

Use R!

Series Editors
Robert Gentleman Kurt Hornik Giovanni Parmigiani

For further volumes:
http://www.springer.com/series/6991

Karline Soetaert
Jeff Cash
Francesca Mazzia

Solving Differential
Equations in R

123

Karline Soetaert
Department Ecosystem Studies
Royal Netherlands Institute for Sea Research
Yerseke
The Netherlands

Francesca Mazzia
Dipartimento di Matematica
University of Bari
Bari
Italy

Jeff Cash
Mathematics
Imperial College
South Kensington Campus
United Kingdom

Series Editors:
Robert Gentleman
Program in Computational Biology
Division of Public Health Sciences
Fred Hutchinson Cancer Research Center
1100 Fairview Avenue, N. M2-B876
Seattle, Washington 98109
USA

Kurt Hornik
Department of Statistik and Mathematik
Wirtschaftsuniversität Wien Augasse 2-6
A-1090 Wien
Austria

Giovanni Parmigiani
The Sidney Kimmel Comprehensive
Cancer Center at Johns Hopkins University
550 North Broadway
Baltimore, MD 21205-2011
USA

R-package diffEq to be downloaded from CRAN URL: http://cran.r-project.org/web/
packages/diffEq
In addition R-code of all examples can be downloaded from Extras.Springer.com, also
accessible via Springer.com/978-3-642-28069-6

ISBN 978-3-642-28069-6 ISBN 978-3-642-28070-2 (eBook)
DOI 10.1007/978-3-642-28070-2
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012939126

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://cran.r-project.org/web/packages/diffEq
http://cran.r-project.org/web/packages/diffEq
www.springer.com

To Carlo, Roslyn and Antonello

•

Preface

Mathematics plays an important role in many scientific and engineering disciplines.
This book deals with the numerical solution of differential equations, a very
important branch of mathematics. Our aim is to give a practical and theoretical
account of how to solve a large variety of differential equations, comprising
ordinary differential equations, initial value problems and boundary value problems,
differential algebraic equations, partial differential equations and delay differential
equations.

The solution of differential equations using R is the main focus of this book. It is
therefore intended for the practitioner, the student and the scientist, who wants to
know how to use R to solve differential equations.

When writing his famous book, “A Brief History of Time”, Stephen Hawking [2]
was told by his publisher that every equation he included in the book would cut its
sales in half. When writing the current book, we have been mindful of this, and our
main desire is to provide the reader with powerful numerical algorithms written in
the R programming language for the solution of differential equations rather than
considering the theory in any great detail.

However, we also bear in mind the famous statement of Kurt Lewin which is
“there is nothing so practical as a good theory”. Therefore each chapter that deals
with R examples is preceded by a chapter where the theory behind the numerical
methods being used is introduced. It has been our goal that non-mathematicians
should at least understand the basics of the methods, while obtaining entrance into
the relevant literature that provides more mathematical background. We believe that
some knowledge of the fundamentals of the underlying algorithms is essential to use
the software in an intelligent way, so the principles underlying the various methods
should, at least at a basic level, be explained. Moreover, as this book is in the first
place about R the discussion of the numerical methods will be skewed to what is
actually available in R.

In the sections that deal with the use of R for solving differential equations, we
have taken examples from a variety of disciplines, including biology, chemistry,
physics, pharmacokinetics. Many are well-known test examples, used frequently in
the field of numerical analysis.

vii

viii Preface

R as a Problem Solving Environment

The choice of using R [8] may be surprising to people regularly involved in solving
numerical problems. Powerful numerical methods for the solution of differential
equations are typically programmed in e.g. Fortran, C, Java, or Python. Whereas
these solution methods are often made freely available, it is unfortunately the
case that one needs considerable programming expertise to be able to use them.
In contrast, easy-to-use software is often in rather expensive programs, such as
MATLAB, Maple or Mathematica. In line with this, most books that give practical
information about how to solve differential equations make use of these big three
problem solving environments, or of one of the free-of-charge variants.

Although still not often used for solving differential equations, R is also very well
suited as a Problem Solving Environment. Apart from the fact that it is open source
software, there are obvious advantages in solving differential equations in a software
that is strong in visualisation and statistics. Moreover, more and more students are
becoming acquainted with the language as its use in universities is growing rapidly,
both for teaching and for research. This creates a unique opportunity to introduce
these students to the powerful scientific methods which make use of differential
equations.

The potential for using R to solve differential equations was initiated by the
release of the R package odesolve by Woody Setzer, a biologist holding a bachelor’s
degree in mathematics from EPA, US [10]. Years later, a communication in the
R-journal by Thomas Petzoldt, a biologist from the university of Dresden, Germany
[5] showed the potential of R for solving initial value problems of ordinary
differential equations in the field of ecology. Recently a number of books have
applied R in the field of environmental modelling [12,19]. Building upon this initial
effort, Karline Soetaert, the first author of this book, (a biologist) in 2008 joined
forces with Woody Setzer and Thomas Petzoldt to make an improved version of
odesolve that was able to solve a much greater variety of differential equations.
This resulted in the R package deSolve [17], which contains most of the integration
methods available in R. Most of the solvers implemented in the R package deSolve
are based on well-established numerical codes, programmed in Fortran. By using
well tested, robust, reliable and powerful codes, more emphasis can be put on
making the existing codes more versatile. For instance, most codes can now be used
to solve delay differential equations, or to simulate events. Also, great care was taken
to make a common interface that is (relatively) easy to apply from the user’s point
of view. A set of methods to solve partial differential equations by the method-of-
lines was added to deSolve, while another package, rootSolve [11], was devised to
efficiently solve partial differential equations and boundary value problems using
root solving algorithms. Finally, solution methods for boundary value problems
were implemented in R package bvpSolve [15], as a cooperation between the three
authors from this book.

Because all these R packages share one common author (KS), there is a certain
degree of consistency in them, which we hope to demonstrate here (see also [16]).

Preface ix

Quite a few other R packages deal with the implementation of differential equa-
tions [6, 13], with the solution of special types of differential equations [1, 3, 4, 7],
with statistical analysis of their outputs [9,14,20], or provide test problems on which
the various solvers can be benchmarked [18].

About the Three Authors

Mathematics is the playground not only for the mathematician and engineer who
devise powerful mathematical techniques to solve particular classes of problems,
but also for the scientist who applies these methods to real-world problems. Both
disciplines meet at the level of software, the actual implementation of these methods
in computer code.

The three authors reflect this duality and come from different disciplines. Jeff
Cash and Francesca Mazzia are experts in numerical analysis in general and the
construction of algorithms for solving differential equations in particular. In contrast
Karline Soetaert is a biologist, with an additional degree in computer science,
whose interest in these numerical methods is mainly due to the fact that she uses
these algorithms for application in the field of the marine sciences. Although
she originally wrote her scientific programs mainly in Fortran, since she came
acquainted with R in 2007 she now performs nearly all of her scientific work in
this programming environment.

Acknowledgment Many people have commented on the first versions of this book. We are very
thankful for the reviews provided by Filip Meysman, Dick van Oevelen, Tom Cox, Tom van
Engeland, Ernst Hairer, Bill Schiesser, Alexander Ostermann, Willem Hundsdorfer, Vincenzo
Casulli, Linda Petzold, Felice Iavernaro, Luigi Brugnano, Raymond Spiteri, Luis Randez, Alfredo
Bellen, Nicola Guglielmi, Bob Russell, René Lamour, Annamaria Mazzia, and Abdelhameed
Nagy.

References

1. Couture-Beil, A., Schnute, J. T., & Haigh, R. (2010). PBSddesolve: Solver for delay
differential equations. R package version 1.08.11.

2. Hawking, S. (1988). A brief history of time. Toronto/New York: Bantam Books. ISBN 0-553-
38016-8.

3. Iacus, S. M. (2009). sde: Simulation and inference for stochastic differential equations.
R package version 2.0.10.

4. King, A. A., Ionides, E. L., & Breto, C. M. (2012). pomp: Statistical inference for partially
observed Markov processes. R package version 0.41-3.

5. Petzoldt, T. (2003). R as a simulation platform in ecological modelling. R News, 3(3), 8–16.
6. Petzoldt, T., & Rinke, K. (2007). simecol: An object-oriented framework for ecological

modeling in R. Journal of Statistical Software, 22(9), 1–31.
7. Pineda-Krch, M. (2010). GillespieSSA: Gillespie’s stochastic simulation algorithm (SSA).

R package version 0.5-4.

x Preface

8. R Development Core Team, (2011). R: A language and environment for statistical computing.
Vienna: R Foundation for Statistical Computing. ISBN 3-900051-07-0.

9. Radivoyevitch, T. (2008). Equilibrium model selection: dTTP induced R1 dimerization. BMC
Systems Biology, 2, 15.

10. Setzer, R. W. (2001). The odesolve package: Solvers for ordinary differential equations.
R package version 0.1-1.

11. Soetaert, K. (2011). rootSolve: Nonlinear root finding, equilibrium and steady-state analysis
of ordinary differential equations. R package version 1.6.2.

12. Soetaert, K., & Herman, P. M. J. (2009). A practical guide to ecological modelling. Using
R as a simulation platform. Dordrecht: Springer. ISBN 978-1-4020-8623-6.

13. Soetaert, K., & Meysman, F. (2012). Reactive transport in aquatic ecosystems: Rapid model
prototyping in the open source software R. Environmental Modelling and Software, 32, 49–60.

14. Soetaert, K., & Petzoldt, T. (2010). Inverse modelling, sensitivity and monte carlo analysis in
R using package FME. Journal of Statistical Software, 33(3):1–28.

15. Soetaert, K., Cash, J. R., & Mazzia, F. (2011). bvpSolve: Solvers for boundary value problems
of ordinary differential equations. R package version 1.2.2.

16. Soetaert, K., Petzoldt, T., & Setzer, R. W. (2010) Solving differential equations in R. The R
Journal, 2(2):5–15.

17. Soetaert, K., Petzoldt, T., & Setzer, R. W. (2010). Solving differential equations in R: Package
deSolve. Journal of Statistical Software, 33(9):1–25.

18. Soetaert, K., Cash, J. R., & Mazzia, F. (2011). deTestSet: Testset for differential equations.
R package version 1.0.

19. Stevens, M. H. H. (2009). A primer of ecology with R. Berlin: Springer.
20. Tornoe, C. W., Agerso, H., Jonsson, E. N., Madsen, H., & Nielsen, H. A. (2004). Non-linear

mixed-effects pharmacokinetic/pharmacodynamic modelling in NLME using differential
equations. Computer Methods and Programs in Biomedicine, 76, 31–40.

Contents

1 Differential Equations . 1
1.1 Basic Theory of Ordinary Differential Equations 1

1.1.1 First Order Differential Equations . 1
1.1.2 Analytic and Numerical Solutions . 2
1.1.3 Higher Order Ordinary Differential Equations 3
1.1.4 Initial and Boundary Values . 4
1.1.5 Existence and Uniqueness of Analytic Solutions 5

1.2 Numerical Methods .. 6
1.2.1 The Euler Method. 6
1.2.2 Implicit Methods . 7
1.2.3 Accuracy and Convergence of Numerical Methods 8
1.2.4 Stability and Conditioning . 9

1.3 Other Types of Differential Equations . 11
1.3.1 Partial Differential Equations . 11
1.3.2 Differential Algebraic Equations .. 12
1.3.3 Delay Differential Equations .. 13

References .. 13

2 Initial Value Problems . 15
2.1 Runge-Kutta Methods . 15

2.1.1 Explicit Runge-Kutta Formulae .. 15
2.1.2 Deriving a Runge-Kutta Formula . 17
2.1.3 Implicit Runge-Kutta Formulae .. 22

2.2 Linear Multistep methods . 22
2.2.1 Convergence, Stability and Consistency 23
2.2.2 Adams Methods .. 25
2.2.3 Backward Differentiation Formulae . 27
2.2.4 Variable Order – Variable Coefficient

Formulae for Linear Multistep Methods 29
2.3 Boundary Value Methods .. 30
2.4 Modified Extended Backward Differentiation Formulae 31

xi

xii Contents

2.5 Stiff Problems .. 32
2.5.1 Stiffness Detection . 33
2.5.2 Non-stiffness Test . 34

2.6 Implementing Implicit Methods. 34
2.6.1 Fixed-Point Iteration to Convergence 34
2.6.2 Chord Iteration .. 35
2.6.3 Predictor-Corrector Methods . 36
2.6.4 Newton Iteration for Implicit Runge-Kutta

Methods . 36
2.7 Codes to Solve Initial Value Problems . 37

2.7.1 Codes to Solve Non-stiff Problems . 38
2.7.2 Codes to Solve Stiff Problems . 38
2.7.3 Codes that Switch Between Stiff and

Non-stiff Solvers . 38
References .. 39

3 Solving Ordinary Differential Equations in R. 41
3.1 Implementing Initial Value Problems in R. 41

3.1.1 A Differential Equation Comprising One Variable 42
3.1.2 Multiple Variables: The Lorenz Model 44

3.2 Runge-Kutta Methods . 45
3.2.1 Rigid Body Equations . 47
3.2.2 Arenstorf Orbits . 49

3.3 Linear Multistep Methods . 51
3.3.1 Seven Moving Stars. 52
3.3.2 A Stiff Chemical Example . 56

3.4 Discontinuous Equations, Events . 59
3.4.1 Pharmacokinetic Models . 60
3.4.2 A Bouncing Ball . 64
3.4.3 Temperature in a Climate-Controlled Room 66

3.5 Method Selection . 68
3.5.1 The van der Pol Equation . 70

3.6 Exercises . 75
3.6.1 Getting Started with IVP . 75
3.6.2 The Robertson Problem . 76
3.6.3 Displaying Results in a Phase-Plane Graph 76
3.6.4 Events and Roots. 78
3.6.5 Stiff Problems . 79

References .. 79

4 Differential Algebraic Equations . 81
4.1 Introduction . 81

4.1.1 The Index of a DAE . 82
4.1.2 A Simple Example .. 83
4.1.3 DAEs in Hessenberg Form . 84
4.1.4 Hidden Constraints and the Initial Conditions 85
4.1.5 The Pendulum Problem.. 86

Contents xiii

4.2 Solving DAEs . 87
4.2.1 Semi-implicit DAEs of Index 1 . 87
4.2.2 General Implicit DAEs of Index 1 . 88
4.2.3 Discretization Algorithms . 89
4.2.4 DAEs of Higher Index .. 90
4.2.5 Index of a DAE Variable. 93

References .. 94

5 Solving Differential Algebraic Equations in R . 95
5.1 Differential Algebraic Equation Solvers in R . 95
5.2 A Simple DAE of Index 2 . 96

5.2.1 Solving the DAEs in General Implicit Form 97
5.2.2 Solving the DAEs in Linearly Implicit Form 98

5.3 A Nonlinear Implicit ODE . 98
5.4 A DAE of Index 3: The Pendulum Problem .. 100
5.5 Multibody Systems . 101

5.5.1 The Car Axis Problem .. 102
5.6 Electrical Circuit Models . 106

5.6.1 The Transistor Amplifier . 107
5.7 Exercises . 111

5.7.1 A Simple DAE . 111
5.7.2 The Robertson Problem . 111
5.7.3 The Pendulum Problem Revisited . 111
5.7.4 The Akzo Nobel Problem . 112

References .. 115

6 Delay Differential Equations . 117
6.1 Delay Differential Equations . 117

6.1.1 DDEs with Delays of the Dependent Variables 118
6.1.2 DDEs with Delays of the Derivatives 118

6.2 Difficulties when Solving DDEs . 119
6.2.1 Discontinuities in DDEs . 119
6.2.2 Small and Vanishing Delays. 120

6.3 Numerical Methods for Solving DDEs . 121
References .. 121

7 Solving Delay Differential Equations in R . 123
7.1 Delay Differential Equation Solvers in R . 123
7.2 Two Simple Examples . 124

7.2.1 DDEs Involving Solution Delay Terms 124
7.2.2 DDEs Involving Derivative Delay Terms 124

7.3 Chaotic Production of White Blood Cells . 125
7.4 A DDE Involving a Root Function . 127
7.5 Vanishing Time Delays . 128
7.6 Predator-Prey Dynamics with Harvesting . 130

xiv Contents

7.7 Exercises . 132
7.7.1 The Lemming Model . 132
7.7.2 Oberle and Pesch. 132
7.7.3 An Epidemiological Model. 133
7.7.4 A Neutral DDE. 134
7.7.5 Delayed Cellular Neural Networks With Impulses. 134

References .. 135

8 Partial Differential Equations . 137
8.1 Partial Differential Equations . 137

8.1.1 Alternative Formulations . 138
8.1.2 Polar, Cylindrical and Spherical Coordinates 140
8.1.3 Boundary Conditions . 141

8.2 Solving PDEs . 142
8.3 Discretising Derivatives . 143

8.3.1 Basic Diffusion Schemes . 144
8.3.2 Basic Advection Schemes . 145
8.3.3 Flux-Conservative Discretisations . 147
8.3.4 More Complex Advection Schemes . 148

8.4 The Method Of Lines . 152
8.5 The Finite Difference Method .. 153
References .. 153

9 Solving Partial Differential Equations in R . 157
9.1 Methods for Solving PDEs in R. 157

9.1.1 Numerical Approximations.. 157
9.1.2 Solution Methods . 159

9.2 Solving Parabolic, Elliptic and Hyperbolic PDEs in R 160
9.2.1 The Heat Equation . 160
9.2.2 The Wave Equation . 163
9.2.3 Poisson and Laplace’s Equation. 166
9.2.4 The Advection Equation .. 168

9.3 More Complex Examples. 170
9.3.1 The Brusselator in One Dimension . 170
9.3.2 The Brusselator in Two Dimensions . 173
9.3.3 Laplace Equation in Polar Coordinates 174
9.3.4 The Time-Dependent 2-D Sine-Gordon Equation.. 176
9.3.5 The Nonlinear Schrödinger Equation 179

9.4 Exercises . 181
9.4.1 The Gray-Scott Equation . 181
9.4.2 A Macroscopic Model of Traffic . 182
9.4.3 A Vibrating String . 183
9.4.4 A Pebble in a Bucket of Water . 184
9.4.5 Combustion in 2-D. 184

References .. 185

Contents xv

10 Boundary Value Problems . 187
10.1 Two-Point Boundary Value Problems. 187
10.2 Characteristics of Boundary Value Problems . 188

10.2.1 Uniqueness of Solutions . 188
10.2.2 Isolation of Solutions . 189
10.2.3 Stiffness of Boundary Value Problems

and Dichotomy .. 189
10.2.4 Conditioning of Boundary Value Problems 190
10.2.5 Singular Problems . 191

10.3 Boundary Conditions . 192
10.3.1 Separated Boundary Conditions. 192
10.3.2 Defining Good Boundary Conditions 193
10.3.3 Problems Defined on an Infinite Interval 193

10.4 Methods of Solution . 194
10.5 Shooting Methods for Two-Point BVPs . 194

10.5.1 The Linear Case. 194
10.5.2 The Nonlinear Case . 195
10.5.3 Multiple Shooting .. 196

10.6 Finite Difference Methods .. 197
10.6.1 A Low Order Method for Second Order Equations 197
10.6.2 Other Low Order Methods . 198
10.6.3 Higher Order Methods Based on

Collocation Runge-Kutta Schemes . 199
10.6.4 Higher Order Methods Based on Mono

Implicit Runge-Kutta Formulae .. 200
10.6.5 Higher Order Methods Based on Linear

Multistep Formulae . 201
10.6.6 Deferred Correction.. 202

10.7 Codes for the Numerical Solution of Boundary
Value Problems. 203

References .. 203

11 Solving Boundary Value Problems in R . 207
11.1 Boundary Value Problem Solvers in R. 207
11.2 A Simple BVP Example .. 208

11.2.1 Implementing the BVP in First Order Form 208
11.2.2 Implementing the BVP in Second Order Form 209

11.3 A More Complex BVP Example .. 210
11.4 More Complex Initial or End Conditions . 214
11.5 Solving a Boundary Value Problem Using Continuation 216

11.5.1 Manual Continuation . 216
11.5.2 Automatic Continuation . 219

11.6 BVPs with Unknown Constants . 220
11.6.1 The Elastica Problem . 221
11.6.2 Non-separated Boundary Conditions 222
11.6.3 An Unknown Integration Interval . 225

xvi Contents

11.7 Integral Constraints . 228
11.8 Sturm-Liouville Problems .. 229
11.9 A Reaction Transport Problem . 230
11.10 Exercises . 233

11.10.1 A Stiff Boundary Value Problem.. 233
11.10.2 The Mathieu Equation . 234
11.10.3 Another Swirling Flow Problem . 234
11.10.4 Another Reaction Transport Problem 236

References .. 237

A Appendix . 239
A.1 Butcher Tableaux for Some Runge-Kutta Methods 239
A.2 Coefficients for Some Linear Multistep Formulae 239
A.3 Implemented Integration Methods for Solving Initial

Value Problems in R . 241
A.4 Other Integration Methods in R . 242
References .. 242

Index . 245

Chapter 1
Differential Equations

Abstract Differential equations (DEs) occur in many branches of science and
technology, and there is a real need to solve them both accurately and efficiently.
There are relatively few problems for which an analytic solution can be found, so
if we want to solve a large class of problems, then we need to resort to numerical
calculations. In this chapter we will give a very brief survey of the theory behind DEs
and their solution. We introduce concepts such as analytic and numerical methods,
the order of differential equations, existence and uniqueness of solutions, implicit
and explicit methods. We end with a brief survey of the different types of differential
equations that will be dealt with in later chapters of this book.

1.1 Basic Theory of Ordinary Differential Equations

Although the material contained in this section is largely of a theoretical nature it is
presented at a rather basic level and the reader is advised to at least skim through it.

1.1.1 First Order Differential Equations

The general form taken by a first order ordinary differential equation (ODE) is

y′ = f (x,y), (1.1)

which may also be written as
dy
dx

= f (x,y), (1.2)

where f is a given function of x and y and y contained in ℜm is a vector. Here x is
called the independent variable and y = y(x) is the dependent variable.

DOI 10.1007/978-3-642-28070-2 1, © Springer-Verlag Berlin Heidelberg 2012
1K. Soetaert et al., Solving Differential Equations in R, Use R!,

2 1 Differential Equations

This equation is called first order as it contains no higher derivatives than the
first. Furthermore, (1.1) is called an ordinary differential equation as y depends on
one independent variable only.

1.1.2 Analytic and Numerical Solutions

A differentiable function y(x) is a solution of (1.1) if for all x

y′(x) = f (x,y(x)). (1.3)

If we suppose that y(x0) is known, the solution of (1.3), valid in the interval [x0,x1],
is obtained by integrating both sides of (1.1) with respect to x, to give:

y(x)− y(x0) =
∫ x

x0

f (t,y(t))dt, x ∈ [x0,x1]. (1.4)

In some cases this integral can be evaluated exactly to give an equation for y, and
this is called an analytic solution. For example, the equation

y′ = y2 + 1, (1.5)

has as analytic solution
y = tan(x+ c). (1.6)

Note the free parameter c that occurs in the solution. It has been known for a long
time that the solution of a first order equation contains a free parameter and that
this solution is uniquely defined if for example we impose an initial condition of
the form y(x0) = y0 and we suppose that the function f satisfies some regularity
conditions. This is important and we will return to it later.

Unfortunately, it is true to say that many ordinary differential equations which
appear to be quite harmless, in the sense that we could expect them to be easy to
solve, cannot be solved analytically, i.e. the solution can not be expressed in terms
of known functions. An illuminating example of this is given in [4, p. 4] where it
is shown how “small changes” in the problem (1.5) may make it much harder (or
impossible) to solve analytically. Indeed, if equation (1.5) is changed “slightly” to

y′ = y2 + x, (1.7)

then the solution has a very complex structure in terms of Airy functions [4]. In view
of this, and the fact that most “real-life” applications consist of complicated systems
of equations, it is often necessary to approximate the solution by solving equation
(1.1) numerically rather than analytically.

Undergraduate mathematics courses often give the impression that most dif-
ferential equations can be solved analytically, with numerical techniques being

1.1 Basic Theory of Ordinary Differential Equations 3

developed to deal with those few classes of equations that have no analytic solution.
In fact, the opposite is true: while an analytic solution is extremely useful if it does
exist, experience shows that most equations of practical interest need to be solved
numerically.

1.1.3 Higher Order Ordinary Differential Equations

In the previous section, we considered only the first order differential equation (1.1).
Ordinary differential equations can include higher order derivatives as well. For
example, second order equations of the form:

y′′ = f (x,y,y′), (1.8)

arise in many practical applications.
Normally, in order to deal with the second order equation (1.8), we first convert

it to a system of first order equations. This we do by defining an extra dependent
variable, which equals the first order derivative of y, in the following way:

y′ = y1

y′1 = f (x,y,y1).
(1.9)

Rather than having one differential equation, we now have a system of two
differential equations. Defining Y = (y,y1)

T , (1.9) is of the form (1.1), with Y ∈ ℜ2.
As we will see later (Sect. 1.1.4) we need to specify two conditions to define the
solution uniquely in this second order case.

As a simple example consider a small stone falling through the air from a tower.
Gravity produces an acceleration of g = 9.8 ms−2, while the air exerts a resistive
force which is proportional to the velocity (v). The differential equation describing
this is:

v′ = g− kv. (1.10)

If we are interested in the distance from the top of the tower (x), we use the fact that
the velocity v = x′, and the equation becomes a second order differential equation:

x′′ = g− kx′. (1.11)

Now, in order to solve (1.11), we rewrite it as two first order equations.

x′ = v
v′ = g− kv.

(1.12)

This technique carries over to higher order equations as well. If we are faced with
the numerical solution of an nth order equation, it is often advisable to first reduce

4 1 Differential Equations

it to a system of n first order equations using the obvious extension of the technique
described in (1.9) above. Consider for example the “swirling flow III problem”
[1, p. 23], which comprises a second order and a fourth order equation describing
the flow between two rotating, coaxial disks. The original problem definition

g′′ = (g f ′ − f g′)/ε
f ′′′′ = (− f f ′′′ − gg′)/ε,

(1.13)

needs one intermediate variable to represent the higher order derivative of g, and
three to represent the higher order derivatives of f . The corresponding set of first
order ODEs is:

g′ = g1

g′1 = (g f1 − f g1)/ε
f ′ = f1

f ′1 = f2

f ′2 = f3

f ′3 = (− f f3 − gg1)/ε.

(1.14)

We will solve this problem in Sect. 11.3.
An exception to the rule is the special case where the first derivative y′ is absent

from (1.8). In such circumstances it is often better to derive special methods for the
solution of

y′′ = f (x,y), (1.15)

rather than to introduce the term y′ into the definition of the differential equation
[3, p. 261].

1.1.4 Initial and Boundary Values

We saw in Sect. 1.1 that the integration of the ODE (1.5) introduced an arbitrary
constant c into the solution. As long as the ODE is specified only by (1.1), then any
value of c will give a valid solution. To select a unique solution, one extra condition
is needed and this determines the value of c.

Depending on where in the integration interval the extra condition is specified we
obtain an initial or boundary value problem. For example, when extending equation
(1.5) by introducing the extra condition

y(0) = 1, (1.16)

then using the general solution (1.6) we obtain y(0) = tan(0 + c) = 1 or c =
arctan(1) = π/4. Therefore,

y′ = y2 + 1
y(0) = 1,

(1.17)

1.1 Basic Theory of Ordinary Differential Equations 5

has the unique solution y = tan(x+ π/4) providing that we restrict the domain of
x suitably. As the extra condition is specified at the initial point of the integration
interval, (1.17) is an initial value problem (IVP).

The general representation of a first order IVP is:

y′ = f (x,y)
y(x0) = y0,

(1.18)

where y can be a vector.
In the case of second order equations such as (1.9) it is necessary to prescribe two

conditions to define y uniquely. In an initial value problem, both these conditions are
prescribed at the initial point (x0). For example we might have:

y′′ = f (x,y,y′)
y(x0) = y0

y′(x0) = y′0,
(1.19)

or, in first order form,
y′ = y1

y′1 = f (x,y,y1)

y(x0) = y0

y1(x0) = y′0.

(1.20)

If instead we prescribe the solution at two different points x0, x f in the range of
integration, we have a boundary value problem (BVP). There are several ways in
which to specify these boundary conditions, e.g. :

y′′ = f (x,y,y′)
y(x0) = y0

y(x f) = y f .

(1.21)

1.1.5 Existence and Uniqueness of Analytic Solutions

An extremely important question concerns the existence and uniqueness of solutions
of (1.1). This theory is now quite standard and is given for example in [3, Sect. 1.7].
Following the approach of [1] we determine what is required for the IVP solution
to exist, be unique and depend continuously on the data, i.e. be well-posed and then
ask that the numerical method has similar behaviour.

Basically the main property that we need to ask for if a problem is to be well-
posed is that the function f (x,y), appearing in (1.1) should be continuous in a
certain region and be Lipschitz continuous [1] with respect to y in that region. An
important sufficient condition for Lipschitz continuity is that f (x,y) has bounded
partial derivatives d fi/dy j. A nice summary of this theory is found in [1].

6 1 Differential Equations

As a simple example of an IVP which does not satisfy the conditions for
uniqueness consider

y′ =−
√

1− y2, y(0) = 1. (1.22)

This has at least two solutions: y = 1, and y = cos(x). The uniqueness problem
occurs because d f/dy is unbounded at x = 0. However we can also use our intuition
to foresee that there may be difficulties with this problem since if we perturb the
initial condition to y(0) = 1+ ε for any positive ε , the solution becomes complex!

The analytic solution of a given second order boundary value problem is rarely
possible to obtain (see [3, Sect. 1.3]). Furthermore a proof of the existence and
uniqueness of a solution of a given two point boundary value problem is often
much harder than for the initial value case and, indeed, boundary value problems are
generally much more difficult to solve than initial value problems. We will consider
the solution of boundary value problems in detail in Chap. 10.

1.2 Numerical Methods

Having briefly outlined some of the basic theory behind the (analytic) solution of
ODEs, we now go on to consider some elementary numerical methods. Basically,
in their simplest form, numerical methods start by subdividing the domain of the
independent variable x into a number of discrete points, x0,x1 = x0 +h, ..., and they
calculate the approximate values of the dependent variable y and the derivatives of
y with respect to x only at these points. These methods are called finite difference
methods.

Thus, given a series of integration steps x0,x1, . . . ,xn, a numerical method
constructs a sequence of values y0,y1, . . . ,yn, such that

yn ≈ y(xn), n ≥ 0. (1.23)

We note the important notation used here namely that xn = x0 + nh is a point where
the approximate solution will be computed, y(xn) is the analytic solution at xn and
yn is the numerical solution obtained at xn.

1.2.1 The Euler Method

One of the oldest and most simple numerical methods for solving the initial value
problem

y′ = f (x,y)
y(x0) = y0,

(1.24)

is due to Euler. This method can be derived in several ways and we start by using a
Taylor series approach. Supposing that f (x,y) is analytic in the neighborhood of the

1.2 Numerical Methods 7

x0 x1 = x0 + h

y(x0) = y0

y(x0 + h)

y1

hy'
0y'

h

LTE

a

x0 x1 x2 x3

y(x0)

y(x1)

y(x2)

y(x3)

GTE

b

Fig. 1.1 Errors for the Euler method. (a) The local truncation error (LTE) is the error introduced by
taking one Euler step. (b) After taking three integration steps, the global truncation error (GTE) is,
for sufficiently small h, larger than the LTE. This is because for Euler’s method the local truncation
error is O(h2) while the global error is O(h)

initial value x0, y0 so that we can write

y(x0 + h) = y(x0)+ hy′(x0)+
∞

∑
r=2

hr

r!
y(r)(x0), (1.25)

where y(r) is shorthand for the rth derivative of y with respect to x. Putting x1 =
x0 + h, ignoring the infinite sum on the right-hand side of (1.25), assuming y0 is
exact and denoting the numerical solution obtained at x0 + h by y1, we obtain the
(forward) Euler method:

y1 = y0 + h f (x0,y0). (1.26)

An alternative way of deriving Euler’s method is via a geometric approach. If we
evaluate the derivative of y at x0 and assume that it is constant throughout [x0,x0+h],
we have Fig. 1.1a, which immediately gives y1 = y0 +hy′0. Of course y′0 = f (x0,y0)
so we have again derived Euler’s method.

1.2.2 Implicit Methods

The Euler formula (1.26) of the previous section expresses the new value y1 as a
function of the known y0 and the function value f (x0,y0). Thus y1 can be calculated
using only known values. Such formulae are called explicit methods. When using
these methods it is simple to advance to the next integration step.

8 1 Differential Equations

It is also possible to have implicit methods. An example of such a method is the
so-called backward Euler method1:

y1 = y0 + h f (x1,y1), (1.27)

where now the function value f depends on the unknown y1, rather than solely on
y0. To solve for y1 is in general not simple: naively we might think that we can just
calculate the right-hand side, and estimate y1, but we can do this only if y1 is already
known! Usually we will need an iterative method to solve for the unknowns. This
means extra work per integration step and finding a solution may not always be easy
or even possible (see Sect. 2.6).

1.2.3 Accuracy and Convergence of Numerical Methods

An important question concerning equation (1.26) is: how accurate is it locally? To
answer this question, we rewrite (1.25) in the form:

y(x1)− y(x0)− h f (x0,y(x0)) = LTE, (1.28)

where LTE is the local truncation error introduced by truncating the right-hand side
of (1.25) and is given for Euler’s method by:

LT E =
∞

∑
r=2

hr

r!
y(r)(x0). (1.29)

Since we do not know the analytic solution y(x) of (1.24), we cannot calculate the
local truncation error exactly. The important thing about (1.29) is the power of h
in the leading term in the expression for the LTE. For Euler’s method this power is
2 and so the LTE is O(h2) and the method is said to have accuracy of order 1. In
general, if a method has LTE proportional to hp+1, p ≥ 1, i.e. |LTE| ≤ Chp+1 for
sufficiently smooth problems and for h sufficiently small then the method is said to
be of order p. The quantity we are interested in is in general not the LTE, but the
global error yn −y(xn) and for Euler’s method this is O(h). Hence Euler’s method is
said to be convergent of order 1 (see Fig. 1.1) and the global error for Euler’s method
is proportional to the constant step size h.

A very similar analysis can be carried out for implicit equations such as (1.27)
and it is easy to show that (1.27) is also of order 1.

One strategy to reduce the local truncation error is to reduce the size of the
steplength of integration h. In general, the higher the order of accuracy of the

1You may wonder why a formula that uses information “forward” in time is called “backward”.
This will become clear in Sect. 2.2.3.

1.2 Numerical Methods 9

numerical method, the more effect such step reduction will have on the LTE. On
the other hand, higher order methods require more work for one integration step.

The art in devising a good numerical integration method is to achieve a prescribed
accuracy with as little work as possible and this usually means with as few function
evaluations as possible. Often this involves changing the step size as we perform
the integration. If we use Euler’s method the global error is proportional to the
maximum step size used.

1.2.4 Stability and Conditioning

We complete this introductory chapter with a brief discussion concerning the
concepts of stability and conditioning. The concept of stability is usually applied
to initial value problems for differential equations, that of conditioning to boundary
value problems. Both concepts relate to the effect small changes in (1.18), either in
the function f , or in the initial (or boundary) conditions y(x0), have on the solution.
If small changes induce large effects, the problem is said to be unstable or ill-
conditioned. Conversely, a problem which has the desirable property that “small
changes in the data produce small changes in the solution” is said to be stable or
well-conditioned.

We can put the concept of stability on a firm theoretical basis as follows. Consider
the initial value problem (1.18). A solution y(x) is said to be stable with respect to
the initial conditions y(x0) if, given any ε > 0, there is a δ > 0 such that any other
solution ŷ(x) of (1.18) satisfying

|y(x0)− ŷ(x0)| ≤ δ , (1.30)

also satisfies
|y(x)− ŷ(x)| ≤ ε for all x > x0. (1.31)

This definition is usually called Lyapunov stability.

1.2.4.1 Absolute Stability

When we use a numerical method for the solution of a stable initial value problem
it is important to require that the numerical solution has the same behavior as the
continuous one. What is done in practice to investigate this is to consider a simple
test equation

y′ = λ y, (1.32)

which is often called Dahlquist’s test equation. If we consider λ to be complex
with Re(λ) < 0 we know the true solution of this equation tends to zero as x → ∞.
We wish the solution of the numerical method to also behave in this way and if it
does we say that hλ lies in the stability region of the method. A convenient way to

10 1 Differential Equations

−10 −5 0 5 10

−5

0

5

A−stability

Re(z)

Im
(z

)
a

−10 −5 0 5 10

−5

0

5

A(alpha) stability

Re(z)

Im
(z

) α

b

−2 −1 0 1 2
−2

−1

0

1

2
explicit Euler

Re(z)

Im
(z

)

c

−2 −1 0 1 2
−2

−1

0

1

2
implicit Euler

Re(z)

Im
(z

)

d

Fig. 1.2 Stability of numerical methods can be visualised by means of their region of absolute
stability (grey); of importance here is the region left of the imaginary axis. (a) A method is A-
stable if its stability region contains at least the left half of the complex plane. (b) The absolute
stability region for A(α)-stable methods misses a small part of the left half of the complex plane.
(c) Only a small part of the left hand complex plane is occupied by the absolute stability region
of the explicit Euler method. (d) In contrast, the implicit Euler method has a very large region of
absolute stability which contains the whole of the complex left half plane

visualise stability properties of a method is to draw its region of absolute stability
(see Fig. 1.2). As an example if we consider Euler’s method

y1 = y0 + h f (x0,y0), (1.33)

applied with a steplength h to y′ = λ y we obtain

y1 = (1+ z)y0, (1.34)

where z = hλ . Clearly |y1|< |y0| if |1+ z|< 1. This region |1+ z|< 1 which is the
interior of a circle with centre −1 and radius 1 is said to be the region of absolute
stability or the stability domain of Euler’s method.

1.3 Other Types of Differential Equations 11

If instead we consider the backward Euler method we obtain

y1 =
1

1− z
y0. (1.35)

Hence the region of absolute stability of the backward Euler method is the exterior
of the circle with radius 1 and centre 1. Thus the backward Euler method has a very
large region of absolute stability which contains the whole of the complex left half
plane (Fig. 1.2d). Such a method is said to be A-stable.

A stability requirement that is less severe than A-stability is that of A(α)-stability.
A numerical method is said to be A(α)-stable (0 < α < π/2) if its stability region
S ⊃ Sα = {μ : |arg(−μ)|< α,μ 	= 0} (see Fig. 1.2b).

1.3 Other Types of Differential Equations

Several other types of differential equations, as well as ordinary differential
equations, will be treated in this book.

1.3.1 Partial Differential Equations

In the case of ordinary differential equations, the dependent variable is a function of
only one independent variable (x). In partial differential equations (PDEs) there is
more than one independent variable.

To distinguish this type of equation from ODEs the derivatives are represented
with the ∂ symbol rather than with a d.

A general representation of a second order PDE with two independent variables,
x1,x2 is:

F

(
x1,x2,y,

∂y
∂x1

,
∂y
∂x2

,
∂ 2y

∂x2
1

,
∂ 2y

∂x2
2

,
∂ 2y

∂x1∂x2

)
= 0. (1.36)

For a partial differential equation to be uniquely specified extra conditions are
needed. In each of the independent variables, one needs as many extra conditions as
the highest order of the derivatives in this variable.

Similarly to what is done for ODEs, we distinguish between initial and boundary
value problems and this is very important both in the analysis of the problem and
in the derivation of numerical methods. When the differential equation contains a
combination of initial and boundary conditions it is denoted as an initial-boundary
value (IBV) problem. For instance, the equation for a wave traveling in the x-
direction is:

∂ 2u
∂ t2 = c2 ∂ 2u

∂x2 , (1.37)

12 1 Differential Equations

where c is the phase velocity of the wave, u represents the quantity that changes
as the wave passes. Equation 1.37 is a partial differential equation, since u changes
both with time t and along the spatial axis x. The wave equation is second order in
t and x. It thus needs two initial conditions and two boundary conditions to be fully
specified. This equation will be solved in Sect. 9.2.2.

Another important class of PDEs is the convection-diffusion problem. In one
space variable this has the form:

∂u
∂ t

=−v
∂u
∂x

+
∂
∂x

(
q(x)

∂u
∂x

)
. (1.38)

Here q(x) > 0 is a given function. If it is small in magnitude the PDE is said to be
convection dominated. Different numerical methods are often needed to solve (1.38)
depending on whether the problem is convection or diffusion dominated.

A powerful way of dealing with time-dependent PDEs is to replace the space
derivatives with a finite difference approximation, so producing a system of ODEs
to be solved. This technique is called the method of lines and we will return to it in
Sect. 8.4.

1.3.2 Differential Algebraic Equations

Differential algebraic equations (DAEs) are a mixture of differential and algebraic
equations and are represented as:

F(x,y,y′) = 0. (1.39)

As a simple example consider the mathematical pendulum problem in Cartesian
coordinates x,y:

mx′′ = −2xλ
my′′ = −2yλ −mg
0 = x2 + y2 − l2,

(1.40)

where m is the pendulum’s mass. This DAE comprises a differential part (first two
equations) that determines the dynamics of x and y and an algebraic part (third
equation) that sets the length of the pendulum equal to l. Note that the variable λ is
not described by a differential equation. The physical meaning of λ is the tension in
the rod that maintains the mass point on the desired orbit [2].

Insight into how DAEs might be derived from ODEs can be obtained by
considering the system of equations

y′ = f1(x,y,z)
εz′ = f2(x,y,z).

(1.41)

References 13

If we let ε → 0 we have in the limit

y′ = f1(x,y,z)
0 = f2(x,y,z).

(1.42)

This can be regarded as a first order ODE where the variables satisfy algebraic
constraints. DAEs are discussed in detail in Chap. 4.

1.3.3 Delay Differential Equations

Delay differential equations (DDEs) are similar to initial value problems for ODEs,
but they involve past values of the dependent variables and/or their derivatives.
Because of this, rather than needing an initial value to be fully specified, DDEs
require input of an initial history (sequence of values) instead. Thus DDEs are
sometimes called differential equations with time lags.

A representation for a DDE which involves past values of the dependent variables
only is:

y′(t) = f (t,y(t),y(t − τ1),y(t − τ2), ...,y(t − τn))

y(t) = Φ(t) for t < t0.
(1.43)

Here the function Φ(t) is necessary to provide the history before the start of the
simulation (which is at t0).

A very simple DDE example, where the derivative of y is a function of the value
of y, lagging with one time-unit (t − 1), is:

y′ = y(t − 1), (1.44)

for t > 0 with history Φ(t) = 1 for t ≤ 0. Note that here y(t − 1) denotes the value
of y computed at time t − 1. This type of equation will be dealt with in Chap. 6.

References

1. Ascher, U. M., Mattheij, R. M. M., & Russell, R. D. (1995). Numerical solution of boundary
value problems for ordinary differential equations. Philadelphia: SIAM.

2. Hairer, E., & Wanner, G. (1996). Solving ordinary differential equations II: Stiff and differential-
algebraic problems. Heidelberg: Springer.

3. Hairer, E., Norsett, S. P., & Wanner, G. (2009). Solving ordinary differential equations I: Nonstiff
problems (2nd rev. ed.). Heidelberg: Springer.

4. Shampine, L. F., Gladwell, I., & Thompson, S. (2003). Solving ODEs with MATLAB.
Cambridge: Cambridge University Press.

Chapter 2
Initial Value Problems

Abstract In the previous chapter we derived a simple finite difference method,
namely the explicit Euler method, and we indicated how this can be analysed so that
we can make statements concerning its stability and order of accuracy. If Euler’s
method is used with constant time step h then it is convergent with an error of order
O(h) for all sufficiently smooth problems. Thus, if we integrate from 0 to 1 with
step h = 10−5, we will need to perform 105 function evaluations to complete the
integration and obtain a solution with error O(h). To achieve extra accuracy using
this method we could reduce the step size h. This is not in general efficient and
in many cases it is preferable to use higher order methods rather than decreasing
the step size with a lower order method to obtain higher accuracy. One of the
main differences between Euler’s and higher order methods is that, whereas Euler’s
method uses only information involving the value of y and its derivative (slope) at
the start of the integration interval to advance to the next integration step, higher
order methods use information at more than one point. There exist two important
classes of higher order methods that we will describe here, namely Runge-Kutta
methods and linear multistep methods.

2.1 Runge-Kutta Methods

In this section we will consider the derivation of high order Runge-Kutta methods
suitable for the numerical integration of first order systems of ODEs.

2.1.1 Explicit Runge-Kutta Formulae

We first consider again the forward Euler method which we have claimed in the
previous chapter to be of order 1. Recall that this method is given by:

yn+1 = yn + h f (xn,yn), (2.1)

DOI 10.1007/978-3-642-28070-2 2, © Springer-Verlag Berlin Heidelberg 2012
15K. Soetaert et al., Solving Differential Equations in R, Use R!,

16 2 Initial Value Problems

and its local truncation error is given by:

LTE = y(xn+1)− yn − h f (xn,yn), (2.2)

assuming that yn ≡ y(xn). To increase accuracy, one approach is to include extra
function evaluations in the numerical procedure. Thus, in the case of Runge-Kutta
methods, the derivatives at several points within the integration interval [xn,xn+1]
are evaluated and used to advance the integration from xn to xn+1.

Runge [34] considered whether it was possible to find high order methods for the
numerical solution of (1.1), but it was Kutta [28] who first formulated the general
form of a standard explicit Runge-Kutta method as:

yn+1 = yn + h
s

∑
j=1

b jk j

ki = f (xn + cih,yn + h
i−1

∑
j=1

ai jk j), i = 1,2, . . . ,s

ci =
i−1

∑
j=1

ai j,

(2.3)

where s is the number of intermediate points (“stages”) and k j are the corresponding
slopes. This formula gives an approximate solution at xn+1 = xn + h, by computing
s intermediate stages in the interval [xn,xn+1].1

A great stride forward in the analysis of Runge-Kutta formulae was made by
Butcher [9] who suggested writing these formulae in the so-called tableau form:

0 0

c2 a21 0

c3 a31 a32 0
...

...
...

. . .
. . .

cs as1 as2 · · · as,s−1 0

b1 b2 · · · bs−1 bs

(2.4)

This can be written in the more concise form

c A
bT (2.5)

1Notwithstanding these intermediate stages or steps, you should not be tempted to call a Runge-
Kutta method a “multistep” method. This terminology is reserved for a totally different type of
method (Sect. 2.2).

2.1 Runge-Kutta Methods 17

Since for the time being we are considering only explicit Runge-Kutta methods,
the ki are defined only in terms of k1, . . . ,ki−1, 2 ≤ i ≤ s, and consequently the
matrix A is strictly lower triangular. Later on we will deal in more depth with
implicit methods, for which A will have non-zero elements on, and/or above, the
diagonal. We now define the order of a Runge-Kutta formula [21, p. 133]. Suppose
we integrate from x0 to x1 = x0 + h using (2.3) and we denote the analytic solution
at x1 by y(x0 + h) and the solution obtained at x1 using (2.3) by y1, then the Runge-
Kutta method is said to have order p if, for sufficiently smooth problems (1.1) and
h sufficiently small,

||y(x0 + h)− y1||<Chp+1, (2.6)

where C is a constant not depending on h.
As shown in [21, p. 163], subject to certain smoothness assumptions, if the local

error is bounded by Chp+1 then the global error will be bounded by Khp where,
similarly to above, K is a constant not depending on h.

2.1.2 Deriving a Runge-Kutta Formula

In order to be able to derive efficient Runge-Kutta methods several problems, such
as high accuracy, stability, provision of continuous solutions, need to be addressed.

2.1.2.1 The Order Conditions

One major problem is to determine the coefficients A, b and c in (2.5) in such a way
that the Runge-Kutta method has a certain order, preferably as high as possible, with
as few stages, i.e. function evaluations, as possible. The problem of obtaining the
so-called order relations was in the past a bit of a mine field because for example
the equations to be solved for are nonlinear and there are more order relations if
y is a vector than if y is a scalar. However this was solved by the work of Butcher
[9], who derived the order relations for a system. For example, the conditions for
Runge-Kutta methods to have order 1, 2 or 3 are respectively:

order 1 : ∑
i

bi = 1 (2.7)

order 2 : ∑
i

bici = 1/2 (2.8)

order 3 : ∑
i

bic
2
i = 1/3 (2.9)

∑
i j

biai jc j = 1/6, (2.10)

18 2 Initial Value Problems

where to obtain order 2, we need to satisfy (2.7) and (2.8), while to obtain order 3,
we need to satisfy (2.7)–(2.10). Similar conditions exist for higher order methods
(see also [21, p. 134] for a fourth order formula). However, the number of order
conditions rapidly increases as the required order is increased. For example, to get
an order 4 Runge-Kutta formula, eight simultaneous nonlinear algebraic equations
need to be solved, while to obtain order 8, we need to solve 200 simultaneous
algebraic equations.

2.1.2.2 Controlling the Error

Another problem is to control the global error. Unfortunately this is usually not
possible so, instead, we estimate and control the local truncation error (LTE). This is
done by adapting the step size h in such a way that the estimate of the LTE is smaller
than some preset value tol. The LTE itself is usually estimated using embedding. In
this approach two different numerical solutions to the problem, which we denote
here by yn+1 and ŷn+1, are obtained with two different Runge-Kutta formulae, one
of order p+ 1 and one of order p respectively. Assuming that the O(hp+2) term in
the LTE of yn+1 is negligible compared to the O(hp+1) term, we will accept the
solution yn+1 if

||ŷn+1 − yn+1|| ≤ tol. (2.11)

If the error estimate is larger than tol, the integration step h will be reduced until
the accuracy condition is met [32]. Conversely, if the integration step h produces
solutions whose local truncation error is estimated to be much smaller than the
preset value, then the solution is accepted and the integration step h is increased.

In practice a mixed absolute-relative error is used based on two tolerances atol
and rtol, and we accept the solution if

‖ŷn+1 − yn+1‖ ≤ atol+ rtol‖yn+1‖, (2.12)

or
|ŷn+1,i − yn+1,i| ≤ atoli+ rtoli|yn+1,i|, (2.13)

for all i, if a componentwise error control is considered. Here yn+1,i denotes the ith
component of the vector yn+1.

Note that this process, known as local extrapolation, is not entirely satisfactory
since we attempt to control the error in ŷn+1, yet accept the solution yn+1 if ŷn+1 is
sufficiently accurate.

2.1.2.3 Changing the Step Size

The way in which we choose the next step length is as follows: suppose we are using
a step length h then

2.1 Runge-Kutta Methods 19

‖ŷn+1 − yn+1‖= hp+1φ + h.o.t., (2.14)

(where h.o.t. means higher order terms in h). Suppose we wish to change to a step
αh. We want

(αh)p+1φ = tol, (2.15)

so

α =

(
tol

‖ŷn+1 − yn+1‖
)1/(p+1)

. (2.16)

In practice we allow a margin of error, and use for example

α = 0.8

(
tol

‖ŷn+1 − yn+1‖
)1/(p+1)

. (2.17)

Practical experience shows that this safety factor (0.8) is important since it
compensates for us ignoring h.o.t. Similar formulas are used if the mixed absolute-
relative error is considered. In this case

α = 0.8

(
atol+ rtol‖yn+1‖
‖ŷn+1 − yn+1‖

)1/(p+1)

, (2.18)

is obtained for the normwise error. Similar formulae are obtained if the component-
wise error is used.

2.1.2.4 Embedded Runge-Kutta Methods

When using the algorithm described above for error estimation the least amount of
computational work is needed if the only difference in the two Runge-Kutta methods
giving yn+1 and ŷn+1 (see 2.11) is in the choice of the b-coefficients, i.e. we have:

yn+1 = yn + h∑s
j=1 b jk j

ŷn+1 = yn + h∑s
j=1 b̂ jk j,

(2.19)

where the first set of coefficients, b j, produces a solution of order p+ 1 and the
second set b̂ j a solution of order p.

These so-called “embedded Runge-Kutta methods” can be formally represented
using the Butcher tableau as:

c A
bT

b̂T .

(2.20)

20 2 Initial Value Problems

Unfortunately, embedded formulae that require no extra function evaluations are
only possible for low order Runge-Kutta methods. As the order p increases, extra
work must be performed to obtain the embedded solution since additional ki will
need to be computed to allow us to satisfy the order conditions.

Since the order equations are nonlinear it is very difficult, as the order increases,
to know how many stages are required to obtain a given order. However Butcher has
proved some important order barriers, giving the attainable order for a given number
of stages:

Number of stages 1 2 3 4 5 6 7 8 9 10
Attainable order 1 2 3 4 4 5 6 6 7 7

This accounts for the great popularity of “the fourth order Runge-Kutta method”
since there exists a fourth order method with four stages but there does not exist a
fifth order method with five stages and, before the work of Butcher, these high order
methods were difficult to derive.

If the order of yn+1 and ŷn+1 are q and p respectively with p < q, we call the
Runge-Kutta method a q(p) method. Embedded methods were first introduced in
[17] but these have the disadvantage that they give zero error estimates if applied
to a quadrature problem. A discussion of embedded formulae is given in [21] and
[9] and well-known formulae are the Verner 9(8) pair, the Dormand and Prince 5(4)
pair and the Cash-Karp 5(4) pair [9]. The steps taken by the Cash-Karp method are
depicted in Fig. 2.1a. The Butcher tableau for the Cash-Karp method is given in the
appendix (Sect. A.1).

2.1.2.5 Continuous Solutions

Because modern Runge-Kutta methods control an estimate of the local truncation
error by adapting the step size h, a new problem arises if there is a mismatch
between the output positions requested by the user and the values of the independent
variable taken by the Runge-Kutta method which will take steps independent of this
output “request”. Thus, a final problem to be solved for a well-designed Runge-
Kutta formula is to provide a solution in between the integration steps, i.e. produce
a so-called continuous solution. Finding a continuous solution of the same order as
the underlying Runge-Kutta formula is not at all straightforward, and consequently
not all Runge-Kutta codes have this facility. The interested reader is referred to
[21, p. 177] for a discussion of this.

2.1.2.6 Stability

In this section we consider the absolute stability region of some explicit Runge-
Kutta methods. Recall from Sect. 1.2.4.1 that we compute regions of absolute
stability for a given Runge-Kutta method by applying it to the scalar test equation

y′ = λ y. (2.21)

2.1 Runge-Kutta Methods 21

Cash−Karp

y0

y1

x0 x1

l

l

l

l

l

l

l

0
1

2

3

4

5

a
Radau 5

y0

y1

x0 x1

l

l

ll

1

2

3

b

l

y0
y1
intermediary
k

−5 −4 −3 −2 −1 0 1

−3

−2

−1

0

1

2

3

Explicit RK

Im
(z

)

order
5
4
3
2
1

c

−5 0 5 10 15

−10

−5

0

5

10

Radau 5
Im

(z
)

d

Fig. 2.1 Properties of Runge-Kutta methods. (a) In the (explicit) Cash-Karp method, five inter-
mediate stages (1–5) are taken, and the slopes (k), at these points evaluated; combined with the
known slope at x0, this information is used to advance the integration to x1. (b) Although it is of
order 5, the implicit Radau method takes only three intermediate steps. This is possible because
Radau-5 is implicit while Cash-Karp is explicit. (c) The stability regions for explicit Runge-Kutta
methods increases with their order, but none of the methods is A-stable. (d) In contrast, the stability
region for the implicit Radau-5 method comprises the entire region of A-stability (left of the
imaginary axis); hence Radau-5 is A-stable. However, the Radau Runge-Kutta method is much
more expensive than the Cash-Karp method per step

This gives a relationship of the form yn+1 = R(z)yn, where

R(z) = [1+ zbT (I− zA)−11], (2.22)

with 1= (1, . . . ,1)T . The region of absolute stability of a given Runge-Kutta method
is then the set of all z= hλ such that |yn+1|< |yn|. If this set includes the whole of the
complex left-hand half plane then the method is said to be A-stable. The intersection
of R(z) with the negative real axis is called the linear stability boundary.

22 2 Initial Value Problems

The absolute stability domains of some well known explicit Runge-Kutta
methods are represented in Fig. 2.1c. As can be seen the stability regions do not
change very much as the order is increased. A negative stability result is that explicit
Runge-Kutta methods cannot be A-stable.

2.1.3 Implicit Runge-Kutta Formulae

It is much more straightforward to derive implicit Runge-Kutta methods of a certain
order than it is to derive explicit Runge-Kutta methods of the same order. Implicit
Runge-Kutta methods are of the form

yn+1 = yn + h
s

∑
j=1

b jk j

ki = f (xn + cih,yn + h
s

∑
j=1

ai jk j), i = 1,2, . . . ,s

ci =
s

∑
j=1

ai j.

(2.23)

We note that for these methods the matrix A is no longer lower triangular. If aii 	= 0
and ai j = 0 for j > i we have a diagonally implicit Runge-Kutta method (DIRK)
[20, p. 91]; if aii = γ for all i, the method is called a singly diagonally implicit RK
method (SDIRK); otherwise, we have an implicit Runge-Kutta method (IRK). As
the ki are defined implicitly, they are computed by solving a set of nonlinear alge-
braic equations. How to compute this solution efficiently is dealt with in Sect. 2.6.

Getting good step size selection is straightforward for some classes of Runge-
Kutta methods, but for others, such as Gauss methods, this is difficult. Also, for
Gauss methods it is very difficult to produce continuous output of the same order as
the underlying Runge-Kutta formula.

Of particular interest are the Radau IIA methods [20], which are A-stable,
implicit Runge-Kutta methods. The intermediate steps taken by the fully implicit
Radau IIA method of order 5 are given in Fig. 2.1b, while its stability region is
depicted in Fig. 2.1d; the Butcher tableau can be found in the appendix (Sect. A.1).

