. 238, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 36:9231

40:00
D C0:0769 ;

indicating approximately 8 % within-group agreement above that expected by
chance.

The relationships between statistics ı and S are confirmed as follows. For the
univariate rank scores listed in Table 5.3 and, following Eq. (5.41) on p. 297, the
observed value of ı is

ıo D 15

2.15 � 2/



152 � 1

3
� 242

.9/.6/

�
D 15

26
.64/ D 36:9231

and, following Eq. (5.42) on p. 298, the observed value of S is

So D
�

9.15 � 9/

.3/.15/

h
15.152 � 1/ � 6.15 � 2/.36:9231/

i1=2

D



54

45
.480/

�1=2

D 24 :
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5.17.2 Example 2

For this second analysis of the univariate rank scores listed in Table 5.3 on p. 295,
replicated in Table 5.4 for convenience, let the treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

as in Example 1, but set v D 1 instead of v D 2, employing ordinary Euclidean
distance between the rank scores.

Following Eq. (5.2) on p. 218, the N D 15 univariate rank scores listed in
Table 5.4 yield g D 2 average distance-function values of

�1 D 4:8333 and �2 D 5:7333 :

Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

15 � 2

�
.9 � 1/.4:8333/ C .6 � 1/.5:7333/

	 D 5:1795 :

If all arrangements of the N D 15 observed rank scores listed in Table 5.4 occur
with equal chance, the exact probability value of ıo D 5:1795 computed on the M D
5;005 possible arrangements of the observed data with n1 D 9 A univariate rank
scores and n2 D 6 B univariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 1;091

5;005
D 0:2180 :

For comparison, the exact probability value based on v D 2, M D 5;005, and
Ci D .ni � 1/=.N � g/ for i D 1; 2 in Example 1 is P D 0:1810. No comparison
is made with the conventional Whitfield two-sample rank-sum test as Whitfield’s
two-sample test is undefined for v D 1.

Table 5.4 Listing of the n1 D 9 and n2 D 6 rank scores from Samples A and B, respectively

Rank: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sample: A A B A A A B B A A A A B B B
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Following Eq. (5.20) on p. 239, the exact expected value of the M D 5;005 ı

values is �ı D 5:3333 and, following Eq. (5.18) on p. 238, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 5:1795

5:3333
D C0:0288 ;

indicating approximately 3 % within-group agreement above that expected by
chance.

5.17.3 Example 3

The treatment-group weighting function given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

is not required for a permutation test. Thus, for this third analysis of the univariate
rank scores listed in Table 5.4, the treatment-group weighting function is set to

Ci D ni

N
; i D 1; : : : ; g ;

weighting each treatment group proportional to its size, and setting v D 1, employ-
ing ordinary Euclidean distance between the rank scores, as in Example 2. Follow-
ing Eq. (5.2) on p. 218, the N D 15 univariate rank scores listed in Table 5.4 yield
g D 2 average distance-function values of

�1 D 4:8333 and �2 D 5:7333 :

Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni

N
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

15

�
.9/.4:8333/ C .6/.5:7333/

	 D 5:1933 :

If all arrangements of the N D 15 observed rank scores listed in Table 5.4 occur
with equal chance, the exact probability value of ıo D 5:1933 computed on the M D
5;005 possible arrangements of the observed data with n1 D 9 A rank scores and
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n2 D 6 B rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 1;158

5;005
D 0:2314 :

For comparison, the exact probability values based on v D 2, M D 5;005, and
Ci D .ni � 1/=.N � g/ for i D 1; 2 in Example 1 and v D 1, M D 5;005, and
Ci D .n1 � 1/=.N � g/ for i D 1; 2 in Example 2 are P D 0:1810 and P D 0:2180,
respectively. No comparison is made with the conventional Whitfield two-sample
rank-sum test as Whitfield’s two-sample test is undefined for both v D 1 and
Ci D ni=N, i D 1; : : : ; g.

Following Eq. (5.20) on p. 239, the exact expected value of the M D 5;005 ı

values is �ı D 5:3333 and, following Eq. (5.18) on p. 238, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 5:1933

5:3333
D C0:0263 ;

indicating approximately 3 % within-group agreement above that expected by
chance.

5.18 MRPP and Cureton’s Rank-Biserial Correlation

Consider two correlated variables, one represented by a ranking and the other by
a dichotomy, similar to Whitfield’s data (q.v. p. 291). In 1956 psychologist Edward
Cureton proposed a new measure of correlation for a ranking and a dichotomous
variable that he labeled rrb for rank-biserial correlation [83].21 The rank-biserial
correlation coefficient was introduced by Cureton as a measure of effect size for the
Wilcoxon–Mann–Whitney two-sample rank-sum test. Twelve years later, in 1968,
Cureton extended rrb to include tied rank scores [84]. In this section, only non-tied
rank scores are considered, with no loss of generality. Cureton stated that the new
correlation coefficient should norm properly between ˙1 and should be strictly non-
parametric, defined solely in terms of inversions and agreements between rank-pairs,
without the use of means, variances, covariances, or regression [83, p. 287]. Con-
sequently, as Cureton stated, “clearly rrb is a Kendall-type coefficient” [83, p. 289].
However, Cureton also stated that rrb “is also a Spearman-type coefficient” [83,
p. 289].

It is clear that rrb is, indeed, a Kendall-type coefficient as Kendall’s S and Cure-
ton’s rrb are related, vide infra. However, it is less clear that it is a Spearman-type
coefficient. Durbin and Stuart [99], along with Daniels [87, 88], investigated this
relationship and, although rrb appears to be a Spearman type coefficient, the exact
relationship with Spearman’s � seems to have eluded investigators. The difficulty is

21Technically, Cureton’s rrb is not a measure of correlation [137, p. 629].
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that Kendall’s �a and Spearman’s � are not equivalent. In general, the relationship
between � and � is given by

�1 � 3.N C 2/

N � 2
� � 2.N C 1/

N � 2
� � C1

[76].
When two variables, x and y, both consist of interval-level response measure-

ments, the correlation between the variables is usually calculated as Pearson’s
product-moment correlation coefficient given by

rxy D cov.x; y/

sxsy
;

where

sx D
"

1

N � 1

NX

iD1

.xi � Nx/2

#1=2

; sy D
"

1

N � 1

NX

iD1

.yi � Ny/2

#1=2

;

cov.x; y/ D 1

N � 1

NX

iD1

.xi � Nx/ .yi � Ny/ ;

Nx D 1

N

NX

iD1

xi ; and Ny D 1

N

NX

iD1

yi :

When variables x and y are both coded (0; 1) binary, the correlation between the
two variables is usually calculated as Pearson’s � given by

� D
s

�2

N
:

It has been well established that � is identical to Pearson’s rxy when calculated on
(x; y) binary-coded data.

When x and y are both ordinal variables, the correlation between variables x and
y is usually calculated as Spearman’s rank-order correlation given by

�xy D 1 �
6

NX

iD1

d2

N.N2 � 1/
;
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where d D xi � yi for i D 1; : : : ; N. It is well known that Spearman’s �xy is identical
to Pearson’s rxy when calculated on x; y rank data. An added benefit is that Pearson’s
rxy automatically corrects for any tied rank scores.

When x is a (0; 1) binary-coded variable and y consists of interval-level response
measurements, the correlation between variables x and y is usually calculated as the
point-biserial correlation given by

rpb D Ny1 � Ny0

sy

r
n0n1

N.N � 1/
;

where n0 and n1 are the number of y values associated with x D 0 and x D 1, respec-
tively, N D n0 C n1, and Ny0 and Ny1 are the sample means of the y values associated
with x D 0 and x D 1, respectively. The point-biserial correlation coefficient is iden-
tical to Pearson’s rxy calculated on the data where x is a binary-coded variable and y
is a continuous, interval-level variable.

On the other hand, Cureton’s rrb does not belong to the Pearson rxy family,
although a Pearson-type coefficient could easily be defined for a (0; 1) binary-coded
variable and a rank-order variable. Cureton’s rrb belongs instead to Kendall’s tau-
like family of measures that is based on S D C � D, where C and D denote the
number of concordant and discordant pairs of x; y values, respectively.

5.18.1 Example 1

Consider an example data set such as listed in Fig. 5.20 in which N D 10 objects are
ranked (variable y) and also classified into two groups coded 0 and 1 (variable x).
The data are adapted from Glass [139, p. 104]. Cureton defined rrb as

rrb D S

Smax
;

Fig. 5.20 Example (0; 1)
coded data for Cureton’s
rank-biserial correlation
coefficient

Variable

Object x y

1 0 1

2 1 2

3 0 3

4 0 4

5 0 5

6 0 6

7 1 7

8 0 8

9 1 9

10 1 10
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Table 5.5 Paired differences
and concordant (C) and
discordant (D) values for the
univariate rank scores listed
in Fig. 5.20

Pair xi � xj yi � yj Type Pair xi � xj yi � yj Type

1 1 � 0 1 � 2 C 24 0 � 1 3 � 10 C

2 0 � 0 1 � 3 25 0 � 0 4 � 5

3 0 � 0 1 � 4 26 0 � 0 4 � 6

4 0 � 0 1 � 5 27 0 � 1 4 � 7 C

5 0 � 0 1 � 6 28 0 � 0 4 � 8

6 0 � 1 1 � 7 C 29 0 � 1 4 � 9 C

7 0 � 0 1 � 8 30 0 � 1 4 � 10 C

8 0 � 1 1 � 9 C 31 0 � 0 5 � 6

9 0 � 1 1 � 10 C 32 0 � 1 5 � 7 C

10 1 � 0 2 � 3 D 33 0 � 0 5 � 8

11 1 � 0 2 � 4 D 34 0 � 1 5 � 9 C

12 1 � 0 2 � 5 D 35 0 � 1 5 � 10 C

13 1 � 0 2 � 6 D 36 0 � 1 6 � 7 C

14 1 � 1 2 � 7 37 0 � 0 6 � 8

15 1 � 0 2 � 8 D 38 0 � 1 6 � 9 C

16 1 � 1 2 � 9 39 0 � 1 6 � 10 C

17 1 � 1 2 � 10 40 1 � 0 7 � 8 D

18 0 � 0 3 � 4 41 1 � 1 7 � 9

19 0 � 0 3 � 5 42 1 � 1 7 � 10

20 0 � 0 3 � 6 43 0 � 1 8 � 9 C

21 0 � 1 3 � 7 C 44 0 � 1 8 � 10 C

22 0 � 0 3 � 8 45 1 � 1 9 � 10

23 0 � 1 3 � 9 C

where S D C � D, C is the number of concordant pairs, D is the number of discor-
dant pairs, S D C � D is the S test statistic of Kendall [205] and Whitfield [424],
and Smax D n0n1, where n0 is the number of objects coded 0 and n1 is the number of
objects coded 1.

Table 5.5 lists the
 

N

2

!
D N.N � 1/

2
D 10.10 � 1/

2
D 45

possible paired comparisons of xi and xj with yi and yj, where i < j and n0 and n1 are
the number of objects coded 0 and 1, respectively. Each paired difference is labeled
as concordant (C) or discordant (D). Paired differences not labeled as C or D are not
relevant in the present context as they are tied by either xi D xj D 0 or xi D xj D 1.
In Table 5.5 there are 18 concordant and 6 discordant paired differences; thus, for
the paired differences listed in Table 5.5, the observed value of S is So D C � D D
18 � 6 D C12.



306 5 Randomized Designs: Ordinal Data, I

0: 1 1 4 0 1 0

1: 0 0 0 1 0 2

Fig. 5.21 Ranking of a dichotomous variable with n0 D 6, n1 D 4, and N D n0 C n1 D 10

Alternatively, as suggested by Whitfield [424], the rank scores listed in Fig. 5.20
can be rearranged into a contingency table to make calculation of C and D much
easier [424]. Consider the data listed in Fig. 5.20 arranged into a 2�6 contingency
table, such as given in Fig. 5.21. The top row of frequencies given in Fig. 5.21 rep-
resents the runs in the list of rank scores given in Fig. 5.20 coded 0, i.e., there is 1
occurrence of a 0 in rank 1, no occurrence of a 0 in rank 2, 4 occurrences of a 0 in
ranks 3, 4, 5, and 6, no occurrence of a 0 in rank 7, 1 occurrence of a 0 in rank 8,
and 2 occurrences of a 0 in ranks 9 and 10. The bottom row of frequencies given in
Fig. 5.21 represents the runs in the list of rank scores given in Fig. 5.20 coded 1, i.e.,
there is no occurrence of a 1 in rank 1, one occurrence of a 1 in rank 2, no occur-
rences of a 1 in ranks 3, 4, 5, and 6, one occurrence of a 1 in rank 7, no occurrence
of a 1 in rank 8, and 2 occurrences of a 1 in ranks 9 and 10.

Given the r�c contingency table presented in Fig. 5.21 with r D 2 rows and c D
6 columns, let xij indicate a cell frequency for i D 1; : : : ; r and j D 1; : : : ; c. Then,
as Kendall showed in 1948 [207], the number of concordant and discordant pairs is
given by

C D
r�1X

iD1

c�1X

jD1

xij

0

@
rX

kDiC1

cX

lDjC1

xkl

1

A

and

D D
r�1X

iD1

c�1X

jD1

xi;c�jC1

 
rX

kDiC1

c�jX

lD1

xkl

!
:

respectively. Thus, the observed values of C and D are

Co D 1.1 C 1 C 2/ C 4.1 C 2/ C 1.2/ D 18 ;

Do D 1.1 C 1/ C 4.1/ D 6 ;

and the observed value of S is So D Co � Do D 18 � 6 D C12. It can easily be
shown that Smax is given by n0n1, where n0 is the number of objects coded 0 and
n1 is the number of objects coded 1. Then, Cureton’s rank-biserial coefficient is
given by

rrb D So

Smax
D So

n0n1

D C12

.6/.4/
D C0:50 :
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Fig. 5.22 Graphic depicting
the regression line for the
data listed in Fig. 5.20 with
intercept equal to Ny0 D 4:50

and slope equal to Ny1 � Ny0 D
7:00 � 4:50 D 2:50

0 1

x
0

2

4

6

8

10

12

y

In 1966 Glass derived a simplified formula for rrb, assuming no tied rank scores
[137]. Glass’s formula is given by

rrb D 2

N
.Ny1 � Ny0/ ;

where Ny0 and Ny1 are the arithmetic averages of the y values coded 0 and 1, respec-
tively. In this case, Ny0 D 4:50 and Ny1 D 7:00. Note that under (0; 1) binary coding,
Ny0 and Ny1 � Ny0 are the intercept (ayx) and slope (byx), respectively, of a regression
line passing through the two points (x D 0; Ny0 D 4:40) and (x D 1; Ny1 D 7:00), as
illustrated in Fig. 5.22.

Glass provided two alternate calculating formulæ given by

rrb D 2

n0

�
Ny1 � N C 1

2

�
or rrb D 2

n1

�
N C 1

2
� Ny0

�
:

Thus, for the data listed in Fig. 5.20 on p. 304 where

Ny0 D 1

n0

n0X

iD1

D 1

6
.1 C 3 C 4 C 5 C 6 C 8/ D 1

6
.27/ D 4:50

Ny1 D 1

n1

n1X

iD1

D 1

4
.2 C 7 C 9 C 10/ D 1

4
.28/ D 7:00 ;

rrb D 2

n0

�
Ny1 � N C 1

2

�
D 2

6

�
7:00 � 10 C 1

2

�
D C0:50



308 5 Randomized Designs: Ordinal Data, I

Fig. 5.23 Example data
from Fig. 5.20 for the MRPP
analyses

y0 y1

1 2

3 7

4 9

5 10

6

8

and

rrb D 2

n1

�
N C 1

2
� Ny0

�
D 2

4

�
10 C 1

2
� 4:50

�
D C0:50 :

Now consider the MRPP test statistic ı, as defined in Eq. (5.1) on p. 217, where
for this first example analysis,

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

and v D 2 in Eq. (5.3) on p. 218, employing squared Euclidean distance between
the rank scores to correspond to Cureton’s rrb test statistic. Figure 5.23 rearranges
the data listed in Fig. 5.20 into g D 2 groups. The functional relationships between
statistics ı and rrb are given by

ı D N

2.N � 2/

�
N2 � 1

3
� n0n1r2

rb

�
(5.43)

and

rrb D



N.N2 � 1/ � 6ı.N � 2/

3Nn0n1

�1=2

; (5.44)

where n0 and n1 denote the sizes of the two groups and N D n0 C n1. Since n0, n1,
and N are all constants under permutation,

P
�
rrb � rojH0

� D P
�
ı � ıojH0

� D number of ı values � ıo

M
;

where ro and ıo denote the observed value of rrb and ı, respectively.
For the univariate rank scores listed in Fig. 5.23, there are only

M D NŠ

n0Š n1Š
D 10Š

6Š 4Š
D 210
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possible, equally-likely arrangements of the observed rank scores; thus, an exact
solution is feasible. Following Eq. (5.2) on p. 218, the N D 10 univariate rank scores
listed in Fig. 5.23 yield g D 2 average distance-function values of

�0 D 11:80 and �1 D 25:3333 :

Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 2 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ı D
gX

iD1

Ci�i D 1

10 � 2

�
6 � 1/.11:80/ C .4 � 1/.25:3333/

	D 16:8750 :

If all arrangements of the N D 10 observed rank scores listed in Fig. 5.23 occur
with equal chance, the exact probability value of ı D 16:8750 computed on the
M D 210 possible arrangements of the observed data with n0 D 6 univariate rank
scores and n1 D 4 univariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 54

210
D 0:2571 :

Following Eq. (5.5) on p. 219, the exact expected value of the M D 210 ı values
is �ı D 18:3333 and, following Eq. (5.4) on p. 219, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 16:8750

18:3333
D C0:0795 ;

indicating approximately 8 % within-group agreement above that expected by
chance.

The relationships between ı and Cureton’s rrb are confirmed as follows. For the
N D 10 univariate rank scores listed in Fig. 5.20 on p. 304 and, following Eq. (5.43)
on p. 308, the observed value of ı is

ıo D 10

2.10 � 2/



102 � 1

3
� .6/.4/.0:50/2

�
D 5

8
.33 � 6/ D 16:8750

and, following Eq. (5.44) on p. 308, the observed value of rrb is

rrb D



10.102 � 1/ � 6.16:8750/.10 � 2/

3.10/.6/.4/

�1=2

D
�

990 � 810

720

�1=2

D C0:50 :
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Since ı is related to rrb and, as shown previously, ı is related to Wilcoxon’s W,
Mann and Whitney’s U, and Kendall’s �a, then rrb is ipso facto related to W, U, and
�a. For the univariate rank scores listed in Fig. 5.23, Wilcoxon’s W is simply the
smaller of the sums of the rank scores of the two samples, i.e.,

Wo D
n0X

iD1

D 1 C 3 C 4 C 5 C 6 C 8 D 27 :

The relationships between Wilcoxon’s W and Cureton’s rrb are given by

W D n0.N C 1/ � n0n1rrb

2
and rrb D n0.N C 1/ � 2W

n0n1

;

where n0 is the number of objects in the group with the smaller of the two sums; in
this case, 27. Thus, the observed value of Wilcoxon’s W is

Wo D 6.10 C 1/ � .6/.4/.0:50/

2
D 54

2
D 27

and the observed value of Cureton’s rrb is

rrb D 6.10 C 1/ � .2/.27/

.6/.4/
D C12

24
D C0:50 :

For the univariate rank scores listed in Fig. 5.23, Mann and Whitney’s U is the
sum of the number of values in one group, preceded by the number of values in
the other group. Thus, for the univariate rank scores listed in Fig. 5.23, the value
of 1 in Group 0 is less than values 2, 7, 9, and 10 in Group 1, yielding U D 4.
Then, the value of 3 in Group 0 is less than values 7, 9, and 10 in Group 1, yielding
U D 3 C 4 D 7. Next, the value of 4 in Group 0 is less than values 7, 9, and 10
in Group 1, yielding U D 3 C 3 C 4 D 10. Next, the value of 5 in Group 0 is less
than values 7, 9, and 10 in Group 1, yielding U D 3 C 3 C 3 C 4 D 13. Next, the
value of 6 in Group 0 is less than values 7, 9, and 10 in Group 1, yielding U D
3 C 3 C 3 C 3 C 4 D 16. Finally, the value of 8 in Group 0 is less than values 9 and
10 in Group 1, yielding U D 3 C 3 C 3 C 3 C 4 C 2 D 18. Alternatively,

U D n0n1 C n0.n0 C 1/

2
� W D .6/.4/ C 6.6 C 1/

2
� 27 D 18 :

The relationships between Mann and Whitney’s U and Cureton’s rrb are given by

U D n0n1.1 C rrb/

2
and rrb D 2U

n0n1

� 1 :
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Thus, the observed value of Mann and Whitney’s U is

U D .6/.4/.1 C 0:50/

2
D 36

2
D 18

and the observed value of Cureton’s rrb is

rrb D .2/.18/

.6/.4/
� 1 D 1:50 � 1 D C0:50 :

For the univariate rank scores listed in Fig. 5.23, Kendall’s �a is

�a D 2S

N.N � 1/
D .2/.12/

10.10 � 1/
D 24

90
D 0:2667 :

The relationships between Kendall’s �a and Cureton’s rrb are given by

�a D 2n0n1rrb

N.N � 1/
and rrb D �aN.N � 1/

2n0n1

:

Thus, the observed value of Kendall’s �a is

�a D .2/.6/.4/.0:50/

10.10 � 1/
D 24

90
D 0:2667

and the observed value of Cureton’s rrb is

rrb D .0:2667/.10/.10 � 1/

.2/.6/.4/
D 24

48
D C0:50 :

5.18.2 Example 2

For this second analysis of the univariate rank scores listed in Fig. 5.23 on p. 308,
replicated in Fig. 5.24 for convenience, let the treatment-group weights be given by

Fig. 5.24 Example data
from Fig. 5.20 for the MRPP
analyses

y0 y1

1 2

3 7

4 9

5 10

6

8
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Ci D ni � 1

N � g
; i D 1; : : : ; g ;

as in Example 1, but set v D 1 instead of v D 2, employing ordinary Euclidean
distance between the rank scores.

Following Eq. (5.2) on p. 218, the N D 10 univariate rank response measure-
ments listed in Fig. 5.24 yield g D 2 average distance-function values of

�0 D 3:00 and �1 D 4:3333 :

Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

10 � 2

�
.6 � 1/.3:00/ C .4 � 1/.4:3333/

	 D 3:50 :

If all arrangements of the N D 10 observed rank scores listed in Fig. 5.24 occur
with equal chance, the exact probability value of ıo D 3:50 computed on the M D
210 possible arrangements of the observed data with n0 D 6 univariate rank scores
and n1 D 4 univariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 52

210
D 0:2476 :

For comparison, the exact probability value based on v D 2, M D 210, and Ci D
.ni � 1/=.N � g/ for i D 1; 2 in Example 1 is P D 0:2571. No comparison is made
with Cureton’s rank-biserial test as Cureton’s test is undefined for v D 1.

Following Eq. (5.5) on p. 219, the exact expected value of the M D 210 ı values
is �ı D 3:6667 and, following Eq. (5.4) on p. 219, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 3:50

3:6667
D C0:0455 ;

indicating approximately 5 % within-group agreement above that expected by
chance.
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5.18.3 Example 3

The treatment-group weighting function given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

is not required for a permutation test. Thus, for this third analysis of the univariate
rank scores listed in Fig. 5.24, the treatment-group weighting function is set to

Ci D ni

N
; i D 1; : : : ; g ;

simply weighting each treatment group proportional to its size, and setting v D 1,
employing ordinary Euclidean distance between the rank scores, as in Example 2.
Following Eq. (5.2) on p. 218, the N D 10 univariate rank scores listed in Fig. 5.24
yield g D 2 average distance-function values of

�0 D 3:00 and �1 D 4:3333 :

Following Eq. (5.1) on p. 217, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni

N
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

10

�
6/.3:00/ C .4/.4:3333/

	 D 3:5333 :

If all arrangements of the N D 10 observed rank scores listed in Fig. 5.24 occur
with equal chance, the exact probability value of ıo D 3:5333 computed on the M D
210 possible arrangements of the observed data with n0 D 6 univariate rank scores
and n1 D 4 univariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 53

210
D 0:2524 :

For comparison, the exact probability values based on v D 2, M D 210, and Ci D
.ni � 1/=.N � g/ for i D 1; 2 in Example 1 and v D 1, M D 210, and Ci D .ni �
1/=.N � g/ for i D 1; 2 in Example 2 are P D 0:2571 and P D 0:2476, respectively.
No comparison is made with Cureton’s rank-biserial test as Cureton’s test is unde-
fined for both v D 1 and Ci D ni=N, i D 1; : : : ; g.

Following Eq. (5.5) on p. 219, the exact expected value of the M D 210 ı values
is �ı D 3:6667 and, following Eq. (5.4) on p. 219, the observed chance-corrected
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measure of effect size is

<o D 1 � ıo

�ı

D 1 � 3:5333

3:6667
D C0:0364 ;

indicating approximately 4 % within-group agreement above that expected by
chance.

5.19 Coda

Chapter 5 applied the Multi-Response Permutation Procedures (MRPP) developed
in Chap. 2 to ordinal-level response measurement data. Chapter 5 also established
the relationships between the MRPP test statistics, ı and <, and selected conven-
tional tests and measures designed for the analysis of completely randomized data
at the ordinal level of measurement. Considered in this chapter were the Wilcoxon
two-sample rank-sum test, the Kruskal–Wallis multiple-sample rank-sum test, the
Ansari–Bradley rank-sum test for dispersion, the Taha sum-of-squared-ranks test,
the Mood rank-sum test for dispersion, the Brown–Mood median test, the Mielke
power-of-rank function tests, the Whitfield two-sample rank-sum test, and the Cure-
ton rank-biserial test.

Comparisons of the MRPP test statistic based on ordinary Euclidean distance
and squared Euclidean distance between the rank scores with the conventional
statistics listed above revealed small differences among the observed probability
values, which were not always consistent. As demonstrated in this chapter, ordi-
nary Euclidean distance between the rank scores with v D 1 and squared Euclidean
distance between the rank scores with v D 2 often yield similar results due to the
elimination of extreme values by transforming the raw data to rank scores. How-
ever, substantial differences in probability values can still be obtained, as noted by
Mielke, Berry, and Johnston in 2011 [309]. While conventional statistics, under
the population model, require restrictive assumptions and are based on squared
Euclidean distance between the rank scores, permutation methods based on ordi-
nary Euclidean distance between the rank scores yield accurate probability values,
are free of any distributional assumptions, and are completely data-dependent.

Chapter 6
Chapter 6 continues the ordinal-level analyses presented in Chap. 5, but applies
the Multi-Response Permutation Procedures developed in Chap. 2 to multivari-
ate ordinal-level response measurements. Tests and measures presented in Chap. 6
include MRPP multivariate extensions of the Wilcoxon two-sample rank-sum test,
the Kruskal–Wallis multiple-sample rank-sum test, the Ansari–Bradley rank-sum
test for dispersion, the Taha sum-of-squared-ranks test, the Mielke power-of-rank
function tests, the Whitfield two-sample rank-sum test, and the Cureton rank-biserial
test.
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Chapter 5 of Permutation Statistical Methods utilized the multi-response permu-
tation methods developed in Chap. 2 to establish relationships between the test
statistics of MRPP, ı and <, and selected tests and measures designed for the
analysis of completely randomized response measurements at the ordinal level of
measurement. Considered in Chap. 5 were permutation versions of the Wilcoxon
two-sample rank-sum test, the Kruskal–Wallis multi-sample rank-sum test, the
Ansari–Bradley rank-sum test for dispersion, the Taha sum-of-squared-ranks test,
the Mood rank-sum test for dispersion, the Brown–Mood median test, the Mielke
ANs, BNs, and CNs power-of-rank function tests, the Whitfield two-sample rank-sum
test, and the Cureton rank-biserial test. While Chap. 5 considered only univariate
response measurements, i.e., r D 1, this sixth chapter of Permutation Statistical
Methods extends the tests and measures considered in Chap. 5 to multivariate rank
data, i.e., r � 2. Thus, for example, in this chapter the Wilcoxon two-sample rank-
sum test and the Kruskal–Wallis multi-sample rank-sum tests are generalized to
accommodate multivariate ordinal response measurements.

6.1 Introduction

Multivariate analysis can often be an improvement over univariate analysis, espe-
cially when the univariate response measurements are comprised of an average or
index of several univariate variables, since averages or indices usually result in some
significant loss of information. The loss of information is compounded when one or
more of the univariate variables included in an index have previously been converted
from raw response measurements to rank statistics—the subject of this chapter.
Consider, for example, three ranked variables comprising socio-economic status:
(1) income measured in grouped intervals, such as $0 to $4,999, $5,000 to $9,999,
$10,000 to $19,999, and so on; (2) education, measured as elementary school, some
high school, high school, some college, college and so on; and (3) occupation, mea-

© Springer International Publishing Switzerland 2016
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Fig. 6.1 Graphic depicting
Democrats and Republicans
in a three-dimensional space
structured by Income,
Occupation, and Education
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sured as service, working, blue-collar, white-collar, professional, and so on. The
usual practice of comparing two groups on socio-economic status, say Republi-
cans and Democrats, is to combine the three variables into one measure, typically a
weighted average, usually termed socioeconomic status (SES), and test for the aver-
age difference between the two groups under the null hypothesis of no difference.
The alternative, advocated here, is to utilize a multivariate approach and examine the
difference between Democrats and Republicans in a 3-dimensional space defined by
three variables: Income, Occupation, and Education. Figure 6.1 graphically depicts a
3-dimensional space structured by Income, Occupation, and Education and contain-
ing simulated Democrats and Republicans, where for this illustration, Democrats
have a wider range of Income, Occupation, and Education than Republicans, but
generally average lower than Republicans on all three dimensions.

To illustrate the problems with aggregating discrete variables into an average or
index, consider two subjects, A and B, and their percentile scores on three vari-
ables: Income, Occupation, and Education. Subject A scores in the 80th percentile
on Income, the 50th percentile on Occupation, and the 20th percentile on Education.
In contrast, subject B scores in the 20th percentile on Income, the 40th percentile
on Occupation, and the 90th percentile on Education. Define SES as the simple
unweighted average of the percentile ranks on Income, Occupation, and Educa-
tion. Then, subject A scores SES D .80 C 50 C 20/=3 D 50 and subject B scores
SES D .90 C 40 C 20/=3 D 50. On the average, subjects A and B are identical on
SES, but in terms of Income and Education they are very different, although similar
on Occupation. Figure 6.2 graphically illustrates the differences between subjects A
and B, where subject A is represented by black nodes ( ) connected by a dotted (� � � )
line, and subject B is represented by gray nodes ( ) connected by a dashed (– – –)
line.
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Fig. 6.2 Graphic of two
subjects scoring on percentile
ranks of Income (I),
Occupation (O), and
Education (E)
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As developed in Chap. 2, let 
 D f!1; : : : ; !Ng denote a finite sample of N
objects, let x0

j D .x1j; : : : ; xrj/ be a transposed vector of r commensurate response
measurements for object !j, j D 1; : : : ; N, and let S1; : : : ; Sg designate an exhaus-
tive partitioning of the N objects into g disjoint treatment groups. The MRPP test
statistic given by

ı D
gX

iD1

Ci�i ; (6.1)

where Ci > 0 is a positive treatment-group weight for S1; : : : ; Sg,

gX

iD1

Ci D 1 ;

�i D
 

ni

2

!�1X

j<k

	. j; k/‰i.!j/‰i.!k/ (6.2)

is the average distance-function value for all distinct pairs of objects in treatment
group Si for i D 1; : : : ; g,

N D
gX

iD1

ni ;
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P
j<k is the sum over all j and k such that 1 � j < k � N, 	. j; k/ is the generalized

Minkowski distance function given by

	. j; k/ D
 

rX

iD1

ˇ̌
xij � xik

ˇ̌p
!v=p

; (6.3)

where p � 1, v > 0, and ‰i.�/ is an indicator function given by

‰i.!j/ D
8
<

:
1 if !j 2 Si ,

0 otherwise .

The null hypothesis (H0) states that equal probabilities are assigned to each of
the

M D NŠ
gY

iD1

niŠ

:

possible, equally-likely allocations of the N objects to the g treatment groups. The
probability value associated with an observed value of ı, ıo, is the probability under
the null hypothesis (H0) of observing a value of ı as extreme or more extreme than
ıo. Thus, as detailed in Chap. 2, an exact probability value for ıo may be expressed
as

P
�
ı � ıojH0

� D number of ı values � ıo

M
:

When M is very large, an approximate probability value for ı may be obtained from
a resampling procedure, where

P
�
ı � ıojH0

� D number of ı values � ıo

L
;

and L denotes the number of randomly sampled test statistic values. Typically, L is
set to a large number to ensure accuracy, e.g., L D 1;000;000. Also, when M is very
large and P is exceedingly small, a resampling-approximation permutation proce-
dure may produce no ı values equal to or less than ıo, even with L D 1;000;000,
yielding an approximate resampling probability value of P D 0:00. In such cases,
moment-approximation permutation procedures based on fitting the first three exact
moments of the discrete permutation distribution to a Pearson type III distribu-
tion provide approximate probability values, as detailed in Chap. 1, Sect. 1.2.2
[284, 300].
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Finally, a chance-corrected within-group coefficient of effect size is given by

< D 1 � ı

�ı

; (6.4)

where �ı is the arithmetic average of the M ı values calculated on all possible
arrangements of the observed response measurements given by

�ı D 1

M

MX

iD1

ıi : (6.5)

6.2 MRPPwith r D 2 and g D 2

The analysis of multivariate rank data can most simply be illustrated with bivariate
response measurement scores, with no loss of generality, and easily extended to
r > 2. Figure 6.3 portrays the possible locations of two treatment groups in a 2-
dimensional space consisting of a possible six rank scores on variables x1 and x2.
The two circles, gray ( ) and white ( ), represent g D 2 collections of a multitude
of bivariate (r D 2) response measurements. The problem is to determine if the two
sets of response measurements differ statistically in location, given a substantial
overlap.

To demonstrate the computation of MRPP with bivariate rank scores, consider a
finite sample of N D 7 objects and let S1 and S2 denote an exhaustive partitioning of
the N objects into g D 2 disjoint treatment groups. For simplicity, let S1 consist of

Fig. 6.3 Graphic depicting
g D 2 treatment groups with
simulated bivariate rank
measurement scores
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n1 D 3 objects for r D 2 commensurate rank response measurements (x1i and x2i)
on each object for i D 1; 2; 3, with x0

1 D .4; 5/, x0
2 D .3; 4/, and x0

3 D .4; 3/, and let
S2 consist of n2 D 4 objects with r D 2 commensurate rank response measurements
(x1i and x2i) on each object for i D 1; : : : ; 4, with x0

4 D .2; 3/, x0
5 D .2; 2/, x0

6 D
.3; 2/, and x0

7 D .3; 1/.
Example bivariate rank data for the N D 7 objects are adapted from Mielke et al.

[301, p. 121]. The bivariate rank scores are listed in Fig. 6.4 and are graphically
displayed in Fig. 6.5, where the responses of the n1 D 3 objects in treatment group
S1 are plotted as black circles ( ) and labeled !1, !2, and !3, and the responses
of the n2 D 4 objects in treatment group S2 are plotted as gray circles ( ) and
labeled !4, !5, !6, and !7. Although a visual impression of Fig. 6.5 suggests that
the g D 2 treatment groups are separated in the two-dimensional space, a more rig-
orous characterization of the separation is needed before a quantitative evaluation

Fig. 6.4 Example data set
with r D 2, g D 2, n1 D 3,
n2 D 4, and
N D n1 C n2 D 7

Values

Group Object x 1 x 2

S 1 ω1 4 5

ω2 3 4

ω3 4 3

S 2 ω4 2 3

ω5 2 2

ω6 3 2

ω7 3 1

Fig. 6.5 Two-dimensional
scatter diagram showing the
bivariate rank measurement
scores of the g D 2 treatment
groups listed in Fig. 6.4
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can be made. A classical approach would involve Hotelling’s two-sample T2 test,
which has the disadvantage of requiring the assumptions that the response measure-
ments of the two groups are distributed as multivariate normal with equal variances
and covariances [181]. Since these conditions are never met in practice, it is desir-
able to consider methods that do not require such assumptions; in this case, exact
permutation statistical methods.

For the MRPP analysis of the N D 7 bivariate rank scores listed in Fig. 6.4,
let g D 2, r D 2, p D 2, v D 1, and Ci D ni=N for i D 1; : : : ; g. For this exam-
ple analysis, Ci D ni=N is selected as it simply weights each treatment group as
proportional to its size and v D 1 is chosen as it provides ordinary Euclidean
(Pythagorean) distance between the response measurements of two selected objects
in an r-dimensional space.

Thus, for the bivariate rank scores listed in Fig. 6.4,

C1 D n1

N
D 3

7
and C2 D n2

N
D 4

7
:

Following Eq. (6.3) on p. 318 for treatment group S1 with n1 D 3 objects, p D 2,
and v D 1, the generalized Minkowski distance function yields

	.1; 2/ D
�ˇ̌

4 � 3
ˇ̌2 C ˇ̌

5 � 4
ˇ̌2�1=2 D 1:4142 ;

	.1; 3/ D
�ˇ̌

4 � 4
ˇ̌2 C ˇ̌

5 � 3
ˇ̌2�1=2 D 2:0000 ;

and

	.2; 3/ D
�ˇ̌

3 � 4
ˇ̌2 C ˇ̌

4 � 3
ˇ̌2�1=2 D 1:4142 :

For treatment group S2 with n2 D 4 objects, p D 2, and v D 1, the generalized
Minkowski distance function yields

	.4; 5/ D
�ˇ̌

2 � 2
ˇ̌2 C ˇ̌

3 � 2
ˇ̌2�1=2 D 1:0000 ;

	.4; 6/ D
�ˇ̌

2 � 3
ˇ̌2 C ˇ̌

3 � 2
ˇ̌2�1=2 D 1:4142 ;

	.4; 7/ D
�ˇ̌

2 � 3
ˇ̌2 C ˇ̌

3 � 1
ˇ̌2�1=2 D 2:2361 ;

	.5; 6/ D
�ˇ̌

2 � 3
ˇ̌2 C ˇ̌

2 � 2
ˇ̌2�1=2 D 1:0000 ;

	.5; 7/ D
�ˇ̌

2 � 3
ˇ̌2 C ˇ̌

2 � 1
ˇ̌2�1=2 D 1:4142 ;
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and

	.6; 7/ D
�ˇ̌

3 � 3
ˇ̌2 C ˇ̌

2 � 1
ˇ̌2�1=2 D 1:0000 :

Then, following Eq. (6.2) on p. 317, the N D 7 bivariate rank scores listed in Fig. 6.4
yield g D 2 average-distance function values of

�1 D
 

n1

2

!�1�
	.1; 2/ C 	.1; 3/ C 	.2; 3/

	

D
 

3

2

!�1

.1:4142 C 2:0000 C 1:4142/ D 1:6095

and

�2 D
 

n2

2

!�1�
	.4; 5/ C 	.4; 6/ C 	.4; 7/ C 	.5; 6/ C 	.5; 7/ C 	.6; 7/

	

D
 

4

2

!�1

.1:0000 C 1:4142 C 2:2361 C 1:0000 C 1:4142 C 1:0000/

D 1:3441 :

Following Eq. (6.1) on p. 317, the observed MRPP test statistic based on v D 1 and
Ci D ni=N for i D 1; : : : ; g is

ıo D C1�1 C C2�2 D
�

3

7

�
.1:6095/ C

�
4

7

�
.1:3441/ D 1:4578 :

The N D 7 objects can be partitioned into g D 2 treatment groups, S1 and S2,
with n1 D 3 and n2 D 4 bivariate rank scores preserved for each arrangement in

M D NŠ

n1Š n2Š
D 7Š

3Š 4Š
D 35

possible, equally-likely ways. The �1, �2, and ı values for each of the M D 35

arrangements are listed in Table 6.1 and are ordered from lowest to highest by the ı

values.
The observed MRPP test statistic, ıo D 1:4578, obtained from the realized

arrangement of the N D 7 bivariate response measurement scores in groups S1 and
S2,

f.4; 5/.3; 4/.4; 3/g f.2; 3/.2; 2/.3; 2/.3; 1/g ;
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Table 6.1 Permutations of the observed bivariate response measurement scores listed in Fig. 6.4
for treatment groups S1 and S2 with values for �1, �2, and ı based on v D 1, ordered by values of ı

from lowest to highest

Order Group S1 Group S2 �1 �2 ı

1 f.4; 5/.3; 4/.4; 3/g f.2; 3/.2; 2/.3; 2/.3; 1/g 1:6095 1:3341 1:4578

2 f.2; 2/.3; 2/.3; 1/g f.4; 5/.3; 4/.4; 3/.2; 3/g 1:1381 1:8452 1:5421

3 f.4; 5/.3; 4/.2; 3/g f.4; 3/.2; 2/.3; 2/.3; 1/g 1:8856 1:5501 1:6939

4 f.2; 3/.2; 2/.3; 1/g f.4; 5/.3; 4/.4; 3/.3; 2/g 1:5501 1:9008 1:7505

5 f.2; 3/.2; 2/.3; 2/g f.4; 5/.3; 4/.4; 3/.3; 1/g 1:1381 2:3646 1:8389

6 f.4; 3/.3; 2/.3; 1/g f.4; 5/.3; 4/.2; 3/.2; 2/g 1:5501 2:0831 1:8547

7 f.2; 3/.3; 2/.3; 1/g f.4; 5/.3; 4/.4; 3/.2; 2/g 1:5501 2:1510 1:8935

8 f.4; 5/.4; 3/.2; 3/g f.3; 4/.2; 2/.3; 2/.3; 1/g 2:2761 1:7750 1:9898

9 f.3; 4/.2; 3/.2; 2/g f.4; 5/.4; 3/.3; 2/.3; 1/g 1:5501 2:3226 1:9915

10 f.4; 5/.3; 4/.3; 2/g f.4; 3/.2; 3/.2; 2/.3; 1/g 2:1922 1:8537 1:9988

11 f.4; 3/.2; 2/.3; 1/g f.4; 5/.3; 4/.2; 3/.3; 2/g 1:9621 2:0389 2:0060

12 f.4; 5/.4; 3/.3; 2/g f.3; 4/.2; 3/.2; 2/.3; 1/g 2:1922 1:8834 2:0157

13 f.4; 5/.3; 4/.2; 2/g f.4; 3/.2; 3/.3; 2/.3; 1/g 2:4186 1:7168 2:0176

14 f.3; 4/.4; 3/.2; 3/g f.4; 5/.2; 2/.3; 2/.3; 1/g 1:6095 2:3842 2:0522

15 f.4; 5/.4; 3/.3; 1/g f.3; 4/.2; 3/.2; 2/.3; 2/g 2:7864 1:5107 2:0575

16 f.4; 5/.3; 4/.3; 1/g f.4; 3/.2; 3/.2; 2/.3; 2/g 2:8458 1:5107 2:0829

17 f.4; 3/.2; 2/.3; 2/g f.4; 5/.3; 4/.2; 3/.3; 1/g 1:5501 2:5027 2:0944

18 f.4; 5/.2; 3/.2; 2/g f.3; 4/.4; 3/.3; 2/.3; 1/g 2:4780 1:8441 2:1158

19 f.3; 4/.4; 3/.3; 2/g f.4; 5/.2; 3/.2; 2/.3; 1/g 1:6095 2:5346 2:1381

20 f.4; 3/.2; 3/.2; 2/g f.4; 5/.3; 4/.3; 2/.3; 1/g 1:7454 2:4499 2:1480

21 f.3; 4/.3; 2/.3; 1/g f.4; 5/.4; 3/.2; 3/.2; 2/g 2:0000 2:2783 2:1591

22 f.4; 5/.3; 2/.3; 1/g f.3; 4/.4; 3/.2; 2/.2; 3/g 2:7618 1:7168 2:1646

23 f.3; 4/.2; 2/.3; 1/g f.4; 5/.4; 3/.2; 3/.3; 2/g 2:2168 2:1365 2:1709

24 f.4; 5/.4; 3/.2; 2/g f.3; 4/.2; 3/.3; 2/.3; 1/g 2:6139 1:8441 2:1740

25 f.3; 4/.2; 3/.3; 2/g f.4; 5/.4; 3/.2; 2/.3; 1/g 1:6095 2:6025 2:1769

26 f.3; 4/.4; 3/.3; 1/g f.4; 5/.2; 3/.2; 2/.3; 2/g 2:2168 2:1684 2:1891

27 f.4; 3/.2; 3/.3; 2/g f.4; 5/.3; 4/.2; 2/.3; 1/g 1:6095 2:6322 2:1939

28 f.4; 3/.2; 3/.3; 1/g f.4; 5/.3; 4/.2; 2/.3; 2/g 2:1574 2:2364 2:2025

29 f.3; 4/.2; 2/.3; 2/g f.4; 5/.4; 3/.2; 3/.3; 1/g 1:7454 2:5706 2:2169

30 f.4; 5/.2; 2/.3; 1/g f.3; 4/.4; 3/.2; 3/.3; 2/g 3:0476 1:6095 2:2258

31 f.3; 4/.2; 3/.3; 1/g f.4; 5/.4; 3/.2; 2/.3; 2/g 2:2168 2:2364 2:2280

32 f.3; 4/.4; 3/.2; 2/g f.4; 5/.2; 3/.3; 2/.3; 1/g 1:9621 2:4607 2:2470

33 f.4; 5/.2; 3/.3; 2/g f.3; 4/.4; 3/.2; 2/.3; 1/g 2:4683 2:0894 2:2518

34 f.4; 5/.2; 2/.3; 2/g f.3; 4/.4; 3/.2; 3/.3; 1/g 2:5893 2:0501 2:2812

35 f.4; 5/.2; 3/.3; 1/g f.3; 4/.4; 3/.2; 2/.3; 2/g 3:0625 1:7168 2:2935
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(Order 1 in Table 6.1) is unusual since each of the remaining 34 ı values listed
in Table 6.1 exceeds the observed value of ıo D 1:4578 and none is less than the
observed value. If all arrangements of the observed rank scores occur with equal
chance, the exact probability value of ıo D 1:4578 computed on the M D 35 possi-
ble arrangements of the observed data with n1 D 3 and n2 D 4 bivariate rank scores
preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 1

35
D 0:0286 :

Following Eq. (6.5) on p. 319, the exact expected value of the M D 35 ı values
is �ı D 2:0547 and, following Eq. (6.4) on p. 319, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 1:4578

2:0547
D C0:2905 ;

indicating approximately 29 % within-group agreement above that expected by
chance.

6.3 MRPP for theWMWRank-SumTest with r D 2

In this section the Wilcoxon–Mann–Whitney (WMW) two-sample rank-sum test
[262,429], discussed in Chap. 5, Sects. 5.3 and 5.4, is generalized to r � 2 response
measurement scores. Three example analyses illustrate a permutation approach to
two-sample rank-sum problems with multivariate response measurements. The first
example utilizes MRPP to extend the conventional Wilcoxon–Mann–Whitney two-
sample rank-sum test to a multivariate two-sample rank-sum test using a small set of
bivariate rank scores with v D 2 and treatment-group weights Ci D .ni � 1/=.N �
g/ for i D 1; : : : ; g; the second example analyzes the same small set of bivariate
rank scores, but uses v D 1 and treatment-group weights Ci D .ni � 1/=.N � g/ for
i D 1; : : : ; g; and the third example analyzes the same set of bivariate rank scores
using v D 1, but adopts a proportional treatment-group weighting function given by
Ci D ni=N for i D 1; : : : ; g.

6.3.1 Example 1

Consider a two-sample rank test for N objects with n1 and n2 objects in the first and
second samples, respectively, and r D 2 ordinal response measurements obtained
on each object. Example bivariate rank scores are listed in Fig. 6.6 where g D 2,
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Fig. 6.6 Bivariate rank
response measurement scores
for two treatment groups with
r D 2, g D 2, n1 D 15,
n2 D 10, and
N D n1 C n2 D 25

Group 1 Group 2

(2, 2) (5, 3)

(2, 3) (5, 4)

(3, 2) (5, 7)

(3, 3) (6, 6)

(3, 4) (7, 5)

(4, 3) (7, 8)

(4, 4) (8, 6)

(4, 5) (8, 7)

(5, 6) (8, 9)

(6, 4) (9, 8)

(6, 5)

(7, 6)

(7, 7)

(8, 8)

(9, 9)

r D 2, n1 D 15, n2 D 10, and N D n1 C n2 D 25. Figure 6.7 graphically displays
the bivariate rank scores listed in Fig. 6.6 with white circles ( ) representing the
n1 D 15 objects in Group 1 and gray circles ( ) representing the n2 D 10 objects
in Group 2. For the first analysis of the N D 25 bivariate rank response measure-
ments listed in Fig. 6.6, let v D 2, employing squared Euclidean distance between
the bivariate rank scores, and let the treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

to correspond to a multivariate Wilcoxon–Mann–Whitney two-sample rank-sum test
[262, 429].

Because there are only

M D NŠ

n1Š n2Š
D 25Š

15Š 10Š
D 3;268;760

possible, equally-likely arrangements of the N D 25 bivariate rank scores listed in
Fig. 6.6, an exact solution is possible. Following Eq. (6.2) on p. 317, the N D 25

bivariate rank scores listed in Fig. 6.6 yield g D 2 average distance-function val-
ues of

�1 D 18:6667 and �2 D 11:4889 :

Following Eq. (6.1) on p. 317, the MRPP test statistic based on v D 2 and treatment-
group weights

Ci D ni � 1

N � g
; i D 1; 2 ;
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Fig. 6.7 Graphic depicting the bivariate rank measurement scores listed in Fig. 6.6 for g D 2 treat-
ment groups with n1 D 15 objects in Group 1, indicated by white circles, and n2 D 10 objects in
Group 2, indicated by gray circles

is

ıo D
gX

iD1

Ci�i D 1

25 � 2

�
.15 � 1/.18:6667/ C .10 � 1/.11:4889/

	D 15:8580 :

If all arrangements of the N D 25 observed bivariate rank scores listed in Fig. 6.6
occur with equal chance, the exact probability value of ıo D 15:8580 computed on
the M D 3;268;760 possible arrangements of the observed data with n1 D 15 and
n2 D 10 bivariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 116;998

3;268;760
D 0:0358 :

No comparison is made with the conventional Wilcoxon–Mann–Whitney two-
sample rank-sum test as the Wilcoxon–Mann–Whitney test is undefined for r > 1.
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Following Eq. (6.5) on p. 319, the exact expected value of the M D 3;268;760 ı

values is �ı D 18:2933 and, following Eq. (6.4) on p. 319, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 15:8580

18:2933
D C0:1331 ;

indicating approximately 13 % within-group agreement above that expected by
chance.

6.3.2 Example 2

For the second analysis of the bivariate rank scores listed in Fig. 6.6, let the
treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

as in Example 1, but set v D 1 instead of v D 2, employing ordinary Euclidean dis-
tance between the bivariate rank scores. Following Eq. (6.2) on p. 317, the N D 25

bivariate rank scores listed in Fig. 6.6 yield g D 2 average distance-function values
of

�1 D 3:6963 and �2 D 3:0663 :

Following Eq. (6.1) on p. 317, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

25 � 2

�
.15 � 1/.3:6963/ C .10 � 1/.3:0663/

	 D 3:4498 :

If all arrangements of the N D 25 observed bivariate rank scores listed in Fig. 6.6
occur with equal chance, the exact probability value of ıo D 3:4498 computed on
the M D 3;268;760 possible arrangements of the observed data with n1 D 15 and
n2 D 10 bivariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 130;370

3;268;760
D 0:0399 :
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For comparison, the exact probability value based on v D 2, M D 3;268;760, and
Ci D .ni � 1/=.N � g/ for i D 1; 2 in Example 1 is P D 0:0358. No comparison is
made with the conventional Wilcoxon–Mann–Whitney two-sample rank-sum test
as the Wilcoxon–Mann–Whitney two-sample test is undefined for both v D 1 and
r > 1.

Following Eq. (6.5) on p. 319, the exact expected value of the M D 3;268;760 ı

values is �ı D 3:7103 and, following Eq. (6.4) on p. 319, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 3:4498

3:7103
D C0:0702 ;

indicating approximately 7 % within-group agreement above that expected by
chance.

6.3.3 Example 3

For the third analysis of the bivariate rank scores listed in Fig. 6.6 on p. 325, let the
treatment-group weights be given by

Ci D ni

N
; i D 1; : : : ; g ;

simply weighting each treatment group proportional to its size, and let v D 1,
employing ordinary Euclidean distance between the bivariate rank scores, as in
Example 2. Following Eq. (6.2) on p. 317, the N D 25 bivariate rank scores listed in
Fig. 6.6 yield g D 2 average distance-function values of

�1 D 3:6963 and �2 D 3:0663 ;

and following Eq. (6.1) on p. 317, the observed value of the MRPP test statistic
based on v D 1 and treatment-group weights

Ci D ni

N
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

25

�
.15/.3:6963/ C .10/.3:0663/

	 D 3:4443 :

If all arrangements of the N D 25 observed bivariate rank scores listed in Fig. 6.6
occur with equal chance, the exact probability value of ıo D 3:4443 computed on
the M D 3;268;760 possible arrangements of the observed data with n1 D 15 and
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n2 D 10 bivariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 126;392

3;268;760
D 0:0387 :

For comparison, the exact probability values based on v D 2, M D 3;268;760,
and Ci D .ni � 1/=.N � g/ for i D 1; 2 in Example 1 and v D 1, M D 3;268;760,
and Ci D .ni � 1/=.N � g/ for i D 1; 2 in Example 2 are P D 0:0358 and P D
0:0399, respectively. No comparison is made with the conventional Wilcoxon–
Mann–Whitney two-sample rank-sum test as the Wilcoxon–Mann–Whitney test is
undefined for v D 1, r > 1, and Ci D ni=N, i D 1; : : : ; g.

Following Eq. (6.5) on p. 319, the exact expected value of the M D 3;268;760 ı

values is �ı D 3:7103 and, following Eq. (6.4) on p. 319, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 3:4443

3:7103
D C0:0717 ;

indicating approximately 7 % within-group agreement above that expected by
chance.

6.4 MRPP for the KW Rank-SumTest with r D 2

In this section the Kruskal–Wallis (KW) multi-sample rank-sum test [225], dis-
cussed in Chap. 5, Sects. 5.5 and 5.6, is generalized to r � 2 response measurements.
Three example analyses illustrate a permutation approach to multi-sample rank-
sum problems with multivariate response measurements. The first example utilizes
MRPP to extend the conventional Kruskal–Wallis multi-sample rank-sum test to
a multivariate g-sample rank-sum test using a small set of bivariate rank scores
with v D 2 and treatment-group weights Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g;
the second example analyzes the same small set of bivariate rank scores, but uses
v D 1 and treatment-group weights Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g; and
the third example analyzes the same set of bivariate rank scores using v D 1, but
adopts a proportional treatment-group weighting function given by Ci D ni=N for
i D 1; : : : ; g.

6.4.1 Example 1

Consider a three-sample rank test for N objects with n1, n2, and n3 objects in the
first, second, and third samples, respectively, and r D 2 ordinal response measure-
ments obtained on each object. Example bivariate rank scores are listed in Fig. 6.8
where g D 3, r D 2, n1 D n2 D n3 D 10, and N D n1 C n2 C n3 D 30. Figure 6.9
graphically displays the bivariate rank scores listed in Fig. 6.8 with white circles
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Group 1 Group 2 Group 3

(2, 2) (5, 3) (3, 6)

(2, 3) (5, 4) (4, 7)

(3, 3) (5, 7) (4, 8)

(3, 4) (6, 6) (4, 9)

(4, 5) (7, 5) (5, 5)

(5, 6) (7, 8) (5, 8)

(6, 5) (8, 6) (6, 4)

(7, 7) (8, 7) (6, 7)

(8, 8) (8, 9) (6, 8)

(9, 9) (9, 8) (7, 6)

Fig. 6.8 Bivariate rank response measurement scores for three treatment groups with r D 2, g D
3, n1 D n2 D n3 D 10, and N D n1 C n2 C n3 D 30
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Fig. 6.9 Graphic depicting the bivariate rank measurement scores listed in Fig. 6.8 for g D 3 treat-
ment groups with n1 D 10 objects in Group 1, indicated by white circles, n2 D 10 objects in Group
2, indicated by gray circles, and n3 D 10 objects in Group 3, indicated by black circles

( ) representing the n1 D 10 objects in Group 1, gray circles ( ) representing the
n2 D 10 objects in Group 2, and black circles ( ) representing the n3 D 10 objects
in Group 3.
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For the first analysis of the N D 30 bivariate rank scores listed in Fig. 6.8, let
v D 2, employing squared Euclidean distance between the bivariate rank scores,
and let the treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

to correspond to a multivariate Kruskal–Wallis g-sample rank-sum test [225].
Because there are

M D NŠ
gY

iD1

niŠ

D 30Š

.10Š/3
D 5;550;996;791;340

possible, equally-likely arrangements of the N D 30 bivariate rank scores listed in
Fig. 6.8, an exact solution is not feasible. Following Eq. (6.2) on p. 317, the N D 30

bivariate rank scores listed in Fig. 6.8 yield g D 3 average distance-function values
of

�1 D 23:2222 ; �2 D 11:4889 ; and �3 D 7:9111 :

Following Eq. (6.1) on p. 317, the observed value of the MRPP test statistic based
on v D 2 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2; 3 ;

is

ıo D
gX

iD1

Ci�i D 10 � 1

30 � 3

�
23:2222 C 11:4889 C 7:9111

� D 14:2074 :

If all M possible arrangements of the N D 30 observed bivariate rank scores
listed in Fig. 6.8 occur with equal chance, the approximate resampling probabil-
ity value of ıo D 14:2074 computed on L D 1;000;000 random arrangements of
the observed data with n1 D n2 D n3 D 10 bivariate rank scores preserved for each
arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

L
D 69;672

1;000;000
D 0:0697 :

No comparison is made with the conventional Kruskal–Wallis g-sample rank-sum
test as the Kruskal–Wallis test is undefined for r > 1.

Following Eq. (6.5) on p. 319, the exact expected value of the M ı values is �ı D
15:7287 and, following Eq. (6.4) on p. 319, the observed chance-corrected measure
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of effect size is

<o D 1 � ıo

�ı

D 1 � 14:2074

15:7287
D C0:0967 ;

indicating approximately 10 % within-group agreement above that expected by
chance.

6.4.2 Example 2

For the second analysis of the bivariate rank scores listed in Fig. 6.8, let the
treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

as in Example 1, but set v D 1 instead of v D 2, employing ordinary Euclidean dis-
tance between the bivariate rank scores. Following Eq. (6.2) on p. 317, the N D 30

bivariate rank scores listed in Fig. 6.8 yield g D 3 average distance-function values
of

�1 D 4:1457 ; �2 D 3:0663 ; and �3 D 2:5980 :

Following Eq. (6.1) on p. 317, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2; 3 ;

is

ıo D
gX

iD1

Ci�i D 10 � 1

30 � 3

�
4:1457 C 3:0663 C 2:5980

� D 3:2700 :

If all M possible arrangements of the N D 30 observed bivariate rank scores
listed in Fig. 6.8 occur with equal chance, the approximate resampling probabil-
ity value of ıo D 3:2700 computed on L D 1;000;000 random arrangements of the
observed data with n1 D n2 D n3 D 10 bivariate rank scores preserved for each
arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

L
D 30;092

1;000;000
D 0:0301 :
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For comparison, the approximate resampling probability value based on v D 2, L D
1;000;000, and Ci D .ni � 1/=.N � g/ for i D 1; 2; 3 in Example 1 is P D 0:0697.
No comparison is made with the conventional Kruskal–Wallis g-sample rank-sum
test as the Kruskal–Wallis test is undefined for both v D 1 and r > 1.

Following Eq. (6.5) on p. 319, the exact expected value of the M ı values is �ı D
3:5203 and, following Eq. (6.4) on p. 319, the observed chance-corrected measure
of effect size is

<o D 1 � ıo

�ı

D 1 � 3:2700

3:5203
D C0:0711 ;

indicating approximately 7 % within-group agreement above that expected by
chance.

6.4.3 Example 3

For the third analysis of the bivariate rank scores listed in Fig. 6.8 on p. 330, let the
treatment-group weights be given by

Ci D ni

N
; i D 1; : : : ; g ;

simply weighting each treatment group proportional to its size, and let v D 1,
employing ordinary Euclidean distance between the bivariate rank scores, as in
Example 2. Following Eq. (6.2) on p. 317, the N D 30 bivariate rank scores listed in
Fig. 6.8 yield g D 3 average distance-function values of

�1 D 4:1457 ; �2 D 3:0663 ; and �3 D 2:5980 :

Following Eq. (6.1) on p. 317, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni

N
; i D 1; 2; 3 ;

is

ıo D
gX

iD1

Ci�i D 10

30

�
4:1457 C 3:0663 C 2:5980

� D 3:2700 :

If all M possible arrangements of the N D 30 observed bivariate rank scores
listed in Fig. 6.8 occur with equal chance, the approximate resampling probabil-
ity value of ıo D 3:2700 computed on L D 1;000;000 random arrangements of the
observed data with n1 D n2 D n3 D 10 bivariate rank scores preserved for each
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arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

L
D 30;092

1;000;000
D 0:0301 :

For comparison, the approximate resampling probability values based on v D 2,
L D 1;000;000, and Ci D .ni � 1/=.N � g/ for i D 1; 2; 3 in Example 1 and v D 1,
L D 1;000;000, and Ci D .ni � 1/=.N � g/ for i D 1; 2; 3 in Example 2 are P D
0:0697 and P D 0:0301, respectively. Since n1 D n2 D n3, the probability values
based on v D 1 and Ci D .ni � 1/=.N � g/ and v D 1 and Ci D ni=N are the same.
No comparison is made with the conventional Kruskal–Wallis g-sample rank-sum
test as the Kruskal–Wallis test is undefined for v D 1, r > 1, and Ci D ni=N, i D
1; : : : ; g.

Following Eq. (6.5) on p. 319, the exact expected value of the M ı values is �ı D
3:5203 and, following Eq. (6.4) on p. 319, the observed chance-corrected measure
of effect size is

<o D 1 � ıo

�ı

D 1 � 3:2700

3:5203
D C0:0711 ;

indicating approximately 7 % within-group agreement above that expected by
chance.

6.5 MRPP for the ANs Function with s D 1

In this section the ANs power-of-rank function test with s D 1 [281], discussed in
Chap. 5, Sects. 5.8 and 5.9, is generalized to r � 2 response measurements. Because
AN1 is associated with the Wilcoxon two-sample rank-sum test [429] when r D 1,
as described in Chap. 5, Sects. 5.7 and 5.9, this AN1 analysis can be considered as a
multivariate generalization of the Wilcoxon test, i.e., r � 2.

Three example analyses illustrate a permutation approach to two-sample power-
of-rank problems with multivariate response measurements. The first example
utilizes MRPP to extend the conventional ANs function with s D 1 to a multi-
variate power-of-rank test using a small set of bivariate rank scores with v D 2

and treatment-group weights Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g; the second
example analyzes the same small set of bivariate rank scores, but uses v D 1

and treatment-group weights Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g; and the third
example analyzes the same set of bivariate rank scores using v D 1, but adopts a pro-
portional treatment-group weighting function given by Ci D ni=N for i D 1; : : : ; g.

6.5.1 Example 1

Consider a two-sample rank test for N objects with n1 and n2 objects in the first and
second samples, respectively, and r D 2 ordinal response measurements obtained
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on each object. Example bivariate rank scores are listed in Fig. 6.10 where g D 2,
r D 2, n1 D n2 D 9, and N D n1 C n2 D 18.

Figure 6.11 graphically displays the bivariate rank scores listed in Fig. 6.10 with
white circles ( ) representing the n1 D 9 objects in Group 1 and gray circles ( )
representing the n2 D 9 objects in Group 2.

Group 1 Group 2

(1, 1) (1, 3)

(1, 2) (2, 1)

(2, 3) (4, 3)

(3, 1) (5, 3)

(3, 2) (5, 5)

(3, 3) (5, 6)

(3, 4) (5, 7)

(5, 4) (6, 4)

(6, 5) (7, 8)

Fig. 6.10 Bivariate rank response measurement scores for two treatment groups with r D 2, g D
2, n1 D n2 D 9, and N D n1 C n2 D 18

0 1 2 3 4 5 6 7 8

x 1

0

1

2

3

4

5

6

7

8

x 2

Fig. 6.11 Graphic depicting the bivariate rank measurement scores listed in Fig. 6.10 for g D 2

treatment groups with n1 D 9 objects in Group 1, indicated by white circles, and n2 D 9 objects in
Group 2, indicated by gray circles
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For the first analysis of the bivariate rank response measurements listed in
Fig. 6.10, let v D 2, employing squared Euclidean distance between the bivariate
rank scores, and let the treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

to correspond to a multivariate Wilcoxon two-sample rank-sum test.
Because there are only

M D NŠ
gY

iD1

niŠ

D 18Š

.9Š/2
D 48;620

possible, equally-likely arrangements of the N D 18 bivariate rank scores listed in
Fig. 6.10, an exact solution is feasible. Following Eq. (6.2) on p. 317, the N D 18

bivariate rank scores listed in Fig. 6.10 yield g D 2 average distance-function values
of

�1 D 9:3889 and �2 D 23:9444 :

Following Eq. (6.1) on p. 317, the observed value of the MRPP test statistic based
on v D 2 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 9 � 1

18 � 2

�
9:3889 C 23:9444

� D 16:6667 :

If all arrangements of the N D 18 observed bivariate rank scores listed in
Fig. 6.10 occur with equal chance, the exact probability value of ıo D 16:6667

computed on the M D 48;620 possible arrangements of the observed data with
n1 D n2 D 9 bivariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 2;536

48;620
D 0:0522 :

No comparison is made with the conventional Wilcoxon two-sample rank-sum test
as Wilcoxon’s test is undefined for r > 1.
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Following Eq. (6.5) on p. 319, the exact expected value of the M D 48;620 ı

values is �ı D 19:7712 and, following Eq. (6.4) on p. 319, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 16:6667

19:7712
D C0:1570 ;

indicating approximately 16 % within-group agreement above that expected by
chance.

6.5.2 Example 2

For the second analysis of the bivariate rank scores listed in Fig. 6.10, let the
treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

as in Example 1, but set v D 1 instead of v D 2, employing ordinary Euclidean
distance between the bivariate rank scores. Following Eq. (6.2) on p. 317, the N D
18 bivariate rank scores listed in Fig. 6.10 yield g D 2 average distance-function
values of

�1 D 2:7256 and �2 D 4:3440 :

Following Eq. (6.1) on p. 317, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 9 � 1

18 � 2

�
2:7256 C 4:3440

� D 3:5348 :

If all arrangements of the N D 18 observed bivariate rank scores listed in
Fig. 6.10 occur with equal chance, the exact probability value of ıo D 3:5348

computed on the M D 48;620 possible arrangements of the observed data with
n1 D n2 D 9 bivariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 3;138

48;620
D 0:0645 :
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For comparison, the exact probability value based on v D 2, M D 48;620, and Ci D
.ni � 1/=.N � g/ for i D 1; 2 in Example 1 is P D 0:0522. No comparison is made
with the conventional Wilcoxon two-sample rank-sum test as Wilcoxon’s test is
undefined for both r > 1 and v D 1.

Following Eq. (6.5) on p. 319, the exact expected value of the M D 48;620 ı

values is �ı D 3:8128 and, following Eq. (6.4) on p. 319, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 3:5348

3:8128
D C0:0729 ;

indicating approximately 7 % within-group agreement above that expected by
chance.

6.5.3 Example 3

For the third analysis of the bivariate rank scores listed in Fig. 6.10, let the treatment-
group weights be given by

Ci D ni

N
; i D 1; : : : ; g ;

simply weighting each treatment group proportional to its size, and let v D 1,
employing ordinary Euclidean distance between the bivariate rank scores, as in
Example 2. Following Eq. (6.2) on p. 317, the N D 18 bivariate rank scores listed in
Fig. 6.10 yield g D 2 average distance-function values of

�1 D 2:7256 and �2 D 4:3440 :

Following Eq. (6.1) on p. 317, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni

N
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 9

18

�
2:7256 C 4:3440

� D 3:5348 :

If all arrangements of the N D 18 observed bivariate rank scores listed in
Fig. 6.10 occur with equal chance, the exact probability value of ıo D 3:5348

computed on the M D 48;620 possible arrangements of the observed data with
n1 D n2 D 9 bivariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 3;138

48;620
D 0:0645 :
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For comparison, the exact probability values based on v D 2, M D 48;620, and
Ci D .ni � 1/=.N � g/ for i D 1; 2 in Example 1 and v D 1, M D 48;620, and
Ci D .ni � 1/=.N � g/ for i D 1; 2 in Example 2 are P D 0:0522 and P D 0:0645,
respectively.1 No comparison is made with the conventional Wilcoxon two-sample
rank-sum test as Wilcoxon’s test is undefined for r > 1, v D 1, and Ci D ni=N,
i D 1; : : : ; g.

