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Preface

 

Advances in wireless communications and microelectronic mechanical system technologies have enabled
the development of networks of a large number of small inexpensive, low-power multifunctional sensors.
These networks nicknamed “Smart Dust” present a very interesting and challenging area and have
tremendous potential applications. 

Wireless sensor networks consist of a large number of sensor nodes that may be randomly and densely
deployed. Sensor nodes are small electronic components capable of sensing many types of information
from the environment including temperature, light, humidity, radiation, the presence or nature of
biological organisms, geological features, seismic vibrations, specific types of computer data, and more.
Recent advancements have made it possible to make these components small, powerful, and energy
efficient, and they can now be manufactured cost-effectively in quantity for specialized telecommunica-
tion applications. The sensor nodes are very small in size and are capable of gathering, processing, and
communicating information to other nodes and to the outside world.

This handbook is expected to capture the current state of sensor networks, and specifically address
the architecture, applications, and design of such networks. This handbook has a total of 17 chapters
written by experts from around the world.

The targeted audience for this handbook includes professionals who are designers and planners for
emerging telecommunication networks, researchers (faculty members and graduate students), and those
who would like to learn about this field.

Although this handbook is not precisely a textbook, it can certainly be used as a textbook for graduate
courses and research-oriented courses that deal with wireless sensor networks. Any comments from the
readers will be highly appreciated.

Many people have contributed to this handbook in their unique ways. The first and the foremost group
that deserves immense gratitude is the group of highly-talented and skilled researchers who have con-
tributed to this handbook. All of them have been extremely cooperative and professional. It has also been
a pleasure to work with Nora Konopka, Helena Redshaw, and Allison Taub of Taylor & Francis, and we
are extremely gratified for their support and professionalism. Our families have extended their uncon-
ditional love and strong support throughout this project and they all deserve very special thanks.

 

Imad Mahgoub and Mohammad Ilyas

 

Boca Raton, Florida
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1.1 Introduction

 

Due to advances in wireless communications and electronics over the last few years, the development of
networks of low-cost, low-power, multifunctional sensors has received increasing attention. These sensors
are small in size and able to sense, process data, and communicate with each other, typically over an RF
(radio frequency) channel. A sensor network is designed to detect events or phenomena, collect and
process data, and transmit sensed information to interested users. Basic features of sensor networks are: 

• Self-organizing capabilities
• Short-range broadcast communication and multihop routing
• Dense deployment and cooperative effort of sensor nodes
• Frequently changing topology due to fading and node failures
• Limitations in energy, transmit power, memory, and computing power 

These characteristics, particularly the last three, make sensor networks different from other wireless ad
hoc or mesh networks.

Clearly, the idea of mesh networking is not new; it has been suggested for some time for wireless
Internet access or voice communication. Similarly, small computers and sensors are not innovative
per se. However, combining small sensors, low-power computers, and radios makes for a new tech-
nological platform that has numerous important uses and applications, as will be discussed in the next
section. 

 

Martin Haenggi

 

University of Notre Dame
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1.2 Opportunities

 

1.2.1 Growing Research and Commercial Interest

 

Research and commercial interest in the area of wireless sensor networks are currently growing expo-
nentially, which is manifested in many ways:

• The number of Web pages (Google: 26,000 hits for sensor networks; 8000 for wireless sensor
networks in August 2003)

• The increasing number of 
• Dedicated annual workshops, such as IPSN (information processing in sensor networks);

SenSys; EWSN (European workshop on wireless sensor networks); SNPA (sensor network
protocols and applications); and WSNA (wireless sensor networks and applications)

• Conference sessions on sensor networks in the communications and mobile computing com-
munities (ISIT, ICC, Globecom, INFOCOM, VTC, MobiCom, MobiHoc) 

• Research projects funded by NSF (apart from ongoing programs, a new specific effort now
focuses on sensors and sensor networks) and DARPA through its SensIT (sensor information
technology), NEST (networked embedded software technology), MSET (multisensor exploi-
tation), UGS (unattended ground sensors), NETEX (networking in extreme environments),
ISP (integrated sensing and processing), and communicator programs

Special issues and sections in renowned journals are common, e.g., in the 

 

IEEE Proceedings

 

 [1] and signal
processing, communications, and networking magazines. Commercial interest is reflected in investments
by established companies as well as start-ups that offer general and specific hardware and software
solutions. 

Compared to the use of a few expensive (but highly accurate) sensors, the strategy of deploying a large
number of inexpensive sensors has significant advantages, at smaller or comparable total system cost:
much higher spatial resolution; higher robustness against failures through distributed operation; uniform
coverage; small obtrusiveness; ease of deployment; reduced energy consumption; and, consequently,
increased system lifetime. The main point is to position sensors close to the source of a potential problem
phenomenon, where the acquired data are likely to have the greatest benefit or impact. 

Pure sensing in a fine-grained manner may revolutionize the way in which complex physical systems
are understood. The addition of actuators, however, opens a completely new dimension by permitting
management and manipulation of the environment at a scale that offers enormous opportunities for
almost every scientific discipline. Indeed, Business 2.0 (http://www.business2.com/) lists sensor robots
as one of “six technologies that will change the world,” and 

 

Technology Review

 

 at MIT and Globalfuture
identify WSNs as one of the “10 emerging technologies that will change the world” (http://www.global-
future.com/mit-trends2003.htm). The combination of sensor network technology with MEMS and nan-
otechnology will greatly reduce the size of the nodes and enhance the capabilities of the network. 

The remainder of this chapter lists and briefly describes a number of applications for wireless sensor
networks, grouped into different categories. However, because the number of areas of application is
growing rapidly, every attempt at compiling an exhaustive list is bound to fail. 

 

1.2.2 Applications

 

1.2.2.1 General Engineering

 

•

 

Automotive telematics.

 

 Cars, which comprise a network of dozens of sensors and actuators, are
networked into a system of systems to improve the safety and efficiency of traffic. 

•

 

Fingertip accelerometer virtual keyboards.

 

 These devices may replace the conventional input
devices for PCs and musical instruments. 

•

 

Sensing and maintenance in industrial plants

 

. Complex industrial robots are equipped with up
to 200 sensors that are usually connected by cables to a main computer. Because cables are
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expensive and subject to wear and tear caused by the robot’s movement, companies are replacing
them by wireless connections. By mounting small coils on the sensor nodes, the principle of
induction is exploited to solve the power supply problem. 

•

 

Aircraft drag reduction.

 

 Engineers can achieve this by combining flow sensors and blowing/sucking
actuators mounted on the wings of an airplane. 

•

 

Smart office spaces.

 

 Areas are equipped with light, temperature, and movement sensors, micro-
phones for voice activation, and pressure sensors in chairs. Air flow and temperature can be
regulated locally for one room rather than centrally. 

•

 

Tracking of goods in retail stores.

 

 Tagging facilitates the store and warehouse management. 
•

 

Tracking of containers and boxes.

 

 Shipping companies are assisted in keeping track of their goods,
at least until they move out of range of other goods. 

•

 

Social studies

 

. Equipping human beings with sensor nodes permits interesting studies of human
interaction and social behavior. 

• Commercial and residential security. 

 

1.2.2.2 Agriculture and Environmental Monitoring

 

•

 

Precision agriculture.

 

 Crop and livestock management and precise control of fertilizer concentra-
tions are possible. 

•

 

Planetary exploration.

 

 Exploration and surveillance in inhospitable environments such as remote
geographic regions or toxic locations can take place. 

•

 

Geophysical monitoring

 

. Seismic activity can be detected at a much finer scale using a network of
sensors equipped with accelerometers. 

•

 

Monitoring of freshwater quality.

 

 The field of hydrochemistry has a compelling need for sensor
networks because of the complex spatiotemporal variability in hydrologic, chemical, and ecological
parameters and the difficulty of labor-intensive sampling, particularly in remote locations or under
adverse conditions. In addition, buoys along the coast could alert surfers, swimmers, and fishermen
to dangerous levels of bacteria. 

•

 

Zebranet

 

. The Zebranet project at Princeton aims at tracking the movement of zebras in Africa. 
•

 

Habitat monitoring

 

. Researchers at UC Berkeley and the College of the Atlantic in Bar Harbor
deployed sensors on Great Duck Island in Maine to measure humidity, pressure, temperature,
infrared radiation, total solar radiation, and photosynthetically active radiation (see http://
www.greatduckisland.net/). 

•

 

Disaster detection

 

. Forest fire and floods can be detected early and causes can be localized precisely
by densely deployed sensor networks. 

•

 

Contaminant transport.

 

 The assessment of exposure levels requires high spatial and temporal
sampling rates, which can be provided by WSNs. 

 

1.2.2.3 Civil Engineering 

 

•

 

Monitoring of structures

 

. Sensors will be placed in bridges to detect and warn of structural
weakness and in water reservoirs to spot hazardous materials. The reaction of tall buildings to
wind and earthquakes can be studied and material fatigue can be monitored closely. 

•

 

Urban planning

 

. Urban planners will track groundwater patterns and how much carbon dioxide
cities are expelling, enabling them to make better land-use decisions. 

•

 

Disaster recovery

 

. Buildings razed by an earthquake may be infiltrated with sensor robots to locate
signs of life. 

 

1.2.2.4 Military Applications

 

•

 

Asset monitoring and management.

 

 Commanders can monitor the status and locations of troops,
weapons, and supplies to improve military command, control, communications, and computing
(C4). 
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•

 

Surveillance and battle-space monitoring.

 

 Vibration and magnetic sensors can report vehicle and
personnel movement, permitting close surveillance of opposing forces. 

•

 

Urban warfare.

 

 Sensors are deployed in buildings that have been cleared to prevent reoccupation;
movements of friend and foe are displayed in PDA-like devices carried by soldiers. Snipers can be
localized by the collaborative effort of multiple acoustic sensors. 

•

 

Protection

 

. Sensitive objects such as atomic plants, bridges, retaining walls, oil and gas pipelines,
communication towers, ammunition depots, and military headquarters can be protected by intel-
ligent sensor fields able to discriminate between different classes of intruders. Biological and
chemical attacks can be detected early or even prevented by a sensor network acting as a warning
system. 

•

 

Self-healing minefields

 

. The self-healing minefield system is designed to achieve an increased resistance
to dismounted and mounted breaching by adding a novel dimension to the minefield. Instead of a
static complex obstacle, the self-healing minefield is an intelligent, dynamic obstacle that senses
relative positions and responds to an enemy’s breaching attempt by physical reorganization. 

 

1.2.2.5 Health Monitoring and Surgery

 

•

 

Medical sensing

 

. Physiological data such as body temperature, blood pressure, and pulse are sensed
and automatically transmitted to a computer or physician, where it can be used for health status
monitoring and medical exploration. Wireless sensing bandages may warn of infection. Tiny
sensors in the blood stream, possibly powered by a weak external electromagnetic field, can
continuously analyze the blood and prevent coagulation and thrombosis. 

•

 

Microsurgery

 

. A swarm of MEMS-based robots may collaborate to perform microscopic and
minimally invasive surgery. 

The opportunities for wireless sensor networks are ubiquitous. However, a number of formidable chal-
lenges must be solved before these exciting applications may become reality. 

 

1.3 Technical Challenges

 

Populating the world with networks of sensors requires a fundamental understanding of techniques for
connecting and managing sensor nodes with a communication network in scalable and resource-efficient
ways. Clearly, sensor networks belong to the class of ad hoc networks, but they have specific characteristics
that are not present in general ad hoc networks.

Ad hoc and sensor networks share a number of challenges such as energy constraints and routing. On
the other hand, general ad hoc networks most likely induce traffic patterns different from sensor networks,
have other lifetime requirements, and are often considered to consist of 

 

mobile

 

 nodes [2–4]. In WSNs,
most nodes are static; however, the network of basic sensor nodes may be overlaid by more powerful
mobile sensors (robots) that, guided by the basic sensors, can move to interesting areas or even track
intruders in the case of military applications. 

Network nodes are equipped with wireless transmitters and receivers using antennas that may be
omnidirectional (isotropic radiation), highly directional (point-to-point), possibly steerable, or some
combination thereof. At a given point in time, depending on the nodes’ positions and their transmitter
and receiver coverage patterns, transmission power levels, and cochannel interference levels, a wireless
connectivity exists in the form of a random, multihop graph between the nodes. This ad hoc topology
may change with time as the nodes move or adjust their transmission and reception parameters. 

Because the most challenging issue in sensor networks is 

 

limited and unrechargeable

 

 energy provision,
many research efforts aim at improving the energy efficiency from different aspects. In sensor networks,
energy is consumed mainly for three purposes: 

 

data transmission

 

, 

 

signal processing

 

, and 

 

hardware
operation 

 

[5]. It is desirable to develop energy-efficient processing techniques that minimize power
requirements across all levels of the protocol stack and, at the same time, minimize message passing for
network control and coordination. 
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1.3.1 Performance Metrics

 

To discuss the issues in more detail, it is necessary to examine a list of metrics that determine the
performance of a sensor network:

•

 

Energy efficiency/system lifetime

 

. The sensors are battery operated, rendering energy a very scarce
resource that must be wisely managed in order to extend the lifetime of the network [6]. 

•

 

Latency

 

. Many sensor applications require delay-guaranteed service. Protocols must ensure that
sensed data will be delivered to the user within a certain delay. Prominent examples in this class
of networks are certainly the sensor-actuator networks. 

•

 

Accuracy

 

. Obtaining accurate information is the primary objective; accuracy can be improved
through joint detection and estimation. Rate distortion theory is a possible tool to assess accuracy. 

•

 

Fault tolerance

 

. Robustness to sensor and link failures must be achieved through redundancy and
collaborative processing and communication. 

•

 

Scalability

 

. Because a sensor network may contain thousands of nodes, scalability is a critical
factor that guarantees that the network performance does not significantly degrade as the network
size (or node density) increases. 

•

 

Transport capacity/throughput

 

. Because most sensor data must be delivered to a single base station
or fusion center, a 

 

critical area

 

 in the sensor network exists (the gray area in Figure 1.1.), whose
sensor nodes must relay the data generated by virtually all nodes in the network. Thus, the traffic
load at those critical nodes is heavy, even when the average traffic rate is low. Apparently, this area
has a paramount influence on system lifetime, packet end-to-end delay, and scalability. 

Because of the interdependence of energy consumption, delay, and throughput, all these issues and
metrics are tightly coupled. Thus, the design of a WSN necessarily consists of the resolution of numerous
trade-offs, which also reflects in the network protocol stack, in which a cross-layer approach is needed
instead of the traditional layer-by-layer protocol design. 

 

1.3.2 Power Supply

 

The most difficult constraints in the design of WSNs are those regarding the minimum energy consumption
necessary to drive the circuits and possible microelectromechanical devices (MEMS) [5, 7, 8]. The energy
problem is aggravated if actuators are present that may be substantially hungrier for power than the sensors.
When miniaturizing the node, the energy density of the power supply is the primary issue. Current
technology yields batteries with approximately 1 J/mm

 

3

 

 of energy, while capacitors can achieve as much as
1 mJ/mm

 

3

 

. If a node is designed to have a relatively short life span, for example, a few months, a battery is
a logical solution. However, for nodes that can generate sensor readings for long periods of time, a charging

 

FIGURE 1.1  

 

Sensor network with base station (or fusion center). The gray-shaded area indicates the critical area
whose nodes must relay all the packets.

critical nodesBS
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method for the supply is preferable. Currently, research groups are investigating the use of solar cells to
charge capacitors with photocurrents from the ambient light sources. Solar flux can yield power densities
of approximately 1 mW/mm

 

2

 

. The energy efficiency of a solar cell ranges from 10 to 30% in current
technologies, giving 300 

 

μ

 

W in full sunlight in the best-case scenario for a 1-mm

 

2

 

 solar cell operating at
1 V. Series-stacked solar cells will need to be utilized in order to provide appropriate voltages. 

Sensor acquisition can be achieved at 1 nJ per sample, and modern processors can perform compu-
tations as low as 1 nJ per instruction. For wireless communications, the primary candidate technologies
are based on RF and optical transmission techniques, each of which has its advantages and disadvantages.
RF presents a problem because the nodes may offer very limited space for antennas, thereby demanding
very short-wavelength (i.e., high-frequency) transmission, which suffers from high attenuation. Thus,
communication in that regime is not currently compatible with low-power operation. Current RF
transmission techniques (e.g., Bluetooth [9]) consume about 100 nJ per bit for a distance of 10 to 100 m,
making communication very expensive compared to acquisition and processing.

An alternative is to employ free-space optical transmission. If a line-of-sight path is available, a well-
designed free-space optical link requires significantly lower energy than its RF counterpart, currently
about 1 nJ per bit. The reason for this power advantage is that optical transceivers require only simple
baseband analog and digital circuitry and no modulators, active filters, and demodulators. Furthermore,
the extremely short wavelength of visible light makes it possible for a millimeter-scale device to emit a
narrow beam, corresponding to an antenna gain of roughly five to six orders of magnitude compared to
an isotropic radiator. However, a major disadvantage is that the beam needs to be pointed very precisely
at the receiver, which may be prohibitively difficult to achieve. 

In WSNs, where sensor sampling, processing, data transmission, and, possibly, actuation are involved,
the trade-off between these tasks plays an important role in power usage. Balancing these parameters
will be the focus of the design process of WSNs. 

 

1.3.3 Design of Energy-Efficient Protocols

 

It is well acknowledged that 

 

clustering

 

 is an efficient way to save energy for static sensor networks [10–13].
Clustering has three significant differences from conventional clustering schemes. First, data compression
in the form of distributed source coding is applied within a cluster to reduce the number of packets to
be transmitted [14, 15]. Second, the 

 

data-centric

 

 property makes an identity (e.g., an address) for a
sensor node obsolete. In fact, the user is often interested in phenomena occurring in a specified area
[16], rather than in an individual sensor node. Third, randomized rotation of cluster heads helps ensure
a balanced energy consumption [11]. 

Another strategy to increase energy efficiency is to use 

 

broadcast and multicast trees

 

 [6, 17, 18], which
take advantage of the 

 

broadcast property

 

 of omnidirectional antennas. The disadvantage is that the high
computational complexity may offset the achievable benefit. For sensor networks, this 

 

one-to-many

 

communication scheme is less important; however, because all data must be delivered to a single desti-
nation, the traffic scheme (for application traffic) is the opposite, i.e., 

 

many to one

 

. In this case, clearly
the 

 

wireless multicast advantage

 

 offers less benefit, unless path diversity or cooperative diversity schemes
are implemented [19, 20]. 

The exploitation of 

 

sleep modes

 

 [21, 22] is imperative to prevent sensor nodes from wasting energy
in receiving packets unintended for them. Combined with efficient medium access protocols, the “sleep-
ing” approach could reach optimal energy efficiency without degradation in throughput (but at some
penalty in delay). 

 

1.3.4 Capacity/Throughput

 

Two parameters describe the network’s capability to carry traffic: 

 

transport capacity

 

 and 

 

throughput

 

.
The former is a distance-weighted sum capacity that permits evaluation of network performance.
Throughput is a traditional measure of how much traffic can be delivered by the network [23–30]. In a
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packet network, the (network-layer) throughput may be defined as the expected number of successful
packet transmissions of a given node per timeslot. 

The capacity of wireless networks in general is an active area of research in the information theory
community. The results obtained mostly take the form of scaling laws or “order-of” results; the prefactors
are difficult to determine analytically. Important results include the scaling law for point-to-point coding,
which shows that the throughput decreases with  for a network with 

 

N

 

 nodes [23]. Newer results
[28] permit network coding, which yields a slightly more optimistic scaling behavior, although at high
complexity. Grossglauser and Tse [26] have shown that mobility may keep the per-node capacity constant
as the network grows, but that benefit comes at the cost of unbounded delay. 

The throughput is related to (error-free) transmission rate of each transmitter, which, in turn, is upper
bounded by the channel capacity. From the pure information theoretic point of view, the capacity is
computed based on the ergodic channel assumption, i.e., the code words are long compared to the
coherence time of the channel. This Shannon-type capacity is also called 

 

throughput capacity

 

 [31].
However, in practical networks, particularly with delay-constrained applications, this capacity cannot
provide a helpful indication of the channel’s ability to transmit with a small probability of error.

Moreover, in the multiple-access system, the corresponding power allocation strategies for maximum
achievable capacity always favor the “good” channels, thus leading to unfairness among the nodes.
Therefore, for delay-constrained applications, the channel is usually assumed to be nonergodic and the
capacity is a random variable, instead of a constant in the classical definition by Shannon. For a delay-
bound 

 

D

 

, the channel is often assumed to be block fading with block length 

 

D

 

, and a 

 

composite channel

 

model is appropriate when specifying the capacity. Correspondingly, given the noise power, the channel
state (a random variable in the case of fading channels), and power allocation, new definitions for 

 

delay-
constrained

 

 systems have been proposed [32–35]. 

 

1.3.5 Routing

 

In ad hoc networks, routing protocols are expected to implement three main functions: 

 

determining and
detecting network topology changes

 

 (e.g., breakdown of nodes and link failures); 

 

maintaining network
connectivity

 

; and 

 

calculating and finding proper routes

 

. In sensor networks, up-to-date, less effort has
been given to routing protocols, even though it is clear that ad hoc routing protocols (such as 

 

destination-
sequenced distance vector

 

 (DSDV), 

 

temporally-ordered routing algorithm

 

 (TORA), 

 

dynamic source rout-
ing

 

 (DSR), and 

 

ad hoc on-demand distance vector

 

 (AODV) [4, 36–39]) are not suited well for sensor
networks since the main type of traffic in WSNs is “many to one” because all nodes typically report to
a single base station or fusion center. Nonetheless, some merits of these protocols relate to the features
of sensor networks, like 

 

multihop communication

 

 and 

 

QoS routing

 

 [39]. Routing may be associated with
data compression [15] to enhance the scalability of the network. 

 

1.3.6 Channel Access and Scheduling

 

In WSNs, scheduling must be studied at two levels: the 

 

system level

 

 and the 

 

node level

 

. At the node level,
a scheduler determines which flow among all multiplexing flows will be eligible to transmit next (the
same concept as in traditional wired scheduling); at the system level, a scheme determines which nodes
will be transmitting. System-level scheduling is essentially a medium access (MAC) problem, with the
goal of minimum collisions and maximum spatial reuse — a topic receiving great attention from the
research community because it is tightly coupled with energy efficiency and throughput. 

Most of the current wireless scheduling algorithms aim at improved 

 

fairness

 

, 

 

delay

 

, 

 

robustness

 

 (with
respect to network topology changes) and 

 

energy efficiency

 

 [62, 64, 65, 66]. Some also propose a distrib-
uted implementation, in contrast to the centralized implementation in wired or cellular networks, which
originated from general fair queuing. Also, wireless (or sensor) counterparts of other wired scheduling
classes, like 

 

priority scheduling

 

 [67, 68] and 

 

earliest deadline first (EDF)

 

 [69], confirm that prioritization
is necessary to achieve 

 

delay balancing

 

 and 

 

energy balancing

 

. 

1 / N
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The main problem in WSNs is that all the sensor data must be forwarded to a base station via multihop
routing. Consequently, the traffic pattern is highly nonuniform, putting a high burden on the sensor
nodes close to the base station (the critical nodes in Figure 1.1). The scheduling algorithm and routing
protocols must aim at 

 

energy and delay balancing

 

, ensuring that packets originating close and far away
from the base station experience a comparable delay, and that the critical nodes do not die prematurely
due to the heavy relay traffic [40]. 

At this point, due to the complexity of scheduling algorithms and the wireless environment, most
performance measures are given through simulation rather than analytically. Moreover, 

 

medium access

 

and 

 

scheduling

 

 are usually considered separately. When discussing scheduling, the system is assumed to
have a single user; whereas in the MAC layer, all flows multiplexing at the node are treated in the same
way, i.e., a default FIFO buffer is assumed to schedule flows. It is necessary to consider them jointly to
optimize performance figures such as delay, throughput, and packet loss probability. 

Because of the bursty nature of the network traffic, random access methods are commonly employed
in WSNs, with or without carrier sense mechanisms. For illustrative purposes, consider the simplest
sensible MAC scheme possible: all nodes are transmitting packets independently in every timeslot with
the same transmit probability p at equal transmitting power levels; the next-hop receiver of every packet
is one of its neighbors. The packets are of equal length and fit into one timeslot. This MAC scheme was
considered in Silvester and Kleinrock [41], Hu [42], and Haenggi [43]. The resulting (per-node) through-
put turns out to be a polynomial in p of order N, where N is the number of nodes in the network.

A typical throughput polynomial is shown in Figure 1.2. At p = 0, the derivative is 1, indicating that,
for small p, the throughput equals p. This is intuitive because there are few collisions for small p and the
throughput g(p) is approximately linear. The region in which the packet loss probability is less than 10%
can be denoted as the collisionless region. It ranges from 0 to about pmax/8. The next region, up to pmax,
is the practical region in which energy consumption (transmission attempts) is traded off against through-
put; it is therefore called the trade-off region. The difference p – g(p) is the interference loss. For small
networks, all N nodes interfere with each other because spatial reuse is not possible: If more than one
node is transmitting, a collision occurs and all packets are lost. Thus, the (per-node) throughput is
p(1 – p)N–1, and the optimum transmit probability is 1/N. The maximum throughput is (1 – 1/N)N–1/N.
With increasing N, the throughput approaches 1/(eN), as pointed out in Silvester and Kleinrock [41]
and LaMaire et al. [44]. Therefore the difference pmax – 1/N is the spatial reuse gain (see Figure 1.2).
This simple example illustrates the concepts of collisions, energy-throughput trade-offs, and spatial reuse,
which are present in every MAC scheme. 

1.3.7 Modeling

The bases for analysis and simulations and analytical approaches are accurate and tractable models.
Comprehensive network models should include the number of nodes and their relative distribution; their
degree and type of mobility; the characteristics of the wireless link; the volume of traffic injected by the
sources and the lifespan of their interaction; and detailed energy consumption models. 

1.3.7.1 Wireless Link

An attenuation proportional to dα, where d is the distance between two nodes and α is the so-called path
loss exponent, is widely accepted as a model for path loss. Alpha ranges from 2 to 4 or even 5 [45],
depending on the channel characteristics (environment, antenna position, frequency). This path loss
model, together with the fact that packets are successfully transmitted if the signal-to-noise-and-inter-
ference ratio (SNIR) is bigger than some threshold [8], results in a deterministic model often used for
analysis of multihop packet networks [23, 26, 41, 42, 46–48]. Thus, the radius for a successful transmission
has a deterministic value, irrespective of the condition of the wireless channel. If only interferers within
a certain distance of the receiver are considered, this “physical model” [23] turns into a “disk model.”

The stochastic nature of the fading channel and thus the fact that the SINR is a random variable are
mostly neglected. However, the volatility of the channel cannot be ignored in wireless networks [5, 8];
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Sousa and Silvester have also pointed out the inaccuracy of disk models [49] and it is easily demonstrated
experimentally [50, 51]. In addition, this “prevalent all-or-nothing model” [52] leads to the assumption
that a transmission over a multihop path fails completely or is 100% successful, ignoring the fact that
end-to-end packet loss probabilities increase with the number of hops. Although fading has been con-
sidered in the context of packet networks [53, 54], its impact on the throughput of multihop networks
and protocols at the MAC and higher layers is largely an open problem.

A more accurate channel model will have an impact on most of the metrics listed in Section 1.3.1. In
the case of Rayleigh fading, first results show that the energy benefits of routing over many short hops
may vanish completely, in particular if latency is taken into account [20, 55, 56]. The Rayleigh fading
model not only is more accurate than the disk model, but also has the additional advantage of permitting
separation of noise effects and interference effects due to the exponential distribution of the received
power. As a consequence, the performance analysis can conveniently be split into the analysis of a zero-
interference (noise-analysis) and a zero-noise (interference-analysis) network. 

1.3.7.2 Energy Consumption

To model energy consumption, four basic different states of a node can be identified: transmission,
reception, listening, and sleeping. They consist of the following tasks:

• Acquisition: sensing, A/D conversion, preprocessing, and perhaps storing
• Transmission: processing for address determination, packetization, encoding, framing, and maybe

queuing; supply for the baseband and RF circuitry (The nonlinearity of the power amplifier must
be taken into account because the power consumption is most likely not proportional to the
transmit power [56].)

• Reception: Low-noise amplifier, downconverter oscillator, filtering, detection, decoding, error
detection, and address check; reception even if a node is not the intended receiver

• Listening: Similar to reception except that the signal processing chain stops at the detection
• Sleeping: Power supply to stay alive

Reception and transmission comprise all the processing required for physical communication and net-
working protocols. For the physical layer, the energy consumption depends mostly on the circuitry, the
error correction schemes, and the implementation of the receiver [57]. At the higher layers, the choice

FIGURE 1.2  Generic throughput polynomial for a simple random MAC scheme.

spatial reuse gain pmax
–1/N

maximum throughput gmax

trade-off region p  [pmax /8,pmax]

interference loss pmax
–gmax

g(p)

10 0.5pmax

p

1
N

Transmit probability p

tuphguorh
T

g

∍

∍

collisionless region p   [0,pmax /8]

7037_C001.fm  Page 9  Tuesday, November 1, 2005  12:46 PM

© 2006 by Taylor & Francis Group, LLC



1-10 Smart Dust

of protocols (e.g., routing, ARQ schemes, size of packet headers, number of beacons and other infra-
structure packets) determines the energy efficiency. 

1.3.7.3 Node Distribution and Mobility

Regular grids (square, triangle, hexagon) and uniformly random distributions are widely used analytically
tractable models. The latter can be problematic because nodes can be arbitrarily close, leading to unre-
alistic received power levels if the path attenuation is assumed to be proportional to dα. Regular grids
overlaid with Gaussian variations in the positions may be more accurate. Generic mobility models for
WSNs are difficult to define because they are highly application specific, so this issue must be studied
on a case-by-case basis. 

1.3.7.4 Traffic

Often, simulation work is based on constant bitrate traffic for convenience, but this is most probably not
the typical traffic class. Models for bursty many-to-one traffic are needed, but they certainly depend
strongly on the application. 

1.3.8 Connectivity

Network connectivity is an important issue because it is crucial for most applications that the network
is not partitioned into disjoint parts. If the nodes’ positions are modeled as a Poisson point process in
two dimensions (which, for all practical purposes, corresponds to a uniformly random distribution), the
problem of connectivity has been studied using the tool of continuum percolation theory [58, 59]. For
large networks, the phenomenon of a sharp phase transition can be observed: the probability that the
network percolates jumps abruptly from almost 0 to almost 1 as soon as the density of the network is
bigger than some critical value. Most such results are based on the geometric disk abstraction. It is
conjectured, though, that other connectivity functions lead to better connectivity, i.e., the disk is appar-
ently the hardest shape to connect [60]. A practical consequence of this conjecture is that fading results
in improved connectivity. Recent work [61] also discusses the impact of interference. The simplifying
assumptions necessary to achieve these results leave many open problems. 

1.3.9 Quality of Service

Quality of service refers to the capability of a network to deliver data reliably and timely. A high quantity
of service, i.e., throughput or transport capacity, is generally not sufficient to satisfy an application’s delay
requirements. Consequently, the speed of propagation of information may be as crucial as the throughput.
Accordingly, in addition to network capacity, an important issue in many WSNs is that of quality-of-
service (QoS) guarantees. Previous QoS-related work in wireless networks mostly focused on delay (see,
for example, Lu et al. [62], Ju and Li [63], and Liu et al. [64]). QoS, in a broader sense, consists of the
triple (R, Pe, D), where R denotes throughput; Pe denotes reliability as measured by, for example, bit
error probability or packet loss probability; and D denotes delay. For a given R, the reliability of a
connection as a function of the delay will follow the general curve shown in Figure 1.3.

FIGURE 1.3  Reliability as a function of the delay. The circles indicate the QoS requirements of different possible
traffic classes.
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Note that capacity is only one point on the reliability-delay curve and therefore not always a relevant
performance measure. For example, in certain sensing and control applications, the value of information
quickly degrades as the latency increases. Because QoS is affected by design choices at the physical,
medium-access, and network layers, an integrated approach to managing QoS is necessary. 

1.3.10 Security

Depending on the application, security can be critical. The network should enable intrusion detection
and tolerance as well as robust operation in the case of failure because, often, the sensor nodes are not
protected against physical mishandling or attacks. Eavesdropping, jamming, and listen-and-retransmit
attacks can hamper or prevent the operation; therefore, access control, message integrity, and confiden-
tiality must be guaranteed. 

1.3.11 Implementation

Companies such as Crossbow, Ember, Sensoria, and Millenial are building small sensor nodes with
wireless capabilities. However, a per-node cost of $100 to $200 (not including sophisticated sensors) is
prohibitive for large networks. Nodes must become an order of magnitude cheaper in order to render
applications with a large number of nodes affordable. With the current pace of progress in VLSI and
MEMS technology, this is bound to happen in the next few years. The fusion of MEMS and electronics
onto a single chip, however, still poses difficulties. Miniaturization will make steady progress, except for
two crucial components: the antenna and the battery, where it will be very challenging to find innovative
solutions. Furthermore, the impact of the hardware on optimum protocol design is largely an open topic.
The characteristics of the power amplifier, for example, greatly influence the energy efficiency of routing
algorithms [56]. 

1.3.12 Other Issues

• Distributed signal processing. Most tasks require the combined effort of multiple network nodes,
which requires protocols that provide coordination, efficient local exchange of information, and,
possibly, hierarchical operation. 

• Synchronization and localization. The notion of time is critical. Coordinated sensing and actuating
in the physical world require a sense of global time that must be paired with relative or absolute
knowledge of nodes’ locations. 

• Wireless reprogramming. A deployed WSN may need to be reprogrammed or updated. So far,
no networking protocols are available to carry out such a task reliably in a multihop network.
The main difficulty is the acknowledgment of packets in such a joint multihop/multicast
communication. 

1.4 Concluding Remarks

Wireless sensor networks have numerous exciting applications in virtually all fields of science and
engineering, including health care, industry, military, security, environmental science, geology, agricul-
ture, and social studies. In particular, the combination with macroscopic or MEMS-based actuators is
intriguing because it permits manipulation of the environment in an unprecedented manner. Researchers
and operators currently face a number of critical issues that need be resolved before these applications
become reality. Wireless networking and distributed data processing of embedded sensing/actuating
nodes under tight energy constraints demand new approaches to protocol design and hardware/software
integration. 
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2.1 Introduction

 

Several important technical advances make extracting more information from intelligence, surveillance,
and reconnaissance (ISR) sensors very affordable and practical. As shown in Figure 2.1, for the radar
application the most significant advancement is expected to come from employing collaborative and
network centric sensor netting. One important application of this capability is to achieve ultrawideband
multifrequency and multiaspect imaging by fusing the data from multiple sensors. In some cases, it is
highly desirable to exploit multimodalities, in addition to multifrequency and multiaspect imaging.

Key enablers to fuse data from disparate sensors are the advent of high-speed fiber and wireless
networks and the leveraging of distributed computing. ISR sensors need to perform enough on-board
computation to match the available bandwidth; however, after some initial preprocessing, the data will
be distributed across the network to be fused with other sensor data so as to maximize the information
content. For example, on an experimental basis, MIT Lincoln Laboratory has demonstrated a virtual
radar with ultrawideband frequency [1]. Two radars, located at the Lincoln Space Surveillance Complex
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in Westford, Massachusetts, were employed; each of the two independent radars transmitted the data via
a high-speed fiber network. The total bandwidth transmitted via fiber exceeded 1 Gbits/sec (billion bits
per second). One radar was operating at X-band with 1-MHz bandwidth, and the second was operating
at Ku-band with a 2-MHz bandwidth. A synthetic radar with an instantaneous bandwidth of 8 MHz was
achieved after employing advanced ultrawideband signal processing [2]. 

These capabilities are now being extended to include high-speed wireless and fiber networking with
distributed computing. As the Internet protocol (IP) technologies continue to advance in the commercial
sector, the military can begin to leverage IP formatted sensor data to be compatible with commercial high-
speed routers and switches. Sensor data from theater can be posted to high-speed networks, wireless and
fiber, to request computing services as they become available on this network. The sensor data are processed
in a distributed fashion across the network, thereby providing a larger pool of resources in real time to meet
stringent latency requirements. The availability of distributed processing in a grid-computing architecture
offers a high degree of robustness throughout the network. One important application to benefit from these
advances is the ability to geolocate and identify mobile targets accurately from multiaspect sensor data.

 

2.1.1 Geolocation and Identification of Mobile Targets

 

Accurately geolocating and identifying mobile targets depends on the extraction of information from different
sensor data. Typically, data from a single sensor are not sufficient to achieve a high probability of correct
classification and still maintain a low probability of false alarm. This goal is challenging because mobile targets
typically move at a wide range of speeds, tend to move and stop often, and can be easily mistaken for a civilian
target. While the target is moving the sensor of choice is the ground moving target indication (GMTI). If the
target stops, the same sensor or a different sensor working cooperatively must employ synthetic aperture
radar (SAR). Before it can be declared foe, the target must often be confirmed with electro-optical or infrared
(EO/IR) images. The goal of future networked systems is to have multiple sensors providing the necessary
multimodality data to maximize the chances of accurately declaring a target.

 

FIGURE 2.1  
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A typical sensing sequence starts by a wide area surveillance platform, such as the Global Hawk
unmanned aerial vehicle (UAV), covering several square kilometers until a target exceeds a detection
threshold. The wide area surveillance will typically employ GMTI and SAR strip maps. Once a target has
been detected, the on-board or off-board processing starts a track file to track the target carefully, using
spot GMTI and spot SAR over a much smaller region than that initially covered when performing wide
area surveillance. It is important to recognize that a sensor system is not merely tracking a single target;
several target tracks can be going on in parallel. Therefore, future networked sensor architectures rely
on sharing the information to maximize the available resources.

To date, the most advanced capability demonstrated is based on passing target detections among several
sensors using the Navy cooperative engagement capability (CEC) system. Multisensor tracks are formed
from the detection inputs arriving at a central location. Although this capability has provided a significant
advancement, not all the information available from multimodality sensors has been exploited. The
limitation is with the communication and available distributed computing. Multimodality sensor data
together with multiple look angles can substantially improve the probability of correct classification vs.
false alarm density. In addition to multiple modalities and multiple looks on the target, it is also desirable
to send complex (amplitude and phase) radar GMTI data and SAR images to permit the use of high-
definition vector imaging (HDVI) [3]. This technique permits much higher resolution on the target by
suppressing noise around it, thereby enhancing the target image at the expense of using complex video
data and much higher computational rates. 

Another important tool to improve the probability of correct classification with minimal false alarm
is high-range resolution (HRR) profiles. With this tool, the sensor bandwidth or, equivalently, the size
of the resolution cell must be small resulting in a large data rate. However, it has been demonstrated that
HRR can provide a significant improvement [4]. Therefore, next generation sensors depend on available
communication pipes with enough bandwidth to share the individual sensor information effectively
across the network. Once the data are posted on the network, the computational resources must exist to
maintain low latencies from the time data become available to the time a target geoposition and identi-
fication are derived. The next subsection discusses the long-term architecture to implement netting of
multiple sensor data efficiently. 

 

2.1.2 Long-Term Architecture

 

In the future it will be desirable to minimize the infrastructure (foot print) forwardly deployed in the
battlefield. It is most desirable to leverage high-speed satellite communication links to bring sensor data
back to a combined air operations center (CAOC) established in the continental United States (CONUS).

The technology enablers for the long-term architecture shown in Figure 2.2 are high-speed, IP-based
wireless and fiber communication networks, together with distributed grid computing. The in-theater
commander’s ability to task his organic resources to perform reconnaissance and surveillance of the opposing
forces, and then to relay that information back to CONUS, allows significant reduction in the complexity,
level, and cost of in-theater resources. Furthermore, this approach leverages the diverse analysis resources
in CONUS, including highly trained personnel to support the rapid, accurate identification and localization
of targets necessary to enable the time-critical engagement of surface mobile threats.

Space, air, and surface sensors will be deployed quickly to the battlefield. As shown in Figure 2.3, the
stage in the processing chain at which the sensor data are tapped off to be sent via the network will
dictate the amount of data transferred. For example, in a few applications one needs to send the data
directly out of the analog-to-digital converters (A/D) to exploit coherent data combining from multiple
sensors. Most commonly, it is preferable to perform on-board signal preprocessing to minimize the
amount of data transferred. However, one must still be able to preserve content in the transferred data
that is required to exploit features in the data not available from processing a signal sensor end to end.
For example, one might be interested in transmitting wide area surveillance (WAS) data from SAR with
high resolution to be followed by multiaspect SAR processing (shown in Figure 2.3 as application B).
The data volume will be larger than the second example shown in Figure 2.3 as application A, in which
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FIGURE 2.2  

 

Postulated long-term architecture.

 

FIGURE 2.3  

 

Sensor signal processing flow.

Exploitation
Cell

CAOC–F/R

HAE UAV

Radar/Illuminator

Exploitation
CellExploitation

Cell Archival
Data/Info

Archival
Data/Info

Command &
Control

Computing
Resources

Computing
Resources

Small UAV

Bistatic
Receiver

Bistatic
Receiver

Bistatic
Receiver

Weapon
Platforms

UGS

UGS

UGS

EO/IR

MC2A

UGS

Radar/Illuminator

ap

 

7037_C002.fm  Page 4  Tuesday, November 1, 2005  12:20 PM

© 2006 by Taylor & Francis Group, LLC



 

Next-Generation Technologies to Enable Sensor Networks

 

2

 

-5

 

most of the GMTI processing is done on board. In any of these applications, it is paramount that
“intelligent” data compression be done on board before data transmission to send only the necessary
parts of the data requiring additional processing off board. 

Each sensor will be capable of generating on-board processed data greater than 100 Mbits/sec (million
bits per second). Figure 2.4 shows the trade-off between communication link data rates vs. on-board
computation throughputs for different postulated levels of image resolution (for spot or strip map SAR
modes). For example, for an assumed 1-m strip map SAR, one can send complex video radar data to
then perform super-resolution processing off board. This approach would require sending between 100
to 1000 Mbits/sec. Another option is to perform the super-resolution processing on board, requiring
between 100 billion floating-point operations per second (GFLOPS) to 1 trillion floating-point operations
per second (TFLOPS).

Specialized military equipment, such as the common data link (CDL), can achieve data rates reaching
274 Mb/sec. If higher communication capacity were available, one would much prefer to send the large
data volume for further processing off board to leverage information content available from multiple
sensor data. As communication rates improve in the forthcoming years, it will not matter to the in-
theater commander if the data are processed off board with the benefit of allowing exploitation of multiple
sensor data at much rawer levels than is possible to date. 

 

2.2 Goals for Real-Time Distributed Network Computing for 

 

Sensor Data Fusion

 

Several advantages can be gained by utilizing real-time distributed network computing to enable greater
sensor data fusion processing. Distributed network computing potentially reduces the cost of the signal
processing systems and the sensor platform because each individual sensor platform no longer needs as
much processing capability as a stove-piped stand-alone system (although each platform may need higher
bandwidth communications capabilities). Also, fault tolerance of the processing systems is increased
because the processing and network systems are shared between sensors, thereby increasing the pool of
available signal processors for all of the sensors. Furthermore, the granularity of managed resources is
smaller; individual processors and network resources are managed as independent entities rather than
managing an entire parallel computer and network as independent entities. This affords more flexible
configuration and management of the resources. 

To enable collaborative network processing of sensor signals, three technological areas are required to
evolve and achieve maturity: 

• Guaranteed 

 

communication, storage buffer

 

, and 

 

computation resources

 

 must keep up with the
high-throughput streams of data coming from the sensors. If any stage of the processing falls

 

FIGURE 2.4  

 

SAR data rate and computational throughput trade. 
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behind due to a network problem or interruption in the processor, buffering the data will become
a problem quickly as increasing volumes of data must be stored to accommodate the delayed
processors. Section

 

 

 

2.3 addresses technological possibilities to mitigate these resource availability
issues. 

•

 

Middleware

 

 in the network of processors must be developed to accommodate a heterogeneous
mix of computer and network resources. This middleware consists of a task control interface,
which facilitates the communication between network resource management agents and entities,
and an application programming interface for programming applications executed on the collab-
orative network processors. Section 2.4 will address these middleware interfaces. 

• A 

 

network resource manager

 

 (NRM) system is necessary for orchestrating the execution of the
application components on the computation and communication resources available in the col-
laborative network. Section 2.5 will discuss the components and functionality of the NRM. 

 

2.3 The Convergence of Networking and Real-Time Computing 

 

To date, networking of sensors has been demonstrated primarily using localized- and limited-capacity
data links. As a result, the data available on the network from each sensor node typically represent the
product of extensive prior processing of the radar data carried at the individual sensor. For example, the
Navy CEC system, a relatively advanced current system, uses detection reports from independent sensors
in the network to build composite tracks of targets. Access to raw (or possibly minimally preprocessed)
multisensor data opens the opportunity for more effective exploitation of these data through integrated
sensor data processing. The future network-centric ISR architecture will likely employ worldwide wide-
band communication networks to interconnect sensors with distributed processing and fusion sites. The
resulting distributed database will provide a common operational picture for deployed forces. The sensor
data will return to a CONUS entry point and pass over a wideband fiber network to the various processing
centers where the sensor data will be fused. The data link from the theater to CONUS is expected to be
optical to achieve very high link capacity [5].

This section discusses technologies that will guarantee that wireless and terrestrial network resources,
storage buffer resources, and computational resources are available for sensor signal processing.

 

2.3.1 Guaranteeing Network Resources

 

Sensor data will traverse wireless and terrestrial (e.g., optical, twisted-copper) networks in which bit errors,
packet loss, and delay could adversely affect the quality and timeliness of the ultimate result. The goal then
is to choose a network and processing architecture to ameliorate the deleterious effects of data loss and
network delay in the data fusion process. Due to the costs associated with developing, deploying, and
maintaining a fixed terrestrial infrastructure, as well as inventing wholly new modulation protocols and
standards for wireless and terrestrial signaling, it is cost-effective and expedient for military technology to
ride the “commercial wave” of technical investment and progress in communication technologies.

With a fixed network infrastructure consisting primarily of commercial components, combating data
loss and delay in terrestrial networks involves choosing the right protocols so that the network can enforce
quality of service (QoS) demands; in wireless networks, this involves aggressive coding, modulation, and
“lightweight” flow control for efficient bandwidth utilization. With sufficient complexity and bandwidth,
it is possible with today’s IP-based protocols to differentiate high-priority data to impart the mandated
QoS for time-critical applications. 

 

2.3.1.1 Terrestrial Networks 

 

Reserving bandwidth on an IP-based network that is uniformly recognized across administrative domains
involves employing protocols like RSVP-TE [6] or CR-LDP [7]. Although having sufficient communica-
tion bandwidth is an important aspect of processing sensor data in real time on a distributed network
of resources, it does not guarantee real-time performance. For example, time-critical applications mapped
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onto networked resources should not have processing interrupted to service unmanaged traffic or be
subject to a computational resource’s resident operating system switching contexts to a lower priority
task. For data that originate from sensors at very high streaming rates, a storage solution, as discussed
in Section 2.3.2, is needed that is capable of recording sensor data in real time as well as robust in the
face of network resource failures; this insures that a high-priority application can continue processing in
the presence of malfunctioning or compromised networked equipment. However, adding a buffering
storage solution only alleviates part of the problem; it does not mitigate the underlying problem of losing
packets during network equipment failures or periods of network traffic that exceed network capacities. 

For an IP-based network, one solution to this problem is to use remote agents deployed on primary
compute resources or networked terminals located at switches that can dynamically filter unmanaged
traffic. This is implemented by programming computer hardware specifically tasked with packet filtering
(e.g., next generation gigabit Ethernet card) or dynamically reconfiguring the switch that directly connects
to the compute resource in question by supplying an access control list (ACL) to block all packets except
those associated with time-critical targeting. The formation of these exclusive networks using agents has
been dubbed 

 

dynamic private networks

 

 (DPNs) — in effect, mechanisms for virtually overlaying a circuit
switch onto a packet-switched network.

 

2.3.1.2 Wireless Networks

 

Unlike terrestrial networks, flow control and routing in mobile wireless sensor networks must contend
with potentially long point-to-point propagation delays (e.g., satellite to ground) as well as a constantly
changing topology. In a traditional terrestrial network employing link-state routing (e.g., OSPF), each
node maintains a consistent view of a (primarily) fixed network topology so that a shortest path algorithm
[8] can be used to find desirable routes from source to destination. This requires that nodes gather
network connectivity information from other routers.

If OSPF were employed in a mobile wireless network, the overhead of exchanging network connectivity
information about a transient topology could potentially consume the majority of the available bandwidth
[9]. Routing protocols have been specifically designed to address the concerns of mobile networks [10];
these protocols fall into two general categories: proactive and reactive. Proactive routing protocols keep
track of routes to all destinations, while reactive protocols acquire routes on demand. Unlike OSPF,
proactive protocols do not need a consistent view of connectivity; that is, they trade optimal routes for
feasible routes to reduce communication overhead. Reactive routes suffer a high initial overhead in
establishing a route; however, the overall overhead of maintaining network connectivity is substantially
reduced. The category of routing used is highly dependent upon how the sensors communicate with one
another over the network. 

Traditional flow control mechanisms over terrestrial networks that deliver reliable transport (e.g., TCP)
may be inappropriate for wireless networks because, unlike wireless networks, terrestrial networks gen-
erally have a very low bit error rate (BER) on the order of 10

 

–10

 

, so errors are primarily due to packet
loss. Packet loss occurs in heavily congested networks when an ingress or egress queue of a switch or
router begins to fill, requiring that some packets in the queue be discarded [11]. This condition is detected
when acknowledgments from the destination node are not received by the source, prompting the source’s
flow control to throttle back the packet transmit rate [12].

In a wireless network in which BERs are four to five orders of magnitude higher than those of terrestrial
networks, packet loss due to bit errors can be mistakenly associated with network congestion, and source
flow control will mistakenly reduce the transmit rate of outgoing packets. Furthermore, when the source
and destination are far apart, such as the communication between a satellite and ground terminal, where
propagation delays can be on the order of 240 ms, delayed acknowledgments from the destination result
in source flow control inefficiently using the available bandwidth. This is due to source flow control
incrementally increasing the transmit rate as destination acknowledgments are received even though the
entire frame of packets may have already been transmitted before the first packet reaches the receiver
[13]. Therefore, to use bandwidth efficiently in a wireless network for reliable transport, flow control
must be capable of differentiating BER from packet loss and account for long-haul packet transport by
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more efficiently using the available bandwidth. Some work in this area is reflected in RFC 2488 [14], as
well as proposals for an explicit congestion warning, where, for example, the destination site would
respond to packet errors with an acknowledgment that it received the source packets with a corruption
notification. 

At the physical layer, high data rates for a given BER have been realized by employing low-density
parity check codes, such as turbo codes, in conjunction with bandwidth efficient modulation to achieve
spectral efficiencies to within 0.7 dB of the Shannon limit [15]. Furthermore, extremely high spectral
efficiencies have been demonstrated using multiple input, multiple output (MIMO) antenna systems
whose theoretical channel capacity increases linearly with the number of transmit/receive antenna pairs
[16]. Although turbo codes are advantageous as a forward error correction mechanism in wireless systems
when trying to maximize throughput, MIMO systems achieve high spectral efficiencies only when
operating in rich scattering environments [17]. In environments in which little scattering occurs, such
as in some air-to-air communication links, MIMO systems offer very little improvement in spectral
efficiency. 

 

2.3.2 Guaranteeing Storage Buffer Resources

 

For a variety of reasons, it may be very desirable to record streaming sensor data directly to storage media
while simultaneously sending the data on for immediate processing. For sensor signal processing appli-
cations, this enables multimodality data fusion of archived data with real-time (perishable) data from
in-theatre sensors for improved target identification and visualization [18]. Storage media could also be
used for rate conversion in cases in which the transmission rate exceeds the processing rate and for time-
delay buffering for real-time robust fault tolerance (discussed in the next section). The storage media
buffer reuse is deterministic and periodic so that management of the buffer is straightforward. 

A number of possible solutions exist:

•

 

Directly attached storage

 

 is a set of hard disks connected to a computer via SCSI or IDE/EIDE/
ATA; however, this technology does not scale well to the volume of streaming sensor data.

•

 

Storage area networks

 

 are hard disk storage cabinets attached to a computer with a fast data link
like Fibre Channel. The computer attached to the storage cabinet enjoys very fast access to data,
but because the data must travel through that computer, which presents a single point of failure,
to get to other computers on the network, this option is not a desirable solution.

•

 

Network-attached storage

 

 connects the hard disk storage cabinet directly to the network as a file
server. However, this technology offers only midrange performance, a single point of failure, and
relatively high cost. 

A visionary architecture in which data storage centers operate in parallel at a wide-area network (WAN)
and local area network (LAN) level is described in Cooley et al. [19]. In this architecture, developed by
MIT Lincoln Laboratory, high-rate streaming sensor data are stored in parallel across a partitioned
network of storage arrays, which affords a highly scalable, low-cost solution that is relatively insensitive
to communications or storage equipment failure. This system employs a novel and computationally
efficient encoding and decoding algorithm using low-density parity check codes [20] for erasure recovery.
Initial system performance measures indicate the erasure coding method described in Cooley et al. [19]
has a significantly higher throughput and greater reliability when compared to Reed–Solomon, Tornado
[21], and Luby [20] codes. This system offers a promising low-cost solution that scales in capability with
the performance gains of commodity equipment. 

 

2.3.3 Guaranteeing Computational Resources 

 

The exponential growth in computing technology has contributed to making viable the implementation
of advanced sensor processing in cost-effective hardware with form factors commensurate with the needs
of military users. For example, several generations of embedded signal processors are shown in Figure 2.5.
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In the early 1990s, embedded signal processors were built using custom hardware and software. In the late
1990s, a move occurred from custom hardware to COTS processor systems running vendor-specific
software together with application-specific parallel software tuned to each specific application. Most
recently, the military embedded community is beginning to demonstrate requisite performance employing
parallel and portable software running on COTS hardware.

Continuing technology advances in computation and communication will permit future signal pro-
cessors to be built from commodity hardware distributed across a high-speed network and employing
distributed, parallel, and portable software. These computing architectures will deliver 10

 

9

 

 to 10

 

12

 

 floating
point operations per second (GFLOPs to TFLOPs) in computational throughput. The distributed nature
of the software will apply to on-board sensor processing as well as off-board processing. Clearly, on-
board embedded processor systems will need to meet the stringent platform requirements in size, weight,
and power.

Wireless and terrestrial network resources are not the only areas in which delays, failures, and errors
must be avoided to process sensor data in a timely fashion. The system design must also guarantee that
the marshaled compute nodes will keep up with the required computational throughput of streaming
data at every stage of the processing chain. This guarantee encompasses two important facets: (1) keeping
the processors from being interrupted while they are processing tasks and (2) implementing fail-over
that is tolerant of fault.

 

2.3.3.1 Avoiding Processor Interruption

 

It is easy to take for granted that laptop and desktop computers will process commands as fast as the
hardware and software are capable of doing so. A fact not generally known is that general computers are
interrupted by system task processes and the processes of other applications (one’s own and possibly
from others working in the background on one’s system). System task processes include keyboard and
mouse input; communications on the Ethernet; system I/O; file system maintenance; log file entries; etc.
When the computer interrupts an application to attend to such tasks, the execution of the application is
temporarily suspended until the interrupting task has finished execution. However, because such inter-
ruptions often only consume a few milliseconds of processing time, they are virtually imperceptible to
the user [22]. 

Nevertheless, the interruptions are detrimental to the execution of real-time applications. Any delay
in processing these streams of data will instigate a need for buffering the data that will grow to insur-
mountable size as the delays escalate. A solution for these interrupt issues is to use a real-time operating
system on the computation processors. 

 

FIGURE 2.5  

 

Embedded signal processor evolution.
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Simply put, real-time operating systems (RTOS) give priority to computational tasks. They usually do
not offer as many operating system features (virtual memory, threaded processing, etc.) because of the
interrupting processing nature of these features [22]. However, an RTOS can ensure that real-time critical
tasks have guaranteed success in meeting streamed processing deadlines. An RTOS does not need to be
run on typical embedded processors; it can also be deployed on Intel and AMD Pentium-class or Motorola
G-series processor systems. This includes Beowulf clusters of standard desktop personal computers and
commodity servers. This is an important benefit, providing a wide range of candidate heterogeneous
computing resources.

A great deal of press has been generated in the past several years about real-time operating systems;
however, the distinction between soft real-time and hard real-time operating systems is seldom discussed.
Hard real-time systems guarantee the completion of tasks in a deterministic time period, while soft real-
time systems give priority to critical tasks over other tasks but do not guarantee the completion of tasks
in a deterministic time period [22]. Examples of hard real-time operating systems are VxWorks (Wind
River Systems, Inc. [23]); RTLinux/Pro (FSMLabs, Inc. [24]); and pSOS (Wind River Systems, Inc. [23]),
as well as dedicated massively parallel embedded operating systems like MC/OS (Mercury Computer
Systems, Inc. [25]). Examples of soft real-time operating systems are Microsoft Pocket PC; Palm OS;
certain real-time Linux releases [24, 26]; and others. 

 

2.3.3.2 Working through System Faults

 

When fault tolerance in massively parallel computers is addressed, usually the solution is parallel redun-
dant systems for fail-over. If a power supply or fan fails, another power supply or fan that is redundant
in the system takes over the workload of the failed device. If a hard disk drive fails on a redundant array
of independent disks (RAID) system, it can be hot swapped with a new drive and the contents of the
drive rebuilt from the contents of the other drives along with checksum error correction code information.
However, if an individual processor fails on a parallel computer, it is considered a failure of the entire
parallel computer, and an identical backup computer is used as a fail-over. This backup system is then
used as the primary computer, while the failed parallel computer is repaired to become the backup for
the new primary eventually. 

If, however, it were possible to isolate the failed processor and remap and rebind the processes on
other processors in that computer — in real time — it would then be possible to have only a number
of redundant processors in the system rather than entire redundant parallel computers. There are two
strategies for determining the remapping as well as two strategies for handling the remapping and
rebinding; each has its advantages and disadvantages. 

To discuss these fail-over strategies, it is necessary to define the concepts of tasks and mappings. A signal
processing application can be separated into a series of pipelined stages or tasks that are executed as part
of the given application. A mapping is the task-parallel assignment of a task to a set of computer and network
resources. In terms of determining the fail-over remapping, it is possible to choose a single remapping for
each task or to choose a completely unique secondary path — a new mapping for each task that uses a set
of processors mutually exclusive from the processors in the primary mapping path. If task backup mappings
are chosen for each task, the fail-over will complete faster than a full processing chain fail-over; however,
the rebinding fail-over for a failed task mapping is more difficult because the mappings from the task before
and the task after the failed task mapping must be reconfigured to send data to and receive data from the
new mapping. Conversely, if a completely unique secondary path is chosen as a fail-over, then fail-over
completion will have a longer latency than performing a single task fail-over. However, the fail-over mechan-
ics are simpler because the completely unique secondary path could be fully initialized and ready to receive
the stream of data in the event of a failure in the primary mapping path. 

In terms of handling the remapping and rebinding of tasks, it is possible to choose the fail-over
mappings when the application is initially launched or immediately after a fault occurs. In either case,
greater latency is incurred at launch time or after the occurrence of a fault. For these advanced options,
support for this fault tolerance comes mainly from the middleware support, which is discussed in the
next section, and from the NRM discussed in Section 2.5. 

 

7037_C002.fm  Page 10  Tuesday, November 1, 2005  12:20 PM

© 2006 by Taylor & Francis Group, LLC



 

Next-Generation Technologies to Enable Sensor Networks

 

2

 

-11

 

2.4 Middleware

 

Middleware not only provides a standard interface for communications between network resources and
sensors for plug-and-play operation, but also enables the rapid implementation of high-performance
embedded signal processing. 

 

2.4.1 Control and Command of System

 

Because many systems use a diverse set of hardware, operating systems, programming languages, and
communication protocols for processing sensor data, the manpower and time-to-deployment associated
with integration have a significant cost. A middleware component providing a uniform interface that
abstracts the lower-level system implementation details from the application interface is the common
object request broker architecture (CORBA) [27]. CORBA is a specification and implementation that
defines a standard interface between a client and server. CORBA leverages an interface definition language
(IDL) that can be compiled and linked with an object’s implementation and its clients. Thus, the CORBA
standard enables client and server communications that are independent of the host hardware platforms,
programming language, operating systems, and so on. CORBA has specifications and implementations
to interface with popular communication protocols such as TCP/IP. However, this architecture has an
open specification, general interORB protocol (GIOP) that enables developers to define and plug in
platform-specific communication protocols for unique hardware and software interfaces that meet appli-
cation-specific performance criteria.

For real-time and parallel embedded computing, it is necessary to interface with real-time operating
systems, define end-to-end QoS parameters, and enact efficient data reorganization and queuing at
communication interfaces. CORBA has recently included specifications for real-time performance and
parallel processing, with the expectation that emerging implementations and specification addendums
will produce efficient implementations. This will enable CORBA to move out of the command and
control domain and be included as a middleware component involved in real-time and parallel processing
of time-critical sensor data. 

 

2.4.2 Parallel Processing

 

The ability to choose one of many potential parallel configurations enables numerous applications to
share the same set of resources with various performance requirements. What is needed is a method to
decouple the mapping, that is, the parallel instantiation of an application on target hardware, from generic
serial application development. Automating the mapping process is the only feasible way of exploring
the large parameter space of parallel configurations in a timely and cost-effective manner.

MIT Lincoln Laboratory has developed a C++-based library known as the parallel vector library (PVL)
[28]. This library contains objects with parameterized methods deeply rooted in linear algebraic expres-
sions commonly found in sensor signal processing. The parameters are used to direct the object instance
to process data as one constituent part of a parallel whole. The parameters that organize objects in parallel
configurations are run-time parameters so that new parallel configurations can be instantiated without
having to recompile a suite of software. The technology of PVL is currently being incorporated into the
parallel vector, signal, and image processing library for C++ (parallel VSIPL++) standard library [29]. 

 

2.5 Network Resource Management

 

Given the stated goals for distributed network computing for sensor fusion as outlined in Section 2.3,
the associated network communication, storage, and processing challenges in Section 2.3, and the desire
for standard interfaces and libraries to enable application parallelism and plug-and-play integration in
Section 2.4, an integrated solution is needed that bridges network communications, distributed storage,
distributed processing, and middleware. Clearly, it is possible for a development team to implement a
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“point” solution, but this is inherently not scalable and very difficult to maintain. Therefore an additional
goal is to fully automate the process of configuring network communication, storage, and computational
resources to process data for sensor fusion applications in real time, provide robust fault tolerance in the
face of network resource failures, and impart this service in a highly dynamic network in the face of
competing interests.

To address these needs, the network resource manager (NRM) was developed. The novelty and potency
of the NRM is its capability of taking a sensor signal processing application designed and tested on single
target processing element (PE) and mapping it in a task- and a data-parallel fashion across a network of
computational resources to achieve real-time performance [30]. Figure 2.6 is an object-oriented model
of the components that constitute the NRM. A high-level overview of the NRM follows, and details will
be provided in the following subsections. The task of building a model from which the NRM launches
parallel applications is broken into three distinct phases:

1. Map generation involves breaking an application into various task- and data-parallel components.
2. Map timing collects performance metric information associated with the components (or tasks)

running on host resources. Using the performance metrics, the NRM creates a weighted graph-
theoretic view of various permutations of an application mapped in parallel across networked
resources.

3. Map selection finds the path through the graph that best meets system and application perfor-
mance requirements.

The graph generator and graph search objects will heavily leverage PVL (discussed earlier) objects in
the instantiation of task- and data-parallel configurations of applications on host resources. It should be
noted, however, that the NRM’s capabilities are fully general and independent from those of PVL and
could work with other applications that are not developed using PVL to instantiate task- and data
parallelism. 

 

2.5.1 Graph Generator

 

As noted previously, PVL uses run-time parameters to generate new parallel configurations. This enables
the NRM to launch applications in arbitrary parallel configurations using software developed for a single
target PE without having to recompile the application software suite. The central challenge is to select a
subset of the potentially astronomical number of permutations of parallel configurations as candidate
parallel mappings. It is expected that the NRM will receive guidance in the form of performance and
resource utilization bounds to help it avoid choosing undesirable configurations. It will also be given a

 

FIGURE 2.6  
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series of constituent tasks that comprise an application, so that its primary objective is to choose candidate
data-parallel configurations for each of the individual tasks. Using a graph-theoretic model, the appli-
cation space may be broken up as shown in Figure 2.7.

Each column in the graph is populated with vertices; each vertex corresponds to a mapping of the
task corresponding to the given column to a potentially unique set of computational resources in the
system. Each vertex has edges entering and exiting: entering edges correspond to communications with
preceding tasks and exiting edges correspond to communications with succeeding tasks. Sensor signal
processing applications may be represented as a stream signal processing flow, in which data move in
one direction from task to task as they are processed. In this graph-theoretic model, task parallelism is
represented along the horizontal axis of the graph, i.e., pipelined, overlapping execution intervals, while
data parallelism is represented by the mapping of each task in the application onto one or more parallel
computational resources of each vertex. The graph-theoretic representation of data- and task-parallel
applications and the corresponding flow of communication enable the graph generator of the NRM to
capture the potentially astronomical number of combinations of application-to-resource mappings in a
concise and efficient fashion. 

Finally, the graph generator is also responsible for launching the executable for each task mapping
(vertex) on target resources so that performance metrics can be collected as discussed in the next
subsection. 

 

2.5.2 Metrics Object

 

The metrics object (MO) is responsible for collecting performance metrics of tasks launched by the graph
generator. The MO works closely with the graph generator to weight the graph. Each of the resources
that hosts a task is time synchronized; metric agents (see NRM agents in Subsection 2.5.4) on each of
the resources will provide the MO measurements for it to formulate the following performance param-
eters associated with graph weights: throughput; latency; RAM memory; and PE utilization. The MO
will calculate another metric known as processor cost, which is a ratio of compute horsepower used in
the mapping to the overall processing horsepower available in the network.

Link utilization percentages within each mapping are also measured, as well as intertask utilization
percentages. Map generation uses task column pairs to gather performance metrics in order to reduce
the effort and time involved drastically. This is possible because the graph search algorithm will use a
running tabulation of resource utilization percentages to ensure that simple linear superposition of path
weights hold, given that these percentages remain under a given threshold. This is explained further in
the next subsection. Once above the threshold, weight modifiers will be applied to subsequent stages
during search. Finally, the metrics object will calculate a 

 

network cost

 

, analogous to processor cost, which

 

FIGURE 2.7  
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is a ratio of communications bandwidth used by a mapping pair with respect to the overall bandwidth
available in the network.