2.2 Linear Multistep methods

An alternative way of obtaining high order accuracy is to derive methods “with
memory”. Linear multistep methods attempt to approximate y(xn+1) as a function of
the previously obtained variable values y0,y1, . . . ,yn, and/or the previously obtained
estimates for the derivatives f0, . . . , fn, where fi = f (xi,yi).

2.2 Linear Multistep methods 23

Adams

x

xn−2 xn−1 xn xn+1

y

a BDF

x

xn−2 xn−1 xn xn+1

yn−2

yn−1

yn

yn+1

b

Fig. 2.2 Schematic representation of the two main classes of linear multistep methods. (a) The
Adams methods interpolate past values of the slopes, while (b) the backward differentiation
formulae use past values of y

A general linear multistep formula can be written as:

k

∑
j=0

αk− jyn+1− j = h
k

∑
j=0

βk− j f (xn+1− j,yn+1− j), (2.24)

where the α j and β j are real parameters, h is the step size of integration and where
αk 	= 0 and |α0|+ |β0|> 0. A linear multistep method needs k−1 additional starting
values, as only y0 is given by the problem. Extra values y1, . . . ,yk−1 should be
computed using auxiliary formulae.

If βk 	= 0, then the method is implicit, while for βk = 0, it is explicit. Note that if
k= 1, α1 = 1,α0 =−1,β1 = 1,β0 = 0 we obtain the backward Euler method, if α1 =
1,α0 =−1,β1 = 0,β0 = 1 we obtain the forward Euler method. As a consequence,
Euler’s methods can be regarded both as first order Runge-Kutta methods and as
linear multistep methods.

In practice the linear multistep methods that we use have either all the βi’s
apart from βk zero or else all the αi’s apart from αk−1 and αk zero. The former
class of formulae are known as backward differentiation formulae (BDF), and
they interpolate previous values of y. The latter formulae are called Adams
formulae, and they interpolate the function values f (or slopes) at previous points
(see Fig. 2.2).

2.2.1 Convergence, Stability and Consistency

In Sect. 1.2.3 the convergence properties of the Euler method were discussed.
The generalization to higher order linear multistep methods is however not so
straightforward. For a long time, dating back at least to the work of Adams and

24 2 Initial Value Problems

later from the work of Rutishauser [35], it has been known that high order can give
rise to formulae which perform very poorly.

To have a linear multistep method of order p = 1 the coefficients should satisfy
the following conditions, called conditions of consistency:

k

∑
j=0

α j = 0,
k

∑
j=0

(jα j −β j) = 0. (2.25)

More generally conditions for the linear multistep method to have order p ≥ 1 are
(see [21, Theorem III.2.4])

k

∑
j=0

α j = 0, and
k

∑
j=0

(jrα j − r jr−1β j) = 0, r = 1,2, . . . , p. (2.26)

The error constant associated with a method of the form (2.24) is defined in, for
example, [21, p. 319] and for a pth order method it is

1

(p+ 1)!∑k
i=0 βi

(
k

∑
j=0

(jp+1α j − (p+ 1) jpβ j

)
. (2.27)

An important property that a linear multistep formula of order p should have in
order to have convergence is that it should give a stable solution when applied to the
test equation:

y′ = 0. (2.28)

A linear multistep method applied to (2.28) gives:

k

∑
j=0

αk− jyn+1− j = 0. (2.29)

If we suppose that y0,y1, . . . ,yk−1 are given starting values, then the solution of this
difference equation is stable if the roots of the polynomial

k

∑
j=0

α jζ j, (2.30)

lie on or inside the unit circle with those on the unit circle being simple. This
stability requirement is often referred to as zero-stability (see [3]). A fundamentally
important result concerning stability, proved by Dahlquist and usually referred to as
the first Dahlquist barrier is (see [21, p. 384]): the order p of a zero-stable linear
k-step method satisfies

• p ≤ k+ 2 if k is even
• p ≤ k+ 1 if k is odd
• p ≤ k if βk/αk ≤ 0.

2.2 Linear Multistep methods 25

Zero-stability is an important property because to be convergent a linear multistep
method should be zero-stable and consistent. We have the following relation which
links convergence, zero-stability and consistency (see [21, Theorem III.4.2], for a
proof):

“Convergence = zero-stability + consistency”.

2.2.2 Adams Methods

Consider again the initial value problem

dy
dx

= f (x,y), y(x0) = y0. (2.31)

Suppose now we integrate both sides of the above equation with respect to x to
obtain:

y(xn+1) = y(xn)+
∫ xn+1

xn

f (t,y(t))dt. (2.32)

On the right-hand side of (2.32) is the unknown function f (t,y(t)) integrated
over the interval [xn,xn+1]. However, we do know the derivative approximation
fi = f (xi,yi) for n− k+ 1 ≤ i ≤ n. The idea is to replace the function on the right-
hand side of (2.32) by the interpolating polynomial pk(t) of degree ≤ k, that passes
through the known data points (xi, fi, i = n− k+ 1,n). That is, we write:

yn+1 = yn +
∫ xn+1

xn

pk(t)dt, (2.33)

where yn is the previously calculated numerical approximation of y(xn).
There are several ways in which this interpolating polynomial can be written.

In what follows we use backward differences ∇ j, where ∇0 fn = fn, ∇ j+1 fn =
∇ j fn −∇ j fn−1. The interpolating polynomial written in terms of backward differ-
ences is

pk(t) = pk(xn + sh) =
k−1

∑
j=0

(−1) j
(−s

j

)
∇ j fn. (2.34)

This is the well-known Newton interpolating polynomial [22] where
(−s

j

)
is the

binomial coefficient. If we now define

γ j = (−1) j
∫ 1

0

(−s
j

)
ds, (2.35)

we obtain:

yn+1 = yn + h
k−1

∑
j=0

γ j∇ j fn, (2.36)

26 2 Initial Value Problems

which has order of accuracy equal to k and an error constant γk. These formulae are
explicit methods, and are called “Adams-Bashforth” formulae. Coefficients for these
formulae are given in the appendix (Sect. A.2, Table A.3). The simplest method in
this class is the forward Euler method.

It is straightforward to define implicit Adams methods which we write as:

yn+1 = yn + h
k

∑
j=0

γ̂ j∇ j fn+1, (2.37)

where

γ̂ j = (−1) j
∫ 1

0

(−s+ 1
j

)
ds. (2.38)

These formulae are implicit since the unknown solution yn+1 appears on both sides
of (2.37) and the method (2.37) is of order k+1. These formulae are called “Adams-
Moulton” formulae and have as error constant γ̂k+1. Coefficients for these formulae
are given in the appendix (Sect. A.2, Table A.4). The simplest method in this class
is the backward Euler method.

A common method of implementing Adams formulae is by using a Predictor-
Corrector pair, where a prediction is done using an explicit formula, after which the
estimate is corrected using an implicit Adams method. This is discussed in more
detail in Sect. 2.6.

2.2.2.1 Controlling the Error of Adams Methods

Controlling the local truncation error with Adams methods is straightforward in
the case of predictor-corrector methods, since we can design the code so that
the difference between the predictor and the corrector gives an estimate of the
local error. If for example we use a predictor and a corrector of order p and
we assume that the LTE of the predictor and corrector is Ĉp+1hp+1yp+1(xn) and
Cp+1hp+1yp+1(xn) respectively then an estimate of the LTE of the corrector is given

by Cp+1hp+1yp+1(xn)≈ Cp+1

Ĉp+1−Cp+1
(yC

n − yP
n) where yC

n is the corrected value and yP
n

is the predicted value at xn respectively. This error estimate is normally referred to
as Milne’s estimate [2, p. 150].

A more commonly used approach is to estimate the local error by comparing a
formula of order p with one of order p+ 1. This makes the error easy to estimate
when the step size is constant. This is the approach adopted by Shampine and
Gordon and is described in [39, p. 26]. However things are much more difficult when
using variable step size. A rather general approach has been proposed by Krogh and
the interested reader is referred to his original papers and in particular to [27].

2.2 Linear Multistep methods 27

2.2.2.2 Stability of Adams Methods

Adams methods are always zero-stable since the polynomial

k

∑
j=0

α jζ j = ζ k − ζ k−1, (2.39)

has one simple root equal to one and the other roots being 0. Suppose we apply an
Adams method to the test equation

y′ = λ y. (2.40)

In order to have |yn+1| < |yn| for arbitrary starting values y0, . . . ,yk−1, the roots of
the polynomial

ζ k − ζ k−1 − z
k

∑
j=0

β jζ j, (2.41)

with z = hλ should lie inside the unit circle.
Some stability regions for Adams methods are shown in Fig. 2.3a, b. It is clear

that none of the Adams-Bashforth methods are A-stable. Whereas the first
two Adams-Moulton methods (the backward Euler and trapezoidal method) are
A-stable, the higher order methods are not (see Fig. 2.3a, b).

2.2.3 Backward Differentiation Formulae

One particularly powerful class of methods, proposed by [13], is that of backward
differentiation formulae (BDF). Recall that the Adams methods were obtained
by integrating the polynomial which interpolates past values of the derivative f .
In contrast, the BDF are derived by differentiating the polynomial which interpolates
past values of y. The k-step BDF which has order p = k is:

k

∑
i=1

1
i

∇iyn+1 = h f (xn+1,yn+1). (2.42)

Writing this in the form of (2.24) with αk = 1 we have:

k

∑
i=0

αk−iyn+1−i = hβk f (xn+1,yn+1). (2.43)

Thus, in contrast to the class of Adams formulae, BDF methods have βk 	= 0, βi = 0
(i = 0,1, . . . ,k− 1) and allocate the free parameters to the αi. Coefficients for these

28 2 Initial Value Problems

−3 −2 −1 0 1

−1.5

−0.5

0.5

1.5
Adams−Bashforth

Re(z)

Im
(z

)

order
2
3
4

a

−8 −6 −4 −2 0

−4

−2

0

2

4
Adams−Moulton

Re(z)

Im
(z

)

order
3
4
5

b

0 5 10

−6

−2

0

2

4

6

BDF order 2

Re(z)

Im
(z

)

c

0 5 10

−6

−2

0

2

4

6

BDF order 4

Re(z)

Im
(z

)

d

Fig. 2.3 Stability properties of linear multistep methods for different orders. (a) None of the
Adams-Bashforth methods are A-stable. (b) None of the Adams-Moulton methods of order ≥
3 are A-stable. However, the first two Adams-Moulton methods, the backward Euler (order = 1)
and the trapezoidal method (order = 2) are A-stable and not depicted.(c) A-stability is achieved
only by BDF methods of order ≤ 2. (d) BDF methods of order 3–6 are A(α)-stable

formulae are given in the appendix (Sect. A.2, Table A.5). The implicit Euler method
can be considered to be the simplest amongst the BDF methods.

2.2.3.1 Variable Step Size in BDF Formulae

The way in which the step size of integration is changed when using a linear
multistep method is to compute a polynomial p(x) which passes through known
data and then to approximate f (xn+1,y(xn+1)) by p′(xn+1). There are many ways
in which we can store the polynomial p. Nordsieck proposed storing the so called
Nordsieck vector [20, p. 360], so that the polynomial is simple to compute and so
that step changing is easy. The Nordsieck vector is

[
yn,hy′n, . . . ,

hk

k!
y(k)n

]T

. (2.44)

2.2 Linear Multistep methods 29

Now, as well as computing the next solution yn+1 the history array (2.44) is also
updated so that its dependence switches from yn to yn+1. A similar technique has
been used for changing the step size using implicit Adams methods. The algorithm
that is used [21, p. 347] is rather complex and will not be discussed here.

2.2.3.2 Stability of BDF

Practical experience has indicated that a desirable property for a numerical method
to possess when integrating stiff problems (see Sect. 2.5) is that of A-stability (see
Sect. 2.1.2.6). Unfortunately, the famous Dahlquist’s second barrier [14] shows that
A-stable linear multistep methods are necessarily of order p ≤ 2, and if the order
is 2 then the error constant is less than or equal to −1/12 (see Sect. 1.2.4.1). This
makes it pointless to try to find high order A-stable BDF. It is however possible to
derive linear multistep methods with A(α)-stability for order p > 2. This is fully
described in [21, Chap. III].

Figs. 2.3c, d show A- and A(α)-stability for BDF methods of order 2 and 4
respectively. It should be noted that BDF are zero-stable only for order ≤ 6.
In practice only methods with order ≤ 5 are used in general purpose codes, since the
order 6 method is only A(α)-stable with α < 18◦ and practical experience shows
that it is normally more efficient not to include this method.

2.2.4 Variable Order – Variable Coefficient Formulae for
Linear Multistep Methods

In practice most widely used codes for solving ordinary differential equations
change order and/or step size dynamically depending on the local properties of the
problem that is being solved.

We have dealt with changing step size earlier; in what follows we describe briefly
how variable order can be achieved.

2.2.4.1 Variable Order

For a long time variable order was regarded as a difficult problem for multistep
methods. However, the definition of Adams or BDF methods in terms of backward
differences (2.36), (2.37), and (2.42) highlights the important relationships satisfied
by formulae of different order. It is then clear how we might derive a variable order
formula since to increase the order of a linear multistep method we just need to add
one extra backward difference. Based on this, variable order can be achieved in a
very elegant way. There are numerous ways of implementing these formulae, and
many of the basic ideas can be found in [39].

30 2 Initial Value Problems

2.2.4.2 Variable Coefficient Methods

Fixed coefficient methods have the advantage that they are conceptually very simple.
Unfortunately they tend to be less stable than variable coefficient methods, which we
consider next. Assume that at the point xn we construct the quadratic interpolation
polynomial based on unequally spaced data, for the second order formula:

p(x) = yn +(x− xn)
yn − yn−1

hn
+

(x− xn)(x− xn−1)

hn + hn−1

(
yn − yn−1

hn
− yn−1 − yn−2

hn−1

)
.

(2.45)
We now differentiate this formula to give p′(x). Evaluating at xn and simplifying,
we obtain the variable step formula:

hn f (xn,yn) = yn − yn−1 +
h2

n

hn + hn−1

(
yn − yn−1

hn
− yn−1 − yn−2

hn−1

)
. (2.46)

This form clearly shows the dependence of the method on unequal past data. Note
that if we put hn = hn−1 = h, we obtain the second order BDF method.

2.3 Boundary Value Methods

The linear multistep methods discussed in previous sections are implemented in
a step-by-step, forward-step approach. This means that given the approximations
yn+1− j, j = 1, . . . ,k for some integer n we compute the approximation yn+1.

In contrast, boundary value methods (BVMs) [8, 18] integrate initial value
problems through “boundary value techniques”. One of the aims of this boundary
value approach is to circumvent the well known Dahlquist-barriers on convergence
and stability which are a direct consequence of the step-by-step application [4].

In order to use a boundary value method we should know in advance the interval
in which we would like to compute the solution of (2.31). Let us suppose that the
problem is defined in the interval [a = x0,b]. If we define a grid π = [x0,x1, . . . ,xN]
with hi = xi − xi−1, 1 ≤ i ≤ N, x0 = a, xN = b, a k-step BVM, using constant step
size hi = h, is defined by the following equation:

k2

∑
j=−k1

α j+k1 yn+ j = h
k2

∑
j=−k1

β j+k1 fn+ j, n = k1, . . . ,N − k2. (2.47)

The coefficients α0, . . . ,αk and β0, . . . ,βk are the coefficients of the linear multistep
formula, k is the number of steps of the linear multistep formula, k1 is the number
of initial conditions, k2 = k − k1 is the number of final conditions. If we choose
k2 = 0 we obtain the classical linear multistep formulae. In order to be of practical
interest the linear multistep formulas must be associated with k1 − 1 initial and
k2 final additional conditions. The first k1 − 1 conditions could be derived, for

2.4 Modified Extended Backward Differentiation Formulae 31

initial value problems, using a forward approach, the last k2 must be computed by
using appropriate discretization schemes. Another way to use the linear multistep
formulae in a boundary value approach is to use appropriate discretization schemes
for both the initial and the final conditions. This technique, which is efficient for
the numerical solution of boundary value problems (see Sect. 10.6.5 for details),
has some drawbacks for general initial value problems. The main problem is that
the computational effort depends on the number of mesh-points used. A natural
strategy to prevent this is to divide the integration interval in subintervals and to
use in each subinterval a small fixed number of steps. This technique defines the
so called Block Boundary Value Methods that are described in [8, Sect. 11.3–11.5].
Results concerning convergence and stability of block boundary value methods are
presented in [1, 25].

Every classical subclass of linear multistep formulae has a corresponding
subclass of boundary value methods. In particular we have the generalized backward
differentiation formulas (GBDF) and the generalized Adams methods (GAM) [8].
For instance, the generalized Adams methods have the form:

yn − yn−1 = h
k2

∑
j=−k1

β j+k1 fn+ j, n = k1, . . . ,N − k2, (2.48)

where k1 = (k + 1)/2 for odd k and k1 = k/2 for even k. The coefficients of the
block-GAMs of order 2–5, using constant step size are in [25]. For these orders the
resulting methods are always A-stable.

2.4 Modified Extended Backward Differentiation Formulae

A particularly powerful class of high order A-stable methods are the modified
extended backward differentiation formulae (MEBDF) [11]. These formulae are
not Runge-Kutta or linear multistep methods but fit into the class of general linear
methods which have been investigated by Butcher [9]. We will explain how these
methods are implemented by considering the derivation of a formula of order 2.
MEBDF require four steps in their implementation:

• Step 1: Predict a solution ȳn+1 at xn+1 using backward Euler.

ȳn+1 = yn + hȳ′n+1

• Step 2: Predict a solution ȳn+2 at xn+2 using backward Euler.

ȳn+2 = ȳn+1 + hȳ′n+2

• Step 3: Compute the derivative at (xn+2, ȳn+2)

f̄n+2 = f (xn+2, ȳn+2)

32 2 Initial Value Problems

• Step 4: Solve for the solution yn+1 at xn+1 using the equation

yn+1 = yn − h/2(f̄n+2− f̄n+1)+ hy′n+1.

There is a lot of computational efficiency in this approach since during the steps
(1, 2, 4) three systems of algebraic equations are solved and the method is
implemented so that these all have the same coefficient matrix. It is easy to show
[20, p. 267], [10] that this formula is of order 2 and is A-stable. Because MEBDF
are “super implicit”, this allows us to achieve A-stability up to order 4 and A(α)-
stability up to order 9, at a reasonable computational cost. A short summary is given
in [20, p. 267].

A very similar approach to that used by BDF to change the step size is used by
MEBDF. In MEBDF the natural history array to store is based on differences of y:

[fn,yn,∇yn,∇2yn, . . . ,∇kyn]
T . (2.49)

Again the idea is to systematically update the history array as the solution is
calculated. As a result of backward differences being stored the history array will
be easily updated.

Coefficients for these MEBDF formulae are given in the appendix (Sect. A.2,
Table A.6).

2.5 Stiff Problems

In order to choose the most efficient scheme for computing a numerical solution
of (1.1), information about the behavior of the solution is required. Important
information concerns the “stiffness” of the problem. Dahlquist classified stiff
problems as those that have “processes in the system (described by the differential
equation) with significantly different time scales” [5, p. 349]. Let us consider the
following example [5]:

y′(x) = 100(sin(x)− y(x)), 0 ≤ x ≤ b, y(0) = 0 (2.50)

where the solution is y(x) = (sin(x)−0.01cos(x)+0.01e(−100x))/1.001. If b≈ 10−2

the solution is computed efficiently by any numerical scheme, but if b ≈ 3 then
the problem is stiff and numerical methods with a small absolute stability region
may require very small step sizes for the solution in the entire integration interval.
This means that explicit methods encounter such severe difficulties that they fail
or become extremely inefficient when applied to stiff problems, whereas implicit
methods may give a solution with a reasonable (i.e. not too small) size of the step
length of integration.

Because of this, one of the major problems we are faced with when numerically
integrating a first order system of initial value problems is to determine whether or

2.5 Stiff Problems 33

not the problem is stiff. Ideally if the problem is stiff then we would hope to use a
“stiff integrator” such as BDF and if the problem is not stiff we would like to use a
“non-stiff integrator” such as Adams or explicit Runge-Kutta formulae.

To make things more difficult, some problems change from being stiff to being
non-stiff, or vice versa, over the integration interval. When a problem changes from
being non-stiff to being stiff, it can only be solved efficiently using an implicit
method, but it may prove very inefficient if the implicit method is used in the non-
stiff part as well.

2.5.1 Stiffness Detection

The problem of stiffness detection has been considered by Shampine [36–38] and
by Skelboe [42] amongst others. Shampine and Gordon [39, p. 132] describe a
procedure for testing whether a code based on Adams predictor-corrector formulas
is doing too much work on account of the fact that the problem is stiff. In a variable
order/variable step code, low order methods will tend to be used when stiffness
is present. So, if many consecutive steps of low order are taken, the problem is
probably stiff.

An important property that we can use is that when a stiff problem is solved by
an explicit code the product of the step size with the dominant eigenvalue (λ̄) of the
Jacobian J(= ∂ f/∂y) lies close to the border of the stability domain. Hairer et al.
[20, p. 21] show two ways how this might be used to detect stiffness with an explicit
Runge-Kutta formula. The first method, originally proposed by Shampine [40] is
based on comparing two error estimates of different orders err = O(hp), ẽrr =
O(hq), with q < p. Usually err ẽrr, if the step size is limited by accuracy
requirements and err > ẽrr when the step size is limited by stability requirements.
The precise way in which the two error estimators are derived is described in
[21, p. 21].

The second way is to approximate the dominant eigenvalue of the Jacobian as
follows. Let v denote an approximation to the eigenvector corresponding to the
dominant eigenvalue of the Jacobian. If the norm of v (||v||) is sufficiently small
then the Mean Value Theorem tells us that a good approximation to the dominant
eigenvalue is

|λ̄ |= ‖ f (t,y+ v)− f (t,y)‖
‖v‖ . (2.51)

The cost of this procedure is at most 2, but often 1, function evaluations per step.
The product h|λ̄ | can then be compared to the linear stability boundary of the
method.

34 2 Initial Value Problems

2.5.2 Non-stiffness Test

This test considers the possibility of moving from a stiff method to a non-stiff one.
Most methods that have been derived to do this are based on a norm bound ‖J‖ to
estimate the dominant eigenvalue of the Jacobian J, i.e. the code computes ‖J‖p

where normally p = 1 or p = ∞. The cost of doing this is O(m2) multiplications,
where m is the dimension of the system. This is small compared with the work
required to actually perform the numerical integration. However, as is well known,
norm bounds tend to overestimate the dominant eigenvalue and this overestima-
tion becomes worse as the dimension of the problem increases. However norm
bounds can be tight, and therefore useful, for sparse or banded matrices of large
dimension.

2.6 Implementing Implicit Methods

It is clear from previous sections that implicit methods can have much better stability
properties than explicit methods. But as they introduce non-trivial computational
overhead, they have to be carefully implemented.

The overhead is due to the fact that, as the unknown quantity is present both on
the right- and left-hand side of the implicit equation, we need to obtain the solution
by solving a system of algebraic equations and normally this system is nonlinear.

There are three important techniques that have been used in the implementation
of implicit methods. For the purpose of illustration, we will explain them using the
simplest implicit method, namely the backward Euler method:

yn+1 = yn + h f (xn+1,yn+1). (2.52)

2.6.1 Fixed-Point Iteration to Convergence

The most straightforward method is to solve the nonlinear system by successive
iterations:

yν+1
n+1 = yn + h f (xn+1,y

ν
n+1), ν = 0,1, . . . (2.53)

These iterations are repeated until the difference between successive steps is
sufficiently small. This procedure is called fixed-point or functional iteration.

Each iteration is relatively inexpensive, but as convergence is often slow, in
general a lot of iterations will need to be performed. Moreover, for stiff problems,
the iteration scheme will not converge unless we place severe restrictions on the
steplength h, and so this scheme is of no practical use for such problems (see for
example [29]).

2.6 Implementing Implicit Methods 35

To initiate the method, we can either take y0
n+1 = yn, or use an explicit method

to obtain the first guess of yn+1; the latter is referred to as a predictor and the
overall scheme is called a predictor-corrector method iterated to convergence (see
Sect. 2.6.3).

2.6.2 Chord Iteration

This iteration scheme will in general converge much more rapidly than the fixed-
point iteration described above, if we use Newton’s method to solve the nonlinear
algebraic equations [33]. Rewriting equation (2.52) as:

g(yn+1) = yn+1 − yn − h f (xn+1,yn+1), (2.54)

we need to find the value of yn+1 such that g(yn+1)≈ 0.
Newton’s method can be expressed, in a modified form, as:

yν+1
n+1 = yν

n+1 −
(

∂g
∂y

)−1

g(yν
n+1)

= yν
n+1 −

(
I− h

∂ f
∂y

)−1

g(yν
n+1)

ν = 0,1, . . . ,

(2.55)

where the quantity ∂ f /∂y is the Jacobian matrix evaluated at the point yν
n+1, and

(I− h∂ f/∂y) is called the iteration matrix. In practice this scheme is written as:

(
I− h

∂ f
∂y

)(
yν+1

n+1 − yν
n+1

)
=−g(yν

n+1). (2.56)

This procedure will normally converge rapidly without a severe restriction on h.
However it requires considerably more work for one iteration, as the Jacobian
matrix should be generated and the iteration matrix decomposed to solve the
equations.

Because of the computational expense, the Jacobian is not usually computed for
each iteration or even at every time step, but only when certain tests indicate that the
cost of computing a new Jacobian is justified by the improved performance in the
nonlinear iteration.

Also, much efficiency can be gained by taking into account any sparsity structure
of the Jacobian. This is because, not only can sparse Jacobian matrices be more
readily created, but also efficient methods exist to decompose them. Indeed in
practice we often do encounter sparse Jacobians and it is important to take advantage
of this (e.g. Sect. 8.4).

36 2 Initial Value Problems

2.6.3 Predictor-Corrector Methods

Using a predictor-corrector method is a convenient way to implement the implicit
Adams-Moulton methods, where an initial guess of the new value is first “predicted”
using the explicit method and then “corrected” using the implicit method.

To explain this we consider a two-step formula. Assuming that yn and yn−1 are
known, a predicted solution is computed first, using the explicit formula:

yP
n+1 = yn + h[3/2 fn− 1/2 fn−1]. (2.57)

Then the derivative is evaluated at this point:

f P
n+1 = f (xn+1,y

P
n+1), (2.58)

and a corrected solution yC
n+1 is computed at xn+1, using the “implicit” method:

yC
n+1 = yn + h/2[f (xn+1,y

P
n+1)+ f (xn,yn)]. (2.59)

This is usually referred to as PEC mode (Prediction, Evaluation, Correction). The
values carried forward to the next iteration are yC

n+1, f P
n+1.

It is often more efficient after (2.59) has been computed to evaluate f (xn+1,yC
n+1).

The more accurate values yC
n+1, fC

n+1 are now carried forward and this is known as
PECE mode.

As is clear from the above, the iteration is arranged in such a way that we do not
need to solve implicit equations. However, this makes the formula explicit and, as
mentioned earlier, this is a very poor choice for solving stiff problems but often an
excellent choice for solving non-stiff problems.

2.6.4 Newton Iteration for Implicit Runge-Kutta Methods

The problem in implementing higher order implicit Runge-Kutta methods is that
they are heavily implicit in the unknown y. If y ∈ ℜm, an s-stage implicit Runge-
Kutta method (2.23) requires a system of sm nonlinear algebraic equations to be
solved. The most efficient way of solving these equations is in general by a modified
Newton iteration. If however we use a Gauss Runge-Kutta method then to solve for
y this requires s3m3/3 multiplications per iteration. This compares badly for large
s with the m3/3 multiplications required per iteration by multistep methods such as
BDF and MEBDF. In fact this linear algebra cost is so high that Gauss methods are
not used very extensively for solving stiff problems.

A class of methods which can be implemented efficiently if special care is
taken with the linear algebra component of Newton’s method are Radau methods
as identified by Hairer and Wanner [20]. In particular the linear algebra cost for

2.7 Codes to Solve Initial Value Problems 37

Euler

Runge−Kutta Multistep

Explicit RK Adams Implicit RK BDF MEBDF

non−stiff problems stiff problems

Fig. 2.4 Schematic representation of the main families of IVP solvers

Radau IIA methods is only 5m3/3 operations per iteration [20, p. 122]. However,
a difficulty is that complex arithmetic is required. These methods, especially the
fifth order Radau IIA method are very effective for solving stiff problems. Excellent
accounts of implementation are given in [3, p. 48] and [20, p. 118].

2.7 Codes to Solve Initial Value Problems

The relationship between the various techniques for solving Initial Value Problems
of ODEs is represented in Fig. 2.4. Explicit Runge-Kutta methods and Adams
methods have comparable stability properties (see Figs. 2.1, 2.3), neither of them
being well suited to solving stiff problems. For explicit Runge-Kutta methods,
stability improves with order, but it is the other way round for Adams methods.
Implicit Runge-Kutta methods, BDF, MEBDF and block-BVM are well suited to
solving stiff problems mainly because of their excellent stability properties.

A list of solvers that are implemented in R can be found in the appendix.

38 2 Initial Value Problems

2.7.1 Codes to Solve Non-stiff Problems

There are two main classes of formulae that are used for the numerical integration
of non-stiff problems of ODEs, namely Adams methods and explicit Runge-Kutta
methods. Adams codes have evolved from the well-known codes DVDQ of [26]
and DIFSUB of [19]. Perhaps the two most widely used Adams methods at present
are DE of Shampine and Gordon [39] which implements Adams methods in PECE
mode and LSODE [23]. All these codes automatically adapt their step size, give a
continuous solution and change the order of the method dynamically.

As regards explicit Runge-Kutta methods, some excellent codes are available.
These codes provide an automatic step control procedure and give a continuous
solution. However in general they do not attempt to change the order dynamically.

Among the most widely implemented explicit Runge-Kutta methods are the 3(2)
pair of Bogacki and Shampine [6], the DOPRI5(4) due to Dormand and Prince
[15, 16] and the Cash-Karp 5(4) formulae [12].

2.7.2 Codes to Solve Stiff Problems

Codes based on implicit Runge-Kutta methods, backward differentiation formulae,
modified extended backward differentiation formulae and boundary value methods
have proved to be very effective for the solution of stiff problems.

A widely used implicit Runge-Kutta code is RADAU5 [20]. BDF are the oldest
and most widely used class of methods for solving stiff differential equations. Many
people have made contributions to the efficient implementation of this class of
formulae and perhaps the most well known codes are LSODE [23] and DASSL [30].
The stability properties of MEBDF formulae at high order make them generally the
best candidates to solve very stiff problems and also to deal with problems when
high accuracy is required. A well-known code implementing this is given in [11].
One code based on block-GAMs is GAM [24] and one based on A-stable block
implicit methods of high order is BiMD [7] (see [41] for a description of block
implicit methods).

2.7.3 Codes that Switch Between Stiff and Non-stiff Solvers

The Adams-BDF code LSODA [31] automatically switches from stiff to non-stiff
and vice versa depending on the local stiffness properties of the problem. The novel
feature of this code is that after switching from, say, the stiff to the non-stiff option
it carries on with the integration. This is in contrast to the other algorithms which
warn the user of stiffness and then stop.

Thus, when a problem is diagnosed as being stiff over the whole integration
interval then LSODA will select a BDF formula of order 1–5 while it will use an

References 39

Adams method with order in the range 1–12 when a problem is detected as being
non-stiff. For other problems the code will use both types of methods as the problem
changes from being stiff to being non-stiff and back again. A code which uses a stiff
method for stiff problems and a non-stiff method for non-stiff problems is called
type insensitive. How to implement this approach is described in detail in [31]. Note
in particular that LSODA uses norm bounds to estimate the dominant eigenvalue of
the Jacobian (Sect. 2.5.2).

References

1. Aceto, L., & Magherini, C. (2009). On the relations between B2VMs and Runge-Kutta
collocation methods. Journal of Computational and Applied Mathematics, 231(1), 11–23.

2. Ascher, U. M., & Petzold, L. R. (1998). Computer methods for ordinary differential equations
and differential-algebraic equations. Philadelphia: SIAM.

3. Ascher, U. M., Mattheij, R. M. M., & Russell, R. D. (1995). Numerical solution of boundary
value problems for ordinary differential equations. Philadelphia: SIAM.

4. Axelsson, A. O. H., & Verwer, J. G. (1985). Boundary value techniques for initial value
problems in ordinary differential equations. Mathematics of Computation, 45(171), 153–171,
S1–S4.

5. Björck, Ȧ., & Dahlquist, G. (1974). Numerical methods. Englewood Cliffs: Prentice-
Hall (Translated from the Swedish by Ned Anderson, Prentice-Hall Series in Automatic
Computation).

6. Bogacki, P., & Shampine, L. F. (1989). A 3(2) pair of Runge–Kutta formulas. Applied
Mathematics Letters, 2, 1–9.

7. Brugnano, L., & Magherini, C. (2004). The BiM code for the numerical solution of ODEs.
Journal of Computational and Applied Mathematics, 164–165, 145–158.

8. Brugnano, L., & Trigiante, D. (1998). Solving differential problems by multistep initial and
boundary value methods: Vol. 6. Stability and control: Theory, methods and applications.
Amsterdam: Gordon and Breach Science Publishers.

9. Butcher, J. C. (1987). The numerical analysis of ordinary differential equations, Runge–Kutta
and general linear methods (Vol. 2). Chichester/New York: Wiley.

10. Cash, J. R. (1980). On the integration of stiff systems of ODEs using extended backward
differentiation formulae. Numerische Mathematik, 34, 235–246.

11. Cash, J. R., & Considine, S. (1992). An MEBDF code for stiff initial value problems. ACM
Transactions on Mathematical Software, 18(2), 142–158.

12. Cash, J. R., & Karp, A. H. (1990). A variable order Runge–Kutta method for initial value
problems with rapidly varying right-hand sides. ACM Transactions on Mathematical Software,
16, 201–222.

13. Curtiss, C. F., & Hirschfelder, J. O. (1952). Integration of stiff systems. Proceedings of the
National Academy of Science, 38, 235–243.

14. Dahlquist, G. (1963). A special stability problem for linear multistep methods. BIT, 3, 27–43.
15. Dormand, J. R., & Prince, P. J. (1980). A family of embedded Runge–Kutta formulae. Journal

of Computational and Applied Mathematics, 6, 19–26.
16. Dormand, J. R., & Prince, P. J. (1981). High order embedded Runge–Kutta formulae. Journal

of Computational and Applied Mathematics, 7, 67–75.
17. Fehlberg, E. (1967). Klassische Runge–Kutta formeln funfter and siebenter ordnung mit

schrittweiten-kontrolle. Computing (Arch. Elektron. Rechnen), 4, 93–106.
18. Fox, L. (1954). A note on the numerical integration of first-order differential equations. The

Quarterly Journal of Mechanics and Applied Mathematics, 7, 367–378.

40 2 Initial Value Problems

19. Gear, C. W. (1971). Numerical initial value problems in ordinary differential equations.
Englewood Cliffs: Prentice-Hall.

20. Hairer, E., & Wanner, G. (1996). Solving ordinary differential equations II: Stiff and
differential-algebraic problems. Heidelberg: Springer.

21. Hairer, E., Norsett, S. P., & Wanner, G. (2009). Solving ordinary differential equations I:
Nonstiff problems (2nd rev. ed.). Heidelberg: Springer.

22. Henrici, P. (1962). Discrete variable methods in ordinary differential equations. New York:
Wiley.

23. Hindmarsh, A. C. (1980). LSODE and LSODI, two new initial value ordinary differential
equation solvers. ACM-SIGNUM Newsletter, 15, 10–11.

24. Iavernaro, F., & Mazzia, F. (1998). Solving ordinary differential equations by generalized
Adams methods: Properties and implementation techniques. Applied Numerical Mathematics,
28(2–4), 107–126. (Eighth Conference on the Numerical Treatment of Differential Equations,
Alexisbad, 1997).

25. Iavernaro, F., & Mazzia, F. (1999) Block-boundary value methods for the solution of ordinary
differential equations. SIAM Journal on Scientific Computing, 21(1), 323–339 (electronic).

26. Krogh, F. T. (1969) VODQ/SVDQ/DVDQ, Variable order integrators for the numerical
solution of ordinary differential equations. Pasadena, Calif: Jet Propulsion Laboratory.

27. Krogh, F. T. (1969). A variable step, variable order multistep method for the numerical solution
of ordinary differential equations. In Information processing 68 (Proceedings of the IFIP
congress, Edinburgh, 1968): Vol. 1. Mathematics, software (pp. 194–199). Amsterdam: North-
Holland.

28. Kutta, W. (1901). Beitrag zur naeherungsweisen integration totaler differentialgleichungen.
Zeitschrift fur Mathematik und Physik, 46, 435–453.

29. Lambert, J. D. (1973). Computational methods in ordinary differential equations. London/New
York: Wiley.

30. Petzold, L. R. (1982). A description of DASSL: a differential/algebraic system solver. IMACS
Transactions on Scientific Computation.

31. Petzold, L. R. (1983). Automatic selection of methods for solving stiff and nonstiff systems
of ordinary differential equations. SIAM Journal on Scientific and Statistical Computing, 4,
136–148.

32. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1992) Numerical recipes
in FORTRAN. The art of scientific computing (2nd ed.). New York: Cambridge University
Press.

33. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007) Numerical recipes
(3rd ed.). Cambridge/New York: Cambridge University Press.

34. Runge, C. (1895). Ueber die numerische aufloesung von differentialgleichungen. Mathema-
tische Annalen, 46, 167–178.

35. Rutishauser, H. (1952). uber die instabilitat von methoden zur integration gewohnlicher
differentialgleichungen. Zeitschrift fur angewandte Mathematik und Physik, 3, 65–74.

36. Shampine, L. F. (1977). Stiffness and nonstiff differential equation solvers. ii detecting stiffness
with Runge–Kutta methods. ACM Transactions on Mathematical Software, 3, 44–53.

37. Shampine, L. F. (1979). Type-insensitive ODE codes based on implicit A-stable formulas
(pp. 79–244). Livermore: SAND, Sandia National Laboratories.

38. Shampine, L. F. (1980). Lipschitz constants and robust ODE codes. In Computational methods
in nonlinear mechanics (pp. 47–449). Amsterdam: North Holland.

39. Shampine, L. F., & Gordon, M. K. (1975). Computer solution of ordinary differential
equations. The initial value problem. San Francisco: W.H. Freeman.

40. Shampine, L. F., & Hiebert, K. L. (1977). Detecting stiffness with the Fehlberg (4, 5) formulas.
Computers and Mathematics with Applications, 3(1), 41–46.

41. Shampine, L. F., & Watts, H. A. (1969). Block implicit one-step methods. Mathematics of
Computation, 23, 731–740.

42. Skelboe, S. (1977). The control of order and steplength for backward differentiation methods.
BIT, 17, 91–107.

Chapter 3
Solving Ordinary Differential Equations in R

Abstract Both Runge-Kutta and linear multistep methods are available to solve
initial value problems for ordinary differential equations in the R packages deSolve
and deTestSet. Nearly all of these solvers use adaptive step size control, some also
control the order of the formula adaptively, or switch between different types of
methods, depending on the local properties of the equations to be solved. We show
how to trigger the various methods using a variety of applications pointing, where
necessary, to problems that may arise. For instance, many practical applications
involve discontinuities. As the integration routines assume that a solution is
sufficiently differentiable over a time step, handing such discontinuities requires
special consideration. We give examples of how we can implement a nonsmooth
forcing term, switching behavior, and problems that include sudden jumps in the
dependent variables. Since much computational efficiency can be gained by using
the correct method for a particular problem, we end this chapter by providing a few
guidelines as to how the most efficient solution method for a particular problem can
be found.

3.1 Implementing Initial Value Problems in R

The R package deSolve [26] has several built-in functions for computing a
numerical solution of initial value problems for ODEs.

They comprise methods to solve stiff and non-stiff problems, that deal with full,
banded or arbitrarily sparse Jacobians etc. . . The methods included and the original
source are listed in Sect. A.3.

A simplified form of the syntax for solving ODEs is:

ode(y, times, func, parms, ...)

where times holds the times at which output is wanted, y holds the initial
conditions, func is the name of the R function that describes the differential
equations, and parms contains the parameter values (or is NULL). Many additional
inputs can be provided, e.g. the absolute and relative error tolerances (defaults

DOI 10.1007/978-3-642-28070-2 3, © Springer-Verlag Berlin Heidelberg 2012
41K. Soetaert et al., Solving Differential Equations in R, Use R!,

42 3 Solving Ordinary Differential Equations in R

rtol = 1e-6, atol = 1e-6), the maximal number of steps (maxsteps),
the integration method etc. The default integration method is lsoda. If we type
?lsoda a help page is opened that contains a list of all options that can be changed.
As all these options have a default value, we are not obliged to assign a value to
them, as long as we are content with the default.

3.1.1 A Differential Equation Comprising One Variable

Ordinary differential equations are often used in population biology. One of the
simplest equations describing population growth is the logistic equation [28]. This
equation models the density changes of one species (y) in an environment where
competition for available resources reduces population growth at high densities, and
eventually leads to negative growth above a specific carrying capacity K. At very
low density, the absence of competition allows exponential growth, at a growth rate
r > 0:

y′ = ry
(

1− y
K

)
,

y(0) = 2. (3.1)

To implement this IVP in R we first define the two parameters, r and K, and the
initial condition (yini) and assign values to them. The semi-colon “;” separates
two statements; the “<-” is the assignment operator.

r <- 1; K <- 10; yini <- 2

The simple differential equation is implemented in an R function called derivs
that takes as arguments the current time (t), the value of the dependent variable (y)
and a parameter vector (parms), and that returns the derivative, as a list. The
parameters r and K, although defined outside of function derivs, are also known
within the derivative function.1

derivs <- function(t, y, parms)
list(r * y * (1-y/K))

We require output at 0.2 daily intervals for 20 days, which we specify in a vector
(times); the R function seq creates the output time sequence. The model is
solved, using R function ode. The integrator ode is available from the package
deSolve, which is loaded first (library).

1A more robust but slightly more complex method is to put parameters in a parameter vector, and
pass that to the derivative function via ode’s argument parms. For models that are to be used to
fit parameters to data, this is the most convenient way of passing parameters.

3.1 Implementing Initial Value Problems in R 43

0 5 10 15 20

2

4

6

8

10

12

logistic growth

time

Fig. 3.1 A simple initial
value problem, solved twice
with different initial
conditions. See text for the R
code

library(deSolve)
times <- seq(from = 0, to = 20, by = 0.2)
out <- ode(y = yini, times = times, func = derivs,

parms = NULL)

The model output in out is a matrix consisting of two columns, first time, then
the state variable value y. We print the first three lines of this matrix:

head(out, n = 3)

time 1
[1,] 0.0 2.000000
[2,] 0.2 2.339222
[3,] 0.4 2.716436

We now solve the differential equation with a different initial condition, y(0) = 12,
and store the output in matrix out2:

yini <- 12
out2 <- ode(y = yini, times = times, func = derivs,

parms = NULL)

The output of these two solutions is easily plotted, using the deSolve’s function
plot with the solid lines twice as thick as the default (lwd=2) (Fig. 3.1). It shows
for the first solution an initial fast increase of the density, levelling off towards the
carrying capacity K. The second solution shows a gradual decrease towards K.

plot(out, out2, main = "logistic growth", lwd = 2)

44 3 Solving Ordinary Differential Equations in R

3.1.2 Multiple Variables: The Lorenz Model

It is only slightly more complex to write a model that describes the dynamics of
multiple variables.

The Lorenz equations [18] were the first chaotic dynamical system of ordinary
differential equations to be described. They consist of three ordinary differential
equations, expressing the dynamics of the variables, X , Y and Z that were assumed
to represent idealized behavior of the Earth’s atmosphere. The model equations are:

X ′ = aX +YZ,

Y ′ = b(Y −Z),

Z′ = −XY + cY −Z, (3.2)

where X , Y and Z refer to the horizontal and vertical temperature distribution
and convective flow, and a,b,c are parameters with values −8/3, −10 and 28
respectively.

The R implementation starts by defining the parameter values and the initial
condition. For the latter, we create a three-valued vector using the function “c()”,
naming the elements “X”, “Y” and “Z”. These names are handy, as we can use them
in the derivative function so making the code more readable, but they also serve to
label the output (see below).

a <- -8/3; b <- -10; c <- 28
yini <- c(X = 1, Y = 1, Z = 1)

Within the derivative function (called Lorenz), we make the names of the
variables available by the construct with (as.list(y), {...}) . Note that
this statement effectively embraces all other statements within the function (i.e. the
closing brackets “})” are the last before the curly braces terminating the function).

Similarly as in the previous example, the derivative function returns the deriva-
tives, packed as a list, but now they are concatenated (c()) in a vector. Here it is
extremely important 2 to return the values of the three derivatives, in the same order
as in which the initial conditions are defined. With yini containing the values of
variablesX, Y and Z, the derivative vector should be returned as dX, dY, dZ.

Lorenz <- function (t, y, parms) {
with(as.list(y), {

dX <- a * X + Y * Z
dY <- b * (Y - Z)
dZ <- -X * Y + c * Y - Z
list(c(dX, dY, dZ)) })

}

2it is the most common mistake that beginners make.

3.2 Runge-Kutta Methods 45

We solve the IVP for 100 days, producing output every 0.01 days; this small output
step is necessary to obtain smooth figures. In general this does not affect the time
step of integration; this is usually determined by the solver.

times <- seq(from = 0, to = 100, by = 0.01)
out <- ode(y = yini, times = times, func = Lorenz,

parms = NULL)

The output generated by the solvers from deSolve can conveniently be plotted
using deSolve’s method plot. This works slightly differently from R’s default
plot method, as it depicts all variables at the same time, neatly arranged in several
rows and columns. Using this plot method saves a lot of R statements, especially
if the model contains many variables.

The first statement in the code section below plots the three dependent variables
X, Y, Z in two rows and two columns. As we gave names to the initial conditions,
the figures are correctly labeled (Fig. 3.2).

It is very simple to overrule this deSolve-specific plot function. By selecting
specific variables from out (here “X” and “Y”) rather than the entire output matrix,
the default plotting method from R will be used. So, in the last statement, we depict
variable Y versus X to generate the famous “butterfly” (Fig. 3.2).

plot(out, lwd = 2)
plot(out[,"X"], out[,"Y"], type = "l", xlab = "X",

ylab = "Y", main = "butterfly")

3.2 Runge-Kutta Methods

The R package deSolve contains a large number of Runge-Kutta methods
(Sect. 2.1). With the following statement all implemented methods are shown:

rkMethod()

[1] "euler" "rk2" "rk4" "rk23" "rk23bs"
[6] "rk34f" "rk45f" "rk45ck" "rk45e" "rk45dp6"
[11] "rk45dp7" "rk78dp" "rk78f" "irk3r" "irk5r"
[16] "irk4hh" "irk6kb" "irk4l" "irk6l" "ode23"
[21] "ode45"

They comprise simple Runge-Kutta formulae (Heun’s method rk2, the classical
fourth order Runge-Kutta, rk4) and several explicit Runge-Kutta pairs of orders
3(2) to orders 8(7). The embedded, explicit methods are according to Fehlberg [10]
(rk..f), Dormand and Prince [8, 9] (rk..dp.), Bogacki and Shampine [3]
(rk23bs, ode..) and Cash and Karp [7] (rk45ck).

The implicit Runge-Kutta’s (irk..) from this list are not optimally coded; a
better implicit Runge-Kutta is the (radau) method [11] that will be discussed in
Chaps. 4 and 5.

46 3 Solving Ordinary Differential Equations in R

0 20 40 60 80 100

0

10

20

30

40

X

time

0 20 40 60 80 100

−10

0

10

20
Y

time

0 20 40 60 80 100

−20

0

10

Z

time

0 10 20 30 40

−10

0

10

20
butterfly

X

Y

Fig. 3.2 Solution of the Lorenz equation, a three-variable initial value problem that generates
chaotic solutions. See text for the R code

Only two formulae (rk45dp7, rk45ck) support continuous solutions
(Sect. 2.1.2.5).

The properties of a Runge-Kutta method can be displayed as follows:

rkMethod("rk23")

$ID
[1] "rk23"

$varstep
[1] TRUE

$FSAL
[1] FALSE

$A
[,1] [,2] [,3]

[1,] 0.0 0 0
[2,] 0.5 0 0
[3,] -1.0 2 0

$b1

3.2 Runge-Kutta Methods 47

[1] 0 1 0

$b2
[1] 0.1666667 0.6666667 0.1666667

$c
[1] 0.0 0.5 2.0

$stage
[1] 3

$Qerr
[1] 2

attr(,"class")
[1] "list" "rkMethod"

The output informs us whether the method uses a variable time step (varstep),
and the first same as last (FSAL) strategy (this stores the derivative at the end of
a step for use as the first evaluation in the next step). It gives the coefficients of
the Butcher table (A, b1, b2, c, see Sect. 2.1.1, (2.5)), the number of function
evaluations needed for one step (stage), and the order of the local truncation error
(Qerr) of the method. If the method uses a variable step size the error is kept below
a user defined relative and absolute tolerance, the default values for all the codes are
atol = 1e-6, rtol = 1e-6. We note that, for some implementations, the
vector times at which the output is wanted defines the mesh at which the method
performs its steps, so the accuracy of the solution strongly depends on the input
vector times.

It is also possible to define and use a new Runge-Kutta method (see help-file
?rkMethod). Finally, in the R package deTestSet are some more Runge-Kutta
methods, based on well-established FORTRAN codes (see Table A.7).

3.2.1 Rigid Body Equations

We first show how to use the Runge-Kutta methods by means of a standard test
problem for non-stiff solvers, as proposed by Krogh, in [12]. It describes the Euler
equations of a rigid body without external forces. The three dependent variables (y1,
y2, y3) are the coordinates of the rotation vector, while I1, I2, I3 are the principal
moments of inertia. The ODEs are:

y′1 = (I2−I3)
I1

y2y3

y′2 = (I3−I1)
I2

y1y3

y′3 = (I1−I2)
I3

y1y2.

(3.3)

We implement the model with parameters I1 = 0.5, I2 = 2, I3 = 3 and initial
conditions y1(0) = 1,y2(0) = 0,y3(0) = 0.9.

48 3 Solving Ordinary Differential Equations in R

After loading the package deSolve and defining the initial conditions (yini),
the model function is defined (rigidode). Although in previous examples, we
made the code more readable by using the names of the variables, here we use their
position in the variable vector y, instead. Also, the parameter values are hard-coded.

library(deSolve)
yini <- c(1, 0, 0.9)

rigidode <- function(t, y, parms) {
dy1 <- -2 * y[2] * y[3]
dy2 <- 1.25* y[1] * y[3]
dy3 <- -0.5* y[1] * y[2]
list(c(dy1, dy2, dy3))

}

The times at which output is wanted consists of a sequence of values, extending
over 20 days, and at 0.01 day intervals. The ODEs are solved with the Cash-Karp
Runge-Kutta method (”rk45ck”), and the first three rows of this matrix are visually
inspected (head).

times <- seq(from = 0, to = 20, by = 0.01)
out <- ode (times = times, y = yini, func = rigidode,

parms = NULL, method = rkMethod("rk45ck"))
head (out, n = 3)

time 1 2 3
[1,] 0.00 1.0000000 0.00000000 0.9000000
[2,] 0.01 0.9998988 0.01124950 0.8999719
[3,] 0.02 0.9995951 0.02249603 0.8998875

We could plot the three state variables, using deSolve’s plot method as in the
previous example. However, it is more instructive to plot all variables in one figure
instead (Fig. 3.3). We use R function matplot to do so. Rather than using the
default settings of the function (points), we choose solid lines (type = "l",
lty = "solid"), twice as thick as the default (lwd = 2) and with different
colour for each state variable. The first column of out holds the time and is used
as the x-variable, while all except the first column (out[,-1]) are used as y-
variables.

matplot(x = out[,1], y = out[,-1], type = "l", lwd = 2,
lty = "solid", col = c("red", "blue", "black"),
xlab = "time", ylab = "y", main = "rigidode")

legend("bottomright", col = c("red", "blue", "black"),
legend = c("y1", "y2", "y3"), lwd = 2)

Another way of depicting the output is to plot the three coordinates of the rotation
vector in a 3D plot. This can easily be done using the R package scatterplot3d [17].

library(scatterplot3d)
scatterplot3d(out[,-1], type = "l", lwd = 2, xlab = "",

ylab = "", zlab = "", main = "rigidode")

3.2 Runge-Kutta Methods 49

0 5 10 15 20

−1.0

−0.5

0.0

0.5

1.0

rigidode

times

y

y1
y2
y3

rigidode

−1.0 −0.5 0.0 0.5 1.0
0.70

0.75

0.80

0.85

0.90

−1.0
−0.5

0.0
0.5

1.0

Fig. 3.3 The Euler equations of a rigid body without external forces, solved with the Cash-Karp
5(4) Runge-Kutta formula. See text for the R code

3.2.2 Arenstorf Orbits

Our next example, the Arenstorf problem, is from Astronomy, and describes the
movement of a small body orbiting regularly around two larger objects, such as a
spacecraft going between the Earth and the Moon. The two large bodies have mass
m1 and m2 and move in a circular rotation (coordinates y1 and y2) in a plane, while
the third body has negligible mass and is moving in the same plane.

It was necessary to solve this problem in order to determine the path that the
Apollo spacecraft had to take in its journey between the Earth and the Moon. The
problem was solved by Arenstorf [1] and now it is an often used test problem for
non-stiff solvers.

If we define μ1 =
m1

m1 +m2
and μ2 = 1− μ1, then the equations are [1]:

y′′1 = y1 + 2y′2 − μ2
y1 + μ1

D1
− μ1

y1 − μ2

D2

y′′2 = y2 − 2y′1 − μ2
y2

D1
− μ1

y2

D2

D1 = ((y1 + μ1)
2 + y2

2)
(3/2)

D2 = ((y1 − μ2)
2 + y2

2)
(3/2),

(3.4)

where μ1 = 0.012277471. For certain values of the initial conditions, this problem
has a periodic solution. One set of initial conditions with this property is: y1(0) =
0.994,y2(0) = 0,y′1(0) = 0,y′2(0) =−2.00158510637908252240537862224.

50 3 Solving Ordinary Differential Equations in R

Before solving these equations, we expand the second order equations in two first
order ones (y3 = y′1 and y4 = y′2)

library(deSolve)
Arenstorf <- function(t, y, p) {

D1 <- ((y[1] + mu1)ˆ2 + y[2]ˆ2)ˆ(3/2)
D2 <- ((y[1] - mu2)ˆ2 + y[2]ˆ2)ˆ(3/2)
dy1 <- y[3]
dy2 <- y[4]
dy3 <- y[1] + 2*y[4] - mu2*(y[1]+mu1)/D1 - mu1*(y[1]-mu2)/D2
dy4 <- y[2] - 2*y[3] - mu2*y[2]/D1 - mu1*y[2]/D2
return(list(c(dy1, dy2, dy3, dy4)))

}
mu1 <- 0.012277471
mu2 <- 1 - mu1
yini <- c(y1 = 0.994, y2 = 0,

dy1 = 0, dy2 = -2.00158510637908252240537862224)
times <- seq(from = 0, to = 18, by = 0.01)

We solve the above IVP with the fifth order Dormand and Prince method
(DOPRI5(4) [8]):

out <- ode(func = Arenstorf, y = yini, times = times,
parms = 0, method = "ode45")

We can also solve the same problem with a second and third set of initial conditions:

yini2 <- c(y1 = 0.994, y2 = 0,
dy1 = 0, dy2 = -2.0317326295573368357302057924)

out2 <- ode(func = Arenstorf, y = yini2, times = times,
parms = 0, method = "ode45")

yini3 <- c(y1 = 1.2, y2 = 0,
dy1 = 0, dy2 = -1.049357510)

out3 <- ode(func = Arenstorf, y = yini3, times = times,
parms = 0, method = "ode45")

We end by first plotting the first two variables versus time for all three solutions,
arranging the figures in two rows and two columns (mfrow). Then we plot the
trajectories of the three runs (Fig. 3.4).

plot(out, out2, out3, which = c("y1", "y2"),
mfrow = c(2, 2), col = "black", lwd = 2)

plot(out[,c("y1", "y2")], type = "l", lwd = 2,
xlab = "y1", ylab = "y2", main = "solutions 1,2")

lines(out2[,c("y1", "y2")], lwd = 2, lty = 2)
plot(out3[,c("y1", "y2")], type = "l", lwd = 2, lty = 3,

xlab = "y1", ylab = "y2", main = "solution 3")

3.3 Linear Multistep Methods 51

0 5 10 15

−1.0

0.0

1.0

y1

time
0 5 10 15

−1.0

0.0

1.0

y2

time

−1.0 −0.5 0.0 0.5 1.0

−1.0

0.0

1.0

solutions 1,2

y1

y2

−1.0 0.0 0.5 1.0

−0.6

−0.2

0.2

0.6

solution 3

y1

y2

Fig. 3.4 The Arenstorf problem, solved with the dopri5 Runge-Kutta method. See text for the R
code

3.3 Linear Multistep Methods

The solvers vode [4], lsode [13], and lsodes [14] from the R package
deSolve implement both variable-coefficient Adams methods as well as backward
differentiation formulas (the default) of variable order. The Adams methods are
better suited for non-stiff problems, the BDF for stiff problems. In these codes, the
maximal order for the Adams and BDF methods are 12 and 5 respectively. Whereas
in the above-mentioned solvers, it is left to the user to specify whether to use a stiff
or non-stiff method, the solver lsoda [19] will detect whether stiffness is present
or not, and trigger an appropriate change in the solution method if this property of
stiffness changes (see Sect. 2.7.3). This is such a robust procedure that lsoda is the
default integration method chosen by ode.