Following Eq. (6.5) on p. 319, the exact expected value of the M D 48;620 ı

values is �ı D 3:8128 and, following Eq. (6.4) on p. 319, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 3:5348

3:8128
D C0:0729 ;

indicating approximately 7 % within-group agreement above that expected by
chance.

6.6 MRPP for the ANs Function with s D 2

In this section the ANs power-of-rank function test with s D 2 [281], discussed in
Chap. 5, Sect. 5.10, is generalized to r � 2 response measurements. Because AN2 is
associated with the Taha sum-of-squared-ranks test [393] when r D 1, as described
in Chap. 5, Sects. 5.7 and 5.10, this AN2 analysis can be considered as a multivariate
generalization of the Taha test, i.e., r � 2.

Three example analyses illustrate a permutation approach to two-sample power-
of-rank problems with multivariate response measurements. The first example
utilizes MRPP to extend the conventional ANs function with s D 2 to a multi-
variate power-of-rank test using a small set of bivariate rank scores with v D 2

and treatment-group weights Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g; the second
example analyzes the same small set of bivariate rank scores, but uses v D 1

and treatment-group weights Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g; and the third
example analyzes the same set of bivariate rank scores using v D 1, but adopts a pro-
portional treatment-group weighting function given by Ci D ni=N for i D 1; : : : ; g.

6.6.1 Example 1

Consider a two-sample rank test for N objects with n1 and n2 objects in the first and
second samples, respectively, and r D 2 ordinal response measurements obtained
on each object. For the N D 18 bivariate rank scores listed in Fig. 6.10 on p. 335,
replicated in Fig. 6.12 for convenience, g D 2, r D 2, n1 D n2 D 9, and N D n1 C
n2 D 18.

1Note that when n1 D n2, as in this case with n1 D n2 D 9, Ci D .ni � 1/=.N � g/ and Ci D ni=N
for i D 1; : : : ; g yield identical results.
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Fig. 6.12 Bivariate rank
response measurement scores
for two treatment groups with
r D 2, g D 2, n1 D n2 D 9,
and N D n1 C n2 D 18

Group 1 Group 2

(1, 1) (1, 3)

(1, 2) (2, 1)

(2, 3) (4, 3)

(3, 1) (5, 3)

(3, 2) (5, 5)

(3, 3) (5, 6)

(3, 4) (5, 7)

(5, 4) (6, 4)

(6, 5) (7, 8)

For the first analysis of the bivariate rank response measurements listed in
Fig. 6.12, let v D 2, employing squared Euclidean distance between the bivariate
rank scores, and let the treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

to correspond to a multivariate Taha sum-of-squared-ranks test [393].
Because there are only

M D NŠ
gY

iD1

niŠ

D 18Š

.9Š/2
D 48;620

possible, equally-likely arrangements of the N D 18 bivariate rank scores listed in
Fig. 6.12, an exact solution is practical. Following Eq. (6.2) on p. 317, the N D 18

bivariate rank scores listed in Fig. 6.12 yield g D 2 average distance-function values
of

�1 D 358:0556 and �2 D 1;348:1111 :

Following Eq. (6.1) on p. 317, the observed value of the MRPP test statistic based
on v D 2 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 9 � 1

18 � 2

�
358:0556 C 1;348:1111

� D 853:0833 :
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If all arrangements of the N D 18 observed bivariate rank scores listed in
Fig. 6.12 occur with equal chance, the exact probability value of ıo D 853:0833

computed on the M D 48;620 possible arrangements of the observed data with
n1 D n2 D 9 bivariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 2;318

48;620
D 0:0477 :

No comparison is made with the conventional Taha sum-of-squared-ranks test as
Taha’s test is undefined for r > 1.

Following Eq. (6.5) on p. 319, the exact expected value of the M D 48;620 ı

values is �ı D 1;001:9739 and, following Eq. (6.4) on p. 319, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 853:0833

1;001:7712
D C0:1486 ;

indicating approximately 15 % within-group agreement above that expected by
chance.

6.6.2 Example 2

For the second analysis of the N D 18 bivariate rank scores listed in Fig. 6.12, let
the treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

as in Example 1, but set v D 1 instead of v D 2, employing ordinary Euclidean
distance between the bivariate rank scores. Following Eq. (6.2) on p. 317, the N D
18 bivariate rank scores listed in Fig. 6.12 yield g D 2 average distance-function
values of

�1 D 15:3217 and �2 D 32:2592 :

Following Eq. (6.1) on p. 317, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 9 � 1

18 � 2

�
15:3217 C 32:2592

� D 23:7905 :
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If all arrangements of the N D 18 observed bivariate rank scores listed in
Fig. 6.12 occur with equal chance, the exact probability value of ıo D 23:7905

computed on the M D 48;620 possible arrangements of the observed data with
n1 D n2 D 9 bivariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 2;328

48;620
D 0:0479 :

For comparison, the exact probability value based on v D 2, M D 48;620, and Ci D
.ni � 1/=.N � g/ for i D 1; 2 in Example 1 is P D 0:0477. No comparison is made
with the conventional Taha sum-of-squared-ranks test as Taha’s test is undefined for
both r > 1 and v D 1.

Following Eq. (6.5) on p. 319, the exact expected value of the M D 48;620 ı

values is �ı D 25:8923 and, following Eq. (6.4) on p. 319, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 23:7905

25:8923
D C0:0812 ;

indicating approximately 8 % within-group agreement above that expected by
chance.

6.6.3 Example 3

For the third analysis of the bivariate rank scores listed in Fig. 6.12, let the treatment-
group weights be given by

Ci D ni

N
; i D 1; : : : ; g ;

simply weighting each treatment group proportional to its size, and let v D 1,
employing ordinary Euclidean distance between the bivariate rank scores, as in
Example 2. Because

Ci D ni

N
and Ci D ni � 1

N � g
; i D 1; : : : ; g ;

are equivalent when n1 D n2, as in this case, the results are the same as Example 2,
with �1 D 15:3217, �2 D 32:2592, an observed MRPP test statistic of ıo D 23:7905,
an exact probability value of P D 0:0479, and an observed chance-corrected effect
size of <o D C0:0812.
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6.7 MRPP for the BNs Function with s D 1

In this section the BNs power-of-rank function test with s D 1 [281], discussed in
Chap. 5, Sect. 5.11, is generalized to r � 2 response measurements. Because BN1 is
associated with the Ansari–Bradley rank-sum test [10] when r D 1, as described in
Chap. 5, Sects. 5.7 and 5.11, this BN1 analysis can be considered as a multivariate
generalization of the Ansari–Bradley rank-sum test, i.e., r � 2.

Three example analyses illustrate a permutation approach to two-sample power-
of-rank problems with multivariate response measurements. The first example
utilizes MRPP to extend the conventional BNs function with s D 1 to a multi-
variate power-of-rank test using a small set of bivariate rank scores with v D 2

and treatment-group weights Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g; the second
example analyzes the same small set of bivariate rank scores, but uses v D 1

and treatment-group weights Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g; and the third
example analyzes the same set of bivariate rank scores using v D 1, but adopts a pro-
portional treatment-group weighting function given by Ci D ni=N for i D 1; : : : ; g.

6.7.1 Example 1

Consider a two-sample rank test for N objects with n1 and n2 objects in the first and
second samples, respectively, and r D 2 ordinal response measurements obtained
on each object. For the bivariate rank scores listed in Fig. 6.10 on p. 335, replicated
in Fig. 6.13 for convenience, g D 2, r D 2, n1 D n2 D 9, and N D n1 C n2 D 18.

For the first analysis of the bivariate rank response measurements listed in
Fig. 6.13, let v D 2, employing squared Euclidean distance between the bivariate
rank scores, and let the treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

to correspond to a multivariate Ansari–Bradley rank-sum test [10].

Fig. 6.13 Bivariate rank
response measurement scores
for two treatment groups with
r D 2, g D 2, n1 D n2 D 9,
and N D n1 C n2 D 18

Group 1 Group 2

(1, 1) (1, 3)

(1, 2) (2, 1)

(2, 3) (4, 3)

(3, 1) (5, 3)

(3, 2) (5, 5)

(3, 3) (5, 6)

(3, 4) (5, 7)

(5, 4) (6, 4)

(6, 5) (7, 8)
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Because there are only

M D NŠ
gY

iD1

niŠ

D 18Š

.9Š/2
D 48;620

possible, equally-likely arrangements of the N D 18 bivariate rank scores listed in
Fig. 6.13, an exact solution is practical. Following Eq. (6.2) on p. 317, the N D 18

bivariate rank scores listed in Fig. 6.13 yield g D 2 average distance-function values
of

�1 D 6:8889 and �2 D 11:0278 :

Following Eq. (6.1) on p. 317, the observed value of the MRPP test statistic based
on v D 2 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 9 � 1

18 � 2

�
6:8889 C 11:0278

� D 8:9583 :

If all arrangements of the N D 18 observed bivariate rank scores listed in
Fig. 6.13 occur with equal chance, the exact probability value of ıo D 8:9583

computed on the M D 48;620 possible arrangements of the observed data with
n1 D n2 D 9 bivariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 1;602

48;620
D 0:0329 :

No comparison is made with the conventional Ansari–Bradley rank-sum test as the
Ansari–Bradley test is undefined for r > 1.

Following Eq. (6.5) on p. 319, the exact expected value of the M D 48;620 ı

values is �ı D 11:0866 and, following Eq. (6.4) on p. 319, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 8:9583

11:0866
D C0:1920 ;

indicating approximately 19 % within-group agreement above that expected by
chance.
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6.7.2 Example 2

For the second analysis of the N D 18 bivariate rank scores listed in Fig. 6.13, let
the treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

as in Example 1, but set v D 1 instead of v D 2, employing ordinary Euclidean
distance between the bivariate rank scores. Following Eq. (6.2) on p. 317, the N D
18 bivariate rank scores listed in Fig. 6.13 yield g D 2 average distance-function
values of

�1 D 2:2331 and �2 D 2:8262 :

Following Eq. (6.1) on p. 317, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 9 � 1

18 � 2

�
2:2331 C 2:8262

� D 2:5297 :

If all arrangements of the N D 18 observed bivariate rank scores listed in
Fig. 6.13 occur with equal chance, the exact probability value of ıo D 2:5297

computed on the M D 48;620 possible arrangements of the observed data with
n1 D n2 D 9 bivariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 1;634

48;620
D 0:0336 :

For comparison, the exact probability value based on v D 2, M D 48;620, and Ci D
.ni � 1/=.N � g/ for i D 1; 2 in Example 1 is P D 0:0329. No comparison is made
with the conventional Ansari–Bradley rank-sum test as the Ansari–Bradley test is
undefined for both r > 1 and v D 1.

Following Eq. (6.5) on p. 319, the exact expected value of the M D 48;620 ı

values is �ı D 2:8931 and, following Eq. (6.4) on p. 319, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 2:5297

2:8931
D C0:1256 ;

indicating approximately 13 % within-group agreement above that expected by
chance.
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6.7.3 Example 3

For the third analysis of the bivariate rank scores listed in Fig. 6.13, let the treatment-
group weights be given by

Ci D ni

N
; i D 1; : : : ; g ;

simply weighting each treatment group proportional to its size, and let v D 1,
employing ordinary Euclidean distance between the bivariate rank scores, as in
Example 2. Because

Ci D ni

N
and Ci D ni � 1

N � g
; i D 1; : : : ; g ;

are equivalent when n1 D n2, as in this case, the results are the same as Example 2,
with �1 D 2:2331, �2 D 2:8262, an observed MRPP test statistic of ıo D 2:5297, an
exact probability value of P D 0:0336, and an observed chance-corrected effect size
of <o D C0:1256.

6.8 MRPP for the BNs Function with s D 2

In this section the BNs power-of-rank function test with s D 2 [281], discussed in
Chap. 5, Sect. 5.12, is generalized to r � 2 response measurements. Because BN2 is
associated with the Mood two-sample rank test [312] when r D 1, as described in
Chap. 5, Sects. 5.7 and 5.12, this BN2 analysis can be considered as a multivariate
generalization of the Mood test, i.e., r � 2.

Three example analyses illustrate a permutation approach to two-sample power-
of-rank problems with multivariate response measurements. The first example
utilizes MRPP to extend the conventional BNs function with s D 2 to a multi-
variate power-of-rank test using a small set of bivariate rank scores with v D 2

and treatment-group weights Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g; the second
example analyzes the same small set of bivariate rank scores, but uses v D 1

and treatment-group weights Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g; and the third
example analyzes the same set of bivariate rank scores using v D 1, but adopts a pro-
portional treatment-group weighting function given by Ci D ni=N for i D 1; : : : ; g.

6.8.1 Example 1

Consider a two-sample rank test for N objects with n1 and n2 objects in the first and
second samples, respectively, and r D 2 ordinal response measurements obtained
on each object. The bivariate rank scores listed in Fig. 6.10 on p. 335 are replicated
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Fig. 6.14 Bivariate rank
response measurement scores
for two treatment groups with
r D 2, g D 2, n1 D n2 D 9,
and N D n1 C n2 D 18

Group 1 Group 2

(1, 1) (1, 3)

(1, 2) (2, 1)

(2, 3) (4, 3)

(3, 1) (5, 3)

(3, 2) (5, 5)

(3, 3) (5, 6)

(3, 4) (5, 7)

(5, 4) (6, 4)

(6, 5) (7, 8)

in Fig. 6.14 for convenience. For the bivariate data listed in Fig. 6.14, g D 2, r D 2,
n1 D n2 D 9, and N D n1 C n2 D 18.

For the first analysis of the N D 18 bivariate rank response measurements listed
in Fig. 6.14, let v D 2, employing squared Euclidean distance between the bivariate
rank scores, and let the treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

to correspond to a multivariate Mood two-sample rank test [312].
Because there are only

M D NŠ
gY

iD1

niŠ

D 18Š

.9Š/2
D 48;620

possible, equally-likely arrangements of the N D 18 bivariate rank scores listed in
Fig. 6.14, an exact solution is practical. Following Eq. (6.2) on p. 317, the N D 18

bivariate rank scores listed in Fig. 6.14 yield g D 2 average distance-function values
of

�1 D 21:2778 and �2 D 172:7778 :

Following Eq. (6.1) on p. 317, the observed value of the MRPP test statistic based
on v D 2 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 9 � 1

18 � 2

�
21:2778 C 172:7778

� D 97:0278 :
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If all arrangements of the N D 18 observed bivariate rank scores listed in
Fig. 6.14 occur with equal chance, the exact probability value of ıo D 97:0278

computed on the M D 48;620 possible arrangements of the observed data with
n1 D n2 D 9 bivariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 2;776

48;620
D 0:0571 :

No comparison is made with the conventional Mood two-sample rank test as Mood’s
test is undefined for r > 1.

Following Eq. (6.5) on p. 319, the exact expected value of the M D 48;620 ı

values is �ı D 109:2614 and, following Eq. (6.4) on p. 319, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 97:0278

109:2614
D C0:0481 ;

indicating approximately 5 % within-group agreement above that expected by
chance.

6.8.2 Example 2

For the second analysis of the bivariate rank scores listed in Fig. 6.14, let the
treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

as in Example 1, but set v D 1 instead of v D 2, employing ordinary Euclidean
distance between the bivariate rank scores. Following Eq. (6.2) on p. 317, the N D
18 bivariate rank scores listed in Fig. 6.14 yield g D 2 average distance-function
values of

�1 D 4:0910 and �2 D 10:2850 :

Following Eq. (6.1) on p. 317, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 9 � 1

18 � 2

�
4:0910 C 10:2850

� D 7:1880 :
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If all arrangements of the N D 18 observed bivariate rank scores listed in
Fig. 6.14 occur with equal chance, the exact probability value of ıo D 7:1880

computed on the M D 48;620 possible arrangements of the observed data with
n1 D n2 D 9 bivariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 4;490

48;620
D 0:0923 :

For comparison, the exact probability value based on v D 2, M D 48;620, and Ci D
.ni � 1/=.N � g/ for i D 1; 2 in Example 1 is P D 0:0571. No comparison is made
with the conventional Mood two-sample rank test as Mood’s test is undefined for
both r > 1 and v D 1.

Following Eq. (6.5) on p. 319, the exact expected value of the M D 48;620 ı

values is �ı D 7:7590 and, following Eq. (6.4) on p. 319, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 7:1880

7:7590
D C0:0491 ;

indicating approximately 5 % within-group agreement above that expected by
chance.

6.8.3 Example 3

For the third analysis of the bivariate rank scores listed in Fig. 6.14, let the treatment-
group weights be given by

Ci D ni

N
; i D 1; : : : ; g ;

simply weighting each treatment group proportional to its size, and let v D 1,
employing ordinary Euclidean distance between the bivariate rank scores, as in
Example 2. Because

Ci D ni

N
and Ci D ni � 1

N � g
; i D 1; : : : ; g ;

are equivalent when n1 D n2, as in this case, the results are the same as Example 2,
with �1 D 4:0910, �2 D 10:2850, an observed MRPP test statistic of ıo D 7:1880,
an exact probability value of P D 0:0923, and an observed chance-corrected effect
size of <o D C0:0491.
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6.9 MRPP for the CNs Function with s D 0

In this section the CNs power-of-rank function test with s D 0 [281], discussed in
Chap. 5, Sect. 5.13, is generalized to r � 2 response measurements. Because CN0

is associated with the Brown–Mood median test [59] when r D 1, as described in
Chap. 5, Sects. 5.7 and 5.13, this CN0 analysis can be considered as a multivariate
generalization of the Brown–Mood test, i.e., r � 2.

Three example analyses illustrate a permutation approach to two-sample power-
of-rank problems with multivariate response measurements. The first example
utilizes MRPP to extend the conventional CNs function with s D 0 to a multi-
variate power-of-rank test using a small set of bivariate rank scores with v D 2

and treatment-group weights Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g; the second
example analyzes the same small set of bivariate rank scores, but uses v D 1

and treatment-group weights Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g; and the third
example analyzes the same set of bivariate rank scores using v D 1, but adopts a pro-
portional treatment-group weighting function given by Ci D ni=N for i D 1; : : : ; g.

6.9.1 Example 1

Consider a two-sample rank test for N objects with n1 and n2 objects in the first and
second samples, respectively, and r D 2 ordinal response measurements obtained
on each object. The bivariate rank scores listed in Fig. 6.10 on p. 335 are replicated
in Fig. 6.15 for convenience. For the bivariate rank scores listed in Fig. 6.15, g D 2,
r D 2, n1 D n2 D 9, and N D n1 C n2 D 18.

For the first analysis of the bivariate rank response measurements listed in
Fig. 6.15, let v D 2, employing squared Euclidean distance between the bivariate
rank scores, and let the treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

to correspond to a multivariate Brown–Mood median test [59].

Fig. 6.15 Bivariate rank
response measurements for
two treatment groups with
r D 2, g D 2, n1 D n2 D 9,
and N D n1 C n2 D 18

Group 1 Group 2

(1, 1) (1, 3)

(1, 2) (2, 1)

(2, 3) (4, 3)

(3, 1) (5, 3)

(3, 2) (5, 5)

(3, 3) (5, 6)

(3, 4) (5, 7)

(5, 4) (6, 4)

(6, 5) (7, 8)
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Because there are only

M D NŠ
gY

iD1

niŠ

D 18Š

.9Š/2
D 48;620

possible, equally-likely arrangements of the N D 18 bivariate rank scores listed in
Fig. 6.15, an exact solution is practical. Following Eq. (6.2) on p. 317, the N D 18

bivariate rank scores listed in Fig. 6.15 yield g D 2 average distance-function values
of

�1 D 2:1111 and �2 D 1:7778 :

Following Eq. (6.1) on p. 317, the observed value of the MRPP test statistic based
on v D 2 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 9 � 1

18 � 2

�
2:1111 C 1:7778

� D 1:9444 :

If all arrangements of the N D 18 observed bivariate rank scores listed in
Fig. 6.15 occur with equal chance, the exact probability value of ıo D 1:9444

computed on the M D 48;620 possible arrangements of the observed data with
n1 D n2 D 9 bivariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 116

48;620
D 0:0024 :

No comparison is made with the conventional Brown–Mood median test as the
Brown–Mood test is undefined for r > 1.

Following Eq. (6.5) on p. 319, the exact expected value of the M D 48;620 ı

values is �ı D 3:4248 and, following Eq. (6.4) on p. 319, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 1:9444

3:4248
D C0:4325 ;

indicating approximately 43 % within-group agreement above that expected by
chance.
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6.9.2 Example 2

For the second analysis of the bivariate rank scores listed in Fig. 6.15, let the
treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

as in Example 1, but set v D 1 instead of v D 2, employing ordinary Euclidean
distance between the bivariate rank scores. Following Eq. (6.2) on p. 317, the N D
18 bivariate rank scores listed in Fig. 6.15 yield g D 2 average distance-function
values of

�1 D 1:1636 and �2 D 0:8515 :

Following Eq. (6.1) on p. 317, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 9 � 1

18 � 2

�
1:1636 C 0:8515

� D 1:0075 :

If all arrangements of the N D 18 observed bivariate rank scores listed in
Fig. 6.15 occur with equal chance, the exact probability value of ıo D 1:0075

computed on the M D 48;620 possible arrangements of the observed data with
n1 D n2 D 9 bivariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 116

48;620
D 0:0024 :

For comparison, the exact probability value based on v D 2, M D 48;620, and Ci D
.ni � 1/=.N � g/ for i D 1; 2 in Example 1 is also P D 0:0024. No comparison is
made with the conventional Brown–Mood median test as the Brown–Mood test is
undefined for both r > 1 and v D 1.

Following Eq. (6.5) on p. 319, the exact expected value of the M D 48;620 ı

values is �ı D 1:5436 and, following Eq. (6.4) on p. 319, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 1:0075

1:5436
D C0:3473 ;
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indicating approximately 35 % within-group agreement above that expected by
chance.

6.9.3 Example 3

For the third analysis of the bivariate rank scores listed in Fig. 6.15, let the treatment-
group weights be given by

Ci D ni

N
; i D 1; : : : ; g ;

simply weighting each treatment group proportional to its size, and let v D 1,
employing ordinary Euclidean distance between the bivariate rank scores, as in
Example 2. Because

Ci D ni

N
and Ci D ni � 1

N � g
; i D 1; : : : ; g ;

are equivalent when n1 D n2, as in this case, the results are the same as Example 2,
with �1 D 1:1636, �2 D 0:8515, an observed MRPP test statistic of ıo D 1:0075, an
exact probability value of P D 0:0024, and an observed chance-corrected effect size
of <o D C0:3473.

6.10 MRPP for the CNs Function with s D 1

In this section the CNs power-of-rank function test with s D 1, discussed in Chap. 5,
Sect. 5.14, is generalized to r � 2 response measurements. Because CN1 is associ-
ated with the Wilcoxon–Mann–Whitney two-sample rank-sum test [262,429] when
r D 1, as described in Chap. 5, Sects. 5.7 and 5.14, this CN1 analysis can be con-
sidered as a multivariate generalization of the Wilcoxon–Mann–Whitney test, i.e.,
r � 2.

Three example analyses illustrate a permutation approach to two-sample power-
of-rank problems with multivariate response measurements. The first example
utilizes MRPP to extend the conventional CNs function with s D 1 to a multi-
variate power-of-rank test using a small set of bivariate rank scores with v D 2

and treatment-group weights Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g; the second
example analyzes the same small set of bivariate rank scores, but uses v D 1

and treatment-group weights Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g; and the third
example analyzes the same set of bivariate rank scores using v D 1, but adopts a pro-
portional treatment-group weighting function given by Ci D ni=N for i D 1; : : : ; g.
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Fig. 6.16 Bivariate rank
response measurement scores
for two treatment groups with
r D 2, g D 2, n1 D n2 D 9,
and N D n1 C n2 D 18

Group 1 Group 2

(1, 1) (1, 3)

(1, 2) (2, 1)

(2, 3) (4, 3)

(3, 1) (5, 3)

(3, 2) (5, 5)

(3, 3) (5, 6)

(3, 4) (5, 7)

(5, 4) (6, 4)

(6, 5) (7, 8)

6.10.1 Example 1

Consider a two-sample rank test for N objects with n1 and n2 objects in the first and
second samples, respectively, and r D 2 ordinal response measurements obtained
on each object. The bivariate rank scores listed in Fig. 6.10 on p. 335 are replicated
in Fig. 6.16 for convenience. For the bivariate rank scores listed in Fig. 6.16, g D 2,
r D 2, n1 D n2 D 9, and N D n1 C n2 D 18.

For the first analysis of the bivariate rank scores listed in Fig. 6.16, let v D 2,
employing squared Euclidean distance between the bivariate rank scores, and let the
treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

to correspond to a multivariate Wilcoxon–Mann–Whitney two-sample test [262,
429].

Because there are only

M D NŠ
gY

iD1

niŠ

D 18Š

.9Š/2
D 48;620

possible, equally-likely arrangements of the N D 18 bivariate rank scores listed in
Fig. 6.16, an exact solution is practical. Following Eq. (6.2) on p. 317, the N D 18

bivariate rank scores listed in Fig. 6.16 yield g D 2 average distance-function values
of

�1 D 9:3889 and �2 D 23:9444 :

Following Eq. (6.1) on p. 317, the observed value of the MRPP test statistic based
on v D 2 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;
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is

ıo D
gX

iD1

Ci�i D 9 � 1

18 � 2

�
9:3889 C 23:9444

� D 16:6667 :

If all arrangements of the N D 18 observed bivariate rank scores listed in
Fig. 6.16 occur with equal chance, the exact probability value of ıo D 16:6667

computed on the M D 48;620 possible arrangements of the observed data with
n1 D n2 D 9 bivariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 2;536

48;620
D 0:0522 :

No comparison is made with the conventional Wilcoxon–Mann–Whitney two-
sample rank-sum test as the Wilcoxon–Mann–Whitney test is undefined for r > 1.

Following Eq. (6.5) on p. 319, the exact expected value of the M D 48;620 ı

values is �ı D 19:7712 and, following Eq. (6.4) on p. 319, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 16:6667

19:7712
D C0:1570 ;

indicating approximately 16 % within-group agreement above that expected by
chance.

6.10.2 Example 2

For the second analysis of the bivariate rank scores listed in Fig. 6.16, let the
treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

as in Example 1, but set v D 1 instead of v D 2, employing ordinary Euclidean
distance between the bivariate rank scores. Following Eq. (6.2) on p. 317, the N D
18 bivariate rank scores listed in Fig. 6.16 yield g D 2 average distance-function
values of

�1 D 2:7256 and �2 D 4:3440 :

Following Eq. (6.1) on p. 317, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;
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is

ıo D
gX

iD1

Ci�i D 9 � 1

18 � 2

�
2:7256 C 4:3440

� D 3:5348 :

If all arrangements of the N D 18 observed bivariate rank scores listed in
Fig. 6.16 occur with equal chance, the exact probability value of ıo D 3:5348

computed on the M D 48;620 possible arrangements of the observed data with
n1 D n2 D 9 bivariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 3;138

48;620
D 0:0645 :

For comparison, the exact probability value based on v D 2, M D 48;620, and Ci D
.ni � 1/=.N � g/ for i D 1; 2 in Example 1 is P D 0:0522. No comparison is made
with the conventional Wilcoxon–Mann–Whitney two-sample rank-sum test as the
Wilcoxon–Mann–Whitney test is undefined for both r > 1 and v D 1.

Following Eq. (6.5) on p. 319, the exact expected value of the M D 48;620 ı

values is �ı D 3:8128 and, following Eq. (6.4) on p. 319, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 3:5348

3:8128
D C0:0729 ;

indicating approximately 7 % within-group agreement above that expected by
chance.

6.10.3 Example 3

For the third analysis of the bivariate rank scores listed in Fig. 6.16, let the treatment-
group weights be given by

Ci D ni

N
; i D 1; : : : ; g ;

simply weighting each treatment group proportional to its size, and let v D 1,
employing ordinary Euclidean distance between the bivariate rank scores, as in
Example 2. Because

Ci D ni

N
and Ci D ni � 1

N � g
; i D 1; : : : ; g ;

are equivalent when n1 D n2, as in this case, the results are the same as Example 2,
with �1 D 2:7256, �2 D 4:3440, an observed MRPP test statistic of ıo D 3:5348, an
exact probability value of P D 0:0645, and an observed chance-corrected effect size
of <o D C0:0729.
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6.11 MRPP for the CNs Function with s D 2

In this section the CNs power-of-rank function test with s D 2 [281], discussed in
Chap. 5, Sect. 5.15, is generalized to r � 2 response measurements. Finally, because
CN2 is associated with the Mielke two-sample sum-of-squared-ranks test [282] when
r D 1, as described in Chap. 5, Sects. 5.7 and 5.15, this CN2 analysis can be consid-
ered as a multivariate generalization of the Mielke test, i.e., r � 2.

Three example analyses illustrate a permutation approach to two-sample power-
of-rank problems with multivariate response measurements. The first example
utilizes MRPP to extend the conventional CNs function with s D 2 to a multi-
variate power-of-rank test using a small set of bivariate rank scores with v D 2

and treatment-group weights Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g; the second
example analyzes the same small set of bivariate rank scores, but uses v D 1

and treatment-group weights Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g; and the third
example analyzes the same set of bivariate rank scores using v D 1, but adopts a pro-
portional treatment-group weighting function given by Ci D ni=N for i D 1; : : : ; g.

6.11.1 Example 1

Consider a two-sample rank test for N objects with n1 and n2 objects in the first and
second samples, respectively, and r D 2 ordinal response measurements obtained
on each object. The bivariate rank scores listed in Fig. 6.10 on p. 335 are replicated
in Fig. 6.17 for convenience. For the bivariate rank scores listed in Fig. 6.17, g D 2,
r D 2, n1 D n2 D 9, and N D n1 C n2 D 18.

For the first analysis of the bivariate rank response measurements listed in
Fig. 6.17, let v D 2, employing squared Euclidean distance between the bivariate
rank scores, and let the treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

to correspond to a multivariate Mielke two-sample sum-of-squared-ranks test [282].

Fig. 6.17 Bivariate rank
response measurement scores
for two treatment groups with
r D 2, g D 2, n1 D n2 D 9,
and N D n1 C n2 D 18

Group 1 Group 2

(1, 1) (1, 3)

(1, 2) (2, 1)

(2, 3) (4, 3)

(3, 1) (5, 3)

(3, 2) (5, 5)

(3, 3) (5, 6)

(3, 4) (5, 7)

(5, 4) (6, 4)

(6, 5) (7, 8)
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Because there are only

M D NŠ
gY

iD1

niŠ

D 18Š

.9Š/2
D 48;620

possible, equally-likely arrangements of the N D 18 bivariate rank scores listed in
Fig. 6.17, an exact solution is practical. Following Eq. (6.2) on p. 317, the N D 18

bivariate rank scores listed in Fig. 6.17 yield g D 2 average distance-function values
of

�1 D 36:1528 and �2 D 198:9861 :

Following Eq. (6.1) on p. 317, the observed value of the MRPP test statistic based
on v D 2 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 9 � 1

18 � 2

�
36:1528 C 198:9861

�D 117:5694 :

If all arrangements of the N D 18 observed bivariate rank scores listed in
Fig. 6.17 occur with equal chance, the exact probability value of ıo D 117:5694

computed on the M D 48;620 possible arrangements of the observed data with
n1 D n2 D 9 bivariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 412

48;620
D 0:0085 :

No comparison is made with the conventional Mielke two-sample sum-of-squared-
ranks test as Mielke’s test is undefined for r > 1.

Following Eq. (6.5) on p. 319, the exact expected value of the M D 48;620 ı

values is �ı D 148:1912 and, following Eq. (6.4) on p. 319, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 117:5694

148:1912
D C0:2066 ;

indicating approximately 21 % within-group agreement above that expected by
chance.
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6.11.2 Example 2

For the second analysis of the bivariate rank scores listed in Fig. 6.17, let the
treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

as in Example 1, but set v D 1 instead of v D 2, employing ordinary Euclidean
distance between the bivariate rank scores. Following Eq. (6.2) on p. 317, the N D
18 bivariate rank scores listed in Fig. 6.17 yield g D 2 average distance-function
values of

�1 D 5:2424 and �2 D 11:3789 :

Following Eq. (6.1) on p. 317, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 9 � 1

18 � 2

�
5:2424 C 11:3789

� D 8:3107 :

If all arrangements of the N D 18 observed bivariate rank scores listed in
Fig. 6.17 occur with equal chance, the exact probability value of ıo D 8:3107

computed on the M D 48;620 possible arrangements of the observed data with
n1 D n2 D 9 bivariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 444

48;620
D 0:0091 :

For comparison, the exact probability value based on v D 2, M D 48;620, Ci D
.ni � 1/=.N � g/ for i D 1; 2 in Example 1 is P D 0:0085. No comparison is made
with the conventional Mielke two-sample sum-of-squared-ranks test as Mielke’s test
is undefined for both r > 1 and v D 1.

Following Eq. (6.5) on p. 319, the exact expected value of the M D 48;620 ı

values is �ı D 9:3039 and, following Eq. (6.4) on p. 319, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 8:3107

9:3039
D C0:1068 ;
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indicating approximately 11 % within-group agreement above that expected by
chance.

6.11.3 Example 3

For the third analysis of the bivariate rank scores listed in Fig. 6.17, let the treatment-
group weights be given by

Ci D ni

N
; i D 1; : : : ; g ;

simply weighting each treatment group proportional to its size, and let v D 1,
employing ordinary Euclidean distance between the bivariate rank scores, as in
Example 2. Because

Ci D ni

N
and Ci D ni � 1

N � g
; i D 1; : : : ; g ;

are equivalent when n1 D n2, as in this case, the results are the same as Example 2,
with �1 D 5:2424, �2 D 11:3789, an observed MRPP test statistic of ıo D 8:3107,
an exact probability value of P D 0:0091, and an observed chance-corrected effect
size of <o D C0:1068.

6.12 MRPP for Cureton’s Rank-Biserial Statistic

Cureton’s rank-biserial test [83], discussed in Chap. 5, Sect. 5.18, was designed for
g D 2 groups and r D 1 response measurement. In this section rrb is generalized
to r � 2 response measurements. Three example analyses illustrate a permutation
approach to two-sample rank-biserial tests with multivariate response measure-
ments. The first example utilizes MRPP to extend the conventional rrb statistic
to a multivariate rank-biserial test using a small set of bivariate rank scores with
v D 2 and treatment-group weights Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g; the
second example analyzes the same small set of bivariate rank scores, but uses v D 1

and treatment-group weights Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g; and the third
example analyzes the same set of bivariate rank scores using v D 1, but adopts a pro-
portional treatment-group weighting function given by Ci D ni=N for i D 1; : : : ; g.

6.12.1 Example 1

Consider a two-sample rank-biserial test for N objects with n0 and n1 objects in the
first and second samples, respectively, and r D 2 ordinal response measurements
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Fig. 6.18 Example data set
with r D 2, g D 2, n0 D 7,
n1 D 5, and
N D n0 C n1 D 12

Variable

Object x y

1 0 (1, 3)

2 0 (2, 1)

3 0 (3, 2)

4 1 (4, 6)

5 0 (5, 4)

6 0 (6, 5)

7 0 (7, 7)

8 1 (8, 8)

9 1 (9, 10)

10 1 (10, 12)

11 0 (11, 9)

12 1 (12, 11)

obtained on each object. Let variable y contain the bivariate rank response measure-
ments and let variable x indicate the group to which each response measurement
score belongs, indicated by either 0 or 1. Example bivariate rank scores are listed in
Fig. 6.18, where g D 2, r D 2, n0 D 7, n1 D 5, and N D n0 C n1 D 12.

For the first analysis of the bivariate rank response measurements listed in
Fig. 6.18, let v D 2, employing squared Euclidean distance between the bivariate
rank scores, and let the treatment group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

to correspond to a multivariate Cureton rank-biserial test [83].
Because there are only

M D NŠ
gY

iD1

niŠ

D 12Š

7Š 5Š
D 792

possible, equally-likely arrangements of the N D 12 bivariate rank scores listed in
Fig. 6.18, an exact solution is feasible. Following Eq. (6.2) on p. 317, the N D 12

bivariate rank scores listed in Fig. 6.18 yield g D 2 average distance-function values
of

�0 D 39:2381 and �1 D 29:20 :

Following Eq. (6.1) on p. 317, the observed value of the MRPP test statistic based
on v D 2 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;
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is

ıo D
gX

iD1

Ci�i D 1

12 � 2

�
.7 � 1/.39:2381/ C .5 � 1/.29:20/

	 D 35:2229 :

If all arrangements of the N D 12 observed bivariate rank scores listed in
Fig. 6.18 occur with equal chance, the exact probability value of ıo D 35:2229 com-
puted on the M D 792 possible arrangements of the observed data with n0 D 7 and
n1 D 5 bivariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 25

792
D 0:0316 :

No comparison is made with the Cureton rank-biserial test as Cureton’s test is unde-
fined for r > 1.

Following Eq. (6.5) on p. 319, the exact expected value of the M D 792 ı values
is �ı D 52:00 and, following Eq. (6.4) on p. 319, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 35:2229

52:00
D C0:3226 ;

indicating approximately 32 % within-group agreement above that expected by
chance.

6.12.2 Example 2

For the second analysis of the bivariate rank scores listed in Fig. 6.18, let the
treatment-group weights be given by

Ci D ni � 1

N � g
; i D 1; : : : ; g ;

as in Example 1, but set v D 1 instead of v D 2, employing ordinary Euclidean
distance between the bivariate rank scores. Following Eq. (6.2) on p. 317, the N D
12 bivariate rank scores listed in Fig. 6.18 yield g D 2 average distance-function
values of

�0 D 5:4316 and �1 D 4:8137 :

Following Eq. (6.1) on p. 317, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni � 1

N � g
; i D 1; 2 ;
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is

ıo D
gX

iD1

Ci�i D 1

12 � 2

�
.7 � 1/.5:4316/ C .5 � 1/.4:8137/

	 D 5:1845 :

If all arrangements of the N D 12 observed bivariate rank scores listed in
Fig. 6.18 occur with equal chance, the exact probability value of ıo D 5:1845 com-
puted on the M D 792 possible arrangements of the observed data with n0 D 7 and
n1 D 5 bivariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 29

792
D 0:0366 :

For comparison, the exact probability value based on v D 2, M D 792, and Ci D
.ni � 1/=.N � g/ for i D 1; 2 in Example 1 is P D 0:0316. No comparison is made
with the Cureton rank-biserial test as Cureton’s test is undefined for both r > 1 and
v D 1.

Following Eq. (6.5) on p. 319, the exact expected value of the M D 792 ı values
is �ı D 6:2644 and, following Eq. (6.4) on p. 319, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 5:1845

6:2644
D C0:1724 ;

indicating approximately 17 % within-group agreement above that expected by
chance.

6.12.3 Example 3

For the third analysis of the bivariate rank scores listed in Fig. 6.18, let the treatment-
group weights be given by

Ci D ni

N
; i D 1; : : : ; g ;

simply weighting each treatment group proportional to its size, and let v D 1,
employing ordinary Euclidean distance between the bivariate rank scores, as in
Example 2. Following Eq. (6.2) on p. 317, the N D 12 bivariate rank scores listed in
Fig. 6.18 yield g D 2 average distance-function values of

�0 D 5:4316 and �1 D 4:8137 :

Following Eq. (6.1) on p. 317, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni

N
; i D 1; 2 ;
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is

ıo D
gX

iD1

Ci�i D 1

12

�
.7/.5:4316/ C .5/.4:8137/

	 D 5:1742 :

If all arrangements of the N D 12 observed bivariate rank scores listed in
Fig. 6.18 occur with equal chance, the exact probability value of ıo D 5:1742 com-
puted on the M D 792 possible arrangements of the observed data with n0 D 7 and
n1 D 5 bivariate rank scores preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 26

792
D 0:0328 :

For comparison, the exact probability value based on v D 2, M D 792, and Ci D
.ni � 1/=.N � g/ for i D 1; 2 in Example 1 and v D 1, M D 792, and Ci D .ni �
1/=.N � g/ for i D 1; 2 in Example 2 are P D 0:0316 and P D 0:0366, respectively.
No comparison is made with the Cureton rank-biserial test as Cureton’s test is unde-
fined for r > 1, v D 1, and Ci D ni=N, i D 1; : : : ; g.

Following Eq. (6.5) on p. 319, the exact expected value of the M D 792 ı values
is �ı D 6:2644 and, following Eq. (6.4) on p. 319, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 5:1742

6:2644
D C0:1740 ;

indicating approximately 17 % within-group agreement above that expected by
chance.

6.13 Coda

Chapter 6 utilized the Multi-Response Permutation Procedures (MRPP) developed
in Chap. 2 to establish relationships between the test statistics of MRPP, ı and <, and
multivariate generalizations of selected conventional tests and measures designed
for the analysis of completely randomized data at the ordinal level of measurement.
Considered in this chapter were multivariate extensions of the Wilcoxon two-sample
rank-sum test, the Kruskal–Wallis multi-sample rank sum test, the Ansari–Bradley
rank sum test for dispersion, the Taha sum-of-squared-ranks test, the Mood rank-
sum test for dispersion, the Brown–Mood median test, the Mielke ANs, BNs, and
CNs power-of-rank function tests, the Whitfield two-sample rank-sum test, and the
Cureton rank-biserial test.

Because MRPP is inherently multivariate, it is convenient to extend a variety of
classical statistical tests designed for univariate data. Comparisons of the MRPP test
statistic ı based on ordinary Euclidean distance with v D 1 and squared Euclidean
distance with v D 2 with the conventional statistics listed above revealed only
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small differences among the observed probability values due to the transformation
of raw scores to rank scores. While conventional statistics, under the population
model, require restrictive assumptions and are based on squared Euclidean distance
between rank scores, permutation methods based on ordinary Euclidean distance
between rank scores yield exact probability values, are free of any distributional
assumptions, and are completely data-dependent. It should be noted that although
the permutation-based and conventional probability values in Chap. 6 were often
very similar due to the fact that the raw data had been transformed to rank scores
and extreme value eliminated, permutation tests mitigate the need for such trans-
formations and the attendant loss of information and are therefore preferred over
conventional rank tests.

Chapter 7
Chapter 7 establishes the relationships between the MRPP test statistics, ı and <,
and selected conventional tests and measures designed for the analysis of com-
pletely randomized data at the nominal level of measurement. Considered in Chap. 7
are Goodman and Kruskal’s ta and tb asymmetric measures of categorical associa-
tion, Light and Margolin’s categorical analysis of variance, tests to analyze multiple
binary choices, and various multivariate measures of association for a nominal-level
independent variable and nominal-, ordinal-, and interval-level dependent variables.
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This seventh chapter of Permutation Statistical Methods utilizes the Multi-Response
Permutation Procedures (MRPP) presented in Chap. 2 to develop the functional
relationships between the test statistics of MRPP, ı and <, and selected conven-
tional tests and measures designed for the analysis of completely randomized data
at the nominal (categorical) level of measurement. Nominal-level variables, such
as gender, political affiliation, and marital status, are notoriously difficult to ana-
lyze. As Heiser noted in 2004, “Categories can be counted, rated, or ranked, but
they cannot be measured” [171, p. 514]. In a 2014 article, de Mast, Akkerhuis,
and Erdmann detailed the complexity of evaluating categorical measurements, not-
ing (1) the underlying empirical reality is usually very complex, which is difficult
to capture with a simple mathematical structure, especially when the measurement
structure is binary; (2) categorical statistics typically evaluate measurement systems
in terms of concepts not clearly related to a notion of measurement error; and (3)
interpretations of categorical statistics typically depend on rather strict assumptions
about conditional independence and the representativeness of samples, assumptions
that de Mast, Akkerhuis, and Erdmann argued are almost always violated in practice
[91].

Because of the limitations of categorical data analysis, only a small variety of
tests are described to illustrate the application of the MRPP test statistics, ı and
<, to nominal-level data. The tests described in this chapter include Goodman
and Kruskal’s ta and tb asymmetric measures of nominal association, Light and
Margolin’s categorical analysis of variance, Berry and Mielke’s permutation test to
analyze multiple binary choices, and various multivariate measures of association
for a nominal-level independent variable and nominal-, ordinal-, and interval-level
dependent variables.

© Springer International Publishing Switzerland 2016
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DOI 10.1007/978-3-319-28770-6_7
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7.1 Introduction

As detailed in Chap. 2, let 
 D f!1; : : : ; !Ng denote a finite sample of N objects,
let x0

j D .x1j; : : : ; xrj/ be a transposed vector of r commensurate response mea-
surements for object !j, j D 1; : : : ; N, and let S1; : : : ; Sg designate an exhaustive
partitioning of the N objects into g disjoint treatment groups. The MRPP test statistic
given by

ı D
gX

iD1

Ci�i ; (7.1)

where Ci > 0 is a positive treatment-group weight for S1; : : : ; Sg,

gX

iD1

Ci D 1 ;

and

�i D
 

ni

2

!�1X

j<k

	.j; k/ ‰i.!j/ ‰i.!k/ (7.2)

is the average distance-function value for all distinct pairs of objects in treatment
groups S1; : : : ; Sg, ni � 2 is the number of objects classified into treatment group
Si, i D 1; : : : ; g,

N D
gX

iD1

ni ;

P
j<k is the sum over all j and k such that 1 � j < k � N, 	.j; k/ is the generalized

Minkowski distance function,

	.j; k/ D
 

rX

iD1

ˇ̌
xij � xik

ˇ̌p
!v=p

; (7.3)

where p � 1, v > 0, and ‰i.�/ is an indicator function given by

‰i.!j/ D
8
<

:
1 if !j 2 Si ,

0 otherwise .
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The null hypothesis (H0) states that equal probabilities are assigned to each of
the

M D NŠ
gY

iD1

niŠ

possible, equally-likely allocations of the N objects to treatment groups S1; : : : ; Sg.
The probability value associated with an observed value of ı, ıo, is the probability

under the null hypothesis (H0) of observing a value of ı as extreme or more extreme
than ıo. Thus, an exact probability value for ıo may be expressed as

P
�
ı � ıojH0

� D number of ı values � ıo

M
:

When M is very large, an approximate probability value for ı may be obtained from
a resampling procedure, where

P
�
ı � ıojH0

� D number of ı values � ıo

L

and L denotes the number of randomly-sampled test statistic values. Typically, L is
set to a large number to ensure accuracy, e.g., L D 1;000;000. Also, when M is very
large and P is exceedingly small, a resampling-approximation permutation proce-
dure may produce no ı values equal to or less than ıo, even with L D 1;000;000,
yielding an approximate resampling probability value of P D 0:00. In such cases,
moment-approximation permutation procedures based on fitting the first three exact
moments of the discrete permutation distribution to a Pearson type III distribu-
tion provide approximate probability values, as detailed in Chap. 1, Sect. 1.2.2
[284, 300].

A chance-corrected within-group coefficient of agreement is given by

< D 1 � ı

�ı

; (7.4)

where �ı is the arithmetic average of the M ı values calculated on all possible
arrangements of the observed response measurement scores given by

�ı D 1

M

MX

iD1

ıi : (7.5)

Permutation analogues of three selected tests are examined in this chapter: (1)
Goodman and Kruskal’s asymmetric measures of association for nominal-level
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response measurements [151], which is identical to Light and Margolin’s analy-
sis of variance for nominal-level dependent variables [243], (2) Berry and Mielke’s
test to analyze multiple binary choices [34], and (3) Berry and Mielke’s multivari-
ate measures of association. The tests are illustrated with examples analyzed with
Ci D .ni � 1/=.N � g/ and Ci D ni=N for i D 1; : : : ; g. When the observed data
are coded (0, 1) binary, v D 2 and v D 1 yield the same result.

7.2 Goodman and Kruskal’s ta and tb Statistics

A common problem that many researchers confront is the analysis of a cross-
classification table where both variables are categorical [242, p. 534]. The usual
measures of association based on chi-squared, such as Pearson’s �2 [334],
Tschuprov’s (Čhuprov’s) T2 [402], and Cramér’s V2 [81], have proven to be
less than satisfactory due to difficulties in interpretation; see, for example, discus-
sions by Agresti and Finley [3, p. 284], Berry, Martin, and Olson [35, 36], Berry,
Johnston, and Mielke [39, 40], Costner [80], Ferguson [115, p. 422], Guilford [161,
p. 342], and Wickens [425, p. 226].

In 1954 Leo Goodman and William Kruskal proposed several new measures
of association. Among the measures was an asymmetric proportional-reduction-in-
error (PRE) prediction measure, ta, for the analysis of a random sample of two
categorical variables [151]. Consider two cross-classified unordered polytomies,
A and B, with variable A the dependent variable and variable B the independent
variable. Figure 7.1 provides notation for the cross-classification, where aj for
j D 1; : : : ; g denotes the g categories for dependent variable A, bi for i D 1; : : : ; r
denotes the r categories for independent variable B, and N is the total number of
observations.

The Goodman and Kruskal ta statistic is a measure of the relative reduction in
prediction error where two types of errors are defined. The first type is the error in
prediction based solely on knowledge of the distribution of the dependent variable,
termed error of the first kind (E1), consisting of the expected number of errors when
predicting the g dependent variable categories (a1; : : : ; ag) from the observed dis-
tribution of the marginals of the dependent variable (n:1; : : : ; n:g). The second type
is the error in prediction based on knowledge of the distributions of both the inde-

Fig. 7.1 Notation for the
cross-classification of two
categorical variables, Aj for
j D 1; : : : ; g and Bi for
i D 1; : : : ; r

A

B a1 a2 · · · ag Total

b1 n11 n12 · · · n 1g n 1.

b2 n21 n22 · · · n 2g n 2.
.
..

.

..
.
..

. . .
.
..

.

..

br n r1 nr 2 · · · nrg nr.

Total n.1 n .2 · · · n.g N



7.2 Goodman and Kruskal’s ta and tb Statistics 371

pendent and dependent variables, termed error of the second kind (E2), consisting of
the expected number or errors when predicting the g dependent variable categories
(a1; : : : ; ag) from knowledge of the r independent variable categories (b1; : : : ; br).

To illustrate the two error types, consider predicting category a1 only from
knowledge of its marginal distribution, n:1; : : : ; n:g. Clearly, n:1 out of the N total
cases are in category a1, but exactly which n:1 of the N cases is unknown. The prob-
ability of incorrectly identifying one of the N cases in category a1 by chance alone
is given by

N � n:1

N
:

Since there are n:1 such classifications required, the number of expected incorrect
classifications is

n:1.N � n:1/

N

and, for all g categories of variable A, the number of expected errors of the first kind
is given by

E1 D
gX

jD1

n:j.N � n:j/

N
:

Likewise, to predict n11; : : : ; n1g from the independent category b1, the proba-
bility of incorrectly classifying one of the n1: cases in cell n11 by chance alone is

n1: � n11

n1:

:

Since there are n11 such classifications required, the number of incorrect classifica-
tions is

n11.n1: � n11/

n1:

and, for all gr cells, the number of expected errors of the second kind is given by

E2 D
gX

jD1

rX

iD1

nij.ni: � nij/

ni:
:

Goodman and Kruskal’s ta statistic is then defined as

ta D E1 � E2

E1

:
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An efficient computation form for Goodman and Kruskal’s ta is given by

ta D
N

rX

iD1

gX

jD1

n2
ij

n:j
�

rX

iD1

n2
i:

N2 �
rX

iD1

n2
i:

: (7.6)

A computed value of ta indicates the proportional reduction in prediction error
given knowledge of the distribution of independent variable B over and above
knowledge of only the distribution of dependent variable A. As defined, ta is a
point estimator of Goodman and Kruskal’s population parameter �a for the popu-
lation from which the sample of N cases was obtained. If variable B is considered
the dependent variable and variable A the independent variable, then Goodman and
Kruskal’s test statistic tb and associated population parameter �b are analogously
defined.

While parameter �a norms properly from 0 to 1, possesses a clear and meaning-
ful proportional-reduction-in-error interpretation [80], and is characterized by high
intuitive and factorial validity [188], statistic ta poses difficulties whenever the null
hypothesis posits that �a D 0 [263]. The problem is that the distribution of ta is not
asymptotically normal when �a D 0. Consequently, the applicability of Goodman
and Kruskal’s ta to typical tests of null hypotheses is severely circumscribed.

Although ta was developed by Goodman and Kruskal in 1954, it was not until
1963 that the asymptotic normality for ta was established and an asymptotic vari-
ance was given for ta, but only for 0 < �a < 1 [152]. Unfortunately, the asymptotic
variance for ta given in 1963 was later found to be incorrect, and it was not until
1972 that the correct asymptotic variance for ta was obtained, but again, only for
0 < �a < 1.

In 1971, Richard Light and Barry Margolin developed R2, an analysis-of-
variance technique for categorical response variables, called CATANOVA for
CATegorical ANalysis Of VAriance [243]. They apparently were unaware that R2

was identical to Goodman and Kruskal’s ta and that they had asymptotically solved
the longstanding problem of testing H0W �a D 0. The identity between R2 and ta was
first recognized by Särndal in 1974 [362] and later discussed by Margolin and Light
[263], where they showed that ta.N � 1/.r � 1/ was asymptotically distributed as
chi-squared with .r � 1/.g � 1/ degrees of freedom under H0W �a D 0 as N ! 1.

7.2.1 Goodman and Kruskal’s ta and ı

Consider two cross-classified unordered polytomies, A and B, with A the dependent
variable where r � 2 and g � 2. If each of the N cases is represented by a binary
column vector h of dimension r, with a single row entry set to 1 to indicate the
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classification of the case and the remaining r � 1 row entries set to 0, then an r�N
matrix may be defined by H D fh1; h2; : : : ; hNg.

If 	.I; J/ D 1 � h0
IhJ, then

	.I; J/ D
8
<

:
0 if hI D hJ ,

1 otherwise .

Thus, 	.I; J/, the difference between cases I and J, is 1 if and only if I and J are
orthogonal, i.e., occur in different rows of independent variable B. The variation for
categorical responses in the jth category of variable A, j D 1; : : : ; g, is given by

�j D
 

nj

2

!�1X

I<J

	.I; J/‰j.hI/‰j.hJ/ ;

where
P

I<J is the sum over all I and J such that 1 � I < J � N and

‰j.hI/ D
8
<

:
1 if hI 2 Aj ,

0 otherwise ,

for j D 1; : : : ; g.
The MRPP test statistic is the weighted average of the �j values, j D 1; : : : ; g,

given by

ıa D
gX

jD1

Cj�j ;

where

Cj D nj � 1

N � g
; j D 1; : : : ; g ;

and

gX

jD1

Cj D 1 :

The choice of Cj is dictated by the relationship between ta and ıa, but a correspond-
ing test based on

Cj D nj

N
; j D 1; : : : ; g ;
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simply weighting each treatment group proportional to its size, is a natural alterna-
tive since degrees of freedom are meaningless in a permutation context [297, p. 76].
Also, the choice of v D 2 or v D 1 is irrelevant, since the response measurement
scores are coded (0, 1) binary. An efficient computation form for ıa is given by

ıa D
N �

rX

iD1

gX

jD1

n2
ij

n:j

N � g
: (7.7)

7.2.2 Example Analysis for ta

Suppose that N D 64 individuals are queried as to political party affiliation (variable
B) and preference for one of three political candidates (variable A). The results are
adapted from Berry and Mielke [25] and given in Fig. 7.2. Variable A consists of
g D 3 categories: Candidate 1 (a1), Candidate 2 (a2), and Candidate 3 (a3). Vari-
able B consists of r D 2 categories: Democrat (b1) and Republican (b2). If the null
hypothesis posits that candidate preference (A) does not depend on political party
affiliation (B), then H0W �a D 0,

h1 D



1

0

�
; h2 D



1

0

�
; h3 D



1

0

�
; : : : ; h64 D



0

1

�
;

and

H D



1 1 1 0 0 1 0 0 � � � 0

0 0 0 1 1 0 1 1 � � � 1

�
:

For the frequency data given in Fig. 7.2, r D 2, g D 3, v D 1, n:1 D 52, n:2 D 7,
n:3 D 5, N D n:1 C n:2 C n:3 D 64, and let

Cj D nj � 1

N � g
; j D 1; : : : ; g ;

to correspond to Goodman and Kruskal’s ta test statistic [151]. Because the response
measurement scores are coded (0, 1) binary, v D 2, employing squared Euclidean

Fig. 7.2 Cross-classification
of political party (B) and
candidate preference (A)

A

B a1 a2 a3 Total

b1 5 1 3 9

b2 47 6 2 55

Total 52 7 5 64
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distance between response measurements, and v D 1, employing ordinary Euclidean
distance between response measurements, yield the same result.

The 	.I; J/ generalized Minkowski distance-function values are

	.1; 2/ D 0 ; 	.1; 3/ D 0 ; 	.1; 4/ D 1 ; : : : ; 	.63; 64/ D 0 :

Following Eq. (7.2) on p. 368, the N D 64 observations given in Fig. 7.2 on p. 374
yield g D 3 average distance-function values of

�1 D 0:1772 ; �2 D 0:2857 ; and �3 D 0:60 :

Following Eq. (7.1) on p. 368, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Cj D nj � 1

N � g
; j D 1; 2; 3 ;

is

ıa D
gX

jD1

Cj�j D 1

64 � 3

�
.52 � 1/.0:1772/ C .7 � 1/.0:2857/

C .5 � 1/.0:60/
	 D 0:2156 :

Alternatively, following Eq. (7.7) on p. 374, the observed value of the MRPP test
statistic is

ıa D
N �

rX

iD1

gX

jD1

n2
ij

n:j

N � g

D
64 �

�
52

52
C 12

7
C 32

5
C 472

52
C 62

7
C 22

5

�

64 � 3
D 0:2156 :
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Following Eq. (7.6) on p. 372, for the frequency data given in Fig. 7.2, the
observed value of Goodman and Kruskal’s ta is

ta D
N

rX

iD1

gX

jD1

n2
ij

n:j
�

rX

iD1

n2
i:

N2 �
rX

iD1

n2
i:

D
64

�
52

52
C 12

7
C 32

5
C 472

52
C 62

7
C 22

5

�
� .92 C 552/

642 � .92 C 552/
D 0:1497 :

The computed value of ta D 0:1497 indicates an approximate 15 % reduction in
the number of prediction errors, given knowledge of the distribution of political
party affiliation (variable B) over knowledge of only the distribution of candidate
preference (variable A). The adjusted ta value of Margolin and Light [263] is

ta.N � 1/.r � 1/ D 0:1497.64 � 1/.2 � 1/ D 9:4324

and, with .r � 1/.g � 1/ D .2 � 1/.3 � 1/ D 2 degrees of freedom, the asymptotic
chi-squared probability value of �2 D 9:4324 is approximately P D 0:0089.

Since there are

M D NŠ
gY

jD1

n:jŠ

D 64Š

52Š 7Š 5Š
D 2;601;098;044;820;352

possible, equally-likely arrangements of the N D 64 observed values given in
Fig. 7.2, an exact solution is not practical. If all M possible arrangements of the
N D 64 observed values given in Fig. 7.2 occur with equal chance, the approximate
resampling probability value of ıa D 0:2156 computed on L D 1;000;000 random
arrangements of the observed values with n:1 D 52, n:2 D 7, and n:3 D 5 marginal
frequency totals preserved for each arrangement is1

P
�
ı � ıajH0

� D number of ı values � ıa

L
D 22;810

1;000;000
D 0:0228 :

For comparison, the chi-squared approximate probability value under the null
hypothesis with .r � 1/.g � 1/ D .2 � 1/.3 � 1/ D 2 degrees of freedom is P D
0:0089.

1For comparison, the exact probability value is acually P D 0:0229.
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Following Eq. (7.5) on p. 369, the exact expected value of the M ı values is �ı D
0:2455 and, following Eq. (7.4) on p. 369, the observed chance-corrected measure
of effect size is

<a D 1 � ıa

�ı

D 1 � 0:2156

0:2455
D C0:1218 ;

indicating approximately 12 % within-group agreement above that expected by
chance.

The functional relationships between Goodman and Kruskal’s ta and ıa are given
by

ta D 1 � N.N � g/ıa

N2 �
rX

iD1

n2
i:

and ıa D .1 � ta/

N2 �
rX

iD1

n2
i:

N.N � g/
:

Thus, for the frequency data given in Fig. 7.2 the observed values of ta and ıa are

ta D 1 � 64.64 � 3/.0:2156/

642 � .92 C 552/
D 0:1497

and

ıa D .1 � 0:1497/
642 � .92 C 552/

64.64 � 3/
D 0:2156 :

A Reanalysis
The treatment-group weights given by

Cj D nj � 1

N � g
; j D 1; : : : ; g ;

are important in associating ta and ı, but degrees of freedom have no meaning in per-
mutation methods, except for providing analogues to classical tests and measures.

For a reanalysis of the data given in Fig. 7.2, replicated in Fig. 7.3 for conve-
nience, set

Cj D nj

N
; j D 1; : : : ; g ;

to simply weight each treatment group proportional to its size, and let v D 1 or
v D 2 as it makes no difference with (0, 1) binary data.
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Fig. 7.3 Cross-classification
of political party (B) and
candidate preference (A)

A

B a1 a2 a3 Total

b1 5 1 3 9

b2 47 6 2 55

Total 52 7 5 64

For the frequency data given in Fig. 7.3, r D 2, g D 3, n:1 D 52, n:2 D 7, n:3 D
5, N D n:1 C n:2 C n:3 D 64, and Cj D nj=N, j D 1; 2; 3. Following Eq. (7.2) on
p. 368, the N D 64 observations given in Fig. 7.3 yield g D 3 average distance-
function values of

�1 D 0:1772 ; �2 D 0:2857 ; and �3 D 0:60 :

Following Eq. (7.1) on p. 368, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Cj D nj

N
; j D 1; 2; 3 ;

is

ıa D
gX

jD1

Cj�j D 1

64

�
.52/.0:1772/ C .7/.0:2857/

C .5/.0:60/
	 D 0:2221 :

Since there are still

M D NŠ
gY

jD1

n:jŠ

D 64Š

52Š 7Š 5Š
D 2;601;098;044;820;352

possible, equally-likely arrangements of the N D 64 observed values given in
Fig. 7.3, an exact solution is not practical. If all M possible arrangements of the
N D 64 observed values given in Fig. 7.3 occur with equal chance, the approximate
resampling probability value of ıa D 0:2221 computed on L D 1;000;000 random
arrangements of the observed values with n:1 D 52, n:2 D 7, and n:3 D 5 marginal
frequency totals preserved for each arrangement is

P
�
ı � ıajH0

� D number of ı values � ıa

L
D 22;921

1;000;000
D 0:0229 :
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For comparison, the approximate resampling probability value based on L D
1;000;000 and Cj D .nj � 1/=.N � g/ for i D 1; 2; 3 is P D 0:0228. No comparison
is made with the conventional Goodman and Kruskal ta statistic as ta is undefined
for Cj D nj=N, j D 1; : : : ; g.

Following Eq. (7.5) on p. 369, the exact expected value of the M ı values is �ı D
0:2455 and, following Eq. (7.4) on p. 369, the observed chance-corrected measure
of effect size is

<a D 1 � ıa

�ı

D 1 � 0:2221

0:2455
D C0:0954 ;

indicating approximately 10 % within-group agreement above that expected by
chance.

7.2.3 Example Analysis for tb

If, for illustrative purposes, the null hypothesis posits that political party affiliation
(variable B) does not depend on candidate preference (variable A) in this particular
election, then the frequency data given in Fig. 7.3 is analyzed over the r D 2 rows of
variable B instead of the g D 3 columns of variable A. The null hypothesis is then,
H0W �b D 0,

h1 D
2

4
1

0

0

3

5 ; h2 D
2

4
1

0

0

3

5 ; h3 D
2

4
1

0

0

3

5 ; : : : ; h64 D
2

4
0

0

1

3

5 ;

and

H D
2

4
1 1 1 0 0 0 0 0 � � � 0

0 0 0 1 0 0 0 0 � � � 0

0 0 0 0 1 1 1 1 � � � 1

3

5 :

For the frequency data given in Fig. 7.3, r D 2, g D 3 v D 1, n1: D 9, n2: D 55,
N D n1: C n2: D 64, and let

Ci D ni � 1

N � r
; i D 1; : : : ; r ;

to correspond to Goodman and Kruskal’s tb test statistic [151]. The 	.I; J/ general-
ized Minkowski distance-function values are

	.1; 2/ D 0 ; 	.1; 3/ D 0 ; 	.1; 4/ D 1 ; : : : ; 	.63; 64/ D 0 :
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Following Eq. (7.2) on p. 368, the N D 64 observations given in Fig. 7.3 yield r D 2

average distance-function values of

�1 D 0:6389 and �2 D 0:2613 :

Following Eq. (7.1) on p. 368, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni � 1

N � r
; i D 1; 2 ;

is

ıb D
rX

iD1

Ci�i D 1

64 � 2

�
.9 � 1/.0:6389/ C .55 � 1/.0:2613/

	 D 0:3100 :

Alternatively,

ıb D
N �

gX

jD1

rX

iD1

n2
ij

ni:

N � r

D
64 �

�
52

9
C 12

9
C 32

9
C 472

55
C 62

55
C 22

55

�

64 � 2
D 0:3100 :

Analogous to ta, Goodman and Kruskal’s tb is given by

tb D
N

gX

jD1

rX

iD1

n2
ij

ni:
�

gX

jD1

n2
:j

N2 �
gX

jD1

n2
:j

: (7.8)

Thus, for the frequency data given in Fig. 7.3 on p. 378, the observed value of tb is

tb D
64

�
52

9
C 12

9
C 32

9
C 472

55
C 62

55
C 22

55

�
� .522 C 72 C 52/

642 � .522 C 72 C 52/
D 0:0667 :

The computed value of tb D 0:0667 indicates an approximate 7 % reduction in the
number of prediction errors, given knowledge of the distribution of candidate prefer-
ence (variable A) over knowledge of only the distribution of political party affiliation
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(variable B) . The adjusted tb value of Margolin and Light [263] is

tb.N � 1/.g � 1/ D 0:0667.64 � 1/.3 � 1/ D 8:4039

and, with .r � 1/.g � 1/ D .2 � 1/.3 � 1/ D 2 degrees of freedom, the asymptotic
chi-squared probability value for �2 D 8:4039 is P D 0:0150.

Since there are

M D NŠ
rY

iD1

ni:Š

D 64Š

9Š 55Š
D 27;540;584;512

possible, equally-likely arrangements of the N D 64 observed values given in
Fig. 7.3, an exact solution is not practical. If all M possible arrangements of the
N D 64 observed values given in Fig. 7.3 occur with equal chance, the approximate
resampling probability value of ıb D 0:3100 computed on L D 1;000;000 random
arrangements of the observed values with n1: D 9 and n2: D 55 marginal frequency
totals preserved for each arrangement is

P
�
ı � ıbjH0

� D number of ı values � ıb

L
D 18;910

1;000;000
D 0:0189 :

For comparison, the chi-squared approximate probability value under the null
hypothesis with .r � 1/.g � 1/ D .2 � 1/.3 � 1/ D 2 degrees of freedom is P D
0:0150.

Following Eq. (7.5) on p. 369, the exact expected value of the M D
27;540;584;512 ı values is �ı D 0:3269 and, following Eq. (7.4) on p. 369, the
observed chance-corrected measure of effect size is

<b D 1 � ıb

�ı

D 1 � 0:3100

0:3269
D C0:0516 ;

indicating approximately 5 % within-group agreement above that expected by
chance. Analogous to ta and ıa, the functional relationships between tb and ıb are
given by

tb D 1 � N.N � r/ıb

N2 �
gX

jD1

n2
:j

and ıb D .1 � tb/

N2 �
gX

jD1

n2
:j

N.N � r/
:
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Thus, for the frequency data given in Fig. 7.3 the observed values of tb and ıb are

tb D 1 � 64.64 � 2/.0:3100/

642 � .522 C 72 C 52/
D 0:0667

and

ıb D .1 � 0:0667/
642 � .522 C 72 C 52/

64.64 � 2/
D 0:3100 :

A Reanalysis
For a reanalysis of the frequency data given in Fig. 7.3 on p. 378, set

Ci D ni

N
; i D 1; : : : ; r ;

instead of

Ci D ni � 1

N � r
; i D 1; : : : ; r ;

to simply weight each treatment group proportional to its size, and set v to either 1
or 2 as it makes no difference with (0, 1) binary-coded data.

For the frequency data given in Fig. 7.3, r D 2, g D 3, n1: D 9, n2: D 55, N D
n1: C n2: D 64, and Ci D ni=N, i D 1; 2. Following Eq. (7.2) on p. 368, the N D 64

observations given in Fig. 7.3 yield r D 2 average distance-function values of

�1 D 0:6389 and �2 D 0:2613 :

Following Eq. (7.1) on p. 368, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni

N
; i D 1; 2 ;

is

ıb D
rX

iD1

Ci�i D 1

64

�
.9/.0:6389/ C .55/.0:2613/

	 D 0:3144 :
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Since there are still

M D NŠ
rY

iD1

ni:Š

D 64Š

9Š 55Š
D 27;540;584;512

possible, equally-likely arrangements of the N D 64 observed values given in
Fig. 7.3, an exact solution is not practical. If all M possible arrangements of the
N D 64 observed values given in Fig. 7.3 occur with equal chance, the approximate
resampling probability value of ıb D 0:3144 computed on L D 1;000;000 random
arrangements of the observed values with n1: D 9 and n2: D 55 marginal frequency
totals preserved for each arrangement is

P
�
ı � ıajH0

� D number of ı values � ıa

L
D 18;834

1;000;000
D 0:0188 :

For comparison, the approximate resampling probability value based on L D
1;000;000 and Ci D .ni � 1/=.N � r/ for i D 1; 2, and is P D 0:0189. No compari-
son is made with the Goodman and Kruskal tb statistic as Goodman and Kruskal’s
tb is undefined for Ci D ni=N, i D 1; : : : ; r.