 

2.5.3 Graph Search

 

The NRM must choose a path through the graph that determines the task mappings with which an
application is launched on network resources. The choice of a path by the NRM is constrained by the
time to result and the mandate to use a minimum set of networked resources. The data rate of the sensor
data stream will drive required throughput for each task column in the graph; overall latency, which
represents the total pipeline delay, is defined as the time period after which all data have been transmitted
that a result is generated. To minimize any one application’s impact on resource consumption, the path
through the graph could be chosen to minimize the overall usage of computational or communication
resources. This choice will depend upon whether an application is launched in a network that is compute
resource or communication bandwidth limited. 

The graph search problem may be formalized as a discrete and constrained optimization problem:
given a set of hard constraints, minimize (or maximize) a given objective function. As described in the
metrics object subsection, the NRM may choose constraints and an objective function from the set of
weights shown in Table 2.1.

Scalar weights are singular — that is, only one is associated with a given vertex or edge; vector weights
may include many elements in an edge or vertex association. Because each vertex and edge may represent
the combination of many PE and network communication elements associated with a mapping pair,
processor and network utilization may constitute weight vectors with many elements. 

Although all weights tabulated previously may be chosen as constraints, memory, throughput, and
network and PE utilization are not parameters that can be chosen as an objective function to optimize.
This is because throughput is only a function of data rate; maximizing throughput has no impact on
performance. Utilization also has no impact on performance and is only a measure of the validity of the
solution. That is, subsequent stages in the graph may include resources from earlier stages, so keeping a
running tabulation of utilization gives an indication of the onset of usage exceeding capacity and thereby
degrading performance. 

Network utilization and cost, PE utilization and cost, and memory are weights derived and constrained
by the NRM, while data rate (throughput) and latency are application dependent and imposed by the sensor.
The objective function that the NRM uses is chosen based on the desire to minimize an application’s impact
on resource usage or minimize the latency associated with an application’s execution. For example, in a
bandwidth-limited network, the graph search problem may be formulated as follows. While meeting appli-
cation latency and throughput constraints, using less than 80% of the bandwidth available in the chosen
network conduits and PEs and less than 100% of the available local PE-RAM memory, and using only a
fraction of the overall processing bandwidth available network wide, select a parallel configuration for the

 

TABLE 2.1

 

Graph Weights 
Associated with Individual Edges 
and Vertices, and Corresponding 

 

Sizes (Types)

 

Weight Type

 

Latency Scalar
Throughput Scalar
PE utilization Vector
Processor cost Scalar
Network utilization Vector
Network cost Scalar
Memory Scalar
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application and the associated host resources using the smallest fraction of overall network bandwidth
available. Even for moderately sized graphs (e.g., 1000 vertices by 10 stages), this is a complex combinatorial
optimization problem; the general problem is NP complete. The authors have developed an iterative
heuristic algorithm that has shown favorable performance for this class of problem in the quality of the
solution and time to solution compared to other popular combinatorial optimization algorithms [31].

 

2.5.4 NRM Agents

 

The NRM agents are information and service links between the NRM and each of the resources. Agents
must first register and be authenticated (e.g., using Kerberos [32]) before an NRM will invoke their
services. This registration includes a characterization of the resource capabilities and services. When
registered, the NRM will use these remotely deployed agents on computational resources to download
and launch parameterized executables and modify the access control list (ACL) of switches and routers
under its control in the formation of DPNs. Agents also provide a mechanism for centralized software
maintenance and configuration by acting as transaction managers in the download and installation of
applications, databases, middleware, etc. As stated earlier, the agents also provide a measurement object
that is instantiated by applications to provide the NRM’s MO with performance metrics during graph
generation. Finally, agents give the NRM a view of the network state, periodically sending diagnostic
messages indicating its operational status. 

 

2.5.5 Sensor Interface

 

Sensors can be thought of as resources much like computational and communication resources, which
are served by the NRM agents; thus, the sensor interface can be thought of as another type of NRM
agent. Because many different sensor platforms could be served by an NRM-managed resource network,
the sensor interface provides a common, abstract mechanism for communication between the NRM and
the sensor platforms.

Sensors will request services through the sensor interface from the NRM using a well-defined middleware
interface such as CORBA. This request for services involves requesting the proper application for the data
stream that the sensor will be delivering to the network of resources as well as a request for the required
metric constraints, such as throughput and latency (discussed in Subsection 2.5.2), needed to process the
sensor data stream effectively. The determination of required constraints could involve negotiations between
the sensor and the NRM through the sensor interface. The NRM uses the sensor interface to direct the
sensor platform to start sending a data stream once the NRM has marshaled the resources that the sensor
will need to satisfy the request. Finally, the sensor interface also facilitates communications between the
sensor platform and the NRM regarding flow control, application shutdown, etc. 

 

2.5.6 Mapping Database

 

This mapping database is populated with data structures generated by the graph generator and metrics
object; it represents the weighted graph-theoretic characterization of the various parallel permutations
of an application that is mapped to networked resources. Graph search uses the mapping database to
reconstitute a weighted graph for each application for which it is asked to find resources and the degree
and form of parallelism needed to meet real-time constraints. 

 

2.5.7 Topology Database

 

The topology database stores the current state of each of the resources; the graph generator and graph
search use this database. Graph generator uses the topology database to determine which resources are
available and most appropriate for candidate task-application mappings. Graph search uses this database
to verify that resources are functional before a set of resources is chosen to host an application, as well
as for generating and modifying weights associated with resource utilization. The topology database is

 

7037_C002.fm  Page 15  Tuesday, November 1, 2005  12:20 PM

© 2006 by Taylor & Francis Group, LLC



 

2

 

-16

 

Smart Dust

 

generated during the discovery phase when the NRM first comes online (e.g., see Breitbart et al. [33]
and Astic and Foster [34]). Alternatively, an administrator could choose to generate a topology database
for the NRM that enumerates connectivity and capability among all computation and storage resources
under its control. Agent reports (or lack thereof) will affect state changes in this database indicating
whether the resource is online or offline. 

 

2.5.8 NRM Federation

 

In a large network with a sizeable number of resources, using a single NRM may not be the most effective
solution. In such a scenario, multiple NRMs are organized in a bilevel hierarchy; wide-area network
(WAN) NRMs interface with sensors and administer backbone communication resources, underneath
which local-area network (LAN) NRMs administer and allocate compute resources for regional compute
centers (RCCs). The primary responsibility of a WAN NRM is to choose a location on the network at
which distributed computing is conducted for each application and to allocate WAN bandwidth for data
flow between sensors and LAN resources. The objective of the WAN NRM is to load balance WAN traffic
and computational load, taking into account the relative overall processing capability of each RCC. Each
LAN NRM advertises its current processing capability using standardized metrics.

Each NRM is a federated collection, using a voting mechanism to elect an executor independently at
the LAN and WAN levels. Each federation monitors the health of its executor by inspecting periodic
diagnostic reports that the executor broadcasts. In response to an executor’s diagnostic report (or lack
thereof), the federation may choose to relieve the current executor of its responsibility and elect a new
one. This prevents any one NRM failure from rendering resources unusable or disabling a sensor from
contracting for network services.

Earlier paragraphs have detailed the LAN NRMs graph-theoretic representation of network resources,
as well as its construction, weighting, and search criteria. The WAN NRM graph-theoretic representation
and weighting are somewhat different from that of a LAN NRM; however, its construction and search
criteria are formulated in an identical manner. The vertices in a WAN graph represent RCCs and each
column corresponds to an application, while the concatenation of applications across the columns in a
WAN NRM graph spans a mission. This is in contrast to a LAN NRM, in which the concatenation of
tasks in its graph spans an application. 

 

2.5.9 NRM Fault Tolerance

 

The absence of a heartbeat or the delivery of an error report by an agent alerts the NRM to a system
fault. The NRM’s fault tolerance policy is application dependent and is derived from a mandate by the
developer and/or client. The policy is a trade-off between resource usage and seamless fail-over and
includes redundant processing, surgical replacement, or restart of the application. Redundant processing
is the most robust fail-over mechanism; the NRM simply assigns duplicate sets of resources to process
the same data. If one set of resources fails, results are obtained from one of the duplicate sets. Redundant
processing has the highest resource cost of all fault tolerant policies.

Conversely, the NRM may choose to replace the failed component dynamically so that processing is
able to continue. In this case, the NRM may have allocated distributed network storage to act as a time-
delay buffer in the event of resource failure. This would enable the application, if so instrumented, to
pick up processing at the point at which the failure occurred. Finally, the NRM could simply choose to
halt execution of the application and start over with a new set of processing resources, although a certain
amount of data and the corresponding results may be lost irrevocably. 

 

2.6 Experimental Results

 

A proof-of-concept experiment has been conducted at MIT Lincoln Laboratory in which the NRM
allocates distributed networked resources for a sensor data fusion application in various scenarios [35].
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The sensor fusion application is OASIS (operator assisted integrated systems), which is an automatic
target recognition and visualization suite (see Figure 2.8). OASIS processes real-time SAR data and
archived data generated by sensors with different modalities like EO and IR [36]. A block diagram of the
experimental test bed is shown in Figure 2.9. The experimentation resource network consisted of three

 

FIGURE 2.8  

 

OASIS ATR and visualization.

 

TABLE 2.2

 

Synopsis of NRM Expected Performance

 

Experimental 
Configuration

Max Comm BW 
Requirement

(MB/s)

Max Throughput 
Requirement 

(GFLOPS)
Processors 
Employed

Result 
Turn-Around 

Time

 

1 m data 26 0.7 1 1.6
1 m data with HDVI 26 2.2 2 2.6
1/4 m data 410 2.5 2 2.8
1/4 m data with HDVI 410 10 10 7

 

TABLE 2.3

 

Synopsis of NRM Performance

 

Experimental 
Configuration

Comm BW 
Measured 

(MB/s)

Throughput 
Measured 
(GFLOPS)

Processors 
Employed

Result 
Turn-Around 

Time

 

1 m data 26 0.7 1 1.4
1 m data with HDVI 26 2.2 2 2.5
1/4 m data 410 2.5 2 2.7
1/4 m data with HDVI 410 10 8 7.8

OASIS

Archived Data

Provides historical
information for

area delimitation &
change

Real-time
SIGINT Data

provides cuing

Real-time
IMINT Data

provide timely,
day-night, all-
weather data

EO

IR

SAR

SAR GMTI

SIGINT

Screener

Registration

Data Mining

3-D Fusion

Emulated

+

+

+

 

7037_C002.fm  Page 17  Tuesday, November 1, 2005  12:20 PM

© 2006 by Taylor & Francis Group, LLC



 

2

 

-18

 

Smart Dust

 

SGI O2 workstations, an eight-processor SGI Origin, an eight-node, dual Pentium3 class Beowulf cluster,
and a PC workstation, which hosted the NRM. 

For this experiment, two SGI O2s were used as sensor surrogates to transmit unprocessed complex
SAR imagery generated with range and cross-range resolutions of 1 and 1/4 m, respectively. The sensor
surrogates fed data into the OASIS processing chain. To keep the complexity of the system manageable,
only the most computationally intensive stage was made remappable. This stage, the HDVI processing
[3] (stage 3 in Figure 2.10), had six options for the NRM ranging from a single SGI processor to six
Pentium3 class cluster processors. The HDVI processing was conducted on targets detected on the two
images at both resolutions, and image formation was conducted on processors in the local area network.
The performance metrics for the OASIS applications were determined with a combination of actual
performance measurements and modeled performance analyses. Table 2.2 is a tabulated synopsis of the
expected performance of the NRM and Table 2.3 shows the actual performance of the NRM. The expected
and actual performance values compared very well. 

Because this network was PE resource limited, the objective of the NRM was to use the smallest fraction
of PE bandwidth available across the network while meeting network conduit, PE utilization, latency,
throughput, and network-wide bandwidth usage constraints. It is clear from the results that the NRM
was able to tailor the communication and computation solution it delivered based on the particular
application needs and the constraints imposed. The successful completion of this experiment has initiated
further research and development to give the NRM greater functionality, automation, and flexibility. 

 

FIGURE 2.9  

 

Experimentation resource network.
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3.1 Introduction

 

A wireless sensor network (WSN) consists of a large number of sensor nodes deployed over an area and
integrated to collaborate through a wireless network. WSNs encourage several novel and existing appli-
cations such as environmental monitoring; health care; infrastructure management; public safety; med-
ical; home and office security; transportation; and military [1, 2, 9, 17, 18]. These have been enabled by
the rapid convergence of three technologies: digital circuitry, wireless communications, and the micro-
electromechanical system (MEMS). These technologies have enabled very compact and autonomous
sensor nodes, each containing one or more sensor devices, computation and communication capabilities,
and limited power supply. 

Some of the applications foreseen for WSNs will require a large number of devices in the order of tens
of thousands of nodes. Traditional methods of sensor networking represent an impractical, complex, and
expensive demand on cable installation. WSNs promise several advantages over traditional sensing
methods in many ways: better coverage, higher resolution, fault tolerance, and robustness. The ad hoc
nature and deploy-and-leave vision make it even more attractive in military applications and other risk-
associated applications, such as catastrophe, toxic zones, and disasters [2, 9]. Performing the processing
at the source can drastically reduce the computational burden on application, network, and management.
On the other hand, any solution must take into account specific characteristics of this type of network. 

WSN management must be autonomic, i.e., self-managed (self-organizing, self-healing, self-optimiz-
ing, self-protecting, self-sustaining, self-diagnostic) with a minimum of human interference, and robust
to changes in network states while maintaining the quality of services. Until now, WSNs and their
applications have been developed without considering an integrated management solution. The task of
building and deploying management systems in environments that will contain tens of thousands of
network elements with particular features and organization and that deal with the aforementioned
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attributes is not trivial. This task becomes more complex due to the physical restrictions of the unattended
sensor nodes, in particular energy and bandwidth restrictions. 

In this chapter, the focus is on WSN management, which comprises a large number of devices in the
order of tens of thousands of nodes. Clearly, the mechanisms associated with traditional management
paradigms must be rethought. In this sense, a new paradigm called autonomic management is explored.
The rest of this chapter is organized as follows. Section 3.2 presents an overview of network management
and discusses the management challenges for WSNs. In Section 3.3, management dimensions (manage-
ment levels, WSN functionalities, and management functional areas) are presented and discussed. A
management architecture for WSNs called MANNA is presented in Section 3.4, as well as how it works.
In Section 3.5, a simple example shows the different aspects together. Finally, Section 3.6 presents con-
clusions. 

 

3.2 Management Challenges

 

One of the major goals of network management is to promote productivity of network resources and
maintain the quality of the service provided. However, the management of traditional networks and of
WSNs has several significant differences. This section discusses important characteristics of WSNs that
make their management different from that of other networks. 

A WSN is a tool for distributed sensing of one or more phenomenon that reports the sensed data to
one or more observers. A WSN provides services for observers as well as for itself. It produces and
transports application data, so, in this sense, the network provides service to itself. The objective of a
WSN is to monitor and, eventually, control a remote environment. Sensor nodes execute a common
application in a cooperative way (i.e., a clear, common goal in the overall network), which may not be
the case in a traditional network. 

The traditional computer networks are designed to accommodate a diversity of applications. Network
elements are installed, configured by technicians, and connected in a network in a way to provide different
kinds of services. Technicians’ maintenance of components or resources is a normal fact. The network
tends to follow well-established planning of available resources and the location of each network element
is well-known. In a WSN this is not often the case because the network is planned to have unattended
operation. In fact, the initial configuration of a WSN can be quite different from what was supposed to
be in cases such as throwing the nodes into an ocean, forest, or other remote regions. In unpredictable
situations, a configuration error such as a planning error may cause the loss of the entire network even
before it starts to operate. 

Energy is a critical resource in WSNs. Thus, all operations performed in the network should be energy
efficient. Topology is dynamic because sensor nodes can become out of service temporarily or perma-
nently (nodes can be discarded, lost, destroyed, or even run out of energy). In this scenario, faults are a
common fact, which is not expected in a traditional network. 

Depending on the WSN application, it may be interesting to identify uniquely each node in the
network. Furthermore, one may be interested in a value associated to a given region and not to a particular
node — for instance, in the temperature at the top of a mountain. A WSN is typically data centric, which
is not common in traditional networks. 

A managed WSN is responsible for configuring and reconfiguring under varying (and, in the future,
even unpredictable) conditions. System configuration (“node setup” and “network boot up”) must occur
automatically; dynamic adjustments need to be done to the current configuration to best handle changes
in the environment and itself. A managed WSN always looks for ways to optimize its functioning; it will
monitor its constituent parts and fine-tune workflow to achieve predetermined system goals. It must
perform something akin to healing — it must be able to recover from routine and extraordinary events
that might cause some of its parts to malfunction. The network must be able to discover problems or
potential problems, such as uncovered area, and then find an alternate way of using resources or recon-
figuring the system to keep it functioning smoothly. In addition, it must detect, identify, and protect itself
against various types of attacks to maintain overall system security and integrity. A managed WSN must
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know its environment and the context surrounding its activity and act accordingly. The management
entities must find and generate rules to perform the best management of the current state of the network
[22]. 

A managed WSN with this has various characteristics can be called an autonomic system [1], which
is an approach to self-managed computing systems with a minimum of human interference. This term
derives from the autonomic nervous system of the human body, which controls key functions without
conscious awareness or involvement. The processors in such systems use algorithms to determine the
most efficient and cost-effective way to distribute tasks and store data. Along with software probes and
configuration controls, computer systems will be able to monitor, tweak, and even repair themselves
without requiring technology staff — at least, that is the goal [1]. 

WSN management must be autonomic, i.e., self-managed and robust to changes in network states
while maintaining the quality of service; that is, it must be capable of self-configuration, self-organization,
self-healing, and self-optimization. However, the computational cost of autonomic processes can be
expensive to some WSN architectures. 

Probably, the fundamental issue about the management of a WSN is concerned with how the man-
agement can promote plant and resource productivity, and how it integrates in an organized way functions
of configuration, operation, administration, and maintenance of all elements and services. 

The task of building and deploying autonomic management systems in environments in which tens
of thousands of network elements with particular features and organization will be present is very
complex. This task becomes even more involved due to the physical restrictions of the sensor nodes, in
particular energy and bandwidth restrictions. The management application to be built also depends on
the kind of application being monitored. A good strategy is to deal with complex management situations
by using management dimensions. 

 

3.3 Management Dimensions

 

In general, for traditional networks, management aspects are clearly separated from network common
activities, i.e., from the services they provide to their users. It is also said that an overlap of management
and network functionalities exists, although the implementation can be thought of independently. This
separation can be promoted by using two traditional management dimensions: management functional
areas [14] and management levels [15]. 

The requirements to be satisfied by systems management activities can be categorized into functional
areas. These facilities have come to be known as the specific management functional areas (SMFAs): fault
management; configuration management; performance management; accounting management; and
security management. This has proved to be a helpful way of partitioning the network management
problem from an application point of view [14]. 

To deal with the complexity of management, management functionality with its associated information
can be decomposed into a number of logical layers: business management; service management; network
management; and network element management. The architecture that describes this layering is called
the logical layered architecture (LLA) [15]. Management activities can be clustered into layers and decou-
pled by introducing manager and agent roles. A logical layer reflects particular aspects of management
and implies the clustering of management information supporting that aspect. Typically, an interaction
takes place between adjacent layers, but due to operational and management considerations other inter-
actions may also occur between nonadjacent layers. 

The use of the management dimensions is a good strategy to deal with complex management situations
by decomposing a problem into smaller subproblems, in successive refinements steps, and to provide a
separation between application and management functionalities through a management architecture.
This will make possible the integration of organizational, administrative, and maintenance activities for
a given network. 

WSN management must be simple, adherent to network idiosyncrasies, including its dynamic behavior,
and efficient in its use of scarce resources. The adoption of a strategy based on the traditional framework
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of functional areas and management levels will permit management integration in the future. However,
for WSN management it is necessary to go further. Using management functional areas and management
levels is not enough because WSNs are application specific. 

The following discussion concerns how the traditional management dimensions can be applied in
WSN management. Also, new dimension for WSN management is proposed that considers the general
aspects of the different types of the networks. 

 

3.3.1 Dimensions for WSN Management

 

WSNs are embedded in applications to monitor the environment and act upon it. Thus, the management
application should try to be “compatible” with the kind of application being monitored. In order to have
better development of WSN management services and functions, it is necessary to characterize the WSN
and establish a novel management dimension. Thus, looking at the characteristics of various WSN
applications, five main WSN functionalities are identified: configuration; sensing; processing; commun-
ication; and maintenance. These functionalities define a novel dimension for the management, as pre-
sented in Figure 3.1 [22]. Configuration is the first functionality before a network starts sensing the
environment, processing, and communicating data. Maintenance treats specific characteristics of WSN
applications during the entire network lifetime. 

In this way, WSN management will have an organization that comes from abstractions offered by
management functional areas, management levels, and WSN functionalities (configuration, sensing,
processing, communication, and maintenance). The novel dimension introduced can be observed in the
upper part of Figure 3.1. 

The coordination among the three planes can be based on policies. Policy-based network management
(PBNM) [7] is a feasible alternative because it allows the manager to set actions to be carried out by the
network without worrying too much about network details. Managers can define suitable actions in due
time and still have a global or local view of the network. PBNM helps to manage complex networks such
as WSNs. The managers will only inform concerning what is expected, but not how it should be obtained.
The agents will be intelligent to decide what to do as well as how and when to do it. Automatic services
and functions can be executed toward self-management if appropriate conditions, such as residual energy
level, are present. 

 

FIGURE 3.1  

 

Management dimensions for WSNs. (From Ruiz, L.B., Nogueira, J.M., Louriero, A.A., 

 

IEEE Commun.
Mag.

 

, 41(2), 116–125, 2003. With permission.)
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Three management dimensions must be considered in the definition of a management function,
establishment of an information model, service composition, and development of a management appli-
cation. The next subsections explain WSN management from the perspective of management level, WSN
functionalities, and management functional areas. 

 

3.3.2 Management Levels

 

Many traditional management systems use this model in a bottom-up approach; however, in WSN
management, the LLA model is used in a top-down approach. After analyzing the business level issues,
the necessities of the lower levels become clear. Similarly, it is only after defining the application, including
the corresponding requirements on the service layer, that one can plan the network, network element
management layers, and network elements. This is a key observation when reasoning about WSN man-
agement. A brief discussion concerning WSN management from the perspective of management level is
now presented. 

 

3.3.2.1 Business Management

 

Requirements that allow the characterization of a sensor network come from the objectives defined for
the business management layer. Because WSNs depend on applications, business management deals with
service development and determination of cost functions. It represents a sensor network as a cost function
associated with network setup, sensing, processing, communication, and maintenance. WSN applications
have enormous potential benefits for society as a whole and represent new business opportunities.
Instrumentation of environments [2, 9] with numerous networked sensor nodes can enable long-term
data collection at scales and resolutions that are difficult, if not impossible, to obtain otherwise. In the
future, one can expect to have Internet end-points equipped with a variety of sensors to monitor the
network and their own state, as well as fairly sophisticated computing capabilities to enable them to
function as decision elements and not just as repeaters. As more aspects of society are connected to
networks, their sensory components become more prominent. 

 

3.3.2.2 Service Management

 

A WSN is used to monitor and, sometimes to control, an environment. WSN service management
introduces new challenges due to scarce network resources, dynamic topology, traffic randomness, energy
restriction, and a large amount of network elements. WSN services are concerned with functionalities
(see Figure 3.1) associated with application objectives. Basic WSN services are sensing, processing, and
data dissemination [21]. Two main issues are associated with WSN service management: quality of service
(QoS) and denial of service (DoS). 

 

Quality of service

 

. QoS architectures can only be effective and provide guaranteed services if QoS
elements can be adequately configured and monitored; mechanisms can be defined to help managers to
deal with these elements. Also, such mechanisms must allow replacement of the current device-oriented
management approach by a network-oriented or cluster-oriented approach. Thus, in addition to the
management of elements (physical and logical resources), management applications must also manage
QoS aspects. Components involved in QoS support to WSNs include QoS models, QoS sensing, process-
ing, and QoS dissemination [22]. The larger the number of monitored QoS parameters is, the larger the
energy consumption and the lower the network lifetime are. 

 

QoS model

 

. A QoS model specifies an architecture in which some of the services can be provided in
WSNs. All other QoS components, such as QoS sensing, QoS processing, and QoS dissemination (e.g.,
signaling, QoS routing, and QoS MAC), must cooperate to achieve this goal. A management application
can establish the QoS model and can control the QoS signaling that coordinates behavior of the other
components. QoS-related tasks must be performed by using network management functions. 

 

QoS sensing

 

. QoS sensing considers the sensor device calibration, environment interference monitor-
ing, and exposure (time, distance, and angle between sensor device and phenomenon). Meguerdichian
[18] defines coverage area as a measure of QoS for a WSN. In the worst-case coverage, attempts are made
to quantify the quality of service by finding areas of low observability to sensor nodes and detecting
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breach regions. In the best-case coverage, the management application must find areas of high observ-
ability to sensors and identify the highest accuracy. A denser network will lead to more effective sensing
because of the higher accuracy of the network (e.g., areas of intersection and redundant information)
and better fault tolerance.

On the other hand, this will lead to a large number of collisions and potentially to congestion situations,
increasing latency and reducing energy efficiency. Congestion control must be based not only on the
capacity of the network, but also on the accuracy level required at the observer. The traffic in a WSN is
different from conventional networks: it is a collective communication operation with redundancy. Thus,
the management application has the flexibility of meeting the performance demands by controlling the
reporting rate of sensors, controlling the virtual topology of the network (by turning off some sensors),
or optimizing the collective reduction communication operation (by data aggregation). The provision
of QoS can rely on resource reservation. When an active node goes out of service due to operational
problems, the management application activates a redundant node, defining a sort of resource reservation
scheme. In case of a low density of sensors, the network coverage area can be committed, thus affecting
the quality of the service. Resource reservation is being applied. 

 

QoS dissemination

 

. Reliable data delivery is still an open issue in the context of WSNs. QoS dissem-
ination in WSNs is a challenging task because of constraints, mainly energy and dynamic topology of
WSNs. The two components for QoS dissemination are QoS routing and QoS medium access control
(MAC). QoS routing finds a path that satisfies a given QoS requirement, and QoS MAC solves the problem
of medium contention that supports reliable unicast communication [29]. To support QoS, a link state
information such as delay, bandwidth, cost, loss rate, and error rate in network should be available and
manageable. One of the objectives of the management application is to obtain and to manage link state
information in WSNs for monitoring QoS. This is very difficult because the quality of a wireless link is
apt to change with the circumstances, such as residual energy, node distribution, density (all change
along the network lifetime), and interference. Configuration characteristics such as coverage area, density,
network organization, node deployment (distribution), latency, and communication range may degrade
or deny the service. 

 

QoS processing

 

. Processing quality depends on the robustness and complexity of the algorithms used,
as well as processor and memory capacities. The computing paradigm changes from one based on
computational power to one driven by data. The way to measure processing performance changes from
processor speed to the immediacy and accuracy of the response and energy consumption. Individual
computers become less important than lower granularity and dispersed computing attributes. 

The network quality of service can be measured by the energy consumption to execute a service with
a determined quality level. In most WSNs, energy consumption is one of the main metrics. However, in
some situations, during certain events the network must apply the maximum of energy possible in the
delivery of information — for instance, in WSNs deployed over the havoc of a cave-in where as much
information as possible is needed in the shortest time period. In this kind of application, to extend the
network lifetime is not that important. However, without proper management mechanisms, the network
can suffer the implosion problem (a large amount of data generating congestions, collisions, and data
losses in the network). 

Any situation that diminishes or eliminates the capacity of the network to perform its expected job is
called DoS (denial of service). Some examples of incidental threats are hardware failures, software bugs,
resource exhaustion, and unexpected environmental conditions. DoS aspects will be discussed in
Subsection 3.3.4.4. 

 

3.3.2.3 Network Management

 

This layer aims to manage a network, which is typically distributed over an extensive geographical area,
as a whole. In the network management level, relationships among sensor nodes are to be considered. It
is known that individual nodes are designed to sense, process data, and communicate, thus contributing
to a common objective. In this way, nodes can be involved in collaboration, connectivity, and aggregation
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relationships. A WSN is composed of interconnected managed objects (physical or logical) capable of
exchanging information. In these cases, the WSN is basically composed of two parts: physical resources
and services. Service execution depends on the physical resource capabilities. 

 

3.3.2.4 Network Element Management

 

Managed network elements represent the sensor and actuators nodes or other WSN entities, which execute
management functions and provide sensing, processing, and dissemination services. The basic functions
of a WSN management network element are

• Power management (how a sensor node uses its power)
• Mobility management (how the movement of sensor nodes is planned, run, and registered)
• State management (how a sensor node manages the three management states defined for a node:

operational, administrative, and usage)
• Task management (how a sensor node balances and schedules the sensing, processing, and dis-

semination tasks given to a specific network state)

Each sensor node must be autonomous and capable of organizing itself in the overall community of
sensor nodes to perform coordinated activities with global objectives. 

Sensor nodes have strong hardware and software restrictions in terms of processing power, memory
capacity, battery lifetime, and communication throughput. These are typical characteristics of mobile
and wireless devices and not of wired network elements. Thus, software designed for a sensor node must
consider these limitations, whereas an element for a wired network may have other restrictions such as
performance and response time. The main physical restriction of a WSN is the available energy because
batteries are often not recharged during the operation of a sensor node and all activities performed by
the node must take energy consumption into account. 

 

3.3.2.5 Network Element

 

The network element represents physical and logical components of a managed element. Physical
resources include sensor or actuator nodes; power supply; processor; memory; sensor device; and trans-
ceiver. Logical resources include communication protocols; application programs; correlation procedures;
and network services. Because applications may require networks with a large number of sensor nodes,
a network element can deal with a single node component or a group of nodes. In such a case, a
manageable element can be a cluster of nodes or a cluster-head node, rather than an individual node.
The design of a sensor node is motivated by the need to create an inexpensive device with a small form
factor and low power dissipation. 

Understanding node capability allows function management to be structured and fine-tuned more
efficiently. The physical aspects of a network element are described in the following. 

•

 

Power supply.

 

 Energy consumption patterns of individual nodes and of the entire network must
be characterized and profiled. This process yields a better understanding of where to apply trade-
offs in the design of the management. The most widely used power supply in a WSN is the battery,
which is classified into the following types [23]:
• Linear model — the battery is considered to be a bucket of energy that is linearly drawn from

this bucket by the energy consumers
• Dependent model — considers the rate at which energy is drawn from the battery to compute

the remaining battery lifetime; at high discharge rates, the capacity of the battery is reduced
• Relaxation model — takes into account a phenomenon seen in real-life batteries in which the

battery’s voltage recovers if the discharge rate is decreased 
•

 

Computational module.

 

 This module is composed of processor and memory. It is responsible for
the collaborative processing between nodes to achieve the levels of service and reliability desired
by the observer. 
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•

 

Sensor element.

 

 Sensing devices can be classified into three groups: monitors (e.g., magnetometer,
light sensor, temperature, pressure, humidity); motion detectors (e.g., accelerometer); and media
processing (e.g., audio, video). 

•

 

Transceiver.

 

 The main types of a transceiver are radio frequency (RF), infrared, and optical. RF
communication is based on electromagnetic waves with frequencies ranging from tens of kilohertz
to hundreds of gigahertz. Of the most important factors in the design of RF communications is
the size of the antenna. To optimize transmission and reception, an antenna should be at least 

 

λ

 

/4,
where 

 

λ

 

 is the wavelength of the carrier frequency. In optical laser communication, a transmitting
device uses a laser beam to send information. An optical receiver, in the form of a photodiode or
charge-coupled device (CCD) array, receives the signal and decodes the data. Optical communi-
cations can be classified into two types: passive (the laser signal is generated through a secondary
source) and active (the transmitting device generates its own laser signal). A few points should be
noted regarding the differences between optical and RF communication. Both forms of commun-
ication are based on sending electromagnetic waves through air. To compare RF to optical com-
munication, one must conside the receiving end of the communication system. For both, a trade-
off takes place between size and receiving performance [12]. 

•

 

Software.

 

 This is used to represent a set of programs and procedures that becomes an autonomous
system capable of executing the information processing, relaying, or routing. 

 

3.3.3 WSN Functionalities

 

This section presents the novel proposed dimension for the WSN management, composed by the con-
figuration, sensing, processing, communication, and maintenance functionalities. These WSN function-
alities can be observed in the upper part of Figure 3.1. This novel dimension is obtained from the
functional model defined in Reference 22, which presents a scheme to characterize WSNs considering
that they are application dependent. Because a management solution depends on the features of the
network, this solution must also be proposed considering the type of network. For this reason, WSN
functionalities are serviceable in the development of the management application [22]. 

 

3.3.3.1 Configuration

 

This functionality involves procedures related to planning, placement, and self-organization of a WSN.
The configuration functionality (predeployment) is related to the:

• Definition of WSN application requirements
• Determination of the monitoring area (shape and dimension)
• Characteristics of the environment 
• Choice of nodes
• Definition of the WSN type
• Service provided

In the deployment phase, sensor nodes can be placed by dropping them from a plane, rocket, or
missile, and placed one by one by a human or a robot. Any placement approach for sensor nodes must
also take into account the expense and difficulty in redeploying nodes. This is chiefly due to the limited
life span of nodes and to their generally nonreplaceable power sources [19]. Another problem is the
optimal location of the access point (sink node or base station). An inefficient configuration management
may adversely affect overall performance. 

WSNs are application specific, which means that the configuration functionality changes from one
WSN to another. Next, the configuration is discussed considering the possible types of WSN and the
other two management dimensions. 

Considering the network management level and management functional areas based on configuration
functionality, WSNs can be classified in various ways. A WSN is said to be homogeneous when all nodes
have the same hardware; otherwise, it is said to be heterogeneous. A WSN is hierarchical when nodes
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are grouped for the purpose of communication, and flat otherwise. When nodes are stationary, a WSN
is static; otherwise it is dynamic. Note that the topology may be dynamic even when nodes are stationary
because new nodes can be added to the network or existing nodes can become unavailable. A WSN is
symmetric concerning signal transmission when each transceiver has the same transmission range, and
asymmetric otherwise. A WSN is said to be regular concerning node placement when its nodes are placed
in a grid; it is called irregular when its nodes are randomly distributed, presenting different densities on
the monitored area, and it is balanced when its nodes are randomly distributed and present a uniform
distribution. Depending on the number of nodes per area unit, a WSN can be sparse or dense. 

Considering the network element management level and the management functional areas based on
the configuration functionality, the sensor nodes in a WSN are spread over a region and communicate
among themselves using point-to-point wireless communication, thus forming an ad hoc network. The
nodes are autonomous when they are able to execute location discovery and self-configuration tasks
without human intervention, for example, the location discovery. To relay information off the network,
sensor nodes are equipped with a wireless communication device (transceiver). A wireless sensor node
also comprises one or more sensor elements, and a battery, memory, and processor. The size of a node
is an important consideration. Nodes need to have small form factors so that they may be located
unobtrusively in the environment targeted for monitoring. The restriction in size is closely related to the
amount of energy available to a node. A rugged and robust construction is required if nodes are dispersed
in an inhospitable terrain such as a forest.

Software developed to execute in a wireless sensor node must take into account its hardware restric-
tions. Because of limited energy capacity, nodes are expected to be thrown away once their energy supply
is exhausted. The system can have levels of redundancy built into it to allow failures or to increase
accuracy. This can be achieved by using more sensor nodes than are strictly necessary to cover an area.
Also, due to environmental nature, logistics, and deploying costs, the deployment of sensors can be a
one-time operation; therefore, after nodes have been distributed in the field, human intervention is not
an option. The three basic different types of sensor nodes are: common nodes responsible for collecting
sensing data; sink nodes (monitoring nodes) responsible for receiving, storing, and processing data from
common nodes; and gateway nodes that connect sink nodes to external entities called observers. WSNs
can also include actuators that enable control of or actuation in a monitored area. In a hierarchical
network, it is common to have a base station (BS) that works as a bridge to external entities. 

Considering the service management level and the management functional areas, the WSN comprises
three entities: observer, phenomenon, and environment. The observer is a network entity or a final user
that wants to have information about data collected, processed, and disseminated by sensor nodes.
Depending on the type of application, the observer may send a query to the WSN, and receive a response
from it. These queries can be done with or without fidelity. The translation of the query could be
performed by the application software or sensor nodes. The WSN may participate in synthesizing the
query (e.g., filtering some sensor data or summarizing several measurements into one value), but these
procedures are related to the processing functionality. The phenomenon is the entity of interest to the
observer that is sensed and optionally analyzed or filtered by the WSN. The observer is interested in
monitoring a phenomenon under some latency and accuracy restrictions. A sensor element generates
data about a given phenomenon such as temperature, pressure, electromagnetic field, or chemical agents
because it can be comprised of different sensor elements. 

 

3.3.3.2 Sensing

 

The lowest level of the sensing application is provided by the autonomous sensor nodes. An important
operation in a sensor network is data gathering. Sensing functionality depends on the type of the
phenomenon. Thus, WSNs can be classified in terms of data gathering required by the application as
continuous (when sensor nodes collect data continuously along the time), reactive (when they answer
to an observer’s query or gather data referring to specific events occurring in the environment), and
periodic (when nodes collect data according to conditions defined by the application). Some approaches
can coexist in the same network; this model is referred to as the hybrid collect model. An example of a
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continuous phenomenon is temperature and an example of an application in which the phenomenon is
moving is a sensor deployed for animal detection. Other examples of phenomena are video; audio;
pressure; mechanical stress; humidity; soil composition; luminosity; seismic; and chemical.

Whether gathering is continuous or not, WSNs are defined based on how the data will be transmitted
to the observer. The sensing encloses the exposure (time, distance, and angle of phenomenon exhibition
at the sensor), calibration, and sensing coverage. Depending on the density of the phenomenon, it will
be inefficient if all sensor nodes are active all the time. A model that is well-suited to this case is the
Frisbee model [5]. On the other hand, redundancy (overlapping in the sensor coverage) should be utilized
in such a way that fault tolerance in the communication network is avoided and better accuracy can be
found [26]. Nevertheless, the sensors can be mobile. In this case, the sensors are moving with respect to
each other and to the observer as well, and they have direction, orientation, and acceleration. 

 

3.3.3.3 Processing

 

Memory and processor of a sensor node form the computational module, which is a programmable unit
that provides computation and storage for other nodes in the system. Depending on the communication
constraints of the system, algorithms must be developed that will allow individual nodes or clusters of
nodes to share and process data efficiently. The computational module performs basic signal processing
(e.g., simple translations based on calibrating data or threshold filters) and dispatches the data according
to the application. Processing can also involve correlation procedures such as data fusion, which combines
one or more data packets received from different sensors to produce a single packet (data fusion). Data
fusion helps to reduce the amount of data transmitted between the sensor nodes and the observer and
allows design of a network that delivers required data while meeting energy requirements. Other possible
tasks are security processing and data compression. 

 

3.3.3.4 Communication

 

Individual nodes communicate and coordinate among themselves. Two types of communication are
proposed: infrastructure and application. Infrastructure communication refers to the communication
needed to configure, maintain, and optimize operation. The configuration and topology of the sensor
network may be rapidly changing in the presence of a hostile environment, a large volume of assigned
work, and nodes that fail routinely. Conventional protocols may be inadequate to manage such situations;
thus, new protocols are required to promote WSN productivity. In a static sensor network, an initial
phase of the infrastructure communication is needed to set up the network and an additional commun-
ication is needed to perform its reconfiguration. If the sensors are mobile, additional communication is
needed for path discovery/reconfiguration.

Application communication (dissemination) relates to the transfer of sensed data (or information
obtained from it). The amount of energy spent in transmitting a packet has a fixed cost related to the
hardware and a variable cost that depends on the distance of transmission. Receiving a data packet also
has a fixed energy cost. Therefore, to conserve energy, short distance transmissions are preferred. Because
the access point (sink node or the BS) may be located far away, the cost to transmit data from a given
node to the access point may be high. In a homogeneous and flat WSN, the sensor nodes can form a
multihop network by forwarding each other’s messages, which can provide different connectivity options.
In a heterogeneous and hierarchical WSN, the cluster heads can form a single-hop network for reporting
aggregated data to the BS. Within a cluster, measured data are sent to the cluster head by the sensor
nodes under its control. All nodes in a cluster are identical except in the heterogeneous WSN, where the
cluster head has a larger transmission capacity. 

In terms of the data delivery required by the application interest, WSNs can be classified as continuous,
when sensor nodes collect data and send them to an observer continuously along the time, and as on
demand, when they answer an observer’s query. A WSN is event driven when sensor nodes send data
referring to events occurring in the environment and programmed when nodes collect data according
to conditions defined by the application. Some approaches can coexist in the same network; such a model
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is referred to as the hybrid model. The cost of sending data continuously may lead to a more rapid
consumption of the scarce network resources and, thus, shorten resource lifetime.

Multihop wireless capabilities will enable communication and coordination among autonomous nodes
in unplanned environments and configurations. At the same time, wireless channels present challenges
of dynamic operating conditions, power constraints for autonomously-powered nodes, and complicating
interactions between high level behavior and lower level channel characteristics (e.g., increased synchro-
nized communication will significantly degrade channel characteristics). 

For any of the preceding models, the communication approach can be classified as:

• Flooding (sensors broadcasting their information to their neighbors, which in turn broadcast these
data until they reach the observer)

• Gossiping (sending data to one randomly selected neighbor)
• Bargaining (sending data to sensor nodes only if they are interested)
• Unicast (sensor communicating to the sink node, cluster head, or BS directly)
• Multicast (sensors forming application-directed groups and using multicast to communicate

among group members)

A major advantage of flooding or broadcast is the lack of a complex network layer protocol for routing
and address and location management. 

In a WSN, each sensor node puts its information onto a common medium. This requires careful
attention to protocols in hardware and software. In master–slave protocols, one node gives the commands
and another node or a collection of nodes executes them. The cluster head is usually the master and the
common nodes (sensors and actuators) are slaves. This protocol allows tight traffic control because no
node is allowed to transmit unless requested by the master, and no communication is allowed between
slaves except through the master (e.g., medium control access protocol using a channel fixed allocation
scheme). In a peer-to-peer network, all nodes are created equal. A node can be a master one moment
and then be reconfigured at another time. Peer-to-peer configurations offer the greatest flexibility, but
they are the most difficult to control. Any node can communicate directly to any other node. 

 

3.3.3.5 Maintenance

 

Maintenance functionality is used in the WSNs that can configure, protect, optimize and heal themselves
without a lot of input from the human operators who have, until now, been required to keep traditional
networks up and running. Maintenance detects failures or performance degradations, initiates diagnostic
procedures, and carries out corrective actions on the network. Its ability to discover changes in the
network state enables the self-management to adapt and optimize the network behavior. Beyond correc-
tive maintenance, the other types of maintenance are: adaptive (the system should adapt to meet the
changes); preventive (the system should learn to anticipate the impact of those changes); and proactive
(as it gets smarter, the system should learn to intervene so as to preempt negative events). An example
of maintenance concerns the density of nodes in the WSN; in case of a high node density, the maintenance
can turn off some nodes temporally. 

The WSN state (e.g., topology, energy, coverage area) changes frequently. In the case of static networks,
changes occur because nodes may become unavailable during operation. This dynamic behavior must
be observed. The maintenance depends on the knowledge of the network state. Thus, maintenance
functionality is needed to keep the network operational and functional to ensure robust operation in
dynamic environments, as well as optimize overall performance. Maintenance provides dependability,
the main attributes of which are reliability; availability; safety; security; testability; and performability. 

WSNs have important characteristics depending on the application. Some of them are:

• Planning
• Deployment
• Coverage
• Accuracy
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• Fidelity
• Density
• Self-organization
• Adaptation
• Location

The points described in this subsection will play an important role in the definition of the management
services and functions. 

 

3.3.4 Management Functional Areas

 

WSN management considers fault, security, performance, and accounting management functional areas
extremely dependent on the configuration functional area. In WSNs, all operational, administrative, and
maintenance characteristics of the network elements; the network, services; and business; and the ade-
quate execution in the activities of configuration, sensing, processing, communication, and maintenance
(as shown in Figure 3.1) are dependent on the configuration of the WSN. An error in the configuration
or a forgotten requisite during the planning may compromise all the functionalities of the other areas.
This idea is depicted in Figure 3.2, in which the configuration functional area plays a central role. As
mentioned before, there are several significant differences in the management of traditional networks
and WSNs. In this sense, management functional areas must revisit considering the WSNs features. 

 

3.3.4.1 Configuration Management

 

Configuration management is a functional area of high relevance in WSN management. Because the
objective of a sensor network is to monitor (acquisition, processing, and delivery of data) and, eventually,
to control an environment, any problem or situation not anticipated in the configuration phase can affect
the offered service. The configuration management must provide basic features such as self-organization,
self-configuration, self-discovery, and self-optimization. Some management functions defined for net-
work level configuration management are:

• Requirements specification of the network operational environment
• Monitoring of environmental variations
• Size and shape definition of the region to be monitored
• Node deployment — random or deterministic
• Operational network parameters determination
• Network state discovery
• Topology discovery
• Network connectivity discovery
• Control of node density
• Synchronization
• Network energy map evaluation
• Coverage area determination
• Integration with observer

Some management functions defined for network-element level configuration management are:

• Node programming
• Node self-test
• Node location
• Node operational state
• Node administrative state
• Node usage state
• Node energy level
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3.3.4.2 Fault Management

 

Faults in WSNs are not an exception and tend to occur frequently. This is one of the reasons why
management of WSNs is different from the traditional network management. Faults happen all the time
due to energy shortage, connectivity interruption, environmental variations, and so on. In general, sensor
networks must be fault tolerant and robust and must survive despite occurrences of faults in individual
nodes, in the network, or even in services provided. In addition to events caused by energy problems,
other events can happen in a wireless sensor network related to communication; quality of service; data
processing; physical equipment fault; environment; integrity violation; operational violation; security;
and time-domain violation. Therefore, even if a node has an adequate energy level to execute its function,
it may decide not to do that for other reasons. Fault management must provide basic characteristics such
as self-maintenance, self-healing, and self-protection. 

Failures will be frequent in a WSN, and fault management is a critical function. Several characteristics
of sensor networks suggest that faults, common in traditional computer networks, will be even more
common in this kind of network.

• Large-scale deployment of cheap individual nodes means that node failures from fabrication
defects will not be uncommon. 

• Attacks by adversaries will be likely because these networks will often be embedded in critical
applications. Worse, attacks will be made easier because these networks will often be deployed in
open spaces or enemy territories, where adversaries can manipulate the environment (so as to
disrupt communication by jamming) and also have physical access to the nodes.

• Ad hoc wireless communication by radio frequencies means that adversaries can easily put them-
selves in the network and disrupt infrastructure functions (such as routing) taken by the individual
nodes.

Fault management, an essential component of any network management system, will play an equally, if
not more, crucial role in WSNs. 

In the majority of applications, failure detection is vital not only for fault tolerance, but also for security.
If, in addition to detecting a failure, one can also determine (or gather indications) that it has malicious
origin, the observer can be alerted to an attack. 

 

3.3.4.3 Performance Management

 

The challenge is to perform this task without adversely consuming network resources. In performance
management, a trade-off must be considered: the higher the number of managed parameters, the higher
the energy consumption and the lower the network lifetime are. On the other hand, if parameter values
are not obtained, it may not be possible to manage the network appropriately. 

 

FIGURE 3.2  

 

The role of configuration management. (From Ruiz, L.B., Nogueira, J.M., Louriero, A.A., 
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, 41(2), 116–125, 2003. With permission.)
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The configuration (in terms of sensor capabilities, number of sensors, density, node distribution, self-
organization, and data dissemination) plays a significant role in determining the performance of the
network. Performance management must consider the self-service characteristic. As such, the perfor-
mance of the network and provided service are best measured in terms of meeting the accuracy and delay
requirements of the observer, as well as consumed energy.

The accuracy indicates the reliability or exactness of a result; it can also be defined as the fraction of
valid results from all results obtained. The accuracy of a measurement at a network element (sensor) is
specific to the physical transducer and the nature of the phenomenon. At the network level, accuracy
depends on the delay in data delivery due to network congestion, route length, duty cycle of the sensors,
or aggregation processing of data. Accuracy at the service level depends on the metric chosen by the
application for establishing the coverage area and amount of energy to be spent in gathering and
disseminating data. At the observer, it is likely that multiple samples will be received from different sensor
nodes and with different data quality. Thus, additional performance metrics include:

• Coverage area
• Exposure
• Goodput (the ratio of the total number of packets received by the observer to the total number

of packets sent by all sensors over a period of time [25])
• Sensor cost 
• Scalability
• Produced data quality

In some applications, in addition to information about some features of the phenomenon, it might be
necessary to know where (sensor location), when (data–time), and how (sensor calibration, exposure)
to manage the WSN performance. 

Regardless of the application, certain critical features can determine the efficiency and effectiveness of
a sensor network [24]. These features can be categorized into quantitative features and qualitative features.
Qualitative features include network settling time; network join time; network depart time; network
recovery time; frequency of updates (overhead); memory requirement; and network scalability. Qualita-
tive critical features include knowledge of nodal location; effect of topology changes; adaptation to radio
communication environment; power consciousness; single- or multichannel; and preservation of network
security. 

 

3.3.4.4 Security Management

 

Security functionalities for WSNs are difficult to provide because of their ad hoc organization, intermit-
tent connectivity, wireless communication, and resource limitations. A WSN is subject to different safety
threats: internal, external, accidental, and malicious. Information or resources can be destroyed; infor-
mation can be modified, stolen, removed, lost, or disclosed and service can be interrupted. Even if the
WSN is secure, the environment can turn it insecure or vulnerable. Security management must provide
self-protection, reliability, disposability, privacy, authenticity, and integrity. 

Determining if a fault or collection of faults is the result of an intentional DoS attack presents a concern
of its own — a point that becomes even more difficult in large-scale deployments, which may have higher
nominal failure rates of individual nodes than small networks will. The robustness against physical
challenges may prevent some classes of DoS attacks. Each layer of the protocol stack is vulnerable to
different DoS attacks and has different options available for its defense. 

 

3.3.4.5 Accounting Management

 

Accounting management includes functions related to the use of resources and corresponding reports.
It establishes metrics and quotes and limits what can be used by functions of other functional areas.
These functions can trace the behavior of the network and even make inferences about the behavior of
a given node. Accounting management must be considered self-sustaining. 
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A WSN contains an energy producer (battery) and some energy consumers (transceiver, computation
module, and sensor devices). Operations of the application or management can be measured or counted
in terms of energy consumption. Given the node characteristics, the average sensor lifetime determines
the cost of running a sensor network. One way to reduce total energy consumption is to cut down the
number of high-energy operations at the cost of an increase in the number of low-energy operations.
The measured cost can be amortized using prediction models [10]. Some functions related to accounting
management include: discovery, counting, storing, and data reporting of a parameter; network inventory;
determination of communication costs; energy consumption; and traffic checking. 

 

3.4 MANNA as an Integrating Architecture

 

The MANNA architecture [22] was proposed to provide a management solution to different WSN
applications. It provides a separation between both sets of functionalities, i.e., application and manage-
ment, making integration of organizational, administrative, and maintenance activities possible for this
kind of network. 

The approach used in the MANNA architecture works with each functional area, as well as each
management level, and proposes the new abstraction level of WSN functionalities (configuration, sensing,
processing, communication, and maintenance) presented earlier (Figure 3.1). As a result, it provides a
list of management services and functions that are independent of the technology adopted. 

The MANNA architecture establishes some automatic services, which feature self-managing, self-
organizing, self-healing, self-optimizing, self-protecting, self-sustaining, and self-diagnostic, with a min-
imum of human interference. It is robust to changes in the network state and establishes some services
to maintain the quality of the provided services. 

 

3.4.1 Management Services, Functions, and Models

 

The definition of management service

 

*

 

 is a task that consists of finding which activities or functions must
be executed, when, and with which data. Management services are executed by a set of functions, and
they need to succeed to conclude a given service. Management functions represent the lowest granularity
of functional portions of a management service, as perceived by users. The conditions for executing a
service or function are obtained from the WSN models. 

The WSN models, defined in the MANNA architecture, represent aspects of the network and serve as
a reference for the management. These models provide an abstract vision of the system through which
is possible to hide all nonrelevant aspects given a certain objective. 

Figure 3.3 represents a scheme to construct the management, starting at the definition of management
services and functions that use models to achieve their goals. A management service can use one or more
management functions. Different services can use common functions that use models to retrieve a

 

*

 

Note that the term management service is different from the service management functional area.

 

FIGURE 3.3  

 

Services, functions, and WSN models. (From Ruiz, L.B., Nogueira, J.M., Louriero, A.A., 
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network state concerning a given aspect. Therefore, the management functions use and generate man-
agement information. 

MANNA architecture considers the three management dimensions in the definition of the management
functions and in the development of the functional, physical, and information architectures (see
Figure 3.1). A partial list of the management functions, in no particular order, follows. The complete list
can be obtained from Reference 21. 

• Environmental monitoring function 
• Monitored area definition function 
• Coverage area supervision function 
• Node deployment definition function 
• Node deployment function [4] 
• Environmental requirements acquisition function 
• Network operating parameters configuration function 
• Topology map discovery function 
• Network connectivity discovery function 
• Aggregation function 
• Data fusion function 
• Node density control function 
• Priority of action definition function 
• Management operation schedule function 
• Cooperation discovery function 
• Synchronization function 
• Energy map generation function 
• Network coverage area definition function 
• User interface function 
• Self-test function 
• Node localization discovery function 
• Node operating-state control function 
• Node administrative-state control function 
• Node usage-state control function 
• Node mobile function 
• Navigation plan function 
• Energy-level discovery function 

Some functions allow one to obtain characteristics related to the efficiency and effectiveness of a WSN.
Some of them are quantitative functions defined to obtain parameters presented by Subbarao [24], such
as network settling time function; network join time function; network depart time function; network
recovery time function; frequency of updates (overhead) function; memory requirement function; net-
work scalability function; and energy consumption function. 

The distributed management MANNA architecture is based on two paradigms: policy-based manage-
ment and autonomic management. In most of the management applications, the MANNA architecture
uses automatic services and functions executed by a management entity invoked as a result of information
acquired from a WSN model. This is called self-management. Management functions can also be semi-
automatic when executed by an observer assisted by a software system that provides a network model or
invoked by a management system. They can be manual when executed outside the management system.
Five possible states are defined for a function:

• Ready (when the necessary conditions to execute a function are satisfied)
• Not ready (when the necessary conditions to execute a function are not met)
• Executing (when the function is being executed)
• Done (when the function has a successful execution)
• Failed (when a failure occurs during execution of the function) 
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Locations for managers and agents, as well as functions that they can execute, are suggested by the
functional architecture. The MANNA architecture also proposes two other architectures: physical and
information. 

The following discussion concerns how the MANNA architecture can cope with different kinds of
network and presents the functional, information, and physical architectures. 

 

3.4.2 Functional Architecture

 

The functional architecture describes the distribution of management functionalities in the network
among manager, agent, and management information base (MIB). In the architecture, it is possible to
have a diversity of manager and agent locations. The management choice depends on the functional
areas involved, the management level considered, and the application running in the WSN, i.e., depends
on the network functionalities (Figure 3.1). This architecture introduces the organizational concept of a
management “domain,” which is an administrative partition of a network for the purpose of network
management. Domains may be useful for reasons of scale, security, or administrative autonomy. Each
domain may have one or more managers monitoring and controlling agents in that domain. In addition,
managers and agents may belong to more than one management domain. Domains allow the construction
of strict hierarchical, fully cooperative, and distributed network management systems. 

 

3.4.2.1 WSN Manager

 

WSN management can be centralized, distributed, or hierarchical. In a centralized management network,
a single manager collects information from all agents and controls the entire network. A distributed
management network has several managers, each responsible for a subnetwork and communicating with
other managers. In a hierarchical management network, intermediate managers distribute the manage-
ment tasks. The management alternative to be chosen depends on the application running on the WSN.
In any solution, it may be important to have a manager entity located externally to the WSN. The external
manager has a global vision of the network and can perform complex tasks (automatic services and
functions) that would not be possible inside the network. However, this manager can be the only one
(centralized management) or it can collaborate with another manager localized inside the network
(decentralized management). 

 

3.4.2.2 WSN Agents

 

The development of a functional architecture raises the question of the most adequate location for an
agent, given a particular kind of WSN. A possible alternative to the agent location is to place it close to
the manager, i.e., external to the network. However, this may cause isolation of the management and
make it difficult to integrate it in the future and to access other management systems. 

Next, some possible configurations are explored: 

•

 

Agents in flat and homogeneous WSNs

 

. A flat WSN has at least one sink node to provide network
access. All network nodes have the same hardware configuration. Some possible alternatives for
flat and homogeneous networks considering agent location in the WSN are: 
• Agents inside the network and external manager (Figure 3.4a) 
• Agents in the sink node (Figure 3.4b) 
• Agents and manager in the network; the two possibilities for manager organization are hier-

archical (Figure 3.4c) and distributed (Figure 3.4d) 
In any of these proposals, the main concern is the large amount of traffic that may be generated
in response to operation requests and in sending notifications. Another alternative is to place
managers inside the network and allowing them to communicate among themselves. This defines
a distributed management. In case of having agents as part of common nodes, some questions
remain, such as how to distribute the agents, how to define domains for the agents, and how to
deal with nodes with more than one agent. 
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•

 

Agents in flat and heterogeneous WSNs

 

. In a heterogeneous WSN, nodes differ in their physical
hardware capabilities. Agents can be placed in more powerful nodes as long as they present
adequate location in the network. The sink node can host an intermediate manager or even present
no management function. To establish a distributed management, agents can be placed in less
powerful nodes and managers in more powerful ones. 

•

 

Agents in hierarchical homogeneous or heterogeneous WSNs

 

. In this kind of network, there is no
sink node. A cluster-head node is responsible for sending data to a base station. It also commu-
nicates with the observer. The cluster head may also execute correlation of management data. This
computation may decrease the information flow and thus energy consumption. The correlation
may also allow a multiresolution in which differences are filtered and a higher precision is obtained.
Some possible alternatives for a hierarchical WSN considering the agent location include: 
• Agents in cluster heads and external manager (Figure 3.5a) 
• Agent in the base station (Figure 3.5b) 
• Agents in the network and intermediate manager (Figure 3.5c) 
• Agents and distributed managers in the network (Figure 3.5d) 

 

FIGURE 3.4  

 

Manager and agent location in flat WSNs.
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3.4.2.3 Management Application

In the management architecture (functional, information, and physical), how the management entities
receive and analyze information and react to it, which services and functions will be executed, and how
the information is exchanged through the communication interface are defined. The type of management
(centralized, hierarchical, or distributed) is also defined. Now, the “implosion problem” is explained and
management aspects concerning WSN functionalities are addressed. 

Centralized management for WSNs, as well as for traditional ad hoc networks, is not always appro-
priate. One main reason is the traffic concentration problem caused by a central manager that receives
and originates management traffic. In addition, the response implosion problem may happen when a

FIGURE 3.5  Agent location in hierarchical WSN.

Manager

SENSOR_REPORT
RESPONSES,

NOTIFICATIONS

OPERATIONS

SENSOR_REPORT
RESPONSES,

NOTIFICATIONS

OPERATIONS

SENSOR_REPORT
RESPONSES,

NOTIFICATIONS

OPERATIONS

SENSOR_REPORT
RESPONSES,

NOTIFICATIONS

OPERATIONS

Agent Common NodeBase StationManager

(a)

Base
Station

Manager

(b)

Manager

(c)

Manager

(d)

AGENT

Cluster-head

Agent in cluster-headManager in cluster-head

Base
Station

© 2006 by Taylor & Francis Group, LLC



3-20 Smart Dust

high volume of incoming replies is triggered by management operations or events. In case of WSNs,
there will always be one access point (sometimes more than one), through which data go to the observer
or to the management application. The access point represents a sink node or a base station that can
make use of a gateway to communicate with the external environment. 

To resolve the implosion problem for management and application, one possibility is to select only a
subset of nodes sending data, known as fidelity. In the case of management, some agents are selected to
send replies back. This approach may be suitable for densely populated sensor networks with a large
number of sensor nodes, in which missing information from some nodes can be ignored with acceptable
accuracy. The accuracy of the calculation might significantly degrade. In a sparse sensor network, or a
network with a small number of nodes not collecting enough replies, however, the number of replies
may not be small enough to be received without taking into account the response implosion problem.
Another solution is to make a scheduled response approach [16]. 

A management solution depends on the features of the network. In some WSNs, only a few manage-
ment functions can be implemented. In other cases, the management functions must be semiautomatic
or manual because of restrictions in the computation. The MANNA architecture is built to provide a
management solution to different WSN applications. Depending on the application, it may be interesting
or not to use determinate management services, which also can be implemented as automatic, semiau-
tomatic, or manual. 

A management solution must also be proposed considering the type of the dissemination: continuous,
on demand, programmed, or event driven (see Section 3.3.3.4). In a continuous monitoring scheme,
agents are programmed to send monitoring data continuously to a manager. In an on-demand scheme,
a manager sends a query to one or more agents, and it receives data back from those agent nodes. In an
event-driven monitoring scheme, agents are programmed to send data to a manager only when an event
happens and a local condition is satisfied. 

Each one of these management solutions has pros and cons. In a continuous monitoring scheme, a
management application that stops receiving data from a given node may be an indication of a problem,
mainly if the previous sensor condition was normal. The cost of sending data continuously may lead to
more rapid consumption of scarce network resources and thus shorten its lifetime. In an on-demand
and programmed scheme, the monitoring node can become aware of a problem in the network after
sending a query to the node. The cost of having this information is proportional to the number of queries
sent or the number of programmed responses. Finally, the design of an event-driven monitoring scheme
makes some assumptions about how events are generated. If they happen in an unpredictable way, then,
again, there is the problem of consumption of network resources.

On the other extreme, if a node does not report an event, it may be an indication of a failure or of an
event that did not occur. In both cases, the management application cannot differentiate them. The same
is true for the on-demand network. In normal situations, an event-driven scheme only sends an event
to the sink node when it happens. This is the minimum possible cost associated with an event when it
must be sent to the management application. 

In energy-constrained WSNs, event-driven networks represent an attractive option when compared
to continuous networks because they typically send and receive far fewer messages. This translates to a
significant energy saving because message transmissions are much more energy intensive when compared
to sensing and (CPU) processing. 

In terms of failure detection, event-driven networks present challenges not found in continuous and
programmed networks. Under normal conditions, a management application of a continuous network
receives sensing data at regular intervals. This stream of data not only delivers the content in which one
is interested, but also works as an indication of how well the network is operating. If the management
application receives data from every single node, then all is well (of course, assuming that the messages
are authenticated and cannot be spoofed). If, however, the management application stops receiving data
from certain nodes or entire regions of the network, a failure has occurred. 
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3.4.2.4 Issues Concerning Management Information Base Implementation and Usage

The description of objects present in the information model and the relationship among them are
specified in the management information base. In the WSN, to update an MIB with the current network
state may require measuring various parameters. In general, the collection of these parameters can have
spatial and temporal errors. This is called the “uncertainty problem.” 

To have a higher precision in the network state, probabilistic measures should be performed with a
higher granularity. As in any probing, this would take a finite amount of the system energy and could
modify the network state. This is called the “probe effect”; in this way, better precision in management
information requires modification of the state. 

The MANNA architecture proposes the limitation in the scope as a method for reducing uncertainty
and energy consumption while updating the MIB. Spatial limitation consists of defining a physical space
inside which the data will be considered for management. Temporal limitation defines a time window
(fixed or sliding) inside which the collected data are considered. Functional limitation selects the data of
a certain functional network segment for management — for example, the data of a group of nodes or
a group leader. 

3.4.3 Information Architecture

To ensure common solutions for WSN management, the MANNA architecture defines an information
model. WSN management has two kinds of management information: static and dynamic. Static man-
agement information describes the configuration of services, network, and network elements. Dynamic
management information describes information that changes frequently. 

In the MANNA architecture, static management information is based on object orientation and
dynamic management information is described by WSN models (see Figure 3.3). From the management
point of view, the MANNA functional architecture establishes the circumstances in which a manager will
receive event notifications and how it can get its information (monitoring). It also becomes clear what
kind of influence the management system has over the WSN resources and how to control them. 

3.4.3.1 Static Information

Two types of object classes represent resources under the three different dimensions: managed object
and support object. The managed object class directly relates with the network components and with
the network. The support object classes play the role of supporting the management functions, i.e.,
making available to them the necessary information. 

The specification of an object class is done through predefined syntactic structures called templates,
based on the abstract syntax notation.1 (ASN.1) language, which is used to describe the objects and their
characteristics. Object classes may be inherited or reused from standard objects; reuse allows future
management integration. Some object classes and their new attributes, based on WSN characteristics,
are listed next. 

Support object classes. These classes can be programmed by the agent or can be present in the
management application. They are mostly derived from the OSI reference model. Some support object
classes include:

• Log
• State change record
• Attribute change value record
• Event record
• Event forwarding discriminator
• Management operation schedule
• Information log
• Management log
• Energy level severity assignment profile
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• Current remaining energy level summary control
• Monitored object
• Current data object
• History data object
• Threshold data object
• Scanners 

Managed object classes. The RFC3433 [3] describes managed objects for extending the entity MIB
(RFC 2737) to provide generalized access to information related to physical sensors, which are often
found in a networking equipment (such as chassis temperature, fan RPM, and power supply voltage).
The RFC 3433 is used and other object classes defined. Some of the defined managed object classes follow: 

• Network is composed by interconnected managed objects (physical or logical ones) capable of
exchanging information. Examples of new attributes for this class include: 
• Network identifier
• Composition type (homogeneous or heterogeneous)
• Organization type (flat or hierarchical)
• Organization period
• Mobility (stationary, stationary nodes and mobile phenomenon, mobile node or mobile phe-

nomenon)
• Data delivery (continuous, event driven, on demand, programmed, or hybrid)
• Type of access point (sink node or base station)
• Localization type (relative or absolute)
• Control (open or close)
• Mission (critical or common)
• Node distribution (regular, irregular, balanced, sparse or dense)
• Node deployment (affected by many factors, some of which are the sensor node capabilities

of individual nodes, radio propagation characteristics, and the topology of the region)
Other constraints may include a degree of overlapping in the sensor coverage of two nodes so that
they may collaborate. 