In some cases, one may find it more efficient to select another integration method
rather than this default. Two implementations of the Adams methods are available,
one that uses a predictor corrector implementation with a functional iteration as
the corrector (called “adams”), and a second that implements the implicit Adams
method (“impAdams”) by solving the implicit equation using chord iteration based

52 3 Solving Ordinary Differential Equations in R

on the Jacobian (see Sect. 2.6). It is simplest to use the function ode with the
appropriate method, to trigger a specific multistep method. For instance,

ode(y, times, func, parms, ...)
ode(y, times, func, parms, method = "bdf", ...)
ode(y, times, func, parms, method = "adams", ...)
ode(y, times, func, parms, method = "impAdams", ...)
ode(y, times, func, parms, method = vode, ...)

will use lsoda (the default method), the backward differentiation formula, and
the simple Adams and implicit Adams method (based on the code lsode), and the
method vode respectively. Note that it is allowed to pass both the name of the
function, or the function itself.

Finally, more multistep methods are available from the package deTestSet: func-
tions gamd [16] (implementing the generalized Adams methods), mebdfi [6] (the
modified extended backward differentiation formula) and bimd[5] (implementing
block implicit methods). The calling sequence is:

library(deTestSet)
ode(y, times, func, parms, method = gamd, ...)
ode(y, times, func, parms, method = mebdfi, ...)
ode(y, times, func, parms, method = bimd, ...)

or:

gamd(y, times, func, parms, ...)
mebdfi(y, times, func, parms,...)
bimd(y, times, func, parms,...)

These codes will be extensively used when we deal with solving DAEs, in
Chap. 5.

3.3.1 Seven Moving Stars

The Pleiades problem [12] is a celestial mechanics problem of seven stars, with
masses mi, in the two-dimensional plane of coordinates (x,y). The stars are
considered to be point masses.

The only force acting on them is gravitational attraction, with gravitational
constant G (units of m3kg−1s−2).

If ri j = (xi − x j)
2 +(yi − y j)

2 is the square of the distance between stars i and j,
then the second order equations describing their movement are given by:

x′′i = G ∑
j 	=i

m j
(x j − xi)

r3/2
i j

y′′i = G ∑
j 	=i

m j
(y j − yi)

r3/2
i j

,
(3.5)

3.3 Linear Multistep Methods 53

where, to estimate the acceleration of star i, the sum is taken over all the interactions
with the other stars j. Written as first order ODEs, we obtain:

x′i = ui

y′i = vi

u′i = G ∑
j 	=i

m j
(x j − xi)

r3/2
i j

(3.6)

v′i = G ∑
j 	=i

m j
(y j − yi)

r3/2
i j

,

where xi,ui,yi,vi are the positions and velocities in the x and y directions of star i
respectively.

With 7 stars, and 4 differential equations per star, this problem comprises 28
equations. As in [12], we assume that the masses mi = i and that the gravitational
constant G equals 1; the initial conditions are found in [12]. We integrate the
problem in the time interval [0,3].

In the function that implements the derivative in R (pleiade), we start by
separating the input vector Y into the coordinates (x, y) and velocities (u, v)
of each star.

The distances in the x and y directions are created using R function outer. This
function will apply FUN for each combination of x and y. It thus creates a matrix
with seven rows and seven columns, having for distx on the position i, j, the value
xi − x j.

The matrix containing the values r3/2
i j , called rij3 is then calculated based on

distx and disty.
Finally we multiply matrix distx or disty with the vector containing the

masses of the stars (starMass), and divide by matrix rij3.
The result of these calculations are two matrices (fx, fy), with seven rows and

columns. As the distance between a body and itself is equal to 0, this matrix has
NaN (Not a Number) on the diagonal.

The required summation to obtain u′ and v′ (3.5) is done using R function
colSums; the argumentna.rm = TRUE ensures that these sums ignore the NaNs
on the diagonal of fx and fy.

During the movement of the seven bodies several quasi-collisions occur, where
the squared distance between two bodies are as small as 10−3. When that happens,
the accelerations u′,v′ get very high.

Thus, over the entire integration interval, there are periods with slow motion and
periods of rapid motion, such that this problem can only be efficiently solved with
an integrator that uses adaptive time stepping.

As the problem is non-stiff, it is solved with the "adams" method. We use the
function system.time to have information about the elapsed time required to
obtain the solution.

54 3 Solving Ordinary Differential Equations in R

library(deSolve)
pleiade <- function (t, Y, pars) {

x <- Y[1:7]
y <- Y[8:14]
u <- Y[15:21]
v <- Y[22:28]

distx <- outer(x, x, FUN = function(x, y) x - y)
disty <- outer(y, y, FUN = function(x, y) x - y)

rij3 <- (distxˆ2 + distyˆ2)ˆ(3/2)

fx <- starMass * distx / rij3
fy <- starMass * disty / rij3

list(c(dx = u,
dy = v,
du = colSums(fx, na.rm = TRUE),
dv = colSums(fy, na.rm = TRUE)))

}
starMass <- 1:7
yini<- c(x1= 3, x2= 3, x3=-1, x4=-3, x5= 2, x6=-2, x7= 2,

y1= 3, y2=-3, y3= 2, y4= 0, y5= 0, y6=-4, y7= 4,
u1= 0, u2= 0, u3= 0, u4= 0, u5= 0, u6=1.75, u7=-1.5,
v1= 0, v2= 0, v3= 0, v4=-1.25, v5= 1, v6= 0, v7= 0)

print(system.time(
out <- ode(func = pleiade, parms = NULL, y = yini,

method = "adams", times = seq(0, 3, 0.01))))

user system elapsed
0.12 0.00 0.13

To use the solvers in the deTestSet package the instructions are:

library(deTestSet)
print(system.time(
out2 <- ode(func = pleiade, parms = NULL, y = yini,

method = bimd, times = seq(0, 3, 0.01))))

user system elapsed
1.3 0.0 1.3

print(system.time(
out3 <- ode(func = pleiade, parms = NULL, y = yini,

method = mebdfi, times = seq(0, 3, 0.01))))

user system elapsed
0.86 0.00 0.89

The execution times of bimd, gamd, mebdfi show that the Adams method is
the most efficient solver for this problem. To create Fig. 3.5, we first loop over the
seven stars, plotting the trajectory of each star in a separate figure. The initial value

3.3 Linear Multistep Methods 55

0 1 2 3

−4

−2

0

2

star 1

x

y

1.5 2.0 2.5 3.0

−3.2

−2.8

−2.4

star 2

x

y

−3 −2 −1 0

2.0

3.0

4.0

5.0

star 3

x

y

−3 −2 −1 0

−2.5

−1.5

−0.5

star 4

x

y

0.0 0.5 1.0 1.5 2.0

0.0

1.0

2.0

star 5

x

y

−2 −1 0 1

−4

−3

−2

−1

star 6

x

y

−0.5 0.5 1.5

1.0

2.0

3.0

4.0

star 7

x

y

−3 −1 1 2 3

−4

0

2

4

ALL

x

y

1

2

3

4 5

6

7

0.0 1.0 2.0 3.0

−20

−10

0

stars 1, 7

time

ve
lo

ci
ty

u1
u7

Fig. 3.5 The pleiades problem describes seven stars moving in a 2-D plane. The first eight figures
depict the trajectory of each star; in the last figure the velocity in the x-direction of stars 1 and 7
are depicted versus time; there is a near-collision at t = 1.23 and t = 1.68, indicated with a dotted
vertical line. See text for the R code

is represented as a point. Then we plot all trajectories in one figure, labelling
the initial point of each star (text) with its number. The last figure depicts the
velocity u of the first and seventh star versus time. These two stars almost collide
at t = 1.23 and at t = 1.68. We emphasise this by drawing a vertical line at these
times; abline(v =...) does this.

par(mfrow = c(3, 3), mar = c(4, 4, 3, 2))
for (i in 1:7) {

plot(out[,i+1], out[,i+8], type = "l",
main = paste("star ",i), xlab = "x", ylab = "y")

points (yini[i], yini[i+7])
}

#
plot(out[, 2:8], out[, 9:15], type = "p", cex = 0.5,

56 3 Solving Ordinary Differential Equations in R

main = "ALL", xlab = "x", ylab = "y")
text(yini[1:7], yini[8:14], 1:7)
#
matplot(out[,"time"], out[, c("u1", "u7")], type = "l",

lwd = 2, col = c("black", "grey"), lty = 1,
xlab = "time", ylab = "velocity", main = "stars 1, 7")

abline(v = c(1.23, 1.68), lty = 2)
legend("bottomright", col = c("black", "grey"), lwd = 2,

legend = c("u1", "u7"))

3.3.2 A Stiff Chemical Example

We now implement an example, slightly adapted from [15], describing ozone
concentrations in the atmosphere. This example serves two purposes: (1) it provides
a stiff problem (see Sect. 2.5) and (2) we use it to demonstrate how to use external
data in a differential equation model.

The model describes the following three chemical reactions between oxygen
(O2), ozone (O3), atomic oxygen (O), nitrogen oxide (NO), and nitrogen dioxide
(NO2):

NO2 + hv
r1(t)−−→ NO+O

O+O2
r2−→ O3

NO+O3
r3−→ O2 +NO2.

(3.7)

The first reaction is the photo-dissociation of NO2 to form NO and O. This reaction
depends on solar radiation (hv), and therefore its rate (r1(t)) changes drastically at
sunrise and sunset. The second reaction describes the production of ozone, which
proceeds at a rate= r2. In the third reaction, NO reacts with ozone (rate r3).

The Earth’s ozone levels are of great interest as at high concentrations it is
harmful to humans and animals, and because ozone is also a green-house gas.

According to the mass action law [2], the speed of the reaction is proportional to
the product of the concentrations of the participating molecules. Thus, for r1, r2 and
r3 we can write:

r1(t) = k1(t)[NO2]

r2 = k2[O]

r3 = k3[NO][O3].

(3.8)

For the derivation of r2 we assumed the oxygen concentration to be constant, which,
in the Earth’s atmosphere is not too crude an assumption.

Based on these rates, the differential equations expressing the dynamics for the
concentrations of O, NO, NO2, and O3 (here written as ([O], . . . , [O3]) are [15]:

[O]′ = k1(t)[NO2]− k2[O]

[NO]′ = k1(t)[NO2]− k3[NO][O3]+σ
[NO2]

′ = k3[NO][O3]− k1(t)[NO2]

[O3]
′ = k2[O]− k3[NO][O3].

(3.9)

3.3 Linear Multistep Methods 57

Here σ is the emission rate of nitrogen oxide, which we assume constant, while the
reaction rate k1 depends linearly on the solar radiation, hv(t), according to:

k1(t) = k1a + k1bhv(t). (3.10)

As the solar radiation is not constant, this rate changes with time. In the next section
we will show how to efficiently implement the solar radiation into this model.

3.3.2.1 External Variables

Often external variables such as the solar radiation are imposed on a differential
equation problem by means of a time series. For the ozone chemistry example,
the solar radiation time series consists of one measurement taken each 0.5 h, and
extending over 5 days. Such data is best input as a data.frame or a matrix.
Here the data.frame called Light is read from a file (“Light.rda”); the first
four datapoints are shown:

load(file = "Light.rda")
head(Light, n = 4)

day irrad
1 0.0000000 0.0000
2 0.3333333 0.0000
3 0.3541667 164.2443
4 0.3750000 204.7486

In order to use this data in the ODE system, we need a way to interpolate the half-
hourly observations to the exact time points at which the integration routine will
require them. However, as the solvers adapt their time steps depending on local
properties of the integration, we have no prior knowledge about the times at which
the derivative function will be called.

R function approxfun is an ingenious method that allows a user to perform
this interpolation. It is used in two steps:

1. First an interpolating function that contains the data (x- and y-values) is
constructed.

2. This function is then used to provide the interpolated value at intermediate time
steps.

The interpolating function is created by a call to approxfun, passing the x- and y-
data in data.frame Light. We want the values to be linearly interpolated in between
data points, but as this is the default interpolation method of approxfun, we do
not need to specify this.

irradiance <- approxfun(Light)

The interpolating function is called irradiance here, and it is created only once,
outside of the derivative function (chemistry, see below). Once created, we can

58 3 Solving Ordinary Differential Equations in R

simply call function irradiance with the appropriate time-value to retrieve the
solar radiation at that time. To show that this actually works, the next statement
calculates the irradiances at specific time points (0,0.25,0.5,0.75,1):

irradiance(seq(from = 0, to = 1, by = 0.25))

[1] 0.0000 0.0000 698.8911 490.4644 0.0000

Within the derivative function, we will use irradiance to interpolate the time
series to the requested time of the simulation (as given by input argument t).

We are now well equipped to write the R code for the chemistry model; we define
parameter values and initial conditions first.3

k3 <- 1e-11; k2 <- 1e10; k1a <- 1e-30
k1b <- 1; sigma <- 1e11
yini <- c(O = 0, NO = 1.3e8, NO2 = 5e11, O3 = 8e11)

The derivative function is defined next; it not only returns the derivatives, but also
the solar radiation (last statement).

chemistry <- function(t, y, parms) {
with(as.list(y), {

radiation <- irradiance(t)
k1 <- k1a + k1b*radiation

dO <- k1*NO2 - k2*O
dNO <- k1*NO2 - k3*NO*O3 + sigma
dNO2 <- -k1*NO2 + k3*NO*O3
dO3 <- k2*O - k3*NO*O3
list(c(dO, dNO, dNO2, dO3), radiation = radiation)

})
}

Note how, in the first statement of function chemistry, the light intensity
(or radiation) at time t is extracted by a call to the interpolating function
irradiance.

We solve the IVP over a period of 5 days using the “bdf” method . For a model
that is stiff this method is very efficient.

times <- seq(from = 0, to = 5, by = 0.01)
out <- ode(func = chemistry, parms = NULL, y = yini,

times = times, method = "bdf")

We use deSolve’s plot method to plot all dependent variables and the output
variable radiation in one figure.

3Here it is worthwhile to point to the difference of the letter “O” and the number “0” in the
definition of yini; many strange behaviors of DE models are due to mistyping O and 0.

3.4 Discontinuous Equations, Events 59

0 1 2 3 4 5

0

1000

2000

3000

4000

O

time
0 1 2 3 4 5

0e+00

4e+11

8e+11

NO

time
0 1 2 3 4 5

0e+00

4e+11

8e+11

NO2

time

0 1 2 3 4 5

4.0e+11

8.0e+11

1.2e+12

O3

time
0 1 2 3 4 5

0

200

600

1000

radiation

time

Fig. 3.6 The atmospheric chemistry model solved with the bdf method. See text for the R code

plot(out, type = "l", lwd = 2)

The results (Fig. 3.6) show how, at the onset of the day the O and NO concentrations
increase drastically, due to the photo-dissociation reaction, which rapidly exhausts
NO2. As most of the O produced reacts with O2 at a very high rate to form O3, the
O concentrations increase only little compared to NO.

3.4 Discontinuous Equations, Events

Many real-world model applications involve discontinuities. As R’s integration
routines all assume that a solution is sufficiently continuous over a time step,
handling such discontinuities sometimes requires special consideration.

60 3 Solving Ordinary Differential Equations in R

There are several levels of difficulty arising in discontinuous model systems.
In the simplest case, it is just the forcing or external variables of the system
that are not smooth. We gave an example of that in the previous section, where
ozone degradation depended on light which was prescribed to the model by linear
interpolation between data points.

In this section we give several other examples. The first is a (pharmacokinetic)
example of a patient taking a pill every day. This changes the dosing of the drug in
the blood in a discontinuous way. As these discontinuities affect the derivatives of
the dependent variables they are quite easy to handle.

It is much more difficult to deal with events that cause sudden jumps in the values
of the dependent variables. This is because the integration methods ignore all direct
changes to the state variable values if they occur within the derivative function. We
give an example of a patient injecting a drug at regular intervals.

In the above two examples, it is known in advance when the change will be
triggered, as they occur at preset times. It is even more difficult to deal with sudden
changes that occur only when certain conditions are met. In such cases, a root
function is necessary to locate when these conditions arise, after which an event
function is called to perform the change. We exemplify this type of discontinuity
with an ODE describing a bouncing ball, and a model that describes temperature
changes in a heat-controlled room.

Finally, it is not uncommon for solvers that take large steps to miss certain
events. As this leads to wrong solutions, it is important to recognise this, and to
take appropriate action to avoid it happening.

3.4.1 Pharmacokinetic Models

In order to be effective, the concentration of a drug taken by a patient must be large
enough, yet too high concentrations may have serious side effects. Pharmacokinetic
models are non-pervasive tools to test the optimal frequency and dosing of drug
intake. They represent absorption, distribution, decay and excretion of a drug [21].

Drugs can be dosed orally (pills), or directly injected in the blood. In the first
case, the action will operate on the processes (absorption through the gut),while in
the latter case, the action will (almost) instantaneously alter the concentration in the
blood.

3.4.1.1 A Two-Compartment Model Describing Oral Drug Intake

Consider a patient taking a pill every day at the same time. As the pill passes the
gastro-intestinal tract, the drug enters the blood by absorption through the gut wall.
The delivery of the drug to the gastro-intestinal tract proceeds for 1 h after which it
ceases until the next ingestion and so on.

3.4 Discontinuous Equations, Events 61

Once in the blood, the drug distributes in the tissues, where it is chemically
inactivated, so that it can be excreted from the body. An (overly) simple two-
compartment model, representing drug concentration in the gut (y1) and in the blood
(y2) can represent this process [24]:

y′1 = −ay1 + u(t)
y′2 = ay1 − by2.

(3.11)

Here a is the absorption rate, b is the removal rate from the blood, and the term u(t)
represents the daily delivery of the drug to the intestinal tract, which we assume to
occur over a period of 1 h.

The discontinuity in this model lies in the dosing of the drug to the intestine
(u(t)), which takes a constant value for 1 h, after which it is 0 for the rest of the day.

We now implement the R code for this pharmacokinetic problem. We first
define parameters and initial conditions (starting with 0 concentration in both
the intestinal tract and blood) and then implement the derivative function
(pharmacokinetics).

As the uptake is periodic, we can use the modulo function (%%) to represent the
uptake of the drug:

a <- 6; b <- 0.6
yini <- c(intestine = 0, blood = 0)

pharmacokinetics <- function(t, y, p) {
if ((24*t) %% 24 <= 1)

uptake <- 2
else

uptake <- 0
dy1 <- - a* y[1] + uptake
dy2 <- a* y[1] - b *y[2]
list(c(dy1, dy2))

}

The problem is solved in the usual way, and its output plotted:

times <- seq(from = 0, to = 10, by = 1/24)
out <- ode(func = pharmacokinetics, times = times,

y = yini, parms = NULL)
plot(out, lwd = 2, xlab = "day")

The upper panel of Fig. 3.7 shows the result. At the start of the solution, and for
each first hour of the day, the drug is ingested which causes a steep rise in the
intestinal concentrations. As the drug enters the blood, its concentration in the
intestine decreases exponentially, while initially increasing in the blood, where it
is degraded. Since the inflow to the blood drops exponentially; at a certain point in
time loss will exceed input and the concentration in the blood will start to decrease
until the next drug dose.

62 3 Solving Ordinary Differential Equations in R

0 2 4 6 8 10

0.00

0.04

intestine

days
0 2 4 6 8 10

0.00

0.05

0.10

0.15

blood

days

0 2 4 6 8 10

0.00

0.02

0.04

intestine

days

0 2 4 6 8 10

0.00

0.04

0.08

0.12

blood

days

Fig. 3.7 The 2-compartment pharmacokinetic model, describing the concentration of a daily-
dosed drug in the intestinal tract and in the blood. Above: correct solution; below: wrong solution
caused by too “efficient” a solver. See text for the R code

The initial concentration in the blood is very small but, as time proceeds, the
daily-averaged concentration increases to reach some kind of dynamic equilibrium,
which is nearly attained after 5–6 days.

When dealing with models that have such discontinuities it is very easy to miss
some of the short inputs or abrupt changes. As it is important to recognise such a
failure of the solvers, we will trigger one now. We ask for less output, say every 3 h,
and we use an efficient integration routine that can take large time steps, the implicit
Adams method ("impAdams").

times <- seq(0, 10, by = 3/24)
out2 <- ode(func = pharmacokinetics, times = times,

y = yini, parms = NULL, method = "impAdams")
plot(out2, lwd = 2, xlab = "days")

The results (Fig. 3.7 lower panel) clearly show that the behavior is correct only
during the first day of the simulation. After that, the integrator regularly misses
the drug pulse! As the algorithm selects its time step according to the local
accuracy requirements, before the intake of the drug the time step is rather large,
occasionally much larger than the pulse width of 1 h, during which the drug is taken.

3.4 Discontinuous Equations, Events 63

Consequently it may easily miss this pulse until, by chance, it steps into another
pulse interval.

When this kind of behavior is suspected, it is wise to restrict the size of the time
step. For this particular model, adding argument hmax = 1/24 or using a lower
absolute tolerance atol = 1e-10 in the call to the ode function will fix the
problem.

3.4.1.2 A One-Compartment Model Describing Drug Injection

In the previous example, uptake of a pill changed the derivative of the intestinal drug
concentration. The differential equations differ when the drug is injected directly in
the blood stream. In this case, the concentration of the drug in the blood is quasi-
instantaneously altered, and there is no need to describe the concentration in the
intestinal tract. The model that describes the dynamics of the drug in the blood, in
between injections reads:

b <- 0.6
yini <- c(blood = 0)

pharmaco2 <- function(t, blood, p) {
dblood <- - b * blood
list(dblood)

}

Assume a patient who injects daily doses of a drug in her veins, each time increasing
the concentration by 40 units. The injection event causes the value of the state
variable to be altered not the derivative, as in previous example. Unfortunately, the
solvers in deSolve ignore any changes in the state variable values when made in the
derivative function, so this is not so simple to implement.

The drug injections have to be specified in a special event data.frame

injectevents <- data.frame(var = "blood",
time = 0:20,
value = 40,
method = "add")

head(injectevents)

var time value method
1 blood 0 40 add
2 blood 1 40 add
3 blood 2 40 add
4 blood 3 40 add
5 blood 4 40 add
6 blood 5 40 add

64 3 Solving Ordinary Differential Equations in R

0 2 4 6 8 10

0

20

40

60

80

blood

days

Fig. 3.8 The 1-compartment
pharmacokinetic model,
describing the concentration
of a daily-dosed drug injected
directly in the blood stream.
See text for the R code

The event is said to add the value 40 to the variable blood, at the prescribed time.
Other methods of events are to replace with a value, or to multiply with a
value (see “events” help page of the package deSolve; ?events).

When the problem is solved, the existence of an event data.frame is specified by
passing to the solver, a list called events, which contains the data:

times <- seq(from = 0, to = 10, by = 1/24)
out2 <- ode(func = pharmaco2, times = times, y = yini,

parms = NULL, method = "impAdams",
events = list(data = injectevents))

The results (Fig. 3.8) show the instantaneous adjustment of the concentration in the
blood upon injection of the drug, and the exponential decrease in between injections.

plot(out2, lwd = 2, xlab="days")

3.4.2 A Bouncing Ball

In the previous pharmacokinetic examples, it was known in advance when a certain
event was occurring. This allowed us to specify the events in a data.frame
(Sect. 3.4.1.2), or to estimate the occurrence based on the simulation time (using
the modulo function in Sect. 3.4.1.1). The events either consisted of a change in the
problem specification (the derivative), when inputing the drug in the intestinal tract
(Sect. 3.4.1.1), or in a change in the value of the state variables when injecting the
drug directly (Sect. 3.4.1.2).

In many cases, we do not know in advance when a certain switch will occur, and
locating this will be part of the solution.

Consider the example of a bouncing ball [25], specified by its position above
the ground (y). The ball is thrown vertically, from the ground (y(0) = 0), with

3.4 Discontinuous Equations, Events 65

initial velocity y′ of 10m s−1. As the ball hits the ground, it bounces. This causes a
sudden change in the value of the ball’s velocity (a sign-reversal and reduction of its
magnitude).

The differential equation and initial conditions specifying an object falling
without friction through the air are:

y′′ =−g
y(0) = 0
y′(0) = 10,

(3.12)

where y′′ is the acceleration, y′ the velocity and y the height of the object above the
ground.

Before this second order equation can be solved, it is rewritten as two first
order equations, by including a description of the ball’s velocity (y2 = y′1). The
acceleration g is taken as 9.8m s−2.

y′1 = y2

y′2 = −9.8
y1(0) = 0
y2(0) = 10.

(3.13)

Function ball specifies the differential system, which applies in between bounces.
The dependent variables are the height (y1) and velocity (y2) of the ball.

library(deSolve)
yini <- c(height = 0, velocity = 10)

ball <- function(t, y, parms) {
dy1 <- y[2]
dy2 <- -9.8

list(c(dy1, dy2))
}

The ball bounce event is triggered by a root function, which signals when the
ball hits the ground, i.e. when y[1] = 0. The root function thus simply returns
y[1]:

rootfunc <- function(t, y, parms) y[1]

During the ball bounce (the “event”), its velocity (y[2]) is reversed and reduced
by 10%. The event function must return both state variables:

eventfunc <- function(t, y, parms) {
y[1] <- 0
y[2] <- -0.9*y[2]
return(y)
}

66 3 Solving Ordinary Differential Equations in R

0

0

5 10 15 20

1

2

3

4

5

bouncing ball

time

he
ig

ht

Fig. 3.9 The bouncing ball
model, including an event,
triggered by a root function.
See text for the R code

After specifying the output times, the model is solved. Several integration routines
in the package deSolve can locate the root of a function (see Table A.8). Here we
use the default method from ode, which is lsoda.

The solver needs to be informed that the event is triggered by a root (root =
TRUE), and the name of the event function (func = eventfunc) and the name
of the root function (rootfun = rootfunc) passed.

times <- seq(from = 0, to = 20, by = 0.01)
out <- ode(times = times, y = yini, func = ball,

parms = NULL, rootfun = rootfunc,
events = list(func = eventfunc, root = TRUE))

Fig. 3.9 shows how the ball bounces, each time loosing momentum:

plot(out, which = "height", lwd = 2,
main = "bouncing ball", ylab = "height")

Note that the integrators detect the presence of an event in an integration step by a
sign change of the root function value. Therefore, if the function has multiple roots
in one step, some may be missed. Also, the solver will not be able to detect a root
that does not cross the zero value. For the bouncing ball example, this becomes clear
if we solve the model for a longer period; at a certain point in time, a root will go
unnoticed, and the ball’s height will be negative and will be decreasing strongly in
time.

3.4.3 Temperature in a Climate-Controlled Room

We now deal with an example where the model dynamics change in response to a
certain switching function, i.e.

3.4 Discontinuous Equations, Events 67

y′ = f1(x) if g(x) = 1
y′ = f2(x) if g(x) = 0,

(3.14)

where g(x) is a switch.
Assume that in a climate-controlled room, the heat is switched on when the

temperature drops below 18◦C, and off when the room becomes warmer than 20◦C.
When the heating is on, the room warms at a constant rate, while there is constant
cooling otherwise. The differential equations are thus different during the cooling
and warming phases.

The challenge here is to know in which phase the system is. We could use
a parameter, denoting the cooling or warming phase, but parameters cannot readily
be changed (they are, by definition, assumed “constant” during the simulation).

Instead the problem is reformulated by adding the switching parameter as a state
variable to the system of differential equations. The derivative of this state variable
is set to 0 (i.e. it does not change during the integration), and its value is altered only
when an event takes place, i.e. when the temperature exceeds a critical value and the
heater turns on or off. Here is how we implement this model in R:

The model describes two state variables, the room temperature and the switching
variable. The simulation starts off with a room temperature = 18◦C, and heating
switched on (y[2]=1).

The temperature (y[1]) either increases at a rate of 1◦C per time unit, or
decreases at a rate of 0.5◦Ct−1, depending on whether the switch state variable
(y[2]) has a value 1 or 0. The derivative of the switch state variable, dy2 is 0:

yini <- c(temp = 18, heating_on = 1)

temp <- function(t, y, parms) {
dy1 <- ifelse(y[2] == 1, 1.0, -0.5)
dy2 <- 0
list(c(dy1, dy2))

}

The event is triggered when the temperature (y[1]) either takes the value of 18 or
20; this is at the root of either one of the functions y[1]-18 or y[1]-20:

rootfunc <- function(t, y, parms) c(y[1]-18, y[1]-20)

The event will switch the heating on or off, i.e. the switch will change from TRUE
to FALSE or vice versa. Using the “!” (or “not”) function is the simplest way to
achieve this switch; note that the event function must return both state variables.

eventfunc <- function(t, y, parms) {
y[1] <- y[1]
y[2] <- ! y[2]
return(y)
}

68 3 Solving Ordinary Differential Equations in R

0 5 10 15 20

18.0

18.5

19.0

19.5

20.0

temp

time

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

heating_on

time

Fig. 3.10 The temperature model, including an event, triggered by a root function. See text for the
R code

The model is now solved with lsode, and the two state variables plotted versus
time (Fig. 3.10)

times <- seq(from = 0, to = 20, by = 0.1)
out <- lsode(times = times, y = yini, func = temp,

parms = NULL, rootfun = rootfunc,
events = list(func = eventfunc, root = TRUE))

plot(out, lwd = 2)

The solver has stored the times at which the heating was turned on or off, in attribute
troot:

attributes(out)$troot

[1] 2 6 6 6 8 12 14 18

You will notice that the same root at t = 6 was located three times. This is a
numerical artifact. Even worse, if we extend the integration, the solver will at
a certain point miss a root. Practical experience indicates that the root finding
procedure that we implemented in radau is more robust for this type of model than
the solver lsode that we used here. Solver radau will be discussed in Chap. 5.

3.5 Method Selection

If the problem is non-stiff we will normally use a predictor-corrector method or
an explicit Runge-Kutta method, while for stiff problems, we will use an implicit
method. Implicit methods require that, at each time step, a system of equations is

3.5 Method Selection 69

solved to give the required solution (see Sect. 2.6). If the problem is stiff and linear
then the algebraic equations to be solved are linear. In contrast, nonlinear equations
are typically solved iteratively, using a variant of Newton’s method [20]. This
leads to a linear algebraic problem involving the Jacobian matrix at each iteration,
and therefore multiple function evaluations per time step. Although in practice,
the Jacobian will not be inverted (this is very inefficient), but rather Gaussian
elimination will be used, this still requires quite a lot of computational overhead.
On the other hand, as these multistep methods use previously computed values to
evaluate the values at the next time step, they can attain high order of accuracy in
less steps than taken by explicit methods, such as Runge-Kutta methods. The trade-
off between number of steps and number of function evaluations per step, versus
the overhead induced by the calculations involving the Jacobian determine which
method is most efficient for a particular problem.

It will soon become very clear if we choose the wrong method. For instance,
if an explicit method is chosen to solve a stiff problem, very small time steps
will be taken in order to maintain stability, and it will take a long time to solve
the problem. In such cases, the implicit bdf methods will be able to take much
larger steps and solve the problem in a fraction of the time. In contrast, for non-
stiff methods, the computational burden of Jacobian evaluation may overwhelm
the fewer function evaluations needed. This is especially the case for very large
sets of equations (e.g. resulting from numerically approximating partial differential
equations, see Chap. 8), which, if they do not generate a stiff problem, may be much
more efficiently solved with an explicit method.

It is generally not clear in advance which method may be best suited for a
particular problem, but as using the optimal method may significantly improve
overall performance, we give some rules of thumb to aid in the selection of the
most appropriate method:

1. Use an implicit method only if the ODE problem is stiff; bdf, radau, mebdfi,
gamd or bimd are best suited for very stiff problems, the adams methods
for mildly stiff problems. The latter may also be more efficient for non-stiff
problems, although the explicit Runge-Kutta methods are contenders in these
cases.

2. If it is not known whether a problem is stiff, then use lsoda from the package
deSolve or dopri5, cashkarp or dopri853 from the package deTestSet to
print when problems become stiff. To provoke the printing of these features, set
argument verbose=TRUE.

3. The diagnostics of a solution generated by the solvers provide a user with
information about the number of function evaluations, and, for implicit methods,
of the number of Jacobian decompositions. The diagnostics of method
lsodawill tell the user which method was used, and when lsoda has switched
between methods during the simulation.

4. Performance can be readily assessed by timing a model solution, using R’s
function system.time()method. So, as a crude approach, we can try several
methods and simply take the one that requires least simulation time with a similar

70 3 Solving Ordinary Differential Equations in R

accuracy (work precision diagrams described in Sect. 3.5.1.3 are very useful for
this purpose).

5. We can also assess performance by recording the number of function or Jacobian
evaluations.

3.5.1 The van der Pol Equation

A commonly used example to demonstrate stiffness is the van der Pol problem (see
[11]). It is defined by the following second order differential equation:

y′′ − μ(1− y2)y′+ y = 0, (3.15)

where μ is a parameter. We convert (3.15) in a first order system of ODEs by adding
an extra variable, representing the first order derivative:

y′1 = y2

y′2 = μ(1− y2
1)y2 − y1.

(3.16)

Stiff problems are obtained for large μ , non-stiff for small μ ; the problems have
both stiff and non-stiff parts for intermediate values of the parameter. We run the
model for μ = 1, 10, 1000, and using ode as the integrator:

yini <- c(y = 2, dy = 0)
Vdpol <- function(t, y, mu)

list(c(y[2],
mu * (1 - y[1]ˆ2) * y[2] - y[1]))

times <- seq(from = 0, to = 30, by = 0.01)
nonstiff <- ode(func = Vdpol, parms = 1, y = yini,

times = times, verbose = TRUE)
interm <- ode(func = Vdpol, parms = 10, y = yini,

times = times, verbose = TRUE)
stiff <- ode(func = Vdpol, parms = 1000, y = yini,

times =0:2000, verbose = TRUE)

3.5.1.1 Printing the Diagnostics of the Solutions

Function diagnostics prints the characteristics of the solutions. If we do
this for the run with μ = 1, then we see that lsoda solves the problem with
the adams method, which requires 6009 function evaluations (Fig. 3.11a). In
contrast, for μ = 10, lsoda switches back and forth three times between the
backward differentiation and the Adams formula, in the interval [0,30] (3897
function evaluations). The functionscashkarp and dopri5 consider the problem
to become stiff at t = 0.96 and t = 0.14 respectively, while dopri853 does not

3.5 Method Selection 71

0 5 10 15 20 25 30

−2

−1

0

1

2
mu=1

time

y
a b

c

0 5 10 15 20 25 30

−2

−1

0

1

2
mu=10

time

y

0 500 1000 1500 2000

−2

−1

0

1

2
mu=1000

time

y stiff − bdf
nonstiff − adams

van der Pol equation

Fig. 3.11 Three solutions of the van der Pol equation, solved with method lsoda. The regions
where the solver uses the adams or the backward differentiation formula are indicated

consider this problem to be stiff. Method switching by lsoda also occurs twice
when μ = 1000, in the time interval [0, 2000] but here the region where the non-
stiff method is used is very narrow (the thin grey line in Fig. 3.11c).

diagnostics(nonstiff)

lsoda return code

return code (idid) = 2
Integration was successful.

INTEGER values

1 The return code : 2
2 The number of steps taken for the problem so far: 3004
3 The number of function evaluations for the problem so far: 6009

72 3 Solving Ordinary Differential Equations in R

5 The method order last used (successfully): 7
6 The order of the method to be attempted on the next step: 7
7 If return flag =-4,-5: the largest component in error vector 0
8 The length of the real work array actually required: 52
9 The length of the integer work array actually required: 22

14 The number of Jacobian evaluations and LU decompositions so far: 0
15 The method indicator for the last succesful step,

1=adams (nonstiff), 2= bdf (stiff): 1
16 The current method indicator to be attempted on the next step,

1=adams (nonstiff), 2= bdf (stiff): 1

RSTATE values

1 The step size in t last used (successfully): 0.01
2 The step size to be attempted on the next step: 0.01
3 The current value of the independent variable which the solver has
reached: 30.00947

4 Tolerance scale factor > 1.0 computed when requesting too much
accuracy: 0

5 The value of t at the time of the last method switch, if any: 0

3.5.1.2 Timings

We can also run the same model with different integrators, each time printing the
time it takes (in seconds) to solve the problem:

library(deTestSet)
system.time(ode(func = Vdpol, parms = 10, y = yini,

times = times, method = "ode45"))

user system elapsed
0.29 0.00 0.30

system.time(ode(func = Vdpol, parms = 10, y = yini,
times = times, method = "adams"))

user system elapsed
0.06 0.00 0.06

system.time(ode(func = Vdpol, parms = 10, y = yini,
times = times, method = "bdf"))

user system elapsed
0.06 0.00 0.07

system.time(radau(func = Vdpol, parms = 10, y = yini,
times = times))

user system elapsed
0.27 0.00 0.27

3.5 Method Selection 73

system.time(bimd(func = Vdpol, parms = 10, y = yini,
times = times))

user system elapsed
0.17 0.00 0.18

system.time(mebdfi(func = Vdpol, parms = 10, y = yini,
times = times))

user system elapsed
0.06 0.00 0.06

We ran the van der Pol problem with a number of different integration methods,
each time using diagnostics to write the number of steps, function evaluations,
Jacobian matrix decompositions and method switches performed by the integrators.
Results are in Table 3.1. Clearly, the adams method which is most efficient
for solving the non-stiff problem (requires fewest function evaluations), becomes
completely unsuited in the stiff case, requiring more than eight million function
evaluations! The implicit methods (lsoda, bdf, impAdams, mebdfi) per-
form rather well in all cases.

Table 3.1 Performance of various integration routines implemented in deSolve, based on the van
der Pol equation with different values of parameter μ
Method Steps Function Jacobian Switches to

evaluations evaluations adams

times=seq(0,30,0.1) μ = 1

lsoda 528 1173 0 0
bdf 789 1070 64
adams 675 744 0
impAdams 539 811 55
rk45ck 300 1802 0
mebdfi 659 2439 71

times=seq(0,30,0.1) μ = 10

lsoda 705 1286 22 3
bdf 781 1096 71
adams 1384 1681 0
impAdams 625 896 60
rk45ck 415 2492 0
mebdfi 610 2383 73

times=0:2000 μ = 1,000

lsoda 2658 3561 157 2
bdf 2744 3424 194
adams 6829877 8730223 0
impAdams 2646 3447 210
rk45ck 1307209 7843256 0
mebdfi 815 3200 101

74 3 Solving Ordinary Differential Equations in R

4 6 8 10 12

0.02

0.05

0.10

0.20

0.50
mu = 1

mescd

se
co

nd
s

el
ap

se
d

lsoda
bdf
impAdams
mebdfi
gamd
radau

a

0 2 4 6 8

0.1

0.2

0.5

mu = 1000

mescd

se
co

nd
s

el
ap

se
d

lsoda
bdf
impAdams
mebdfi
gamd
radau

b

Fig. 3.12 Work precision diagrams for the van der Pol problem

3.5.1.3 Work Precision Diagrams and mescd

In the previous section we compared the execution time of the codes, using the
default relative and absolute tolerances. Most codes implement an error estimate
(see Sect. 2.1.2.2), but it is not assured that the error will be of the same order as the
prescribed tolerances. A common way to compare codes is to use the so-called work
precision diagrams using the mixed error significant digits, mescd, defined by:

mescd :=− log10(max(|absolute error/(atol/rtol+ |ytrue|)|)), (3.17)

where the absolute error is computed at all the mesh points at which output is
wanted, atol and rtol are the input absolute and relative tolerances, ytrue is a more
accurate solution computed using the same solver with smaller relative and absolute
input tolerances and where (/, + and max) are element by element operators.

For every solver, a range of input tolerances were used to produce plots of the
resulting mescd values against the number of CPU seconds needed for a run. Here
we took the average of the elapsed CPU times of four runs. The format of these
diagrams is as in ([11, 12], pp. 166–167, 324–325). As an example we report in
Fig. 3.12 the work precision diagrams for the methods lsoda, bdf, impAdams,
mebdfi, radau, gamd running the van der Pol problem with μ = 1 and for
μ =1000. The range of tolerances used is, for all codes, rtol = 10−4+m/4 with
m = 0,2, . . . ,32, all the other parameters are the default. We use times <- 0:30
for μ = 1 and for μ = 1000 we use times <-0:2000 for Fig. 3.12.

3.6 Exercises 75

We want to emphasize that the reader should be careful when using these
diagrams for a mutual comparison of the solvers. The diagrams just show the result
of runs with the prescribed input on the specified computer. A more sophisticated
setting of the input parameters, another computer or compiler, as well as another
range of tolerances, or even another choice of the input vector times may change
the diagrams considerably (not shown). For the van der Pol problem for μ = 1
the impAdams is the most efficient code (Fig. 3.12a), while for μ = 1000 lsoda
and bdf require the least computational time to compute a solution with a similar
number of mescd (Fig. 3.12b).

3.6 Exercises

3.6.1 Getting Started with IVP

Solve the problem

y′ = y2 + t, (3.18)

with initial condition y(0)= 0.1 on the interval [0,1]; write the output to matrix out.
Now solve the following equations

y′ = y2 − yt, (3.19)

and
y′ = y2 + 1, (3.20)

with the same initial condition, and same output times. Save the output of the
problems (3.19) and (3.20) to matrices out2, and out3 respectively. Plot the
output of the three models in one plot.

Solve the following second order equation for t ∈ [0,20].

y′′ =−0.1y. (3.21)

The initial conditions are y(0) = 1, y′(0) = 0. You will first need to rewrite
this equation as two first order equations. Finally, solve the following differential
problem using ode45

y′′+ 2y′+ 3y = cos(t)

y(0) = y′(0) = 0, (3.22)

in the interval [0,2π].

76 3 Solving Ordinary Differential Equations in R

3.6.2 The Robertson Problem

This is a stiff problem consisting of three ordinary differential equations. It describes
the kinetics of an autocatalytic reaction given by [22]. The equations are:

y′1 =−k1y1 + k3y2y3

y′2 = k1y1 − k2y2
2 − k3y2y3

y′3 = k2y2
2. (3.23)

Solve the problem in R; use as initial conditions y1 = 1, y2 = 0, y3 = 0. The values
for the parameters are k1 = 0.04; k2 = 3.107; k3 = 1.104. First integrate the problem
on the interval 0 ≤ t ≤ 40. Then integrate it in the interval 10−4 ≤ t ≤ 107.

Use for the second output times a logarithmic series:

times <- 10ˆ(seq(from = -4, to = 7, by = 0.1))

When plotting the outcome, scale the x-axis logarithmically.

3.6.3 Displaying Results in a Phase-Plane Graph

In (Sect. 3.2.1) the results of a three-equation model, the rigid body model, were
displayed in a 3D phase plane, using the R package scatterplot3D.

3.6.3.1 The Rossler Equations

Produce a 3-D phase-plane plot of the following set of ODEs, which you solve on
the interval [0, 100] and with initial conditions equal to (1, 1, 1):

y′1 =−y2 − y3

y′2 = y1 + ay2

y′3 = b+ y3(y1 − c), (3.24)

for a = 0.2, b = 0.2, c = 5. This system, called the Rossler equations, is due to [23];
its output is in Fig. 3.13, left (use ?scatterplot3d to find out how to get rid of
the axis and grid).

3.6.3.2 Josephson Junctions

The next example, again from [12] describes superconducting Josephson Junctions.
The equations are:

3.6 Exercises 77

Rossler

0.2 0.6 1.0 1.4

0.5

1.0

1.5

Josephson

dy1

dy
2

Fig. 3.13 Phase plane of the Rossler equation (left) and the Josephson Junction (right)

c(y′′1 −αy′′2) = i1 − sin(y1)− y′1

c(y′′2 −αy′′1) = i2 − sin(y2)− y′2

y1(0) = y2(0) = y′1(0) = y′2(0) = 0.5, (3.25)

Solve the equations in the interval [0,2π] and for c = 2, α = 0.5, i1 = 1.11,
i2=1.18.

You will need to write the equations as a function of y′′1 and y′′2 first, by taking
suitable linear combinations. Then each second order differential equation should
be rewritten as a set of two first order equations. For instance, solving for y′′1, we
first rewrite:

cy′′1 − cαy′′2 = i1 − sin(y1)− y′1

cαy′′2 − cα2y′′1 = α(i2 − sin(y2)− y′2). (3.26)

Then take the sum to obtain

c(1−α2)y′′1 = i1 − sin(y1)− y′1 +α(i2 − sin(y2)− y′2). (3.27)

Similarly, you can solve for y′′2.

78 3 Solving Ordinary Differential Equations in R

0 5 10 15 20

2

4

6

8

10

y

time

unharvested
2−day harvest
harvest at 80% of K

Fig. 3.14 Harvesting in the logistic model

3.6.4 Events and Roots

The logistic equation of Sect. 3.1.1, describes the growth of a population:

y′ = ry
(

1− y
K

)
, (3.28)

with r = 1, K = 10 and y(0) = 2.
Now this population is being harvested according to two strategies: one is to

reduce the population’s density every 2 days to 50%; the other is to wait until the
species has reached 80% of its carrying capacity and then halving the density.

Implement these two strategies in a model. In the first, it will be easiest to
outline the times at which harvesting occurs in a data.frame, much as we did in
Sect. 3.4.1.2. In the second case you will need to use a root function that keeps track
of when the population exceeds the critical density, and then reduce the density to
50% (see Sect. 3.4.2).

Run the model for 20 days and using three different scenarios. The first is when
the population is unharvested, and the other two runs using each of the two strategies
described above. Try to reproduce Fig. 3.14. You may also find inspiration on how to
do this in the examples from deSolve’s events help page (?events will open this).

References 79

3.6.5 Stiff Problems

Several stiff test problems are described in [27]. One of their problems, called
ds1ode, is given by:

y′ =−σ(y3 − 1), (3.29)

where σ is a parameter that determines the stiffness of the problem. Solve the
problem in the interval [0, 10], with y(0) = 1.2 and for three values of σ , equal
to 106, 1 and 10−1. Plot the three outputs in the same figure. Use function
diagnostics to see how the integration was done (number of steps, method
selected, etc. . .).

References

1. Arenstorf, R. F. (1963). Periodic solutions of the restricted three-body problem representing
analytic continuations of Keplerian elliptic motions. American Journal of Mathematics, 85,
27–35.

2. Aris, R. (1965). Introduction to the analysis of chemical reactors. Englewood Cliffs: Prentice
Hall.

3. Bogacki, P., & Shampine, L. F. (1989). A 3(2) pair of Runge–Kutta formulas. Applied
Mathematics Letters, 2, 1–9.

4. Brown, P. N., Byrne, G. D., & Hindmarsh, A. C. (1989). VODE, a variable-coefficient ODE
solver. SIAM Journal on Scientific and Statistical Computing, 10, 1038–1051.

5. Brugnano, L., & Magherini, C. (2004). The BiM code for the numerical solution of ODEs.
Journal of Computational and Applied Mathematics, 164–165, 145–158.

6. Cash, J. R., & Considine, S. (1992). An MEBDF code for stiff initial value problems. ACM
Transactions on Mathematical Software, 18(2), 142–158.

7. Cash, J. R., & Karp, A. H. (1990). A variable order Runge–Kutta method for initial value
problems with rapidly varying right-hand sides. ACM Transactions on Mathematical Software,
16, 201–222.

8. Dormand, J. R., & Prince, P. J. (1980). A family of embedded Runge–Kutta formulae. Journal
of Computational and Applied Mathematics, 6, 19–26.

9. Dormand, J. R., & Prince, P. J. (1981). High order embedded Runge–Kutta formulae. Journal
of Computational and Applied Mathematics, 7, 67–75.

10. Fehlberg, E. (1967). Klassische Runge–Kutta formeln funfter and siebenter ordnung mit
schrittweiten-kontrolle. Computing (Arch. Elektron. Rechnen), 4, 93–106.

11. Hairer, E., & Wanner, G. (1996). Solving ordinary differential equations II: Stiff and
differential-algebraic problems. Heidelberg: Springer.

12. Hairer, E., Norsett, S. P., & Wanner, G. (2009). Solving ordinary differential equations
I: Nonstiff problems (2nd rev. ed.). Heidelberg: Springer.

13. Hindmarsh, A. C. (1980). LSODE and LSODI, two new initial value ordinary differential
equation solvers. ACM-SIGNUM Newsletter , 15, 10–11.

14. Hindmarsh, A. C. (1983). ODEPACK, a systematized collection of ODE solvers. In
R. Stepleman (Ed.), Scientific computing: Vol. 1. IMACS transactions on scientific computation
(pp. 55–64). Amsterdam: IMACS/North-Holland.

15. Hundsdorfer, W., & Verwer, J. G. (2003). Numerical solution of time-dependent advection-
diffusion-reaction equations. Springer series in computational mathematics. Berlin: Springer.

80 3 Solving Ordinary Differential Equations in R

16. Iavernaro, F., & Mazzia, F. (1998). Solving ordinary differential equations by generalized
Adams methods: Properties and implementation techniques. Applied Numerical Mathematics,
28(2–4), 107–126. Eighth conference on the numerical treatment of differential equations
(Alexisbad, 1997).

17. Ligges, U., & Mächler, M. (2003). Scatterplot3d–an R package for visualizing multivariate
data. Journal of Statistical Software, 8(11), 1–20.

18. Lorenz, E. N. (1963). Deterministic non-periodic flows. Journal of Atmospheric Sciences, 20,
130–141.

19. Petzold, L. R. (1983). Automatic selection of methods for solving stiff and nonstiff systems
of ordinary differential equations. SIAM Journal on Scientific and Statistical Computing, 4,
136–148.

20. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes
(3rd ed). Cambridge: Cambridge University Press.

21. Reddy, M., Yang, R. S., Andersen, M. E., & Clewell, H. J., III (2005). Physiologically based
pharmacokinetic modeling: Science and applications. Hoboken: Wiley.

22. Robertson, H. H. (1966). The solution of a set of reaction rate equations. In J. Walsh (Ed.),
Numerical analysis: An introduction (pp. 178–182). London: Academic Press.

23. Rossler, O. E. (1976). An equation for continous chaos. Physics Letters A, 57(5), 397–398.
24. Shampine, L. F. (1994). Numerical solution of ordinary differential equations. New York:

Chapman and Hall.
25. Shampine, L. F., Gladwell, I., & Thompson, S. (2003). Solving ODEs with MATLAB.

Cambridge: Cambridge University Press.
26. Soetaert, K., Petzoldt, T., & Setzer, R. W. (2010). Solving differential equations in R: Package

deSolve. Journal of Statistical Software, 33(9), 1–25.
27. van Dorsselaer, J. L. M., & Spijker, M. N. (1994). The error committed by stopping the newton

iteration in the numerical solution of stiff initial value problems. IMA journal of Numerical
Analysis, 14, 183–209.

28. Verhulst, P. (1838). Notice sur la loi que la population poursuit dans son accroissement.
Correspondance Mathematique et Physique, 10, 113–121.

Chapter 4
Differential Algebraic Equations

Abstract In Chaps. 2 and 3 we were concerned mainly with the numerical solution
of ordinary differential equations of the form y′ = f (x,y). However, there are
problems which are more general than this and require special methods for their
solution. One such class of problems are differential algebraic equations (DAEs).
An important class of DAEs are those which can be written with a mass matrix M,
where the matrix M is singular. Another important class of problems are differential
equations subjected to constraints. In this chapter we discuss solution methods
for these classes of equations. As we will see DAEs are often considerably more
difficult to solve than ODEs.

4.1 Introduction

In this book so far, we have been concerned with the numerical solution of (explicit)
first order systems of ODEs of the form:

y′ = f (x,y). (4.1)

There is another important class of problems which arise frequently in practice, and
which are more general than (4.1). These equations take the implicit form:

F(x,y,y′) = 0. (4.2)

If the matrix
∂F
∂y′

(x,y(x),y′(x)), (4.3)

is not singular, then, theoretically, any system of the form (4.2) can be converted
to the form (4.1), which can be solved by most of the initial value algorithms
considered earlier in this book. If the matrix (4.3) is singular then (4.2) are called
differential algebraic equations (DAEs).

DOI 10.1007/978-3-642-28070-2 4, © Springer-Verlag Berlin Heidelberg 2012
81K. Soetaert et al., Solving Differential Equations in R, Use R!,

82 4 Differential Algebraic Equations

A commonly occurring special case of (4.2) is where a mass matrix (M) appears
in the formulation of the problem, thus allowing (4.2) to be written in the more
special form:

M(x,y)y′ = f (x,y). (4.4)

Problems described by (4.4) arise when there is a relationship that must hold, for
all x, between some of the dependent variables. For example, in electrical circuit
modelling, the equations ensure that summed currents and voltages passing through
nodes and loops are zero. From problem formulation (4.4), it is immediately clear
that, if the mass matrix is not singular (i.e. its inverse, M−1(x,y) exists), one way to
solve this problem is to write it as:

y′ = M−1(x,y) f (x,y), (4.5)

thus obtaining an ODE. In many practical applications however, the matrix M(x,y)
is singular and the numerical solution needs particular care because we must deal
with the implicit equations related to the algebraic constraints. A typical example
is given by the class of problems where the matrix M is a constant diagonal matrix
M = diag(1, . . . ,1,0, . . . ,0), in this case the differential equations have the form

y′ = f (x,y,z)
0 = g(x,y,z).

(4.6)

For example, in chemical reaction equations, the algebraic equations may enforce
mass balance or represent so-called equilibrium expressions.

There are now several excellent books that deal with the theory of DAEs. The
interested reader is advised to consult [1, 2, 7] and the references contained therein.

4.1.1 The Index of a DAE

A fundamentally important concept in both the theory and the design of algorithms
for the numerical solution of DAEs is that of the index of a DAE. In a sense this
tells us how far away the DAE is from being an ODE. The higher the index, the
further it is from an ODE, and, as we might expect, the more difficult it is in
general to solve the DAE. There exist many different types of DAE-indices. We
mention the differentiation index [7, p. 454], the perturbation index [7, p. 459] and
the tractability index [12].

Here we use the following definition [1]: for a general DAE of the form (4.2) the
differentiation index along a solution y(x) is the minimum number of differentiations
of the DAE with respect to x that are required to solve for y′ uniquely in terms
of y and x. Note in particular that the index depends on the solution [1, p. 236],
[7, p. 454].

4.1 Introduction 83

As an example, consider the equation

y′1 = y2

y1 = g(x).
(4.7)

Differentiating the algebraic equation with respect to x once, we obtain:

y′1 = y2 = g′(x). (4.8)

We need another differentiation to obtain an ODE:

y′2 = g′′(x), (4.9)

so this equation has differentiation index = 2 because two differentiations of g(x)
were needed to obtain an ODE.

One way to solve DAEs is to rewrite them as ODEs by performing these analytic
differentiations. This technique is known as index-reduction. However, this has
some important drawbacks, and so this approach is not much used in practice.
Finally we note that, of course, an ODE is a differential algebraic equation of
index 0.

4.1.2 A Simple Example

As a first example, we consider the famous “Robertson” problem which describes
an autocatalytic reaction [15] between three chemical species, A, B and C:

A
k1−→ B

B+B
k2−→ C+B

B+C
k3−→ A+C,

(4.10)

where the numbers on top of the arrows are the reaction rate coefficients, generally
taken to be 0.04, 3 ·107 and 104 for k1,k2,k3 respectively.

This problem is usually formulated as an ODE [13]:

A′ = −k1A+ k3BC, A(0) = 1
B′ = k1A− k3BC− k2B2, B(0) = 0
C′ = k2B2, C(0) = 0.

(4.11)

As the sum of all derivatives (A′ + B′ +C′) is 0, the total mass is constant (and
equal to A(0)+B(0)+C(0) = 1), so an equivalent representation of the system, as
a DAE is:

A′ = −k1A+ k3BC
B′ = k1A− k3BC− k2B2

1 = A+B+C,
(4.12)

84 4 Differential Algebraic Equations

where the first two equations are differential equations that specify the dynamics
of chemical species A and B, while the third algebraic equation ensures that the
summed concentration of the three species remains at 1. Written in the form (4.2),
this becomes:

0 = −A′ − k1A+ k3BC
0 = −B′+ k1A− k3BC− k2B2

0 = A+B+C− 1,
(4.13)

while in the form (4.4):

⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦ .
⎡
⎣A′

B′

C′

⎤
⎦=

⎡
⎣ −k1A+ k3BC

k1A− k3BC− k2B2

A+B+C− 1

⎤
⎦ . (4.14)

Now the index of (4.12) is 1 as we need to differentiate the algebraic equation only
once to obtain an ODE:

0 = A′+B′+C′

C′ = −A′ −B′

C′ = k2B2.

(4.15)

This is the original formulation (4.11).

4.1.3 DAEs in Hessenberg Form

An important class of DAEs for which there exist many theoretical results are DAEs
in Hessenberg form see [1, p. 238]. An index 1 DAE in Hessenberg form is given
by system (4.6). For simplicity we rewrite this here in autonomous form:

y′ = f (y,z) (4.16)

0 = g(y,z), (4.17)

where gz
1 is assumed to be non singular for all x in a neighbourhood of the solution.

We note that a non-autonomous system can be written in the autonomous form by
adding an equation for the independent variable x i.e. x′ = 1.

An index 2 DAE in Hessenberg form is given by the following equations:

y′ = f (y,z) (4.18)

0 = g(y), (4.19)

1gz is shorthand for
∂ g
∂ z

.

4.1 Introduction 85

where gy fz is assumed to be non singular for all x in a neighbourhood of the solution.
Differentiating (4.19) shows that the solution has to satisfy the equation

0 = gy(y) f (y,z), (4.20)

and we can use this equation to determine the z component in a locally unique way.
Equation (4.20) is known as a hidden constraint.