Following Eq. (7.5) on p. 369, the exact expected value of the M ı values is �ı D
0:3269 and, following Eq. (7.4) on p. 369, the observed chance-corrected measure
of effect size is

<b D 1 � ıb

�ı

D 1 � 0:3144

0:3269
D C0:0383 ;

indicating approximately 4 % within-group agreement above that expected by
chance.

7.2.4 Goodman–Kruskal’s ta, ıa, and �2

Following the notation given in Fig. 7.1, replicated in Fig. 7.4 for convenience, some
interesting simplifications occur for Goodman and Kruskal’s ta and �2 when ni: D
N=r for i D 1; : : : ; r, or when r D 2 [297, p. 325]. Consider the frequency data
given in Fig. 7.5 for dependent variable A and independent variable B where r D
g D 3 and n1: D n2: D n3: D N=r D 10.
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Fig. 7.4 Notation for the
cross-classification of two
categorical variables, Aj for
j D 1; : : : ; g and Bi for
i D 1; : : : ; r

A

B a1 a2 · · · ag Total

b1 n11 n12 · · · n1 g n 1 .

b2 n21 n22 · · · n2 g n 2 .
..
.

..

.
..
.

. . .
..
.

..

.

br nr 1 nr 2 · · · nrg n r.

Total n . 1 n . 2 · · · n.g N

Fig. 7.5 Example 3�3

contingency table for
variables A and B with
n1: D n2: D n3: D 10

A

B a1 a2 a3 Total

b1 2 2 6 10

b2 2 5 3 10

b3 1 3 6 10

Total 5 10 15 30

For the frequency data given in Fig. 7.5, the observed values of ta, ıa, and �2 are

ta D
N

rX

iD1

gX

jD1

n2
ij

n:j
�

rX

iD1

n2
i:

N2 �
rX

iD1

n2
i:

D 30.11/ � .102 C 102 C 102/

302 � .102 C 102 C 102/
D 30

600
D 0:05 ; (7.9)

where the value (11) in the numerator of Eq. (7.9) is given by

rX

iD1

gX

jD1

n2
ij

n:j
D 22 C 22 C 12

5
C 22 C 52 C 32

10
C 62 C 32 C 62

15

D 1:8 C 3:8 C 5:4 D 11 ;

ıa D
N �

rX

iD1

gX

jD1

n2
ij

n:j

N � g
D 30 � 11

30 � 3
D 19

27
D 0:7037 ;
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and

�2 D N
rX

iD1

gX

jD1

n2
ij

ni:n:j
� N D 30.1:10/ � 30 D 3:00 ; (7.10)

where the value (1.10) in Eq. (7.10) is given by

rX

iD1

gX

jD1

n2
ij

ni:n:j
D 22

.10/.5/
C 22

.10/.10/
C � � � C 62

.10/.15/
D 1:10 :

When ni: D N=r for i D 1; : : : ; r, the relationships between ta and �2 simplify
to

ta D �2

N.r � 1/
D 3:00

30.3 � 1/
D 0:05

and

�2 D N.r � 1/ta D 30.3 � 1/.0:05/ D 3:00 :

Also, for the frequency data given in Fig. 7.5, the observed values of ıa and ta are

ıa D .1 � ta/

N2 �
rX

iD1

n2
i:

N.N � g/

D .1 � 0:05/



302 � .102 C 102 C 102/

30.30 � 3/

�
D .0:95/

�
600

810

�
D 0:7037

and

ta D 1 � N.N � g/ıa

N2 �
rX

iD1

n2
i:

D 1 � 30.30 � 3/.0:7037/

302 � .102 C 102 C 102/
D 1 � 570

600
D 0:05 ;
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and the observed values of ıa and �2 are

ıa D


1 � �2

N.r � 1/

�

2
66664

N2 �
rX

iD1

ni:
2

N.N � g/

3
77775

D


1 � 3:00

30.3 � 1/

� 

302 � .102 C 102 C 102/

30.30 � 3/

�

D .0:95/

�
600

810

�
D 0:7037

and

�2 D N.r � 1/

2

66664
1 � N.N � g/ıa

N2 �
rX

iD1

n2
i:

3

77775

D 30.3 � 1/



1 � 30.30 � 3/.0:7037/

302 � .102 C 102 C 102/

�

D 60

�
1 � 570

600

�
D 3:00 :

By symmetry, analogous results are obtained for tb, �2, and ıb, when n:j D N=g for
j D 1; : : : ; g.

Additional simplifications occur for the relationships between ta and �2 when
r D 2 for any marginal frequency totals [297, p. 325]. Consider the frequency data
given in Fig. 7.6 with r D 2 rows and g D 3 columns. For the frequency data given

Fig. 7.6 Example 2�3

contingency table for
variables A and B with
n1: 6D n2:

A

B a1 a2 a3 Total

b1 5 3 2 10

b2 5 5 5 15

Total 10 8 7 25
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in Fig. 7.6, ta, ıa, and �2 are

ta D
N

rX

iD1

gX

jD1

n2
ij

n:j
�

rX

iD1

n2
i:

N2 �
rX

iD1

n2
i:

D 25.13:3929/ � .102 C 152/

252 � .102 C 152/
D 9:8214

300
D 0:0327 ; (7.11)

where the value (13.3929) in the numerator of Eq. (7.11) is given by

rX

iD1

gX

jD1

n2
ij

n:j
D 52 C 52

10
C 32 C 52

8
C 22 C 52

7

D 5:00 C 4:25 C 4:1429 D 13:3929 ;

ıa D
N �

rX

iD1

gX

jD1

n2
ij

n:j

N � g
D 25 � 13:3929

25 � 3
D 11:6071

22
D 0:5276 ;

and

�2 D N
rX

iD1

gX

jD1

n2
ij

ni:n:j
� N D 25.1:0327/ � 25 D 0:8185 ; (7.12)

where the value (1.0327) in Eq. (7.12) is given by

rX

iD1

gX

jD1

n2
ij

ni:n:j
D 52

.10/.10/
C 32

.10/.8/
C � � � C 52

.15/.7/
D 1:0327 :

When r D 2, with any marginal frequency totals for ni:, i D 1; 2 and n:j, j D
1; : : : ; g, the relationships between ta and �2 simplify to

ta D �2

N
D 0:8185

25
D 0:0327 and �2 D Nta D 25.0:0327/ D 0:8185 :
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Also, for the frequency data given in Fig. 7.6 the observed values of ıa and ta are

ıa D .1 � ta/

N2 �
rX

iD1

n2
i:

N.N � g/

D .1 � 0:0327/



252 � .102 C 152/

25.25 � 3/

�
D .0:9673/

�
300

550

�
D 0:5276

and

ta D 1 � N.N � g/ıa

N2 �
rX

iD1

n2
i:

D 1 � 25.25 � 3/.0:5276/

252 � .102 C 152/
D 1 � 290:1786

300
D 0:0327 ;

and the observed values of ıa and �2 are

ıa D


1 � �2

N.r � 1/

�

2

66664

N2 �
rX

iD1

ni:
2

N.N � g/

3

77775

D


1 � 0:8185

25.2 � 1/

� 

252 � .102 C 152/

25.25 � 3/

�

D .0:9673/

�
300

550

�
D 0:5276

and

�2 D N.r � 1/

2

66664
1 � N.N � g/ıa

N2 �
rX

iD1

n2
i:

3

77775

D 25.2 � 1/



1 � 25.25 � 3/.0:5276/

252 � .102 C 152/

�

D 25

�
1 � 290:1786

300

�
D 0:8185 :

By symmetry, analogous results are obtained for tb, �2, and ıb when g D 2.
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Simplifications also occur for the relationships between ta and �2 when r D g D
2 for any marginal frequency totals [297, p. 325]. Consider the frequency data given
in Fig. 7.7 with r D g D 2, where ta, ıa, and �2 are

ta D
N

rX

iD1

gX

jD1

n2
ij

n:j
�

rX

iD1

n2
i:

N2 �
rX

iD1

n2
i:

D 10.5:2381/ � .62 C 42/

102 � .62 C 42/
D 0:3810

48
D 0:0079 ; (7.13)

where the value (5.2381) in the numerator of Eq. (7.13) is given by

rX

iD1

gX

jD1

n2
ij

n:j
D 42 C 32

7
C 22 C 12

3
D 3:5714 C 1:6667 D 5:2381 ;

ıa D
N �

rX

iD1

gX

jD1

n2
ij

n:j

N � g
D 10 � 5:2381

10 � 2
D 4:7619

8
D 0:5952 ;

and

�2 D N
rX

iD1

gX

jD1

n2
ij

ni:n:j
� N D 10.1:0079/ � 10 D 0:0794 ; (7.14)

where the value (1.0079) in Eq. (7.14) is given by

rX

iD1

gX

jD1

n2
ij

ni:n:j
D 42

.6/.7/
C 22

.6/.3/
C 32

.4/.7/
C 12

.4/.3/
D 1:0079 :

Fig. 7.7 Example 2�2

contingency table for
variables A and B with
N D 10 observations

A

B a1 a2 Total

b1 4 2 6

b2 3 1 4

Total 7 3 10
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When r D g D 2, with any marginal frequency totals for ni:, i D 1; 2 and n:j,
j D 1; 2, the relationships between ta and �2 simplify to

ta D �2

N
D 0:0794

10
D 0:0079 and �2 D Nta D 10.0:0079/ D 0:0794 :

Also, for the frequency data given in Fig. 7.7 the observed values of ıa and ta are

ıa D .1 � ta/

N2 �
rX

iD1

n2
i:

N.N � g/

D .1 � 0:0079/



102 � .62 C 42/

10.10 � 2/

�
D .0:9921/.0:60/ D 0:5952

and

ta D 1 � N.N � g/ıa

N2 �
rX

iD1

n2
i:

D 1 � 10.10 � 2/.0:5952/

102 � .62 C 42
/ D 1 � 47:6190

48
D 0:0079 ;

and the observed values of ıa and �2 are

ıa D


1 � �2

N.r � 1/

�

2

66664

N2 �
rX

iD1

ni:
2

N.N � g/

3

77775

D


1 � 0:0794

10.2 � 1/

� 

102 � .62 C 42/

10.10 � 2/

�

D .0:9921/

�
48

80

�
D 0:5952
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and

�2 D N.r � 1/

2

66664
1 � N.N � g/ıa

N2 �
rX

iD1

n2
i:

3

77775

D 10.2 � 1/



1 � 10.10 � 2/.0:5952/

102 � .62 C 42/

�

D 10

�
1 � 47:6190

48

�
D 0:0794 :

By symmetry, analogous results are obtained for tb, �2, and ıb when g D 2. Note
that for fourfold contingency tables where r D g D 2, as in this case, Goodman
and Kruskal’s ta D tb D �2=N, which in turn is equal to Pearson’s mean-square
contingency coefficient �2 and also equal to Pearson’s product-moment correlation
coefficient r2 if a1 and b1 (a2 and b2) in Fig. 7.7 are coded as 0 and a2 and b2 (a1

and b1) are coded as 1.

7.2.5 Fourfold Contingency Tables

Fourfold (2�2) contingency tables are ubiquitous in everyday research; conse-
quently, they deserve special attention—especially with regard to Goodman and
Kruskal’s ta and tb asymmetric measures of nominal association.

Goodman–Kruskal’s �a Statistic
Consider the 2�2 contingency table given in Fig. 7.8 with N D 35 observations.
For the frequency data given in Fig. 7.8, r D 2, g D 2, v D 1, n:1 D 19, n:2 D 16,
N D n:1 C n:2 D 35, and let

Cj D nj � 1

N � g
; j D 1; : : : ; g ;

Fig. 7.8 Example 2�2

contingency table for
variables A and B with
N D 35 observations

A

B a1 a2 Total

b1 16 2 18

b2 3 14 17

Total 19 16 35
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to correspond to Goodman and Kruskal’s ta test statistic [151]. Following Eq. (7.2)
on p. 368, the N D 35 observations given in Fig. 7.8 yield g D 2 average distance-
function values of

�1 D 0:2807 and �2 D 0:2333 :

Following Eq. (7.1) on p. 368, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Cj D nj � 1

N � g
; j D 1; 2 ;

is

ıa D
gX

jD1

Cj�j D 1

35 � 2

�
.19 � 1/.0:2807/ C .16 � 1/.0:2333/

	 D 0:2592 :

Since there are

M D NŠ
gY

jD1

n:jŠ

D 35Š

19Š 16Š
D 4;059;928;950

possible, equally-likely arrangements of the N D 35 observed values given in
Fig. 7.8, an exact solution is not practical. If all M possible arrangements of the
N D 35 observed values given in Fig. 7.8 occur with equal chance, the approximate
resampling probability value of ıa D 0:2592 computed on L D 1;000;000 random
arrangements of the observed values with n:1 D 19 and n:2 D 16 marginal frequency
totals preserved for each arrangement is

P
�
ı � ıajH0

� D number of ı values � ıa

L
D 0

1;000;000
D 0:00 :

As explained more completely in Chap. 4, page 187, when M is very large and the
probability of an observed ı is very small, resampling permutation procedures often
result in zero probability, even with L D 1;000;000 random arrangements of the
observed data. Moment-approximation permutation procedures, described briefly
in Chap. 1, Sect. 1.2.2, can often provide results in these extreme situations. The
moment-approximation of a test statistic requires computation of the exact moments
of the test statistic, assuming equally-likely arrangements of the observed response
measurement values. Usually, the first three exact moments of ı are used: the exact
mean, �ı , the exact variance, �2

ı , and the exact skewness, �ı. The three moments
are then used to fit a specified distribution, such as a Pearson type III distribution
that approximates the underlying discrete permutation distribution, and provide an
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approximate probability value. For variable A, a moment-approximation procedure
yields ıa D 0:2592, �ı D 0:5143, �2

ı D 0:4718�10�3, �ı D �2:7050, an observed
standardized test statistic of

Ta D ıa � �ı

�ı

D 0:2592 � 0:5143

0:0217
D �11:7449 ;

and a Pearson type III probability value of 0:2107�10�4.2

Following Eq. (7.5) on p. 369, the exact expected value of the M D
4;059;928;950 ı values is �ı D 0:5143 and following Eq, (7.4) on p. 369, the
observed chance-corrected measure of effect size is

<a D 1 � ıa

�ı

D 1 � 0:2592

0:5143
D C0:4961 ;

indicating approximately 50 % within-group agreement above that expected by
chance.

Following Eq. (7.6), for the frequency data given in Fig. 7.8 on p. 391 the
observed value of ta is

ta D
N

rX

iD1

gX

jD1

n2
ij

n:j
�

rX

iD1

n2
i:

N2 �
rX

iD1

n2
i:

D
35

�
162

19
C 22

16
C 32

19
C 142

16

�
� .182 C 172/

352 � .182 C 172/
D 0:5109 ;

indicating approximately 51 % reduction in the number of predicted errors, given
knowledge of the distribution of variable B over knowledge of only the distribution
of variable A.

Goodman–Kruskal’s tb Statistic
Now consider Goodman and Kruskal’s tb test statistic. For the frequency data given
in Fig. 7.8, replicated in Fig. 7.9 for convenience, r D 2, g D 2, v D 1, n1: D 18,
n2: D 17, N D n1: C n2: D 35, and let

Ci D ni � 1

N � r
; i D 1; : : : ; r ;

2For comparison, the exact probability value is actually P D 0:2969�10�4.
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Fig. 7.9 Example 2�2

contingency table for
variables A and B with
N D 35 observations

A

B a1 a2 Total

b1 16 2 18

b2 3 14 17

Total 19 16 35

to correspond to Goodman and Kruskal’s tb test statistic. Following Eq. (7.2) on
p. 368, the N D 35 observations given in Fig. 7.9 yield r D 2 average distance-
function values of

�1 D 0:2092 and �2 D 0:3088 :

Following Eq. (7.1) on p. 368, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni � 1

N � r
; i D 1; 2 ;

is

ıb D
rX

iD1

Ci�i D 1

35 � 2

�
.18 � 1/.0:2092/ C .17 � 1/.0:3088/

	 D 0:2576 :

Since there are

M D NŠ
rY

iD1

ni:Š

D 35Š

18Š 17Š
D 4;537;567;650

possible, equally-likely arrangements of the N D 35 observed values with n1: D 18

and n2: D 17 marginal frequency totals preserved for each arrangement, an exact
solution is not practical. If all M possible arrangements of the N D 35 observed
values given in Fig. 7.9 occur with equal chance, the approximate resampling prob-
ability value of ıb D 0:2576 computed on L D 1;000;000 random arrangements of
the observed values with n1: D 18 and n2: D 17 marginal frequency totals preserved
for each arrangement is

P
�
ı � ıbjH0

� D number of ı values � ıb

L
D 0

1;000;000
D 0:00 :

As previously, when M is very large and the probability of an observed ı is very
small, resampling permutation procedures often result in zero probability, even with
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L D 1;000;000 random arrangements of the observed data. Moment-approximation
permutation procedures can often provide results in these extreme situations. For
variable B, a moment-approximation procedure yields ıb D 0:2576, �ı D 0:5109,
�2

ı D 0:4657�10�3, �ı D �2:7050, an observed standardized test statistic of

Tb D ıb � �ı

�ı

D 0:2576 � 0:5109

0:0216
D �11:7449 ;

and a Pearson type III probability value of 0:2107�10�4.3

Following Eq. (7.5) on p. 369, the exact expected value of the M D
4;059;928;950 ı values is �ı D 0:5109 and, following Eq. (7.4) on p. 369, the
observed chance-corrected measure of effect size is

<b D 1 � ıb

�ı

D 1 � 0:2576

0:5109
D C0:4961 ;

indicating approximately 50 % within-group agreement above that expected by
chance.

Following Eq. (7.8) on p. 380, for the frequency data given in Fig. 7.9, the
observed value of Goodman and Kruskal’s tb is

tb D
N

rX

iD1

gX

jD1

n2
ij

ni:
�

gX

jD1

n2
:j

N2 �
gX

jD1

n2
:j

D
35

�
162

18
C 22

18
C 32

17
C 142

17

�
� .192 C 162/

352 � .192 C 162/
D 0:5109 ;

indicating approximately 51 % reduction in the number of predicted errors, given
knowledge of the distribution of variable B over knowledge of only the distribution
of variable A.

Note that for a 2�2 cross-classification table, ta and tb yield identical values and
are equal to the squared Pearson fourfold point correlation, defined as

�2 D �2
1

N
;

3For comparison, the exact probability value is actually P D 0:2969�10�4.
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Fig. 7.10 Dummy coding of
the frequency data given in
Fig. 7.9 with a1 and b1 coded
as 0, and a2 and b2 coded as 1

Cell A B Cell A B

a1 , b1 0 0 a1 , b2 0 1

0 0 0 1

0 0 0 1

0 0

0 0 a2 , b2 1 1

0 0 1 1

0 0 1 1

0 0 1 1

0 0 1 1

0 0 1 1

0 0 1 1

0 0 1 1

0 0 1 1

0 0 1 1

0 0 1 1

0 0 1 1

1 1

a2 , b1 1 0 1 1

1 0

where �2
1 is the Pearson chi-squared test statistic for a 2�2 contingency table with

one degree of freedom.4

For the frequency data given in Fig. 7.9, ta D tb D 0:5109 and �2
1 D 17:8808.

Thus,

ta D tb D �2 D �2
1

N
D 17:8808

35
D 0:5109 :

Also, it is well known that �2 is simply a special case of the squared Pearson
product-moment correlation coefficient, r2, for two dichotomous variables. Thus,
if a1 and b1 in Fig. 7.9 are coded 0 and a2 and b2 are coded 1, as in Fig. 7.10, the
squared Pearson product-moment correlation coefficient for variables A and B is
r2

ab D 0:5109.

7.2.6 Chi-Squared and ı

Since, for a 2�2 contingency table,

ta D tb D �2 D r2 D �2
1

N
;

4Note: �2 with one degree of freedom is simply a squared normal deviate, i.e., z2.
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then ta can be defined in terms of ıa, and vice versa,

ta D 1 � N.N � g/ıa

N2 �
rX

iD1

n2
i:

(7.15)

and

ıa D .1 � ta/

N2 �
rX

iD1

n2
i:

N.N � g/
: (7.16)

Consequently, ıa and �2
1 are necessarily related. The relationships between ıa and

�2
1 for a 2�2 contingency table are given by

ıa D
.N � �2

1/

 
N2 �

rX

iD1

n2
i:

!

N2.N � g/
(7.17)

and

�2
1 D

N

"
N2 �

rX

iD1

n2
i: � N.N � g/ıa

#

N2 �
rX

iD1

n2
i:

; (7.18)

respectively.
Thus, for the frequency data given in Fig. 7.9, replicated in Fig. 7.11 for conve-

nience, following Eq. (7.17) the observed value of the MRPP test statistic is

ıa D .35 � 17:8808/Œ352 � .182 C 172

352.35 � 2/
D 10;476:9504

40;425
D 0:2592 (7.19)

Fig. 7.11 Example 2�2

contingency table for
variables A and B with
N D 35 observations

A

B a1 a2 Total

b1 16 2 18

b2 3 14 17

Total 19 16 35
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and, following Eq. (7.18), the observed value of �2 is

�2
1 D 35Œ352 � .182 C 172/ � 35.35 � 2/.0:2592/

352 � .182 C 172/

D 10; 941:8400

612
D 17:8808 : (7.20)

While Eqs. (7.15) to (7.20) are expressed in terms of ta, the analogue holds for tb,
ıb, and �2

1, since ta D tb for a 2�2 contingency table.

7.3 Multiple Binary Choices

Surveys and other methods of data gathering often include questions for which
respondents may select any number of categories, i.e., “cafeteria” or “multiple-
response” questions. Coombs [79, pp. 295–297, 305–307] and Levine [238] referred
to this type of question as a “pick any/r” type question, where “pick any/r” instructs
the respondent to choose any or all of r unconstrained categories. For example, sub-
jects may be requested to select every magazine to which they subscribe from a
predetermined list, or asked to choose names of close friends from a list of class-
mates. Usually, it is of interest to determine whether the multiple responses differ
among specified groups. However, multiple-response questions are often difficult to
analyze as the answers are not independent [4, 385, p. 159]. Current methods used
to analyze multiple-response data are limited to assessments of contingency, inde-
pendence, and the magnitude of predictive association [4, 5, 42, 43, 92, 246, 406].
None of these methods is designed to test for differences among groups within the
multiple-response structure.

The MRPP analysis of multiple category choices may be conceptualized as a
binary argument problem in which N subjects choose any or all of r presented cate-
gories and the responses for each subject are coded 1 if the category is selected and
0 if the category is not selected. The subjects are a priori classified into g distinct
groups and the groups are then compared on the multiple responses.

Specifically, let 
 D f!1; : : : ; !Ng denote a finite sample of subjects that is
representative of a target population, let xI1; : : : ; xIr denote r binary response
measurements for subject !I for I D 1; : : : ; N, and let S1; : : : ; Sg designate an
exhaustive partitioning of the N subjects into g disjoint treatment groups of sizes
n1; : : : ; ng, where ni � 2 for i D 1; : : : ; g, and

gX

iD1

ni D N :

The response of each of the N subjects is a single r-dimensional column vector of
size r�1 in which each argument of the response vector is either 0 or 1. The total



7.3 Multiple Binary Choices 399

number of distinct responses for a subject in this context is 2r. The analysis of the
multiple responses depends on the MRPP test statistic given by

ı D
gX

iD1

Ci�i ;

where, for this application, Ci D ni=N, i D 1; : : : ; g, since degrees of freedom are
not relevant to permutation methods.

The null hypothesis of no difference in the response structures among the g
groups specifies that each of the

M D NŠ
gY

iD1

niŠ

possible, equally-likely allocations of the N r-dimensional response measurements
to the g treatment groups is equally likely. To illustrate a permutation test for mul-
tiple binary choices, consider three example applications in which g groups are
compared on r responses and each of the N respondents is allowed to select any
one of the 2r possible arrangements of categorical responses.

7.3.1 Example Analysis 1

Suppose that a class of N D 19 elementary school students is assigned three books
to read over the summer. Upon their return to school, the students are surveyed as
to which of the three books they read during the summer. The r D 3 response cat-
egories are books A, B, and C, each of the N D 19 students is allowed to choose
any of the 2r D 23 D 8 possible response arrangements, and the g D 2 groups con-
sist of n1 D 8 girls and n2 D 11 boys. Figure 7.12 lists the N D 19 row vectors of
observed binary responses from the eight possible response arrangements for each
student, where a 1 indicates that a book was read and a 0 indicates that a book was
not read. The data are adapted from Mielke and Berry [297, p. 84].

For the binary data listed in Fig. 7.12, r D 3, g D 2, v D 1, n1 D 8, n2 D 11,
N D n1 C n2 D 19, and let

Ci D ni

N
; i D 1; : : : ; g ;

simply weighting each treatment group proportional to its size. Following Eq. (7.2)
on p. 368, the N D 19 binary response measurements listed in Fig. 7.12 yield g D 2

average distance-function values of

�1 D 0:9598 and �2 D 0:9463 :
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Fig. 7.12 Elementary school
students example data with
r D 3, g D 2, n1 D 8,
n2 D 11, and
N D n1 C n2 D 19

Girls Boys

A B C A B C

1 0 0

1 0 1

1 1 0

1 1 0

1 1 0

0 1 1

1 1 1

1 1 0

0

1

0

1

0

0

0

0

0

0

1

0

0

1

0

0

0

1

0

0

0

1

1

1

1

1

0

1

1

1

1

1

0

Following Eq. (7.1) on p. 368, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni

N
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

19

�
.8/.0:9598/ C .11/.0:9463/

	 D 0:9520 :

Since there are only

M D NŠ
gY

iD1

niŠ

D 19Š

8Š 11Š
D 75;582

possible, equally-likely arrangements of the N D 19 observed values listed in
Fig. 7.12, an exact solution is practical.

If all arrangements of the N D 19 observed binary values listed in Fig. 7.12 occur
with equal chance, the exact probability value of ıo D 0:9520 computed on the
M D 75;582 possible arrangements of the observed values with n1 D 8 and n2 D 11

binary response measurements preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 685

75;582
D 0:0091 :
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Following Eq. (7.5) on p. 369, the exact expected value of the M D 75;582 ı values
is �ı D 1:1199 and, following Eq. (7.4) on p. 369, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 0:9520

1:1199
D C0:1499 ;

indicating approximately 15 % within-group agreement above that expected by
chance.

7.3.2 Example Analysis 2

Some statistical tests are specifically designed to test for differences among
responses, while others are designed to measure similarities among responses. In
many studies it is commonplace to design experiments for which a test of differ-
ences is requisite, e.g., an F test in a one-way analysis of variance design. To clarify
the function of the ı test statistic as a test for differences, consider a modification of
the data in Example 1.

Suppose that a class of elementary school students is assigned one of two books
to read over the summer, then the students are surveyed as to which of the two books
they read during the summer. The r D 2 response categories are books A and B, the
g D 2 treatment groups consist of n1 D 12 girls and n2 D 12 boys, and each of N D
24 students may choose any of the 2r D 22 D 4 possible response arrangements:
read only book A, read only book B, read both books A and B, or read neither book
A nor book B. In addition, assume that half of the girls read book A only and the
other half of the girls read book B only, while half of the boys read both books and
the other half of the boys read neither book. Figure 7.13 lists the row vectors of
observed binary responses from the four possible response arrangements for each
student, where a 1 indicates that a book was read and a 0 indicates that a book was
not read. In one sense, the data are the same for the girls and the boys, as there are
12 books read by both the girls and the boys. In another sense, the data are different
for the girls and the boys, as the selection of books read by the girls differs from that
of the boys.

For the binary data listed in Fig. 7.13, r D 2, g D 2, v D 1, n1 D n2 D 12, N D
n1 C n2 D 24, and let

Ci D ni

N
; i D 1; : : : ; g ;

simply weighting each treatment group proportional to its size. Following Eq. (7.2)
on p. 368, the N D 24 binary response measurements listed in Fig. 7.13 yield g D 2

average distance-function values of

�1 D 0:7714 and �2 D 0:7714 :
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Fig. 7.13 Elementary school
students example with
r D g D 2, n1 D n2 D 12,
and N D n1 C n2 D 24

Girls Boys

A B A B

1 0 1

1 0 1

1 0 1

1 0 1

1 0 1

1 0 1

0 1 0

0 1 0

0 1 0

0 1 0

0 1 0

0 1 0

1

1

1

1

1

1

0

0

0

0

0

0

Following Eq. (7.1) on p. 368, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni

N
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 12

24

�
0:7714 C 0:7714

� D 0:7714 :

Since there are only

M D NŠ
gY

iD1

niŠ

D 24Š

12Š 12Š
D 2;704;156

possible, equally-likely arrangements of the N D 24 observed values listed in
Fig. 7.13, an exact solution is possible.

If all arrangements of the N D 24 observed binary values listed in Fig. 7.13 occur
with equal chance, the exact probability value of ıo D 0:7714 computed on the M D
2;704;156 possible arrangements of the observed values with n1 D n2 D 12 binary
response measurements preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

M
D 19;606

2;704;156
D 0:0073 :

In this manner, the MRPP test statistic detects the selection differences in reading
choices between girls and boys.
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Following Eq. (7.5) on p. 369, the exact expected value of the M D 2;704;156

ı values is �ı D 0:8907 and, following Eq. (7.4) on p. 369, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 0:7714

0:8907
D C0:1339 ;

indicating approximately 13 % within-group agreement above that expected by
chance.

7.3.3 Example Analysis 3

Consider a more substantial third example in which N D 262 Kansas pig farm-
ers were asked, “What are your primary sources of veterinary information?” The
farmers chose as many sources as applied from r D 5 response categories: (A)
professional consultant, (B) veterinarian, (C) state or local extension service and
agents, (D) magazines, and (E) feed companies and representatives. The farmers
were also asked their highest attained level of education, providing g D 5 educa-
tional groups with n1 D 88 high school (HS) graduates, n2 D 16 vocational school
(VS) graduates, n3 D 31 2-year college (2C) graduates, n4 D 113 4-year college
(4C) graduates, and n5 D 14 other (O) graduates. The data are adapted from Bilder
et al. [43, p. 1287], and have been extensively analyzed and discussed in an r-
dimensional contingency table context by Loughin and Scherer [246], Agresti and
Liu [4], Bilder et al. [43], Decady and Thomas [92], and Bilder and Loughin [42].
In this example, the veterinary information data are analyzed in an r-dimensional
binary-argument context.

Table 7.1 lists the observed frequencies and row vectors for the 2r D 25 D 32

possible response arrangements, where a 1 indicates that the source of information
was used and a 0 indicates that the information source was not used.

For the data listed in Table 7.1, r D 5, g D 5, v D 1, n1 D 88, n2 D 16, n3 D 31,
n4 D 113, n5 D 14, N D n1 C n2 C n3 C n4 C n5 D 262, and let

Ci D ni

N
; i D 1; : : : ; g ;

simply weighting each treatment group proportional to its size. Following Eq. (7.2)
on p. 368, the N D 262 binary response measurements listed in Table 7.1 yield g D
5 average distance-function values of

�1 D 1:4168 ; �2 D 1:3862 ; �3 D 1:3348 ; �4 D 1:3017 ; and �5 D 1:5003 :

Following Eq. (7.1) on p. 368, the observed value of the MRPP test statistic based
on v D 1 and treatment-group weights

Ci D ni

N
; i D 1; : : : ; 5 ;
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Table 7.1 Frequencies of responses for the veterinary information data from five information
sources: (A) professional consultant, (B) veterinarian, (C) state or local extension service or agents,
(D) magazines, and (E) feed companies and representatives, and level of education scored as high
school (HS), vocational school (VS), 2-year college (2C), 4-year college (4C), and other (O)

Source of information Level of education

Vector A B C D E HS VS 2C 4C O

1 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 1 8 1 6 16 1

3 0 0 0 1 0 17 3 6 30 1

4 0 0 0 1 1 4 1 2 2 1

5 0 0 1 0 0 5 4 2 17 2

6 0 0 1 0 1 1 0 0 1 1

7 0 0 1 1 0 3 0 1 6 1

8 0 0 1 1 1 3 0 0 0 1

9 0 1 0 0 0 9 3 4 11 1

10 0 1 0 0 1 7 0 1 2 0

11 0 1 0 1 0 1 0 0 1 0

12 0 1 0 1 1 2 0 2 0 0

13 0 1 1 0 0 0 0 0 1 1

14 0 1 1 0 1 0 0 0 0 1

15 0 1 1 1 0 1 0 3 3 0

16 0 1 1 1 1 8 2 3 4 0

17 1 0 0 0 0 9 0 0 11 1

18 1 0 0 0 1 0 0 0 0 0

19 1 0 0 1 0 0 0 0 0 1

20 1 0 0 1 1 0 0 0 0 0

21 1 0 1 0 0 0 0 1 0 0

22 1 0 1 0 1 0 0 0 0 0

23 1 0 1 1 0 0 1 0 1 0

24 1 0 1 1 1 0 0 0 0 0

25 1 1 0 0 0 2 0 0 0 0

26 1 1 0 0 1 0 0 0 0 0

27 1 1 0 1 0 0 0 0 0 0

28 1 1 0 1 1 0 0 0 0 0

29 1 1 1 0 0 0 0 0 1 0

30 1 1 1 0 1 0 0 0 0 0

31 1 1 1 1 0 1 1 0 2 0

32 1 1 1 1 1 7 0 0 4 1

is

ıo D
gX

iD1

Ci�i D 1

262

�
.88/.1:4168/ C .16/.1:3862/ C .31/.1:3348/

C .113/.1:3017/ C .14/.1:5003/
	D 1:3601 :
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Since there are

M D NŠ
gY

iD1

niŠ

D 262Š

88Š 16Š 31Š 113Š 14Š

:D 4:2196�10144

possible, equally-likely arrangements of the N D 262 observed values listed in
Table 7.1, an exact solution is not possible.

If all M possible arrangements of the N D 262 observed binary values listed in
Table 7.1 occur with equal chance, the approximate resampling probability value
of ıo D 1:3601 computed on L D 1;000;000 random arrangements of the observed
values with n1 D 88, n2 D 16, n3 D 31, n4 D 113, and n5 D 14 binary response
measurements preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

L
D 127;263

1;000;000
D 0:1273 :

Here, the MRPP ı test statistic detected no definitive differences in sources of vet-
erinary information among the five educational groups.

Following Eq. (7.5) on p. 369, the exact expected value of the M ı values is �ı D
1:3663 and, following Eq. (7.4) on p. 369, the observed chance-corrected measure
of effect size is

<o D 1 � ıo

�ı

D 1 � 1:3601

1:3663
D C0:0046 ;

indicating very little within-group agreement above that expected by chance.

7.4 Multivariate Measures of Association

A common problem in contemporary data analysis is the measurement of the mag-
nitude of association between a nominal-level independent variable and a dependent
variable that may be nominal-, ordinal-, or interval-level. Some representative exam-
ples are the measured associations between Religious Affiliation (e.g., Catholic,
Jewish, Protestant) and Voting Behavior (e.g., Democrat, Republican, Libertarian,
Independent); between Sex (Female, Male) and any attitudinal question that is Lik-
ert scaled (e.g., Strongly Agree, Agree, Neutral, Disagree, Strongly Disagree); and
between Marital Status (Married, Single, Separated, Divorced, Widowed) and num-
ber of days of Work Missed in a year (0, 1, 2, . . . ).

Additionally, interest may be in the magnitude of association between a nominal-
level independent variable and a multivariate dependent variable such as a subject’s
position in a three-dimensional matrix defined by Occupational Prestige, Income
in Dollars, and Years of Education, where the researcher may not want to suffer
the loss of information engendered by collapsing the three measurements into a
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univariate index of socioeconomic status. For a detailed description of problems
with collapsing variables into a simple index, see Chap. 6, Sect. 6.1. In this section, a
generalized measure of association for nominal independent variables is presented,
in which any number and/or combination of interval-, ordinal-, or nominal-level
dependent variables can be analyzed.

7.4.1 Interval Dependent Variables

Let 
 D f!1; : : : ; !Ng indicate a finite collection of N objects, let x0
j D

.x1j; : : : ; xrj/ denote a transposed vector of r commensurate interval-level response
measurements for object !j, j D 1; : : : ; N, and let S1; : : : ; Sg designate an exhaus-
tive a priori partitioning of the N objects into g disjoint categories, where ni � 2 is
the number of objects in category Si, i D 1; : : : ; g. In addition, let

	. j; k/ D
 

rX

iD1

ˇ̌
xij � xik

ˇ̌p
!v=p

be a symmetric generalized Minkowski distance-function value of the r response
measurements associated with objects !j and !k. Let

�i D
 

ni

2

!�1X

j<k

	.j; k/ ‰i.!j/ ‰i.!k/

represent the average between-object difference for all objects within category Si,
i D 1; : : : ; g, where

P
j<k is the sum over all j and k such that 1 � j < k � N, and

‰i.!j/ D
8
<

:
1 if !j 2 Si ,

0 otherwise .

Then the average within-category difference, weighted by the number of objects ni

in category i, i D 1; : : : ; g, is defined as

ı D
gX

iD1

Ci�i ;

where

Ci D ni

N
; i D 1; : : : ; g ;

simply weighting each treatment group proportional to its size.
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The null hypothesis (H0) states that equal probabilities are assigned to each of
the

M D NŠ
gY

iD1

niŠ

possible, equally-likely allocations of the N objects to categories S1; : : : ; Sg. A
chance-corrected within-category measure of association is given by

< D 1 � ı

�ı

; (7.21)

where �ı is the arithmetic average of the M ı values calculated on all possible
arrangements of the observed response measurement scores given by

�ı D 1

M

MX

iD1

ıi : (7.22)

While the measure of association < provides a description of the functional
relationship between the nominal-level independent variable and the interval-level
dependent variable(s), it does not indicate how extreme an observed value of < is
relative to the M possible values of < under the null hypothesis. The probability
value associated with an observed value of <, <o, is the probability under the null
hypothesis of observing a value of < greater than or equal to <o. Since �ı is invari-
ant under the null hypothesis and ı is a simple linear transformation of <, i.e.,

ı D �ı.1 � </ ;

the exact probability value for <o may be calculated in terms of ıo and the M possi-
ble values of ı, e.g.,

P
�< � <ojH0

� D P
�
ı � ıojH0

� D number of ı values � ıo

M
:

< is a chance-corrected measure of association, reflecting the amount of associ-
ation in excess of what would be expected by chance. < attains a maximum value
of unity when the association between the nominal independent variable and the
interval dependent variable(s) is perfect, i.e., dependent variables scores are identi-
cal within each of the g categories of the nominal independent variable. < attains
a value of zero when the association is equal to chance, i.e., EŒ<jH0 D 0. Like
all chance-corrected measures, < occasionally will be slightly negative when the
association is less than expected by chance. For a detailed description of chance-
corrected measures, see Chap. 2, Sect. 2.2.1.
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Example 1
The semantic differential (SD) is a rating scale designed to measure the connota-
tive meaning of objects, events, and concepts. The SD scale measures reactions to
stimulus words and concepts in terms of ratings on bipolar scales defined with con-
trasting adjectives at each end, e.g., good–bad, fast–slow, powerful–powerless [329].
Consider an example application from the semantic differential literature in which
it is desired to measure the magnitude of association between Sex (nominal-level
independent variable) and scores on three dimensions of the semantic differential
(interval-level dependent variables). For this example, let N D 15 subjects, with
n1 D 8 Females and n2 D 7 Males, and let r D 3 dimensions of the semantic differ-
ential: Evaluative, Potency, and Activity. The example data are adapted from Berry
and Mielke [28, p. 44] and are listed in Fig. 7.14.

For the example data listed in Fig. 7.14, the N D 15 observations yield g D 2

distance-function values of

�1 D 8:9158�10�3 and �2 D 5:9435�10�3 :

The observed value of the MRPP test statistic based on v D 1 and

Ci D ni

N
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

15

h�
8
��

8:9158�10�3
�C �

7
��

5:9435�10�3
�i

D 7:5287�10�3 :

Fig. 7.14 Example data with
N D 15 subjects classified
into g D 2 categories of a
nominal-level independent
variable, Female (F) and Male
(M), and r D 3 dimensions of
an interval-level dependent
variable: Evaluative (E),
Potency (P), and Activity (A)

Scale

Subject Sex E P A

1 F 4.5 5.5 3.9

2 F 2.4 6.0 2.7

3 F 2.7 5.8 3.8

4 F 3.6 6.5 4.5

5 F 4.3 5.6 4.0

6 F 2.5 5.9 2.8

7 F 2.8 5.7 4.0

8 F 3.5 6.4 4.4

9 M 6.4 3.5 6.1

10 M 5.6 4.2 5.5

11 M 5.2 3.1 5.6

12 M 6.2 3.6 6.0

13 M 5.7 4.3 5.7

14 M 5.2 3.0 5.8

15 M 6.1 3.6 6.2
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Under the null hypothesis, there are

M D NŠ
gY

iD1

niŠ

D 15Š

8Š 7Š
D 6;435

possible, equally-likely arrangements of the N D 15 observed values listed in
Fig. 7.14. Following Eq. (7.22), the expected value of the M D 6;435 ı values is
�ı D 1:7259�10�2 and, following Eq. (7.21), the observed chance-corrected mea-
sure of nominal-interval association is

<o D 1 � ıo

�ı

D 1 � 7:5287�10�3

1:7259�10�2
D C0:5638 ;

indicating approximately 56 % nominal-interval association above that expected by
chance.

Since there are only M D 6;435 possible arrangements of the N D 15 observed
values listed in Fig. 7.14, an exact solution is possible. If all arrangements of the
observed values occur with equal chance, the exact probability value of <o D
C0:5638 computed on the M D 6;435 possible arrangements of the observed data
with n1 D 8 and n2 D 7 values preserved for each arrangement is

P
�< � <ojH0

� D P
�
ı � ıojH0

� D number of ı values � ıo

M

D 1

6;435
D 1:5540�10�4 :

7.4.2 Ordinal Dependent Variables

Researchers are often faced with the problem of measuring the magnitude of asso-
ciation between a nominal-level independent variable and ordinal-level dependent
variables. Three measures of association have been advanced specifically for a
nominal-level independent variable and a single ordinal-level dependent variable:
Cureton’s rank-biserial correlation coefficient (rrb) [83, 84], Freeman’s theta (�ON)
[126], and Crittenden and Montgomery’s � [82], which is a modification of Free-
man’s �ON to ensure a proportional-reduction-in-error interpretation.

None of these measures has gained much popularity in the research literature.
Cureton’s rank-biserial correlation coefficient is defined only for a dichotomous
nominal-level variable; consequently, its use is limited. As the sampling distribu-
tions of both Freeman’s �ON and Crittenden and Montgomery’s � are unknown,
associated tests of significance have not been developed.

Although the focus of this section is on measuring the association between a
nominal-level independent variable and ordinal-level dependent variables, it should
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be noted that Hubert [187] defined �NO, a modification of Freeman’s �ON for an
ordinal independent variable and a nominal dependent variable. In addition, a sym-
metric version of Freeman’s �ON was independently proposed by Särndal [362],
Hubert [187], Agresti [1], and Crittenden and Montgomery [82], which they termed
�, �sym, Nı, and I (Iota), respectively, although the sampling distributions remain
unknown.

< is directly applicable, without modification, to a nominal-level independent
variable and any number of ordinal-level dependent variables. Ordinal-level vari-
ables, in this context, include the range of dependent variables from (1) fully ranked
data where each subject is assigned a unique rank from 1 to N based on the con-
version of original scores to ranks, to (2) having N objects associated with a limited
number of ordinal categories. The second case differs from the first in that an inves-
tigator does not have original data to convert to ranks, but encounters only a crude
ordering of the objects into categories, such as low, medium, and high, in the data
collection process. In such a case, a simple assignment of ordered values (such as
1, 2, and 3, to low, medium, and high, respectively) to the categories may be used,
rather than the values associated with tied ranks.

Example 2
Consider an example application in which it is desired to measure the magnitude of
association between Political Affiliation (nominal-level independent variable) and
scores on two dimensions of Socioeconomic Status (ordinal-level dependent vari-
ables). Let N D 20 subjects, with n1 D 8 Democrats and n2 D 12 Republicans, and
let r D 2 dependent variables where one variable is Years of Education and the other
variable is Occupational Prestige, both measured in quintiles. The data are adapted
from Berry and Mielke [28, p. 47] and are listed in Fig. 7.15.

For the example data listed in Fig. 7.15, the N D 20 observations yield g D 2

distance-function values of

�1 D 7:9204�10�3 and �2 D 4:7916�10�3 :

The observed value of the MRPP test statistic based on v D 1 and

Ci D ni

N
; i D 1; 2 ;

is

ıo D
gX

iD1

Ci�i D 1

20

h�
8
��

7:9204�10�3
�C �

12
��

4:7916�10�3
�i

D 6:0431�10�3 :
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Fig. 7.15 Example data with
N D 20 subjects classified
into g D 2 categories of a
nominal-level independent
variable, Democrat (D) and
Republican (R), and r D 2

dimensions of an
interval-level dependent
variable (Education and
Prestige)

Socioeconomic Status
Political

Subject Affiliation Education Prestige

1 D 5 3

2 D 4 5

3 D 5 4

4 D 2 3

5 D 2 5

6 D 3 4

7 D 4 2

8 D 2 4

9 R 2 1

10 R 2 1

11 R 1 2

12 R 3 1

13 R 1 2

14 R 2 1

15 R 1 2

16 R 1 1

17 R 3 1

18 R 1 2

19 R 2 3

20 R 3 2

There are

M D NŠ
gY

iD1

niŠ

D 20Š

8Š 12Š
D 125;970

possible, equally-likely arrangements of the N D 20 observed values listed in
Fig. 7.15. Following Eq. (7.22), the expected value of the M D 125;970 ı values is
�ı D 8:3422�10�3 and, following Eq. (7.21), the observed chance-corrected mea-
sure of nominal-ordinal association is

<o D 1 � ıo

�ı

D 1 � 6:0431�10�3

8:3422�10�3
D C0:2756 ;

indicating approximately 28 % nominal-interval association above that expected by
chance.

Since there are only M D 125;970 possible arrangements of the N D 20

observed values in Fig. 7.15, an exact solution is possible. If all arrangements
of the observed values occur with equal chance, the exact probability value
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of <o D C0:2756 computed on the M D 125;970 possible arrangements of the
observed data with n1 D 8 and n2 D 12 preserved for each arrangement is

P
�< � <ojH0

� D P
�
ı � ıojH0

� D number of ı values � ıo

M

D 2

125;970
D 1:5877�10�5 :

7.4.3 Nominal Dependent Variables

< is easily adapted to measure the magnitude of association between a nominal-
level independent variable and a nominal-level dependent variable. If the categories
of the dependent variable are considered as r dimensions of that variable, then each
object can be assigned a binary vector of length r with r � 1 values of 0 and a sin-
gle value of 1 corresponding to the category of the dependent variable into which
the object is classified, e.g., for four categories labeled ‘A’, ‘B’, ‘C’, and ‘D’ and
an object that lies in category ‘C’, the transposed binary vector is x0 D Œ 0 0 1 0 .
An alternative form of nominal data is the result of a question where a subject is
asked to “Check all categories that apply.” In this case, a vector is constructed in
which a value of 1 is assigned to each checked category and a 0 is assigned to each
unchecked category, e.g., for four categories labeled ‘A’, ‘B’, ‘C’, and ‘D’ and a sub-
ject who has checked categories ‘A’ and ‘C’, the transposed vector is x0 D Œ 1 0 1 0 .
For a detailed description of multiple binary choices and “check all categories that
apply,” see Chap. 11, Sect. 11.4.2.

Example 3
Consider an example application in which it is desired to measure the magnitude of
association between Rural/Urban Residence (nominal-level independent variable)
and Marital Status (nominal-level dependent variable). Let N D 24 subjects, with
n1 D 10 rural residents (R) and n2 D 14 urban residents (U), and let r D 4 dimen-
sions of marital status: Single, Married, Widowed, and Divorced (S, M, W, D). The
data are adapted from Berry and Mielke [28, p. 48] and are listed in Fig. 7.16.

For the example data listed in Fig. 7.16, the N D 24 observations yield g D 2

distance-function values of

�1 D 4:9841�10�3 and �2 D 1:1814�10�2 :

The observed value of the MRPP test statistic based on v D 1 and

Ci D ni

N
; i D 1; 2 ;
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Fig. 7.16 Example data with
N D 24 subjects classified
into g D 2 categories of a
nominal-level independent
variable, Rural (R) and Urban
(U), and r D 4 dimensions of
a nominal-level dependent
variable: Single (S), Married
(M), Widowed (W), and
Divorced (D)

Marital Status

Subject Residence S M W D

1 R 0 0 0 1

2 R 0 1 0 0

3 R 0 1 0 0

4 R 0 1 0 0

5 R 0 1 0 0

6 R 0 1 0 0

7 R 0 1 0 0

8 R 0 1 0 0

9 R 0 1 0 0

10 R 1 0 0 0

11 U 0 0 0 1

12 U 0 0 0 1

13 U 0 0 0 1

14 U 0 1 0 0

15 U 0 1 0 0

16 U 1 0 0 0

17 U 1 0 0 0

18 U 1 0 0 0

19 U 1 0 0 0

20 U 1 0 0 0

21 U 0 0 1 0

22 U 0 0 1 0

23 U 0 0 1 0

24 U 0 0 1 0

is

ıo D
gX

iD1

Ci�i D 1

20

h�
10
��

4:9841�10�3
�C �

14
��

1:1814�10�2
�i

D 8:9683�10�3 :

There are

M D NŠ
gY

iD1

niŠ

D 24Š

10Š 14Š
D 1;961;256

possible, equally-likely arrangements of the N D 24 observed values listed in
Fig. 7.16. Following Eq. (7.22), the expected value of the M D 1;961;256 ı val-
ues is �ı D 1:0445�10�2 and, following Eq. (7.21), the observed chance-corrected
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measure of nominal-ordinal association is

<o D 1 � ıo

�ı

D 1 � 8:9683�10�3

1:0445�10�2
D C0:1414 ;

indicating approximately 14 % nominal-nominal association above that expected by
chance.

Since there are only M D 1;961;256 possible arrangements of the N D 24

observed values in Fig. 7.16, an exact solution is possible. If all arrangements of
the observed values occur with equal chance, the exact probability value of <o D
C0:1414 computed on the M D 1;961;256 possible arrangements of the observed
data with n1 D 10 and n2 D 14 preserved for each arrangement is

P
�< � <ojH0

� D P
�
ı � ıojH0

� D number of ı values � ıo

M

D 7;192

1;961;256
D 3:6670�10�3 :

7.4.4 Mixed Dependent Variables

A distinctive advantage of the permutation approach to measuring association is
the ability to analyze sets of dependent variables that are mixed: interval-, ordinal-,
and/or nominal-level response measurements. Each interval- or ordinal-level depen-
dent variable contributes one dimension to the analysis, and each nominal-level
dependent variable contributes one dimension for each category of the variable.

Example 4
Consider an example application in which it is desired to measure the magnitude
of association between Religious Affiliation (nominal-level independent variable)
and Birth Experience, measured as a mixture of three dependent variables: one
interval-level, one ordinal-level, and one nominal-level. Let N D 15 first-time moth-
ers who have recently given birth, with n1 D 4 Protestant mothers, n2 D 5 Catholic
mothers, and n3 D 6 Jewish mothers. In addition, let r D 5 dimensions of the birth
experience with Hours in Labor constituting the interval-level dependent variable;
Birth Weight, measured as Above-normal (1), Normal (2), and Below-normal (3),
constituting the ordinal-level dependent variable; and type of Anesthesia (Local,
General, and None) constituting the nominal-level dependent variable. One of the
r D 5 dimensions represents the interval-level dependent variable, one represents
the ordinal-level dependent variable, and three (one for each category) represent the
nominal-level dependent variable. The data are adapted from Berry and Mielke [28,
p. 49] and are listed in Fig. 7.17.
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Anesthesia
Hours in

Labor

Birth

WeightSubject Religion Local General None

P 3 0 0 1

P 3 0 1 0

P 2 0 0 1

P 3 0 1 0

C 3 0 1 0

C 2 0 1 0

C 2 0 1 0

C 1 0 1 0

C 1 0 0 1

J 3 1 0 0

J 2 1 0 0

J 1 0 1 0

J 1 1 0 0

J 1 1 0 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 J

20

15

10

8

10

8

8

6

5

12

10

5

5

5

4 1 1 0 0

Fig. 7.17 Example data with N D 24 subjects classified into g D 3 categories of a nominal-level
independent variable, Protestant (P), Catholic (C), and Jewish (J), and r D 5 dimensions of mixed-
level dependent variables: the interval-level variable is Hours in Labor, the ordinal-level variable is
Birth Weight, and the nominal-level variable is Anesthesia measured as Local, General, or None

For the example data listed in Fig. 7.17, the N D 15 observations yield g D 3

distance-function values of

�1 D 3:0327�10�2 ; �2 D 2:0490�10�2 ; and �3 D 1:8444�10�2 :

The observed value of the MRPP test statistic based on v D 1 and

Ci D ni

N
; i D 1; 2; 3 ;

is

ıo D
gX

iD1

Ci�i D 1

15

h�
4
��

3:0327�10�2
�C �

5
��

2:0490�10�2
�

C �
6
��

1:8444�10�2
�i D 2:2295�10�2 :

There are

M D NŠ
gY

iD1

niŠ

D 15Š

4Š 5Š 6Š
D 630;630
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possible, equally-likely arrangements of the N D 15 observed values listed in
Fig. 7.17. Following Eq. (7.22), the expected value of the M D 630;630 ı values is
�ı D 2:8029�10�2 and, following Eq. (7.21), the observed chance-corrected mea-
sure of nominal-ordinal association is

<o D 1 � ıo

�ı

D 1 � 2:2295�10�2

2:8029�10�2
D C0:2046 ;

indicating approximately 20 % nominal-mixed association above that expected by
chance.

Since there are only M D 630;630 possible arrangements of the N D 15

observed values in Fig. 7.17, an exact solution is possible. If all arrangements
of the observed values occur with equal chance, the exact probability value of
<o D C0:2046 computed on the M D 630;630 possible arrangements of the
observed data with n1 D 4, n2 D 5, and n3 D 6 preserved for each arrangement
is

P
�< � <ojH0

� D P
�
ı � ıojH0

� D number of ı values � ıo

M

D 1;792

630;630
D 2:8416�10�3 :

7.5 Relationships Between< and Existing Statistics

As is the case with any new statistical method, there exist certain relationships with
prevailing methods. It should be noted that the preferred weighting function given
by Ci D ni=N is simply the number of objects in the ith category of the nominal-
level independent variable divided by the total number of objects. In the subsequent
comparisons with existing methods, the maximum likelihood argument based on
the normal distribution dictates that the weighting function must be defined as Ci D
.ni � 1/=.N � g/. This alternative weighting function is the number of degrees of
freedom associated with the ith category of the nominal-level independent variable
divided by the total degrees of freedom over all g categories.

In a permutation context, degrees of freedom are not relevant, as they are a con-
sequence of fitting parameters in a maximum likelihood context. In addition, v D 1,
which is associated with ordinary Euclidean distances, is replaced by v D 2, which
also is a consequence of the maximum likelihood argument based on the normal
distribution. Since the normal distribution assumption is irrelevant to permutation
methods, the use of v D 2 is unjustified in a permutation context. Also, squared
Euclidean distance with v D 2 yields questionable non-metric distance functions.

Finally, it should be noted that < is a median-based measure of association when
v D 1, whereas < is a mean-based measure of association when v D 2. For clarifi-
cation, consider the pairwise sum of univariate (r D 1) symmetric distance functions
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given by

X

I<J

	.I; J/ D
X

I<J

ˇ̌
xI � xJ

ˇ̌v
;

where x1; : : : ; xN are univariate response variables and
P

I<J is the sum over all
I and J such that 1 � I < J � N. Let x1;N � � � � � xN;N denote the order statistics
associated with x1; : : : ; xN . If v D 1, then the inequality given by

NX

ID1

ˇ̌
N � 2I C 1

ˇ̌ˇ̌
xI;N � �

ˇ̌ �
X

I<J

ˇ̌
xI � xJ

ˇ̌

holds for all � and equality holds if � is the median of x1; : : : ; xN . On the other
hand, if v D 2, then the inequality given by

N
NX

ID1

�
xI � �

�2 �
X

I<J

�
xI � xJ

�2

holds for all � and equality holds if � is the mean of x1; : : : ; xN .

7.5.1 Interval-Level Dependent Variable

It can easily be shown that the permutation version of one-way analysis of variance
(ANOVA) is a special case of the permutation approach to nominal-interval associ-
ation with a single interval-level dependent variable. Specifically, the relationships
between < and the conventional F-ratio are given by

< D .F � 1/.g � 1/

F.g � 1/ C N � g
and F D <.N � g/ C g � 1

.1 � </.g � 1/
;

when r D 1, v D 2, and Ci D .ni � 1/=.N � g/. In addition, Kelley’s unbiased cor-
relation ratio, �2, is identical to < when r D 1, v D 2, and Ci D .ni � 1/=.N �
g/.5 Since, in an analysis-of-variance context, �2 is identical to the adjusted squared
correlation coefficient given by

OR2 D 1 � .1 � R2/.N � 1/

N � p � 1
;

where R2 is the squared Pearson product-moment correlation coefficient and p
denotes the number of predictors, then OR2, the unbiased estimator of R2, is also

5Technically, Kelley’s �2 is only unbiased under the permutation model of inference.
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identical to <. For a detailed description of Kelley’s �2 measure of effect size, see
Chap. 3, Sect. 3.2.4.

Finally, the permutation version of one-way multivariate analysis of variance
(MANOVA) is a special case of the permutation approach to nominal-interval asso-
ciation when r � 2, v D 2, Ci D .ni � 1/=.N � g/, and

	. j; k/ D �
.xj � xk/

0 O†�1.xj � xk/
	v=2

;

where O† denotes the r�r variance–covariance matrix [287].

7.5.2 Ordinal-Level Dependent Variable

It can be shown that the permutation version of the Kruskal–Wallis multi-sample
rank-sum test statistic (H) is a special case of the permutation approach to nominal-
ordinal association with a single ordinal-level dependent variable. Specifically,

< D .H � 1/.g � 1/

H.g � 1/ C N � g
and H D <.N � g/ C g � 1

.1 � </.g � 1/
;

when r D 1, v D 2, and Ci D .ni � 1/=.N � g/. For a detailed description of the
Kruskal–Wallis rank-sum test, see Chap. 5, Sect. 5.5.

7.5.3 Nominal-Level Dependent Variable

If Ci D .ni � 1/=.N � g/, then

< D N � 1

N � g

�
t � g � 1

N � 1

�
and t D <.N � g/ C g � 1

N � 1
;

where t is Goodman and Kruskal’s [151] t statistic associated with g categories of
a nominal-level independent variable and r categories of a nominal-level depen-
dent variable [24]. Note that degrees of freedom, from the maximum likelihood
approach based on the normal distribution, is an integral component of Good-
man and Kruskal’s t statistic for cross-classified categorical data. For a detailed
description of Goodman and Kruskal’s t measure of association, see Sect. 7.2 of this
chapter.
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7.6 Coda

Chapter 7 utilized the Multi-Response Permutation Procedures (MRPP) developed
in Chap. 2 to establish relationships between the test statistics of MRPP, ı and <,
and selected conventional tests and measures designed for the analysis of completely
randomized data at the nominal (categorical) level of measurement. Considered in
this chapter were Goodman and Kruskal’s ta and tb asymmetric measures of nominal
association, Light and Margolin’s categorical analysis of variance, tests to analyze
multiple binary choices, and multivariate measures of association.

The relationships between the MRPP test statistic, ı, and Goodman and Kruskal’s
�a and �b asymmetrical measures of categorical association were explicated and
exact permutation-based probability values were presented for both measures. The
exact procedures provide more accurate probability values than those based on the
conventional chi-squared procedure. Multiple binary choices are notoriously dif-
ficult to analyze. However, the MRPP test statistic solves the analysis problem,
providing both an accurate permutation-based probability value and an appropriate
chance-corrected measure of effect size.

Chapter 8
Chapter 8 introduces Multivariate Randomized Block Permutation (MRBP) pro-
cedures for univariate and multivariate randomized-block response measurement
data and establishes the relationships between the MRBP test statistics, ı and <
developed in Chap. 8, and selected conventional tests and measures designed for the
analysis of randomized-block data at the interval level of measurement in Chap. 9,
the ordinal level of measurement in Chap. 10, and the nominal level of measurement
in Chap. 11.
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This eighth chapter of Permutation Statistical Methods introduces a generalized
Minkowski distance function and establishes the foundation for a set of Multivariate
Randomized Block Permutation (MRBP) procedures for univariate and multivariate
randomized-block data. MRBP procedures were introduced by Mielke and Iyer in
1982 and constitute a class of permutation methods for one or more response mea-
surements among two or more treatments on the same or matched objects [299]. The
MRBP procedures presented here provide a synthesizing foundation for a variety of
statistical tests and measures that are further developed in Chaps. 9–11 for interval-,
ordinal-, and nominal-level response measurements, respectively.

8.1 Multivariate Block Permutation Procedures

Suppose that a number of observed fields are compared to corresponding fields gen-
erated by one or more numerical models. Let the observed phenomena and the one or
more numerical model predictions of these phenomena be termed “blocks,” i.e., the
first block might represent the observed phenomena and the remaining b � 1 blocks
represent additional blocks, such as numerical model predictions of the phenom-
ena for a total of b � 2 blocks. Also, let r � 1 denote the number of commensurate
response measurements from each phenomenon and let g � 2 denote the number of
phenomena, here called “treatments.”

The terms representing “blocks” and “treatments” vary among disciplines. Often-
times when g D 2 treatments and the same objects are represented in each treatment,
the design is called a “before-and-after” or “subject-is-own-control” design. When
g D 2 treatments and matched, but different, objects are represented in each treat-
ment, the design is often called a “matched pairs” design. When g > 2 treatments
and the same objects are represented in each treatment, the design is sometimes
called a “repeated measures” design, and in this case the treatments are often
labeled as “trials.” Finally, in psychology randomized-block designs are known
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as “within-subjects” designs to distinguish them from completely randomized or
“between-subjects” designs.

Let x 0
ij D .x1ij; x2ij; : : : ; xrij/ denote a transposed vector of r response measure-

ment scores associated with the ith treatment and jth block. Then the MRBP test
statistic is given by

ı D
"

g

 
b

2

!#�1 gX

iD1

X

j<k

	.xij; xik/ ; (8.1)

where
P

j<k denotes the sum over all j and k such that 1 � j < k � b and 	.x; y/

is a symmetric distance-function value of two points x0 D .x1; x2; : : : ; xr/ and y0 D
.y1; y2; : : : ; yr/ in an r-dimensional Euclidean space. The generalized Minkowski
distance function considered here is given by

	.x; y/ D
 

rX

iD1

ˇ̌
xi � yi

ˇ̌p
!v=p

; (8.2)

where p � 1 and v > 0. Thus, p D v D 2 yields squared Euclidean distance, which
is not a metric, and p D 2 and v D 1 yields ordinary Euclidean distance, which is a
metric.1

The null hypothesis (H0) states that the distribution of ı assigns an equal proba-
bility to each of the

M D �
gŠ
�b

possible allocations of the r-dimensional response measurement scores to the g
treatment positions within each of the b blocks. Consequently, the collection of r
response measurement scores within each block yields g r-dimensional exchange-
able random variables under the null hypothesis. The probability value associated
with an observed value of ı, say ıo, is the probability under the null hypothesis
(H0) of observing a value of ı as extreme or more extreme than ıo. Thus, an exact
probability value for ıo may be expressed as

P.ı � ıojH0/ D number of ı values � ıo

M
:

1Recall that a distance function is a metric if it satisfies three properties given by (1) 	.x; y/ � 0

and 	.x; x/ D 0, i.e., the distance is positive between two different points and is equal to zero
from any point to itself; (2) the distance is symmetric: 	.x; y/ D 	.y; x/, i.e., the distance between
points x and y is the same in either direction; and (3) the triangle inequality is satisfied: 	.x; y/ �
	.x; z/ C 	.z; y/, i.e., the distance between any two points is the shortest distance along any path.
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When M is very large, an approximate probability value for ı may be obtained from
a resampling procedure, where

P
�
ı � ıojH0

� D number of ı values � ıo

L
;

and L denotes the number of randomly sampled test statistic values. Typically, L is
set to a large value to ensure accuracy, e.g., L D 1;000;000. When M is very large
and P is exceedingly small, a resampling-approximation permutation procedure may
produce no ı values equal to or less than ıo, even with L D 1;000;000, yielding
an approximate resampling probability value of P D 0:00. In such cases, moment-
approximation permutation procedures based on fitting the first three exact moments
of the discrete permutation distribution to a Pearson type III distribution provide
approximate probability values, as detailed in Chap. 1, Sect. 1.2.2 [284, 299].

As with MRPP, discussed in Chap. 2, a chance-corrected measure of agreement
among all b blocks for all g treatments constitutes a universal measure of effect size
for all randomized-block designs and is given by

< D 1 � ı

�ı

; (8.3)

where �ı is the arithmetic average of the M ı values calculated on all possible
arrangements of the observed response measurement scores given by

�ı D 1

M

MX

iD1

ıi : (8.4)

Because �ı is a constant under H0, the permutation distributions of ı and < are
equivalent, viz.,

P .ı � ıojH0/ D P .< � <ojH0/ ;

where

<o D 1 � ıo

�ı

and ıo and <o denote the observed values of ı and <, respectively.
As with the chance-corrected within-group agreement measure presented in

Chap. 2, the values of < range from negative values to < D C1 when perfect agree-
ment is achieved, the expected value of < is zero under the null hypothesis, and
agreement or disagreement is implied by < > 0 and < < 0, respectively. While
probability values are highly dependent on sample size, this sample-size dependence
does not hold for the chance-corrected within-block agreement measure, <.
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8.1.1 Randomized-Block Designs and Alignment

For certain response patterns involving randomized-block designs, the observed test
statistic ıo, as defined in Eq. (8.1) on p. 422, is unable to detect treatment differences
[299, pp. 1434–1435]. Such situations occur when the magnitude of the block dif-
ferences exceeds the magnitude of the treatment differences. For a simple example,
consider the univariate response measurement scores listed in Fig. 8.1 with b D 2

blocks and g D 3 treatments. If p D 2 and v D 1 in Eq. (8.2) on p. 422, then ıo D 4

and the random variable ı is also equal to 4 for all permutations of values within
blocks; thus, the probability of ıo D 4 is 1. It is therefore impossible to detect treat-
ment differences.

This problem is rectified by aligning the response measurement scores within
each block, a technique initially described by Hodges and Lehmann in 1962 [178].
Alignment is accomplished for the example data in Fig. 8.1 by replacing xij with
xij � x�

j , where x�
j is the median of .xij; : : : ; xgj/ for j D 1; : : : ; b.2 The observed

statistic ıo is then computed on the aligned data. The median values for Blocks 1
and 2 in Fig. 8.1 are 2 and 6, respectively. If the median value is subtracted from the
values in each block, the aligned data are then y111 D 1 � 2 D �1, y112 D 2 � 2 D
0, and y113 D 3 � 2 D C1 for Block 1, and y121 D 5 � 6 D �1, y122 D 6 � 6 D 0,
and y123 D 7 � 6 D C1 for Block 2. The median-aligned data are given in Fig. 8.2.

After alignment ıo D 0 while the random variable ı assumes the values 0:00,
0:67, and 1:33 with respective probability values of 0:1667, 0:3333, and 0:5000,
under the null hypothesis (the probability of ıo is 1/6 after alignment). Note that
if v D 2 and r D 1, the inferential results based on the random variable ı remain
unaffected by the alignment.

Fig. 8.1 Example of
unaligned data with g D 3

treatments, b D 2 blocks, and
r D 1 response measurement

Treatment

Block 1 2 3

1 1 2 3

2 5 6 7

Fig. 8.2 Example of aligned
data with g D 3 treatments,
b D 2 blocks, and r D 1

response measurement

Treatment

Block 1 2 3

1 +1

2 –1

–1 0

0 +1

2In their 1982 article introducing MRBP, Mielke and Iyer initially suggested using the arithmetic
mean instead of the median [299, p. 1435].
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8.1.2 Example UnivariateMRBP Analysis with v D 2

To illustrate an MRBP analysis with univariate response measurement scores and
v D 2, consider a test of difference between g D 2 treatments, where a single
response measurement has been obtained from each of b D 4 subjects, such as
in a matched-pairs experimental design. For this example, there is r D 1 response
measurement for each subject and g D 2 treatments for each of b D 4 blocks. The
numbers of blocks, treatments, and response measurements are deliberately kept
small to simplify the example analysis. The treatments and univariate response mea-
surement scores are listed in Fig. 8.3.