• Managed element represents the sensor node and actuator nodes or other WSN entities that
perform functions on managed elements and provide sensing, processing, and communicating
services. Examples of new attributes of this class include:
• Localization (relative or absolute)
• Element type (common node, sink node, gateway, or cluster head)
• Minimum energy limit
• Mobility (direction, orientation, or acceleration)
The problem is where to place the base station or sink node. Some approaches use a combination
of computational geometry, computer-aided design, and numerical optimization methods. 

• Equipment represents the physical components of a managed element. In this case, this class
represents the physical aspects of the sensor node constitution, which is composed of memory,
processor, sensor device, battery, and transceiver. The equipment class can be specialized in object
classes. For instance,
• Battery type (linear: the battery is considered to be a bucket of energy; energy is linearly drawn

from this bucket by the energy consumers)
• Discharge rate-dependent model (considers rate at which energy is drawn from the battery

to compute the remaining battery life; at high discharge rates, battery capacity is reduced)
• Relaxation model (takes into account a phenomenon seen in real-life batteries in which

the battery’s voltage recovers if the discharge rate is decreased)
• Battery capacity
• Remaining energy level
• Energy density
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• Computational module composed by processor and memory (clock; state of use; available
memory; endurance; AD channel; operating voltage; IO pins)

• Sensor element (sensor type; current consumption; voltage range; min–max range; accuracy;
temperature dependence; version; state current; exposure)

• Transceiver (type; modulation type; carrier frequency; operating voltage; current consumption;
throughput; receiver sensitivity; transmitter power)

• System is used to represent hardware and software, which constitute an autonomous system capable
of executing the information processing and/or transference. Examples of new attributes include:
• Operating system type
• Version
• Code length
• Complexity
• Total MIPS per available MIPS
• Synchronization type (mutual exclusion, synchronization of processes)
A notification of change in an attribute value must be reported upon the event occurrence, such
as a software upgrade. 

• Environment represents the environment in which the WSN is operating. Examples of new
attributes include:
• Environment type (internal, external, and unknown)
• Noise ratio
• Atmospheric pressure
• Temperature
• Radiation
• Electromagnetic field
• Humidity
• Luminosity
The environment can present static and dynamic features. 

• Connection represents the actual connections and is expressed as an association between particular
points. The direction of connectivity can be unidirectional (asymmetric) or bidirectional (sym-
metric). If an instance of this class is unidirectional, the point “a” will be the origin and the terminal
point “z” will be the destination. The operational state will indicate the capacity to load a signal.
An example of attribute for this class is the communication direction (simplex, half duplex, full
duplex). The network topology describes the connections that may exist, and it is expressed as
relationships between a set of points. 

• WSN observer represents the entity that requires WSN services. It may be a human user applying
for the use of services via some human–machine communication or it may be some computer-
based organizational system. 

• WSN goals are the benefits provided to users that are obtained by carrying out WSN activities
and using WSN services. They can be defined as accuracy, latency, fidelity, etc. 

• WSN management context defines the environment in which WSN management services are
carried out. The definition includes the description of the entity responsible for managing the
network, what is managed, and how it can be managed. The WSN management context is
described by using three dimensions: management functional areas, management levels, and
WSN functionalities. 

3.4.3.2 Dynamic Information

In a WSN, network conditions can vary dramatically along the time. In this case, the use of models
established by MANNA is of fundamental importance for the management, although its updating
cycle can be extremely dynamic and complex. Based on the information obtained with these models,
services and functions are executed according to management policies. Dynamic management infor-
mation is described by WSN models and needs to be obtained frequently. Because acquisition of this
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information has a cost in terms of energy consumption, an important aspect is to determine the
adequate moment, frequency, and fidelity for updating that information. Furthermore, the informa-
tion collected may not be valid at the moment at which it is processed by the management entity
due to delays, omissions, and uncertainty present in WSNs. Static information is needed in order to
obtain the WSN models.

In the following, some network models are presented. They always represent dynamic aspects of the
network. The dynamic information represented in the network models could or could not be stored in
MIBs. Some of the WSN models (map) follow: 

• Network topology map represents the topology map and the reachability of the network.
• Residual energy represents the remaining energy in a node or in a network.
• Sensing coverage area map describes the actual sensing coverage map of the sensor elements.
• Communication coverage area map describes the present communication coverage map from the

range of transceivers.
• Cost map represents the cost of energy necessary for maintaining desired performance levels.
• Production map represents nodes that are producing.
• Usage standard map represents the activity of the network. It can be delimited for a period of

time, quantity of data transmitted for each sensor unit, or the number of movements made by
the target.

• Dependence model represents the functional dependency that exists among the nodes. 
• Structural model represents aggregation and connectivity relations among network elements.
• Cooperational model represents relations of interaction among network entities. 

3.4.4 Physical Architecture

The physical architecture defines how management information is exchanged between management
entities. It can be seen as the implementation of the functional architecture. In doing so, physical aspects
such as the management protocol, physical location of agents, agent functionalities, implemented man-
agement service, and supported interfaces for WSNs are defined. The interface among management
entities should use a light-weight protocol stack. The MANNA architecture does not define a protocol
stack for these interfaces, but provides protocol profiles that may be adequate for each application type. 

Application layer. Although the simple network management protocol (SNMP) [28], common man-
agement information protocol (CMIP) [13], Web-based management protocol (WBM) [8], and the ad
hoc network management protocol (ANMP) [6] allow management in a decentralized and event-oriented
way, the structure of managed components is always rather rigid. In these paradigms, management
intelligence always resides in the management instance, while the information is generated in the managed
instances.

An alternative method would be to delegate management functionalities to the managed systems. A
solution for supporting this feature in the implementation of the physical architecture is management
by delegation (MbD) [11]. Other alternatives are intelligent agents and mobile agents. In the model of
mobile agents, data stay at the local place while the processing task is moved to the data locations. The
management functions are performed locally and only the resulting data are sent to the manager. By
transmitting the code instead of data, the mobile agent model offers several important benefits:

• Network bandwidth requirements are reduced, which is especially important for real-time appli-
cations and when communication uses low-bandwidth wireless channels.

• Agents can migrate to another node when the hosting node is compromised.
• Network scalability is supported.
• Agents can migrate to regions of interest independently of the movement of nodes, if they are

mobile.
• Extensibility is supported — that is, mobile agents can be programmed to carry out task-adaptive

processes, which extend the capability of the system.
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• More stability is achieved because mobile agents can be sent when the network connection is alive
and return results when the connection is re-established along with the network data.

• The delay in management actions is reduced.
• Managers are not required to instruct agents all the time.
• The main management part does not reside in the manager.
• Agent cloning offers means for robustness and fault tolerance. 

Transport layer. For all protocols described in the application layer, the correct reception of data
messages is not assured [27]. Unlike traditional networks (e.g., IP networks), reliable data delivery is still
an open research question in the context of WSNs. 

Network layer. This should be designed considering power efficiency, and that WSNs are mostly data
centric. Data aggregation is useful only when it does not hinder the collaborative effort of sensor nodes.
Energy-efficient routes can be found based on the available power in the nodes and the energy required
for transmitting data in the link along the route. 

Data-link layer. This is responsible for the multiplexing of data streams, data frame transmission and
reception, medium access, and error control. Medium access control has two goals: (1) to create the
network infrastructure to establish communication links for data transfer and give the sensor network
self-organizing ability; and (2) to share communication resources fairly and efficiently between sensor
nodes. Simple error control codes with low complexity encoding and decoding might present the best
solutions for sensor networks. Open research issues for MAC protocols in WSNs are: determination of
low bounds on the energy required for sensor network self-organization; error control coding schemes;
and power-saving modes of operation [20]. 

Physical layer. This is responsible for frequency selection, carrier frequency generation, signal detec-
tion, modulation, and data encryption. The 915-MHz ISM band has been widely suggested for sensor
networks. 

3.5 Putting It All Together

Consider that a management entity has just received the topology and energy messages. It calculates the
sensing and communication range area maps and detects the existence of a high node density because there
are lots of intersections among the sensing range of the nodes. The management entity faces a redundancy
problem of the sensing data received. On one hand, redundancy provides a mechanism for fault tolerance
and multiresolution (gives better accuracy), but on the other hand, it represents a waste of resources. 

This redundancy problem can be detected by the MANNA architecture using the WSN models, in
particular, the “topology map,” “energy map,” “communication coverage area map,” and “sensing coverage
area map.” Based on these maps, maintenance services may be executed. These services are automatic
and executed by a set of functions that use and generate the management information. In this case, one
of the functions invoked is the “node administrative state control function.” 

This function represents the intersection of the three abstraction dimensions for the configuration
functional area, network element management level and sensing functionality. The function allows
locking the redundant nodes in the administrative state. For this, the agent assigns the value “locked”
for the administrative state attribute of the objects (present in the MIB), which represents such nodes
acting over the nodes and removing them from sensing, processing, and dissemination services. Figure 3.6
shows a diagram that represents this process. 

3.6 Conclusion

Monitoring applications based on wireless sensor networks represent a new important class of applica-
tions that can provide data to different kinds of observers. Furthermore, WSNs must deliver the data of
interest according to different parameters, such as power efficiency and latency. 
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Management of WSNs is a new research area that only recently started to receive attention from the
research community. This chapter discussed the issue of WSN management and presented autonomic
management using the MANNA architecture, which is based on the traditional framework of functional
areas and management levels. Adopting this strategy will permit management integration in the future.
In the management architecture, the models were built that represent the network state (e.g., WSN
topology map, WSN energy map, WSN coverage area map, and WSN production map). These models
are important in different applications specified and designed for WSNs. 

The fundamental issues about management of WSNs are concerned with how the management appli-
cation promotes resource productivity and quality of services. Nevertheless, an important aspect is to
verify the impact of the management services over the WSN lifetime, latency, goodput, and coverage area. 

The important point to be stressed is that, although introduction of management has a cost, this must
not affect the network behavior considerably. In fact, the goal is to have the benefits brought by the
management solution outweighing the overhead introduced by the management application. Another
interesting aspect is that the monitoring scheme to be chosen depends fundamentally on the kind of
application monitored. Thus, the management requirements also change among sensor networks. 
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4.1 Introduction

 

Several aspects of the form and operation of sensor networks have been encountered in the previous
chapters, as well as strong indications of the great versatility that these systems exhibit and the multiple
modes of operations supported in order to achieve their diverse goals. Reading the chapters on several
different applications in this book only reinforces the observation that different applications require
different distributed algorithms to be handled efficiently.

Having sensor networks with long lifetimes supporting multiple transient users with different needs
implies that many different distributed algorithms will run in the network — algorithms that are not
known 

 

a priori

 

. This fact gives rise to the following question: How does one dynamically program the
network to provide the users with the needed services efficiently? This chapter examines this problem
and the different models proposed by researchers to address it. The discussion begins with some back-
ground on the differences of sensor networks with traditional data networks, immediately followed by
a section on the general characteristics of efficient sensor network applications. These two sections allow
one to motivate the need for dynamic programmability as well as the kind of programmability desired.
A description of the different models to achieve such programmability and examples supporting frame-
works then follow.
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4.2 Differences between Sensor Networks and Traditional Data 

 

Networks

 

Although sensor networks are networks of computing devices, they are considerably different from
traditional data networks. The first difference of sensor networks compared to traditional data networks
is that they have severe energy, computation, storage, and bandwidth constraints. For example, the
wireless sensor node designed by Rockwell Scientific [24] has a 133-MHz, 32-bit, Intel StrongARM 1100
CPU, 1 MB of FLASH memory, 1 MB of RAM, and a 100-Kbps radio, and must operate on two 9-V
batteries. This is considered to be toward the high end of sensor network devices. A popular, low-end
node design from UC Berkeley, the mica-II [12], uses a 7.37-MHz, 8-bit Atmel CPU with 128 KB of
FLASH memory, only 4 KB of RAM, and a 35-Kbps Chipcon radio. The major resource problem in such
networks is energy because these are static unattended networks and the nodes cannot have renewable
energy sources. Energy is so important that algorithms designed for sensor networks often sacrifice
response latency, accuracy, and other user-desired qualities to save energy and prolong the operational
lifetime of the network.

The second difference of sensor networks compared to traditional data networks is their overall usage
scenario and the implications that this brings to the traffic and interaction with the users. Typically, in
traditional networks, users are connected to a node (or group of nodes) and require a service from
another node. This two-entity communication model describes the overwhelming majority of traditional
network traffic. The network acts as a medium bringing the two parties together. The interaction model
is also straightforward; the user interacts directly with the user or service at the other end. Certain actions
from the user will produce certain data transfers to and from the other end. The most popular exceptions
to these rules are free roaming mobile agents providing data mining or broker services. However, this is
a small portion of today’s data networks.

Sensor networks, on the other hand, are less like networks (i.e., in the sense that they loosely connect
independent entities) and more like distributed systems. As stated earlier, the nodes tightly collaborate
to produce information-rich results. The user will rarely be interested in the readings of one or two
specific nodes, but will be interested in some parameters of a dynamic physical process. To achieve this
efficiently, the nodes must form an application-specific distributed system to provide the user with the
answer. This is a departure from the two-entity model: there are no clear sources and destinations based
on user desires — only the users and the 

 

whole network

 

. The nodes involved in the process of providing
the user with information are constantly changing as the physical phenomenon is changing. In conclusion,
the sensor network is not there to connect different parties together, as in the traditional networking
sense, but rather to provide information services to users.

 

4.3 Aspects of Efficient Sensor Network Applications 

 

The preceding remark leads to the user-interaction topic. Apart from the user input, the physical phe-
nomena now play a central role in the actions inside the network. The actions in each individual node
are affected from external physical stimuli and information from other nodes, as well as direct input
from the user. Actually, it is desirable to operate in a fashion in which a node’s actions are affected largely
by physical stimuli detected by the node or nearby nodes. Frequent long trips to the user are undesirable
because they consume time and energy. Tennenhouse [27] calls this decentralized (i.e., not all traffic
flows to/from user), autonomous (i.e., user is out of the loop most of the time) way of operating “proactive
computing” (as opposed to interactive). The term “proactive” is also adopted to denote an autonomous
and noninteractive nature. In order for sensor networks to realize their full potential and efficiently use
their limited resources, they have to be viewed as distributed proactive systems.

Another efficient design principle is to keep communications localized. Apart from the apparent benefit
of saving valuable communication energy, the algorithms can be made more robust by taking advantage
of the broadcast nature of the channel combined with the ability to process inputs from all neighbors
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— not just selected neighboring nodes. Finally, algorithms can benefit from acknowledging and exploiting
the inherent energy–accuracy–latency trade-off present in sensor networks. That is, the more energy one
is willing to give, the more accuracy and less latency is achieved, or by keeping the energy consumption
constant, one can trade high accuracy for lower latency. Operating in the trade-off space, an algorithm
becomes more flexible in accommodating user needs. 

Successful applications for sensor networks employ one or more of the preceding design aspects to
achieve their goal. Some examples include target tracking algorithms [8, 28]; edge detection algorithms
[9, 22]; and periodic aggregation algorithms [4]. Sensor network algorithms’ diversity is interesting to
those who study them. Some of these algorithms might use common services such as a wake-up protocol
[25] or a geographic routing protocol [17], but in essence they are deeply different. From the commun-
ication patterns (e.g., cluster based, tree structured, nonhierarchical) to the computation tasks (e.g.,
custom fusion of sensing data, keeping and processing state of neighbors), these algorithms are as diverse
as the problems they tackle. Even in algorithms tackling the same general problem, one can find very
different solutions (e.g., edge detection tackled by Chintalapudi and Govidan [9] and by Nowak and
Mitra [22]).

Efficiently designed sensor networks are application-specific distributed systems that require a different
distributed proactive algorithm as an efficient solution to each different application problem. Given the
nature of sensor networks (i.e., diverse solutions for diverse problems), several generic questions come
to mind:

• How does one deploy different algorithms into the network?
• What is the programming model that will implement these algorithms?
• What general support does one need from a programming framework?

 

4.4 Need for Sensor Network Programmability

 

Researchers who develop sensor network algorithms have shown little concern about how to program
them. Most of the time, the proposed algorithms are assumed to be hard-coded into the memory of each
node. In some platforms, the application developer can use a node-level OS (e.g., TinyOS [13]) to create
the application, which has the advantages of modularity, multitasking, and a hardware abstraction layer.
Nevertheless, the developer must still create a single executable image to be downloaded manually into
each node. However, it is widely accepted that sensor networks will have long-deployment cycles and
serve multiple transient users with dynamic needs. These two features clearly point in the direction of
dynamic sensor network programming.

What kind of dynamic programmability is wanted for sensor networks? Hard-coding a few algorithms
into each node that are tunable through the transmission of parameters is not flexible enough for the
wide variety of possible sensor network applications. An ability to download executable images into the
nodes is not feasible because most of the nodes will be physically unreachable or reachable at a very high
cost. An ability to use the network in order to transfer the executable images to each and every node is
energy inefficient (because of the high communication costs and limited node energy) and cannot allow
multiple users to share the sensor network.

Ideally, it is desirable to be able to program the sensor network dynamically as a whole — an aggregate
— and not as a mere collection of individual nodes. This means that a user connected to the network
at any point will be able to inject instructions into the network to perform a given (probably distributed)
task. The instructions will task individual nodes according to user needs, network state, and physical
phenomena, 

 

without any intervention from the user

 

, other than the initial injection. Furthermore, because
multiple users should be able to use the sensor network concurrently, several resources/services of the
sensor node should be abstracted and made sharable by many users/applications. This kind of program-
mability is called “system-level programmability.” The next section presents the two main models adopted
by researchers who try to provide system level programmability.
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4.5 Major Models for System-Level Programmability

 

Before delving into individual research efforts by describing several frameworks and their properties, the
two major models for system level programmability will be described: (1) the database model and (2)
the active sensor model. Most research efforts fall into one of these models and some frameworks can
exhibit characteristics from both. 

 

4.5.1 Database Model

 

One approach of programming the sensor network as an aggregate is a distributed database system.
Multiple users can inject database-like queries to be distributed autonomously into the network. The
sensor network is viewed as a distributed database and the query’s task is to retrieve the needed infor-
mation by finding the right nodes and, possibly, to process the data in predefined ways (e.g., aggregate
the data) as they are routed back to the user. The strong point of the database approach is that it offers
an intuitive way to extract information from a sensor network hiding the complications of 

 

embedded

 

and

 

 distributed

 

 programming. The user simply describes the information needed. The way in which data
are retrieved in nodes and the distributed algorithm needed to retrieve and process the data are not
specified. The user “magically” sees the requested information in the use node. 

The model’s limitation is that only predefined ways to process the data exist, thus implying that only
certain types of applications (i.e., applications studied by the specific researchers that are mainly aggre-
gation applications) are addressed in the most efficient way by the database model. If a new way to process
and react to the data is needed by application N&U (new and unexplored), this can only be done at the
user node (assuming that the human-controlled user node is easily upgradeable). Consequently, the
algorithmic pattern to address application N&U under the database model will be an iteration of the
generalized steps: (1) partially processed data arriving to the user node; (2) data undergoing custom
processing; and (3) based on the result, a new database query issued. In most cases, this is not the structure
of the most efficient algorithm to solve an application problem. Recently researchers have tried to augment
the language model (e.g., by using event triggers) to accommodate a richer variety of distributed algo-
rithms and provide more flexibility to the user. Nevertheless, the user has no ultimate control over the
distributed algorithm executed in the network; this prevents maximum efficiency in certain applications.

The database model is a good solution in the following cases: (1) used in the full-scale network for
applications that are well-studied under this model and (2) used in subnetworks with small diameter
(e.g., 3 to 4 hops) as a flexible local data retrieval system. For the latter case, imagine a powerful cluster
head node with a few less capable nodes around it. The less capable nodes can easily run the framework
to interpret and reply to database queries while the cluster head runs a more heavyweight framework
(e.g., of the active sensor variety). The cluster head can use the database model to retrieve aggregated
data easily from the nodes around it. These data can be further processed by the cluster head and
participate in a custom, user-defined distributed algorithm among other cluster heads. 

 

4.5.2 Active Sensor Model

 

The term coined in Levis and Culler [19] denotes an adaptation of the active networking idea in traditional
data networks to the sensor network realm. The difference is that although active networking tasks are
reacting only to reception of data packets, active sensor tasks need to react to many types of events, such
as network events, sensing events, and timeouts. Active sensor frameworks abstract the run-time envi-
ronment of the sensor node by installing a virtual machine or a high-level script interpreter at each node.
For example, single instructions of the scripts (or bytecodes) can send packets, or read data from the
sensing device. Moreover, the scripts (or bytecodes) are made mobile through special instructions, so
nodes can autonomously task their peers.

Active sensor frameworks seek to remedy the limited flexibility problem found in the database model
at the expense of increased responsibility for the programmer. They provide a language model powerful
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enough to implement any distributed algorithm while at the same time hiding unnecessary low-level
details from the application programmer. Many of the frameworks also provide a way to share the
resources of a node among many applications and users that might concurrently use the sensor network.
The control of the distributed algorithm (which implies efficiency in any application) comes at a cost
compared to the database model. The programmer must explore, define, and test the distributed algo-
rithm for each application. 

The difficulty in designing an active sensor framework lies in determining how to define the abstraction
of the run-time environment properly so that one achieves compactness of code, sharing of resources
for multiuser support, and portability in many platforms, while at the same time keeping a low overhead
in delays and energy. Two major choices determine the run-time abstraction: 

• Choice of virtual machine (interpreting machine-level bytecodes usually based around a stack
architecture) or script interpreter (interpreting high-level ASCII scripts)

• Choice for number and content of native services provided

These choices affect ease of programming, mobile code compactness, time it takes to execute a task,
and the memory footprint required in the sensor nodes to accommodate the framework. For example,
the more services provided, the more compact the mobile code becomes but the greater the memory
footprint becomes. Also, by providing more native services, the execution time of a task is reduced because
it is not necessary to rely on interpreted code to implement these parts of the task. Choosing a virtual
machine usually requires less memory footprint, but creates less compact code when compared to a high-
level scripting language. Given the conflicting nature of the preceding “performance” criteria, it is clear
that no one optimal design point exists; rather, the optimality is determined by specific implementation
goals. Some of the frameworks discussed in Section 4.6, for example, make some different choices because
they target different hardware platforms.

The process of populating the sensor network with viral pieces of code as the active sensor model
dictates resembles the operation of multiple collaborating mobile agents, replicating/migrating to the
nodes at which the distributed algorithm should be executed. For this reason, the next subsection offers
a general discussion on mobile agent (MA) frameworks.

 

4.5.3 Active Networks — Mobile Agents

 

Traditional distributed applications are designed as a set of processes (mostly network unaware) coop-
erating within assigned execution environments. MA technology, however, promotes the design of appli-
cations made up of network-aware entities that can change their execution environment by transferring
while executing. In recent years, several research groups have created mobile systems based around the
notion of an agent that consists of procedures and state data that can migrate from machine to machine.
Some of these, such as Agent Tcl [10], have been built on top of interpreted scripting languages; others,
such as Aglets, have relied on Java, which provides code mobility via applets and object serialization. The
interest in this area is propelled by the advantages agents offer in Internet applications. The advantages
fall into three different categories, as reported by Cabri et al. [7], among others: 

• Bandwidth and delay savings because computation is moved to the data
• Flexibility because agents do not require the availability of specific code
• Suitability for mobile computing because agents do not require continuous network connections

Thus, when considering MAs, one overwhelmingly sees them in an Internet-application environment
with the possibility of mobile endpoints. Consequently, mobile agents are viewed as free-roaming entities
that are mostly autonomous with no point of control and should perform well under intermittent
connections and mobility. The major design issue in such systems is how the agents communicate and
collaborate. Basically, four coordination models classify mobile agents in their current Internet-motivated
world:
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•

 

Client/server model

 

. Direct connection is that of involved agents; the main advantage is the low
overhead in delay and implementation. The main disadvantage is that agents are spatially and
temporally coupled.

•

 

Meeting-oriented model

 

. Agents interact by opening and joining abstract meeting points. The
model achieves spatial uncoupling but preserves temporal coupling.

•

 

Blackboard-based model

 

. The agents interact by leaving messages in predefined blackboards.
Temporal uncoupling is achieved, but some weak spatial coupling still exists because the agents
must know each other’s names.

•

 

Linda-like model

 

. The blackboard is extended by introducing associative mechanisms into the
shared data space, thus making the messages’ content addressable. Spatial and temporal uncoupling
is achieved. 

Clearly, the advantages and disadvantages coupled with these models revolve around the notion of the
agent’s spatial and temporal coupling with its peers or lack thereof. This is understandable, if one
remembers the previous discussion on mostly autonomous agents with intermittent network connections.
Spatial and temporal uncoupling is desirable, even at the cost of more complex (thus less secure and less
efficient) designs. 

In the realm of sensor networks, however, these concerns and classifications are becoming irrelevant.
The concern is mainly with building reconfigurable and distributed applications that can be reconfigured
and relocated. The pieces of mobile code in active sensor frameworks (i.e., the equivalent of mobile
agents) are envisioned to perform very tight collaboration with each other, thus departing from the
autonomous agent model. In addition, this kind of collaboration will happen among locally clustered
nodes, making the peer-to-peer direct communication easier. Furthermore, intermittent connections and
mobility are not issues that the framework should hide, but instead should let the algorithm deal with
them in an application-specific manner. Remember that efficiently designed applications in sensor net-
works do not rely on data from specific nodes; rather, they can handle inputs from a greatly varying set
of nodes. If data are not available from certain nodes due to intermittent connections or mobility, the
application simply keeps on working. For these reasons, the server/client model or the more general peer-
to-peer direct communication model is an acceptable choice.

In conclusion, the MA paradigm is associated with the notion of a single agent migrating from node
to node, performing part of a given task in each node while sparsely communicating with 

 

specific

 

 remote
services or other MAs. The active sensor model, on the other hand, is associated with multiple simple
lightweight agents that tightly collaborate to implement a distributed algorithm; their behavior and
position is influenced by physical events as well as by user needs. Most of the time, the communication
is not tied to specific nodes but rather to a statistically chosen set of nodes.

 

4.6  Frameworks for System-Level Programmability

 

This section looks into individual research efforts, beginning with database model frameworks. It con-
tinues with active sensor frameworks and concludes with a framework that mixes both notions. 

 

4.6.1 Directed Diffusion with In-Network Processing

 

Early sensor network research has shown the benefits of attribute-based naming (e.g., geographical
information) and routing in the operation of sensor network applications. Directed diffusion [15] was
the first protocol to implement such ideas. Heidemann et al. [11] incorporate data-driven, low-level
naming with directed diffusion, along with in-network processing ideas, to task the sensor network. The
in-network processing is limited to aggregation filters that take n stream input data and produce m stream
output data. The application programmer can use simple APIs to use the directed diffusion and custom
filtering mechanisms. More specifically, the commands 

 

subscribe

 

, 

 

unsubscribe

 

, 

 

publish

 

, 

 

unpublish

 

, and

 

send

 

 implement the publish/subscribe mechanism of directed diffusion, while the commands 

 

addFilter

 

,
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removeFilter

 

, 

 

sendMessage

 

, and 

 

sendMessageToNext

 

 register and utilize custom filters for in-network
processing. The initial implementation of the system does not contain a method to upload filters dynam-
ically to the nodes. Although the authors do not explicitly categorize their work in the database model,
one can see most of its main notions.

 

4.6.2 Cougar

 

Other systems, such as Cougar [2], focus more on transferring the sensor querying language (SQL)
semantics of traditional databases to the distributed setting of sensor networks. In this case, the naming
system developed in Heidemann et al. [11] is replaced by an SQL equivalent. Each node is equipped with
a fixed database query resolver. As queries arrive at a node, the local resolver decides on the best distributed
plan to execute the query and distributes the query to the appropriate nodes. 

 

4.6.3 TinyDB

 

The more recent and probably more advanced system that follows the database model is the TinyDB
[21] developed in Berkeley. The developers’ main focus is aggregate queries (e.g., min, max, average);
thus, they provide special optimizations for them (e.g., exploit the shared medium, perform what they
call “hypothesis testing”). A query has the following general form:

 

SELECT expr1, expr2 …

FROM sensors

WHERE pred1 [AND | OR] pred2 …

GROUP BY groupexpr1, groupexpr2 …

SAMPLE PERIOD t

 

The select clause lists the attributes or aggregates of attributes to retrieve from the sensors. Aggregates
and nonaggregates cannot appear in the same select clause unless the nonaggregate fields appear in the
“group by” clause. “Sensors” is the standard table containing one attribute for each type of sensor existing
in the network. It is the common table on which queries are computed on the “where” clause, which
filters out readings that do not satisfy the Boolean expression of predicates. The group clause is used in
conjunction with aggregate expressions to specify a partitioning of readings before aggregation. For
example, one might query:

 

SELECT buildingID, AVG(temp)

GROUP BY buildingID

 

to collect the average temperature from each building, instead of the average temperature over all sensor
readings. Finally, the “sample period” clause specifies the time between reevaluation of the query with
freshly sampled data. 

TinyDB has recently added new language features to provide more flexibility to the programmers. To
move beyond passive querying, clauses were added to spawn queries autonomously based on predefined
events and also to create internal storage points in the network. Even with these additions, though, the
declarative nature of TinyDB remains. The programmer has no ultimate control over the distributed
algorithm executed in the network because its details are taken care of by the underlying TinyDB system.

 

4.6.4 SQTL

 

Jaikaeo et al. [16] developed the sensor querying and tasking language (SQTL). Starting from a database-
like system, the researchers realized the limitations of a declarative language to the implementation of
arbitrary distributed algorithms into the sensor network. Thus, they augmented their initial language
with imperative style commands to help task the network.

SQTL fits in a more general architecture for sensor networks called sensor information networking
architecture (SINA) [26], which uses SQL-like queries as well as SQTL programs. Some of its main
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features include: (1) hierarchical clustering; (2) attribute-based naming; and (3) a spreadsheet paradigm
for organizing sensor data in the nodes. SQL-like queries use these three features to execute simple
querying and monitoring tasks. When a more advanced operation is needed, SQTL plays the essential
role by programming the sensor nodes and allowing proactive population of the program. In SINA,
SQTL is used as an enhancement of simple SQL-like queries; thus, the framework still revolves around
a database-like model.

 

4.6.5 Smart Messages — Spatial Programming

 

The Rutgers researchers have developed a mobile code platform for embedded systems called smart
messages (SM) [3]. They used SM to develop their suggestion for a programmable sensor network
framework, which they call spatial programming (SP) [14]. First, the characteristics of SMs will be
presented and then the SP model will be discussed.

SMs are entities that carry code, data, and execution state (in order to resume execution from the
same point upon migration of the SM). The code is written in Java language supporting a few extra
commands relevant to the SM environment. The run-time environment consists of a KVM (Sun’s Java
virtual machine for embedded devices) modified to support the new commands. Apart from the mobile
code entities (the smart messages), the SM environment also supports the abstraction of tags, which are
essentially SM-persistent storage and are used as universal names. From naming underlying devices and
OS services to naming nodes or application ports for specific data, tags do not have a specific structure.
Tags can be used to access the sensor data, name the node, or leave next-hop information behind from
a previously executed routing protocol.

The run-time environment also includes a manager for the tag space (essentially a name-based mem-
ory). The basic execution model of SMs is that one main agent for an application does the job by hopping
from node to node, doing some portion of the work each time. Other agents (i.e., SM) perform supporting
functions (e.g., routing). The new commands added to the basic Java language to create the extension
of SMs are:

• Four commands to create, delete, read, and write tags
• One command to create a new SM or replicate yourself
• One command to block on a tag (used for synchronization)
• Two commands to migrate (to next hop or arbitrary)

The block command can block only on one tag thus allowing a program to wait only on a single event.
Furthermore, only one smart message executes at each moment. If another is to be executed, the current
active one must block or complete execution.

Based on the SM platform, researchers from Rutgers introduced a programming model for a network
embedded system (a term that includes sensor networks) called spatial programming. SP is more a
resource-based routing scheme than a programming model. The SM platform is augmented with a way
to refer to nodes by spatial and arbitrary content properties of the node. The abstraction of spatial
reference (SR) is introduced, which has the form “space:content_tag.” Simple operations are defined on
the space portion of an SR. For instance, one can take the difference of two spaces simply by writing
space1-space2. Space can also be created with the use of the “rangeof” function, which receives a point
and a radius as arguments. An SR can refer to multiple nodes (as it covers a certain space). One can
reference individual nodes within an SR by using the “[i]” indexing convention. Another key point is the
reference consistency; once an SR is created (and thus some nodes are referred with that name)
SR_name[i] is always the same node.

Resources in nodes (e.g., sensor modules, software services) are accessed as variable names, which can
be written and read. The names do not follow a particular structure so the applications must know in
advance the custom way to access them. A weak point of the SP architecture concerns resource sharing,
which is absent from the system; the applications must explicitly negotiate any sharing. Obviously, this
method is error prone and at times impossible to follow because applications will not always have
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knowledge of each other. Finally, questions are posed concerning the actual programming model in SP.
How is the code distributed in the network? How is collaborative operation between agents facilitated?
The examples developed by the researchers to illustrate their framework present centralized applications
(executing only at one node) that access resources remotely, much like RPC calls. This kind of execution
is not the most desirable one, as was discussed in the first section of this chapter. 

 

4.6.6 Maté

 

An active sensor framework for sensor networks called Maté is currently being developed in Berkeley
[19]. Maté is a tiny virtual machine built on top of TinyOS [13]. TinyOS is an operating system, designed
specifically for the Berkeley-designed family of sensor nodes, generically named “motes” [12]. Maté’s
goal is to make a sensor network composed of motes dynamically programmable in an efficient manner.
This includes the capability to dynamically instruct a mote to execute any program, as well as expressing
this program in a concise way. This is achieved by building a virtual machine (VM) for the motes. The
VM supports a very simple, assembly-like language to be used for all needs of mote tasking. Programs
(called capsules) written on the VM language can be injected to any node and perform a task. Further-
more, the capsules have the ability to self-transfer by using special language commands. This model
seems extremely similar to the author’s in SensorWare. Indeed, Maté shares the same goals as other active
sensor frameworks, as well as the same basic principles to achieve these goals. However, as discussed in
Section 4.5, design choices differentiate active sensor frameworks.

Maté, like its substrate TinyOS, was built with a specific platform in mind: the extremely resource-
limited mote. The main restriction for the developer of mote-targeted frameworks (such as an OS or a
VM) is memory. The newest version of a mote, called mica, offers 128 Kbytes of program memory and
4 Kbytes of RAM. An older version called rene2 has 16 Kbytes of program memory and 1 Kbyte of RAM.
With an ingenious architecture, Maté supports both platforms. Because it is so constrained by memory,
Maté must sacrifice some features that would make programming easier and more efficient.

First, a stack-based architecture with an ultracompact instruction set (all instructions are 1 byte) remi-
niscent of a low-level assembly language or the byte code of the Java VM is adopted. This kind of model
makes programming of even medium-sized tasks difficult. Furthermore, due to the ultracompact instruction
set, many 1-byte instructions are needed to express a medium complexity algorithm, leading in turn to
large programs, compared to a higher-level, more abstracted scripting language. The size of programs is
important because the code is transmitted/received using the radios of the nodes spending energy for every
transmitted/received bit. Second, the behavior of a program when radio packets are received is rather rigid.
A handler to process such events is essentially stateless in Maté. Thus, if a new pattern of packet processing
is needed, a new handler must be transferred through the network. This imposes an overhead in energy
consumption and execution time. Third, because there is only one context (i.e., handler) per event (e.g.,
clock tick, reception of packet), multiple applications cannot run concurrently in one mote.

Other active sensor frameworks that target richer platforms (e.g., Rockwell Scientific’s node [24]
includes a 1-Mbyte of program memory and 128 Kbytes of RAM) have the luxury of providing much
richer native services to support easy programming with a high-level scripting language, as well as
concurrent multitasking of a node so that multiple applications can concurrently execute in a sensor
network. One such framework is present in the next subsection.

 

4.6.7 SensorWare

 

SensorWare [5, 6] is another active sensor framework developed at UCLA. This framework uses a high-
level scripting abstraction based around Tcl [23] and a highly expandable run-time environment. The
run-time environment provides multiple services that achieve the sharing of the sensor node’s resources
among multiple applications. The programming model is event based with event handlers to react to
various high-level, application-specific events that occur during a period of interest. The expandability
in SensorWare is achieved through the abstraction of virtual devices.
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Almost everything in SensorWare is a device (e.g., sensor modules, localization procedure, routing
protocols, neighborhood discovery). All devices have a unified interface to interact with them. More
specifically, the programmer can act on the device, query the device, describe and name an event the
device can produce, and dispose a previously defined event name. The programmer can use the wait
command to wait on any of the previously described events. The scripts are made mobile through special
commands and data can be carried with the scripts in the form of parameters passed by value. SensorWare
has many features to enhance efficiency, flexibility, and ease of programming, the most important of
which are:

• Custom script compression based on semantic information
• Script cashing and selective script population
• Addressing tied with routing
• Ability to register scripts as dynamic devices for seamless script coordination

A small code sample of SensorWare scripts follows.

file1:
#code_id 32 small code used as a parameter to other scripts

 

send neighbor $parent “here is your packet”

 

file2: 
#code_id 33 this script is an example

 

parameter total_time small_code

set neighbors_num [llength [query neighbor]]

 

#spawn to all neighbors small_code

 

spawn neighbor 0 $small_code

interest timer t1 $total_time

set index 0

while {index<neighbors_num} {

wait packet t1

case {$event_name} {

packet {

debug “received packet: $event_body”

}

t1{

debug “not all neighbors replied”

exit.

}

}

incr index

}

 

To invoke the example, do the following from a terminal (user node):

 

load small_code file1

load example_code file2

carry 5000 $small_code

spawn neighbor [id-n] $example_code

 

The preceding invocation commands simply load the code from the two files into Tcl variables, set
the parameters passed to the code of the spawn command, and spawn the code in file2 in the current
node. The code of file2 gets the parameters and assigns them to local names, finds out the number of
neighbors by querying the neighbor device, and then spawns the small_code (which was passed as a
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parameter) into all its neighbors. The small code simply sends a message back to the current node. Back
in the code of file2 one waits for a packet received or the timer named t1 to expire. According to which
event is taking place, different messages are output. SensorWare has been used to implement complex
applications such as the distributed estimation algorithm described in Boulis et al. [4] among others.

 

4.6.8 MagnetOS

 

MagnetOS [1] was developed at Cornell University and, although it is classified as an operating system
for networked embedded systems, it can be seen as a method to program a sensor network dynamically.
MagnetOS’ key idea is a single system image. The entire network is seen as a unified Java virtual machine
by the applications. The system consists of a static and a dynamic component. The static component is
a partitioning service that partitions regular Java applications into objects that can be distributed into
the network. The dynamic part in each node then provides services for application monitoring, object
creation, and migration.

The programmer should write normal Java applications, oblivious of the distributed nature of the
execution environment; MagnetOS will take care of partitioning and distribution of the application. The
application is partitioned according to the objects that the programmer has defined. Thus, an object
becomes a mobile application component. The objects are gradually distributed in the network following
automatic object migration policies. In MagnetOS, two algorithms perform the automatic object migra-
tion: NetPull and NetCenter. NetPull watches communication at the one-hop neighborhood level and
migrates components toward links with the greatest communication. NetCenter performs the same
monitoring at the network level and can migrate a component several hops at a time. 

Apart from the inefficiencies that the automatic code migration can create (e.g., slow convergence to
a satisfactory distribution, oscillations of component placement), MagnetOS has the major drawback of
completely hiding the distributed nature of the application. Despite the claim that the application can
be defined with a single image in mind, the choice of object definition can greatly affect the efficiency
of the distributed application because the number and type of object directly affects the partitioning of
the application. The complete elimination of the distributed nature of an application from the mind of
the programmer is an exciting goal, but very distant or even unattainable for a sufficiently diverse set of
applications.

 

4.6.9 DFuse

 

Kumar et al. [18] aspire to generalize and facilitate the data fusion process (termed “aggregation” by
other researchers) by providing a framework called DFuse. The framework consists of an API to define
arbitrary fusion processing and an algorithm for automatic fusion point placement and relocation. The
API allows the fusion application to be specified as a directed dataflow graph along with the definition
of the fusion functions. The API hides many programming details common to fusion applications, such
as buffer management, time stamping, and exception mechanism for error control. Furthermore, using
the automatic placement algorithm considerably eases the deployment of such an application. The
algorithm decides where the fusion points should be placed and periodically re-evaluates the placement.
DFuse is evaluated in its current implementation of iPAQs + Linux + Stampede (a distributed program-
ming system) by measuring the delay of the API’s basic commands and by measuring the ability of the
placement algorithm to optimize the fusion process. 

DFuse seems successful because it restricts itself to a certain type of application without making
overstatements on its general application. Certainly the restrictions on the dataflow graphs that the
programmer can define (i.e., sources and sinks of the fusion computation are fixed) limit the type of
applications that can benefit from DFuse; nevertheless, the framework presents an interesting combina-
tion of the database and active sensor models. The arbitrary definition of fusion algorithms brings an
element of the imperative active sensor model, while the definition of dataflow graphs and the automatic
placement of fusion points bring an element of the declarative database model.
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4.7 Conclusions

 

Issues that concern sensor network programmability along with the major two models for dynamic
system level programmability in sensor networks have been discussed. From the individual frameworks
examined one can conclude that, when efficiency is the major concern in a large and diverse set of
applications, the imperative active sensor model with explicit acknowledgment of the distributed nature
of the applications is the solution. On the other hand, when ease of programming in a limited set of
applications (e.g., aggregation) is the major concern, the declarative database model is the solution. The
research community is currently moving toward a macroprogramming vision for dynamically program-
ming the sensor network. This vision combines elements from both existing models. It will use an active
sensor framework as an underlying mechanism to execute arbitrary complex distributed algorithms into
the network and a declarative framework that will enable the automatic creation of these algorithms
based on well-studied run-time primitives. The declarative part can include database-like queries or
dataflow graphs to make the programming task easier. Such elements have already been seen in the DFuse
framework for a restricted number of applications, but the generalized large-scale implementation of a
macroprogramming framework is still far from realization.
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5.1 Introduction

 

As sensor network nodes decrease in size, denser networks can be deployed and entirely new sensor
network applications will be enabled. Furthermore, smaller, lighter nodes will facilitate more network
deployment methods, such as microaerial vehicles (MAV) and even air-borne dispersal. An additional
side effect of miniaturization techniques based on semiconductor batch fabrication is that the manufac-
turing cost of the sensor nodes can be reduced for large quantities, which will allow for denser and more
extensive sensor networks. These factors of discrete size and large, dense networks will enable new
methods of interacting with the environment and provide more information from more places in a less
intrusive way than before. Application areas enabled by miniaturized sensor nodes are numerous and
include defense and intelligence networks; tracking the movements of birds, small animals, and even
insects; fingertip accelerometer virtual keyboards; and interfaces for the disabled.

Sensor nodes can be divided into four major components: sensors; communication; power source;
and circuits for computation, data storage, and sensor signal processing. The volume of the sensor node
circuits is being reduced through dramatic process scaling and greater integration of mixed signal
functions into a single chip. Microelectromechanical systems (MEMS) are similarly reducing the size and
cost of sensors, some communications components, and power supplies while also reducing the power
consumption of the former two. Furthermore, MEMS techniques can reduce packaging size and facilitate
tighter integration.

 

Brett Warneke

 

Dust Networks
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5.2 MEMS Basics

 

MEMS is based on microfabrication techniques developed for microelectronics. By extending these
processes, micromachining techniques have been developed to fabricate micron-scale mechanical features
that are often controlled or sensed electrically, forming microelectromechanical systems. Through highly
integrated processes, these electromechanical components can be fabricated alongside microelectronics,
yielding complex systems.

In order to provide some background on MEMS, several of the fundamental micromachining processes
will first be described, followed by the highly integrated processes that are more advantageous for
miniaturizing sensor network nodes. This chapter will deal only with micromachining processes based
on semiconductor microfabrication techniques because they have more promise of inexpensive batch
fabrication and are more easily integrated with microelectronics for a small system size. For more
information, Pierret [1] provides a good introduction to microfabrication technologies; Petersen [2] has
produced the seminal paper on micromachining; Muller et al. [3] and Trimmer [4] provide collections
of classic papers in the field; and references 5 through 11 are reference textbooks on micromachining
and MEMS.

 

5.2.1 Micromachine Fabrication Techniques

 

Most micromachining processes begin with a substrate 100 to 600 

 

μ

 

m thick, usually composed of silicon,
other crystalline semiconductors, or quartz. Upon this substrate a number of process steps are performed,
such as thin film deposition; photolithography; etching; oxidation; electroplating; machining; and wafer
bonding. One of the key concepts of planar micromachining is that of sacrificial and structural layers —
the former refers to thin films that are etched away to allow structures patterned in the structural layers
to move. Common elemental structures include cantilevers, membranes, and plates suspended on thin
or narrow flexural beams.

Bulk micromachining involves removing relatively large portions of the substrate, including the entire
thickness, typically with a silicon etchant such as ethylene diamine pyrochatechol (EDP); tetramethy-
lammonium hydroxide (TMAH); sublimated XeF

 

2

 

, HNA (HF + HNO

 

3 

 

+ acetic acid); SF

 

6

 

 plasma; or
deep reactive ion etch (DRIE). A simple bulk process would involve first depositing a masking material
such as SiO

 

2

 

, photolithographically patterning it, and then placing the wafer in the silicon etchant for a
specific period of time. If the etchant etches laterally as well as vertically (such as an isotropic etchant),
the mask material will be undercut, potentially releasing structures such as cantilevers. Bulk microma-
chining often results in structures that move vertically. Figure 5.1 illustrates this process, except with
masking layers resulting from a CMOS process. 

Surface micromachining consists of depositing and patterning a series of sacrificial and structural
layers on top of the wafer, followed by a final release step that etches away the sacrificial layers. A basic
process would start with a silicon wafer, deposit 1 

 

μ

 

m of SiO

 

2

 

, and pattern it to form places for the
structural layer to be attached to the substrate. Next, 2 

 

μ

 

m of low-stress polysilicon would be deposited
and patterned to form the microstructures. In the final step, an HF etch would remove the SiO

 

2

 

 and
release the structures. Surface micromachining usually produces structures that move laterally, but vertical
motion is also possible.

A third style of micromachining, which combines the deep etches of bulk micromachining yet yields
structures more similar to surface micromachining, begins with silicon-on-insulator (SOI) wafers. These
wafers contain a several-micron thick “buried oxide” that isolates a relatively thin silicon device layer
from the bulk substrate. The device layer, which is where the transistors or microstructures are formed,
is usually only a couple of microns thick for CMOS wafers, but for MEMS processes it can be much
thicker, such as 50 

 

μ

 

m. After patterning a photoresist mask, the device layer is etched in a DRIE that can
achieve high aspect ratios — up to 100:1. This allows the formation of deep, narrow trenches. Finally, a
timed oxide etch removes the buried oxide from beneath the structures to be released. Because the
structural material is single crystal silicon, very flat beams and plates can be made with no residual stress,
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while the thick device layer drastically reduces the compliance of beams in the vertical axis, which is
advantageous for lateral structures.

 

5.2.2 Highly Integrated Processes

 

By integrating disparate components together into a single process, significant reductions in the size of
the sensor node may be possible. Of particular interest are processes that combine CMOS transistors

 

FIGURE 5.1  

 

Cross sections of bulk micromachining in standard CMOS. (a) The wafer as it appears when it returns
from the CMOS foundry with the various dielectric layers patterned so that the silicon substrate is exposed. When
the wafer is then placed in an isotropic silicon etchant, such as XeF2, the silicon is dissolved and the dielectric layers
become undercut, as shown in (b) and (c). (From Warneke, B. and Pister, K.S.J., 

 

Sensors Actuators

 

 

 

A

 

, 89(1–2), 142–151,
2001. With permission.)
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with micromachining capabilities. Analog Devices has successfully commercialized a process based on a
standard BiCMOS process with a 4-

 

μ

 

m low-stress polysilicon structural layer inserted into the flow before
the interconnect metallization is deposited. An additional mask is used at the end to protect the oxide
over the circuits during the sacrificial oxide release etch [12].

A number of techniques have been demonstrated to perform postprocess micromachining on foundry
CMOS. One approach utilizes poly-SiGe microstructures and poly-Ge sacrificial layers on top of a CMOS
wafer. These films can be deposited at temperatures low enough that the CMOS aluminum interconnects
are not damaged and poly-Ge can be etched with hydrogen peroxide, which does not attack the CMOS
layers [13].

One of the simplest techniques of adding micromachining to CMOS requires only a single maskless
postprocess etch [14]. By stacking the contact, via, and overglass cut layers, a region of silicon will be
exposed when the chip returns from the foundry. The silicon can then be sacrificially etched by bulk Si
etchants such as XeF

 

2

 

 [15] with the oxides and metals acting as the mask and structural layer (Figure
5.1). However, this method does not work in submicron processes that use tungsten plugs in the vias.

CMOS high aspect ratio micromachining facilitates maskless postprocessing in submicron processes
by using the top metal layer as a mask for a high aspect ratio reactive ion etch that removes any oxide
not protected by metal. In this way, narrow trenches down to the silicon substrate can be made. An
isotropic plasma Si etch then releases the microstructures formed by the CMOS thin films.

 

5.3 Sensors

 

5.3.1 Selection Criteria

 

A large amount of MEMS research and product development has been in the area of sensors, so a wide
variety of measurands using numerous detection techniques are available with micromachined sensors
[7–9]. Examples include thermal sensors [16]; accelerometers [17]; gyroscopes [12]; pressure sensors
[18]; microphones [19]; radiation detectors; magnetic sensors; flow sensors; and chemical and biological
sensors. However, when selecting or designing a sensor for use in a miniature sensor network node,
several criteria should be considered:

•

 

Volume of the complete sensor

 

. Although the active sensing element may be small, the complete
system necessary to operate the sensor or interface it to the environment may be much larger. For
example, a chemical sensor may require a sample gathering and preparation system much larger
than the active region.

•

 

Energy consumption

 

. Because, for a given lifetime, energy needs directly affect the size of the
power system and thus the sensor node, the energy required to make a measurement with the
sensor should be minimized. The energy consumed is determined by the power consumption
integrated by the time that the sensor has power applied to make a particular measurement.

•

 

Power consumption

 

. The first approach to reducing the energy consumption of a sensor is to
reduce the power consumed by the device during operation, primarily by placing a high priority
on minimizing the power consumption throughout the design of the sensor to guide trade-off
decisions. For example, power considerations can affect the choice of detection technique — a
piezoresistive sensor can have a large DC current, whereas a capacitive sensor will have no such
component; however, the detection circuits are likely to have a high frequency excitation signal
that consumes dynamic power. Nevertheless, power consumption cannot be considered in isola-
tion because it is possible for the lowest power sensor to consume more energy per sample if
smaller currents increase the time necessary to reach a stable measurement and thus add to the
sample time and energy.

•

 

Suitability for power cycling

 

. One of the most straightforward methods of reducing the power
consumed by a device is to turn it on only when necessary for as long as needed. It is therefore
important that a sensor can be turned on and off relatively quickly. The gains become greater for
sensors that are not sampled as frequently, such as a temperature sensor likely to be accessed once
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a minute or less due to slow thermal time constants. Certain sensors, such as chemical or light,
may need to integrate the measurand over a significant period of time, so their usage needs to be
evaluated carefully. Additionally, low-frequency sensors such as seismometers can have long system
time constants that prevent rapid power cycling. Some systems may benefit from a threshold or
course sensor with a reduced energy consumption, which then triggers the sensor node to activate
a higher energy consuming device with greater resolution.

•

 

Fabrication and assembly compatibility with the rest of the system

 

. A sensor that can be fabricated
in the same substrate as other system components, such as the integrated circuits or communi-
cation devices, can greatly assist in building a compact node. If monolithic fabrication is not
possible, assembly compatibility is also beneficial. For example, flip-chip bonding of heterogeneous
substrates can yield small, integrated systems. These are all areas in which MEMS-based sensors
can aid in miniaturizing a system.

•

 

Packaging requirements

 

. Some sensors may need contact with the environment, such as humidity
and chemical sensors, which can limit the miniaturization potential.

 

5.3.2 Integrated Circuit Sensors

 

A number of measurands can be sensed by standard integrated circuits, which makes these sensors
extremely easy to integrate with minimal additional volume. Temperature can be determined through
the temperature dependence of subthreshold MOSFETs or the p–n junction of a diode or bipolar
transistor. The proportional to absolute temperature (PTAT) circuit [20, 21] is most commonly used to
extract the temperature signal, but other approaches that provide a digital output have been implemented,
including using a counter to measure the frequency of a temperature-dependent ring oscillator [67]. 

Similarly, p–n junctions can also be used as photodiodes and phototransistors to measure light
intensity, although a translucent window is necessary in the package. In addition, metal shields should
be placed over sensitive circuits to prevent photogenerated carriers from interfering with their operation.
Hall-effect sensors that detect magnetic fields can also be built from integrated circuits [22]. Sometimes
ferromagnetic materials are deposited on top of the standard transistor process and patterned to form
field concentrators that improve the responsivity of the sensor.

 

5.3.3 Nanosensors

 

Nanosensors can potentially provide further reductions in volume of the sensing element. The molecular
scale and high relative surface area of nanowires allow precise control and sensitive detection of charged
biological and chemical species [23]. In addition, nanowires can improve the responsivity of optical
detectors by dramatically increasing the surface area of the detector; thermocouple-style temperature
sensors are being developed with silicon nanowires. Meanwhile, carbon nanotubes have been demon-
strated as chemical [24] and infrared [25] sensors.

 

5.4 Communication

 

MEMS does not impact the communication of wired sensor networks, but it can help miniaturize wireless
communication. The most common form of wireless communication in use today is radio frequency
(RF) radiation, including microwave and millimeter wave. However, because the relatively long wave-
lengths inherently limit the size of a sensor node utilizing these frequencies, free-space optical commu-
nication can be advantageous for building tiny sensor nodes.

 

5.4.1 RF Communication

 

The primary reasons to use RF communication are that it does not require line of sight and readily allows
omnidirectional links. In some applications, such as asset tracking or supply chain monitoring, in which
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the node may be enclosed, these benefits are imperative. Nevertheless, RF does have limitations that make
it less efficient for tiny, energy-constrained devices:

• Efficient antennas need to be a significant fraction of a wavelength, resulting in antennas that are
many centimeters long at RF and microwave frequencies. Millimeter wave frequencies can yield
more reasonably sized antennas, but the circuit efficiencies are lower and the transmission atten-
uation is greater.

• A small RF antenna will have very low antenna gain because beam divergence is fundamentally
limited by diffraction, which is dependent on wavelength. To achieve the same milliradian collimation
of an inexpensive laser pointer would require a 100-m diameter parabolic antenna at 1 GHz.

• RF transmitters have poor efficiency; a GMSK power amplifier has 50% slope efficiency (not
including bias overhead), while the linear amplifiers used in CDMA systems have 10% slope
efficiency. In addition, usually 1 to 100 mW of overhead is due to mixers, biasing, etc., although
researchers are working to improve these efficiencies and build 100-

 

μ

 

W radios that consume
5 nJ/(correct)b [26].

• The received power varies as the inverse of the distance raised to the second to seventh power due
to multipath fading; for communication along the ground, such as cellular telephones, the average
is four.

Together, these reasons make RF unattractive for tiny wireless nodes due to poor energy efficiencies and
large radiators.

To illustrate these inefficiencies, the Bluetooth radio standard, which was designed for relatively low-
power handheld devices, consumes about 100 nJ/b to transmit just tens of meters. Similarly, an IEEE
802.15.4 (draft) radio [27], which was actually designed for low-power wireless sensor networks, has a
100-m range; 0 dBm transmitted power (25 nJ/b); receiver sensitivity of –92 dBm; and 40 kbps data rate;
it operates in the 902 to 928 MHz band. When actively communicating, it consumes 1 

 

μ

 

J/b on the
transmit side and 2 

 

μ

 

J/b on the receive side, not including the power-up overhead time and idle periods.
Nevertheless, for those applications that do require RF nodes, MEMS can reduce the size of the

transceiver [28, 29]. Figure 5.2 shows a block diagram of a typical wireless transceiver front end with a
superheterodyne architecture. A relatively large number of high-Q, passive components are shown,
including ceramic and SAW filters, discrete inductors, and discrete tunable capacitors (varactors) that
cannot be fabricated with conventional integrated circuit processes. These components thus must be
implemented with off-chip devices that end up dominating the size of the transceiver. Fortunately,
micromachined components have been developed that may be able to replace each of these off-chip
components; this will reduce the overall size of the transceiver through physically smaller components
and the potential for integration with the integrated circuit chips.

Voltage-tunable high-Q capacitors can be fabricated by suspending a top aluminum plate on soft
flexures over a bottom plate [30]. A DC bias on the resulting capacitor causes an electrostatic force to
pull the top plate down, thus varying the capacitance. Such a structure has been demonstrated with a Q
of 62 at 1 GHz. 

There are a number of approaches for fabricating on-chip high-Q inductors. Two techniques improve
the Q of normal planar inductors (which is 1 to 3 at 1 GHz): the first utilizes a NiFe thin film under the
spiral to act as a core to increase the magnetic flux and thus the Q (6.6 at 4 MHz [31]); the second
method uses a front- [32] or back-side silicon etch to remove the lossy substrate from underneath the
spiral and achieve Qs of 5 at 1 GHz and 60 to 80 at 40 GHz. The latter approach is more readily integrated
with circuits because it can be implemented with a postprocess etch, while the former requires adding
nonstandard metal depositions into the process. More exotic fabrication techniques can be used to build
three-dimensional inductors. Figure 5.3 shows a four-turn inductor fabricated on a silicon substrate with
5 

 

μ

 

m-thick copper traces electroplated around an alumina insulating core with a 650 

 

×

 

 500 

 

μ

 

m cross
section. Direct-write laser lithography is used to pattern the top and sidewall photoresist. This device
achieves 14 nH of inductance and a Q of 16 at 1 GHz, while a similar one-turn coil obtains an inductance
of 4.8 nH and a Q of 30 at 1 GHz [33].
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FIGURE 5.2  

 

Diagram of a typical wireless transceiver front end showing the many off-chip, high-Q, passive com-
ponents, such as filters, inductors, and capacitors, that could be replaced by micromechanical versions. Besides the
component-size reduction, such components could potentially be integrated with the circuits for dramatic volume
reductions.

 

FIGURE 5.3  

 

Four-turn inductor fabricated on a silicon substrate with electroplated copper around an insulating
core. It has an inductance of 14 nH and a Q of 16 at 1 GHz. (From Young, D.J. et al., 

 

Tech. Dig., Int. Electron Devices
Meeting

 

, Washington, D.C., December 1997, 67–70. With permission.)
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Some applications, such as replacing quartz crystals and ceramic and SAW filters, require even higher
Qs than these devices can provide. Just as the macroscopic domain utilizes vibrating mechanical struc-
tures, the microscopic domain can achieve high Qs through vibrating resonators with a second-order
response. Thin film bulk acoustic resonators (FBAR) are composed of a metal–piezoelectric–metal film
stack, similar to a quartz crystal, and suspended on a thin membrane to provide acoustic isolation from
the substrate. Such resonators can achieve a Q of 1200 at 1.9 GHz with an area of only 100 

 

×

 

 100 

 

μ

 

m

 

2

 

[34] and are currently in production.
An alternative method of building micromechanical resonators uses surface-micromachined polysili-

con to suspend a flexural-mode beam over an electrode. The beam is electrostatically excited, resulting
in the second-order resonance. Qs of 7450 have been achieved at 92 MHz [35]. These structures can also
be mechanically coupled to form high-Q filters and filter-mixer structures [36] that allow multiple
components of the system illustrated in Figure 5.2 to be replaced with a single passive micromechanical
component. This could reduce size and power consumption of the transceiver. A similar fabrication
process can also produce a ring or disk with a central anchor driven laterally through a submicron gap
to obtain a Q of 9400 at 156 MHz. One of the major problems with micromechanical resonators is that
they have relatively low power handling capabilities that limit their use in applications such as cellular
telephones; however, these limits are high enough to be applicable to distributed wireless sensor networks
that utilize short-range, multihop communication links.

Finally, the transmit/receive diplexer switch can be replaced with micromechanical relays that feature
lower insertion loss (“on” impedance) and larger isolation (“off” impedance). The two major styles of
switches are (1) cantilever beams with electrostatic pull-down electrodes and metal–metal contacts for
DC operation; and (2) suspended membranes that are electrostatically deformed to increase the capacitive
coupling through the structure dramatically [37]. Cantilever-style switches have been demonstrated with
an actuation voltage of 30 V, >50 dB of isolation below 2 GHz, and <0.2 dB of insertion loss from DC
to 40 GHz [38]. Besides their use as diplexers, the nearly ideal behavior of RF switches can be used to
build small tunable filters, multiband antennas, true-time delay phased-array antennas, and even recon-
figurable transceiver architectures [39].

It should be noted that although Figure 5.2 provides a good discussion point because of the large
number of high-Q components that could be replaced by MEMS components, it is not the only transceiver
architecture possible. For example, direct-conversion (zero-IF) [40] and subsampling [41] transceivers
eliminate many of the filters. In addition, if the channel selectivity and other parameters of the radio
band are relaxed, high-Q components may not be necessary, although the use of higher Q components
can often lead to lower power consumption because of the reduced losses. 

 

5.4.2 Optical Communication

 

Free-space optical communication has many advantages for miniature sensor nodes:

• Optical radiators such as mirrors and laser diodes can be made extremely tiny — 0.03-

 

μ

 

m

 

3

 

 lasers
have been demonstrated [42].

• As mentioned earlier, optical transmission provides extremely high antenna gain, which yields
higher transmission efficiencies. 

• Although laser output slope efficiencies are only about 25%, the diode turn-on current overhead
can be as low as 1 

 

μ

 

W for vertical cavity surface emitting lasers (VCSELs), so the effective output
efficiency can be much higher than RF power amplifiers.

• The received power only decays as the inverse of the distance squared, assuming line of sight. 
• The high directivity of optical communication enables the use of spatial division multiple access

(SDMA) [43], which is a simple network media access technique in which an imaging receiver
can separately process simultaneous transmissions from different angles. SDMA thus requires no
communication overhead and has the potential to be more energy efficient than RF media access
methods such as frequency, time, and code division multiple access (FDMA, TDMA, CDMA).

 

7037_C005.fm  Page 8  Tuesday, November 15, 2005  10:09 AM

© 2006 by Taylor & Francis Group, LLC



 

Miniaturizing Sensor Networks with MEMS

 

5

 

-9

 

• It is extremely difficult to eavesdrop on collimated optical communication (low probability of
detection and low probability of intercept), which is a significant security advantage.

The primary drawbacks of optical communication are that line of sight is necessary for all but the
shortest distances and the narrow beams imply the need for accurate pointing. Fortunately, MEMS
technology and clever algorithms can provide accurate pointing [44] and multihop, self-healing network-
ing can allow messages to travel around certain obstacles.

The two primary methods of free-space optical transmissions are passive reflective systems and active-
steered laser systems. The passive reflective system consists of three mutually orthogonal mirrors that
form the corner of a cube (Figure 5.4) [45] — thus the name corner cube retroreflector (CCR). Light
entering the CCR bounces off each of the mirrors and is reflected back to the sender parallel to the
incoming beam. By electrostatically actuating the bottom mirror, the orthogonality can be disturbed,
causing the reflection to no longer return to the sender. This behavior allows the CCR to communicate
with an interrogator by simply modulating the reflected light and resembles the operation of a heliograph
in which the operator bounces sunlight off a mirror to transmit Morse code messages to other ships.
This is a concept that can be traced back to Greece in the fifth century 

 

B

 

.

 

C

 

. Because the only energy
consumed is that required to charge 3 pF of capacitance in the actuator, this is much more efficient than
an approach that requires the generation of radiation, such as RF or lasers. 

The device shown in Figure 5.4 is fabricated using deep reactive ion etching (DRIE) in an SOI wafer
with a 50-

 

μ

 

m device layer for flat, smooth mirror surfaces. It consumes 16 pJ/b transmitted, has a
demonstrated range of 180 m, transmission data rates in excess of 4 kbps, and a size of 2 

 

×

 

 2 

 

×

 

 0.5 mm,
although it can be made smaller if less reflection is acceptable. One restriction with CCR-based commu-
nication is that it does not facilitate peer-to-peer communication, so a one-to-many network topology
is required; however, distributed algorithms are under development to take advantage of such a network

 

FIGURE 5.4  

 

A quad-corner cube retroreflector (CCR) used for passive optical transmission. The electrostatically
actuated bottom mirror rotates torsionally to disturb the orthogonality of the corner and switch the light reflected
from the CCR from the “1” to “0” states. The insets show the spring locks that aid in assembly and maintain alignment.
The device is fabricated on an SOI wafer with a 50-

 

μ

 

m thick device layer using deep reactive ion etching. (From
Zhou, L. et al., 

 

IEEE J. Microelectromech. Syst.

 

, 12(3), 233–242, 2003. With permission.)
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for things such as sensor data compression. Furthermore, the communication range of a sub-mm CCR
is theoretically limited to about 1 km in a practical implementation.

Active-steered laser communication utilizes a small laser diode, such as a VCSEL, a collimating lens,
and MEMS beam-steering optics to transmit a tightly collimated light beam to a particular receiver
(Figure 5.5). This facilitates peer-to-peer communication over a wide area, while maintaining many of
the features of optical communication including high directivity and long-distance communication using
little power. Because efficient lasers cannot be fabricated in silicon, monolithic integration is unlikely;
however, micromachined structures can be used to aid in the alignment of a bare laser diode onto a chip
[46]. On the other hand, three-dimensional micromachined collimating lenses have been demonstrated
using reflowed photoresist [47]. The beam-steering optics are the most challenging part of the system
because they should have close to hemispherical range, low actuation range, low cross-axis sensitivity,
and be robust against shock. Current approaches use multilevel SOI MEMS for very flat mirrors, low
cross-axis sensitivity, and robustness [48], but have only achieved up to 40

 

°

 

 of optical deflection angle
with a rather high actuation voltage of 90 V [49].

Finally, to illustrate the dramatic differences between the various communication schemes discussed,
Figure 5.6 compares the communication range vs. energy/bit consumption of CCR, green laser, and GSM
RF communication.