An index 3 DAE in Hessenberg form is given by:

y′ = f (y,z) (4.21)

z′ = k(y,z,u) (4.22)

0 = g(y), (4.23)

where gy fzku is assumed to be non singular for all x in a neighbourhood of the
solution.

4.1.4 Hidden Constraints and the Initial Conditions

For initial value DAE problems not all components of the initial value can be chosen
freely which is in contrast to the case for ODEs. For certain DAEs, it may not
be obvious how to formulate the initial conditions that lead to a uniquely solvable
IVP.

The initial conditions of a DAE are consistent only if they obey the algebraic
equation. For systems of index 1 (as in the Robertson problem, Sect. 4.1.2, equation
(4.12)), the initial conditions are straightforward to derive. However, for higher
index systems, there can be hidden constraints. These are important as we need
to take care of them to make the initial conditions consistent. The problem of
finding consistent initial conditions has been analyzed by many authors (see [11]
and the references therein). In what follows we will consider the concept of hidden
constraints and show how these arise in the numerical integration of DAEs in
Hessenberg form.

4.1.4.1 Hidden Constraints in Index 2 DAEs in Hessenberg Form

We consider first of all the system of index 2 defined by (4.18) and (4.19). In this
system, (4.20) defines the hidden constraint. Consequently, the initial conditions
should satisfy the following equations:

g(y0) = 0
gy(y0) f (y0,z0) = 0,

(4.24)

in order to be consistent.

86 4 Differential Algebraic Equations

x

y

length L

m = 2

Fig. 4.1 Schematic
representation of the
pendulum problem

4.1.4.2 Hidden Constraints in Index 3 DAEs

Now we consider systems of index 3 defined by (4.21)–(4.23). Differentiating (4.23)
we have

0 = gy(y) f (y,z)
0 = gyy(f , f)+ gy fy f + gy fzk.

(4.25)

Consistent initial values must satisfy (4.23) and the above two hidden condi-
tions (4.25).

4.1.5 The Pendulum Problem

The classic example of an index 3 problem in Hessenberg form is the pendulum
problem which is a simple mechanical system [2, 7] (Fig. 4.1).

The equations modeling the motion of a simple pendulum of length L with an
infinitesimally small ball of mass m, tension λ and only gravitational forces acting
on the pendulum, are given by two second order ODEs and one algebraic equation.
The latter results from a geometrical constraint on the variables x and y.

mx′′ =−2λ x
my′′ =−2λ y−mg
L2 = x2 + y2.

(4.26)

Here x and y are the position of the mass in cartesian coordinates and g is gravity.
If we take m = 2, and we rewrite this system in first order form by adding two
additional variables, we obtain:

4.2 Solving DAEs 87

x′ = u
y′ = v
u′ = −λ x
v′ = −λ y− g
0 = x2 + y2 −L2,

(4.27)

where u and v are the ball’s velocity in the x- and y-direction respectively. The
dependent variables are x,y,u,v and λ , where λ is also called a Lagrange multiplier.
Note that its dynamics are not described by an ODE.

4.2 Solving DAEs

We start this section with a note of caution. Our aim is to discuss numerical
algorithms for the solution of the general DAE (4.2) written in implicit form.
However (4.2) can include problems which are not well defined mathematically and
which can not be solved by any method based on direct discretization of y and y′
(see [1, p. 238]).

4.2.1 Semi-implicit DAEs of Index 1

One of the easiest classes of DAEs to analyse and indeed to solve is of the form:

y′ = f (x,y,z) (4.28)

0 = g(x,y,z), (4.29)

where the differential and the algebraic equations are separated. This can be
regarded as an ODE coupled with constraints. If the matrix ∂g

∂ z is invertible in the
neighborhood of the solution, then (4.28) and (4.29) is an index 1 DAE. The initial
conditions are consistent if 0 = g(x0,y0,z0).

There exist two commonly used approaches to the numerical solution of this type
of DAE: the “ε-embedding method” and the “state space form method” [7].

4.2.1.1 The ε-embedding Method

In the ε-embedding method for problems of index 1, we consider the ODE system:

y′ = f (x,y,z)
εz′ = g(x,y,z).

(4.30)

88 4 Differential Algebraic Equations

The behaviour of the solution of (4.30) is studied as ε → 0. This will give us valuable
information concerning the behaviour of our numerical problems for extremely stiff
cases and also suggest algorithms for solving (4.28) and (4.29). For a description
of the ε embedding approach the reader is referred to [7, p. 374]. For a description
of methods which are applicable to the differential equation (4.30) the reader is
referred to Chaps. 1 and 2 earlier in this book.

4.2.1.2 The State Space Form Method

In what follows, we will assume that the functions y and g are sufficiently often
differentiable for our purposes and we will be concerned with the case where
∂g
∂ z (x,y,z) is invertible in the neighborhood of the solution.

Under these assumptions the implicit function theorem guarantees that (4.29)
possesses a locally unique solution z = ḡ(x,y), which can be substituted in (4.28) to
give the differential equation y′ = f (x,y, ḡ(x,y)). This ordinary differential equation
is the so-called state-space form. For instance, as C = 1−A−B, it is easy to see that
the Robertson problem (4.12) can be written in state space form as:

A′ = −k1A+ k3B · (1−A−B)
B′ = k1A− k3B · (1−A−B)− k2B2.

(4.31)

Often the algebraic equations (4.29) have a special structure, which can be used
to solve them very efficiently, for instance if an analytic solution exists, as in the
previous (Robertson) example. In this case, this solution method can be faster than
using special DAE solvers, where the algebraic equations are solved with standard,
iterative methods. However, as we will see later, there are various reasons for which
this procedure is not always recommended.

4.2.2 General Implicit DAEs of Index 1

We now show how a general implicit equation of the form (4.2), can be solved using
standard numerical methods. This approach was first proposed by [6] and [5], for
use with Backward Differentiation Formulae (BDF). The idea is to take (4.2) and
to replace the derivative y′ by a finite difference approximation. The most simple
approach is to replace y′ with the backward Euler method to obtain

F(xn,yn,
yn − yn−1

h
) = 0, (4.32)

with h = xn − xn−1. This equation can be solved for yn, thus advancing the solution
from (xn−1,yn−1) to (xn,yn). It is straightforward to show that for semi-explicit
index 1 DAEs the Backward Euler method is first order accurate, stable and
convergent.

4.2 Solving DAEs 89

An obvious way to extend this to higher order is to use higher order linear
multistep or Runge–Kutta methods. We demonstrate this by using a higher order
BDF. Following [5] we replace y′n in (4.2) with a k-step BDF so that

y′n =
1

hβk

k

∑
i=0

αk−iyn−i, (4.33)

where αk−i and βk are the coefficients of the BDF methods. This expression
can be inserted into (4.2) to produce the system of nonlinear algebraic equations
defining yn:

F(xn,yn,y
′
n) = 0. (4.34)

Now if the original (4.2) is of index 1 and differentiable with respect to both y and
y′, then its solution using a BDF with fixed h and k < 7 converges with order O(hk)
if all initial values are given correct to O(hk) and the Newton iteration scheme is
solved to O(hk+1).

One of the most powerful methods available for solving index 1 DAEs is the code
DASSL [14] which is based on BDF. Another efficient approach to solving index
1 DAEs is via the use of Runge–Kutta methods and this is explained in detail in
[7, p. 371]. Experience has shown that index 1 DAEs are often not much more
difficult to solve than explicit ODEs written in the form (4.1).

4.2.3 Discretization Algorithms

We finish off this section with a discussion of how we might solve differential
algebraic equations using discretization. This has been considered in some detail
in [7, p. 490], but it is instructive to summarise it here. Our aim is to illustrate how
Newton’s method is applied to the discretization of a DAE system.

If we consider the Backward Euler method applied to:

y′ = f (y,z)
0 = g(y),

(4.35)

we have
yn+1 − yn − h f (yn+1,zn+1) = 0

g(yn+1) = 0.
(4.36)

The jacobian matrix associated with (4.36) is:

J =

(
I− h fy −h fz

gy 0

)
, (4.37)

90 4 Differential Algebraic Equations

where we now leave out the indices of the variables. We now use the simplified
Newton iteration (a fixed point iteration)

0 = J

(
yn+1

zn+1

)
−
(

yn+1 − yn − h f (yn+1,zn+1)

g(yn+1)

)
. (4.38)

A detailed analysis of this scheme can be found in [7, p. 491].

4.2.4 DAEs of Higher Index

Of course, not all DAEs are of index 1. In fact, many problems of practical
importance have index > 1.

There are two fundamental choices that can be taken in order to solve higher
index equations: either we use numerical methods suitable for dealing with high
index problems or we reduce the index of the system (to 1 if possible).

In what follows we will illustrate the latter approach by means of the well-known
pendulum problem.

4.2.4.1 Index Reduction

An obvious approach to reduce the index of a system is to differentiate it. We saw
an example of this in Sect. 4.1.2. In theory we can differentiate until we obtain a set
of ODEs, or we may stop at index 1 as these problems are not much more difficult
to solve than ODEs (note that a problem of index 0 is a differential equation).

Following this approach we can reduce the index of the pendulum problem (4.27)
by successive differentiation of the algebraic constraints.

Differentiating the algebraic equation (the last from (4.27)) once and simplifying,
we obtain:

2xx′+ 2yy′ = 0
or
xu+ yv = 0.

(4.39)

This reformulates the constraint and reduces the system’s index to two.
The complete index two pendulum problem in Hessenberg form is:

x′ = u
y′ = v
u′ = −λ x
v′ = −λ y− g
0 = xu+ yv.

(4.40)

4.2 Solving DAEs 91

Differentiating the constraint once more, substituting for u′ and v′, and simplifying
we obtain:

u2 + v2 + xu′+ yv′ = 0
u2 + v2 − (x2 + y2)λ − yg = 0
or
u2 + v2 −L2λ − yg = 0,

(4.41)

where the system is now of index 1. The algebraic equation can be rewritten to
provide an expression for λ and this expression can be used to find a suitable initial
condition for λ .

We now differentiate the equation once more and solve for λ ′:

2uu′+ 2vv′ −L2λ ′ − y′g = 0

λ ′ =
1
L2 (−2λ (ux+ vy)− 3vg).

(4.42)

So, after three differentiations, we obtain an expression for the derivative of λ , and
the algebraic equation has been converted to an ODE. Consequently, the original set
of equations is an index 3 system.

It is very important to note that, except for the original index 3 formulation,
none of the equations guarantees that x2 + y2 = L2. This leads to the main problem
of index reduction, namely that the error in the constraint will grow with each
reduction. This is illustrated in Fig. 4.2 for the four different formulations of the
pendulum problem. We see that, whereas the error stays small when solved in index
3 form (Fig. 4.2a), the error increases when differentiated once (Fig. 4.2b), but the
increase is quadratic and of oscillatory nature when differentiated twice or more
(Fig. 4.2c, d). This phenomenon is known as drift off.

The error in the original constraint and in the hidden constraints for the four
problem formulations are given in Table 4.1. The problem occurs because the
algebraic constraints are not very well preserved by the numerical solution. One
way to avoid this instability is to repeatedly project the numerical solution onto all
constraints. The interested reader is referred to [7, p. 470].

4.2.4.2 Higher Index Solvers

As mentioned previously, it is often much more difficult to solve DAEs than it
is to solve ODEs. Indeed only index 1 DAEs can safely be solved numerically.
However for specially structured DAEs there are numerical methods which may
work well. Three very efficient general purpose codes for the solution of DAEs are
BDF methods (typified by DASSL [14]), RADAU5 [7] and MEBDF (typified by
MEBDFDAE and MEBDFI [4]). In particular the codes RADAU5 and MEBDF can
deal with problems of index ≤ 3 that are in Hessenberg form. The codes DASSL
[14] and DASPK2.0 [2] can solve problems of index ≤ 1, while DASPK3.0 [2]
also solves and initialises DAEs of index 2 in Hessenberg form. The DASPK codes
can solve very large problems such as those arising in the method of lines solution

92 4 Differential Algebraic Equations

0 2 4 6 8 10

−1e−08

1e−08

3e−08

index 3

time

er
ro

r

a

0 2 4 6 8 10

0e+00

2e−09

4e−09

index 2

time

er
ro

r

b

0 2 4 6 8 10

−4e−08

0e+00

index 1

time

er
ro

r

c

0 2 4 6 8 10

−3e−07

−1e−07

1e−07

ode

time

er
ro

r
d

y 1
2 + y2

2 − 1

Fig. 4.2 When the index of the well-known pendulum problem, an index 3 system, is reduced
by differentiation, the numerical solution will start to drift away from the algebraic constraint
L2 = y2

1 +y2
2, with L = 1. (a) This error is small in the original formulation. (b) The error increases

with time for the index 2 formulation. (c, d) Worse, it oscillates with exponentially increasing
amplitude for index 1 (c) and index 0 (d) systems. The solution was obtained with mebdfi, using
tolerances = 10−8

Table 4.1 Mean of the absolute value of the constraint and
the hidden constraints for numerical solutions computed with
MEBDFI (tolerances = 10−8) for the four formulations of the
pendulum equation

Index x2 + y2 −1 xu+ yv u2 + v2 −λ −gy
3 8.59 ·10−10 3.74 ·10−7 1.72 ·10−4

2 2.74 ·10−9 6.40 ·10−10 5.02 ·10−7

1 6.21 ·10−9 1.56 ·10−8 4.35 ·10−9

0 3.78 ·10−8 9.98 ·10−8 6.10 ·10−8

of PDEs (see Sect. 8.4). This efficiency is obtained by using Krylov subspaces to
solve the linear algebraic equations. Two other codes that can handle problems with
index ≤ 3 that are in Hessenberg form are the codes GAMD [10] and BIMD [3].

4.2 Solving DAEs 93

It is important to make clear that it is often not possible for a code to solve non-
Hessenberg (general) higher index systems routinely. This is shown in [2, p. 45]
where a stable linear index 2 DAE which depends on a parameter can be unstable
or unsolvable for all Runge–Kutta and linear multistep methods.

There is an assortment of other methods which can be very effective in the
right circumstances. An approach which could be adopted for high index DAEs
is first to reduce the index of the problem by differentiating it and then to try either
a projection method, the state phase form or a half explicit method to solve the
problem. The interested reader is referred to [7, Chap. 7].

4.2.5 Index of a DAE Variable

One drawback of solvers of higher index DAEs is that they need specification
of the “index of each variable” separately. This notion “index of a variable” was
introduced for the first time in the documentation of the code RADAU5 and it is
strictly connected to the error estimate used in that code [7] and later used in the
codes MEBDFDAE, MEBDFI, BIMD and GAMD.

An analysis of the local error estimate for Runge–Kutta methods for the compo-
nent z of (4.18) shows that the error grows like O(1/h) when the step-size decreases
[8, p. 102]. Since this is a dangerous property for a variable step-size implementation
it is advisable to scale the z component with a factor h. For this reason the z
components are called “index 2” variables.

A rigorous analysis has been made for index 3 DAEs in Hessenberg form [8]. For
this class of problems we have that, for the component z (in equation (4.21)), the
error grows like O(1/h), and for the component u (equation (4.22)) the error grows
like O(1/h2) when the step-size decreases. For this reason it is advisable to scale the
z component with a factor h and the u component with a factor h2. Now, for obvious
reasons, the z components are called “index 2” variables and the u components are
called the “index 3” variables. The variables that do not require a scaling are called
“index 1” variables.

The original pendulum problem (4.27) is an example of an index 3 problem in
Hessenberg form. For this problem (x,y) are the “index 1” variables, (u,v) are the
“index 2” variables and λ is the “index 3” variable.

Based on (4.40), it is clear that for the index two pendulum problem (x,y,u,v)
are the “index 1” variables and λ is the “index 2” variable. Finally, for the index 1
formulation of the pendulum problem (4.41), all variables are of index 1.

We observe that the index of a variable is clearly defined only for the class of
problems written in Hessenberg form. In this case the index of the DAE equals the
maximum index of a variable. For general DAEs of the form (4.2) it is, in general,
not possible to associate an index to one variable.

94 4 Differential Algebraic Equations

References

1. Ascher, U. M., & Petzold, L. R. (1998). Computer methods for ordinary differential equations
and differential-algebraic equations. Philadelphia: SIAM.

2. Brenan, K. E., Campbell, S. L., & Petzold, L. R. (1996). Numerical solution of initial-
value problems in differential-algebraic equations. Philadelphia: SIAM Classics in Applied
Mathematics.

3. Brugnano, L., Magherini, C., & Mugnai, F. (2006). Blended implicit methods for the numerical
solution of DAE problems. Journal of Computational and Applied Mathematics, 189(1–2),
34–50.

4. Cash, J. R., & Considine, S. (1992). An MEBDF code for stiff initial value problems. ACM
Transactions on Mathematical Software, 18(2), 142–158.

5. Gear, C. W. (1990). Differential-algebraic equations, indices and integral algebraic equations.
SIAM Journal on Numerical Analysis, 27, 1527–1534.

6. Gear, C. W., & Petzold, L. R. (1984). ODE methods for the solution of differential/algebraic
systems. SIAM Journal on Numerical Analysis, 21, 716–728.

7. Hairer, E., & Wanner, G. (1996). Solving ordinary differential equations II: Stiff and
differential-algebraic problems. Heidelberg: Springer.

8. Hairer, E., Lubich, C., & Roche, M. (1989) The numerical solution of differential-algebraic
systems by Runge-Kutta methods: Vol. 1409. Lecture notes in mathematics. Berlin etc.:
Springer. vii, 139 p. DM 25.00.

9. Hairer, E., Norsett, S. P., & Wanner, G. (2009). Solving ordinary differential equations I:
Nonstiff problems. second revised edition. Heidelberg: Springer.

10. Iavernaro, F., & Mazzia, F. (1998). Solving ordinary differential equations by generalized
Adams methods: Properties and implementation techniques. Applied Numerical Mathematics,
28(2–4), 107–126. Eighth conference on the numerical treatment of differential equations
(Alexisbad, 1997).

11. Lamour, R., & Mazzia, F. (2009). Computation of consistent initial values for properly stated
index 3 DAEs. BIT, 49(1), 161–175.

12. März, R. (2002). The index of linear differential algebraic equations with properly stated
leading terms. Results in Mathematics, 42(3–4), 308–338.

13. Mazzia, F., & Magherini, C. (2008). Test set for initial value problem solvers, release 2.4 (Rep.
4/2008). Department of Mathematics, University of Bari, Italy.

14. Petzold, L. R. (1983). A description of DASSL: A differential/algebraic system solver. IMACS
trans on Scientific Computation, New Brunswick, NJ, 65–68.

15. Robertson, H. H. (1966). The solution of a set of reaction rate equations. In J. Walsh (Ed.),
Numerical analysis: An introduction (pp. 178–182). London: Academic.

Chapter 5
Solving Differential Algebraic Equations in R

Abstract R contains several methods for the solution of initial value problems for
DAEs, which are embedded in the R packages deSolve and deTestset. Four of these,
based on RADAU5, MEBDF, block implicit or Adams methods, can solve DAEs of
index up to three written in Hessenberg form. The fifth method, based on BDF, is
very efficient for index 1 problems and can solve some higher index problems as
well. We illustrate how to solve DAEs as they arise in the modelling of constrained
mechanical systems, electrical circuits, and chemical (equilibrium) reactions.

5.1 Differential Algebraic Equation Solvers in R

There are currently five R functions that solve inital value problems for differential
algebraic equations.

Two methods, daspk [2] from the R package deSolve [12] and mebdfi [4]
from the R package deTestSet [13] can solve DAEs written in the general implicit
form:

r(t,y,y′, p) = 0, (5.1)

where r is the residual function and p are the parameters. Function daspk [2]
implements a backward differentiation formula (BDF), related to DASSL [9],
which is particularly effective in solving DAEs of index up to 1,1 while mebdfi
[4] implements the modified extended backward differentiation formulae and can
handle problems of index up to 3 which are in Hessenberg form.

The function gamd [7] and bimd [3] from deTestSet are based on generalised
Adams methods and blended implicit methods respectively, while another method,
the deSolve function radau [6] is based on a three-stage implicit Runge-Kutta

1Note that in the R implementation of daspk, it is possible to scale the higher index variables
as described in Sect. 4.2.5. Therefore, the R function daspk can also solve certain higher index
problems.

DOI 10.1007/978-3-642-28070-2 5, © Springer-Verlag Berlin Heidelberg 2012
95K. Soetaert et al., Solving Differential Equations in R, Use R!,

96 5 Solving Differential Algebraic Equations in R

formula. These functions can solve linearly implicit DAEs up to index 3, which are
written in the form

My′ = f (t,y, p). (5.2)

A simplified form of the syntax for solving DAEs, written in implicit form, in R is:

daspk(y, times, parms, dy, res, ...)
mebdfi(y, times, parms, dy, res, nind, ...)

where times holds the times at which output is wanted; y holds the initial
conditions, dy the initial derivatives, and parms contains the parameter values
(or is NULL). The index of the variables is provided in the three-valued vector
nind, which contains the number of variables of index 1, 2, and 3 respectively
(see Sect. 4.2.5) . Argument res is the name of the R function that gets as input the
current time, the value of the state variables y and their rate of change dy, and the
parameter vector, and returns the residuals of the equations.

The syntax for using radau, gamd or bimd is:

radau(y, times, func, parms, nind, mass, ...)
gamd (y, times, func, parms, nind, mass, ...)
bimd (y, times, func, parms, nind, mass, ...)

where mass is the mass matrix M. Note that these functions do not need to be given
initial conditions for the derivatives.

The equations in res and func must be defined such that the index 1 variables
precede the index 2 variables which in turn precede the index 3 variables.

5.2 A Simple DAE of Index 2

Consider the following DAE problem:

y′1 = y2

y1 = cos(t).
(5.3)

The first equation is a simple differential equation. The second equation, which
is an algebraic equation needs two differentiations to obtain an ODE and is thus
of index 2. (first differentiaton gives y′1 = y2 = −sin(t); the second leads to y′2 =
−cos(t)).

The DAE has the analytic solution:

y1 = cos(t)
y2 = −sin(t).

(5.4)

To make the problem well-posed, a consistent set of initial values and initial
derivatives must be supplied:

5.2 A Simple DAE of Index 2 97

y1(0) = cos(0)
y2(0) = −sin(0)
y′1(0) = −sin(0)
y′2(0) = −cos(0).

(5.5)

5.2.1 Solving the DAEs in General Implicit Form

To solve this problem with mebdfi, we write (5.3) in the general implicit form (see
Sect. 4.1):

0 = y′1 − y2

0 = y1 − cos(t),
(5.6)

and implement them as:

resdae <- function (t, y, dy, p) {
r1 <- dy[1] - y[2]
r2 <- y[1] - cos(t)
list(c(r1, r2))

}

Both mebdfi and daspk can solve this higher order DAE written in implicit form.
Before invoking this solver, we specify the initial value of the state variables (yini)
and their derivatives (dyini), the time sequence (times) and the index of each
variable (index) as described in Sect. 4.2.5. The first variable is described by a
simple differential equation, and is of index 1; the second variable is of index 2;
there is no index 3 variable. We use much looser tolerances than the default (atol,
rtol)

library(deTestSet)
yini <- c(y1 = cos(0), y2 = -sin(0))
dyini <- c(-sin(0), -cos(0))
times <- seq(from = 0, to = 10, by = 0.1)
index <- c(1, 1, 0)
out1 <- mebdfi(times = times, res = resdae, y = yini,

atol = 1e-10, rtol = 1e-10, dy = dyini,
parms = NULL, nind = index)

We print the deviation of the numerical solution with the analytic solution:

max (abs(out1[,"y1"] - cos(times)),
abs(out1[,"y2"] + sin(times)))

[1] 2.349123e-09

98 5 Solving Differential Algebraic Equations in R

5.2.2 Solving the DAEs in Linearly Implicit Form

To solve the same problem by radau, gamd or bimd , one must be able to write
the problem in the linearly implicit form My′ = f (t,y, p):

(
1 0
0 0

)
.

(
y′1
y′2

)
=

(
y2

y1 − cos(t)

)
, (5.7)

which needs the implementation of the function f (t,y, p) (called fundae) and the
mass matrix M:

fundae <- function (t, y, p) {
f1 <- y[2]
f2 <- y[1] - cos(t)
list(c(f1, f2))

}
M <- matrix(nrow = 2, ncol = 2, data = c(1, 0, 0, 0))

out2 <- radau(times = times, fun = fundae, y = yini,
atol = 1e-10, rtol = 1e-10, mass = M,
parms = NULL, nind = index)

For this problem, radau is slightly less accurate than mebdfi:

max (abs(out2[,"y1"] - cos(times)),
abs(out2[,"y2"] + sin(times)))

[1] 5.476366e-07

The code gamd requires the same input parameters as radau

out3 <- gamd(times = times, fun = fundae, y = yini,
atol = 1e-10, rtol = 1e-10, mass = M,
parms = NULL, nind = index)

The maximum absolute error for gamd is:

max (abs(out3[,"y1"] - cos(times)),
abs(out3[,"y2"] + sin(times)))

[1] 5.90858e-09

5.3 A Nonlinear Implicit ODE

The next example is a non-linear implicit ODE that can be written in the linearly
implicit form required by radau, gamd or bimd by doubling the number of
equations, obtaining an index one DAE.

5.3 A Nonlinear Implicit ODE 99

However, this nonlinear ODE is solvable, in the original form, by mebdfi and
daspk. The equation is:

ty2y′3 − y3y′2 + t(t2 + 1)y′ − t2y = 0

yt=1 =
√

3/2,
(5.8)

and is solved on the interval t = [1, 10]. This equation has the analytic solution:

y =
√

t2 + 0.5. (5.9)

The problem is implemented in R as:

implicit <- function(t, y, dy, parms) {
list(t*yˆ2*dyˆ3 - yˆ3*dyˆ2 + t*(tˆ2+1)*dy - tˆ2*y)

}
yini <- sqrt(3/2)
times <- seq(from = 1, to = 10, by = 0.1)

A consistent value for the derivative y′ can be found by solving for the root of (5.8)
with respect to y′, and where t = 1 and y =

√
3/2. This is simple enough to be done

by hand, but for educational purposes, we use function multiroot from the R
package rootSolve [11]. We create a function (rootfun) that takes as input the
estimate of y′ (called dy), and the known values of y and t and returns the value of
the equation. As the root will be sought with respect to dy, this should be the first
argument in function rootfun; the package rootSolve is loaded first:

library(rootSolve)
rootfun <- function (dy, y, t)

t*yˆ2*dyˆ3 - yˆ3*dyˆ2 + t*(tˆ2+1)*dy - tˆ2*y

dyini <- multiroot(f = rootfun, start = 0, y = yini,
t = times[1])$root

dyini

[1] 0.8164966

As this is an ODE, both mebdfi and daspk can solve this problem with the
default absolute and relative tolerances (atol=1e-6, rtol=1e-6).

out <- mebdfi(times = times, res = implicit, y = yini,
dy = dyini, parms = NULL)

out2 <- daspk (times = times, res = implicit, y = yini,
dy = dyini, parms = NULL)

the result obtained by mebdfi is slightly more accurate than the one from daspk.

max(abs(out [,2]- sqrt(timesˆ2+0.5)))

[1] 3.017694e-06

100 5 Solving Differential Algebraic Equations in R

max(abs(out2[,2]- sqrt(timesˆ2+0.5)))

[1] 5.689474e-05

To solve the same problem with gamd, bimd or radau we rewrite (5.8) in linearly
implicit form by adding the variable z = y′. The problem implemented in R is:

implicit2 <- function (t, y, p) {
f1 <- y[2]
f2 <- t*y[1]ˆ2*y[2]ˆ3-y[1]ˆ3*y[2]ˆ2+t*(tˆ2+1)*y[2]-tˆ2*y[1]
list(c(f1, f2))

}
M <- matrix(nrow = 2, ncol = 2, data = c(1, 0, 0, 0))
yini_li <- c(yini, dyini)

Solving it with bimd

out3 <- bimd(times = times, fun = implicit2, y = yini_li,
mass = M, parms = NULL)

we obtain the following absolute error:

max(abs(out3[,2]- sqrt(timesˆ2+0.5)))

[1] 5.709242e-07

We note that the size of the problems is now doubled with respect to the original
nonlinear implicit ODE.

5.4 A DAE of Index 3: The Pendulum Problem

We now implement the pendulum problem of (Chap. 4, Sect. 4.1.5):

x′ = u
y′ = v
u′ = −λ x
v′ = −λ y− g
0 = x2 + y2 −L2.

(5.10)

In the R implementations of (5.10), we take L = 1 and g = 9.8. We implement the
index 3 system only, and leave the index 1 (4.41) and 2 (4.40) DAE models to be
implemented by the reader.

library(deTestSet)
pendulum <- function (t, y, dy, parms) {

list(c(-dy[1] + y[3] ,

5.5 Multibody Systems 101

-dy[2] + y[4] ,
-dy[3] -y[5]*y[1] ,
-dy[4] -y[5]*y[2] - 9.8,
y[1]ˆ2 + y[2]ˆ2 -1

))
}

where x,y,u,v and λ are y[1], y[2] ...y[5] respectively.
When solving this equation it is clear that the initial values (x0,y0) have to satisfy

the constraint x2
0 + y2

0 = L2. We assume that the pendulum is swung horizontally to
the right. The initial conditions for the derivatives x′, y′, u′, and v′ can be derived
from the initial values, based on the differential equations. The initial condition for λ
can be estimated from (4.41) (Sect. 4.2.4.1). The initial conditions for the derivative
of λ can only be estimated after the algebraic equation has been differentiated three
times! (see Sect. 4.2.4.1, equation (4.41)). The first two variables are of index 1,
followed by two variables of index 2, then there is one index 3 variable. This
information is incorporated in argument index3.

yini <- c(x = 1, y = 0, u = 0, v = 1 , lam = 1)
dyini <- c(dx = 0,dy = 1,du = -1,dv = -9.8,dlam = 3*9.8)
times <- seq(from = 0, to = 10, by = 0.01)
index3 <- c(2, 2, 1)
out3 <- mebdfi (y = yini, dy = dyini, res = pendulum,

parms = NULL, times = times,
nind = index3)

The output (Fig. 5.1) shows the periodic behavior of all variables, and the swing of
the ball (last figure).

plot(out3, lwd = 2)
plot(out3[, 2:3])
mtext(side = 3, outer = TRUE, line = -1.5,

"Pendulum", cex = 1.5)

5.5 Multibody Systems

A multibody system is a mechanical system consisting of interconnected rigid
or elastic bodies. They can move relative to one another, but are connected. The
connections can be either force elements such as springs and dampers, or friction or
joints. The latter restrict relative movement of pairs of bodies [15].

The equations describing multibody systems are the equation of motion, (New-
ton’s 2nd law), amended with a restriction, caused by the different joints:

M(q)q′′ = f (q,q′)
g(q) = 0,

(5.11)

102 5 Solving Differential Algebraic Equations in R

0 2 4 6 8 10

−1.0

−0.5

0.0

0.5

1.0

x

time

0 2 4 6 8 10

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

y

time
0 2 4 6 8 10

−4

−2

0

2

4

u

time

0 2 4 6 8 10

−3

−2

−1

0

1

2

3

v

time
0 2 4 6 8 10

0

5

10

15

20

25

30

lam

time

lll
lllll
lllllllllllllllllllllllll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l

l
llllllllllllllll

ll
ll

ll
ll

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
ll
ll
ll
ll
ll
lll
lllll
lllllllllllllllllllllllll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
lllllllllllllllll

ll
ll

ll
ll

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
ll
ll
ll
ll
ll
lll
lllll
lllllllllllllllllllllllll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l

lllllllllllllllll
ll

ll
ll

ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
ll
ll
ll
ll
ll
lll
lllll
lllllllllllllllllllllllll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
lllllllllllllllll

ll
ll

ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
ll
ll
ll
ll
ll
lll
llllll
llllllllllllllllllllllll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l

lllllllllllllllll
ll

ll
ll

l
l

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
ll
ll
ll
ll
lll
llll
lllllllllllllllllllllllllll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
lllllllllllllllll

ll
ll

ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
ll
ll
ll
ll
lll
llll
lllllllllllllllllllllllllll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l

llllllllllllllll
ll

ll
ll

ll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
ll
ll
ll
ll
lll
llll
lllllllllllllllllllllllllll
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
llllllllllllllll

ll
ll

ll
ll

l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
ll
ll
ll
ll
ll
ll
lll
lllll
lllllllllllllllllllllllll
l
l
l
l
l
l
l
l
l

−1.0 0.0 0.5 1.0

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

x

y

Pendulum

Fig. 5.1 Solution of the pendulum problem, See text for the R code

where M is the mass matrix, q denotes the position of the bodies, and f are the
internal and external forces acting on the system. Forces can be a function of both
the position (q) of the bodies, e.g. elastic forces, or their velocity (q′), e.g. frictional
forces. The restriction, g, only acts on the position.

The pendulum problem from Sect. 4.1.5 was a rather simple example of a
multibody system.

5.5.1 The Car Axis Problem

We now implement the car axis problem from the test set for initial value problem
solvers [8] (Fig. 5.2). This is a stiff DAE, of index 3, consisting of eight differential
and two algebraic equations. It models the behavior of a car axis on a bumpy road.
The first four variables represent the positions of the left and right springs, attached

5.5 Multibody Systems 103

car axis

l

l

l

l

(0,0)

(xb,yb)

(xr,yr)

(xI,yI)

M

Fig. 5.2 Schematic respresentation of the car axis problem

to the wheels, (xl ,yl ,xr,yr), the next four variables represent the velocity vector
(ul,vl ,ur,vr), and the last two variables (λ1,λ2) relate to the two position constraints.

The parameter settings are such that the problem describes the situation where
the left wheel rolls on a flat surface, while the right wheel rolls over a bumpy surface,
whose height is described by the function r sin wt. The coordinates of the left wheel
are assumed to be (0,0). The length of the car axis (distance between two wheels)
is L, and remains fixed, such that at all times, the coordinates of the right wheel are

described by (xb,yb) where yb = r sin wt and xb =
√

L2 − y2
b.

The wheels are connected to the chassis of the car with mass M, by means of
two springs, attached at positions (xl ,yl) and (xr,yr) for the left and right side
respectively. It is assumed that the springs are of zero mass, and have length L0

at rest. Two constraints restrict the independent movement of the bodies. The first
constraint specifies that the left spring remains orthogonal to the axis

xlxb + ylyb = 0. (5.12)

104 5 Solving Differential Algebraic Equations in R

The second constraint imposes the condition that the distance between the two
spring attachments remain at constant length L.

(xl − xr)
2 +(yl − yr)

2 = L2. (5.13)

The second order equations for the positions of the spring xl ,yl ,xr,yr are given by:

x′′l = 1/k[(L0 −Ll)
xl − 0

Ll
+ 2λ2(xl − xr)+λ1(xb − 0)]

y′′l = 1/k[(L0 −Ll)
yl − 0

Ll
+ 2λ2(yl − yr)+λ1(yb − 0)]− g

x′′r = 1/k[(L0 −Lr)
xr − xb

Lr
− 2λ2(xl − xr)]

y′′r = 1/k[(L0 −Lr)
yr − yb

Lr
− 2λ2(yl − yr)]− g,

(5.14)

where λ1 and λ2 are the constraint forces (they are also Lagrange multipliers) and
Ll and Lr are the lengths of the left and right springs respectively.

Equations (5.14) are rewritten as a system of first order differential equations
(not shown) by also modelling the velocity vector (ul,vl ,ur,vr), where u and v are
the velocity in the x and y directions respectively. Added to these eight first order
differential equations are the two constraints (5.12) and (5.13).

We implement these equations in an R function, caraxis, that takes as input
the time (t), the values of the variables (y) and their derivatives (dy), and the
parameters (parms, not used).

The function returns the residuals (delt) packed as a list.
To make the model readable, we use the names of the dependent variables; with

(as.list(y), ...) does that.

caraxis <- function(t, y, dy, parms) {
with(as.list(y), {

f <- rep(0, 10)
yb <- r * sin(w * t)
xb <- sqrt(Lˆ2 - ybˆ2)
Ll <- sqrt(xlˆ2 + ylˆ2)
Lr <- sqrt((xr - xb)ˆ2 + (yr - yb)ˆ2)
f[1:4] <- y[5:8]
f[5] <- 1/k*((L0-Ll)*xl/Ll + lam1*xb + 2*lam2*(xl-xr))
f[6] <- 1/k*((L0-Ll)*yl/Ll + lam1*yb + 2*lam2*(yl-yr)) -g
f[7] <- 1/k*((L0-Lr)*(xr - xb)/Lr - 2*lam2*(xl-xr))
f[8] <- 1/k*((L0-Lr)*(yr - yb)/Lr - 2*lam2*(yl-yr)) -g
f[9] <- xb * xl + yb * yl
f[10]<- (xl - xr)ˆ2 + (yl - yr)ˆ2 - Lˆ2

delt <- dy - f
delt[9:10] <- -f[9:10]

list(delt)
})
}

5.5 Multibody Systems 105

The parameter values are:

eps <- 0.01; M <- 10; k <- M * eps * eps/2
L <- 1; L0 <- 0.5; r <- 0.1; w <- 10; g <- 9.8

and the initial conditions

yini <- c(xl = 0, yl = L0, xr = L, yr = L0,
ul = -L0/L, vl = 0, ur = -L0/L, vr = 0,
lam1 = 0, lam2 = 0)

Similarly to what we did in the previous example, we use a root solving procedure
to retrieve a consistent set of initial derivatives (dyini) for this problem. From the
equations, it is clear that the derivatives of the last two state variables λ1,λ2, (lam1,
and lam2) do not affect the residuals. Hence, they are kept out of the root-finding
procedure, which solves for the first eight variables only. We arbitrarily set these
derivatives equal to 0.

library(rootSolve)
rootfun <- function (dyi, y, t)

unlist(caraxis(t, y, dy = c(dyi, 0, 0), parms = NULL)) [1:8]

dyini <- multiroot(f = rootfun, start = rep(0,8),
y = yini, t = 0)$root

(dyini <- c(dyini,0,0))

[1] -0.500000 0.000000 -0.500000 0.000000 0.000000
[6] -9.799999 0.000000 -9.799999 0.000000 0.000000

We check the consistency of the initial values, to be sure:

caraxis(t = 0, yini, dyini, NULL)

[[1]]
[1] 2.512380e-09 0.000000e+00 2.512380e-09 0.000000e+00
[5] 0.000000e+00 8.108556e-07 0.000000e+00 8.108556e-07
[9] 0.000000e+00 0.000000e+00

Next the index of the system variables is defined, and the problem solved, using
mebdfi:

index <- c(4, 4, 2)
times <- seq(from = 0, to = 3, by = 0.01)
out <- mebdfi(y = yini, dy = dyini, times = times,

res = caraxis, parms = parameter, nind = index)

The results (Fig. 5.3) first depict the positions and velocities versus time and then
show how the various springs move. First the margins of each figure are reduced
(mar).

106 5 Solving Differential Algebraic Equations in R

0.0 1.0 2.0 3.0

−0.04

0.04

xl

time

0.0 1.0 2.0 3.0

0.488

0.498

yl

time

0.0 1.0 2.0 3.0

0.94

1.00

xr

time

0.0 1.0 2.0 3.0

0.40

0.55

yr

time

0.0 1.0 2.0 3.0

−0.4

0.2

ul

time

0.0 1.0 2.0 3.0

−0.2

0.1

vl

time

0.0 1.0 2.0 3.0

−0.4

0.2

ur

time

0.0 1.0 2.0 3.0

−2

0

2

vr

time

0.0 1.0 2.0 3.0

−0.006

0.006

lam1

time

0.0 1.0 2.0 3.0

−0.002

0.001

lam2

time

−0.04 0.00 0.04

0.488

0.498

xleft

yl
ef

t

0.94 0.98 1.02

0.40

0.55

xright

yr
ig

ht

Fig. 5.3 The car axis problem solution. See text for the R code

par(mar = c(4, 4, 3, 2))
plot(out, lwd = 2, mfrow = c(4,3))
plot(out[,c("xl", "yl")], xlab = "xleft", ylab = "yleft",

type = "l", lwd = 2)
plot(out[,c("xr", "yr")], xlab = "xright", ylab = "yright",

type = "l", lwd = 2)

5.6 Electrical Circuit Models

Mathematical models are often used to assess the behavior of electrical circuits
before actually producing electronic devices [5,14]. These models combine physical
laws such as energy and charge conservation with the characteristics of the network
elements. Often the resulting model consists of a differential algebraic system.

5.6 Electrical Circuit Models 107

transistor amplifier

Uin

Ub

l
u1

l
u2

l
u3

l
u4

l
u5

l
u6

l
u7

l
u8

C1

C3

C2

C5

C4

R0

R1

R2 R4 R6 R8

R3 R5 R7 R9

transistor

Gate

Drain

Source

capacitator

i v
C

resistor

i
v

R

voltage source

v

Fig. 5.4 The transistor amplifier

An electrical network model consists of elements and nodes. The composition of
these elements obeys Kirchoff’s voltage and current law, which (simplified) says:

• For each loop of the network, the algebraic sum of voltages is zero.
• For each node, the sum of all currents is zero.

Kirchoff’s voltage law can be used to obtain a relationship between branch voltages,
v(t), and node voltages, u(t), which for a branch connecting node j and j+1 gives:

v(t) = u(t) j − u(t) j+1. (5.15)

5.6.1 The Transistor Amplifier

The transistor amplifier circuit [10] of Fig. 5.4 is a frequently used benchmark circuit
for testing DAE solvers [8].

108 5 Solving Differential Algebraic Equations in R

The circuit consists of eight nodes. A voltage source produces an input signal
given by (Uin = 0.1sin(200πt)), and which is amplified by two transistors. The node
potential at node 8 consists of the output signal.

Each transistor is modeled as:

IG = (1−α)g(ug− us)

ID = αg(ug − us)

IS = g(ug − us)

g(ug − us) = β (exp

(
ug − us

u f

)
− 1),

(5.16)

where IG, ID and IS are the currents through the gate, drain and source contact,
respectively. The transistor parameters are: β = 10−6, u f = 0.026, α = 0.99.

In addition, there are nine resistors, and five capacitators in the network, obeying
Ohm’s and Faraday’s law respectively:

IR =
VR

R
(5.17)

IC =C
dVc

dt
=CV ′

c . (5.18)

The circuit model calculates the transient (time-dependent) behavior of the electrical
signal at each node, in response to the time-varying input signal. If we denote with I,
V the branch currents and voltage drops and with u the node potential, then applying
Kirchoff’s current law for the second node gives:

0 = IC1 − IR1 − IR2 − Igate,2. (5.19)

Using (5.16)–(5.18) this can be expanded as:

0 = C1V ′
C1

− VR1

R1
− VR2

R2
− (1−α)g(u2− u3)

0 = C1(u2 − u1)
′ − u2

R1
− (u2 −Ub)

R2
− (1−α)g(u2− u3).

(5.20)

Ub is the working voltage of the circuit, which is set to 6. The other parameters are
chosen to be R0 = 1,000; Ri = 9,000 for i= 1, . . . ,9 and C1 = 10−6 ,C2 = 2 ·10−6, . . .
C6 = 6 ·10−6.

The equations for the entire network can be compactly represented as:

Mu′ = f (t,u), (5.21)

where matrix M is given by:

5.6 Electrical Circuit Models 109

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−C1 C1 0 0 0 0 0 0
C1 −C1 0 0 0 0 0 0
0 0 −C2 0 0 0 0 0
0 0 0 −C3 C3 0 0 0
0 0 0 C3 −C3 0 0 0
0 0 0 0 0 −C4 0 0
0 0 0 0 0 0 −C5 C5

0 0 0 0 0 0 C5 −C5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.22)

and function f is:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1 −Ue(t)
R0

u2

R1
+

u2 −Ub

R2
+(1−α)g(u2− u3)

u3

R3
− g(u2− u3)

u4 −Ub

R4
+αg(u2− u3)

u5

R5
+

u5 −Ub

R6
+(1−α)g(u5− u6)

u6

R7
− g(u5− u6)

u7 −Ub

R8
+αg(u5− u6)

u8

R9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.23)

The derivation of the complete model equations can be found in [8].
Here it is implemented in linearly implicit form and solved with radau:

library(deSolve)
Transistor <- function(t, u, du, pars) {

delt <- vector(length = 8)
uin <- 0.1 * sin(200 * pi * t)
g23 <- beta * (exp((u[2] - u[3]) / uf) - 1)
g56 <- beta * (exp((u[5] - u[6]) / uf) - 1)

delt[1] <- (u[1] - uin)/R0
delt[2] <- u[2]/R1 + (u[2]-ub)/R2 + (1-alpha) * g23
delt[3] <- u[3]/R3 - g23
delt[4] <- (u[4] - ub) / R4 + alpha * g23
delt[5] <- u[5]/R5 + (u[5]-ub)/R6 + (1-alpha) * g56
delt[6] <- u[6]/R7 - g56
delt[7] <- (u[7] - ub) / R8 + alpha * g56
delt[8] <- u[8]/R9
list(delt)

}

110 5 Solving Differential Algebraic Equations in R

0.00 0.10 0.20

−0.05

0.00

0.05

u1

time
0.00 0.10 0.20

2.0

2.2

2.4

2.6

2.8

3.0

3.2

u5

time
0.00 0.10 0.20

−4

−3

−2

−1

0

1

u8

time

Fig. 5.5 The transistor problem solution; potentials at node 1, 5, and 8. See text for the R code

ub <- 6; uf <- 0.026; alpha <- 0.99; beta <- 1e-6; R0 <- 1000
R1 <- R2 <- R3 <- R4 <- R5 <- R6 <- R7 <- R8 <- R9 <- 9000
C1 <- 1e-6; C2 <- 2e-6; C3 <- 3e-6; C4 <- 4e-6; C5 <- 5e-6

mass <- matrix(nrow = 8, ncol = 8, byrow = TRUE, data = c(
-C1,C1, 0, 0, 0, 0, 0, 0,
C1,-C1, 0, 0, 0, 0, 0, 0,
0, 0,-C2, 0, 0, 0, 0, 0,
0, 0, 0,-C3, C3, 0, 0, 0,
0, 0, 0, C3,-C3, 0, 0, 0,
0, 0, 0, 0, 0,-C4, 0, 0,
0, 0, 0, 0, 0, 0,-C5, C5,
0, 0, 0, 0, 0, 0, C5,-C5

))

yini <- c(0, ub/(R2/R1+1), ub/(R2/R1+1),
ub, ub/(R6/R5+1), ub/(R6/R5+1), ub, 0)

names(yini) <- paste("u", 1:8, sep = "")

ind <- c(8, 0, 0)
times <- seq(from = 0, to = 0.2, by = 0.001)
out <- radau(func = Transistor, y = yini, parms = NULL,

times = times, mass = mass, nind = ind)

plot(out, lwd = 2, which = c("u1", "u5", "u8"),
mfrow = c(1, 3))

5.7 Exercises 111

5.7 Exercises

5.7.1 A Simple DAE

You are given the following simple DAE:

0 = 2y1 + 3y2

0 = 3y1 − y3 − 4
y′3 = y1 + y2,

(5.24)

with initial conditions y1(0) = 3,y′1(0) = 0,y2 = −2,y′2 = 0,y3 = 5,y′3 = 1. Imple-
ment this problem, and solve it with the five DAE solvers for t ∈ [0,10]. The values
at t = 10 are 9.113195,−6.075464 and 23.33959 for y1,y2,y3 respectively.

5.7.2 The Robertson Problem

The Robertson problem is a classic problem to test stiff ODE solvers. You were
asked to solve the system of ODEs in Sect. 3.6.2. Here, you are asked to solve the
problem written as a DAE:

y′1 = −0.04y1 + 104y2y3

y′2 = 0.04y1 − 104y2y3 − 3 ·107y2
2

1 = y1 + y2 + y3.

(5.25)

The initial conditions are (y1 = 1,y2 = 0,y3 = 0). Implement this DAE; solve it with
radau and with daspk. When using daspk, implement it in fully implicit form.
Integrate the problem on the interval 0 ≤ t ≤ 40. As it is much more challenging
to solve this equation on a much larger interval (e.g. [6, p. 144], you should also
try to integrate it in the interval 10−4 ≤ t ≤ 107. Use for the second output times a
logarithmic series, as shown in Sect. 3.6.2.

5.7.3 The Pendulum Problem Revisited

In Sect. 5.4 we implemented the index 3 pendulum problem in implicit form and
solved it with mebdfi. Rewrite this problem in linearly implicit form and solve it
with radau.

Implement the different problem formulations of index 1 and 2 (see Sect. 4.2.4.1).
The error in the DAE solution can be assessed by computing how much the algebraic
condition is violated. Create a figure that represents this error for the different
implementations (see Fig. 4.2)

112 5 Solving Differential Algebraic Equations in R

5.7.4 The Akzo Nobel Problem

This last exercise is considerably more complex than the previous ones. The exam-
ple originates from the Akzo Nobel Central Research in Arnhem, the Netherlands
and is one of the test problems in [8]. The problem formulation is slightly modified
so as to show how to derive the DAEs that arise from equilibrium chemistry.2

5.7.4.1 Problem Formulation

Two chemical species B and Z are mixed in a vessel, while carbon dioxide CO2 is
continuously added. In a series of reactions, A is produced and this is the species
of importance. The names of the species, except for nitrate, H2O and CO2 are
fictituous. The reactions are:

2B+ 0.5CO2
r1−→ BT +H2O

A+B
r2−⇀↽−
r3

BT +Z

B+ 2Z+CO2
r4−→ LB+ nitrate

B.Z+ 0.5CO2
r5−→ A+H2O

B+Z
r6−⇀↽−
r7

B.Z,

(5.26)

where r1, . . . ,r7 are the reaction rates (units of concentration per time). Based on
these chemical processes, we can write a mass balance for the concentration of each
species:

[B]′ = −2r1 − r2 + r3 − r4 − r6 + r7

[CO2]′ = −0.5r1 − r4 − 0.5r5 +E

[BT]′ = r1 + r2 − r3

[Z]′ = r2 − r3 − 2r4 − r6 + r7

[A]′ = −r2 + r3 + r5

[B.Z]′ = −r5 + r6 − r7,

(5.27)

where [X] denotes the concentration of species X , and E is the exchange rate of CO2

with the atmosphere. According to the mass action law [1], the speed of a chemical
reaction is proportional to the product of the concentrations of the participating
molecules where we take into account the reaction’s stochiometric coefficients.
For instance, for the first reaction, with rate r1, two moles of B react with 0.5
moles of CO2 to produce BT and water. Thus the reaction will be proportional to

2And to distinguish it from the test problem in [8] which is different.

5.7 Exercises 113

[B]2[CO2]
1/2. Based on these principles, all reaction velocities are given by3:

r1 = k1[B]2[CO2]
1/2

r2 = k2[A][B]

r3 = k3[BT][Z]

r4 = k4[B][Z]2[CO2]

r5 = k5[B.Z][CO2]
1/2

r6 = k6[B][Z]

r7 = k7[B.Z],

(5.28)

where ki are the rate constants. The exchange of CO2 with the overlying atmosphere
is described as:

E = kA(pCO2/kH − [CO2]), (5.29)

with kA the mass transfer coefficient, kH Henry’s constant [16], and pCO2 the partial
pressure of CO2.

The combination of (5.27)–(5.29) define the problem as a set of ODEs. Before
this system of equations can be solved, values for all rate constants (ki, kA, . . .) are
needed. In general, it is feasible to measure the rate constants for reactions that are
sufficiently slow, but it is much more difficult to do so for very fast reactions.

In the Akzo Nobel problem, the reaction velocities r6 and r7 are so high that the
reactions can be considered to operate at local equilibrium. That is, the local rate
of change of Z, B or B.Z due to this reaction is assumed to be equal to 0. For the
concentration of Z this gives:

d[Z]
dt

|eq = 0 =−r6 + r7. (5.30)

Combining r6 = r7 with (5.28) leads to

k6[B][Z] = k7[B.Z]. (5.31)

If we define Ks = k6/k7, this gives way to the algebraic equation:

Ks =
[B.Z]
[B][Z]

, (5.32)

where Ks is the equilibrium constant. In contrast to k6 and k7 whose values are very
difficult to determine, it is relatively simple to measure Ks.

3This differs from the original description.

114 5 Solving Differential Algebraic Equations in R

0 50 100 200

0.0

0.2

0.4

B

time

0 50 100 200

0.0000

0.0008

CO2

time

0 50 100 200

0.00

0.10

0.20

BT

time

0 50 100 200

0.005

0.020

Z

time

0 50 100 200

0.0

0.2

A

time

0 50 100 200

0.00

0.20

B.Z

time

Fig. 5.6 The Akzo nobel problem

As the equilibrium formulation (5.32) has removed the constants k6 and k7, the
corresponding rates r6 and r7 should now also be removed from the mass balances
(5.27). This is done by taking suitable linear combinations of (5.27). There are
several ways to achieve this. The most logical is to add the mass balance of [B]
and [B.Z] and of [Z] and [B.Z] (in 5.27) to obtain:

[B]′+[B.Z]′ =−2r1 − r2 + r3 − r4 − r5

[CO2]′ =−0.5r1 − r4 − 0.5r5 +E

[BT]′ = r1 + r2 − r3

[Z]′+[B.Z]′ = r2 − r3 − 2r4 − r5

[A]′ =−r2 + r3 + r5.

(5.33)

5.7.4.2 Task

The set of (5.33) with the constraint (5.32) forms the DAE system to be solved. Your
task is to implement the model, and solve it with radau, using the following initial
conditions: [B] = 0.444 mol l−1, [Z] = 0.007 mol l−1, [CO2] = 0.00123 mol l−1,
other species are initially not present.

The various constants have the value: k1 = 18.7; k2 = 0.58/34.4; k3 = 0.58;
k4 = 0.09; k5 = 0.42; Ks = 115.83; p(CO2) = 0.9; kA = 3.3; kH = 737

The results of this model are in Fig. 5.6:

References 115

References

1. Aris, R. (1965). Introduction to the analysis of chemical reactors. Englewood Cliffs: Prentice
Hall.

2. Brenan, K. E., Campbell, S. L., & Petzold, L. R. (1996). Numerical Solution of Initial-
Value Problems in Differential-Algebraic Equations. SIAM classics in applied mathematics.
Philadelphia, PA: SIAM.

3. Brugnano, L., Magherini, C., & Mugnai, F. (2006). Blended implicit methods for the numerical
solution of DAE problems. Journal of Computational and Applied Mathematics, 189(1–2),
34–50.

4. Cash, J. R., & Considine, S. (1992). An MEBDF code for stiff initial value problems. ACM
Transactions on Mathematical Software, 18(2), 142–158.

5. Günther, M., Feldmann, U., & ter Maten, E. J. W. (2005). Modelling and discretization of
circuit problems. In W. H. A. Schilders & E. J. W. ter Maten (Eds.), Numerical analysis in
electromagnetics (pp. 523–659). Amsterdam: North-Holland/Elsevier.

6. Hairer, E., & Wanner, G. (1996). Solving ordinary differential equations II: Stiff and
differential-algebraic problems. Heidelberg: Springer.

7. Iavernaro, F., & Mazzia, F. (1998). Solving ordinary differential equations by generalized
Adams methods: properties and implementation techniques. Applied Numerical Mathematics,
28(2–4), 107–126. Eighth Conference on the Numerical Treatment of Differential Equations
(Alexisbad, 1997).

8. Mazzia, F., & Magherini, C. (2008). Test set for initial value problem solvers, release 2.4 (Rep.
4/2008). Department of Mathematics, University of Bari, Italy.

9. Petzold L. R. (1983). A description of DASSL: A differential/algebraic system solver. IMACS
Transactions on Scientific Computation, New Brunswick, NJ, pp. 65–68.

10. Rentrop, P., Roche, M., & Steinebach, G. (1989). The application of Rosenbrock-Wanner type
methods with stepsize control in differential-algebraic equations. Numerische Mathematik, 55,
545–563.

11. Soetaert, K. (2011). rootSolve: Nonlinear root finding, equilibrium and steady-state analysis
of ordinary differential equations. R package version 1.6.2.

12. Soetaert, K., Petzoldt, T., & Setzer, R. W. (2010). Solving differential equations in R: Package
deSolve. Journal of Statistical Software, 33(9), 1–25.

13. Soetaert, K., Cash, J. R., & Mazzia, F. (2011). deTestSet: Testset for differential equations. R
package version 1.0.

14. Voigtmann, S. (2006). General linear methods for integrated circuit design. PhD thesis,
Humboldt-Universitat zu Berlin. (Online: Stand 2010-07-03T11:52:37Z).

15. Wagner, F. J. (1999). Multibody systems. In C. Bendtsen & P. G. Thomsen (Eds.), Numerical
solution of differential algebraic equations (Tech. Rep. IMM-REP-1999-8). Lyngby, Denmark:
IMM, Department of Mathematical Modelling, Technical University of Denmark. Chapter 9.

16. Zeebe, R. E., & Wolf-Gladrow, D. (2001). CO2 in Seawater: Equilibrium, kinetics, isotopes.
Elsevier oceanography series. Amsterdam: Elsevier.

Chapter 6
Delay Differential Equations

Abstract Delay differential equations (DDEs) are similar to ordinary differential
equations, except that they involve past values of the dependent variables and/or
their derivatives. Because of this, rather than needing an initial value to be fully
specified, DDEs require input of an initial history (sequence of values) instead.
Typically, these initial (history) functions are not fully compatible with the model
dynamics, leading to discontinuities as the method switches from the initial function
to values recorded through the integration. Whether the delay is introduced in the
values or in the derivatives has great implications for the propagation in time of the
discontinuities.

6.1 Delay Differential Equations

Delay differential equations arise in many different areas of science. If an action is
to be made based on an assessment of the current state of a system and if some time
is necessary to process the information, the action will not be taken instantaneously
but rather a delay will arise. This delay is best incorporated in differential equations
by making the action a function of past rather than of instantaneous values of the
dependent variables.