Thus, following Eq. (8.2) on p. 422 for the univariate response measurement
scores listed in Fig. 8.3 with g D 2, r D 1, b D 4, p D 2, and v D 2, the general-
ized Minkowski distance function yields

	.1; 2/ D
hˇ̌

.255 � 171/ � .294 � 202/
ˇ̌2i2=2 D 64:00 ;

	.1; 3/ D
hˇ̌

.255 � 171/ � .259 � 247/
ˇ̌2i2=2 D 5;184:00 ;

	.1; 4/ D
hˇ̌

.255 � 171/ � .263 � 182/
ˇ̌2i2=2 D 9:00 ;

	.2; 3/ D
hˇ̌

.294 � 202/ � .259 � 247/
ˇ̌2i2=2 D 6;400:00 ;

	.2; 4/ D
hˇ̌

.294 � 202/ � .263 � 182/
ˇ̌2i2=2 D 121:00 ;

and

	.3; 4/ D
hˇ̌

.259 � 247/ � .263 � 182/
ˇ̌2i2=2 D 4;761:00 :

When r D 1 and g D 2, Eq. (8.1) on p. 422 reduces to

ı D
 

b

2

!�1X

j<k

	.xj � xk/ : (8.5)

Fig. 8.3 Example univariate
data with g D 2 treatments,
b D 4 blocks, and r D 1

response measurement

Treatment

Block 1 2

1 255 171

2 294 202

3 259 247

4 263 182
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Then,

ı D
 

b

2

!�1h
	.1; 2/ C 	.1; 3/ C 	.1; 4/ C 	.2; 3/ C 	.2; 4/ C 	.3; 4/

i

and the observed value of the MRBP test statistic with v D 2 is

ıo D
 

4

2

!�1�
64:00 C 5;184:00 C 9:00 C 6;400:00 C 121:00 C 4;761:00

�

D 1

6

�
16;539:00

� D 2;756:50 :

Let ı1 denote the MRBP test statistic for a matched-pairs t test with b blocks,
g D 2 treatments, and v D 2, and let ı2 denote the MRPP test statistic for a two-
sample t test with g D 2 treatments, v D 2, n1 D n2, C1 D .n1 � 1/=.N � g/, and
C2 D .n2 � 1/=.N � g/, where n1 and n2 denote the number of objects in treatments
1 and 2, respectively, and N D n1 C n2. Then the relationship between ı1 and ı2 is
given by

ı1 D 2
�
ı2 � r12

p
�1�2

�
; (8.6)

where �i, i D 1; 2, are the average distance-function values for treatments 1 and
2, respectively, and r12 is the Pearson product-moment correlation coefficient cal-
culated on the response measurement scores in treatments 1 and 2. See Chap. 2,
Sect. 2.2 for detailed descriptions of �i, i D 1; 2, and ı. For the interval-level
response measurement scores listed in Fig. 8.3, the sample variances for treat-
ments 1 and 2 are s2

1 D 316:9167 and s2
2 D 1;125:6667, �1 D 2s2

1 D 2.316:9167/ D
633:8333, �2 D 2s2

2 D 2.1;125:6667/ D 2;251:3333, r12 D C0:0539, C1 D .n1 �
1/=.N � g/ D .4 � 1/=.8 � 1/, C2 D .n2 � 1/=.N � g/ D .4 � 1/=.8 � 2/, and

ı2 D
gX

iD1

Ci�i D 4 � 1

8 � 2
.633:8333/ C 4 � 1

8 � 2
.2;251:3333/ D 1;442:5833 :

Then, following Eq. (8.6),

ı1 D 2
�
ı2 � r12

p
�1�2

�

D 2
h
1;442:5833 � 0:0539

p
.633:8333/.2;251:3333/

i

D 2;756:50 :
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The

M D �
gŠ
�b D �

2Š
�4 D 16

possible, equally-likely arrangements of the observed univariate response measure-
ment scores described in Fig. 8.3 on p. 425 are listed in Table 8.1 and are ordered by
the ı values from lowest to highest.

The observed MRBP test statistic, ıo D 2;756:50, obtained from the original
arrangement of the N D 8 univariate response measurement scores in Treatments
1 and 2,

f255; 294; 259; 263g f171; 202; 247; 182g ;

(Order 1 in Table 8.1) is unusual since 14 of the 16 ı values exceed the observed
value of ıo D 2;756:50 and only two values of ı are equal to or less than the
observed value.

If all arrangements of the N D 8 observed univariate response measurement
scores listed in Fig. 8.3 occur with equal chance, the exact probability value of
ıo D 2;756:50 computed on the M D 16 possible arrangements of the observed
response measurement scores with b D 4 blocks preserved for each arrangement
is

P.ı � ıojH0/ D number of ı values � ıo

M
D 2

16
D 0:1250 :

Table 8.1 Permutations of the observed univariate response measurement scores listed in Fig. 8.3
with values for ı based on v D 2 ordered from lowest to highest

Order Treatment 1 Treatment 2 ı

1 {255, 294, 259, 263} {171, 202, 247, 182} 2,756.50

2 {171, 202, 247, 182} {255, 294, 259, 263} 2,756.50

3 {255, 294, 247, 263} {171, 202, 259, 182} 4,812.50

4 {171, 202, 259, 182} {255, 294, 247, 263} 4,812.50

5 {171, 202, 247, 263} {255, 294, 259, 182} 12,908.50

6 {255, 294, 259, 182} {171, 202, 247, 263} 12,908.50

7 {171, 294, 259, 263} {255, 202, 247, 182} 13,116.50

8 {255, 202, 247, 182} {171, 294, 259, 263} 13,116.50

9 {255, 202, 259, 263} {171, 294, 247, 182} 13,612.50

10 {171, 294, 247, 182} {255, 202, 259, 263} 13,612.50

11 {171, 202, 259, 263} {255, 294, 247, 182} 13,668.50

12 {255, 294, 247, 182} {171, 202, 259, 263} 13,668.50

13 {171, 294, 247, 263} {255, 202, 259, 182} 13,828.50

14 {255, 202, 259, 182} {171, 294, 247, 263} 13,828.50

15 {255, 202, 247, 263} {171, 294, 259, 182} 14,196.50

16 {171, 294, 259, 182} {255, 202, 247, 263} 14,196.50
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For comparison, a conventional matched-pairs t test calculated on the b D 4 pairs
of response measurement scores listed in Fig. 8.3 yields an observed test statistic
of to D C3:6229. Assuming independence and normality, t is approximately dis-
tributed as Student’s t under the null hypothesis with b � 1 D 4 � 1 D 3 degrees
of freedom. Under the null hypothesis, the observed value of to D C3:6229 yields
an approximate two-sided probability value of P D 0:0362. Note the large differ-
ence between the conventional approximate probability value of P D 0:0362 and the
exact permutation probability value of P D 0:1250. Such discrepancies are common
when the number of blocks is small, as in this case with b D 4.

The total of the M D 16 ı values listed in Table 8.1 is 177;800. Thus, following
Eq. (8.4) on p. 423, the exact average value of the M D 16 ı values listed in Table 8.1
is

�ı D 1

M

MX

iD1

ıi D 1

16
.177;800/ D 11;112:50 :

Following Eq. (8.3) on p. 423, the observed chance-corrected measure of effect
size is

<o D 1 � ıo

�ı

D 1 � 2;756:50

11;112:50
D C0:7519 ;

indicating approximately 75 % within-block agreement above that expected by
chance.3

8.1.3 Example UnivariateMRBP Analysis with v D 1

Because permutation statistical tests are data-dependent, distribution-free, and non-
parametric, they require no distributional assumptions and make no estimates of
population parameters. Consequently, it is not necessary to set v D 2, squaring the
response-measurement differences between objects. As with MRPP in Chap. 2, a
distance function based on v D 1, employing ordinary Euclidean distance between
response measurement scores, is an attractive alternative to v D 2 as it is a metric,
satisfies the triangle inequality, is robust to extreme values, provides an easy-
to-understand Euclidean distance between objects, and ensures that the data and
analysis spaces are congruent.

3The astute reader will have noted that the values of the generalized chance-corrected measure of
agreement, <, are, in general, markedly greater in Chap. 8 than in Chaps. 2–7. Because Chaps. 8–
11 analyze randomized-block data, there is less variability to be explained due to the matching of
objects or subjects and, therefore, more agreement (less disagreement) between treatments than
with the completely randomized designs analyzed in Chaps. 2–7.
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To illustrate the computation of the MRBP test statistic with v D 1, consider
the same finite sample of response measurement scores obtained from the b D 4

subjects listed in Fig. 8.3. For these data, there is r D 1 response measurement for
each subject and g D 2 treatments for each of b D 4 blocks.

Following Eq. (8.2) on p. 422 for the data listed in Fig. 8.3 with g D 2, r D 1,
b D 4, p D 1, and v D 1, the generalized Minkowski distance function yields

	.1; 2/ D
hˇ̌

.255 � 171/ � .294 � 202/
ˇ̌2i1=2 D 8:00 ;

	.1; 3/ D
hˇ̌

.255 � 171/ � .259 � 247/
ˇ̌2i1=2 D 72:00 ;

	.1; 4/ D
hˇ̌

.255 � 171/ � .263 � 182/
ˇ̌2i1=2 D 3:00 ;

	.2; 3/ D
hˇ̌

.294 � 202/ � .259 � 247/
ˇ̌2i1=2 D 80:00 ;

	.2; 4/ D
hˇ̌

.294 � 202/ � .263 � 182/
ˇ̌2i1=2 D 11:00 ;

and

	.3; 4/ D
hˇ̌

.259 � 247/ � .263 � 182/
ˇ̌2i1=2 D 69:00 :

Then, following Eq. (8.5) on p. 425,

ı D
 

b

2

!�1h
	.1; 2/ C 	.1; 3/ C 	.1; 4/ C 	.2; 3/ C 	.2; 4/ C 	.3; 4/

i

and the observed value of the MRBP test statistic with v D 1 is

ıo D
 

4

2

!�1�
8:00 C 72:00 C 3:00 C 80:00 C 11:00 C 69:00

�

D 1

6

�
243:00

� D 40:50 :

The

M D �
gŠ
�b D �

2Š
�4 D 16
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Table 8.2 Permutations of the observed univariate response measurement scores listed in Fig. 8.3
with values for ı based on v D 1 ordered from lowest to highest

Order Treatment 1 Treatment 2 ı

1 {255, 294, 259, 263} {171, 202, 247, 182} 40.50

2 {171, 202, 247, 182} {255, 294, 259, 263} 40.50

3 {255, 294, 247, 263} {171, 202, 259, 182} 52.50

4 {171, 202, 259, 182} {255, 294, 247, 263} 52.50

5 {171, 202, 247, 263} {255, 294, 259, 182} 98.50

6 {255, 294, 259, 182} {171, 202, 247, 263} 98.50

7 {171, 294, 259, 263} {255, 202, 247, 182} 99.50

8 {255, 202, 247, 182} {171, 294, 259, 263} 99.50

9 {255, 202, 259, 263} {171, 294, 247, 182} 99.50

10 {171, 294, 247, 182} {255, 202, 259, 263} 99.50

11 {171, 202, 259, 263} {255, 294, 247, 182} 102.50

12 {255, 294, 247, 182} {171, 202, 259, 263} 102.50

13 {171, 294, 247, 263} {255, 202, 259, 182} 103.50

14 {255, 202, 259, 182} {171, 294, 247, 263} 103.50

15 {255, 202, 247, 263} {171, 294, 259, 182} 103.50

16 {171, 294, 259, 182} {255, 202, 247, 263} 103.50

possible, equally-likely arrangements of the observed response measurement scores
described in Fig. 8.3 are listed in Table 8.2 and are ordered by the ı values from
lowest to highest.

The observed MRBP test statistic, ıo D 40:50, obtained from the original
arrangement of the N D 8 univariate response measurement scores in Treatments
1 and 2,

f255; 294; 259; 263g f171; 202; 247; 182g ;

(Order 1 in Table 8.2) is unusual since 14 of the 16 ı values exceed the observed
value of ıo D 40:50 and only two values of ı are equal to or less than the observed
value.

If all arrangements of the N D 8 observed univariate response measurement
scores listed in Fig. 8.3 occur with equal chance, the exact probability value of ıo D
40:50 computed on the M D 16 possible arrangements of the observed response
measurement scores with b D 4 blocks preserved for each arrangement is

P.ı � ıojH0/ D number of ı values � ıo

M
D 2

16
D 0:1250 :

The fact that both v D 2 and v D 1 yield the same probability value of P D 0:1250

is simply an artifact of the small data set given in Fig. 8.3 and is not, in general, to be
expected. No comparison is made with Student’s matched-pairs t test as Student’s t
test is undefined for v D 1.
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The total of the M D 16 ı values listed in Table 8.2 is 1;400. Thus, follow-
ing Eq. (8.4) on p. 423, the exact average value of the M D 16 ı values listed in
Table 8.2 is

�ı D 1

M

MX

iD1

ıi D 1

16
.1;400/ D 87:50 :

Following Eq. (8.3) on p. 423, the observed chance-corrected measure of effect
size is

<o D 1 � ıo

�ı

D 1 � 40:50

87:50
D C0:5371 ;

indicating approximately 54 % within-block agreement above that expected by
chance.

8.1.4 Example Bivariate MRBP Analysis with v D 2

In this example, bivariate response measurement scores are used for simplicity to
demonstrate a multivariate MRBP analysis. Consider a test of difference between
g D 2 treatments, where bivariate response measurement scores have been obtained
from each of b D 4 subjects, such as in a matched-pairs experimental design. For
this example, there are r D 2 response measurement scores for each subject and
g D 2 treatments for each of b D 4 blocks. The number of blocks, treatments, and
response measurement scores are deliberately kept small to simplify the example
analysis. The treatments and response measurement scores are listed in Fig. 8.4.

Following Eq. (8.2) on p. 422 for the Treatment 1 response measurement scores
listed in Fig. 8.4 with b D 4 blocks, r D 2 response measurements, p D 2, and v D 2,
the generalized Minkowski distance function yields

	.1; 2/ D
hˇ̌

73 � 59
ˇ̌2 C ˇ̌

64 � 57
ˇ̌2i2=2 D 245:00 ;

	.1; 3/ D
hˇ̌

73 � 46
ˇ̌2 C ˇ̌

64 � 35
ˇ̌2i2=2 D 1;570:00 ;

Fig. 8.4 Example bivariate
response measurement scores
with g D 2 treatments, b D 4

blocks, and r D 2 response
measurements

Treatment

Block 1 2

1 (73, 64) (23, 47)

2 (59, 57) (21, 43)

3 (46, 35) (19, 31)

4 (23, 11) (16, 28)
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	.1; 4/ D
hˇ̌

73 � 23
ˇ̌2 C ˇ̌

64 � 11
ˇ̌2i2=2 D 5;309:00 ;

	.2; 3/ D
hˇ̌

59 � 46
ˇ̌2 C ˇ̌

57 � 35
ˇ̌2i2=2 D 653:00 ;

	.2; 4/ D
hˇ̌

59 � 23
ˇ̌2 C ˇ̌

57 � 11
ˇ̌2i2=2 D 3;412:00 ;

and

	.3; 4/ D
hˇ̌

46 � 23
ˇ̌2 C ˇ̌

35 � 11
ˇ̌2i2=2 D 1;105:00 ;

and for the Treatment 2 response measurement scores listed in Fig. 8.4, the general-
ized Minkowski distance function yields

	.1; 2/ D
hˇ̌

23 � 21
ˇ̌2 C ˇ̌

47 � 43
ˇ̌2i2=2 D 20:00 ;

	.1; 3/ D
hˇ̌

23 � 19
ˇ̌2 C ˇ̌

47 � 31
ˇ̌2i2=2 D 272:00 ;

	.1; 4/ D
hˇ̌

23 � 16
ˇ̌2 C ˇ̌

47 � 28
ˇ̌2i2=2 D 410:00 ;

	.2; 3/ D
hˇ̌

21 � 19
ˇ̌2 C ˇ̌

43 � 31
ˇ̌2i2=2 D 148:00 ;

	.2; 4/ D
hˇ̌

21 � 16
ˇ̌2 C ˇ̌

43 � 28
ˇ̌2i2=2 D 250:00 ;

and

	.3; 4/ D
hˇ̌

19 � 16
ˇ̌2 C ˇ̌

31 � 28
ˇ̌2i2=2 D 18:00 :

Then, following Eq. (8.1) on p. 422,

ı D
"

g

 
b

2

!#�1 h
	.1; 2/ C 	.1; 3/ C � � � C 	.2; 4/ C 	.3; 4/

i

and the observed value of the MRBP test statistic with v D 2 is

ıo D
"

2

 
4

2

!#�1 �
245:00 C 1;570:00 C � � � C 250:00 C 18:00

�

D 1

12

�
13;412:00

� D 1;117:6667 :
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In permutation analyses of randomized-block designs it is not always necessary
to enumerate all

M D �
gŠ
�b

possible, equally-likely arrangements of the observed data. It is obvious from a close
inspection of Tables 8.1 and 8.2 that half of the arrangements are redundant, yield-
ing duplicate ı values. Considerable savings in computing time can be achieved by
eliminating the redundancy and computing only the

M D �
gŠ
�b�1 D �

2Š
�4�1 D 8

non-redundant arrangements of the observed data.4

The M D 8 non-redundant, equally-likely arrangements of the observed response
measurement scores described in Fig. 8.4 are listed in Table 8.3 and are ordered by
the ı values from lowest to highest.

The observed MRBP test statistic, ıo D 1;117:6667, obtained from the original
arrangement of the N D 8 bivariate response measurement scores in Treatments 1
and 2,

f.73; 64/.59; 57/.46; 35/.23; 11/g f.23; 47/.21; 43/.19; 31/.16; 28/g ;

(Order 1 in Table 8.3) is unusual since seven of the eight ı values exceed the
observed ıo value of 1,117.6667 and only one ı value is equal to or less than the
observed value.

If all non-redundant arrangements of the N D 8 observed bivariate response mea-
surement scores listed in Fig. 8.4 occur with equal chance, the exact probability
value of ıo D 1;117:6667 computed on the M D 8 arrangements of the observed

Table 8.3 Permutations of the observed bivariate data listed in Fig. 8.4 with values for ı based on
v D 2 ordered from lowest to highest

Order Treatment 1 Treatment 2 ı

1 {(73, 64)(59, 57)(46, 35)(23, 11)} {(23, 47)(21, 43)(19, 31)(16, 28)} 1,117.6667

2 {(73, 64)(59, 57)(46, 35)(16, 28)} {(23, 47)(21, 43)(19, 31)(23, 11)} 1,152.6667

3 {(73, 64)(59, 57)(19, 31)(16, 28)} {(23, 47)(21, 43)(46, 35)(23, 11)} 1,549.1667

4 {(73, 64)(59, 57)(19, 31)(23, 11)} {(23, 47)(21, 43)(46, 35)(16, 28)} 1,554.5000

5 {(73, 64)(21, 43)(46, 35)(23, 11)} {(23, 47)(59, 57)(19, 31)(16, 28)} 1,659.0000

6 {(73, 64)(21, 43)(46, 35)(16, 28)} {(23, 47)(59, 57)(19, 31)(23, 11)} 1,684.6667

7 {(73, 64)(21, 43)(19, 31)(16, 28)} {(23, 47)(59, 57)(46, 35)(23, 11)} 1,720.5000

8 {(73, 64)(21, 43)(19, 31)(23, 11)} {(23, 47)(59, 57)(46, 35)(16, 28)} 1,735.1667

4This was a simplification used as far back as 1933 by Eden and Yates in their randomized-block
analysis of Yeoman II wheat shoots [103].
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response measurement scores with b D 4 blocks preserved for each arrangement is

P.ı � ıojH0/ D number of ı values � ıo

M
D 1

8
D 0:1250 :

The total of the M D 8 ı values listed in Table 8.3 is 12;173:3333. Thus, following
Eq. (8.4) on p. 423, the exact average value of the M D 8 ı values listed in Table 8.3
is

�ı D 1

M

MX

iD1

ıi D 1

8
.12;173:3333/ D 1;521:6667 :

Following Eq. (8.3) on p. 423, the observed chance-corrected measure of effect size
is

<o D 1 � ıo

�ı

D 1 � 1;117:6667

1;521:6667
D C0:2655 ;

indicating approximately 27 % within-block agreement above that expected by
chance.

8.1.5 Example Bivariate MRBP Analysis with v D 1

As explained in previous examples, there is no need to square differences when
employing permutation tests. To illustrate the computation of MRBP with bivariate
response measurement scores and v D 1, employing ordinary Euclidean distance
instead of squared Euclidean distance between response measurement scores, con-
sider the same finite sample of b D 4 subjects listed in Fig. 8.4.

Following Eq. (8.2) on p. 422 for the Treatment 1 response measurement scores
listed in Fig. 8.4 with g D 2 treatments, b D 4 blocks, r D 2 response measure-
ments, p D 2, and v D 1, the generalized Minkowski distance function yields

	.1; 2/ D
hˇ̌

73 � 59
ˇ̌2 C ˇ̌

64 � 57
ˇ̌2i1=2 D 15:6525 ;

	.1; 3/ D
hˇ̌

73 � 46
ˇ̌2 C ˇ̌

64 � 35
ˇ̌2i1=2 D 39:6232 ;

	.1; 4/ D
hˇ̌

73 � 23
ˇ̌2 C ˇ̌

64 � 11
ˇ̌2i1=2 D 72:8629 ;

	.2; 3/ D
hˇ̌

59 � 46
ˇ̌2 C ˇ̌

57 � 35
ˇ̌2i1=2 D 25:5539 ;

	.2; 4/ D
hˇ̌

59 � 23
ˇ̌2 C ˇ̌

57 � 11
ˇ̌2i1=2 D 58:4123 ;
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and

	.3; 4/ D
hˇ̌

46 � 23
ˇ̌2 C ˇ̌

35 � 11
ˇ̌2i1=2 D 33:2415 ;

and for the Treatment 2 response measurement scores listed in Fig. 8.4, the general-
ized Minkowski distance function yields

	.1; 2/ D
hˇ̌

23 � 21
ˇ̌2 C ˇ̌

47 � 43
ˇ̌2i1=2 D 4:4721 ;

	.1; 3/ D
hˇ̌

23 � 19
ˇ̌2 C ˇ̌

47 � 31
ˇ̌2i1=2 D 16:4924 ;

	.1; 4/ D
hˇ̌

23 � 16
ˇ̌2 C ˇ̌

47 � 28
ˇ̌2i1=2 D 20:2485 ;

	.2; 3/ D
hˇ̌

21 � 19
ˇ̌2 C ˇ̌

43 � 31
ˇ̌2i1=2 D 12:1655 ;

	.2; 4/ D
hˇ̌

21 � 16
ˇ̌2 C ˇ̌

43 � 28
ˇ̌2i1=2 D 15:8114 ;

and

	.3; 4/ D
hˇ̌

19 � 16
ˇ̌2 C ˇ̌

31 � 28
ˇ̌2i1=2 D 4:2426 :

Then, following Eq. (8.1) on p. 422,

ı D
"

g

 
b

2

!#�1 h
	.1; 2/ C 	.1; 3/ C � � � C 	.2; 4/ C 	.3; 4/

i

and the observed value of the MRBP test statistic with v D 1 is

ıo D
"

2

 
4

2

!#�1 �
15:6525 C 39:6232 C � � � C 15:8114 C 4:2426

�

D 1

12

�
318:7788

� D 26:5649 :

The

M D �
gŠ
�b�1 D �

2Š
�4�1 D 8
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Table 8.4 Permutations of the observed bivariate data listed in Fig. 8.4 with values for ı based on
v D 1 ordered from lowest to highest

Order Treatment 1 Treatment 2 ı

1 {(73, 64)(59, 57)(46, 35)(23, 11)} {(23, 47)(21, 43)(19, 31)(16, 28)} 26.5649

2 {(73, 64)(59, 57)(46, 35)(16, 28)} {(23, 47)(21, 43)(19, 31)(23, 11)} 29.3755

3 {(73, 64)(59, 57)(19, 31)(23, 11)} {(23, 47)(21, 43)(46, 35)(16, 28)} 33.4871

4 {(73, 64)(59, 57)(19, 31)(16, 28)} {(23, 47)(21, 43)(46, 35)(23, 11)} 34.0114

5 {(73, 64)(21, 43)(19, 31)(16, 28)} {(23, 47)(59, 57)(46, 35)(23, 11)} 36.2929

6 {(73, 64)(21, 43)(46, 35)(23, 11)} {(23, 47)(59, 57)(19, 31)(16, 28)} 36.5032

7 {(73, 64)(21, 43)(19, 31)(23, 11)} {(23, 47)(59, 57)(46, 35)(16, 28)} 37.3859

8 {(73, 64)(21, 43)(46, 35)(16, 28)} {(23, 47)(59, 57)(19, 31)(23, 11)} 37.6965

non-redundant, equally-likely arrangements of the observed response measurement
scores described in Fig. 8.4 are listed in Table 8.4 and are ordered by the ı values
from lowest to highest.

The observed MRBP test statistic, ıo D 26:5649, obtained from the original
arrangement of the N D 8 bivariate response measurement scores in Treatments 1
and 2,

f.73; 64/.59; 57/.46; 35/.23; 11/g f.23; 47/.21; 43/.19; 31/.16; 28/g ;

(Order 1 in Table 8.4) is unusual since seven of the eight ı values exceed the
observed value of ıo D 26:5649 and only one ı value is equal to or less than the
observed value.

If all non-redundant arrangements of the N D 8 observed bivariate response
measurement scores listed in Fig. 8.4 occur with equal chance, the exact probabil-
ity value of ıo D 26:5649 computed on the M D 8 arrangements of the observed
response measurement scores with b D 4 blocks preserved for each arrangement is

P.ı � ıojH0/ D number of ı values � ıo

M
D 1

8
D 0:1250 :

The total of the M D 8 ı values listed in Table 8.4 is 271:3176. Thus, following
Eq. (8.4) on p. 423, the exact average value of the M D 8 ı values listed in Table 8.4
is

�ı D 1

M

MX

iD1

ıi D 1

8
.271:3176/ D 33:9147 :

Following Eq. (8.3) on p. 423, the observed chance-corrected measure of effect size
is

<o D 1 � ıo

�ı

D 1 � 26:5649

33:9147
D C0:2167 ;
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indicating approximately 22 % within-block agreement above that expected by
chance.

8.2 MRBP and Pearson’s Product-Moment Correlation

It is not readily apparent that the MRBP test statistic, given by

ı D
"

g

 
b

2

!#�1 gX

iD1

X

j<k

	.xij; xik/ ;

and the ordinary Pearson product-moment correlation coefficient are closely related
when v D 2. Let R denote the Pearson product-moment correlation coefficient
between two interval-level variables, (x11; : : : ; xg1) and (x12; : : : ; xg2), given by

R D cov.x1; x2/

s1s2

;

where the covariance of variables x1 and x2 is given by

cov.x1; x2/ D 1

g � 1

gX

iD1

.xi1 � Nx1/.xi2 � Nx2/ ;

and the means and standard deviations are given by

Nxj D 1

g

gX

iD1

xij and sj D 1

g � 1

gX

iD1

�
xij � Nxj

�2
;

respectively, for j D 1; 2.
If v D 2, b D 2, and r D 1, then the functional relationships between R and ı are

given by

R D �ı � ı

2S1S2

and ı D �ı � 2RS1S2 ;

where

R D 1

gS1S2

gX

iD1

.xi1 � Nx1/.xi2 � Nx2/ ;

�ı D S2
1 C S2

2 C .Nx1 � Nx2/
2 ;

Nxj D 1

g

gX

iD1

xij ; and S2
j D 1

g

gX

iD1

�
xij � Nxj

�2
(8.7)
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for j D 1; 2.5 Thus, R and ı are equivalent under the null hypothesis because Nx1,
Nx2, S1, and S2 are invariant relative to the M possible permutations of the response
measurement scores.

Because R and ı are equivalent under the null hypothesis, the permutation distri-
butions of R and ı are also equivalent when v D 2, viz.,

P .R � RojH0/ D P .ı � ıojH0/ D number of ı values � ıo

M
;

where M D gŠ and Ro and ıo denote the observed values of R and ı, respectively.
Finally, the functional relationships between R and < are given by

R D <�ı

2S1S2

and < D 2RS1S2

�ı

:

8.2.1 Example MRBP Correlation Analysis

To illustrate the relationship between ı and Pearson’s R, consider the univariate
response measurement scores listed in Fig. 8.5 with g D 7 objects, b D 2 blocks,
r D 1 response measurement, and v D 2, employing squared Euclidean distance
between response measurement scores to correspond to the Pearson product-
moment correlation coefficient. For the univariate response measurement scores
listed in Fig. 8.5, Nx1 D 2:00, Nx2 D 5:00, s1 D 1:00, s2 D 2:00,

cov.x1; x2/ D 1

7 � 1
.9:00/ D 1:50 ;

Fig. 8.5 Example data with
g D 7 objects, b D 2 blocks,
and r D 1 response
measurement

Object x 1 x 2

1 3 8

2 3 6

3 3 5

4 2 6

5 1 5

6 1 3

7 1 2

5Note that the summation for S2
j in Eq. (8.7) is divided by g and not by g � 1, as degrees of freedom

are irrelevant to permutation methods.
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and the observed Pearson product-moment correlation coefficient is

Ro D cov.x1x2/

s1s2

D 1:50

.1:00/.2:00/
D C0:75 :

Equivalently, for the response measurement scores listed in Fig. 8.5, S1 D
0:9258, S2 D 1:8516, ıo D 10:7143, �ı D 13:2857, and

Ro D �ı � ıo

2S1S2

D 13:2857 � 10:7143

.2/.0:9258/.1:8516/
D C0:75 :

Since there are only M D 7Š D 5;040 possible, equally-likely arrangements of
the observed response measurement scores listed in Fig. 8.5, an exact solution
is feasible. If all arrangements of the N D 14 observed response measurement
scores listed in Fig. 8.5 occur with equal chance, the exact probability value of
ıo D 10:7143 (or Ro D C0:75) computed on the M D 5;040 possible arrangements
of the observed response measurement scores with b D 2 blocks preserved for each
arrangement is

P.ı � ıojH0/ D number of ı values � ıo

M
D 216

5;040
D 0:0429 :

For comparison, a conventional test of significance for R is given by

t D



.g � 2/R2

1 � R2

�1=2

and the observed value of t for Ro D C0:75 is

to D



.7 � 2/.C0:75/2

1 � .C0:75/2

�1=2

D C2:5355 :

Assuming independence and normality, t is approximately distributed as Student’s
t under the null hypothesis with g � 2 D 7 � 2 D 5 degrees of freedom. Under the
null hypothesis, the observed value of to D C2:5355 yields an approximate two-
sided probability value of P D 0:0522.

Also, for the N D 7 univariate response measurement scores listed in Fig. 8.5,
the exact expected value of the M D 5;040 ı values is �ı D 13:2857 and following
Eq. (8.3) on p. 423, the observed chance-corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 10:7143

13:2857
D C0:1935 ;

indicating approximately 19 % within-block agreement above that expected by
chance.
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Finally, the relationships between the observed values of Ro and <o are

Ro D <o�ı

2S1S2

D .C0:1935/.13:2857/

2.0:9258/.1:8516/
D C0:75

and

<o D 2RoS1S2

�ı

D 2.C0:75/.0:9258/.1:8516/

13:2857
D C0:1935 :

Analysis with v D 1

Although the Pearson product-moment correlation coefficient is not defined for v D
1, it is still possible to analyze the data with ı and < based on ordinary Euclidean
distances between response measurement scores. For the univariate response mea-
surement scores listed in Fig. 8.5 with g D 7, b D 2, r D 1, and v D 1, employing
ordinary Euclidean distance between response measurement scores, the observed
value of the MRBP test statistic is ıo D 3:00, the exact expected value of the
M D 5;040 ı values is �ı D 3:1224, and the observed chance-corrected measure
of effect size is

<o D 1 � ıo

�ı

D 1 � 3:00

3:1224
D C0:0392 ;

indicating approximately chance within-block agreement. If all arrangements of the
N D 14 observed response measurement scores listed in Fig. 8.5 occur with equal
chance, the exact probability value of ıo D 3:00 computed on the M D 5;040 possi-
ble arrangements of the observed response measurement scores with b D 2 blocks
preserved for each arrangement is

P.ı � ıojH0/ D number of ı values � ıo

M
D 216

5;040
D 0:0429 ;

which is the same as the probability value obtained with v D 2.

8.2.2 Permutations of g ResponseMeasurements

If .x11; : : : ; xg1/ is one of the gŠ permutations of the observed response mea-
surement scores and v D 2, then �ı D 2S1S2 and the Pearson product-moment
correlation coefficient, R, is equivalent to the chance-corrected within-block mea-
sure of effect size, <, i.e., R D <, where

R D cov.x1; x2/

s1s2

and < D 1 � ı

�ı



8.2 MRBP and Pearson’s Product-Moment Correlation 441

Fig. 8.6 Example data set
with g D 10 objects, b D 2

blocks, and r D 1 response
measurement

Object x 1 x 2

1 21 32

2 27 21

3 32 27

4 35 35

5 43 64

6 47 43

7 50 50

8 58 47

9 64 69

10 69 58

[297, pp. 132–133]. To illustrate the equivalence of Pearson’s R and < when
.x12; : : : ; xg2/ is a permutation of .x11; : : : ; xg1/, consider the small data set listed
in Fig. 8.6 with g D 10 objects, r D 1 response measurement, and b D 2 blocks. For
these data the 10 response measurement scores listed under x2 in Fig. 8.6 constitute
a permutation of the 10 response measurement scores listed under x1.

For the response measurement scores listed in Fig. 8.6, Nx1 D Nx2 D 44:60, s1 D
s2 D 16:0083,

cov.x1; x2/ D 1

10 � 1
.1;853:4000/ D 205:9333 ;

and the observed Pearson product-moment correlation coefficient is

Ro D cov.x1; x2/

s1s2

D 205:9333

.16:0083/.16:0083/
D C0:8036 :

Equivalently, for the response measurement scores listed in Fig. 8.6, the observed
value of the MRBP test statistic with v D 2 is ıo D 90:60, the exact expected value
of the M ı values is �ı D 461:2800 and, following Eq. (8.3) on p. 423, the observed
chance-corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 90:60

461:2800
D C0:8036 ;

indicating approximately 80 % within-block agreement above that expected by
chance.

Since there are M D 10Š D 3;628;800 possible, equally-likely arrangements of
the observed response measurement scores listed in Fig. 8.6, calculation of an
exact probability value is prohibitive and an approximate resampling probability
value is more practical. For the univariate response measurement scores listed in
Fig. 8.6, the approximate resampling probability value of ıo D 90:60 computed
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on L D 1;000;000 random arrangements of the observed response measurement
scores is

P.ı � ıojH0/ D number of ı values � ıo

L
D 3;217

1;000;000
D 0:0032 :

While an exact solution may not be practical, it is not unrealistic, given current
computer capabilities. For the response measurement scores listed in Fig. 8.6, the
exact probability value of ıo D 90:60 computed on the M D 3;628;800 possible
arrangements of the observed response measurement scores is

P.ı � ıojH0/ D number of ı values � ıo

M
D 11;780

3;628;800
D 0:0032 :

Analysis with v D 1

Although the Pearson product-moment correlation coefficient is not defined for
v D 1, it is still possible to analyze the response measurement scores listed in
Fig. 8.6 with ı and < based on ordinary Euclidean distances between response
measurement scores. For the response measurement scores listed in Fig. 8.6 with
g D 10, b D 2, r D 1, and v D 1, the observed value of ı with v D 1 is ıo D 7:40,
the exact expected value of the M D 3;628;800 ı values is �ı D 17:40 and the
observed chance-corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 7:40

17:40
D C0:5747 ;

indicating approximately 57 % within-block agreement above that expected by
chance. If all M possible arrangements of the N D 20 observed response measure-
ment scores listed in Fig. 8.6 occur with equal chance, the approximate resampling
probability value of ıo D 7:40 computed on the L D 1;000;000 random arrange-
ments of the observed response measurement scores with b D 2 blocks preserved
for each arrangement is

P.ı � ıojH0/ D number of ı values � ıo

L
D 5;192

1;000;000
D 0:0052 :

For comparison, the exact probability value of ıo D 7:40 computed on the M D
3;628;800 possible arrangements of the observed response measurement scores is

P.ı � ıojH0/ D number of ı values � ıo

M
D 18;669

3;628;800
D 0:0051 :

Finally, it should be noted that if g D 2, r D 1, v D 2, x1j D �x2j D xj, and jxjj >

0 for j D 1; : : : ; b, then the test based on ı is equivalent to the permutation version
of either the matched-pairs or one-sample t test. When v D 1, < possesses certain
advantages over R; viz., < is a measure of chance-corrected agreement rather than
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a measure of linearity, and second, < is much more robust than R since it is based
on ordinary Euclidean distances rather than squared Euclidean distances.

8.3 Coda

Chapter 8 provided the foundation for Multivariate Randomized Block Permutation
(MRBP) procedures, with special emphasis on the generalized Minkowski distance
function, 	.x; y/, as defined in Eq. (8.2) on p. 422; ı, the weighted mean of the
specified distance-function values as defined in Eq. (8.1) on p. 422; and <, the
chance-corrected within-block coefficient of agreement, as defined in Eq. (8.3) on
p. 423. Chapters 9, 10, and 11 provide applications of MRBP to randomized-block
data at the interval, ordinal, and nominal levels of measurement, respectively.

Chapter 9
Chapter 9 establishes the relationships between the MRBP test statistics, ı and
<, and selected conventional tests and measures designed for the analysis of
randomized-block data at the interval level of measurement. Considered in Chap. 9
are Student’s t test for matched pairs, Hotelling’s multivariate T2 test for matched
pairs, randomized-block analysis of variance, randomized-block multivariate anal-
ysis of variance, and Pearson’s product-moment correlation coefficient.



9Randomized Block Designs: Interval Data

This ninth chapter of Permutation Statistical Methods utilizes the Multivariate Ran-
domized Block Permutation (MRBP) procedures presented in Chap. 8 to develop the
functional relationships between the test statistics of MRBP, ı and <, and selected
conventional tests and measures designed for the analysis of randomized-block data
at the interval level of measurement. Included in Chap. 9 are permutation versions of
Student’s t test for univariate matched-pairs data, Hotelling’s T2 test for multivariate
matched-pairs data, randomized-block analysis of variance, randomized-block mul-
tivariate analysis of variance, and Pearson’s product-moment correlation coefficient.

As detailed in Chap. 8, the structure of the MRBP test statistic, ı, depends on the
value of v in the generalized Minkowski distance function given by

	.x; y/ D
 

rX

iD1

ˇ̌
xi � yi

ˇ̌p
!v=p

;

where p � 1 and v > 0. The choice of v permits the MRBP test statistic given by

ı D
"

g

 
b

2

!#�1 gX

iD1

X

j<k

	.xij; xik/ (9.1)

to be transformed into a variety of tests and measures and provides the flexibility
for analyzing univariate and multivariate data at the interval, ordinal, and nominal
levels of measurement.

The null hypothesis (H0) states that the distribution of ı assigns an equal proba-
bility to each of the

M D �
gŠ
�b
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possible, equally-likely allocations of the g r-dimensional response measurements
to the g treatment positions within each of the b blocks. The probability value associ-
ated with an observed value of ı, say ıo, is the probability under the null hypothesis
(H0) of observing a value of ı as extreme or more extreme than ıo. Thus, an exact
probability value for the observed MRBP test statistic, ıo, may be expressed as

P.ı � ıojH0/ D number of ı values � ıo

M
:

As with MRPP, initially described in Chap. 2, a chance-corrected measure of
agreement among all b blocks for all g treatments provides an universal measure of
effect size for all randomized-block analysis-of-variance designs given by

< D 1 � ı

�ı

; (9.2)

where �ı is the arithmetic average of the M ı values calculated on all possible
arrangements of the observed data given by

�ı D 1

M

MX

iD1

ıi : (9.3)

Alternatively, for N pairs of values .xi and yi for i D 1; : : : ; N/,

ı D 1

N

NX

iD1

ˇ̌
xi � yi

ˇ̌v
;

�ı D 1

N2

NX

iD1

NX

jD1

ˇ̌
xi � yj

ˇ̌v
;

and

< D 1 � ı

�ı

:

Permutation analogues of four statistical tests designed for interval-level
response measurements are examined in this chapter: (1) Student’s matched-pairs
t test with univariate interval-level response measurement scores, (2) Hotelling’s
matched-pairs T2 test with multivariate interval-level response measurement scores,
(3) Fisher’s one-way randomized-block analysis of variance with interval-level uni-
variate response measurement scores, and (4) Fisher’s one-way randomized-block
analysis of variance with interval-level multivariate response measurement scores.
The four tests are illustrated and compared with examples analyzed with v D 2 and
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v D 1. Finally, the functional relationship between the Pearson product-moment
correlation coefficient, R and ı, is illustrated with v D 2.

As with MRPP, discussed more completely in Chap. 2, MRBP procedures are
data-dependent, distribution-free, and non-parametric. Therefore, there is no reason
to square differences between response measurement scores and v D 1 is preferred
for all applications of MRBP.

9.1 Permutation Analogue of Student’s t Test

A research design that calls for a test of differences between two matched treat-
ment groups when univariate (r D 1) response measurements have been obtained
for each of b � 2 blocks is commonplace in many fields of research. The conven-
tional approach to such a research design is Student’s t test for two matched samples
given by

t D Nd
sNd

;

where the average difference between the two sets of response measurement scores
is given by

Nd D 1

b

bX

iD1

di ;

di D x1i � x2i ; i D 1; : : : ; b ;

x1i and x2i are univariate response measurement scores for the ith object in treat-
ments 1 and 2, respectively, the sample estimate of the population variance is

s2
Nd D s2

d

b
;

where

s2
d D 1

b � 1

bX

iD1

�
di � Nd�2 ;

and b is the number of objects in each of the two treatment groups.1 Assuming inde-
pendence and normality, t is approximately distributed as Student’s t under the null

1Conventional notation is to use n or N as the number of blocks.
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hypothesis with b � 1 degrees of freedom. Note that v D 2 yields the permutation
version of the classical Fisher–Pitman matched-pairs test where

ı D 2

t2 C b � 1

bX

iD1

d2
i and t D

 
2

ı

bX

iD1

d2
i � b C 1

!1=2

(9.4)

relate the MRBP test statistic and Student’s matched-pairs t test statistic.
If the observed values of ı and t are denoted by ıo and to, respectively, then the

exact probability value of ıo and to is given by

P.t � tojH0/ D P.ı � ıojH0/ D number of ı values � ıo

M
;

where M D 2b in this application. When b is large, then a method to approximate
the probability value is essential. A resampling permutation procedure provides an
approximate probability value for ı and is given by

P.ı � ıojH0/ D number of ı values � ıo

L
;

where L is a random sample of all possible arrangements of the 2b response
measurements. Typically, L is set to a large value to ensure accuracy, e.g., L D
1;000;000. When M is very large and P is exceedingly small, a resampling-
approximation permutation procedure may produce no ı values equal to or less than
ıo, even with L D 1;000;000, yielding an approximate resampling probability value
of P D 0:00. In such cases, moment-approximation permutation procedures based
on fitting the first three exact moments of the discrete permutation distribution to a
Pearson type III distribution provide approximate probability values, as detailed in
Chap. 1, Sect. 1.2.2 [284, 299].

9.1.1 Example 1: v D 2

Consider the univariate response measurement scores listed in Fig. 9.1, where r D 1

and b D 9. When raw scores are defined as differences, as in Fig. 9.1, Eq. (9.1) on
p. 445 simplifies to

ı D
 

b

2

!�1X

j<k

	.xj; xk/ : (9.5)

Employing squared Euclidean distance between response measurement scores, let
v D 2 to correspond to Student’s matched-pairs t test. The data are adapted from
Gravetter and Wallnau [153, p. 320].
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Fig. 9.1 Example univariate
response measurement scores
with two treatments, b D 9

blocks, and r D 1 response
measurement

Treatment

Object  d

1 9 7 +2

2 8 7 +1

3 7 3 +4

4 7 8 − 1

5 8 6 +2

6 9 4 +5

7 7 6 +1

8 7 9 − 2

9 8 4 +4

1 2

An exact solution is feasible for these data since there are only

M D �
gŠ
�b D �

2Š
�9 D 512

possible, equally-likely arrangements of the b D 9 objects. Following Eq. (9.5), the
observed value of the MRBP test statistic with v D 2 is

ıo D
 

9

2

!�1

j2 � 1j2 C j2 � 4j2 C � � � C j � 2 � 4j2 D 1

36
.392/ D 10:8889 :

If all arrangements of the observed response measurement scores listed in Fig. 9.1
occur with equal chance, the exact probability value of ıo D 10:8889 computed on
the M D 512 possible arrangements of the observed response measurement scores
with b D 9 blocks preserved for each arrangement is

P.ı � ıojH0/ D number of ı values � ıo

M
D 16

512
D 0:0781 :

For comparison, a conventional matched-pairs t test on the response measure-
ment scores listed in Fig. 9.1 yields Nd D C1:7778, sd D 2:3333, sNd D 0:7778, and
an observed matched-pairs t value of to D C2:2857. Assuming independence and
normality, t is approximately distributed as Student’s t under the null hypothe-
sis with b � 1 D 9 � 1 D 8 degrees of freedom. Under the null hypothesis, the
observed value of to D C2:2857 yields an approximate two-sided probability value
of P D 0:0258.

Measures of Effect Size
While measures of effect size have been developed for randomized-block analysis-
of-variance designs, they are somewhat controversial. One of the problems is
whether or not an additive model is appropriate; that is, is it safe to assume that
there are no interactions of subjects with treatments? A second problem is decid-
ing whether or not the factor Objects is to be considered random or fixed. For
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discussions of measures of effect size for randomized-block designs, see articles
by Dodd and Schultz [98], Olejnik and Algina [326], Susskind and Howland [391],
and Vaughan and Corballis [411].

On the other hand, < is a convenient, chance-corrected measure of effect size
that is appropriate for all randomized-block designs, is easy to compute, and pro-
vides a straightforward interpretation. Moreover, because permutation methods are
data-dependent, random or fixed factors are irrelevant to <, as are additive or non-
additive models. Following Eq. (9.3) on p. 446, the exact expected value of the
M D 512 ı values is �ı D 16:00 and, following Eq. (9.2) on p. 446, the observed
chance-corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 10:8889

16:00
D C0:3194 ;

indicating approximately 32 % within-block agreement above that expected by
chance.

Finally, the relationships between the MRBP test statistic and Student’s matched-
pairs t given in Eq. (9.4) can be confirmed. For the univariate response measurement
scores listed in Fig. 9.1 on p. 449, the observed values of ı and t are

ıo D 2

t2 C b � 1

bX

iD1

d2
i D 2

2:28572 C 9 � 1
.72/ D 144

13:2244
D 10:8889

and

to D
 

2

ı

bX

iD1

d2
i � b C 1

!1=2

D



2

10:8889
.72/ � 9 C 1

�1=2

D
�

144

10:8889
� 8

�1=2

D C2:2857 :

9.1.2 Example 2: v D 1

For a comparison analysis of the response measurement scores listed in Fig. 9.1
on p. 449, set v D 1 instead of v D 2, employing ordinary Euclidean distance
between response measurement scores. For the univariate response measurement
scores listed in Fig. 9.1, there are still only

M D �
gŠ
�b D �

2Š
�9 D 512
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possible, equally-likely arrangements of the b D 9 objects. Following Eq. (9.5) on
p. 448 the observed value of the MRBP test statistic with v D 1 is

ıo D
 

9

2

!�1

j2 � 1j1 C j2 � 4j1 C � � � C j � 2 � 4j1 D 100

36
D 2:7778 :

If all arrangements of the observed response measurement scores listed in Fig. 9.1
occur with equal chance, the exact probability value of ıo D 2:7778 computed on
the M D 512 possible arrangements of the observed response measurement scores
with b D 9 blocks preserved for each arrangement is

P.ı � ıojH0/ D number of ı values � ıo

M
D 16

512
D 0:0898 :

For comparison, the exact probability value with v D 2 is P D 0:0781. No compar-
ison is made with Student’s matched-pairs t test as Student’s t test is undefined for
v D 1.

Following Eq. (9.3) on p. 446, the exact expected value of the M D 512 ı values
is �ı D 3:3056 and, following Eq. (9.2) on p. 446, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 2:7778

3:3056
D C0:1597 ;

indicating approximately 16 % within-block agreement above that expected by
chance.

9.2 Permutation Analogue of Hotelling’s T2 Test

Oftentimes a research design calls for a test of difference between g D 2 matched
treatment groups when multivariate (r � 2) response measurements have been
obtained for each of b � 2 blocks. The conventional approach to such a research
design is Hotelling’s multivariate T2 test for two matched samples [181].

Consider that r � 2 response measurements and b � 2 subjects are associated
with a multivariate pre-treatment and post-treatment matched-pairs permutation test
and let .w11j; : : : ; wr1j/ and .w12j; : : : ; wr2j/ denote r-dimensional row vectors with
elements comprised of the r response measurements on the jth subject from the pre-
and post-treatments, respectively, where j D 1; : : : ; b. Let

x1j D

0

B@
x11j
:::

xr1j

1

CA ;
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where xk1j D wk1j � wk2j for k D 1; : : : ; r, be the r-dimensional column vector of
differences between pre-treatment and post-treatment response measurement scores
for the jth subject, and let x2j D �x1j be the r-dimensional origin reflection of x1j for
j D 1; : : : ; b. The probability under the null hypothesis is P.x1j/ D P.x2j/ D 0:50

for j D 1; : : : ; b. For the multivariate matched-pairs research design, consider the
MRBP test statistic given by

ı D
 

b

2

!�1 X

m<n

	.x1m; x1n/ ;

where

	.x1m; x1n/ D �
.x1m; x1n/0.x1m; x1n/

	1=2

is the r-dimensional Euclidean distance between the mth and nth subjects’ differ-
ences, and the sum

P
m<n is over all m and n such that 1 � m < n � b.

If the r response measurement scores are in different units, it is necessary that
the measurements be made commensurate, i.e., standardized to a common unit of
measurement. The replacement of xkij with x�

kij D xkij=�k, where

�k D
2X

i1D1

2X

i2D1

X

m<n

ˇ̌
xki1m � xki2n

ˇ̌

for k D 1; : : : ; r and 1 � m < n � b ensures that each response measurement score
makes a similar contribution in the r-dimensional Euclidean space since

2X

i1D1

2X

i2D1

X

m<n

ˇ̌
x�

ki1m � x�
ki2n

ˇ̌ D 1

for k D 1; : : : ; r. This commensuration is invariant relative to any permutation
under the null hypothesis and is termed Euclidean commensuration; see Chap. 3,
Sect. 3.4.

Hotelling’s multivariate matched-pairs T2 test statistic is given by

T2 D b Nx0
1 S�1

x Nx1 ;

where Sx is an r�r matrix given by

Sx D 1

b � 1

bX

jD1

.x1j � Nx1/.x1j � Nx1/
0
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and

Nx1 D 1

b

bX

jD1

x1j :

While the permutation test is applicable to all combinations of r and b, any appli-
cation of the T2 test under the null hypothesis with the assumption of multivariate
normality requires that min.r; b � r/ � 1 since the distribution of the adjusted T2

statistic given by

F D .b � r/T2

.b � 1/r

is approximately distributed as Snedecor’s F with �1 D r and �2 D b � r degrees of
freedom. When v D 2, the functional relationships between Hotelling’s T2 and the
MRBP test statistic are given by

T2 D r.b � 1/2 Œ2SSTotal � g.b � 1/ı

g.b � r/.b � 1/ı � 2SSBetween

and

ı D 2
�
r.b � 1/2SSTotal C T2SSBetween

	

g.b � 1/ ŒT2.b � r/ C r.b � 1/2
;

where SSBetween and SSTotal are defined as usual, i.e.,

SSBetween D b
gX

iD1

.Nxi: � Nx::/
2 ;

SSTotal D
gX

iD1

bX

jD1

�
xij � Nx::

�2
;

Nxi: D 1

b

bX

jD1

xij ; i D 1; : : : ; g ;

Nx:: D 1

bg

gX

iD1

bX

jD1

xij ;

and xij is the univariate response measurement score of the ith object in the jth block.
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If the observed values of ı and T2 are denoted by ıo and T2
o , respectively, then

the exact probability value of ıo and T2
o is given by

P.T2 � T2
o jH0/ D P.ı � ıojH0/ D number of ı values � ıo

M
;

where M D 2b in this application. When b is large (e.g., 230 D 1;073;741;824), then
a method to approximate the probability value is essential. A resampling permuta-
tion procedure provides an approximate probability value for ı and is given by

P.ı � ıojH0/ D number of ı values � ıo

L
;

where L is a random sample of all possible arrangements of the 2br response mea-
surements.

9.2.1 Example 1: v D 2

Consider the following scenario: paired, but randomly arranged, pre-training and
post-training writing samples of 11 students were presented blindly to 13 experi-
enced teachers of mathematics and language arts for grading. Each of the 13 judges
scored each of the 22 writing samples on a scale from 0 to 10. The data are adapted
from Mielke, Berry, and Neidt [304]. The pre- and post-training grades are listed in
Tables 9.1 and 9.2, respectively.

The example analysis blocks on the b D 13 judges and compares the pre-training
and post-training scores of the r D 11 students. The analysis evaluates the following

Table 9.1 Pre-training
response measurement scores
assigned by b D 13 judges to
writing samples of r D 11

students

Student

Judge 1 2 3 4 5 6 7 8 9 10 11

1 1 6 1 1 8 1 5 8 6 3 1

2 3 4 6 2 8 3 6 9 9 7 3

3 1 6 2 3 7 3 3 5 5 2 4

4 2 5 5 1 8 2 4 7 8 6 4

5 3 6 5 2 8 2 3 5 9 4 2

6 0 4 3 0 8 0 3 9 7 3 0

7 1 5 0 1 7 0 1 2 8 5 1

8 5 8 4 0 2 0 2 10 2 2 0

9 1 7 2 5 9 2 6 6 9 6 3

10 2 3 2 0 6 1 5 7 5 3 3

11 1 5 2 1 7 1 2 8 8 7 4

12 0 4 1 0 9 0 2 5 3 2 1

13 4 9 2 2 5 3 3 9 8 4 3
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Table 9.2 Post-training
response measurement scores
assigned by b D 13 judges to
writing samples of r D 11

students

Student

Judge 1 2 3 4 5 6 7 8 9 10 11

1 9 5 3 1 8 1 7 6 6 4 5

2 8 5 5 2 9 2 6 6 7 5 5

3 5 6 2 3 3 3 6 8 7 5 8

4 7 6 3 2 9 4 5 6 6 4 7

5 8 7 4 2 8 4 7 8 6 3 5

6 6 7 2 0 6 0 5 7 6 5 4

7 5 5 2 1 5 3 5 5 4 0 7

8 4 9 6 0 3 3 10 8 5 3 5

9 9 5 5 7 8 3 8 8 8 7 8

10 4 4 1 0 4 3 4 5 6 6 6

11 6 3 3 2 9 2 9 7 7 5 9

12 6 2 3 1 5 1 6 9 6 5 6

13 9 6 4 4 7 6 9 7 6 7 5

question: Did the course work result in significant pre-training/post-training differ-
ences in writing among the students?

While an exact solution is feasible for these data, given that there are only

M D �
gŠ
�b D �

2Š
�13 D 8;192

possible, equally-likely arrangements of the b D 13 judges, for this example anal-
ysis consider a resampling permutation procedure where over-sampling of the M
possible arrangements is illustrated.2 For this analysis, where r D 11, g D 2, and
b D 13, let v D 2, employing squared Euclidean distance between response mea-
surement scores to correspond to Hotelling’s matched-pairs T2 test. Following
Eq. (9.1) on p. 445, the observed value of the MRBP test statistic with v D 2 is
ıo D 65:9872. If all M possible arrangements of the observed response measure-
ment scores listed in Tables 9.1 and 9.2 occur with equal chance, the approximate
resampling probability value of ıo D 65:9872 computed on L D 1;000;000 random
arrangements of the observed response measurement scores with b D 13 blocks pre-
served for each arrangement is

P.ı � ıojH0/ D number of ı values � ıo

L
D 247

1;000;000
D 0:2470�10�3 :

For comparison, a conventional Hotelling’s matched-pairs T2 test on the response
measurement scores listed in Tables 9.1 and 9.2 yields an observed T2 value of

2Over-sampling of the M possible arrangements is quite common in the permutation literature
because of its efficiency in certain applications.
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T2
o D 766:0821 and the observed F-ratio value is

Fo D .b � r/T2

.b � 1/r
D .13 � 11/.766:0821/

.13 � 1/.11/
D 11:6073 :

Assuming independence, multivariate normality, and homogeneity of variance and
covariance, F is approximately distributed as Snedecor’s F under the null hypothe-
sis with �1 D r D 11 and �2 D b � r D 13 � 11 D 2 degrees of freedom. Under the
null hypothesis, the observed value of Fo D 11:6073 yields an approximate proba-
bility value of P D 0:0819. Finally, the approximate resampling probability value of
P D 0:2470�10�3 obtained by over-sampling the data listed in Tables 9.1 and 9.2
may be compared with the exact probability value based on M D 8;192 given by

P.ı � ıojH0/ D number of ı values � ıo

M
D 2

8;192
D 0:2441�10�3 :

There is a considerable difference between the Hotelling’s T2 probability value
of P D 0:0819 and the exact probability value of P D 0:2441�10�3. The difference
is quite possibly due to the violation of assumptions of multivariate normality, and
homogeneity of variance and covariance required by Hotelling’s T2, but not required
by the permutation test.

Following Eq. (9.3) on p. 446, the exact expected value of the M D 8;192 ı values
is �ı D 90:1731 and, following Eq. (9.2) on p. 446, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 65:9872

90:1731
D C0:2682 ;

indicating approximately 27 % within-block agreement above that expected by
chance.

9.2.2 Example 2: v D 1

For a comparison analysis of the multivariate data listed in Tables 9.1 and 9.2, set
v D 1 instead of v D 2, employing ordinary Euclidean distance between response
measurement scores, and implement an exact permutation procedure. For the
response measurement scores listed in Tables 9.1 and 9.2, the number of possible,
equally-likely arrangements is still only

M D �
gŠ
�b D �

2Š
�13 D 8;192 :
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Following Eq. (9.1) on p. 445, the observed value of the MRBP test statistic with
v D 1 is ıo D 0:0928. If all arrangements of the observed response measurement
scores listed in Tables 9.1 and 9.2 occur with equal chance, the exact probabil-
ity value of ıo D 0:0928 computed on the M D 8;192 possible arrangements of
the observed response measurement scores with b D 13 blocks preserved for each
arrangement is

P.ı � ıojH0/ D number of ı values � ıo

M
D 634

8;192
D 0:0774 :

In this example there is a considerable difference in probability values, where
with v D 2, the exact probability value is P D 0:2441�10�3, and with v D 1, the
exact probability value is P D 0:0774. The substantial difference in probability val-
ues is possibly due to large differences between pre-test and post-test scores that are
amplified by squaring the differences with v D 2, e.g., Student 1 and Judge 1 with
pre- and post-test scores of 1 and 9, respectively; Student 1 and Judge 9 with pre-
and post-test scores of 1 and 9, respectively; Student 7 and Judge 8 with pre- and
post-test scores of 2 and 10, respectively; and others in Tables 9.1 and 9.2. No com-
parison is made with Hotelling’s T2 test as Hotelling’s T2 is undefined for v D 1.

Following Eq. (9.3) on p. 446, the exact expected value of the M D 8;192 ı values
is �ı D 0:1125 and, following Eq. (9.2) on p. 446, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 0:0928

0:1125
D C0:1755 ;

indicating approximately 18 % within-block agreement above that expected by
chance.

9.3 Permutation Analogue of ANOVA

Consider a research design that calls for a test of differences among g � 3

matched treatment groups when univariate (r D 1) response measurements have
been obtained for each of b � 2 blocks. The conventional approach to such a
research design is a randomized-block analysis of variance given by

F D MSBetween

MSWithin
;
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where

MSBetween D 1

g � 1
SSBetween ;

SSBetween D b
gX

iD1

.Nxi: � Nx::/
2 ;

MSWithin D 1

.b � 1/.g � 1/
SSWithin ;

SSWithin D SSTotal � SSBlocks � SSBetween ;

SSBlocks D g
bX

jD1

�Nx:j � Nx::

�2
;

SSTotal D
gX

iD1

bX

jD1

�
xij � Nx::

�2
;

Nxi: D 1

b

bX

jD1

xij ; i D 1; : : : ; g ;

Nx:j D 1

g

gX

iD1

xij ; j D 1; : : : ; b ;

Nx:: D 1

bg

gX

iD1

bX

jD1

xij ;

and xij is the response measurement score of the ith object in the jth block.
Under the null hypothesis, F is approximately distributed as Snedecor’s F with

�1 D g � 1 and �2 D .b � 1/.g � 1/ degrees of freedom. When v D 2 the functional
relationships between Fisher’s F and the MRBP test statistic ı are given by

F D .b � 1/ Œ2SSTotal � g.b � 1/ı 

g.b � 1/ı � 2SSBlocks
(9.6)

and

ı D 2ŒFSSBlocks C .b � 1/SSTotal

g.b � 1/.F C b � 1/
; (9.7)
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where

ı D
"

g

 
b

2

!#�1 gX

iD1

X

j<k

�
xij � xik

�2
:

If the observed values of ı and F are denoted by ıo and Fo, respectively, the exact
probability value of Fo and ıo is given by

P.F � FojH0/ D P.ı � ıojH0/ D number of ı values � ıo

M
;

where

M D �
gŠ
�b

:

When b is large, then a method to approximate the probability value is essential. A
resampling permutation procedure provides an approximate probability value for ı

and is given by

P.ı � ıojH0/ D number of ı values � ıo

L
;

where L is a random sample of all possible arrangements of the bg response mea-
surements.

9.3.1 Example 1: v D 2

Consider a simple one-way randomized-block design with b D 9 blocks, g D 5

treatments, and r D 1 response measurement. For this analysis, let v D 2, employ-
ing squared Euclidean distance between response measurement scores to correspond
to a conventional one-way randomized-block analysis-of-variance F test. Example
univariate response measurement scores with b D 9, g D 5, and r D 1 are given in
Fig. 9.2.

As exact solution is not feasible for these data since there are

M D �
gŠ
�b D �

5Š
�9 D 5;159;780;352;000;000;000

possible, equally-likely arrangements of the univariate response measurement
scores listed in Fig. 9.2. Therefore, a resampling permutation approach is mandated.
Following Eq. (9.1) on p. 445, the observed value of the MRBP test statistic with
v D 2 is ıo D 35:8556. If all M possible arrangements of the observed response
measurement scores listed in Fig. 9.2 occur with equal chance, the approximate
resampling probability value of ıo D 35:8556 computed on L D 1;000;000 random
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Fig. 9.2 Example response
measurement scores for a
one-way randomized-block
analysis of variance with
b D 9 blocks, g D 5

treatments, and r D 1

response measurement

Treatment

Block 1 2 3 4 5

1 21 22 8 6 6

2 20 19 10 4 4

3 17 15 5 4 5

4 25 30 13 12 17

5 30 27 13 8 6

6 19 27 8 7 4

7 26 16 5 2 5

8 17 18 8 1 5

9 26 24 14 8 9

arrangements of the observed response measurement scores with b D 9 blocks pre-
served for each arrangement is

P.ı � ıojH0/ D number of ı values � ıo

L
D 0

1;000;000
D 0:00 ;

which is interpreted as less than one in a million.
When M is very large and the probability of an observed ı is very small,

resampling permutation procedures often result in zero probability, even with
L D 1;000;000. Moment-approximation permutation procedures, described briefly
in Chap. 1, Sect. 1.2.2, can often provide results in these extreme situations. The
moment-approximation of a test statistic requires computation of the exact moments
of the test statistic, assuming equally-likely arrangements of the observed response
measurement values. Typically, the first three moments of ı are used: the exact
mean, variance, and skewness, denoted by �ı , �2

ı , and �ı , respectively. The three
moments are then used to fit a specified distribution, such as a Pearson type III dis-
tribution, that approximates the underlying discrete permutation distribution and
provide an approximate probability value. For the response measurement scores
listed in Fig. 9.2, a moment-approximation procedure yields ıo D 35:8556, �ı D
143:4289, �2

ı D 97:1824, �ı D �1:1613, an observed standardized test statistic of

To D ıo � �ı

�ı

D 35:8556 � 143:4289

9:8581
D �10:9122 ;

and a Pearson type III approximate probability value of P D 0:8541�10�7.
For comparison, a conventional one-way randomized-block analysis of vari-

ance on the response measurement scores listed in Fig. 9.2 yields an observed
value of Fo D 85:0417. Assuming independence, normality, and homogeneity of
variance and covariance, F is approximately distributed as Snedecor’s F with
�1 D g � 1 D 5 � 1 D 4 and �2 D .b � 1/.g � 1/ D .9 � 1/.5 � 1/ D 32 degrees
of freedom. Under the null hypothesis, the observed value of Fo D 85:0417 yields
an approximate probability value of P D 1:3944�10�16.
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9.3.2 Homogeneity Assumptions

Typically, one-way randomized-block designs are tested for assumptions of homo-
geneity of variance and covariance, often called compound symmetry or sphericity.3

Then, if needed, the degrees of freedom are adjusted to compensate for any discrep-
ancies from the homogeneity assumptions. For the univariate data listed in Fig. 9.2,
the symmetric g�g variance–covariance matrix is

O† =

2

6666664

21:0000 11:7500 9:2500 7:8333 7:3333

11:7500 28:5000 13:7500 16:3750 13:3750

9:2500 13:7500 11:5000 8:5833 8:2083

7:8333 16:3750 8:5833 11:6944 10:8194

7:3333 13:3750 8:2083 10:8194 16:9444

3

7777775
; (9.8)

where the estimated variances are the g elements on the principal diagonal, i.e.,
21.0000, 28.5000, . . . , 16.9444, and the estimated covariances are the g.g � 1/=2

elements in each of the upper- and lower-triangular matrices, i.e., 11.7500, 9.2500,
. . . , 10.8194.

In 1959 Greenhouse and Geisser [154] provided a correction to the numerator
and denominator degrees of freedom of the F-ratio that aimed to compensate for a
lack of compound symmetry. The Greenhouse and Geisser correction is given by

O" D g2.A � B/2

.g � 1/.C � 2gD C g2B2/
;

where A is the average of the g elements on the principal diagonal of the O† variance–
covariance matrix given by

A D 1

g

gX

iD1

OSii ;

B is the average of all g2 elements in the O† variance–covariance matrix given by

B D 1

g2

gX

iD1

gX

jD1

OSij ;

3As noted by Stevens [386, p. 412], for some time it was thought that the stronger condition,
compound symmetry, was necessary in which the population variances and covariances were all
required to be equal. However, Huynh and Feldt [190] and Rouanet and Lépine [354] showed
that a weaker condition, sphericity, in which only the variances of the differences for all pairs of
treatments are required to be equal, was sufficient.
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C is the sum of the g2 squared elements in the O† variance–covariance matrix given
by

C D
gX

iD1

gX

jD1

OS2
ij ;

D is the sum of the squared averages of the elements in each of the g rows (or
columns) of the O† variance–covariance matrix given by

D D
gX

iD1

0

@1

g

gX

jD1

OSij

1

A
2

;

and OSij for i; j D 1; : : : ; g indicates an estimate of the population variance when
i D j and an estimate of the population covariance when i 6D j. The maximum value
of O" D 1:00 is attained when all g estimated variances on the principal diagonal
are equal and all g.g � 1/=2 estimated covariances on the off-diagonals are equal,
although it is not required that the estimated covariances be equal to the estimated
variances. As shown by Greenhouse and Geisser, the minimum value of O" is given
by 1=.g � 1/, which is independent of the elements of the O† matrix [154, p. 102].

For the variances and covariances given in the O† matrix in Eq. (9.8),

A D 1

5
.21:0000 C 28:5000 C 11:5000 C 11:6944 C 16:9444/ D 17:9278 ;

B D 1

52
.21:0000 C 11:7500 C 9:2500 C � � � C 16:9444/ D 12:1678 ;

C D 21:00002 C 11:75002 C 9:25002 C � � � C 16:94442 D 4;275:3065 ;

and

D D



1

5
.21:0000 C 11:7500 C 9:2500 C 7:8333 C 7:3333/

�2

C



1

5
.11:7500 C 28:5000 C 13:7500 C 16:3750 C 13:3750/

�2

C



1

5
.9:2500 C 13:7500 C 11:5000 C 8:5833 C 8:2083/

�2

C



1

5
.7:8333 C 16:3750 C 8:5833 C 11:6944 C 10:8194/

�2

C



1

5
.7:3333 C 13:3750 C 8:2083 C 10:8194 C 16:9444/

�2

D 767:3720 :
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Then, for the O† variance–covariance matrix given in Eq. (9.8), the Greenhouse–
Geisser correction for the degrees of freedom is

O" D 52.17:9278 � 12:1678/2

.5 � 1/Œ4;275:3065 � 2.5/.767:3720/ C 52.12:1678/2
D 0:6845 :

The adjusted numerator and denominator degrees of freedom for the F-ratio are
obtained by multiplying O" by the original degrees of freedom, �1 D g � 1 and �2 D
.b � 1/.g � 1/. Thus,

�0
1 D O".g � 1/ D 0:6845.5 � 1/ D 2:7380

and

�0
2 D O".b � 1/.g � 1/ D 0:6845.9 � 1/.5 � 1/ D 21:9040

replacing �1 D g � 1 D 5 � 1 D 4 and �2 D .b � 1/.g � 1/ D .9 � 1/.5 � 1/ D
32 degrees of freedom, respectively. The observed F value of Fo D 85:0417 then
yields an approximate probability value of P D 5:7647�10�12 under the null
hypothesis with �0

1 D 2:7380 and �0
2 D 21:9040 degrees of freedom. No adjustment

is required for the permutation version of randomized-block designs as permutation
tests do not assume homogeneity of variances and covariances; moreover, degrees
of freedom are irrelevant to permutation methods.