 

5.5 Micropower Sources

 

Miniature sensor nodes can be powered from energy storage or energy scavenging devices or a combi-
nation thereof. In addition, to allow larger peak currents or integration of charge from energy harvesters
to compensate for lulls such as nighttime for a solar cell, capacitors may be used in these systems to lower
the effective impedance of a battery or energy harvester. High-density capacitors, such as the Ultraca-
pacitor [50], can store up to 10 mJ/mm

 

3

 

, which is less than 1% the energy density of lithium cells.

 

5.5.1 Energy Storage

 

From the system’s perspective, a good microbattery should have the following features:

• High energy density
• Large active volume to packaging volume ratio (i.e., a thin film on top of a 500-

 

μ

 

m silicon wafer
would not be desirable)

• Small cell potential (0.5 to 1.0 V) so digital circuits can take advantage of the quadratic reduction
in power consumption with supply voltage

• Ability to configure efficiently into a series of cells to provide a variety of potentials for the various
components of the system without requiring the overhead of voltage converters

• Rechargeable in case the system has an energy harvester

 

FIGURE 5.5  

 

Conceptual diagram of a steered agile laser transmitter. A laser diode emits a beam that is collimated
by a lens (may be micromachined) before bouncing off the MEMS beam steering mirror, which aims the beam
toward the intended receiver.

Laser Lens Mirror
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A variety of tiny batteries are being developed, including thin-film vanadium oxide and molybdenum
oxide [51] that are fabricated using spin-casting sol-gel techniques and micromachined cavities containing
an electrolyte, although the latter devices do not have high energy densities [52]. Nickel-zinc batteries
have been developed with a footprint of 2 mm

 

2

 

, <100 

 

μ

 

m thick, and a capacity of 20 mJ/mm

 

2

 

 with a
discharge rate of >1 mA/mm

 

2

 

 [53]. Another potential candidate chemistry is rechargeable thin-film
lithium energy cells. Researchers at Oak Ridge National Laboratory have built 1 cm

 

2

 

 

 

×

 

 <15 

 

μ

 

m Li-LiCoO

 

2

 

batteries with a 40,000 charge/discharge cycle life and a capacity up to 24 mJ/mm

 

2

 

 [54–56]. A derivative
process at the Jet Propulsion Laboratory uses microfabrication techniques to generate batteries as small
as 50 

 

×

 

 50 

 

μ

 

m with a 0.25-

 

μ

 

m cathode film and capable of energy densities of 1.4 mJ/mm

 

2 

 

[57].
One of the highest energy density battery chemistries available is the Zn-air cell. It is also available in

the smallest button cell package: the Energizer IEC-PR63 weighs 0.2 g (including packaging); is 0.051
cm

 

3

 

; V

 

oc

 

 = 1.4 V; and contains 33 mAh (160 J). TPL Inc. is using micromachining techniques to develop
Zn-air volumetric batteries 2 mm in diameter and 0.5 mm thick with a capacity approaching 1 mAh (3
J/mm

 

3

 

) [58]. With an areal capacity of 1.6 J/mm

 

2

 

, the advantage of the volumetric approach is evident
over the thin-film lithium batteries if maintaining a small footprint is a priority. To meet the demand
for higher discharge current, TPL proposes to combine supercapacitors that store 30 mJ in a similar size
in parallel with the batteries.

The biggest problem with current Zn-air cells is that the self-discharge is so high that, after the air
terminal is opened, they have a shelf life of only a couple of weeks, although a micro Zn-air cell could
potentially incorporate a micromachined air valve to control this self-discharge. The sensor node would
then operate primarily off a capacitor that would be charged periodically by opening the air valve. An

 

FIGURE 5.6  

 

Communication range vs. transmission energy for RF (GSM, 1 GHz, isotropic, path loss 

 

n

 

 = 4); laser
(532 nm green, 1 mW, 1 Mbps, 200 

 

×

 

 200 

 

μ

 

m receiver aperture); and CCR (400 

 

μ

 

m passive, 16 pJ/b independent
of distance up to 1 km).
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additional problem with Zn-air cells is that they are not rechargeable. This chemistry is thus only a
candidate in short-term deployments. Even though process compatibility with the other components of
the system may seem desirable, it may actually not be important due to the possibility of stacking the
various components because the batteries do not need exposure to the environment.

In addition to chemical energy storage, radioactive isotopes provide another method of storing energy
on a small sensor node; such techniques are already used extensively in deep space probes and satellites
where long life and reliable operation are essential, just as in wireless sensor networks. Blanchard and
coworkers [59] have demonstrated a micromachined radioactive battery based on a thin-film beta emitter
coating a beam that performs a charge to mechanical conversion (as the beta particles leave, the beam
acquires a positive charge, causing it to be attracted to the substrate). This is followed by a mechanical
to electrical conversion using a piezoelectric material (the strain of the bending beam is converted to
charge), also on the beam. Two companies [60, 61] have also proposed building millimeter-scale radio-
active power sources based on beta emitters, the first of which is using betavoltaics — the direct conversion
of beta particles to electricity by bombarding a p–n junction.

 

5.5.2 Energy Harvesting

 

Scavenging energy from the environment will allow the wireless sensor nodes to operate nearly indefi-
nitely, without their batteries dying. Solar radiation is the most abundant energy source and yields around
1 mW/mm

 

2

 

 (1 J/day/mm

 

2

 

) in full sunlight or 1 

 

μW/mm2 under bright indoor illumination. Solar cells
have conversion efficiencies up to 30%.

Vibration has been proposed as an energy source [62, 63] that can be scavenged. Vibration spectra of
office windows, copy machines, microwave ovens, industrial motors, freeway traffic, and the human gait
reveal that usable energy is there — typically on the order of 10 μW/g of mass of the converter. Because
the mass of a cubic millimeter of silicon is about 2 mg, this energy source is only feasible at the centimeter
scale and above. The basic device used to extract energy from vibrations is a mass on a spring connected
to a variable capacitor. In actual implementation, a lateral or gap-closing comb resonator is typically
used. A precharged reservoir, such as a capacitor or rechargeable battery, a storage capacitor, and two
switches form the basic charge-constrained conversion circuit. 

More exotic energy sources that have been proposed include utilizing the excess heat from microrocket
engine combustion [64]; using copper and zinc electrodes to generate power from seawater; and har-
vesting ATP for in vivo applications. For applications in which duty cycling is acceptable, solar cells or
other power scavenging sources can be used to trickle charge a capacitor or battery, after that the stored
energy can be used at much higher power rates than the charging pace.

5.6 Packaging

As the size of the sensor node decreases, the packaging considerations become more critical to prevent
the package from dominating the volume and since nonstandard packaging is necessary. Some of the
requirements of the packaging include:

• The microstructure, such as a CCR or accelerometer, must be protected while still being able to
move.

• Electrical connections between various chips, such as bond wires or vertical interconnects from a
battery, need to be facilitated and protected.

• Solar cells require clear packaging and possibly a lens to improve the collection efficiency.
• An optical receiver photodiode may require an optical filter.
• A CCR requires an antireflective (AR)-coated cover that allows illumination along its primary axis

of [111].  
• The packaging must add a minimum of extra volume.
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• The deployment method used in the application will place certain requirements on the packaging.
For example, micro air vehicle deployment would require the packaging to protect the sensor node
from being dropped 100 ft.

• Toxic battery chemistries need sufficient shielding in case a human or animal swallows the node.
• Vibration harvesting devices need a solid mechanical connection to the environment.
• Sensors may require special access to the environment, so packages may require tailoring to the

application. Examples include humidity, pressure, acoustics, strain, gaseous chemical and biolog-
ical sensors, and fluidic sensors.

The use of a common substrate is also a consideration because it can ease assembly, but adds volume.
The die substrates can be thinned to help reduce the impact of a common substrate.

Micromachining techniques can help meet some of the packaging requirements. For instance, micro-
structures such as accelerometers and resonators can be fabricated in sealed vacuum cavities by defining
the cavity with a sacrificial layer; depositing a structural layer; removing the sacrificial layer through a
small access hole; and then sealing the cavity by depositing a CVD, sputtered, or evaporated film or by
growing an oxide on a polysilicon layer until the hole is sealed. Wafer bonding can also be used to protect
microstructures within a hole or cavity in the wafer. A variety of microassembly technologies [65], such
as pick-and-place methods for the microdomain, batch transfer, fluidic microassembly, and flip-chip
bonding, facilitate the compact assembly of heterogeneous dies.

The CCR poses some of the most difficult packaging constraints because the device must be mechan-
ically protected, allowed to move, and have good optical properties. Three options were proposed in Hsu
[66]:

• A hemispherical cover can cause lensing effects if the diameter is too small, which affects the
performance of the CCR.

• A flat plate elevated on short walls eliminates the lensing effects, but the plate must be large to
avoid the edge blocking the light. Because the optimum axis of the CCR is at a 45° angle to the
plate and the reflectivity of the plate increases as the angle of incidence increases, this approach
is not optically efficient.

• A pyramid that has surfaces normal to the body diagonals of the CCRs can be used. Because the
optimum incident angles for the CCRs are closer to normal to the package, reflections will be
reduced.

Steered agile laser communication also requires a package that mechanically protects the micro-optical
system, allows it to move, and has good optical properties. However, because an input optical beam is
not necessary, a simple hemispherical cover is the best option.

For cubic millimeter sensor nodes, such as that shown in Figure 5.9, the best proposed solution at this
time involves potting the node in an optical-quality polymer with some special molds as shown in Figure
5.7. This package provides many of the necessary features detailed previously, including providing access
to the environment by molding holes in the polymer. An antireflective coating can probably be placed
on the polymer at the end of the process.  

5.7 Systems

A number of wireless sensor nodes have been developed that take advantage of MEMS to achieve a small
size. Mason and colleagues [67] at the University of Michigan created a multisensor microcluster that
measures temperature, pressure, humidity, and vibration/position. It includes a microcomputer, has a
50-m RF link, is less than 10 cm3 (Figure 5.8), operates off a single battery, and consumes 530 μW average
power and 10 mW while transmitting.

The microsystem contains a variety of chips: a commercial microcontroller (Motorola 68HC11); a
power management chip; a commercial transmitter (RFM HX1005); a capacitive interface chip with an
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integrated temperature sensor; a capacitive barometric pressure sensor; a capacitive relative humidity
sensor; two accelerometers; a threshold accelerometer interface chip; and a lithium coin cell. The pressure
sensor is fabricated using bulk micromachining and a silicon-glass dissolved-wafer process to create
multiple diaphragms that segment the pressure range. The humidity sensor is fabricated with high-aspect-
ratio micromolding and electroplating to form a series of interdigitated electrodes. A thin polymer film,
whose dielectric constant varies as a function of moisture, fills the gaps between the electrodes and causes
the capacitance to vary with humidity. A z-axis accelerometer is fabricated in a three-mask dissolved-
wafer process and contains a proof mass suspended by torsional beams. At the end of the proof mass, a
set of comb fingers is interdigitated with a set of fixed comb fingers that provide capacitive sensing of
the movement of the proof mass. Finally, an array of threshold accelerometers, which are simply cantilever
switches with varying proof masses and spring constants, is fabricated using the dissolved wafer process;

FIGURE 5.7  Polymer encapsulation process for cubic millimeter sensor node packaging.

FIGURE 5.8  Multisensor microcluster containing MEMS pressure, humidity, and acceleration sensors and an RF
transmitter with a 50-m range. The device is less than 10 cm3. (Personal communication from K. Wise.)

CCR
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CCR CCR
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microstructures, put a blob of
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(b) Put device in a mold, fill with
polymer just above the top of the
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(d) Use O2 plasma to activate the
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molded cap.
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p++ etch stop proof masses; oxide suspension beams; and gold contacts. A second-generation micro-
cluster system reduced the volume to less the 5 cm3, while forthcoming versions will be around 1 cm3

and even down to 0.2 cm3.
The Wireless Integrated Network Sensor (WINS) project at UCLA [68] developed a sensor node that

included an infrared imager; seismometer; spectrum analyzer; RF transceiver; and lithium coin cells in
a volume on the order of tens of cubic inches. The sensor integration relied on flip-chip bonding structures
to a low temperature, cofired ceramic (LTCC) substrate that provided a platform for support of interface,
signal processing, and communication circuits. In addition, the LTCC substrate provides small, embedded
low-loss capacitors and high-Q inductors that are used by the transceiver. The infrared imager and
seismometer were fabricated with bulk micromachining and flip-chip bonding. WINS also explored
building a loop antenna on a CMOS die by removing the silicon substrate with a XeF2 etch.

The PicoRadio project [26] at UC Berkeley is developing an ultralow energy transceiver for ubiquitous
wireless data acquisition. The goal is to consume less than 5 nJ/(correct)b and less than 100 μW. The
transceiver uses FBARs for low-phase noise oscillators [69] and filters, while vibration harvesting is being
investigated for the power source [63].

The most extensive use of MEMS for miniaturizing wireless sensor nodes is the Smart Dust project
[70] at UC Berkeley that seeks to push the volume of wireless sensor nodes aggressively down to a cubic
millimeter. Figure 5.9 shows a 16-mm3 autonomous solar-powered sensor node [71] with bidirectional
optical communication. The system consists of four die: a 0.25-μm CMOS ASIC; a trench-isolation SOI
solar cell array; a micromachined four-quadrant CCR; and a capacitive accelerometer. The ASIC contains
an optical receiver that consumes 69 pJ/b; an ADC that uses 180 pJ/8-b sample; a photosensor for
measuring ambient light; a finite state machine to control the system; and a 1-μW, 3.9-MHz integrated
oscillator. A new DRIE SOI/CMOS process has been developed to allow integration of solar cells, CCR,
and accelerometer along with high-voltage FETs. Figure 5.10 shows the resulting die combined with the
same ASIC as in Figure 5.9 for a total device size of 6.6 mm3.

5.8 Conclusion

Many aspects of wireless sensor network nodes can be miniaturized with MEMS technology. From the
sensors to the wireless communication components and power supply, MEMS is reducing volume,
improving performance, and reducing cost through batch fabrication techniques. In addition, MEMS

FIGURE 5.9  16-mm3 Smart Dust mote, showing a 0.25-μm CMOS ASIC with optical receiver, ambient light sensor,
and controller; solar power array; accelerometer; and CCR, each on separate die. (From Warneke, B.W. et al., Proc.
IEEE Int. Conf. Sensors 2002, Orlando. With permission.)
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packaging and assembly techniques can help build miniature systems out of these small components. By
miniaturizing sensor networks, not only will new applications be enabled, but they can also be deployed
in more places, with higher densities and less interference to the monitored area, thus allowing improved
data gathering. In this way the physical world can truly be instrumented.
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6.1 Introduction

The sheer number of sensor nodes and the dynamics of their operating environments (for instance,
limited battery power and hostile physical environment) pose unique challenges in the design of sensor
networks and their applications. Issues concerning how information collected by and stored within a
sensor network can be queried and accessed are of particular importance. In this chapter, sensor network
applications are categorized into two classes — querying and tasking — and a generic functional archi-
tecture, termed sensor network architecture (SNA), to facilitate these applications is introduced. In this
architecture, functional components and their interrelationship, which should be available in sensor
networks, are identified. Two existing implementation architectures, SINA [1] and TopDisc [2], are exam-
ined as a case study by describing how SNA’s functional components are exploited, as well as application
characteristics supported by them. 

The following section describes the two categories of applications for sensor networks. Section 6.3
describes the functional architecture of SNA. Two sample implementation architectures, SINA and
TopDisc, are described in Section 6.4. Section 6.5 concludes the chapter. 

6.2 Sensor Network Applications

Based on the characteristics of their operations, applications of sensor networks can be divided into two
classes: querying and tasking. The following subsections present sample applications for each class. 

*Portions reprinted with permission from IEEE Personal Communications Magazine, 8, 4, 2001. © 2001, IEEE.
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6.2.1 Querying Applications

Querying applications concern how information collected by a sensor network can be retrieved based
on specified criteria. For instance, environment sensing to extract information from the physical
environments is one major application of sensor networks. Depending on its hardware capability, a sensor
node can be programmed to collect temperature, humidity, light, pressure, chemical substances, or
vibration information [3], and report it to the application. Applications may employ simple queries to
obtain raw sensor data reported directly from each sensor node.

However, in some situations, complicated queries involving distributed data collection or aggregation
become necessary. For example, to find out which region of the sensed area has the highest temperature,
intelligent data collection, filtering, and aggregation could be carried out within the sensor network so
that the observer will not need to obtain all raw data, thus conserving scarce system resources, such as
battery energy and network bandwidth. In addition, the state of the sensor node, such as remaining
energy level, operational status, or a list of neighboring sensors, can also be retrieved for management
purposes [2]. The collected information could also be used to diagnose the health of sensors [4]. 

6.2.2 Tasking Applications

Tasking applications involve programming sensor nodes to perform specific actions upon certain events.
Events can be physical environment changes, messages from nearby sensor nodes, or triggers from
hardware/software modules inside a sensor node. A task can be as simple as asking individual sensor
nodes to report information independently when they sense something unusual about their surrounding
environments. More complex tasks may require distributed coordination, or even collaboration, among
sensor nodes to achieve higher accuracy and/or efficiency. For instance, tracking a moving object in an
area by simply having every single sensor node periodically and blindly monitor its surroundings can be
very energy inefficient. If nodes surrounding the tracked object collaborate, more complete and accurate
information can be collected with higher efficiency [5–7].

A similar idea of coordination can also be applied to reduce the number of nodes participating in data
forwarding [2]. Modern equipment may have sensor modules operate in conjunction with actuator
modules so that the behavior of sensor nodes can be controlled. In this case, tasking applications can
utilize information obtained from sensor nodes to adapt nodes’ behavior or movement pattern so as to
achieve better sensing and networking performance. For environmental control applications, actuators
can be controlled to affect the physical environments. An office building, for example, may have a sensor
node installed in each room. These nodes then coordinate and send control signals to the air-conditioning
unit, which, in turn, adjusts accordingly to achieve optimal comfort in all the rooms [8]. 

FIGURE 6.1  Querying and tasking applications in sensor networks. (From Shen, et al., IEEE Personal Commun.
Mag., 8(4), 52–59, 2001. With permission.)
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6.3 Functional Architecture for Sensor Networks

Compared to conventional distributed databases in which information is distributed across several sites,
the number of sites in a sensor network equals the number of sensor nodes, and the information collected
by each node (e.g., sensor readings) becomes an inherent attribute of that node [9]. To support energy-
efficient and scalable operations, sensor nodes could be autonomously clustered. Furthermore, the data-
centric nature of sensor information makes it more effectively accessible via an attribute-based naming
approach instead of explicit addresses [10]. In addition, as these sensors are integrated into and extract
information from physical environments, many applications also require the location information to be
passed along with their sensor data. As a result, a generic functional architecture for sensor networks
consists of the following components. 

Hierarchical clustering. To facilitate scalable operations within sensor networks, sensor nodes could
be aggregated to form clusters based on their energy levels and proximity. The aggregation process could
also be recursively applied to form a hierarchy of clusters (Figure 6.2). Within a cluster, a cluster head
will be elected to perform information filtering, fusion, and aggregation, such as periodic calculation of
the average temperature of the cluster coverage area. In addition, the clustering process should be
reinitiated in case the cluster head fails or runs low in battery energy. In situations in which a hierarchy
of clusters is not applicable, the system of sensor nodes is perceived by applications as a one-level clustering
structure in which each node is a cluster head by itself. The clustering algorithm introduced by Estrin
and colleagues [10] allows sensor nodes automatically to form clusters, elect and re-elect cluster heads,
and reorganize the clustering structure if necessary. 

Location awareness. Because sensor nodes are operating in physical environments, knowledge about
their physical locations becomes mandatory. Location information can be obtained via several methods.
Global positioning system (GPS) is one of the mechanisms that provide absolute location information.
For economical reasons, however, only a subset of sensor nodes may be equipped with GPS receivers and
function as location references by periodically transmitting a beacon signal telling their own location
information so that other sensor nodes without GPS receivers can roughly determine their position in
the terrain. Other techniques for obtaining location information are also available. For example, optical
trackers [11] give high-precision and -resolution location information but are only effective in a small
region. 

Attribute-based naming. With the large population of sensor nodes, it may be impractical to pay
attention to each individual node. Users would be more interested in querying which area has temperature
higher than 100°F or what the average temperature in a specific area is, rather than the temperature at

FIGURE 6.2  Clustering and a cluster hierarchy. (From Shen, et al., IEEE Personal Commun. Mag., 8(4), 52–59, 2001.
With permission.)
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sensor ID#101. To facilitate the data-centric characteristics of sensor queries, attribute-based naming is
the preferred scheme [10]. For instance, the name [type=temperature, location=N-E, temperature=103]
addresses all the temperature sensors located at the northeast quadrant with a temperature reading of
103°F. These sensors will reply to the query, “which area has temperature higher than 100°F?” Note that
not only can physical or location attributes be part of a name, but so can logical attributes such as unique
IDs, temporary variables, and clustering roles (e.g., cluster head or cluster member). Therefore, the
traditional addressing scheme using node IDs becomes a special case of attribute-based naming. 

With the integration of these three components, the following two sample queries may be effectively
and efficiently carried out. 

• Which area has temperature higher than 100°F? In theory, the query is broadcast to and evaluated
by every node in the network. Despite possibly the best returned result, the query would suffer
from long response time. In practice, each cluster head may periodically update the temperature
readings of its members, and the query can now be multicast to and evaluated by cluster heads
only. This results in better response time at the expense of less accurate answers. Queries under
stringent timing constraints can be evaluated by cluster heads of a higher tier. 

• What is the average temperature in the southeast quadrant? Similarly, the average temperature of
each cluster can be periodically updated and cached by cluster heads. Furthermore, the query
should be delivered to nodes located (named) in the southeast quadrant only. 

6.4 Sample Implementation Architectures

Given the SNA functional architecture, two implementation architectures are described: SINA, which
implements SNA to facilitate querying and tasking applications, and TopDisc, which is specifically
designed to perform topology management of sensor networks. 

6.4.1 SINA (Sensor Information Networking Architecture)

SINA [1] adopts a middleware-based approach to implementing SNA functional architecture. By modeling
a sensor network as a collection of massively distributed objects, SINA modules, running on each sensor
node, serve as a middleware working across all sensor nodes; provide adaptive organization of sensor infor-
mation; and facilitate query, event monitoring, and tasking (Figure 6.3). SINA allows sensor applications to
issue queries and command tasks into, collect replies and results from, and monitor changes within the
networks. SINA provides the following mechanisms to facilitate querying and tasking of sensor networks:
information abstraction; information gathering methods; sensor query and tasking language; and sensor
execution environment. These mechanisms are explained in detail in the following subsections. 

FIGURE 6.3  A model of sensor networks and SINA middleware. (From Shen, et al., IEEE Personal Commun. Mag.,
8(4), 52–59, 2001. With permission.)
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6.4.1.1 Information Abstraction

In SINA, a sensor network is conceptually viewed as a collection of datasheets, each of which contains a
collection of attributes of each sensor node. Each attribute is referred to as a cell, and the collection of
datasheets of the network present the abstraction of an associative spreadsheet. In contrast to a conven-
tional spreadsheet paradigm in which a data item is stored in a cell that is assigned an address according
to its logical x–y coordinates, SINA refers cells via attribute-based names. Initially, a datasheet of each
sensor node contains a few predefined attributes. Once these sensor nodes are deployed and form a sensor
network, they can be requested by other nodes — for instance, from their cluster heads — to:

• Create new cells by evaluating valid cell construction expressions that may obtain information
from other cells

• Invoke system-defined functions
• Aggregate information from other datasheets 

Each newly created cell must be uniquely named and becomes a node’s attribute, which can be a single
value (e.g., remaining battery energy) or multiple values (e.g., history of temperature changes in the past
30 min). By incorporating a hierarchical clustering mechanism and an attribute-based naming scheme,
SINA provides a set of operations to deal with data access and aggregation among sensor nodes. The
mechanism of associative broadcast [12] has been employed to facilitate process interaction via attribute-
based naming. 

6.4.1.2 Information Gathering Methods

SINA provides a communication mechanism among sensor nodes to facilitate distributed applications.
By providing efficient data dissemination and information-gathering supports suitable for specific appli-
cation requirements, SINA abstracts low-level communications from high-level sensor applications.
When users submit queries, it is not required to define how the information will be collected inside the
network explicitly. SINA selects the most appropriate data distribution and collection method based on
the nature of queries and current network status. Upon receiving users’ queries, the frontend node — a
special node directly connected to the user — has the responsibility to interpret and evaluate the queries
by requesting information from other nodes.

With the sheer number of sensor nodes, collisions resulting from a large number of responses prop-
agated back to the front-end node during a short period of time create the response implosion problem [9]
depicted in Figure 6.4(a). The objective of the information-gathering mechanisms is to maximize the
quality of responses in terms of their number and responsiveness while minimizing network resource
consumption in conducting the query operations. Three primitive methods are provided to accomplish
the information gathering task: 

• Sampling operation. For certain types of applications (for instance, finding the average tempera-
ture over the entire network area), responses from every sensor node may cause a response
implosion. To reduce the degree of the problem, some sensor nodes may not need to respond if
their neighbors will. Nodes make autonomous decisions whether they should participate in this
application based on a given response probability, as shown in Figure 6.4(b). This operation is
also known as Samplecast [9]. An enhancement can be made to this approach if sensor nodes are
not evenly distributed over the area. To prevent receiving more responses from dense areas, the
response probability will be computed at each cluster head node based on the number of replies
required from each cluster. This operation is called adaptive probabilistic response (APR). 

• Self-orchestrated operation. In a network with a small number of nodes, responses from all nodes
are necessary for the accuracy of the final result. Another approach to avoiding the response
implosion problem is to let each node defer sending responses for some period of time. Despite
some extra delay, this method aims to improve the overall performance by reducing the chances
of collision. This operation is modified from the scheduled response approach described
in Johnson and Maltz [13]. Assuming that nodes are distributed uniformly within the network
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terrain and that the number of nodes within h hops away from the front-end node proportional
to h2, the delay period at every node can be defined as 

where h is the length in number of hops away from the front end; r is a random number such
that 0 < r ≤ 1; and H is a constant reflecting estimated delay per hop. To incorporate potential
effects from queuing and processing delays, K is used as a compensation constant. Normally, K
and H are combined and used as a single adjustable parameter. 

• Diffused computation operation. For this operation, each sensor node is assumed to have knowl-
edge about its immediate communicating neighbors only. Algorithms used for gathering infor-
mation are constrained by the capability that each node can only communicate to other nodes in
its surrounding area. Information aggregation logic is programmed as a script and disseminated
among sensor nodes so that they know how to aggregate information en route to the front end.
The conceptual data flow is depicted in Figure 6.4(c). Because data are aggregated at intermediate
nodes on the way back to the front-end node, the consumption of valuable network bandwidth
is reduced and the response implosion problem alleviated considerably. However, for large sensor
networks, this diffusion approach might take a longer time to deliver results back to the front end. 

The hierarchical structure enabled by SINA allows different information-gathering methods to be
deployed in different levels within one application in order to optimize overall performance. The effects
of the integration are discussed in Shen et al. [14]. 

6.4.1.3 Sensor Network Programming Languages

As part of SINA, sensor querying and tasking language (SQTL) [15] plays the role of a programming
interface between sensor applications and SINA middleware. This is a procedural scripting language
designed to be flexible and compact, with a capability of interpreting declarative query statements. In
addition to sensor hardware access (e.g., getTemperature, turnOn), location-aware (e.g.,
isNeighbor, getPosition), and communication primitives (e.g., tell, execute), it also
provides an event-handling construct, which is suitable for many sensor network applications in which
sensor nodes are often programmed to process asynchronous events such as receiving a message or an
event triggered by a timer. By using the “upon” construct, a programmer can create an event-handling
block accordingly. 

FIGURE 6.4  (a) The response implosion problem; (b) number of responses reduced by assigning sensor nodes a
probability p to answer the request; (c) diffused computation operation allowing data aggregation at intermediate
nodes. (From Shen, et al., IEEE Personal Commun. Mag., 8(4), 52–59, 2001. With permission.)
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Currently, three types of events are supported by SQTL: (1) events generated when a message is received
by a sensor node; (2) events triggered periodically by a timer; and (3) events caused by the expiration of a
timer. These types of events are defined by the SQTL keywords “receive,” “every,” and “expire,” respectively. 

An SQTL message, containing a script, is meant to be interpreted and executed by any node in the
network. In order to target a script to a specific receiver, or a group of receivers, the message must be
encapsulated in an SQTL wrapper that acts as a message header for indicating the sender, the receivers,
and a particular application running on the receivers, as well as parameters for the application. 

The syntax of the extensible markup language (XML) is adopted for the SQTL wrapper, which defines
an application layer header capable of specifying a complicated addressing scheme for attribute-based
names. Table 6.1 summarizes common SQTL wrapper fields. 

For applications that collect sensor information, a user may choose to invoke the built-in query
interpreter instead of explicitly writing a procedural SQTL script. The query language has been adapted
from structured query language (SQL) to serve as the primary mechanism for querying sensor networks.
The following sample query statement, as delivered to all cluster heads in the network (encapsulated in
the SQTL wrapper), would ask every cluster head to create a new cell called avgTemperature that
maintains the average temperature among all of its cluster members: 

SELECT avg(getTemperature()) 
AS avgTemperature 
FROM CLUSTER-MEMBERS 

As soon as an SQTL message containing such a query statement is received by target nodes, their execution
environments (explained later) will pick the most appropriate information-gathering method available
to evaluate the query. 

Database techniques, such as view composition, materialization, and maintenance, could be adapted
to maintain consistency among associated cells. A related work on querying a sensor network modeled
as a device database may be found in Bonnet et al. [16]. 

6.4.1.4 SEE (Sensor Execution Environment)

Running on each sensor node, a sensor execution environment (SEE) is responsible for dispatching
incoming messages, examining all arrival SQTL messages, and performing the appropriate operation for
each type of action specified in the messages. SEE looks inside the receiver argument of a message
and, based on its value, decides whether to forward the message to the next hop. Messages with
“ALL_NODES” in their group subarguments will be rebroadcast to every sensor node in the network
and those with “NEIGHBORS” will only be forwarded to the nodes’ immediate neighbors. 

TABLE 6.1 Arguments Used by Actions in SQTL Wrapper

Argument Meaning 

sender The sender of an SQTL message wrapper 
receiver Potential receivers specify by two following subarguments 
group Subargument of receiver to specify group of receivers; its possible value can be one of 

ALL_NODES, or NEIGHBORS 
criteria Subargument of receiver to specify selection criteria of receivers 

application-id Unique ID for each application in the same sensor network 
num-hop Number of hops away from a gateway node 
language Specify a language used in content 
content A payload containing a program, message, or return values 
with (optional) Tuples of parameters used in the program passed from sender to receiver 
parameter Repeatable subargument of “with” 
type Data type of the parameter 
name Name of the parameter 
value Value of the parameter 

Source: From Shen, et al., IEEE Personal Commun. Mag., 8(4), 52–59, 2001. With permission.
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SEE also prevents message looping by using a globally unique message ID, which is a combination of
a unique node ID and message sequence number. An attribute-based name in the form of a list of
attribute–value pairs indicated by the criteria field will be compared against the receiver’s attributes stored
in its datasheet. SEE only accepts the message if the node’s attributes satisfy the criteria. This process of
matching a message with its potential receivers when the message arrives at the receivers is termed late
binding and is described by Bayerdorffer [12]. 

Once an SQTL script is injected from the front-end node to one or more sensor nodes, the script may
push itself to other sensors in order to complete the assigned task. A tell message is then generated
after a result is produced at each individual sensor node and is delivered back to the requesting node,
which is normally the upstream node from which the script came. Figure 6.5 depicts the dispatching of
incoming messages performed by SEE. 

In addition to demultiplexing incoming SQTL messages, SEE also takes care of outgoing SQTL mes-
sages from all running applications. Outgoing messages will be distributed to target nodes specified in
the receiver argument through the underlying communication mechanism. SEE may perform a
translation of an attribute-based name into a unique, numeric link-layer address where applicable.
Otherwise, broadcast will be used at the link layer. 

6.4.1.5 Architectural View of SINA

Now the ways in which the three functional components defined in SNA are utilized and provided in SINA
are examined. SINA provides an attribute-based naming mechanism by means of an associative spreadsheet
in which nodes’ attributes are defined in uniquely named cells. Destination groups are then determined by
criteria fields that are part of SQTL. A mechanism for hierarchical clustering is not strictly tied to a
particular algorithm and is intentionally left undefined for flexibility. A clustering algorithm such as the
one described by Intanagonwiwat and colleagues [17] could be used. Once cluster heads have been elected,
each node’s cluster head role (i.e., whether it is a cluster member or a cluster head) will become one of its
attributes. The clustering feature also allows different information-gathering methods to be used at different
levels in the hierarchy in order to optimize overall performance. Similarly, mechanisms allowing nodes to
obtain their location information are assumed, but not defined or used directly in SINA. It is left to the
applications to target and query nodes’ locations in the form of their attributes. 

FIGURE 6.5  Dispatching of messages received by a sensor node. (From Shen, et al., IEEE Personal Commun. Mag.,
8(4), 52–59, 2001. With permission.)
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6.4.1.6 Sample Applications

SINA has been designed to support a wide range of sensor network applications. However, to illustrate
its applicability to querying and tasking of sensor networks under this architecture, experiments were
conducted on two sample applications: sensor network diagnosis and vehicle tracking; their behaviors
and performance were studied using GloMoSim simulator. Results and more discussion of the two
applications can be found in Shen et al. [14]. 

Diagnosis of sensor networks. Sensor network diagnosis is the process of querying the status of a sensor
network and figuring out the problematic (group of) sensor nodes [4]. In order to monitor the status
of a sensor network, one approach is to query as much information from as many sensor nodes as possible
and then deliver the raw information to the manager for further processing, e.g., when a manager wants
to know the remaining energy level within the network. In addition, to examine the correctness of results
obtained from one sensing device, one possible method is to use the average of results obtained from
other neighboring sensor nodes as a standard base to compare and diagnose the devices in doubt, given
that the average has its deviation within an acceptable range. An example of using this method is to
figure out which sensor node contains a faulty temperature-sensing device. 

Coordinated vehicle tracking. The vehicle tracking application is to locate a specific vehicle or moving
object and monitor its movement. To detect and identify an object, integrated results from more than
one type of sensor, for instance, images from a camera, vibration from a seismic sensor, noise from an
audio sensor, and so on, may be required. These results are to be processed and compared with the
signature of the object of interest. However, the main interest is to program a coordination algorithm in
the form of an SQTL script, which can be disseminated to all sensor nodes. The script controls the sensor
nodes to detect the appearance of the interested object collaboratively in an effective and efficient manner.
Thus, it is assumed that sensor nodes can obtain final processed results of detecting and identifying the
tracked vehicle from the processing of combined sensing information. 

A novice approach to tracking a moving object is to ask every sensor node to sense and detect the
object’s signature at the same time — an operation called the ordinary vehicle tracking method. However,
this approach may waste sensor nodes’ processing cycles, and thus inefficiently utilize a network’s limited
energy and shorten the overall network lifetime. In contrast, the coordinated vehicle tracking algorithm
presented in Figure 6.6 is based on a suppression and reinitiation mechanism in order to achieve a better
result of tracking, yet consume less network resources than the ordinary one. The main principle of the
coordinated algorithm is to let the first sensor node detecting the vehicle suppress sensing activities of
all other sensor nodes so that the others may stand by, which results in energy conservation. Furthermore,
the node will need to reinitiate sensing activities of its neighbors in order to keep track of the moving
vehicle. As long as the vehicle does not move faster than the propagation of this reinitiation message, the
network can still monitor its trail. The tracking process is depicted in Figure 6.7 as well. 

6.4.2 TopDisc (Topology Discovery for Sensor Networks)

TopDisc [2] provides a mechanism for data dissemination/aggregation and topology discovery in sensor
networks. From an architectural point of view, TopDisc provides the same set of components specified
by SNA. The following subsections describe the mechanism of TopDisc and present how its functional
components are mapped to the SNA architecture. Finally, some sample applications supported by TopDisc
are offered. 

6.4.2.1 TopDisc Mechanism

TopDisc constructs an approximate topology of the network by collecting local topology information
from distinguished nodes (or cluster heads) via a tree of clusters (TreC) rooted at the monitoring node.
The mechanism is briefly described as follows. When TopDisc starts, all nodes are colored white, which
means that they are undiscovered. The monitoring node initiates the topology discovery process by
broadcasting a “topology discovery request.” It then turns to black, which means that it is a distinguished
aylor & Francis Group, LLC
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node. White nodes receiving a request from a black node become gray and rebroadcast the request with
a random delay inversely proportional to the distance between the black node and themselves.

FIGURE 6.6  Complete SQTL script for the coordinated vehicle tracking algorithm. (From Shen, et al., IEEE Personal
Commun. Mag., 8(4), 52–59, 2001. With permission.)

<execute>
<sender> FRONTEND </sender>
<receiver> <group> NODE[0] </group>

<criteria> TRUE </criteria>
</receiver>
<application-id> 118 </application-id>
<num-hop> 0 </num-hop>
<language> SQTL </language>
<with>

<parameter type="clocktype" name="trackingTime" value="600" />
<parameter type="clocktype" name="reTrackingTime" value="40" />
<parameter type="clocktype" name="trackingFrequency" value="8" />
<parameter type="object" name="target" value="Vehicle1" />

</with>
<content> <![CDATA[

lastSensingResul = false;
timerApplication = createTimer(trackingTime); // instantiate a timer
timerApplication.start(); // turn it on
timerReTracking = createTimer(reTrackingTime);
execute (ALL_NODES, "TRUE", MESSAGE["content"]); // re-broadcast
if ((sensor1 = getMotionSensor()).turnOn()) { // instantiate a sensor object

upon { / / and turn it on
receive (msg) where msg["action"] == "tell" && msg["content"] == "suppress": {

sensor1.standby(); break;
}
every (trackingFrequency): {

if (sensor1.detect(target)) {
tell (ALL_NODES, "TRUE", "suppress");
tell (NEIGHBORS, "TRUE", "retrack");
tell (MESSAGE["sender"], "TRUE", "found");
lastSensingResult = true;
timerReTracking.start();
break;

}
else lastSensingResult = false;

}
expire (timerApplication): sensor1.turnOff(); exit(0);

}
upon { // After one sensor node sees the vehicle

receive (msg) where msg["action"] == "tell" && msg["content"] == "retrack": {
if (timerReTracking.expired()) {

sensor1.turnOn();
timerReTracking.start();

}
}
receive (msg) where msg["action"] == "tell" && msg["content"] == "found":

tell (MESSAGE["sender"], "TRUE", "found");
every (trackingFrequency): {

if (sensor1.detect(target)) {
tell (MESSAGE["sender"], "TRUE", "found");
if (!lastSensingResult)

tell (NEIGHBORS, "TRUE", "retrack");
lastSensingResult = true;
timerReTracking.start();

}
else {

if (lastSensingResult)
timerReTracking.restart();

lastSensingResult = false;
}

}
expire (timerReTracking) : sensor1.standby();
expire (timerApplication): sensor1.turnOff(); exit(0);

}
}
else exit(1);

]]> </content>
</execute>
aylor & Francis Group, LLC



Sensor Network Architecture and Applications 6-11

7037_Book.fm  Page 11  Thursday, September 8, 2005  2:44 PM

© 2006 by T
However, white nodes will become black with some random delay if they receive a request from a gray
node. During the delay interval, if white nodes hear any message from other black nodes, they will become
gray. Note that all the black and gray nodes ignore all other incoming request messages. After the request
has been propagated to the entire network, each node knows its parent black node, which is the last black
node from which the topology discovery was forwarded to reach it. Each black node also knows the node
to which it should forward packets in order to reach its parent black node. By snooping at all incoming
request messages, all nodes have their neighborhood information collected. 

To respond to the topology discovery message, once a node becomes black, it sets a timer, inversely
proportional to the number of hops away from the monitoring node, and waits for responses from its
children black nodes. A black node aggregates its own neighborhood list (obtained from snooping)
together with neighborhood lists from its children and forwards the aggregated list back to the monitoring
node through its default forwarding node. 

6.4.2.2 Architectural View of TopDisc

Similar to SINA, TopDisc provides the same set of components described by SNA. First, TopDisc builds
a TreC by selecting distinguished nodes to become cluster heads. Other nodes then associate with one
cluster head. This process has the same functionality as the hierarchical clustering component of SNA.
Nodes in TopDisc also perform information aggregation by combining messages obtained from children
black nodes. The objective of a TreC and data aggregation is to reduce the number of response messages
coming back to the monitoring node. TopDisc also employs attribute-based naming schemes in its data
dissemination process. Subsequent requests to the network will be carried over a TreC. Recall that a TreC

FIGURE 6.7  (a) The incoming vehicle is detected by A; (b) the sensing activities of C, D, and E are suppressed, but
B starts tracking again; (c) the vehicle comes into B’s area and C restarts its sensor; (d) C and D detect the vehicle
and E’s sensor is restarted; (e) the vehicle goes out of A’s and B’s ranges; (f) sensing activity at A stops. (From Shen,
et al., IEEE Personal Commun. Mag., 8(4), 52–59, 2001. With permission.)
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comprises black (cluster head) and gray (forwarding) nodes. However, only cluster heads will process
the requests; gray nodes only forward the requests. This process resembles attribute-based naming. Finally,
TopDisc employs location information in one of its proposed applications to schedule sensor nodes’ duty
cycles. 

6.4.2.3 Sample Applications

By using a TreC created by TopDisc, several data dissemination/aggregation applications are possible.
The following applications are described in Deb et al. [2]:

• Retrieving network state. Connectivity, reachability, and energy maps, as well as a usage model of
sensor networks, could be obtained from data collected via TopDisc. 

• Data dissemination and aggregation. The resulting tree created by TopDisc could also be used in
data dissemination and aggregation applications. 

• Duty cycle assignment. Each pair of closest black nodes can exchange location information of
their children. After collecting the complete topology of the surrounding nodes, one of the children
may decide to serve as a forwarding node. It then informs other nodes so that they can go into
sleep mode. Based on the category presented in Section 6.2, this application can be considered a
tasking application. 

6.5 Summary

The advent of technology has facilitated development of networked systems of small, low-power devices
that combine programmable computing with multiple sensing and wireless communication capability.
Already, experimental applications have embedded sensor nodes in the physical environment to facilitate
new information-gathering and -processing capabilities. The sheer number of sensor nodes and the
dynamics of their operating environments pose unique challenges on how information collected by and
stored within a sensor network can be queried and accessed, and how concurrent sensing tasks can be
executed internally and programmed by external clients. This chapter described a generic functional
architecture for sensor networks by identifying three required functional components: hierarchical clus-
tering, location awareness, and attribute-based naming. Two sample implementation architectures, SINA
and TopDisc, were examined in terms of their exploitation of these functional components and the
application characteristics they are intended to support. 
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7.1 Introduction 

Rapid progress in microelectromechanical system (MEMS) and radio frequency (RF) design has enabled
the development of low-power, inexpensive, and network-enabled microsensors. These sensor nodes are
capable of capturing various physical information, such as temperature, pressure, motion of an object,
etc., as well as mapping such physical characteristics of the environment to quantitative measurements.
A typical wireless sensor network (WSN) consists of hundreds to thousands of such sensor nodes linked
by a wireless medium. 

WSNs have created new paradigms for reliable monitoring. They outperform conventional sensor
systems, which use large, expensive macrosensors to be placed and wired accurately to an end user.
Detailed discussions of such benefits can be found in the literature [1, 13, 31–33, 43]. Some of these
benefits are highlighted as follows:

• Anywhere and anytime. The coverage of a traditional macrosensor node is narrowly limited to a
certain physical area due to the constraints of cost and manual deployment. In contrast, WSNs
may contain a great number of physically separated nodes that do not require human attention.
Although the coverage of a single node is small, the densely distributed nodes can work simulta-
neously and collaboratively so that the coverage of the whole network is extended. Moreover,
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sensor nodes can be dropped in hazardous regions and can operate in all seasons; thus, their
sensing task can be undertaken anytime. 

• Greater fault-tolerance. This is achieved through the dense deployment of wireless sensor nodes.
The correlated data from neighboring nodes in a given area makes WSNs more fault tolerant than
single macrosensor systems. If the macrosensor node fails, the system will completely lose its
functionality in the given area. On the contrary in a WSN, if a small portion of microsensor nodes
fails, the WSN can continue to produce acceptable information because the extracted data are
redundant enough. Furthermore, alternative communication routes can be used in case of route
failure.

• Improved accuracy. Although a single macrosensor node generates more accurate measurement
than one microsensor node does, the massively collected data by a large number of tiny nodes
may actually reflect more of the real world. Furthermore, after processing by appropriate algo-
rithms, the correlated and/or aggregated data enhance the common signal and reduce uncorrelated
noise. 

• Lower cost. WSNs are expected to be less expensive than their macrosensor system counterparts
because of their reduced size and lower price, as well as the ease of their deployment. 

In this chapter, Section 7.2 describes diverse applications of WSNs in various domains with examples
and Section 7.3 discusses the classifications of the WSNs according to different criteria. Section 7.4
presents the characteristics of WSNs, highlights how they differ from traditional wireless ad hoc networks,
and reviews the technique challenges and corresponding design directions. In Section 7.5, various tech-
nical approaches with respect to hardware design, system architectures, protocols and algorithms, and
software development are illustrated. Finally, Section 7.6 concludes with emphasis on several possible
open issues for future research in the area of WSNs. 

7.2 WSN Applications 

WSNs are able to monitor a wide range of physical conditions, such as [2]:

• Temperature
• Humidity
• Light
• Pressure
• Object motion
• Soil composition
• Noise level
• Presence of a certain object
• Characteristics of an object such as weight, size, moving speed, direction, and its latest position

Due to WSNs’ reliability, self-organization, flexibility, and ease of deployment, their existing and
potential applications vary widely. As well, they can be applied to almost any environment, especially
those in which conventional wired sensor systems are impossible or unavailable, such as in inhospitable
terrains, battlefields, outer space, or deep oceans.

7.2.1 Military Applications

WSNs are becoming an integral part of military command, control, communications, computing, intel-
ligence, surveillance, reconnaissance, and targeting (C4ISRT) systems [2]. In the battlefield, a predictable
tendency is that the targets will become smaller and less recognizable/detectable, have higher mobility,
and usually move in extremely hostile terrain. To explore the position and strength of the opposing forces,
a promising solution lies in dense arrays of sensors to be placed close to the intended targets. Because
of their ability to be unattended by humans, ease of deployment, self-organization, and fault tolerance,
aylor & Francis Group, LLC
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WSNs can provide highly redundant and collaborative detected data without the support of friendly
forces. Also, WSNs can be mounted on unmanned robotic vehicles, tanks, fighter planes, submarines,
missiles, and torpedoes to route them around obstacles, guide them to the exact position and lead them
to coordinate with one another to fulfill more effective attacks or defenses. WSNs can also be deployed
for remote sensing of nuclear, biological, and chemical weapons, potential terrorist attack detection, and
reconnaissance [2, 37]. Obviously, WSNs will take more important roles in the military C4ISRT tasks
and make future attacks and defenses more intelligent, with less human involvement. 

7.2.2 Environment Detection and Monitoring

Spreading hundreds to thousands of tiny, cheap, self-configurable wireless sensors in a given geographical
region can produce a wide range of applications in collaborative monitoring or control of the environ-
ment. This encompasses complex ecosystem monitoring; flood detection; air and sewage monitoring;
local climate control in large office buildings; soil composition detection and precise agriculture; wild
land fire detection; and exploration of mineral reserves, geophysical studies, etc. [2, 12, 32, 64]. Some
representative examples include:

• Ecosystem monitoring. WSNs used in ecosystem monitoring represent a class of applications with
numerous potential benefits for life science study because WSNs can provide information on
several environmental conditions, including soil and air chemistry as well as plant and animal
species population and behaviors. It ensures the long-term automatic identification, recording,
and analysis of interesting events. These long-term gathered data can help ecosystem scientists to
identify, localize, track, and predict species or phenomena in areas of interest [12, 32, 64]. Com-
pared with traditional methods of environment monitoring, WSNs have a number of unique
advantages: 
• Noninvasive deployment: unattended wireless sensors can be dropped on remote islands or

dangerous places where it would be unsafe, unwise, or even impossible to perform field study
repeatedly.

• Anytime deployment: wireless sensor nodes can be deployed in any selected period, for exam-
ple, before the producing season of some species of animal or after frozen ground melts. 

• Minimal interference: deploying WSNs for biosystems can eliminate the disturbance impact
on the measured objects. For example, some species are very sensitive to the unexpected visits
necessary for large-size macrosensor equipment; this can lead to a dramatic increase of mor-
tality in a breeding year.

• Less cost: deployment of WSNs also leads to a more economical solution to producing long-
term observations than human-attended methods do. 

• Higher level of robustness and accuracy: by integrating data aggregation and signal processing
within the neighborhood sensors, WSNs become more robust to node failure. Self-configurable
WSNs used for biocomplexity mapping are adaptive to the dynamic physical world.

• Ease of networking: sensor nodes are capable of connecting to the Internet, thus enabling one
remote user to control, monitor, and collect data for several different sensed spots or several
remote users to gather data for the same spot.

Mainwaring and colleagues [64] present a real-life experiment of deploying WSN in a natural area
— Great Duck Island (44.09N, 68.15W), Maine — to monitor the Leach’s Storm Petrel, in terms
of short-term cycle (24 to 72 h) of the usage pattern of nesting burrows and long-term (7 months)
changes in the burrow and surface environmental parameters. The experiment is intended to guide
the reliable environmental monitoring in these previously unaccessible fields. 

• Local climate control in large buildings. Most people who have worked in large office buildings
have experienced that the temperature is seldom proper, i.e., too high or too low; the humidity
level is often overly dry or overly wet; too much or too little light is present; or fresh air is lacking.
Therefore, local climate monitoring and control systems are highly desirable to ensure healthy and
pleasant working places. At present, traditional systems with wired sensors are dominant in such
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areas. Distributed WSNs are considered a better solution than their wired counterparts in at least
two respects. For one thing, the deployment of a WSN is much more flexible than a wired system.
Without the restriction of wire, wireless sensors can sit wherever they are needed; they can also be
moved from their original positions to more suitable places. Moreover, WSNs can produce tremen-
dous economical gains compared to wired sensors. According to da Silva et al. [93] and Rabaey et
al. [79], for sensing mission, 90% of the total installation cost of a low-cost temperature sensor is
due to wiring. Obviously, installation cost can be greatly reduced if wireless sensors are used.

• Wild land fire detection. Although significant measures have been exerted, wild land fires still
cause extensive loss of lives, property, and resources each year. According to the statistics of the
National Interagency Fire Center [71], the 10-year (1992 to 2001) average of wild land fires reached
103,112   and a total of 42,150,890 acres were burned. It costs approximately $1.6 billion (U.S.)
on average for fire suppression by federal agencies only. However, because fire weather conditions
are predictable, wild land fire prediction is often a possible source of help to support any geographic
area before and during periods of high fire danger or fire activity. Because of their ability to be
deployed randomly and densely, WSNs are a good choice in wild land fire detection and reporting.
By scattering massive numbers of wireless sensors in intended areas, early warning and origin of
fires can be caught effectively. 

7.2.3 Disaster Prevention and Relief 

WSNs may also be effectively deployed in emergency situations and disaster areas [37]. The accurate and
prompt location detection provided by the distributed WSNs could be critical in rescue operations,
including detection of victims, potential hazards, or sources of the emergency and identification and
localization of trapped personnel [83]. For example, microsensors may be embedded/enabled in large-
scale buildings during construction, through strategically dropping on the spot at the rescue site, or by
automatically triggering standby sensors immediately following the disaster event. The collapse of the
walls or ceiling could be predicated and estimated by the stress and motion of buildings. It is also useful
to deploy WSNs for long-lasting monitoring tasks, such as detecting and tracking material fatigue, so
that the evidence of harmful reaction of the building can be collected continuously and effective measures
can be taken before an accident happens. Another example, waterproof sensor arrays, can be automatically
triggered to constantly report the location of sunken vessels in the ocean and to provide critically
important information for the rescue and salvage operation. Furthermore, wireless sensors can also be
used to track fuel, gas, and toxic substances leaked into the neighborhood ocean when a sunken vessel
is raised. 

7.2.4 Medical Care 

WSNs are very helpful in providing prompt and effective health care and will lead to a healthier envi-
ronment for human beings. Some uses of WSNs in this field include: 

• Remote virus monitoring. Many widespread disease-ridden regions are impoverished and lack
reliable communication. Spreading large number of wireless sensors in such regions could help
to collect and transmit crucial ground-based information, such as incident of disease and char-
acteristics of the infected population; to identify features of the area; and to monitor environmental
conditions, such as the amount of rainfall and humidity, that support the proliferation of virus-
carrying insects. WSNs can also be used to monitor and predict the breakout of some infectious
diseases, such as malaria. A project called Health Improvements through Space Technologies and
Resources (HI-STAR) proposes development of a global malaria information system [26]. Based
on the gathered air and ground-based data via wireless sensors and by integrating and analyzing
epidemiological information, this system can generate malaria “risk maps” and provide early
warnings about malaria outbreaks. Health officials could also allocate limited disease prevention
and treatment resources on a global scale. 
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• Integrated patient tracking and monitoring. Using WSNs to monitor and track possible or sus-
pected patients is a convenient and effective measure to avoid the spread of some infectious
diseases. According to a Canadian Broadcast Corporation (CBC) news report in April 2003,
discussion was that some people who broke quarantine in Toronto during the period of severe
acute respiratory syndrome (SARS) in Spring 2003 could be required to wear a lightweight device
with a wireless sensor on their ankles. This device could monitor their movements and report
them to the relevant authorities. Moreover, senior citizens without sufficient care could have
wireless sensors attached to medical devices to measure their heart rates, blood pressure, etc. In
abnormal conditions, an automatic alert reminds the carriers to call their doctors or an automatic
notification is directly sent to emergency centers. Furthermore, WSNs can also be used for medical
statistics that require data collection from a large number of people or tracing some patients for
long period of time. 

Schwiebert and colleagues [88] present a series of applications of WSNs in health care, such as 
artificial retina; glucose level monitoring for diabetes patients; organ monitoring for organ trans-
plant purposes; and cancer detection for high-risk persons, as well as general health monitoring.
WSNs can also be used in drug administration and distribution [2].

7.2.5 Home Intelligence

WSNs can take key roles in providing more convenient and intelligent living environments for human
beings. Some predictable examples include: 

• Remote metering. WSNs can be used in remote reading of utility meters, such as water, gas, or
electricity, and then can transmit the readings through wireless connections [37]. Simple attach-
ments of wireless sensors in parking meters can send out warning signals to remind users to
recharge the meter remotely before the parking time expires.

• Smart space. With recent technological development, it becomes possible to embed various wire-
less sensors into individual furniture and appliances, which can be connected together to form an
autonomous network. For example, a smart refrigerator can understand the family’s dietary
requirements or doctor’s orders and take inventory of refrigerators to relay information to a
shopping list on a personal digital assistant [21]. It can also create a menu according to the
inventory and transmit the relevant cooking parameters to the smart stove or microwave oven,
which will set the desired temperature and cooking time accordingly [46]. Moreover, contents and
schedules of TV, VCR, DVD, or CD players can be monitored and operated remotely to satisfy
the different requirements of family members. 

7.2.6 Scientific Exploration 

The effective deployment and operation of self-regulating WSNs is opening novel ways of scientific explo-
ration in higher, further, and deeper environments such as outer space and deep oceans. Hong and colleagues
[50] present an example for employing WSNs on the surface of Mars to collect measurements such as
seismic, chemical, and temperature and relay the aggregated sensing results to an orbiter. Each distributed
sensor node provides time- and position-dependent measurements; via energy-conserved, load-balanced,
multihop communications, they can relay the information to the distant base station with prolonged
network lifetime. Similarly, WSNs used for underwater exploration may also be possible in the future. 

7.2.7 Interactive Surroundings

WSNs produce promising mechanisms for mining information from and reacting to the physical world.
By deploying cheap and tiny wireless sensors, monitors and actuators in toys and other children’s familiar
objects could create “smart kindergartens” to enhance early childhood education [98]. Such a system
provides a childhood learning environment with “person–physical world” interaction rather than the
conventional “person–computer” or “person–person” communication. Because it allows personalized
aylor & Francis Group, LLC



 

7

 

-6

 

Smart Dust

        

7037_Book.fm  Page 6  Thursday, September 8, 2005  2:44 PM

© 2006 by T
configuration to each individual child; coordinated activities of children groups; adaptation to the
dynamics in children’s activities; and constant and unobtrusive data collection in children’s actions and
learning processes, it provides effective and comprehensive problem-solving strategies in young children’s
education. Rabaey et al. [79] described WSNs in the real world in an interactive museum in San Francisco’s
Exploratorium, where children can participate actively in the experiments and get feedback to their touch
and speech from the sensor-equipped objects. Yarvis and colleagues [106] present another interactive ad
hoc sensor network as a voting platform in San Francisco’s Moscone Convention Center. 

7.2.8 Surveillance

Instant and remote surveillance inspires significant applications of WSNs. For example, a large number
of networked acoustic sensors can be used to detect and track desired targets in a deterministic security
area [68, 83, 109]. WSNs can be deployed in buildings, residential areas, airports, railway stations, etc.
to identify intruders and report to a command center immediately so that tracking actions can be initiated
promptly [62]. Similarly, installing smoke sensor nodes in strategically selected positions at homes, office
buildings, or factories is critical to preventing disasters of fires and tracing the spread of fire [37, 65]. 

7.2.9 Other Applications 

Self-configurable WSNs can be used in many other areas, such as robot control and factory instrumen-
tation, automatic warehouse inventory tracking, chemical process control, traffic monitoring and control
of smart roads, etc.

7.3 Classification of WSNs

As discussed in Section 7.2, WSNs represent a variety of applications in which environment and technical
requirements may greatly differ. Therefore, the design of a WSN is usually application oriented. As a
result, the architectures, protocols, and algorithms of WSNs vary case by case. However, different WSNs
have some common properties in a broad point of view [100]. They can generally be classified into
categories based on several important criteria. 

According to the distance of sensor nodes to the base station, WSNs can be single-hop (also known
as nonpropagating) or multihop (propagating) systems. In a single-hop WSN, all sensor nodes transmit
the data directly to the base station, while in a multihop WSN, some nodes can only deliver their data
to the base station via intermediate nodes. In these cases, the intermediate nodes execute the routing
function and relay the data along the routing path. Also, data aggregation (or fusion) is an optional
function for those intermediate nodes. Single-hop networks have much simpler structure and control
and fit into the applications of small sensing areas; multihop networks promise wider applications at the
cost of higher complexity.

Based on the sensor node density and data dependency, WSNs can be classified as aggregating and
nonaggregating. In nonaggregating systems, all data from each individual node will be sent to the
destination “as is.” The computational load at intermediate nodes is relatively small and the system can
reach high accuracy. However, the total traffic load in the entire system may increase rapidly with the
enlargement of the network size, more energy will be consumed for communications, and more collisions
and/or congestions will occur, leading to high latency. Therefore, the nonaggregating scheme is suitable
for systems that have less node density, sufficient capacity, and/or in which extremely high accuracy is
demanded by end users. 

While in densely distributed networks, a sensor node is usually located close to its neighboring nodes.
Thus, information from multiple sources could be highly correlated and aggregating functions may be
executed at the intermediate nodes to eliminate data redundancy. In this way, the traffic load in the
system could be reduced considerably, and significant energy savings due to communications can be
obtained. However, the intermediate nodes will perform computational functions, which may require
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the larger memory size. Therefore, the aggregating scheme is an appropriate option in large-scale systems
with massively and densely distributed sensor nodes. It should be noted that end users are only interested
in the collective information with moderate accuracy. 

WSNs can be deterministic or dynamic according to distribution of the sensor nodes. In deterministic
systems, the positions of sensor nodes are fixed or preplanned. The control of this system is simpler and
its implementation is easier. However, this scheme can only be used in limited kinds of systems where
the information of the sensor node placement could be obtained and planned in advance. However, in
many cases, the locations of sensor nodes are not available a priori, such as those dropped randomly in
remote areas. So, the sensor nodes must work in a distributed dynamic manner. The dynamic scheme is
more scalable and flexible, but requires more complex control algorithms. 

Moreover, based on the control scheme, WSNs can be non-self-configurable or self-configurable. In
the former mechanism, the sensor nodes are not able to organize on their own, but rely on a central
controller to offer command to and collect information from them. This scheme can only be used in
small-scale networks. However, in most WSNs, the sensor nodes can autonomously establish and main-
tain connectivity by themselves and collaboratively fulfill sensing and control tasks. This self-configurable
scheme fits better in large-scale systems to perform complicated monitoring tasks and information
collection and dissemination.

The categories described here may overlap, i.e., a specific WSN may have the characteristics of different
domains. For instance, WSNs in a large parking lot are self-configurable, deterministic, nonaggregating,
and multihop. A classification of WSNs is shown in Table 7.1.

Although self-configurable systems are more complicated than non-self-configurable ones, they are
more practical for deployment in the real world, especially when the network size becomes very large.
However, they raise numerous challenges and open issues to be explored further. The remainder of this
chapter concentrates mainly on self-configurable systems.

7.4 Characteristics, Technical Challenges, and Design Directions

WSNs aim to bridge the gap between the physical and computational worlds. The salient features of
WSNs and their differences from other wireless networks have been discussed by a number of researchers
[1, 13, 32, 33, 37, 43, 93, 97, 111, 112]. Some of these features are discussed next.

7.4.1 Characteristics 

Most WSNs use the network architecture of wireless ad hoc networks, which are collections of wireless,
possibly mobile, nodes that are self-configurable to form a network without the aid of any established
infrastructure. The mobile nodes handle the necessary control and networking tasks in a distributed
manner. The ad hoc architecture is highly appealing to sensor networks for many reasons [33]: 

• Ad hoc architecture overcomes the difficulties raised by the predetermined infrastructure settings
of the other families of wireless networks. WSNs can be randomly and rapidly deployed and
reconfigured — new nodes can be added on demand to replace failed or powered-off ones and
existing nodes can withdraw or depart from the systems without affecting the functionality of
other nodes.

TABLE 7.1 Classification of WSNs according to Different Factors

Factors Distinct Groups

Distance to base station/processing center Single hop vs. multihop
Data dependency Nonaggregating vs. aggregating
Distribution of sensors Deterministic vs. dynamic 
Control scheme Non self-configurable vs. self-configurable
Application domain Many 
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• Ad hoc networks can be easily tailored to specific applications.
• This architecture is highly robust to single node failures and provides a high level of fault tolerance

because of node redundancy and its distributed nature.
• Energy efficiency can be achieved through multihop routing communication. As reported in

Rappoport [82], large-scale propagation follows as exponential law to the transmitting distance
(usually with exponent 2 to 4 depending on the transmission environment). It is not difficult to
show that power consumption due to signal transmission can be saved in orders of magnitude by
using multihop routing with short distance of each hop instead of single-hop routing with a long
range of distance for the same destination.

• Ad hoc networks have the advantage of bandwidth reuse, which also benefits from dividing the
single long-range hop to multihops; each hop has a considerable short distance. In this case, the
communication is local and within a small range. 

It is not surprising to see that the majority of existing WSN literature is based on multihop ad hoc
architectures. However, because of unique application requirements, WSNs greatly differ from conven-
tional wireless ad hoc networks [56, 93]. As a result, existing ad hoc network architectures and protocols
are not directly suitable for or extendible to WSNs. Therefore, new approaches should be developed so
as to satisfy the specific requirements of WSNs; numerous research issues remain to be explored. Table 7.2
summarizes the main differences between these two types of networks. These differences raise many
technical challenges on system design and implementation. Next, these technical challenges are explored
in detail; the corresponding design objective and directions will follow as well.

7.4.2 Technical Challenges and Requirements 

WSN design is motivated and influenced by one or more of the following technical challenges [1, 32, 69]:

• Massive and random deployment. Most WSNs contain a large number of sensor nodes (hundreds
to thousands or even more), which might be spread randomly over the intended areas or are
dropped densely in inaccessible terrains or hazardous regions. The system must execute self-
configuration before the normal sensing routine can take off.

• Data redundancy. The dense deployment of sensor nodes leads to high correlation of the data
sensed by the nodes in the neighborhood. 

• Limited resources. WSN design and implementation are constrained by four types of resources:
energy, computation, memory, and bandwidth. Constrained by the limited physical size, microsen-
sors could only be attached with bounded battery energy supply. Moreover, WSNs usually operate
in an untethered manner, so their batteries are nonrechargeable and/or irreplaceable. At the same
time, their memories are limited and can perform only restricted computational functionality.
The bandwidth in the wireless medium is significantly low as well. 

TABLE 7.2 Differences between WSNs and Conventional Wireless Ad Hoc Networks

WSNs Conventional Wireless Ad Hoc

Number of nodes Large; hundreds to thousands or even more Small to moderate 
Node density High Relatively low 
Data redundancy High Low
Power supply Non-rechargeable; irreplaceable batteries Rechargeable and/or replaceable batteries 
Data rate Low; 1–100kb/s High 
Mobility of nodes Low Can have high mobility
Direction of flows Predominantly unidirectional; sensor nodes → sink Bidirectional; end-to-end flows 
Packet forwarding Many to one; data centric End-to-end address centric
Query nature Attribute based Node based
Query dissemination Broadcast Hop by hop or broadcast
Addressing No globally unique ID Globally unique ID
Active duty cycle Could be as low as 1% High
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• Ad hoc architecture and unattended operation. The attributes of no fixed infrastructure and
human-unattended operation of such networks require the system to establish connections and
maintain connectivity autonomously. 

• Dynamic topologies and environment. On the one hand, the topology and connectivity of WSNs
may frequently vary due to the unreliability of the individual wireless microsensors. For example,
a node may fail to function because of exhaustion of power at any time without notification to
other nodes in advance. As well, new nodes may be added randomly in an area without prior
notification of existing nodes. On the other hand, the environment that the WSNs are monitoring
can also change dramatically, which may cause a portion of sensor nodes to malfunction or render
the information they gather obsolete.

• Error-prone wireless medium. Sensor nodes are linked by the wireless medium, which incurs more
errors than their wired counterpart. In some applications, the communication environment is
actually noisy and can cause severe signal attenuation. 

• Diverse applications. As described in Section 7.2, WSNs could be used to perform various tasks,
such as target detection and tracking, environment monitoring, remote sensing, military surveil-
lance, etc. Requirements for the different applications may vary significantly.

• Safety and privacy. Safety and privacy should be an essential consideration in the design of WSNs
because many of them are used for military or surveillance purposes. Denial of service attacks
against these networks may cause severe damage to the function of WSNs. However, security seems
to be a significantly difficult problem to solve in WSNs because of the inevitable dilemma: WSNs
are resource limited and security solutions are resource hungry. Indeed, most existing commun-
ication protocols for WSNs do not address security and are susceptible to adversaries [104]. 