A survey of the use of DDEs [1] indicates that most arise from biological
models although they are applied throughout the sciences. In natural sciences, delay
differential equations have been used for example in the modelling of El Niño
temperature oscillations in the Equatorial Pacific [13], or to model single-species
population growth [9]. In electrical circuits, delays are introduced because it takes
time for a signal to travel through a transmission line.

From a mathematical point of view, delay differential equations (DDEs) differ
from ordinary differential equations because the evolution of DDEs involves a time
series of past values of dependent variables and derivatives, whereas the evolution of
ODEs depends only on the current values of these quantities. For more information
about the background theory related to existence and regularity of solutions of

DOI 10.1007/978-3-642-28070-2 6, © Springer-Verlag Berlin Heidelberg 2012
117K. Soetaert et al., Solving Differential Equations in R, Use R!,

118 6 Delay Differential Equations

DDEs and to their numerical integration, we refer the interested reader to the
comprehensive books [3, 8] and to the wide bibliography therein included, as well
as to the more recent and updated survey paper [4] devoted to delay differential
equations and more general functional differential equations.

6.1.1 DDEs with Delays of the Dependent Variables

When depending on past values of the dependent variables only, DDEs are some-
times called retarded delay differential equations (RDDE). They can be written as:

y′(t) = f (t,y(t),y(t − τ1),y(t − τ2), . . . ,y(t − τn)), for t0 ≤ t ≤ tF
y(t) = Φ(t), for t ≤ t0,

(6.1)

where y′ is the (right-hand) derivative of y with respect to t, τ is called the delay,
(t − τ) the delay argument and y(t − τ) the delay value. The function Φ(t) provides
the history of the dependent variables before the start of the simulation.

This formalism assumes fixed delays. A more general representation is:

y′(t) = f (t,y(t),y(α1(t,y(t))), . . . ,y(αn(t,y(t)))), for t0 ≤ t ≤ tF
y(t) = Φ(t), for t ≤ t0,

(6.2)

where the delay functions αi(t,y(t)), i = 1, . . . ,n satisfy αi(t,y(t))≤ t.

6.1.2 DDEs with Delays of the Derivatives

DDEs where the differential equations also depend on past derivatives of the
dependent variables are called neutral delay differential equations (NDDE). They
are given by:

y′(t) = f (t,y(t),y(t − τ1), . . . ,y(t − τn),y′(t −σ1), . . . ,y′(t −σm)),

for t0 ≤ t ≤ tF
y(t) = Φ(t), for t ≤ t0
y′(t) = Φ ′(t), for t ≤ t0,

(6.3)

for fixed delays, or more generally:

y′(t) = f (t,y(t),y(α1(t,y(t))), . . . ,y(αn(t,y(t))),y
′(β1(t,y(t))), . . . ,y

′(βm(t,y(t)))),

for t0 ≤ t ≤ tF

y(t) = Φ(t), for t ≤ t0

y′(t) = Φ ′(t), for t ≤ t0. (6.4)

6.2 Difficulties when Solving DDEs 119

Here both Φ(t) and Φ ′(t) are necessary to provide the history of dependent variables
and their derivatives before the start of the simulation. While τ and σ are the (con-
stant) delays, the functions αi(t,y(t)) and βi(t,y(t)) are more general delay functions.

6.2 Difficulties when Solving DDEs

There are several difficulties associated with DDEs that one does not have with
ODEs. We deal with two of those in the next sections.

6.2.1 Discontinuities in DDEs

One prominent difference between DDEs and ODEs is the necessity of the initial
functions (Φ , Φ ′) to be specified. These replace the initial conditions specified for
an ODE and which are given as just one vector of values specified at the initial point
of the integration interval. In contrast, the initial functions provide the lagged values
and derivatives that extend back before the initial point of the integration.

A first problem when solving DDEs is that, as the initial functions are generally
not fully compatible with the rest of the model solution, a discontinuity may emerge
as the solver switches from the initial function to past values saved during the
integration. This happens when, at the initial point, the right-hand derivative y′(t0)+
is not equal to the left-hand derivative Φ ′(t0), or when Φ(t) has discontinuities.

Moreover, these discontinuities will propagate in time, i.e. for constant time-
delays τ or σ , they will re-appear at integer multiples of τ or σ . In the case where the
delays are defined in the dependent variables only, the discontinuity will be smoothed
as it will occur in successively higher derivatives. However, in the case where the
DDE also includes delays in the derivatives (neutral DDEs), the discontinuities will
persist. This is important to realise as the standard solvers assume that the solution is
sufficiently continuous over an integration step. Thus, the existence of discontinuities
may provoke numerical difficulties, requiring the solver to take very small steps in
the vicinity of discontinuities.

We demonstrate the discontinuities that may arise in DDEs by considering two
very simple delay differential equations, solved in the interval t = [0,10]. The code
for solving these equations will be given in the next chapter (Chap. 7).

In the first DDE example (6.5), the derivative of the solution at t depends on the
value of the solution at (t − 1). The history function for times preceding the initial
time (t ∈ [−1,0]) is taken to be equal to 1:

y′ = −y(t −1),
y(t) = 1, for t ∈ [−1,0].

(6.5)

It is clear that the left and right-hand derivatives do not agree for t = 0 since Φ ′(0)= 0
(y is a constant) and this is 	= y′(0)+ =−1.

120 6 Delay Differential Equations

0 2 4 6 8 10

−0.5

0.0

0.5

1.0

y

time

0 2 4 6 8 10

−0.5

0.0

0.5

1.0

y(t−1)

time

0 2 4 6 8 10

0.0

0.4

0.8

y

time
0 2 4 6 8 10

−1.0

0.0

0.5

1.0

y'(t−1)

time

Fig. 6.1 Two simple delay differential equations; above: DDE with delays in the dependent
variables only, see (6.5), below: neutral DDE, see (6.6). Note how in the first example, the output
is smooth, while it is highly discontinuous in the latter

In the second, neutral case (6.6), the derivative of the solution at t depends on the
derivative at (t −1). The history function for the derivative is taken to be equal to 1.

y′ = −y′(t −1),
y′(t) = 1, for t ∈ [−1,0].

(6.6)

Similarly as to what we had in the previous DDE case, here also the right- and left-
hand derivatives at t = 0 do not correspond, as Φ ′(0) = 1 while y′(0)+ =−1.

The solution to these two delay differential equations (6.5) and (6.6) are plotted
in Fig. 6.1. In the first case (6.5), the solution is a damped oscillation, slightly
discontinuous at t = 1, and increasingly less so at t = 2,3, etc. . . . (Fig. 6.1 upper).
The solution of the neutral DDE (6.6) in contrast, remains equally discontinuous at
these times (Fig. 6.1 lower).

6.2.2 Small and Vanishing Delays

A second problem when solving DDEs is that a delay may vanish, i.e. σ → 0 or τ →
0. When the delays approach zero, the problem is called a vanishing delay problem.

References 121

These are generally much harder to solve than the other DDEs. This is because, as
the delays become smaller, they may become smaller than the current time step and,
for explicit codes, this will require extrapolation. A strategy to deal with vanishing
delays in implicit methods is described in [7].

6.3 Numerical Methods for Solving DDEs

A survey by [2] shows that the lag functions that arise most frequently in the literature
are constants. Indeed problems with constant delays are a large and important class
of problem, and by confining our attention to these problems particularly efficient
solvers can be derived. In particular, solvers based on explicit Runge-Kutta formulae
are often especially efficient for these problems.

A popular approach to the implementation of DDEs is to simply extend ODE
codes with functions to retrieve past values and derivatives. These simple DDE
solvers just keep track of previous values and derivatives of the dependent variables,
and add functions that calculate the values and derivatives at requested previous
points. They leave the treatment of the discontinuities to be dealt with by the
numerical integrator. This is the approach developed in the solver dede in R .
For an ODE code to be suitable for this task, it has to possess a “dense output”
facility, i.e. the possibility to estimate the values of dependent variables and their
derivatives at arbitrary points in the integration interval. This is necessary in order to
evaluate past solutions and their derivatives at points that were not mesh points, and
hence not saved. For instance, when using a Runge-Kutta method the coefficients of
the interpolating polynomial used for dense output is saved at each integration step
(see Sect. 2.1.2.5). To retrieve past values one applies the dense output formula to
the coefficients embracing the requested integration point. When based on linear
multistep methods an accurate interpolant at the requested lagged time can be
obtained either via cubic Hermite interpolation [10] or using the dense output
formulae, based on the Nordsieck history array (see Sect. 2.2.3.1).

There also exist more complex codes that take special action at discontinuities,
e.g. RADAR5 [7], DDE SOLVER [12] and DDEM [14]. These implementations of
DDE solution methods can solve much harder problems than the strategy used in R .
Other effective codes for solving DDEs are ARCHI [11], DKLAG6 [5], and
DDVERK [6].

References

1. Baker, C. T. H., Paul, C. A. H., & Wille, D. R. (1995). A bibliography on the numerical solution
of delay differential equations (Numerical Analysis Rep. No. 269). Manchester, UK.

2. Baker, C. T. H., Paul, C. A. H., & Wille, D. R. (1995). Issues in the numerical solution
of evolutionary delay differential equations. Advances in Computational Mathematics, 3,
171–196.

122 6 Delay Differential Equations

3. Bellen, A., & Zennaro, M. (2003). Numerical methods for delay differential equations.
Numerical mathematics and scientific computation. New York: The Clarendon Press/Oxford
University Press.

4. Bellen, A., Maset, S., Zennaro, M., & Guglielmi, N. (2009). Recent trends in the numerical
solution of retarded functional differential equations. Acta Numerica, 18, 1–110.

5. Corwin, S. P., Sarafyan, D., & Thompson, S. (1997). DKLAG6: A code based on continuously
imbedded sixth order Runge–Kutta methods for the solution of state dependent functional
differential equations. Applied Numerical Mathematics, 24, 319–333.

6. Enright, W. H., & Hayashi, A. (1997). A delay differential equation solver based on a
continuous Runge–Kutta method with defect control. Numerical Algorithms, 16, 349–364.

7. Guglielmi, N., & Hairer, E. (2008). Computing breaking points in implicit delay differential
equations. Advances in Computational Mathematics, 3, 229–247.

8. Hale, J. K., Verduyn, L., & Sjoerd, M. (1993). Introduction to functional-differential equations:
Vol. 99. Applied mathematical sciences. New York: Springer

9. May, R. M. (1975). Stability and complexity in model ecosystems (2nd ed.). Princeton:
Princeton University Press.

10. Oberle, H. J., & Pesch, H. J. (1981). Numerical treatment of delay differential equations by
hermite interpolation. Numerische Mathematik, 37, 235–255.

11. Paul, C. A. H. (1995). A user-guide to ARCHI (Numerical Analysis Rep. No. 283). University
of Manchester, Manchester.

12. Thompson, S., & Shampine, L. F. (2006). A friendly fortran DDE solver. Applied Numerical
Mathematics, 53(3), 503–516.

13. Tziperman, E., Stone, L., Cane, M. A., & Jarosh, H. (1994). El nino chaos: Overlapping of
resonances between the seasonal cycle and the pacific ocean-atmosphere oscillator. Science,
264, 72–74.

14. Zivari, H., & Enright, W. H. (2010). An efficient unified approach for the numerical solution
of delay differential equations. Numerical Algorithms, 53(2–3), 397–417.

Chapter 7
Solving Delay Differential Equations in R

Abstract DDEs are solved in R much in the same way as ODEs, i.e. by the
multistep methods from the R package deSolve that are used to solve initial value
problems of ODEs. One major difference between DDEs and initial value problems
for ODEs is the presence of a “memory” term which retrieves past values of the
dependent variable or of the derivatives. Two functions are provided that retrieve
past values and derivatives.

7.1 Delay Differential Equation Solvers in R

A popular approach to implement DDEs is to extend ODE codes with functions
to retrieve past values and derivatives, and this is the approach adopted in the R
package deSolve [11].

Function dede from the R package deSolve can solve delay differential
equations, while the past values and past derivatives are available via function
lagvalue and lagderivs respectively. A simplified syntax of these func-
tions is:

dede (y, times, func, parms, method, ...)
lagvalue (t, nr)
lagderiv (t, nr)

Function dede is similar to ode (see Sect. 3.1). Arguments t and nr of functions
lagvalue and lagderiv are the time point at which the value/derivative value
is required, while nr is the position of the variable. If nr is not specified, the values
or derivatives of all dependent variables will be returned.

The various integration methods that can be used to solve DDEs in R can be
found in the appendix (Sect. A.3, Table A.8).

DOI 10.1007/978-3-642-28070-2 7, © Springer-Verlag Berlin Heidelberg 2012
123K. Soetaert et al., Solving Differential Equations in R, Use R!,

124 7 Solving Delay Differential Equations in R

7.2 Two Simple Examples

We first implement the two simple problems (6.5) and (6.6) from (Sect. 6.2.1).

7.2.1 DDEs Involving Solution Delay Terms

In the first DDE example (7.1), the derivative of the solution at t depends on the
value of the solution at t − 1. The history function for times preceding the initial
time (t = [−1,0]) sets the past value equal to 1. The equation is:

y′ = −y(t − 1),
y(t) = 1, for t ∈ [−1,0].

(7.1)

In the R implementation (function DDE1) the if-else statement provides either
access to the history value (if tlag preceeds the initial time) or to the saved past
values (if tlag > 0). The function lagvalue extracts the past value at the
requested time point.

library(deSolve)
DDE1 <- function(t, y, parms) {

tlag <- t - 1
if (tlag <= 0)

ylag <- 1
else

ylag <- lagvalue(tlag)

list(dy = - ylag, ylag = ylag)
}

yinit <- 1
times <- seq(from = 0, to = 10, by = 0.1)
yout <- dede(y = yinit, times = times, func = DDE1,

parms = NULL)

The solution of this first model is 1− t for 0 ≤ t ≤ 1, while it is t2/2− 2t+ 3/2 for
1 ≤ t ≤ 2, so we can compare the numerical solution, generated with dede with
these analytic values. The maximal deviation is 1.4e−6 (not shown). We can make
the solution more precise by setting the relative and absolute tolerances to a lower
value. For instance, adding the arguments (atol = 1e-10, rtol= 1e-10) to
the call to dede reduces the deviation with the analytic solution to 1.4e−10.

7.2.2 DDEs Involving Derivative Delay Terms

The implementation of the simple neutral DDE from (Sect. 6.2.1) in R is very
similar to the previous DDE example except that the past values of the derivatives
are obtained by a call to R function lagderiv. The equations are:

7.3 Chaotic Production of White Blood Cells 125

y′ = −y′(t − 1),

y′(t) = 1, for t ∈ [−1,0].
(7.2)

They are implemented in R as:

DDE2 <- function(t, y, parms) {
tlag <- t - 1
if (tlag <= 0)

ylag <- 1
else

ylag <- lagderiv(tlag)

list(dy = - ylag, ylag = ylag)
}

yout2 <- dede(y = yinit, times = times, func = DDE2,
parms = NULL)

The output of these two models can be found in Fig. 6.1 from the previous chapter.

7.3 Chaotic Production of White Blood Cells

We now implement a more realistic example. A well-studied delay differential
equation model is the Mackey-Glass equation [5], which models the production of
white blood cells and is given by:

y′ = ayτ
1

1+ yc
τ
− by,

yτ = y(t − τ), (7.3)

yt = 0.5, for t ≤ 0.

Here y is the current density of the circulating white blood cells, yτ is the density τ
time-units in the past, b is the destruction rate. The first term in the equation for y′
is the introduction of new blood cells in the blood, in response to the demand at a
previous time (τ). The value of (1+ yc

τ)
−1 is almost 1 for small values of yτ and

decreases towards near-zero values for large values of yτ . The larger the value of the
parameter c, the steeper the decline. We use c= 10 here. Thus, blood cell production
will be near its maximal rate (a) if past densities are small.

This equation generates chaotic solutions for certain values of the parameters,
such as a = 0.2, b = 0.1, τ = 20.

The implementation of this model in R is simple. As we will run the model for
different values of τ , we pass the value of tau to the solver which will include it in
its call to the derivative function (mackey).

126 7 Solving Delay Differential Equations in R

0 50 150 250

0.6

0.8

1.0

1.2

tau = 10

time

y

0.6 0.8 1.0 1.2

0.6

0.8

1.0

1.2

y

yl
ag

0 50 150 250

0.4

0.8

1.2

tau = 20

time

y

0.4 0.6 0.8 1.0 1.2

0.4

0.8

1.2

y

yl
ag

Fig. 7.1 The Mackey-Glass delay differential equation, solved with parameter τ =10 (above) and
τ = 20 (below). See text for the R code

library(deSolve)
mackey <- function(t, y, parms, tau) {

tlag <- t - tau
if (tlag <= 0)

ylag <- 0.5
else

ylag <- lagvalue(tlag)
dy <- 0.2 * ylag * 1/(1+ylagˆ10) - 0.1 * y
list(dy = dy, ylag = ylag)

}

yinit <- 0.5
times <- seq(from = 0, to = 300, by = 0.1)

yout1 <- dede(y = yinit, times = times, func = mackey,
parms = NULL, tau = 10)

yout2 <- dede(y = yinit, times = times, func = mackey,
parms = NULL, tau = 20)

When solved with τ = 10, the output is periodic, while cell densities display a
chaotic pattern for τ = 20 (Fig. 7.1)

7.4 A DDE Involving a Root Function 127

plot(yout1, lwd = 2, main = "tau = 10",
ylab = "y", mfrow = c(2, 2), which = 1)

plot(yout1[,-1], type = "l", lwd = 2, xlab = "y")
plot(yout2, lwd = 2, main = "tau = 20",

ylab = "y", mfrow = NULL, which = 1)
plot(yout2[,-1], type = "l", lwd = 2, xlab = "y")

7.4 A DDE Involving a Root Function

Similarly to what happens in the case of ODEs, the solver will have some
difficulties at discontinuities, so it may be beneficial to report to the solver when
the discontinuities arise and then reinitialise the integration.

Below is a DDE with discontinuities in the derivatives, the Mariott-Delisle
Controller Problem [6]. This example was used in [9] to show how to use a root
function together with DDE solvers. The DDE involves a step function in the history
term (Δ):

y′ = (−y(t)+π(a+ ε sign(Δ)− usin2(Δ)))/τ,

Δ = y(t − 12)− xb, (7.4)

yt = 0.6, for t ≤ 0,

for xb = −0.427, a = 0.16, ε = 0.02, u = 0.5, τ = 1. The term sign(Δ) causes a
sharp change in the dynamics as it switches from +1 to −1 and vice versa. The
implementation in R is:

xb <- -0.427; a <- 0.16; xi <- 0.02; u <- 0.5; tau <- 1
yinit <- c(y = 0.6)

mariott <- function(t, y, parms) {
tlag <- t - 12
if (tlag <= 0)

ylag <- 0.6
else

ylag <- lagvalue(tlag)

Delt <- ylag - xb
sDelt <- sign(Delt)

dy <- (-y + pi*(a + xi*sDelt - u*(sin(Delt))ˆ2))/tau
list(dy)

}
times <- seq(from = 0, to = 120, by = 0.5)
yout <- dede(y = yinit, times = times, func = mariott,

parms = NULL)

128 7 Solving Delay Differential Equations in R

When letting the solver track the discontinuities, this problem is solved in 3,282
function evaluations. We can see this by requesting the “diagnostics” of the solution
(diagnostics(yout)).

It is more robust to let the solver locate the change in sign of Δ (Delt), which
occurs at a root in Δ . Thus, we provide a root and event function (see Sects. 3.4.2
and 3.4.3). The root function is to locate where the value of Delt changes sign, the
event function ensures that the solution proceeds unchanged after that.

root <- function(t, y, parms) {
tlag <- t - 12
if (tlag <= 0)

return (1) # not a root
else

return(lagvalue(tlag)- xb)
}

event <- function(t, y, parms) return(y)

yout <- dede(y = yinit, times = times, func = mariott,
parms = NULL, rootfun = root,
events = list(func = event, root = TRUE))

This solution method is only slightly more efficient (3,161 function evaluations).
A plus however is that it has recorded the times when the root was found:

attributes(yout)$troot

[1] 14.01588 24.49263 67.54677 75.18143 118.43615

We add the root positions as grey vertical lines to the plot (Fig. 7.2):

plot(yout, lwd = 2,
main = "Mariott-Delisle Controller problem")

abline(v = attributes(yout)$troot, col = "grey")

7.5 Vanishing Time Delays

While there are many DDEs that dede can solve, there are also some that cannot
easily be solved with the current implementation of the DDE solution method in R.
These are problems belonging to the category of vanishing time delay differential
equations, for which the step size chosen by the solver exceeds the time delay
requested. In the way that delays were implemented in R, the solver then needs to
extrapolate rather than interpolate the variable’s value or derivative to the requested
time point. Only quite sophisticated algorithms [3] deal with this in a robust way, and
this is not (yet) included in R. There are however some vanishing delay problems
that can be solved with dede, although not without difficulties.

7.5 Vanishing Time Delays 129

0 20 40 60 80 100 120

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Mariott−Delisle Controller problem

time

Fig. 7.2 Solution of the Mariott-Delisle controller problem; the grey lines are the positions of the
root. See text for the R code

We implement the following problem from [3], which was modified from [2]:

y′ = cos(t)(1+ y(ty2(t))+ cy(t)y′(ty2(t))

+ (1− c)sint cos(t sin2 t)− sin(t + t sin2 t), (7.5)

y(t) = y′(t) = 0, for t <= 0.

This problem contains delays in the dependent variables and in the derivatives and
has a vanishing delay at t = 0, π/2, 3π/2, . . . Notwithstanding the complexity of
this formula, it has y(t) = sin(t) as exact solution!

Below is an implementation of this problem, with an estimate of the error. This
model cannot be solved by R for c = 1. We increase the precision of the solution by
setting atol and rtol to a very low value.

vanishing <- function(t, y, parms, cc) {
tlag <- t*yˆ2
if (tlag <= 0) {

ylag <- 0
dylag <- 0

} else {
ylag <- lagvalue(tlag)
dylag <- lagderiv(tlag)

}

130 7 Solving Delay Differential Equations in R

dy <- cos(t)*(1+ylag) + cc*y*dylag +
(1-cc)*sin(t)*cos(t*sin(t)ˆ2) - sin(t+t*sin(t)ˆ2)

list(dy)
}

yinit <- c(y = 0)
times <- seq(from = 0, to = 2*pi, by = 0.1)
yout <- dede(y = 0, times = times, func = vanishing,

parms = NULL,cc = -0.5, atol = 1e-10, rtol = 1e-10)

We estimate the maximal error it has generated:

print(max(abs(yout[,2] - sin(yout[,1]))))

[1] 1.81828e-06

7.6 Predator-Prey Dynamics with Harvesting

In Sect. 3.4 we showed how to include events and roots in ordinary differential
equations. Systems of DDEs can also be subject to impulses. Here we include an
example, from fisheries, [1], to show how we can use dede to include events that
are triggered by a state-dependent condition. As the times at which the events occur
are not known in advance, this is a rather difficult problem to solve.

The model describes predator-prey dynamics where the prey density (N) is
regulated by its density at a previous time t − τ1, and with carrying capacity K.
The prey is preyed upon at a per capita rate aH(t) and this is converted into
predator density (H) with efficiency b. The predator development time τ2 is taken
into account in the predator dynamics. Predators die at a rate equal to d,

N′ = rN(t)

(
1− N(t − τ1)

K

)
− aN(t)H(t)

H ′ = abN(t − τ2)H(t − τ2)− dH(t).

(7.6)

Implemented in R this becomes:

LVdede <- function(t, y, p) {
if (t > tau1) Lag1 <- lagvalue(t - tau1) else Lag1 <- yini
if (t > tau2) Lag2 <- lagvalue(t - tau2) else Lag2 <- yini

dy1 <- r * y[1] *(1 - Lag1[1]/K) - a*y[1]*y[2]
dy2 <- a * b * Lag2[1]*Lag2[2] - d*y[2]

list(c(dy1, dy2))
}

7.6 Predator-Prey Dynamics with Harvesting 131

These differential equations (7.6) apply as long as the prey’s density (N) does not
exceed a critical level, Y crit. At the critical density Ycrit, they are harvested by
fishermen, which reduces their density by 30%.

Thus, when N = Y crit, the dynamics of prey is governed by the “event”

N(t)+ = 0.7N(t)−. (7.7)

In R we define a root function that will locate the times at which this critical density
is reached (rootfun), while the reduction of prey density is performed in an
event function (eventfun). This function must return both dependent variables,
i.e. including the predator density (y[2]), although this does not change.

rootfun <- function(t, y, p)
return(y[1] - Ycrit)

eventfun <- function(t, y, p)
return (c(y[1] * 0.7, y[2]))

Function dede is used to solve the delay differential equation. We print the first ten
times at which the critical prey density was reached (troot).

r <- 1; K <- 1; a <- 2; b <- 1; d <- 1; Ycrit <- 1.2*d/(a*b)
tau1 <- 0.2; tau2 <- 0.2
yini <- c(y1 = 0.2, y2 = 0.1)
times <- seq(from = 0, to = 200, by = 0.01)
yout <- dede(func = LVdede, y = yini, times = times,

parms = 0, rootfun = rootfun,
events = list(func = eventfun, root = TRUE))

attributes(yout)$troot [1:10]

[1] 2.125283 3.057600 3.991063 4.926748 5.864435
[6] 6.803803 7.745041 8.688137 9.632305 10.578815

The output (Fig. 7.3) shows how the predators (y2) first decrease gradually while
the prey (y1) initially increase until they reach the critical density (Ycrit = 0.6).
After harvesting, the prey density is instantaneously reduced and predator density
initially decreases to increase after that, concurrently with prey density, until they
are set back again. This continues for a while; each time the predator density is
slightly higher, until the prey density does not reach the critical level anymore and
the predator – prey density converges to their equilibrium values.

plot(yout[,-1], type = "l")

132 7 Solving Delay Differential Equations in R

0.2 0.3 0.4 0.5 0.6

0.05

0.10

0.15

0.20

0.25

y1

y2

Fig. 7.3 Solution of the fisheries model, a DDE including events. See text for the R code

7.7 Exercises

7.7.1 The Lemming Model

A nice variant of the logistic model from Sect. 3.1.1, is the DDE lemming model as
from [9], citing [12].

y′ = ry

(
1− y(t − τ)

K

)
, (7.8)

with initial condition y(t = 0) = 19.001, and parameter values r = 3.5, τ = 0.74,
K = 19, and history y(t) = 19 for t < 0.

Try to recreate Fig. 7.4:

7.7.2 Oberle and Pesch

Implement the problem described by [7]

y′ =−λ y(t − 1)(1+ y(t)), (7.9)

on the interval [0, 20] and with history y(t) = t for t ≤ 0, for four values of the
parameter λ ; 1.5, 2.0, 2.5 and 3.

7.7 Exercises 133

0 10 20 30 40

0

20

40

60

80

100
Lemming model

time

y

0 20 40 60 80

0

20

40

60

80

100

y

y(
t−

0.
74

)
Fig. 7.4 The lemming model

0 5 10 15 20

0

2

4

6

time

λ
1.5
2
2.5
3

Fig. 7.5 The Oberle and Pesch model

Try to recreate Fig. 7.5.

7.7.3 An Epidemiological Model

The following example is from [4]. The system of DDEs describes the progress of an
epidemic by a SIR model (Susceptible, Infected, Recovered). The reference solution
at t = 40 is: (0.0912491205663460, 0.0202995003350707, 5.98845137909849).
The equations are:

y′1 =−y1(t)y2(t − 1)+ y2(t − 10)

y′2 = y1(t)y2(t − 1)− y2(t) (7.10)

y′3 = y2(t)− y2(t − 10),

134 7 Solving Delay Differential Equations in R

for t ∈ [0,40] and

Y (t) = [5,0.1,1]T , t ≤ 0. (7.11)

Try to solve the problem on a mesh of 400 points.

7.7.4 A Neutral DDE

The following neutral DDE [8]:

y′ = y(t)+ y′(t − 1), t ≥ 0

y(t) = 1, t < 0,
(7.12)

has as analytic solution: y(t) = et for t ∈ [0,1], y(t) = (t −1)e(t−1) +et for t ∈ [1,2].
Try to solve the problem on a mesh of 100 points.

7.7.5 Delayed Cellular Neural Networks With Impulses

Another problem from [1] describes delayed cellular neural networks with impulsive
effects. This DDE model exhibits both discrete and continuous behavior over the
time interval of interest. The discrete jumps in the states (events) occur at particular
points in time. As the delays for this problem at times vanish during the integration,
this is a relatively difficult problem. The relatively complex equations are:

y′1 =−6y1 + sin(2t) f (y1)+ cos(3t) f (y2)

+ sin(3t) f (y1(τ1))+ sin(t) f (y2(τ2))+ 4sin(t)

y′2 =−7y2 + cos(t) f (y1)/3+ cos(2t) f (y2)/2

+ cos(t) f (y1(τ1))+ cos(2t) f (y2(τ2))+ 2cos(t) (7.13)

f (x) = 0.5(|x+ 1|− |x− 1|
τ1 = t − 0.5(1+ cos(t))

τ2 = t − 0.5(1+ sin(t)),

on the interval [0,40] and with history y(t) = (−0.5,0.5) for t ≤ 0. Every two time
units, the dependent variables are increased, y1 by 20%, y3 by 30%. You will need
to write an “event-function” to make these changes, while passing a vector of times
at which the events are to take place.

The results are in Fig. 7.6, try to recreate it. This problem was solved in [10].

References 135

−0.5 0.0 0.5

−0.4

0.0

0.2

0.4

y1

y2

Fig. 7.6 The DDE with
impulses example

References

1. Corwin, S. P., Thompson, S., & White, S. M. (2008). Solving ODEs and DDEs with impulses.
Journal of Numerical Analysis, Industrial and Applied Mathematics (JNAIAM), 3(1–2),
139–149.

2. Enright, W. H., & Hayashi, A. (1998). A delay differential equation solver based on a
continuous Runge–Kutta method with defect control. Numerical Algorithms, 16, 349–364.

3. Guglielmi, N., & Hairer, E. (2008). Computing breaking points in implicit delay differential
equations. Advances in Computational Mathematics, 29(3), 229–247.

4. Hairer, E., & Wanner, G. (1996). Solving ordinary differential equations II: Stiff and
differential-algebraic problems. Heidelberg: Springer.

5. Mackey, M. C., & Glass, L. (1977). Oscillation and chaos in physiological control systems.
Science, 197, 287–289.

6. Marriott, C., & DeLisle, C. (1989). Effects of discontinuities in the behavior of a delay
differential equation. Physica D, 36, 198–206.

7. Oberle, H. J., & Pesch, H. J. (1981). Numerical treatment of delay differential equations by
hermite interpolation. Numerische Mathematik, 37, 235–255.

8. Paul, C. A. H. (1994). A test set of functional differential equations (Numerical Analysis Rep.
No. 243). University of Manchester, Manchester.

9. Shampine, L. F., & Thompson, S. (2001). Solving DDEs in MATLAB. Applied Numerical
Mathematics, 37, 441–458.

10. Soetaert, K., & Petzoldt, T. Solving ODEs, DDEs, DAEs, and PDEs in the open source software
R. Journal of Numerical Analysis, Industrial and Applied Mathematics (JNAIAM).

11. Soetaert, K., Petzoldt, T., & Setzer, R. W. (2010). Solving differential equations in R: Package
deSolve. Journal of Statistical Software, 33(9), 1–25.

12. Tavernini, L. (1996). Continuous-time modeling and simulation. Amsterdam: Gordon and
Breach.

Chapter 8
Partial Differential Equations

Abstract A characteristic of partial differential equations (PDEs) is that the
solution changes as a function of more than one independent variable. Usually these
variables are time and one or more spatial coordinates. The numerical solution of
a PDE therefore often requires the solution to be approximated not only in time
as in ODEs, but in space as well. If all derivatives are approximated by finite
differences at a finite number of points, a set of algebraic equations is obtained
whose solution can be found using root solving algorithms. This is the common
approach for solving time-independent PDEs. In contrast, PDEs which involve time
as one of the independent variables are usually solved with the method of lines. In
this case only spatial derivatives are discretised, while the time derivative is left as a
continuous function. The result is a system of ODEs in time that can be solved with
the initial value problem solvers from previous chapters. Typically, the dimension
of the ODE or algebraic system is much larger than the number of components in
the original partial differential equation.

8.1 Partial Differential Equations

In this chapter we will consider the numerical solution of PDEs using finite
difference techniques or the method of lines [13, 15, 23, 31, 32]. There exist other
powerful numerical methods for the solution of PDEs such as finite element, finite
volume or meshless methods [18, 21, 24], but since they are not implemented in the
R packages (finite elements, meshless) or we give no examples here (finite volume),
they will not be discussed in this chapter.

In partial differential equations the solution changes as a function of more than
one independent variable, often time, and one or more spatial variables. As a simple
example, consider the advection-diffusion equation:

∂Y
∂ t

=−v
∂Y
∂x

+D
∂ 2Y
∂x2 , (8.1)

DOI 10.1007/978-3-642-28070-2 8, © Springer-Verlag Berlin Heidelberg 2012
137K. Soetaert et al., Solving Differential Equations in R, Use R!,

138 8 Partial Differential Equations

where t denotes time, x is the spatial position, v is the advection rate, D is a positive
constant known as the diffusion coefficient, and Y is the dependent variable. As Y
depends on both x and t, the equation is called a partial differential equation; ∂Y/∂ t
is the (first order) partial derivative of Y with respect to t, ∂ 2Y/∂x2 is the (second
order) partial derivative with respect to x. As the highest derivative is 2, the PDE is
said to be a second order equation.

A PDE that contains only a diffusion term belongs to a fundamental class of
PDEs called a parabolic PDE. Another well-known PDE is the wave equation,
which is of hyperbolic type, e.g:

∂ 2u
∂ t2 = c2 ∂ 2u

∂x2 . (8.2)

A third basic PDE is the elliptic PDE, such as the 2-dimensional Poisson equation:

∂ 2w
∂x2 +

∂ 2w
∂y2 = f (x,y). (8.3)

Examples of these three types will be given in the next chapter.

8.1.1 Alternative Formulations

There exist several alternative notations for dealing with PDEs. Sometimes partial
differentiation is denoted using subscripts, e.g.

ux =
∂u
∂x

uxx =
∂ 2u
∂x2 (8.4)

∂x =
∂
∂x

.

Another more compact representation of derivatives is provided by coordinate-
independent operators. For example, the symbol ∇ (nabla) represents the gradient
operator, which defines the vector field, consisting of the partial derivatives:

∇ =
∂
∂x

∇ =

(
∂
∂x

,
∂
∂y

)T

∇ =

(
∂
∂x

,
∂
∂y

,
∂
∂ z

)T

,

(8.5)

8.1 Partial Differential Equations 139

in 1-D, 2-D and 3-D cartesian coordinates respectively (see below for other
coordinate systems).

Related to the gradient operator is the divergence operator, ∇·. If we denote by
a = (a1,a2,a3)

T , a vector ∈ ℜ3, then the divergence of a is given by:

∇ ·a =

(
∂a1

∂x
+

∂a2

∂y
+

∂a3

∂ z

)
. (8.6)

It is also common to use the Laplace operator, Δ , a second order differential
operator defined as the divergence of the gradient. If u is a differentiable scalar
function in ℜ3:

Δu = ∇ ·∇u = ∇2u =
∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2 . (8.7)

When using these formalisms, the advection-diffusion equation (8.1) can be writ-
ten as:

∂Y
∂ t

= −v
∂Y
∂x

+D
∂ 2Y
∂x2

Yt = −vYx +DYxx
∂Y
∂ t

= −v∇ ·Y +DΔY,

(8.8)

where the last equation is also valid for other coordinate systems or for multi-
dimensional (2-D, 3-D) problems. We can also write the equation such that it applies
to spatially variable D and v:

∂Y
∂ t

= −∇ · (vY)+∇ · (D∇Y). (8.9)

If we now rewrite the last equation as:

∂Y
∂ t

=−∇ · (vY −D∇Y), (8.10)

the equation is written in the form of a conservation law and we obtain the flux-
conservative representation of the equation. Large classes of time-dependent PDEs
can be put in flux-conservative form. This is more generally represented as:

∂Y
∂ t

=−∇ ·F. (8.11)

The equation states that the change in the quantity Y with time (t) equals the negative
divergence of the flux F . In (8.10) the advective flux is represented as a velocity v
times the quantity, while the diffusive flux equals a diffusion coefficient D times the
negative of the quantities gradient. As we will see later, this formula is the basis of
the functions for solving partial differential equations in the R package ReacTran
[33] (see Chap. 9).

140 8 Partial Differential Equations

Fig. 8.1 Different coordinate systems

8.1.2 Polar, Cylindrical and Spherical Coordinates

In the previous section we used cartesian coordinates to specify the position of
quantities along the x, y, and z direction (Fig. 8.1a). However, many problems are
more easily specified in one of the alternative coordinate systems, such as the polar,
cylindrical or spherical coordinate system.

For instance, substances dispersing on a flat surface from a point source are
most conveniently represented in polar coordinates, which have a circular boundary
(Fig. 8.1c). A natural extension of polar coordinates to the z-axis gives way to the
cylindrical coordinate system (Fig. 8.1b). This representation is for instance very
well suited to describe heat transport in a cylindrical tube. If a quantity is radiating
in all spatial directions from a point source, then the spherical coordinate system is
generally best (Fig. 8.1d).

Whereas in three-dimensional cartesian coordinates (x,y,z), we write:

8.1 Partial Differential Equations 141

∇u =

(
∂u
∂x

,
∂u
∂y

,
∂u
∂ z

)T

∇ ·a =
∂a1

∂x
+

∂a2

∂y
+

∂a3

∂ z

Δ f =
∂ 2 f
∂x2 +

∂ 2 f
∂y2 +

∂ 2 f
∂ z2 ,

(8.12)

in the cylindrical coordinate system (r, θ , z)1 this becomes (Fig. 8.1b):

∇u =

(
∂u
∂ r

,
1
r

∂u
∂θ

,
∂u
∂ z

)T

∇ ·a =
1
r

∂
∂ r

(a1r)+
1
r

∂a2

∂θ
+

∂a3

∂ z

Δ f =
1
r

∂
∂ r

(
r

∂ f
∂ r

)
+

1
r2

∂ 2 f
∂θ 2 +

∂ 2 f
∂ z2 ,

(8.13)

and in spherical coordinates (r, θ , ϕ)2 (Fig. 8.1d) we have:

∇u =

(
∂u
∂ r

,
1
r

∂u
∂θ

,
1

r sin θ
∂u
∂ϕ

)T

∇ ·a =
1
r2

∂
∂ r

(r2a1)+
1

r sinθ
∂

∂θ
(sinθa2)+

1
r sin θ

∂a3

∂ϕ

Δ f =
1
r2

∂
∂ r

(
r2 ∂ f

∂ r

)
+

1
r2 sinθ

∂
∂θ

(
sinθ

∂ f
∂θ

)
+

1

r2 sin2 θ
∂ 2 f
∂ϕ2 .

(8.14)

The polar coordinate system (r, θ)3 (Fig. 8.1c) is a two-dimensional set of
coordinates similar to the cylindrical system, but without the z-dependence. It
describes properties distributed on a circle:

Δ f =
1
r

∂
∂ r

(
r

∂ f
∂ r

)
+

1
r2

∂ 2 f
∂θ 2 . (8.15)

8.1.3 Boundary Conditions

Just as we needed initial conditions to fully specify an initial value problem for an
ODE, partial differential equations are only complete after we have defined what
happens on the boundaries of the domain. For spatial coordinates, the boundaries
are where the model interacts with the outside world. The number of boundary

1Sometimes denoted by (r, ϕ , z).
2Sometimes denoted by (r, ϕ , θ).
3Sometimes denoted by (r, ϕ).

142 8 Partial Differential Equations

conditions needed in an independent variable equals the highest order derivative
in this variable.

Often, the model domain is represented by the symbol Ω while the boundaries
are denoted by ∂Ω .

The boundary conditions can be represented as:

αY +β
∂Y
∂n

= g on ∂Ω , (8.16)

where ∂Y/∂n denotes the derivative normal to the boundary and α and β are
constants. Several types of boundary conditions are commonly used:

• If α = 0, the gradient is specified at the boundaries and the problem is said to
have a Neumann boundary condition.

• With β = 0, the variable values are specified and the boundary is referred to as
being of Dirichlet type.

• If both α and β differ from 0, we have a Robin problem.
• Another frequently used boundary condition is the periodic boundary condition,

where a variable’s value and/or its gradient is equal at opposite ends of the
boundary.

8.2 Solving PDEs

The solution of PDEs using a finite difference approach or the method of lines
involves several steps. First, one or more continuous independent variables are
subdivided in a number of grid cells, and the continuous derivatives are replaced
by discrete, algebraic approximate equations.

For time-varying cases, it is customary to discretise the spatial coordinate(s)
only, while time is left in continuous form. This is called the method of lines,
and in this way, one PDE is translated into a large number of coupled ordinary
differential equations that can be solved using standard initial value problem solvers.
For time-independent problems, usually all independent variables are discretised
and all derivatives approximated by algebraic equations, which are then solved by
root-finding techniques.

In general the dimension of the resulting ODE or algebraic system is much larger
than the number of components in the original PDE.

There are two ways in which to reduce the numerical errors associated with the
numerical differencing. The simplest way is to increase the number of grid points,
but this increases the system of algebraic equations or ODEs that will need to be
solved. When using the method of lines more gridpoints also increase the stiffness
of the problem. An alternative is to resort to higher order difference schemes.

8.3 Discretising Derivatives 143

x1 x2 x3 x4 x5

Y1 Y2 Y3 Y4 Y5

h

x1 x2 x3 x4 x5

Y1 Y2 Y3 Y4 Y5

F0,1 F1,2 F2,3 F3,4 F4,5 F5,6

h2 h3,4

a

b

Fig. 8.2 Discretisation of the spatial domain. (a) Simple differencing grid. (b) Staggered grid

8.3 Discretising Derivatives

Given that PDEs almost never have known solutions, they need to be solved by
estimating the values of variables at a limited number of points in the model
domain only. For simplicity, we explain the technique in one dimension. It is
straightforward to extend the numerical approximations to 2-D and 3-D model
domains, by discretising at a regular grid of points, such that the values of the
variables are represented in a matrix (2-D) or an array (3-D).

Assume that the spatial domain is Ω = [a, b] and that a large number of points
are spaced regularly on a grid (Ωh = a = x0,x1, . . . ,xN ,b = xN+1), and with distance
between two points equal to h (i.e. xi = xi−1 + h).

The variable values, Y (t,x), are defined at the node points xi only, and the
approximation of Y (t,xi) at xi is denoted by Yi(t) (Fig. 8.2.). Even though this
representation is not continuous, if we consider a large enough number of values,
we will have a good idea of how the variable changes in the model domain.

The differential equations also include the derivatives of the variable, which we
need to represent. Since we only know the variable values Yi at selected points xi,
we use these to represent the derivatives, using difference quotients. Thus, the nth
derivative of Y at the point xi is estimated as:

Y (n)
i (t) =

1
hn

s

∑
k=−r

ckYi+k(t), (8.17)

with suitable coefficients ck [15]. In this formula we use r values to the left and s val-
ues to the right of xi, such that a total of r+s+1 values ck need to be determined. The
set of points xi−r, . . . ,xi+s is called the stencil of the discretisation around xi [15].

As was the case for the development of suitable Runge-Kutta methods (see
Sect. 2.1.2) a number of order conditions should be met for the difference equa-
tion (8.17) to have a certain order of accuracy. Moreover, these equations are often

144 8 Partial Differential Equations

used to transport concentrations or densities, and an important condition for these
quantities is that they cannot become negative.

A useful property of solutions to certain PDEs is that they should satisfy the
maximum principle [10, 23]. In particular the Maximum Principle is concerned
with properties of solutions of certain partial differential equations of elliptic and
parabolic type and basically it says that the maximum of a function in a domain is
to be found on the boundary of that domain.

In what follows we will discuss suitable spatial discretization schemes for the
first and second order derivatives, for which we will use the advection and diffusion
equation respectively. To preserve the analytic properties of the solution we should
use only numerical approximations that also conserve non-negativity.Unfortunately,
this strongly restricts the order of the difference schemes that can be used. We will
see in the next sections that, if non-negativity needs to be ensured, the order of the
simple linear schemes cannot exceed 1 or 2 for first order (advection) and second
order (diffusion) derivatives respectively. For many practical cases, the first order
discretisation of advection is not adequate, and non-linear discretisations are used.
This is dealt with in Sect. 8.3.4.

8.3.1 Basic Diffusion Schemes

Consider the diffusion equation in one spatial dimension (x):

∂Y (t,x)
∂ t

= D
∂ 2Y (t,x)

∂x2 , (8.18)

with initial condition Y (0,x) = g0(x) and boundary conditions of Dirichlet type

Yt,x=a = ga

Yt,x=b = gb.
(8.19)

Applying (8.17) to the right-hand side of (8.18), the general spatial finite difference
scheme for the ith component of this equation which is second order in space, can
be written as:

Y ′
i (t) =

D
h2

s

∑
k=−r

ckYi+k(t), i = 1, . . .N, (8.20)

with suitable coefficients ck. As diffusion is direction independent, in general s is
taken to be equal to r, and ck = c−k.

The conditions to obtain an order q are ∑k ck = 0, ∑k k2ck = 2, ∑k k4ck = 0,. . . ,
∑k kqck = 0 [15, p. 65], which can be satisfied for q = 2s.

For example, with s = 1 and s = 2, we obtain the second order and fourth order
central diffusion discretisation respectively [15, p. 62, 65]:

8.3 Discretising Derivatives 145

Y ′
i (t) =

D
h2 (Yi−1(t)− 2Yi(t)+Yi+1(t)) (8.21)

Y ′
i (t) =

D
h2 (−

1
12

Yi−2(t)+
4
3

Yi−1(t)− 5
2

Yi(t)+
4
3

Yi+1(t)− 1
12

Yi+2(t)). (8.22)

At the boundaries the fourth order central diffusion discretisation should be used
with a suitable discretization scheme for Y ′

1(t) and Y ′
N(t) to avoid the use of values

of xi outside the domain Ω .
The discretization of the equations generates an initial value problem which can

be represented as:
Y ′(t) = AY (t)+ b, t > 0
Y (t = 0) = (g0(x1), . . . ,g0(xN))

T ,
(8.23)

where Y (t) = (Y1(t), . . . ,YN(t))
T , A is a banded matrix whose elements depend on

the coefficients of the discretization and b depends on the boundary conditions.
For example, if we use the second order discretization (8.21), A is a tridiagonal
matrix with −2D/h2 on the main diagonal and D/h2 on the upper and lower
diagonals and b = (Dga/h2,0, . . . ,0,Dgb/h2)T .

8.3.1.1 Non-negativity of Diffusion Schemes

In order for a formula to maintain non-negativity, it is required that the resulting
IVP (8.23) maintains non-negativity. A necessary and sufficient condition for (8.23)
to have a positive solution, if the initial condition is positive, is that the matrix −A
is an M–matrix [22, p. 206] (see [30] for the definition of M–matrices). This means
that it is required that Dck ≥ 0 for all k 	= 0 and Dc0 < 0. Clearly, this is met for the
second order formula (8.21), but due to the negative coefficients c−2 = c2 =−1/12
the fourth order discretisation (8.22) does not conserve non-negativity.

Indeed, for the general diffusion discretisation (8.20), the requirement for non-
negativity leads to an order barrier of 2 [15, p. 120], i.e. it is not possible to
derive non-negative formulae of order higher than 2. Fortunately, for many practical
applications, second order approximations are sufficiently accurate. Naturally, to
have a full non-negative scheme, the numerical method used to solve the IVP (8.23)
should preserve this property.

8.3.2 Basic Advection Schemes

Following the approach that we used when dealing with diffusion, we can also
approximate the advection equation in one spatial dimension (x):

∂Y (t,x)
∂ t

=−v
∂Y (t,x)

∂x
, (8.24)

146 8 Partial Differential Equations

with initial condition Y (t = 0,x) = g0(x) and boundary conditions of Dirichlet type
Y (t,x = a) = ga. Based on (8.17), the general spatial finite difference scheme for
the ith component of this first order equation can be written as:

Y ′
i (t) =− v

h

s

∑
k=−r

ckYi+k(t), i = 1, . . .N, (8.25)

generating an ordinary differential equation of the same type as (8.23).

8.3.2.1 Stability

Based on [15, p. 59], the conditions needed to obtain a scheme of order q are ∑k ck =
0, ∑k kck = −1, ∑k k2ck = 0,. . . , ∑k kqck = 0, and it is possible to find a unique set
of coefficients c−r, . . . ,cs which gives order q = r+ s, for any r and s.

However, a fundamental result obtained by [17] is that if v > 0 then the scheme
of order q = r+ s is stable only for s ≤ r ≤ s+ 2, while for v < 0, the condition is
r ≤ s ≤ r+ 2.

For instance, the first order upwind difference approximation uses only two
points to approximate the first derivative, and is different for positive or negative
v [15, p. 53]:

Y ′
i (t) = −v

Yi(t)−Yi−1(t)
h

v > 0

Y ′
i (t) = −v

Yi+1(t)−Yi(t)
h

v < 0.
(8.26)

In this case the matrix A of the IVP (8.23) generated after the discretization is a
bidiagonal matrix with, for positive v, −v/h on the main diagonal and v/h on the
first lower diagonal and the vector b in (8.23) is b= (v/h)(ga,0, . . . ,0,0)T . It is easy
to show that this IVP is stable (see Sect. 1.2.4).

Another simple approximation of the advection equation is the second order
central difference approximation, which, as it is symmetric, remains the same for
positive or negative v [15, p. 53]:

Y ′
i (t) =−v

Yi+1(t)−Yi−1(t)
2h

. (8.27)

A higher order example is the third order upwind-biased scheme [15] where r = 2
and s = 1:

Y ′
i (t) =

v
h
(−1

6
Yi−2(t)+Yi−1(t)− 1

2
Yi(t)− 1

3
Yi+1(t)) v > 0

Y ′
i (t) =

v
h
(

1
3

Yi−1(t)+
1
2

Yi(t)−Yi+1(t)+
1
6

Yi+2(t)) v < 0.
(8.28)

8.3 Discretising Derivatives 147

Near the boundaries, the third order upwind-biased scheme should be used with a
suitable discretization scheme for Y ′

1(t) to avoid the use of an xi value outside the
boundary domain.

8.3.2.2 Non-negativity of Advection Schemes

The IVP arising after the discretization of the space derivative (8.23) maintains non-
negativity if the matrix −A is an M-matrix (see Sect. 8.3.1.1). This requires that
vck ≥ 0 for all k 	= 0 and vc0 < 0. Whereas this is clearly satisfied for the first order
upwind scheme (8.26), this is neither the case for the second order central difference
scheme (8.27) nor for the third order upwind-biased scheme (8.28).

Indeed, there exists an order barrier of one for maintaining non-negativity of
advection schemes ([9] [15, p. 119]). This means that all schemes of order higher
than 1 do not ensure that the dependent variables will remain positive or zero.

As the first order approximation has some undesirable properties, other approx-
imation formulae for the advection equation have been devised to attain higher
accuracy while still conserving non-negativity. These more complex advection
schemes will be dealt with in Sect. 8.3.4.

8.3.3 Flux-Conservative Discretisations

The approximations from the previous sections work well if the parameters, such
as the diffusion coefficient (D) and velocity (v) are constant, and for a constant
grid size. When applied carelessly, they may however lead to (numerical) mass
creation or loss in the case where these properties change with spatial position, or
for irregular grid sizes. In such circumstances, it is simplest to discretise the partial
differential equations in flux-conservative form (8.10), which for the 1-D advection-
diffusion equation (8.1) can be written as:

∂Y
∂ t

= −∂F
∂x

F = v(x) ·Y −D(x) · ∂Y
∂x

,
(8.29)

where F is the (advective-diffusive) flux.
The discretisation of this PDE comprises the introduction of a staggered finite-

difference grid. Here the dependent variable values Yi are defined in the centre of
grid cells, while the fluxes F are defined on the grid interfaces (Fig. 8.2.)

Denoting by Fi,i+1 the flux on the interface from cell i, to cell i+1 we can derive
the following approximation to (8.29):

148 8 Partial Differential Equations

dYi

dt
= −Fi,i+1 −Fi−1,i

hi

Fi,i+1 = vi,i+1Yi −Di,i+1
Yi+1 −Yi

hi,i+1
,

(8.30)

which applies for positive v and where we have used centered differences for
representing the diffusive term and the first order upwind approximation for the
advective term. In this equation, hi is the width of grid cell i, while hi,i+1 is the
distance from the middle of grid cell i to grid cell i + 1 (Fig. 8.2b). As the flux
over the boundaries is used in the derivatives of both adjacent cells mass will be
conserved.

8.3.4 More Complex Advection Schemes

The advection equation, despite its apparent simplicity, is a very difficult process to
approximate numerically with a reasonable accuracy. As seen in Sect. 8.3.2, this is
because advection schemes of order higher than one may produce negative quan-
tities, so they cannot be used if quantities should remain non-negative. However,
linear schemes of order one have very low accuracy. We first illustrate the severity
of the problem associated with using first order advection schemes, based on a well-
known test example, and then give some remedies.

8.3.4.1 Advection of a Square Pulse

In Fig. 8.3 the simple advection equation

∂Y
∂ t

=−v
∂Y
∂x

, (8.31)

is approximated using several standard approximation schemes, which are the first
order upwind (8.26), the third order upwind-biased (8.28), and the second order
central advection (8.27) discretizations respectively.

In the test application, a steep pulse is set in motion with a constant velocity. As
there is no production or consumption of the quantity Y the pulse should retain its
shape, but clearly (Fig. 8.3) this is not so for any of the schemes tested!

The simplest method, the first order upwind scheme causes an unrealistic
flattening of the solution, as if there was a substantial dispersion in addition to the
advection. This dispersion-like behavior leads this artifact to be called “numerical
dispersion” (Fig. 8.3a). Using central difference schemes to approximate advection
retains the shape of the pulse better, but these schemes give numerical solutions with
large oscillations (Fig. 8.3c), and negative values. These oscillations are even more
pronounced when using first order forward downwinded differences (not shown).

8.3 Discretising Derivatives 149

0.4

0.0

–0.4

0.0 –1.0

0.0

0.5y

1.0

1.5

2.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

y
y

y y

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

1st order upwind, c = 0.05a b

c

d e1st order upwind, c = 1 1st order upwind, c = 1.25

centered

3–rd order upwind

0.0

0.2

0.4

0.6

0.8

1.0

0.6 0.8
x

1.0 1.2

0.4 0.6 0.8
x

1.0 1.2

initial
numerical at t=4
analytical at t=4

0.4 0.6 0.8
x

1.0 1.2 0.4 0.6 0.8
x

1.0 1.2

0.4 0.6 0.8
x

1.0 1.2

Fig. 8.3 The advection equation, approximated on a domain with 50 grid points, with h = 0.02.
The equations are solved with the Euler method, using a time step of 0.1, and using different
advection schemes; the velocity = 0.1. (a) First order upwind scheme. (b) The third order upwind-
biased scheme. (c) Second order central differences. The Courant number in (a–c) equals 0.05. (d)
First order upwind scheme with a Courant number of 1, and (e) first order upwind scheme with
a Courant number of 1.25. The dark, thin line is the initial condition, the dashed line is the exact
solution at t= 4, the thick line is the numerical approximation

A more realistic profile is given by the third order upwind-biased discretisation, but
this still shows some oscillations and small negative values (Fig. 8.3b). Of the three
methods tested, only the first order upwind scheme did not produce negative values.
This undesirable result can be dealt with in several ways.

150 8 Partial Differential Equations

8.3.4.2 Time Step Conditions

An important property when differencing advection terms, especially when using
explicit numerical integration methods is the speed at which quantities propagate in
the difference equation. If the physical velocity v equals the algorithm speed h/Δ t
then the numerical approximation will be exact. However, if it exceeds the algorithm
speed, the scheme is unstable. For the Euler method used with the first order upwind
scheme, this leads to the following Courant condition for these methods to be stable:

|v| ≤ h
Δ t

, (8.32)

more commonly written as:
|v|Δ t

h
≤ 1, (8.33)

where the quantity |v|Δ t/h is called the Courant-Friedricks-Lewy (CFL), or Courant
number (c) [23]. To avoid instabilities, in many algorithms it is coded that if during
a certain time step (Δ t) the maximum Courant number exceeds 1, the time step is
split guaranteeing that the split step Courant numbers remain smaller than 1.

In Fig. 8.3a, the Courant number in the upwind scheme was 0.05. The same
equation is now solved, again using the upwind scheme, but where the Courant
number, c, equals 1 (Fig. 8.3d), and 1.25 (Fig. 8.3e). Note the perfect result when
c = 1, and the numerical oscillations when c exceeds the critical value 1.

Thus, if we have only the advection equation to solve, then when using Euler
with a time step such that the Courant number c = 1, the result will be exact.
Unfortunately, in advection-reaction equations, it is often the reaction part that is
the most expensive in terms of computation. Thus, if the equations comprise terms
other than advection, simple Euler integration may not work, and we will need to
resort to the more complex approximations discussed next.

8.3.4.3 Flux Limiters

In order to keep the numerical errors of the advection approximation in check we
can use so-called flux limiters that ensure positivity and eliminate the numerical
oscillations.