Following Eq. (9.3) on p. 446, the exact expected value of the M ı values is �ı D
143:4289 and, following Eq. (9.2) on p. 446, the observed chance-corrected measure
of effect size is

<o D 1 � ıo

�ı

D 1 � 35:8556

143:4289
D C0:7500 ;

indicating 75 % within-block agreement above that expected by chance.
The relationships between the conventional F-ratio and the MRBP test statis-

tic ı can be demonstrated with the univariate response measurement scores listed
in Fig. 9.2 on p. 460. Given b D 9 blocks, g D 5 groups, SSBlocks D 486:7111,
SSTotal D 3;166:3111, and following Eq. (9.6) on p. 458, the observed value of F
in terms of ı is

Fo D .9 � 1/Œ2.3;166:3111/ � 5.9 � 1/.35:8556/

5.9 � 1/.35:8556/ � 2.486:7111/

D 39;187:2018

460:7998
D 85:0417
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and following Eq. (9.7) on p. 458, the observed value of the MRBP test statistic in
terms of F is

ıo D 2Œ.85:0417/.486:7111/ C .9 � 1/.3;166:3111/

5.9 � 1/.85:0417 C 9 � 1/

D 133;442:4584

3;721:6680
D 35:8556 :

9.3.3 Example 2: v D 1

For a comparison analysis of the univariate response measurement scores listed in
Fig. 9.2 on p. 460, set v D 1 instead of v D 2, employing ordinary Euclidean dis-
tance between response measurement scores. For the response measurement scores
listed in Fig. 9.2, M is still large, i.e.,

M D �
gŠ
�b D �

5Š
�9 D 5;159;780;352;000;000;000 ;

and resampling is again required. Following Eq. (9.1) on p. 445, the observed value
of the MRBP test statistic with v D 1 is ıo D 4:7667. If all M possible arrangements
of the observed response measurement scores listed in Fig. 9.2 occur with equal
chance, the approximate resampling probability value of ıo D 4:7667 computed on
L D 1;000;000 random arrangements of the observed response measurement scores
with b D 9 blocks preserved for each arrangement is

P.ı � ıojH0/ D number of ı values � ıo

L
D 0

1;000;000
D 0:00 :

A reanalysis of the data listed in Fig. 9.2 using a moment-approximation permu-
tation procedure yields ıo D 4:7667, �ı D 9:6444, �2

ı D 0:1964, �ı D �1:0674, an
observed standardized test statistic of

To D ıo � �ı

�ı

D 4:7667 � 9:6444

0:4432
D �11:0058 ;

and a Pearson type III approximate probability value of P D 0:3232�10�7. No com-
parison is made with a conventional randomized-block analysis of variance as the
F-ratio is undefined for v D 1.

Following Eq. (9.3) on p. 446, the exact expected value of the M ı values is �ı D
9:6444 and, following Eq. (9.2) on p. 446, the observed chance-corrected measure
of effect size is

<o D 1 � ıo

�ı

D 1 � 4:7667

9:6444
D C0:5058 ;
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indicating approximately 51 % within-block agreement above that expected by
chance.

9.4 Permutation Analogue of MANOVA

Occasionally, a research design requires g � 3 matched treatment groups when mul-
tivariate (r � 2) response measurements are to be obtained for each of b � 2 blocks.
When v D 2, this is essentially an extension of Hotelling’s matched-pairs T2 statis-
tic to g > 2 treatments.

9.4.1 Example 1: v D 2

Consider b D 3 subjects (S ) that are tested g D 3 times (Factor B) and r D 3 com-
mensurate response measurements (Factor A) are obtained at each treatment. The
data are adapted from Myers and Well [315, p. 260] and are listed in Table 9.3.

The example analysis blocks on the b D 3 subjects and compares the g D 3

sets of multivariate response measurement scores. For this example analysis, r D 3,
b D 3, g D 3, and v D 2, employing squared Euclidean distance between response
measurement scores to correspond to a multivariate randomized-block analysis.
Since there are only

M D �
gŠ
�b D �

3Š
�3 D 216

possible, equally-likely arrangements of the b D 3 subjects, an exact solution is
preferable. Following Eq. (9.1) on p. 445, the observed value of the MRBP test
statistic with v D 2 is ıo D 4:7933. If all arrangements of the observed response
measurement scores listed in Table 9.3 occur with equal chance, the exact prob-
ability value of ıo D 4:7933 computed on the M D 216 possible arrangements of
the observed response measurement scores with b D 3 blocks preserved for each
arrangement is

P.ı � ıojH0/ D number of ı values � ıo

M
D 6

216
D 0:0278 :

For comparison, a conventional multivariate randomized-block analysis of vari-
ance on the response measurement scores listed in Table 9.3 yields an observed

Table 9.3 Example data for
b D 3 subjects (S) tested
g D 3 times (Factor B) with
r D 3 response
measurements (Factor A)

B1 B2 B3

A1 A2 A3 A1 A2 A3 A1 A2 A3

S1 3.1 2:9 2.4 1.9 2:0 1.7 1.6 1.9 1.5

S2 5.7 6:8 5.3 4.5 5:7 4.4 4.4 5.3 3.9

S3 9.7 10:9 8.0 7.4 10:5 6.6 6.9 8.9 6.0
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value of Fo D 22:5488. Assuming independence, normality, and homogeneity of
variance and covariance, F is approximately distributed as Snedecor’s F with
�1 D g � 1 D 3 � 1 D 2 and �2 D .b � 1/.g � 1/ D .3 � 1/.3 � 1/ D 4 degrees of
freedom. Under the null hypothesis, the observed value of Fo D 22:5488 yields an
approximate probability value of P D 0:0066.

Following Eq. (9.3) on p. 446, the exact expected value of the M D 216 ı values
is �ı D 44:6659 and, following Eq. (9.2) on p. 446, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 4:7933

44:6659
D C0:8927 ;

indicating approximately 89 % within-block agreement above that expected by
chance.

9.4.2 Example 2: v D 1

For a comparison analysis of the multivariate response measurement scores listed
in Table 9.3, set v D 1 instead of v D 2, employing ordinary Euclidean distance
between response measurement scores. Since there are still only

M D �
gŠ
�b D �

3Š
�3 D 216

possible, equally-likely arrangements of the b D 3 subjects into the g D 3 treatment
groups, an exact solution is preferable. Following Eq. (9.1) on p. 445, the observed
value of the MRBP test statistic with v D 1 is ıo D 1:9405. If all arrangements
of the observed response measurement scores listed in Table 9.3 occur with equal
chance, the exact probability value of ıo D 1:9405 computed on the M D 216 pos-
sible arrangements of the observed response measurement scores with b D 3 blocks
preserved for each arrangement is

P.ı � ıojH0/ D number of ı values � ıo

M
D 6

216
D 0:0278 :

No comparison is made with a conventional multivariate randomized-block analysis
of variance as the F-ratio is undefined for v D 1.

Following Eq. (9.3) on p. 446, the exact expected value of the M D 216 ı values
is �ı D 5:5414 and, following Eq. (9.2) on p. 446, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 1:9405

5:5414
D C0:6498 ;

indicating approximately 65 % within-block agreement above that expected by
chance.
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9.5 MRBP and Pearson’s Product-Moment Correlation

Consider the MRBP test statistic given by

ı D
"

g

 
b

2

!#�1 gX

iD1

X

j<k

	.xij; xik/

where g is the number of treatments, b is the number of blocks, and 	.x; y/ is a
generalized Minkowski distance-function value of two points, x0 D .x1; : : : ; xr/ and
y0 D .y1; : : : ; yr/ in an r-dimensional Euclidean space given by

	.x; y/ D
 

rX

iD1

ˇ̌
xi � yi

ˇ̌p
!v=p

;

where p � 1 and v > 0. As discussed in Chap. 8, Sect. 8.2, when b D v D 2, the
MRBP test statistic ı is closely related to the ordinary Pearson product-moment
correlation coefficient given by

R D cov.x1; x2/

s1s2

;

where x1 D .x11; : : : ; xg1/, x2 D .x12; : : : ; xg2/,

cov.x1; x2/ D 1

g � 1

gX

iD1

.xi1 � Nx1/.xi2 � Nx2/ ;

Nxj D 1

g

gX

iD1

xij ; and sj D
"

1

g � 1

gX

iD1

�
xij � Nxj

�2
#1=2

for j D 1; 2.
Specifically, the functional relationships between Pearson’s R and the MRBP test

statistic are given by

R D �ı � ı

2S1S2

and ı D �ı � 2RS1S2 ;

where

S2
j D 1

g

gX

iD1

�
xij � Nxj

�2
(9.9)
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for j D 1; 2.4 Furthermore, as noted in Chap. 8, the relationships between R and <
are given by

R D <�ı

2S1S2

and < D 2RS1S2

�ı

: (9.10)

9.5.1 Example 1: v D 2

Consider the response measurement scores listed in Fig. 9.3 with g D 12 objects,
b D 2 blocks, and r D 1 response measurement. For the response measurement
scores listed in Fig. 9.3, Nx1 D 43:3333, Nx2 D 42:6667, s1 D 2:1462, s2 D 1:5570,
cov.x1; x2/ D 1:6667, and the observed value of the Pearson product-moment cor-
relation coefficient is

Ro D cov.x1; x2/

s1s2

D 1:6667

.2:1462/.1:5570/
D C0:4988 :

Employing squared Euclidean distance between response measurement scores with
v D 2 to correspond to the Pearson product-moment correlation coefficient with
S1 D 2:0548 and S2 D 1:4907, the observed value of the MRBP test statistic with
v D 2 is ıo D 3:8333, the exact expected value of the M ı values is �ı D 6:8889

and the observed value of R is, equivalently,

Ro D �ı � ıo

2S1S2

D 6:8889 � 3:8333

.2/.2:0548/.1:4907/
D C0:4988 :

Fig. 9.3 Example response
measurement scores with
g D 12 objects, b D 2

blocks, and r D 1 response
measurement

Object x 1 x 2

1 41 41

2 42 41

3 43 41

4 45 41

5 43 42

6 41 42

7 45 43

8 40 43

9 46 44

10 43 44

11 47 45

12 44 45

4Note that the summation for S2
j in Eq. (9.9) is divided by g and not by g � 1, as degrees of freedom

are not relevant to permutation methods.
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An exact solution is not practical for these data since there are M D 12Š D
479;001;600 possible, equally-likely arrangements to be considered. Thus, a resam-
pling approach is mandated. If all M possible arrangements of the observed response
measurement scores listed in Fig. 9.3 occur with equal chance, the approximate
resampling probability value of ıo D 3:8333 computed on L D 1;000;000 random
arrangements of the observed response measurement scores with b D 2 blocks pre-
served for each arrangement is

P.ı � ıojH0/ D number of ı values � ıo

L
D 55;628

1;000;000
D 0:0556 :

For comparison, a conventional t test of R D C0:4988 yields an observed value
of

to D



.g � 2/R2

1 � R2

�1=2

D



.12 � 2/.C0:4988/2

1 � .C0:4988/2

�1=2

D C1:8199 :

Assuming independence and normality, t is approximately distributed as Student’s t
under the null hypothesis with g � 2 D 12 � 2 D 10 degrees of freedom. Under the
null hypothesis, the observed value of to D C1:8199 yields an approximate two-
sided probability value of P D 0:0988.

Finally, for the response measurement scores listed in Fig. 9.3, the observed
chance-corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 3:8333

6:8889
D C0:4435 ;

indicating approximately 44 % within-block agreement above that expected by
chance. Following Eq. (9.10) on p. 468, the relationships between R and < can be
confirmed. The observed values of R and < are

Ro D <o�ı

2S1S2

D .C0:4435/.6:8889/

2.2:0548/.1:4907/
D C0:4988

and

<o D 2RoS1S2

�ı

D 2.C0:4988/.2:0548/.1:4907/

6:8889
D C0:4435 :

9.5.2 Example 2: v D 1

Although a conventional Pearson product-moment correlation coefficient is unde-
fined for ordinary Euclidean distances between response measurement scores with
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v D 1, it is still possible to calculate values for the MRBP test statistic, ı, and the
chance-corrected measure of effect size, <, with v D 1. For the response measure-
ment scores listed in Fig. 9.3 with g D 12, b D 2, r D 1, and v D 1, the observed
value for ı is ıo D 1:6667. Following Eq. (9.3) on p. 446, the exact expected value
of the M ı values is �ı D 2:1111 and, following Eq. (9.2) on p. 446, the observed
chance-corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 1:6667

2:1111
D C0:2105 ;

indicating approximately 21 % within-block agreement above that expected by
chance.

Again, an exact solution is not practical for these data since there are M D
12Š D 479;001;600 possible, equally-likely arrangements of the observed data to
be considered. If all M possible arrangements of the observed response measure-
ment scores listed in Fig. 9.3 occur with equal chance, the approximate resampling
probability value of ıo D 1:6667 based on v D 1 and L D 1;000;000 random
arrangements of the observed response measurement scores with b D 2 blocks pre-
served for each arrangement is

P.ı � ıojH0/ D number of ı values � ıo

L
D 169;196

1;000;000
D 0:1692 :

9.5.3 Example 3: Permutation Data

As explained in Chap. 8, Sect. 8.2.2, if .x11; : : : ; xg1/ is one of the gŠ permutations
of the observed response measurement scores and v D 2, then the Pearson product-
moment correlation coefficient, R, is equivalent to the chance-corrected measure of
within-block effect size, <, where

R D cov.x1; x2/

s1s2

and < D 1 � ı

�ı

:

Consider the small data set listed in Fig. 9.4 with g D 10 objects, b D 2 blocks,
and r D 1 response measurement, where the 10 response measurement scores listed
under x2 constitute a permutation of the 10 response measurement scores listed
under x1.

For the response measurement scores listed in Fig. 9.4, Nx1 D Nx2 D 11:00, s1 D
s2 D 4:4721, cov.x1; x2/ D 16:00, and the observed Pearson product-moment cor-
relation coefficient is

Ro D cov.x1; x2/

s1s2

D 16:00

.4:4721/.4:4721/
D C0:80 :
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Fig. 9.4 Example response
measurement scores with
g D 10 objects, b D 2

blocks, and r D 1 response
measurement

Object x 1 x 2

1 17 14

2 11 11

3 8 5

4 14 17

5 5 8

6 8 5

7 14 17

8 11 11

9 5 8

10 17 14

Equivalently, for the response measurement scores listed in Fig. 9.4 with v D 2,
the observed value of the MRBP test statistic is ıo D 7:20, the exact expected value
of the M ı values is �ı D 36:00, and the observed chance-corrected measure of
effect size is

<o D 1 � ıo

�ı

D 1 � 7:20

36:00
D C0:80 :

Since there are M D 10Š D 3;628;800 possible, equally-likely arrangements of
the observed response measurement scores listed in Fig. 9.4, a resampling solution
is more practical. If all M possible arrangements of the observed response measure-
ment scores listed in Fig. 9.4 occur with equal chance, the approximate resampling
probability value of ıo D 7:20 computed on L D 1;000;000 random arrangements
of the observed response measurement scores with b D 2 blocks preserved for each
arrangement is

P.ı � ıojH0/ D number of ı values � ıo

L
D 5;539

1;000;000
D 0:0055 :

While M D 3;628;800 possible arrangements usually mandates a resampling
solution, an exact solution is not out of the question, providing an opportunity to
compare exact and resampling probability values. For the response measurement
scores listed in Fig. 9.4, the exact probability value of ıo D 7:20 computed on the
M D 3;628;800 possible arrangements of the observed data is

P.ı � ıojH0/ D number of ı values � ıo

M
D 19;520

3;628;800
D 0:0055 :

The exact probability value to six decimal places is P D 0:005538, the approxi-
mate resampling probability value based on L D 1;000;000 is P D 0:005539, and
the difference is only 0:000001, demonstrating the relative efficiency of resampling-
approximation procedures.
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For comparison, a conventional t test of R D C0:80 yields an observed value of

to D



.g � 2/R2

1 � R2

�1=2

D



.10 � 2/.C0:80/2

1 � .C0:80/2

�1=2

D C3:7712 :

Assuming independence and normality, t is approximately distributed as Student’s t
under the null hypothesis with g � 2 D 10 � 2 D 8 degrees of freedom. Under the
null hypothesis, the observed value of to D C3:7712 yields an approximate two-
sided probability value of P D 0:0055.

9.6 Coda

Chapter 9 applied the Multivariate Randomized Block Procedures (MRBP) devel-
oped in Chap. 8 to establish relationships between the test statistics of MRBP, ı

and <, and selected conventional tests and measures designed for the analysis of
randomized-block data at the interval level of measurement. Considered in this
chapter were Student’s t test for matched pairs, Hotelling’s multivariate T2 test for
matched pairs, randomized-block analysis of variance, and randomized-block mul-
tivariate analysis of variance. In addition, the functional relationship between the
Pearson product-moment correlation coefficient and ı was detailed with v D 2.

Comparisons between v D 2, employing squared Euclidean distance between
response measurement scores, and v D 1, employing ordinary Euclidean distance
between response measurement scores, for a variety of statistical tests and measures
revealed marked differences between obtained probability values. In this chapter,
probability values based on ordinary Euclidean distance were generally greater
than those based on squared Euclidean distance between response measurement
scores. The permutation-based MRBP test statistic, ı, with v D 1 possesses several
advantages over conventional statistics based on v D 2. The MRBP test statistic is
data-dependent, distribution-free, and, with v D 1, is robust to extreme response
measurement values.

Chapter 10
Chapter 10 establishes the relationships between the MRBP test statistics, ı and
<, and selected conventional tests and measures designed for the analysis of
randomized-block data at the ordinal level of measurement. Considered in Chap. 10
are the Wilcoxon signed-ranks test, the sign test, Spearman’s rank-order and footrule
measures of correlation, Friedman’s analysis of variance for ranks, Kendall’s coeffi-
cient of concordance, Cohen’s weighted kappa measure of agreement, Kendall’s �a

and �b measures of ordinal association, Yule’s Q and Y statistics, and Somers’ dyx

and dxy asymmetric measures of ordinal association.
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Chapter 9 of Permutation Statistical Methods utilized the Multivariate Randomized
Block Permutation (MRBP) procedures presented in Chap. 8 to develop relation-
ships between the test statistics of MRBP, ı and <, and selected conventional tests
and measures designed for the analysis of randomized-block data at the interval
level of measurement. This tenth chapter continues the application of the MRBP
test statistics to selected conventional tests and measures designed for the analysis
of randomized-block data at the ordinal level of measurement. A variety of sta-
tistical tests and measures are considered in this chapter, including the Wilcoxon
signed-ranks test, the sign test, Spearman’s rank-order and footrule measures of
correlation, Friedman’s analysis of variance for ranks, Kendall’s coefficient of con-
cordance, Cohen’s weighted kappa measure of agreement, Kendall’s �a and �b

measures of ordinal association, Stuart’s �c statistic, Goodman and Kruskal’s � mea-
sure of ordinal association, and Somers’ dyx and dxy asymmetric measures of ordinal
association.

10.1 Introduction

As detailed in Chap. 8, randomized-block analysis-of-variance designs analyze uni-
variate or multivariate observations on matched objects or subjects. Such designs
have been important in academic fields of inquiry ranging from agriculture to
zoology. Depending on the field of inquiry, they are variously known as randomized-
block, repeated-measures, or within-subjects designs.

Let x 0
ij D .x1ij; x2ij; : : : ; xrij/ denote a transposed vector of r response measure-

ments associated with the ith treatment and jth block. Then the MRBP test statistic
is given by

ı D
"

g

 
b

2

!#�1 gX

iD1

X

j<k

	.xij; xik/ ; (10.1)
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where
P

j<k denotes the sum over all j and k such that 1 � j < k � b and 	.x; y/

is a symmetric distance-function value of two points x0 D .x1; x2; : : : ; xr/ and y0 D
.y1; y2; : : : ; yr/ in an r-dimensional Euclidean space. In the context of randomized-
block designs, the generalized Minkowski distance function is given by

	.x; y/ D
 

rX

iD1

ˇ̌
xi � yi

ˇ̌p
!v=p

;

where p � 1 and v > 0.
The null hypothesis (H0) states that the distribution of ı assigns an equal proba-

bility to each of the

M D �
gŠ
�b

possible, equally-likely allocations of the r-dimensional response measurements to
the g treatment positions within each of the b blocks.

An exact probability value for the observed MRBP test statistic, ıo, may be
expressed as

P.ı � ıojH0/ D number of ı values � ıo

M

and a chance-corrected measure of within-block agreement among all b blocks for
all g treatments provides a measure of effect size given by

< D 1 � ı

�ı

; (10.2)

where �ı is the arithmetic average of the M ı values calculated on all possible
arrangements of the observed data given by

�ı D 1

M

MX

iD1

ıi : (10.3)

When M is very large, an approximate probability value for ı may be obtained from
a resampling procedure, where

P
�
ı � ıojH0

� D number of ı values � ıo

L

and L is a random sample of all possible arrangements of the bg response measure-
ments. Typically, L is set to a large value to ensure accuracy, e.g., L D 1;000;000.
When M is very large and P is exceedingly small, a resampling-approximation per-
mutation procedure may produce no ı values equal to or less than ıo, even with
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L D 1;000;000, yielding an approximate resampling probability value of P D 0:00.
In such cases, moment-approximation permutation procedures based on fitting the
first three exact moments of the discrete permutation distribution to a Pearson
type III distribution provide approximate probability values, as detailed in Chap. 1,
Sect. 1.2.2 [284, 299].

10.2 Wilcoxon Signed-Ranks Test

Research designs that posit a test of differences between g D 2 matched treatment
groups in which univariate (r D 1) response measurements have been obtained for
each of b D 2 blocks are ubiquitous in the statistical literature. When the differences
are measured between rank scores, replacing raw scores, the conventional statistic
for such research designs is Wilcoxon’s signed-ranks test for matched pairs.

In 1945 Frank Wilcoxon published a seminal article on “Individual comparisons
by ranking methods” in the initial volume of Biometrics Bulletin [429]. Contained
within this very brief article of only three pages were two highly innovative rank
tests: the rank-sum test for two independent (unpaired) samples and the signed-ranks
test for two dependent (paired) samples. The Wilcoxon rank-sum test is described
in Chap. 5, Sect. 5.4, as it was designed by Wilcoxon to analyze completely ran-
domized data; the Wilcoxon signed-ranks test is discussed in this chapter as it was
originally designed by Wilcoxon to analyze matched-pairs data.1

Consider a set of response measurements consisting of N0 paired observations,
i.e.,

f.x1; y1/; .x2; y2/; : : : ; .xN0 ; yN0/g :

The absolute differences between xi and yi are given by

di D jxi � yij ; i D 1; : : : ; N0 ;

where any di D 0 is omitted from further consideration and the remaining number
of pairs is denoted by N, N � N0. Next, rank scores (r1; : : : ; rN) are assigned to
the N pairs according to the relative size of the absolute difference. Finally, to each
rank score is affixed the sign of the difference (R1; : : : ; RN), indicating those ranked
differences that arose from negative values of di and those ranked differences that
arose from positive values of di. Two statistics are defined

RC D the sum of the positive Ri values

1For a detailed description of Wilcoxon’s signed-ranks test, see a discussion in A Chronicle of
Permutation Statistical Methods by Berry et al. [41, pp. 137–139].
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and

R� D the sum of the negative Ri values

for i D 1; : : : ; N.
When g D 2 and r D 1, the MRBP test statistic, as defined in Eq. (10.1) on

p. 473, reduces to

ı D
 

b

2

!�1X

j<k

	.xj � xk/ :

Since RCand R� sum to N.N C 1/=2, it is sufficient to establish the identities relat-
ing ı and RC, which are given by

ı D N.N C 1/.2N C 1/

3.N � 1/
�
�
4RC � N.N C 1/

	2

2N.N � 1/
(10.4)

and

RC D N.N C 1/

4
C
�

N ŒN.N C 1/.2N C 1/ � 3.N � 1/ı

24

1=2

: (10.5)

For a detailed description of the functional relationships between ı and RC, see a
1982 article on “An extended class of permutation techniques for matched pairs” by
Mielke and Berry [288, p. 1200].

10.2.1 Example 1: v D 2

To illustrate the Wilcoxon signed-ranks test, consider the univariate matched-pairs
data listed in Fig. 10.1. The raw data represent pounds of head corn per acre and

Fig. 10.1 Example
matched-pairs data for the
Wilcoxon signed-ranks test
with N D 11 paired
differences and associated
signed-ranks [390, p. 24]

Pair x y d R

1 1,443 1,316 +127 +11

2 2,009 1,903 +106 +10

3 2,011 1,910 +101 +9

4 2,180 2,108 +72 +8

5 1,542 1,612 −70 − 7

6 2,122 2,060 +62 +6

7 1,482 1,444 +38 +5

8 1,925 1,971 − 36 − 4

9 2,463 2,496 − 33 − 3

10 1,535 1,511 +24 +2

11 1,915 1,935 − 20 − 1



10.2 Wilcoxon Signed-Ranks Test 477

are adapted from Student’s oft-cited 1908 paper on “The probable error of a mean”
[390, p. 24].

For the univariate matched-pairs data listed in Fig. 10.1, the observed value of
RC is RC

o D 11 C 10 C 9 C 8 C 6 C 5 C 2 D 51. For a small sample such as this,
tables of exact probability values are available from a variety of sources. Using
a standard table published by Siegel and Castellan, the exact probability value of
RC D 51 is given as P D 0:1230 [375, pp. 332–334].

It is well established that as N !1, RC is approximately distributed as N.0; 1/

under the null hypothesis with mean and variance given by

�RC
D N.N C 1/

4

and

�2
RC

D N.N C 1/.2N C 1/

24
;

respectively. Therefore, the standardized score of RC is given by

z D RC � �RC

�RC

D
RC � N.N C 1/

4

N.N C 1/.2N C 1/

24

�1=2
;

an especially convoluted form expressed in many textbooks. For the example
matched-pairs data listed in Fig. 10.1,

�RC
D N.N C 1/

4
D 11.11 C 1/

4
D 33 ;

�2
RC

D N.N C 1/.2N C 1/

24
D 11.11 C 1/Œ.2/.11/ C 1

24
D 126:50 ;

the observed standardized score is

zo D RC
o � �RC

�RC

D 51 � 33p
126:5000

D C1:6004 ;

and the two-sided N.0; 1/ approximate probability value of zo D C1:6004 under
the null hypothesis is P D 0:1095. A standard correction for continuity for RC pro-
vides a closer approximation to the exact probability value of P D 0:1230 with
zo D C1:5559 and a corrected two-sided N.0; 1/ approximate probability value of
P D 0:1197, under the null hypothesis.
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For the univariate matched-pairs data listed in Fig. 10.1, there are only

M D �
gŠ
�b D 211 D 2;048

possible, equally-likely arrangements of the observed data. Therefore, an exact solu-
tion is easily accomplished. Employing squared Euclidean distance between the
rank scores with v D 2 to correspond to Wilcoxon’s signed-ranks test and follow-
ing Eq. (10.1) on p. 473, the observed value of the MRBP test statistic with v D 2

is ıo D 77:6363. If all arrangements of the observed matched-pairs data listed in
Fig. 10.1 occur with equal chance, the exact probability value of ıo D 77:6363 com-
puted on the M D 2;048 possible arrangements of the observed rank scores with
b D 11 blocks preserved for each arrangement is

P.ı � ıojH0/ D number of ı values � ıo

M
D 252

2;048
D 0:1230 ;

which agrees with the tabled value from Siegel and Castellan [375, pp. 332–334].
For comparison, the two-sided N.0; 1/ approximate probability value, corrected for
continuity, is P D 0:1197.

Following Eq. (10.3) on p. 474, the exact expected value of the M D 2;048 ı

values is �ı D 92:00 and, following Eq. (10.2) on p. 474, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 77:6363

92:00
D C0:1561 ;

indicating approximately 16 % within-block agreement above that expected by
chance.

Finally, following Eq. (10.4) on p. 476, the relationships between ı and RC can
be confirmed. For the univariate matched-pairs data listed in Fig. 10.1, the observed
value of ı is

ıo D N.N C 1/.2N C 1/

3.N � 1/
�
�
4RC

o � N.N C 1/
	2

2N.N � 1/

D 11.11 C 1/Œ2.11/ C 1

3.11 � 1/
� Œ4.51/ � 11.11 C 1/2

2.11/.11 � 1/

D 101:2000 � 23:5636 D 77:6363
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and following Eq. (10.5) on p. 476, the observed value of RC is

RC
o D N.N C 1/

4
C
�

N ŒN.N C 1/.2N C 1/ � 3.N � 1/ıo

24

1=2

D 11.11 C 1/

4
C
�

.11/f11.11 C 1/Œ2.11/ C 1 � 3.11 � 1/.77:6363/g
24

�1=2

D 33 C 18 D 51 :

10.2.2 Example 2: v D 1

For a comparison analysis of the univariate matched-pairs data listed in Fig. 10.1, set
v D 1 instead of v D 2, employing ordinary Euclidean distance between the rank
scores. For the univariate matched-pairs data listed in Fig. 10.1, there are still only

M D �
gŠ
�b D 211 D 2;048

possible, equally-likely arrangements of the observed data. Following Eq. (10.1) on
p. 473, the observed value of the MRBP test statistic with v D 1 is ıo D 7:4182.
If all arrangements of the observed rank scores listed in Fig. 10.1 occur with equal
chance, the exact probability value of ıo D 7:4182 computed on the M D 2;048

possible arrangements of the observed rank scores with b D 11 blocks preserved
for each arrangement is

P.ı � ıojH0/ D number of ı values � ıo

M
D 300

2;048
D 0:1465 :

For comparison, the exact probability value based on v D 2 and M D 2;048 in
Example 1 is P D 0:1230. No comparison is made with the conventional Wilcoxon
signed-rank test as Wilcoxon’s test is undefined for v D 1.

Following Eq. (10.3) on p. 474, the exact expected value of the M D 2;048 ı val-
ues is �ı D 8:00 and, following Eq. (10.2) on p. 474, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 7:4182

8:00
D C0:0727 ;

indicating approximately 7 % within-block agreement above that expected by
chance.
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10.3 Sign Test

The sign test is based solely upon the direction of differences between two sets of
response measurements, ignoring the magnitudes of the differences. The sign test is
applicable to the case of two matched samples when a researcher simply wishes to
establish that g D 2 conditions are different.

Like the signed-rank test, consider response measurements consisting of N0
paired observations f.x1; y1/; .x2; y2/; : : : ; .xN0 ; yN0/g. The differences are given by

di D xi � yi ; i D 1; : : : ; N0 ;

where any di D 0 is omitted from further consideration and the remaining number of
pairs is denoted by N, N � N0. Next, the magnitudes of the differences are removed
and the signs of the differences are preserved, indicating the differences that arose
from negative values of di and the differences that arose from positive values of
di. Let di D ˙1 for i D 1; : : : ; N and let RC denote the number of positive signed
values, then the identities relating ı and RC are given by

ı D 4RC.N � RC/

N.N � 1/
and RC D N Cp

N2 � N.N � 1/ı

2
; (10.6)

as described by Mielke and Berry in 1982 [288].

10.3.1 Example Sign Test

To illustrate the computation of a sign test, consider the univariate matched-pairs
data listed in Fig. 10.2. The data are adapted from Siegel and Castellan [375, p. 82].
For the matched-pairs data listed in Fig. 10.2, the observed sum of positive signs is

Fig. 10.2 Example
matched-pairs data for the
sign test with N D 14 paired
differences and associated
signs

Pair x y d Sign

1 5 3 +2 +

2 4 3 +1 +

3 6 4 +2 +

4 6 5 +1 +

5 2 3 −1 −

6 5 2 +3 +

7 1 2 −1 −

8 4 3 +1 +

9 5 2 +3 +

10 4 2 +2 +

11 4 5 −1 −

12 7 2 +5 +

13 5 3 +2 +

14 5 1 +4 +
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RC
o D 11 (pairs 1, 2, 3, 4, 6, 8, 9, 10, 12, 13, and 14). The exact probability value of

RC
o � 11 is given by the binomial distribution,

P.i � xjN/ D
NX

iDx

 
N

i

!
pi.1 � p/N�i ;

where in this example, N D 14, x D RC
o D 11, and p D 1=2. Thus,

P.i � 11j14/ D
14X

iD11

 
14

i

!�
1

2

�i �
1 � 1

2

�14�i

D

 
14

11

!
C
 

14

12

!
C
 

14

13

!
C
 

14

14

!

214
D 364 C 91 C 14 C 1

16;384

D 470

16;384
D 0:0287

and the exact binomial two-sided probability value is P D 2.0:0287/ D 0:0574.
For the univariate matched-pairs data listed in Fig. 10.2, there are only

M D �
gŠ
�b D 214 D 16;384

possible, equally-likely arrangements of the observed data. Therefore, an exact solu-
tion is feasible. Following Eq. (10.1) on p. 473, the observed value of the MRBP
test statistic with v D 1 is ıo D 0:7253.2 If all arrangements of the observed rank
scores listed in Fig. 10.2 occur with equal chance, the exact probability value of
ıo D 0:7253 computed on the M D 16;384 possible arrangements of the observed
rank scores with b D 14 blocks preserved for each arrangement is

P.ı � ıojH0/ D number of ı values � ıo

M
D 940

16;384
D 0:0574 :

For comparison, the exact binomial two-sided probability value is also P D 0:0574.
Following Eq. (10.3) on p. 474, the exact expected value of the M D 16;384 ı val-

ues is �ı D 1:00 and, following Eq. (10.2) on p. 474, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 0:7253

1:00
D C0:2747 ;

2While the values of ı and �ı depend on the choice of v, for the sign test v D 1 and v D 2 yield
identical probability values.
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indicating approximately 27 % within-block agreement above that expected by
chance.

If RC denotes the number of positive signs and di D ˙1 for i D 1; : : : ; N, then
following Eq. (10.6) on p. 480, the observed values of ı and RC for the matched-
pairs data listed in Fig. 10.2 are

ıo D 4RC
o .N � RC

o /

N.N � 1/
D 4.11/.14 � 11/

14.14 � 1/
D 132

182
D 0:7253

and

RC
o D N Cp

N2 � N.N � 1/ıo

2

D 14 Cp
142 � 14.14 � 1/0:7253

2
D 22

2
D 11 :

10.4 Spearman’s Rank-Order Correlation Coefficient

Consider two rankings of g objects consisting of the first g integers and let xi and yi

for i D 1; : : : ; g denote the first and second rankings, respectively. A popular mea-
sure of correlation between the two rankings is Spearman’s rank-order correlation
coefficient, �, given by

� D 1 �

gX

iD1

d2
i

g.g2 � 1/

6

D 1 �
6

gX

iD1

d2
i

g.g2 � 1/
; (10.7)

where di D xi � yi for i D 1; : : : ; g. Rho (�) was first developed by Charles Spear-
man in two articles in 1904 and 1906 that appeared in American Journal of
Psychology and British Journal of Psychology, respectively [381, 382].3

Note that the denominator of Spearman’s rank-order correlation coefficient,
g.g2 � 1/=6, as given in Eq. (10.7), represents one-half the maximum value ofPg

iD1 d2
i when xi and yi for i D 1; : : : ; g both consist of untied rank scores and

the yi rank scores are the exact inverse of the xi rank scores, i.e., yi D g � xi C 1 for

3Spearman [381] allowed that the general idea of looking at rank differences was first due to
Alfred Binet, while his contribution was to work out a formula with the properties of a correlation
coefficient [171, pp. 513–514].
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i D 1; : : : ; g. Thus, Spearman’s � is a maximum-corrected measure of rank-order
correlation.

It is easily confirmed that the denominator of Eq. (10.7), g.g2 � 1/=6, is one-half
the maximum value of

Pg
iD1 d2

i when xi and yi for i D 1; : : : ; g are both untied rank
scores and the yi rank scores are the inverse of the xi rank scores. For the maximum
value of

Pg
iD1 d2

i , define

gX

iD1

d2
i D

gX

iD1

.xi � yi/
2 D

gX

iD1

x2
i C

gX

iD1

y2
i � 2

gX

iD1

xiyi : (10.8)

Since, for g untied rank scores,

gX

iD1

x2
i D

gX

iD1

y2
i D g.g C 1/.2g C 1/

6

and, for yi D g � xi C 1, i D 1; : : : ; g,

gX

iD1

xiyi D g.g C 1/.g C 2/

6
;

then substituting into Eq. (10.8) yields

gX

iD1

d2
i D 2g.g C 1/.2g C 1/

6
� 2g.g C 1/.g C 2/

6

D 2g.g C 1/.g � 1/

6
D g.g2 � 1/

3
;

which is twice the value of g.g2 � 1/=6.
Now consider the MRBP test statistic given by

ı D
"

g

 
b

2

!#�1 gX

iD1

X

j<k

	.xij; xik/ ; (10.9)

where g denotes the number of treatments, b is the number of blocks, and 	.x; y/ is
a generalized Minkowski distance-function value of two points, x0 D .x1; : : : ; xr/

and y0 D .y1; : : : ; yr/ in an r-dimensional Euclidean space given by

	.x; y/ D
 

rX

iD1

ˇ̌
xi � yi

ˇ̌p
!v=p

;

where p � 1 and v > 0.
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Also, let a chance-corrected measure of effect size between the two rankings be
given by

< D 1 � ı

�ı

; (10.10)

where �ı is the arithmetic average of the M D gŠ ı values calculated on all possible
arrangements of the observed data given by

�ı D 1

M

MX

iD1

ıi : (10.11)

When p D 2, v D 2, and xi and yi for i D 1; : : : ; g are rank-order statistics, the
MRBP measure of effect size, <, is identical to the Spearman’s rank-order correla-
tion coefficient, �, given in Eq. (10.7).

10.4.1 Example: v D 2

Consider the rank-correlation data listed in Fig. 10.3 with g D 8 objects, b D 2

blocks, and r D 1 response measurement. For the rank-correlation data listed in
Fig. 10.3, the columns labeled x and y contain the observed raw scores, the columns
labeled rx and ry contain the corresponding rank scores, the column labeled d con-
tains the signed differences between rx and ry, and the column labeled d2 contains
the squared rank differences. Following Eq. (10.7) on p. 482, the observed value of
Spearman’s rank-order correlation coefficient is

�o D 1 �
6

gX

iD1

d2
i

g.g2 � 1/
D 1 � 6.18/

8.82 � 1/
D 1 � 108

504
D C0:7857 : (10.12)

Fig. 10.3 Example
rank-order correlation data
with g D 8 objects, b D 2

blocks, and r D 1 response
measurement

Pair x y rx ry d d 2

1 72 63 8 7 +1

2 46 49 6 6

3 13 35 2 4 −2 4

4 27 17 4 2 +2

5 53 81 7 8 −1

6 34 41 5 5 0

7 11 26 1 3 −2

8 22 15 3 1 +2

81Total

4

4

0

4

0

1

1

0
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Alternatively, for the rank-correlation data listed in Fig. 10.3, let v D 2, employ-
ing squared Euclidean distance between the rank scores to correspond to the Spear-
man’s rank-order correlation coefficient [381, 382]. Then, following Eq. (10.9), the
observed value of the MRBP test statistic with v D 2 is ıo D 2:2500, following
Eq. (10.11) the exact expected value of the M D 40;320 ı values is �ı D 10:50, and
following Eq. (10.10), the observed chance-corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 2:2500

10:50
D C0:7857 ;

indicating approximately 79 % within-block agreement above that expected by
chance.

The Spearman’s rank-order correlation coefficient, as expressed in Eq. (10.7) on
p. 482, is not appropriate for rank-correlation data with tied rank scores, but < eas-
ily accommodates tied rank scores without any adjustment.4 Thus, the Spearman’s
rank-order correlation coefficient is generalized to include tied rank scores and � is
revealed simply as a special case of < when no ties are present. Finally, as shown
by Berry and Mielke, Spearman’s �, like <, is a chance-corrected measure of agree-
ment since the expected disagreement is EŒı D �ı [29].

Note that for the rank data listed in Fig. 10.3, �o D <o D C0:7857. It is not
generally recognized that under special conditions Spearman’s maximum-corrected
rank-order correlation coefficient, �, is also a chance-corrected measure of agree-
ment. When both variable x and variable y consist of ranks from 1 to g with no
tied values, or variable x includes tied ranks and variable y is a permutation of vari-
able x, then Spearman’s � is, paradoxically, both a maximum-corrected measure of
correlation and a chance-corrected measure of agreement since any deviation from
perfect agreement also counts as a deviation from perfect correlation [223, p. 144].
The Pearson product-moment correlation for interval-level response measurements
is also simultaneously a maximum-corrected measure of correlation and a chance-
corrected measure of agreement whenever variable y is a permutation of variable
x since the standard deviations of variables x and y are necessarily equal [29, 194,
p. 7].

Because there are only M D gŠ D 8Š D 40;320 possible, equally-likely arrange-
ments of the observed data listed in Fig. 10.3, an exact permutation test is feasible.
Since < is simply a linear transformation of ı, if all arrangements of the observed
rank scores listed in Fig. 10.3 occur with equal chance, the exact probability value
of ıo D 2:2500 is identical to the probability of <o D C0:7857 computed on the
M D 40;320 possible arrangements of the observed rank scores with b D 2 blocks

4It is well known that simply calculating Pearson’s product-moment correlation coefficient, rxy, on
the paired-rank scores provides Spearman’s rank-order correlation coefficient and accommodates
for any tied rank scores.



486 10 Randomized Block Designs: Ordinal Data

preserved for each arrangement. Thus,

P.< � <ojH0/ D P.ı � ıojH0/ D number of ı values � ıo

M

D 563

40;320
D 0:0140 :

10.5 Spearman’s Footrule Agreement Measure

The oft-cited 1904 and 1906 articles by Charles Spearman contained two measures
of rank-order correlation: the well-known Spearman’s rank-order correlation coef-
ficient, �, given in Eq. (10.7) on p. 482 and discussed in Sect. 10.4, vide supra, and
a second, lesser-known, correlation coefficient that Spearman named “the footrule”
[381, 382].5;6

As with Spearman’s rank-order correlation coefficient, consider two rankings of
g objects consisting of the first g integers and let xi and yi for i D 1; : : : ; g denote
the first and second rankings, respectively. Then, Spearman’s footrule is given by

R D 1 �

gX

iD1

ˇ̌
xi � yi

ˇ̌

g2 � 1

3

D 1 �
3

gX

iD1

ˇ̌
xi � yi

ˇ̌

g2 � 1
: (10.13)

Three limitations of the footrule contribute to its lack of use in contemporary
research. First, unlike other measures of rank correlation, R does not norm properly
between the limits of �1 and C1; second, like Spearman’s �, R is limited to fully
ranked data and does not accommodate tied rank scores; and third, because of the
summation of absolute differences between the rank scores, it is somewhat cumber-
some to establish the probability value of an observed value of R, especially when
g is small.7

5Actually, out of some 40 rank coefficients developed by Spearman, a number of measures of rank
correlation are presented and discussed in the two Spearman articles, including existing measures
such as Pearson’s rxy, Yule’s Q, Yule’s Y, and a number of other suggested new measures.
6As noted by Heiser, Spearman included a discussion of his rank-order correlation coefficient in
his 1906 paper, only to dismiss it in favor of the footrule [171, p. 514].
7Spearman’s footrule is one of only a few conventional test statistics based on ordinary Euclidean
distances (absolute differences) between values.
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10.5.1 Norming and Tied Rank Scores

Spearman’s R attains a maximum value of C1 when xi is identical to yi for
i D 1; : : : ; g and no tied values are present. However, if yi D g � xi C 1 for i D
1; : : : ; g, then R D �0:5 when g is odd and

R D �0:5

�
1 C 3

g2 � 1

�

when g is even [208]. Consequently, R does not attain a minimum value of �1,
except when g D 2. Maurice Kendall explicitly pointed to this apparent lack of
proper norming as a defect in the footrule [208, p. 33] and Spearman, recognizing
that negative values of R did not represent inverse correlation, actually suggested
that “it is better to treat every correlation as positive” [381, pp. 87–88].

Note that, unlike Spearman’s rank-order correlation coefficient, the denominator
of Spearman’s footrule coefficient, .g2 � 1/=3, as given in Eq. (10.13), does not rep-
resent one-half the maximum value of

Pg
iD1 jxi � yij when xi and yi for i D 1; : : : ; g

are both untied rank scores and the yi rank scores are the exact inverse of the
xi rank scores, i.e., yi D g � xi C 1 for i D 1; : : : ; g. Thus, Spearman’s R is not
a maximum-corrected measure of rank-order correlation and is instead a chance-
corrected measure of agreement.

It can easily be shown that Spearman’sR is a chance-corrected measure of agree-
ment and is not, in fact, a conventional measure of correlation, which explains
why R can, on occasion, yield negative values. To show that the expected value
of
Pg

iD1 jdij is given by .g2 � 1/=3, let

gX

iD1

jdij D 1

g

gX

iD1

gX

jD1

ji � jj

D 2

g

g�1X

iD1

gX

jDiC1

.j � i/

D 1

g

g�1X

iD1

�
g.g C 1/ C i2 � i.2g C 1/

	

D g.g C 1/

6g

�
6.g C 1/ C .2g � 1/ � 3.2g C 1/

	

D g2 � 1

3
:
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Therefore, Spearman’s footrule coefficient,

R D 1 �

gX

iD1

jdij

g2 � 1

3

;

is a chance-corrected measure of agreement when the expected value of
Pg

iD1 jdij
is given by .g2 � 1/=3, as it takes the classic form of chance-corrected measures of
agreement given by

Agreement D 1 � Observed disagreement

Expected disagreement

[223, p. 140].8

Alternatively, let

ı D 1

g

gX

iD1

jxi � yij ;

�ı D 1

g2

gX

iD1

gX

jD1

jxi � yjj ;

and let

< D 1 � ı

�ı

denote a general measure of the relationship between the two sets of rank scores
that is not limited to untied rank scores. Let x and y with no subscripts denote
.x1; : : : ; xg/ and .y1; : : : ; yg/, respectively. If no tied rank scores exist in either
x or y, then the expected value of ı is given by

�ı D 1

g2

gX

iD1

gX

jD1

ji � jj

D 2

g2

g�1X

iD1

gX

jDiC1

. j � i/

8Spearman offered a somewhat different derivation of .g2 � 1/=3 in the Appendix to his 1906
paper on the footrule [382, p. 105].
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D 1

g2

g�1X

iD1

�
g.g C 1/ C i2 � i.2g C 1/

	

D g.g � 1/

6g2

�
6.g C 1/ C .2g � 1/ � 3.2g C 1/

	

D g2 � 1

3g
; (10.14)

[29, pp. 841–842] and the relationships between Spearman’s R and the MRBP test
statistic are given by

R D 1 � 3gı

g2 � 1
and ı D .g2 � 1/.R � 1/

3g
: (10.15)

Finally, Spearman’s R and < can be shown to be equivalent. Given

< D 1 � ı

�ı

;

then

ı D �ı.1 � </ : (10.16)

Substituting �ı.1 � </ in Eq. (10.16) for ı in

R D 1 � 3gı

g2 � 1

yields

R D 1 � 3g�ı.1 � </

g2 � 1
:

Then substituting .g2 � 1/=3g in Eq. (10.14) for �ı yields

R D 1 �
3g

�
g2 � 1

3g

�
.1 � </

g2 � 1
D 1 � .g2 � 1/.1 � </

g2 � 1
D < : (10.17)

Thus, the functional relationships between Spearman’s footrule, ı, and < are
established, the footrule is generalized to include tied rank scores on both x and y,
and R is shown to be equivalent to < when no tied rank scores exist. Thus, R, like
<, is a chance-corrected measure of agreement, which explains why a lower limit
of �1 is never attained by R, except for the trivial case when g D 2. This places
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Spearman’s footrule into the family of chance-corrected agreement measures that
includes such measures as Scott’s � coefficient of intercoder agreement [368] and
Cohen’s � coefficient of agreement [70].

10.5.2 Probability of Spearman’s Footrule

When both the x and y variables consist entirely of untied rank scores from 1 to g
and variable y is a permutation of the rank observations in variable x, then methods
exist to determine the probability of an observed R under the null hypothesis that
any of the gŠ orderings of either the x or y values is equally likely. If

D D
gX

iD1

ˇ̌
xi � yi

ˇ̌ D gı

then, since R is a linear transformation of D, the probability of an observed value of
D is the probability of an observed value of R. Tables of the exact cumulative dis-
tribution function of D for 2 � g � 10 and approximate probability values based
on Monte Carlo methods for 11 � g � 15 were given by Ury and Kleinecke in
1979 [408]. In 1988 Franklin extended the work of Ury and Kleinecke, reported
the exact cumulative distribution function of D for 11 � g � 18, and discussed the
rate of convergence to an approximating normal distribution [125]. In 1990 Salama
and Quade used Markov-chain properties to obtain the exact cumulative distribution
function of D for 4 � g � 40 and further investigated approximations to the discrete
distribution of D [360].

If either variable x or variable y contains tied values, then the calculation of
a probability value becomes more complex. However, because R D < and < is
merely a linear transformation of ı, the probability of an observed ı is equivalent to
the probability of an observed R. Thus, if Ro and ıo denote the observed values of
R and ı, respectively, then

P.R � RojH0/ D P.ı � ıojH0/ D number of ı values � ıo

M
;

where M D gŠ in this application.

10.5.3 Example: v D 1

Consider the univariate paired-rank data listed in Fig. 10.4 where g D 8, b D 2, r D
1, and there are no tied rank scores. Following Eq. (10.13) on p. 486, the observed
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Fig. 10.4 Example footrule
rank-correlation data with
g D 8 objects, b D 2 blocks,
and r D 1 response
measurement

Pair x y x − y |x − y |

1 8 7

2 6 6 0 0

3 2 4 −2 2

4 4 2

5 7 8 −1 1

6 5 5 0 0

7 1 3 −2 2

8 3 1

10Total

+1 1

+2 2

+2 2

value of Spearman’s R is

Ro D 1 �
3

gX

iD1

jxi � yij

g2 � 1
D 1 � 3.10/

82 � 1
D 1 � 30

63
D C0:5238 :

Alternatively, for the paired-rank data listed in Fig. 10.4, let v D 1, employing
ordinary Euclidean distance between the rank scores to correspond to Spearman’s
footrule [382]. Then, following Eq. (10.9) on p. 483, the observed value of the
MRBP test statistic with v D 1 is ıo D 1:25. Following Eq. (10.11) on p. 484, the
exact expected value of the M D 40;320 ı values is �ı D 2:6250 and, following
Eq. (10.10) on p. 484, the observed chance-corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 1:25

2:6250
D C0:5238 ;

indicating approximately 52 % within-block agreement above that expected by
chance, and establishing the identity between R and < when v D 1.

Since there are only M D 8Š D 40;320 possible, equally-likely arrangements of
the observed data listed in Fig. 10.4, an exact permutation test is feasible. If all
arrangements of the observed rank scores listed in Fig. 10.4 occur with equal chance,
the exact probability value of ıo D 1:25 computed on the M D 40;320 possible
arrangements of the observed rank scores with b D 2 blocks preserved for each
arrangement is

P.ı � ıojH0/ D number of ı values � ıo

M
D 1;248

40;320
D 0:0310 :

Finally, the relationships between R and ı can be confirmed with the univariate
paired-rank data listed in Fig. 10.4. Thus, following the expressions in Eq. (10.15)
on p. 489, the observed values of Spearman’s R and the MRBP test statistic are

Ro D 1 � 3gıo

g2 � 1
D 1 � .3/.8/.1:25/

82 � 1
D 1 � 0:4762 D C0:5238
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and

ıo D .g2 � 1/.1 � Ro/

3g
D .82 � 1/.1 � 0:5238/

.3/.8/
D 30

24
D 1:25 :

10.5.4 Multiple Blocks

Spearman’s footrule, as originally presented in his 1904 and 1906 articles, is lim-
ited to g � 2 untied rank scores and b D 2 blocks [381, 382]. However, the MRBP
measure of effect size, <, suffers from no such limitations. Spearman’s footrule is
thus easily generalized to tied or untied rank scores and b � 2 sets of rankings. Let

ı D
"

g

 
b

2

!#�1 gX

iD1

X

r<s

ˇ̌
xri � xsi

ˇ̌v

denote an average distance function based on all
�b

2

�
possible paired absolute differ-

ences among values of the b sets of rankings and let

�ı D
"

g2

 
b

2

!#�1 gX

iD1

gX

jD1

X

r<s

ˇ̌
xri � xsj

ˇ̌v

denote the expected value of ı where b is the number of rankings, g is the number of
objects,

P
r<s is the sum over all r and s such that 1 � r < s � g, and v D 1. Then,

as previously,

< D 1 � ı

�ı

(10.18)

is a chance-corrected measure of the agreement among the b sets of rankings that is
not limited to untied rank scores. Note that in the case of b D 2, Eq. (10.18) reduces
to Spearman’s 1906 footrule for b D 2 blocks as given in Eq. (10.13) on p. 486.

10.5.5 Example Analysis

Consider a generalized footrule analysis where b D 4 blocks contain untied rank
scores for g D 8 objects. The randomized-block data are adapted from Berry and
Mielke [30, p. 378] and are given in Fig. 10.5. An exact solution is not possible for
these data since there are

M D �
gŠ
�b D �

8Š
�4 D 2;642;908;293;365;760;000
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Fig. 10.5 Rank scores
assigned to g D 8 objects by
b D 4 blocks

Block

Object 1 2 3 4

1 6 7 8 8

2 8 5 4 7

3 1 3 6 4

4 2 1 2 2

5 3 2 1 1

6 5 6 7 5

7 4 4 3 3

8 7 8 5 6

possible, equally-likely arrangements of the data listed in Fig. 10.5. Therefore, a
resampling permutation approach is mandated. Following Eq. (10.1) on p. 473, the
observed value of the MRBP test statistic with v D 1 is ıo D 1:4167. If all M pos-
sible arrangements of the observed rank scores listed in Fig. 10.5 occur with equal
chance, the approximate resampling probability value of ıo D 1:4167 computed on
L D 1;000;000 random arrangements of the observed rank scores with b D 4 blocks
preserved for each arrangement is

P.ı � ıojH0/ D number of ı values � ıo

L
D 195

1;000;000
D 0:1950�10�3 :

Following Eq. (10.3) on p. 474, the exact expected value of the M ı values is
�ı D 2:6250 and, following Eq. (10.2) on p. 474, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 1:4167

2:6250
D C0:4603 ;

indicating approximately 46 % within-block agreement above that expected by
chance.

For comparison, consider a more conventional approach to the randomized-block
data listed in Fig. 10.5. Although originally designed for continuous data, another
measure that accommodates multiple blocks is the intraclass correlation coefficient
(ICC), advocated as a measure of agreement by W.S. Robinson in 1957 [350].
While there are at least six different intraclass correlation coefficients, ICC.3; 1/

and ICC.2; 1/ are the most appropriate for these purposes [373]. ICC.3; 1/ treats
the blocks as fixed effects, while ICC.2; 1/ treats the blocks as random effects. Both
measures yield a coefficient of consistency among the scores, indicating the extent
to which the blocks are interchangeable.

ICC.2; 1/ is the most commonly used intraclass correlation coefficient, where
the same b judges rate each of g objects. The b judges are considered to be a ran-
dom sample from a population of potential raters. Because ICC.2; 1/ is used almost
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exclusively in the literature, it is common in journals to indicate ICC.2; 1/ simply
as rI .

For the randomized-block data listed in Fig. 10.5, rI D 0:7258. With �1 D g �
1 D 8 � 1 D 7 and �2 D .b � 1/.g � 1/ D .4 � 1/.8 � 1/ D 21 degrees of free-
dom, rI D 0:7258 yields an F-ratio of F D 10:26 with a corresponding approximate
probability value of P D 0:1447�10�4, under the null hypothesis. Because the data
consist of untied rank scores in this example, the sum of squares for blocks is neces-
sarily equal to zero for rI . Moreover, compared with <, rI is designed for continuous
data, is a biased estimator of the population �I value, assumes normality, and is
based on squared Euclidean differences among rank scores.

10.6 Friedman’s Analysis of Variance for Ranks

In 1937 Milton Friedman proposed a balanced randomized-block analysis of vari-
ance for ranks in an article titled “The use of ranks to avoid the assumption of
normality implicit in the analysis of variance” that appeared in Journal of the Amer-
ican Statistical Association [128]. As reflected in the title of the article, the purpose
was to avoid the assumption of normality underlying the conventional randomized-
block analysis of variance. Friedman called the new procedure “the method of
ranks” and designated the associated statistic as �2

r as, he argued, the statistic tends
to be distributed according to the usual chi-squared distribution with g � 1 degrees
of freedom under the null hypothesis that the observed ranking is random [128,
p. 676].9

Let b denote the number of blocks and g denote the number of objects to be
ranked. Then Friedman’s statistic is given by

�2
r D 12

bg.g C 1/

gX

iD1

R2
i � 3b.g C 1/ ; (10.19)

where Ri for i D 1; : : : ; g is the sum of the rank scores for the ith object and there
are no tied rank scores [128, p. 679]. A number of statistics are either identical,
related, or equivalent to Friedman’s �2

r . Among these are Kendall and Babington
Smith’s coefficient of concordance [209] given by10

W D
12

gX

iD1

R2
i � 3gb2.g C 1/

gb2.g2 � 1/
; (10.20)

9Although Friedman labeled the statistic as �2
r , many textbooks refer to Friedman’s analysis of

variance for ranks test statistic as T.
10The original 1939 article was by Maurice Kendall and Bernard Babington Smith, but the statistic
is typically attributed only to Kendall.
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the average value of all pairwise Spearman’s rank-order correlation coefficients
[381, 382] given by

N� D 2

b.b � 1/

b�1X

iD1

bX

jDiC1

�ij ; (10.21)

and the Wallis rank-order correlation ratio, given by

�2
r D �2

r

b.g � 1/
; (10.22)

which, as acknowledged by Wallis, is identical to Kendall and Babington Smith’s
W [414].

The relationships among the various measures are given by

�2
r D Wb.g � 1/ and W D �2

r

b.g � 1/
;

N� D bW � 1

b � 1
and W D N�.b � 1/ C 1

b
;

�2
r D N�.b � 1/.g � 1/ C g � 1 and N� D �2

r � g C 1

.b � 1/.g � 1/
;

�2
r D �2

r

b.g � 1/
and �2

r D �2
r b.g � 1/ ;

�2
r D N�.b � 1/ C 1

b
and N� D b�2

r � 1

b � 1
;

and �2
r D W.

The functional relationships between Friedman’s �2
r and the MRBP test statistic,

when p D v D 2, are given by

�2
r D bŒ2.g C 1/.2g C 1/ � 3.g C 1/2 � 6.b � 1/ı

g C 1

and

ı D bŒ2.g C 1/.2g C 1/ � 3.g C 1/2 � �2
r .g C 1/

6.b � 1/
:

Alternatively, it can easily be shown that the chance-corrected measure of within-
block effect size given by

< D 1 � ı

�ı

(10.23)
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is identical to N� as given in Eq. (10.21). Therefore, the relationships between < and
Friedman’s �2

r are given by

< D �2
r � g C 1

.b � 1/.g � 1/
and �2

r D <.b � 1/.g � 1/ C g � 1 ;

the relationships between < and Kendall and Babington Smith’s W are given by

< D bW � 1

b � 1
and W D <.b � 1/ C 1

b
;

and the relationships between < and Wallis’s �2
r are given by

< D b�2
r � 1

b � 1
and �2

r D <.b � 1/ C 1

b
:

Note that while �2
r , W, N�, and �2

r , as expressed in Eqs. (10.19), (10.20), (10.21),
and (10.22), assume no tied rank scores, <, the chance-corrected measure of effect
size as expressed in Eq. (10.23) easily accommodates any number of tied rank
scores.11

10.6.1 Example 1: v D 2

To illustrate the Friedman’s analysis of variance for ranks test, and its relationships
with other statistics, consider the univariate rank scores listed in Fig. 10.6. The data
are adapted from Siegel and Castellan [375, p. 263].

Fig. 10.6 Example data for
the Friedman’s analysis of
variance for ranks with b D 3

blocks and g D 6 objects

Block

Object 1 2 3 R

1 1 1 2 4

2 6 5 3 14

3 3 6 6 15

4 4 4 5 13

5 5 2 4 11

6 2 3 1 6

11It should be noted that most textbooks provide elaborate and cumbersome corrections for Fried-
man’s �2

r and Kendall and Babington Smith’s W to accommodate tied rank scores.
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For the untied rank scores listed in Fig. 10.6, the sum of the squared rank scores
is

gX

iD1

R2
i D 42 C 142 C 152 C 132 C 112 C 62 D 763 ;

the observed value of Friedman’s �2
r is

�2
r D 12

bg.g C 1/

gX

iD1

R2
i � 3b.g C 1/

D 12

.3/.6/.6 C 1/
763 � .3/.3/.6 C 1/ D 9:6667 ;

the observed value of Kendall and Babington Smith’s W is

W D
12

gX

iD1

R2
i � 3gb2.g C 1/

gb2.g2 � 1/

D .12/.763/ � .3/.6/.32/.6 C 1/2

.6/.32/.62 � 1/
D 0:6444 ;

and the observed value of the pairwise-average Spearman’s rank-order correlation
with �12 D 0:4286, �13 D 0:3714, and �23 D 0:60 is

N� D 2

b.b � 1/

b�1X

iD1

bX

jDiC1

�ij D 2.0:4286 C 0:3714 C 0:60/

3.3 � 1/
D 0:4667 :

For the randomized-block data listed in Fig. 10.6 with b D 3 blocks and g D 6

objects, the observed relationships between Friedman’s �2
r and Kendall and Babing-

ton Smith’s W are

�2
r D Wb.g � 1/ D .0:6444/.3/.6 � 1/ D 9:6667

and

W D �2
r

b.g � 1/
D 9:6667

3.6 � 1/
D 0:6444 ;

the observed relationships between N� and Kendall and Babington Smith’s W are

N� D bW � 1

b � 1
D .3/.0:6444/ � 1

3 � 1
D 0:4667
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and

W D N�.b � 1/ C 1

b
D .0:4667/.3 � 1/ C 1

3
D 0:6444 ;

the observed relationships between Friedman’s �2
r and N� are

�2
r D N�.b � 1/.g � 1/ C g � 1 D .0:4667/.3 � 1/.6 � 1/ C 6 � 1 D 9:6667

and

N� D �2
r � g C 1

.b � 1/.g � 1/
D 9:6667 � 6 C 1

.3 � 1/.6 � 1/
D 0:4667 ;

the observed relationships between Wallis’s �2
r and Friedman’s �2

r are

�2
r D �2

r

b.g � 1/
D 9:6667

.3/.6 � 1/
D 0:6444

and

�2
r D �2

r b.g � 1/ D .0:6444/.3/.6 � 1/ D 9:6667 ;

the observed relationships between Wallis’s �2
r and N� are

�2
r D N�.b � 1/ C 1

b
D .0:4667/.3 � 1/ C 1

3
D 0:6444

and

N� D b�2
r � 1

b � 1
D .3/.0:6444/ � 1

3 � 1
D 0:4667 ;

the observed relationships between Friedman’s �2
r and < are

�2
r D <.b � 1/.g � 1/ C g � 1 D .0:46667/.3 � 1/.6 � 1/ C 6 � 1 D 9:6667

and

< D �2
r � g C 1

.b � 1/.g � 1/
D 9:6667 � 6 C 1

.3 � 1/.6 � 1/
D 0:4667 ;

the observed relationships between Kendall and Babington Smith’s W and < are

W D <.b � 1/ C 1

b
D .0:4667/.n/ C 1

3
D 0:6444
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and

< D bW � 1

b � 1
D .3/.0:6444/ � 1

3 � 1
D 0:4667 ;

and the observed relationships between �2
r and < are

�2
r D <.b � 1/ C 1

b
D .0:4667/.3 � 1/ C 1

3
D 0:6444

and

< D b�2
r � 1

b � 1
D .3/.0:6444/ � 1

3 � 1
D 0:4667 :

Recall that since < is simply a linear transformation of ı,

P.< � <ojH0/ D P.ı � ıojH0/ D number of ı values � ıo

M
:

For the rank scores listed in Fig. 10.6 there are

M D �
gŠ
�b D �

6Š
�3 D 373;248;000

possible, equally-likely arrangements of the observed data. While an exact solution
is perhaps impractical, it is not impossible. For the rank scores listed in Fig. 10.6,
let v D 2, employing squared Euclidean distance between the rank scores to cor-
respond to Friedman’s �2

r statistic [128], then following Eq. (10.1) on p. 473, the
observed value of the MRBP test statistic with v D 2 is ıo D 3:1111. If all arrange-
ments of the observed rank scores listed in Fig. 10.6 occur with equal chance, the
exact probability value of ıo D 3:1111 computed on the M D 373;248;000 possi-
ble arrangements of the observed rank scores with b D 3 blocks preserved for each
arrangement is

P.ı � ıojH0/ D number of ı values � ıo

M
D 20;913;840

373;248;000
D 0:0560 :

For comparison, the Friedman’s test statistic is approximately distributed as chi-
squared under the null hypothesis with g � 1 D 6 � 1 D 5 degrees of freedom.
Under the null hypothesis, the observed value of �2

r D 9:6667 yields an approxi-
mate probability value of P D 0:0853.

Following Eq. (10.3) on p. 474, the exact expected value of the M D
373;248;000 ı values is �ı D 5:8333 and, following Eq. (10.2) on p. 474, the
observed chance-corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 3:1111

5:8333
D C0:4667 ;
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indicating approximately 47 % within-block agreement above that expected by
chance. Finally, note that when v D 2, < and N� are equivalent, i.e., < D N� D
C0:4667.

10.6.2 Example 2: v D 1

For a comparison analysis of the univariate rank scores listed in Fig. 10.6, set v D 1

instead of v D 2, employing ordinary Euclidean distance between the rank scores.
For the rank scores listed in Fig. 10.6, there are still only

M D �
gŠ
�b D �

6Š
�3 D 373;248;000

possible, equally-likely arrangements of the observed data, an exact solution is fea-
sible. Following Eq. (10.1) on p. 473, the observed value of the MRBP test statistic
with v D 1 is ıo D 1:4444. If all arrangements of the observed rank scores listed in
Fig. 10.6 occur with equal chance, the exact probability value of ıo D 1:4444 com-
puted on the M D 373;248;000 possible arrangements of the observed rank scores
is

P.ı � ıojH0/ D number of ı values � ıo

M
D 39;980;161

373;248;000
D 0:1071 :

For comparison, the exact probability value based on v D 2 and M D 373;248;000

in Example 1 is P D 0:0560. No comparison is made with the conventional analysis
of variance for ranks tests as �2

r , W, N�, and �2
r are undefined for v D 1.

Following Eq. (10.3) on p. 474, the exact expected value of the M D
373;248;000 ı values is �ı D 1:9444 and, following Eq. (10.2) on p. 474, the
observed chance-corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 1:4444

1:9444
D C0:2571 ;

indicating approximately 26 % within-block agreement above that expected by
chance.

10.7 MRBP and the Measurement of Agreement

A number of statistical research problems require the measurement of agreement,
rather than association or correlation. Agreement indices measure the extent to
which a set of response measurements are identical to another set, i.e., agree, rather
than the extent to which one set of response measurements is a linear function of
another set of response measurements, i.e., correlated. For details of the important
differences between agreement and correlation, see Chap. 4, Sect. 4.1.1.
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The usual research situation involving a measure of agreement arises when sev-
eral judges or raters assign objects to categories, which may be weighted in some
manner. Examples include analyzing the extent of agreement between judges on a
measure of performance [61], assessing students’ learning behaviors [244], apprais-
ing the reliability of assigning observations to categories [19, 223], and evaluating
the agreement among referees for journal reviews [423]. Other applications include
the interchangeability of measures; measurement of the reliability of an instrument,
such as a test or scale; measurement of the bias of a concept as applied to obser-
vational material by different observers; comparison of observed with theoretically
induced values of a variable; and measurement of the degree of homogeneity within
groups of observations [350, pp. 17–18].