• QoS concerns. The quality provided by WSNs refers to the accuracy with which the data reported
match what is actually occurring in their environment. Different from others, accuracy in WSNs
emphasizes the characteristic of the aggregated data of all sources instead of individual flows. One
way to measure accuracy is the amount of data. Another aspect of QoS is latency. Data collected
by WSNs are typically time sensitive, e.g., early warning of fires. It is therefore important to receive
the data at the destination/control center in a timely manner. Data with long latency due to
processing or communication may be outdated and lead to wrong reactions. 

7.4.3 Design Objectives and Directions 

The following objectives and directions are identified in the design of WSNs so as to deal with the
challenges and satisfy the various application requirements [1, 13, 32, 33, 40, 43, 55, 69, 78, 97]:

• Small microsensor devices. Affordable and compact sensor units are essential factors to massive
and random deployment of WSNs. For a large-scale WSN application, the cost of individual sensor
devices would contribute to the major part of the total expense. Besides, the smaller the sensor
is, the lower interference the sensor would have on the observed objects and the easier the
deployment would be. 

• Scalable and flexible architectures and protocols. In addition to the requirement on individual
sensor devices, the system should be scalable and flexible to the enlargement of the network scale.
The approaches to scalability and flexibility include clustering, multihop delivery, and localization
of computation and protocols.

• Localized processing and data fusion. To eliminate data redundancy, collaborative efforts should
be made among the sensor nodes performing a variety of localized processing. Instead of sending
the raw data to the destination directly, sensor nodes might locally filter the data according to the
requirements, carry out simple computation, process the data, and transmit only the processed
data. Some intermediate nodes may also perform data fusion in order to reach high efficiency.

• Resource efficiency design. In WSNs, resource efficiency is extremely critical and is desirable
regardless of its complexity. Above all, energy-efficient protocols are in high demand in order to
extend the lifetime of the system. Indeed, power saving should be achieved in every component
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of the network by integrating the corresponding mechanisms, such as power-saving mode on
MAC layer, power-aware routing on network layer, etc. In addition, efforts should be made to
increase efficiency for the utilization of other resources. For example, using algorithms with low
complexity will reduce the computation time and thus save power; it also decreases the latency of
data delivery. Bandwidth-efficient architectures and protocols can accelerate data delivery as well.

It should be noted that it is difficult to issue a unique definition of system lifetime for all
applications or cases. The system can be declared dead when the first node exhausts its energy,
when a certain fraction of nodes dies, or even when all nodes die. Using one or the other definition
depends on the particular application. On the other hand, system lifetime can also be measured
using application-specific parameters, such as the time until the system can no longer provide
acceptable results.

• Self-configuration. Naturally, randomly and massively deployed sensor nodes have to execute self-
configuration in order to set up the network connection and commence routine operation. WSNs
are highly dynamic during the lifetime of the network. Sensor nodes transit among the states of
off, sleep, startup, idle, transmitting, receiving, and failure* for the purpose of energy conservation.
Thus, WSN protocols should have the capability of forming connections autonomously — regard-
less of the condition of sensor nodes. New links should be accommodated in case of node failure
or link congestion, and the transmitting power or signaling rate may be adjusted actively to reduce
energy consumption based on up-to-date topology information. As well, packets could be rerouted
through some subsets of the network in which nodes have more residual energy so as to realize
an equal dissipation of energy among nodes over the entire network. 

• Adaptability. To cope with dynamic/varying conditions, WSNs should adapt to changing connec-
tivity and system stimuli over time. To detect the nondeterministic phenomena with disturbance
caused by communication noise and sensor diversity, adaptive fidelity signal processing at indi-
vidual sensor nodes is also desired to make trade-offs among resources, accuracy, and latency
requirements. 

• Reliability and fault tolerance. For many WSN applications, data must be delivered reliably over
the noisy, error-prone, and time-varying wireless channel. In such cases, data verification and
correction on each layer of the network are critical to provide accurate results. Additionally, sensor
nodes are expected to perform self-testing, self-calibrating, self-repair, and self-recovery proce-
dures during their lifetime.

• Application-specific design. Because no unique protocol satisfies all applications of WSNs, the
design of WSNs is in many cases application specific. 

• Security design. Data privacy and safe communications are of utmost importance. Wood and
Stankovic [104] argue that the best way to ensure successful network deployment is to take security
issues into consideration at the design stage of WSNs. 

• QoS design with resource constraints. As stated previously, the two measures of QoS in WSNs are
accuracy and timely delivery of information. Accuracy reflects the basic value of the information.
In general, the amount of data determines the level of accuracy. Data should be delivered in a
timely manner. It is essential to make a trade-off between these two aspects because large amounts
of data consume a large portion of bandwidth and cause more contention during transmission.
As a result, the latency would be increased with higher accuracy requirement. Furthermore, it is
critical to realize the trade-off between QoS and resource consumption. High accuracy requires
large amounts of data delivery, thus leading to more power and bandwidth consumption. Local
computation is helpful to eliminate the amount of data transmitted, but complex and memory
costly computation will cause long latency. At the same time, more complex computation reduces
power efficiency. 

*Note that nodes in the same network may be in different states.
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• Other attributes. In addition to the preceding objectives and directions, WSN design should
accommodate the following objectives: 
• Locality of information. The reported data from a sensor are only meaningful when associated

with exact knowledge of the sensor’s location. This can significantly simplify the network
discovery and maintenance efforts. The data-centric query should be forwarded directly and
efficiently to targeted areas of interest.

• Attribute-based naming and data centric routing. When deploying WSNs, users are more
interested in querying the property of the interested phenomenon, rather than a specific node.
For example, “the temperature in room 717” or “the areas where the temperature is over 50°C”
are more common than the query of “the temperature read by a certain sensor node.” 

It is impractical to achieve all objectives in a single network. Most WSN designs are application specific
and have different stress on some of the objectives described previously. Thus, the protocols should be
designed to satisfy the unique quality demands of each individual network and trade-offs should be made
among the different parameters when designing protocols and algorithms for WSNs. Table 7.3 summa-
rizes the technical challenges and corresponding design objectives and directions. 

7.5 Technical Approaches

In many cases, it is very challenging to design and implement a resource-efficient and QoS-enabled WSN.
This is usually constrained by many factors and has several objectives to meet at the same time; often
such factors and objectives are contradictory to each other. Nevertheless, research on WSNs have achieved
significant progress. Emphasizing on one or two aspects of the constrained factors or objectives, these
research efforts take diverse approaches. Here, they are broadly grouped into three categories: hardware
techniques; system architecture, protocols, and algorithms; and software development. 

7.5.1 Hardware Techniques 

7.5.1.1 Cheap, Compact, Low-Power Wireless Sensor Nodes 

A WSN node integrates sensing, signal processing, data collection and storage, computation, and wireless
communications, along with attached power supply on a single chip. The system architecture of a typical
microsensor node is shown in Figure 7.1 [81, 95]. Generally, each node is composed of four components:
(1) a power supply unit that is usually an attached battery with desirable output voltage to drive all other
components in the system; (2) a sensing unit consisting of the embedded sensor and actuator as well as
an analog-digital converter that links the sensor node to the physical world; (3) a computing/processing
unit that is a microcontroller unit (MCU) or microprocessor with memory and provides intelligence to
the sensor node (widely used MCUs include Intel’s Strong ARM microprocessor and Atmel’s AVR
microcontroller); and (4) a communication unit consisting of a short-range RF circuit and performing

TABLE 7.3 Summary of Technical Challenges and Design Objectives in WSNs

Technical Challenges and/or Requirements Design Objectives and Directions

Massive and random deployment Cheap and small sensor node; scalable and flexible architecture and 
protocols 

Data redundancy Localized processing and data fusion
Limited resources Resource efficiency design 
Ad hoc architecture and unattended operation Self-configuration and coordination
Dynamic surrounding Adaptability
Error-prone medium Reliability and fault tolerance
Diverse applications Application-specific design 
Safety and privacy Security 
QoS concerns QoS design with resource constraint; localization; attribute-based 

naming and data-centric routing
aylor & Francis Group, LLC



 

7

 

-12

 

Smart Dust

                   

7037_Book.fm  Page 12  Thursday, September 8, 2005  2:44 PM

© 2006 by T
data transmission and reception. Moreover, a real-time micro-operating system controls and operates
the sensing, computing, and communication units through microdevice drivers and decides which parts
to turn off and on. 

Advances in microelectromechanical systems (MEMS) and continuous developments in wireless com-
munications are spurring more intelligent, less expensive, much smaller sensor nodes to be embedded
into the physical world. For example, piconodes in the PicoRadio project are a promising “system-on-
chip” implementation to provide ubiquitous distribution of computation and communications for sen-
sor/monitor networks. Each PicoRadio node has a small size of less than 0.10 to 0.15 in.3, consumes less
than 10 mW, and costs less than $1 [79, 80, 103].

Another system, called WINS (wireless integrated network sensors), integrates multiple functions
including sensing, signal processing, decision making, and wireless networking capability in a compact,
low-power device. These intelligent sensors are tiny and powerful in establishing low-cost and robust
self-organizing networks for continuous sensing and event detection and identification [4, 75, 76].

A project called µAMPS (microadaptive multidomain power-aware sensors) [67] has the objective of
implementing a microsensor system on a chip of 1 cm3, with the integration of MEMS sensors, A/D,
data and protocol processing, and a radio transceiver on a single die. Moreover, the Smart Dust project
aims to explore the limits on size and power consumption of self-organizing sensor nodes that are not
more than a few cubic millimeters in size, i.e., small enough to float in the air detecting and communi-
cating for hours or days [54, 110–112]. For information on other experimental systems, refer to Hill et
al. [47, 48], Mainwaring et al. [64], and Yarvis et al. [106].

7.5.1.2 Low Duty Cycle Electronics 

Because the detected environment would not vary frequently or rapidly, the sensor node and its com-
ponents should operate in alternating active and inactive modes for the purpose of power conservation.
As the major contributors of the power consumption in a sensor node, data processing and radio
subsystems have been under extensive study [13, 19, 92]. The energy consumed by the static CMOS-
based microprocessor unit in a typical sensor node can be modeled as follows [92, 94]: 

(7.1)

FIGURE 7.1  System architecture of a typical microsensor node. 
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Total power consumption is composed of two parts: switching power and leakage power. Switching
power is determined by supply voltage, Vdd, and the total capacitance switched by executing software,
Ctotal. The leakage power refers to the energy consumption while no computation is conducted. Here, VT

is the thermal voltage. An effective way to reduce the energy consumption in the processor is to minimize
the power wasted while no useful work is done, i.e., the leakage power part.

For the radio module, a possible scheme of power conservation is to turn off the radio electronics
(such as frequency synthesizers, mixers, etc.) during periods of inactivity and to wake them up when
interesting events occur [13, 92]. The average power consumed by the radio is modeled as [92]: 

Pradio–ave = Ntx [Ptx (Ttx–on + Tstart) + PoutTtx–on] + Nrx [Prx (Trx–on + Tstart)] (7.2)

where Ntx/rx is the average number of times per second that the transmitter/receiver is active; Ptx/rx is the
power consumed by the transmitter/receiver; Pout is the output transmit power; Tstart is the transceiver
startup time; and Ttx/rx–on is the actual data transmitting/receiving time equal to L/R, where L is the packet
length in bits and R is the data rate in bits per second. Obviously, it is natural to turn off the radio as
long as no work is to be done in order to reduce power consumption. However, significant overhead in
terms of time and energy dissipation will be raised when switching the electrics from the inactive to the
active state. Optimal schemes are necessary to estimate the traffic dynamics and make the switching
decision accordingly.

7.5.2 System Architecture, Protocols, and Algorithms

7.5.2.1 Sensor Deployment Strategies

Sensor deployment is a fundamental issue for WSNs. The objective of a sensor deployment plan is to
achieve desirable coverage with a minimum number of sensor nodes while complying with constraints
of QoS, cost, reliability, and scalability of a certain application. 

In WSNs, coverage has a twofold meaning: range and spatial localization. Range refers to the geometric
area of a designated sensing mission, while spatial localization emphasizes the relative spatial positions
of sensor nodes and targets so as to extract accurate measurements. Meguerdichian and colleagues [65]
interpret the coverage problem in terms of deterministic vs. statistical and worst vs. best cases in WSNs,
and propose an optimal polynomial-time algorithm for coverage calculation by combining computational
geometry (specifically, Voronoi diagrams) and graph search algorithm. Mehta and coworkers [66]
describe several algorithms that quickly and interactively compute the optimal coverage paths in WSNs.
With greatly diverse applications, sensor deployment strategies and mechanisms vary significantly from
case to case. In general, four methods of sensor deployment exist: predetermined, self-regulated, randomly
undetermined, or biased distribution [24, 101]. 

Predetermined strategy applies to two situations: (1) knowledge about the environment or the possible
targets is sufficient, as described in Musman et al. [70]; (2) sensor nodes can be regularly placed in some
grid-based topology in which the sensing site is spatially modeled as a grid-based distribution, i.e., the
two- or three-dimensional space is represented by point coordinates. The granularity of the grid (distance
between adjunctive grid points) is determined by the desired accuracy [24]. Salhieh [87] and Schwiebert
and colleagues [88] illustrate several examples of placing sensor nodes in some preplanned geometric
topologies for medical care purposes. Using code identification, Chakrabarty and coworkers [14] describe
methods for determining the placement of sensor nodes for unique target location and provide code-
theoretic bounds on the number of sensors. Chakrabarty et al. [15] developed an integer linear program-
ming (ILP) model for optimistically minimizing the cost of sensor deployment under the constraint of
complete coverage of the sensor field. In general, predetermined strategy can provide an optimal solution
for desirable coverage and obtain high QoS and cost efficiency at the same time. However, the first
situation is often impractical in the real world because knowledge of the environment and targets is often
not available a priori. A regular grid-based approach has better adaptation to the variation of the
conditions, although it experiences some drawbacks as well. For one thing, the computational complexity
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makes the schemes not scalable to large-scale networks. However, the grid coverage relies on accurate
sensor detection, although, in reality, sensor detection is often uncertain. 

To overcome the difficulties of the predetermined approach, self-regulated strategy is developed.
Howard and colleagues [51] propose a potential field-based method to deploy sensor nodes automatically
in an unknown environment. Because the sensing fields are established in a manner in which each sensor
node is repelled by obstacles and by other nodes, the entire network is self-spread throughout the
environment and can reach the maximum coverage. Clouqueur et al. [20] present a scheme to deploy
sensor nodes sequentially in steps by introducing path exposure as a metric of goodness. With the strategy
of properly choosing the number of sensors in each step, the cost of deployment can be minimized to
achieve the desired detection performance. Self-regulated methods are scalable to increasing the number
of sensor nodes, but the computational expense may become prohibitive.

Randomly undermined strategy is more realistic for a large-scale WSN application, such as unknown
battlefields or hostile terrains. With methods of this approach, sensor nodes are generally spread uni-
formly in a given area [42–44, 60, 61, 101]. This strategy is preferable because of easy placement of nodes
and therefore low cost. Although sensing devices can be randomly deployed in two- or three-dimensional
spaces, the coverage might not be uniform due to obstacles or other sources of noise in an environment.
Based on an initial random distribution, Zou and Chakrabarty [109] introduced a practical virtual force
algorithm (VFA) to reposition the sensors in order to enlarge coverage to the desired optimal results,
thus dealing with cases of high- and low-detection accuracy while considering energy constraints. 

Furthermore, in some contexts, the uniform deployment of sensor nodes may not always satisfy the
design requirements and biased deployment can then be a viable option. Willig and coworkers [103]
illustrate an example of biased placement of sensors in a large-scale office building in which the density of
sensor nodes close to the windows is much higher than that in the middle of the room. Some comparisons
of different deployment strategies by means of simulations have been presented by Tilak et al. [101]. 

Most research on sensor deployment discussed here has an implicit assumption that every sensor node
operates in a reliable manner; however, because this is not always true in reality, some proposals have
been introduced to handle unreliable conditions. Considering the uncertainty of sensor detection, a
statistical optimization framework is presented in Dhillon et al. [24]. Assuming a given set of detection
probabilities in a sensor field, it optimizes the number of sensors and determines their position so as to
achieve sufficient grid coverage. Guibas [116] discusses the coverage and connectivity for WSNs with
unreliable sensor nodes, deriving the necessary and sufficient conditions to cover a unit square region
by a random grid network and maintain connectivity. These authors also formulate the sufficient con-
ditions for connectivity between active nodes.

The framework described in Ray et al. [83] allows the sensor coverage areas to overlap so that each
resolvable position is covered by a unique set of sensors. Using novel identification codes and based on
a polynomial-time algorithm, it not only requires fewer sensors than existing proximity-based schemes
in order to achieve required coverage, but also is robust against sensor failure or physical damage to the
system. An alternate approach to achieving desirable and reliable coverage is by means of hardware
redundancy, i.e., to deploy a greater density of sensor nodes in a sensing region and exploit redundancy
to extend the overall system lifetime by operating distinct subsets that are, in turn, based on local density
and local demand [32]. This is effective when the cost of deploying a node during the initial placement
is much smaller than the cost of adding a new node at a later time.

7.5.2.2 Dynamic Power Optimization at the Nodal Level 

Energy consumption at sensor node level has been described in Raghunathan et al. [81], Shih et al. [92],
and Sinha and Chandrakasan [95]. From a functionality perspective, energy is consumed for sensing,
computation, and communications. Power conservation can be achieved in any of these functions. 

First, it should be noted that workload in WSNs typically has the characteristic of burstiness [10, 96].
Therefore, some nodes or certain components of nodes should switch to power-saving states between
consecutive bursts while the functionality and QoS are still maintained. Dynamic power management
(DPM) [9, 14, 81] is an example of this approach. As listed in Table 7.4, a particular combination of
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component states will determine a specific node state [92, 95]. For a sensor node, the states in decreasing
order of power consumption are: transmitting, receiving, ready, observing, standby, sleep, and off. The
state transition diagram of a sensor node is shown in Figure 7.2. For detailed numerical analysis of power
consumption, see Raghunathan and colleagues [81]. However, transitions among states have power
consumption and latency costs. Specifically, some transitions, for example, from “off” to “sleep,” might
cost much more energy than others, such as from “sleep” to “active.” As a result, well-designed control
algorithms are needed to achieve the trade-off between power saving and latency, power consumption,
and state transitions.

Second, adaptively adjusting the operating voltage and frequency to meet the dynamically changing
workload without degrading performance is a method of energy saving on computation. The rationale
behind this technique is that the computational workload of MCU in WSNs is usually time varying and
peak system performance is not always demanded. Dynamic voltage scaling (DVS) [14, 39, 73, 81] is an
example of this approach. However, this scheme needs to predict the microprocessor’s workload so as to
adjust the power supply and operating frequency. A workload prediction strategy in WSNs is described
in Chakrabarty et al. [14]. More accurate prediction can lead to higher power efficiency with less
degradation to the system’s performance. Nevertheless, workloads in current and future WSNs are mostly
nondeterministic, so accurately modeling the workload is an open issue. 

Another approach is to optimize the transmission power of sensor nodes. The change in transmission
power has great impact on many aspects of WSN communication, including one-hop communication
radius; network topology and hierarchy; retransmission rate; routing path selection; etc. Researches of this
approach can be further divided into two types, depending on whether the node has the power control.

According to [113], an optimal transmission range, or transmission power in terms of energy efficiency,
exists in certain ad hoc networks. The optimal value is mainly affected by propagation environment and
device parameters. Contrary to intuition, [114] discovered that small transmission power might cause
excessive power consumption due to a combined effect of increased number of hops and larger retrans-
mission probabilities. Both researches were conducted in a flat, symmetric, multihop ad hoc network
with no power control for individual nodes. Further research with various network and nodal conditions
is strongly desired in the future. 

Some other research assumes the power control capability on individual nodes. In such case, a large
amount of communication energy can be saved through dynamically adjusting the transmission power

TABLE 7.4 States of the Sensor Node and Its Components

No. Node State MCU Memory Sensor and A/D Radio

S0 Transmitting Active Active On Tx
S1 Receiving Active Active On Rx
S2 Ready Idle Sleep On Rx
S3 Observing Sleep Sleep On Rx
S4 Standby Sleep Sleep On Off 
S5 Sleep Sleep Sleep Off Off
S6 Off Off Off Off Off

FIGURE 7.2  State transition diagram of a sensor node. 
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based on the estimation of transmitting distance of each transmission. Proposed in [115], ROAD is a
new MAC scheme for variable-radius multihop networks.

7.5.2.3 Optimal Schemes at System Level

7.5.2.3.1 Topology Management
As discussed earlier, dense deployment of sensors ensures the required coverage and sufficient precision of
detection. Meanwhile, the redundant data generated by densely deployed nodes can be treated as backups
for each other, so as to ensure the reliable function of the network. In the process of system operation, some
node may operate in low duty cycles by transiting the hardware to sleep or off states to conserve energy. In
these states, the sensor nodes are unable to communicate and forward packets. The nodes would then need
to be awakened in certain situations, such as when it is time to collect data or neighboring nodes are depleted.
Therefore, the active topology of the network changes over time. This leads to the critical issue of how to
arrange sleep state transitions while ensuring robust, undegraded information collection [81].

A typical approach is to rotate the node functionality periodically to achieve balanced energy con-
sumption among nodes. The protocol SPAN, proposed in Chen et al. [17], is an example of this approach
for wireless ad hoc networks. Randomly, a limited number of nodes are self-selected as coordinators to
construct the backbone in a peer-to-peer fashion within the network for traffic forwarding, while others
can make local decisions to transit to a sleep state or keep active. The geographical adaptive fidelity (GAF)
algorithm proposed in Xu and colleagues [105] is another way to rotate the active nodes within the
network. Identified equivalent nodes, based on geographic locations on a virtual grid, can substitute each
other directly and transparently without affecting the routing topology. Considering the fact that a WSN
is only sensing its environment and waiting for an interesting event to happen, a new technique — sparse
topology and energy management (STEM) described in Schurgers and coworkers [89, 90] — claims to
improve beyond SPAN and GAF in terms of obtaining higher energy savings so as to prolong the system
lifetime by trading off an increased latency to establish a multihop path.

7.5.2.3.2 Clustering and Hierarchical Architectures
It is reported that the energy consumed by communication is much higher than that for sensing and
computation; in fact, this actually dominates the total energy consumption in WSNs. Experiments show
that the ratio of communicating 1 bit over the wireless medium to that of processing the same bit could
be in the range of 1,000 to 10,000 [108]. Furthermore, in most WSNs, power for transmission contributes
to a majority of the total energy consumed for communication and the required transmission power
grows exponentially with the increase of transmission distance. Therefore, reducing the amount of traffic
and distance of communications can greatly prolong the system’s lifetime.

On the other hand, a WSN usually contains a large number of sensor nodes in a wide area, and the
base station may be far from the wireless sensors. Thus, dividing the entire system into distinct clusters
replaces the one-hop long-distance transmission by multihop short-distance data forwarding. This would
reduce the energy consumed for data communications and also has the advantages of load balancing,
and scalability when the network size grows. Challenges faced by such clustering-based approach include
how to select the cluster heads and how to organize the clusters. The clustering strategy could be single-
hop cluster or multihop cluster, based on the distance between the cluster heads and their members, as
shown in Figure 7.3(a) and Figure 7.3(b), respectively [38]. According to the hierarchy of clusters, the
clustering strategies can also be grouped into single-level or multilevel clustering. Figure 7.4 illustrates
the system architecture of multilevel hierarchical clustering [7]. 

Various clustering approaches for wireless ad hoc and/or sensor networks have been proposed in the
literature [6–8, 16, 30, 36, 38, 42–44, 59, 72, 84, 87]. Heinzelman et al. [42] propose a distributed low-
energy adaptive clustering hierarchy (LEACH). At the beginning, each node self-selects itself as a cluster
head with a predetermined probability; the cluster head then advertises its decision to the other nodes,
which decide to join a specific cluster that requires minimum communication energy. In order to ensure
the balanced energy dissipation among all nodes, LEACH invokes the rotation of the cluster head by
calling the self-selection and cluster formation procedure periodically. Moreover, the analytical and
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simulation results show that there is an optimal number of cluster heads that minimize the energy
consumption.

Chiasserini et al. [18] attempt to solve the optimal problem of the balanced k-clustering, where k
denotes the number of cluster heads in the system. Based on minimum weight matching, the algorithm
attempts to realize load balancing among different clusters by partitioning the nodes into groups so that
each cluster has a similar number of nodes. It achieves minimum energy consumption by optimizing
the total spatial distance between the cluster members and the cluster heads. The power-aware virtual
base stations (PA-VBS) protocol proposed by Safwat and colleagues [84, 86] is a first attempt to use the
residual power capacity to select cluster heads in mobile ad hoc networks. It is attractive to WSNs because
of its characteristics of load balancing and scalability to the growth of network size. In Gupta and Younis
[38], a load-balanced clustering approach is introduced for heterogeneous sensor networks. The gateway
nodes (cluster heads) with high energy manage the cluster member nodes and forward the data collected
from the cluster member to a faraway base station. However, all the preceding schemes are single-hop
cluster head formation algorithms, which may result in a large number of clusters. Therefore, they are
only suitable for networks with a small to medium number of nodes. 

In a large-scale network, multihop clusters and multilevel clustering hierarchy are highly in demand in
order to decrease the communication distance further. Amis et al. [3] propose the max–min d-cluster to
generate d-hop clusters, which can achieve better load balancing among clusters with fewer clusters than the

FIGURE 7.3(a)  Single-hop clustering architecture.

FIGURE 7.3(b)  Multihop clustering architecture. 
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single-hop clustering schemes can [6, 30]. In Chiasserini et al. [18], a clustering algorithm is described to
maximize the system lifetime through optimizing cluster size and assignment of nodes to each cluster head.
However, this requires predetermining the number and locations of cluster heads, and each node should have
knowledge of global network topology, which is impractical in WSNs. A chain-based protocol called power-
efficient gathering in sensor information systems (PEGASIS) is presented in Lindsey and Raghavendra [60]
and Lindsey et al. [61]. Instead of sending data packets directly to the cluster heads as shown in the LEACH
protocol, each node forwards its packets to the destination through its closest neighbors.

Inheriting the feature of randomized creation and rotation of cluster heads as proposed in LEACH,
as well as the advantages of a multihop clustering algorithm, Bandyopadhyay and Coyle [7] introduce a
new energy-efficient, single-level, multihop clustering algorithm; these authors also provide the formu-
lation for finding optimal parameter values to minimize the energy consumption. Moreover, based on
the results of Foss and Zuyev [35] and Baccelli and Zuyev [5], Bandyopadhyay and Coyle [7] also provide
a novel energy-efficient hierarchical clustering algorithm with a total of h levels (i.e., some of the cluster
heads in level k – 1 select themselves as kth level cluster heads, and the remaining level k – 1 cluster heads
are cluster members in level k). They derive optimal parameters to achieve minimum energy consumption
within the whole system. Experimental results for up to 10,000 nodes have been reported.

FIGURE 7.4  Multilevel hierarchical clustering architecture. 
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7.5.2.3.3 Traffic Distribution and System Partitioning
Due to the limited resources in WSNs, one key element of traffic forwarding is the selection of an energy-
efficient path from the source to the destination. Some algorithms have been proposed to select a route
that minimizes total energy consumption within the entire network. However, this is not always the case
in order to maximize the overall system lifetime. Because the nodes on such route are overused, their
batteries are more likely to be exhausted. This can result in discontinuity of the network, as well as
unavailability of sensing in the corresponding regions. Therefore, taking the point of view of the system’s
overall availability and longevity, it is preferable to avoid continuously forwarding traffic through the
same route, even though it always consumes the minimum energy from source to destination. Thus, it
is desirable to distribute the traffic more evenly within the whole system [81]. 

It is also possible to introduce the concept of system partitioning [13] to reduce power dissipation in
the sensor nodes by removing some intensive computation to remote base stations that are not energy
constrained, or spreading some of the complex energy-consuming computation among more sensor
nodes instead of overloading several centralized processing elements. Chandrakasan et al. [13], Min et
al. [68], and Wang and Chandrakasan [102] describe examples of implementing system partitioning. 

7.5.2.3.4 Collaborative Signal and Information Processing (CSIP) and Data Aggregation
In addition to the approaches described in previous subsections, local processing of raw data before direct
forwarding will effectively reduce the amount of communication and improve the efficiency (information
per bit transmitted). CSIP and data aggregation are two typical localized paradigms for the purpose of
data processing in WSNs. 

With the combination of interdisciplinary techniques, such as low-power communication and com-
putation, space-time signal processing, distributed and fault-tolerant algorithms, adaptive systems, and
sensor fusion and decision theory, CSIP is expected to provide solutions to many challenges, including
dense spatial sampling of interested events; distributed asynchronous processing; progressive accuracy;
optimized processing and communication; data fusion; and querying and routing tasks [58]. CSIP can
be implemented through coherent signal processing on a small number of nodes in a cluster or through
noncoherent processing across a larger number of nodes when synchronization is not a strict requirement
[32]. CSIP algorithms can be classified [78] as information-driven schemes [107, 108], mobile agent-
based schemes [77], or relation-based schemes [116].

Data aggregation or fusion [45, 52, 56] is another efficient data processing approach in WSNs. It tries
to minimize traffic load (in terms of number and/or length of packets) through eliminating redundancy.
Specifically, when an intermediate node receives data from multiple source nodes, instead of forwarding
all of them directly, it checks the contents of incoming data and then combines them by eliminating
redundant information under some accuracy constraints. It applies a novel data-centric approach to
replace the traditional address-centric approach in data forwarding [56]. The examples depicted in
Figure 7.5(a) and Figure 7.5(b) demonstrate the difference in these two approaches. In an address-centric
approach, the intermediate node, M, must forward all the packets received from different source nodes,
e.g., S1, S2, to the destination D. However, in a data-centric approach, node M first fuses the data from
S1 and S2 by eliminating the redundant information, then relays the processed data to D. This leads to
higher efficiency and more energy savings.

Several data aggregation algorithms have been reported in the literature. The most straightforward is
duplicate suppression, i.e., if multiple sources send the same data, the intermediate node will only forward
one of them. Maximum or minimum functions are also very simple approaches. Heinzelman and
colleagues [41] and Julik and coworkers [57] propose a scheme named sensor protocols for information
via negotiation (SPIN) to realize traffic reduction for information dissemination. It introduces metadata
negotiations between sensors to avoid redundant and/or unnecessary data through the network.
Proposed in Intanagonwiwat et al. [52], directed diffusion is a data distribution scheme that incorporates
in-network data aggregation, data caching, and data-centric dissemination, while enforcing adaptation
to the empirically best path. It aims to establish efficient n-way communication from single or multiple
sources to sinks. Heidemann and colleagues [45] present a physical implementation of directed diffusion
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with a wireless sensor test bed and shows that the traffic can be reduced by up to 42% when deploying
a duplicate suppression data aggregation scheme.

The greedy aggregation approach proposed in Intanagonwiwat et al. [53] can improve path sharing
and attain significant energy savings when the network has higher nodal density compared with the
opportunistic approach. Krishnamachari and coworkers [56] describe the impact of source-destination
placement on the energy costs and delay associated with data aggregation; they also investigate the
complexity of optimal data aggregation. In [117], a polynomial-time algorithm for near-optimal maxi-
mum lifetime data aggregation (MLDA) is described for data collection in WSNs. The scheme is superior
to others in terms of system lifetime, but has a high computational expense for large sensor networks.
In Dasgupta et al. [22], a simple and efficient clustering-based heuristic for maximum lifetime data
aggregation (CMLDA) is proposed for small- and large-scale sensor networks.

7.5.2.3.5 Cross-Layer Design
Traditional design of wireless ad hoc network protocols is mainly based on the layered stack as shown
in Figure 7.6(a). This layered model makes a significant contribution to simplifying network design.
Consequently, the layer structure leads to robust and scalable protocols. However, the design and oper-
ation of each layer in the stack are isolated, and the interface between layers is static and independent of
the individual network constraints and applications. Therefore, inheriting such a stack will lead to poor
WSN performance in which resources, especially energy, bandwidth, memory size, and CPU speed are
greatly constrained. Many WSNs are dedicated for real-time data collection and strict delay bounds and
high bandwidth demands could occur. Thus, new approaches are desirable to break the traditional border
between the adjunct layers and create cross-layer paradigms. A possible cross-layer stack architecture is
depicted in Figure 7.6(b) [37]. 

Goldsmith and Wicker [37] discuss not only the principles and strategies of cross-layer design in
wireless ad hoc networks, but also the functionality of the individual layers and interactions among the
different layers. Cross-layer design has become an attractive and active research topic in protocol designs
of WSNs in recent years. Although some efforts have been made in literature, such as Heinzelman et al.
[42, 43] and Safwat et al. [85], numerous open issues — how to understand and apply this design
principle, how to deal with problems of information exchange across stack layers, and how to realize a
specific application requirement with global system constrains — remain to be explored.

7.5.3 Software Development 

Because of severe resource constraints, the software environment of WSNs is very different from those
other distributed and parallel computing systems. Issues such as energy efficiency, scalability, and reli-
ability are fundamental factors in software development for WSNs [13, 47, 49, 67, 81, 94, 99]. 

FIGURE 7.5  (a) Example of address-centric data forwarding. (b) Example of data-centric data forwarding.
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7.5.3.1 Single Node Level 

System support on the lowest level begins at each single node. The concept of energy-aware software is
introduced in Sinha and Chandrakasan [95]; who also illustrate the energy model of a typical micropro-
cessor used for microsensors. With the proper operating systems, DPM and DVS can be deployed to
reduce system power consumption at the node level. Described in Hill et al. [47, 49], TinyOS is one of
the earliest operating systems dedicated for tiny sensor nodes; this system is event driven and uses only
178 bytes of memory, but supports communication, multitasking, and code modularity. Min and col-
leagues [67] present the concept of energy-scalable software, which is claimed to balance the trade-off
between energy and quality characteristics.

7.5.3.2 Middleware

The middleware in WSNs abstracts the system as a collection of massively distributed objects and enables
sensor applications to originate queries and tasks, gather responses and results, and monitor the changes
within the network [91]. Sensor information networking architecture (SINA), proposed in Shen et al.
[91], provides a middleware implementation of the general abstraction; these authors also describe sensor
query and tasking language (SQTL), the sensor programming language used to implement such middle-
ware architecture. 

7.5.3.3 Application Programming Interface (API)

Considerable operation complexity exists in a WSN. However, with proper API implementation, the
underlying system complexity can be transparent to end users who are experts in their specific application
domain, but not necessarily experts in WSNs. The detailed functionalities of API in WSNs have been

FIGURE 7.6(a)  Traditional layered protocol stack for ad hoc networks.

FIGURE 7.6(b)  Cross-layer protocol stack for WSNs. 
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discussed in Shen and colleagues [91]. Stankovic et al. [99] consider other issues and advances in WSN
software development.

7.6 Conclusions and Considerations for Future Research 

A wireless sensor network consists of a large number of sensor nodes performing various distributed
sensing and control tasks that are linked by a wireless medium. In general, a sensor is a device capable
of capturing physical information, such as temperature, pressure, motion of an object, and mapping such
physical characteristics of the environment to quantitative measurements. WSNs are evolving from simple
networks with a small number of sensor nodes into diverse forms containing rapidly growing numbers
of distributed nodes with enriched functions. These networks exhibit many benefits over their conven-
tional wired counterparts and have been turning impossible monitoring and detection tasks into reality.
Because of their ease of deployment, self-organization, reliability, versatility, scalability, and flexibility,
WSNs have revealed significant potential in providing safer and healthier environments for human beings
and thus have attracted much attention from academia as well as industry over the past few years. 

This chapter presented an overview of WSNs and their evolution, describing numerous applications
of self-configurable WSNs for target monitoring, detection, localization, and tracking in distinct military
and civil domains. A discussion on technical challenges and design requirements was provided. Also
highlighted were the state-of-the-art technical approaches in three aspects: hardware design; systems
architectures, protocols, and algorithms; and software development. 

Despite of the great progress on development of WSNs, quite a few issues still need to be explored in
the future:

• Tiny hardware components and sensor nodes with high efficiency are still to be developed. 
• Protocols and algorithms for WSNs with heterogeneous sensor nodes. Currently, many WSN pro-

tocols/algorithms are based on homogeneous sensor networks. However, sensors with different
power capacities, sensing and transmitting range, and computing/processing abilities are usually
more practical for constructing highly reliable networks [55, 63]. 

• Combination of data-centric and address-centric operations. As a long-term goal, WSNs are
designated to be the first-class candidates in ubiquitous networks [118]. However, end-to-end
communication fashion in traditional networks may not be suitable for the collective fashion in
sensor networks. Combining WSNs’ data-centric operation with the address-centric operation in
traditional networks will lead to numerous open issues. 

• Security issues. Most existing WSN communication protocols have not addressed security and are
susceptible to attacks by adversaries. The issue of integrating security at the design stage in a
resources-constrained WSN is a serious technical challenge. 

• Analytical modeling. More accurate and expeditious implementation of WSNs in the real world
is highly dependent on the ability to devise analytical models to evaluate and predict WSNs’
performance characteristics, such as efficiency for information gathering, delay properties, gran-
ularity, and energy consumption. However, due to the diverse forms of applications and massive
number of nodes in a single network, many technical problems remain to be solved in modeling
the behavior of WSNs. 

• Clock synchronization. Large numbers of sensor nodes in a WSN need to collaborate to fulfill the
sensing task and the collected data are time sensitive in most cases. Thus, clock synchronization
is a key requirement for algorithm and protocol design. However, due to resource and size
limitation and lack of a fixed infrastructure, as well as the dynamic topology, existing time
synchronization strategies designed for other traditional wired and wireless networks are not
suitable for WSNs. Although Elson and Estrin [27] and Elson et al. [29] propose some synchro-
nization proposals for WSNs, and some design principles are given in Elson and Romer [28], quite
a few open issues still need to be explored in the future. 
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• Other issues. Optimal sensor node selection and allocation, discovery, localization, and network
diagnoses are other open issues in this direction. Many software issues remain open as well. These
include the design of distributed control and coordination algorithms to ensure balanced load
assignment and energy consumption; efficient techniques for sensor data storage; and protocols
with mobility consideration and dynamic group communications. 

The issues discussed in this chapter are not exhaustive: many open issues remain to be explored so as
to enable WSNs to achieve desirable connectivity, availability, reliability, and survivability in an energy-
efficient fashion.
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8.1 Overview

 

Emergence of the concept of multihop ad hoc wireless networks, low-power electronics, low-power,
short-range wireless communication radios, and intelligent sensors is considered the major technological
enabler for deployment of sensor networks (SNs). The goal in this survey is to identify key architectural
and design issues related to sensor networks, critically evaluate the proposed solutions, and outline the
most challenging research directions. The evaluation has three levels of abstraction:

• Individual components on SN nodes (processor, communication, storage, sensors and/or actua-
tors, and power supply)

• Node level
• Distributed networked system level

Special emphasis is placed on architecture, system software, to some extent, and new challenges related
to using new types of components in networked systems. The evaluation is guided by anticipated
technology trends and current and future applications. The main conclusion of the analysis is that the
architectural and synthesis emphasis will be shifted from computation and, to some extent communica-
tion, components to sensors, actuators, and different types of sensors and applications that require
distinctly different architectures at all three levels of abstraction.

 

8.2 Motivation and Objectives

 

Embedded wireless SNs are systems consisting of a large number of nodes, each equipped with a certain
amount of computational, communication, storage, sensing, and actuation resources [20]. SNs aim to
provide efficient and effective connection between physical and computational worlds and are also widely
considered the new big frontier for the Internet. Furthermore, they have high potential economic impact
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Smart Dust

 

in many fields, including military, education, monitoring, retail, and science. At the same time, SNs pose
numerous new research and development challenges, including the need for the next generation of low
power; low cost; small size; error and fault resiliency; flexibility; conceptually new security and privacy;
and a need for new types of input/output (I/O) operations.

However, before any of these challenges can be properly addressed, one must have the sensor
network in place; the network must be designed and implemented and the need for flexible mecha-
nisms and means for efficient and convenient use must be realized. In addition to algorithms,
hardware and software architecture will decide to a significant extent the effectiveness of SNs.
Furthermore, SN design methodology will have primary impact on the cost and performance of SNs.
The third aspect with major potential impact — algorithms and modeling techniques for SN — is
mainly out of the scope of this survey. Comprehensive surveys on SNs include Estrin et al. [20],
Pottie and Kaiser [50], and Akyildiz et al. [2].

The overall strategic goal is to summarize current state of the art with respect to architecture and
synthesis techniques for SNs and to provide a starting point and impetus for research and development
of new architectures and synthesis tools for SNs. More specifically, the emphases are on:

•

 

Identifying requirements for typical SN application

 

. Traditionally, design of new computer archi-
tectures has been based on comprehensive and representative benchmark suites for typical target
applications. It is of exceptional importance to create such benchmarks for sensor networks. In
addition, it is important to predict the nature of future SN applications. However, even before the
benchmarks are available, qualitative analysis of representative application can greatly facilitate
identification of more accurate design goals.

•

 

Identifying relevant technological trends

 

. It is well known that many electronics and optical systems
follow exponential performance growth rates. SN systems are heterogeneous and complex; there-
fore, it is important to anticipate which design and cost bottlenecks are intrinsic and which will
be resolved due to technological progress. Importance of technological trends is well illustrated
during power optimization. Depending on future ratios of computation, communication, and
storage cost, very different types of algorithms will be best suited for SNs.

•

 

Balanced design

 

. In order to achieve a balanced design, the first instinct could be to optimize
each and every component to the maximum extent. From a research and economic point of
view, it is important to identify where to put the main optimization effort. In addition, new
computational models are needed, but one must keep in mind that they are not the ultimate
goal per se.

•

 

Techniques for design and the use of the design components

 

. The six components of SN node can
be grouped in two categories according to their maturity. Power supplies, and in particular storage
and power supply, are considered mature technologies. On the other hand, ultralow power wireless
communication, sensors, and actuators are technologies waiting for major technological revolu-
tions. It is important to identify which techniques, architectures, and tools can be reused, and
where the new design effort is required.

•

 

Overall node architecture and trade-offs

 

. One can envision a number of possible trade-offs. For
example, the TinyOS approach [27] advocates aggressive communication strategy in order to
reduce complexity of computation and storage at local sensor nodes. On the other hand, the
sensor-centered approach [22] advocates aggressive sensor data processing, filtering, and com-
pression in order to reduce communication.

•

 

Survey of state-of-the-art technology, components, and sensor network nodes

 

. Special emphasis
is placed on providing qualitative and quantitative analysis. In addition, several state-of-the-
art sensor nodes are surveyed and decisions that influenced their structure are critically
evaluated.
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8.3 SNs — Global View and Requirements 

 

It is well known that characteristics of computing or communication systems are direct consequences of
targeted applications. A number of characteristics of sensor networks that have direct impact on architectural
and design decisions have been identified. These characteristics rise naturally from a confluence of typical
application requirements and technology limitations. Typical SN applications include contaminant transport
monitoring; marine microorganisms analysis; habitat sensing; and seismic and home monitoring [9]. These
applications show a great deal of diversity. Nevertheless, a number of general characteristics are shared among
the majority of SN applications, regardless of the specific types of sensors and application objectives. These
characteristics include low cost; small size; low power consumption; robustness; flexibility; resiliency on errors
and faults; autonomous mode of operation; and privacy and security.

Sensor network nodes typically consist of six components: processor; radio; local storage; sensors and/
or actuators; and power supply. A number of relevant technology trends need to be considered. For
example, a huge variety of powerful low-power, low-cost processors, and low-cost memory technologies
are widely accessible. Also, memory and processor technologies are growing more and more powerfully
according to Moore’s law, and wireless bandwidth has increased by a factor of more than 100 in the last
7 years; the capacity of batteries is growing at a rate as low as 3% per year. The cost of application-specific
designs is growing rapidly: only masks cost $1 million and keep increasing by the factor of two every 2
years. Sensors and actuators are relatively young industrial fields and predictions are still uncertain.

Because of these application requirements and technology constraints, the following architectural and
design objectives are most relevant:

•

 

Small physical size

 

. Reducing physical size has always been one of the key design issues. Therefore,
the goal is to provide powerful processor, memory, radio, and other components while keeping a
reasonably small size, dictated by a specific application.

•

 

Low power consumption

 

. The capability, lifetime, and performance of the sensors are all con-
strained by energy. The sensors should be able to be active for a reasonably long time without
recharging the battery because maintenance is expensive.

•

 

Concurrency-intensive operation

 

. In order to achieve the overall performance, the sensor data
must be captured from the sensor, processed, compressed, and then sent to the network simulta-
neously in pipelined processing mode, instead of sequential action. Two conceptual approaches
address this requirement: (1) partitioning the processor into multiple units in which each is
assigned responsibility for a specific task; and (2) reduction of the context switching time.

•

 

Diversity in design and usage

 

. Because each node should be small in size, low on power consump-
tion, and have limited physical parallelism, the sensor nodes tend to be application specific.
However, different sensors have different requirements. For example, cameras and simple ther-
mometers are two extremes in terms of functionality and complexity. Therefore, the design should
facilitate trade-offs among reuse, cost, and efficiency.

•

 

Robust operations

 

. Because sensors will be deployed over a large and sometimes hostile environ-
ment (forests, military usage, human body), they must be tolerant of fault and error. Therefore,
sensor nodes need abilities to self-test, self-calibrate, and self-repair [33].

•

 

Security and privacy

 

. Each sensor node should have sufficient security mechanisms in order to
prevent unauthorized access, attacks, and unintentional damage of the information inside the SN
node. Furthermore, additional privacy mechanisms must be included.

•

 

Compatibility

 

. The cost to develop software dominates the cost of the overall system. In particular,
it is important to be able to reuse the legacy code through binary compatibility or binary translation.

•

 

Flexibility

 

. It is necessary to accommodate functional and timing changes. Flexibility can be
achieved through two means: (i) programmability (by employing programmable processors such
as microprocessors, DSP processors, and microcontrollers); and (2) reconfiguration (by using
FPGA-based platforms). Flexibility will be mainly achieved by programmability and use of spe-
cialized ASIC and coprocessors due to low power consumption.
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8.4 Individual Components of SN Nodes

 

SN nodes generally are composed of six components: processor; storage unit; power supply; sensors and/
or actuators; and, finally, communication (radio) subsystems. It is apparent that standard processors,
possibly augmented with DSP, and other coprocessors and some ASIC units will provide adequate
processing capabilities at acceptable low-energy rates. Also the state of the art of the actuators is such
that they are still not used in the current generation of SN nodes. Therefore, the focus is on the other
five components. For the sake of completeness, the discussion begins by presenting a processor specifically
designed for sensor networks.

 

8.4.1 Processor

 

Berkeley BWRC research group has designed and implemented a prototype processor; its main target
areas include voice processing and related applications for wireless devices. For example, the processor
can be used in museums to provide better interaction between visitors and displayed items. The Maia
processor [63] is built around an ARM8 core with 21 coprocessors. These 21 processors include: two
MACs; two ALUs; eight address generators; eight embedded memories; and an embedded low-energy
FPGA [24]. The goal is to provide enough parallelism at low energy levels. ARM8 core configures
the memory-mapped satellites using a 32b configurable bus and also communicates data with the
satellite coprocessors using two pairs of I/O interface ports by applying direct memory reads/writes.
The interactions between the ARM8 and coprocessor satellites are carried out through an interface
control unit.

A two-level, hierarchical, mesh-structured, reconfigurable interconnect network is used to establish
the connections between all satellites. This network provides a favorable trade-off between bandwidth
and low area (cost) and low power requirements. This 210-pin chip contains 1.2 M transistors and
measures 5.2 

 

×

 

 6.7 mm

 

2

 

 in 0.25-

 

μ

 

m, six-metal CMOS. In order to minimize the overall energy consump-
tion, the embedded ARM8 core is additionally optimized and can operate under variable supply voltages
[8]. In addition, the dualstage pipelined media access control (MAC) and the ALU are configurable. The
address generators and embedded memories provide multiple concurrent data streams to the computa-
tional components. The embedded FPGA has a 4 

 

×

 

 8 array of five-input, three-output CLBs. It can be
optimized for tasks such as arithmetic operations and data-flow control functions. The interface control
unit interacts and coordinates the synchronization and communication between the synchronous ARM8
core and the asynchronous reconfigurable data paths. It also enables the ARM8 core to reconfigure the
satellites. The overall targeted computation model is globally asynchronous, locally synchronous com-
putation and supports multirate operation.

 

8.4.2 Storage

 

Depending on the overall sensor network structure, the requirements for storage in terms of fast and
nonvolatile memory at each node can be sharply different. For example, if one follows the architecture
model in which all information is instantaneously sent to the central node, there is very little need for
local storage on individual nodes. However, in a more likely scenario in which the goal is to minimize
the amount of communication and conduct a significant part of computation at each individual node,
there will be significant requirement for local storage. At least two alternatives exist for storing data in a
local node. In addition, in the case in which the node is physically larger, one can store the data in
microdisks [17].

The first option is to use flash memory, which is very attractive in terms of cost and storage capacity.
However, it has relatively severe limitations in terms of how many times it can be used for storing different
data in the same physical locations [28]. The second option is to use nanoelectronics-based MRAM [56].
It is expected that MRAM will soon be able to support significant numbers of applications in a number
of areas.

 

7037_C008.fm  Page 4  Tuesday, November 1, 2005  12:22 PM

© 2006 by Taylor & Francis Group, LLC



 

Sensor Network Architecture

 

8

 

-5

 

It is important to note that historically, nonvolatile semiconductor and disk storage capacity has been
growing at a rate higher than that indicated in Moore’s law. At least two major challenges for the use of
nonvolatile memory in sensor nodes are: (1) partitioning for power reduction and (2) developing memory
structures that will fit short, word-length data produced by sensors. Note that a significant percentage
of network control and sensor data will have low entropy. Therefore, it is likely that aggressive compression
techniques will be used to reduce the amount of data that must be stored or transferred [14].

 

8.4.3 Power Supply

 

A wide consensus is that energy will be one of the main technological constraints for SN nodes [46, 57].
For example, the current generation of smart badges and motes enables continuous operations for only
a few hours. Energy supply can be addressed in at least two conceptually different ways. The first is to
equip each sensor node with a (rechargeable) source of energy. Two main options for this approach exist.
Currently, the dominant option is to use high-density battery cells [23, 37]; the other alternative is to
use full cells. Full cells provide exceptionally high density and a clean source of energy. However, they
are not currently available in a physical format appropriate for SN nodes.

The second conceptual alternative is to harvest energy available in the environment [52]. In addition
to solar cells, which are already widely used for mobile appliances such as calculators, a number of
proposals concern converting vibration to electric energy [45]. An interesting solution for a power source
is introduced in Douseki et al. [18]. A battery-less wireless system that harvests ambient heat is used
instead of adopting traditional batteries as the power source. The main component of the system is a
switched-capacitor DC–DC converter; a microthermoelectric module makes such a system possible. The
chip is fabricated in a 0.8-

 

μ

 

m fully depleted SOI process and its effectiveness has been demonstrated.

 

8.4.4 Sensors 

 

The importance of sensors cannot be overstated. The purpose of SN nodes is not to compute or to
communicate, but rather to sense. The sensing component of SN nodes is the current technology
bottleneck; these technologies currently are not progressing as fast as semiconductors. Conceptual lim-
itations are significantly stricter for sensors than for processors or storage. For example, sensors interface
to the real physical world, while computing and communicating units are dealing with a greatly controlled
environment of a single chip. Transducers are front-end components in sensor nodes that are being used
to transform one form of energy into another. Design of transducers is considered out of a system
architect’s scope. In addition, sensors may have four other components: analog, A/D, digital, and micro-
controller. The simplest design option includes only the transducer; however, because the current trend
is to put more “smartness” into sensor network nodes, significant processing and computing abilities are
being added to sensor nodes [41].

One of the main challenges of SNs is to select the type and quantity of sensors and determine their
placement. This task is difficult because of the numerous types of sensors with different properties such
as resolution, cost, accuracy, size, and power consumption. In addition, often more than one sensor type
is needed to ensure the correctness of operation and data from different sensors that can be combined.
For example, in the Cricket Compass [51, 65], the orientation and the movement of the studying object
can be obtained by measuring the distance between several fixed-location referencing sensors; therefore
the location of the sensor is crucial to minimize error [65].

Another challenge is to select the correct types of sensors and the way to operate them. The source of
difficulty is sensor interactions. For example, consider determining distance using audio sensors. Because
the speed of sound depends greatly on temperature and humidity of the environment, it is necessary to
take both measurements into account in order to get the accurate distance.

Several other design tasks are associated with sensors, including fault tolerance, error control, calibra-
tion, and time synchronization [33]. There are a large number of different sensor technologies [46, 60];
as an example, consider Kulah et al. [35] and Luo et al. [39]. The accelerometer is one of the most popular
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MEMS-based sensors. A state-of-the-art capacitive accelerometer was recently reported by the MEMS
group at the University of Michigan. It uses a two-element sensor array in two 

 

Σ

 

 (sigma-delta) loops to
improve accuracy by a factor more than two times in comparison with a traditional second-order 

 

Σ

 

modulator. The design is clocked at 1 MHz and provides 1 V/pF sensitivity. It has dynamic range of more
than 120 dB and consumes less than 12 mW. Another state-of-the-art accelerometer has been designed
at Carnegie Mellon University. The design combines lateral accelerometer and vertical gyroscopes with
signal processing circuits.

 

8.4.5 Radio

 

Short-range radios as communication components are exceptionally important because the part of the
energy budget dedicated to sending and receiving messages usually dominates the overall energy budget
[52]. During the design and the selection of radios, one must considers at least three different abstraction
layers: physical, MAC, and network. The physical layer is responsible for establishing physical links
between a transceiver and one or more receivers. The main tasks at this level involve signal modulation
and encoding of data in order to maintain communication in the presence of channel noise and signal
interferences. In order to use the bandwidth efficiently and reduce the development cost to some extent,
the standard practice is that several radios share the same interconnect medium. The sharing of media
(e.g., time or frequency) is facilitated by the MAC layer. Finally, the network layer is responsible for
establishing the path that a message must travel through the network in order to be transferred from its
source to the destination. 

Design of power and bandwidth efficient radios is one of the main research and development tasks.
It is important to realize that radio architecture is a function of the employed network structure and
protocols. The main trade-off is between the relative energy cost of transmission and reception; the key
observation is that listening to the channel is expensive. Therefore, it is necessary to develop schemes
that will enable long periods of sleep mode for receivers. For example, one option is to use coordinated
policy for deciding which node will go to sleep while the connectivity in the node is maintained [53].
The other option is to use two radios; one of them is responsible for data reception and is power hungry.
It is used only when the other ultralow power radio invokes it. The ultralow power radio is only used to
detect if one wants to transmit data to this node.

Table 8.1 surveys the state-of-the-art radio design alternatives from ISSCC 2001 [29] and ISSCC 2002
[30]; several notable radio designs are briefly outlined. One radio design alternative is the fully integrated
GPS radio described in Behbahani et al. [4]. The low-IF architecture of the radio enables a high level of
integration and low power consumption simultaneously. The integrated radio measures a 9.5-mm

 

2

 

 chip
area. It can operate under a various range of voltage and temperature, namely, from 2.2 to 3.6 V and
from –40 to +85

 

°

 

C and consumes 27 mW from a 2.2-V supply. 
Another notable design is the IEEE 802.11a wireless local area network (WLAN) transceivers presented

in Xargari et al. [62]. A 0.25-

 

μ

 

m CMOS technology is used to integrate a 5-GHz transceiver compressing
the RF and analog circuits of an IEEE 802.11a-compliant wireless local area network (WLAN). The
integrated circuit has 22 dBm maximum transmitted power; 8 dB overall receive-chain noise figure; and
–112 dBc/Hz synthesizer phase noise at 1 MHz frequency offset.

Other state-of-the-art radio designs have been developed [7, 11, 32, 64]. Chien and colleagues [11]
introduced a fully integrated 2.4-GHz transceiver in 0.25-

 

μ

 

m CMOS and its associated baseband pro-
cessor in 0.15-

 

μ

 

m CMOS. Kluge and coworkers [32] have recently designed advanced microdevices —
a 2.4-GHz CMOS radio for 802.11b wireless LAN. They used 0.25-

 

μ

 

m feature size to design 10-mm

 

2

 

integrated circuits that consume 86 mA in receiver mode and 73 mA in transceiver mode from a 2.5-V
supply. The receiver has a short settling time and is equipped with a separate receiver channel filter and
transceiver pulse-shaping filter. In addition, it provides filter calibration circuitry. Bouros and colleagues
[7] introduced a digitally calibrated transceiver in 0.18-

 

μ

 

m CMOS that occupies 18.5 mm

 

2

 

. The integrated
phase noise can be minimized to less than –37.4 dBc using the fully integrated VCO and synthesizer.
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Chien et al. [11] have developed a 2.4-GHz radio for 802.15.4 WPANs using 0.18-

 

μ

 

m CMOS technology
that consumes 21 and 30 mW at 1.8-V supply in receiving and transmitting mode, respectively. It
incorporates a poly-phase filter and applies transistor linearization techniques to achieve a low-IF archi-
tecture. Other alternatives are also available [13, 16].

 

TABLE 8.1

 

Comparison of State-of-the-Art Radio Design Alternatives

 

Technology
Silicon Area 

(mm

 

2

 

)
ICC_RX 

(mA)
ICC_TX 

(mA)
VCC 
(V)

 

Alcatel (RF+BB)
ISSCC 2001-13.1

0.25-

 

μ

 

m   CMOS 40 41 52 2.5

IME + OKI (RF)
ISSCC 2001-13.2

0.35-

 

μ

 

m CMOS 18 66 47 2.7–3.3

Broadcom (RF)
ISSCC 2001-13.3

0.35-

 

μ

 

m CMOS 20? 46 47 2.7–3.3

Conexant (RF)
ISSCC 2001-13.4

0.35-

 

μ

 

m SiGE 
BiCMOS

12? 16 12 1.6–3.0

SiliconWave (RF)
ISSCC 2002-5.2

0.35-

 

μ

 

m SOI 
BiCMOS

19.5 39 37 2.7

Transilica (RF)
ISSCC 2002-5.3

0.25-

 

μ

 

m CMOS 13.3 45 36 3.0

Hitachi (RF)
ISSCC 2002-5.5

0.35-

 

μ

 

m BiCMOS 11.2 45 35 2.7

Bluetooth (RF)
ISSCC 2002-5.1

0.18-

 

μ

 

m CMOS 5.5 (4.0) 30 35 2.5–3.0

 

Source

 

: Zeijl, P. et al., 

 

IEEE J. Solid-State Circuits

 

, 37, Dec. 2002. With permission.

 

TABLE 8.2

 

MCU Comparison

 

AT91FR4081 ATMega128L

 

Datapath 16/32 b 8 b
Clock speed (MHz) 40 4
MIPS/MHz (ARM 0.9); (THUMB 0.7) 1
Power @ 3 V (mW) 75 15
MIPS/W 480 242

 

Source

 

: Savvides, A. and Srivastava, M.B., in 

 

Proc. Int. Conf. Com-
puter Design

 

, 2002. With permission. 

 

TABLE 8.3

 

Current Drawn by 

 

Node Components

 

Component
Active 
(mA)

Sleep 
(mA)

 

ATMega128L 5.5 1
RFM 2.9 5
AT91FR4081 25 10
RS-485 3 1
RS-232 3 10
Total 39.4 27

 

Source

 

: Savvides, A. and Srivas-
tava, M.B., in 

 

Proc. Int. Conf. Com-
puter Design

 

, 2002. With permission.
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8.5 Sensor Network Node

 

This section addresses the key issues related to the architecture and synthesis of an individual SN node.
Architecture aspects are discussed along three lines: hardware, software, and middleware; design issues
are presented from synthesis and analysis points of view.

The architecture of SN nodes has been addressed in at least three main directions. The first group of
initial efforts comprises a number of designs of individual sensor nodes and badges [1, 3, 38, 40, 45, 50,
59]. The emphasis in this class has been placed on ensuring creation of working prototypes and, in some
cases, pushing the state of the art of an individual component (e.g., radio, low power, energy harvesting).
The second group was represented by the Mote/TinyOS development team at UC Berkeley [15, 27], who
made the first effort to address the trade-offs between various components of the node by developing a
new architecture and operating system (OS). The main characteristic of the last effort is sensor centered.
The emphasis is on exploiting relatively inexpensive off-the-shelf components in terms of cost and energy
as a basis for exploring qualitative and quantitative trade-offs between node components and, in partic-
ular, sensors.

It is difficult to anticipate technological trends, but one can easily identify at least some high-impact
trends and required solutions. For example, it is apparent that overall energy consumption-balanced
architectures are needed. Another high-impact research topic concerns sensor organization and devel-
opment of the interface between components. Finally, due to privacy, security, and authentication needs,
techniques such as unique ID for CPU and other components that facilitate privacy will be in high
demand.

In the software domain, main emphasis will be on RTOS (real time operating system) [36]. Ultra-
aggressive low-power management is needed because of energy constraints and comprehensive resource
accounting is desired due to demands for privacy and security. In a number of cases, support for mobility
functions (e.g., location discovery) is also needed. Middleware will be in even stronger demand in order
to enable rapid development and deployment of new applications. Tasks such as sensor data filtering;
compression; sensor data fusion, sensor data searching and profiling; exposure coverage; and tracking
will be ubiquitous.

Synthesis of sensor nodes will pose a number of new problems in the CAD world. It is obvious that
new types of models, abstractions, and tasks will be defined and solved. Sensor allocation and selection,
sensor positioning, sensor assignment, and efficient techniques for sensor data storage are typical exam-
ples of pending synthesis tasks. Development of conceptually simple and clean, yet inexpressive, models
of computation is of prime importance as a starting point for synthesis of modern computing systems.
Sensor nodes will require new models of computations as well as new models of the physical world. One
such example is standard Euclidian space with classical physical laws (e.g., Newton’s law, thermodynamics
law).

It is well known that modern design flow, debugging, and verification are the most expensive and
time-consuming components. Due to the heterogeneous nature of and complex interactions between
components, the same scenario is expected in the case of sensor nodes. In particular, techniques for error
and fault discovery, testing, and calibration will be of prime importance. In the rest of this section, four
representative SN nodes designs are described: Berkeley mote; piconode node; UCLA Medusa II; and
light compass node.

 

8.5.1 Berkeley Mote Node

 

The starting point for designing modern computer systems is a comprehensive set of benchmarks that
are representative for common users. Unfortunately, such a set of benchmarks currently is not available
to designers of SN nodes. The starting point for designing mote wireless sensor network nodes was the
set of qualitative observations about the requirements of wireless sensor networks. Special emphasis was
placed on small physical size and low energy consumption. In addition, attempts were made to facilitate
concurrency intensive operations to provide control hierarchy and take advantage of limited physical
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parallelism. Furthermore, the design decisions were driven by robust operations’ ability to be retargeted,
at least at the network level.

The design went though several iterations and until recently was leveraging on the availability of
standard off-the-shelf components. Generally speaking, the design is radio centric in the sense that all
main decisions are made in order to facilitate low-energy communications. The main processor is Atmel
90LS8535 microcontroller that has 8-b Harvard architecture with 16-b addresses. It achieves a speed of
4 MHz at 3 W. The system has a rather minimal amount of memory that consists of 8 kbytes of flash
for program memory and 512 bytes SRAM for data memory. Therefore, the system can be integrated
only with low-frequency sampling sensors and must communicate frequently.

The processor integrates a system of timers and counters and can be placed in four energy modes:
active, idle, power down, and power save. In the idle mode, the processor is completely shut off. In the
power-down mode, only the watchdog and asynchronous interrupt logic are awake. Finally, in the power-
save mode, in addition to watchdog and interrupt logic, the asynchronous timer is also active. The system
also has a coprocessor Atmel 90LS2343 microcontroller that has 2 kbytes flash instruction memory and
128 bytes of SRAM and EEPROM memory. The coprocessor can be used to reprogram the main
microcontroller.

The authors consider the RF Monolithic 916.50 transceiver as the central part of the design. The radio
is equipped with an antenna and a system of discrete components that can be used to alter characteristics
of the physical layer such as signal strength. The radio operates at a speed of 19.2 kbytes/sec. The
transceiver can operate in three modes: transmission, reception, and power off. The system can have up
to eight sensors; the two most widely used are photoelectric optical sensor and temperature sensor. Each
sensor is placed on the bus that is controlled using software.

It is instructive to consider power characteristics of the design. MCU core consumes between 2.5 to
6.5 mA; radio consumes between 5 to 12 mA. Optical sensor and temperature sensor consume 0.3 and
1 mA, respectively, and the coprocessor consumes 1 to 2.4 mA. Finally, EEPROM consumes 1 to 3 mA.
In particular, it is instructive to compare energy spent for bit transmission and bit processing. The system
spends about 1 mJ to send, and 0.5 mJ to receive, 1 b. At the same time, the system can execute
approximately 120 instructions for each millijoule spent. The system does provide for energy reduction
using variable voltage; therefore, energy is saved mainly by turning the system off. The core of the system
software for the design is an exceptionally compact microthreading operating system (TinyOS).

The Berkeley design team concluded that the new application domain requires a new OS; therefore,
they decided not to adopt any great variety of RTOS 8-b controllers. Although this decision certainly
resulted in higher power efficiency and more interesting system software architecture, it also created
additional demands and constraints in programming already highly constrained hardware. Nevertheless,
the system has been highly popular in the research community. Several thousand copies of the motes in
several versions have been used by more than 200 research teams. The greatest strength in the system is
its small size and low power. Probably the most serious disadvantages are related to the development of
real applications. Although motes have been tremendously popular in research communities, it is still
unclear how well they are suited for applications in which more complex systems of sensors are needed.

 

8.5.2 UCLA Medusa MK-2 Node

 

The Medusa MK-2 node is a representative of the state-of-the-art design of more powerful sensor nodes
[55]. The computational unit of Medusa MK-2 nodes consists of two microcontrollers. The first is an 8-b
Atmel STMega128L MCU with 4 MHz that has 32 K of flash memory and 4 KB of RAM. This processor
serves as an interface between sensors and radio base band processing. The second microcontroller is an
ATMEL ARM THUMB processor enclosed within a 120-ball BGA package. It has significantly more
processing power and 40 MHz. It includes 136 KB of RAM and 1 MB of on-chip FLASH memory. 