For example, total variance diminishing (TVD) schemes [27] ensure that the total
variation of the solution of an equation does not increase as time progresses. The
principle is as follows. If we write the advective equation in flux-conservative form,
we can approximate the flux caused by the advective velocity, v, over interface i, i+1
using upwind differencing:

Fi,i+1 = vi,i+1Yi, (8.34)

(this formula only applies for vi,i+1 > 0).

8.3 Discretising Derivatives 151

0.0

0.2

0.4

0.6

0.8

1.0
y

0.4 0.6

muscla b superbee

0.8
x

1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

y

0.4 0.6 0.8
x

1.0 1.2

Fig. 8.4 The advection equation, solved with an upwind-biased scheme, using a flux limiter. (a)
the muscl scheme and (b) the superbee limiter. The dark, thin line is the initial condition, the
gray thin line is the exact solution at t= 4, the thick line is the numerical approximation. Note that
mass is conserved in these limiters, although the figure tends to suggest otherwise

As seen above, this approximation is not very satisfactory, as it produces
conspicuous artificial dispersion (Fig. 8.3a). The trick is to add a term that more or
less compensates for this numerical artifact while ensuring positivity (e.g. [15,27]):

Fi,i+1 = vi,i+1 (Yi +Φi(θi,ci)(Yi+1 −Yi)) . (8.35)

Here Φi, is called the limiter function, and it depends on the slope parameter θi and
the Courant number ci. The slope parameter is nonlinear and is given by the ratio:

θi =
Yi −Yi−1

Yi+1 −Yi
. (8.36)

There exist many formulae which can be used as limiter functions. Two commonly
used methods are the superbee [28] and the muscl [34] limiter:

Φi =
1
2
(1− c)(max(0,min(1,2θi),min(2,θi)))

Φi =
1
2
(1− c)(max(0,min(2,(1+θi)/2,2θi)).

(8.37)

In the next figure (Fig. 8.4) we have applied these two limiters to the advection test
model. Both produce good results, although superbee tends to cause a steepening of
the smooth function, while muscl is slightly more diffusive than superbee.

152 8 Partial Differential Equations

1−D, 15 cellsa b 2−D, 5*3 grid

Fig. 8.5 The pattern of non-zero elements in the Jacobian for a 1-D and 2-D problem, approxi-
mated using centered differences

8.4 The Method Of Lines

In the previous sections we focussed on the approximation of the spatial derivatives.
We still need to find a solution to the PDE. For time-varying equations it is
customary to discretise the spatial coordinate(s) only while time is left in continuous
form. In this way, the partial differential equation is no longer a continuous function
of space, but has become a set of coupled ordinary differential equations (such
as (8.23)). The resulting ODEs are of rather large size, in the 1-D case N times
the number of dependent variables, where N is the number of grid cells. They can
be solved with the standard integration methods as described in previous chapters.

The technique of discretising spatial derivatives only, while solving the time
derivative with an IVP solver is called the method of lines (MOL). The name refers
to the solution that consists of values at each spatial grid point, and along time
“lines”.

Of course, as the continuous PDEs are replaced by approximate differences,
numerical errors are introduced. These can generally be controlled by refining the
grid (i.e. reducing h), but this makes the IVP more stiff, larger in size and therefore
more difficult to solve by an IVP solver. Many of these equations are therefore
best solved with efficient implicit methods, such as BDF or MEBDFI (Sect. 2.5).
However, as they are generally large systems of equations, this may pose quite a
computational challenge!

Fortunately, the spatial discretisation leads to ODEs with a Jacobian whose non-
zero elements are restricted to a small number of bands, parallel to the diagonal.
An example of the pattern of the Jacobian, for a problem describing advective-
diffusive transport of one component, in one dimension and in two dimensions is
in Fig. 8.5. A large reduction in computation time is then achieved by using an
integrator adapted to efficiently solve such sparse systems.

References 153

Several ODE or DAE codes provide methods to efficiently solve sparse systems.
For instance, the codes LSODA [26], LSODE [14], VODE [3], DASSL [25],
DASPK [2], MEBDFI [6], RADAU5 [12], BIMD [5] and GAMD [16] all include
linear solvers based on banded matrices [7] and can therefore efficiently solve
1-D problems. The code LSODES [14] uses the Yale sparse matrix solver [8] and is
very well suited for solving 2-D or 3-D problems. Apart from the direct (dense or
banded) linear solution methods, the codes DASPK [2], VODPK [3] and LSODPK
[14] also include several preconditioned Krylov subspace iterative methods. This
makes them ideally suited to solve very large (1-D, 2-D or 3-D) problems [4]. A
set of PDE integration routines based on the method of lines and written in widely
accepted and used languages can be found in [11, 20].

8.5 The Finite Difference Method

For time-invariant problems, usually all independent variables are discretised, and
all derivatives approximated by algebraic equations. A root-solving method is then
used to solve the large and sparse set of algebraic equations. The same efficiency
can be attained by also considering the sparseness structure of the Jacobian when
solving these algebraic systems. A classical Newton-Raphson method that makes
use of banded [1] or arbitrarily sparse matrices is most efficient to solve 1-D or multi
dimensional problems respectively. Apart from the direct sparse matrix solvers such
as in [8] also the iterative solution methods (e.g. [29, 30]) are useful.

This classical finite difference method can also be used to discretise both spatial
and temporal derivatives [10]. A well-known example is the Lax-Wendroff scheme
for advection ([19] [15, p. 98]).

Note that there exists another powerful method to discretise the spatial domain,
the finite element method [18]. However, as this method is not yet available in R,
we do not discuss it here.

References

1. Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A.,
Hammarling, S., McKenney, A., Ostrouchov, S., & Sorensen, D. (1992). LAPACK’s user’s
guide. Philadelphia: Society for Industrial and Applied Mathematics.

2. Brenan, K. E., Campbell, S. L., & Petzold, L. R. (1996). Numerical solution of initial-
value problems in differential-algebraic equations. SIAM classics in applied mathematics.
Philadelphia, PA: Society for Industrial and Applied Mathematics.

3. Brown, P. N., Byrne, G. D., & Hindmarsh, A. C. (1989). VODE, a variable-coefficient ODE
solver. SIAM Journal on Scientific and Statistical Computing, 10, 1038–1051.

4. Brown, P. N., Hindmarsh, A. C., & Petzold, L. R. (1994). Using krylov methods in the solution
of large-scale differential-algebraic systems. SIAM Journal on Scientific and Statistical
Computing, 15(6), 1467–1488.

154 8 Partial Differential Equations

5. Brugnano, L., Magherini, C., & Mugnai, F. (2006). Blended implicit methods for the numerical
solution of DAE problems. Journal of Computational and Applied Mathematics, 189(1–2),
34–50.

6. Cash, J. R., & Considine, S. (1992). An MEBDF code for stiff initial value problems. ACM
Transactions on Mathematical Software, 18(2), 142–158.

7. Dongarra, J. J., Bunch, J. R., Moler, C. B., & Stewart, G. W. (1979). LINPACK users guide.
Philadelphia, PA: Society for Industrial and Applied Mathematics.

8. Eisenstat, S. C., Gursky, M. C., Schultz, M. H., & Sherman, A. H. (1982). Yale sparse
matrix package. I. The symmetric codes. International Journal for Numerical Methods in
Engineering, 18, 1145–1151.

9. Godunov, S. K. (1959). A finite difference method for the numerical computation of
discontinuous solutions of the equations of fluid dynamics. Math Sbornik, 47, 271–306.

10. Greenspan, D., & Casulli, V. (1988). Numerical analysis for applied mathematics, science,
and engineering. Redwood: Addison-Wesley/Advanced Book Program.

11. Griffiths, G. W., & Schiesser, W. E. (2012). Traveling wave analysis of partial differential
equations. Numerical and analytical methods with MATLAB and MAPLE. Amsterdam:
Elsevier/Academic.

12. Hairer, E., & Wanner, G. (1996). Solving ordinary differential equations II: Stiff and
differential-algebraic problems. Heidelberg: Springer.

13. Hamdi, S., Schiesser, W. E., & Griffiths, G. W. (2007). Method of lines. Scholarpedia, 2(7),
2859.

14. Hindmarsh, A. C. (1983). ODEPACK, a systematized collection of ODE solvers. In R.
Stepleman (ed.), Scientific computing: Vol. 1. IMACS transactions on scientific computation
(pp. 55–64). Amsterdam: IMACS/North-Holland.

15. Hundsdorfer, W., & Verwer, J. G. (2003). Numerical solution of time-dependent advection-
diffusion-reaction equations. Springer series in computational mathematics. Berlin: Springer.

16. Iavernaro, F., & Mazzia, F. (1998). Solving ordinary differential equations by generalized
Adams methods: Properties and implementation techniques. Applied Numerical Mathematics,
28(2–4), 107–126. Eighth Conference on the Numerical Treatment of Differential Equations
(Alexisbad, 1997).

17. Iserles, A., & Strang, G. (1983). The optimal accuracy of difference schemes. Transactions of
the American Mathematical Society, 277, 779–803.

18. Johnson, C. (2009). Numerical solution of partial differential equations by the finite element
method. Mineola: Dover. (Reprint of the 1987 edition)

19. Lax, P. D., & Wendroff, B. (1960). Systems of conservation laws. Communications on Pure
and Applied Mathematics, 13, 217–237.

20. Lee, H. J., & Schiesser, W. E. (2004). Ordinary and partial differential equation routines in C,
C++, Fortran, Java, Maple, and MATLAB. Boca Raton: Chapman & Hall/CRC.

21. LeVeque, R. J. (2002). Finite volume methods for hyperbolic problems. Cambridge texts in
applied mathematics. Cambridge: Cambridge University Press.

22. Luenberger, D. G. (1979). Introduction to dynamic systems: Theory, models, and applications.
New York: Wiley.

23. Mitchell, A. R., & Griffiths, D. F. (1980). The finite difference method in partial differential
equations. Chichester: Wiley.

24. Pepper, D. (2010). Meshless methods for PDEs. Scholarpedia, 5(5), 9838.
25. Petzold, L. R. (1983). A description of DASSL: A differential/algebraic system solver. IMACS

Transactions on Scientific Computation, New Brunswick, NJ, pp. 65–68.
26. Petzold, L. R. (1983). Automatic selection of methods for solving stiff and nonstiff systems

of ordinary differential equations. SIAM Journal on Scientific and Statistical Computing, 4,
136–148.

27. Pietrzak, J. (1998). The use of TVD limiters for forward-in-time upstream-biased advection
schemes in ocean modeling. Monthly Weather Review, 126, 812–830.

28. Roe, P. L. (1985). Some contributions to the modeling of discontinuous flows. Lecture Notes
on Applied Mathematics, 22, 163–193. Amer. Math. Soc., Providence.

References 155

29. Saad, Y. (1994). SPARSKIT: A basic tool kit for sparse matrix computations. VERSION 2.
30. Saad, Y. (2003). Iterative methods for sparse linear systems (2nd ed.). Philadelphia: Society

for Industrial and Applied Mathematics.
31. Schiesser, W. E. (1991). The numerical method of lines. Integration of partial differential

equations. San Diego: Academic.
32. Schiesser, W. E., & Griffiths, G. W. (2009). A compendium of partial differential equation

models. Method of lines analysis with MATLAB. Cambridge: Cambridge University Press.
33. Soetaert, K., & Meysman, F. (2012). Reactive transport in aquatic ecosystems: Rapid model

prototyping in the open source software R. Environmental Modelling and Software, 32, 49–60.
34. van Leer, B. (1979). Towards the ultimate conservative difference scheme V. A second order

sequel to Godunov’s method. Journal of Computational Physics, 32, 101–136.

Chapter 9
Solving Partial Differential Equations in R

Abstract R has three packages that are useful for solving partial differential
equations. The R package ReacTran offers grid generation routines and the
discretization of the advective-diffusive transport terms on these grids. In this way,
the PDEs are either rewritten as a set of ODEs or as a set of algebraic equations.
When solving the PDEs with the method of lines (MOL), the time integration can
be performed using specially-designed initial value problem solvers from the R
package deSolve. When all derivatives have been approximated, functions from
the R package rootSolve can efficiently solve the algebraic equations. We show
how to solve in R the well-known heat equation (parabolic), the wave equation
(hyperbolic), Laplace’s equation (elliptic), and the advection equation. We then
give some more complex examples. Most partial differential equations are defined
in cartesian coordinates, but some problems are much better represented in other
coordinate systems. These problems can be solved efficiently in R as well.

9.1 Methods for Solving PDEs in R

The solution of PDEs basically proceeds in two steps. First a suitable grid is created
in one or more of the independent variables, and the equations are numerically
approximated on this grid. Then a suitable solution method is used to solve the
resulting ODEs or algebraic equations.

9.1.1 Numerical Approximations

The R package ReacTran [10,11] offers grid generation routines and the discretiza-
tion of the diffusive and advective transport terms on these grids.

DOI 10.1007/978-3-642-28070-2 9, © Springer-Verlag Berlin Heidelberg 2012
157K. Soetaert et al., Solving Differential Equations in R, Use R!,

158 9 Solving Partial Differential Equations in R

9.1.1.1 Setting up a Grid

As a first step, a suitable grid can be generated using ReacTran func-
tions setup.grid.1D and setup.grid.2D (there is no corresponding
3D function).

The grid-generating functions are defined as (simplified):

setup.grid.1D(x.up, x.down, L, N, ...)
setup.grid.2D(x.grid, y.grid)

where x.up and x.down are the position of the upper and downward boundary,
L is the total length of the domain, N the number of grid points. Two-dimensional
grids are specified from two 1-D grids.

9.1.1.2 Numerical Approximation of Advection and Diffusion

ReacTran’s transport functions implement finite difference approximations of
the diffusion-advection equation on these grids, which for 1-D and in cartesian
coordinates is (simplified):

− 1
A
· ∂

∂x
[−A · (D · ∂C

∂x
+ v ·C)]. (9.1)

Here C is the property (“concentration”), A is the (total) surface area (L2) (for
most applications A will be 1), and D and v are the diffusion and advection rate
respectively.

A simplified form of the syntax for approximating (9.1) in R is:

tran.1D(C, C.up, C.down, flux.up, flux.down, D, v,
A, dx, ...)

while for 2-D the corresponding function is:

tran.2D(C, C.x.up, C.x.down, C.y.up, C.y.down,
flux.x.up, flux.x.down, flux.y.up, flux.y.down,
D.x, D.y, v.x, v.y, A.x, A.y, dx, dy,...)

the obvious extension to 3 dimensions for cartesian coordinates, tran.3D is
not given. These functions implement a flux-conservative discretisation as in
(Sect. 8.3.3).

Several kinds of boundary conditions are implemented, including specification of
the boundary values (C.up, C.down, C.x.up, ...) or fluxes (flux.up,
flux.down, flux.x.up, ...); fluxes are considered positive in the direc-
tion of the axes.

Another ReacTran function approximates transport in polar coordinates:

tran.polar(C, C.r.up, C.r.down,
C.theta.up, C.theta.down,
flux.r.up, flux.r.down,

9.1 Methods for Solving PDEs in R 159

flux.theta.up, flux.theta.down,
D.r, D.theta, r, theta, ...)

while still other functions approximate 3-D transport in cylindrical and spherical
coordinates or implement a finite volume method in 1-D (not discussed here).

While these general transport functions also perform advective transport, they
include only very rough first order schemes. If higher accuracy for the advective
term is required, then it is better to use ReacTran function advection.1D.
This function includes several upstream-biased advection schemes (adv.method)
containing flux limiters that are based on total variation diminishing concepts,
the superbee limiter [7], the muscl [14] limiter, the quickest [5] limiter and the
third order upstream-biased polynomial scheme (adv.method = "super",
"muscl", "quick", "p3" respectively). Their implementation is based on
[1]. The syntax for this function is:

advection.1D(C, C.up, C.down, flux.up, flux.down, v,
A, dx, adv.method, ...)

9.1.2 Solution Methods

When using the MOL, the large and sparse system of ODES can be efficiently solved
using specially-designed methods from the package deSolve [12]. A simplified form
of the syntax for solving 1-D and 2-D PDEs is:

ode.1D(y, times, func, parms, dimens, method, ...)
ode.2D(y, times, func, parms, dimens, method, ...)

Here dimens provides the dimensions, i.e. the number of grid cells in the spatial
coordinates, and method allows the selection of one of deSolve’s (deTestset’s)
integration methods. The default method for ode.1D is "lsoda". Other
good choices are "lsode", "vode", "daspk", "radau", "bimd",
"gamd" or "mebdfi" for stiff problems, or "adams", "ode45", ... for
non-stiff problems. For ode.2D the default solver used is "lsodes", but for
non-stiff problems one of the Runge-Kutta methods or method = "adams" will
be more efficient.

In the case where all derivatives are approximated, the resulting sparse system
of algebraic equations can be conveniently solved with similar methods from the
package rootSolve [9]:

steady.1D(y, func, parms, dimens, method, ...)
steady.2D(y, func, parms, dimens, method, ...)

with obvious extension to 3-D. Argument method allows us to trigger either the
Newton-Raphson technique with banded Jacobian (method = "stode") or with
an arbitrarily sparse Jacobian (method = "stodes") or to integrate the model
to steady-state (method = "runsteady").

160 9 Solving Partial Differential Equations in R

9.2 Solving Parabolic, Elliptic and Hyperbolic PDEs in R

In what follows, we first solve very simple examples of three important
(geometric) classes of PDEs: parabolic (time-dependent and diffusive), elliptic
(time-independent and steady-state), and hyperbolic (time-dependent and wavelike)
equations.

9.2.1 The Heat Equation

The heat or diffusion equation is the prototype of a parabolic partial differential
equation. It describes the spreading of heat (Y) in a conductive medium, and is
represented by:

∂Y
∂ t

= DΔY + r = ∇ · (D∇Y)+ r, (9.2)

where D is a positive quantity, the “diffusion” coefficient, and r is the produc-
tion rate.

9.2.1.1 Problem Definition

We solve the heat equation on a one-dimensional domain [0,1] with zero production/
consumption:

∂Y
∂ t

= D
∂ 2Y
∂x2 . (9.3)

For this equation to be fully specified, we need to define the solution on the
boundaries of the domain. Since the above one-dimensional equation is second order
in space, two boundary values are required. A suitable set of boundary conditions
of Dirichlet type is:

Yt,x=0 = 0
Yt,x=1 = 1.

(9.4)

In addition to the boundary conditions, initial conditions must also be specified.
This means that, at t = 0, the distribution of Y for all x is required. As the equation
is first order in time, only one initial condition is needed; we take a sine-wave initial
condition.

Y (t = 0,x) = sin(πx). (9.5)

9.2.1.2 Solving the Heat Equation in R

The solution of (9.3)–(9.5) will give Y as a function of x and t. While the
discretisation of the time variable, t will be decided upon by the ODE solver

9.2 Solving Parabolic, Elliptic and Hyperbolic PDEs in R 161

(partly influenced by the input argument times), we need to explicitly define the
spatial discretisation.

Solving this model in R proceeds in several steps. First we use the ReacTran
function setup.grid.1D to subdivide the model domain [0,1] in 100 small,
equally-sized cells. Function setup.grid.1D generates a staggered grid (see
Sect. 8.3.3, Fig. 8.2) and positions the boundary points exactly on the boundaries.
It returns a list, containing amongst other information the positions at the centre
(x.mid) and interface (x.int) of grid cells , the thicknesses of each grid cell (dx)
and so on. We assign x with the position in the centre of the grid cells, as we will
use these values for plotting. We use for the diffusion coefficient, D.coeff, a value
equal to 0.01.

library(ReacTran)
N <- 100
xgrid <- setup.grid.1D(x.up = 0, x.down = 1, N = N)
x <- xgrid$x.mid
D.coeff <- 0.01

The function Diffusion describing the ODEs resulting from the MOL is defined
as for any initial value problem. It gets as input the current time (t), the state variable
vector (Y, a vector comprising 100 numbers), and the parameters (not used here),
and it returns the derivatives dY and (optional) other useful quantities.

Within function Diffusion, transport is performed by the ReacTran function
tran.1D, where we specify the upstream and downstream boundary conditions
(C.up, C.down respectively, see (9.4)), the diffusion coefficient (D) and the
spatial grid used (dx).

Function tran.1D returns a lot of useful information, such as the derivative
($dC), and the fluxes across the upstream and downstream boundary ($flux.up,
$flux.down), packed as a list. The fluxes are also returned from the function
Diffusion.

Diffusion <- function (t, Y, parms){
tran <- tran.1D(C = Y, C.up = 0, C.down = 1,

D = D.coeff, dx = xgrid)
list(dY = tran$dC, flux.up = tran$flux.up,

flux.down = tran$flux.down)
}

Next the initial conditions (Yini) (see (9.5)) and the times at which output is
wanted are specified, after which the model is solved, using an appropriate initial
value problem solver. As the model is one-dimensional, we use function ode.1D
here. Function ode.1D makes optimal use of the sparsity of the problem; by
passing the dimension of the problem (dimens), the sparsity pattern can be derived
by the solver (see Sect. 8.4). The problem is rather stiff, and therefore the default
solver lsoda, chosen in ode.1D performs quite well. The time it takes to solve
the model (in seconds) is printed.

162 9 Solving Partial Differential Equations in R

0.0

D
is

ta
nc

e,
 x

0.0

0.2

0.4

0.6

0.8

1.0

D
is

ta
nc

e,
 x

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6

Variable, Y

0.8 1.0 0 1 2

times

3 4 5

Y

Fig. 9.1 The solution of the 1-D heat equation, represented as time lines of profiles (left) and as a
(time, distance) image. The initial condition is the bold line. See text for the R code

Yini <- sin(pi*x)
times <- seq(from = 0, to = 5, by = 0.01)
print(system.time(
out <- ode.1D(y = Yini, times = times, func = Diffusion,

parms = NULL, dimens = N)
))

user system elapsed
0.36 0.00 0.36

We plot the result in two ways, first as a line graph, depicting several profiles at
selected times (plot() and lines()), then as a times-distance image (Fig. 9.1).
The two figures are arranged in one row, two columns (mfrow). While calling
deSolve’s image function, we ensure that this figure arrangement is not discarded
by setting mfrow = NULL. Note that, in matrix out, the first column has the time,
the next N columns contain the profiles (2: (N+1)).

par (mfrow=c(1, 2))
plot(out[1, 2:(N+1)], x, type = "l", lwd = 2,

xlab = "Variable, Y", ylab = "Distance, x")
for (i in seq(2, length(times), by = 50))

lines(out[i, 2:(N+1)], x)
image(out, grid = x, mfrow = NULL, ylab = "Distance, x",

main = "Y")

It is clear from Fig. 9.1 that the imposed value of 1 at the downstream boundary (at
x = 1), is not consistent with the initial condition (thick line), where this value is 0.
So, very rapidly the downstream part of the model takes on the value imposed at
the boundary, gradually followed by the internal cells. The steady-state condition,
where the heat changes linearly from a value Y = 1 downstream to Y = 0 upstream
is not yet reached at the end of the integration.

9.2 Solving Parabolic, Elliptic and Hyperbolic PDEs in R 163

9.2.2 The Wave Equation

The wave equation is another very important partial differential equation, of the
hyperbolic type, describing the motion of a wave front. It is used in e.g. acoustic
and fluid dynamics and has the following form:

∂ 2u
∂ t2 = ∇ · (c2∇u), (9.6)

where c is the propagation speed of the wave, and u is the variable that changes as
the wave passes.

9.2.2.1 Problem Definition

We will model the simplest form, a wave u, travelling in the x-direction only (1-D):

∂ 2u
∂ t2 = c2 ∂ 2u

∂x2 . (9.7)

This equation describes for instance a pulse traveling through a stretched string.
It sets the acceleration of the pulse (∂ 2u/∂ t2) proportional to the local curvature
(∂ 2u/∂x2), with a factor equal to the square of the speed of the wave (c).

For this equation to have a solution, suitable initial and boundary conditions
must be provided. As the equation is second order in time and space, we need two
conditions for each one.

We solve the problem with the following initial conditions:

u(0,x) = exp(−λ x2)
∂u
∂ t 0,x

= 0,
(9.8)

where the first (initial) condition is a Gaussian pulse, and the second (boundary)
condition denotes that u starts with zero velocity. The boundary conditions impose
a zero value at both ends, located at infinity:

u(t,−∞) = 0
u(t,∞) = 0.

(9.9)

As the analytic solution to this equation is known, we can use this to evaluate the
precision of the numerical solution. The analytic solution is:

u(t,x) = 0.5(exp(−λ (x+ c2t)2)+ exp(−λ (x− c2t)2)). (9.10)

164 9 Solving Partial Differential Equations in R

There are several ways to solve the wave equation. Here we rewrite the second
order differential equation as two coupled partial differential equations which are
first order in time. This is done by introducing a new variable that represents the first
order derivative of variable u: v = ∂u/∂ t. Thus, the equation that we will implement
takes the form:

∂u
∂ t

= v

∂v
∂ t

= c2 ∂ 2u
∂x2 .

(9.11)

This doubles the number of unknowns, as we now have two vectors to integrate (u
and v), both with length equal to the number of grid points.

9.2.2.2 Solving the Wave Equation in R

The implementation in R starts by defining the box sizes dx and the grid, xgrid.
To comply with the boundary conditions (9.9) which are defined at ±∞, the grid
needs to be taken large enough such that u remains effectively 0 at the boundaries,
for all times at which we calculate the solution.

Here, the grid extends from −100 to 100; the number of grid cells (N) is returned
by function setup.grid.1D. We will need it, as it defines the dimension of the
system to solve (see below).

library(ReacTran)
dx <- 0.2
xgrid <- setup.grid.1D(x.up = -100, x.down = 100, dx.1 = dx)
x <- xgrid$x.mid
N <- xgrid$N

The initial condition yini (9.8), and the output times are defined next:

lam <- 0.05
uini <- exp(-lam*xˆ2)
vini <- rep(0, N)
yini <- c(uini, vini)
times <- seq (from = 0, to = 50, by = 1)

The wave equation function (wave) first extracts, from the state variable vector
y the two quantities u, v, both of length N, after which the ReacTran function
tran.1D performs transport of u; the squared velocity (c2) is taken as 1 (D = 1).

The function returns the derivatives of both u and v, combined (c()) and packed
as a list.

wave <- function (t, y, parms) {
u <- y[1:N]
v <- y[(N+1):(2*N)]

du <- v
dv <- tran.1D(C = u, C.up = 0, C.down = 0, D = 1,

9.2 Solving Parabolic, Elliptic and Hyperbolic PDEs in R 165

dx = xgrid)$dC

return(list(c(du, dv)))
}

In contrast to the previous (heat) problem, which was quite stiff and needed an
implicit solver, this problem is not stiff at all, and can be solved most efficiently
with the "adams" method. We also provide the dimension of the system and the
names of the two quantitites. After the solution has been calculated, the property u
is extracted from the output matrix out.

out <- ode.1D(func = wave, y = yini, times = times,
parms = NULL, method = "adams",
dimens = N, names = c("u", "v"))

u <- subset(out, which = "u")

The analytic solution (9.10) for each time-space point is now computed. R function
outer, applies function analytic to each (times, x) pair.

analytic <- function (t, x)
0.5 * (exp(-lam * (x+1*t)ˆ2) +exp(-lam * (x-1*t)ˆ2))

OutAna <- outer(times, x, FUN = analytic)

The maximal absolute deviation with the computed numerical solution is printed.

max(abs(u - OutAna))

[1] 0.002188562

We now plot the results (Fig. 9.2); initial condition in black, the values for selected
time points in darkgrey; a legend with times is written. It is simplest to do this
plotting using deSolve’s function matplot.1D.

Note how the initial pulse is split in two smaller pulses, travelling in both
directions, with velocity c = 1, and maximal value half the original value. At t = 10,
the two pulses are centred around −10 and +10.

outtime <- seq(from = 0, to = 50, by = 10)
matplot.1D(out, which = "u", subset = time %in% outtime,

grid = x, xlab = "x", ylab = "u", type = "l",
lwd = 2, xlim = c(-50, 50),
col = c("black", rep("darkgrey", 5)))

legend("topright", lty = 1:6, lwd = 2,
col = c("black", rep("darkgrey", 5)),
title = "t = ", legend = outtime)

You may also want to try the following “movie” (not shown):

plot.1D(out, grid = x, which = "u", type = "l",
lwd = 2, ylim = c(0,1), ask = TRUE)

166 9 Solving Partial Differential Equations in R

−40 −20 0 20 40

0.0

0.2

0.4

0.6

0.8

1.0

u

x

u

t =

0
10
20
30
40
50

Fig. 9.2 The 1-D wave equation; black = initial condition; grey: several time lines. See text for the
R code

9.2.3 Poisson and Laplace’s Equation

The elliptic partial differential equation, known as Poisson’s equation is:

∇ · (∇w) = f , (9.12)

where f is a consumption rate.
In two dimensions, and for cartesian coordinates (x, y), this becomes:

∂ 2w
∂x2 +

∂ 2w
∂y2 = f (x,y). (9.13)

9.2.3.1 Problem Definition

If f (x,y) = 0, (9.13) is called Laplace’s equation.
With two spatial independent variables (x,y), and no initial value variable, this

second order equation requires two boundary conditions in the x and two in the y
variable to be fully specified.

9.2 Solving Parabolic, Elliptic and Hyperbolic PDEs in R 167

We define the equation in the [0,1]× [0,1] domain,1 with boundaries:

w(x = 0,y) = w(x = 1,y) = 0
∂w(x,y = 0)

∂y
= 0

∂w(x,y = 1)
∂y

= sin(πx)π sinh(π).

(9.14)

This has the following simple analytic solution:

w(x,y) = sin(πx)cosh(πy). (9.15)

9.2.3.2 Solving the Laplace Equation in R

Implementation in R follows the usual procedure of first defining a grid, in both
directions (xgrid, ygrid). After that the model function (laplace) is imple-
mented. Here the state variable vector U is first cast in matrix form w and then Reac-
Tran’s appropriate transport function, tran.2D is called. It should be noted that
none of the transport functions in ReacTran allows the specification of the bound-
aries as a gradient, but rather require input of the flux. With f lux =−D∂w/∂x, it is
however simple to convert one to the other. Here D.x and D.y are = 1:

Nx <- 100
Ny <- 100
xgrid <- setup.grid.1D (x.up = 0, x.down = 1, N = Nx)
ygrid <- setup.grid.1D (x.up = 0, x.down = 1, N = Ny)
x <- xgrid$x.mid
y <- ygrid$x.mid

laplace <- function(t, U, parms) {
w <- matrix(nrow = Nx, ncol = Ny, data = U)
dw <- tran.2D(C = w, C.x.up = 0, C.x.down = 0,

flux.y.up = 0,
flux.y.down = -1 * sin(pi*x)*pi*sinh(pi),
D.x = 1, D.y = 1,
dx = xgrid, dy = ygrid)$dC

list(dw)
}

To solve the model, we cannot use the initial value solvers as in previous examples,
as the equation is independent of time. Instead, we use root solver steady.2D
from the R package rootSolve which is especially designed for solving 2-D
equations. This solver requires input of the dimensions of the system (dimens),

1From http://www.scholarpedia.org/article/Partial differential equation/Approximate and Num-
erical Methods.

http://www.scholarpedia.org/article/Partial_differential_equation/Approximate_and_ Num-
erical_Methods

168 9 Solving Partial Differential Equations in R

a two-valued vector with the number of boxes in the x and y-direction, the number
of dependent variables (nspec) and the size of the work vector (lrw).2 Another
required input to steady.2D is an “initial guess” (y) of the solution. Fortunately,
this (linear) set of equations is so simple to solve that any guess will do; here we
just take Nx*Ny randomly distributed numbers (runif).

It takes less than a second to find the solution to these 10,000 equations:

print(system.time(
out <- steady.2D(y = runif(Nx*Ny), func = laplace,

parms = NULL, nspec = 1,
dimens = c(Nx, Ny), lrw = 1e7)

))

user system elapsed
0.37 0.02 0.39

We recast the solution in matrix form to compare it with the analytic solution (9.15):

w <- matrix(nrow = Nx, ncol = Ny, data = out$y)
analytic <- function (x, y) sin(pi*x) * cosh(pi*y)
OutAna <- outer(x, y, FUN = analytic)
max(abs(w - OutAna))

[1] 0.0006024049

We plot the results, using the image method for steady.2D output; we make the
figure self-explanatory by adding contours (Fig. 9.3).

image(out, grid = list(x, y), main = "elliptic Laplace",
add.contour = TRUE)

9.2.4 The Advection Equation

The advection equation is another hyperbolic equation that describes the transport
of a quantity, Y , in a velocity field.

9.2.4.1 Problem Definition

For the one-dimensional case, in a model domain [a,b], we will solve the following
advection equation:

∂Y
∂ t

=−v
∂Y
∂x

, (9.16)

2The latter requirement is unfortunate and it may require some trial and error to find a good value;
however, if too little memory is allocated, the solver may stop with a message telling the size this
vector should minimally have.

9.2 Solving Parabolic, Elliptic and Hyperbolic PDEs in R 169

0.0 0.2 0.4 0.6
x

y

0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
elliptic Laplace

Fig. 9.3 Solution of the 2-D laplace equation. See text for the R code

where v is the constant advection rate (= 0.1) and with initial and boundary
conditions

Y (t = 0,x) = f
Y (t,x = a) = g.

(9.17)

The equation, which is first order in time and space needs only one initial value and
boundary condition (for positive v, at x = a).

Despite its apparent simplicity, this equation is quite challenging to solve,
especially if discontinuous, “shock” pulses are to be transported (see Sect. 8.3.4.1).

9.2.4.2 Solving the Advection Equation in R

We will not work out a complete new example, but just give the code that solved
the model as in Fig. 8.4, where we tested several flux limiters. Here we solve the
problem with flux limiters muscl and superbee ("muscl", "super").

adv.func <- function(t, y, p, adv.method)
list(advection.1D(C = y, C.up = y[N], C.down = y[1],

v = 0.1, adv.method = adv.method,
dx = xgrid)$dC)

xgrid <- setup.grid.1D(0.3, 1.3, N = 50)
x <- xgrid$x.mid

170 9 Solving Partial Differential Equations in R

N <- length(x)
yini <- sin(pi * x)ˆ50
times <- seq(0, 20, 0.01)
out1 <- ode.1D(y = yini, func = adv.func, times = times,

parms = NULL, method = "euler", dimens = N,
adv.method = "muscl")

out2 <- ode.1D(y = yini, func = adv.func, times = times,
parms = NULL, method = "euler", dimens = N,
adv.method = "super")

If you run this, you will notice that, even in the schemes that correct for numerical
dispersion, there is still quite a lot of numerical artifact! Try:

plot.1D(out1, ylim = c(0, 1), type = "l", lwd = 2,
main = "muscl")

plot.1D(out2, ylim = c(0, 1), type = "l", lwd = 2,
main = "superbee")

9.3 More Complex Examples

We now solve some more complex equations, which are variations on the elliptic,
parabolic and hyperbolic themes.

9.3.1 The Brusselator in One Dimension

Some partial differential equations can produce spatial patterns from an arbitrary
initial state. These so-called Turing patterns [13] occur under certain conditions in
coupled models of reacting and diffusing chemicals:

∂U
∂ t

= DU ∇2U + f (U,V)

∂V
∂ t

= DV ∇2V + g(U,V).
(9.18)

The Brusselator was proposed [4] as a model for an auto-catalytic chemical reaction,
between two products, A and B, and producing also C and D in a number of
intermediary steps. The chemical reactions are given by:

A
k1−→ X1

B+X1
k2−→ X2 +C

2X1 +X2
k3−→ 3X1

X1
k4−→ D,

(9.19)

9.3 More Complex Examples 171

where the ki are the reaction rate constants. Assuming that the concentrations of A
and B are kept constant, at values a and b respectively, the equations governing the
dynamics of X1 and X2 are:

X ′
1 = k1a− k2bX1 + k3X2

1 X2 − k4X1

X ′
2 = k2bX1 − k3X2

1 X2.
(9.20)

Putting k1,. . . , k4, and a = 1 and b = 3 and adding diffusion we obtain

∂X1

∂ t
= DX1∇2X1 + 1+X2

1 X2 − 4X1

∂X2

∂ t
= DX2∇2X2 + 3X1 −X2

1 X2.
(9.21)

It is instructive to implement the Brusselator first in one spatial dimension, and on a
numerical grid composed of 50 boxes (N). We take for the boundary concentrations
a value of 1 and 3 for X1 and X2 respectively. The diffusion coefficient, D, is taken
to be 0.02.

library(ReacTran)
N <- 50
Grid <- setup.grid.1D(x.up = 0, x.down = 1, N = N)

We choose interesting initial conditions:

x1ini <- 1 + sin(2 * pi * Grid$x.mid)
x2ini <- rep(x = 3, times = N)
yini <- c(x1ini, x2ini)

The derivative function is:

brusselator1D <- function(t, y, parms) {

X1 <- y[1:N]
X2 <- y[(N+1):(2*N)]

dX1 <- 1 + X1ˆ2*X2 - 4*X1 +
tran.1D (C = X1, C.up = 1, C.down = 1,

D = 0.02, dx = Grid)$dC
dX2 <- 3*X1 - X1ˆ2*X2 +

tran.1D (C = X2, C.up = 3, C.down = 3,
D = 0.02, dx = Grid)$dC

list(c(dX1, dX2))
}

The equations are solved using function ode.1D, and output generated for
t = 0,0.1,0.2, . . . ,10. The time it takes to solve the model is printed. Note that we
specify the number of boxes (dimens), as well as the number of chemical species
(nspec). We also pass the names of the chemical species, which will facilitate
plotting the output.

172 9 Solving Partial Differential Equations in R

X1

times

 0.5

 0.5

 1

 1

 1

 1.5

 1.5 2

 2
 2

.5

0 2 4 6 8 10

0.0

0.4

0.8

0 2 4 6 8 10
0.0

0.4

0.8

X1

times

times

out

X1

times

out
X1

Fig. 9.4 Four different ways in which deSolve’s image plot can be used to depict the first variable
of the 1-D Brusselator model. See text for the R code

times <- seq(from = 0, to = 10, by = 0.1)
print(system.time(

out <- ode.1D(y = yini, func = brusselator1D,
times = times, parms = NULL, nspec = 2,
names = c("X1", "X2"), dimens = N)

))

user system elapsed
0.33 0.00 0.34

We take the opportunity to show the various ways in which deSolve’s plotting
method image can be used to display the output (Fig. 9.4). We start by specifying
the number of figures in a row (mfrow = c(2,2)); the subsequent calls to
image then pass mfrow = NULL to avoid the function overruling this property.
The first variable (which = "X1") is then plotted, first as a simple contour
plot, then as a filled.contour (the default), and then twice as a persp plot;
the first time without colour added (col = NA), the second time using the default
colour scheme (which need not be specified), and adding a certain shade. We also

9.3 More Complex Examples 173

pass the positions in the middle of each grid cell (Grid$x.mid). Before making
the persp plots, the margin size is reduced (mar).

par(mfrow = c(2, 2))
image(out, mfrow = NULL, grid = Grid$x.mid,

which = "X1", method = "contour")
image(out, mfrow = NULL, grid = Grid$x.mid,

which = "X1")
par(mar = c(1, 1, 1, 1))
image(out, mfrow = NULL, grid = Grid$x.mid,

which = "X1", method = "persp", col = NA)
image(out, mfrow = NULL, grid = Grid$x.mid,

which = "X1", method = "persp", border = NA,
shade = 0.3)

9.3.2 The Brusselator in Two Dimensions

In the presence of diffusion and when implemented in 2-D, this simple chemical
model (9.18) can exhibit pattern-forming (so-called Turing) instabilities. Thus, the
system, when initiated from a random distribution quickly generates spectacular
oscillations or chaotic spatial concentration patterns.

The model in 2-D, implemented in R is very similar to the 1-D implementation:

brusselator2D <- function(t, y, parms) {

X1 <- matrix(nrow = Nx, ncol = Ny,
data = y[1:(Nx*Ny)])

X2 <- matrix(nrow = Nx, ncol = Ny,
data = y[(Nx*Ny+1) : (2*Nx*Ny)])

dX1 <- 1 + X1ˆ2*X2 - 4*X1 +
tran.2D (C = X1, D.x = D_X1, D.y = D_X1,

dx = Gridx, dy = Gridy)$dC
dX2 <- 3*X1 - X1ˆ2*X2 +

tran.2D (C = X2, D.x = D_X2, D.y = D_X2,
dx = Gridx, dy = Gridy)$dC

list(c(dX1, dX2))
}

Note that we have imposed zero-gradient boundaries in the x− and y− direction. As
this is the default, the boundary conditions need not be explicitly specified.

The numerical grid is composed of 50 boxes in the x− and y− directions,
extending from 0 to 1.

library(ReacTran)
Nx <- 50
Ny <- 50
Gridx <- setup.grid.1D(x.up = 0, x.down = 1, N = Nx)
Gridy <- setup.grid.1D(x.up = 0, x.down = 1, N = Ny)

174 9 Solving Partial Differential Equations in R

We choose parameter values that give interesting patterns (these require at least the
two diffusion coefficients to be different):

D_X1 <- 2
D_X2 <- 8*D_X1

As initial condition for the two chemical substances, simple random numbers in
between 0 and 1 are used:

X1ini <- matrix(nrow = Nx, ncol = Ny, data = runif(Nx*Ny))
X2ini <- matrix(nrow = Nx, ncol = Ny, data = runif(Nx*Ny))
yini <- c(X1ini, X2ini)

The model is solved using deSolve function ode.2D and output generated for t =
0, 1, . . . 8. The size of the work space (lrw), the number of modeled components
(nspec) and their names, and the dimensions of the domain (dimens) is given.

times <- 0:8
print(system.time(

out <- ode.2D(y = yini, parms = NULL, func = brusselator2D,
nspec = 2, dimens = c(Nx, Ny), times = times,
lrw = 2000000, names=c("X1", "X2"))

))

user system elapsed
2.78 0.00 2.83

Finally the output is plotted (Fig. 9.5) using deSolve’s function image. For the
main title above each figure (main) we write the time; a global title is written with
mtext; we first increase the size of the outer margin (oma).

par(oma = c(0,0,1,0))
image(out, which = "X1", xlab = "x", ylab = "y",

mfrow = c(3, 3), ask = FALSE,
main = paste("t = ", times),
grid = list(x = Gridx$x.mid, y = Gridy$x.mid))

mtext(side = 3, outer = TRUE, cex = 1.25, line = -1,
"2-D Brusselator, species X1")

Already at t = 1, the initial random pattern has given way to a quite structured
spatial pattern. With these parameter values, usually a random pattern returns at
around t = 8 (but every run is different).

9.3.3 Laplace Equation in Polar Coordinates

We now implement the Laplace equation defined on an annulus-shaped domain
extending from r = 2 to r = 4, and with prescribed values on the two boundaries.3

3From http://en.wikipedia.org/wiki/Laplace’s equation.

http://en.wikipedia.org/wiki/Laplace's_equation

9.3 More Complex Examples 175

0.0 0.4 0.8
0.0

0.4

0.8

0.0

0.4

0.8

0.0

0.4

0.8

0.0

0.4

0.8

0.0

0.4

0.8

0.0

0.4

0.8

0.0

0.4

0.8

0.0

0.4

0.8

0.0

0.4

0.8

t = 0

x

y

y

y

y

y

y

y

y

y

0.0 0.4 0.8

t = 1

x
0.0 0.4 0.8

t = 2

x

0.0 0.4 0.8

t = 3

x
0.0 0.4 0.8

t = 4

x
0.0 0.4 0.8

t = 5

x

0.0 0.4 0.8

t = 6

x
0.0 0.4 0.8

t = 7

x
0.0 0.4 0.8

t = 8

x

2−D Brusselator, species X1

Fig. 9.5 Solution of the 2-D Brusselator, species X1. See text for the R code

As the model domain is circular, this model is best described in polar coordinates
(see Sect. 8.1.2):

∂u
∂ t

=
1
r

∂
∂ r

(
r

∂u
∂ r

)
+

1
r2

∂ 2u
∂θ 2 . (9.22)

The boundaries are set to a constant value (0) in the centre of the domain at r = 2,
while at the outer edge it is prescribed by a sine wave, as a function of θ .

u(t,r = 2,θ) = 0
u(t,r = 4,θ) = 4sin(5θ).

(9.23)

We also need boundary conditions in the direction of θ , which extends from 0 to
2π . As the two edges connect in the θ direction (it is an annulus), we prescribe that
the value and gradients at θ = 0 and θ = 2π are the same, i.e. the boundary in the
second dimension is cyclic.

u(t,r,θ = 0) = u(t,r,θ = 2π)
∂u
∂θ

(t,r,θ = 0) =
∂u
∂θ

(t,r,θ = 2π).
(9.24)

176 9 Solving Partial Differential Equations in R

ReacTran function tran.polar performs transport in polar coordinates. The
input slightly differs from the other transport functions, in that here the positions
on the interfaces in r and θ direction must be input (arguments r and theta). The
boundaries in the second (θ) direction are cyclic (cyclicBnd=2).

library(ReacTran)
Nr <- 100
Np <- 100
r <- seq(2, 4, len = Nr+1)
theta <- seq(0, 2*pi, len = Np+1)
theta.mid <- 0.5*(theta[-1] + theta[-Np])
Model <- function(t, C, p) {

y = matrix(nrow = Nr, ncol = Np, data = C)
tran <- tran.polar (y, D.r = 1, r = r, theta = theta,

C.r.up = 0, C.r.down = 4 * sin(5*theta.mid),
cyclicBnd = 2)

list(tran$dC)
}

The model is solved to steady-state with function steady.2D:

STD <- steady.2D(y = runif(Nr*Np), parms = NULL,
func = Model, dimens = c(Nr, Np),
lrw = 1e6, cyclicBnd = 2)

Before we plot the ouput using function image (Fig. 9.6), we map the polar (r,
theta) to cartesian (x, y) coordinates.

OUT <- polar2cart (STD, r = r, theta = theta,
x = seq(-4, 4, len = 400),
y = seq(-4, 4, len = 400))

image(OUT, main = "Laplace")

9.3.4 The Time-Dependent 2-D Sine-Gordon Equation

The Sine-Gordon equation is a non-linear hyperbolic (wave-like) partial differential
equation involving the sine of the dependent variable. The equation in two dimen-
sions, defined on [−7,7], is:

∂ 2u
∂ t2 = D

∂ 2u
∂x2 +D

∂ 2u
∂y2 − sinu, (9.25)

with boundary and initial conditions equal to:

u(t,x =−7,y) = u(t,x = 7,y) = u(t,x,y =−7) = u(t,x,y = 7) = 0
u′(t = 0,x,y) = 0
u(t = 0,x,y) = exp(−((x− 2)2 +(y− 2)2))+ exp(−((x− 2)2+(y+ 2)2))+

exp(−((x+ 2)2 +(y− 2)2))+ exp(−((x+ 2)2+(y+ 2)2)).
(9.26)

9.3 More Complex Examples 177

0.0 0.2 0.4 0.6
x

y

0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Laplace

Fig. 9.6 Solution of the Laplace equation, in polar coordinates. See text for the R code

Similarly to what we did for the wave equation (Sect. 9.2.2), this model is rewritten
as two first order differential equations.

du
dt

= v

∂v
∂ t

= D
∂ 2u
∂x2 +D

∂ 2u
∂y2 − sinu.

(9.27)

The model domain [−7,7] is divided into 100 boxes in both directions. As there are
two dependent variables (u,v), this leads to a system comprising 20,000 equations.

Nx <- 100
Ny <- 100
xgrid <- setup.grid.1D(-7, 7, N=Nx)
ygrid <- setup.grid.1D(-7, 7, N=Ny)
x <- xgrid$x.mid
y <- ygrid$x.mid

The problem has prescribed values (= 0) at the four boundaries (C.x.up,
C.x.down, ...). ReacTran function tran.2D performs the diffusive transport.

sinegordon2D <- function(t, C, parms) {

u <- matrix(nrow = Nx, ncol = Ny,
data = C[1 : (Nx*Ny)])

178 9 Solving Partial Differential Equations in R

v <- matrix(nrow = Nx, ncol = Ny,
data = C[(Nx*Ny+1) : (2*Nx*Ny)])

dv <- tran.2D (C = u, C.x.up = 0, C.x.down = 0,
C.y.up = 0, C.y.down = 0,
D.x = 1, D.y = 1,
dx = xgrid, dy = ygrid)$dC - sin(u)

list(c(v, dv))
}

The initial condition consists of four peaks, positioned in the middle of the four
quadrants of the model domain. A function, peak, estimates the peak values for
one set of (x, y) arguments. R function outer(x, y, FUN = ...) applies
FUN to all combinations of x and y.

peak <- function (x, y, x0 = 0, y0 = 0)
exp(-((x-x0)ˆ2 + (y-y0)ˆ2))

uini <- outer(x, y,
FUN = function(x, y) peak(x, y, 2,2) + peak(x, y,-2,-2)

+ peak(x, y,-2,2) + peak(x, y, 2,-2))
vini <- rep(0, Nx*Ny)

We produce output only at four time values. As this problem is non-stiff, we use
a fifth order Runge-Kutta scheme to perform the integration (method="ode45",
also known as DOPRI5):

times <- 0:3
print(system.time(
out <- ode.2D (y = c(uini, vini), times = times,

parms = NULL, func = sinegordon2D,
names = c("u", "v"),
dimens = c(Nx, Ny), method = "ode45")

))

user system elapsed
0.75 0.00 0.77

Before plotting the output, as an image (Fig. 9.7), the margin size is enlarged
(par(mar))

mr <- par(mar = c(0, 0, 1, 0))
image(out, main = paste("time =", times), which = "u",

grid = list(x = x, y = y), method = "persp",
border = NA, col = "grey", box = FALSE,
shade = 0.5, theta = 30, phi = 60, mfrow = c(2, 2),
ask = FALSE)

par(mar = mr)

9.3 More Complex Examples 179

time = 0 time = 1

time = 2 time = 3

Fig. 9.7 Solution of the 2-D sine-gordon equation. See text for the R code

The following code gives a more movie-like output (not shown):

out <- ode.2D (y = c(uini, vini), times = seq(0, 3, by = 0.1),
parms = NULL, func = sinegordon2D,
names=c("u", "v"), dimens = c(Nx, Ny),
method = "ode45")

image(out, which = "u", grid = list(x = x, y = y),
method = "persp", border = NA,
theta = 30, phi = 60, box = FALSE, ask = FALSE)

9.3.5 The Nonlinear Schrödinger Equation

The Schrödinger equation is one of the fundamental equations of quantum
mechanics.

We implement a nonlinear equation [8] used to model for instance solitons in
optical fibre pulse propagation. It is given by:

∂u
∂ t

= i
∂ 2u
∂x2 + iγ|u|2u, (9.28)

where u is complex, γ is a real constant, and i =
√−1.

180 9 Solving Partial Differential Equations in R

As for any diffusion (parabolic) equation, the Schrödinger equation is solved by
temporal integration of spatial discretisations, as generated by function tran.1D
from the package ReacTran:

alf <- 0.5
gam <- 1
Schrodinger <- function(t, u, parms) {

du <- 1i * tran.1D (C = u, D = 1, dx = xgrid)$dC +
1i * gam * abs(u)ˆ2 * u

list(du)
}

where 1i is
√−1 and where we have assumed zero-gradient boundary conditions.

As these are the default boundary conditions they need not be specified.
To solve the model in a qualitatively correct way, the model domain must be

divided into a sufficient number of boxes [2]; here we take N = 300.

N <- 300
xgrid <- setup.grid.1D(-20, 80, N = N)
x <- xgrid$x.mid

For a single soliton, the above Schrödinger equation has as solution:

u(t,x) =

√
2α
γ

exp(i(0.5cx− t(1/4c2−α)))sech(
√

α(x− ct)), (9.29)

where c is the speed at which it travels, and where α determines the soliton’s
amplitude, and sech(x) = 2/(ex + e−x).

To demonstrate the peculiarities of solitons, we model two of them, a fast moving
one (velocity c1) and a slower one (c2). Initially, both are well separated, the fast one
located at x = 0, the slowly moving soliton centred at x = 25.

The initial condition for each of these solitons, can be easily derived from the
above analytic solution by setting t = 0, and using c1 and c2 for the two velocities.

To calculate the initial conditions in R, it is easiest to define two functions, one
that returns sech(x) and a second function that estimates the profile for one soliton,
using (9.29); the initial condition yini is then the sum of the two solitons.

c1 <- 1
c2 <- 0.1
sech <- function(x) 2/(exp(x) + exp(-x))
soliton <- function (x, c1)

sqrt(2*alf/gam) * exp(0.5*1i*c1*x) * sech(sqrt(alf)*x)
yini <- soliton(x, c1) + soliton(x-25, c2)

It is fastest to solve the model with the “adams” method:

times <- seq(0, 40, by = 0.1)
print(system.time(

out <- ode.1D(y = yini, parms = NULL, func = Schrodinger,

9.4 Exercises 181

0
-20

0

20

x

40

60

80
two solitons

10 20
times

30 40

Fig. 9.8 Solution of the Schrödinger equation. See text for the R code

times = times, dimens = 300, method = "adams")
))

user system elapsed
2.61 0.01 2.65

The model output (Fig. 9.8) shows how both solitons travel through the model
domain; as the faster wave collides with the slower one, it passes through it, and
the shape and velocities of both solitons remain the same afterwards.

image(abs(out), grid = x, ylab = "x", main = "two solitons")

9.4 Exercises

9.4.1 The Gray-Scott Equation

Interesting patterns are also generated with the Gray-Scott equation [6].
It describes the following chemical reaction:

U + 2V
k0−→ 3V

V
k1−→ P.

(9.30)

182 9 Solving Partial Differential Equations in R

The two species disperse on a rectangular grid, and both are diluted at rate f ; U is
added at the same rate, and with input concentration = Uin.

The mathematical model is:

∂U
∂ t

= DU
∂ 2U
∂x2 − k0UV 2 − fU + fUin

∂V
∂ t

= DV
∂ 2V
∂x2 + k0UV 2 − fV − k1V.

(9.31)

The equation is described on the grid 0 ≤ x,y ≤ 2.5
Similarly to what is the case for the Brusselator, the pattern generated depends

on the subtle differences in the rates, compared to the diffusion coefficients.
For the parameters, use DU = 8e−5 and DV = 0.5DU ; f = 0.024, Uin = 1, k0 = 1

and k1 = 0.06. Compose a grid of 100 boxes in the x and y direction.
Use as initial conditions the following pattern:

U(t = 0,x,y) = 1− 2V(t = 0,x,y)
V (t = 0,x,y) = 0.25sin2(4πx)sin2(4πy) for 1 ≤ x,y ≤ 1.5
V (t = 0,x,y) = 0 elsewhere.

(9.32)

Try to create Fig. 9.9:

9.4.2 A Macroscopic Model of Traffic

Estimation of travel times on highways can be performed by application of a
macroscopic model, where traffic is described in an analogous way to fluid flow
[3]. Conservation of cars on a highway, in the domain [0,L] leads to the equation:

∂ρ(t,x)
∂ t

=−∂v(t,x)ρ(t,x)
∂x

, (9.33)

where ρ(t,x) is the density of traffic, as a function of position x and time t, and
where v(t,x) is the velocity, given by :

v = v f (1− ρ
ρmax

)−D
∂ρ
∂x

/ρ , (9.34)

where v f is the free-flow speed, ρmax is the car density in a traffic jam, and D is a
“diffusion coefficient” that takes into account the fact that drivers can adapt their
speed depending on the density of cars ahead of them. The first part of the equation
ensures that cars move slower if the traffic density is higher, and will stop in a
traffic jam. The second “diffusive” part can also be understood to mimic the variable
reaction speed of car drivers, e.g. after traffic light switches.

9.4 Exercises 183

0.0 0.5 1.0 1.5 2.0 2.5
0.0

1.0

2.0

x

y

0

0.0 0.5 1.0 1.5 2.0 2.5
0.0

1.0

2.0

250

x

y

0.0 0.5 1.0 1.5 2.0 2.5
0.0

1.0

2.0

500

x

y

0.0 0.5 1.0 1.5 2.0 2.5
0.0

1.0

2.0

750

x

y

0.0 0.5 1.0 1.5 2.0 2.5
0.0

1.0

2.0

1000

x

y

0.0 0.5 1.0 1.5 2.0 2.5
0.0

1.0

2.0

1250

x

y

0.0 0.5 1.0 1.5 2.0 2.5
0.0

1.0

2.0

1500

x

y

0.0 0.5 1.0 1.5 2.0 2.5
0.0

1.0

2.0

1750

x

y

0.0 0.5 1.0 1.5 2.0 2.5
0.0

1.0

2.0

2000

x

y

Fig. 9.9 The Gray-Scott equation

Assume a red light at position x0 = 10 (m), the initial condition becomes
ρ(0,x) = ρmax for x < x0 and 0 for x > x0.

Implement how a line of cars moves along a Belgian road where the speed limit
in an urban area is 50 km/h; assume all cars try to drive at that speed.

9.4.3 A Vibrating String

On my cello, both ends of the four strings are fixed, one end at the bridge, one at
the nut (headstock). The length of the string is set by the distance between these
two fixed ends. Defining the coordinate system such that one end of the string
corresponds with the bridge at x = 0, the other end with the nut, at x = L, the
boundary conditions for the string wave are such that:

u(t,0) = 0
u(t,L) = 0,

(9.35)

for all times.

184 9 Solving Partial Differential Equations in R

Assume that the instrument is played in pizzicato; model a wave in an ideal string
(not a cello). Take L = 1. For initial condition of the position u, and velocity u′ take:

u(t = 0,x) = exp(−λ (x− 0.2)2)

u′(t = 0,x) = 0.
(9.36)

Note that, after plucking a string, two waves are set in motion, moving in opposite
directions; when reaching the ends, they reflect. Use plot.1D to see how the wave
travels across the string.