In 1957 W.S. Robinson published an article in American Sociological Review on
“The statistical measurement of agreement” [350].12 In this formative article, Robin-
son developed the idea of agreement, as contrasted with correlation, and showed
that a simple modification of the intraclass correlation coefficient was an appropri-
ate measure of statistical agreement, which he called A, presumably for Agreement
[350, p. 20]. He explained that statistical agreement requires that paired values be
identical, while correlation requires only that the paired values be linked by some
mathematical function [350, p. 19]. Robinson argued that the distinction between
agreement and correlation leads to the conclusion that a logically correct estimate
of the reliability of a test is given by the intraclass correlation coefficient rather than
the Pearsonian (interclass) correlation coefficient and that the concept of agreement,
rather than correlation, is the proper basis of reliability theory [350, p. 18]. The 1957
Robinson article, which was quite mathematical, was followed by a more interpre-
tive article in the same journal on “The geometric interpretation of agreement” in
1959 [351].

Currently, the most popular measure of agreement between two judges or raters is
the chance-corrected measure of agreement first proposed by Jacob Cohen in 1960
and termed kappa [70].13 Cohen’s kappa measures the agreement between b D 2

observers on the assignment of N objects to a set of c discrete unordered categories.
In 1968 Cohen proposed a version of kappa that allowed for the weighting of cat-
egories [71]. Whereas the original (unweighted) kappa did not distinguish among
magnitudes of disagreement, weighted kappa incorporated the magnitude of each
disagreement and provided partial credit for disagreements when agreement was
not complete. The usual approach is to assign weights to each disagreement pair
with larger weights indicating greater disagreement.14

In both cases, unweighted and weighted, kappa is equal to 1 when perfect agree-
ment among two of more judges occurs, 0 when agreement is equal to that expected

12W.S. Robinson is probably best known for his seminal article on ecological correlations published
in the same journal in 1950 [349].
13It is interesting that neither of Robinson’s articles were cited by Cohen.
14Some authors prefer to define kappa in terms of agreement weights, instead of disagreement
weights.
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under independence, and negative when agreement is less than expected by chance.
Because unweighted kappa applies to unordered categories, it is properly included
in Chap. 11, Sect. 11.2. Weighted kappa is discussed here as it is typically used for
ordered categorical data.

10.7.1 Limitations of Kappa

It should be noted that Cohen’s kappa measures of agreement, both unweighted and
weighted, are not without detractors and have received considerable criticism over
the years. Kappa is well known as a marginal-dependent measure of agreement and
is often criticized, based on this dependency; see, for example, articles by Agresti
[2], Brennan and Prediger [56], Guggenmoos-Holzmann [159, 160], Maclure and
Willett [257], May [268], Thompson and Walter [399], and Zwick [436]. The prob-
lem is that there are two sources of disagreement: differences in thresholds and
differences in construction of the underlying continuous scale, and it is inherently
impossible to represent them by a single number, as noted by Brennan and Hays
[55] and Hutchinson [189]. Thus, kappa cannot approximate its maximum value
of C1:00 when the marginal frequency distributions in an agreement classification
table are not uniform, as noted by von Eye and von Eye [412]. However, kappa will
attain its maximum value of C1:00 when the probability for all disagreement cells
is zero; consequently, kappa shows no marginal dependency under conditions of
perfect agreement [412]. As Brennan and Prediger noted: “It is evident that indis-
criminate use of coefficient kappa without modification may lead to dramatically
incorrect conclusions about the proportion of maximum possible agreement evident
in a set of data” [56, p. 698].15

Despite this limitation, Cohen’s kappa is considered to be the gold standard
among agreement coefficients and is interpreted as the proportionate increase in
rater agreement above and beyond that expected by chance alone, where chance
is defined as the level of agreement expected if the raters had a known base rate
for the objects under study and randomly assigned cases corresponding to the base
rate; see also an article on the assessment of reliability by Meyer [279]. This def-
inition of chance has been referred to by Brennan and Prediger [56] and Umesh,
Peterson, and Sauber [407] as the “fixed marginals” model because the marginal
distributions of category assignment are assumed to be known a priori. The prob-
lem with the fixed-marginals approach is that it does not give the raters credit for
assignments that are independently agreed upon and reflected in the marginal dis-
tributions. Thus, as noted by Brennan and Prediger [56], Hanley [166], and Zwick
[436], Cohen’s kappa statistic penalizes the raters by using the base rate to define
the chance agreement level the raters must surpass. For example, consider two raters
and two categories, A and B. If the two raters both feel that the base rate in the pop-
ulation for category A is 0.10 and each judge randomly assigns 10 % of the cases to

15Emphasis in the original.
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category A, then by chance alone the percentage agreement between the two raters is
.0:10/.0:10/ C .0:90/.0:90/ D 0:82, and the observed agreement between the two
raters must exceed 0.82 for the computed value of kappa to be greater than zero [41,
p. 323].

Cohen’s kappa is extremely sensitive to the base-rate phenomenon.16 Because
the maximum value that kappa can attain is constrained by differences between the
marginal distributions of the two raters, as the base rate moves away from the point
of maximum variability a small disagreement between the raters can cause the kappa
value to decline dramatically, as noted by Meyer [279]. On the other hand, some
researchers have argued that this is appropriate as kappa is a true reliability statistic;
see, for example, articles by Bartko [20], Cohen [70], and Shrout et al. [374]. That is
to say, as true score variability in the group becomes more restricted, a fixed amount
of disagreement plays an increasingly larger role in observed score variability, so
calculated reliability coefficients decline in value. In 1960 Cohen noted that it is
perfectly reasonable and, in fact, desirable to use a summary agreement measure
that is sensitive to both aspects of agreement: item-by-item agreement as reflected
in the main diagonal of the agreement matrix, and symmetry between the marginal
distributions [70]. Finally, Spitznagel and Helzer protested against even providing
base-rate information, arguing that it defeats the purpose of a single measure of
reliability [383].

10.7.2 Cohen’s Weighted Kappa

For simplicity, consider N � 2 objects cross-classified by b D 2 independent judges
into a c�c contingency table. Let nij, wij, ni:, and n:j denote the cell frequencies,
cell weights, row marginal frequency totals, and column marginal frequency totals,
respectively, where

ni: D
cX

jD1

nij ; n:j D
cX

iD1

nij ; and N D
cX

iD1

cX

jD1

nij :

When the c categories for the two judges are similarly arranged, then nii, i D
1; : : : ; c, and nij, i 6D j, denote the agreement and disagreement frequencies, respec-
tively.

Although a variety of weighting schemes have been proposed for weighted
kappa, the most popular weighting scheme is quadratic weighting given by wij D
.i � j/2 for i; j D 1; : : : ; c, where cell disagreement weights progress geometrically
outward from the agreement diagonal, i.e., 02, 12, 22, 32, and so on. However, lin-
ear weighting is perhaps more intuitive in which wij D ji � jj for i; j D 1; : : : ; c,

16For a discussion of the base-rate problem in general, see a 2015 book on Statistics Done Wrong
by Alex Reinhart [345, pp. 39–47].
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where cell disagreement weights progress linearly outward from the agreement
diagonal, i.e., 0, 1, 2, 3, and so on. In addition, linear weighting has been shown
to have some interesting properties. In 2008 Vanbelle and Albert demonstrated that
linear-weighted kappa for b D 2 independent judges and c � 3 ordered categories is
equivalent to deriving the weighted kappa coefficient from unweighted kappa values
computed on c � 1 embedded 2�2 classification tables [410]. In 2009 Mielke and
Berry generalized the results of Vanbelle and Albert to b � 2 independent judges
[298].

The weighted kappa test statistic for b D 2 judges is defined as

O� D 1 �

1

N

cX

iD1

cX

jD1

wijnij

1

N2

cX

iD1

cX

jD1

wijni:n:j

: (10.24)

Given a c�c contingency table with N objects cross-classified by the ratings of two
independent judges into c ordered categories, an exact permutation test generates all
M possible arrangements of the N objects in the c2 cells, while preserving the total
number of objects in each category, i.e., the marginal frequency totals.17 For each
arrangement of cell frequencies with fixed marginal frequency totals, the weighted
kappa statistic, O�, and the exact probability, p.nijjni:; n:j/, are calculated, where

p.nijjni:; n:j/ D

 
cY

iD1

ni:Š

!0

@
cY

jD1

n:jŠ

1

A

NŠ

cY

iD1

cY

jD1

nijŠ

is the conventional hypergeometric probability of a c�c contingency table.
Let O�o denote the value of the observed weighted kappa statistic and M denote

the total number of distinct cell frequency arrangements of the N objects in the c�c
contingency table, given fixed marginal frequency totals. Then the exact probability
value of O�o is given by

P D
MX

kD1

‰. O�k/ p.nijjni:; n:j/ ;

17While it is straightforward to compute M for 2�2 contingency tables, it is considerably more dif-
ficult, and often impossible, to compute M for larger contingency tables. In 1977 Gail and Mantel
published exact and approximate methods for determining M consistent with marginal frequency
totals in r�c contingency tables [132].
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where

‰. O�k/ D
8
<

:
1 if O�k � O�o ,

0 otherwise .

10.7.3 Weighted Kappa Example

Consider a small example data set of N D 5 objects classified into c D 3 ordered
categories by b D 2 independent judges. Table 10.1 contains the c2 D 9 cell fre-
quencies. The corresponding linear and quadratic disagreement cell weights are
given in parentheses and brackets, respectively. The number of objects and the num-
ber of categories are deliberately kept small to simplify the example analysis.

Utilizing linear disagreement weights, given in parentheses in Table 10.1, and
following the numerator of Eq. (10.24) on p. 504 with N D 5 objects, c D 3 cate-
gories, b D 2 blocks, and r D 1 response measurement,

1

N

cX

iD1

cX

jD1

wijnij D 1

5

�
.0/.0/ C .1/.1/ C .2/.0/ C .1/.0/ C .0/.2/

C .1/.0/ C .2/.1/ C .1/.0/ C .0/.1/
	 D 3

5
D 0:60 ;

and for the denominator of Eq. (10.24),

1

N2

cX

iD1

cX

jD1

wijni:n:j D 1

52

�
.0/.1/.1/ C .1/.1/.3/ C .2/.1/.1/

C .1/.2/.1/ C .0/.2/.3/ C .1/.2/.1/ C .2/.2/.1/

C .1/.2/.3/ C .0/.2/.1/
	 D 19

25
D 0:76 ;

Table 10.1 Example data
for a weighted kappa analysis
with N D 5 observations,
c D 3 ordered categories, and
b D 2 judges

Judge 2

Judge 1 Category A Category B Category C Total

Category A 0 (0) [ 0 ] 1 (1) [ 1 ] 0 (2) [ 4 ] 1

Category B 0 (1) [ 1 ] 2 (0) [ 0 ] 0 (1) [ 1 ] 2

Category C 1 (2) [ 4 ] 0 (1) [ 1 ] 1 (0) [ 0 ] 2

Total 1 (2) [ 4 ] 3 (2) [ 4 ] 1 (2) [ 4 ] 5

Note: Linear cell weights are in parentheses and quadratic cell weights
are in brackets
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then the observed value of weighted O� with linear weighting is

O�o D 1 �

1

N

cX

iD1

cX

jD1

wijnij

1

N2

cX

iD1

cX

jD1

wijni:n:j

D 1 � 0:60

0:76
D 0:2105 :

There are M D 8 possible, equally-likely arrangements of cell frequencies given
the observed marginal frequency totals of f1; 2; 2g and f1; 3; 1g in Table 10.1. The
eight arrangements of cell frequencies are listed in Table 10.2, where Table 10.1 of
Table 10.2 contains the N D 5 observed cell frequencies.

Figure 10.7 lists the computed kappa values and associated hypergeometric prob-
ability values for the M D 8 tables in Table 10.2, ordered from high to low by the
O� values. As is evident from the kappa and associated probability values listed in
Fig. 10.7, the observed value of O�o D C0:2105 is not unusual as four O� values are
less than O�o D C0:2105 and four values are equal to or greater than O�o D C0:2105.
Thus, the exact upper-tail probability value of the observed cell configuration is
0:1000 C 0:1000 C 0:1000 C 0:2000 D 0:5000, i.e., the sum of the hypergeomet-
ric probability values associated with values of O�o D C0:2105 or greater.

Table 10.2 Eight possible
arrangements of the cell
frequencies in Table 10.1,
given fixed marginal
frequency totals

Table 1 Table 2 Table 3 Table 4

0 1 0 1 0 0 1 0 0 0 1 0

0 2 0 0 1 1 0 2 0 1 0 1

1 0 1 0 2 0 0 1 1 0 2 0

Table 5 Table 6 Table 7 Table 8

0 1 0 0 0 1 0 0 1 0 1 0

1 1 0 0 2 0 1 1 0 0 1 1

0 1 1 1 1 0 0 2 0 1 1 0

Fig. 10.7 Kappa and
hypergeometric probability
values for the eight 3�3

contingency tables listed in
Table 10.2

Table κ Probability

3 +0.7368 0.1000

1 +0.2105 0.1000

2 +0.2105 0.1000

5 +0.2105 0.2000

4 −0.3158 0.1000

6 −0.3158 0.1000

7 −0.3158 0.1000

8 −0.3158 0.2000
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10.7.4 Relationship of < and Cohen’s Weighted O�
As previously, consider the MRBP test statistic given by

ı D
"

g

 
b

2

!#�1 gX

iD1

X

j<k

	.xij; xik/ ; (10.25)

where g is the number of treatments, b is the number of blocks, r is the number of
response measurements,

P
j<k denotes the sum over all j and k such that 1 � j <

k � b, and 	.x; y/ is a generalized Minkowski distance function given by

	.x; y/ D
 

rX

iD1

�
xi � yi

�p

!v=p

with p D 2. If g D 2 and r D 1, as in this case, the MRBP test statistic given in
Eq. (10.25) reduces to

ı D 1

g

gX

iD1

	.xi1; xi2/ ; (10.26)

where the generalized Minkowski distance function is given by

	.xi1; xi2/ D
h�

xi1 � xi2
�2iv=2

: (10.27)

It can easily be shown that the chance-corrected measure of effect size given by

< D 1 � ı

�ı

;

with

�ı D 1

g2

gX

iD1

gX

jD1

	.xi1; xi2/ ; (10.28)

is equivalent to Cohen’s weighted kappa coefficient where v D 1 yields O� with linear
weighting and v D 2 yields O� with quadratic weighting.

For comparison, consider a conventional z test calculated on the frequency data
listed in Table 10.1 on p. 505. In 1968 Brian S. Everitt developed the exact variance
of weighted kappa for two raters that was suitable for any weighting scheme, but
found the expression too complicated for routine use [111, 124, p. 323]. In 2005
Mielke, Berry, and Johnston reformulated the exact variance presented by Everitt
for two raters into a form conducive to computation and provided an algorithm for
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b D 2 raters [305]. In 2007 Mielke, Berry, and Johnston extended the exact variance
of Everitt to include the classification of N objects by b � 2 independent raters
[306].

Assuming fixed marginal frequency totals and the null hypothesis that the two
judges operate independently, the exact expected value of O� given by

E Œ O� D 0

follows from Eq. (10.24) on p. 504 since EŒnij D ni:n:j=N, and the exact variance of
O� is conveniently given by

�2
O� D 1

N � 1

0

@
cX

iD1

cX

jD1

wijni:n:j

1

A
�22

4
cX

iD1

cX

jD1

w2
ijni:.N � ni:/

n:j.N � n:j/ �
cX

iD1

X

j6Dk

wijwikni:.N � ni:/n:jn:k �
X

i6Dj

cX

kD1

wikwjk

ni:n:jnk:.N � n:k/ C
X

i6Dk

X

j6Dl

wijwklni:nk:n:jn:l

3

5 :

Let O�o denote an observed value of O�. Then the observed standard score is given
by

zo D O�o � EŒ O�

�O�
:

Since z approaches the N.0; 1/ distribution as N !1 with fixed positive marginal
proportions, the approximate probability value under the null hypothesis is given
by P.z � zo/. For the observed frequency data and associated linear cell weights
in Table 10.1, O�o D C0:2105, �2

O� D 0:1342, zo D C0:5747, and the approximate
N.0; 1/ two-sided probability value is P D 0:5655, which approximates the exact
probability value of P D 0:50. A conventional correction for continuity yields zo D
C0:7105 and an approximate N.0; 1/ two-sided probability value of P D 0:4774,
which more closely approximates the exact probability value of P D 0:50.

LinearWeighting with v D 1

Consider the frequency data listed in Table 10.1 on p. 505, but arranged in a
randomized-block analysis-of-variance format with b D 2 blocks and g D 5 obser-
vations in each block, as given in Fig. 10.8. Following Eq. (10.27) on p. 507 for the
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Fig. 10.8 Example data
from Table 10.1 arranged in a
block format with b D 2

blocks and g D 5

observations in each block

Block

g 1 2

1 1 2

2 2 2

3 2 2

4 3 1

5 3 3

generalized Minkowski distance function with p D 2 and v D 1,

	.1; 1/ D �
.1 � 2/2

	1=2 D 1:00 ;

	.2; 2/ D �
.2 � 2/2

	1=2 D 0:00 ;

	.3; 3/ D �
.2 � 2/2

	1=2 D 0:00 ;

	.4; 4/ D �
.3 � 1/2

	1=2 D 2:00 ;

and

	.5; 5/ D �
.3 � 3/2

	1=2 D 0:00 :

Then following Eq. (10.26) on p. 507,

ı D 1

g

�
	.1; 1/ C 	.2; 2/ C 	.3; 3/ C 	.4; 4/ C 	.5; 5/

	

and the observed value of the MRBP test statistic with v D 1 is

ıo D 1

5

�
1:00 C 0:00 C 0:00 C 2:00 C 0:00

� D 1

5

�
3:00

� D 0:60 :

For the observed frequency data listed in Fig. 10.8, there are only

M D �
gŠ
�b D �

5Š
�2 D 14;400

possible, equally-likely arrangements of the observed data, therefore an exact solu-
tion is feasible. An exact probability value for O�o and ıo may be expressed as

P.� � O�ojH0/ D P.ı � ıojH0/ D number of ı values � ıo

M

where O�o and ıo denote the observed values of Cohen’s O� and ı, respectively.
If all arrangements of the observed data listed in Fig. 10.8 occur with equal

chance, the exact probability value of ıo D 0:60 computed on the M D 14;400
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possible arrangements of the observed data with b D 2 blocks preserved for each
arrangement is

P.ı � ıojH0/ D number of ı values � ıo

M
D 7;200

14;400
D 0:50 :

Following Eq. (10.28) on p. 507 with v D 1, the exact expected value of the M D
14;400 ı values is given by

�ı D 1

g2

�
	.1; 1/ C 	.1; 2/ C � � � C 	.4; 5/ C 	.5; 5/

	

and the exact observed value of �ı is

�ı D 1

52

�
1 C 1 C 1 C 0 C 2 C 0 C 0 C � � � C 2 C 0 C 1 C 1 C 1 C 2 C 0

�

D 1

25
.19/ D 0:76 :

Then,

O�o D <o D 1 � ıo

�ı

D 1 � 0:60

0:76
D C0:2105

and the identity relating Cohen’s O� with linear weighting and < with v D 1 is con-
firmed.

Quadratic Weighting with v D 2

Consider again the frequency data listed in Table 10.1 on p. 505, replicated in
Fig. 10.9 for convenience, with N D 5 objects classified into c D 3 unordered cate-
gories by b D 2 independent judges.

Utilizing quadratic cell disagreement weights, given in brackets in Fig. 10.9, and
following the numerator of Eq. (10.24) on p. 504 with N D 5 objects, c D 3 cate-

Fig. 10.9 Example data for a
weighted kappa analysis with
N D 5 observations, c D 3

ordered categories, b D 2

judges and quadratic weights
in brackets

Judge 2

Judge 1 A B C Total

A 0 [ 0 ]

B 0 [ 1 ]

C 1 [ 4 ] 0 [ 1 ] 1 [ 0 ] 2

Total

1 [ 1 ] 0 [ 4 ] 1

2 [ 0 ] 0 [ 1 ] 2

1 3 1 5
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gories, b D 2 blocks, and r D 1 response measurement,

1

N

cX

iD1

cX

jD1

wijnij D 1

5

�
.0/.0/ C .1/.1/ C .4/.0/ C .1/.0/ C .0/.2/

C .1/.0/ C .4/.1/ C .1/.0/ C .0/.1/
	 D 5

5
D 1:00 ;

and for the denominator of Eq. (10.24),

1

N2

cX

iD1

cX

jD1

wijni:n:j D 1

52

�
.0/.1/.1/ C .1/.1/.3/ C .4/.1/.1/

C .1/.2/.1/ C .0/.2/.3/ C .1/.2/.1/ C .4/.2/.1/

C .1/.2/.3/ C .0/.2/.1/
	 D 25

25
D 1:00 :

Then the observed value of weighted O� with quadratic weighting is

O�o D 1 �

1

N

cX

iD1

cX

jD1

wijnij

1

N2

cX

iD1

cX

jD1

wijni:n:j

D 1 � 1:00

1:00
D 0:00 :

Consider again the frequency data listed in Fig. 10.9, but rearranged into a
randomized-block analysis-of-variance design with b D 2 blocks and g D 5 obser-
vations in each block, as given in Fig. 10.10.

Following Eq. (10.27) on p. 507 for the generalized Minkowski distance function
with p D v D 2,

	.1; 1/ D �
.1 � 2/2

	2=2 D 1:00 ;

	.2; 2/ D �
.2 � 2/2

	2=2 D 0:00 ;

Fig. 10.10 Example data
from Fig. 10.9 arranged in a
block format with b D 2

blocks and g D 5

observations in each block

Block

g 1 2

1 1 2

2 2 2

3 2 2

4 3 1

5 3 3
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	.3; 3/ D �
.2 � 2/2

	2=2 D 0:00 ;

	.4; 4/ D �
.3 � 1/2

	2=2 D 4:00 ;

and

	.5; 5/ D �
.3 � 3/2

	2=2 D 0:00 :

Then following Eq. (10.26) on p. 507,

ı D 1

g

�
	.1; 1/ C 	.2; 2/ C 	.3; 3/ C 	.4; 4/ C 	.5; 5/

	

and the observed value of the MRBP test statistic with v D 2 is

ıo D 1

5

�
1:00 C 0:00 C 0:00 C 4:00 C 0:00

� D 1

5

�
5:00

� D 1:00 :

For the randomized-block data listed in Fig. 10.10, there are only

M D �
gŠ
�b D �

5Š
�2 D 14;400

possible, equally-likely arrangements of the observed data; therefore, an exact solu-
tion is feasible. An exact probability value for O�o and ıo may be expressed as

P.� � O�ojH0/ D P.ı � ıojH0/ D number of ı values � ıo

M

where O�o and ıo denote the observed values of Cohen’s O� and ı, respectively.
If all arrangements of the observed data listed in Fig. 10.10 occur with equal

chance, the exact probability value of ıo D 1:00 computed on the M D 14;400

possible arrangements of the observed data with b D 2 blocks preserved for each
arrangement is

P.ı � ıojH0/ D number of ı values � ıo

M
D 8;640

14;400
D 0:60 :

Following Eq. (10.28) on p. 507 with v D 2, the exact expected value of the M D
14;400 ı values is given by

�ı D 1

g2

�
	.1; 1/ C 	.1; 2/ C � � � C 	.4; 5/ C 	.5; 5/
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and the exact observed value of �ı is

�ı D 1

52

�
1 C 1 C 1 C 0 C 4 C 0 C 0 C � � � C 4 C 0 C 1 C 1 C 1 C 4 C 0

�

D 1

25
.25/ D 1:00 :

Then,

O�o D <o D 1 � ıo

�ı

D 1 � 1:00

1:00
D 0:00

and the identity relating Cohen’s O� with quadratic weighting and < with v D 2 is
confirmed.

10.7.5 Multiple Judges

While Cohen’s O� is limited to b D 2 independent judges, a simple modification to ı

and �ı generalizes <, and hence Cohen’s O�, to measure agreement among multiple
judges [27]. Thus, the MRBP test statistic may be redefined as

ı D
"

g

 
b

2

!#�1 gX

iD1

X

s<t

	 .xis; xit/ ; (10.29)

where the generalized Minkowski distance function is given by

	 .xis; xit/ D
"

rX

kD1

.xisk � xitk/
2

#1=2

;

b is the number of judges (i.e., blocks) and
P

s<t is the sum over all s and t such that
1 � s < t � b. The reformulation of the expected value of ı is given by

�ı D
"

g2

 
b

2

!#�1 gX

iD1

gX

jD1

X

s<t

	
�
xis; xjt

�
: (10.30)

To illustrate the measurement of agreement for multiple judges, consider the data
listed in Fig. 10.11, in which each of b D 4 judges is asked to assign g D 10 objects
to c D 4 discrete, mutually exclusive, exhaustive categories, labeled 1, 2, 3, and 4.

LinearWeighting with v D 1

For the categorical data listed in Fig. 10.11, g D 10, b D 4, and r D 1. Follow-
ing Eq. (10.29), the observed value of the MRBP test statistic based on v D 1 is
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Fig. 10.11 Example data set
for multiple judges with
categorical data, g D 10

objects, b D 4 judges, and
r D 1 response

Judge

Object A B C D

1 3 3 4 3

2 2 1 1 2

3 1 2 1 1

4 4 4 4 3

5 1 2 3 4

6 2 1 3 4

7 1 3 2 4

8 3 2 3 1

9 3 4 3 2

10 2 1 2 2

ıo D 0:9833, following Eq. (10.30) the exact expected value of ı is �ı D 1:2033,
and following Eq. (10.2) on p. 474 the observed chance-corrected measure of effect
size is

<o D 1 � ıo

�ı

D 1 � 0:9833

1:2033
D C0:1828 ;

indicating approximately 18 % agreement among the b D 4 judges above that
expected by chance.

Because there are

M D �
gŠ
�b D �

10Š
�4 D 173;401;213;127;727;513;600;000;000

possible, equally-likely arrangements of the observed data listed in Fig. 10.11,
an exact permutation solution is not feasible. If all M possible arrangements of
the observed data listed in Fig. 10.11 occur with equal chance, the approximate
resampling probability value of ıo D 0:9833 computed on L D 1;000;000 random
arrangements of the observed data with b D 4 blocks preserved for each arrange-
ment is

P.ı � ıojH0/ D number of ı values � ıo

L
D 47;728

1;000;000
D 0:0478 :

Quadratic Weighting with v D 2

For the categorical data listed in Fig. 10.11, following Eq. (10.29) the observed value
of the MRBP test statistic based on v D 2 is ıo D 1:5833, following Eq. (10.30) the
exact expected value of ı is �ı D 2:3100, and following Eq. (10.2) on p. 474 the
observed chance-corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 1:5833

2:3100
D C0:3146 ;
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indicating approximately 31 % agreement among the b D 4 judges above that
expected by chance.

Because there are still

M D �
gŠ
�b D �

10Š
�4 D 173;401;213;127;727;513;600;000;000

possible, equally-likely arrangements of the observed data listed in Fig. 10.11,
an exact permutation solution is not feasible. If all M possible arrangements of
the observed data listed in Fig. 10.11 occur with equal chance, the approximate
resampling probability value of ıo D 1:5833 computed on L D 1;000;000 random
arrangements of the observed data with b D 4 blocks preserved for each arrange-
ment is

P.ı � ıojH0/ D number of ı values � ıo

L
D 19;204

1;000;000
D 0:0192 :

10.7.6 An Alternative Approach toMultiple Judges

In this section, an alternative procedure is presented to compute weighted kappa
with multiple raters [308]. Although the procedure is appropriate for any number of
c � 2 disjoint ordered categories and b � 2 judges, the description of the procedure
and the examples are limited to three independent judges to simplify presentation.

Consider b D 3 judges who independently classify N objects into c disjoint
ordered categories. The classification may be conceptualized as c�c�c contingency
table with c rows, c columns, and c slices. Let nijk, Ri, Cj, and Sk denote the cell fre-
quencies and row, column, and slice marginal frequency totals for i; j; k D 1; : : : ; c
and let the frequency total be given by

N D
cX

iD1

cX

jD1

cX

kD1

nijk :

Cohen’s weighted kappa test statistic for a three-way contingency table is given
by

O� D
N2

cX

iD1

cX

iD1

cX

iD1

wijknijk

cX

iD1

cX

iD1

cX

iD1

wijkRiCjSk

; (10.31)
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where wijk are disagreement weights assigned to each cell for i; j; k D 1; : : : ; c.
Under the null hypothesis that the judges classify the N objects independently with
fixed marginal frequency totals, EŒ O� D 0.

As discussed previously on p. 503, a variety of weighting functions have been
proposed for weighted kappa for two judges, where the arbitrary cell weights are
denoted as wij and i and j designate the c categories for each judge [367, p. 246].
Typically, the cell weights are defined such that wii D 0 for i D 1; : : : ; c and the
weights are symmetrical, i.e., wij D wji for i; j D 1; : : : ; c. Examples of weight-
ing systems for two judges include linear weighting where wij D ji � jj, quadratic
weighting where wij D .i � j/2, and unweighted kappa where

wij D
8
<

:
0 if i D j ,

1 otherwise

[250, 257].
For three judges, the cell disagreement weights are given by wijk, where i, j,

and k designate the c categories for each judge. Analogously to wij, wijk may be
defined such that wiii D 0 for i D 1; : : : ; c and the weights are symmetrical, i.e.,
wijk D wikj D wjik D wjki D wkij D wkji for i; j; k D 1; : : : ; c. Examples of weighting
systems for three judges include linear weighting where

wijk D ji � jj C ji � kj C jj � kj

and quadratic weighting where

wijk D .i � j/2 C .i � k/2 C .j � k/2 :

Weighted kappa for three judges reduces to unweighted kappa18 when

wijk D
8
<

:
0 if i D j D k ,

1 otherwise :

Given a c�c�c contingency table with N objects cross-classified by three
independent judges, an exact permutation test involves generating all possible
arrangements of the N objects to the c3 cells, while preserving the marginal
frequency totals. For each arrangement of cell frequencies, the weighted kappa

18Unweighted kappa for multiple judges is discussed in Chap. 11, Sect. 11.2.1.
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statistic, O�, and the exact hypergeometric probability value under the null hypothe-
sis, P.nijkjRi; Cj; Sk/, are calculated, where

P.nijkjRi; Cj; Sk/ D

 
cY

iD1

RiŠ

!0

@
cY

jD1

CjŠ

1

A
 

cY

kD1

SkŠ

!

.NŠ/2

cY

iD1

cY

jD1

cY

kD1

nijkŠ

(10.32)

[290].
If O�o denotes the value of the observed weighted kappa test statistic, the exact

probability value of O�o under the null hypothesis is given by

P. O�o/ D
MX

lD1

‰l
�
nijkjRi; Cj; Sk

�
;

where

‰l
�
nijkjRi; Cj; Sk

� D
8
<

:
P.nijkjRi; Cj; Sk/ if O� � O�o ,

0 otherwise ;

and M denotes the total number of possible cell frequency arrangements given
fixed observed marginal frequency totals. When M is very large, as is typical with
multi-way contingency tables, exact tests are impractical and resampling becomes
necessary, where a random sample, L, of the M possible arrangements of cell fre-
quencies provides for a comparison of O� test statistics calculated on the L random
tables with the O�o test statistic calculated on the observed table.

An efficient resampling algorithm to generate random cell frequency arrange-
ments for multi-way contingency tables with fixed marginal frequency totals was
developed by Mielke et al. [307, pp. 19–20]. For a three-way contingency table with
r rows, c columns, and s slices, the resampling algorithm is given in 12 simple steps.

Step 1. Construct an r�c�s contingency table from the observed data.
Step 2. Obtain the fixed marginal frequency totals R1; : : : ; Rr, C1; : : : ; Cc,

S1; : : : ; Ss, and frequency total N. Set the resampling counter JL D 0, and
set L equal to the number of samples desired.

Step 3. Set the resampling counter JL D JL C 1.
Step 4. Set the marginal frequency counters JRi D Ri for i D 1; : : : ; r; JCj D Cj

for j D 1; : : : ; c; JSk D Sk for k D 1; : : : ; s, and M D N.
Step 5. Set nijk D 0 for i D 1; : : : ; r, j D 1; : : : ; c, and k D 1; : : : ; s, and set

row, column, and slice counters IR, IC, and IS equal to zero.
Step 6. Create cumulative probability distributions PRi, PCj, and PSk from

the adjusted marginal frequency totals JRi, JCj, and JSk for i D 1; : : : ; r,



518 10 Randomized Block Designs: Ordinal Data

j D 1; : : : ; c, and k D 1; : : : ; s, where

PR1 D JR1=M and PRi D PRi�1 C JRi=M

for i D 1; : : : ; r,

PC1 D JC1=M and PCj D PCj�1 C JCj=M

for j D 1; : : : ; c, and

PS1 D JS1=M and PSk D PSk�1 C JSk=M

for k D 1; : : : ; s.
Step 7. Generate three uniform pseudorandom numbers Ur, Uc, and Us over Œ0; 1/

and set row, column, and slice indices i D j D k D 1, respectively.
Step 8. If Ur � PRi, then IR D i, JRi D JRi � 1, and go to Step 9; otherwise, i D

i C 1 and repeat Step 8.
Step 9. If Uc � PCj, then IC D j, JCj D JCj � 1, and go to Step 10; otherwise,

j D j C 1 and repeat Step 9.
Step 10. If Us � PSk, then IS D k, JSk D JSk � 1, and go to Step 11; otherwise,

k D k C 1 and repeat Step 10.
Step 11. Set M D M � 1 and nIR;IC;IS D nIR;IC;IS C 1. If M > 0, go to Step 4;

otherwise, obtain the required test statistic and calculate the hypergeometric
probability value.

Step 12. If JL < L, go to Step 3; otherwise, stop.

At the conclusion of Step 11, O� and the exact probability value as given in
Eqs. (10.31) and (10.32), respectively, are obtained for each of the L random three-
way contingency tables, given fixed marginal frequency totals. Under the null
hypothesis, the resampling approximate probability value for O�o is given by

P . O�o/ D 1

L

LX

lD1

‰l . O�/

where

‰l . O�/ D
8
<

:
1 if O� � O�o ,

0 otherwise :

The calculation of weighted kappa and the resampling procedure to obtain a
probability value for multiple raters can be illustrated with a small example data set.
Consider b D 3 independent journal reviewers for N D 93 submitted manuscripts
over a 5-year period. Each reviewer classified each manuscript into one of c D 3

disjoint categories: reject, revise and resubmit, or accept. Table 10.3 lists the
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Table 10.3 Article
recommendations by three
independent reviewers for
N D 93 manuscripts: reject,
revise, and accept

Reviewer 3

Reviewer 1 Reviewer 2 Reject Revise Accept

Reject Reject 6 (0) [ 0 ] 4 (2) [ 2 ] 2 (4) [ 8 ]

Revise 3 (2) [ 2 ] 5 (2) [ 2 ] 4 (4) [ 6 ]

Accept 2 (4) [ 8 ] 3 (4) [ 6 ] 4 (4) [ 8 ]

Revise Reject 4 (2) [ 2 ] 5 (2) [ 2 ] 3 (4) [ 6 ]

Revise 5 (2) [ 2 ] 8 (0) [ 0 ] 4 (2) [ 2 ]

Accept 3 (4) [ 6 ] 2 (2) [ 2 ] 3 (2) [ 2 ]

Accept Reject 1 (4) [ 8 ] 3 (4) [ 6 ] 4 (4) [ 8 ]

Revise 3 (4) [ 6 ] 2 (2) [ 2 ] 2 (2) [ 2 ]

Accept 1 (4) [ 8 ] 2 (2) [ 2 ] 5 (0) [ 0 ]

Note: Linear cell weights are in parentheses and quadratic cell weights are
in brackets

c3 cross-classified observed frequencies and corresponding linear and quadratic
weights, where the linear cell weights are given in parentheses and the quadratic cell
weights are given in brackets. The frequency data listed in Table 10.3 are adapted
from Mielke et al. [308, p. 609].

LinearWeighting
For the observed data listed in Table 10.3 with linear cell disagreement weights,
the observed value of O� is O�o D 0:1000, indicating 10 % agreement above that
expected by chance, and the approximate resampling probability value based on
L D 1;000;000 random arrangements of the observed data is

P. O� � O�ojH0/ D number of O� values � ıo

L
D 21;949

1;000;000
D 0:0219 :

Quadratic Weighting
For the observed data listed in Table 10.3 with quadratic cell disagreement weights,
the observed value of O� is O�o D 0:1036, indicating approximately 10 % agreement
above that expected by chance, and the approximate resampling probability value
based on L D 1;000;000 random arrangements of the observed data is

P. O� � O�ojH0/ D number of O� values � ıo

L
D 48;926

1;000;000
D 0:0489 :

10.8 MRBP andMeasures of Ordinal Association

The test statistic S, as defined by Maurice Kendall [207], plays an important role
in a variety of statistical measures; it is often expressed as S D C � D, where C
and D indicate the number of concordant pairs and discordant pairs, respectively,
vide infra. Consider two ordinal variables that have been cross-classified into an
r�c contingency table, where r and c denote the number of rows and columns,
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respectively. Let ni:, n:j, and nij denote the row marginal frequency totals, column
marginal frequency totals, and number of objects in the ijth cell, respectively, for
i D 1; : : : ; r and j D 1; : : : ; c, and let N denote the total number of objects in the
r�c contingency table, i.e.,

ni: D
cX

jD1

nij ; n:j D
rX

iD1

nij ; and N D
rX

iD1

cX

jD1

nij :

If x and y represent the row and column variables, respectively, there are N.N �
1/=2 pairs of objects in the table that can be partitioned into five mutually exclusive,
exhaustive types: concordant pairs, discordant pairs, pairs tied on variable x but
differing on variable y, pairs tied on variable y but differing on variable x, and pairs
tied on both variable x and variable y.

Concordant pairs (pairs of objects that are ranked in the same order on both
variable x and variable y) are given by

C D
r�1X

iD1

c�1X

jD1

nij

0

@
rX

kDiC1

cX

lDjC1

nkl

1

A ; (10.33)

discordant pairs (pairs of objects that are ranked in one order on variable x and the
reverse order on variable y) are given by

D D
r�1X

iD1

c�1X

jD1

ni;c�jC1

 
rX

kDiC1

c�jX

lD1

nkl

!
; (10.34)

pairs of objects tied on variable x but differing on variable y are given by

Tx D
rX

iD1

c�1X

jD1

nij

0

@
cX

kDjC1

nik

1

A ; (10.35)

pairs of objects tied on variable y but differing on variable x are given by

Ty D
cX

jD1

r�1X

iD1

nij

 
rX

kDiC1

nkj

!
; (10.36)

and pairs of objects tied on both variable x and variable y are given by

Txy D 1

2

rX

iD1

cX

jD1

nij
�

nij � 1
�

: (10.37)
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Given C, D, Tx, Ty, N, and S D C � D, six measures of ordinal association are
commonly defined, each having the same numerator, S, but different denominators
[39]. The earliest of these measures was Kendall’s �a [207].19 Kendall’s �a is a sym-
metrical measure of ordinal association that is most suitable when there are no tied
pairs and is defined as the simple difference between the proportions of concordant
and discordant pairs given by

�a D C
N.N � 1/

2

� D
N.N � 1/

2

D 2S

N.N � 1/
: (10.38)

Kendall’s �b [207] extends �a to measure strong monotonicity in contingency tables
when r D c. The denominator for �b is adjusted for the number of tied pairs for both
variable x and variable y; �b is given by

�b D S
q

.C C D C Tx/.C C D C Ty/

: (10.39)

Stuart’s �c [389] modifies Kendall’s �b for contingency tables where r 6D c and is
given by

�c D .2m/.S/

N2.m � 1/
; (10.40)

where m D min.r; c/. Goodman and Kruskal’s � [151] is a symmetrical measure of
weak monotonicity in which tied pairs of all types are ignored and defined as

� D S

C C D
: (10.41)

Somers’ dyx and dxy [380] are asymmetric measures of ordinal association. Unlike
the four symmetrical measures, �a, �b, �c, and � , Somers’ dyx and dxy depend on
which variable, y or x, is considered to be the dependent variable. If y is the depen-
dent variable, then

dyx D S

C C D C Ty
; (10.42)

19Yule’s Q for 2�2 contingency tables also has S in the numerator and preceded Kendall’s �a by
some 40 years [434, 435]. While Yule’s Q is occasionally prescribed for rank-score data [245,
p. 255–256], it was originally designed for categorical data and is therefore described more appro-
priately in Chap. 6.
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and if x is the dependent variable, then

dxy D S

C C D C Tx
: (10.43)

Thus, for both dyx and dxy, when a difference between paired values on the inde-
pendent variable (i.e., untied pair) is not reflected as a difference between the
corresponding paired values on the dependent variable (i.e., tied pair) the denom-
inator of Eqs. (10.42) and (10.43) is increased by Ty or Tx, respectively, and the
values of dyx and dxy are diminished accordingly. Finally, it is readily apparent that
Kendall’s �b measure of ordinal association given in Eq. (10.39) is simply the geo-
metric mean of Somers’ dyx and dxy given by

�b D
q

dyx dxy :

10.8.1 Example 1

Consider for this first example, Kendall’s �a measure of ordinal association, given
by

�a D 2S

N.N � 1/
:

Kendall’s �a was originally designed to measure the association between two sets of
untied rank scores, such as given in Fig. 10.12, where the two sets of rank scores are
labeled as x and y. Kendall’s �a is often described as an alternative to Spearman’s
rank-order correlation coefficient [221, p. 179]. For the two sets of rankings listed
in Fig. 10.12, there are

 
N

2

!
D N.N � 1/

2
D 8.8 � 1/

2
D 28

Fig. 10.12 Two sets of
N D 8 rank scores for
Kendall’s �a measure of
ordinal association

Variable

Object x y

1 1 3

2 3 4

3 2 1

4 4 2

5 5 5

6 7 8

7 8 6

8 6 7
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Table 10.4 Paired
differences, rij, sij, rijsij, and
jrij � sijj values for the rank
scores listed in Fig. 10.12

Pair xi � xj yi � yj rij sij rijsij jrij � sijj
1 1 � 3 3 � 4 �1 �1 C1 0

2 1 � 2 3 � 1 �1 C1 �1 2

3 1 � 4 3 � 2 �1 C1 �1 2

4 1 � 5 3 � 5 �1 �1 C1 0

5 1 � 7 3 � 8 �1 �1 C1 0

6 1 � 8 3 � 6 �1 �1 C1 0

7 1 � 6 3 � 7 �1 �1 C1 0

8 3 � 2 4 � 1 C1 C1 C1 0

9 3 � 4 4 � 2 �1 C1 �1 2

10 3 � 5 4 � 5 �1 �1 C1 0

11 3 � 7 4 � 8 �1 �1 C1 0

12 3 � 8 4 � 6 �1 �1 C1 0

13 3 � 6 4 � 7 �1 �1 C1 0

14 2 � 4 1 � 2 �1 �1 C1 0

15 2 � 5 1 � 5 �1 �1 C1 0

16 2 � 7 1 � 8 �1 �1 C1 0

17 2 � 8 1 � 6 �1 �1 C1 0

18 2 � 6 1 � 7 �1 �1 C1 0

19 4 � 5 2 � 5 �1 �1 C1 0

20 4 � 7 2 � 8 �1 �1 C1 0

21 4 � 8 2 � 6 �1 �1 C1 0

22 4 � 6 2 � 7 �1 �1 C1 0

23 5 � 7 5 � 8 �1 �1 C1 0

24 5 � 8 5 � 6 �1 �1 C1 0

25 5 � 6 5 � 7 �1 �1 C1 0

26 7 � 8 8 � 6 �1 C1 �1 2

27 7 � 6 8 � 7 C1 C1 C1 0

28 8 � 6 6 � 7 C1 �1 �1 2

Total C18 10

possible pairs, where N denotes the number of paired rankings as listed in the first
two columns of Table 10.4.

Because there are no tied rank scores in Fig. 10.12, the N.N � 1/=2 pairs can be
exhaustively divided into just two types: concordant (C) and discordant (D) pairs. To
illustrate the calculation of Kendall’s S, consider the x and y rank scores for the first
pair of objects in Table 10.4: Objects 1 and 2. For variable x calculate 1 � 3 D �2

and for variable y calculate 3 � 4 D �1. When the signs agree, either both negative
or both positive, as in this case with both signs negative, the pair is considered a
concordant pair. Now consider the x and y rank scores for the second pair: Objects
1 and 3. For variable x calculate 1 � 2 D �1 and for variable y calculate n D C2.
When the signs disagree, as in this case with one negative sign and one positive sign,
the pair is considered a discordant pair.
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Given the bivariate rank scores listed in Fig. 10.12, for i < j define

rij D

8
ˆ̂̂
<

ˆ̂̂
:

C1 if xi > xj ,

0 if xi D xj ,

�1 if xi < xj ,

and sij D

8
ˆ̂̂
<

ˆ̂̂
:

C1 if yi > yj ,

0 if yi D yj ,

�1 if yi < yj .

Then, following Kendall [207],

S D
X

i<j

rijsij

as given in the sixth column of Table 10.4, where there are 23 concordant pairs,
each indicated by C1 (C D 23) and 5 discordant pairs, each indicated by �1 (D D
5); therefore, the observed value of Kendall’s S is So D C � D D 23 � 5 D C18.
For the rank scores with no tied values listed in Fig. 10.12, the observed value of
Kendall’s �a is

�a D 2So

N.N � 1/
D .2/.C18/

8.8 � 1/
D C0:6429

and, incidentally, because there are no tied rank scores for the data listed in
Fig. 10.12, �a D �b D �c D � D dyx D dxy.

Now, in a randomized-block analysis-of-variance context, consider the rank
scores listed in Fig. 10.12 with b D 2 blocks and g D 8 univariate measurements
for each block, and define the MRBP test statistic

ı D
"

g

 
b

2

!#�1 gX

iD1

X

j<k

	.xij; xik/ ; (10.44)

where
P

j<k denotes the sum over all j and k such that 1 � j < k � b and 	.x; y/

is a symmetric distance-function value of two points x0 D .x1; x2; : : : ; xr/ and
y0 D .y1; y2; : : : ; yr/ in an r-dimensional Euclidean space, and the generalized
Minkowski distance function is given by

	.x; y/ D
 

rX

iD1

ˇ̌
xi � yi

ˇ̌p
!v=p

;

where p � 1 and v > 0.
If b D 2, r D 1, p D 2, v D 1, and there are no tied values on either variable x

or y (Txy D 0), as in this case, then the MRBP test statistic as given in Eq. (10.44)
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reduces to

ı D 1

g
	.x; y/ ; (10.45)

where

	.x; y/ D
X

j<k

ˇ̌
rij � sij

ˇ̌
:

Thus, for the rank scores listed in Fig. 10.12,

	.x; y/ D 10 and ı D 1

8
.10/ D 1:25 :

Then it can easily be shown that the functional relationships between the gener-
alized Minkowski distance function 	.x; y/ and Kendall’s S are given by

	.x; y/ D g.g � 1/

2
� S and S D g.g � 1/

2
� 	.x; y/ :

For the rank scores with no tied values listed in Fig. 10.12,

	.x; y/ D 8.8 � 1/

2
� 18 D 10 and S D 8.8 � 1/

2
� 10 D C18 ;

as given in the totals for the last two columns of Table 10.4. Also, the relationships
between the MRBP test statistic and Kendall’s S are given by

ı D g � 1

2
� S

g
and S D g

�
g � 1

2
� ı

�
:

Thus, for the rank scores with no tied values listed in Table 10.4 on p. 523, the
observed values of ı and S are

ıo D 8 � 1

2
� C18

8
D 1:25 and So D 8

�
8 � 1

2
� 1:25

�
D C18 :

For the rank scores listed in Fig. 10.12, there are

M D �
gŠ
�b D �

8Š
�2 D 1;625;702;400

possible, equally-likely arrangements of the observed data. However, considering
variable x fixed, relative to variable y, M can be reduced to

M D �
gŠ
�b�1 D �

8Š
�2�1 D 8Š D 40;320



526 10 Randomized Block Designs: Ordinal Data

and an exact solution is easily accomplished. Since g.g � 1/=2 is invariant under
permutation,

P.S � SojH0/ D P.ı � ıojH0/ D number of ı values � ıo

M
;

where So and ıo denote the observed values of Kendall’s S and ı, respectively.
For the rank scores listed in Fig. 10.12 on p. 522, following Eq. (10.45), the

observed value of the MRBP test statistic with v D 1 is

ıo D 1

g
	.x; y/ D 1

8
.10/ D 1:25 :

If all arrangements of the observed rank scores listed in Fig. 10.12 occur with equal
chance, the exact probability value of ıo D 1:25 computed on the M D 40;324 pos-
sible arrangements of the observed rank scores with b D 2 blocks preserved for each
arrangement is

P.ı � ıojH0/ D number of ı values � ıo

M
D 1;248

40;320
D 0:0310 :

For the rank scores listed in Fig. 10.12, following Eq. (10.3) on p. 474, the exact
expected value of the M D 40;320 ı values is

�ı D 1

M

MX

iD1

ıi D 1

40;320
.105;840/ D 2:6250

and, following Eq. (10.2) on p. 474, the observed chance-corrected measure of effect
size is

<o D 1 � ıo

�ı

D 1 � 1:25

2:6250
D C0:5238 ;

indicating approximately 52 % within-block agreement above that expected by
chance. It should be noted that the relationships between Kendall’s �a and the MRBP
test statistic are given by

�a D 1 � 2ı

g � 1
and ı D .1 � �a/.g � 1/

2
:

Thus, for the univariate rank scores listed in Fig. 10.12, the observed values of �a

and ı are

�a D 1 � .2/.1:25/

8 � 1
D 1 � 0:3571 D C0:6429
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and

ıo D .1 � 0:6429/.8 � 1/

2
D 2:5

2
D 1:25 :

Finally, there is an interesting relationship between Kendall’s �a measure of
ordinal association and Spearman’s footrule measure of chance-corrected rank
agreement R, which has not heretofore been documented. Because < and R yield
identical values,20 the relationships between �a and R are given by

�a D 1 C 2.R � 1/�ı

g � 1
and R D 1 � .1 � �a/.g � 1/

2�ı

:

Thus, for the univariate rank scores listed in Fig. 10.12, the observed values of
Kendall’s �a and Spearman’s R are

�a D 1 C 2.0:5238 � 1/.2:6250/

8 � 1
D C0:6429

and

Ro D 1 � .1 � 0:6429/.8 � 1/

.2/.2:6250/
D C0:5238 :

10.8.2 Example 2

For a second example of measures of ordinal association, consider the small set of
univariate rank scores listed in Fig. 10.13 in which tied rank scores on x and y (Tx

and Ty, respectively) are introduced.

Fig. 10.13 Two sets of
N D 5 rank scores with ties
for Kendall’s �a measure of
ordinal association

Variable

Object x y

1 1 2

2 2.5 1

3 2.5 4.5

4 4 4.5

5 5 3

20See Eq. (10.17) on p. 489.
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Table 10.5 Paired
differences, rij, sij, rijsij, and
jrij � sijj values for the
univariate rank scores listed
in Fig. 10.13

Pair xi � xj yi � yj rij sij rijsij jrij � sijj
1 1:0 � 2:5 2:0 � 1:0 �1 C1 �1 2

2 1:0 � 2:5 2:0 � 4:5 �1 �1 C1 0

3 1:0 � 4:0 2:0 � 4:5 �1 �1 C1 0

4 1:0 � 5:0 2:0 � 3:0 �1 �1 C1 0

5 2:5 � 2:5 1:0 � 4:5 0 �1 0 1

6 2:5 � 4:0 1:0 � 4:5 �1 �1 C1 0

7 2:5 � 5:0 1:0 � 3:0 �1 �1 C1 0

8 2:5 � 4:0 4:5 � 4:5 �1 0 0 1

9 2:5 � 5:0 4:5 � 3:0 �1 C1 �1 2

10 4:0 � 5:0 4:5 � 3:0 �1 C1 �1 2

Total C2 8

Table 10.5 lists the ten paired differences, rij, sij, rijsij, and jrij � sijj values for the
univariate rank scores listed in Fig. 10.13. Following Kendall,

S D
X

i<j

rijsij

as given in the sixth column of Table 10.5, where there are five concordant pairs,
each indicated by C1 (C D 5) and 3 discordant pairs, each indicated by �1 (D D 3);
therefore S D C � D implies that the observed value of S is So D 5 � 3 D C2. Also,
there is one pair of rank scores tied on variable x but not tied on variable y (Tx D 1),
indicated by a 0 in row 5 of the sixth column and one pair of rank scores tied on
variable y but not tied on variable x (Ty D 1), indicated by a 0 in row 8 of the sixth
column. Then, the observed value of Kendall’s �a based on So D C2 is

�a D 2So

N.N � 1/
D .2/.C2/

5.5 � 1/
D C0:20 :

Now consider the rank scores listed in Fig. 10.13 in a randomized-block analysis-
of-variance context with b D 2 blocks and g D 5 univariate measurements for each
block. Then, as shown previously, with Txy D 0, the generalized Minkowski distance
function is

	.x; y/ D g.g � 1/

2
� So D 5.5 � 1/

2
� 2 D 8 ;

as given in the total for the last column of Table 10.5 and

So D g.g � 1/

2
� 	.x; y/ D 5.5 � 1/

2
� 8 D C2 :
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Also, the relationships between the MRBP test statistic and Kendall’s S are given by

ı D g � 1

2
� S

g
and S D g

�
g � 1

2
� ı

�
:

Thus, for the rank scores listed in Table 10.5, the observed values of ı and S are

ıo D 5 � 1

2
� 2

5
D 1:60 and So D 5

�
5 � 1

2
� 1:60

�
D C2 :

For the univariate rank scores listed in Fig. 10.13, there are only

M D �
gŠ
�b D �

5Š
�2 D 14;400

possible, equally-likely arrangements of the observed data, therefore an exact solu-
tion is feasible. As previously,

P.S � SojH0/ D P.ı � ıojH0/ D number of ı values � ıo

M
;

where So and ıo denote the observed values of Kendall’s S and ı, respectively.
For the rank scores listed in Fig. 10.13, following Eq. (10.45) on p. 525 the

observed value of the MRBP test statistic with v D 1 is

ıo D 1

g
	.x; y/ D 1

5
.8/ D 1:60 :

If all arrangements of the observed rank scores listed in Fig. 10.13 occur with equal
chance, the exact probability value of ıo D 1:60 computed on the M D 14;400 pos-
sible arrangements of the observed rank scores with b D 2 blocks preserved for each
arrangement is

P.ı � ıojH0/ D number of ı values � ıo

M
D 11;030

14;400
D 0:7660 :

Following Eq. (10.3) on p. 474, the exact expected value of the M D 14;400 ı

values is

�ı D 1

M

MX

iD1

ıi D 1

14;400
.26;332/ D 1:8286

and, following Eq. (10.2) on p. 474, the observed chance-corrected measure of effect
size is

<o D 1 � ıo

�ı

D 1 � 1:60

1:8286
D C0:1250 ;
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indicating approximately 12 % within-block agreement above that expected by
chance. It should be noted that <o D C0:1250 is equivalent to Spearman’s footrule
measure R and, as in Example 1, for the rank scores listed in Fig. 10.13, the
observed values of �a and the MRBP test statistic ı are

�a D 1 � 2ıo

g � 1
D 1 � .2/.1:60/

5 � 1
D C0:20

and

ıo D .1 � �a/.g � 1/

2
D .1 � 20/.5 � 1/

2
D 1:60 :

Finally, the relationships between the observed values of Kendall’s rank-
correlation coefficient �a and Spearman’s footrule measure R are

�a D 1 C 2.R � 1/�ı

g � 1
D 1 C 2.0:1250 � 1/.1:8286/

5 � 1
D C0:20

and

Ro D 1 � .1 � �a/.g � 1/

2�ı

D 1 � .1 � 0:20/.5 � 1/

.2/.1:8286/
D 0:1250 :

10.8.3 Example 3

Whenever two sets of rank scores possess tied scores such that Txy > 0, the rela-
tionship between Kendall’s S and ı must be expressed more completely. Consider
the two sets of rank scores listed in Fig. 10.14, where there are multiple tied rank
scores. For the rank scores listed in Fig. 10.14, C D 8, D D 2, Tx D 1, Ty D 2, and
Txy D 2. Table 10.6 lists the

N.N � 1/

2
D 6.6 � 1/

2
D 15

Fig. 10.14 Two sets of rank
scores with ties for Kendall’s
�a measure of ordinal
association

Variable

Object x y

1 1.5 2

2 1.5 2

3 3.5 4.5

4 5.5 2

5 3.5 4.5

6 5.5 6
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Table 10.6 Paired differences, rij, sij, rijsij, and jrij � sijj values for the univariate rank scores
listed in Fig. 10.14

Pair xi � xj yi � yj rij sij rijsij jrij � sijj Type

1 1:5 � 1:5 2:0 � 2:0 0 0 0 0 Txy

2 1:5 � 3:5 2:0 � 4:5 �1 �1 C1 0 C

3 1:5 � 5:5 2:0 � 2:0 �1 0 0 1 Ty

4 1:5 � 3:5 2:0 � 4:5 �1 �1 C1 0 C

5 1:5 � 5:5 2:0 � 6:0 �1 �1 C1 0 C

6 1:5 � 3:5 2:0 � 4:5 �1 �1 C1 0 C

7 1:5 � 5:5 2:0 � 2:0 �1 0 0 1 Ty

8 1:5 � 3:5 2:0 � 4:5 �1 �1 C1 0 C

9 1:5 � 5:5 2:0 � 6:0 �1 �1 C1 0 C

10 3:5 � 5:5 4:5 � 2:0 �1 C1 �1 2 D

11 3:5 � 3:5 4:5 � 4:5 0 0 0 0 Txy

12 3:5 � 5:5 4:5 � 6:0 �1 �1 C1 0 C

13 5:5 � 3:5 2:0 � 4:5 C1 �1 �1 2 D

14 5:5 � 5:5 2:0 � 6:0 0 �1 0 1 Tx

15 3:5 � 5:5 4:5 � 6:0 �1 �1 C1 0 C

Total C6 7

paired differences, rij, sij, rijsij, and jrij � sijj values for the rank scores given in
Fig. 10.14.

Following Kendall,

X

i<j

rijsij

is given in the sixth column of Table 10.6, where there are C D 8 concordant pairs
in rows 2, 4, 5, 6, 8, 9, 12, and 15, indicated by C1 values, and D D 2 discordant
pairs in rows 10 and 13, indicated by �1 values. Values of Tx, Ty, and Txy receive
values of 0. Thus,

S D
X

i<j

rijsij D C � D D 8 � 2 D C6

and, following Eq. (10.38) on p. 521, Kendall’s �a statistic is given by

�a D 2S

N.N � 1/
D 2.6/

6.6 � 1/
D C0:40 :

Now consider the rank scores listed in Fig. 10.14 in a randomized-block analysis-
of-variance context with b D 2 blocks and g D 5 univariate measurements for each
block. It is obvious for the jrij � sijj column in Table 10.6 that only values of Tx, Ty,
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and D can receive non-zero values: values of 1 for both Tx and Ty and values of 2
for D. Therefore,

X

i<j

jrij � sijj D 2D C Tx C Ty D g.g � 1/

2
�
X

i<j

rijsij � Txy

D g.g � 1/

2
� S � Txy :

Here, the observed value is 2D C Tx C Ty D .2/.2/ C 1 C 2 D 7 and g.g � 1/=2 �
S � Txy D 6.6 � 1/=2 � 6 � 2 D n � 2 D 7.

Now, define the generalized Minkowski distance function with b D 2, r D 1, p D
2, and v D 1,

	.x; y/ D g.g � 1/

2
� S :

Then, substituting C C D C Tx C Ty C Txy for g.g � 1/=2 and C � D for S,

	.x; y/ D C C D C Tx C Ty C Txy � .C � D/

D 2D C Tx C Ty C Txy : (10.46)

In this case, 2D C Tx C Ty C Txy D 2.2/ C 1 C 2 C 2 D 9. Finally, the observed
MRBP test statistic with v D 1 is

ıo D 1

g
	.x; y/ D 1

6
.9/ D 1:50 :

Also, the relationships between the MRBP test statistic and Kendall’s S are given by

ı D g � 1

2
� S

g
and S D g

�
g � 1

2
� ı

�
:

Thus, for the rank scores listed in Fig. 10.14, the observed values of ı and S are

ıo D 6 � 1

2
� 6

6
D 1:50 and So D 6

�
6 � 1

2
� 1:50

�
D 6 :

For the rank scores listed in Fig. 10.14, there are only

M D �
gŠ
�b D �

6Š
�2 D 518;400
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possible, equally-likely arrangements of the observed data, therefore an exact solu-
tion is possible. As previously,

P.S � SojH0/ D P.ı � ıojH0/ D number of ı values � ıo

M
;

where So and ıo denote the observed values of Kendall’s S and ı, respectively.
If all arrangements of the observed rank scores listed in Fig. 10.14 occur with

equal chance, the exact probability value of ıo D 1:50 computed on the M D
518;400 possible arrangements of the observed rank scores with b D 2 blocks pre-
served for each arrangement is

P.ı � ıojH0/ D number of ı values � ıo

M
D 69;120

518;400
D 0:1333 :

Following Eq. (10.3) on p. 474, the exact expected value of the M D 518;400 ı

values is

�ı D 1

M

MX

iD1

ıi D 1

518;400
.1;258;971/ D 2:4286

and, following Eq. (10.2) on p. 474, the observed chance-corrected measure of effect
size is

<o D 1 � ıo

�ı

D 1 � 1:50

2:4286
D C0:3824 ;

indicating approximately 38 % within-block agreement above that expected by
chance.

As in Examples 1 and 2, <o is equivalent to the observed value of Spearman’s
footrule measure Ro and, for the rank scores listed in Fig. 10.14, the relationships
between the observed values of �a and ı are

�a D 1 � 2ıo

g � 1
D 1 � 2.1:50/

6 � 1
D C0:40

and

ıo D .1 � �a/.g � 1/

2
D .1 � 0:40/.6 � 1/

2
D 1:50 :

Also, the relationships between the observed values of Kendall’s �a and Spearman’s
R are

�a D 1 C 2.Ro � 1/�ı

g � 1
D 1 C 2.0:3824 � 1/.2:4286/

.6 � 1/
D C0:40
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and

Ro D 1 � .1 � �a/.g � 1/

2�ı

D 1 � .1 � 0:40/.6 � 1/

2.2:4286/
D C0:3824 :

10.8.4 Example 4

For this fourth example of measures of ordinal association, consider the frequency
data given in Fig. 10.15, where N D 20 bivariate observations have been cross-
classified into a 3�3 ordered contingency table. This is a more typical application
of measures of ordinal association. For the frequency data given in Fig. 10.15, the
number of concordant pairs is

C D
r�1X

iD1

c�1X

jD1

nij

0

@
rX

kDiC1

cX

lDjC1

nkl

1

A

D 6.2 C 1 C 1 C 5/ C 2.1 C 5/ C 2.1 C 5/ C 2.5/ D 88 ;

the number of discordant pairs is

D D
r�1X

iD1

c�1X

jD1

ni;c�jC1

 
rX

kDiC1

c�jX

lD1

nkl

!

D 0.2 C 2 C 1 C 1/ C 2.2 C 1/ C 1.1 C 1/ C 2.1/ D 10 ;

the number of pairs tied on variable x but not tied on variable y is

Tx D
rX

iD1

c�1X

jD1

nij

0

@
cX

kDjC1

nik

1

A

D 6.2 C 0/ C 2.0/ C 2.2 C 1/ C 2.1/ C 1.1 C 5/ C 1.5/ D 31 ;

Fig. 10.15 Example
rank-score data for N D 20

bivariate observations
cross-classified on ordinal
variables x and y into a 3�3

contingency table

y

x 1 2 3 Total

1 6 2 0 8

2 2 2 1 5

3 1 1 5 7

Total 9 5 6 20
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the number of pairs tied on variable y but not tied on variable x is

Ty D
cX

jD1

r�1X

iD1

nij

 
rX

kDiC1

nkj

!

D 6.2 C 1/ C 2.1/ C 2.2 C 1/ C 2.1/ C 0.1 C 5/ C 1.5/ D 33 ;

and the number of pairs tied on both variable x and variable y is

Txy D 1

2

rX

iD1

cX

jD1

nij
�

nij � 1
�

D 1

2

�
6.6 � 1/ C 2.2 � 1/ C 0.0 � 1/ C 2.2 � 1/ C 2.2 � 1/ C 1.1 � 1/

C 1.1 � 1/ C 1.1 � 1/ C 5.5 � 1/
	 D 28 :

Then, the observed value of Kendall’s S is So D C � D D 88 � 10 D C78 and the
observed value of Kendall’s �a is

�a D 2So

N.N � 1/
D 2.78/

20.20 � 1/
D C0:4105 :

Now consider the frequency data given in Fig. 10.15 in a randomized-block
analysis-of-variance context with b D 2 blocks and g D 20 univariate measure-
ments for each block as displayed in Fig. 10.16. Then, as shown in Example 3, the
generalized Minkowski distance function with v D 1 is

	.x; y/ D g.g � 1/

2
� So D 20.20 � 1/

2
� 78 D 112 :

Fig. 10.16 Rank scores
assigned to g D 20 objects by
b D 2 blocks

Block Block

Object 1 2 Object 1 2

1 1 1 11 2 2

2 1 1 12 2 2

3 1 1 13 2 3

4 1 1 14 3 1

5 1 1 15 3 2

6 1 1 16 3 3

7 1 2 17 3 3

8 1 2 18 3 3

9 2 1 19 3 3

10 2 1 20 3 3
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Alternatively, following Eq. (10.46) on p. 532, the observed value of 	.x; y/ is given
by

	.x; y/ D 2D C Tx C Ty C Txy D 2.10/ C 31 C 33 C 28 D 112 :

Following Eq. (10.45) on p. 525, the observed value of the MRBP test statistic ı

with v D 1 is

ıo D 1

g
	.x; y/ D 1

20
.112/ D 5:60 :

Also, the relationships between the MRBP test statistic and Kendall’s S are given by

ı D g � 1

2
� S

g
and S D g

�
g � 1

2
� ı

�
:

Thus, for the randomized-block data listed in Fig. 10.16, the observed values of ı

and S are

ıo D 20 � 1

2
� 78

20
D 5:60 and So D 20

�n

2
� 5:60

�
D C78 :

For the randomized-block data listed in Fig. 10.16, there are

M D �
gŠ
�b�1 D �

20Š
�2�1 D 2;432;902;008;176;640;000

equally-likely arrangements of the observed data, therefore an exact solution is not
feasible and a resampling approximation is required, where

P
�
ı � ıojH0

� D number of ı values � ıo

L

and L is the number of resampled test statistic values. As previously,

P
�
S � SojH0

� D P
�
ı � ıojH0

� D number of ı values � ıo

L
;

where So and ıo denote the observed values of Kendall’s S and ı, respectively.
If all M possible arrangements of the frequency data given in Fig. 10.15 occur

with equal chance, the approximate resampling probability value of ıo D 5:60 com-
puted on L D 1;000;000 random arrangements of the observed rank scores with
b D 2 blocks preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

L
D 2;611

1;000;000
D 0:0026 :
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Following Eq. (10.3) on p. 474, the exact expected value of the M ı values is �ı D
93:1006 and, following Eq. (10.2) on p. 474, the observed chance-corrected measure
of effect size is

<o D 1 � ıo

�ı

D 1 � 5:60

93:1006
D C0:9399 ;

indicating approximately 94 % within-block agreement above that expected by
chance.