The communication unit of Medusa MK-2 nodes is a combination of a TR 1000 low-power radio
from RF Monolithics for wireless and an RS-485 serial bus transceiver for wireline communication. The
sensing unit has two components: a MEMS accelerometer and a temperature sensor. It can also be
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augmented with other types of sensors. Medusa nodes also incorporate a variety of interfaces, including
eight 10-b ADC inputs, serial ports, and numerous general purpose I/O ports. An ultrasonic ranging
unit is implemented on an accessory board using 40-kHz transducers. Ultrasonic measurements are
coordinated with RF measurements in order to calculate internode distances and therefore enable local-
ization of nodes. Localization is conducted using iterative linearized multilateration.

The nodes also have two external connectors. The first is used to communicate with a PC to download
and debug software. It also provides the necessary wiring requirements for connecting to an external
GPS module. The second connector serves as an expansion slot for attaching add-on boards carrying
different sensors because it has a set of ADC and GPIO. Finally, Medusa nodes also have two pushbuttons
that serve as a user interface. They are mainly used for triggering events and executing different tests
during experiments.

It is interesting to take a closer look at the computational unit of Medusa Mk-2 nodes. According to
the computation requirements, the computational tasks are classified into two broad categories: low-
demand tasks and high-demand, low-frequency processes. The low-demand tasks are the periodic pro-
cesses such as base band processing for the radio while listening for new packets, sensor samplings,
handling of sensor events, and power management. Even though these tasks usually require a high
concurrency, they are not particularly demanding in terms of computational resource requirements and
therefore can be easily handled by an 8-b microcontroller. The Medusa-MK-2 nodes use a low-power
AVRMega128L microcontroller.

The second category — the low-frequency, high-demanding tasks — is related to the processing of
acquired sensor data in order to produce user-requested information. For example, in the case of a fine-
grained localization problem, a sensor node is expected to compute an estimate of its location based on
a set of distance measurements to known beacons or neighbors. In order to avoid error propagation, a
node must perform a set of high-precision operations. If an 8-b processor were used to conduct this type
of computation, it would result in high latencies and lower precision. Therefore, a high-end processor
is a more adequate solution. More specifically, Medusa adopts the 40-MHz ARM THUMB processor to
perform this type of operation.

Another advantage is that the node can use existing standard applications and libraries. The THUMB
microcontroller also has sufficient resources to support shelf-embedded operating systems such as Red
Hat eCos and uCLinux. The inclusion of the THUMB processor is also justified by a comparison of the
two processors made from a power/latency perspective conducted by the UCLA group. The THUMB
processor executes instructions at the rate of 0.9 MIPS per megahertz at 40 MHz while consuming 25
mA with a 3-V supply, which has a performance of 480 MIPS/W. On the other hand, the ATMega128L
only provides a 242-MIPS/W performance when operating at 4 MHz and consumes 5 mA at 3-V supply.

Communication between the two processors is handled by a pair of interrupt lines — one for each
microcontroller — and an SPI bus. The two nodes remain in sleep mode until an interrupt indicating
the need for data exchange occurs. The communication takes place over the 1-Mbs SPI bus.

Medusa MK-2 nodes are capable of two types of communications: wired and wireless. All nodes are
equipped with a wired and a wireless link. The wireless link is a low-power TR1000 radio from RF
Monolithics. This radio has transmitting power of 0.75 mW at maximum and has an approximate
transmission range of 20 m. Two modulation schemes are supported by this radio: of-off keying (OOK)
and amplitude shift keying (ASK). Selection of the appropriate modulation can be done in software. On
a Medusa MK-2 node, the base band processing for the radio is done by an ATMega128L microcontroller.
This also allows the node to run the low power S-MAC [61] protocol on the ATMega128L processor. In
addition to the wireless link, Medusa nodes also incorporate an RS-485 serial bus interface for wireline
communication. Attaching a low-power RS-485 transceiver to one of the RS-232 ports of the THUMB
processor allows the node to connect to an RS-485 network using an RJ-11 connector and regular
telephone wire. A single RS-485 has occupancy up to 32 nodes that span over a total wire length distance
of 1000 ft.

The power unit of Medusa MK-2 nodes consists of two main components: the power supply and the
power management and tracking unit (PMTU) [12]. The power supply consists of a 540-mAh lithium-ion
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rechargeable battery and an up–down DC–DC converter with a 3.3-V output that can reach up to 300
mA of current from the battery. The power supply is designed in such a way that power-additional sensors
can be attached later on as accessory boards because the node only requires less than 50 mA with no
sensors attached. In a typical SN setting, putting the ARM THUMB processor together with the RS-485
and RS-232 transceivers in sleep mode most of the time, yields an 80% reduction of the overall node
power consumption. Comprehensive energy consumption comparisons between Medusa MK-2 nodes
and other SN nodes designs can be found in Savvides and Srivastava [55].

 

8.5.3 BWRC PicoNode 

 

Another communication-centered sensor node design is the PicoNode [52]. The main overall objective
of this design is to provide flexibility and low energy consumption simultaneously. It consists of four
main modules. The first two units are processors: an embedded processor unit and configurable satellite
units. The embedded processor is dedicated mainly for application and protocol-stack layers that require
higher flexibility but have relatively low computational complexity and are infrequently requested. Con-
figurable processing modules are targeted for the more frequent tasks with higher computational require-
ments. Two other modules are dedicated to communication tasks — a parameterized and configurable
digital physical layer and a simple direct-down conversion RF front end.

These modules are interconnected by a flexible and low-power consumption interconnect scheme.
The authors claim that a dynamic matching between application and architecture leads to a significant
energy savings for signal-processing applications while maintaining implementation flexibility. One of
the main premises of the design is the observation that the processor implementation is three orders of
magnitude more expensive in terms of energy consumption than the implementations of the dedicated
hardware. However, a trade-off occurs between flexibility and programmability (software on program-
mable platforms) and energy consumption (ASIC hardware).

The traditional approach is to design the wireless transceiver using only RF and analog circuit modules.
More recently, a primarily digitalized design approach has emerged. This is inspired by the insight that
digital circuits can improve exponentially with the scaling of technology, while analog circuits get linearly
worse because of reduction of the supply voltage. Therefore, it is beneficial to incorporate a small,
noncritical analog front end and use digital back-end processing to balance the limitations.

Many design challenges are related to the physical layer. They are mostly related to the low-energy
targets and variable demands from the network. Therefore, in order to satisfy various demands from the
network, the PicoNode physical layer can be made into parameters. These parameters include power
control modes, modulation scheme, and bit rate.

In order to meet the low-energy requirement, the physical layer must meet two mutually exclusive
criteria: fast signal acquisition and low standby power. The first criterion refers to the process of
requiring least amount of time to wake up, receive bursts of data, and immediately go back to sleeping
mode after data acquisition. The second criterion emphasizes consuming the least amount of energy
while sleeping. The reason that they are usually mutually exclusive is that an inverse proportional
relationship exists between the depth of sleep (i.e., energy consumed) during standby and the time
required to wake up.

PicoNode is designed so that it does not require an interval power supply. It is self-constrained
and self-powered using energy extracted from the environment. The two major constraints for
harvesting ambient energy from the environment are: applicability within the environment and the
size of the node (Berkeley group targets the 1-cm

 

3

 

 design). PicoNodes harvest energy from light and
vibrations [52]. 

 

8.5.4 Sensor-Centric Design: Light Compass

 

The final sensor node design alternative for overviewed is the light compass node [66]. The emphasis in
this approach is completely shifted from computation, communication, and storage to sensors. The first
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three functions are provided by a standard laptop or PDA. The rationale is that this type of design will
progress on its own to become a viable platform for SN nodes. Even the interface toward sensor is built
using off-the-shelf components. The focus is placed on sensors and how to select and place them in such
a way that sensor data fusion is facilitated. In addition, special emphasis is placed on how to rapidly
develop sensor data fusion software that can be retargeted and how to develop systematic procedures for
design of sensor nodes.

Figure 8.1 shows the used light sensor components. The smallest device (on the left) is a miniature
silicon solar cell used for converting light impulses directly to electrical charges (photovoltaic). It
generates its own power and therefore does not require any external bias. This silicon cell is further
mounted on a 0.78 

 

×

 

 0.58 

 

×

 

 0.18 cm thick plastic carrier that generates roughly 400 mV in moderate
light (most typical rooms). A significantly larger sensor (on the right), measuring 2.54 

 

×

 

 2.15 cm,
also can be referred to as a photoconductor and can be surrounded by a 0.18-cm thick plastic
encapsulated ceramic package. In strong light, its resistance measures 20 

 

Ω

 

 and 5 k

 

Ω

 

 in complete
darkness. These components are very economically viable (roughly $0.30 each) and they can be easily
purchased in large quantities.

These sensors can be used in multiple prototypes, such as the ones shown in Figure 8.2. On the left
side of Figure 8.2, the six-sided cut-pyramid structure has a base length of 3 cm and a top edge length
of 1 cm with a 60

 

°

 

 slope. Sensors can be attached to each side of the structure depending on the application
and purpose. The structure on the right is a cube with 2-cm edges; therefore, it can incorporate up to
six sensors with one on each surface.

In this light sensor platform, the heart component is an eight-channel analog to digital converter
(ADC) module. It is used to read the sensor values through the parallel port of a standard PC laptop.
This ADC component comprises a Maxim MAX186 ADC, which has an internal analog multiplexer that
can be configured for eight single-ended, or four differential, inputs at a 12-b resolution; the conversion
time is under 10 s. This component is pictured on the left in Figure 8.3. In addition, some of the other
components of the circuit include: several resistors to protect the analog inputs; capacitors to filter noise;
an external 4.096-V voltage regulator, and an 8-b digital latch required for parallel port communications.
The overall design flow of a sensor appliance is presented in detail in Figure 8.4.

 

FIGURE 8.1  

 

Light sensor components. (From Wang, J., et al., 

 

40th IEEE/ACM Design Automation Conf.

 

, pp. 66–71,
2003. With permission.)

 

FIGURE 8.2  

 

Light appliance prototypes: 60

 

°

 

 six-sided, cut pyramid and cube. (From Wang, J., et al., 

 

40th IEEE/
ACM Design Automation Conf.

 

, pp. 66–71, 2003. With permission.)
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The main goal of this design was to achieve low power consumption while maintaining a tolerable
level of coverage. Figure 8.5 through Figure 8.7 depict the results obtained from four different sensor
structures: a four-sensor pyramid (square base); a four-sensor cut pyramid (triangular-based pyramid
with a flat sensor on top); a five-sensor pyramid (pentagonal base); and a five-sensor cut pyramid (square-
based pyramid with a flat sensor on top). In all cases, the objective was to estimate the positions of 5000
randomly placed light instances.

 

8.6 Wireless SNs as Embedded Systems

 

The architecture of wireless SNs at the network level is briefly surveyed in this section. For the networking
of the wireless devices and appliances, several communication schemes have been proposed, such as
satellite, WLAN, cellular, and ad hoc multihop architectures [25, 26, 48, 49, 58]. Based on the different
architectures, the communication between the nodes can be all low power (ranges in meters), high power
(ranges in megameters), or medium power (ranges in kilometers).

For example, wireless SNs are the widely used cellular wireless networks. In this architecture, a number
of base stations are already deployed within the field. Each base station forms a cell around itself that
covers part of the area. Mobile wireless nodes and other appliances can communicate wirelessly as long
as they are at least within the area covered by one cell. An example of such a network is shown in
Figure 8.8. The communication requires medium power, although the fixed and immobile base stations
are consuming a large amount of power to cover a large area and to communicate to and from the lower
power mobile wireless nodes. However, cellular wireless architecture has the drawback that it must be

 

FIGURE 8.3  

 

Light appliance platform. (From Wang, J., et al., 

 

40th IEEE/ACM Design Automation Conf.

 

, pp. 66–71,
2003. With permission.)

 

FIGURE 8.4  

 

Overall design flow of a sensor appliance. (From Wang, J., et al., 

 

40th IEEE/ACM Design Automation
Conf.

 

, pp. 66–71, 2003. With permission.)
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implanted in the field; also, cells should be carefully designed to have full coverage and transparency with
respect to the cells.

The WLAN is built for high-frequency radio waves. The WLAN also needs its own infrastructure
within the designated local area. It is very well suited for local private areas, such as offices, campuses,
and buildings. In some of the applications of the sensor network, such as smart buildings, connecting
the sensor networks to the WLAN implanted within the area is very suitable. The power consumption
in LAN is also medium, although the fixed part of the infrastructure is naturally higher powered.

In order to overcome the difficulties caused by the infrastructure settings for wireless satellites, WLAN,
and cellular networks, a new generation of wireless networks architecture has emerged — the wireless
multihop ad hoc networks. In such networks, the infrastructure architecture is not needed and the nodes

 

FIGURE 8.5  

 

Fraction of failure convergence vs. sensor angles. (From Wang, J., et al., 

 

40th IEEE/ACM Design
Automation Conf.

 

, pp. 66–71, 2003. With permission.)

 

FIGURE 8.6  Fraction of valid solutions vs. sensor angles. (From Wang, J., et al., 40th IEEE/ACM Design Automation
Conf., pp. 66–71, 2003. With permission.)
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can configure to communicate to other nodes within their communication range on the fly. The nodes
are short range and therefore all of the communications are low power. If two nodes that are not within
each other’s range need to communicate to each other, they use the intermediate nodes as the relays. The
multihop ad hoc wireless SN architecture appears as an attractive alternative to the WLAN and cellular
technologies for at least four reasons:

• On-demand formation of the network does not require predeployed architecture.
• Multihop routing can save orders of magnitude of power consumption when compared to long-

range routing for the same distance [52].

FIGURE 8.7  Average error in positions vs. sensor angles. (From Wang, J., et al., 40th IEEE/ACM Design Automation
Conf., pp. 66–71, 2003. With permission.)

FIGURE 8.8  Wireless cellular network architecture. (From: http://w.w.w.holoplex.com/technology_backhaul. html.)
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• Because communications between the nodes are short range and local, the bandwidth is reusable,
as opposed to that in long-range communications.

• The fourth reason is the fault tolerance [10]. SNs are envisioned to have a lot of inexpensive nodes
embedded in the environment. The ad hoc multihop architecture supports the advent of the new
nodes and departure or failure of the old ones.

Most of the current SN literature has been advocating ad hoc multihop architecture [2, 20, 27, 34, 52,
61]. Nevertheless, there are no indications that this architecture would be the best architecture for all of
the sensor network applications. Because of the quantity of the radios and the number of the packets
flowing in the network, a natural asymmetry is present in the multihop ad hoc implementation. In fact,
for some applications, such as smart buildings or scientific experiments in which the network does not
change over the space, having a number of static components in the network is a natural solution. The
static parts would be connected to the constant power supply, so wireless parts could use low power to
communicate to them and nodes could go into the standby mode from time to time.

Another important issue related to sensor networks is the topology of the network [10]. The question
is how to distribute the nodes within the field to achieve the best range and coverage from the sensors.
This question is a variation of the well-known art gallery problem [47], in which the new constraints on
the nodes are that they are short communication range. The other big issue in topology consideration
is that not all of the nodes should be uniformly distributed, as is the assumption in the current literature
and simulations for SNs. Furthermore, network architecture should address the concerns of various layers
of the network.

Better components are still needed in the physical layer [31], power control, and MAC layer [61];
routing protocols [20] are needed at the network layer. The only proposed OS for the sensor network is
TinyOS, which is an operating system at the node level [27]. There is a need for a more complex network
operating system (NOS) that can (1) facilitate the autonomous mode for ad hoc multihop architecture;
(2) address privacy and security concerns; and (3) provide efficient execution of localized algorithms.

This section concludes with a very brief overview of three industrial wireless networks standards: IEEE
802.11b; Bluetooth; and HomeRF. IEEE 802.11b, or WiFi, primarily targets computer communication.
Although its main target is indoor connectivity at speeds of 11 Mbps within 150 m, it is expected that
it will provide the same level of service outdoors within a 300-m range. With specially equipped radios
(amplifiers and special antenna) it may establish connectivity within a range of 30+ km. It can operate
in several modes, including peer–peer and infrastructure access point. The wired equivalent privacy
(WEP) standard ensures data protection using 40- and 128-b RC4-based encryption. Bluetooth mainly
targets personal area networks on very short distances and applications such as audio, video, and
multimedia. IEEE802.11b and Bluetooth use 2.4-GHz ISM band for unlicensed radio communication.
HomeRF provides inexpensive residential-oriented wireless connectivity.

8.7 Summary

This chapter surveyed the architectural and synthesis issues related to SNs. The analysis has been con-
ducted at three levels of abstraction: subsystem, individual node, and network. The main design objectives
and current trends, as well as their relative advantages and limitations, were identified. Furthermore,
several architecture and design case studies have been conducted. Special emphasis was placed on for-
mulating the highest impact architectural and synthesis challenges.
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9.1 Motivation

This chapter examines the relationship between power usage and the number of neighbors in a wireless
sensor network. The study of wireless network topology must be approached from a point of view different
from that for wired networks. In a wired network, one examines how nodes are physically connected
and the resulting available routing paths. In a wireless sensor network (WSN), the definition of the
network topology is derived from the physical neighborhood and transmission power, so it is necessary
to determine which topology gives the optimal number of neighbors that a node can handle to transmit
or receive. Many of the topologies proposed for wired networks cannot be used for wireless networks
because, in wired networks, a higher dimension can be implemented by connecting the nodes in some
fashion to simulate higher dimensions. In WSNs, however, one is dealing with three dimensions in the
physical world and thus restricted in choice of topologies. Therefore, this chapter concentrates on two-
dimensional and three-dimensional mesh topologies. 

In this chapter, performance issues associated with different network topologies are analyzed. The
question to answer concerns the best topology for a wireless network of sensors, assuming that one can
control the placement of these sensors and the sensor locations are fixed relative to each other. Because
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control over the placement of these sensing nodes is assumed and mobility of the sensors relative to each
other is not required, the research problem changes. Instead of considering self-organization of the sensor
nodes into a network, efficient placement of fixed nodes is addressed. 

Some of these networks can be installed in a building to monitor the building or in an assembly, where
the use of regular topology will have an advantage over mobile. In a fixed topology, nodes can be placed
so that they can give better coverage. Also, in the use of regular topology or mesh topologies, a node can
also function as a router and can relay messages for its neighbors. These networks offer multiple redundant
communication paths throughout the network. If one node dies or fails, other nodes can be used to
reroute the message. Also, regular topologies enhance the overall reliability of the network. 

This chapter does not consider the effects of communication with a base station. Because the topology
is fixed and known, it is assumed that the base station can be placed at an appropriate place for each
topology. Thus, the power requirements for communicating with the base station should be essentially
independent of the topology. This enables one to concentrate on the effects of the topology on the
communication among the network nodes only. 

9.2 Background

Much of the related research addresses WSNs that are mobile and battery powered. Because of these
requirements, most of the literature is concentrated on finding solutions at various levels of the com-
munication protocol, including being extremely energy efficient. Energy efficiency is often gained by
accepting a reduction in network performance [7]. Although one does not wish to waste energy, this
system does have a constant, renewable energy source. However, a very low-power dissipation allowance
offers constraint, which fits nicely with an energy-efficient scheme. Popular power-saving ideas include
specialized nodes, negotiation, and data fusion. 

Low-energy adaptive clustering hierarchy (LEACH) [2, 13] is a new communication protocol that tries
to distribute the energy load evenly among the network nodes by randomly rotating the cluster head
among the sensors. This assumes a finite amount of power and aims at conserving as much as possible
despite a dynamic network. LEACH uses localized coordination to enable scalability and robustness for
dynamic networks, as well as data compression to reduce the amount of data that must be transmitted
to a base station. Performing some calculations and using data fusion locally conserves much energy at
each node. 

Sensor protocols for information via negotiation (SPIN) [3, 5] is a unique set of protocols for energy-
efficient communication among wireless sensors. The authors propose solutions to traditional wireless
communication issues such as network implosion caused by flooding, overlapping transmission ranges,
and power conservation. The SPIN protocols incorporate two key ideas to overcome implosion, overlap,
and resource blindness: negotiation and resource adaptation. Using very small metadata packets to
negotiate, SPIN efficiently communicates with fewer redundancies than in traditional approaches, dealing
with implosion and overlap. The metadata are application specific — they could be used to describe the
amount of power dissipated, for instance. To solve the resource blindness issue, each node has an
individual resource manager, allowing the node to limit activity when power is low. 

Pottie has studied design issues and trade-offs that need to be considered for power-constrained WSNs
with low data-rate links [8] and advocates “aggressive power management at all levels,” noting that the
communication protocol is more helpful in reducing the power consumption than is optimizing the
hardware. Local processing of information is key to reducing the amount of communication between
nodes and thus reducing the amount of power consumed by the network. 

Chen and colleagues have also provided a useful comparison of multiple protocols used for WSNs [1].
Although the authors’ main focus is on energy efficiency due to battery power, they provide very useful
guidelines for designing access protocols for wireless networks. Specifically, they recommend that “pro-
tocols should reduce the number of contentions to improve power conservation,” as well as using shorter
packet lengths. The receiver usage time, however, tends to be higher for protocols that require the mobile
nodes to sense the medium before attempting transmission. 
aylor & Francis Group, LLC
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Limited research has been conducted on topology’s effect on wireless networking [4, 9, 12]. The
concentration, however, has been on mobile networks rather than ones with fixed node placement.
Although novel approaches have been devised, none of them would be appropriate, for example, in the
biomedical arena, in which a surgeon places the nodes, giving a nominally fixed topology. Although
much research has been completed in the area of WSN, nothing has sufficiently answered the question
of fixed topology’s impact on low-power requirements. 

9.3 Issues for Topology Design

This section analyzes the performance issues associated with different network topologies. Unlike previous
studies, mobility is not an issue. The question concerns what the best topology for a wireless network of
sensors is, assuming placement of these sensors can be controlled and the sensor locations fixed relative
to each other. One factor in the choice of topology is the amount of contention for the wireless media.
The level of contention will vary with the application because the message pattern and overall message
generation rate are functions of the application. However, this study should provide some insights that
can be used, along with knowledge of the application, to select an appropriate topology. Again, the goal
is not to find a single topology appropriate for all applications, but rather to provide a structured analysis
of the options and give guidance on the best choices so that a more informed decision is possible. 

Each of the different topologies used in this chapter will be considered as a grid on nodes in two or
three dimensions. The vertices of this grid are the nodes that will transmit the packets, and the edges are
the neighbors of each node that will receive the transmission. According to the mesh topologies that will
be used in this section, the optimal path will be found between a source (S) and a destination (D) or
the shortest path between them. We will introduce this optimal path and use it later to show how much
power is used in the network using each topology to send a packet from S to D. 

The WSN, WSN(m,n), is an m × n grid, where m × n  represents the number of nodes in the network.
Each node is represented as (y,x) for 0 ≤ y ≤ m – 1 and 0 ≤ x ≤ n – 1. For each of the topologies, the
following will be assumed: 

• S = (ys, xs) 
• D = (yd, xd) 
• ∆y = ||ys – yd||
• ∆x = ||xs – xd ||

Each network will be defined by identifying the neighbors of each node according to the different
number of neighbors (as shown in Figure 9.1) and presenting the optimal number of hops from a source
to a destination. Next, identifying whether two nodes are neighbors and the optimal number of hops
between a source and a destination will be discussed. 

FIGURE 9.1  Possible number of neighbors.
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9.3.1 Three-Neighbors WSN

According to Figure 9.2, 

• Two nodes are neighbors if: 
• 〈(y, x), (y, x + 1)〉 for x < n – 1 
• 〈(y, x), (y + 1, x )〉 for even (y, x) and y < m – 1 

• Two nodes are not neighbors if 〈(y, x), (y + 1, x )〉 for odd (y, x) and y < m – 1 

• Optimal number of hops (s, d) = 

9.3.2 Four-Neighbors WSN

According to Figure 9.3 note the following: 

• Two nodes are neighbors if:
• 〈(y, x), (y, x + 1)〉 for x < n – 1 
• 〈(y, x), (y + 1, x )〉 for y < m – 1 

• Optimal number of hops (s, d) = ∆z + ∆y. 

9.3.3 Five-Neighbors WSN

According to Figure 9.4,

• Two nodes are neighbors if: 
• 〈(y, x), (y, x + 1)〉 for x < n – 1 
• 〈(y, x), (y + 1, x )〉 for y < m – 1 
• 〈(y, x), (y + 1, x + 1)〉 for even x. 
• 〈(y, x), (y – 1, x – 1)〉 for odd x. 

• Optimal number of hops (s, d) =  

FIGURE 9.2  Two-dimensional topology with up to three neighbors.
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9.3.4 Six-Neighbors WSN

According to Figure 9.5, 

• Two nodes are neighbors if: 
• 〈(y, x), (y, x + 1)〉 for x < n – 1 
• 〈(y, x), (y + 1, x )〉 for y < m – 1 
• 〈(y, x), (y + 1, x + 1)〉 for every y < y + 1 and x < x + 1 
• 〈(y, x), (y – 1, x – 1)〉 for every y < y – 1 and x < x – 1 

• Two nodes are not neighbors if 

• Optimal number of hops (s, d) = 

FIGURE 9.3  Two-dimensional topology with up to four neighbors.

FIGURE 9.4  Two-dimensional topology with up to five neighbors.
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9.3.5 Seven-Neighbors WSN

According to Figure 9.6, 

• Two nodes are neighbors if: 
• 〈(y, x), (y, x + 1)〉 for x < n – 1 
• 〈(y, x), (y + 1, x)〉 for y < m – 1 
• 〈(y, x), (y + 1, x – 1)〉 for x = 0 or x is even
• 〈(y, x), (y – 1, x + 1)〉 for x = 1 or x is odd 
• 〈(y, x), (y + 1, x + 1)〉 for every y < y + 1 and x < x + 1 
• 〈(y, x), (y – 1, x – 1)〉 for every y < y – 1 and x < x – 1 

• Optimal number of hops (s, d) = 

9.3.6 Eight-Neighbors WSN

According to Figure 9.7, 

• Two nodes are neighbors if: 
• 〈(y, x), (y, x + 1)〉
• 〈(y, x), (y + 1, x)〉
• 〈(y, x), (y + 1, x – 1)〉
• 〈(y, x), (y – 1, x + 1)〉
• 〈(y, x), (y + 1, x + 1)〉
• 〈(y, x), (y – 1, x – 1)〉

• Optimal number of hops (S, D) = max(∆x, ∆y). 

9.3.7 Six-Neighbors for Three Dimensions

The WSN (m, n, k) is an m × n × k grid where a node is represented as (y, x, z) for 0 ≤ y ≤ m – 1, 0 ≤
x ≤ n – 1, and 0 ≤ z ≤ k – 1. For three-dimensional topology, assume the following: 

FIGURE 9.5  Two-dimensional topology with up to six neighbors.
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• S3D = (ys, xs, zs) 
• D3D = (yd, xd, zd) 
• ∆y = ||ys – yd||
• ∆x = ||xs – xd||
• ∆z = ||zs – zd||

According to Figure 9.8, two nodes are neighbors if: 

• 〈(y, x, z), (y, x + 1, z)〉 for x < n – 1 
• 〈(y, x, z), (y + 1, x, z)〉 for y < m – 1 
• 〈(y, x, z), (y, x, z + 1)〉 for z < k – 1 
• Optimal number of hops (S3D, D3D) = ∆x + ∆y + ∆z. 

FIGURE 9.6  Two-dimensional topology with up to seven neighbors.

FIGURE 9.7  Two-dimensional topology with up to eight neighbors.
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9.4 Assumptions

In this work, a simple model is assumed in which the radio dissipates Eelec = 50 nJ/b to run the transmitter
or receiver circuitry and Eamp = 100 pJ/b/m2 for the transmit amplifier to achieve an acceptable Eb/N0

(see Figure 9.9 and Table 9.1) [2]. To transmit a k-b message a distance of d meters using this radio
model, the radio expends: 

(9.1)

FIGURE 9.8  Three-dimensional topology with up to six neighbors.

FIGURE 9.9  First-order radio model.
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To receive this message, the radio expends: 

(9.2)

For simplicity of calculation, assume that the transmission range of each node is equal to each other
on one condition: that the value of this transmission range should reach the number of neighbors allowed
for each network (maximum number of neighbors). Also, assume that all data packets contain the same
number of bits. Thus, a maximum distance d = 15 m and number of bits transmitted k = 512 bs are
assumed. The number of nodes N was chosen to be 36 because it works nicely for two-dimensional and
three-dimensional networks with the different topologies considered. This also represents an intermediate
value between 16 and 64 node networks that has been used in other studies [7]. For these parameter
values, receiving a message is not a low-cost operation; the protocol should thus try to minimize not
only the transmit distance but also the number of transmit and receive operations for each message. Next
general equations that can be used to estimate the total power used to transmit a message from source
to destination will be presented. 

9.4.1 Calculation of Power Usage for Each Path

In order to derive the general equations for transmitting a message from a source S to a destination D,
two things must be considered for each path: (1) number of transmissions and (2) number of receptions. 

Number of transmissions can be measured as the number of hops a packet will travel through a certain
path. Number of receptions is the total number of neighbors of each hop taken. Minimizing the number
of transmissions and number of receptions will be the mission of any protocol designed. In general, the
total power dissipated in the network for one packet to travel from a source to a destination is the sum
of total power used for transmission plus the total power used for receiving the packet at each neighbor
of each transmitting source. 

The next equation presents an estimate for the total power used to transmit a packet over a number
of hops from a source S to a destination D;

Total power used = total power transmitted + total power received (9.3)

Equation 9.3 can be written as: 

Total power transmitted = number of hops × power transmitted 
= number of hops × ETx(k,d) (9.4)

Total power received = number of hops × number of neighbors × power received 
= number of hops × number of neighbors × Erx(k) (9.5)

TABLE 9.1 Radio Characteristics

Operation Energy Dissipated 

Transmitter electronics (ETx–elec) 50 nJ/b 
Receiver electronics (ERx–elec)
(ETx–elec = ERx–elec = Eelec)
Transmit amplifier (Eamp) 100 pJ/b/m2 

Source: W.R. Heinzelman, A. Chandrakasan, and
H. Balakrishnan. In Hawaii Int. Conf. Syst. Sci., 2000. 

E k E k

E k

Rx Rx elec

elec

( ) = ( )
=

−

*

aylor & Francis Group, LLC



9-10 Smart Dust

7037_Book.fm  Page 10  Thursday, September 8, 2005  2:44 PM

© 2006 by T
Substituting Equation 9.4 and Equation 9.5 in Equation 9.3 yields: 

Total power used = number of hops × (ETx(k,d) + number of neighbors × (ERx(k)) (9.6)

These equations only estimate the power that will be used for a certain number of hops with a fixed
number of neighbors. The idea here is to try to minimize Equation 9.3 by minimizing the total power
transmitted; this can be done by minimizing the number of hops by finding the shortest path. Also,
Equation 9.3 can be minimized by minimizing the total power received, which can be done by taking
the paths that have the least number of neighbors. The next section presents and analyzes the effect of
choosing different paths on Equation 9.3. 

9.5 Analysis of Power Usage

Various network topologies are studied in this section. First, the routing is considered over the diameter
of the network and two possible routes are used along the edge and through the interior. These results
show that different paths consume different amounts of power. Next shortest-path routing for the various
topologies for a message spanning the diameter of the network is considered. Finally, directional source-
aware routing protocol (DSAP) is simulated with and without power-aware routing of arbitrary
source–destination pairs and the relative performance of each is shown. 

The power dissipated with respect to the network topology will be analyzed with a variable number
of neighbors. First, two-dimensional networks with three, four, five, six, seven, and eight neighbors are
examined. Then, three-dimensional networks with six neighbors are considered. Two kinds of routing
are considered for each of the topologies: (1) edge routing and (2) interior routing. 

Edge routing consists of moving messages to the outer edges of the network where there are fewer
neighbors. Interior routing keeps the messages in the middle of the network, where there is a consistent
number of neighbors for each node. In some cases, longer paths were chosen for some topologies to give
a similar number of transmissions. The use of these two methods of routing is only to show the effect
of using topologies with different numbers of neighbors. It also shows how useful it is to increase the
number of neighbors. Then, shortest-path routing will be studied to see which topology will give the
most savings in power. The shortest path will be considered by using the DSAP routing protocol; and
also to study the benefit of using a power-aware routing metric by using aware–DSAP will also be studied. 

9.5.1 Two-Dimensional Analysis

The degree of routing freedom is the number of alternative paths that a routing protocol can select.
Figure 9.2 through Figure 9.7 show that as the number of neighbors increases, the degree of routing
freedom increases. For comparison purposes, the source, destination, and number of nodes were fixed
to be the same (36 nodes) for all the networks under investigation. An analysis of these networks requires
one to classify the routing paths into edge routes and interior routes. 

9.5.1.1 Interior Routing 

As defined before, interior routing keeps the messages in the middle of the network, where the number
of neighbors for each node is consistent. Table 9.2 shows that as the number of neighbors increases, the
number of transmissions decreases; however, the number of receptions depends on the topology. This
is because, as the number of neighbors increases, the routing protocol has more freedom to choose the
shortest path to the destination; by doing so the protocol will dissipate less power to route a packet from
source to destination. 

9.5.1.2 Edge Routing 

Using edge routing is to route the packet using only the edge nodes. This strategy of routing is impossible
to use at all times, of course. Here it is used to study the effect of increasing the number of neighbors
aylor & Francis Group, LLC
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with respect to the edge nodes. As shown in Table 9.3, as the number of neighbors increases, the number
of neighbors that receive the packet increases, which will increase the energy used in the network. 

9.5.1.3 Edge Routing vs. Interior Routing

From Table 9.2 and Table 9.3, edge routing dissipates more power than interior routing in all cases except
for four neighbors. This is because, although the path from the source to the destination in a four-
neighbor case is the same, the difference is that taking the edge results in fewer neighbors and interior
paths have more neighbors. With either routing strategy, as the number of neighbors increases the power
dissipated increases for the same number of transmissions. 

9.5.1.4 Fixed Number of Transmissions

This subsection studies the effect of increasing the number of neighbors. In order to do that it is necessary
to fix the number of transmissions that a certain path can have and also certain nodes through which a
path must pass. These fixed nodes are the nodes that fall on the diagonal of the network, such as nodes
(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (7,7), and (8,8). By using this path, one can control the path and
study the effect of increasing the number of neighbors. As shown in Table 9.4, as the number of neighbors
increases, the number of receptions increases also. This yields to an increase in the energy used in the
network. 

TABLE 9.2 Two-Dimensional Interior Routing

Neighbors Tx Rx Energy Used

3 10 27 10.624 × 10–4 
4 10 36 12.928 × 10–4 
5 7 36 11.172 × 10–4 
6 5 27 8.768 × 10–4 
7 5 31 9.792 × 10–4 
8 5 36 10.720 × 10–4 

TABLE 9.3 Two-Dimensional Edge Routing

Neighbors Tx Rx Energy Used

3 14 33 13.645 × 10–4 
4 10 28 10.880 × 10–4 
5 10 37 13.184 × 10–4  
6 10 39 13.696 × 10–4 
7 10 44 14.976 × 10–4  
8 10 46 15.488 × 10–4 

TABLE 9.4 Two-Dimensional Fixed Number 
of Hops

Neighbors Tx Rx Energy Used

3 10 27 10.624 × 10–4 
4 10 36 12.928 × 10–4 
5 10 45 15.232 × 10–4  
6 10 53 17.280 × 10–4 
7 10 61 19.328 × 10–4 
8 10 69 21.376 × 10–4 
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9.5.1.5 Routing Freedom

Routing freedom means that the routing protocol has the freedom to choose the optimal path. This
subsection studies the effect of doubling the number of neighbors, between three and six neighbors and
four and eight neighbors, to study the effect of increasing the number of neighbors and the impact it
will have on routing freedom. 

Table 9.5 considers the power dissipated between the source and destination for a message spanning
the diameter of the network for topologies with three and six neighbors as shown in Figure 9.2 and Figure
9.5. As Table 9.5 shows, increasing the number of neighbors decreases the number of transmissions and
the total power dissipated in the system. This result can only be attributed to the availability of a shorter
path between the source and destination. A similar conclusion can be reached from Table 9.6. 

In summary, a trade-off occurs between the number of neighbors and the total power dissipated in
the system. However, this trade-off breaks in special cases in which the availability of alternative shortest
paths can be used as an advantage for the power budget calculations. 

9.5.2 Three-Dimensional Analysis

A three-dimensional network can be constructed from a two-dimensional network with four neighbors
just by adding another dimension, which will create a three-dimensional network with six neighbors.
The same thing can be done for two-dimensional networks with six neighbors, but implementing such
a network with a regular structure is not possible. Figure 9.8 shows a three-dimensional network with
six neighbors that has some advantages due to its inherent symmetry. 

In a three-dimensional network, the routing paths between any given source and destination without
misrouting would always result in the same number of transmissions but a different number of receptions.
For example, from source (0,0,0) to destination (2,2,3), the number of transmissions using interior or
edge routing is constant and equals seven in Figure 9.8. 

From Table 9.7, the following can be concluded: 

• Edge routing in the case of the three-dimensional network has lower power dissipation than
interior routing does. 

• The number of transmissions and receptions as well as the total power dissipated in a three-
dimensional network is less than in a two-dimensional network for edge routing as well as interior
routing. 

For Table 9.8, the number of neighbors was fixed to study the effect of using two different dimensions
on the number of transmissions each path will require using edge routing and interior routing. Using
interior routing, two dimensions with six neighbors have fewer transmissions than the three dimensions
with six neighbors. Also, from the nature of the two-dimensional topology, using edge routing takes

TABLE 9.5 Routing Freedom and Power 
Dissipation Three and Six Neighbors

Neighbors Tx Rx Energy Used

3 10 27 10.624 × 10–4  
6 5 27 8.768 × 10–4 

TABLE 9.6 Routing Freedom and Power 
Dissipation Four and Eight Neighbors

Neighbors Tx Rx Energy Used

4 10 36 12.928 × 10–4  
8 5 36 10.720 × 10–4  
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longer paths than three dimensions because the three-dimensional topology makes the edges closer than
the two-dimensional one. Thus, a trade-off occurs between using edge routing and using interior routing
for the two different dimensions. 

9.6 Directional Source-Aware Routing Protocol (DSAP)

In order to resolve the problems of power efficiency, a unique identification system has been developed
for the networks used. The idea behind this identification system is to identify the location of each node
in the network that will help in routing the packets. The system has the following properties: 

• Each node has unique ID. 
• Each value represents how far the node is from a certain direction. 
• Each ID gives how far the node is from the nodes in each direction. 
• Each node can compute the direction of other nodes from its ID. 

To help in studying the effect of using different numbers of neighbors, a routing scheme based on the
identification system has been developed. This identification system is referred to as the directional value
(DV). To construct the DV, each node in each topology that has been used has a fixed number of
neighbors. Each neighbor represents a direction that the node can route through it, as shown in
Figure 9.10. How far the node is from the edge of the network in each direction represents the directional
value of each node. This number is unique for each node and can be used as the ID number for each
node for the purpose of routing. 

Each topology was constructed from Figure 9.10 by eliminating the directions that will make that
topology. For example, constructing a seven-neighbor topology from an eight-neighbor one is done by
eliminating D-7 in one node and also eliminating the corresponding direction from the other node. Each
direction has a corresponding or an associate direction. D-7 has D-3, D-6 has D-2, D-5 has D-1, D-4
has D-0, and vice versa. 

From this DV, a DSAP [11] was developed. DSAP incorporates the DV and power into routing
protocols. For instance, in the four-neighbor case of Figure 9.3, node 31 would have an identifier of (1,
0, 3, 0, 4, 0, 2). This means that there is one node to the edge in direction 0 (left); three in direction 2
(up); four in direction 4 (right); and two in direction 6 (down). Because placement of the nodes is
controlled and topology is fixed, this information can be hard-coded into each node with relative ease.
However, for a random topology, it is necessary to discover the directional values of each node in the
network. 

TABLE 9.7 Edge and Interior Routing Power Dissipation

Network Path Tx Rx Energy Used × 10–4 

2D Interior 10 36 12.928 
4 Neighbor Edge 10 28 10.880 
3D Interior 7 33 11.046 
6 Neighbor Edge 7 25 8.998 

TABLE 9.8 Six Neighbors for 2-D and 3-D Routing 
Power Dissipation

Network Path Tx Rx Energy Used × 10–4

2D Interior 5 27 8.768 
6 Neighbor Edge 10 39 13.696 
3D Interior 7 33 11.046 
6 Neighbor Edge 7 25 8.998 
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In Figure 9.10, node S would have an identifier of (DV0,DV1,DV2,DV3,DV4,DV5,DV6,DV7). This means
that DV0 nodes are to the edge in direction D-0; DV1 in D-1; DV2 in D-2; and so on. When transmitting
a message, the destination node identifier is subtracted from the source node identifier. This yields at
most five positive numbers (for a two-dimensional topology with eight neighbors) that describe in which
direction the message needs to move. Negative numbers are ignored. The decision to move in any positive
direction is determined by the DV of the nodes in question. Taking each of the neighbor’s identifiers and
subtracting them from the destination node’s identifier computes the DV. These eight numbers are added
together and the one with the smaller number is chosen. If both nodes have the same DV, then one is
randomly picked. This is the basic scheme developed for routing the messages. 

For example, in Figure 9.7 consider the source node S1,1 with DV1,1 = (1, 1, 1, 1, 4, 4, 4, 1) and
destination node D4,4 with DV4,4 = (4, 4, 4, 1, 1, 1, 1, 1). According to the algorithm of DSAP [11], S –
D = (–3, –3, –3, 0, 3, 3, 3, 0), which produces D-3, D-4, D-5, D-6, and D-7 as possible positive directions
to which the message can be forwarded and then computes the directional value of each positive direction
to find which route to take. By doing so, the following values for each direction are obtained: 20, 17, 14,
16, and 20, respectively. By choosing the minimum directional value, the message is forwarded in direction
D-5, which is obvious from Figure 9.7. Then the protocol repeats until reaching the final destination,
which will have a DV of 0. 

This is the basic scheme developed for routing messages. However, the objective is to incorporate
energy efficiency as well. This is achieved by considering the maximum available power and minimal
directional value when picking which node route to take. Instead of simply picking the node with the
lowest directional value, the directional value is divided by the power available at that node. The smaller
value of this power-constrained directional value is the path chosen. This allows for a least-transmission
path that is also cognizant of power resources, although in some cases a longer path may be chosen if
the available power dictates that choice. Salhieh and Schwiebert [10] have presented several power-aware
metrics that can be incorporated with DSAP. The idea here is to show that using power-aware methods

FIGURE 9.10  Directional eight-neighbor node.
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will extend the life of the network and have a fair load balance between the nodes. The method used
here was only to show the effect of using power-aware rather than shortest-path metrics. 

9.7 DSAP Analysis

To study the relationship between the number of neighbors and the power dissipated in the network, a
controlled environment is used. This has been done to study the effect on the power dissipated in the
network when the number of neighbors is increased. The effect of increasing or decreasing the number
of neighbors is studied from two viewpoints: (1) power usage in the network; and (2) which topology
or number of neighbors will extend the life of the network because extending the life of the network is
one of the main objectives of designing WSNs. 

In the simulation, two different methods for routing are used: (1) DSAP without the power aware,
which is based on the shortest number of hops between a source and a destination; and (2) DSAP with
power aware, which incorporates the power available at the next neighbor and tries to balance the load
between the neighbors of a source. The simulation has two runs: (1) a fixed run from S(0, 0) to D(5, 5);
and (2) a run that each node sends a message to every node in the network. Both of these should help
in studying the relationship between the power usage in the system and the number of neighbors. 

9.7.1 Two-Dimension Analysis

In Table 9.9, a message is sent from source (0, 0) to destination (5, 5) for 10,000 times. Note that: 

• Increasing the number of neighbors, for DSAP in general, results in decreasing the number of
transmissions that the network performs because having more neighbors creates shorter paths or
alternative routes that are shorter to the destination. This is also reflected in the total power
transmitted (TPT) in the network, which is decreased from a sparse topology to a more dense
topology. 

• Looking at the power used for both protocols, note that DSAP with power aware uses more power,
which is reflected throughout Table 9.9. However, looking at Figure 9.11 and Figure 9.12, note
that DSAP with power aware has a better power distribution than DSAP without power aware.
This means that the life of the network can be extended using the power-aware concept.  

Table 9.10 and Table 9.11 concern when the first node dies in the network. Note that: 

• In Table 9.10, more than one node died in the network. This is because using DSAP without power
aware uses the concept of shortest path, so every message takes the same path and thus these nodes
will lose power faster than other nodes. 

• In Table 9.11, the first node died at different rounds and even at a higher number of rounds than
in Table 9.10 because DSAP with power aware was used in Table 9.11. This gives the routing
protocol more alternative paths to use and also balances the load in the network. 

• Also notice that in Table 9.11, as the number of neighbors is increased, the number of rounds
when the first node dies decreases because more neighbors are hearing the transmission of each
source. 

• In Table 9.12 through Table 9.14, each node sends a message to every other node in the network.
This will be considered as one complete run and is repeated until a fixed round or until the death
of the first node. In these tables we ran the simulation for the DSAP without power aware and
also for the power-aware protocol. 

In Table 9.12: 

• As the number of neighbors is increased, the first node dies at a lower number of rounds in both
protocols because more nodes will be reached during each transmission, so more nodes will lose
power. 
aylor & Francis Group, LLC
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• The number of rounds in the DSAP with power aware is higher than the DSAP without power
aware. This is because alternative paths have been used, resulting in a better load balance than in
the DSAP without the power aware. 

• Notice that the standard deviation for the DSAP with power aware is less than that of the DSAP
without power aware because DSAP with power aware has a better distribution of power usage

TABLE 9.9 Round 10000 from S(0,0) to D(5,5)

DSAP Routing 

Neighbors TR TT TPA (J) TPR (J) TPT (J) 

4 280,000 100,000 25.12 7.16 3.71 
5 370,000 90,000 23.19 9.47 3.34 

2D 6 270,000 50,000 27.23 6.91 1.86 
7 310,000 50,000 26.20 7.94 1.86 
8 350,000 50,000 25.18 8.96 1.86 

Aware–DSAP Routing

Neighbors TR TT TPA (J) TPR (J) TPT (J) 

4 314,787 100,000 24.23 8.06 3.71 
5 359,428 87,861 23.54 9.20 3.26 

2D 6 301,852 65,926 25.83 7.73 2.45 
7 388,748 73,624 23.32 9.95 2.73 
8 396,424 73,212 23.13 10.15 2.72 

Notes:
TR = total number of packets received by the neighbors of a source.
TT = total number of transmissions in the networks.
TPA = total power available for the network.
TPR = total power received by the neighbors of a transmitting source.
TPT = total power used for transmitting these packets. 

FIGURE 9.11  Remaining power in each node using DSAP.
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than does DSAP without power aware. Also the geometric mean is less in the DSAP with power
aware than the DSAP without power aware because DSAP with power aware balances the load
among all the nodes. 

In Table 9.13 and Table 9.14, the two protocols are compared at round 28,512 to study the geometric
mean, the standard deviation, and different power parameters: 

FIGURE 9.12  Remaining power in each node using aware–DSAP.

TABLE 9.10 First Node Dead for DSAP 
at Round 10191 from S(0,0) to D(5,5)

Neighbors Dead Nodes GeoMean 

4 8 51.89 
5 7 48.20 

2D 6 3 64.55 
7 3 62.42 
8 3 60.36 

Note: GeoMean = geometric mean. 

TABLE 9.11 First Node Dead 
Aware–DSAP from S(0,0) to D(5,5)

Neighbors Round GeoMean 

4 14,350 49.58 
5 13,563 47.76 

2D 6 14,350 52.71 
7 13,060 48.52 
8 11,456 54.82 

Note: GeoMean = geometric mean. 
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• In Table 9.13, DSAP aware has a lower standard deviation than the DSAP, but in some cases has
a higher geometric mean. 

• In Table 9.13, the topology with four neighbors has a lower standard deviation in both protocols. 
• In Table 9.14, the number of neighbors increases, the number of transmissions decreases, as noted

in Table 9.9. 

In general, for the two-dimensional topologies, a trade-off occurs between increasing the number of
neighbors and the power dissipated in the networks. As the number of neighbors increases, the protocol
will have alternative routes; however, more power will be dissipated in the network. Also, using a power-
aware routing protocol will help in extending the life of the network. 

9.7.2 Three-Dimension Analysis

In Table 9.15, different runs were done for the three-dimensional topology to try to see how the power
dissipated in the network would be affected by using the two different protocols. For the first 1000 rounds,
there is only a difference in the number of reception in the network. This is because when the network
is used more, the DSAP with power aware tries to find alternative paths with more power. If one looks
at 10,000 and 100,000, it is seen that the power used is less in the DSAP with power aware than the DSAP
without power aware for the same reasons mentioned before. 

TABLE 9.12 First Node Dead for Fixed All Routing

DSAP Routing

Neighbors GeoMean STDEV Number of Rounds

4 39.69 21.33 39,605
5 39.99 21.82 34,001 

2D 6 44.33 22.04 31,715
7 42.09 21.34 29,485 
8 45.07 22.94 29,120 

Aware–DSAP

Neighbors Tx Rx Total Power Used

4 20.75 15.24 56,084
5 31.04 18.66 30,934 

2D 6 27.50 14.31 39,512
7 28.76 15.71 29,485 
8 24.48 18.17 37,915 

Notes:
GeoMean = geometric mean. 
STDEV = standard deviation. 

TABLE 9.13 Topology at Round 28512 for Fixed All Routing

DSAP Routing Aware–DSAP Routing
Neighbors GeoMean STDEV GeoMean STDEV 

4 58.79 15.42 61.34 7.81 
5 51.75 18.38 44.66 15.40 

2D 6 51.31 19.84 51.96 11.60 
7 44.67 20.59 43.98 13.98 
8 46.74 22.45 47.11 15.61 

Notes:
GeoMean = geometric mean. 
STDEV = standard deviation. 
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9.8 Summary

This chapter has looked at the WSN network topology from a different perspective: a neighborhood
point of view. In these topologies, the number of neighboring nodes determines the number of receivers
and therefore may result in more overall power usage, even though the number of transmissions decreases.
Thus, a fundamental trade-off takes place between decreasing the number of transmissions and increasing
the number of receptions. This chapter has presented a variety of topologies and examined this trade-off. 

Because the number of neighbors differs with different topologies, one expects different topologies to
have different power usage rates. Even simulations of the contention-free case show that different topol-
ogies have different levels of power efficiency. The results show that the total power consumption is
reduced for topologies with fewer neighbors; although the topologies with more neighbors require fewer
hops, the power expended by many nodes to receive these messages increases the power usage. Among
the two-dimensional topologies, the best power efficiency is achieved with two dimensions with four
neighbors. The three-dimensional topology performs even better, although this topology may not be
feasible for some applications. 

Many areas remain to be explored within this research topic. This initial set of experiments serves to
demonstrate the marked difference between basic and power-aware DSAP routing. These differences are
significant enough to warrant further research.

One option would be to rerun the large simulations with each node beginning with a randomly chosen
power amount. This would allow for a simulation of a network that has been in use for some time. DSAP

TABLE 9.14 Power Values at Round 28512 for Fixed All Routing

DSAP Routing

Neighbors TR TT TPA (J) TPR (J) TPT (J) 

4 390,720 110,880 21.88 10.0 4.12 
5 478,522 105,292 19.84 12.25 3.91

2D 6 490,776 94,556 19.93 12.56 3.51 
7 570,768 91,718 17.98 14.61 3.4
8 544,456 78,232 19.16 13.94 2.90

Aware–DSAP Routing

Neighbors TR TT TPA (J) TPR (J) TPT (J)

4 376,541 110,880 22.24 9.64 4.12 
5 558,634 127,596 16.96 14.30 4.74 

2D 6 507,003 104,465 19.14 12.98 3.88
7 608,627 103,897 16.56 15.58 3.86 
8 578,045 90,638 17.83 14.79 3.36 

Notes:
TR = total number of packets received by the neighbors of a source.
TT = total number of transmissions in the networks.
TPA = total power available for the network.
TPR = total power received by the neighbors of a transmitting source.
TPT = total power used for transmitting these packets. 

TABLE 9.15 Power Assessment for 3D Topology

Protocol DSAP Routing Aware–DSAP Routing

Number of rounds 1000 10,000 100,000 1000 10,000 100,000
Total power used (J) 0.416 4.126 41.354 0.4 3.937 39.469
Total transmissions 3051 30,131 302,160 3051 30,131 302,160
Total reception 13,228 131,043 1,312,998 12,573 123,656 1,239,477
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can also be extended to include a more efficient power management scheme. Because the message knows
in which direction to head, it is not necessary to broadcast to all neighbors. Rather, the nodes in the
wrong direction can be put to sleep. This will reduce the power used because it takes more power to
transmit the large message than to poll the neighboring nodes.

Contention is also an issue that needs to be addressed in future studies because it is not realistic to
have a system that sends only one message at a time. Although previous work has also ignored this issue,
it is important to find a solution to give a more accurate comparison of the relative performance of the
networks. 
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10.1 Introduction

 

As the technology for wireless communications advances and the cost of manufacturing a sensor node
continues to decrease, a low-cost but yet powerful sensor network may be deployed for various applica-
tions that can be envisioned for daily life. Although each sensor node may seem to be much less capable
than a traditional stationary sensor, a collective effort of the sensor nodes may provide sensing capabilities
in space and time that surpass the stationary sensor. 

The communication protocols for sensor networks may leverage the capabilities of collective efforts
to provide users with specialized applications. These protocols may fuse, extract, or aggregate data from
the sensor field. In addition, they may self-organize the sensor nodes into clusters to complete a task or
overcome certain obstacles, e.g., hills. In essence, sensor networks may provide end users with intelligence
and details that traditional stationary sensors may not be able to do. 

Although the sensor nodes communicate through the wireless medium, protocols and algorithms
proposed for traditional wireless ad hoc networks may not be well suited for sensor networks. As
previously explained, sensor networks are application specific, and the sensor nodes work collaboratively
together. In addition, the sensor nodes are very energy constrained compared to traditional wireless ad
hoc devices. The differences between sensor networks and ad hoc networks [29] are: 

• The number of sensor nodes in a sensor network can be several orders of magnitude higher than
the nodes in an ad hoc network. 
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• Sensor nodes are densely deployed. 
• Sensor nodes are prone to failures. 
• The topology of a sensor network changes very frequently. 
• Sensor nodes mainly use a broadcast communication paradigm whereas most ad hoc networks

are based on point-to-point communications. 
• Sensor nodes are limited in power, computational capacities, and memory. 
• Sensor nodes may not have global identification (ID) because of the large amount of overhead

and large number of sensor nodes. 
• Sensor networks are deployed with a specific sensing application in mind; ad hoc networks are

mostly constructed for communication purposes. 

With these differences, the design of communication protocols for sensor networks requires specific
attention. Some of the potential applications as well as some application layer protocols for sensor
networks are presented in Section 10.2. Next, because many of the communication protocols require the
knowledge of location and time in order to function properly, localization and time synchronization
protocols are described in Section 10.3 and Section 10.4. Furthermore, protocols and challenges for the
transport, network, and data-link layers are consecutively explained in Section 10.5 through Section 10.7,
respectively. 

 

10.2 Applications/Application Layer Protocols

 

Sensor nodes can be used for continuous sensing, event detection, event identification, location sensing,
and local control of actuators. The concept of microsensing and wireless connection of these nodes
promise many new application areas, e.g., military, environment, health, home, commercial, space explo-
ration, chemical processing, and disaster relief, etc. Some of these application areas are described in the
next subsection. In addition, Subsection 10.2.2 introduces some application layer protocols used to realize
these applications. 

 

10.2.1 Sensor Network Applications

 

The number of potential applications for sensor networks is huge. Actuators may also be included in the
sensor networks, thus making the number of applications that can be developed much higher. In this
section, some example applications are given to provide the reader with a better insight about the
potentials of sensor networks. 

 

Military applications.

 

 Sensor networks can be an integral part of military command, control, com-
munications, computers, intelligence, surveillance, reconnaissance and tracking (C4ISRT) systems. The
rapid deployment, self-organization, and fault tolerance characteristics of sensor networks make them a
very promising sensing technique for military C4ISRT. Because sensor networks are based on dense
deployment of disposable and low-cost sensor nodes, destruction of some nodes by hostile actions does
not affect a military operation as much as the destruction of a traditional sensor does. Military applica-
tions include: monitoring friendly forces, equipment, and ammunition; battlefield surveillance; recon-
naissance of opposing forces and terrain; targeting; battle damage assessment; and nuclear, biological,
and chemical attack detection and reconnaissance. 

 

Environmental applications.

 

 Some environmental applications of sensor networks include tracking
the movements of species, i.e., habitat monitoring; monitoring environmental conditions that affect crops
and livestock; irrigation; macroinstruments for large-scale Earth monitoring and planetary exploration;
and chemical/biological detection [1, 3, 4, 6, 15, 17, 19, 20, 39, 45]. 

 

Commercial applications.

 

 The sensor networks are also applied in many commercial applications,
including building virtual keyboards; managing inventory control; monitoring product quality; con-
structing smart office spaces; and environmental control in office buildings [1, 6, 11, 12, 20, 31, 33, 34,
38, 45]. 
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10.2.2 Application Layer Protocols

 

Although many application areas for sensor networks are defined and proposed, potential application
layer protocols for sensor networks remain largely unexplored. Three possible application layer protocols
are introduced in this section: sensor management protocol; task assignment and data advertisement
protocol; and sensor query and data dissemination protocol. These protocols may require protocols at
other stack layers (explained in the remaining sections of this chapter). 

 

10.2.2.1 Sensor Management Protocol (SMP)

 

Designing an application layer management protocol has several advantages. Sensor networks have many
different application areas; accessing them through networks such as the Internet is the aim in some
current projects [31]. An application layer management protocol makes the hardware and software of
the lower layers transparent to the sensor network management applications. 

System administrators interact with sensor networks by using sensor management protocol (SMP).
Unlike many other networks, sensor networks consist of nodes that do not have global ID, and they are
usually infrastructureless. Therefore, SMP needs to access the nodes by using attribute-based naming
and location-based addressing, which are explained in detail in Section 10.6. SMP is a management
protocol that provides software operations needed to perform the following administrative tasks: 

• Introducing rules related to data aggregation, attribute-based naming, and clustering to the sensor
nodes

• Exchanging data related to location-finding algorithms 
• Time synchronization of the sensor nodes 
• Moving sensor nodes 
• Turning sensor nodes on and off 
• Querying the sensor network configuration and the status of nodes, and reconfiguring the sensor

network
• Authentication, key distribution, and security in data communications 

Descriptions of some of these tasks are given in references 8, 11, 30, 36, and 37. 

 

10.2.2.2 Task Assignment and Data Advertisement Protocol (TADAP)

 

Another important operation in the sensor networks is interest dissemination. Users send their interest
to a sensor node, a subset of the nodes, or the whole network. This interest may be about a certain
attribute of the phenomenon or a triggering event. Another approach is the advertisement of available
data in which the sensor nodes advertise the available data to the users and the users query the data in
which they are interested. An application layer protocol that provides the user software with efficient
interfaces for interest dissemination is useful for lower layer operations, such as routing. 

 

10.2.2.3 Sensor Query and Data Dissemination Protocol (SQDDP)

 

The sensor query and data dissemination protocol (SQDDP) provides user applications with interfaces
to issue queries, respond to queries, and collect incoming replies. These queries are generally not issued
to particular nodes; instead, attribute-based or location-based naming is preferred. For instance, “the
locations of the nodes that sense temperature higher than 70

 

°

 

F” is an attribute-based query. Similarly,
“temperatures read by the nodes in Region A” is an example of location-based naming. 

Similarly, sensor query and tasking language (SQTL) [37] is proposed as an application that provides
even a larger set of services. SQTL supports three types of events, which are defined by keywords 

 

receive

 

,

 

every

 

, and 

 

expire

 

. The 

 

receive

 

 keyword defines events generated by a sensor node when it receives a
message; 

 

every

 

 keyword defines events occurring periodically due to a timer time-out; and 

 

expire

 

 keyword
defines events occurring when a timer is expired. If a sensor node receives a message intended for it that
contains a script, it then executes the script. Although SQTL is proposed, different types of SQDDP can
be developed for various applications. The use of SQDDPs may be unique to each application. 
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SQDDP provides interfaces to issue queries, responds to queries, and collects incoming replies. Other
types of protocols are also essential to sensor network applications: the localization and time synchro-
nization protocols. The localization protocol enables sensor nodes to determine their locations; the time
synchronization protocol provides sensor nodes with a common view of time throughout the sensor
network. Because many communication protocols require knowledge of location and time, it is important
to describe the localization and time synchronization techniques in detail in the following sections before
transport, network, and data link protocols are discussed later. 

 

10.3 Localization Protocols

 

Because sensor nodes may be randomly deployed in any area, they must be aware of their locations in
order to provide meaningful data to the users. In addition, location information may be required by the
network and data-link layer protocols described in Section 10.6 and Section 10.7, respectively. In order
to meet design challenges, a localization protocol must be: 

• Robust to node failures 
• Less sensitive to measurement noise
• Low error in location estimation
• Flexible in any terrain

Currently, two types of localization techniques address these challenges: (1) beacon based and (2)
relative location based. Both techniques may use range and angle estimations for sensor node localization
via received signal strength (RSS) [23, 42]; time of arrival (TOA) [13, 41]; time difference of arrival
(TDOA); and angle of arrival (AOA). 

Current localization methods [27, 36] are based on beacons with position known. The ad hoc local-
ization system (AHLoS) [36] requires few nodes to have known location through GPS or through manual
configuration. This allows nodes to discover their location through a two-phase process: ranging and
estimation. During the ranging phase, each node estimates the range of its neighbors. The estimation
phase then allows neighbors that do not have location to use the range estimated in the ranging phase
and the known location of the beacons to estimate their locations. 

Also, some methods [5, 6] assume beacon signals at known locations. This assumption may be fine
for some applications, but sensor nodes may be deployed in regions in which known location is not
possible. As a result, Moses and colleagues are investigating self-localization using sources at unknown
locations [27]. Although these authors relax the assumption that beacons require fixed locations, the
beacons still need a number of signal sources. These signal sources are deployed in the same region as
the sensor nodes and used as references by the neighbor nodes to estimate the unknown locations and
orientations from the signal sources. 

The work of Moses et al. [27] and Savvides et al. [36] is based on signal sources. Other work [7]
estimates locations of the sensor nodes by viewing the location estimation problem as a convex optimi-
zation problem because a proximity constraint exists between two nodes, i.e., the range of broadcast. In
addition to these localization methods, Patwari and coworkers [28] provide the Cramer–Rao bound of
sensor location accuracy based on fixed base stations capable of peer-to-peer time of arrival or received
signal strength measurements. 

Although beacon-based localization protocols are sufficient for certain sensor network applications,
some sensor networks may be deployed in areas unreachable by beacons or GPS; they may be frequently
jammed by environmental or manually induced noise. In addition, low-end sensor nodes may exhibit
nonlinear device behavior and non-Gaussian measurement noise. To overcome these challenges, the
location information is relayed hop by hop from the source to the sink. In order to obtain precise relative
location information, the sensor nodes must collaboratively work together to assist each other. Further-
more, energy may be additionally conserved by enabling sensor nodes to track the locations of their
neighbor nodes.
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This relative localization technique is further explored by the perceptive localization framework (PLF)
[43]. In this framework, a node is able to detect and track the location of the neighboring node by using
a collaborative estimation technique and a particle filter applied to an array of sensors. To increase the
accuracy of the location estimation, the sink may request all the nodes along the path to the sources to
increase the number of samples (particles) for particle filtering. This process of local interaction does
not require any beacon in place. In addition, a central processing unit is not required in order to determine
the locations of the sources. 

Whether the beacon- or relative location-based localization protocol is used, the location information
is required by the protocols in the transport, network, and data-link layers. Each type of localization
protocols offers different capabilities. Future sensor network applications may utilize a combination of
localization techniques. 

 

10.4 Time Synchronization Protocols

 

Instead of time synchronization between the sender and receiver during an application, such as in the
Internet, the sensor nodes in the sensor field must maintain a similar time within a certain tolerance
throughout the lifetime of the network. Combining with the criteria that sensor nodes must be energy
efficient, low cost, and small in a multihop environment as described in Section 10.1, this requirement
offers a challenging problem. In addition, the sensor nodes may be left unattended for a long period of
time, e.g., in deep space or on an ocean floor. For short-distance multihop broadcast, data processing
time and the variation of data processing time may contribute the most in time fluctuations and differ-
ences in path delays. Also, the time difference between two sensor nodes is significant over time due to
the wandering effect of the local clocks. 

Small and low-end sensor nodes may exhibit device behaviors much worse than those of large systems
such as personal computers (PCs). Some of the factors influencing time synchronization in large systems
also apply to sensor networks [21]: 

•

 

Temperature.

 

 Because sensor nodes are deployed in various places, the temperature variation
throughout the day may cause the clock to speed up or slow down. For a typical PC, the clock
drifts few parts per million during the day [25]. For low-end sensor nodes, the drifting may be
even worse. 

•

 

Phase noise.

 

 Some of the causes of phase noise are due to access fluctuation at the hardware
interface, response variation of the operating system to interrupts, and jitter in the network delay.
The latter may be due to medium access and queueing delays. 

•

 

Frequency noise.

 

 The frequency noise is due to the instability of the clock crystal. A low-end crystal
may experience large frequency fluctuation because the frequency spectrum of the crystal has large
sidebands on adjacent frequencies. 

•

 

Asymmetric delay.

 

 Because sensor nodes communicate with each other through the wireless
medium, the delay of the path from one node to another may be different from that of the return
path. As a result, an asymmetric delay may cause an offset to the clock that cannot be detected
by a variance type method [21]. If the asymmetric delay is static, the time offset between any two
nodes is also static. The asymmetric delay is bounded by one half the round trip time between
the two nodes [21]. 

•

 

Clock glitches.

 

 Clock glitches are sudden jumps in time that may be caused by hardware or software
anomalies such as frequency and time steps. 