9.4.4 A Pebble in a Bucket of Water

Imagine throwing a pebble into the middle of a bucket of water. As it touches the
surface, waves are generated that propagate in all directions. The waves retain their
shape until they hit the wall of the bucket where they reflect.

As the bucket is circular, this model is best solved using polar coordinates.
Moreover, as the pebble is dropped in the centre, we can represent the wave
propagation by a 1-D model:

∂ 2u
∂ t2 = c2 1

r
∂
∂ r

(
r∂u
∂ r

)

ut=0,r = −exp(−0.2r2)
∂u
∂ r t,0

= 0

ut,a = 0.

(9.37)

Implement this model in R , using functions tran.1D and ode.1D. Hint: use
argument A for specifying r in tran.1D. A similar example, of the parabolic type
has been solved in ReacTran’s vignette called “PDE” (vignette("PDE")

9.4.5 Combustion in 2-D

A relatively stiff PDE is the combustion problem from [2]. This problem describes
diffusion and reaction

∂U
∂ t

=−∇ · (−K∇U)+
R

αδ
(1+α −U)exp(δ (1− 1/U)). (9.38)

Implement this model on a rectangular 2-dimensional domain ([0,1]× [0,1]). Use
as values for the parameters K = 1,α = 1, δ = 20, R = 5, and as initial conditions
use a constant: U(0,x,y) = 1. The behavior of the solution at the boundaries is
prescribed as a known value (=1) for the downstream boundary, and a zero-flux

References 185

boundary upstream. Integrate the model in [0.0,36] using ode.2D, and estimate
the steady-state condition; the latter you can calculate by using rootSolve’s function
steady.2D.

References

1. Burchard, H., Bolding, K., & Villarreal, M. R. (1999). GOTM, a general ocean turbulence
model. Theory, applications and test cases (Tech Rep EUR 18745 EN). European Commission.

2. Hundsdorfer, W., & Verwer, J. G. (2003). Numerical solution of time-dependent advection-
diffusion-reaction equations. Springer series in computational mathematics. Berlin: Springer.

3. Kachroo, P., Ozbay, K., & Hobeika, A. G. (2001). Real-time travel time estimation using
macroscopic traffic flow models. In 2001 IEEE intelligent transportation systems conference
proceedings, Oakland (pp. 132–137).

4. Lefever, R., Nicolis, G., & Prigogine, I. (1967). On the occurrence of oscillations around
the steady state in systems of chemical reactions far from equilibrium. Journal of Chemical
Physics, 47, 1045–1047.

5. Leonard, B. P. (1988). Simple high accuracy resolution programs for convective modeling of
discontinuities. International Journal for Numerical Methods in Fluids, 8, 1291–1318.

6. Pearson, J. (1993). Complex patterns in a simple system. Science, 261, 189–192.
7. Roe, P. L. (1985). Some contributions to the modeling of discontinuous flows. Lectures Notes

in Applied Mathematics, 22, 163–193. Amer. Math. Soc., Providence.
8. Sanz-Serna, J. M. (1984). Methods for the numerical solution of the nonlinear Schrodinger

equation. Mathematics of Computation, 43, 21–27.
9. Soetaert, K. (2011). rootSolve: Nonlinear root finding, equilibrium and steady-state analysis

of ordinary differential equations. R package version 1.6.2.
10. Soetaert, K., & Meysman, F. (2011). ReacTran: Reactive transport modelling in 1D, 2D and

3D. R package version 1.3.2.
11. Soetaert, K., & Meysman, F. (2012). Reactive transport in aquatic ecosystems: Rapid model

prototyping in the open source software R. Environmental Modelling and Software, 32, 49–60.
12. Soetaert, K., Petzoldt, T., & Setzer, R. W. (2010). Solving differential equations in R: Package

deSolve. Journal of Statistical Software, 33(9), 1–25.
13. Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of

the Royal Society of London Series B, 237, 37–72.
14. van Leer, B. (1979). Towards the ultimate conservative difference scheme V. A second order

sequel to Godunov’s method. Journal of Computational Physics, 32, 101–136.

Chapter 10
Boundary Value Problems

Abstract When solving initial value problems for ordinary differential equations,
differential algebraic equations or partial differential equations, as discussed in
previous chapters, a unique solution to the equations, if it exists, is obtained by
specifying the values of all the components at the starting point of the range of
integration. With boundary value problems (BVPs), the conditions are specified
at more than one point, usually (but not necessarily) at the boundaries of the
independent variable. Because of this it is not guaranteed that BVPs have a unique
solution; they may have no solution at all or many solutions. The theory of BVPs,
such as the proof of existence and uniqueness of solutions, is considerably more
difficult than it is in the initial value case. Also, software for BVPs is much less
well developed than for IVPs. In this chapter we will deal mainly with two-point
boundary value problems which have the boundary conditions specified at both ends
of a finite range of integration. We discuss two distinct methods to solve BVPs,
namely shooting and finite difference methods.

10.1 Two-Point Boundary Value Problems

We define the general form taken by a two-point boundary value problem as:

y′ = f (x,y), a ≤ x ≤ b
g(y(a),y(b)) = 0,

(10.1)

where y ∈ ℜm, m > 1. We recall that, as explained in Sect. 1.1.3, any high order
differential equation can be converted into a system of first order equations.
Therefore in the following we consider both first order and high order equations.

A nice example of a BVP of practical interest is the vibrating spring problem
which is defined as [1, Chap. 1]:

− (p(x)y′)′+ q(x)y = r(x), (10.2)

DOI 10.1007/978-3-642-28070-2 10, © Springer-Verlag Berlin Heidelberg 2012
187K. Soetaert et al., Solving Differential Equations in R, Use R!,

188 10 Boundary Value Problems

where p(x)> 0 and q(x)≥ 0 for all a≤ x ≤ b. If the spring is clamped at one end (a)
and left free to oscillate at the other end (b), then we have, associated with (10.2),
the boundary conditions

y(a) = 0
y′(b) = 0.

(10.3)

Notice that these boundary conditions have a special form which is much less
general than those appearing in (10.1). The boundary conditions in (10.3) are
referred to as being separated, and we will return to this very important special
case later. For a discussion of vibration problems the reader is referred to [38].

10.2 Characteristics of Boundary Value Problems

It is not our intention to go too deeply into the theory of boundary value problems
(see [1] or [5] for that), but we will explain a few important aspects of the theory
which we feel are directly relevant to our discussion.

10.2.1 Uniqueness of Solutions

Let us start with the IVP
y′ = f (x,y), x ≥ a

y(a) = c,
(10.4)

where y ∈ ℜm. We denote the solution of (10.4) by y(x;c). The task of solving
the BVP given by (10.1) now boils down to finding a solution such that the
following holds:

g(c;y(b;c)) = 0. (10.5)

This gives a set of nonlinear algebraic equations for the unknown vector c. The
number of solutions of problem (10.1) is equal to the number of solutions of the
algebraic equations given by (10.5) and this number can be 0, 1 or many, (see [5],
p. 89).

A famous example is the Bratu problem [18] which describes spontaneous
combustion:

y′′+λ exp(y) = 0
y(0) = y(1) = 0.

(10.6)

For values of λ smaller than 3.51383 . . ., this equation has two solutions; above
this value there is no solution at all; at the critical value of λ , there is exactly one
solution [18].

10.2 Characteristics of Boundary Value Problems 189

10.2.2 Isolation of Solutions

If a given problem has, for example, two solutions then it may be possible to find
both of them. We can often find multiple solutions by trying different initial guesses
to the solution. The important question is then whether or not the solutions are
isolated. If a solution is isolated, then there is no other solution of the problem
in the neighborhood of this solution. Intuitively this means that we can put a tube
around the solution and no other solution of our problem will venture into this tube.
To simplify the situation, without loss of generality, we will consider the problem
defined in the form:

y′ = f (x,y), a ≤ x ≤ b
Bay(a)+Bby(b) = rhs.

(10.7)

Here Ba and Bb ∈ ℜmxm and rhs ∈ ℜm. The way we determine whether or not a
solution y(x) is isolated is to look at the variational problem. This problem is derived
from (10.1) by perturbing the variables by small amounts and ignoring second order
terms. This gives the linear problem:

Z′ = J(x,y(x))Z, a ≤ x ≤ b
βaZ(a)+βbZ(b) = 0.

(10.8)

Here J is the Jacobian matrix ∂ f (x,y(x))/∂y. If this variational equation has only
the unique solution Z = 0 then y(x) is an isolated solution.

A special case of (10.5) is when the problem is linear as it is normally
straightforward to determine how many solutions there are. In this case we can
write down a condition in terms of the Green’s function, which guarantees that the
problem has a unique solution.

10.2.3 Stiffness of Boundary Value Problems and Dichotomy

A stiff problem is one which has some very fast modes in addition to some slow
ones. A stiff initial value problem will be stable only if these rapid modes decrease
with increasing time. One major difference between the concept of stiffness for
IVPs and BVPs is that for BVPs we must allow both rapidly increasing and rapidly
decreasing modes to be present in the solution.

Suppose that the solution of (10.1) has k non-increasing modes and m − k
non-decreasing modes. It is important to define the BVP (10.1) so that the k non-
increasing modes are controlled by the boundary conditions at x = a and the m− k
non-decreasing modes are controlled by the boundary conditions at x = b (recall
a < b). This concept is called dichotomy [5] and ensures the separation of modes
throughout the interval. It is important because it is a necessary and sufficient
condition for a BVP to be stable [5, p. 115].

190 10 Boundary Value Problems

10.2.4 Conditioning of Boundary Value Problems

As explained in Sect. 1.2.4 the concept of stability, which is usually applied to initial
value problems for differential equations, is referred to as conditioning for boundary
value problems. Conditioning relates to the effect small changes in (10.1), either in
the function f , or in the boundary conditions g(y(a),y(b)), have on the solution.

This concept is discussed in detail in [5, Chap. 3, Chap. 5] where it is shown that,
referring to the Jacobian matrix M of the discretized problems, a solution method is
well-conditioned if there exists a stability (or conditioning) constant κ of moderate
size such that ||M−1|| ≤ κ .

An important remark on conditioning is made in [1, p. 203]: “if the BVP is stable
and not stiff, and the local truncation error is small then the global error is expected
to have the order of the local truncation error times the stability constant of the
given BVP”. This means that it will be very important, perhaps vital in some cases
to obtain an estimate of κ when computing a solution of a BVP, since a small local
error does not necessarily give rise to a small global error.

In order to obtain a more precise feeling for the concept of a stable boundary
value problem, we refer the reader to [1, p. 169]. Here stability is defined to
mean that the conditioning constant associated with the differential equation is of
moderate size. This in turn means that the Green’s function is nicely bounded.

To introduce the conditioning parameters let us consider for simplicity the
following linear boundary value problem:

dy
dx

= A(x)y(x)+ q(x), a ≤ x ≤ b, Bay(a)+Bby(b) = β , β ∈ Rm, (10.9)

whose solution is given by

y(x) = Y (x)Q−1β +

∫ b

a
G(x, t)q(t)dt. (10.10)

Here Y (x) is a fundamental solution, Q = BaY (a) + BbY (b) is non singular and
G(x, t) is the Green’s function. Using the ∞-norm we can compute the conditioning
parameter by considering a perturbed equation:

du
dx

= A(x)u(x)+ q(x)+ δ (x), a ≤ x ≤ b, Bau(a)+Bbu(b) = β + δβ . (10.11)

Here δ (x) and δβ are small perturbations of the data. The difference between the
two solutions satisfies:

||u(x)− y(x)|| ≤ ||Y (x)Q−1δβ ||+ ||
∫ b

a
G(x, t)δ (t)dt||. (10.12)

10.2 Characteristics of Boundary Value Problems 191

After some algebraic manipulation we obtain:

max
a≤x≤b

||u(x)− y(x)|| ≤ κ1‖δβ‖+κ2 max
a≤x≤b

||δ (x)||, (10.13)

and

max
a≤x≤b

||u(x)− y(x)|| ≤ κ max(‖δβ‖, max
a≤x≤b

||δ (x)||), (10.14)

where

κ1 = max
a≤x≤b

||Y (x)Q−1||, κ2 = supx

∫ b

a
||G(x, t)||dt, (10.15)

and

κ = max
a≤x≤b

(||Y (x)Q−1||+
∫ b

a
||G(x, t)||dt). (10.16)

Following the same procedure as above and using the 1-norm we obtain the corre-
sponding parameters called γ1, γ2 and γ . For many problems of interest the relative
sizes of the two parameters κ1 and γ1 tell us about the conditioning and the stiffness
of the continuous problem.

Another important parameter is σ , which is called the “stiffness ratio”. It is
defined for linear problems (10.9) as

σ = max
δβ

maxa≤x≤b ‖u(x)− y(x)‖∫ b
a ‖u(x)− y(x)‖dx

(b− a)

. (10.17)

where u(x) is the solution of the perturbed equation with δ (x)≡ 0 (see [14,31]). If σ
is large we are dealing with problems possessing different time scales for which the
growth or decay rates of some fundamental solution modes are very rapid compared
to others. These parameters can be used to detect stiffness for initial and boundary
value problems, see [7, 8, 23, 26] for details.

10.2.5 Singular Problems

Consider the equation

y′ = x−α F(x,y), 0 < x < 1. (10.18)

Clearly we will have problems estimating the derivative y′ at the initial point of the
integration interval x = 0. As a result this problem is singular. If α = 1 it is said to

192 10 Boundary Value Problems

have a singularity of the first kind; for α > 1 it has a singularity of the second kind.
A difficulty in solving these particular equations will arise only if the derivative
needs to be evaluated at the boundary point x = 0.

Equations such as (10.18) arise for example when we reduce a PDE to an ODE
using spherical or cylindrical symmetry (see Sect. 8.1.2). Typically these have as
boundary condition that the gradient at x = 0 equals 0, so the problem of singularity
is avoided. For a much more thorough discussion of singular problems the reader is
referred to [5, p. 484].

10.3 Boundary Conditions

10.3.1 Separated Boundary Conditions

When defining the general form of a BVP (10.1), the boundary conditions are
specified as a general function g defined at the two boundary points x = a and x = b.
In this formalism it is possible to specify a condition which simultaneously involves
both points.

There exists a simpler set of problems, where the boundary condition g for any
component is either given at x = a or at x = b, and none of the boundary conditions
is a function of both ends of the range of integration simultaneously.

Thus for each 1≤ i≤m either the ith row of Ba or the ith row of Bb are identically
zero where, assuming that the equation is linear, we have

Ba =
∂g

∂y(a)
and Bb =

∂g
∂y(b)

, (10.19)

so that the boundary value problem becomes:

y′ = f (x,y), a ≤ x ≤ b
Bay(a)+Bby(b) = rhs.

(10.20)

This is called the separated form of the boundary conditions.
Often we will convert a problem with non-separated boundary conditions to one

with separated boundary conditions before finding an algorithm for its solution.
A given BVP which has boundary conditions imposed in non-separated form can be
converted to separated form by adding one trivial ODE per non-separated boundary
condition. An account of how this can be carried out is given in [5, p. 6]. This
technique can be extended to deal with the possibility that the boundary conditions
are only partly separated or with multipoint boundary conditions.

We will give many examples of how a problem can be converted to standard form
in the next chapter when we discuss R implementations.

10.3 Boundary Conditions 193

10.3.2 Defining Good Boundary Conditions

To illustrate the fact that not all boundary conditions lead to a stable solution, we
now consider a case where there is a dichotomy in the solution space. In particular
we consider the following illuminating example of [35]:

y′′′+ 2y′′ − y′ − 2y = 0, x ∈ [0,∞]. (10.21)

The general (analytic) solution to this equation is

y(x) = Aex +Be−x +Ce−2x. (10.22)

This equation has one solution which increases as x increases (related to the
first term) and two which decay as x increases. So, to obtain a dichotomy (see
Sect. 10.2.3) we need to impose two boundary conditions at x = 0 and one at x = ∞.
Suppose we impose

y(0) = 1, y′(0) = 1, y(∞) = 0. (10.23)

The boundary condition at ∞ gives: A = 0. The other two conditions imposed at
x = 0 give 1 = B+C and 1 = −B− 2C, so we obtain that C = −2,B = 3 and the
solution with these particular boundary conditions is given by:

y(x) = 3e−x − 2e−2x, (10.24)

and the solution will tend to 0 as x → ∞. An interesting discussion of what happens
when the wrong boundary conditions are imposed is given in [5, p. 117].

10.3.3 Problems Defined on an Infinite Interval

The above example had boundary conditions defined at ∞ and the problem was
sufficiently simple to allow us to compute an analytic solution. In many cases we
will need to resort to numerical techniques. In these cases, special care will be
needed to deal with the boundary condition at ∞. One way of dealing with a problem
defined on an infinite interval is to transform the independent variable, such that the
new problem is defined on a finite region of integration.

Consider the simple problem

y′ = F(x,y), a ≤ x < ∞. (10.25)

This can be mapped onto the region [0,1] by the transformation t = a/x, giving

t2 dy
dt

=−aF(a/t,y), 0 ≤ t ≤ 1. (10.26)

This is an ordinary differential equation with a singularity of the second kind.

194 10 Boundary Value Problems

10.4 Methods of Solution

There are two distinct numerical methods used to solve BVPs. Conceptually the
simplest one which is the shooting method converts the BVP to an IVP. This is
integrated with an appropriate IVP method while at the same time trying to solve
for the values of the missing initial conditions. This algorithm is very easy to use
but it has the disadvantage that it can suffer severe stability problems.

Alternatively, the equation can be approximated by finite differences in a way
similar to the approximation of partial differential equations considered in Chap. 8.

10.5 Shooting Methods for Two-Point BVPs

10.5.1 The Linear Case

It is instructive to outline the procedure of shooting first for a linear second order
equation.

y′′+ c(x)y′+ d(x)y = g(x), a ≤ x ≤ b, (10.27)

subject to the boundary conditions:

y(a) = α (10.28)

y(b) = β . (10.29)

Finding a solution using shooting proceeds in several steps. First of all instead of
using the given boundary conditions we replace the last one (10.29) with the initial
condition

y′(a) = γ. (10.30)

Of course, the value of γ is unknown and we need to calculate it to find the solution.
We now solve the initial value problem (10.27), subject to the initial con-

ditions (10.28) and (10.30) using one of the IVP solvers discussed in previous
chapters. We denote the solution of this initial value problem by w(x).

This solution produces an estimate of y at the end of the integration interval,
b, which we can compare with the imposed boundary condition (10.29). We now
compute a second approximate solution with the initial condition

y′(a) = δ . (10.31)

We denote this solution by r(x). We now take a linear combination of both solutions,
of the form:

y(x) = θw(x)+ (1−θ)r(x), (10.32)

10.5 Shooting Methods for Two-Point BVPs 195

so that y(x) is the required solution. Assuming that w(b) 	= r(b), we choose the value
of θ as:

θ =
β − r(b)

w(b)− r(b)
. (10.33)

As in this case
β = θw(b)+ (1−θ)r(b), (10.34)

it is easy to see that (10.32) and (10.33) satisfy (10.27).

10.5.2 The Nonlinear Case

The shooting algorithm is not so easy to use if the problem is nonlinear. To show
this we consider the general nonlinear second order equation

y′′+ f (x,y,y′) = 0, a ≤ x ≤ b, (10.35)

subject to the boundary conditions

y(a) = α (10.36)

y(b) = β . (10.37)

We assume that these equations have a unique solution y(x).
Following the procedure considered in the linear case, we replace the last

boundary value, (10.37), with the initial condition

y′(a) = s. (10.38)

The value of s is unknown, and we need to estimate it.
Starting with a first guess for s, we now solve the problem (10.35), subject to

the initial conditions (10.36) and (10.38). We denote the solution of this initial
value problem by y(x;s). This solution produces an estimate of y at the end
of the integration interval and we can compare this with the imposed boundary
condition (10.37). Our aim now is to find a value of s, say s∗ so that the second
boundary condition (10.37) is satisfied, i.e. y(b;s∗) = β .

In contrast to the linear case, finding the value of s∗ requires the solution of
a nonlinear algebraic equation and it is this that makes the nonlinear problem
considerably harder to solve than the linear one. This nonlinear solution algorithm is
very well known and is described for example in [5, p. 134]. Note that this approach
can also be extended to deal with more general boundary conditions of the form
g(y(a),y(b)) = 0.

196 10 Boundary Value Problems

0.0 0.2 0.4 0.6 0.8 1.0

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

single shooting

x

y

l

l

a

b

0.0 0.2 0.4 0.6 0.8 1.0

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

multiple shooting

x

y

ll

ll

a

b

a b

Fig. 10.1 Shooting methods applied to solve a second order boundary value problem on the
interval [0,1] with boundary conditions y(0) = a,y(1) = b. (a) In the single shooting method the
equation is solved with an IVP method based on a guess of the unknown initial condition y′(0).
A Newton-Raphson method is applied to search for the values of y′(0) such that y(1) = b. (b)
In the multiple shooting method, the integration interval is divided in small subintervals, and a
Newton-Raphson method is used to solve for the unknown initial values in each of the subintervals

The algorithm described above is called simple shooting (see Fig. 10.1a). As
simple shooting often suffers from a severe loss of stability, it needs to be used
with care. However, it is such a natural and easy to understand algorithm, that many
users try this algorithm first of all. If it fails, one needs to revert to a better algorithm
such as multiple shooting or finite differences as described in the next sections.

10.5.3 Multiple Shooting

The big problem with simple shooting is that it can be set up so that we are solving
unstable IVPs. This gives rise to very severe error accumulation. This is made worse
if we increase the range of integration, so a natural solution is to divide the mesh
into a number of smaller components, an approach called multiple shooting (see
Fig. 10.1b).

For example, we could subdivide the interval [a,b] into a = x0 < x1 < .. . < xN =
b. An initial value problem is then integrated over each interval and these solutions
are joined together to form a continuous solution. It is the fact that these integrations
are performed over relatively short intervals that is important, since it does not give
the error “time” to accumulate. The concept of multiple shooting is very well known
and is described for example in [5, p. 145], while a multiple shooting algorithm is
given in [5, p. 517].

10.6 Finite Difference Methods 197

10.6 Finite Difference Methods

Finite difference methods approximate the solution of the differential equation
on the entire interval by approximating the derivative using difference schemes.
For this reason they are called “global methods” in the literature. Consider again
problem (10.20). The first step is to divide the range [a,b] into a mesh

π : {a = x0,x1, . . . ,xN = b}, (10.39)

and we define hi = xi−xi−1, 1≤ i≤ N. Then we approximate the derivatives at each
point in the mesh using a finite difference scheme. This produces a set of algebraic
equations, the solution of which gives an approximation to the solution of (10.20) at
the mesh points defined in π . It is important to realize that not all difference schemes
are useful because, for boundary value problems, there is no preferred direction
of integration, which is in contrast to initial value problems where the direction
is imposed by the “initial” value. In fact, an important property that a numerical
scheme for the solution of BVPs should satisfy is that of so-called “Time Reversal
Symmetry”, see [9, Chap. 9]. This means that the scheme must provide the same
discrete approximation on the interval [a,b] when the variable x of the continuous
problem is transformed into ξ = a+b− x and the boundary conditions are changed
accordingly. This property is important because BVPs have both increasing and
decreasing modes in the solution and the numerical method should integrate forward
and backward without a preferential direction. The numerical schemes that have the
time reversal symmetry property are called symmetric schemes (see [5, p. 440]) and
it is natural to use symmetric methods, as such methods are “direction independent”.

10.6.1 A Low Order Method for Second Order Equations

We consider first of all a particularly simple finite difference scheme applied to the
two point boundary value problem

d2y
dx2 = f (x,y), y(0) = α, y(1) = β , 0 < x < 1. (10.40)

As previously explained, we first choose a grid π defined by (10.39) and, for the sake
of clarity, we will assume that h is constant and a= 0, b= 1. We wish to approximate
the second derivative of y at the mesh points xi = x0 + ih, 1 ≤ i ≤ N − 1. To do this
we make the approximations:

h2y′′(xi)≈ yi+1 − 2yi+ yi−1, i = 1, . . . , N − 1. (10.41)

Substituting this into (10.40) we obtain

yi+1 − 2yi+ yi−1 = h2 f (xi,yi), i = 1, . . . , N − 1, y0 = α, yN = β .
(10.42)

198 10 Boundary Value Problems

Equations (10.42) generate a tri-diagonal system of algebraic equations which
defines yi, 1 ≤ i ≤ N−1 and this can be solved to give a first discrete approximation
to the solution of (10.40). This technique is a very cheap but not an especially
powerful one. It can be useful if only a low order of accuracy is required or if
the solution is very smooth but perhaps one of the main reasons for considering it is
that it extends directly to the solution of some important classes of partial differential
equations (e.g. Sect. 8.3.1). A variable stepsize implementation of this technique is
described in [28, 29].

10.6.2 Other Low Order Methods

In this section we again consider the numerical solution of the system of m Two-
Point Boundary Value Problems.

y′ = f (x,y), a ≤ x ≤ b
g(y(a),y(b)) = 0, y ∈ ℜm.

(10.43)

The two most important one step symmetric schemes that can be used to solve BVPs
are the implicit midpoint rule and the trapezoidal rule. Let’s consider the discrete
approximation given by the implicit midpoint rule. If we apply this to (10.43) we
obtain

yn − yn−1

hn
= f (xn−1/2,

1
2
(yn + yn−1)), n = 1,2, . . . ,N

g(y0,yN) = 0.
(10.44)

These equations now define m(N + 1) algebraic equations in m(N + 1) unknowns.
Having solved these equations we obtain a discrete approximation to y(x) on the
grid π . There exist many ways to solve these equations, the most well-known one
being a variant of Newton’s method [5]. To show how this algorithm works, we
consider the rather more simple:

y′ = A(x,y)y+ c(x), a ≤ x ≤ b
g(y(a),y(b)) = 0.

(10.45)

To make the problem even more simple we assume that A is independent of y, and
we use simplified boundary conditions

y′ = A(x)y+ c(x), a ≤ x ≤ b
Bay(a)+Bby(b) = rhs.

(10.46)

10.6 Finite Difference Methods 199

Applying the implicit midpoint rule to this equation, we obtain

yn − yn−1

hn
= A(xn−1/2)

(
yn + yn−1

2

)
+ c(xn−1/2), n = 1,2, . . . ,N

Bay0 +BbyN = rhs.
(10.47)

This system of m(N + 1) algebraic equations can be written as:

Myπ = Γ (10.48)

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

S1 R1

S2 R2

. . .
. . .

SN RN

Ba Bb

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, yπ =

⎡
⎢⎢⎢⎣

y0

y1
...

yN

⎤
⎥⎥⎥⎦ , Γ =

⎡
⎢⎢⎢⎢⎢⎢⎣

c(x1/2)

c(x3/2)
...

c(xN−1/2)

rhs

⎤
⎥⎥⎥⎥⎥⎥⎦
, (10.49)

where Sn =−[h−1
n I+A(xn−1/2)/2], Rn = [h−1

n I−A(xn−1/2)/2].
The important property that this system of algebraic equations possesses is that it

is almost tridiagonal so it is relatively cheap to solve. An algorithm to solve this
equation is discussed e.g. in [5, Chap. 7]. The extension to nonlinear equations
is conceptually easy, but often much more difficult to implement because the
convergence of Newton’s method is not guaranteed (see [5, Chap. 5]).

If we apply the trapezoidal rule to (10.46) we obtain:

yn − yn−1

hn
=

1
2
(A(xn)yn +A(xn−1)yn−1 + c(xn)+ c(xn−1)) , n = 1,2, . . . ,N

Bay0 +BbyN = rhs.
(10.50)

The resulting linear system has a matrix with the same sparsity structure as
system (10.49) but now Sn = −h−1

n I − 1
2 A(xn−1), Rn = h−1

n I − 1
2 A(xn) and Γn =

1
2(c(xn−1)+ c(xn))

The midpoint rule and the trapezoidal rule, which are both of second order give
second order convergence when applied to a boundary value problem. As mentioned
previously the low order methods are only useful when a low degree of accuracy is
required or if the solution is very smooth. When higher accuracy is required, it is
normally more efficient to use higher order numerical algorithms.

10.6.3 Higher Order Methods Based on Collocation
Runge-Kutta Schemes

An obvious way of deriving high order numerical methods is simply to approximate
the derivative using high order Runge-Kutta formulae. The requirement that the

200 10 Boundary Value Problems

method should be symmetric leads us to consider Gauss or Lobatto points in our
numerical algorithm. The most widely used implicit Runge-Kutta methods for the
solution of BVPs are “collocation methods”. The idea behind collocation is to find
a set of polynomials φn(x) of degree s that satisfies the differential problem in the
interval [xn−1, xn] on a set of collocation points xni = xn−1+cihn, i = 1, . . . ,s, n =
1, . . . ,N, with 0 < c0 < c1 < · · · < cs < 1 distinct real numbers. The polynomial
φn(x) satisfies

φn(xn−1) = yn−1

φ ′
n(xni) = f (xni,φ(xni)), i = 1,2, . . . ,s,

(10.51)

and the numerical approximation at xn is then given by yn = φn(xn−1 + hn). If the
ci, i = 1, . . . ,s are distinct then the collocation method in each interval is equivalent
to an s stage implicit Runge-Kutta method, where the ci are the stages of the Runge-
Kutta scheme (see [21, Theorems 7.7,7.8], [5, p. 210]). The implicit midpoint
rule (10.44) is a second order collocation Runge-Kutta method with c1 = 1/2 and
collocation points xn1 = xn−1 + c1hn, n = 1, . . . ,N.

A popular way of specifying the collocation points is to use Gauss points (see
[5, 11]) since these are in some sense optimal in that the maximum order of an s-
stage Gauss method is 2s. This is the choice used in the well known collocation
code COLSYS (see [5]). In [11] there is a detailed description of how a fourth
order Gauss Runge-Kutta method can be implemented to solve a general two-point
boundary value problem.

10.6.4 Higher Order Methods Based on Mono Implicit
Runge-Kutta Formulae

An alternative class of Runge-Kutta methods which have a smaller linear algebra
cost than collocation methods are mono-implicit Runge-Kutta (MIRK) methods.
These were originally developed as backward versions of Runge-Kutta methods and
they can be obtained by replacing h by −h in an explicit Runge-Kutta formula (2.3).

For example, if we consider the explicit Runge-Kutta method

yn+1 − yn = h/2[f (yn)+ f (yn + h f (yn))], (10.52)

and replace h by −h we obtain

yn−1 − yn = −h/2[f (yn)+ f (yn − h f (yn))]

or
yn − yn−1 = h/2[f (yn)+ f (yn − h f (yn))].

(10.53)

The important property of (10.52) and (10.53) is that the stability region of the
former is the reflection of the stability region of the latter in the imaginary axis.
In particular MIRK methods have been described in some detail in [10, 15, 19], and

10.6 Finite Difference Methods 201

these methods are implicit in the single unknown yn+1. For example the fourth order
Lobatto IIIa formula

0 0 0 0
1/2 5/24 1/3 −1/24
1 1/6 2/3 1/6

1/6 2/3 1/6

(10.54)

can be written as:

yn+1 − yn = h
6(k1 + 4k2 + k3)

where
k1 = f (xn,yn)

k2 = f (xn+1/2,
yn+yn+1

2 − h
8 (k3 − k1))

k3 = f (xn+1,yn+1).

(10.55)

It can immediately be seen that the only unknown in this re-formulation of the
Lobatto method is yn+1.

Once we have obtained an approximate solution defined on a discrete grid π
it is often the case that we wish to derive a continuous solution so that we can
obtain an approximation to the solution at non-grid points. A technique for deriving
continuous MIRK formulae has been derived in [33] where these continuous
formulae are called CMIRK formulae.

10.6.5 Higher Order Methods Based on Linear Multistep
Formulae

Another way to derive high order methods is to use linear multistep formulae of high
order in a boundary value approach deriving a set of finite difference formulas. In
this case the numerical scheme on the grid of N +1 mesh points x0 < x1 < · · ·< xN

generates the following discrete problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(a,b) = 0
k

∑
i=0

α(n)
i yi = hn

k

∑
i=0

β (n)
i fi, n = 1, . . . ,k1 − 1,

(additional initial methods)
k

∑
i=0

α(n)
i yn−k1+i = hn ∑k

i=0 β (n)
i fn−k1+i, n = k1, . . . ,N − k2,

(main method)
k

∑
i=0

α(n)
i yN−k+i = hn ∑k

i=0 β (n)
i fN−k+i, n = N + 1− k2, . . . ,N,

(additional final methods).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10.56)

202 10 Boundary Value Problems

The coefficients α(n)
i ,β (n)

i , i = 0,k, n = 1, . . . ,N are computed using a variable
coefficient technique (see Sect. 2.2.4.2). These methods, called Boundary Value
Methods (see Sect. 2.3), have been successfully used for the solution of BVPs,
in particular the two classes called Top Order Methods and BS schemes, both of
which are symmetric and widely used. The latter schemes define on [a,b] a spline
function S(x) that collocates the numerical solution at the mesh-points xi, that is
S′(xi) = f (xi,S(xi)), i = 0,1, . . . ,N. The collocation solution is continuous up to
the kth derivative. The trapezoidal rule is the simplest method of both classes.

10.6.6 Deferred Correction

In this section we briefly consider the approach of iterated deferred correction for
the numerical solution of BVPs. Deferred correction is a very widely used procedure
originally proposed by Fox [20].

The idea behind it is to use a simple low order method to compute an initial
solution of the equation and then solve a series of correction equations each of
which improves the accuracy of the provisional solution. Thus we construct two
differential operators one, Φ , which is a cheap low order method used to compute a
first approximation to the solution and another operator Ψ which estimates the local
error in Φ . A simple deferred correction scheme has the form:

Φ(η) = 0
Φ(η) = Ψ(η).

(10.57)

There are several ways in which the operators φ and ψ can be defined. As already
explained, we wish to choose φ so that it is easy to solve the problem φ(η) = 0
for η . In choosing ψ we want a method for which it is easy to compute ψ(η)
cheaply. Since MIRK formulae are implicit in a single unknown it turns out that
the choice where φ and ψ are fourth order and sixth order MIRK formulae has
several important computational advantages. There are a couple of ways that could
be used to obtain still higher order formulae. One approach is that adopted by [24]
where high order formulae are obtained by approximating terms in the expansion
of the local truncation error of the trapezoidal rule. However problems arise near
both ends of the mesh and this has become known as the end of the net catastrophe.
Another approach is to use rather more stable formulae where φ and ψ are fourth
order and sixth order Lobatto Runge-Kutta formulae respectively. Finally we can
obtain higher order formulae by extending (10.57) to a formula of the form

Φ(η) = 0
Φ(η) = Ψ(η)
Φ(η) = α(η)+β (η).

(10.58)

References 203

By choosing the operators appearing in (10.58) in a careful way we can derive a
deferred correction method of order 8. Guidance on how these operators are chosen
can be found in [25, 37].

10.7 Codes for the Numerical Solution of Boundary Value
Problems

Two of the earliest and most widely used codes for the solution of boundary value
problems are COLSYS [4] and COLNEW [6]. These are codes that implement
Runge-Kutta collocation methods, and differ only in the type of spline used for
representing the numerical solution (B-spline versus monomial splines), and the
linear algebra solvers.

Two widely used codes which are based on deferred correction schemes are
TWPBVP and TWPBVPL [13,16]. They use MIRK schemes and Lobatto formulae
respectively [22, p. 75]. Both codes have been extended with a mesh selection based
on conditioning (TWPBVPC, TWPBVPLC) [12]. The Lobatto formulae have much
better stability than the MIRK formulae, but have more computational overhead.
As a result TWPBVP is efficient for non stiff or mildly stiff problems, whereas
TWPBVPL is efficient for very stiff boundary value problems.

The codes COLMOD [17] and ACDC [17], which are based on collocation and
MIRK formulae respectively, implement an automatic continuation strategy and
these are often much more efficient on extremely stiff problems than codes which
do not allow continuation.

All codes can solve problems with non-separated boundary conditions, but only
COLSYS and COLNEW accept multipoint BVPs, as well as higher order systems.

MIRK methods are also the underlying formulae of the codes MIRKDC [19],
BVP SOLVER [36] and bvp4c [34].

Symmetric BVMs have been implemented in the code TOM with a mesh
selection based on conditioning and a quasi-linearization strategy for the solution
of the non linear equations [27, 30, 32].

For the numerical solution of boundary value differential-algebraic equations the
code COLDAE [2] is available.

Finally, MUSN [5] is a code based on multiple shooting.
The codes COLNEW [6], COLSYS [3], COLMOD [17], TWPBVP [16],

TWPBVPC [12], TWPBVPLC [13] and ACDC [17] are implemented in R (see
Sect. A.3).

References

1. Ascher, U. M., & Petzold, L. R. (1998). Computer methods for ordinary differential equations
and differential-algebraic equations. Philadelphia: SIAM.

2. Ascher, U. M., & Spiteri, R. J. (1994). Collocation software for boundary value differential-
algebraic equations. SIAM Journal on Scientific Computing, 15(4), 938–952.

204 10 Boundary Value Problems

3. Ascher, U. M., Christiansen, J., & Russell, R. D. (1979). COLSYS–a collocation code for
boundary value problems. In B. Childs et al. (Ed.), Lecture notes in computer science 76
(pp. 164–185). New York: Springer.

4. Ascher, U. M., Christiansen, J., & Russell, R. D. (1981). Collocation software for boundary-
value ODEs. ACM Transactions on Mathematical Software, 7, 209–222.

5. Ascher, U. M., Mattheij, R. M. M., & Russell, R. D. (1995). Numerical solution of boundary
value problems for ordinary differential equations. Philadelphia: SIAM.

6. Bader, G., & Ascher, U. M. (1987). A new basis implementation for a mixed order boundary
value ODE solver. SIAM Journal on Scientific and Statistical Computing, 8, 483–500.

7. Brugnano, L., Mazzia, F., & Trigiante, D. (2011). Fifty years of stiffness. In T. E. Simos (Ed.),
Recent advances in computational and applied mathematics. Dordrecht/New York: Springer.

8. Brugnano, L., & Trigiante, D. (1996). On the characterization of stiffness for ODEs. Dynamics
of Continuous, Discrete and Impulsive Systems, 2(3), 317–335.

9. Brugnano, L., & Trigiante, D. (1998). Solving differential problems by multistep initial and
boundary value methods: Vol. 6. Stability and control: Theory, methods and applications.
Amsterdam: Gordon and Breach.

10. Cash, J. R. (1975). A class of implicit Runge–Kutta methods for the numerical integration of
stiff ordinary differential equations. Journal of Alternative and Complementary Medicine, 22,
504.

11. Cash, J. R. (2004). A survey of some global methods for solving two-point boundary value
problems. Applied Numerical Analysis and Computational Mathematics, 1, 1–17.

12. Cash, J. R., & Mazzia, F. (2005). A new mesh selection algorithm, based on conditioning, for
two-point boundary value codes. Journal of Computational and Applied Mathematics, 184,
362–381.

13. Cash, J. R., & Mazzia, F. (2006). Hybrid mesh selection algorithms based on conditioning for
two-point boundary value problems. Journal of Numerical Analysis, Industrial and Applied
Mathematics, 1(1), 81–90.

14. Cash, J. R., & Mazzia, F. (2009). Conditioning and hybrid mesh selection algorithms for
two-point boundary value problems. Scalable Computing: Practice and Experience, 10(4),
347–361.

15. Cash, J. R., & Singhal, A. (1982). High order methods for the numerical solution of two-point
boundary value problems. BIT, 22, 184.

16. Cash, J. R., & Wright, M. H. (1991). A deferred correction method for nonlinear two-
point boundary value problems: Implementation and numerical evaluation. SIAM journal on
scientific and statistical computing, 12, 971–989.

17. Cash, J. R., Moore, G., & Wright, R. W. (1995). An automatic continuation strategy for
the solution of singularly perturbed linear two-point boundary value problems. Journal of
Computational Physics, 122, 266–279.

18. Davis, H. T. (1962). Introduction to nonlinear differential and integral equations. New York:
Dover.

19. Enright, W. H., & Muir, P. (1980). Efficient classes of Runge–Kutta methods for two point
boundary value problems. Computing, 37, 315.

20. Fox, L. (1957). The numerical solution of two point boundary value problems in ordinary
differential equations. London: Clarendon Press.

21. Hairer, E., Norsett, S. P., & Wanner, G. (2009). Solving ordinary differential equations I:
Nonstiff problems. Second revised edition. Heidelberg: Springer.

22. Hairer, E., & Wanner, G. (1996). Solving ordinary differential equations II: Stiff and
differential-algebraic problems. Heidelberg: Springer.

23. Iavernaro, F., Mazzia, F., & Trigiante, D. (2006). Stability and conditioning in numerical
analysis. Journal of Numerical Analysis, Industrial and Applied Mathematics, 1(1), 91–112.

24. Lentini, M., & Pereyra, V. (1977). An adaptive finite difference solver for nonlinear two point
boundary value problems with mild boundary layers. SIAM Journal of Numerical Mathematics,
14, 91–111.

References 205

25. Lindberg, B. (1980). Error estimation and iterative improvement for discetization algorithms.
BIT, 20, 486.

26. Mazzia, F., & Nagy, A. M. (2010). Stiffness detection strategy for explicit Runge–Kutta
methods. AIP Conference Proceedings, 1281(1), 239–242.

27. Mazzia, F., & Sgura, I. (2002). Numerical approximation of nonlinear BVPs by means of
BVMs. Applied Numerical Mathematics, 42(1–3), 337–352. Ninth Seminar on Numerical
Solution of Differential and Differential-Algebraic Equations (Halle, 2000).

28. Mazzia, F., & Trigiante, D. (1992). Numerical methods for second order singular perturbation
problems. Computers and Mathematics with Applications, 23(11), 81–89.

29. Mazzia, F., & Trigiante, D. (1993). Numerical solution of singular perturbation problems.
Calcolo, 30(4), 355–369 (1995).

30. Mazzia, F., & Trigiante, D. (2004). A hybrid mesh selection strategy based on conditioning for
boundary value ODE problems. Numerical Algorithms, 36(2), 169–187.

31. Mazzia, F., & Trigiante, D. (2010). Efficient strategies for solving nonlinear problems in BVPs
codes. Nonlinear Studies, 17(4), 309–326.

32. Mazzia, F., Sestini, A., & Trigiante, D. (2009). The continuous extension of the B-spline
linear multistep methods for BVPs on non-uniform meshes. Applied Numerical Mathematics,
59(3–4), 723–738.

33. Muir, P. H., & Owren, B. (1993). Order barriers and charaterisations of continuous mono-
implicit Runge–Kutta schemes. Mathematics of Computation, 61, 675.

34. Shampine, L. F., Kierzenka, J., & Reichelt, M. W. (2000). Solving boundary value problems
for ordinary differential equations in MATLAB with bvp4c. In Matlab Guide, D.J. Higham
and N.J. Higham, pp 163–169, Philadelphia: SIAM.

35. Shampine, L. F., Gladwell, I., & Thompson, S. (2003). Solving ODEs with MATLAB.
Cambridge: Cambridge University Press.

36. Shampine, L. F., Muir, P. H., & Xu, H. (2006). A user-friendly Fortran BVP solver. Journal of
Numerical Analysis, Industrial and Applied Mathematics, 1(2), 201–217.

37. Skeel, R. D. (1982). A theoretical framework for providing accurracy results for deferred
corrections. SINUM Journal on Numerical Analysis, 19, 171–196.

38. Strang, G., & Fix, G. (1973). Analysis of the finite element method. Englewood Cliffs, NJ:
Prentice Hall.

Chapter 11
Solving Boundary Value Problems in R

Abstract Boundary Value Problems can be solved in R using shooting, MIRK
and collocation methods and these can be found in the R package bvpSolve . The
functions in this R package have an interface which is similar to the interface of
the initial value problem solvers in the package deSolve. The default input to the
solvers is very simple, requiring specification of only one function that calculates
the derivatives while the boundary conditions are represented as simple vectors.
However, in order to speed-up the simulations, and to increase the number of
problems that can be solved, it is also possible to specify the boundary conditions by
means of a function and provide analytic functions for the derivative and boundary
gradients. In this chapter we demonstrate how to solve BVPs using a variety of
well-known test problems, illustrating a wide range of difficulties in solving BVPs.
We show how to use (manual and automatic) continuation, how difficult boundary
conditions can be handled, and give many examples of how to convert BVPs
to standard form. Some BVPs are much better solved using the finite difference
methods as explained in the PDE chapter. We give an example of such a boundary
value problem at the end of this chapter.

11.1 Boundary Value Problem Solvers in R

There are three functions to solve boundary value problems in the R package
bvpSolve [20]. They implement a shooting method (bvpshoot), using the solvers
from the R package deSolve, a MIRK method (bvptwp), based on the code
TWPBVP [11], TWPBVPC [8], TWPBVPL [9] and ACDC [12] and a collocation
method (bvpcol), implementing the codes COLNEW [6], COLSYS [3] and
COLMOD [11]. Their (simplified) syntax is:

bvpshoot(yini, x, func, yend, parms, order, ...)
bvptwp(yini, x, func, yend, parms, order, ...)
bvpcol(yini, x, func, yend, parms, order, ...)

DOI 10.1007/978-3-642-28070-2 11, © Springer-Verlag Berlin Heidelberg 2012
207K. Soetaert et al., Solving Differential Equations in R, Use R!,

208 11 Solving Boundary Value Problems in R

where func is the derivative function and parms is the parameter vector or
list. These two arguments are similar to the case of initial value problem solvers
from the R package deSolve. However, the independent variable is called x here,
rather than times for IVPs. The boundary conditions are specified by yini and
yend, for the first and last point respectively. They are both a vector with length
equal to the number of dependent variables, and having NA where the boundary
value is not known. A more flexible (but more cumbersome) way of defining
boundary conditions, by a function, is also available. The default tolerances are
10−8 for all the codes. The codes bvptwp and bvpcol require only one input
error tolerance.

Functions bvpshoot and bvptwp can solve two-point boundary value prob-
lems only while bvpcol also finds solutions for multipoint problems.

As bvptwp and bvpcol generally lead to more accurate solutions, and provide
solutions where bvpshoot fails, the latter should normally not be used, unless to
find good initial guesses for bvpcol or bvptwp.

We can choose as polynomial basis either B-splines or monomial splines
(bvpcol), MIRK or Lobatto (bvptwp). Both functions also include an automatic
continuation strategy. See appendix, Table A.9.

In addition to the solvers, the bvpSolve package also contains specially-designed
methods for visualization (plot) or to print the diagnostics. The syntax of the
solvers and these functions is extensively illustrated in the following examples.

11.2 A Simple BVP Example

We illustrate the basic syntax of the BVP solvers by means of a simple BVP ODE
(which is Problem 7 from the test problems available from [7]):

εy′′+ xy′ − y = −(1+ επ2)cos(πx)−πxsin(πx)

y(−1) = −1

y(1) = 1.

(11.1)

As this is a second order ODE, the system is fully determined by the two boundary
conditions. The parameter ε will be used to illustrate the effect of stiffness of BVPs
on their ease of solution. The smaller ε is, the more stiff is the problem.

11.2.1 Implementing the BVP in First Order Form

If we expand the second order ODE as two first order ODEs, we obtain:

y′ = y1

y′1 =
1
ε
(−xy1 + y− (1+ επ2)cos(πx)−πxsin(πx)),

(11.2)

11.2 A Simple BVP Example 209

where y1 is the first order derivative. This problem is implemented as:

prob7 <- function(x, y, pars) {
list(c(y[2],

1/eps * (-x*y[2] + y[1] - (1+eps*pi*pi)*
cos(pi*x) - pi*x*sin(pi*x))))

}

where y is a 2-valued vector that contains y (=y[1]) and y1 (=y[2]). The problem
is solved as:

library(bvpSolve)
eps <- 0.1
sol <- bvptwp(yini = c(y = -1, y1 = NA),

yend = c(1, NA), func = prob7,
x = seq(-1, 1, by = 0.01))

Note how the boundary conditions at the start (yini) and at the end (yend) of the
integration interval are specified, where NA (“not available”) is used for unspecified
boundary conditions. For the boundary conditions, we must provide the values of y
as well as of y1, as this is a second order equation. Also, the dependent variables are
given names in the specification of yini. This simplifies plotting the output (see
below). Similar to what happens for initial value problems implemented in R , the
derivative function must return the derivatives in the same order as that in which the
initial and end conditions have been defined.

11.2.2 Implementing the BVP in Second Order Form

The function can also be implemented in second order form (11.1) as:

prob7_2 <- function(x, y, pars) {
list(1/eps * (-x*y[2] + y[1] - (1+eps*pi*pi)*

cos(pi*x) - pi*x*sin(pi*x)))
}

sol1 <- bvptwp(yini = c(y = -1, y1 = NA),
yend = c(1, NA), func = prob7_2,
order = 2, x = seq(-1, 1, by = 0.01))

where the argument order = 2 sets the order of the differential equation. When
implemented in second order form, we have to provide boundary values not just for
y, the first element in yini or yend, but also for the first derivative of y, which is
the second element in yini. The argument y passed to the function prob7 2 will
contain the current values of y (y[1]) and y′ (y[2]). We only return the second
order derivative from the function prob7 2.

With this value of the parameter ε (eps), the solution curves are rather smooth
(Fig. 11.1 solid line)

210 11 Solving Boundary Value Problems in R

−1.0 −0.5 0.0 0.5 1.0

−1.0

0.0

0.5

1.0

y

x
−1.0 −0.5 0.0 0.5 1.0

−1

0

1

2

3

y1

x

Fig. 11.1 Solution of the test Problem 7, for ε = 0.01 (solid line) and ε = 0.0001 (dotted line). See
text for the R code

As for IVP solvers, the solution matrix produced by the BVP solvers consists of
several columns, the first of which holds the independent variable, x.

head(sol, n=3)

x y y1
[1,] -1.00 -1.0000000 0.001699844
[2,] -0.99 -0.9994887 0.100558398
[3,] -0.98 -0.9979891 0.199338166

For increasingly small values of the parameter ε the problem becomes more and
more difficult to solve due to the presence of a zone of very rapid change near
x = 0. In fact, the shooting method completely fails for ε = 0.0005, while the other
methods still give good solutions.

eps <-0.0005
sol2 <- bvptwp(yini = c(y = -1, y1 = NA),

yend = c(1, NA), func = prob7,
x = seq(-1, 1, by=0.01))

We plot the results with bvpSolve’s plot method, which depicts both dependent
variables. We plot the results of both problems together. Note the zone near 0 when
ε is very small (Fig. 11.1, dashed line)

plot(sol, sol2, col = "black", lty = c("solid", "dashed"),
lwd = 2)

11.3 A More Complex BVP Example

It is not always necessary to manually translate higher order boundary value
problems into multi-dimensional first order problems. As already illustrated in the
first example we can avoid such manual manipulations by explicitly giving the order

11.3 A More Complex BVP Example 211

of the problem to the solver. However, in such cases we have to take care to provide
all necessary boundary values and provide them in the correct order. We illustrate
this with the test problem referred to as “swirling flow III” [5], which was briefly
discussed in Sect. 1.1.3. We also use this problem to illustrate that there are limits
on the precision that can be obtained.

The problem
g′′ = (g f ′ − f g′)/ε

f ′′′′ = (− f f ′′′ − gg′)/ε,
(11.3)

is defined on the interval [0,1] and subject to boundary conditions:

g(0) = −1, f (0) = 0, f ′(0) = 0

g(1) = 1, f (1) = 0, f ′(1) = 0.
(11.4)

We note that this problem is second order in g and fourth order in f , and is fully
determined by the six boundary conditions. Its implementation in R is:

swirl <- function (t, Y, eps) {
with(as.list(Y),

list(c((g*f1 - f*g1)/eps,
(-f*f3 - g*g1)/eps))

)
}

where we use the expression with(as.list(Y),.. to make the names of Y
available within the function.

As the derivative of g is second order, and the derivative of f is fourth order, we
not only specify the initial and end values of g and f but also the first derivative
of g, (g1) and the first, second and third derivatives of f (f1, f2, f3). The first
equation returned by swirl is of order 2, the second one of order 4. We convey this
information when we solve the problem using bvptwp (order = c(2, 4)).
When we specify the initial conditions (yini) we give names to each variable.
Thus these names can be used in the derivative function swirl and it facilitates
plotting.

eps <- 0.001
x <- seq(from = 0, to = 1, length = 100)
yini <- c(g = -1, g1 = NA, f = 0, f1 = 0, f2 = NA, f3 = NA)
yend <- c(1, NA, 0, 0, NA, NA)
Soltwp <- bvptwp(x = x, func = swirl, order = c(2, 4),

par = eps, yini = yini, yend = yend)

A pairs plot produces a pretty picture (Fig. 11.2).

pairs(Soltwp, main = "swirling flow III, eps=0.001")

Important information related to the computed numerical solution is printed by
requesting the diagnostics of the solution. This shows the number of function

212 11 Solving Boundary Value Problems in R

x

−1.0 0.5 −0.015 0.015 −10 0 10

0.0

0.6

−1.0

0.5
g

g1
0

6

12

−0.015

0.015

f

f1
−0.05

0.15

−10

5

f2

0.0 0.6 0 4 8 14 −0.05 0.15 −500 −100

−500

−100
f3

swirling flow III, eps=0.001

Fig. 11.2 Pairs plot of the swirling flow III problem. See text for the R code

and boundary evaluations, the number of mesh points used as well as much more
information. When the problem is solved with bvptwp, the diagnostics also
provide the “conditioning parameters” which give information about the stiffness of
the problem (see Sect. 10.2.4). If kappa, kappa1, gamma1, kappa2 and sigma
are of moderate size, the problem is well-conditioned. If they are large, the problem
is ill-conditioned. If sigma is large, the problem is stiff. If kappa1 is small and
kappa, kappa2 are large the problem does not have the correct dichotomy. More
information about these diagnostic parameters can be found in [10].

diagnostics(Soltwp)

solved with bvptwp

Integration was successful.

1 The return code : 0
2 The number of function evaluations : 28507

11.3 A More Complex BVP Example 213

3 The number of jacobian evaluations : 3179
4 The number of boundary evaluations : 84
5 The number of boundary jacobian evaluations : 66
6 The number of steps : 18
7 The number of mesh resets : 1
8 The maximal number of mesh points : 1000
9 The actual number of mesh points : 199

10 The size of the real work array : 280660
11 The size of the integer work array : 14018

conditioning pars

1 kappa1 : 12601.34
2 gamma1 : 818.5373
3 sigma : 36.8086
4 kappa : 13175.8
5 kappa2 : 574.46

For this problem the values of all the conditioning parameters grow when ε
decreases, and we could find the solution by requiring the default tolerance (10−8).

However with the default value of atol the problem cannot be solved with very
small values of eps. An error is produced if we try to do so.

eps <- 1e-5
Soltwp2 <- bvptwp(x = x, func = swirl, order = c(2, 4),

par = eps, yini = yini, yend = yend)

Error in bvpsolver(1, yini, x, func, yend, parms, order, :
The Expected No. Of mesh points Exceeds Storage Specifications.

If we use atol = 1e-4 the solution can be computed:

eps <- 1e-5
Soltwp2 <- bvptwp(x = x, func = swirl, order = c(2, 4),

par = eps, yini = yini, yend = yend, atol = 1e-4)
diagnostics(Soltwp2)

solved with bvptwp

Integration was successful.

1 The return code : 0
2 The number of function evaluations : 462680
3 The number of jacobian evaluations : 54547
4 The number of boundary evaluations : 576
5 The number of boundary jacobian evaluations : 426
6 The number of steps : 107
7 The number of mesh resets : 2
8 The maximal number of mesh points : 1000

214 11 Solving Boundary Value Problems in R

9 The actual number of mesh points : 689
10 The size of the real work array : 280660
11 The size of the integer work array : 14018

conditioning pars

1 kappa1 : 11510480
2 gamma1 : 71573.68
3 sigma : 393.5928
4 kappa : 9.679255e+12
5 kappa2 : 9.679252e+12

The conditioning parameters show that this problem is very ill-conditioned, which
explains why we were not able to compute a solution with a looser relative tolerance.

11.4 More Complex Initial or End Conditions

The previous problem was relatively simple in the sense that the initial and final
values were either a scalar or an unknown, and so they could be represented as two
vectors (yini and yend). Boundary value problems can also have more complex
boundary conditions, for instance if they represent relationships between several
variables. As an example, we consider problem musn as described in [5].

The problem is:

u′ = 0.5u(w− u)/v

v′ = −0.5(w− u)

w′ = (0.9− 1000(w− y)− 0.5w(w−u))/z

z′ = 0.5(w− u)

y′ = −100(y−w),

(11.5)

defined on the interval [0,1] and subject to boundary conditions:

u(0) = v(0) = w(0) = 1

z(0) = −10

w(1) = y(1).