For the frequency data given in Fig. 10.15, the observed values of �a and ı are

�a D 1 � 2ıo

g � 1
D 1 � .2/.5:60/

20 � 1
D C0:4105

and

ıo D .1 � �a/.g � 1/

2
D .1 � 0:4105/.20 � 1/

2
D 5:60 :

As in Examples 1–3, <o is equivalent to Spearman’s footrule measure R and the
observed values of Kendall’s rank-correlation coefficient �a and Spearman’s chance-
corrected footrule measure R are

�a D 1 C 2.R � 1/�ı

g � 1
D 1 C .2/.0:9399 � 1/.93:1006/

20 � 1
D C0:4105

and

Ro D 1 � .1 � �a/.g � 1/

2�ı

D 1 � .1 � 0:4105/.20 � 1/

.2/.93:1006/
D C0:9399 :

10.9 SelectedMeasures of Ordinal Association and ı

Considering that the functional relationships between Kendall’s S and the MRBP
test statistic are given by

S D g

�
g � 1

2
� ı

�
and ı D g � 1

2
� S

g
;

and that S is the common numerator of Kendall’s �a and �b, Stuart’s �c, Goodman
and Kruskal’s � , and Somers’ dyx and dxy, then the relationships between ı and �a,
�b, �c, � , dyx, and dxy are easily specified. The seven relationships are illustrated with
the frequency data given in Fig. 10.15 on p. 534 where C D 88, D D 10, Tx D 31,
Ty D 33, Txy D 28, the observed value of Kendall’s S is So D C � D D 88 � 10 D
78, and N D g D 20.
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10.9.1 Kendall’s �a Statistic and ı

Following Eq. (10.38) on p. 521 for the frequency data given in Fig. 10.15 on p. 534,
the observed value of Kendall’s �a measure of ordinal association is

�a D 2So

N.N � 1/
D 2.78/

20.20 � 1/
D C0:4105 :

As stated previously, the functional relationships between Kendall’s �a, given in
Eq. (10.38) on p. 521, and the MRBP test statistic, given in Eq. (10.44) on p. 524,
are given by

�a D 1 � 2ı

g � 1
and ı D .1 � �a/.g � 1/

2
:

Thus, for the frequency data given in Fig. 10.15, the observed values of �a and ı are

�a D 1 � 2.5:60/

20 � 1
D C0:4105 and ıo D .1 � 0:4105/.20 � 1/

2
D 5:60 :

10.9.2 Kendall’s �b Statistic and ı

Following Eq. (10.39) on p. 521 for the frequency data given in Fig. 10.15 on p. 534,
the observed value of Kendall’s �b measure of ordinal association is

�b D Soq
.C C D C Tx/.C C D C Ty/

D

78
q

.88 C 10 C 31/.88 C 10 C 33/

D C0:60 :

The functional relationships between Kendall’s �b measure of ordinal association,
given in Eq. (10.39) on p. 521, and the MRBP test statistic, given in Eq. (10.44) on
p. 524, are given by

�b D
g

�
g � 1

2
� ı

�

�
.C C D C Tx/.C C D C Ty/

	1=2

and

ı D g.g � 1/ � 2�b
�
.C C D C Tx/.C C D C Ty/

	1=2

2g
:
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Thus, for the frequency data given in Fig. 10.15, the observed values of �b and ı are

�b D
20

�
20 � 1

2
� 5:60

�

�
.88 C 10 C 31/.88 C 10 C 33/

	1=2
D 78

130
D C0:60

and

ıo D .20/.20 � 1/.0:60/
�
.88 C 10 C 31/.88 C 10 C 33/

	1=2

.2/.20/
D 224

40
D 5:60 :

10.9.3 Stuart’s �c Statistic and ı

Following Eq. (10.40) on p. 521 for the frequency data given in Fig. 10.15, the
observed value of Stuart’s �c measure of ordinal association is

�c D 2mSo

N2.m � 1/
D 2.3/.78/

202.3 � 1/
D C0:5850 :

where m D min.r; c/ D 3. The functional relationships between Stuart’s �c measure
of ordinal association, given in Eq. (10.40) on p. 521, and the MRBP test statistic,
given in Eq. (10.44) on p. 524, are given by

�c D 2m

m � 1

2

664
g

�
g � 1

2
� ı

�

N2

3

775 and ı D m.g � 1/ � .m � 1/.�c/N

2m
;

where m D min.r; c/. Thus, for the frequency data given in Fig. 10.15, the observed
values of �c and ı are

�c D .2/.3/

n

2

664
20

�
20 � 1

2
� 5:60

�

202

3

775 D 468

800
D C0:5850

and

ıo D .3/.20 � 1/ � .20 � 1/.0:5850/.20/

.2/.3/
D 33:6

6
D 5:60 :
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10.9.4 Goodman and Kruskal’s � Statistic and ı

Following Eq. (10.41) on p. 521 for the frequency data given in Fig. 10.15 on p. 534,
the observed value of Goodman and Kruskal’s � measure of ordinal association is

� D So

C C D
D 78

88 C 10
D C0:7959 :

The functional relationships between Goodman and Kruskal’s � measure of ordinal
association, given in Eq. (10.41) on p. 521, and the MRBP test statistic, given in
Eq. (10.44) on p. 524, are given by

� D
g

�
g � 1

2
� ı

�

C C D
and ı D g.g � 1/ � 2�.C C D/

2g
:

Thus, for the frequency data given in Fig. 10.15, the observed values of � and ı are

�o D
20

�
20 � 1

2
� 5:60

�

88 C 10
D 78

98
D C0:7959

and

ıo D 20.20 � 1/ � .2/.0:7959/.88 C 10/

.2/.20/
D 224

40
D 5:60 :

10.9.5 Somers’ dyx Statistic and ı

Following Eq. (10.42) on p. 521 for the frequency data given in Fig. 10.15, the
observed value of Somers’ dyx measure of ordinal association is

dyx D So

C C D C Ty
D 78

88 C 10 C 33
D C0:5954 :

The functional relationships between Somers’ dyx measure of ordinal association,
given in Eq. (10.42) on p. 521, and the MRBP test statistic, given in Eq. (10.44) on
p. 524, are given by

dyx D
g

�
g � 1

2
� ı

�

C C D C Ty
and ı D g.g � 1/ � 2dyx.C C D C Ty/

2g
:
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Thus, for the frequency data listed in Fig. 10.15, the observed values of dyx and ı are

dyx D
20

�
20 � 1

2
� 5:60

�

88 C 10 C 33
D 78

131
D 0:5954

and

ıo D 20.n/ � .2/.0:5954/.88 C 10 C 33/

.2/.20/
D 224

40
D 5:60 :

10.9.6 Somers’ dxy Statistic and ı

Following Eq. (10.43) on p. 522 for the frequency data listed in Fig. 10.15 on p. 534,
Somers’ dxy measure of ordinal association is given by

dxy D So

C C D C Tx
D 78

88 C 10 C 31
D C0:6047 :

The functional relationships between Somers’ dxy measure of ordinal association,
given in Eq. (10.43) on p. 522, and the MRBP test statistic, given in Eq. (10.44) on
p. 524, are given by

dxy D
g

�
g � 1

2
� ı

�

C C D C Tx
and ı D g.g � 1/ � 2dxy.C C D C Tx/

2g
:

Thus, for the frequency data listed in Fig. 10.15, the observed values of dxy and ı are

dxy D
20

�
20 � 1

2
� 5:60

�

88 C 10 C 31
D 78

129
D C0:6047

and

ıo D 20.n/ � .2/.0:6047/.88 C 10 C 31/

.2/.20/
D 224

40
D 5:60 :

10.10 Coda

Chapter 10 utilized the Multivariate Randomized Block Procedures (MRBP) devel-
oped in Chap. 8 to establish relationships between the test statistics of MRBP, ı

and <, and selected conventional tests and measures designed for the analysis of
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randomized-blocks data at the ordinal level of measurement. Considered in this
chapter were the Wilcoxon signed-ranks test, the sign test, Spearman’s rank-order
and footrule measures of rank correlation, Friedman’s analysis of variance for
ranks, Kendall’s coefficient of concordance, Cohen’s weighted kappa measure of
agreement, Kendall’s ta and tb measures of ordinal association, Stuart’s tc statistic,
Goodman and Kruskal’s � measure of ordinal association, and Somers’ dxy and dyx

asymmetric measures of ordinal association.
In this chapter, the MRBP test statistic, ı, was shown to replace the various

statistics listed above. Moreover, MRBP provides highly accurate probability val-
ues, either exact or resampling, without any distributional assumptions. In addition,
MRBP is entirely data-dependent. Finally, a universal chance-corrected measure of
effect size is provided for each of the listed statistics.

Chapter 11
Chapter 11 establishes the relationships between the MRBP test statistics, ı and
<, and selected conventional tests and measures designed for the analysis of
randomized-block data at the nominal level of measurement. Considered in Chap. 11
are Cohen’s unweighted � measure of chance-corrected agreement, McNemar’s and
Cochran’s Q tests for change, Kendall’s ta and Yule’s Q and Y measures of cat-
egorical association, the odds ratio, Somers’ dxy and dyx asymmetric measures of
association, Pearson’s product-moment correlation coefficient, percentage differ-
ences, and chi-squared.
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This last chapter of Permutation Statistical Methods utilizes the Multivariate Ran-
domized Block Permutation (MRBP) procedures presented in Chap. 8 to develop
relationships between the test statistics of MRBP, ı and <, and selected conven-
tional tests and measures designed for the analysis of randomized-block data at the
nominal (categorical) level of measurement. The statistical evaluation of categori-
cal data is fraught with problems [91], which are detailed more completely in the
preface to Chap. 7. Among these are the complex structures that categorical scales
attempt to reflect, often with (0; 1) binary coding; simplistic conditional indepen-
dence assumptions; and concepts unrelated to any realistic notion of measurement
error [91].

A variety of statistical tests and measures for categorical data are considered
in this chapter, including Cohen’s unweighted kappa measure of chance-corrected
agreement: McNemar’s and Cochran’s Q tests for change, Kendall’s ta rank-
correlation statistic, Yule’s Q and Y measures of association, the odds ratio,
Somers’ dxy and dyx asymmetric measures of association, Pearson’s product-moment
correlation coefficient, percentage differences, and Pearson’s chi-squared test of
independence.

11.1 Introduction

Randomized-block analysis-of-variance designs analyze univariate or multivari-
ate observations on matched objects or subjects. As detailed in Chap. 8, let x 0

ij D
.x1ij; x2ij; : : : ; xrij/ denote a transposed vector of r response measurements associ-
ated with the ith treatment and jth block. Then the MRBP test statistic is given by

ı D
"

g

 
b

2

!#�1 gX

iD1

X

j<k

	.xij; xik/ ; (11.1)
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where
P

j<k denotes the sum over all j and k such that 1 � j < k � b and 	.x; y/

is a symmetric distance-function value of two points x0 D .x1; x2; : : : ; xr/ and
y0 D .y1; y2; : : : ; yr/ in an r-dimensional Euclidean space. In the context of a
randomized-block analysis-of-variance design, the generalized Minkowski distance
function is given by

	.x; y/ D
 

rX

iD1

ˇ̌
xi � yi

ˇ̌p
!v=p

; (11.2)

where p � 1 and v > 0.
The null hypothesis (H0) states that the distribution of ı assigns an equal proba-

bility to each of the

M D �
gŠ
�b

possible, equally-likely allocations of the r-dimensional response measurements to
the g treatment positions within each of the b blocks.

An exact probability value for the observed MRBP test statistic, ıo, may be
expressed as

P.ı � ıojH0/ D number of ı values � ıo

M

and a chance-corrected measure of within-block agreement among the b blocks for
all g treatments provides a chance-corrected measure of effect size given by

< D 1 � ı

�ı

; (11.3)

where �ı is the arithmetic average of the M ı values calculated on all possible
arrangements of the observed data given by

�ı D 1

M

MX

iD1

ıi : (11.4)

As previously, when M is large, an approximate probability value for ı may be
obtained from a resampling procedure, where

P
�
ı � ıojH0

� D number of ı values � ıo

L
(11.5)

and L is a random sample of all possible arrangements of the bg response measure-
ments. Typically, L is set to a large number to ensure accuracy, e.g., L D 1;000;000.
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When M is very large and P is exceedingly small, a resampling-approximation per-
mutation procedure may produce no ı values equal to or less than ıo, even with
L D 1;000;000, yielding an approximate resampling probability value of P D 0:00.
In such cases, moment-approximation permutation procedures based on fitting the
first three exact moments of the discrete permutation distribution to a Pearson
type III distribution provide approximate probability values, as detailed in Chap. 1,
Sect. 1.2.2 [284, 299].

11.2 Cohen’s KappaMeasure of Agreement

As discussed more completely in Chap. 4, Sect. 4.1.1 and Chap. 10, Sect. 10.7, a
number of statistical research problems require the measurement of agreement,
rather than association or correlation. Measures of agreement describe the extent
to which a set of responses are identical with each other, i.e., agree, rather than the
extent to which one set of response measurements is a linear function of another set,
i.e., correlated.

In 1960, psychologist Jacob Cohen proposed a chance-corrected measure of
agreement that he called kappa [70]. Cohen’s kappa measure describes the agree-
ment between b D 2 observers or judges on the assignment of N objects to a set of c
discrete, mutually exclusive categories. In 1968 Cohen proposed an alternative ver-
sion of kappa that allowed for the weighting of categories [71]. Whereas the original
version of (unweighted) kappa, introduced by Cohen in 1960, did not distinguish
among magnitudes of disagreement, weighted kappa incorporated the magnitude of
each disagreement and provided partial credit for disagreements when agreement
was not complete. Weighted kappa is discussed in Chap. 10, Sect. 10.7, as it applies
to ordered categories; unweighted kappa is discussed here as it is typically used for
unordered categorical data.

Assume that two judges independently classify each of g response measurements
into one of c discrete, mutually exclusive, and exhaustive categories, denoted by A,
B, and C. The resulting classifications can be displayed in a c�c cross-classification
table, such as Fig. 11.1, with proportions for cell entries, where p:: D 1:00. In the

Fig. 11.1 Notation for a
3�3 cross-classification with
proportions for cell entries

Judge 2

Judge 1 A B C Total

A p 11 p12 p13 p1 .

B p 21 p22 p23 p2 .

C p 31 p32 p33 p3 .

Total p. 1 p. 2 p. 3 p..
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notation of Fig. 11.1, Cohen’s unweighted kappa (hereafter, kappa) is given by

O� D Po � Pe

1 � Pe
; (11.6)

where

Po D
cX

iD1

pii and Pe D
cX

iD1

pi:p:i :

Thus, Po is the observed proportion of response measurements on which the two
judges agree, Pe is the proportion of response measurements for which agreement
is expected by chance, Po � Pe is the proportion of agreement above that expected
by chance, 1 � Pe is the maximum possible proportion of agreement above that
expected by chance, and O� is the proportion of agreement between the two judges
after chance agreement has been removed [27].

Let ı D 1 � Po and �ı D 1 � Pe denote the observed and expected proportions
of disagreement, respectively. Simplification and substitution yield

O� D Po � Pe

1 � Pr
D 1 � 1 � Po

1 � Pe
D 1 � ı

�ı

: (11.7)

Thus, Cohen’s unweighted O� may be interpreted as a ratio of measures of disagree-
ment, or distance, between the two judges, where distance is measured by summing
a series of zeroes and ones [242]. As expressed in Eq. (11.7), O� is a specific mea-
sure of chance-corrected agreement based on measurement of ordinary Euclidean
distances among the classifications of two judges and is identical to <, the chance-
corrected measure of effect size, as given in Eq. (11.3) on p. 544.

An alternative representation of Fig. 11.1 is presented in Fig. 11.2. Figure 11.2 is
constructed in the context of a multivariate randomized-block analysis-of-variance
design with g � 2 observations, b D 2 blocks (corresponding to the two judges), and
the two polytomous variables of Fig. 11.1 represented by a c�1 vector (x) where the
ith element, corresponding to the ith of c categories, is set to 2�1=2 and where the
remaining c � 1 elements of x are set to 0. The constant, 2�1=2, is simply to ensure
that the distance between any two vectors will be 0 if the classifications agree and 1

Fig. 11.2 Example data in a
multivariate
randomized-block
representation

Block

Object 1 2

1 x 11 x 12

2 x 21 x 22

3 x 31 x 32
.
..

.

..
.
..

g xg 1 xg 2



11.2 Cohen’s Kappa Measure of Agreement 547

Fig. 11.3 Example data for
g D 5 objects, b D 2 judges,
and c D 3 categories in a
multivariate
randomized-block
analysis-of-variance
representation

Block

Object

1

2−1/2

0

0

2−1/2

0

0

2 2−1/2

0

0
2−1/2

0

0

3 2−1/2

0

0

2−1/2

0

0

2−1/2

0

0

4

2−1/2

0
0

5

2−1/2

0
0

2−1/2

0
0

1 2

if the classifications disagree. The choice of the constant is completely arbitrary and
any positive value may be chosen. However, the values for ı and �ı , but not <, will
be affected by the choice of the constant. Figure 11.3 illustrates Fig. 11.2 with c�1

vectors for g D 5 objects, b D 2 blocks, and c D 3 categories.
In the alternative representation of the data depicted in Fig. 11.2, ı, the arithmetic

average of paired distances between objects, is given by

ı D 1

g

gX

iD1

	.xi1; xi2/ ; (11.8)

where the generalized Minkowski distance function is given by

	.xi1; xi2/ D
"

cX

kD1

�
xi1k � xi2k

�p

#v=p

; (11.9)

p � 1, v > 0, and xisk denotes the kth element of vector xis with i D 1; : : : ; g (for
Objects 1 through g) and s D 1; 2 (for Blocks 1 and 2). Then, �ı is the expected
proportion of disagreement defined as

�ı D 1

g2

gX

iD1

gX

jD1

	.xi1; xj2/ (11.10)
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with the generalized Minkowski distance function given by

	.xi1; xj2/ D
"

cX

kD1

�
xi1k � xj2k

�2
#1=2

;

where p D 2 and v D 1, employing ordinary Euclidean distance between elements.
To illustrate the equivalence of the two computation forms, consider the raw data

given in Table 10.1 in Chap. 10, replicated for convenience in Fig. 11.4, absent the
linear and quadratic weights. Figure 11.3 on p. 547 represents the frequency data
given in Fig. 11.4 arranged in a randomized-block format with g D 5 objects, b D 2

judges, and c D 3 discrete categories. For the frequency data given in Fig. 11.4,

Po D
cX

iD1

pii D 0

5
C 2

5
C 1

5
D 3

5
D 0:60 ;

Pe D
cX

iD1

pi:p:i D
�

1

5

��
1

5

�
C
�

2

5

��
3

5

�
C
�

2

5

��
1

5

�

D 1

25
C 6

25
C 2

25
D 9

25
D 0:36 ;

and following Eq. (11.6) on p. 546, the observed value of Cohen’s O� is

O�o D Po � Pe

1 � Pe
D 0:60 � 0:36

1:00 � 0:36
D C0:3750 :

To illustrate the computation of the Minkowski generalized distance function
given in Eq. (11.9) on p. 547, consider i D 1, Block 1 of Fig. 11.3, where 	.x11; x12/,
following Eq. (11.9) on p. 547 for Objects 1 and 2, is calculated as

	.x11; x12/ D �
.2�1=2 � 0/2 C .0 � 2�1=2/2 C .0 � 0/2

	1=2 D 1 ;

indicating disagreement on the classification of Object 1, i.e., Judge 1 assigned
Object 1 to Category A and Judge 2 assigned Object 1 to Category B. Now con-

Fig. 11.4 Example data set
with g D 5 objects, b D 2

judges, and c D 3 categories

Judge 2

Judge 1 A B C Total

A 0 1 0 1

B 0 2 0 2

C 1 0 1 2

Total 1 3 1 5
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sider i D 2, Block 2 of Fig. 11.3, where 	.x21; x22/ for Objects 1 and 2 is calculated
as

	.x21; x22/ D �
.0 � 0/2 C .2�1=2 � 2�1=2/2 C .0 � 0/2

	2 D 0 ;

indicating agreement on the classification of Object 2, i.e., both Judges assigned
Object 2 to Category B.

Then, following Eq. (11.8) on p. 547 with g D 5 and b D 2, the observed value
of the MRBP test statistic based on v D 1 is

ıo D 1

g

gX

iD1

	.xi1; xi2/ D 1

5
.1 C 0 C 0 C 1 C 0/ D 0:40 ;

which is equivalent to 1 � Po, and, following Eq. (11.10) on p. 547, the exact
expected value of ı is

�ı D 1

g2

gX

iD1

gX

jD1

	.xi1; xj2/ D 1

52
.1 C 1 C � � � C 1 C 0/ D 0:64 ;

which is equivalent to 1 � Pe. Then, following Eq. (11.7) on p. 546,

O�o D 1 � ıo

�ı

D 1 � 0:40

0:64
D C0:3750 :

Since < D O� D C0:3750 and < is simply a linear transformation of ı, a test of
significance for ı is a test of significance for O�. Thus, the exact probability value of
an observed value of O�, O�o, is the exact probability value of an observed value of ı,
ıo, under the null hypothesis, i.e.,

P. O� � O�ojH0/ D P.ı � ıojH0/ D number of ı values � ıo

M
;

where

M D �
gŠ
�b

in this application. As the b D 2 blocks are specified, the randomization associated
with a randomized-block analysis-of-variance design is confined to all permutations
of the g D 5 observations within each block. Under the null hypothesis, each of the
M possible arrangements of the observed data occurs with equal probability.

For the data listed in Fig. 11.3, there are only

M D �
gŠ
�b D �

5Š
�2 D 14;400
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possible, equally-likely arrangements of the observed data, therefore an exact solu-
tion is possible. If all arrangements of the observed randomized-block data given
in Fig. 11.3 occur with equal chance, the exact probability value of ıo D 0:40 com-
puted on the M D 14;400 possible arrangements of the observed data with b D 2

blocks preserved for each arrangement is

P.ı � ıojH0/ D number of ı values � ıo

M
D 2;880

14;400
D 0:20 :

Finally, the observed chance-corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 0:40

0:64
D C0:3750 ;

indicating approximately 37 % agreement between the b D 2 judges.

11.2.1 Multiple Judges

While Cohen’s O� is limited to b D 2 judges, simple modifications to ı and �ı gen-
eralize < to measure agreement among multiple judges [27]. Thus, the MRBP test
statistic may be redefined as

ı D
"

g

 
b

2

!#�1 gX

iD1

X

s<t

	 .xis; xit/ ; (11.11)

where the generalized Minkowski distance function is given by

	 .xis; xit/ D
"

rX

kD1

.xisk � xitk/
2

#1=2

;

b is the number of judges (i.e., blocks) and
P

s<t is the sum over all s and t such that
1 � s < t � b. The reformulation of the expected value of ı is given by

�ı D
"

g2

 
b

2

!#�1 gX

iD1

gX

jD1

X

s<t

	
�
xis; xjt

�
: (11.12)

To illustrate the measurement of agreement for multiple judges, consider the cat-
egorical data listed in Fig. 11.5, in which each of b D 4 judges (A, B, C, and D)
is asked to assign g D 8 objects to c D 4 discrete, mutually exclusive, exhaustive
categories, labeled 1, 2, 3, and 4.
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Fig. 11.5 Example data set
for multiple judges with
categorical data, g D 8

objects, b D 4 judges, and
r D 1 response

Judge

Object A B C D

1 3 4 3 3

2 4 3 1 4

3 2 1 1 2

4 4 2 3 1

5 1 1 2 1

6 1 3 2 3

7 3 4 4 4

8 2 3 4 3

For the categorical data listed in Fig. 11.5, g D 8, b D 4, and r D 1. Following
Eq. (11.11) the observed value of the MRBP test statistic based on v D 1 is ıo D
0:9583, following Eq. (11.12) the exact expected value of ı is �ı D 1:2448, and
following Eq. (11.3) on p. 544 the observed chance-corrected measure of effect size
is

<o D 1 � ıo

�ı

D 1 � 0:9583

1:2448
D C0:2301 ;

indicating approximately 23 % agreement among the b D 4 judges above that
expected by chance.

Because there are

M D �
gŠ
�b D �

8Š
�4 D 2;642;908;293;365;760;000

possible, equally-likely arrangements of the observed data listed in Fig. 11.5, an
exact permutation solution is not feasible. If all M possible arrangements of
the observed randomized-block data listed in Fig. 11.5 occur with equal chance,
the approximate resampling probability value of ıo D 0:9583 computed on L D
1;000;000 random arrangements of the observed data with b D 4 blocks preserved
for each arrangement is

P.ı � ıojH0/ D number of ı values � ıo

L
D 42;514

1;000;000
D 0:0425 :

Generalization of Cohen’s Unweighted O�
The coefficient of effect size, <, is a generalization of Cohen’s unweighted O� to mul-
tiple observers. It preserves the desired qualities of O� in that it is chance-corrected,
Euclidean-based, and applicable to the measurement of reliability. The generaliza-
tion of Cohen’s O� to multiple observers for categorical data is the special case of <
when the distance space is restricted to an r-dimensional simplex consisting of r dis-
tinct points where the distance between any pair of points is unity and the distance
between any two coincident points is zero.
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In this context, Cohen’s unweighted O� is the special case of < when b D 2 and
the measure of agreement corresponding to Cochran’s Q test is the special case of
< when r D 2. That is, Cochran’s Q test involves b judges, g observations, and a
two-dimensional simplex. The measure of agreement corresponding to McNemar’s
test for change is the special case of both Cohen’s O� and the measure of agreement
corresponding to Cochran’s Q test when b D r D 2 [27, 297, pp. 162–163].

11.2.2 An Alternative Approach toMultiple Judges

In this section, an alternative procedure is presented to compute unweighted kappa
with multiple judges. Although the procedure is appropriate for any number of c � 2

disjoint ordered categories and b � 2 judges, the description of the procedure and
the examples are limited to three independent judges to simplify presentation.

Consider b D 3 judges who independently classify N objects into c disjoint
ordered categories. The classification may be conceptualized as c�c�c contingency
table with c rows, c columns, and c slices. Let nijk, Ri, Cj, and Sk denote the cell fre-
quencies and row, column, and slice marginal frequency totals for i; j; k D 1; : : : ; c
and let the frequency total be given by

N D
cX

iD1

cX

jD1

cX

kD1

nijk :

Cohen’s unweighted kappa test statistic for a three-way contingency table is
given by

O� D
N2

cX

iD1

cX

iD1

cX

iD1

wijknijk

cX

iD1

cX

iD1

cX

iD1

wijkRiCjSk

; (11.13)

where wijk are disagreement weights assigned to each cell for i; j; k D 1; : : : ; c.
“Unweighted” kappa is, in fact, characterized by a specific weighting scheme given
by

wijk D
8
<

:
0 if i D j D k ,

1 otherwise :

Given a c�c�c contingency table with N objects cross-classified by the indepen-
dent judges, an exact permutation test involves generating all possible arrangements
of the N objects to the c3 cells, while preserving the marginal frequency totals. For
each arrangement of cell frequencies, the unweighted kappa statistic, O�, and the
exact hypergeometric probability value under the null hypothesis, P.nijkjRi; Cj; Sk/,
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are calculated, where

P.nijkjRi; Cj; Sk/ D

 
cY

iD1

RiŠ

!0

@
cY

jD1

CjŠ

1

A
 

cY

kD1

SkŠ

!

.NŠ/2

cY

iD1

cY

jD1

cY

kD1

nijkŠ

(11.14)

[290].
If O�o denotes the value of the observed unweighted kappa test statistic, the exact

probability value of O�o under the null hypothesis is given by

P. O�o/ D
MX

lD1

‰l
�
nijkjRi; Cj; Sk

�
;

where

‰l
�
nijkjRi; Cj; Sk

� D
8
<

:
P.nijkjRi; Cj; Sk/ if O� � O�o ,

0 otherwise ;

and M denotes the total number of possible cell frequency arrangements, given
fixed observed marginal frequency totals. When M is very large, as is typical with
multi-way contingency tables, exact tests are impractical and resampling becomes
necessary. In such cases, a random sample of the M possible arrangements of
cell frequencies provides a comparison of O� test statistics calculated on L random
multi-way tables with the O�o test statistic calculated on the observed multi-way con-
tingency table.

An efficient resampling algorithm to generate random cell frequency arrange-
ments for multi-way contingency tables with fixed marginal frequency totals was
developed by Mielke, Berry, and Johnston in 2007 [307, pp. 19–20]. Under the null
hypothesis, the approximate resampling probability value for O�o is given by

P . O�o/ D 1

L

LX

lD1

‰l . O�/

where

‰l . O�/ D
8
<

:
1 if O� � O�o ,

0 otherwise :

The calculation of unweighted kappa and the resampling procedure to obtain a
probability value for multiple judges can be illustrated with a small example data
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Fig. 11.6 Classification of
N D 93 objects by three
independent judges into one
of three disjoint categories:
A, B, or C; disagreement
weights are given in
parentheses

Judge 3

Judge 1 Judge 2 A B C

A A 6 (0) 4 (2) 2 (4)

B 3 (2) 5 (2) 4 (4)

C 2 (4) 3 (4) 4 (4)

B A 5 (2) 3 (4)

B

4 (2)

5 (2) 8 (0) 4 (2)

C 3 (4) 2 (2) 3 (2)

C A 1 (4) 3 (4) 4 (4)

B 3 (4) 2 (2) 2 (2)

C 1 (4) 2 (2) 5 (0)

set. Consider b D 3 independent judges who classify N D 93 objects into one of
c D 3 disjoint categories: A, B, or C. Figure 11.6 lists the c3 cross-classified fre-
quencies and corresponding weights, where the cell disagreement weights are given
in parentheses. The data are adapted from Mielke et al. [308, p. 609].1

For the observed data listed in Fig. 11.6 the observed value of O� is O�o D 0:1007,
indicating approximately 10 % agreement among the b D 3 judges above that
expected by chance, and the approximate resampling probability value based on
L D 1;000;000 random arrangements of the observed data is

P. O� � O�ojH0/ D number of O� values � ıo

L
D 8;311

1;000;000
D 0:0083 :

11.3 McNemar’s Q Test and ı

In 1947 psychologist Quinn McNemar proposed a test for change that he derived
from the matched-pairs t test for proportions [273]. A typical application is to ana-
lyze binary responses, coded 0 and 1, at g D 2 time periods for each of b � 2

subjects, such as Success and Failure, Yes and No, Agree and Disagree, or Pro and
Con. If the four cells are identified as in Fig. 11.7, then McNemar’s test is given by

Q D .B � C/2

B C C
;

where B and C represent the two cells of change, i.e., Pro to Con and Con to Pro.
Alternatively, McNemar’s Q test can be thought of as a chi-squared goodness-

of-fit test with one degree of freedom, where the observed frequencies, O1 and O2,
are B and C, respectively, and the expected frequencies, E1 and E2, are given by

1These are the same data analyzed in Chap. 10, Sect. 10.7.6 to illustrate weighted kappa with linear
and quadratic weighting.



11.3 McNemar’s Q Test and ı 555

Fig. 11.7 Notation for a
2�2 cross-classification for
McNemar’s test for change

Time 2

Time 1 Pro Con Total

Pro A B A + B
Con C D C + D

Total A + C B + D N

Fig. 11.8 Example
frequency data for
McNemar’s test for change

Time 2

Time 1 Pro Con Total

Pro 4 8 12

Con 1 2 3

Total 5 10 15

E1 D E2 D .B C C/=2, i.e., half the objects are expected to change in one direction
(e.g., Pro to Con) and half in the other direction (e.g., Con to Pro), under the null
hypothesis of no change from Time 1 to Time 2.

11.3.1 Example Analysis

Consider the frequency data given in Fig. 11.8, where N D 15 objects have been
recorded as either Pro or Con on a specified issue at Time 1 and again at Time 2.
For the frequency data given in Fig. 11.8, the observed value of McNemar’s Q test
statistic is

Qo D .B � C/2

B C C
D .8 � 1/2

8 C 1
D 49

9
D 5:4444 :

Alternatively, O1 D B D 8:00, O2 D C D 1:00, E1 D E2 D .O1 C O2/=2 D .8 C
1/=2 D 4:50, and

�2
1 D .O1 � E1/

2

E1

C .O2 � E2/
2

E2

D .8:00 � 4:50/2

4:50
C .1:00 � 4:50/2

4:50
D 5:4444 :

Now consider the data given in Fig. 11.8 in a randomized-block analysis-of-
variance context, with g D 2 time periods and b D 15 blocks. Figure 11.9 displays
the frequency data given in Fig. 11.8 in a randomized-block format, where the Pro
and Con categories are binary-coded as 0 and 1, respectively.
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Fig. 11.9 Data from
Fig. 11.8 arranged in a
randomized-block format

Time

Block 1 2

1 0 0

2 0 0

3 0 0

4 0 0

5 0 1

6 0 1

7 0 1

8 0 1

9 0 1

10 0 1

11 0 1

12 0 1

13 1 0

14 1 1

15 1 1

Define

S D
gX

iD1

bX

jD1

xij and T D
bX

jD1

 
gX

iD1

xij

!2

;

where xij denotes the cell entry of either 0 or 1 associated with the ith of b rows
and the jth of g columns in Fig. 11.9. For the randomized-block binary data listed in
Fig. 11.9, the observed values of S and T are

So D .0 C 0/ C .0 C 0/ C .0 C 0/ C � � � C .1 C 0/ C .1 C 1/ C .1 C 1/ D 13

and

To D .0 C 0/2 C .0 C 0/2 C � � � C .1 C 0/2 C .1 C 1/2 C .1 C 1/2 D 17 :

For the binary data listed in Fig. 11.9, there are

M D �
gŠ
�b D �

2Š
�15 D 32;768

possible, equally-likely arrangements of the observed data, making an exact solu-
tion feasible. Following Eq. (11.1) on p. 543, the observed value of the MRBP
test statistic based on v D 1 is ıo D 0:4095. If all arrangements of the observed
randomized-block binary data listed in Fig. 11.9 occur with equal chance, the
exact probability value of ıo D 0:4095 computed on the M D 32;768 possible
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arrangements of the observed data with b D 15 blocks preserved for each arrange-
ment is

P.ı � ıojH0/ D number of ı values � ıo

M
D 510

32;768
D 0:0156 :

For comparison, McNemar’s Q is approximately distributed as chi-squared under
the null hypothesis with g � 1 D 2 � 1 D 1 degree of freedom. Under the null
hypothesis, the observed value of Qo D 5:4444 yields an approximate chi-squared
probability value of P D 0:0196.

Following Eq. (11.4) on p. 544, the exact expected value of the M D 32;768 ı

values is �ı D 0:5095 and, following Eq. (11.3) on p. 544, the observed chance-
corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 0:4095

0:5095
D C0:1963 ;

indicating approximately 20 % within-block agreement above that expected by
chance.

The functional relationships between McNemar’s Q and the MRBP test statistic
are given by

Q D S.2b � S/ � 2b.b � 1/ı

2S � T
and ı D S.2b � S/ � .2S � T/Q

2b.b � 1/
:

Thus, for the randomized-block binary data listed in Fig. 11.9, the observed values
of McNemar’s Q and ı are

Qo D 13Œ.2/.15/ � 13 � Œ.2/.12/ � 170:4095

2.15/.15 � 1/
D 49

9
D 5:4444

and

ıo D 13Œ.2/.15/ � 13 � Œ.2/.13/ � 17/5:4444

2.15/.15 � 1/
D 172

420
D 0:4095 :

11.4 Cochran’s Q Test and ı

In 1950 William Cochran published an article in Biometrika on “The comparison
of percentages in matched samples” [69]. In this brief article, Cochran described a
test for equality of matched proportions that is now widely used in educational and
psychological research. The Cochran’s Q test may be viewed as an extension of the
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McNemar [273] test to three or more treatment conditions. For a typical application,
suppose that a sample of b � 2 subjects are observed in a situation wherein each
subject performs individually under each of g � 1 different experimental conditions.
The performance is scored as a Success (1) or, otherwise, as a Failure (0). The
research question evaluates if the true proportion of successes is constant over the g
time periods.

Cochran’s Q test for the analysis of g treatment conditions (columns) and N sub-
jects (rows) is given by

Q D
.g � 1/

0

@g
gX

jD1

C2
j � A2

1

A

gA � B
; (11.15)

where

Ri D
gX

jD1

xij

is the number of 1s in the ith of N rows,

A D
NX

iD1

Ri ; B D
NX

iD1

R2
i ; Cj D

NX

iD1

xij

is the number of 1s in the jth of g columns, and xij denotes the cell entry of either 0
or 1 associated with the ith of N rows and the jth of g columns. The null hypothesis
stipulates that each of the

M D
NY

iD1

 
g

Ri

!

distinguishable arrangements of 1s and 0s within each of the N rows occurs with
equal probability, given that the values of R1; : : : ; RN are fixed [292].

11.4.1 Example Analysis

For an example analysis, consider the binary data listed in Fig. 11.10 consisting of
the responses (0 or 1) for N D 10 subjects evaluated over g D 5 time periods, where
a 1 denotes success on a prescribed task and a 0 denotes failure. For the binary data
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Fig. 11.10 Successes (1)
and failures (0) of N D 10

subjects on a series of g D 5

time periods

Time

Subject 1 2 3 4 5 Ri

1 0 1 1 0 0 2

2 1 0 1 0 1 3

3 0 1 1 0 0 2

4 1 1 0 0 0 2

5 1 0 1 1 0 3

6 0 1 1 0 0 2

7 0 1 0 1 0 2

8 0 0 1 0 0 1

9 0 1 0 1 0 2

10 1 1 1 0 0 3

Cj 4 7 7 3 1 22

listed in Fig. 11.10,

A D
NX

iD1

Ri D 2 C 3 C 2 C 2 C 3 C 2 C 2 C 1 C 2 C 3 D 22 ;

B D
NX

iD1

R2
i D 22 C 32 C 22 C 22 C 32 C 22 C 22 C 12 C 22 C 32 D 52 ;

gX

jD1

C2
j D 42 C 72 C 72 C 32 C 12 D 124 ;

and, following Eq. (11.15) on p. 558, the observed value of Cochran’s Q is

Qo D
.g � 1/

0

@g
gX

jD1

C2
j � A2

1

A

gA � B
D .5 � 1/Œ5.124/ � 222

5.22/ � 52
D 9:3793 :

Now consider the binary data listed in Fig. 11.10 in a randomized-block
analysis-of-variance context, with g D 5 time periods and b D 10 blocks. Fol-
lowing Eq. (11.1) on p. 543, the observed value of the MRBP test statistic based
on v D 1 is ıo D 0:4267. For the randomized-block binary data listed in Fig. 11.10
where Ri, i D 1; : : : ; b, is f2; 3; 2; 2; 3; 2; 2; 1; 2; 3g, there are

M D
bY

iD1

 
g

Ri

!
D
 

5

1

!1 
5

2

!6 
5

3

!3

D .5/.106/.103/ D 5;000;000;000
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possible, equally-likely arrangements of the observed data, making an exact solution
prohibitive. If all M possible arrangements of the observed randomized-block binary
data listed in Fig. 11.10 occur with equal chance, the approximate resampling prob-
ability value of ıo D 0:4267 computed on L D 1;000;000 random arrangements of
the observed data with b D 10 blocks preserved for each arrangement is

P
�
ı � ıojH0

� D number of ı values � ıo

L
D 54;486

1;000;000
D 0:0545 :

For comparison, Cochran’s Q is approximately distributed as chi-squared under
the null hypothesis with g � 1 D 5 � 1 D 4 degrees of freedom. Under the null
hypothesis, the observed value of Qo D 9:3793 yields an approximate chi-squared
probability value of P D 0:0523.

Following Eq. (11.4) on p. 544, the exact expected value of the M ı values is
�ı D 0:4960 and, following Eq. (11.3) on p. 544, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 0:4267

0:4960
D C0:1398 ;

indicating approximately 14 % within-block agreement above that expected by
chance.

The functional relationships between Cochran’s Q and the MRBP test statistic
are given by

Q D .g � 1/
�
2A.bg � A/ � b.b � 1/g2ı

	

2.gA � B/

and

ı D 2 ŒA.bg � A/.g � 1/ � .gA � B/Q

b.b � 1/.g � 1/g2
:

Thus, for the randomized-block binary data listed in Fig. 11.10, the observed values
of Cochran’s Q and ı are

Qo D .5 � 1/
˚
2.22/Œ.10/.5/ � 22 � 10.10 � 1/.52/.0:4267/

�

2Œ.5/.22/ � 52
D 9:3793

and

ıo D 2 f22Œ.10/.5/ � 22.5 � 1/ � Œ.5/.22/ � 52.9:3793/g
10.10 � 1/.5 � 1/52

D 0:4267 :
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11.4.2 Multiple Binary Responses

Cochran’s Q statistic was designed to consider only r D 1 binary response for each
time period or experimental condition. However, MRBP has no such limitation and
can easily analyze r � 1 binary responses.

Many types of research include multiple-response questions wherein subjects
mark all applicable categories. For example, patients may be asked to select from
a list and check all illnesses they have had in the past 5 years, employees may be
asked to select names of close friends from a list of co-workers, subjects may be
asked to select from a list of recreational sites visited in the past year, or frequent
flyers may be asked to list the various airlines on which they have flown in the past
year. The longitudinal analysis of multiple category choices may be conceptualized
as a binary argument problem in which b subjects choose any or all of r presented
categories and the responses for each subject are coded 1 if the category is selected
and 0 otherwise. The same or matched subjects are assessed at g time periods and
the multiple binary responses over the g trials are compared.

The null hypothesis of no differences in the response structures over the g trials
specifies that each of the

M D �
gŠ
�b

possible, equally-likely allocations of the b r-dimensional response measurements
to the g trials is equally likely.

To illustrate the analysis of multiple binary responses, consider an example
in which b subjects are compared on r binary category choices over g trials
[34]. Specifically, consider b D 12 subjects who have been diagnosed as clini-
cally depressed. Presented with a list of r D 14 symptoms of depression, a clinical
psychologist assesses and records any and all symptoms experienced by each sub-
ject in the past month. Table 11.1 lists the r D 14 response categories from the
2r D 214 D 16;384 possible response arrangements, where a 1 indicates the symp-
tom was recorded and a 0 indicates that the symptom was not recorded. The data
are adapted from Mielke and Berry [297, pp. 140–141].

Table 11.1 provides the baseline values for evaluation of the intervention. After
counseling by a clinical psychologist for a period of 6 months, the same subjects
are again evaluated and their symptoms recorded. The post-treatment results are
given in Table 11.2. Finally, a follow-up evaluation 6 months after the termination
of treatment yields the results listed in Table 11.3. The null hypothesis specifies no
differences among the binary multiple responses over the g D 3 assessments.

For the randomized-block data in listed in Tables 11.1, 11.2, and 11.3, there are

M D �
gŠ
�b D �

3Š
�12 D 2;176;782;336 (11.16)

possible, equally-likely arrangements of the observed data—too many for an exact
solution. Therefore, a resampling permutation procedure is mandated. Employing



562 11 Randomized Block Designs: Nominal Data

Table 11.1 Baseline
longitudinal multiple binary
data recorded on b D 12

subjects for r D 14

symptoms of depression

Subject

Symptom A B C D E F G H I J K L

1 1 1 1 1 1 1 0 1 1 1 1 1

2 0 1 1 0 1 1 1 0 1 1 0 0

3 0 1 0 0 1 1 0 0 1 0 0 1

4 1 1 0 1 0 0 1 1 0 1 1 0

5 1 0 1 1 1 0 1 1 0 1 0 1

6 0 0 0 0 1 0 0 0 0 0 0 1

7 0 0 0 1 0 0 1 0 0 0 0 0

8 0 0 0 0 0 0 0 1 0 0 0 0

9 0 1 1 0 1 1 0 0 0 1 0 0

10 0 1 0 0 1 0 0 0 0 0 0 0

11 1 0 0 0 0 0 0 0 1 0 1 0

12 0 0 1 0 0 0 0 0 0 0 0 0

13 0 1 0 0 1 0 0 0 0 1 0 0

14 1 0 0 1 1 0 0 1 1 0 1 1

Table 11.2 Post-treatment
longitudinal multiple binary
data recorded on b D 12

subjects for r D 14

symptoms of depression

Subject

Symptom A B C D E F G H I J K L

1 1 0 1 1 1 1 0 1 0 1 1 1

2 0 1 0 0 1 1 0 0 1 1 0 0

3 0 1 0 0 1 1 0 0 1 0 0 1

4 1 1 0 1 0 0 1 1 0 1 1 0

5 1 0 1 1 1 0 1 1 0 1 0 1

6 0 1 0 0 1 0 0 0 1 0 0 1

7 0 0 0 1 0 0 1 0 0 0 0 0

8 0 0 0 0 0 0 0 1 0 0 0 0

9 0 0 1 0 0 1 0 0 0 1 0 0

10 0 1 0 0 1 0 0 0 0 0 1 0

11 1 0 0 0 0 0 0 0 0 0 1 0

12 0 0 1 0 0 0 1 0 0 0 0 0

13 0 1 0 0 1 0 0 0 0 1 0 0

14 1 0 0 1 1 0 0 0 0 0 1 1

ordinary Euclidean distance between response measurements with v D 1 and
following Eq. (11.1) on p. 543, the observed value of the MRBP test statistic is
ıo D 2:4313. If all M possible arrangements of the observed randomized-block
binary data listed in Tables 11.1, 11.2, and 11.3 occur with equal chance, the approx-
imate resampling probability value of ıo D 2:4313 computed on L D 1;000;000

random arrangements of the observed data with b D 12 blocks preserved for each
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Table 11.3 Follow-up
longitudinal multiple binary
data recorded on b D 12

subjects for r D 14

symptoms of depression

Subject

Symptom A B C D E F G H I J K L

1 1 0 1 0 1 1 0 1 0 1 1 0

2 0 0 0 0 1 1 0 0 1 1 0 0

3 0 1 0 0 1 1 0 0 1 0 0 1

4 1 1 0 1 0 0 0 1 0 1 1 0

5 1 0 1 1 1 0 1 1 0 1 0 1

6 0 1 0 0 1 0 0 0 1 0 0 1

7 0 0 0 1 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 1 0 0 0 0

9 0 1 1 0 1 1 0 0 0 1 0 0

10 0 1 0 0 1 0 0 0 0 0 1 0

11 1 0 0 0 0 0 0 0 0 0 1 0

12 0 0 1 0 0 0 1 0 0 0 0 0

13 0 1 0 0 0 0 0 0 0 1 0 0

14 1 0 0 1 1 0 0 1 0 0 1 1

arrangement is

P.ı � ıojH0/ D number of ı values � ıo

L
D 2;109

1;000;000
D 0:0021 :

No comparison is made with Cochran’s Q test as Q is undefined for r > 1.
Following Eq. (11.4) on p. 544, the exact expected value of the M ı values is

�ı D 2:3533 and, following Eq. (11.3) on p. 544, the observed chance-corrected
measure of effect size is

<o D 1 � ıo

�ı

D 1 � 2:4313

2:3533
D �0:0331 ;

indicating slightly less within-block agreement than expected by chance.
While an exact test is impractical in this case, it is not impossible. Since the

ordered responses of one subject may be held fixed relative to the other b � 1 sub-
jects, M D 2;176;782;336 in Eq. (11.16) can be reduced to

M D �
gŠ
�b�1 D �

3Š
�12�1 D 362;797;056

equally-likely arrangements of the observed data. If all arrangements of the
observed randomized-block binary data listed in Tables 11.1, 11.2, and 11.3 occur
with equal chance, the exact probability value of ıo D 2:4313 computed on the
M D 362;797;056 arrangements of the observed data with b D 12 blocks preserved
for each arrangement is

P.ı � ıojH0/ D number of ı values � ıo

M
D 725;594

362;797;056
D 0:0020 :



564 11 Randomized Block Designs: Nominal Data

Note that the approximate resampling probability value of P D 0:0021 based on
L D 1;000;000 is very close to the exact probability value of P D 0:0020 based on
M D 362;797;056.2

11.5 MRBP and Categorical Fourfold Tables

To illustrate the relationships between the MRBP test statistic and various measures
of association for categorical data, consider the small fourfold (2�2) contingency
table displayed in Fig. 11.11 with N D 10 objects cross-classified by variables x
and y, each with two categories coded 0 and 1, respectively. It should be noted
that many measures designed for categorical data also serve as measures of asso-
ciation for ordinal data, and vice-versa, when applied to 2�2 contingency tables
[344]. Following Eqs. (10.33) to (10.37) in Chap. 10, for the frequency data listed
in Fig. 11.11, C D .3/.2/ D 6 concordant pairs, D D .1/.4/ D 4 discordant pairs,
Tx D .3/.1/ C .4/.2/ D 11 pairs tied on variable x but not tied on variable y,
Ty D .3/.4/ C .1/.2/ D 14 pairs tied on variable y but not tied on variable x,
Txy D Œ.3/.2/ C .1/.0/ C .4/.3/ C .2/.1/=2 D 10 pairs tied on both variable x and
variable y, S D C � D, and the observed value of S is So D C � D D 6 � 4 D C2.

As explained in Chap. 10, Sect. 10.8.3, whenever two sets of categories possess
tied values on both x and y, the doubly tied values represented by Txy must be taken
into consideration. Table 11.4 lists a selection of the

N.N � 1/

2
D 10.10 � 1/

2
D 45

paired differences, rij, sij, rijsij , and jrij � sijj values for the frequency data given in
Fig. 11.11.3

Fig. 11.11 Example data for
variables x and y with
categories dummy-coded as 0
and 1

y

x 0 1 Total

0 3 1 4

1 4 2 6

Total 7 3 10

2In general, setting the number of resampled statistics to L D 1;000;000 ensures a minimum of
three decimal places of accuracy [195]; see also Chap. 2, Sect. 2.2.
3Because of the length of Table 11.4, the listing is abbreviated with less-important pairs 11–15 and
36–40 selectively deleted from the N.N � 1/=2 D 45 possible pairs.
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Table 11.4 Paired
differences, rij, sij, rijsij, and
jrij � sijj values for the
univariate rank data listed in
Fig. 11.11

Pair xi � xj yi � yj rij sij rijsij jrij � sijj Type

1 0 � 0 0 � 0 0 0 0 0 Txy

2 0 � 0 0 � 0 0 0 0 0 Txy

3 0 � 0 0 � 1 0 �1 0 1 Tx

4 0 � 1 0 � 0 �1 0 0 1 Ty

5 0 � 1 0 � 0 �1 0 0 1 Ty

6 0 � 1 0 � 0 �1 0 0 1 Ty

7 0 � 1 0 � 0 �1 0 0 1 Ty

8 0 � 1 0 � 1 �1 �1 C1 0 C

9 0 � 1 0 � 1 �1 �1 C1 0 C

10 0 � 0 0 � 0 0 0 0 0 Txy

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

16 0 � 1 0 � 1 �1 �1 C1 0 C

17 0 � 1 0 � 1 �1 �1 C1 0 C

18 0 � 0 0 � 1 0 �1 0 1 Tx

19 0 � 1 0 � 0 �1 0 0 1 Ty

20 0 � 1 0 � 0 �1 0 0 1 Ty

21 0 � 1 0 � 0 �1 0 0 1 Ty

22 0 � 1 0 � 0 �1 0 0 1 Ty

23 0 � 1 0 � 1 �1 �1 C1 0 C

24 0 � 1 0 � 1 �1 �1 C1 0 C

25 0 � 1 1 � 0 �1 C1 �1 2 D

26 0 � 1 1 � 0 �1 C1 �1 2 D

27 0 � 1 1 � 0 �1 C1 �1 2 D

28 0 � 1 1 � 0 �1 C1 �1 2 D

29 0 � 1 1 � 1 �1 0 0 1 Ty

30 0 � 1 1 � 1 �1 0 0 1 Ty

31 1 � 1 0 � 0 0 0 0 0 Txy

32 1 � 1 0 � 0 0 0 0 0 Txy

33 1 � 1 0 � 0 0 0 0 0 Txy

34 1 � 1 0 � 1 0 �1 0 1 Tx

35 1 � 1 0 � 1 0 �1 0 1 Tx

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

41 1 � 1 0 � 1 0 �1 0 1 Tx

42 1 � 1 0 � 1 0 �1 0 1 Tx

43 1 � 1 0 � 1 0 �1 0 1 Tx

44 1 � 1 0 � 1 0 �1 0 1 Tx

45 1 � 1 1 � 1 0 0 0 0 Txy

Total C2 33
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Following Kendall,

X

i<j

rijsij

is given in the sixth column of Table 11.4, where there are C D 6 concordant pairs
in rows 8, 9, 16, 17, 23, and 24, indicated by C1 values, and D D 4 discordant pairs
in rows 25–28, indicated by �1 values. Tied pairs Tx, Ty, and Txy are each indicated
by a value of 0. Thus, the observed value of S is

So D
X

i<j

rijsij D C � D D 6 � 4 D C2 :

Now consider the categorical data listed in Table 11.4 in a randomized-block
analysis-of-variance context with b D 2 blocks and g D 10 univariate measure-
ments for each block. For the column labeled jrij � sijj in Table 11.4, only values
of Tx, Ty, and D receive non-zero values: values of 1 for both Tx and Ty and values
of 2 for D. Therefore,

X

i<j

jrij � sijj D 2D C Tx C Ty D g.g � 1/

2
�
X

i<j

rijsij � Txy

D g.g � 1/

2
� S � Txy :

For the frequency data given in Fig. 11.11, the observed value of the generalized
Minkowski distance function is

X

i<j

jrij � sijj D 2D C Tx C Ty D 2.4/ C 11 C 14 D 33

as described in Table 11.4 and, equivalently,

g.g � 1/

2
� S � Txy D 10.10 � 1/=2 � 2 � 10 D 33 :

Now, define the generalized Minkowski distance function with b D 2 and r D 1,

	.x; y/ D g.g � 1/

2
� S :

Then, substituting C C D C Tx C Ty C Txy for g.g � 1/=2 and C � D for S,

	.x; y/ D C C D C Tx C Ty C Txy � .C � D/ D 2D C Tx C Ty C Txy :
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For the frequency data given in Fig. 11.11 on p. 564,

	.x; y/ D 2D C Tx C Ty C Txy D 2.4/ C 11 C 14 C 10 D 43 :

With b D 2 the observed MRBP test statistic is

ıo D 1

g
	.x; y/ D 1

10
.43/ D 4:30 :

Also, the relationships between the MRBP test statistic and Kendall’s S are given by

ı D g � 1

2
� S

g
and S D g

�
g � 1

2
� ı

�
:

Thus, for the paired data with no tied values listed in Table 11.4, the observed values
of ı and Kendall’s S are

ıo D 10 � 1

2
� 2

10
D 4:30 and So D 10

�
10 � 1

2
� 4:30

�
D C2 :

For the frequency data given in Fig. 11.11, there are

M D �
gŠ
�b�1 D �

10Š
�2�1 D 3;628;800

possible, equally-likely arrangements of the observed data. Therefore, the exact
expected value of the M D 3;628;800 ı values is

�ı D 1

M

MX

iD1

ıi D 1

3;628;800
.16;852;147/ D 4:6440

and the observed chance-corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 4:30

4:6440
D C0:0741 ;

indicating approximately 7 % within-block agreement above that expected by
chance.

11.5.1 Kendall’s ta Statistic and ı

As discussed in Chap. 10, Sect. 10.9, Kendall’s �a is a pair-based measure of ordinal
association given by

�a D 2S

N.N � 1/
;
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where S is the number of concordant pairs (C) minus the number of discordant pairs
(D). However, �a can also be utilized for categorical data in a 2�2 contingency-table
format. For the frequency data given in Fig. 11.11, the observed value of �a is

�a D 2.C2/

10.10 � 1/
D 4

90
D C0:0444 :

In a randomized-block analysis-of-variance context, the functional relationships
between Kendall’s �a and the MRBP test statistic are given by

�a D 1 � 2ı

g � 1
and ı D .1 � g/.�a � 1/

2
:

Thus, for the frequency data given in Fig. 11.11, the observed values of Kendall’s �a

and ı are

�a D 1 � 2.4:30/

10 � 1
D C0:0444 and ıo D .1 � 10/.C0:0444 � 1/

2
D 4:30 :

Kendall’s �a may also be expressed in terms of < and �ı. Thus, for the frequency
data given in Fig. 11.11 on p. 564,

�a D 1 C 2.< � 1/�ı

g � 1
D 1 C 2.0:0741/.4:6440/

10 � 1
D C0:0444

and

.1 � </�ı D g � 1 � �a.g � 1/

2
D 10 � 1 � 0:0444.10 � 1/

2
D 4:30 :

11.5.2 Yule’s Q Statistic and ı

In 1912 G. Udny Yule published a paper titled “On the methods of measuring asso-
ciation between two attributes” in Journal of the Royal Statistical Society [435]. In
this important paper Yule introduced a new statistic for 2�2 contingency tables that
he called Q,4 although he had briefly mentioned Q in a 1900 paper published in
Philosophical Transactions of the Royal Society of London [434]. Contained within
this lengthy paper of 74 pages was strong criticism of the work of Karl Pearson
on the analysis of contingency tables. Pearson was greatly offended and a vitriolic
response soon followed from Pearson and biometrician David Heron in Biometrika;
the rejoinder consisted of a remarkable 157 folio pages [336].

4The symbol Q was taken from the initial letter of the surname of Lambert Adolphe Jacques
Quetelet, the nineteenth century Belgium astronomer, mathematician, statistician, and sociologist
[435, p. 586].
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Fig. 11.12 Example data for
variables x and y with
categories dummy-coded as 0
and 1

y

x 0 1 Total

0 3 1 4

1 4 2 6

Total 7 3 10

Originally developed for categorical data, Yule’s Q is often used for rank data
[435]. For a 2�2 contingency table, Yule’s Q is identical to Goodman and Kruskal’s
� statistic [151]. Yule’s Q is given by

Q D C

C C D
� D

C C D
D C � D

C C D
D S

C C D
;

where C and D denote the number of concordant and discordant pairs, respectively,
and S D C � D. Thus, for the frequency data given in Fig. 11.11, replicated for con-
venience in Fig. 11.12, the observed value of Yule’s Q is

Qo D C � D

C C D
D .3/.2/ � .1/.4/

.3/.2/ C .1/.4/
D C2

6 C 4
D C0:20 :

In a randomized-block analysis-of-variance context, the functional relationships
between Yule’s Q and the MRBP test statistic are given by

Q D gŒ.g � 1/ � 2ı

2.C C D/
and ı D g.g � 1/ � 2Q.C C D/

2g
:

Thus, for the frequency data given in Fig. 11.12, the observed values for Yule’s Q
and the MRBP test statistic ı are

Qo D 10Œ.10 � 1/ � .2/.4:30/

2.6 C 4/
D C0:20

and

ıo D 10.10 � 1/ � .2/.0:20/.6 C 4/

.2/.10/
D 4:30 :

11.5.3 Yule’s Y Statistic and ı

In the 1912 paper where Q was first presented, Yule introduced a second measure of
association for 2�2 contingency tables [435, p. 591]. Yule termed the new measure
the coefficient of colligation and identified it by the lower-case Greek letter omega,
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Fig. 11.13 Notation for a
2�2 cross-classification table

y

x 0 1 Total

0 a b a + b
1 c d c + d

Total a + c b + d N

!, although it is customarily labeled as Yule’s Y in the current literature. Given the
notation for a 2�2 table in Fig. 11.13, Yule’s Y is given by

Y D
p

ad � p
bcp

ad C p
bc

:

For the frequency data given in Fig. 11.12, the observed value of Yule’s Y is

Yo D
q

.3/.2/ �
q

.1/.4/
q

.3/.2/ C
q

.1/.4/

D 0:1010 :

In a randomized-block analysis-of-variance context, the functional relationships
between Yule’s Y and the MRBP test statistic are given by

ı D 1

2



g � 4Y.ad C bc/

g.1 C Y2/
� 1

�

and

Y D g.g � 2ı � 1/

2
�
ad C bc

�C �
4.ad C bc/2 � g2.g � 2ı � 1/2

	1=2
:

Thus, for the frequency data given in Fig. 11.12, the observed value of the MRBP
test statistic is

ıo D 1

2

�
10 � 4.0:1010/Œ.3/.2/ C .1/.4/

10.1 C 0:10102/
� 1


D 8:60

2
D 4:30

and the observed value of Y is

Yo D
10Œ10 � .2/.4:30/ � 1

2Œ.3/.2/ C .1/.4/ C f4Œ.3/.2/ C .1/.4/2 � 102Œ10 � .2/.4:3/ � 12g1=2

D 4:00

39:5959
D 0:1010 :
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11.5.4 The Odds Ratio and ı

While useful by itself, the odds ratio has become an important component of more
advanced statistical techniques. The natural log (ln) of the odds ratio plays an impor-
tant role in, for example, both logistic regression and log-linear analysis.

In terms of the pairwise notation of Kendall, the odds ratio may be written as

' D C

D
;

where C and D denote the number of concordant and discordant pairs, respectively.
For the frequency data given in Fig. 11.12, the observed value of the odds ratio is

'o D C

D
D 6

4
D 1:50 :

More conventionally, given the notation of Fig. 11.13, the observed value of the
odds ratio is given by

'o D ad

bc
D .3/.2/

.1/.4/
D 1:50 :

In a randomized-block analysis-of-variance context and following the notation
in Fig. 11.13, the functional relationships between the odds ratio and the MRBP test
statistic are given by

' D g.g � 1/ C 2.ad C bc � gı/

4bc
and ı D g.g � 1/ C 2.ad C bc/ � 4bc'

2g
:

Thus, for the frequency data given in Fig. 11.12, the observed value of the odds ratio
is

'o D 10.10 � 1/ C 2Œ.3/.2/ C .1/.4/ � .10/.4:3/

4.1/.4/
D 24

16
D 1:50

and the observed value of ı is

ıo D 10.10 � 1/ C 2..3/.2/ C .1/.4// � 4.1/.4/.1:50/

.2/.10/
D 86

20
D 4:30 :

11.5.5 Relationships Among Q, Y, and '

Since Yule’s Q, Yule’s Y, and the odds ratio are all related to the MRBP test statistic
ı, they are necessarily related to each other. The relationships between Yule’s Q and
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the odds ratio are given by

Q D ' � 1

' C 1
and ' D 1 C Q

1 � Q
;

as noted by Yule [435, p. 586].5 Thus, for the frequency data given in Fig. 11.12, the
observed values for Yule’s Q and the odds ratio are

Qo D 1:50 � 1

1:50 C 1
D C0:20 and 'o D 1 C 0:20

1 � 0:20
D 1:50 :

The relationships between Yule’s Q and Yule’s Y are given by

Q D 2Y

1 C Y2
and Y D Q

1 Cp
1 � Q2

:

For the frequency data given in Fig. 11.12, the observed values for Yule’s Q and
Yule’s Y are

Qo D 2.0:1010/

1 C 0:10102
D 0:20 and Yo D 0:20

1 C p
1 � 0:202

D 0:1010 :

The relationships between Yule’s Y and the odds ratio are given by

Y D
p

' � 1p
' C 1

and ' D .Y C 1/2

.Y � 1/2
:

For the frequency data given in Fig. 11.12, the observed values for Y and the odds
ratio are

Yo D
p

1:50 � 1p
1:50 C 1

D 0:1010 and 'o D .0:1010 C 1/2

.0:1010 � 1/2
D 1:50 :

11.5.6 Somers’ dxy=dyx and ı

In 1962 sociologist Robert Somers published an article in American Sociological
Review in which he developed two asymmetric measures of association for ordinal
variables, dxy and dyx, given by

dxy D S

C C D C Tx
and dyx D S

C C D C Ty
;

5Because, for a 2�2 contingency table, Yule’s Q and Goodman and Kruskal’s � are identical, �

and ' are related in the same manner.
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where C and D denote the number of concordant and discordant pairs, respectively,
S D C � D, and Tx and Ty denote the number of pairs tied on x and y, respectively.
Like many other statistics developed for ordinal variables, Somers’ measures can
be applied to categorical variables when the data are cross-classified into a 2�2

contingency table. Somers’ asymmetric measure dxy (dyx) is the y-weak (x-weak)
coefficient of monotonicity in which ties on y and x are not taken into account in
the denominators of dxy and dyx, respectively [344]. The essential idea is that when
there is a difference between pairs in the independent variable that is not reflected
by a difference in the dependent variable, the coefficient should be reduced by a
compensatory amount. For Somers’ dxy, x is the dependent variable and for Somers’
dyx, y is the dependent variable.

Recall that for the frequency data given in Fig. 11.12 on p. 569, the number of
concordant pairs is C D 6, the number of discordant pairs is D D 4, the number
of pairs tied on variable x but not tied on variable y is Tx D 11, the number of
pairs tied on variable y but not tied on variable x is Ty D 14, the number of pairs
tied on both variable x and variable y is Txy D 10, and the observed value of S is
So D C � D D 6 � 4 D C2. For the frequency data given in Fig. 11.12, Somers’
measures of asymmetric association are

dxy D S

C C D C Tx
D C2

6 C 4 C 11
D C0:0952

and

dyx D S

C C D C Ty
D C2

6 C 4 C 14
D C0:0833 :

In a randomized-block analysis-of-variance context, the functional relationships
between the MRBP test statistic and Somers’ asymmetric measures of association
are given by

dxy D g.g � 1/ � 2gı

2.C C D C Tx/
and ı D g.g � 1/ � 2.C C D C Tx/dxy

2g
I

also,

dyx D g.g � 1/ � 2gı

2.C C D C Ty/
and ı D g.g � 1/ � 2.C C D C Ty/dyx

2g
:

Thus, for the frequency data given in Fig. 11.12 on p. 569, the observed value of
Somers’ dxy is

dxy D 10.10 � 1/ � 2.10/.4:30/

2.6 C 4 C 11/
D 4

42
D C0:0952
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and the observed value of the MRBP test statistic is

ıo D 10.10 � 1/ � 2.6 C 4 C 11/.C0:0952/

.2/.10/
D 86

20
D 4:30 :

Similarly, the observed value of Somers’ dyx is

dyx D 10.10 � 1/ � 2.10/.4:30/

2.6 C 4 C 14/
D 4

48
D C0:0833

and the observed value of the MRBP test statistic is

ıo D 10.10 � 1/ � 2.6 C 4 C 14/.C0:0833/

.2/.10/
D 86

20
D 4:30 :

11.6 A Reanalysis of the Data

Consider the frequency data given in Fig. 11.12, replicated for convenience in
Fig. 11.14 in a raw data format and in Fig. 11.15 in a dummy-coded format. Given
the dummy-coded data listed in Fig. 11.15,

NX

iD1

xi D
NX

iD1

x2
i D 6 ;

NX

iD1

yi D
NX

iD1

y2
i D 6 ;

NX

iD1

xiyi D 2 ;

and N D 10. The sample means of variables x and y are

Nx D 1

N

NX

iD1

xi D 1

10
.6/ D 0:60 and Ny D 1

N

NX

iD1

yi D 1

10
.3/ D 0:30

Fig. 11.14 Example data for
variables x and y with
categories dummy-coded as 0
and 1

y

x 0 1 Total

0 3 1 4

1 4 2 6

Total 7 3 10
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Fig. 11.15 Example
dummy-coded frequency data
for variables x and y given in
Fig. 11.14

Variable

Object x y

1 0 0

2 0 0

3 0 0

4 0 1

5 1 0

6 1 0

7 1 0

8 1 0

9 1 1

10 1 1

and the sample estimates of the population variances for variables x and y are

s2
x D 1

N � 1

2
666664

NX

iD1

x2
i �

 
NX

iD1

xi

!2

N

3
777775

D 1

10 � 1

�
6 � 62

10

�
D 0:2667

and

s2
y D 1

N � 1

2
666664

NX

iD1

y2
i �

 
NX

iD1

yi

!2

N

3
777775

D 1

10 � 1

�
3 � 32

10

�
D 0:2333 :

Considered as a regression problem, the covariance of variables x and y is

cov.x; y/ D 1

N � 1

0

BBBBB@

NX

iD1

xiyi �

NX

iD1

xi

NX

iD1

yi

N

1

CCCCCA

D 1

10 � 1

�
2 � .6/.3/

10

�
D C0:0222 ;
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the Pearson product-moment correlation coefficient for variables x and y is

rxy D cov.x; y/
q

s2
x s2

y

D C0:0222
q

.0:2667/.0:2333/

D C0:0891 ;

and the unstandardized regression coefficients, bxy and byx, are

bxy D cov.x; y/

s2
y

D C0:0222

0:2333
D C0:0952

and

byx D cov.x; y/

s2
x

D C0:0222

0:2777
D C0:0833 :

Now consider the frequency data given in Fig. 11.14 in a randomized-block for-
mat, as displayed in Fig. 11.16. For the binary data listed in Fig. 11.16, g D 10, b D
2, following Eq. (11.2) on p. 544 the observed value of the generalized Minkowski
distance function is 	.x; y/ D 5:0, following Eq. (11.1) on p. 543, the observed
value of the MRBP test statistic with v D 2 is ıo D 0:50, following Eq. (11.4) on
p. 544 the exact expected value of ı is �ı D 0:54, and following Eq. (11.3) on p. 544
the observed chance-corrected measure of effect size is

<o D 1 � ıo

�ı

D 1 � 0:50

0:54
D C0:0741 ;

indicating approximately 7 % within-block agreement above that expected by
chance.

Fig. 11.16 Example
randomized-block data for
variables x and y given in
Fig. 11.14

Block

Object 1 2

1 0 0

2 0 0

3 0 0

4 0 1

5 1 0

6 1 0

7 1 0

8 1 0

9 1 1

10 1 1
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Note that the values for 	.x; y/, ı, �ı , and < differ from those computed on the
data listed in Fig. 11.11 on p. 564. In the previous section the values for 	.x; y/, ı,
�ı , and < were obtained from a comparison of the direction of differences, i.e., the
rijsij and jrij � sijj values. In this section the values are obtained from a comparison
of the dummy codes. The two sets of values differ by a factor of 2ı D 2.4:30/ D
8:60. Thus, the previously obtained value for 	.x; y/ was 43 and here it is 43=8:60 D
5:00; the obtained value for ı was 4.30 and here it is 4:30=8:60 D 0:50; the obtained
value for �ı was 4.6440 and here it is 4:6440=8:60 D 0:54. The value for < remains
unchanged at C0:0741 as it is based on the ratio of ı and �ı, both of which have
been divided by 2ı.