Table 10.1 shows three types of timing techniques, each of which must address the challenges men-
tioned earlier. In addition, the timing techniques must be energy aware because the batteries of the sensor
nodes are limited. Also, they must address the mapping between the sensor network time and the Internet
time, e.g., universal coordinated time. Next, examples of these types of timing techniques are described,
namely, the network time protocol (NTP) [24]; the reference-broadcast synchronization (RBS) [9]; and
the time-diffusion synchronization protocol (TDP) [44]. 
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In the Internet, the NTP is used to discipline the frequency of each node’s oscillator. It may be useful
to use NTP to discipline the oscillators of the sensor nodes, but connection to the time servers may not
be possible because of frequent sensor node failures. In addition, disciplining all the sensor nodes in the
sensor field may be a problem because of interference from the environment and large variation of delay
between different parts of the sensor field. The interference can temporarily disjoint the sensor field into
multiple smaller fields, causing undisciplined clocks among these smaller fields. The NTP protocol may
be considered type 1 of the timing techniques; in addition, it must be refined to address timing challenges
in the sensor networks. 

The RBS, type 2 of the timing techniques, provides instantaneous time synchronization among a set
of receivers within the reference broadcast of the transmitter. The transmitter broadcasts 

 

m

 

 reference
packets. Each of the receivers within the broadcast range records the time of arrival of the reference
packets. Afterwards, the receivers communicate with each other to determine the offsets. To provide
multihop synchronization, it is proposed to use nodes receiving two or more reference broadcasts from
different transmitters as translation nodes. These translation nodes are used to translate the time between
different broadcast domains. As shown in Figure 10.1, nodes 

 

A

 

, 

 

B

 

, and 

 

C

 

 are the transmitter, receiver,
and translation nodes, respectively. 

Another emerging timing technique is the TDP, which is used to maintain the time throughout the
network within a certain tolerance. The tolerance level can be adjusted based on the purpose of the sensor
networks. The TDP automatically self-configures by electing master nodes to synchronize the sensor
network. In addition, the election process is sensitive to energy requirement as well as the quality of the

 

TABLE 10.1

 

Three Types of Timing Techniques

 

Type Description

 

(1) Relies on fixed time servers 
to synchronize the network

The nodes are synchronized to time 
servers that are readily available. 
These time servers are expected to 
be robust and highly precise.

(2) Translates time throughout 
the network

The time is translated hop-by-hop 
from the source to the sink. In 
essence, it is a time translation 
service.

(3) Self-organizes to 
synchronize the network

The protocol does not depend on 
specialized time servers. It 
automatically organizes and 
determines the master nodes as the 
temporary time-servers.

 

FIGURE 10.1  

 

The RBS.

C
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A
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clocks. The sensor network may be deployed in unattended areas, and the TDP still synchronizes the
unattended network to a common time. It is considered type 3 of the timing techniques. 

In summary, these timing techniques may be used for different types of applications as discussed in
Section 10.2; each has its benefits. A time-sensitive application must choose not only the type of timing
techniques but also the type of transport, network, and data-link schemes described in the following
sections. This is because different protocols provide different features and services to the time-sensitive
application. 

 

10.5 Transport Layer Protocols

 

The collaborative nature of the sensor network paradigm brings several advantages over traditional
sensing, including greater accuracy, larger coverage area, and extraction of localized features. The real-
ization of these potential gains, however, directly depends on efficient, reliable communication between
the sensor network entities, i.e., the sensor nodes and the sink. To accomplish this, a reliable transport
mechanism is imperative. 

In general, the main objectives of the transport layer are (1) to bridge application and network layers
by application multiplexing and demultiplexing; (2) to provide data delivery service between the source
and the sink with an error control mechanism tailored according to the specific reliability requirement
of the application layer; and (3) to regulate the amount of traffic injected into the network via flow and
congestion control mechanisms. Nevertheless, the required transport layer functionalities to achieve these
objectives in the sensor networks are subject to significant modifications in order to accommodate unique
characteristics of the sensor network paradigm. Energy, processing, and hardware limitations of the sensor
nodes bring further constraints on the transport layer protocol design. For example, conventional end-
to-end, retransmission-based error control mechanisms and window-based, additive-increase, multipli-
cative-decrease congestion control mechanisms adopted by the vastly used transport control protocol
(TCP) may not be feasible for the sensor network domain and thus may lead to waste of scarce resources. 

On the other hand, unlike other conventional networking paradigms, the sensor networks are deployed
with a specific sensing application objective, such as event detection, event identification, location sensing,
and local control of actuators, for a wide range of applications (e.g., military, environment, health, space
exploration, and disaster relief). The specific objective of the sensor network also influences the design
requirements of the transport layer protocols. For example, the sensor networks deployed for different
applications may require different reliability levels as well as different congestion control approaches.
Consequently, development of transport layer protocols is a challenge because the limitations of the
sensor nodes and the specific application requirements primarily determine design principles of transport
layer protocols. 

Due to the application-oriented and collaborative nature of the sensor networks, the main data flow
takes place in the forward path, where the source nodes transmit their data to the sink. The reverse path,
on the other hand, carries the data originated from the sink, such as programming/retasking binaries,
queries, and commands to the source nodes. Therefore, different functionalities are required to handle
the transport needs of the forward and reverse paths. Transport layer issues pertaining to these distinct
cases are investigated separately in the following subsections. 

 

10.5.1 Event-to-Sink Transport

 

Under the premise that data flows from source to sink are generally loss tolerant, Wan and coworkers
questioned the need for a transport layer for data delivery in the sensor networks [32]. Although the
need for end-to-end reliability may not exist because of the sheer amount of correlated data flows, an
event in the sensor field needs to be tracked with a certain amount of accuracy at the sink. Therefore,
unlike traditional communication networks, the sensor network paradigm necessitates an event-to-sink
reliability notion at the transport layer [35]. This involves a reliable communication of the event features
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to the sink rather than conventional packet-based reliable delivery of the individual sensing reports/
packets generated by each sensor node in the field. Figure 10.2 illustrates an event-to-sink reliable
transport notion based on collective identification of data flows from the event to the sink. 

In order to provide reliable event detection at the sink, possible congestion in the forward path should
also be addressed by the transport layer. Once the event is sensed by a number of sensor nodes within
the coverage of the phenomenon, i.e., event radius, a significant amount of traffic is triggered by these
sensor nodes; this may easily lead to congestion in the forward path. The need for transport layer
congestion control to assure reliable event detection at the sink is revealed by the results of Tilak and
colleagues [18], who have shown that exceeding network capacity can be detrimental to the observed
goodput at the sink. Moreover, although the event-to-sink reliability may be attained even in the presence
of packet loss due to network congestion (thanks to the correlated data flows), a suitable congestion
control mechanism can also help conserve energy while maintaining desired accuracy levels at the sink. 

On the other hand, although the transport layer solutions in conventional wireless networks are
relevant, they are simply inapplicable for event-to-sink reliable transport in the sensor networks. These
solutions mainly focus on reliable data transport following end-to-end TCP semantics and are proposed
to address challenges posed by wireless link errors and mobility [2]. The primary reason for their
inapplicability is their notion of end-to-end reliability, which is based on acknowledgments and end-to-
end retransmissions. Because of inherent correlation in the data flows generated by the sensor nodes,
however, these mechanisms for strict end-to-end reliability are superfluous and drain significant amounts
of energy. 

In contrast to the transport layer protocols for conventional end-to-end reliability, the event-to-sink
reliable transport (ESRT) protocol [35] is based on the event-to-sink reliability notion and provides
reliable event detection without any intermediate caching requirements. ESRT is a novel transport
solution developed to achieve reliable event detection in the sensor networks with minimum energy
expenditure. It includes a congestion control component that serves the dual purpose of achieving
reliability and conserving energy. ESRT also does not require individual sensor identification, i.e., an
event ID suffices. Importantly, the algorithms of ESRT mainly run on the sink, with minimal functionality
required at resource-constrained sensor nodes. 

 

10.5.2 Sink-to-Sensors Transport

 

Although data flows in the forward path carry correlated sensed/detected event features, the flows in the
reverse path mainly contain data transmitted by the sink for an operational or application-specific
purpose. This may include operating system binaries; programming/retasking configuration files; and
application-specific queries and commands. Dissemination of this type of data mostly requires 100%
reliable delivery. Therefore, the event-to-sink reliability approach introduced before would not suffice to
address the tighter reliability requirements of flows in the reverse paths. 

 

FIGURE 10.2  

 

Typical sensor network topology with event and sink. (The sink is only interested in collective
information of sensor nodes within the even radius and not in their individual data.)

SinkEvent radius
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This strict reliability requirement for the sink-to-sensors transport of operational binaries and appli-
cation-specific queries and commands involves a certain level of retransmission as well as acknowledg-
ment mechanisms. However, these mechanisms should be incorporated into the transport layer protocols
cautiously in order not to compromise scarce sensor network resources totally. In this respect, local
retransmissions and negative acknowledgment approaches would be preferable over end-to-end retrans-
missions and acknowledgments to maintain minimum energy expenditure. 

On the other hand, the sink is involved more in the sink-to-sensor data transport on the reverse path,
so a sink with plentiful energy and communication resources can broadcast data with its powerful
antenna. This helps to reduce the amount of traffic forwarded in the multihop sensor network infra-
structure and thus helps sensor nodes conserve energy. Therefore, data flows in the reverse path may
experience less congestion compared to the forward path, which is totally based on multihop commun-
ication. This calls for less aggressive congestion control mechanisms for the reverse path compared to
the forward path in the sensor networks. 

Wan and colleagues [32] propose the pump slowly, fetch quickly (PSFQ) mechanism for reliable
retasking/reprogramming in the sensor networks. PSFQ is based on slowly injecting packets into the
network but performing aggressive hop-by-hop recovery in case of packet loss. The pump operation in
PSFQ simply performs controlled flooding and requires each intermediate node to create and maintain
a data cache to be used for local loss recovery and in-sequence data delivery. Although this is an important
transport layer solution for the sensor networks, PSFQ does not address packet loss due to congestion. 

In summary, the transport layer mechanisms that can address the unique challenges posed by the
sensor network paradigm are essential to realize the potential gains of the collective effort of sensor nodes.
As discussed in the preceding two subsections, promising solutions exist for event-to-sink and sink-to-
sensors reliable transports. These solutions and those currently under development, however, need to be
exhaustively evaluated under real sensor network deployment scenarios to reveal their shortcomings.
Therefore, necessary modifications may be required to provide a complete transport layer solution for
the sensor networks. 

 

10.6 Network Layer Protocols

 

Sensor nodes may be scattered densely in an area to observe a phenomenon. As a result, they may be
very close to each other. In such a scenario, multihop communication may be a good choice for sensor
networks with strict requirements on power consumption and transmission power levels. As compared
to long distance wireless communication, multihop communication may be an effective way to overcome
some of the signal propagation and degradation effects. In addition, the sensor nodes consume much
less energy when transmitting a message because the distances between sensor nodes are shorter. 

As discussed in Section 10.1, ad hoc routing techniques already proposed in the literature [29] do not
usually fit requirements of the sensor networks. As a result, the network layer of the sensor networks is
usually designed according to the following principles: 

• Energy efficiency is always an important consideration. 
• Sensor networks are mostly data centric. 
• An ideal sensor network has attribute-based addressing and location awareness. 
• Data aggregation is useful only when it does not hinder the collaborative effort of the sensor nodes. 
• The routing protocol is easily integrated with other networks, e.g., Internet. 

These design principles serve as a guideline when designing a routing protocol for sensor networks.
Each of them is further explained to emphasize its importance. As described in the preceding section, a
transport layer protocol must be energy efficient. This requirement also applies to a routing protocol
because the network lifetime depends on the nodes’ energy consumption when relaying messages. As a
result, energy efficiency plays an important role in various protocol stack layers in addition to the network
layer. 
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In sensor networks, information or data may be described by using attributes. In order to integrate
tightly with the information or data, a routing protocol may be designed according to data-centric
techniques. A data-centric routing protocol requires attribute-based naming [8, 10, 26, 37], which is used
to carry out queries by using the attributes of the phenomenon. In essence, the users are more interested
in the data gathered by the sensor networks in the phenomenon rather than by an individual node. They
query the sensor networks by using attributes of the phenomenon that they want to observe. For example,
the users may send out a query such as, “find the locations of areas where the temperature is over 70

 

°

 

F.” 
Furthermore, a data-centric routing protocol should also utilize the design principle of data aggregation

— a technique used to solve the implosion and overlap problems in data-centric routing [15]. As shown
in Figure 10.3, the sink queries the sensor network to observe the ambient condition of the phenomenon.
The sensor network used to gather the information can be perceived as a reverse multicast tree, where
the nodes within the area of the phenomenon send the collected data toward the sink. Data coming from
multiple sensor nodes are aggregated as if they are about the same attribute of the phenomenon when
they reach the same routing node on the way back to the sink. For example, sensor node 

 

E

 

 aggregates
the data from sensor nodes 

 

A

 

 and 

 

B

 

 while sensor node 

 

F

 

 aggregates the data from sensor nodes 

 

C

 

 and

 

D

 

 in Figure 10.3.
Data aggregation can be perceived as a set of automated methods of combining data from many sensor

nodes into a set of meaningful information [16]. In this respect, data aggregation is known as data fusion
[15]. Also, care must be taken when aggregating data because the specifics of the data, e.g., the locations
of reporting sensor nodes, should not be left out. Such specifics may be needed by certain applications. 

One of the design principles for the network layer is to allow easy integration with other networks
such as the satellite network and the Internet. As shown in Figure 10.4, the sinks are the basis of a
communication backbone that serves as a gateway to other networks. The users may query the sensor
networks through the Internet or the satellite network, depending on the purpose of the query or the
type of application the users are running. 

A brief summary of the state of the art in the networking area is shown in Table 10.2. The schemes
listed in the table utilize some of the design principles previously discussed. For example, the SMECN
[22] creates an energy-efficient subgraph of the sensor networks. It tries to minimize the energy con-
sumption while maintaining connectivity of the nodes in the network. In addition, the directed diffusion
protocol [17] is a data-centric dissemination protocol in which the queries and collected data use
attribute-based naming schemes. 

 

FIGURE 10.3  

 

Data aggregation.
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Because different applications may require different types of network layer protocols, more advanced
data-centric routing protocols are needed. In essence, application-specific requirements are part of the
driving forces urging for new transport layer protocols, as described in the previous section. In addition,
they push for the new data-link schemes described in the following section. 

 

10.7 Data Link Layer Protocols

 

Although the transport layer mechanisms discussed in Section 10.5 are essential to achieving higher level
error and congestion control, it is still imperative to have data-link layer functionalities in the sensor
networks. In general, the data link layer is primarily responsible for multiplexing data streams, data frame
detection, medium access, and error control; it ensures reliable point-to-point and point-to-multipoint
connections in a communication network. Nevertheless, the collaborative and application-oriented
nature of the sensor networks and the physical constraints of the sensor nodes, such as energy and
processing limitations, determine the way in which these responsibilities are fulfilled. In the following

 

FIGURE 10.4  

 

Internetworking between sensor nodes and user through Internet or satellite network.

 

TABLE 10.2

 

Overview of Network Layer Schemes

 

Network Layer Scheme Description

 

SMECN [22] Creates a sub graph of the sensor network that 
contains the minimum-energy path.

LEACH [16] Forms clusters to minimize energy dissipation.
SAR [40] Creates multiple trees where the root of each tree 

is one hop neighbor from the sink; select a tree 
for data to be routed back to the sink according 
to the energy resources and additive QoS Metric.

Flooding Broadcasts data to all neighbor nodes regardless 
if they receive it before or not.

Gossiping [14] Sends data to one randomly selected neighbor.
SPIN [15] Sends data to sensor nodes only if they are 

interested; has three types of messages, i.e.,    
ADV, REQ, and DATA.

Directed Diffusion [17] Sets up gradients for data to flow from source to 
sink during interest dissemination. 

Backbone
Sensor Network

User

Internet

Satellite Network

User User

User

Sinks
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two subsections, data-link layer issues are explored within the discussion of medium access and error
control strategies in the sensor networks. 

 

10.7.1 Medium Access Control

 

The medium access control (MAC) layer protocols in a multihop self-organizing sensor network must
achieve two objectives: 

• Establish data communication links for creating a basic network infrastructure needed for mul-
tihop wireless communication in a densely scattered sensor field.

• Regulate access to shared media so that communication resources are fairly and efficiently shared
among the sensor nodes. 

Due to the unique resource constraints and application requirements of sensor networks, however,
the MAC protocols for the conventional wireless networks are inapplicable to the sensor network para-
digm. For example, the primary goal of a MAC protocol in an infrastructure-based cellular system is to
provide high QoS and bandwidth efficiency, mainly with dedicated resource assignment strategy. Such
an access scheme is impractical for sensor networks because there is no central controlling agent like the
base station. Moreover, power efficiency directly influences network lifetime in a sensor network and
thus is of prime importance. 

Although Bluetooth and the 

 

mobile ad hoc network

 

 (MANET) show similarities to the sensor networks
in terms of communication infrastructure, both consist of nodes with portable battery-powered devices
that can be replaced by the user. Therefore, unlike in the sensor networks, power consumption is only
of secondary importance in these systems. Therefore, none of the existing Bluetooth or MANET MAC
protocols can be directly used in the sensor networks because of network lifetime concerns. 

It is evident that the MAC protocol for sensor networks must have built-in power conservation,
mobility management, and failure recovery strategies. Thus far, 

 

fixed allocation

 

 and 

 

random access

 

versions of medium access have been proposed [40, 46]. 

 

Demand-based

 

 MAC schemes may be unsuitable
for sensor networks due to their large messaging overhead and link setup delay. Furthermore, contention-
based channel access is deemed unsuitable because of the requirement to monitor the channel at all times
— an energy-draining task. 

The applicability of the fundamental MAC schemes in the sensor networks is discussed along with
some proposed MAC solutions using that access method as follows: 

•

 

TDMA-based medium access.

 

 Time-division multiple-access (TDMA) access schemes inherently
conserve more energy compared to contention-based schemes because the duty cycle of the radio
is reduced and no contention-introduced overhead and collisions are present. Pottie and Kaiser
[31] have reasoned that a MAC scheme for energy-constrained sensor networks should include a
variant of TDMA because radios must be turned off during idling for precious power savings.
The self-organizing medium access control for sensor networks (SMACS) [40] is such a time slot-
based scheme; each sensor node maintains a TDMA-like super frame in which the node schedules
different time slots to communicate with its known neighbors. SMACS achieves power conserva-
tion by using a random wake-up schedule during the connection phase and by turning the radio
off during idle time slots. However, although a TDMA-based access scheme minimizes the transmit
on time, it is not always preferred because of associated time synchronization costs. 

•

 

Hybrid TDMA/FDMA-based medium access.

 

 A pure TDMA-based access scheme dedicates the
entire channel to a single sensor node; however, a pure frequency-division multiple access (FDMA)
scheme allocates minimum signal bandwidth per node. Such contrast brings the trade-off between
the access capacity and the energy consumption. An analytical formula is derived in Shih et al.
[38] to find the optimum number of channels, which gives the minimum system power consump-
tion. This determines the hybrid TDMA/FDMA scheme to be used. The optimum number of
channels depends on the ratio of the power consumption of the transmitter to that of the receiver.
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If the transmitter consumes more power, a TDMA scheme is favored, while the scheme leans
toward FDMA when the receiver consumes greater power [38]. 

•

 

CSMA-based medium access.

 

 Based on carrier sensing and backoff mechanism, traditional carrier-
sense multiple access (CSMA)-based schemes are inappropriate because they make the fundamen-
tal assumption of stochastically distributed traffic and tend to support independent point-to-point
flows. On the other hand, the MAC protocol for sensor networks must be able to support variable,
but highly correlated and dominantly periodic traffic. Any CSMA-based medium access scheme
has two important components: the listening mechanism and the backoff scheme. Woo and Culler
[46] present a CSMA-based MAC scheme for sensor networks and observe from the simulations
that the constant listen periods are energy efficient and the introduction of random delay provides
robustness against repeated collisions. 

 

10.7.2 Error Control

 

In addition to medium access control, error control of the transmitted data in the sensor networks is
another extremely important function of the data-link layer. Error control is critical, especially in some
sensor network applications such as mobile tracking and machine monitoring. In general, the error
control mechanisms in communication networks can be categorized into two main approaches: forward
error correction (FEC) and automatic repeat request (ARQ). 

ARQ-based error control mainly depends on retransmission for the recovery of lost data packets/
frames. It is clear that this ARQ-based error control mechanism incurs significant additional retransmis-
sion cost and overhead. Although ARQ-based error control schemes are utilized at the data-link layer
for the other wireless networks, the usefulness of ARQ in sensor network applications is limited due to
the scarcity of the energy and processing resources of the sensor nodes. On the other hand, FEC schemes
have inherent decoding complexity that require relatively considerable processing resources in the sensor
nodes. In this respect, simple error control codes with low-complexity encoding and decoding might
present the best solutions for error control in the sensor networks. 

On the other hand, for the design of efficient FEC schemes, it is important to have good knowledge
of channel characteristics and implementation techniques. Channel bit error rate (BER) is a good
indicator of link reliability. In fact, a good choice of the error correcting code can result in several orders
of magnitude reduction in BER and an overall gain. The coding gain is generally expressed in terms of
the additional transmit power needed to obtain the same BER without coding. 

Therefore, the link reliability can be achieved by increasing the output transmit power or the use of
suitable FEC scheme. Due to energy constraints of the sensor nodes, increasing the transmit power is
not a feasible option. Therefore, using FEC is still the most efficient solution, given the constraints of
the sensor nodes. Although the FEC can achieve significant reduction in the BER for any given value of
the transmit power, the additional processing power consumed during encoding and decoding must be
considered when designing an FEC scheme. If this additional power is greater than the coding gain, the
whole process is not energy efficient and thus the system is better without coding. On the other hand,
the FEC is a valuable asset to the sensor networks if the additional processing power is less than the
transmission power savings. Thus, the trade-off between this additional processing power and the asso-
ciated coding gain should be optimized in order to have powerful, energy-efficient, and low-complexity
FEC schemes for error control in the sensor networks. 

As researchers continue to investigate new FEC schemes for sensor networks, designers must bear in
mind that the new schemes may be application specific. The data-link layer remains a challenging area
in which to work because sensor nodes are inherently low end. Combining the low-end characteristic of
the sensor nodes with harsh deployed terrains calls for new medium-access as well as error-control
schemes. 
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10.8 Conclusion

 

An overview of the communication protocols for sensor networks is given in this chapter. Challenges
and design guidelines for localization, time synchronization, application layer, transport layer, network
layer, and data-link layer protocols are explored. As technology advances in the sensor network area,
sensor network technologies may become an integral part of our lives. 
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11.1 Introduction

Locations of devices or objects are important information in many applications. This is particularly true
for wireless sensor networks, which usually need to determine devices’ context. For outdoor environ-
ments, the most well-known positioning system is the global positioning system (GPS) [5]. This posi-
tioning system uses 24 satellites set up by the U.S. Department of Defense to enable global three-
dimensional positioning services; it has two levels of accuracy: stand positioning service (SPS) and precise
positioning service (PPS). The accuracy provided by GPS is around 20 to 50 m. 

In addition to the GPS system, positioning can also be done using some wireless networking infra-
structures. Taking the PCS cellular networks as an example, the E911 emergency service requires deter-
mining the location of a phone call via the base stations of the cellular system. Several location estimation
models, such as angle of arrival (AoA); time of arrival (ToA); received signal strength (RSS); phase of
arrival (PoA); and assisted global positioning system (A-GPS), are widely used in cellular networks and
wireless sensor networks. 

Much work has been dedicated recently to positioning and location tracking in the area of wireless ad
hoc and sensor networks. The purpose of this chapter is to review the recent progress in this direction.
GPS is not suitable for wireless sensor networks for several reasons:

• It is not available in an indoor environment because satellite signals cannot penetrate buildings.
• For more fine-grained applications, higher accuracy is usually necessary in the positioning result.
• Sensor networks have their own battery constraint, which requires special design. 
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Location information can be used to improve the performance of wireless networks and provide new
types of services. For example, it can facilitate routing in a wireless ad hoc network to reduce routing
overhead. This is known as geographic routing [7, 9]. Through location-aware network protocols, the
number of control packets can be reduced. Service providers can also use location information to provide
some novel location-aware or follow-me services. The navigation system based on GPS is an example.
A user can tell the system his destination and the system will guide him there. Phone systems in an
enterprise can exploit locations of people to provide follow-me services. Other types of location-based
services include geocast [6, 8], by which a user can request to send a message to a specific area, and
temporal geocast, by which a user can request to send a message to a specific area at specific time. In
contrast to traditional multicast, such messages are not targeted at a fixed group of members, but rather
at members located in a specific physical area. 

Section 11.2 introduces some fundamental distance estimation models; Section 11.3 discusses some
positioning and location tracking algorithms. In Section 11.4, some experimental systems are reviewed
and Section 11.5 gives a summary. 

11.2 Fundamentals

To position an object or a device, the basic step is to use a reference point to determine the distance and
angle between the device and the reference point. This has been exploited in the radar systems widely
used in military applications. This section describes several such basic approaches. The next subsection
discusses how to use multiple reference points jointly to estimate the location of a device. 

11.2.1 ToA, TDoA, and AoA

In the ToA (time of arrival) approach, signal traveling time is used to estimate the distance between a
device and the reference point. Such systems typically use signals that move at a slower speed, such as
ultrasound, to measure the time of signal arrival. Figure 11.1(a) illustrates this idea. An ultrasound signal
is sent from the transmitter to the receiver; in return, the receiver sends a signal back to the transmitter.
After this two-way handshake, the transmitter can infer the distance from the round-trip delay of the
signals: 

where V is the velocity of the ultrasound signals. The error of such measurement may come from the
processing time of signals (such as computing latency and the unknown delay T2 – T1 at the receiver’s side). 

FIGURE 11.1  (a) ToA measurement; (b) TDoA measurement.
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Another distance estimation technique is the time difference of arrival (TDoA). Although similar to
the ToA scheme, this method uses two signals that travel at different speeds, such as the radio frequency
(RF) and ultrasound. Figure 11.1(b) shows how TDoA works; transmission in one direction is sufficient.
At T0 the transmitter sends an RF signal, followed by an ultrasound signal at time T2. The receiver can
then determine its distance to the transmitter by 

where VRF and VUS are the traveling speeds of RF and ultrasound signals, respectively. For TDoA, in
addition to errors caused by processing time, the receiver also must know the precise value of (T2 – T0)
to determine the distance. 

The AoA approach is another commonly used method for positioning [10, 13]. Such approaches
require an antenna array or an array of ultrasound receivers, which can determine the angle and orien-
tation of received signals. 

11.2.2 Positioning by Signal Strength

Besides using the signal traveling time, another distance estimation technique is to use the property of
signal degradation while traveling in a space to determine the mutual distance. Because signals traveling
in a space typically reduce in strength with respect to the distance that they travel, the received signal
strength (RSS) can be measured at the receiver’s side. A mathematical propagation model can be derived
to estimate the distance d between a transmitter and a receiver [14] as follows 

where PL() is the path loss function with respect to distance measured in decibels; n is a loss exponent
that indicates the rate at which loss increases with distance; and d0 is the reference distance determined
from a measurement close to the transmitter. The path loss exponent n usually ranges from 2 to 4. 

Using path loss may incur significant errors. For example, Figure 11.2 shows an experimental result
based on IEEE 802.11b. As can be seen, a trend for the relation between distance and signal strength
does exist; however, the curve is unstable in small ranges. The true signal strength model is complex and
many uncontrollable environmental factors (such as shadows and terrain) are present. 

FIGURE 11.2  Signal strength vs. distance in IEEE 802.11b.
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To solve the preceding problem, it is necessary to model the error for signal attenuation. One possibility
is to include a random variable in the preceding path loss function as follows 

where Xρ is a zero-mean Gaussian random variable with a standard deviation ρ. Due to the existence of
such errors, errors will occur as well when positioning a device based on signal strength. Assuming the
similar error model in measuring distances, Slijepcevic and colleagues [16] further analyzed the location
errors in a wireless sensor network and proved that the distribution of location error can be approximated
by a family of Weibull distributions. 

11.3 Positioning and Location Tracking Algorithms

The previous section discussed how to estimate the distance between two devices. If an object knows its
distances to multiple devices at known locations, one may estimate its location. Several such methods
are discussed here. 

11.3.1 Trilateration

Trilateration is a well-known technique in which the positioning system has a number of beacons at
known locations. These beacons can transmit signals so that other devices can determine their distances
to these beacons based on received signals. If a device can hear at least three beacons, its location can
be estimated. Figure 11.3(a) shows how trilateration works; A, B, and C are beacons with known
locations. From A’s signal, one can determine that the object should be located at the circle centered
at A. Similarly, from B’s and C’s signals, it can be determined that the object should be located at the
circles centered at B and C, respectively. Thus, the intersection of the three circles is the estimated
location of the device. 

The preceding discussion has assumed an ideal situation; however, as mentioned earlier, distance
estimation always contains errors that will, in turn, lead to location errors. Figure 11.3(b) illustrates an
example in practice. The three circles do not intersect in a common point. In this case, the maximum
likelihood method may be used to estimate the device’s location. Let the three beacons A, B, and C be
located at (xA, yA), (xB, yB), and (xC, yC), respectively. For any point (x, y) on the plane, a difference
function is computed: 

FIGURE 11.3  Trilateration method: (a) ideal situation; (b) real situation with errors.
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where rA, rB, and rC are the estimated distances to A, B, and C, respectively. The location of the object
can then be predicted as the point (x, y) among all points such that σx,y is minimized. 

In addition to using the ToA approach for positioning, the AoA approach can be used. For example,
in Figure 11.4, the unknown node D measures the angle of, ADB, BDC, and  ADC by the received signals
from beacons A, B, and C. From this information, D’s location can be derived [10]. 

11.3.2 Multilateration

The trilateration method has its limitation in that at least three beacons are needed to determine a device’s
location. In a sensor network, in which nodes are randomly deployed, this may not be true. Several
multilateration methods are proposed to relieve this limitation. 

The AHLoS (Ad Hoc Localization System) [1] is a distributed system for location discovery. In the
network, some beacons have known locations and some devices have unknown locations. The AHLoS
enables nodes to discover their locations by using a set of distributed iterative algorithms. The basic one
is atomic multilateration, which can estimate the location of a device of unknown location if at least three
beacons are within its sensing range. Figure 11.5 shows an example in which, initially, beacon nodes
contain only nodes marked as having a GPS. Device nodes 1, 2, 3, and 4 are at unknown locations. In
the first iteration, as Figure 11.5(a) shows, the locations of nodes 1, 2, and 3 will be determined.  

FIGURE 11.4  Angle measurement from three beacons, A, B, and C.

FIGURE 11.5  (a) Atomic multilateration; (b) iterative multilateration in AHLoS.
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The atomic multilateration is further extended to an iterative multilateration method. Specifically, once
the location of a device is estimated, its role is changed to a beacon node so as to help determine other
devices’ locations. This is repeated until all hosts’ locations are determined (if possible). As Figure 11.5(b)
shows, in the second iteration, the location of node 4 can be determined with the help of nodes 1, 2,
and 3, which are now serving as beacons. 

The iterative multilateration still has its limitation. For example, as Figure 11.6 shows, it is impossible to
determine node 2’s and node 4’s locations even if the locations of nodes 1, 3, 5, and 6 are known. The
collaborative multilateration method may relieve this problem because it allows one to predict multiple
potential locations of a node if it can hear fewer than three beacons. For example, in Figure 11.6, from beacon
nodes 1 and 3, two potential locations of node 2 may be guessed (the other potential location is marked by
2′). Similarly, from beacon nodes 5 and 6, one may guess two potential locations of node 4 (the other potential
location is marked by 4′). Collaborative multilateration allows estimation of the distance between nodes 2
and 4. With this information, the locations of nodes 2 and 4 can be estimated, as the figure shows. 

11.3.3 Pattern Matching

Another type of location discovery is by pattern matching. Instead of estimating the distance between a
beacon and a device, this approach tries to compare the received signal pattern against the training
patterns in the database. Thus, this method is also known as the fingerprinting approach. The basic idea
is that signal strength received at a fixed location is not necessarily a constant. It typically moves up and
down, so it would be better to model signal strength by a random variable. This is especially true for
indoor environments. 

The main idea is to compare the received signals against those in the database and determine the likelihood
that the device is currently located in a position. A typical solution has two phases (refer to Figure 11.7):

• Off-line phase. The purpose of this phase is to collect signals from all base stations at each training
location. The number of training locations is decided first. Then, the received signal strengths are
recorded (for a base station that is too far away, the signal strength is indicated as zero). Each
entry in the database has the format: (x, y, 〈ss1, ss2, …, ssn〉), where (x, y) is the coordinate of the
training location, and ssi, i = 1 … n, is the signal strength received at the training location from
the ith base station. These entries are stored in the database. Note that for higher accuracy, one
may establish multiple entries in the database for the same training location. From the database,
some positioning rules, which form the positioning model, will then be established. 

• Real-time phase. With a well-trained positioning model, one can estimate a device’s location given
the signal strengths collected by the device from all possible base stations. The positioning model
may determine a number of locations, each associated with a probability. However, the typical
solution is to output only the location with the highest likelihood. 

FIGURE 11.6  Collaborative multilateration in AHLoS.
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There are several similarity searching methods in the matching process; two approaches are introduced
next. 

11.3.3.1 Nearest Neighbor Algorithms

The simplest approach is the nearest neighbor in signal space (NNSS) approach [3, 11]. In the first phase,
only the average signal strength of each base station at each training location is recorded. Then, in the
second phase, the NNSS algorithm computes the Euclidean distance in signal space between the received
signal and each record in the database. Euclidean distance means the square root of the summation of
square of the difference between each received signal strength and the corresponding average signal
strength from the access point under consideration. The training location with the minimum Euclidean
distance is then chosen as the estimated location of the device. Because this algorithm only picks existing
locations in the database, to improve its accuracy, it is suggested that the training set be dense enough. 

One variant of the basic NNSS algorithm is NNSS-AVG. To take the uncertainty of a device’s location
into consideration, this method tries to pick a small number of training locations that closely match the
received signal strengths (such as those with smaller Euclidean distances). Then, it infers the location of
the device to be a function of the coordinates of the selected training locations. For example, one may
take the average of the x and y coordinates of the selected training locations as the estimated result. 

11.3.3.2 Probability-Based Algorithms

The probability-based positioning approach regards signal strength as a probability distribution [15]. In
NNSS, because the received signal strengths are averaged out, the probability distribution would disap-
pear. So the probability-based approach will try to maintain more complete information of signal strength
distribution. The prediction result is typically more accurate. 

The core of the probability-based model is the Bayes rule: 

where p(lo) is the probability that the device is at location l given an observed signal strength pattern
o. The prior probability that a device is resident at l is p(l), which may be inferred from history or
experience. For example, people may have a higher probability to appear in a hallway or lobby. If this is
not available, p(l) may be assumed to be a uniform distribution. L is the set of all training locations. The
denominator p(o) does not depend on the location variable l, so it can be treated as a normalized constant
whenever only relative probabilities are required. 

FIGURE 11.7  Pattern matching approach.

<ss1, ss2, ..., ssn>

(x,y)

Phase 1
off-line phase

Phase 2
real-time phase

(x
m

, y
m
, <ss

1
, ss

2
, ..., ss

n
>

m
)

Database
Positioning

Model

(x
2
, y

2
, <ss

1
, ss

2
, ..., ss

n
>

2
)

(x
1
, y

1
, <ss

1
, ss

2
, ..., ss

n
>

1
)

p l o
p o l p l

p o

p o l p l

p o l p l

l L

( | )
( | ) ( )

( )

( | ) ( )

( | ') ( ')
,

'

= =

∈

∑

aylor & Francis Group, LLC



11-8 Smart Dust

7037_Book.fm  Page 8  Thursday, September 8, 2005  2:44 PM

© 2006 by T
The term p(ol) is called the likelihood function; this represents the core of the positioning model
and can be computed in the off-line phase. There are two ways to implement the likelihood function [15]: 

• Kernel method. For each observation oi in the training data, it is assumed that the signal strength
exhibits a Gaussian distribution with mean oi and standard deviation σ, where σ is an adjustable
parameter in the model. Specifically, given oi, the probability to observe o is 

Based on the kernel function, the probability p(ol) can be defined as 

where n1 is the number of training vectors in L obtained at location l. Intuitively, the probability
function is a mixture of n1 equally weighted density functions. Also note that the preceding
formulas are derived assuming that only one base station exists. With multiple base stations, the
probability function will be multivariated, and the probability will become the multiplication of
multiple independent probabilities, each for one base station. 

• Histogram method. Another method to estimate the density functions is to use histogram, which
is related to discretization of continuous values to discrete ones. A number of bins can be defined
as a set of nonoverlapping intervals that cover the whole random variables. The advantage of this
method is in its ease in implementation and low computational cost. Another reason is that its
discrete property can smooth out the instability of signal strengths. 

The probability-based methods can adapt to different environments. To further reduce the computa-
tional overhead, Youssef and colleagues [19] proposed a method by clustering training data in the
database. 

11.3.4 Location Tracking

Location tracking means that a device’s location can be derived based on some history traces. Because
the trace of a device may indicate where it may move in the next step, this information can be used to
improve the accuracy of positioning results. For example, one possibility is to consider the relative
distances between consecutive moves of a device in a short period of time. These distances are typically
not long. Using this information can reduce errors in tracking results. 

In Bahl et al. [3], a Viterbi-like tracking algorithm is proposed for location tracking. The Viterbe
algorithm is typically used in communications theory for recognizing the most likely message that is
transmitted over a noisy channel. In location tracking, because various environmental factors may
interfere with signals, the Viterbi algorithm is also suitable for selecting the most likely location of a
device. The idea behind the Viterbi-like tracking algorithm is to take the continuity of a user’s track in
the past into consideration so as to come up with a better guess of the user’s current location. 

Figure 11.8 shows the details of the Viterbi-like tracking algorithm. Each time the mobile device receives
signals from the access points, it computes a set of k most likely locations. This may be obtained from
the NNSS-AVG algorithm described earlier. After receiving continuous h samples, the Viterbi-like algo-
rithm can generate an h ∗ k map, which is an h-stage graph in which each stage contains k possible
locations of the device at that stage. The possible locations are modeled by vertices. Edges are established
between continuous stages and a weight is assigned to each edge equal to the Euclidean distance of the
two incident vertices. 

    

K o o exp
o o

i
i( ; )

1

2

( )

2
.

2

2
=

−




π σ σ

p o l
n

L l l

K o o

l
i i

i
( | )

1

,

( ; ),
1

=

∈ =
∑

aylor & Francis Group, LLC



Positioning and Location Tracking in Wireless Sensor Networks 11-9

7037_Book.fm  Page 9  Thursday, September 8, 2005  2:44 PM

© 2006 by T
Under the assumption that a user may not move too far away from his current location in a short
period of time, the Viterbi-like tracking algorithm computes a shortest path in the k ∗ h map. This
shortest path can be viewed as the most likely trajectory of the mobile user. Then the user’s current
location can be guessed to be the head of this shortest path. Note that, for this reason, the Viterbi-like
algorithm may have h – 1 periods of delay. 

The variances of environments may also complicate the problem. The radio channel condition in
working hours may significantly differ from that during off hours. The positioning model may need to
adapt to such factors. Recalibration is sometimes inevitable, but laborious. An environmental profile may
need to be established to conquer this problem. 

11.3.5 Network-Based Tracking

Special concerns— power saving, bandwidth conservation, and fault tolerance — arise when a solution
is designed for a wireless sensor network. At the network level, location tracking may be done via the
cooperation of sensors. Tseng and colleagues [17] addressed these issues using an agent-based paradigm.
Once a new object is detected by the network, a mobile agent will be initiated to track the roaming path
of the object. The agent is mobile because it will choose the sensor closest to the object to stay. The agent
may invite some nearby slave sensors to cooperatively position the object and inhibit other irrelevant
(i.e., farther) sensors from tracking the object. More precisely, only three agents will be used for the
tracking purpose at any time and they will move as the object moves. The trilateration method is used
for positioning. As a result, the communication and sensing overheads are greatly reduced. Because data
transmission may consume a lot of energy, this agent-based approach tries to merge the positioning
results locally before sending them to the data center. These authors also address how to conduct data
fusion. 

Figure 11.9 shows an example. The sensor network is deployed in a regular manner and it is assumed
that each sensor’s sensing distance equals the distance between two neighboring sensors. Initially, each
sensor is in the idle state, searching for new objects. Once detecting a target, a sensor will transit to the
election state, trying to serve as the master agent. The nearest sensor will win. The master agent will then
dispatch two neighboring sensors as the slave agents; master and slave agents will cooperate to position
the object. In the figure, the object is first tracked by sensors {S0, S1, S2} when resident in A0, then by {S0,
S1, S6} when in A1, by {S0, S5, S6} when in A2, etc. 

The master agent is responsible for collecting all sensing data and performing the trilateration algo-
rithm. It also conducts data fusion by keeping the tracking results while it moves around. At a proper
time, the master agent will forward the tracking result to the data center. Two strategies are proposed
for this purpose: threshold-based (TB) strategy, which will forward the result when the amount of data

FIGURE 11.8  Viterbi-like location tracking algorithm.
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reaches a predefined threshold value T, and distance-based (DB) strategy, which will make a decision
based on the routing distance from the agent’s current location to the data center and the direction in
which the agent is moving. 

11.4 Experimental Location Systems

In this section, several location systems are introduced. Although they may not be specially designed for
wireless sensor networks, these design concepts and experiences will benefit future implementations of
positioning systems in wireless sensor networks. 

11.4.1 Active Badge and Bat

The Active Badge system [18] is a cell-based location system in which objects are each attached with a
badge that periodically emits infrared signals with a unique ID. Infrared receivers mounted at known
positions collect these signals and relay them over a wired network. As a result, the system knows in
which infrared cell a badge currently stays. The disadvantage of this badge system is that it is hard to
deploy in a large-scale environment and that infrared is sensitive to external light, such as sunlight. 

A successor of the Active Badge system is the Bat system [2], which consists of a collection of wireless
transmitters, a matrix of receiver elements, and a central RF base station. The wireless transmitters, called
bats, can be carried by a tagged object and/or attached to equipment. The sensor system measures the
time of flight of the ultrasonic pulses emitted from a bat to receivers installed in known and fixed positions.
It uses the time difference to estimate the position of each bat by trilateration. 

The RF base station coordinates the activity of bats by periodically broadcasting messages to them.
Upon hearing a message, a bat sends out an ultrasonic pulse. A receiver that receives the initial RF signal
from the base station determines the time interval between receipt of the RF signal and receipt of the
corresponding ultrasonic signal. It then estimates its distance from the bat. These distances are sent to
the computer, which performs data analysis. By collecting enough distance readings, it can determine
the location of the bat within 3 cm of error in a three-dimensional space at 95% accuracy. This accuracy
is quite enough for most location-aware services; however, the deployment cost is high. 

FIGURE 11.9  Roaming path of an object (dashed line) and the migration path of the corresponding master agent
(arrow). Sensors that ever host a slave agent are marked by black. (From Y.-C. Tseng et al., Int. Workshop Inf. Process.
Sensor Networks (IPSN), 2634, 625–641, 2003. Also to be published in The Computer Journal. With permission.)
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11.4.2 Cricket

Cricket is a system that can provide location-dependent applications [12]. Rather than explicitly tracking
users’ locations, Cricket helps devices learn their locations and lets them decide whether to advertise
them, for preservation of privacy. Cricket does not rely on any centralized management or control and
no explicit coordination occurs between beacons. To obtain information about a space, every object is
attached to a listener, a small device that listens to messages from beacons mounted on ceilings and walls. 

Similar to the Bat system, Cricket uses a combination of an RF signal and ultrasound to evaluate the
distances between beacons and listeners (i.e., TDoA). A beacon sends the space information over an RF
and an ultrasonic pulse at the same time. When the listener hears the RF signal, it uses the first few bits
as training information and then turns on its ultrasonic receiver. It then listens for the ultrasonic pulse,
which will usually arrive in a short time. The listener uses the time difference between the receipt of the
first bit of RF information and the ultrasonic signal to determine its distance from the beacon. 

11.4.3 RADAR and Nibble

The RADAR location system [11] tries to take advantage of the already existing RF data network formed
by IEEE 802.11 access points. IEEE 802.11 networks are now becoming more prevalent in many office
and public areas, so no extra hardware cost is incurred. In addition, users can enjoy data communications.
RADAR uses the nearest neighbor technology of pattern matching discussed in Section 11.3 to infer
objects’ locations. 

The Nibble [4] also adopts the IEEE 802.11 infrastructure for positioning purposes. Nibble uses the
probability-based approach in Subsection 11.3.3.2. It relies on a fusion service to infer the location of an
object from measured signal strengths. Data are characterized probabilistically and input into the fusion
service. The output of the fusion service is a probability distribution over a random variable that
represents some context. 

11.4.4 CSIE/NCTU Indoor Tour Guide

The authors have also developed a prototype indoor tour guide system at the Department of Computer
Science and Information Engineering, National Chiao Tung University (CSIE/NCTU), Taiwan. The
hardware platforms of this project include several Compaq iPAQ PDAs and laptops. Each mobile station
is equipped with a Lucent Orinoco Gold wireless card. Signal strengths are used for indoor positioning.
The probability-based pattern-matching algorithm in Subsection 11.3.3.2 is used. Figure 11.10 shows the
system architecture. The concept of logical areas is used to identify offices, rooms, lobbies, etc. The
manager is the control center responsible for monitoring each user’s movements, configuring the system,
and planning logical areas and events. The location server takes care of the location discovery job and
the service server is in charge of message delivery. The database can record users’ profiles; the gateway
can conduct location-based access control to the Internet. 

One of the innovations in this project is that an event-driven messaging system has been designed. A
short message can be delivered to a user when he enters or leaves a logical area. The event-driven message
can also be triggered by a combination of time, location, and property of location (such as who is in the
location and when the location is reserved for meetings). A user can set up a message and a corresponding
event to trigger the delivery of the message. The manager will check the event list periodically and initiate
messages, when necessary, with the service server. Messages can be unicast or broadcast. The expectation
is that streaming multimedia can be delivered in the next stage. The system can also be applied to support
a smart library. Another innovation is to provide location-based access control. In certain rooms, such
as classrooms and meeting rooms, users may be prohibited from accessing certain sensitive Web pages.
These rules can be organized through the manager and set up at the gateway. 
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11.5 Conclusions

In this chapter, some fundamental techniques in positioning and location tracking have been discussed
and several experimental systems reviewed. Location information may enable new types of services.
Accuracy and deployment costs are two factors that may contradict each other, but both are important
factors for the success of location-based services.
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12.1 Sensor Networks: Organization and Processing

In the scientific study of the natural phenomena that surround us, one of the first tasks to carry out
consists of detailed analysis of the physical variables of the phenomenon to obtain the maximum infor-
mation about it. To perform this analysis, capable sensors are used to measure the physical variables and
to transform that measure into useful information for the study. A sensor is a device made to respond
to a physical variable in a predictable form. Sensors can be mechanical, electric, electromechanical,
electronic, magnetic, electromagnetic, or optic, to name some. The so-called sensor transfer function
assures a well-known relationship between the physical variable and the sensor output.

Sensors can be of very varied form, even those that measure the same variable. However, any sensor
can be studied under two aspects: physical and functional. The physical aspect refers to how the sensor
is made or to what its form is. The term physical sensor refers to devices that sense the physical variable
of interest, for example, a barometer, radar, a thermometer, etc. The functional aspect refers to what the
sensor is supposed to do or which is its abstraction. The term abstract or logical sensor is used to refer
to an abstraction of the reading taken by a particular sensor. Different possible abstractions exist. The
reading of a sensor can be denoted as a simple number or as an interval in the real numbers set. In most
cases, sensors are always associated with a transducer element that converts the sensor variations into
useful electric signal.

Because the existence of a phenomenon implies a variation in some or all of the parameters associated
with it, the electric signal obtained will present a certain variation with time, directly related with the variation
of the measured magnitude. Therefore, in the study of the phenomenon  a change takes place from an (n +
1)-dimensional space of physical magnitudes (n magnitudes and time) to n two-dimensional spaces of electric
magnitudes (amplitudes and times), each corresponding to one of the measured physical magnitudes.

The advantage gained with this transformation is that, with electrical signals, an entire series of tools
and technologies allow us their analysis and treatment, something that is not always possible directly on
the physical magnitudes of the phenomenon. To treat the information obtained by the sensors, a
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processing system is needed. This system must operate appropriately with the data of each sensor,
interpreting them and obtaining the desired result. This system will be more or less complex, depending
on the number of sensors used and whether they are the same or different types, which in turn depends
on the phenomenon studied.

12.1.1 Evolution of Sensor Systems

The evolution of the sensor systems can be described in five stages, each represented by one different type of
sensor, although a new stage does not imply the disappearance of the sensors used in the previous one [1]. 

• Single-sensor systems. An example of a single sensor system is a radar system. This equipment
sends a radio signal of a determined frequency and in a given direction, and receives the signal
reflected back on the objects that are on the beam way. From the time difference between the
emitted and received pulses, the system calculates the object distance. Another example of a single-
sensor system is the sonar used to locate objects underwater. Because of the technology that was
available, single-sensor systems were used before the microelectronic era. With only one sensor,
system setup and data analysis were inexpensive and easy to perform. However, its simplicity was
also a disadvantage because of the limited range of applications. For example, an autonomous
mobile robot needs several sensors (tactile, cameras, CCD, etc.) and therefore cannot be built as
a single-sensor system. Another drawback of this type of system is its robustness and the impos-
sibility of using it in mission-critical applications. The third disadvantage comes from the fact
that a single-sensor system cannot guarantee that the reading is always correct.

• Replied sensors. A solution to this third drawback is the use of several sensors, each one giving a
reading on the phenomenon of interest. This strategy allows for validation of the reading using
different techniques such as majority voting, average, or weighted average.

• Different sensors. When it comes to study of a complex phenomenon, it may be necessary to gather
different types of information from it. For this purpose, we may use different kinds of sensors
that will get different aspects of the phenomenon. For example, an autonomous mobile robot is
equipped with different sensors needed to obtain a complete apprehension of the environment.
The main advantages of the integration of different sensors are [2]: 
• Reliability increase
• Improved fault tolerance
• Improved detection and noise reduction
This last advantage is explained if we realize that, observing the same signal of interest, the noise
picked up by different sensors tends to be uncorrelated.

• Spatially distributed sensors. Some applications require that observations of an object are taken
simultaneously from two or more points in space. Several degrees exist in the spreading of sensors:
from a limited surface area to a region or even an entire country. The type of sensor used can be
any of those previously seen, even a combination of them. The peculiarity of these systems is that,
now, the information varies spatially and temporarily, so the processing system will be more complex. 

• Intelligent sensors. If a high number of sensors, replied or different, are used, the volume of
information to process may grow to a point at which the problem has a difficult solution. A
possibility in this case is to use intelligent sensors in the measure of the physical variables. An
intelligent sensor includes certain logical circuitry to abstract information with a bigger semantic
content than the one obtained with the electrical signal of the physical variable. For example, a
system to detect the passing of people in an enclosure can only offer an electric pulse when a
person gets in, or have the necessary logic to offer a representative numeric value of the number
of people that have passed through. In this case, the sensor becomes intelligent, offering more
elaborate information than the purely electric one. The abstraction of the information may come
with a reduction of the information that affects the design of the processing system, reducing the
computational load and the necessary bandwidth.
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12.1.2 Sensor Processing Systems

Sensor processing is a crucial issue for sensor systems. For its own nature, it requires knowledge of fields
like physics, electronics, and computer science. No matter how they are implemented, each sensor
processing system consists of four activities: acquisition, processing, integration, and analysis. For par-
ticular systems, some of the activities may be lightly or not implemented. Single-sensor systems do not
need an integration phase, whereas for a replied sensor system, processing could be minimum, but
integration is crucial. In different sensor systems, processing is important to make all readings compatible
for the integration phase.

However, most of the sensor processing systems will include the four activities. The physical
variable will be sensed in the acquisition activity and the data obtained will be appropriately processed
(for example, scaled or formatted) before passing to the integration activity. The output of this
activity goes to the analysis phase, where a decision is made. The mechanism of obtaining the decision
can be deterministic, stochastic, or empiric. Several options exist to organize the sensor processing
system, depending on the characteristics of the problem. The main types of sensor processing systems
are [1]:

• Sensor collection — referred to a group of sensors set up in series, parallel, or mixed mode in
which integration takes place progressively through the different sensors.

• Hierarchical systems — applied in cases in which the data volume is high so data sent to a central
processor may require high bandwidth. A hierarchical distribution may help to reduce bandwidth
and increase semantic contents of data as they go down the hierarchy. An important aspect of this
organization is that its size does not grow linearly with the problem.

• Tree systems —organized like trees, with sensors in the different levels of the tree. The leaf nodes
basically are sensors while the intermediate and root nodes carry out the local processing of data
coming from the leaf nodes and on the data read by the sensors connected to them. In this way,
at the top, the root node makes the decision with the data processed. The difference between this
and hierarchical systems is that, in the latter, the entirety of the sensors is processed in the first
level, while in the tree system sensors are progressively integrated.

• Multisensor integration — sensors are of different types and the integration is made at multiple
levels, thus implying that the information from the different sensors must be processed to assure
its compatibility.

• Distributed sensor processing — the four sensor processing activities take place in a distributed
form. This means that not only is acquisition of data by the sensors geographically distributed,
but also the processing, integration, and decision. This kind of system gives way to distributed
sensor networks (DSN) in which multiple sensors of different types are geographically distributed.
Examples of DSN are robotics, particle physics experiments, medical imaging, radar tracking, and
flight navigation, to name a few. These systems and others of the same characteristics constitute
the logical step in the evolution of sensor processing systems. The design and implementation of
these types of networks would not have been possible without advances in technology, mainly in
processors and communications. 

12.2 Architectures for Sensor Integration 

As mentioned earlier, in cases in which the volume of information to treat is large, the sensor processing
system is organized in a hierarchical way and, generally, in three levels. The question now is how to
compare the goodness of this solution to other types of architectures, for example a fully parallel one.
In any case, the real implementation of the sensor processing system falls within one of the well-known
Flynn classes for computer architecture [3]. This taxonomy divides the systems according to their number
of instruction and data flow paths, dividing them between multiple and single paths. Figure 12.1 shows
the Flynn taxonomy for computer architectures.
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• SISD (Figure 12.1a). This represents most of the available computers at present. The instructions
are executed sequentially but they can be overlapped in the stages of execution (pipeline segmen-
tation). An SISD computer can have more than a functional unit, but all are under the control of
only a control unit.

• SIMD (Figure 12.1b). In this class one finds the matrix processors in which several units process
different data, executing the same instructions, provided by one control unit. These systems are
further classified in local or global memory SIMD according to their memory organization,
particularly depending on whether the memory access is local to the processor or remote through
an interconnection network.

• MISD (Figure 12.1c). This type of organization is characterized by the existence of several pro-
cessors, each one executing a different instruction but on the same data flow. In this case, the
output of a processor is the input of the following one.

• MIMD (Figure 12.1d). This category includes most of the multiprocessor and multicomputer
systems. An MIMD computer implies interactions between several processors because all the data
flows are derived from the same data space shared by all. If the data flows come from disjoint
subspaces inside the shared memory, then one would have a multiple SISD system, or MSISD,
that is really a group of independent SISD systems.

FIGURE 12.1  Flynn taxonomy for computer architectures.
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12.2.1 Problems with High Data Rate 

Due to improvements in technology, it is possible currently to treat large quantities of data with a
reasonable cost. High-resolution image processing is now possible, even in real time, thanks to increased
bandwidth and processing power of the CPUs employed; video is in the same situation. In the field of
high-energy physics, trace detectors are used to observe the trajectories of the particles; the lower the
processing power is, the larger is the resolution in the determination of the traces, which implies an error
in identifying the particle. Because of the increased computing power of processors, it is now possible
to think about the construction of systems with better resolutions. 

High-resolution image processing and trace detectors are representative examples of areas of investi-
gation in which the volume of information provided by the sensors is high; however, they are not the
only ones because one can also find these problems in areas like the robotics, aerospace control, or
meteorological prediction. Traditionally, in cases in which the volume of information from the sensors
is high, hierarchical architectures have been used for the processing. These architectures are implemented
in three or more levels, each with an MIMD structure, so the global system can be viewed as an
interconnected cluster of MIMD systems.

However, the option of a hierarchical architecture may not be always the best. Indeed, one can consider
other solutions different from the hierarchical system, like a full parallel MIMD system. The best choice
for the architecture may not be an easy one to make because it depends on factors such as the problem
itself, available technology, reliability, complexity and performance of the solution, and, inevitably,
budget. The analysis that follows will be centered in system performance, defining a merit factor that
would allow comparison of the systems. 

12.2.1.1 Merit Factor of a System 

Generally, systems to compare can be implemented in completely different ways, so one needs a parameter
independent of the particular implementation; on the other hand, it should somehow indicate which of
the two systems will be more complex, difficult, and expensive to implement. Therefore, the merit factor
(MF) is defined as the product of the bandwidth, BW, times the processing power, PC, needed to be able
to solve a certain problem. That is to say, 

(12.1)

To be able to obtain the necessary expressions for the parallel and hierarchical systems, it is necessary
to know the MF value of the association of a certain number of processors, each with its specific MF in
serial or in parallel. 

12.2.1.1.1 Merit Factor in a Parallel System
In this case, assume a number N of parallel connected processors, each with a certain MFi value. To
obtain the equivalent MF, evaluate separately the total bandwidth and computing power of the parallel
system. Evidently, the bandwidth of the system is the sum of the individual bandwidths, BWi, of each
one of the processors. That is to say: 

(12.2)

The computing power is also the sum of the capacities, PCi, of each one of the processors: 
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Therefore, the merit factor of a parallel system in function of the MF of each processor is: 

(12.4)

12.2.1.1.2 Merit Factor in a Series System
Suppose now a case in which the processors are connected sequentially, i.e., the data output of one
processor is the data input of the next one. In this case, for N processors, each one with its bandwidth,
BWi, and computing power, PCi, the equivalent system with just a single processor will have the bandwidth
of the first one of the series: 

BWs = BW1 (12.5)

On the other hand, the equivalent computing power will be determined by the total processing time,
tN, and the number of operations to carry out in this time. Therefore, 

(12.6)

where D is the number of data and opi is the number of operations carried out by processor i. From the
two expressions, the required quality to the equivalent system is: 

(12.7)

12.2.1.2 Parameterization of Parallel and Hierarchical Architectures 

A certain processing problem can be parameterized, indicating the required total bandwidth, BW, to read
the data and the processing power necessary, PC, for their computation. Solving the problem by means
of a parallel architecture as that of Figure 12.2 yields the following expressions: 

(12.8)

where N is the number of processors of the system. 
However, it is common to have processing units (processors) with some particular processing power,

PCi = PCpu, and bandwidth, ABi = ABpu. Therefore, the parameter to determine will be the number of
units with those characteristics necessary to implement the system. This number, N, is: 

(12.9)
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The fusion element (fuser) picks up the decisions of the N processing elements and elaborates a final
one. The ways of getting this decision are very varied. For this analysis, suppose that the system offers a
yes/no binary decision elaborated performing the logical and of all the decisions.

The required bandwidth in the fuser depends on the size of the partial decisions of the N processing
elements and on the time, T, to make the final decision. The processing power depends roughly on the
number of and operations necessary to carry out the decision and of the time T necessary to carry them
out. Using two input and operations, the number of necessary operations to obtain the result with N
inputs is N – 1. 

In this case, suppose that the system works in a pipeline way: first the system gets the N partial decisions
in T seconds; after this phase, the fuser final decision is obtained in the same T time, on time to receive
the next N partial ones. In this way, final and partial decisions are overlapped in time.

If Sdec is the size in bytes of the partial decision; Sdat the number of bytes for each datum coming from
the sensors; ξ the relationship between the size of the partial decision and the size of the data from each
sensor; D the number of data; and op the number of operations per datum; the bandwidth and processing
power of the fuser can be expressed as: 

(12.10)

If the resolution of the problem is outlined by means of the employment of a hierarchical architecture
such as the one shown in Figure 12.3, it will be necessary to introduce a new parameter to be able to
obtain the expressions for BWi and PCi that will be a function of the level in the architecture. This
parameter is the reduction factor in the data volume due to the extraction of the information from the
received raw data from the sensors, in the case of a measurement system, or the proportion of data
discarded by not completing certain requirements if it is a detection system. 

It is necessary to notice that at each level, the bandwidth, BWi, is reduced in a factor similar to the
reduction due to the extraction of information or to the elimination of data not interesting (a factor p).
In this case, suppose that, from a level to the next level, all data (because a “yes” decision was taken) or
no data (“no” decision) pass. This decision has a probability p, so the time for the information arrival

FIGURE 12.2  Parallel processing system. (From Gonzalez, V. et al., IEEE Trans. Nucl. Sci., 49, 2002. With permission.)
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between levels is increased by the inverse of that probability. Because all the data are sent, the effect is
more time to send the same quantity of data, which implies a reduction of the bandwidth.

Assume that the processing power at each level i can be expressed as a proportion, αi, of the total
processing capacity PC. Each one of the levels in the hierarchical system is thought of as a parallel system
with a fuser; the result of the decision makes the entirety of the data pass or not toward the next level. 

12.2.1.3 Evaluation of Merit Factor for Parallel and Hierarchical Systems

With the considerations of the previous epigraph, one can now evaluate the MF for the parallel and
hierarchical systems. 

12.2.1.3.1 Parallel System
The MF for the parallel system has two terms. The first one, MFproc, depends on the used processors while
the second, MFfus, is due to the fuser. According to Figure 12.2, the equivalent of the parallel system is
an association of N parallel processors in series with a fuser. 

Suppose that all the processors have the same characteristics; applying Equation 12.1 yields: 

(12.11)

where N is the number of units and MFpu it is the MF of each processing unit. 
The second term, related to the fuser, is: 

(12.12)

FIGURE 12.3  Hierarchical processing system. (From Gonzalez, V. et al., IEEE Trans. Nucl. Sci., 49, 2002. With
permission.)
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The MF of the parallel system will be the series of both calculated, that is to say: 

(12.13)

where a and b are the relationships between the processing capacity, PCpu, and the bandwidth, BWpu,
respectively, of each processor and the total of the problem. 

12.2.1.3.2 Hierarchical System
The hierarchical system is not more than a series of E sequential connected parallel systems. In each level,
the system is implemented with N processors and a fuser. Therefore, the MF, MFHier, will be: 

(12.14)

where MFParali
 is the MF of each level that is expressed as: 

(12.15)

assuming, as it was stated in the parallel association, that tj = ti ∀i,j (that is, it takes the fuser the same
time to get a decision as it takes the processors on the level to get theirs).

The MF for the processors on the level is the parallel association of N of them, that is: 

(12.16)

where ai and bi are defined the same way as in the parallel system, and N is defined as:

(12.17)
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Looking at Figure 12.3

(12.18)

one can calculate the MF of the fuser. For this, first calculate the bandwidth of the fuser for level I, which
turns out to be: 

(12.19)

On the other hand, the processing power necessary in the fuser of level i can be expressed as: 

(12.20)

Therefore, the MF of the fuser of level i will be: 

(12.21)

Substituting in Equation 12.15 yields: 

(12.22)
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(12.23)

Evidently, Equation 12.23 becomes identical to Equation 12.13, corresponding to the parallel system,
when the number of levels E is one. 

The following step is to carry out the comparison between the expressions for the parallel and the
hierarchical systems and to try to obtain an analytic expression that allows the decision of the better
solution for a given problem. However, if the MF of the parallel case is taken as a reference, one would
have one equation and 4E variables, which would determine infinite solutions. 

A different approach to compare both systems would be the following: 

1. The parallel solution is determined and its MF is calculated.
2. A hierarchical system is designed and its MF is calculated.
3. Both results are compared. If one is interested in a hierarchical solution and its MF is bigger than

the one for the parallel solution, the hierarchical parameters (a, b, and P) can be adjusted and the
process repeated until the MF is smaller. 

However, it is possible to obtain an analytic expression if what is known is the value of the MF of the
parallel system and the values of the parameters of E – 1 levels of the hierarchical system of E levels. In
this case, imposing the condition that, for example, the MF in the hierarchical system is smaller than the
one in the parallel system, the following expression is obtained to calculate the values of the parameters
of the last level: 

(12.24)
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12.2.2 Introduction of Preprocessing Elements

Up to now, the hierarchical and parallel systems for sensor processing have been studied. This subsection
examines an improvement on the hierarchical system based on the introduction of preprocessing elements
in the levels that will improve the system performance due to the reduction of their processing load. 

12.2.2.1 Regions of Interest

When the number of sensor channels to process is very high, the required processing power and band-
width in the levels of the system can be too high. In the field of image processing, hierarchical processing
systems are used in which successive levels carry out the processing with higher resolutions [4]. Also in
this field, particularly in analysis of video images, because of the great correlation that exists between
frames, a technique is used based on the location of areas (region of interest, RoI) of the image that have
changed from one frame to the next. Processing then takes place only on those regions with the consequent
reduction in the processing time. 

The idea is to apply the concept of RoI to a hierarchical processing sensor system with a great volume
of information to release the computational load in the levels where this is possible. The RoI, Ω, can be
defined as a group of sensor channels of the system. The RoI can represent a one-dimensional, two-
dimensional, or three-dimensional space of measure of the physical environment. In the most general
case of a three-dimensional space, the RoI is expressed as: 

(12.25)

where n, m, and p are the number of channels in each one of the dimensions x, y, and z. 
The size of the region of interest will be: 

(12.26)

In each data acquisition, a certain number of RoIs will be identified; call the average number of
RoIs of each data acquisition. In this case, the levels in the architecture will only process the channels of
these regions and make the decision with only their information. In general, the average number of
channels to process will be smaller than the total. The fraction of channels to process related to the total is: 

(12.27)

where Nch is the total number of channels of the sensor system (normally the number of sensors). 
When introducing RoIs, it is necessary to add the necessary modules for their calculation to the

architecture of processing. These modules are called RoI builders, or RB, and will be placed between
levels of the hierarchy. To analyze how they would affect the MF, the RB must be modeled with a
bandwidth and processing power (Figure 12.4). The bandwidth of each RB module located between two
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levels is similar to that of the corresponding level, and its processing power can be expressed as a fraction
γi of the total one of the problem. 

Suppose that the RB in each level i is formed by a parallel system with units of bandwidth BWpuRB

and processing capacity PCpuRB
, then the number of necessary units NRBi will be: 

(12.28)

The RB MF will be expressed as: 

(12.29)

where, exactly as before, aRBi and bRBi , are the relationships between the processing power and the
bandwidth of each RB unit and total of the problem. It is necessary to point out that there is no RB from
level E to the E + 1, which explains the limits of index i in Equation 12.29. 