(11.6)

Note the last boundary condition which expresses w as a function of y at the end
of the integration interval. Because of this form of the boundary conditions, yend
cannot be simply input as a vector, as in the previous examples. Instead, we should
write the boundary conditions as a function. Implementation of the ODE function
in R is:

11.4 More Complex Initial or End Conditions 215

musn <- function(x, Y, pars) {
with (as.list(Y), {

du <- 0.5 * u * (w - u) / v
dv <- -0.5 * (w - u)
dw <- (0.9 - 1000 * (w - y) - 0.5 * w * (w - u))/z
dz <- 0.5 * (w - u)
dy <- -100 * (y - w)
return(list(c(du, dv, dw, dz, dy)))

})
}

The boundary conditions are now implemented via a boundary function bound. For
each boundary condition (i), this function returns the residual; i.e. the boundary
condition u(0) = 1 is specified as u(0)− 1, and so on. The first four boundary
conditions are defined on the left of the integration interval. This information will
be passed as an argument to the solver (see below).

bound <- function(i, Y, pars) {
with (as.list(Y), {

if (i == 1) return (u - 1)
if (i == 2) return (v - 1)
if (i == 3) return (w - 1)
if (i == 4) return (z + 10)
if (i == 5) return (w - y)

})
}

Before proceeding with the integration, we note that this problem can only be solved
if initiated with a guess of the solution which is sufficiently close to the actual
solution. Such a guess can be provided to the solver as the vector xguess and
the matrix yguess

xguess <- seq(0, 1, length.out = 5)
yguess <- matrix(ncol = 5,

data = (rep(c(1, 1, 1, -10, 0.91), 5)))
rownames(yguess) <- c("u", "v", "w", "z", "y")
xguess

[1] 0.00 0.25 0.50 0.75 1.00

yguess

[,1] [,2] [,3] [,4] [,5]
u 1.00 1.00 1.00 1.00 1.00
v 1.00 1.00 1.00 1.00 1.00
w 1.00 1.00 1.00 1.00 1.00
z -10.00 -10.00 -10.00 -10.00 -10.00
y 0.91 0.91 0.91 0.91 0.91

216 11 Solving Boundary Value Problems in R

Note that the rows of yguess have been given a name, so that this name can be
used in the derivative function (musn) and in the boundary function (bound), and
to label the output.

We also need to specify that the first four boundary conditions in function bound
are defined on the left point of the integration interval (leftbc). We increase the
precision by using a low value of atol.

Sol <- bvptwp(x = x, func = musn, bound = bound,
xguess = xguess, yguess = yguess,
leftbc = 4, atol = 1e-10)

There is more than one solution to this problem. If we start the solution with
different initial guesses, we can often obtain a second solution; we use bvpcol
here to find the second solution.

yguess <- matrix(ncol = 5, data = (rep(c(1,1,1, 10, 0.91), 5)))
rownames(yguess) <- c("u", "v", "w", "z", "y")
Sol2<- bvpcol(x = x, func = musn, bound = bound,

xguess = xguess, yguess = yguess,
leftbc = 4, atol = 1e-10)

We show only the solution curves for the variable “y” for both solutions (11.3)
(Fig. 11.3):

plot(Sol, Sol2, which = "y", lwd = 2)

11.5 Solving a Boundary Value Problem Using Continuation

11.5.1 Manual Continuation

The following non linear BVP ODE is Problem 19 from the test problems available
from [7]:

ξ y′′+ exp(y)y′ − π
2 sin(πx/2)exp(2y) = 0

y(x=0) = y(x=1) = 0.
(11.7)

This is implemented as

Prob19 <- function(x, y, eps) {
pix = pi*x
list(c(y[2],

(pi/2*sin(pix/2)*exp(2*y[1])-exp(y[1])*y[2])/eps))
}

11.5 Solving a Boundary Value Problem Using Continuation 217

0.0 0.2 0.4 0.6 0.8 1.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

x

Fig. 11.3 Two solutions of the musn problem, obtained by starting with different initial guesses.
See text for the R code

The solution using bvptwp is computed without any problem when ε = 10−2

x <- seq(0, 1, by = 0.01)
eps <- 1e-2
mod1 <- bvptwp(func = Prob19, yini = c(0, NA), yend = c(0, NA),

x = x, par = eps)
diagnostics(mod1)

solved with bvptwp

Integration was successful.

1 The return code : 0
2 The number of function evaluations : 18057
3 The number of jacobian evaluations : 3091
4 The number of boundary evaluations : 40
5 The number of boundary jacobian evaluations : 26
6 The number of steps : 29
7 The number of mesh resets : 1
8 The maximal number of mesh points : 1000
9 The actual number of mesh points : 150

10 The size of the real work array : 56108
11 The size of the integer work array : 6006

218 11 Solving Boundary Value Problems in R

0.0 0.2 0.4 0.6 0.8 1.0

−0.6

−0.4

−0.2

0.0

1

x
0.0 0.2 0.4 0.6 0.8 1.0

−50

−30

−10

0

2

x

Fig. 11.4 Solution of the test Problem 19, for ε = 0.01. See text for the R code

conditioning pars

1 kappa1 : 125.6703
2 gamma1 : 2.236132
3 sigma : 93.77898
4 kappa : 168.431
5 kappa2 : 42.7607

The problem is well-conditioned and in Fig. 11.4 we plot the solution

plot(mod1, lwd = 2)

When we try to solve the same problem with ε = 10−3 and with bvpcol, the code
fails. However, it is possible to solve the problem if the previous solution (mod1)
with eps = 0.01, is used as an initial guess for a smaller value of eps. The technique
of using previous solutions and grids as starting values for the next simulations is
called continuation.

xguess <- mod1[,1]
yguess <- t(mod1[,2:3])

eps <- 1e-3
mod2 <- bvpcol(func = Prob19, yini = c(0, NA), yend = c(0, NA),

x = x, par = eps,
xguess = xguess, yguess = yguess)

and we can repeat this for smaller and smaller values of eps.

11.5 Solving a Boundary Value Problem Using Continuation 219

11.5.2 Automatic Continuation

Suppose we are trying to solve a model with very small values of ε . We could
iteratively decrease ε and see how far we get with manual continuation, as illustrated
in the previous section. For a more systematic approach, the functions bvptwp
and bvpcol feature an automatic continuation strategy. The idea of automatic
continuation is that the algorithm starts with a rather large value of ε (argument
epsini), which gives a problem that is relatively easy to solve, and lets the solver
decide upon the continuation steps to perform, so that ultimately we arrive at the
desired small value of ε (input argument eps). The default value of epsini is 0.5,
so if we are content with this value we do not need to specify it.

When the desired value of ε is too small, the solver will return the solution with
the smallest possible value of ε .

For the Problem 19, using bvpcol, this is implemented in R as:

eps <- 1e-7
mod2 <- bvpcol(func = Prob19, yini = c(0, NA), yend = c(0, NA),

x = x, par = eps, eps = eps, atol = 1e-4)
diagnostics(mod2)

solved with bvpcol

Integration was successful.

1 The return code : 1
2 The number of function evaluations : 22749
3 The number of jacobian evaluations : 4568
4 The number of boundary evaluations : 172
5 The number of boundary jacobian evaluations : 96
6 The number of continuation steps : 10
7 The number of succesfull continuation steps : 10
8 The actual number of mesh points : 50
9 The number of collocation points per subinterval : 4

10 The number of equations : 2
11 The number of components (variables) : 2

The problem was solved for final eps equal to : 1e-07

If we want information about the conditioning of the problem we should use the
continuation algorithm based on the Lobatto basis as implemented in bvptwp:

mod3 <- bvptwp(func = Prob19, yini = c(0, NA), yend = c(0, NA),
x = x, par = eps, eps = eps, atol=1e-4)

diagnostics(mod3)

220 11 Solving Boundary Value Problems in R

solved with bvptwp

Integration was successful.

1 The return code : 0
2 The number of function evaluations : 289479
3 The number of jacobian evaluations : 57829
4 The number of boundary evaluations : 740
5 The number of boundary jacobian evaluations : 310
6 The number of steps : 32
7 The number of mesh resets : 22
8 The maximal number of mesh points : 1000
9 The actual number of mesh points : 473

10 The size of the real work array : 54098
11 The size of the integer work array : 6006

conditioning pars

1 kappa1 : 12397400
2 gamma1 : 2.578484
3 sigma : 7627889
4 kappa : 16446840
5 kappa2 : 4049448

The problem was solved for final eps equal to : 1e-07

We note that the conditioning of the problems grows like 1/ε .

11.6 BVPs with Unknown Constants

Not all boundary value problems are defined in the form required to be solved by
functions bvptwp or bvpcol. However, we can often use tricks to convert them
into the desired form [2].

For instance, a wide range of boundary value problems involve unknown
constants, the value of which should be part of the solution. Such problems are
not defined in the form required to be solved by functions bvptwp or bvpcol.
We can circumvent this by treating the unknown constant as a variable of which
the first derivative is zero, and we add the corresponding equation to the system
of differential equations. In the following examples we show that this trick can be
also used to deal with periodic boundary conditions and with unknown integration
intervals.

11.6 BVPs with Unknown Constants 221

11.6.1 The Elastica Problem

We now implement the elastica problem.1 The problem consists of a system of
five differential equations, describing an elastica in the (x,y) plane. The angle φ is
modeled rather than the separate derivatives for the x and y components. This gives
control over the curvature κ .

The original system reads:

x′ = cos(φ)

y′ = sin(φ)

φ ′ = κ

κ ′ = F cos(φ),

(11.8)

where F is an (unknown) constant. The problem has five boundary conditions:

x(0) = 0

y(0) = 0

κ(0) = 0

y(0.5) = 0

φ(0.5) =−π/2.

(11.9)

These five boundary conditions make the problem fully specified. Indeed, apart from
the four integration constants arising from the four first order differential equations,
the unknown constant F should also be determined. To solve this problem with
bvpcol we add to the system (11.8) the equation for the parameter F :

F ′ = 0 (11.10)

The full problem then consists of the ODE (11.8) and (11.10), with the boundary
conditions given by (11.9). The implementation in R

Elastica <- function (x, y, pars) {
list(c(cos(y[3]),

sin(y[3]),
y[4],
y[5] * cos(y[3]),
0))

}
bvpsol <- bvpcol(func = Elastica,

yini = c(x = 0, y = 0, p = NA, k = 0, F = NA),
yend = c(x = NA, y = 0, p = -pi/2, k = NA, F = NA),
x = seq(from = 0, to = 0.5, by = 0.01))

1From (http://www.ma.ic.ac.uk/∼jcash/BVP software).

http://www.ma.ic.ac.uk/~jcash/BVP_software

222 11 Solving Boundary Value Problems in R

0.0 0.2 0.4

0.0

0.1

0.2

0.3

0.4
x

x
0.0 0.2 0.4

0.00

0.04

0.08

0.12

y

x

p

0.0 0.2 0.4

−1.5

−1.0

−0.5

0.0

0.5

x

0.0 0.2 0.4

−8

−6

−4

−2

0

k

x
0.0 0.2 0.4

−30

−25

−20

−15

F

x

Fig. 11.5 Solution of the elastica problem. See text for the R code

plot(bvpsol, lwd = 2)

Note how F remains constant (Fig. 11.5); its value is:

bvpsol[1,"F"]

F
-21.54909

11.6.2 Non-separated Boundary Conditions

In many cases of practical interest, each boundary condition is defined either at
one or at the other end of the integration interval; so-called separated boundary

11.6 BVPs with Unknown Constants 223

μ

y3 η

βy1y3

y2 λ

Susceptible (y1)

Latent (y2)

Infective (y3)

Fig. 11.6 Schematic diagram
of the measel problem

conditions. A special case of non-separated boundary conditions are periodic
boundary conditions, which specify that variables have the same value at both ends
of the integration interval.

Functions bvptwp and bvpcol accept only problems with separated boundary
conditions. To use them also for solving boundary value problems with periodic
boundary conditions, the unknown boundary condition is considered a “parameter”
which has to be estimated. Thus the equations are augmented with dependent
variables whose derivatives are 0, one for each boundary condition.

Consider as an example the problem measels from [2]. This problem describes
the outbreak of the disease by considering a given population that consists of four
categories, susceptible (S), infectives (I), latents (L) and immunes (M).

Assuming that the population density is constant (N), we have:

S+ I+L+M = N. (11.11)

The model describes the relative proportion of susceptibles (y1 = S/N), latents
(y2=L/N) and infected individuals (y3 = I/N).

The dynamics of the disease are expressed as (see Fig. 11.6):

y′1 = μ −β y1y3

y′2 = β y1y3 − y2/λ
y′3 = y2/λ − y3/η ,

(11.12)

on the interval [0, 1]. To add seasonality to this model, the infection rate β is
described by a cosine function, i.e. β = β0(1+ cos(2πt)), where β0 = 1575. The
other parameters are μ = 0.02,λ = 0.0279, η = 0.1.

224 11 Solving Boundary Value Problems in R

Now it is assumed that the outbreak of measels has a recurrent pattern, i.e. the
solution is periodic, that is yi(0) = yi(1) for all i.

We translate this problem into a two-point separated boundary value problem
by introducing three additional unknowns, y4,y5,y6 that represent the boundary
conditions. For instance, y4 is the boundary value of y1, i.e. y4 = y1(0) = y1(1)
and so on. Being “constants”, we specify their derivatives to be = 0. The derivative
and boundary function are, respectively 2:

measel <- function(t, y, pars) {
bet <- 1575 * (1 + cos(2 * pi * t))
dy1 <- mu - bet * y[1] * y[3]
dy2 <- bet * y[1] * y[3] - y[2] / lam
dy3 <- y[2] / lam - y[3] / eta
dy4 <- 0
dy5 <- 0
dy6 <- 0
list(c(dy1, dy2, dy3, dy4, dy5, dy6))

}
bound <- function(i, y, pars) {

if (i == 1 | i == 4) return(y[1] - y[4])
if (i == 2 | i == 5) return(y[2] - y[5])
if (i == 3 | i == 6) return(y[3] - y[6])

}

The model is solved by first computing a solution using the shooting method.
Shooting fails if the initial guesses are all 0, (the default), so we take all initial
guesses to be 1 instead. Also, we impose very loose tolerances.

mu <- 0.02 ; lam <- 0.0279 ; eta <- 0.1
x <- seq(from = 0, to = 1, by = 0.01)
Sola <- bvpshoot(func = measel, bound = bound,

x = x, leftbc = 3, atol = 1e-12, rtol = 1e-12,
guess = c(y1 = 1, y2 = 1, y3 = 1, y4 = 1, y5 = 1, y6 = 1))

We also need to provide a reasonable initial guess in order to have a solution using
bvptwp. We use the same initial guess as for the shooting method

yguess <- matrix(ncol = length(x), nrow = 6, data = 1)
rownames(yguess) <- paste("y", 1:6, sep="")
Sol <- bvptwp (func = measel, bound = bound,

x = x, leftbc = 3, xguess = x, yguess = yguess)

the boundaries are indeed periodic

max(abs(Sol[1,-1] - Sol[nrow(Sol),-1]))

[1] 0

2The ‘—’ in function bound is the ‘OR’ operator.

11.6 BVPs with Unknown Constants 225

0.0 0.2 0.4 0.6 0.8 1.0

0.002

0.004

0.006

0.008

0.010

0.012

y1

x

y2 y3

0.0 0.2 0.4 0.6 0.8 1.0

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

x

0.0 0.2 0.4 0.6 0.8 1.0

0.000

0.001

0.002

0.003

0.004

0.005

0.006

x

Fig. 11.7 Solution of the measel problem, comprising periodic boundary conditions. See text for
the R code

max(abs(Sola[1,-1] - Sola[nrow(Sola),-1]))

[1] 1.130485e-13

We plot the number of susceptible, latent and infective individuals (the first three
variables), arranged in one row, three columns (mfrow):

plot(Sol, lwd = 2, which = 1:3, mfrow = c(1, 3))

11.6.3 An Unknown Integration Interval

In some problems, the unknown constant specifies the size of the integration
interval. In this case, a change of independent variable (x) is carried out, i.e. x is
replaced by τ = x/b where b is the (unknown) integration interval (see Sect. 10.3.3).
Now the ODE system, in the new independent variable becomes (Fig. 11.7):

dy
dτ

= b f (bτ,y)

db
dτ

= 0,
(11.13)

where τ is between 0 and 1.
A BVP that combines cyclic boundary conditions with an unknown integration

interval is the nerve impulse model, a problem described in [14] and treated in [16].
This model is given by

226 11 Solving Boundary Value Problems in R

y′1 = 3(y1 + y2 − 1/3y3
1− 1.3)

y′2 = −(y1 − 0.7+ 0.8y2)/3.
(11.14)

The problem is defined on the interval [0,T], where T is unknown and subject to
boundary conditions:

y1(0) = y1(T)

y2(0) = y2(T).
(11.15)

Based on (11.13) the original equations (11.14) are rewritten as:

y′1 = 3T (y1 + y2 − 1/3y3
1− 1.3)

y′2 = −T (y1 − 0.7+ 0.8y2)/3

T ′ = 0,

(11.16)

defined on the interval [0,1] and with boundary conditions:

y1(0) = y1(1)

y2(0) = y2(1).
(11.17)

An extra boundary condition is needed to determine the unknown parameter T . The
model described in [16] uses the condition that dy2/dτ(0) = 1:

1 =−T (y1(0)− 0.7+ 0.8y2(0))/3. (11.18)

We again use the strategy of defining the parameters as extra dependent variables,
with derivative = 0. The augmented derivative function is, with variable y3 the
unknown parameter T , and the variables y4 and y5 representing the initial conditions
for y1, and y2 respectively:

nerve <- function (x, y, p)
list(c(3 * y[3] * (y[1] + y[2] - 1/3 * (y[1]ˆ3) -1.3),

(-1/3) * y[3] * (y[1] - 0.7 + 0.8 * y[2]) ,
0,
0,
0)

)

The required boundary function, with the first three boundary conditions imposed
at the left boundary is:

bound <- function(i, y, p) {
if (i ==1) return (-y[3]* (y[1] - 0.7 + 0.8*y[2])/3 -1)
if (i ==2) return (y[1] - y[4])
if (i ==3) return (y[2] - y[5])
if (i ==4) return (y[1] - y[4])

11.6 BVPs with Unknown Constants 227

0.0 0.2 0.4 0.6 0.8 1.0

−2

−1

0

1

y1

x
0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

y2

x

Fig. 11.8 Solution of the nerve impulse problem, comprising two state variables and three
parameters. See text for the R code

if (i ==5) return (y[2] - y[5])
}

Boundary condition 2 sets the left boundary of y1 equal to parameter y4, boundary
condition 4 does the same for the right boundary of y1.

In order to solve this problem, we also require good approximations to the
variables. Since we are looking for periodic boundary conditions, we take a sine
and cosine for the first two state variables; the constants obtain the value 5
[16] (Fig. 11.8):

xguess <- seq(0, 1, by = 0.1)
yguess <- matrix(nrow = 5, ncol = length(xguess), data = 5.)
yguess[1,] <- sin(2 * pi * xguess)
yguess[2,] <- cos(2 * pi * xguess)
rownames(yguess) <- c("y1", "y2", "T", "y1ini", "y2ini")

Sol <- bvptwp(func = nerve, bound = bound,
x = seq(0, 1, by = 0.01),leftbc = 3,
xguess = xguess, yguess = yguess)

The first row of Sol shows the initial conditions, and the values of the constant
parameters T, y1ini, y2ini.

Sol[1,]

x y1 y2 T y1ini y2ini
0.000000 -1.183453 2.004203 10.710808 -1.183453 2.004203

plot(Sol, lwd = 2, which = c("y1", "y2"))

228 11 Solving Boundary Value Problems in R

11.7 Integral Constraints

Another common form of a two-point boundary value problem is when an integral
constraint is imposed. Such a constraint typically has the form:

∫ b

a
G(t,y(t))dt = α. (11.19)

If we now define

I(x) =
∫ x

a
G(t,y(t))dt, (11.20)

we can replace the integral constraint by

I′(x) = G(x,y(x))

I(a) = 0

I(b) = α.

(11.21)

Consider for example the following problem

u′1 = u2

u′2 =−pexp(u1)

u1(0) = 1∫ 1

0
u2dx = 1.

(11.22)

This is rewritten as:
u′1 = u2

u′2 =−pexp(u1)

I′ = u2

u1(0) = 1

I(0) = 0

I(1) = 1,

(11.23)

and implemented in R as:

library(bvpSolve)
integro <- function (t, u, p)

list(c(u[2], -p*exp(u[1]), u[2]))
yini <- c(u1 = 1, u2 = NA, I = 0)
yend <- c(NA, NA, 1)
x <- seq(from = 0, to = 1, by = 0.01)
out <- bvpcol (yini = yini, yend = yend, func = integro,

x = x, parms = 0.5)

11.8 Sturm-Liouville Problems 229

An important special case of such an integral constraint arises in the computation
of homoclinic orbits [13]. In this application the norm of the solution is specified.
Setting G(x,y(x)) = yT (x)y(x) it follows that y(b) = ||y2||2.

Similar tricks can be used to convert integro-differential equations and some
optimal control problems to standard form [5, p. 473].

11.8 Sturm-Liouville Problems

Another very important class of boundary value problems that can be converted to
standard form are eigenvalue problems. Of particular interest are Sturm-Liouville
problems [5, p. 478], which are defined as

−(py′)′+ qy = λ ry a ≤ x ≤ b

C1y(a)+ p(a)y′(a) = 0

C2y(b)− p(b)y′(b) = 0,

(11.24)

where p, q, and r are continuous functions with p > 0, q > 0, r > 0 and with
−∞ < a < b < ∞, and C1, C2 both greater than zero. In the linear case we have
a homogeneous ODE with a homogeneous boundary condition with one or more of
them depending on an unknown parameter.

Perhaps the most simple example of this type of eigenvalue problem is:

y′′+λ y = 0

y(0) = 0

y(π) = 0,

(11.25)

where we have chosen separated boundary conditions. For all values of λ , the
function y(x) = 0 is a solution of this eigenvalue problem. However, the aim is
to find values of the parameter λ so that the differential equation also has non-
trivial solutions. These values of the parameter are called the eigenvalues, and the
corresponding non-trivial solutions are the eigenvectors. It is easy to see that, if
y(x) is a solution of (11.25), then so is ay(x) for any constant a. This means that
we need to prescribe a normalising condition to specify exactly which solution we
are interested in. This normalising condition can be regarded as an extra boundary
condition, so that we now have three such conditions. The first two boundary
conditions are required so that we can compute the general solution, while the
third boundary condition allows us to pick precisely which solution we require. The
question of which normalising condition to pick for use with (11.25) is addressed in
[5] but we note that often a reasonable choice is y′(0) = 1.

We can now implement the eigenvalue problem. First we rewrite it in first order
form, and add the fact that λ is a constant, hence its derivative is 0:

230 11 Solving Boundary Value Problems in R

y′1 = y2

y′2 = −λ y1

λ ′ = 0

y(0) = 0

y(π) = 0

y′(0) = 1.

(11.26)

A very appealing approach to the solution of this problem is to use simple shooting.

Sturm <- function(x, y, p) {
dy1 <- y[2]
dy2 <- -y[3] * y[1]
dy3 <- 0.
list(c(dy1, dy2, dy3))

}
yini <- c(y = 0, dy = 1, lambda = NA)
yend <- c(y = 0, dy = NA, lambda = NA)
x <- seq(from = 0, to = pi, by = pi/10)
S1 <- bvpshoot(yini = yini, yend = yend, func = Sturm,

parms = 0, x = x)

The eigenvalue of the problem is equal to 1:

(lambda1 <- S1[1, "lambda"])

lambda
1

The analytic solution of this problem is known [15], and can be compared with the
numerical solution produced using shooting (S1).

ana <- function(x, lambda) sin(x*sqrt(lambda))/sqrt(lambda)
max (abs(S1[,2]-ana(S1[,1],lambda1)))

[1] 8.987562e-08

11.9 A Reaction Transport Problem

A very simple and straightforward way of solving BVPs that fall into the category of
reaction transport problems, is to use the strategy as described in the PDE (Chap. 8,
Sect. 8.3). In this technique the differential equations are represented by finite
difference functions from the R package ReacTran [18] (Chap. 9) and a suitable
solver from the R package rootSolve [17] is used to obtain the solution.

To illustrate this, we implement a biogeochemical model that describes nitrate
(HNO3), ammonia (NH3) and oxygen (O2) in a highly polluted estuary. The main

11.9 A Reaction Transport Problem 231

biogeochemical process is the nitrification, which is the oxidation of ammonia to
nitrate, consuming oxygen:

NH3 + 2O2 → HNO3 +H2O (11.27)

Nitrate, ammonia and oxygen enter the estuary with the flow upstream, and
are transported along the spatial axis; tidal mixing is represented as dispersion.
Assuming that the concentrations are at steady state (time derivatives = 0), the mass
balances for ammonia, nitrate and oxygen are:

0 =
∂
∂x

(
D

∂HNO3

∂x

)
−v

∂HNO3

∂x
+ rnit

0 =
∂
∂x

(
D

∂NH3

∂x

)
−v

∂NH3

∂x
− rnit

0 =
∂
∂x

(
D

∂O2

∂x

)
−v

∂O2

∂x
− 2rnit + p(O2s−O2)

rnit = rNH3
O2

O2 + k
,

(11.28)

where rnit is the nitrification (parameters k = 1, r = 0.1) and the last equation in
the mass balance of oxygen is reaeration (p = 0.1, O2s = 300), which adds oxygen
to the water. Flow velocity and the dispersion coefficient are constant (v = 1,000,
D = 107). The entire estuary is 100,000 m long, and has constant cross-sectional
surface. The boundary conditions are:

NH3(0) = 500,O2(0) = 50,HNO3(0) = 100

NH3(1e5) = 10,O2(1e5) = 30,HNO3(1e5) = 250.
(11.29)

Before we discuss the implementation in R, you may want to refresh your
knowledge on how to use the functions of the R packages ReacTran and rootSolve
(see Chap. 9).

We start by loading the R package ReacTran, define the one-dimensional
grid (there are 1,000 grid cells), and the parameters. In the derivative function
(Estuary) the dependent variable vector (y) is first split into the three described
species, after which their advective-diffusive transport is performed using Reac-
Tran’s function tran.1D. Next the rates (reaeration, r nit) are calculated
and the derivatives returned, combined as a vector (c()) and packed as a list.

This problem is solved using rootSolve’s function steady.1D, which imple-
ments a Newton-Raphson method. As initial guess for the root we simply provide
3*N random numbers (runif); we need to specify the dimensionality of the
problem (dimens). As none of the species can become negative, we force the root
finding algorithm to retrieve only positive values. We return the time it takes to
solve these 3,000 equations.

232 11 Solving Boundary Value Problems in R

library(ReacTran)
N <- 1000
Grid <- setup.grid.1D(N = N, L = 100000)
v <- 1000; D <- 1e7; O2s <- 300;
NH3in <- 500; O2in <- 100; NO3in <- 50
r <- 0.1; k <- 1.; p <- 0.1
Estuary <- function(t, y, parms) {

NH3 <- y[1:N]
NO3 <- y[(N+1):(2*N)]
O2 <- y[(2*N+1):(3*N)]
tranNH3<- tran.1D (C = NH3, D = D, v = v,

C.up = NH3in, C.down = 10, dx = Grid)$dC
tranNO3<- tran.1D (C = NO3, D = D, v = v,

C.up = NO3in, C.down = 30, dx = Grid)$dC
tranO2 <- tran.1D (C = O2 , D = D, v = v,

C.up = O2in, C.down = 250, dx = Grid)$dC

reaeration <- p * (O2s - O2)
r_nit <- r * O2 / (O2 + k) * NH3

dNH3 <- tranNH3 - r_nit
dNO3 <- tranNO3 + r_nit
dO2 <- tranO2 - 2 * r_nit + reaeration

list(c(dNH3, dNO3, dO2))
}

print(system.time(
std <- steady.1D(y = runif(3 * N), parms = NULL,

names=c("NH3", "NO3", "O2"),
func = Estuary, dimens = N,
positive = TRUE)

))

user system elapsed
0.17 0.00 0.17

It is instructive to solve the problem with a reduced concentration of ammonia in the
inflowing water (NH3in). Here we take the ammonia concentration equal to 100.

NH3in <- 100
std2 <- steady.1D(y = runif(3 * N), parms = NULL,

names=c("NH3", "NO3", "O2"),
func = Estuary, dimens = N,
positive = TRUE)

We plot how the three species change along the estuary (Fig. 11.9). Note that, in
the case where ammonia concentrations upstream are high, oxygen is completely
exhausted in the upstream parts of the estuary. Unfortunately this was the case
for the Belgian Scheldt until the 1990 due to input of untreated municipal waste

11.10 Exercises 233

0e+00 4e+04 8e+04

0

100

200

300

400

500

NH3

m

m
m

ol
/m

3

0e+00 4e+04 8e+04

100

200

300

400

500

NO3

m
m

ol
/m

3

0e+00 4e+04 8e+04

0

50

100

150

200

250

300
O2

m

m
m

ol
/m

3

NH3in
500
100

Fig. 11.9 Solution of the estuarine problem. See text for the R code

water containing huge concentrations of ammonia [19]. The current situation in the
estuary is more similar to the second scenario where ammonia concentrations in
the inflowing water are much lower and the oxygen has returned (Fig. 11.9, dashed
line).

plot(std, std2, grid = Grid$x.mid, ylab = "mmol/m3",
xlab = "m", mfrow = c(1,3), col = "black")

legend("bottomright", lty = 1:2, title = "NH3in",
legend = c(500, 100))

11.10 Exercises

11.10.1 A Stiff Boundary Value Problem

The first exercise is to implement a simple BVP ODE (which is Problem 14 from
the test problems available from [7]):

εy′′ = y1 − (επ2 + 1)cos(πx)

y(−1) = 0

y(1) = 0.

(11.30)

Solve the problem for the following values of ε: 0.01,0.0025,0.0001 (Fig. 11.10).
Compare your results with the analytic solution, which is: y(x)= cos(πx)+exp((x−
1)/
√
(ε))+ exp(−(x+ 1)/

√
(ε)).

234 11 Solving Boundary Value Problems in R

−1.0 −0.5 0.0 0.5 1.0

−1.0

−0.5

0.0

0.5

1.0

Problem 14

x

y

ε
0.01
0.0025
0.0001

Fig. 11.10 Problem 14

11.10.2 The Mathieu Equation

In the following Sturm-Liouville boundary value problem [16], the fourth eigen-
value of Mathieu’s equation (parameter λ) is computed. The equation is

y′′+(λ − 10cos(2t))y = 0, (11.31)

defined on [0,π], and with boundary conditions

y′(0) = 0

y′(π) = 0

y(0) = 1.

(11.32)

Here all the initial values (at t = 0) are prescribed, in addition to one condition at
the end of the interval. As λ is unknown the problem is fully determined.

Implement this problem in R; one possible solution is in Fig. 11.11.

11.10.3 Another Swirling Flow Problem

Problem 1.4 of [5] is another formalisation of the swirling flow problem from
Sect. 1.1.3.

11.10 Exercises 235

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−0.5

0.0

0.5

1.0

Mathieu

x

Fig. 11.11 The Mathieu
problem

0 = f ′′′′ −R[f ′2 − f f ′′]+RA

0 = h′′+R f h′+ 1

0 = θ ′′+Pe f θ ′ = 0,

(11.33)

and where A is an (unknown) parameter and Pe = 0.7R is the Peclet number; R the
Reynolds number. The problem is defined on the interval [0,1] and subject to eight
boundary conditions:

f (0) = f ′(0) = 0

f (1) = f ′(1) = 1

h(0) = h(1) = 0

θ (0) = 0

θ (1) = 1.

(11.34)

To solve this problem, you will need to first rewrite this system of equations as a
system of seven first order equations, and add an extra equation for the constant
parameter A. This problem is not simple to solve; function bvpcol is the most
efficient numerical method. Solve the equations for R = 100, 1,000 and 10,000. Plot
all solutions in one figure (see Fig. 11.12). What is the value of the constant in these
three cases?

236 11 Solving Boundary Value Problems in R

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

f '

x

Fig. 11.12 Another swirling
flow problem

11.10.4 Another Reaction Transport Problem

Solve the following coupled second order equations using either bvpcol or
bvptwp, in the interval [0,2]:

h′′ = 100(1− 0.1h)h

f ′′ = 10(1− 0.1h) f

h(0) = f (0) = 1

h(2) = f (2) = 1.

(11.35)

This is a slightly simplified problem from [1], as given in [15].
If we rewrite the problem (11.35) as:

0 = D
d2h
dx2 − 100(1− 0.1h)h

0 = D
d2 f
dx2 − 10(1− 0.1h) f

h(0) = f (0) = 1

h(2) = f (2) = 1,

(11.36)

it is clear that these equations in fact describe diffusion and reaction in one
dimension with D = 1. Consequently another way to solve these equations is to

References 237

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

h

x
0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

f

x

Fig. 11.13 The transport and reaction problem, solved using bvpcol (solid lines) and
steady.1D (points)

make use of the grid creation and finite differences offered by the R package
ReacTran and to use functionsteady.1D from rootSolve to find a solution, much
in the same way as we solved the problem from Sect. 11.9.

Although both methods differ considerably in the way the problem is imple-
mented, they give the same solution (Fig. 11.13).

References

1. Ames, W., & Lohner, E. (1981). Nonlinear models of reaction–diffusion in rivers. In R.
Vichnevetsky & R. Stepleman (Eds.), Advances in computer methods for partial differential
equations (Vol. IV, pp. 217–219). New Brunswick: IMACS.

2. Ascher, U. M., & Petzold, L. R. (1998). Computer methods for ordinary differential equations
and differential-algebraic equations. Philadelphia: SIAM.

3. Ascher, U. M., Christiansen, J., & Russell, R. D. (1979). COLSYS–a collocation code for
boundary value problems. In B. Childs et al. (Ed.), Lecture notes in computer science 76
(pp. 164–185). New York: Springer.

4. Ascher, U. M., Christiansen, J., & Russell, R. D. (1981). Collocation software for boundary-
value ODEs. ACM Transactions on Mathematical Software, 7, 209–222.

5. Ascher, U. M., Mattheij, R. M. M., & Russell, R. D. (1995). Numerical solution of boundary
value problems for ordinary differential equations. Philadelphia: SIAM.

6. Bader, G., & Ascher, U. M. (1987). A new basis implementation for a mixed order boundary
value ODE solver. SIAM Journal on Scientific and Statistical Computing, 8, 483–500.

7. Cash, J. R. (2007). Algorithms for the solution of two-point boundary value problems
(http://www.ma.ic.ac.uk/∼jcash/BVPsoftware).

8. Cash, J. R., & Mazzia, F. (2005). A new mesh selection algorithm, based on conditioning, for
two-point boundary value codes. Journal of Computational and Applied Mathematics, 184,
362–381.

9. Cash, J. R., & Mazzia, F. (2006). Hybrid mesh selection algorithms based on conditioning for
two-point boundary value problems. Journal of Numerical Analysis, Industrial and Applied
Mathematics, 1(1), 81–90.

http://www.ma.ic.ac.uk/~jcash/BVP software

238 11 Solving Boundary Value Problems in R

10. Cash, J. R., & Mazzia, F. (2009). Conditioning and hybrid mesh selection algorithms for
two-point boundary value problems. Scalable Computing: Practice and Experience, 10(4),
347–361.

11. Cash, J. R., & Wright, M. H. (1991). A deferred correction method for nonlinear two-
point boundary value problems: Implementation and numerical evaluation. SIAM Journal on
Scientific and Statistical Computing, 12, 971–989.

12. Cash, J. R., Moore, G. & Wright, R. W. (1995). An automatic continuation strategy for
the solution of singularly perturbed linear two-point boundary value problems. Journal of
Computational Physics, 122, 266–279.

13. Moore, G. (1995). Computation and parameterisation of periodic and connecting orbits. IMA
Journal of Numerical Analysis, 15, 245–263.

14. Seydel, R. (1988). From equilibrium to Chaos. New York: Elsevier.
15. Shampine, L. F., Gladwell, I., & Thompson, S. (2003). Solving ODEs with MATLAB.

Cambridge: Cambridge University Press.
16. Shampine, L. F., Kierzenka, J., & Reichelt, M. W. (2000). Solving boundary value problems

for ordinary differential equations in MATLAB with bvp4c. In Matlab Guide, D.J. Higham
and N.J. Higham, pp 163–169, Philadelphia: SIAM.

17. Soetaert, K. (2011). rootSolve: Nonlinear root finding, equilibrium and steady-state analysis
of ordinary differential equations. R package version 1.6.2.

18. Soetaert, K., & Meysman, F. (2012). Reactive transport in aquatic ecosystems: Rapid model
prototyping in the open source software R. Environmental Modelling and Software, 32, 49–60.

19. Soetaert, K., Middelburg, J. J., Heip, C., Meire, P., Van Damme, S., & Maris, T. (2006). Long-
term change in dissolved inorganic nutrients in the heterotrophic scheldt estuary (Belgium, the
Netherlands). Limnology and Oceanography, 51, 409–423.

20. Soetaert, K., Cash, J. R., & Mazzia, F. (2011). bvpSolve: Solvers for boundary value problems
of ordinary differential equations. R package version 1.2.2.

Appendix A

A.1 Butcher Tableaux for Some Runge-Kutta Methods

The Butcher tableaux of the explicit Cash-Karp and the implicit Radau Runge-Kutta
methods are reported in Tables A.1 and A.2.

Table A.1 The Cash-Karp Formula. The first row of b coefficients gives the fifth order solution,
while the second row gives the solution of order 4. The Cash-Karp formula is described in [7]

0 0
1/5 1/5 0
3/10 3/40 9/40 0
3/5 3/10 −9/10 6/5 0
1 −11/54 5/2 −70/27 35/27 0
7/8 1,631/55,296 175/512 575/13,824 44,275/110,592 253/4,096 0

37/378 0 250/621 125/594 0 512/1,771
2,825/27,648 0 18,575/48,384 13,525/55,296 277/14,336 1/4

Table A.2 The RADAU formula of order 5

(4−√
6)/10 (88−7

√
6)/360 (296−169

√
6)/1,800 (−2+3

√
6)/225

(4+
√

6)/10 (296+169
√

6)/1,800 (88+7
√

6)/360 (−2−3
√

6)/225
1 (16−√

6)/36 (16+
√

6)/36 1/9

(16−√
6)/36 (16+

√
6)/36 1/9

A.2 Coefficients for Some Linear Multistep Formulae

The coefficients for the Adams, BDF, and MEBDF formulae can conveniently be put
in a table. In what follows we list the first few methods of each (Tables A.3–A.6).

DOI 10.1007/978-3-642-28070-2, © Springer-Verlag Berlin Heidelberg 2012
239K. Soetaert et al., Solving Differential Equations in R, Use R!,

240 A Appendix

Table A.3 Coefficients βi of the first few Adams-Bashforth methods yn+1 = yn + h∑k− j
j=0

β j f (xn+1− j,yn+1− j). The first method is the explicit Euler method. The α coefficients are always
α0 =−1,α1 = 1 and are not given

Steps k Order p β0 β1 β2 β3 β4 β5

1 1 1 0

2 2 −1
2

3
2

0

3 3
5
12

−16
12

23
12

0

4 4 − 9
24

37
24

−59
24

55
24

0

5 5
251
720

−1,274
720

2,616
720

−2,774
720

1,901
720

0

Table A.4 Coefficients βi of the first few Adams-Moulton formulas. yn+1 = yn + h∑k
j=0

βk− j f (xn+1− j,yn+1− j). The first two Adams-Moulton formulae are the implicit Euler and the
trapezium method respectively. The α coefficients are always α0 =−1,α1 = 1 and are not given

Steps k Order p β0 β1 β2 β3 β4 β5

1 1 0 1

1 2
1
2

1
2

2 3 − 1
12

8
12

5
12

3 4
1

24
− 5

24
19
24

9
24

4 5 − 19
720

106
720

−264
720

646
720

251
720

Table A.5 Coefficients of the first few backward differentiation formulas ∑k
j=0 αk− jyn+1− j =

hβk fn+1. Following the suggestion of [14] we scale these equations by dividing each one by βk, so
that the error constant for the k-step formula is −1/(k+1)

Steps k Order p α0 α1 α2 α3 α4 α5 βk

1 1 −1 1 1

2 2
1
3

−4
3

1
2
3

3 3 − 2
11

9
11

−18
11

1
6
11

4 4
3

25
−16

25
36
25

−48
25

1
12
25

5 5 − 12
137

75
137

−200
137

300
137

−300
137

1
60
137

Table A.6 Coefficients of MEBDF, ∑k
j=0 αk− jyn+1− j = h(β0 fn+1+β1 fn+2)

Steps k Order p β0 β1 α0 α1 α2 α3

1 2 −1/2 3/2 −1 1
2 3 22/23 −4/23 5/23 −28/23 1
3 4 150/197 −18/197 −17/197 99/197 −279/197 1

A.3 Implemented Integration Methods for Solving Initial Value Problems in R 241

A.3 Implemented Integration Methods for Solving Initial
Value Problems in R

In Tables A.7–A.8 we list the codes in the R packages deSolve and deTestSet.

Table A.7 Original codes for the methods in the R packages deSolve, and deTestSet

R package R function Code Specification References

deSolve lsode LSODE BDF, Adams, banded and
full Jacobian

[15]

deSolve lsodes LSODES BDF, Adams, sparse
Jacobian

[15]

deSolve lsoda LSODA Similar to lsode, automatic
switch stiff/non-stiff

[17]

deSolve vode DVODE Similar to lsode, but
variable-coefficient
method

[4]

deSolve daspk DASPK2.0 BDF [3]
deSolve radau RADAU5 Implicit Runge-Kutta [13]
deSolve rkMethod new Explicit Runge-Kutta [23]
deSolve ode.1D, ode.2D,

ode.3D
new Method-of-lines, based on

lsodes
[23]

deTestSet dopri5 DOPRI5 Explicit Runge-Kutta [14]
deTestSet dopri853 DOPRI853 Explicit Runge-Kutta [14]
deTestSet cashkarp new Explicit Runge-Kutta [7]
deTestSet mebdfi MEBDFI MEBDF [6]
deTestSet gamd GAMD Generalised Adams method [16]
deTestSet bimd BIMD Blended implicit method [5]

Table A.8 Features of the IVP solvers in the R packages deSolve and deTestSet (See [21])

Solver y′ = f (t,y) My′ = f (t,y) F(y′, t,y) = 0 Roots Events Delays Compiled
functions

lsoda,lsodar
√ √ √∗ √∗ √∗

lsode
√ √∗ √∗ √∗ √∗

lsodes
√ √∗ √∗ √∗ √∗

vode
√ √∗ √∗ √∗

daspk
√∗ √∗ √ √∗ √∗ √∗

radau
√ √ √∗ √∗ √∗ √∗

explicit R-K
√∗ √∗ √∗

dopri5
√ √∗

dopri853
√ √∗

cashkarp
√ √∗

mebdfi
√∗ √∗ √ √∗

gamd
√∗ √ √∗

bimd
√∗ √ √∗

“Compiled functions” means that the differential equations can be specified in compiled code√
denotes that the feature was present in the original code,

√∗ means that it was added in the
R implementation

242 A Appendix

A.4 Other Integration Methods in R

In Table A.9 we list the codes in the R packages bvpSolve and rootSolve.

Table A.9 Original codes and references of the methods in the R packages bvpSolve (BVP), and
rootSolve (BVP, PDE)

R package R function Original code Specification References

bvpSolve bvpshoot new Single shooting [22]
bvpSolve bvpcol COLNEW Collocation, monomial spline [2]
bvpSolve bvpcol(bspline =

TRUE,. . .)
COLSYS Collocation, bspline [1]

bvpSolve bvpcol(epsini = . . .) COLMOD Collocation, automatic
continuation

[11]

bvpSolve bvptwp TWPBVP MIRK [10]
bvpSolve bvptwp(cond =

TRUE,. . .)
TWPBVPC MIRK with conditioning [8]

bvpSolve bvptwp(lobatto =
TRUE,. . .)

TWPBVPL MIRK based on lobatto [9]

bvpSolve bvptwp(epsini = . . .) ACDC MIRK based on lobatto with
automatic continuation

[11]

bvpSolve bvptwp(lobatto =
TRUE,cond =
TRUE, . . .)

TWPBVPLC MIRK based on lobatto with
conditioning

[9]

rootSolve steady.1D new BVP, finite differencing [20]
rootSolve steady.2D, steady.3D new PDE, finite differencing, uses

Yale Sparse Matrix package
and SPARSKIT

[12, 18, 19]

References

1. Ascher, U. M., Christiansen, J., & Russell, R. D. (1979). COLSYS – a collocation code
for boundary value problems. In B. Childs et al. (ed.), Codes for boundary-value problem,
in ordinary differential equations: Vol. 76. Lecture notes computer science (pp. 164–185).
Berlin/Heidelberg/NewYork: Springer.

2. Bader, G., & Ascher, U. M. (1987). A new basis implementation for a mixed order boundary
value ODE solver. SIAM Journal on Scientific and Statistical Computing, 8, 483–500.

3. Brenan, K. E., Campbell, S. L., & Petzold, L. R. (1996). Numerical solution of initial-
value problems in differential-algebraic equations. SIAM classics in applied mathematics.
Philadelphia, PA: Society for Industrial and Applied Mathematics.

4. Brown, P. N., Byrne, G. D., & Hindmarsh, A. C. (1989). VODE, a variable-coefficient ODE
solver. SIAM Journal on Scientific and Statistical Computing, 10, 1038–1051.

5. Brugnano, L., Magherini, C., & Mugnai, F. (2006). Blended implicit methods for the numerical
solution of DAE problems. Journal of Computational and Applied Mathematics, 189(1–2),
34–50.

References 243

6. Cash, J. R., & Considine, S. (1992). An MEBDF code for stiff initial value problems. ACM
Transactions on Mathematical Software, 18(2), 142–158.

7. Cash, J. R., & Karp, A. H. (1990). A variable order Runge–Kutta method for initial value
problems with rapidly varying right-hand sides. ACM Transactions on Mathematical Software,
16, 201–222.

8. Cash, J. R., & Mazzia, F. (2005). A new mesh selection algorithm, based on conditioning, for
two-point boundary value codes. Journal of Computational and Applied Mathematics, 184,
362–381.

9. Cash, J. R., & Mazzia, F. (2006). Hybrid mesh selection algorithms based on conditioning for
two-point boundary value problems. Journal of Numerical Analysis, Industrial and Applied
Mathematics, 1(1), 81–90.

10. Cash, J. R., & Wright, M. H. (1991). A deferred correction method for nonlinear two-
point boundary value problems: Implementation and numerical evaluation. SIAM Journal on
Scientific and Statistical Computing, 12, 971–989.

11. Cash, J. R., Moore, G., & Wright, R. W. (1995). An automatic continuation strategy for
the solution of singularly perturbed linear two-point boundary value problems. Journal of
Computational Physics, 122, 266–279.

12. Eisenstat, S. C., Gursky, M. C., Schultz, M. H., & Sherman, A. H. (1982). Yale sparse
matrix package. I. The symmetric codes. International Journal for Numerical Methods in
Engineering, 18, 1145–1151.

13. Hairer, E., & Wanner, G. (1996). Solving ordinary differential equations II: Stiff and
differential-algebraic problems. Heidelberg: Springer.

14. Hairer, E., Norsett, S. P., & Wanner, G. (2009). Solving ordinary differential equations I:
Nonstiff problems (2nd rev. ed.). Heidelberg: Springer.

15. Hindmarsh, A. C. (1980). LSODE and LSODI, two new initial value ordinary differential
equation solvers. ACM-SIGNUM Newsletter, 15, 10–11.

16. Iavernaro, F., & Mazzia, F. (1998). Solving ordinary differential equations by generalized
Adams methods: Properties and implementation techniques. Applied Numerical Mathematics,
28(2–4), 107–126. Eighth conference on the numerical treatment of differential equations
(Alexisbad, 1997).

17. Petzold, L. R. (1983). Automatic selection of methods for solving stiff and nonstiff systems
of ordinary differential equations. SIAM Journal on Scientific and Statistical Computing, 4,
136–148.

18. Saad, Y. (1994). SPARSKIT: A basic tool kit for sparse matrix computations. VERSION 2.
19. Saad, Y. (2003). Iterative methods for sparse linear systems (2nd ed.). Philadelphia, PA:

Society for Industrial and Applied Mathematics.
20. Soetaert, K. (2011). rootSolve: Nonlinear root finding, equilibrium and steady-state analysis

of ordinary differential equations. R package version 1.6.2.
21. Soetaert, K., Petzoldt, T., & Setzer, R. W. (2009). R-package deSolve, writing code in compiled

languages. Package vignette.
22. Soetaert, K., Cash, J. R., & Mazzia, F. (2011). bvpSolve: Solvers for boundary value problems

of ordinary differential equations. R package version 1.2.2.
23. Soetaert, K., Petzoldt, T., & Setzer, R. W. (2010). Solving differential equations in R: Package

deSolve. Journal of Statistical Software, 33(9), 1–25.

Index

Adams-Bashforth methods, 26
Adams methods, 23, 25
Adams-Moulton methods, 26
adams R function, 51, 53, 69, 165, 180
Advection schemes, 145, 148

non-negativity, 147
stability, 146

Analytic solution
existence and uniqueness, 5

approxfun R function, 57
A-stability, 9

of Adams methods, 27
of BDF, 29
of implicit Runge-Kutta methods, 22

A(α)-stability, 11
of BDF, 29

Backward differences, 25
Backward differentiation formulae, 23, 27
bdf R function, 58, 69, 73
bimd R function, 52, 54, 69, 95, 96, 98,

100
Boundary value methods

for boundary value problems, 201
generalized Adams methods, 31
for initial value problems, 30

Boundary value problems, 187
boundary conditions, 192
conditioning and stability, 190
isolation of solutions, 189
R example: continuation, 216
R example: eigenvalue problem, 229
R example: elastica problem, 221
R example: integral constraints, 228
R example: measel problem, 223, 224
R example: nerve impulse problem, 225

R example: non-separated boundary
conditions, 222

R example: problem musn, 214
R example: reaction transport problem, 230
R example: swirling flow III, 210, 211
R example: test problem 7, 208
R example: test problem 19, 216
R exercise: Mathieu equation, 234
R exercise: reaction transport equation, 236
R exercise: swirling flow, 234
singular problems, 191
stiffness and dichotomy, 189
uniqueness of solutions, 188

Butcher tableau, 16, 19, 20, 22, 239
bvpcol R function, 207, 208, 216, 218–221,

223, 235, 236
bvpshoot R function, 207, 208
bvptwp R function, 207, 208, 211, 212, 217,

219, 220, 223, 224, 236

Chord iteration, 35
Codes

for boundary value problems, 203
for delay differential problems, 121
for differential algebraic problems, 91
for non-stiff problems, 38
for stiff problems, 38

Collocation, 207
Collocation methods, 199
Conditioning, 9

of boundary value problems, 190
Consistency conditions

multistep methods, 24
Continuous Runge-Kutta methods, 20
Convergence, 8

of multistep methods, 23

DOI 10.1007/978-3-642-28070-2, © Springer-Verlag Berlin Heidelberg 2012
245K. Soetaert et al., Solving Differential Equations in R, Use R!,

246 Index

Dahlquist’s first barrier, 24
Dahlquist’s second barrier, 29
Dahlquist’s test equation, 9
daspk R function, 95–97, 99, 111
DASSL, 89
dede R function, 121, 123
Deferred correction, 202
Delay differential equations, 13, 117

neutral DDE, 118, 120
R example: DDE, 124
R example: delayed cellular networks with

impulses, 134
R example: discontinuities, 119
R example: Mackey-Glass equation, 125
R example: Mariott-Delisle controller,

127
R example: neutral DDE, 124
R example: predator-prey with harvesting,

130
R example: vanishing time delays, 128
R exercise: epidemiological problem, 133
R exercise: Lemming model, 132
R exercise: Oberle and Pesch problem,

132
vanishing delays, 120

diagnostics R function, 69–71, 73, 79,
128, 208, 211, 217

Diagonally implicit Runge-Kutta methods, 22
Dichotomy

of boundary value problems, 189
Differential algebraic equations, 12, 81

electrical circuit models, 82, 106
epsilon embedding, 87
Hessenberg form, 84, 85
hidden constraints, 85
implicit form, 81, 88
index, 82
index in R , 96
index of a DAE variable, 93
index reduction, 83, 90
initial conditions, 85
mass matrix, 82
multibody systems, 101
pendulum problem, 86
R example: car axis problem, 104
R example: pendulum problem, 100
R example: transistor amplifier, 107
R exercise: Akzo Nobel problem, 112
R exercise: pendulum problem, 111
R exercise: Robertson problem, 111
Robertson problem, 83
state space form, 87, 88

Diffusion schemes, 144
non-negativity, 145

Embedded Runge-Kutta-methods, 19
Embedding, 18
Error

global, 8, 9, 17, 18
local, 8, 16–18, 26

Error estimate
Adams methods, 26
Runge-Kutta methods, 18
stiffness detection, 33

euler R function, 169
Euler’s method, 6

explicit, 7, 15, 23
implicit, 8, 23

Finite difference methods
for boundary value problems, 197
for partial differential equation, 153

Fixed-point iteration, 34
Flux conservation, 139
Flux-conservative discretization, 147
Flux limiters, 159, 169

gamd R function, 52, 54, 69, 95, 96, 98, 100

Hidden constraints, 85

impAdams R function, 73
Implicit midpoint rule

for boundary value problems, 198
Implicit Runge-Kutta methods, 22
Index

of differential algebraic equations, 82
Initial and boundary values, 4

Jacobian, 33–35, 39, 69, 89, 152, 153, 189, 190

lagderivs R function, 123
lagvalue R function, 123
Linear multistep methods, 22

in deSolve, 51
in deTestSet, 52
to solve DAEs, 89
to solve DDEs, 121

lsoda R function, 42, 51, 52, 66, 69, 70, 73,
161

lsode R function, 51, 68
lsodes R function, 51
Lyapunov stability, 9

Index 247

matplot.1D R function, 165
matplot R function, 48, 55
Maximum principle, 144
mebdfi R function, 52, 54, 69, 73, 95–99,

105
Method of lines, 12, 142, 152
Modified extended backward differentiation

formula, 31
Mono implicit Runge-Kutta methods, 200

Newton iteration, 36
Non-negativity, 144, 145, 147
Nordsieck vector, 28
Numerical dispersion, 148

ode.1D R function, 159, 161, 171, 184
ode.2D R function, 159, 174, 178, 185
ode R function, 41, 42, 51, 52, 66
ode45 R function, 50, 75, 178
Order, 8, 17

linear multistep methods, 24
Runge-Kutta methods, 17

Order conditions
linear multistep methods, 24
Runge-Kutta methods, 17

Ordinary differential equations, 41
R example: Arenstorf orbits, 49
R example: atmospheric ozone, 56
R example: bouncing ball, 64
R example: discontinuities, 59
R example: logistic equation, 42
R example: Lorenz model, 44
R example: pharmacokinetic models, 60
R example: Pleidades problem, 52
R example: rigid body equations, 47
R example: temperature regulation, 66
R exercise: events and roots, 78
R exercise: Josephson Junctions, 76
R exercise: Robertson problem, 76
R exercise: Rossler equations, 76
R exercise: stiff problems, 79

Partial differential equations, 11, 137
advection-diffusion equation, 139
boundary conditions, 141
cartesian coordinates, 140
Courant-Friedricks-Lewy number, 150
cylindrical coordinates, 141
divergence operator, 139
gradient operator, 138
Laplace operator, 139

polar coordinates, 141
R example: advection equation, 168
R example: Brusselator in 1D, 170
R example: Brusselator in 2D, 173
R example: heat equation, 160
R example: Laplace equation, 166
R example: Laplace equation in polar

coordinates, 174
R example: Poisson equation, 166
R example: Schrödinger equation, 179
R example: Sine-Gordon equation in 2D,

176
R example: wave equation, 163
R exercise: combustion in 2D, 184
R exercise: Gray-Scott equation, 181
R exercise: pebble in a bucket, 184
R exercise: traffic, 182
R exercise: vibrating string, 183
spherical coordinates, 141

PECE mode, 36
PEC mode, 36
plot.1D R function, 165, 170, 184
Predictor-corrector methods, 26, 33, 35, 36

radau R function, 45, 68, 69, 95, 96, 98–100,
109

rk45ck R function, 45, 48
rk45dp7 R function, 45
rkMethod R function, 45, 46, 48
R package

bvpSolve, 207
deSolve, 41, 95, 123
deTestSet, 47, 95
rootSolve, 99

Runge-Kutta methods, 15
in deSolve, 45
in deTestSet, 47
embedded, 19
explicit, 15
order conditions, 17
to solve DAEs, 89
to solve DDEs, 121

scatterplot3d R function, 48, 76
Semi-explicit DAEs, 87
Shooting methods, 194

multiple shooting, 196
Stability, 9

of Adams methods, 27
of backward Euler, 11
of BDF, 29
of explicit Euler, 10

248 Index

of explicit Runge-Kutta methods, 20
of implicit Runge-Kutta methods, 22
of multistep methods, 24

Stability constant, 190
steady.1D R function, 231, 237
Step size control

of BDF, 28
Runge-Kutta methods, 18

Stiffness
of boundary value problems, 189
of initial value problems, 32

Stiffness detection, 33
Stiff problems, 32
Sturm-Liouville, 229
system.time R function, 53, 69, 72, 161,

168, 171, 174, 178, 180

Time reversal symmetry, 197
tran.1D R function, 158, 161, 164, 171, 180,

184, 231

tran.2D R function, 158, 167, 173, 177
tran.3D R function, 158
tran.polar R function, 158, 176
Transport, 137, 144, 152, 157, 158, 161, 164,

167, 168, 176, 177
Transport equation, 230
Trapezoidal rule

for boundary value problems, 198

Variational problem, 189
vode R function, 51, 52

with (as.list R function, 44, 58, 104,
211, 214

Zero-stability
of multistep methods , 24

	Solving Differential Equations in R
	Preface
	Contents
	Chapter 1 Differential Equations
	Chapter 2 Initial Value Problems
	Chapter 3 Solving Ordinary Differential Equations in R
	Chapter 4 Differential Algebraic Equations
	Chapter 5 Solving Differential Algebraic Equations in R
	Chapter 6 Delay Differential Equations
	Chapter 7 Solving Delay Differential Equations in R
	Chapter 8 Partial Differential Equations
	Chapter 9 Solving Partial Differential Equations in R
	Chapter 10 Boundary Value Problems
	Chapter 11 Solving Boundary Value Problems in R
	Appendix A
	Index