For the randomized-block binary data listed in Fig. 11.16 there are

M D �
gŠ
�b D �

10Š
�2 D 13;168;189;440;000 (11.17)

possible, equally-likely arrangements of the observed data, making an exact solu-
tion impractical. If all M possible arrangements of the observed randomized-block
binary data listed in Fig. 11.16 occur with equal chance, the approximate resampling
probability value of ıo D 0:50 computed on L D 1;000;000 random arrangements
of the observed data with b D 2 blocks preserved for each arrangement is

P.ı � ıojH0/ D number of ı values � ıo

L
D 667;214

1;000;000
D 0:6672 :

While an exact test is impractical in this case, it is not impossible. Since the
ordered responses of one object may be held fixed relative to the other b � 1 objects,
M D 13;168;189;440;000 in Eq. (11.17) can be reduced to

M D �
gŠ
�b�1 D �

10Š
�2�1 D 3;628;800

possible, equally-likely arrangements of the observed data. If all arrangements of
the observed randomized-block binary data listed in Fig. 11.16 occur with equal
chance, the exact probability value of ıo D 0:50 computed on the M D 3;628;800

arrangements of the observed data with b D 2 blocks preserved for each arrange-
ment is

P.ı � ıojH0/ D number of ı values � ıo

M
D 2;419;200

3;628;800
D 0:6667 :

Note that the approximate resampling probability value of P D 0:6672 based on
L D 1;000;000 is very close to the exact probability value of P D 0:6667 based on
M D 3;628;800.
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11.6.1 Pearson’s rxy and <
Because degrees of freedom are unnecessary in a permutation context, define sample
standard deviations Sx and Sy as

Sx D
"

1

g

NX

iD1

�
xi � Nx�2

#1=2

and Sy D
"

1

g

NX

iD1

�
yi � Ny�2

#1=2

;

yielding Sx D 0:4899 and Sy D 0:4583, respectively, for the randomized-block
binary data listed in Fig. 11.16. Alternatively,

Sx D



.g � 1/s2
x

g

�1=2

and Sy D
"

.g � 1/s2
y

g

#1=2

;

where

s2
x D 1

g � 1

NX

iD1

.xi � Nx/2 and s2
y D 1

g � 1

NX

iD1

.yi � Ny/2 :

Then the relationships between Pearson’s rxy and < are given by

rxy D <�ı

2SxSy
and < D 2rxySxSy

�ı

with v D 2. For the randomized-block binary data listed in Fig. 11.16, the observed
value of rxy is

rxy D .C0:0741/.0:54/

2.0:4899/.0:4583/
D C0:0891

and the observed value of < is

<o D 2.C0:0891/.0:4899/.0:4583/

0:54
D C0:0741 :

Alternatively, since <�ı D �ı � ı, rxy can be defined in terms of �ı and ı,

rxy D �ı � ı

2SxSy
D 0:54 � 0:50

2.0:4899/.0:4583/
D C0:0891 : (11.18)
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11.6.2 MRBP and Regression Coefficients

The functional relationships between the unstandardized regression coefficient bxy

and the MRBP test statistics ı and �ı are given by

bxy D �ı � ıo

2S2
x

and �ı � ı D 2bxyS
2
x

with v D 2. Alternatively, in terms of < and �ı ,

bxy D <�ı

2S2
x

and <�ı D 2bxyS
2
x :

Thus, for the randomized-block binary data listed in Fig. 11.16 on p. 576,

bxy D �ı � ı

2S2
x

D 0:54 � 0:50

2.0:4899/2
D 0:04

0:48
D C0:0833 ;

bxy D <�ı

2S2
x

D .C0:0741/.0:54/

2.0:4899/2
D C0:0833 ;

�ı � ıo D 2bxyS
2
x D 2.C0:0833/.0:4899/2 D 0:04 ;

and

<�ı D 2bxyS
2
x D 2.C0:0833/.0:4899/2 D 0:04 :

Similarly, the relationships between the unstandardized regression coefficient byx

and �ı and ı are given by

byx D �ı � ı

2S2
y

and �ı � ı D 2byxS
2
y I

or, in terms of < and �ı ,

byx D <�ı

2S2
y

and <�ı D 2byxS
2
y :

For the binary data listed in Fig. 11.16,

byx D �ı � ıo

2S2
y

D 0:54 � 0:50

2.0:4583/2
D 0:04

0:42
D C0:0952 ;

byx D <�ı

2S2
y

D .C0:0741/.0:54/

2.0:4583/2
D C0:0952 ;

�ı � ıo D 2byxS
2
y D 2.C0:0952/.0:4583/2 D 0:04 ;
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and

<�ı D 2byxS
2
y D 2.C0:0952/.0:4583/2 D 0:04 :

11.6.3 MRBP and Percentage Differences

Simple percentage differences are commonly employed by newspapers and maga-
zines to communicate differences between two groups in an uncomplicated manner
to unsophisticated audiences. However, percentage differences have an intimate
relationship to randomized-block analysis-of-variance designs, to simple linear
regression and correlation, and to the MRBP test statistics, ı and <.

Consider the frequency data given in Fig. 11.14 on p. 574, replicated for con-
venience in Fig. 11.17, where the cell entries are expressed as proportions, as in
Fig. 11.18.6 For the proportion data listed in Fig. 11.18, the percentage difference
for variable y is given by

Dyx D j0:4286 � 0:3333j D j0:5714 � 0:0:6667j D C0:0952 :

Computing percentages for variable x yields the proportions listed in Fig. 11.19.
For the proportion data listed in Fig. 11.19, the percentage difference for variable x

Fig. 11.17 Example data for
variables x and y with
categories dummy-coded as 0
and 1

y

x 0 1 Total

0 3 1 4

1 4 2 6

Total 7 3 10

Fig. 11.18 Example data
from Fig. 11.17 with cell
entries expressed as
proportions of column totals

y

x 0 1

0 0.4286 0.3333

1 0.5714 0.6667

Total 1.0000 1.0000

6While generally called “percentage” differences, values are typically calculated and expressed
with proportions, as in Fig. 11.18.
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Fig. 11.19 Example data
from Fig. 11.17 with cell
entries expressed as
proportions of row totals

y

x 0 1 Total

0 0.7500 0.2500 1.0000

1 0.6667 0.3333 1.0000

is given by

Dxy D j0:7500 � 0:6667j D j0:2500 � 0:3333j D C0:0833 :

The functional relationships between percentage differences Dxy and Dyx and the
MRBP statistics ı and < are given by

Dxy D �ı � ı

2S2
x

D <�ı

2S2
x

and �ı � ı D 2DxyS
2
x :

Thus, for the frequency data given in Fig. 11.17, the observed value of the percent-
age difference Dxy is

Dxy D 0:54 � 0:50

2.0:4899/2
D .C0:0741/.0:54/

2.0:4899/2
D C0:0833 :

and the observed value of �ı � ı is

�ı � ıo D 2.C0:0833/.0:4899/2 D 0:04 :

Similarly, the functional relationships between percentage difference Dyx and �ı � ı

are

Dyx D �ı � ı

2S2
y

D <�ı

2S2
y

and �ı � ı D 2DyxS
2
y :

For the frequency data given in Fig. 11.17, the observed values of the percentage
difference Dyx and �ı � ıo are

Dyx D 0:54 � 0:50

2.0:4583/2
D .C0:0741/.0:54/

2.0:4583/2
D C0:0952 :

and

�ı � ıo D 2.C0:0952/.0:4583/2 D 0:04 :

Note that the percentage differences, the unstandardized regression coefficients,
and Somers’ two asymmetric measures are all equivalent for a 2�2 contingency
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table, where for the frequency data given in Fig. 11.17,

Dxy D bxy D dxy D C0:0833

and

Dyx D byx D dyx D C0:0952 :

It is not widely recognized that, given a 2�2 contingency table, a percentage differ-
ence is really just the slope of a regression line [45], and that Somers’ dxy and dyx

measures thereby reduce to simple percentage differences.7

It is well known, however, that the Pearson product-moment correlation coeffi-
cient is simply the geometric mean of the slopes of two regression lines, i.e.,

rxy D
q

bxybyx D
q

.C0:0833/.C0:0952/ D 0:0891 :

Therefore, for a 2�2 contingency table, rxy is also the geometric mean of Somers’
two asymmetric coefficients of association, i.e.,

rxy D
q

dxydyx D
q

.C0:0833/.C0:0952/ D 0:0891 ;

as well as the geometric mean of the two percentage differences, i.e.,

rxy D
q

DxyDyx D
q

.C0:0833/.C0:0952/ D 0:0891 :

Finally, since Somers’ coefficients are given by

dxy D S

C C D C Tx
and dyx D S

C C D C Ty
;

and Kendall’s �b coefficient is given by

tb D S
q

.C C D C Tx/.C C D C Ty/

;

then

tb D
q

dxydyx D rxy

7Somers noted that dxy and dyx were equivalent to the corresponding percentage differences in 2�2

contingency tables [380, p. 805].
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for a 2�2 contingency table.8 For the frequency data given in Fig. 11.17,

dxy D C2

6 C 4 C 11
D C0:0952 ; dyx D C2

6 C 4 C 14
D C0:0833 ;

and

tb D
q

.C0:0952/.C0:0833/ D 0:0891 D rxy :

11.6.4 MRBP and Chi-Squared

It is well known that the chi-squared test of independence with one degree of free-
dom is related to the Pearson product-moment correlation coefficient when two
categories are coded 0 and 1, i.e.,

�2
1 D Nr2

xy and r2
xy D �2

1

N
:

It was shown in Eq. (11.18) on p. 578 that

rxy D �ı � ı

2SxSy
;

where

Sx D



.g � 1/s2
x

g

�1=2

and Sy D
"

.g � 1/s2
y

g

#1=2

:

Therefore, with one degree of freedom, the functional relationships between chi-
squared and the MRBP statistics, ı and �ı , are given by

�2
1 D N.�ı � ı/2

4S2
xS2

y

and �ı � ı D 2SxSy

�
�2

1

N

�1=2

:

For the frequency data given in Fig. 11.17 on p. 580, replicated as Fig. 11.20 for
convenience, �ı D 0:54, ı D 0:50,

�2
1 D 10.0:54 � 0:50/2

4.0:4899/2.0:4583/2
D 0:0794 ;

8Pearson’s product-moment correlation coefficient, rxy, for a 2�2 table is more conventionally
known as Pearson’s � statistic.



584 11 Randomized Block Designs: Nominal Data

Fig. 11.20 Example data for
variables x and y with
categories dummy-coded as 0
and 1

y

x 0 1 Total

0 3 1 4

1 4 2 6

Total 7 3 10

and

�ı � ı D 2.0:4899/.0:4583/

�
0:0794

10

�1=2

D 0:04 :

Alternatively, defined in terms of �ı and <,

�2
1 D N.<�ı/

2

4S2
xS2

y

D 10Œ.0:0741/.0:54/2

4.0:4899/2.0:4583/2
D 0:0794

and

<�ı D 2SxSy

�
�2

1

N

�2

D 2.0:4899/.0:4583/

�
0:0794

10

�1=2

D 0:04 :

11.7 Coda

Chapter 11 utilized the Multivariate Randomized Block Permutation (MRBP) pro-
cedures developed in Chap. 8 to establish relationships between the test statistics
of MRBP, ı and <, and selected conventional tests and measures designed for the
analysis of randomized-block data at the nominal level of measurement. Consid-
ered in this chapter were the relationships between the MRBP test statistic ı and
Cohen’s unweighted kappa measure of chance-corrected agreement, McNemar’s
and Cochran’s Q tests for change, Kendall’s ta and Yule’s Q and Y measures of
association, the odds ratio, Somers’ dxy and dyx asymmetric measures of associa-
tion, Pearson’s product-moment correlation coefficient, percentage differences, and
Pearson’s chi-squared test of independence.
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As stated in the Preface, the purpose of this book on Permutation Statistical Meth-
ods: An Integrated Approach is to provide a synthesis of a number of statistical tests
and measures which, at first blush, appear unrelated. No attempt is made to provide a
synthesis of all statistical methods, but only to derive and illustrate a common model
under which a large number of statistical tests and measures can be understood.

Overview

The foundation of the synthesizing model is the generalized Minkowski distance
function given by

	.x; y/ D
 

rX

iD1

ˇ̌
xi � yi

ˇ̌p
!v=p

; (1)

where p � 1 and v > 0. When v D p D 1, 	.x; y/ is a city-block metric; when p D
2 and v D 1, 	.x; y/ is a Euclidean distance metric; and when v D p D 2, 	.x; y/

is squared Euclidean distance, which is not a metric function.
Derived from the generalized Minkowski distance function are two permu-

tation approaches: Multi-Response Permutation Procedures (MRPP), designed
for analyzing completely randomized data, and Multivariate Randomized Block
Permutation (MRBP) procedures, designed for analyzing randomized-block
data. The generalized Minkowski distance function given in Eq. (1), together
with MRPP and MRBP provide for the analysis of completely randomized and
randomized-block data, both univariate and multivariate, and utilizing either squared
Euclidean distances with p D v D 2, or ordinary Euclidean distances with p D 2

and v D 1.
Both MRPP and MRBP generate two test statistics, ı and <, providing for a

number of statistical tests of differences and measures of association. For MRPP,
test statistic ı is the weighted mean of the average distance-function values for
all distinct pairs of objects in all treatment groups, and < is a chance-corrected
within-group measure of effect size. For MRBP, ı is the balanced mean of the
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Completely Randomized Experimental Designs

Interval Level Data Analysis

Squared Euclidean Distance Ordinary Euclidean Distance

Tests of Differences Measures of Relationships Tests of Differences Measures of Relationships

Univariate Multivariate Univariate Multivariate Univariate Multivariate Univariate Multivariate

analysis analysis analysis analysis analysis analysis analysis analysis

Ordinal Level Data Analysis

Squared Euclidean Distance Ordinary Euclidean Distance

Tests of Differences Measures of Relationships Tests of Differences Measures of Relationships

Univariate Multivariate Univariate Multivariate Univariate Multivariate Univariate Multivariate

analysis analysis analysis analysis analysis analysis analysis analysis

Nominal Level Data Analysis

Squared Euclidean Distance Ordinary Euclidean Distance

Tests of Differences Measures of Relationships Tests of Differences Measures of Relationships

Univariate Multivariate Univariate Multivariate Univariate Multivariate Univariate Multivariate

analysis analysis analysis analysis analysis analysis analysis analysis

Fig. 1 Diagram for completely-randomized experimental designs with analysis cells shaded in
gray

distance-function values for all distinct pairs of objects in all treatment groups, and
< is a chance-corrected within-blocks measure of effect size. Finally, test statistics
ı and < are applied to three levels of measurement that are commonly encountered
in statistical analyses: interval, ordinal, and nominal.

The resulting five-dimensional structure is composed of (1) completely random-
ized and randomized-block designs; (2) nominal, ordinal, and interval levels of
measurement; (3) ordinary Euclidean and squared Euclidean distance functions;
(4) tests of differences and measures of relationships; and (5) univariate and mul-
tivariate data structures. Taken together, the five-dimensional structure contains 48
distinct analysis cells, many of which contain new statistical tests and measures.
Figure 1 graphically displays the 24 analysis cells for completely randomized exper-
imental designs, shaded in gray, and Fig. 2 graphically displays the 24 analysis cells
for randomized-block experimental designs, also shaded in gray.

Many of the new statistics are based on ordinary Euclidean distances (v D 1) as
most conventional statistics are based on squared Euclidean distances (vD2). How-
ever, other new statistics result from generalizing conventional statistics designed
for univariate (r D 1) data to statistics designed for multivariate (r � 2) data; for
example, multivariate extensions of the Wilcoxon two-sample and the Kruskal–
Wallis multi-sample rank-sum tests.
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Randomized Block Experimental Designs

Interval Level Data Analysis

Squared Euclidean Distance Ordinary Euclidean Distance

Tests of Differences Measures of Relationships Tests of Differences Measures of Relationships

Univariate Multivariate Univariate Multivariate Univariate Multivariate Univariate Multivariate

analysis analysis analysis analysis analysis analysis analysis analysis

Ordinal Level Data Analysis

Squared Euclidean Distance Ordinary Euclidean Distance

Tests of Differences Measures of Relationships Tests of Differences Measures of Relationships

Univariate Multivariate Univariate Multivariate Univariate Multivariate Univariate Multivariate

analysis analysis analysis analysis analysis analysis analysis analysis

Nominal Level Data Analysis

Squared Euclidean Distance Ordinary Euclidean Distance

Tests of Differences Measures of Relationships Tests of Differences Measures of Relationships

Univariate Multivariate Univariate Multivariate Univariate Multivariate Univariate Multivariate

analysis analysis analysis analysis analysis analysis analysis analysis

Fig. 2 Diagram for randomized-block experimental designs with analysis cells shaded in gray

Permutation Statistical Methods

Throughout the book, emphasis is on permutation statistical methods, both exact
and resampling. Permutation methods have a long history with beginnings in the
1920s and 1930s stemming from the early works of R.A. Fisher and E.J.G. Pit-
man.1 Permutation methods possess several advantages over conventional statistical
methods.

1. Permutation statistical methods are entirely data dependent, in that all of the
information required for analysis is contained within the observed data set.

2. Permutation statistical methods do not depend on the assumptions associated
with traditional parametric tests, such as normality and homogeneity of variance.

3. Permutation statistical methods provide exact probability values based on the
discrete permutation distribution of equally-likely test statistic values, rather than
an approximate probability value based on a theoretical distribution, such as a
normal, chi-squared, t, or F distribution.

4. Although permutation statistical methods are suitable when a random sample is
obtained from a specified population, permutation methods are also appropriate
for nonrandom samples, such as are common in everyday research.

5. Permutation statistical methods are appropriate for analyzing entire populations,
as permutation methods are not predicated on repeated random sampling from a
specified population.

1For a comprehensive history of permutation methods, see a 2014 book on A Chronicle of Permu-
tation Statistical Methods by Berry et al. [41].
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6. Permutation statistical methods can be defined for any selected test statistic.
Thus, researchers have the option of using a wide variety of statistics, including
the majority of conventional statistics utilized in classical statistical approaches.

7. Permutation statistical methods are ideal for small data sets, when hypothetical
distribution functions may provide very poor fits.

8. Appropriate permutation statistical methods are highly resistant to extreme val-
ues, such as are common in demographic data, e.g., age at first marriage, income,
and so on. Consequently, the need for any data transformation is mitigated in the
permutation context and in general is not recommended, e.g., square root, log-
arithmic, arc cosine, and other transformations, including the conversion of raw
scores to ranks.

9. Permutation statistical methods provide data-dependent statistical inferences
only to the actual experiment or survey that has been analyzed, and are not depen-
dent on knowledge of a super population.

Summary

Throughout the book a number of conventional statistical tests and measures are
described, provided with permutation analogues, illustrated with examples, and,
when appropriate, enhanced with multivariate extensions. The organizing scheme of
the first half of the book, Chaps. 1–7, dealing with MRPP and the analysis of com-
pletely randomized data, is to (1) describe a conventional statistic (e.g., Wilcoxon’s
two-sample rank-sum test) and illustrate the statistic with an example analysis, (2)
present the MRPP permutation analogue of the statistic with v D 2 and weighting
function Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g to correspond to the conventional
test statistic, (3) provide an exact or resampling probability value, depending on the
number of possible permutations, and (4) calculate a chance-corrected measure of
effect size.

A second example analysis of the same data is then provided with the same
weighting function, Ci D .ni � 1/=.N � g/ for i D 1; : : : ; g, but with v D 1 to
illustrate the effect of ordinary Euclidean distance on a conventional statistic. An
exact or resampling probability value is calculated and results of the two exam-
ple analyses are compared. A third example with v D 1 and weighting function
Ci D ni=N for i D 1; : : : ; g is constructed, as permutation methods are not depen-
dent on degrees of freedom or squared Euclidean distance. Either an exact or
resampling probability value is computed and the three analyses are compared.
Finally, when appropriate, the conventional test designed for univariate (r D 1)
response measurements is generalized to analyze multivariate (r � 2) response mea-
surements, and the three example analyses are repeated with multivariate data and
compared.

The second half of the book, Chaps. 8–11, is devoted to MRBP and the analysis
of randomized-block data and follows a similar organizing scheme, with one excep-
tion. Since MRBP procedures are balanced, no weighting functions are required.
Thus, (1) a conventional statistic is described (e.g., Spearman’s rank-order correla-
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tion coefficient) and illustrated with an example analysis, (2) the MRBP permutation
analogue of the statistic is provided with v D 2 to correspond to the conven-
tional test statistic, (3) either an exact or resampling probability value is calculated,
depending on the number of possible permutations, and (4) a chance-corrected mea-
sure of effect size is provided.

A second example analysis of the same data is then provided with v D 1 and
the two analyses are compared. Finally, when appropriate, the conventional test
designed for univariate (r D 1) response measurements is generalized to analyze
multivariate (r � 2) response measurements, and the two example analyses with
v D 2 and v D 1 are repeated with multivariate data and compared.

In this manner, the dimensions of data types (completely-randomized and
randomized-block), levels of measurement (nominal, ordinal, and interval), num-
ber of dependent variables (univariate and multivariate), type of distance function
(squared Euclidean and ordinary Euclidean), and statistical application (tests of dif-
ferences and measures of association) are explored and investigated. The end result
is a large number of new permutation statistical tests and measures based on the
generalized Minkowski distance function that have not been presented elsewhere,
organized into a systematic framework, and illustrated with numerous examples.
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Čhuprov. See Tschuprov
Cochran’s Q test, 26, 552, 557–561
Coding

dummy, 67, 85, 108, 123, 127, 131, 137,
143, 147, 150, 151, 156, 171, 175,
209, 212, 374, 398, 554, 555, 558,
564, 574, 577, 579, 583

effect, 123, 156, 157, 161, 165, 179, 183,
190, 197, 202

Coefficient of colligation, 569
Coefficient of concordance, 494
Cohen’s

Od, 63, 64, 68, 98
f , 64
O�, 22, 490, 501, 504, 506–508, 510, 511,

513, 515, 546, 548–552
Cohen’s kappa, 502

base-rate problem, 502, 503
gold standard, 502
unweighted, 22, 26, 490, 501, 504,

506–508, 510, 511, 513, 516,
545–554

weighted, 26, 71, 501–510, 513, 513, 515,
517, 518, 545, 553

linear, 503, 504, 507, 508, 516, 519
quadratic, 503, 507, 511, 516, 519

Commensuration, 31, 46, 51, 81, 452
Euclidean, 82, 86, 88, 105, 317, 320, 421,

452
Hotelling’s, 82, 105

Compound symmetry, 461
Computers, 4, 14, 17, 23
concordant pairs C, 519–521, 523, 528, 530,

535, 564, 566, 568, 571, 573
Contingency table, 14, 17, 21, 271, 306, 370

2�2, 5–8, 17, 18, 391, 395, 396, 398, 564,
568, 569, 582, 583

2�c, 296
3�3, 534
c�c�c, 516, 552
r�c, 14, 15, 296, 306, 519–521
r�r, 22, 545
fixed marginals, 14, 18, 23, 271, 502, 504,

508, 516, 517, 553
multi-way, 14, 517, 553

Correction for continuity, 9, 11, 18, 477, 478
Correlation

intraclass, 493, 501
multiple, 85
Pearson’s �, 2, 303, 370, 391, 395, 396
Pearson’s R, 417, 467, 468, 470
Pearson’s r2, 2, 118, 303, 304, 391, 396,

437–442, 576, 578, 582, 583
point-biserial, 67, 304
rank-biserial, 302, 304, 306, 310, 360, 361,

409
Spearman’s footrule, 26, 486, 527, 530,

533, 537
Spearman’s rank-order, 2, 21, 22, 26, 302,

303, 482, 484–486, 495, 522



Subject Index 615

Cramér’s V, 2, 370
Crelle, August Leopold, 30
Crittenden–Montgomery’s

�, 409
I, 410

Cureton’s rrb, 302, 304, 306, 308, 310, 360, 409
Cureton rank-biserial correlation, 25, 302, 304,

306, 308, 310, 409
bivariate, 360–364

D
Degrees of freedom, 6, 11, 18, 42, 50, 58, 60,

67, 69, 70, 75, 76, 79, 81, 85, 88,
90, 95, 102, 105, 108, 123, 131, 136,
143, 147, 150, 156, 161, 165, 170,
175, 179, 183, 190, 196, 202, 207,
228, 232, 244, 252, 372, 374, 377,
381, 396, 399, 439, 448, 449, 453,
456, 458, 460, 461, 463, 466, 472,
494, 499, 560, 578

discordant pairs D, 519–521, 523, 528, 530,
535, 564, 566, 568, 571, 573

Distance
Euclidean, 159

ordinary, 30, 38, 43, 51, 77–79, 86, 99,
102, 110, 111, 116, 117, 120, 128,
130, 133, 139, 141, 142, 144, 147,
148, 150, 152, 155, 161, 163, 165,
167, 169, 172, 174, 176, 178, 181,
183, 185, 188, 192, 195, 198, 201,
203, 206, 208, 211, 213, 221, 227,
234, 243, 251, 260, 267, 275, 282,
288, 300, 312, 321, 327, 328, 332,
333, 337, 338, 341, 342, 345, 346,
348, 349, 352, 353, 355, 356, 359,
360, 362, 422, 428, 434, 440, 442,
447, 450, 456, 464, 466, 470, 479,
491, 500, 546, 548, 551, 562, 585,
586

squared, 30, 38, 43, 51, 73, 75, 77, 82,
86, 90, 92, 99, 106, 110, 122, 123,
129, 135, 141, 144, 146, 149, 155,
160, 164, 168, 173, 177, 182, 188,
194, 200, 205, 227, 234, 243, 251,
260, 268, 275, 282, 288, 300, 312,
325, 327, 331, 332, 336, 337, 340,
341, 343, 345, 347, 348, 350, 352,
354, 355, 357, 359, 362, 434, 447,
448, 450, 455, 456, 464, 466, 478,
479, 485, 494, 499, 500, 585, 586

Distance function
average, 31, 41, 44, 47, 52, 58, 74, 77,

79, 83, 87, 88, 93, 94, 100–103,

106, 110, 111, 128, 129, 134, 135,
139–142, 144, 146, 148, 149, 152,
155, 159, 160, 163, 164, 167, 168,
172, 173, 176, 177, 181, 182,
185, 188, 192, 194, 198, 200, 203,
205, 211, 213, 225, 227, 228, 232,
234, 235, 241, 244, 245, 249, 251,
252, 258, 260, 261, 266, 268, 269,
274, 275, 277, 281, 283, 284, 287,
288, 290, 298, 300, 301, 309, 312,
313, 317, 325, 327, 328, 331–333,
336–338, 340, 341, 344, 345, 347,
348, 351, 352, 354, 355, 358, 359,
361–363, 368, 375, 378, 380, 382,
392, 394, 399, 401, 403, 406, 408,
410, 412

metric, 29, 30, 43, 243
Minkowski, 30

city-block metric, 30, 585
Euclidean metric, 30, 422, 428, 585
generalized, 23–25, 29–31, 38, 40, 43,

46, 47, 51, 52, 57, 82, 108, 117,
218, 318, 321, 368, 375, 379, 406,
422, 425, 429, 431, 432, 434, 435,
445, 467, 474, 483, 507, 509, 513,
524, 525, 528, 532, 535, 544, 547,
548, 550, 566, 576, 585

Tchebycheff metric, 30
Distribution

beta, 11–13
binomial, 33, 481
Cauchy, 116
chi-squared, 15, 232, 271, 372, 494, 499,

557, 560, 587
double-exponential, 116
gamma, 13
heavy-tailed, 16, 115
hypergeometric, 5–8, 14, 18, 275
normal, 2, 13, 15, 43, 243, 266, 299, 321,

372, 416, 418, 477, 508, 587
Pearson type III, 12, 13, 37, 59, 119, 126,

187, 219, 318, 369, 392, 395, 423,
448, 460, 475, 545

permutation, 11, 12, 39, 77, 187, 392, 460,
587

skewed, 16
Snedecor’s F, 2, 15, 21, 50, 81, 84, 90,

95, 105, 108, 120, 123, 131, 136,
143, 147, 150, 156, 161, 165,
170, 175, 179, 183, 190, 196, 201,
207, 453, 456, 458, 460, 463, 466,
587

Student’s t, 9, 11, 15, 42, 60, 75–77, 428,
439, 447, 449, 469, 472, 587



616 Subject Index

Dummy coding, 127, 131, 137, 143, 147, 150,
151, 171, 175, 209, 212, 374, 398,
554, 555, 558, 564, 574, 577, 579,
583

E
Effect coding, 156, 157, 161, 165, 179, 183,

190, 197, 202
Effect size, 24, 72–73, 75, 78, 80, 87, 89, 100,

101, 103, 110, 112
chance-corrected, 23, 70–72, 75, 78, 80, 85,

87, 89, 93, 95, 100, 101, 103, 104,
108, 110–112, 121, 122, 126, 129,
130, 134, 136, 139, 142, 145, 147,
149, 150, 153, 155, 159, 161, 163,
165, 168, 170, 173, 174, 177, 179,
182, 183, 187, 190, 193, 196, 199,
201, 205, 207, 209, 212, 214, 226,
228, 229, 233, 234, 236, 238, 243,
244, 246, 250, 252, 253, 260–262,
267, 268, 270, 275–277, 282, 283,
285, 288–290, 299, 301, 302,
309, 312, 314, 319, 324, 327–329,
332–334, 337–339, 341, 342,
344–346, 348, 349, 351–353, 355,
356, 358–360, 362–364, 377, 379,
381, 383, 393, 395, 401, 403, 405,
423, 428, 431, 434, 436, 439–442,
446, 450, 451, 456, 457, 463, 464,
466, 469–471, 474, 478, 479, 481,
484, 485, 491, 493, 495, 496, 499,
500, 507, 514, 526, 529, 533, 537,
544, 546, 550, 551, 557, 560, 563,
567, 576, 578

Cohen’s Od, 63–65, 68
Cohen’s f , 64
Glass’s 	, 64
Hays’ O!2, 63, 64, 67–68, 71, 72
Hedges’ g, 65–66
Kelley’s �2, 63, 64, 67–68, 72, 417, 418
Kirk’s Of , 64
measures, 61–71
Mielke–Berry’s <, 59, 68–72, 75, 78,

80, 85, 87, 89, 93, 95, 100, 101,
103, 104, 108, 110–112, 121, 122,
126, 129, 130, 134, 136, 139, 142,
145, 147, 149, 150, 153, 155, 159,
161, 163, 165, 168, 170, 173, 174,
177, 179, 182, 183, 187, 190, 193,
196, 199, 201, 205, 207, 209, 212,
214, 226, 228, 229, 233, 234, 236,
238, 243, 244, 246, 250, 252, 253,
260–262, 267, 268, 270, 275–277,

282, 283, 285, 288–290, 299,
301, 302, 309, 312, 314, 319, 324,
327–329, 332–334, 337–339, 341,
342, 344–346, 348, 349, 351–353,
355, 356, 358–360, 362–364,
377, 379, 381, 383, 393, 395, 401,
403, 405, 423, 428, 431, 434, 436,
439–442, 446, 450, 451, 456, 457,
463, 464, 466, 469–471, 474, 478,
479, 481, 484, 485, 491, 493, 495,
496, 499, 500, 507, 514, 526, 529,
533, 537, 544, 546, 550, 551, 557,
560, 563, 567, 576, 578

Pearson’s r2, 63, 64, 67–68
<, effect size, 23, 59, 68, 72, 75, 78, 80,

85, 87, 89, 93, 95, 100, 101, 103,
104, 108, 110–112, 117, 118, 121,
122, 126, 129, 130, 134, 136, 139,
142, 145, 147, 149, 150, 153, 155,
159, 161, 163, 165, 168, 170, 173,
174, 177, 179, 182, 183, 187, 190,
193, 196, 199, 201, 205, 207, 209,
212, 214, 219, 226, 228, 229, 233,
234, 236, 238, 243, 244, 246, 250,
252, 253, 260–262, 267, 268, 270,
275–277, 282, 283, 285, 288–290,
299, 301, 302, 309, 312, 314, 319,
324, 327–329, 332–334, 337–339,
341, 342, 344–346, 348, 349,
351–353, 355, 356, 358–360,
362–364, 369, 377, 379, 381, 383,
393, 395, 401, 403, 405, 407, 409,
412, 416, 423, 428, 431, 434, 436,
439–442, 446, 450, 451, 456, 457,
463, 464, 466, 469–471, 474, 478,
479, 481, 484, 485, 491, 493, 495,
496, 499, 500, 507, 514, 526, 529,
533, 537, 544, 546, 550, 551, 557,
560, 563, 564, 567, 568, 576, 578,
580, 581, 585, 586

universal, 63
Eigenvalues, 107
Einstein, Albert, 29
Errors of the first kind E1, 370, 371
Errors of the second kind E2, 371
Estimators

biased, 67, 72, 108, 494
unbiased, 72, 108

�2. See r2

ETH Zürich, 29
Expected value �ı , 37, 42, 45, 50, 53, 59, 75,

78, 80, 85, 87, 89, 93, 95, 100, 101,
103, 104, 108, 111, 112, 117, 121,
122, 126, 129, 130, 134, 136, 139,



Subject Index 617

142, 145, 147, 149, 150, 153, 155,
159, 161, 163, 165, 168, 170, 173,
174, 177, 179, 182, 183, 187, 190,
192, 196, 199, 201, 205, 206, 212,
214, 219, 226, 228, 229, 233, 234,
236, 238, 243, 244, 246, 250, 252,
253, 260–262, 267, 268, 270, 275,
276, 282, 283, 285, 288–290, 299,
301, 302, 309, 312, 313, 319, 324,
327–329, 331, 333, 334, 337–339,
341, 342, 344, 345, 348, 349, 351,
352, 355, 356, 358, 359, 362–364,
369, 377, 379, 381, 383, 401, 403,
405, 407, 423, 428, 431, 434, 436,
439–442, 446, 450, 451, 456, 457,
463, 464, 466, 468, 470, 471, 474,
478, 479, 481, 484, 485, 491–493,
499, 500, 507, 510, 512–514, 526,
529, 533, 537, 544, 547, 549–551,
557, 560, 563, 567, 568, 576, 579,
583

Extreme values, 43, 77, 78, 99, 100, 102, 115,
219, 243, 428, 588

Ezekiel’s Or2, 69, 72

F
Festinger’s rank-sum test, 221, 230, 293
Fibonacci series, 17
Fisher’s F, 30, 89–91, 95, 100–103, 105, 108,

123, 131, 136, 143, 147, 150, 156,
161, 165, 170, 175, 179, 183, 190,
196, 201, 207, 453, 456, 458–461,
463, 466

Fisher’s exact test, 9, 17, 18
Fisher–Irwin exact test, 9
Fisher–Pitman permutation test, 58, 90, 91,

448
Fisher–Yates exact test, 9
Freeman’s �ON, 409, 410
Friedman’s �2

r , 494, 495, 499
Friedman’s analysis of variance, 26, 494–500

G
Glass’s 	, 64
Gold standard, 3–4, 17
Goodman–Kruskal’s statistic

� , 26, 521, 537, 540, 569
�a, 25, 372
�b, 25, 372
ta, 370–372, 374, 376, 377, 383–388, 390,

392, 393, 397, 398
tb, 372, 379, 380, 388, 393, 394, 398

Greenhouse–Geisser’s O", 461–463

H
Haldane–Smith rank-sum test, 222
Hays’ O!2 , 63, 64, 67, 68, 71, 72
Hedges’ g, 65
Hellman malocclusion analysis, 18–20
Hilbert, David, 29
Hodges–Lehmann median test, 270
Homogeneity, 1, 60, 123, 131, 136, 161, 165,

170, 183, 196, 201, 207, 456, 460,
461, 463, 466, 587

Hotelling’s T2 test
matched-pairs, 26, 451–453, 455, 456, 465
two-sample, 24, 48, 53, 58, 80–82, 84–87,

89, 321
Hubert’s �NO, 410
Hubert’s �sym, 410

I
Independence, 123, 131, 136, 143, 147, 150,

156, 161, 165, 170, 175, 179, 183,
190, 196, 201, 207, 428, 439, 447,
449, 456, 460, 466, 469, 472

Intraclass correlation coefficient rI , 494

J
Jonckheere–Terpstra test, 293

K
Königsberg University, 29
Kelley’s �2, 67, 68
Kendall’s S, 292, 293, 302, 305, 519, 521, 523,

525, 529, 530, 535, 536, 564, 566,
573

Kendall’s statistic
�a, 17, 26, 303, 521, 522, 526–528, 530,

531, 533, 535, 537, 538, 567, 568
�b, 26, 521, 522, 537, 538, 582
concordance, 26

Kendall’s W, 494, 495
Kruskal–Wallis rank-sum test, 230

bivariate, 329, 331
univariate, 24, 25, 229–231, 233, 418

L
LAD, regression, 24, 115–117, 120, 122–124,

130, 132, 138, 142, 143, 147, 148,
150, 155, 158, 161, 162, 165, 169,
171, 174–176, 178, 180, 183, 185,



618 Subject Index

188, 190, 194, 195, 197, 201, 203,
206, 209, 212

Lady tasting tea experiment, 8–9
Lange twins analysis, 5–7
Lawley–Hotelling trace test, 104, 109
Light–Margolin’s R2, 372
LSED, regression, 207

M
Mann–Whitney rank-sum test, 310

bivariate, 324, 325, 353, 354
univariate, 222, 223, 225, 278, 279, 281,

292, 293, 295, 302
McNemar’s Q test, 26, 552, 554–558
Mehta–Patel network algorithm, 14, 15
Mielke’s power-of-rank functions, 25
Mielke’s sum-of-squared-ranks test

bivariate, 357
univariate, 237, 285, 287

Minkowski, Hermann, 29
Model

permutation, 2, 3, 15, 27, 72
population, 2, 15, 72, 112

Monte Carlo, 13, 490
Mood rank-sum test, 25

bivariate, 346, 347
univariate, 237, 262, 265, 266

Multiple binary choices, 398–405
Multiple binary responses, 561–564, 577
Multiple binary test, 25
Multi-response permutation procedures

(MRPP)
bivariate example, v D 1

Ci D .ni � 1/=.N � g/, 86–87, 110–
111, 327–328, 332–333, 337–338,
341–342, 345–349, 352–353,
355–356, 359–360, 362–363

Ci D ni=N, 51–53, 88–89, 111–112,
319–324, 328–329, 333–334,
338–339, 342, 346, 349, 353, 356,
360, 363–364

bivariate example, v D 2

Ci D .ni � 1/=.N � g/, 82–86, 105–
110, 324–327, 329–332, 334–337,
339–341, 343–344, 350–351,
354–355, 357–358, 360–362

Ci D ni=N, 45–50
LAD regression, 120–121, 124–129,

133–134, 137–139, 143–145,
147–153, 157–159, 161–163,
168, 171–173, 175–177, 179, 182,
183–187, 190–193, 197–199,
202–205, 207–214

OLS regression, 121–122, 129–131,
134–136, 140–142, 146–147,
149–150, 154–155, 159–161,
163–165, 168–170, 173–174,
177–179, 182–183, 187–190,
194–196, 199–201, 205–207

overview, 31–38, 57–59, 368–369
test statistic, ı, 31, 38, 41, 44, 47, 52, 58,

61, 74, 77, 79, 83, 85–88, 91, 93,
94, 100–103, 106, 109–111, 117,
121, 122, 125, 128, 129, 134, 135,
139–142, 145, 146, 148, 150, 152,
155, 159, 160, 163, 164, 167, 168,
172, 173, 176, 178, 181, 182, 185,
188, 192, 194, 198, 200, 203, 205,
208, 211, 213, 217, 223, 225, 227,
229, 230, 232–235, 237, 240, 241,
244, 245, 248, 250–252, 257, 258,
260, 261, 265, 266, 268, 269, 273,
274, 276, 277, 280, 281, 283, 284,
286–288, 290, 297, 298, 300, 301,
309, 312, 313, 317, 322, 325, 327,
328, 331–333, 336–338, 340–342,
344–349, 351–356, 358–363, 368,
373, 375, 378, 380, 382, 384, 385,
388, 390, 392, 394, 397–400, 402,
403, 405, 406, 408, 410, 412, 415,
585

expected value, 37, 42, 45, 50, 53,
59, 75, 78, 80, 85, 87, 89, 93, 95,
100, 101, 103, 104, 108, 111, 112,
117, 121, 122, 126, 129, 130, 134,
136, 139, 142, 145, 147, 149, 150,
153, 155, 159, 161, 163, 165, 168,
170, 173, 174, 177, 179, 182, 183,
187, 190, 192, 196, 199, 201, 205,
206, 209, 212, 214, 219, 226, 228,
229, 233, 234, 236, 238, 243, 244,
246, 250, 252, 253, 260–262, 267,
268, 270, 275–277, 282, 283, 285,
288–290, 299, 301, 302, 309, 312,
313, 319, 324, 327–329, 331, 333,
334, 337–339, 341, 342, 344, 345,
348, 349, 351, 352, 355, 356, 358,
359, 362–364, 369, 377, 379, 381,
383, 401, 403, 405, 407

standardized, 187, 393, 395
and power-of-rank tests, 237
univariate example, v D 1

Ci D .ni � 1/=.N � g/, 77–78, 99–102,
227–228, 234, 243–244, 251–252,
260–261, 267–268, 275–276, 282–
283, 288–289, 300–301, 311–312,
374–377, 379–382, 391–396



Subject Index 619

Ci D ni=N, 42–45, 79–80, 102–104,
228–229, 235–236, 244–246,
252–253, 261–262, 269–270,
276–277, 284–285, 289–290,
301–302, 313–314, 377–379,
382–383, 399–405

univariate example, v D 2

Ci D .ni � 1/=.N � g/, 73–77, 92–99,
224–227, 230–233, 239–243,
246–250, 255–260, 263–267,
270–275, 278–282, 285–288,
295–299, 304–311

Ci D ni=N, 39–42
Multivariate randomized-block permutation

(MRBP)
bivariate example, v D 2, 431–434
multivariate example, v D 1, 456–457, 466
multivariate example, v D 2, 454–456,

465–466
overview, 421–423, 445–447, 473–475,

543–545
test statistic, ı, 422, 426, 427, 430, 433,

435, 436, 440–442, 445, 448,
450–453, 455, 457–459, 464–468,
470, 471, 473, 478, 479, 481, 483,
485, 489, 491–493, 495, 499, 500,
507, 509, 512–514, 524, 526, 529,
532, 543, 547, 549–551, 556, 557,
559, 560, 562, 567–571, 574, 576,
579–581, 583, 585

expected value, 423, 428, 431, 434, 436,
439–442, 446, 450, 451, 456, 457,
463, 464, 466, 468, 470, 471, 474,
478, 479, 481, 484, 485, 491–493,
499, 500, 507, 510, 512–514, 526,
529, 533, 537, 544, 547, 549–551,
557, 560, 563, 567, 576, 579, 583

standardized, 460, 464
univariate example, v D 1, 428–431,

434–437, 440, 450–451, 464–465,
469–470, 479–482, 490–492, 500,
507–510, 513, 524–537

univariate example, v D 2, 425–428, 438–
440, 448–450, 459–464, 468–469,
476–479, 484–486, 496–500

N
Normality, 1, 123, 131, 136, 143, 147, 150,

156, 161, 165, 170, 175, 179, 183,
190, 196, 201, 207, 219, 220, 243,
321, 428, 439, 447, 449, 453, 456,
460, 466, 469, 472, 494, 587

Null hypothesis, testing, 62

O
Odds ratio ', 26, 571, 572
OLS, regression, 24, 115, 117, 120, 121, 123,

125, 131, 140, 145, 149, 154, 159,
161, 163, 168, 173, 177, 182, 187,
199, 205

Outliers. See extreme values

P
Pairs

concordant, 293, 296, 304–306, 519–521,
523, 524, 528, 531, 564, 566, 568,
569, 571, 573

discordant, 293, 297, 304–306, 519–521,
523, 524, 528, 531, 564, 566, 568,
569, 571, 573

tied on x Txy, 520, 521, 528, 530, 535, 564,
573

tied on x and y Txy, 520, 521, 530, 535, 564,
573

tied on y Ty, 520, 521, 528, 530, 535, 564,
573

Pearson’s � coefficient, 2, 303, 370, 391, 395,
396

Pearson’s R. See Pearson’s r2

Pearson’s r2, 2, 22, 26, 67, 68, 303, 304, 391,
396, 437, 439–442, 576, 578, 582,
583

Pearson’s �2, 15, 383–388, 390, 396–398
Percentage difference, 2, 26, 580–582

Dxy, 581, 582
Dyx, 580–582

Permutation methods, 1
data-dependent, 1, 15, 58, 77, 243, 428,

447, 587
distribution-free, 1, 15, 42, 58, 79, 88, 102,

228, 243, 252, 428, 447
exact, 4–12, 14, 17, 23, 33, 39, 42, 45,

51, 73, 77, 88, 94, 101, 103, 105,
110, 111, 119, 139, 140, 142, 144,
146, 147, 158, 180, 210, 213, 218,
225, 232, 249, 258, 266, 274, 281,
287, 298, 309, 325, 336, 344, 347,
351, 354, 358, 361, 369, 400, 402,
407, 411, 414, 416, 439, 442, 449,
456, 465, 466, 471, 478, 481, 485,
491, 499, 504, 509, 512, 516, 526,
529, 533, 544, 552, 556, 563, 577,
587



620 Subject Index

moment-approximation, 4, 11–13, 23,
37, 187, 392, 393, 395, 460,
464

network-algorithm, 4
non-parametric, 42, 58, 243, 428, 447
recursion, 17–21

initial value, 17, 20–21, 23
resampling, 4, 12, 13, 14, 17, 23, 32,

33, 59, 92–94, 99, 100, 102, 103,
119–121, 127, 133, 138, 152, 162,
166, 171, 176, 177, 185, 191,
197, 203, 209, 219, 318, 331, 369,
376, 378, 381, 383, 392, 394, 405,
423, 441, 448, 454, 455, 459, 464,
469–471, 474, 493, 514, 515, 517,
536, 544, 551, 553, 560, 561, 577,
587

small data sets, 1
variable portion, 17, 21–23

Permutation model, 2–3, 15, 72
Population model, 2, 15, 72, 112
possible arrangements M, 5, 32, 41, 44, 48,

53, 59, 74, 77, 80, 83, 87, 88, 93,
94, 101, 104, 106, 107, 110, 111,
120, 126, 140, 142, 144–148, 150,
152, 158, 159, 161, 162, 166, 171,
176, 181, 183, 185, 190, 197, 203,
208, 210, 211, 213, 214, 218, 225,
228, 229, 232, 234, 235, 238, 241,
242, 244, 245, 249–251, 253, 258,
261, 262, 266, 268, 269, 274, 276,
277, 281, 283, 284, 287–290, 298,
300, 301, 309, 312, 313, 318, 322,
324–328, 331, 336–338, 340–342,
344, 345, 347–349, 351, 352,
354–356, 358, 359, 361–364, 369,
376, 378, 381, 383, 392, 394, 399,
400, 402, 405, 407, 409, 411–414,
416, 422, 427, 430, 433, 436,
438–442, 446, 449, 451, 455–457,
459, 464–466, 469–471, 474, 478,
479, 481, 485, 491, 493, 499, 500,
504, 506, 514, 515, 525, 526, 529,
533, 536, 544, 549–551, 556–558,
560, 561, 563, 567, 577

Power of rank tests
bivariate

AN1, 334–339
AN2, 339–342
BN1, 343–346
BN2, 346–349
CN0, 350–353

CN1, 353–356
CN2, 357–360

univariate
AN1, 236, 238–246, 293
AN2, 236, 246–253
BN1, 236, 253–262
BN2, 236, 262–270
CN0, 237, 270–277
CN1, 237, 278–285, 293
CN2, 237, 285–290

Probability
binomial, 481
chi-squared, 275, 376, 381
exact, 1, 9, 11, 14, 15, 19, 20, 32, 33,

35, 41, 45, 53, 59, 74, 76–78, 80,
83, 87–89, 94, 101, 102, 104, 106,
108, 110–112, 119, 126, 140, 142,
145–148, 150, 159, 161, 181, 183,
208, 211, 214, 218, 225, 226, 228,
229, 231, 232, 234, 235, 241, 242,
244, 245, 249–251, 253, 257, 258,
261, 262, 265, 266, 268, 269,
273–277, 280–284, 287–290, 298,
300–302, 309, 312, 313, 318, 324,
326–329, 336–339, 341, 342,
344–346, 348, 349, 351–353, 355,
356, 358–360, 362–364, 369, 400,
402, 407, 409, 411, 414, 416, 422,
427, 430, 436, 439, 440, 442, 446,
448, 449, 451, 454, 456, 457, 459,
465, 466, 471, 474, 478, 479, 481,
485, 491, 499, 500, 504, 506, 509,
510, 512, 518, 526, 529, 533, 544,
556, 563, 577

hypergeometric, 5–8, 14, 18, 275, 504, 506
normal, 477, 478, 508
Pearson’s type III, 187, 392, 395, 460, 464
resampling, 32, 33, 35, 37, 59, 93, 94,

100, 101, 103, 104, 120–122, 126,
129, 130, 134, 136, 139, 141, 142,
153, 155, 163, 165, 168, 169, 173,
174, 177, 178, 186, 188, 192, 194,
195, 199, 201, 204–206, 219, 318,
331–334, 378, 379, 383, 394, 405,
441, 442, 455, 459, 464, 469–471,
493, 514, 515, 518, 519, 536, 551,
553, 554, 560, 562, 577

Snedecor’s F, 81, 84, 90, 95, 105, 108, 120,
123, 131, 136, 143, 147, 150, 156,
161, 165, 170, 175, 179, 183, 190,
196, 201, 207, 460, 463, 466

Student’s t, 11, 439, 469, 472



Subject Index 621

R
random arrangements L, 93, 100, 103, 121,

122, 126, 129, 130, 134, 136, 138,
139, 141, 153, 155, 163, 165, 168,
169, 173, 174, 177, 178, 186, 188,
192, 194, 199, 201, 204, 205, 331,
376, 381, 383, 392, 394, 405, 442,
448, 454, 455, 459, 460, 464, 470,
471, 474, 493, 514, 515, 536, 544,
551, 560, 562, 577

Rank transformations, 219–221, 229, 410, 588
Rank-order statistics, 219–222
Rank-sum tests

Ansari–Bradley, 237, 254, 255, 257, 258,
343

Festinger, 221, 230, 293
Haldane–Smith, 222, 230
Kruskal–Wallis, 229–231, 233, 329, 331
Mann–Whitney, 222, 223, 225, 230, 278,

279, 281, 292, 293, 295, 302, 310,
324, 325, 353, 354

Mood, 237, 262, 265, 266, 346, 347
Siegel–Tukey, 253
van der Reyden, 222, 230
Whitfield, 222, 291
Wilcoxon, 221, 223, 225, 230, 236, 238,

239, 241, 242, 245, 278, 279, 281,
292, 295, 302, 310, 324, 325, 334,
336, 353, 354

Regression
least absolute deviation, 24, 115–117, 120,

122–124, 130, 132, 138, 142, 143,
147, 148, 150, 155, 158, 161, 162,
165, 169, 171, 174–176, 178, 180,
183, 185, 188, 190, 195, 197, 201,
203, 206, 209, 212

linear, 2, 580
multiple, 24, 116, 117, 120, 123
multivariate multiple, 207
ordinary least squares, 24, 30, 115, 117,

120, 123, 125, 131, 140, 145, 149,
154, 159, 161, 163, 168, 173, 177,
182, 187, 194, 199, 205

residuals, 115, 116, 121–123, 125, 127–
130, 132–136, 138–155, 157–169,
171–178, 180–183, 185–188,
190–192, 194, 195, 197–201,
203–205, 208–214

Robustness, 77, 78, 99, 104, 221, 243, 428,
443, 588

Rothamsted Experimental Station, 8
Statistical Laboratory, 4

Roy’s maximum-root test, 104, 109
Royal Statistical Society, 5

S
Särndal’s, �, 410
Sampling

non-random, 1, 15
over-sampling, 455
random, 2, 62, 72, 587

Scott’s � , 490
Scott’s agreement coefficient, 71, 490
Semantic differential, 408
Shrunken r2, 70, 72
Siegel–Tukey sum-of-ranks test, 253
Sign test, 480–482
Snedecor’s F distribution, 50, 81, 84, 90, 95,

105, 108, 120, 123, 131, 136, 143,
147, 150, 156, 161, 165, 170, 175,
179, 183, 190, 196, 201, 207

Socioeconomic status example, 316
Somers’ statistic

dxy, 26, 521, 522, 537, 541, 572, 573, 582
dyx, 26, 521, 522, 537, 540, 572–574, 582

Spearman’s
�, 303, 304, 482, 484–486
R, 486, 530, 537

Spearman’s footrule, 26, 71, 486, 494, 527,
530, 533, 537

multiple blocks, 492–494
Spearman’s rank correlation, 2, 21, 22, 26, 71,

302, 303, 482–486, 495, 522
Sphericity, 461
Stuart’s �c statistic, 26, 521, 537, 539
Student’s t test, 15, 30, 42, 99, 102, 469, 472,

554
matched-pairs, 2, 9–11, 26, 425, 428, 431,

442, 447–450, 554
two-sample, 2, 21, 24, 38, 42, 58, 60–61,

64, 67, 68, 73, 75, 76, 78, 80, 86,
88, 99, 102

T
Taha’s sum-of-squared-ranks test

bivariate, 339, 340
univariate, 24, 25, 236, 246, 249, 250

Triangle inequality, 30, 43, 117, 243, 428
Tschuprov’s T2, 2, 370

U
University College, London

Biometric Laboratory, 4

V
Van der Reyden’s rank-sum test, 222, 230
Variance, exact, 507, 508



622 Subject Index

W
Wallis’s �2

r , 495
Wallis’s correlation ratio, 495
Weighting

linear, 503–508, 511, 516, 519
quadratic, 503, 505, 507, 511, 516, 519

Whitfield’s S, 266, 291, 292, 295, 296, 299
Whitfield’s rank-sum test, 25, 222, 291–293
Wilcoxon’s rank-sum test

bivariate, 324, 325, 334, 336, 353, 354
univariate, 24, 25, 221, 223, 225, 236–239,

241, 242, 245, 278, 279, 281, 292,
295, 302, 310, 475

Wilcoxon’s signed-ranks test, 26, 475–479
Wilks’ likelihood-ratio test, 104, 109

Y
Yeoman II wheat experiment, 14, 21
Yule’s Q statistic, 26, 568, 569, 571,

572
Yule’s Y statistic, 26, 569–572

Z
Zea mays experiment, 9–11


	Preface
	Contents
	1 Introduction 
	1.1 Models of Statistical Inference
	1.2 Permutation Statistical Tests
	1.2.1 Exact Permutation Tests
	Example 1
	Example 2
	Example 3

	1.2.2 Moment-Approximation Permutation Tests
	1.2.3 Resampling-Approximation Permutation Tests
	1.2.4 Mehta–Patel Network Algorithm

	1.3 Permutation and Parametric Statistical Tests
	1.3.1 Permutation Tests and Normality
	1.3.2 Mathematical Recursion
	1.3.3 Calculation with an Arbitrary Initial Value
	1.3.4 Variable Portion of a Test Statistic

	1.4 Overviews of Chaps.2–11
	1.4.1 Chapter 2: Completely Randomized Data
	1.4.2 Chapter 3: Randomized Interval-Level Data
	1.4.3 Chapter 4: Regression Analysis of Interval Data
	1.4.4 Chapter 5: Randomized Ordinal-Level Data—I
	1.4.5 Chapter 6: Randomized Ordinal-Level Data—II
	1.4.6 Chapter 7: Randomized Nominal-Level Data
	1.4.7 Chapter 8: Randomized Block Data
	1.4.8 Chapter 9: Blocked Interval-Level Data
	1.4.9 Chapter 10: Blocked Ordinal-Level Data
	1.4.10 Chapter 11: Blocked Nominal-Level Data

	1.5 Coda
	Chapter 2


	2 Completely Randomized Data 
	2.1 Minkowski Distance Function
	2.2 Multi-response Permutation Procedures
	Number of Resamplings Necessary
	An Index of Agreement
	2.2.1 Chance-Corrected Agreement Measures
	2.2.2 Example Univariate MRPP Analysiswith v = 2
	2.2.3 Example Univariate MRPP Analysiswith v = 1
	2.2.4 Example Bivariate MRPP Analysis with v = 2
	2.2.5 Example Bivariate MRPP Analysis with v = 1

	2.3 Coda
	Chapter 3


	3 Randomized Designs: Interval Data 
	3.1 Permutation Analogue of Student's t Test
	3.2 Measures of Effect Size
	3.2.1 Cohen's 
	3.2.2 Hedges' g
	3.2.3 Pearson's r2
	3.2.4 Kelley's ε2
	3.2.5 Hays' 2
	3.2.6 Mielke and Berry's 
	3.2.7 Biased Estimators

	3.3 Example Univariate MRPP Analyses with g = 2
	3.3.1 Example 1
	3.3.2 Example 2
	3.3.3 Example 3

	3.4 Permutation Analogue of Hotelling's T2 Test
	3.5 Example Bivariate MRPP Analyses with g = 2
	3.5.1 Example 1
	3.5.2 Example 2
	3.5.3 Example 3

	3.6 Permutation Analogue of One-Way ANOVA
	3.6.1 Computing Efficiency

	3.7 Example Univariate MRPP Analyses with g = 4
	3.7.1 Example 1
	An Exact Test
	A Conventional Test
	The F-Ratio and MRPP
	Cohen's Measure of Effect Size

	3.7.2 Example 2
	An Exact Test

	3.7.3 Example 3
	An Exact Test


	3.8 Permutation Analogue of One-Way MANOVA
	3.9 Example Bivariate MRPP Analyses with g = 3
	3.9.1 Example 1
	3.9.2 Example 2
	3.9.3 Example 3

	3.10 Coda
	Chapter 4


	4 Regression Analysis of Interval Data 
	4.1 LAD Linear Regression
	4.1.1 Linear Regression and Agreement

	4.2 Example LAD Regression Analyses
	4.2.1 Example Analysis 1
	4.2.2 Example Analysis 2
	4.2.3 Example Analysis 3

	4.3 LAD Regression and Analysis of Variance Designs
	4.3.1 One-Way Randomized Design
	LAD Regression Analysis
	OLS Regression Analysis
	Conventional ANOVA Analysis

	4.3.2 One-Way Randomized Design with a Covariate
	LAD Regression Analysis
	OLS Regression Analysis
	Conventional ANOVA Analysis

	4.3.3 One-Way Randomized-Block Design
	LAD Regression Analysis
	An Exact Test
	OLS Regression Analysis
	An Exact Test
	Conventional ANOVA Analysis

	4.3.4 Two-Way Randomized-Block Design
	Analysis of Factor A
	LAD Regression Analysis
	OLS Regression Analysis
	Conventional ANOVA Analysis
	Analysis of Factor B
	LAD Regression Analysis
	OLS Regression Analysis
	Conventional ANOVA Analysis
	Analysis of the A  B Interaction
	LAD Regression Analysis
	OLS Regression Analysis
	Conventional ANOVA Analysis

	4.3.5 Two-Way Factorial Design
	Analysis of Factor A
	LAD Regression Analysis
	OLS Regression Analysis
	Conventional ANOVA Analysis
	Analysis of Factor B
	LAD Regression Analysis
	OLS Regression Analysis
	Conventional ANOVA Analysis
	Analysis of the A  B Interaction
	LAD Regression Analysis
	OLS Regression Analysis
	Conventional ANOVA Analysis

	4.3.6 Latin Square Design
	Analysis of Factor A
	LAD Regression Analysis
	OLS Regression Analysis
	Conventional ANOVA Analysis
	Analysis of Factor B
	LAD Regression Analysis
	OLS Regression Analysis
	Conventional ANOVA Analysis

	4.3.7 Split-Plot Design
	Analysis of Factor A
	LAD Regression Analysis
	OLS Regression
	Conventional ANOVA Analysis
	Analysis of Factor B
	LAD Regression Analysis
	OLS Regression Analysis
	Conventional ANOVA Analysis
	Analysis of the A  B Interaction
	LAD Regression Analysis
	OLS Regression Analysis
	Conventional ANOVA Analysis

	4.3.8 Nested Design
	Analysis of Factor A
	LAD Regression Analysis
	OLS Regression Analysis
	Conventional ANOVA Analysis
	Analysis of Factor B|A
	LAD Regression Analysis
	OLS Regression Analysis
	Conventional ANOVA Analysis


	4.4 Multivariate Multiple Regression Designs
	4.4.1 Example Analysis
	Analysis of Factor A
	Analysis of Factor B


	4.5 Coda
	Chapter 5


	5 Randomized Designs: Ordinal Data, I
	5.1 Introduction
	5.2 Rank-Order Statistics
	5.3 Two-Sample Rank-Sum Tests
	5.4 Example Analyses
	5.4.1 Example 1
	5.4.2 Example 2
	5.4.3 Example 3

	5.5 MRPP and the Kruskal–Wallis Rank-Sum Test
	5.6 Example Analyses
	5.6.1 Example 1
	5.6.2 Example 2
	5.6.3 Example 3

	5.7 Three Two-Sample Classes of Rank Tests
	5.8 MRPP and Two-Sample Power-of-Rank Functions
	5.9 Example ANs Analyses with s = 1
	5.9.1 Example 1
	5.9.2 Example 2
	5.9.3 Example 3

	5.10 Example ANs Analyses with s = 2
	5.10.1 Example 1
	5.10.2 Example 2
	5.10.3 Example 3

	5.11 Example BNs Analyses with s = 1
	5.11.1 Example 1
	5.11.2 Example 2
	5.11.3 Example 3

	5.12 Example BNs Analyses with s = 2
	5.12.1 Example 1
	5.12.2 Example 2
	5.12.3 Example 3

	5.13 Example CNs Analyses with s = 0
	5.13.1 Example 1
	5.13.2 Example 2
	5.13.3 Example 3

	5.14 Example CNs Analyses with s = 1
	5.14.1 Example 1
	5.14.2 Example 2
	5.14.3 Example 3

	5.15 Example CNs Analyses with s = 2
	5.15.1 Example 1
	5.15.2 Example 2
	5.15.3 Example 3

	5.16 MRPP and Kendall's S Statistic
	5.17 Example Analyses
	5.17.1 Example 1
	5.17.2 Example 2
	5.17.3 Example 3

	5.18 MRPP and Cureton's Rank-Biserial Correlation
	5.18.1 Example 1
	5.18.2 Example 2
	5.18.3 Example 3

	5.19 Coda
	Chapter 6


	6 Randomized Designs: Ordinal Data, II
	6.1 Introduction
	6.2 MRPP with r = 2 and g = 2
	6.3 MRPP for the WMW Rank-Sum Test with r = 2
	6.3.1 Example 1
	6.3.2 Example 2
	6.3.3 Example 3

	6.4 MRPP for the KW Rank-Sum Test with r = 2
	6.4.1 Example 1
	6.4.2 Example 2
	6.4.3 Example 3

	6.5 MRPP for the ANs Function with s = 1
	6.5.1 Example 1
	6.5.2 Example 2
	6.5.3 Example 3

	6.6 MRPP for the ANs Function with s = 2
	6.6.1 Example 1
	6.6.2 Example 2
	6.6.3 Example 3

	6.7 MRPP for the BNs Function with s = 1
	6.7.1 Example 1
	6.7.2 Example 2
	6.7.3 Example 3

	6.8 MRPP for the BNs Function with s = 2
	6.8.1 Example 1
	6.8.2 Example 2
	6.8.3 Example 3

	6.9 MRPP for the CNs Function with s = 0
	6.9.1 Example 1
	6.9.2 Example 2
	6.9.3 Example 3

	6.10 MRPP for the CNs Function with s = 1
	6.10.1 Example 1
	6.10.2 Example 2
	6.10.3 Example 3

	6.11 MRPP for the CNs Function with s = 2
	6.11.1 Example 1
	6.11.2 Example 2
	6.11.3 Example 3

	6.12 MRPP for Cureton's Rank-Biserial Statistic
	6.12.1 Example 1
	6.12.2 Example 2
	6.12.3 Example 3

	6.13 Coda
	Chapter 7


	7 Randomized Designs: Nominal Data
	7.1 Introduction
	7.2 Goodman and Kruskal's ta and tb Statistics
	7.2.1 Goodman and Kruskal's ta and δ
	7.2.2 Example Analysis for ta
	A Reanalysis

	7.2.3 Example Analysis for tb
	A Reanalysis

	7.2.4 Goodman–Kruskal's ta, δa, and χ2
	7.2.5 Fourfold Contingency Tables
	Goodman–Kruskal's τa Statistic
	Goodman–Kruskal's tb Statistic

	7.2.6 Chi-Squared and δ

	7.3 Multiple Binary Choices
	7.3.1 Example Analysis 1
	7.3.2 Example Analysis 2
	7.3.3 Example Analysis 3

	7.4 Multivariate Measures of Association
	7.4.1 Interval Dependent Variables
	Example 1

	7.4.2 Ordinal Dependent Variables
	Example 2

	7.4.3 Nominal Dependent Variables
	Example 3

	7.4.4 Mixed Dependent Variables
	Example 4


	7.5 Relationships Between  and Existing Statistics
	7.5.1 Interval-Level Dependent Variable
	7.5.2 Ordinal-Level Dependent Variable
	7.5.3 Nominal-Level Dependent Variable

	7.6 Coda
	Chapter 8


	8 Randomized Block Data
	8.1 Multivariate Block Permutation Procedures
	8.1.1 Randomized-Block Designs and Alignment
	8.1.2 Example Univariate MRBP Analysiswith v = 2
	8.1.3 Example Univariate MRBP Analysiswith v = 1
	8.1.4 Example Bivariate MRBP Analysis with v = 2
	8.1.5 Example Bivariate MRBP Analysis with v = 1

	8.2 MRBP and Pearson's Product-Moment Correlation
	8.2.1 Example MRBP Correlation Analysis
	Analysis with v = 1

	8.2.2 Permutations of g Response Measurements
	Analysis with v = 1


	8.3 Coda
	Chapter 9


	9 Randomized Block Designs: Interval Data
	9.1 Permutation Analogue of Student's t Test
	9.1.1 Example 1: v = 2
	Measures of Effect Size

	9.1.2 Example 2: v = 1

	9.2 Permutation Analogue of Hotelling's T2 Test
	9.2.1 Example 1: v = 2
	9.2.2 Example 2: v = 1

	9.3 Permutation Analogue of ANOVA
	9.3.1 Example 1: v = 2
	9.3.2 Homogeneity Assumptions
	9.3.3 Example 2: v = 1

	9.4 Permutation Analogue of MANOVA
	9.4.1 Example 1: v = 2
	9.4.2 Example 2: v = 1

	9.5 MRBP and Pearson's Product-Moment Correlation
	9.5.1 Example 1: v = 2
	9.5.2 Example 2: v = 1
	9.5.3 Example 3: Permutation Data

	9.6 Coda
	Chapter 10


	10 Randomized Block Designs: Ordinal Data
	10.1 Introduction
	10.2 Wilcoxon Signed-Ranks Test
	10.2.1 Example 1: v = 2
	10.2.2 Example 2: v = 1

	10.3 Sign Test
	10.3.1 Example Sign Test

	10.4 Spearman's Rank-Order Correlation Coefficient
	10.4.1 Example: v = 2

	10.5 Spearman's Footrule Agreement Measure
	10.5.1 Norming and Tied Rank Scores
	10.5.2 Probability of Spearman's Footrule
	10.5.3 Example: v = 1
	10.5.4 Multiple Blocks
	10.5.5 Example Analysis

	10.6 Friedman's Analysis of Variance for Ranks
	10.6.1 Example 1: v = 2
	10.6.2 Example 2: v = 1

	10.7 MRBP and the Measurement of Agreement
	10.7.1 Limitations of Kappa
	10.7.2 Cohen's Weighted Kappa
	10.7.3 Weighted Kappa Example
	10.7.4 Relationship of  and Cohen's Weighted 
	Linear Weighting with v = 1
	Quadratic Weighting with v = 2

	10.7.5 Multiple Judges
	Linear Weighting with v = 1
	Quadratic Weighting with v = 2

	10.7.6 An Alternative Approach to Multiple Judges
	Linear Weighting
	Quadratic Weighting


	10.8 MRBP and Measures of Ordinal Association
	10.8.1 Example 1
	10.8.2 Example 2
	10.8.3 Example 3
	10.8.4 Example 4

	10.9 Selected Measures of Ordinal Association and δ
	10.9.1 Kendall's τa Statistic and δ
	10.9.2 Kendall's τb Statistic and δ
	10.9.3 Stuart's τc Statistic and δ
	10.9.4 Goodman and Kruskal's γ Statistic and δ
	10.9.5 Somers' dyx Statistic and δ
	10.9.6 Somers' dxy Statistic and δ

	10.10 Coda
	Chapter 11


	11 Randomized Block Designs: Nominal Data
	11.1 Introduction
	11.2 Cohen's Kappa Measure of Agreement
	11.2.1 Multiple Judges
	Generalization of Cohen's Unweighted 

	11.2.2 An Alternative Approach to Multiple Judges

	11.3 McNemar's Q Test and δ
	11.3.1 Example Analysis

	11.4 Cochran's Q Test and δ
	11.4.1 Example Analysis
	11.4.2 Multiple Binary Responses

	11.5 MRBP and Categorical Fourfold Tables
	11.5.1 Kendall's ta Statistic and δ
	11.5.2 Yule's Q Statistic and δ
	11.5.3 Yule's Y Statistic and δ
	11.5.4 The Odds Ratio and δ
	11.5.5 Relationships Among Q, Y, and φ
	11.5.6 Somers' dxy/dyx and δ

	11.6 A Reanalysis of the Data
	11.6.1 Pearson's rxy and 
	11.6.2 MRBP and Regression Coefficients
	11.6.3 MRBP and Percentage Differences
	11.6.4 MRBP and Chi-Squared

	11.7 Coda

	Epilogue
	Overview
	Permutation Statistical Methods
	Summary

	References
	Author Index
	Subject Index