The bandwidth of each level in the hierarchy is also modified because now it must also accept data
relative to the RoI. However, this study rejects this contribution, supposing that the problem data rate
is very high compared to the one due to this fact. Figure 12.5 shows the modified outline of the architecture
with RoIs. Note that it is not always necessary to introduce RB between all levels of the hierarchy because
it depends on the particular application. 

Decreasing the number of channels to process will also decrease the processing power in the level of
the hierarchy at which RoIs are used, although this does not apply to the bandwidth because each level
should be capable of reading all the channels — not only those selected by the RB. The reduction factor
is similar to the fraction δ, so the MF of that level is reduced by a factor δ < 1, that is, 

(12.30)

The change in the processing power may vary the number of units needed in each level, depending
on which parameter (bandwidth or processing power) determined it. In general, when introducing RoI,
the number of processing units, N′i, is: 

(12.31)

FIGURE 12.4  RoI builder placement in the hierarchical architecture. (From Gonzalez, V. et al., IEEE Trans. Nucl.
Sci., 49, 2002. With permission.)
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for i > 1, with δ0 = 1 (because there is no RB from level 0 to level 1). In this calculation we supposed
that the processing units used have the same characteristics as those used in the system without RoI. 

The fuser MF is also modified by the use of RoI because it varies the number of processing units in
the levels, although not the available time for the information processing and transmission.

Taking everything into account, the MF of each level of the hierarchy is modified and results in: 

(12.32)

where Kti is the relationship between the processing time in the RB and the one of the level, and

KtE
 = 0 because there is no RB between level E and E + 1. As in the case without RoIs, the processing

and the fusion operate in a pipelined way. 

FIGURE 12.5  Hierarchical systems with RoIs. (From Gonzalez, V. et al., IEEE Trans. Nucl. Sci., 49, 2002. With
permission.) 
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The MF of the hierarchical system with RoIs is obtained from Equation 12.32: 

(12.33)

The MF of the hierarchical systems with and without RoIs can now be compared to decide when the
system with RoIs has an MF smaller than the one of the system without RoIs. Comparing Equation 12.23
with Equation 12.33 for a certain level j, as a sufficient condition for the system with RoI to have an MF
lower than the one without RoI, yields: 

(12.34)

If Ktj
 → 0, i.e., the RB, uses very little time in identifying the channels of the RoI compared to the

processing time of the corresponding level, then the previous expression can be simplified, yielding: 

(12.35)

Reordering, 

(12.36)

This condition is always true because aj, K2, and Pj are positive defined and Nj > N′j when using RoIs as
the number of channels to process decreases. Therefore, in this case, the system with RoIs will have an
MF always smaller than the one without regions. 

In a case where , one can obtainKtj
: 

(12.37)

where the direction of the inequality (smaller than or bigger than) depends on the sign (positive or
negative) of the denominator. If the denominator is negative, the condition of bigger than is always true
because, as Nj > N′j, the expression on the right of the inequality will be negative and, by definition,
Ktj

 > 0, assuring that the system with RoIs will have a smaller MF than the system without RoIs. 
The denominator can now be evaluated to see when it is positive or negative: 

(12.38)

The expression on the left of the inequality is the relationship between the total processing capacity
of the RB and the total one of the problem. The right of the expression is the half-sum of the relative
processing power of the processors of the level and of the fuser referred to the total one.
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Therefore, if the relative processing power of the RB is smaller than half of that of the level (considering
the processors and the fuser), the denominator will be negative and it will be true, for the reason
mentioned before, that the system with regions of interest has an MF smaller than the one for the system
with RoIs. If, on the contrary, the relative processing power of the RB is bigger than half of that of the
level, it will depend on the value of Ktj

 whether the MF of the hierarchical system with RoIs is smaller
or bigger than the one without RoIs. 

If the number of processing units of the RB is limited by their processing power, Equation 12.38
transforms to offer the value of γ, the ratio of the RB processing capacity and the total one of the problem: 

(12.39)

If the number of units of the RB is limited by the bandwidth, the relationship between the relative
processing power and the relative bandwidth of each unit of the RB is obtained: 

(12.40)

Equation 12.38 through Equation 12.40 are equivalent and the values obtained allow the calculation
(Equation 12.37) of the new number of processing units at each level with the value of Ktj

 that, in turn,
can be evaluated once the processing power of the units of the RB is known. The new value for the
number of units of the level is related to the reduction factor due to the employment of RoIs through
Equation 12.31. 

Thus, it is demonstrated that, under certain conditions, it is possible to find a hierarchical system with
RoIs with lower technical requirements (lower MF) than the hierarchical system without them. 

12.2.2.2 Data Clustering

Another of the improvements that can be introduced in the system is to try to avoid the dispersion of
the data to process in each processing element at each level in the hierarchy. The use of an RoI suggests
that all its channels should be processed in a combined way because the elaboration of the decision will
be made on the basis of existing relationships among the values of the channels. If the levels of the
hierarchy are implemented like parallel systems, it can happen that the channels of the RoI may be
distributed among several processors, making intercommunication necessary, and thus increasing the
time necessary for processing and reducing the performance of the system. 

A solution to this problem is to try to gather the data so that one can maximize the probability that
all the channels of an RoI are sent to only one processing unit of the parallel system inside the level. The
way to do this is to study the problem to discover channels that will be part of an RoI with bigger
probability. This implies that the physical process has a certain bias and is present more probably in
certain subspaces of the measure space. 

If this is not the case, then two options exist: 

• To use the information of the RoIs to carry out a dynamic routing of the data. This solution is
good but it needs the implementation of a channel multiplexing system and the use of delays to
prepare the information of the RoI before routing the channels.

• To gather the channels in a static form, but following some relationship with the physical phe-
nomenon that is being observed. This solution implies, on occasion, the necessity to exchange
data among the processors, but the introduced delay will be smaller than in the case of dynamic
routing.
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The case in which all RoI data are supposed to be in the correct processing unit is the one studied
previously. In the second case, the sharing of data will introduce delays in the processing. If one wants
to keep the total processing time at the level of the hierarchy constant, the effect of the delay would be
to increase the processing capacity units or its number if the processing capacity stays constant. 

Taking the hierarchical system with regions of interest as a reference, the total processing power, PCi,
of the parallel system in the level i of the hierarchy can be expressed as: 

(12.41)

where D is the number of data to process; op is the number of operations to carry out per datum; ti is
the time to carry out the processing at level i; and δ is the reduction factor due to the employment of RoIs.

For each of the Ni units of this parallel system, the processing power is: 

(12.42)

If we now have the possibility of exchanging data, this will modify the number of operations to carry
out in function of the probability that this exchange will occur. However, if one wants to maintain the
number of units, the processing power of each one of them will be increased. The relationship between
the new processing power, PC′pui

, and the previous one is: 

(12.43)

where opa is the number of operations to carry out to get the data from other units of level i and pai is
the probability of having to make this access; to simplify the calculation, this probability is supposed
equal for all the units. 

As observed, the increment in the computing power is proportional to the ratio between the number
of total operations carried out when accessing other units and the number of operations when this access
is not required. If one wants to maintain the processing power, then it is necessary to increase its number.
To calculate this increment, we make: 

(12.44)

Solving to get N′i(PC), the new number of units according to the processing power, 

(12.45)

where .
In either of the two cases, the required bandwidth is increased because now it must cope not only

with the data of the channels but also with the data transfers between processors. To simplify the problem,
suppose that the data request between units is uniformly distributed and that the request probability for
data exchange is equal for all the units. If this is not the case, then the analysis would get more complicated
with the introduction of the probability distribution functions of the requests, as well as that of their
destination. 
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Assuming the simplest case, each unit carries out D⋅pa accesses distributed among the N – 1 remaining
units, and receives the same amount from all those N – 1 other units, where pa is the probability of
requesting external data. In this way, the required bandwidth will be: 

 

(12.46)

From here, one can get the new number of units depending on the bandwidth, Ni
(BW): 

(12.47)

with .
Therefore, the number of necessary units, N′′i , will be the biggest of the results of Equation 12.45 and

Equation 12.47. That is, 

(12.48)

As can be seen, when introducing a cluster of static data, we modify the number of units of the system
and therefore its MF.

The new expression of the MF of the hierarchical system with data clustering is obtained by simply
substituting in Equation 12.33 the number of units for the resulting value of Equation 12.48: 

(12.49)

If, in addition to data clustering, another type of data processing is used (formatting, detection and
correction of errors, etc.), this would be reflected as a sequential element with the processors and the
MF would increase. Depending on the particular case, the final result of the MF for the system with RoI
could be greater than for the system without RoI. 

12.3 Example of Architecture Evaluation in High-Energy Physics

High energy physics experiments try to confirm theories by detecting and measuring particle properties.
For this kind of experiment, accelerators and particle detectors are used. These last are organized as a
distributed sensor network with thousands, or even millions, of sensors of different types whose infor-
mation must be processed in a short time, which leads to high data rates. Traditionally, hierarchical data
acquisition systems have been employed for data taking because, of the total amount of data acquired,
only a few are of interest. The reason is that not all the particles produced by the accelerator are of interest.

CERN, the European Laboratory for Particle Physics, is the most important laboratory in the world
for the study of particle physics. It holds the biggest accelerator in construction nowadays — the LHC
(large hadron collider [5]) — in which two beams of protons will collide with an energy near 14 TeV
(tera electron-volts) to study the origin of mass by searching a new particle, the Higgs boson.
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For analysis of the collision results, two big detectors, ATLAS [6] and CMS [7], are being constructed.
ATLAS will be a huge toroid, 22 m long and 32 m high, with more than 170 million electronic channels
to read, coming from sensors inside the detector. All these channels sum a total of 1.3 Mbytes to be read
every 25 ns, which gives a rate of 50 TBytes/s. The total processing capacity needed to perform all the
operations is estimated at 5⋅1010 MIPS. 

A parallel solution for this problem would require, assuming 100 MIPS and 200 MB/s processors, 500
million processing units according to Equation 12.9. For the calculation of the MF, one needs the value of
K1 and K2, which can be estimated [6] as K1 = 3′33⋅10–9 and K2 = 6′67⋅10–18. The a and b values are a = 100/
5⋅1010 = 2⋅10–9 and b = 200/5⋅107 = 4⋅10–6. All these data compute a total MF of 2.5⋅1021 MIPS × Mbytes/s.

A three-level hierarchical solution can be implemented using 40 MIPS and 200 Mbytes/s hardware
processors for the first level and 100 MIPS, 200 Mbytes/s processors for the two other levels. The other
parameters for this solution are, from ATLAS Collaboration [6], a1 = 8⋅10–10; a2 = a3 = 2⋅10–9; and K1

and K2 equal to the values used in the parallel solution because they do not depend on the architecture
but on the characteristics of the problem. Table 12.1 summarizes the MF for each level. The total result
of the series of the three levels is 1.45⋅1014.

The introduction of RoIs improved the hierarchical system. For this case, only level 2 will include RoI
and RB. Simulations made [8] showed that the average number of RoIs per acquisition in level 2 would
be 5, each one with 135,000 channels [9]. This leads to a reduction factor of δ1 = 4.5·10–3. The RB is
estimated as a processing system of 500 units with a total processing capacity of 12⋅103 MIPS [10], which
make the γ1 parameter equal to 2.4·10–7. From Brawn et al. [10], the KT2 parameter can be estimated to
a value of KT2 = 0.0875. With these data, the new number of processing units at level two is 1440. The
MF for this second level, where RoIs have been applied, is then recalculated. Table 12.2 shows the
differences with and without RoIs.
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13.1 Introduction

 

As the cost of embedding computing becomes negligible compared to the actual cost of goods, a trend
toward incorporating computing and wireless communication capabilities in most of the consumer
products occurs. Therefore, the next generation of computing systems will be embedded, in a virtually
unbounded number, and dynamically connected. Although these systems will penetrate every possible
domain of daily life, the expectation is that they will operate outside normal cognizance, requiring far
less attention from human users than today’s desktop computers.

The first illustration of these systems that has received considerable interest in the last couple of years
is sensor networks [11–13]. These networks have severe resource limitations in terms of processing power,
amount of available memory, network bandwidth, and energy. However, during the next decade sensor
networks will become part of a larger class of networks of embedded systems (NES) that have sufficient
computing, communication, and energy resources to support distributed applications. For instance,
already some companies propose computer systems embedded into cars or video cameras that are able
to communicate with each other [1, 4].

For some of these networks, such as networks of intelligent cameras performing object tracking over
a large geographical area, it might be beneficial to perform local computations and to cooperate in order
to execute a global task. They may perform sophisticated filtering of data at a node that acquired an
image or even distributed object tracking, rather than running a centralized algorithm at a server. The
challenge is how to program NES, namely, to determine the appropriate computing model and the system
support necessary to execute distributed applications in these networks. 
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NES pose a unique set of challenges that make traditional distributed computing models difficult to
employ in programming them. The number of devices working together to achieve a common goal is
orders of magnitude greater than those seen so far. These systems are heterogeneous in their hardware
architectures because each embedded system is tailored to perform a specific task. Unlike the Internet,
NES are typically deployed in environments void of human attention, where it is unacceptable to expect
a human to hit a “reset” button to recover from a failure. NES are inherently fragile, with node and
connection failures the norm rather than the exception. The availability of nodes may vary greatly over
time; they can become unreachable due to mobility, depletion of energy resources, or catastrophic failures. 

The nodes in NES communicate through wireless network interfaces. Thus, they can communicate
directly only with nodes within their transmission range. Similarly to most ad hoc networks, the sepa-
ration between hosts and routers disappears (i.e., each node must perform routing). However, the scale
and heterogeneity encountered in NES as well as different application requirements preclude the existence
of a common routing support. Therefore, the flexibility to use multiple routing algorithms in the same
network is desirable. 

The applications running in NES target specific data or properties within the network, not individual
nodes. From an application point of view, nodes with the same properties are interchangeable. Fixed
naming schemes, such as IP addressing, are inappropriate in most situations. The need to target specific
data or properties within the network raises the issue of a different naming scheme with dynamic bindings
between names and node addresses. A naming scheme based on content or properties is more appropriate
for NES than a fixed naming scheme [10]. 

This chapter presents distributed computing model, cooperative computing, and a software architec-
ture for NES based on execution migration. Cooperative computing applications consist of migratory
execution units, called smart messages (SMs), working together to accomplish a distributed task. SMs
are user-defined distributed programs (composed of code, data, and execution control state) that migrate
through the network searching for nodes of interest (i.e., nodes on which the program needs to run)
and execute their own routing at each node in the path. Distributed computing based on execution
migration is more suitable for NES than data migration (message passing) due to the volatility and
dynamic binding of names to nodes specific to these networks. Cooperative computing provides flexible
support for a wide variety of applications, ranging from data collection and dissemination to content-
based routing and object tracking. 

Nodes in the network support SMs by providing: a name-based shared memory (tag space) for inter-
SM communication and access to the host system; and an architecturally independent environment
(virtual machine) for SM execution. SMs are self-routing, namely, they are responsible for determining
their own paths through the network. SMs name the nodes of interest by properties and self-route to
them using other nodes as “stepping stones.” Applications in cooperative computing are able to adapt to
adverse network conditions by changing their routing dynamically. 

To validate the cooperative computing model, the authors have designed and implemented a prototype
by modifying Sun Microsystem’s Java KVM (kilobyte virtual machine) [3]. Microbenchmark results are
reported for this prototype running over a test bed consisting of Linux-based HP iPAQs equipped with
802.11 cards for wireless communication. These results indicate that cooperative computing is a feasible
solution for programming real-world applications.

For larger scale evaluation, a simulator has been developed that executes SMs and allows one to account
for execution as well as communication time. In this simulator, two previously proposed applications
for data collection and data dissemination in sensor networks have been implemented: directed
diffusion [13] and SPIN [11]. The simulation results show that this model is able to provide high flexibility
for user-defined distributed applications while limiting the increase in response time to, at most, 15%
over traditional nonactive communication implementations. 

The next section describes cooperative computing; Section 13.3 presents the node architecture for the
model. In Section 13.4, details of smart messages are discussed, and Section 13.5 presents the API for
cooperative computing. Section 13.6 shows microbenchmark results for the prototype implementation.
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Section 13.7 describes the applications implemented using SMs and their simulation results are presented
in Section 13.8. Section 13.9 discusses related work and the chapter concludes with Section 13.10. 

 

13.2 The Cooperative Computing Model

 

Cooperative computing is a distributed computing model for large-scale, ad hoc NES. In this model,
distributed applications are defined as dynamic collections of migratory execution units, called SMs, that
cooperate in achieving a common goal. The execution of an SM is described in terms of computation
and migration phases. The execution performed at each step is determined by the particular properties
of that node. On nodes that present interest to the current computation, the SM may read and process
data; on intermediate nodes, the SM executes only its routing algorithm. During migrations, SMs carry
mobile data, the code missing at destination, and a lightweight execution state. 

Nodes in the network cooperate by providing an architecturally independent programming environ-
ment (virtual machine) for SM execution and a name-based shared memory (tag space) for inter-SM
communication and interaction with the host system. SMs, along with the system support provided by
nodes, form the cooperative computing infrastructure, which allows programming user-defined distrib-
uted applications in NES. 

In this model, a new distributed application can be developed without 

 

a priori

 

 knowledge about the
scale and topology of the network or the specific functionality of each node. Placing intelligence in SMs
provides this flexibility and also obviates the issue of implementing a new application or protocol in
NES, which is difficult or even impossible using conventional approaches [10]. 

SMs are resilient to network volatility. Over time, certain nodes may become unavailable due to
mobility or energy depletion, but SMs are able to adapt by controlling the routing. These messages can
carry multiple routing procedures and choose the most appropriate one based on the conditions encoun-
tered in the network. Using this feature, SMs can discover routes to nodes of interest even in adverse
network conditions. 

Moving the execution to the source of data improves the performance for applications that need to
process large amounts of data. For example, instead of transferring large size images through the network
for an object tracking application, an SM can perform the analysis of the images at the nodes that acquired
them. Thus, it reduces the network bandwidth and energy consumption, and in the same time, it improves
the user-perceived response time. The impact of transferring code on performance can be limited by
caching code at the nodes. 

Figure 13.1 shows a simple application that illustrates the novel aspects of computation and commun-
ication in cooperative computing. The application performs object tracking over a large area (e.g., a
campus, airport, or urban highway system) using a network of mobile robots with attached cameras [17].

 

FIGURE 13.1  
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In the figure, the target is represented by a person moving across a given geographical region. A user can
inject the tracking SM into any node of the network.

The SM migrates to a node that acquired an image of a possible target object, analyzes this image,
and then may decide to follow the object. The network maintains no routing infrastructure, and the SM
is responsible for determining its path to cameras that detected the object. The smart message can use
the direction of motion and geographical information to “chase” the object. Once the SM arrives at a
new node that has a picture of the object, it generates a task to analyze the object and its motion further.
The SM may migrate to neighbor nodes to obtain pictures of the object from a different angle or lighting
conditions. When the tracking completes, the SM generates a response SM that will transport the gathered
information back to the user node. 

 

13.3 Node Architecture

 

The goal of the SM software architecture is to keep the support required from nodes in the network to
the minimum, placing intelligence in SMs rather than in individual nodes. Figure 13.2 shows the common
system support provided by nodes for cooperative computing. The admission manager receives incoming
SMs, decides whether to accept them, and stores these messages into the SM-ready queue. The code
cache stores frequently used codes to reduce the amount of traffic in the network. The virtual machine
(VM) acts as a hardware abstraction layer for scheduling and executing tasks generated by incoming
SMs. The tag space is a name-based shared memory that stores data objects persistent across SM
executions and offers a unique interface to the host’s OS and I/O system. 

 

13.3.1 Admission Manager

 

To prevent excessive use of its resources (energy, memory, bandwidth), a node needs to perform admission
control. Each SM presents its resource requirements within a resource table. The admission manager is
responsible for receiving incoming messages and storing them in the SM ready queue, subject to admis-
sion restrictions. 

 

13.3.2 Code Cache

 

Commonly, the applications executing in NES have a localized behavior, exhibiting spatial and temporal
locality. Therefore, frequently used SM codes are cached in order to amortize over time the initial cost
of transferring the code through the network. 

 

13.3.3 Virtual Machine

 

The VM schedules, executes, and migrates SMs. To migrate an SM, the VM captures the execution state
and sends it along with the code and data to the next hop. The VM at the destination will resume the

 

FIGURE 13.2  
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SM from the instruction following the migration invocation. The VM also ensures that an SM conforms
to its declared resource estimates; otherwise, the SM can be removed from the system. 

 

13.3.4 Tag Space

 

Each node that supports SMs manages a name-based shared memory, called tag space, consisting of tags
that are persistent across SM executions. The tag space contains two types of tags: application tags, which
are created by SMs, and I/O tags that are provided by the system. The I/O tags define the basic hardware
of the node and provide SMs with a unique interface to the local OS and I/O system. SMs are allowed
to read and write both types of tags, but they can create or delete only application tags. 

Figure 13.3 illustrates the structure of application and I/O tags. The identifier is the name of the tag
and is similar to a file name in a file system; it is used by SMs for content-based node naming. The access
of SMs to tags is restricted, based on the access control information associated with each tag. For
application tags, the VM associates the access control information carried by the SM that created the tag
(i.e., the owner of the tag). For I/O tags, the owner of the device sets the access control information.

 

*

 

Application tags and I/O tags differ in terms of functionality and lifetime. Application tags offer
persistent memory for a limited lifetime (i.e., application tags are still “alive” for a certain amount of
time after the SMs that created them have finished the execution at the local node); after this time interval,
the tags expire, and the node reclaims their memory. I/O tags, on the other hand, are permanent and
provide a pointer to an I/O handler (i.e., a system call or an external process) capable of serving I/O
requests. The list of all the possible utilizations of tags consists of: 

•

 

Naming

 

. SMs name the nodes of interest using tag identifiers. 
•

 

Data storage

 

. An SM can store data in the network by creating its own tags. 
•

 

Data exchange and data sharing

 

. Exchanging data through the tag space is the only communica-
tion channel among different SMs. 

•

 

Routing

 

. SMs may create routing tags at visited nodes to store routing information in the data
portion of these tags. 

•

 

Synchronization

 

. An SM can block on a specific tag pending a write of this tag by another SM.
Once the tag is written, all SMs blocked on it are waked up and made ready for execution. 

•

 

Interaction with the host system

 

. An SM can issue commands to or request data from the host OS
and I/O devices using I/O tags. 

 

13.4 Smart Messages

 

SMs are execution units that migrate through the network to execute on nodes of interest and route
themselves at each node in the path toward a node of interest. SMs comprise code and data sections
(referred to as “bricks”), a lightweight execution state, and a resource table. The code and data bricks
can be dynamically used to assemble new, possibly smaller SMs. The ability to incorporate only the
necessary code and data bricks in the new SMs can reduce their size and, consequently, the amount of

 

FIGURE 13.3  

 

Structure of application and I/O tags.

 

*

 

More information about access control, protection domains, and SM security in general can be found in Xu et
al. [29].
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traffic in the network (i.e., the code and data carried by SMs are divided into bricks solely for this
purpose). The execution state contains the execution context necessary to resume the SM after a successful
migration. The resource table consists of resource estimates: execution time, tags to be accessed or created,
memory requirements, and network bandwidth. These resource estimates set a bound on the expected
needs of an SM at a node; they are used by the admission manager to make the admission decision. 

The SM computation is embodied in tasks. During its execution, a task may modify the data bricks
of the SM as well as the local tags to which it has access. It can also migrate, create new SMs, or block
on tags of interest. A collection of SMs cooperating toward a common goal forms a distributed application. 

 

13.4.1 Smart Message Life Cycle

 

Each SM has a well-defined life cycle at a node: (1) it is subject to admission control; (2) upon admission,
a task is generated out of the SM’s code and data bricks and scheduled for execution; and (3) after
completion at a node, the SM may terminate or may decide to migrate to other nodes of interest. 

 

13.4.1.1 Admission

 

To avoid unnecessary resource consumption, the admission manager executes a three-way handshake
protocol for transferring SMs between neighbor nodes. First, only the resource table is sent to the
destination for admission control. If the SM admission fails, the task will be informed, and it can decide
on subsequent actions. If the SM is accepted, the admission manager checks, using the code bricks’ IDs
(computed off-line by applying a hash function on the code), whether the code bricks belonging to this
SM are cached locally. Then, it informs the source to transfer only the missing code bricks. (These code
bricks will also be cached upon arrival.) 

 

13.4.1.2 Scheduling and Execution

 

Upon admission, an SM becomes a task scheduled (in FIFO order) for execution. The execution is
nonpreemptive; new SMs can be accepted, but they will not be dispatched for execution until the current
SM terminates. An executing SM can yield the VM, however, by blocking on a tag. The execution time
is bounded by the estimated running time presented during admission (i.e., the VM may terminate an
SM that does not respect the admission contract). 

Nonpreemptive scheduling is used for three reasons. First, the execution time of SMs is usually short
(many times a node is used merely as a “stepping stone” en route to a node of interest). Thus, context
switching would incur too much overhead with respect to the total execution time of the SM. Second,
it is not necessary to support multiprogramming for interactive programs (unlike traditional computer
systems, embedded systems commonly operate unattended). Third, the communication always termi-
nates the current SM (i.e., the only form of communication in cooperative computing is a migration
invocation) and, consequently, the idea of using multiple threads in one application to overlap commun-
ication and computation does not make sense for SM programs. On the other hand, nonpreemptive
scheduling makes inter-SM synchronization and sharing particularly simple to implement. 

 

13.4.1.3 Migration

 

If the current computation does not complete at the local node, the task may continue its execution at
another node. The current execution state is captured and migrated along with the code and data bricks.
Because a task accesses only mobile data and tags, an efficient migration has been implemented in which
only a small part of the entire execution context is saved and transferred through the network. Essentially,
the instruction and stack pointers are transferred for all the stack frames corresponding to the current
task. It is important to notice that migration is explicit (i.e., the programmers call a “migration” primitive
when needed), and that data transferred during a migration are specified by the programmer as data
bricks. 
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13.4.2 Smart Message Self-Routing

 

SMs are self-routing, i.e., they are responsible for determining their own paths through the network.
SMs require no system support for routing; the entire process takes place at application level. An SM
names its destinations in terms of tag identifiers and executes its routing algorithm at each node in the
path. SMs may create routing tags at intermediate nodes in the network to store routing information. If
routing information is not locally available, an SM may create other SMs for route discovery and block
on a routing tag. A write on this tag unblocks the SM, which will resume its migration. Because tags are
persistent for their lifetime, the routing information, once acquired, can be used by subsequent SMs,
thus amortizing the route discovery effort. 

Each SM must include at least one 

 

routing brick

 

 among its code bricks. A single routing algorithm,
however, might not always reach a node of interest in the presence of highly dynamic network configu-
rations. Therefore, an SM can carry multiple routing algorithms and change them during execution
according to the current network conditions. For instance, an SM can use a proactive routing algorithm
in a stable and relatively dense network and an on-demand algorithm in a volatile and sparse network.
In this way, the SM may complete even if network conditions change significantly during its execution.
Borcea and colleagues [6] offer a complete description of the self-routing mechanism. 

 

13.5 Programming Interface

 

The API for the cooperative computing model is given in Table 13.1. It provides simple, yet powerful,
primitives. SMs can access the tag space, dynamically create new SMs, synchronize on tags, and migrate
to nodes of interest. 

 

createTag, deleteTag, readTag, and writeTag

 

. These operations allow SMs to create, delete, or access
existing tags. As mentioned in Section 13.3, these operations are subject to access control. The same
interface is used to access the I/O tags. SMs can issue commands to I/O devices by writing into I/O tags
or can get I/O data by reading I/O tags. 

 

createSMFromFiles, createSM, and spawnSM

 

. An SM is created by injecting a program file at a node;
this program calls createSMFromFiles with a list of program file names to build the new SM structure.
An SM may use createSM during execution to assemble a new SM from a subset of its code and data
bricks. A createSM call is commonly used to create a route discovery SM when routing information is
not locally available. An SM that needs to clone itself calls spawnSM; this primitive returns true in the
“parent” and false in the “child” SMs. Typically, spawnSM is invoked when the current computation
needs to migrate a copy of itself to nodes of interest while continuing the execution at the local node. A
newly created SM is inserted into the SM ready queue. 

 

blockSM

 

. This primitive implements the update-based synchronization mechanism. An SM blocks on
a tag waiting for a write. To prevent deadlocks, blockSM takes a timeout as parameter. If nobody writes
the tag in the timeout interval, the VM returns the control to the SM. A typical example is an SM that
blocks on a routing tag while waiting for a route discovery SM to bring a new route. 

 

TABLE 13.1

 

Cooperative Computing API

 

Category Primitives

 

Tag space operations createTag(tag_name, lifetime, data); deleteTag(tag_name);
readTag(tag_name); writeTag(tag_name, value);

SM creation createSMFromFiles(program_files);
createSM(code_bricks, data_bricks); spawnSM();

SM synchronization blockSM(tag_name, timeout);
SM migration migrateSM(tag_names, timeout); sys_migrate(next_hop);
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migrateSM and sys_migrate

 

. The migrateSM primitive implements a high-level content-based migra-
tion, provided usually as a library function. It allows applications to name the nodes of interest by tag
names and to bound the migration time. When migrateSM returns normally (no timeout), the SM is
guaranteed to resume its execution at a node of interest. In case of timeout, the SM regains control at
one of the intermediate nodes in the path. Figure 13.4 presents an example of a typical SM that uses
migrateSM. For instance, this SM can be used in the object tracking application described in Section 13.2.
The SM migrates to nodes hosting the tag of interest and executes on these nodes until a certain quality
of result is achieved. When this is done, the SM migrates back to the node that injected it into the network. 

The migrateSM function implements routing using routing tags, the low level primitive called
sys_migrate, and possibly other SMs for route discovery. An SM can choose among multiple migrateSM
functions that correspond to different routing algorithms. The sys_migrate primitive is used to migrate
SMs between neighbor nodes. The entire migration protocol of capturing the execution state and sending
the SM to the next hop is implemented in sys_migrate. 

 

13.6 Prototype Implementation and Evaluation

 

The authors have implemented their SM prototype in Java over Linux, thus harnessing well-developed
and supported Java application development tools and knowledge base.

 

*

 

 Specifically, Sun Microsystem’s
KVM (Kilobyte Virtual Machine) [3] has been modified because it has a small memory footprint (i.e.,
as little as 160 KB, which makes it suitable for resource-constrained devices) and its source code is publicly
available. 

The SM API is encapsulated in two Java classes: 

 

SmartMessage

 

 and 

 

TagSpace

 

; for efficiency, the API
was implemented as Java native methods. The authors have also implemented their own serialization
mechanism because KVM does not support serialization. In addition to the KVM interpreter thread, two
additional threads have been introduced for admission control and local code injection. The design of
the SM computing platform is not specific to any hardware or software environment. It can be imple-
mented on any VM (e.g., Mate [20], Scylla [27]), language, or underlying operating system. 

Next, microbenchmark results for this SM prototype are reported. Specifically, the cost of one-hop
migration and the cost of tag space operations have been measured. The test bed consists of HP iPAQs
3870 running Linux 2.4.18-rmk3-hh24. Each iPAQ contains an Intel StrongARM 1110 206-Mhz RISC
processor, 32-MB flash memory, and 64-MB RAM memory. For communication, Lucent Orinoco 802.11b
Silver PC Cards are used in ad hoc mode. To factor out the cost of Java method call overhead (approx-
imately 6 

 

μ

 

s), the code for measuring costs has been inserted inside the native methods associated with
the SM API. 

 

13.6.1 Cost of SM Migration

 

The one-hop migration has three phases: execution capture at source, SM transfer, and execution resump-
tion at destination. The SM is converted into a machine-independent representation to allow state capture

1 Typical_SM(tag){
2 do
3 migrateSM(tag, timeout);
4 <do computation>
5 until (<quality of result>);
6 migrateSM(back, timeout);
7 }

 

FIGURE 13.4  

 

Code skeleton for typical smart message.

 

*

 

The SM software distribution is freely available at http://discolab.rutgers.edu.
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and resumption. Because the code bricks are already in machine-independent Java class format, only the
data bricks and execution state need to be converted. This conversion is done using the authors’ simple
object serialization mechanism. The serialization of the execution state does not have a significant impact
because only the execution control state is captured and transferred, not the local variables. Therefore,
the important factors that determine the cost of one-hop migration are the data brick serialization, the
SM transfer, and data brick deserialization. 

 

13.6.1.1 Data Brick Serialization and Deserialization

 

To study the effect of data brick serialization, a fixed-size code brick (1197 bytes) has been used and the
data brick size has been varied from 2 to 16 KB. The stack frames have also been kept constant (131
bytes for two activation records). The cost of serializing these two stack frames is 0.235 ms. Commonly,
the data bricks in an SM consist of a mixture of objects and primitive types. Two types of data bricks
have been used in this evaluation; they represent a practical lower and upper bound for typical data
bricks: an array of integers and an array of objects. The object array represents an upper bound because
each of its elements causes a call to the top-level VM serialization method, while the integer array
represents a lower bound because there is only one call to the top level VM serialization method. 

Figure 13.5 shows that the serialization cost is below 6 ms for data bricks as large as 16 KB. Commonly,
the SMs process the data at source and therefore they carry small size data. The applications developed
by the authors carry less than 2 KB, which costs less than 1 ms to serialize. Figure 13.6 presents the cost
of deserialization for the same data bricks. Observe that this cost is as much as 30% larger than the cost
of serialization — an increase caused by the memory allocation costs during object deserializations. 

 

13.6.1.2 SM Transfer

 

To evaluate the total cost of migrating an SM (serialization, transfer, deserialization), two sets of exper-
iments were performed. In the first, the code brick size was varied while data brick size and stack frame
size were kept fixed at 53 and 131 bytes, respectively. In the second, data brick size was varied while
keeping the code brick size and stack frame size fixed at 1197 and 131 bytes, respectively. 

Figure 13.7 and Figure 13.8 show the results of these two experiments for two cases: when the code
is not cached and when the code is cached. In Figure 13.7, the time to transfer the SM when the code is

 

FIGURE 13.5  
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cached represents, essentially, the overhead of the three-way handshake protocol because the sizes of the
data bricks and stack frames are small. Figure 13.8 demonstrates that the data brick size contributes
significantly to the total cost of migration. Thus, it is important to have a serialization mechanism with
minimal space overhead. 

 

FIGURE 13.6  

 

Cost of data brick deserialization.

 

FIGURE 13.7  

 

Effect of code brick size on single-hop migration.
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13.6.2 Cost of Tag Space Operations

 

Table 13.2 shows the cost of the tag space operations for application tags. The 

 

readTag

 

 primitive has the
lowest cost because it performs the least number of operations. When an SM reads a tag, the VM
interpreter acquires a lock, performs a lookup in the tag space, and returns the data to the SM. The

 

writeTag

 

 operation costs are slightly higher because the interpreter must check and unblock any SMs
blocked on the tag. The 

 

createTag

 

 primitive involves an additional step to register a timer for the tag
lifetime, while 

 

blockSM

 

 needs to append the SM to the queue and suspend the current task. The 

 

deleteTag

 

primitive has the highest cost because the interpreter needs to wake up all SMs blocked on the tag, remove
the timer for the tag lifetime, and remove the tag structure from the tag space. 

Table 13.3 presents the access time to several I/O tags that are currently implemented in our prototype:
GPS location query; neighbor discovery; camera image capture; light sensor; and system status inquiry
(battery lifetime, system time, and amount of free memory). A typical node with a video camera and a
GPS receiver attached is shown in Figure 13.9. The 

 

gps_location

 

 is updated by a user-level process that

 

FIGURE 13.8  

 

Effect of data brick size on single-hop migration.
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createTag 43.4
deleteTag 55.9
readTag 20.8
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reads from the GPS serial interface. The location of the neighbors along with their identifiers can be
returned by reading the 

 

neighbor_list

 

 tag, which is typically used by geographical routing algorithms
carried and executed by SMs. To get the information about neighbor nodes, a neighbor discovery protocol
has been implemented that maintains a cache of known neighbors. For the 

 

image_capture

 

 tag, the system
also performs YUYV to RGB format conversion on the captured image before returning it to the tag
reader. All the other tag values are obtained directly from Linux using system calls. 

 

13.7 Applications

 

To prove that virtually any protocol or application can be written using SMs, two previously proposed
applications — SPIN [11] and directed diffusion [13] — have been implemented. They present different
paradigms for content-based communication and computation in sensor networks; SPIN is a protocol
for data dissemination and directed diffusion implements data collection. 

 

13.7.1 SPIN Using Smart Messages

 

SPIN is a family of adaptive protocols that disseminates information among nodes in a sensor network.
The implementation of SPIN-1 is a three-stage handshake protocol for data dissemination. Each time a
node obtains new data, it disseminates them in the network by sending an advertisement to its neighbors.

 

TABLE 13.3

 

Cost of Reading I/O Tags

 

 

 

Tag Name
Time 
(ms)

 

gps_location 0.20
neighbor_list 0.34
image_capture (32-KB) 341.23
light_sensor 0.11
battery_lifetime 25.63
system_time 0.09
free_memory 0.12

 

FIGURE 13.9  

 

Prototype node with video camera and GPS receiver attached.
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The node receiving the advertisement checks whether it has already received or requested those data. If
not, it sends a request message to the sender asking for the advertised data. The initiator sends the
requested data and then the process is executed recursively for the entire network. 

As an example of a cooperative computing program, Figure 13.10 presents the code for the authors’
implementation of SPIN using SMs. The tag space at each node hosts two tags: the value of the most
recent data received (

 

tagData

 

) and the timestamp associated with these data (

 

tagTimestamp

 

). 
The protocol is initiated by injecting a 

 

Disseminate SM

 

 into a node that produces data. This SM blocks
on tagData (line 8) waiting for new data. Each time new data are produced, the SM reads the tagTimes-
tamp and spawns itself (lines 9 and 10). The child SM migrates to the neighbors to advertise the new
data (line 13). If a destination node does not have these or more recent data, the child SM updates the
tagTimestamp and migrates back to the source to bring the data (lines 14 to 22). Upon data arrival, the
child SM executes recursively the same algorithm until the data are disseminated in the entire network. 

 

13.7.2 Directed Diffusion Using Smart Messages

 

In directed diffusion, a sink node requests data by sending “interests” for named data. Data matching an
interest are then drawn from source nodes toward the sink node. Intermediate nodes can cache and
aggregate data; they may also direct interests based on previously cached data. At the beginning, the sink
may receive data from multiple paths, but after a while it will reinforce the path providing the best data
rate. All future data will arrive on the reinforced path only. 

For the implementation of directed diffusion using SMs, the tag space at each node hosts three tags: the
most recent data value (

 

tagData

 

); the best data rate available at that node (

 

tagDataRate

 

); and the best next
hop toward the source (

 

tagBestRoute

 

). Directed diffusion is initiated by injecting an SM at the sink. The

1 DisseminateSM(String tag, int timeout){
2 int timestamp;
3 Data data;
4 String tagData=tag+

 

"data";
5 String tagTimestamp=tag+"timestamp";
6 Address src, dest;
7 while(true){ // SM at source 
8 TagSpace.blockSM(TagData, timeout);
9 timestamp = TagSpace.readTag(tagTimestamp);
10 if (!SmartMessage.spawnSM()){ // child SM
11 while(true){ // SM at every node
12 src = SmartMessage.getLocalAddress();
13 SmartMessage.sys_migrate(all); // migrate to all neighbors
14 if (timestamp.CompareTo((Integer)TagSpace.readTag(tagTimestamp))<=0){
15 System.exit(0); // the same or more recent data exists at this node
16 }
17 TagSpace.writeTag(tagTimestamp, timestamp);
18 dest = SmartMessage.getLocalAddress();
19 SmartMessage.sys_migrate(src); // migrate back to source
20 data = TagSpace.readTag(tagData);
21 SmartMessage.sys_migrate(dest); // bring data to destination
22 TagSpace.writeTag(tagData, data);
23 }
24 }
25 }
26 }

FIGURE 13.10  SPIN with smart messages.
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execution of this SM has two main phases: (1) exploration starts at the sink and floods the network to find
data of interest; and (2) reinforcement chooses the best path and brings data from source to sink. 

If the information of interest is not locally available (no tagDataRate value), the explore SM spawns
itself; the child SM migrates to all neighbors, while the parent SM blocks on tagDataRate. This operation
is performed recursively at every node until an SM reaches a node containing the tagDataRate. At this
point, the child SM migrates back to its parent carrying the discovered data rate. If the new data rate is
better than the value stored in tagDataRate, the SM updates tagDataRate with the new value and
tagBestRoute with its source as the best node in the path toward the source of data. This update unblocks
the parent SM, which will carry the data rate one hop back. Eventually, the sink node is reached and the
reinforcement phase begins. 

During the reinforcement phase, a collect SM migrates to the best next hop starting from the sink. At
each intermediate node, this SM spawns; the child SM migrates to the best next hop, while the parent
SM blocks, waiting for data. When the SM reaches the source, it spawns new SMs to carry the data one
hop back at the promised data rate. Recursively, a blocked SM is awakened by the data arrival, and it
will carry the data back until it reaches the sink. 

13.8 Simulation Results

For large-scale evaluation, the authors have developed an event-driven simulator, similar to ns-2 [21],
extended with support for SM execution. The simulator is written in Java to allow rapid prototyping of
applications. To get accurate results, the communication and the execution times must be accounted for.
The simulator provides accurate measurements of the execution time by counting, at the VM level, the
number of cycles per VM instruction. To account for the execution time, each node has been simulated
with a Java thread, and a new mechanism has been implemented for scheduling these threads inside JVM.
The communication model used in this simulator is “generic wireless,” with contention solved at the message
level. Before any transmission, a node “senses” the medium and backs off in case of contention. 

The main goal in conducting the simulation experiments was to quantify the data convergence time
for the authors’ implementations of SPIN and directed diffusion using SMs and to compare these results
with those for traditional message-passing implementations. Data convergence time is defined as the
time when a certain percentage of the total number of nodes has received the data (SPIN), or the data
rate (directed diffusion). In both cases, due to flooding, all nodes end up receiving the data and the data
rate. SPIN completes after all nodes have received the data; directed diffusion will start the reinforcement
phase after all nodes have received the data rate. The same network configuration is used for all exper-
iments. The network has 256 nodes distributed uniformly over a square area, and each node has the
same transmission range. The average number of neighbors per node is four. 

The first set of experiments evaluated the data convergence time when only one SM is injected in the
network. Figure 13.11 presents the data convergence time for a single directed diffusion SM, with the
sink and source located at the diagonal corners of the square region. The data convergence time for three
different cases of the same SM and a base case that uses passive communication (no SM) are plotted.
The top curve shows the time when code caching is not used. The second curve shows a more than
fourfold improvement in performance when code caching is activated during the first execution of the
SM in the network. The code is cached when an SM visits a node for the first time and will be used by
subsequent SMs during the same execution. The effects of caching are very important in this case because
the SMs visit a node multiple times in directed diffusion; they travel the network forward (looking for
the source) and backward (diffusion of data rate).

In the third curve, a 30% decrease can be observed in completion time when the code is already cached
at all nodes. The fourth curve shows the data convergence time for a traditional implementation: the
protocol is implemented at each node; only data are transferred through the network; and the execution
time is not accounted for. Observe that the degradation in performance for this implementation, when
the code is cached at all nodes, compared to the traditional implementation is only 5%. This is a reasonable
price for the flexibility to program any user-defined distributed application in NES. 
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Figure 13.12 plots the same curves for a single SPIN SM launched in the network at a node located
in a corner of the square area. During the first execution, code caching leads to a threefold improvement
in performance (i.e., reducing the size of SMs is essential for a protocol based on flooding and three-
stage communication). The third curve shows a 30% decrease in the completion time (similar to directed
diffusion) when the code is already cached at all nodes. The completion time increases from 10 to 15%
compared to the traditional implementation. 

The second set of experiments quantified the performance of these applications when multiple SMs
run simultaneously in the network. Figure 13.13 and Figure 13.14 show the data convergence time for
directed diffusion and SPIN with the code already cached at nodes. For these experiments, data conver-
gence time is the time when a certain percentage of nodes have received the data (or data rate) for all
the SMs running in parallel. The nodes at which the SMs start are distributed uniformly in the network.

The results show that data convergence time increases with the number of SMs, but only during the
initial flooding phase because of increased contention in the network. After that, the shapes of the curves
are the same, independent of the number of SMs. The results also indicate that SPIN completes faster
than directed diffusion in all cases (i.e., 2.3 s compared to 3.4 s for the top curves in the figures). The
cause is that SPIN floods only the neighbors and then brings the data to them, while directed diffusion
needs to flood the entire network until it finds the source and then brings the data rate back to all nodes.
In the initial phase, directed diffusion generates more messages in the network leading to higher con-
tention, but its performance will increase as soon as the reinforcement phase begins. 

13.9 Related Work

SMs have been influenced by the design of mobile agents for IP-based networks [9, 18, 22, 28]. A mobile
agent may be viewed as a task that explicitly migrates from node to node assuming that the underlying
network assures its transport between them. SMs apply the general idea of code migration, but focus
more on flexibility, scalability, reprogrammability, and the ability to perform distributed computing over
unattended NES.

FIGURE 13.11  Directed diffusion using smart messages.
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13-16 Smart Dust

Unlike mobile agents, SMs are defined to be responsible for their own routing in a network. A mobile
agent names nodes by fixed addresses and commonly knows the network configuration a priori, while an
SM names nodes by content and discovers the network configuration dynamically. Furthermore, the SM
software architecture defines the common system support that each node must provide. The goal of this
architecture is to reduce the support required from nodes in NES because they possess limited resources. 

FIGURE 13.12  SPIN using smart messages.

FIGURE 13.13  Directed diffusion: multiple smart messages.
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The SM self-routing mechanism shares some of the design goals and leverages work done in active
networks (ANs) [8, 23, 26]; however, SMs differ from ANs in several key features. The main difference
between them is in terms of programmability. Unlike ANs, which target faster communication in IP-
based networks, cooperative computing defines a distributed computing model for NES whereby several
SMs can cooperate, exchange data, and synchronize with each other through the tag space. Additionally,
the AN model does not contain the migration of execution state as the authors’ model does. The migration
of execution state for SMs trades overhead for flexibility in programming sophisticated tasks that require
cooperation and synchronization among several entities. For example, this execution state allows SMs
to make routing decisions based on the results of computation done at previously visited nodes. 

Research in mobile ad hoc networking [14, 15, 19, 24] has resulted in numerous routing protocols.
These protocols have generally been designed for IP-based networks and have primarily targeted tradi-
tional mobile computing applications over networks of mobile personal computers. Some of these
protocols have been leveraged into routing algorithms used by the SM self-routing mechanism. 

Sensor networks represent the first step toward large networks of embedded systems. Most of the
research in this area has focused on hardware [16, 25]; operating systems [12]; or network protocols [5,
11, 13]. Cooperative computing provides a solution for developing user-defined distributed applications
in sensor networks, a crucial issue that has been tackled only marginally so far. As demonstrated,
cooperative computing provides enough flexibility to enable implementation of previously proposed
protocols over this computing platform. 

SensorWare [7] is similar to cooperative computing in that both are frameworks for programmable
NES based on code migration. Therefore, both are suitable to reprogram the network. However, Sensor-
Ware supports mobile control scripts and accesses the resources through virtual devices, whereas coop-
erative computing supports mobile Java code (i.e., Java is supported on many embedded systems
today [2]), execution state migration, and uniform access to resources through tags. 

Mate [20] is an efficient VM for sensor networks that can significantly simplify code development and
dissemination efforts. The main difference between cooperative computing and this research is that Mate
targets only the reprogrammability of the network, but the programming model is still the traditional

FIGURE 13.14  SPIN: multiple smart messages.
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13-18 Smart Dust

message passing. SMs, on the other hand, are based on execution migration. An SM transfers not only
the code, but also the execution state through the network. 

13.10 Conclusions

This chapter has described a programming model for large-scale networks of embedded systems, in which
distributed applications are implemented as collections of smart messages. The model overcomes the
scale, heterogeneity, and connectivity issues encountered in these networks by using execution migration,
content-based naming, and self-routing. The experimental results for this prototype implementation
demonstrate the feasibility of cooperative computing. The implementation and simulation results for
two sensor network applications show that this model represents a flexible, yet simple, solution for
programming large networks of embedded systems. 
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14.1 Introduction

 

Wireless distributed sensor networks have gained importance in a wide spectrum of civil and military
applications [1]. Advances in microelectricalmechanical systems (MEMS) technology, combined with
low-power, low-cost DSPs and RF circuits have resulted in cheap wireless sensor networks becoming
feasible. A distributed, self-configuring network of adaptive sensors has significant benefits. They can be
used to monitor inhospitable and toxic environments remotely. Large classes of benign environments
also require the deployment of a large number of sensors such as intelligent patient monitoring, object
tracking, assembly line sensing, etc. Their distributed nature provides wider resolution as well as increased
fault tolerance compared to a single sensor node. Several projects, such as the MIT 

 

μ

 

AMPS project [2],
that demonstrate the feasibility of sensor networks are underway.

A wireless sensor node is typically battery operated and is thus energy constrained. To maximize the
lifetime of the sensor node after its deployment, all aspects, including circuits, architecture, algorithms
and protocols, must be made energy efficient. Once the system has been designed, additional energy
savings can be obtained by using dynamic power management concepts [3] whereby the sensor node is
shut down if no interesting events occur or slowed down during periods of reduced activity. Such event-
driven power consumption is critical for obtaining maximum battery life from the sensor node. In
addition, it is desirable that the node has graceful energy quality scalability so that, if the application
demands, the user is able to extend the mission lifetime at the cost of sensing accuracy. Energy-scalable
algorithms and protocols have been proposed for such energy-constrained situations [4]. 

Sensing applications present a wide range of requirements in terms of data rates, computation, average
transmission distance, etc. As such, protocols and algorithms will need to be tuned to each application.

 

Amit Sinha

 

Engim, Inc.

 

Anantha Chandrakasan

 

Engim, Inc.

 

7037_C014.fm  Page 1  Tuesday, November 1, 2005  12:58 PM

© 2006 by Taylor & Francis Group, LLC



 

14

 

-2

 

Smart Dust

 

Therefore, embedded operating systems and software will be critical ingredients in such sensor networks
because programmability will be a necessary requirement. This chapter proposes operating system (OS)-
directed dynamic power management (DPM) techniques to improve the energy efficiency of sensor
nodes. DPM is an effective tool to reduce system power consumption without significantly degrading
performance. The embedded OS is used to facilitate active and idle power management. 

The basic idea behind idle power management is to shut down devices when they are not needed and
wake them when necessary. Formulating an optimum shutdown policy, in general, is a nontrivial problem.
If the energy and performance overheads in transitioning to sleep states were negligible, a simple greedy
algorithm that makes the system go into the deepest sleep state as soon as it is idle would be perfect.
However, in reality, transitioning to a sleep state has the overhead of storing the processor state and
shutting off the power supply. Waking also takes a finite amount of time. Therefore, implementing the
right policy for transitioning to various sleep states is critical for effective idle power management.

Although shutdown techniques can yield substantial energy savings in the idle states of the system,
additional energy savings are possible by optimizing the performance of the sensor node in its active
state. Dynamic voltage scaling (DVS) is a very effective active power management technique for reducing
processor energy consumption [5]. Most microprocessor-based systems are characterized by a time-
varying computational load. Simply reducing the operating frequency during periods of reduced activity
results in linear decrease in power consumption but does not affect the total energy consumed per task.
Reducing the operating voltage implies greater circuit delays that, in turn, mean that peak performance
is compromised. Significant energy benefits can be achieved by recognizing that peak performance is not
always required and therefore the operating voltage and frequency of the processor can be dynamically
adapted based on instantaneous processing requirements. The goal of DVS is to adapt the power supply
and operating frequency to match the workload so that the visible performance loss is negligible. Pering
and colleagues have conducted an evaluation of some DVS algorithms on portable benchmarks [6].

 

14.2 Idle Power Management

 

Efficient DPM in idle mode requires power-differentiated states and optimal OS policies to transition to
and from various states.

 

14.2.1 Multiple Shutdown States

 

It is not uncommon for a device to have multiple power modes. For example, the StrongARM SA-1100
processor has three power modes: “run,” “idle,” and “sleep” [7]. Each of these modes is associated with
a progressively lower level of power consumption. The run mode is the normal operating mode of the
processor; all power supplies are enabled, all clocks are running, and every on-chip resource is functional.
The idle mode allows the software to halt the CPU when not in use while continuing to monitor interrupt
service requests. The CPU clock is stopped and the entire processor context is preserved. When an
interrupt occurs, the processor switches back to run mode and continues operating exactly at the point
at which it stopped. The sleep mode offers greatest power savings and minimum functionality. The power
supply is cut off to a majority of circuits and the sleep state machine watches for a preprogrammed wake-
up event. Similarly, a Bluetooth radio has four different power consumption modes: “active,” “hold,”
“sniff,” and “park.” 

Most power-conscious devices support multiple power-down modes offering different levels of power
consumption and functionality. An embedded system with multiple such devices can have a set of power
states based on various combinations of device power states. In fact, an open interface specification called
the advanced configuration and power management interface (ACPI), jointly promoted by Intel,
Microsoft, and Toshiba [8], standardizes how the OS can interface with devices characterized by multiple
power states to provide dynamic power management. ACPI supports a finite state model for system
resources and specifies the hardware/software interface that should be used to control them. ACPI controls
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the power consumption of the whole system as well as the power state of each device. An ACPI-compliant
system has five global states — SystemStateS0 (working state) and SystemStateS1 to SystemStateS4 —
corresponding to four different levels of sleep states. Similarly, an ACPI-compliant device has four states:
PowerDeviceD0 (the working state) and PowerDeviceD1 to PowerDeviceD3. The sleep states are differ-
entiated by the power consumed, the overhead required in going to sleep, and the wake-up time.

 

14.2.2 Sensor Node Architecture

 

Figure 14.1 illustrates the basic sensor node architecture. Each node consists of the embedded sensor, A/D
converter, a processor with memory (in this case, the StrongARM SA-11x0 processor), and the RF circuits.
Each of these components is controlled by the OS through primitive device drivers. An important function
of the OS is to enable power management (PM). Based on event statistics, the OS decides which devices
to turn off or on. The sensor network essentially consists of 

 

η

 

 homogeneous sensor nodes distributed
over a rectangular region 

 

R

 

 with dimensions 

 

W 

 

×

 

 

 

L

 

 with each node having a visibility radius 

 

ρ

 

. There is
no particular reason for the rectangular topology.

Table 14.1 enumerates the component power modes corresponding to five different useful sleep states
for the sensor node. Each of these node-sleep modes corresponds to an increasingly deeper sleep state
and is therefore characterized by an increasing latency and decreasing power consumption. These sleep

 

FIGURE 14.1  

 

Sensor network and node architecture. (From Sinha, A. and Chandrakasan, A., 

 

IEEE Des. Test Comp.

 

62–74, 2001. With permission.)
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states are chosen based on working conditions of the sensor node, e.g., it does not make sense to have
the memory in the active state and everything else completely off:

• State 

 

s

 

0

 

 is the completely active state of the node where it can sense, process, transmit, and receive
data.

• In state 

 

s

 

1

 

, the node is in sense and receive mode while the processor is in standby.
• State 

 

s

 

2

 

 is similar to state 

 

s

 

1

 

 except that the processor is powered down and is waked up when the
sensor or the radio receives data.

• State 

 

s

 

3

 

 is the sense-only mode in which everything except the sensing front-end is off.
• State 

 

s

 

4

 

 represents the completely off state of the device.

The design problem is to formulate a policy of transitioning between states based on observed events
so as to maximize energy efficiency. It can be seen that the power-aware sensor model is similar to the
system power model in the ACPI standard. The sleep states are differentiated by the power consumed,
the overhead required in going to sleep, and the wake-up time. The deeper the sleep state is, the lesser
the power consumption and the longer the wake-up time.

 

14.2.3 Sleep State Transition Policy

 

Assume an event is detected by a sensor node at some time 

 

t

 

0

 

; it finishes processing it at time 

 

t

 

1

 

; and the
next event occurs at time 

 

t

 

2

 

 = 

 

t

 

1

 

 + 

 

t

 

i

 

. At time 

 

t

 

1

 

, the node decides to transition to a sleep state 

 

s

 

k

 

 from
the active state 

 

s

 

0

 

 as shown in Figure 14.2. Each state 

 

s

 

k

 

 has a power consumption 

 

P

 

k

 

, and the transition
time to it from the active state and back is given by 

 

τ

 

d,k

 

 and 

 

τ

 

u,k

 

, respectively. By the definition of node-
sleep states, 

 

P

 

j

 

 > 

 

P

 

i

 

, 

 

τ

 

d,i

 

 > 

 

τ

 

d,j

 

 and 

 

τ

 

u,i

 

 > 
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 for any 
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 > 
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. The power consumption between the sleep modes
is modeled as a linear ramp between the states. When the node transitions from state 

 

s

 

0

 

 to, say, state 

 

s

 

k

 

,
individual components such as the radio, memory, and processor are progressively powered down. This
results in a stepped variation in power consumption between the states. The linear ramp is analytically
simpler to handle and approximates the process reasonably well.

Now a set of sleep time thresholds {

 

T

 

th,k

 

} corresponding to the states {

 

s

 

k

 

} will be derived such that
transitioning to a sleep state 

 

s

 

k

 

 from state 

 

s

 

0

 

 will result in a net energy loss if the idle time 

 

t

 

i

 

 < 

 

T

 

th,k

 

 because
of the transition energy overhead. This assumes that no productive work can be done in the transition
period, which is usually true (e.g., when a processor wakes up, the transition time is the time required

 

FIGURE 14.2  

 

Dynamic voltage and frequency scaling. (From Sinha, A. and Chandrakasan, A., 
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62–74, 2001. With permission.)
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for the PLLs to lock, the clock to stabilize, and the processor context to be restored). The energy savings
because of state transition are given by the difference in the area under the graphs shown in Figure 14.2
and are computed as follows:

Such a transition is only justified when 

 

E

 

save,k

 

 > 0. This leads to the following energy gain threshold:

This implies that the longer the delay overhead of the transition is, the higher the energy gain threshold,
and the more the difference between 

 

P

 

0

 

 and 

 

P

 

k

 

 is, the smaller the threshold.
Table 14.2 lists the power consumption of a sensor node described in Figure 14.1 designed using off-

the-shelf components in different power modes and the corresponding energy gain thresholds. One can
see that the thresholds are in the order of milliseconds. The OS shutdown policy is based on event
interarrival statistics and energy gain thresholds and can be formulated as an optimization problem. If
the events are modeled as a Poisson process, the probability of at least one event in time 

 

t

 

i

 

 is given by 

In this case, a simple algorithm that updates the average events per unit time, 

 

λ

 

, as they happen
computes the probability of an event happening within the thresholds, 

 

T

 

th,k

 

, and chooses the deepest
sleep state based on a minimum probability threshold that would be effective. Sinha and Chandrakasan
have described the energy savings obtained from such an algorithm [9].

 

14.3 Active Power Management

 

The OS can be used to manage active power consumption in an energy-constrained sensor node. It
reduces the operating frequency and voltage to a level just enough for the sensing application so that no
visible loss is observed in performance while the energy consumption is reduced. 

 

14.3.1 Variable Voltage Processing

 

Dynamic voltage scheduling is a very effective technique for reducing CPU energy. Several sensor systems
are characterized by a time-varying computational load. Simply reducing the operating frequency during
periods of reduced activity results in a linear decrease in power consumption but does not affect the total
energy consumed per task, as shown in Figure 14.3(a) (the shaded area represents energy). Reduced
operating frequency implies that the operating voltage can also be reduced. Because the switching power
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consumption scales linearly with frequency and quadratically with supply voltage, quadratic energy
reduction can be obtained as shown in Figure 14.3(b). Significant system energy savings can be realized
by recognizing that peak performance is not always required and therefore the operating voltage and
frequency of the processor can be dynamically adapted based on instantaneous processing requirement. 

 

14.4 System Implementation

 

Figure 14.4 shows the first generation 

 

μ

 

AMPS sensor node, which is based on the StrongARM SA-1110
processor and has 1 MB of on-board SRAM and flash memory. The board runs at a nominal battery (single
lithium primary cell) power supply of about 4.0 V. The on-board power supply circuits generate a 3.3-V
supply for all digital circuits. A separate analog power supply is also generated to isolate the digital power
supply noise from the analog circuits. The 3.3-V digital power supply also powers the I/O pads of the
StrongARM SA-1110 processor. The core power supply is generated through a DVS circuit that can regulate
the power supply from 0.925 V to a maximum of 2.0 V with a conversion efficiency of about 85%. 

The radio module is on a similarly sized board and consists of a dual power, 2.4 GHz-radio for 10-
and 100-m ranges. The 16-b bus interface connector will allow the radio module to be stacked onto the
processor board. In addition, the connector allows a different sensor board (e.g., a seismic sensor) to be
stacked. The processor board has an RS-232 and a USB connector for remote debugging and connecting
to a debug PC. The board features a built-in acoustic sensor (a microphone, some opamps, and A/D
circuit) that talks to the StrongARM processor using the synchronous serial port (SSP). The opamp gains
are programmable and processor controlled. An envelop detect mechanism has also been incorporated
into the sensor circuit, which bypasses the A/D circuit and wakes the processor when the signal energy
crosses a certain programmable threshold. Using this feature can significantly reduce power consumption
in the sense mode and facilitates event-driven computation.

 

14.4.1 DVS Circuit

 

The basic variable core power supply schematic is shown in Figure 14.5. The MAX1717 step-down
controller is used to regulate the core supply voltage dynamically through the 5-b digital-to-analog
converter (DAC) inputs over a 0.925 to 2 V range. The converter works on the following principle. A
variable duty cycle pulse width modulated (PWM) signal alternately turns on the power transistors M1
and M2. This produces a rectangular wave at the output of the transistors with duty cycle 
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levels (two combinations are not allowed). A two-wire remote sensing scheme compensates for voltage
drops in the ground bus and output voltage rail. The StrongARM sets the DVS enable pin on the voltage
regulator depending on whether DVS capability is desired or not. A feedback signal from the regulator
lets the processor know if the output core voltage is stabilized. This is required for error-free operation
during voltage scaling.

The processor clock frequency change involves updating the contents of the core clock configuration
register (CCF) of the SA-1110 [10]. The core clock is derived by multiplying the reference crystal oscillator
clocks using a phase-locked loop (PLL) based on CCF register settings, as shown in Table 14.3. The core
clock (CCLK) can be driven using the fast CCLK or the memory clock (MCLK), which runs at half the
frequency of the CCLK. The core clock uses CCLK normally except when waiting for fills to complete
after a cache miss. Core clock switching between CCLK and MCLK can be disabled by setting a control
register appropriately. 

The sequence of operations during a voltage and frequency update depends on whether one is increas-
ing or decreasing the processor clock frequency, as shown in Figure 14.6. When the clock frequency is
increased, it is first necessary to increase the core supply voltage to the minimum required for that
particular frequency. The optimum voltage frequency pairs are stored in a lookup table. Once the core
voltage is stabilized, the frequency update can proceed. The first step involves recalibrating the memory
timings. This is done by setting an appropriate value in the MSC control register. Before CCLK frequency
is increased, clock switching between CCLK and MCLK is disabled to avoid an inadvertent switch of the
core clock. CCLK frequency is changed by setting the CCF register. Once this is done, core clock switching
between CCLK and MCLK is enabled.

The sequence of operations is somewhat reversed when reducing frequency. First, the core clock
frequency is updated (following the three basic steps mentioned previously). Before one can reduce the
core voltage, it is necessary to recalibrate the memory timing. This is required because, once the core
clock frequency is reduced, memory read–write will result in errors unless the memory timing is adjusted
(e.g., when reading the voltage–frequency lookup table). Subsequently, the core voltage is reduced and
normal operation is started once it stabilizes. To ensure correct operation, the entire voltage frequency
update must be done is an atomic fashion. For example, if an interrupt occurs while frequency is updated
and memory has not been recalibrated, execution errors might occur. 

FIGURE 14.4  DVS circuit schematic.
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14.4.2 Idle Power Management Hooks

The sensor node has been designed specifically to allow a set of sleep states similar to the one described
earlier; in addition, it has hardware support for event-driven computation. The overall schematic is shown
in Figure 14.7. The general purpose I/O (GPIO) pins on the StrongARM are used to generate and receive
various signals from the peripherals. The SA-1110 features 28 GPIO pins, each of which can be configured
as an input or an output. In addition, the GPIO pins can be configured specifically to detect a rising or

FIGURE 14.5  Idle power management hooks on the sensor processor board.

TABLE 14.3 SA-1110 Core Clock Configurations and Minimum Core Supply Voltage

Core Clock Frequency (CCLK) in MHz Core Voltage (V)
CCF(4:0) 3.6864 MHz Oscillator 3.6864 MHz Oscillator [3.6864 MHz Osc]

00000 59.0 57.3 1.000
00001 73.7 71.6 1.050
00010 88.5 85.9 1.125
00011 103.2 100.2 1.150
00100 118.0 114.5 1.200
00101 132.7 128.9 1.225
00110 147.5 143.2 1.250
00111 162.2 157.5 1.350
01000 176.9 171.8 1.450
01001 191.7 186.1 1.550
01010 206.4 200.5 1.650
01011 221.2 214.8 1.750

01100-11111 – –
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D0:D4 (30 levels)

Vcore Stable
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falling edge. In implementation, four GPIO pins are dedicated to power supply control in the system.
The entire analog power supply can be switched off when no sensing is required. Alternately, only the
power supply to the low pass filter (LPF) can be switched off and the envelop energy sensing circuit could
be used to trigger a signal to the processor. When this happens, the processor could enable the LPF and
start reading data off the A/D converter using the SSP (synchronous serial port). The signal detection
threshold is also programmable using other GPIO pins and similar power supply control is available for
the radio module; the processor can turn off the radio when it is not required.

14.4.3 Processor Power Modes

The SA-1110 contains power management logic that controls the transition among three different modes:
run, idle, and sleep. Each of these modes corresponds to a reduced level of power consumption.

FIGURE 14.6  System-level power savings from active power management using DVS.
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• Run mode. This is the normal mode of operation for the SA-1110. All on-chip power supplies are
on, all clocks are on, and every on-chip resource is available. Under usual conditions, the processor
starts up in the run mode after a power-up or reset.

• Idle mode. This mode allows an application to stop the CPU when not in use while continuing
to monitor interrupt requests. The CPU clock is stopped and, because the SA-1110 is a fully static
design, all state information is saved. When normal operation is resumed, execution is started
exactly where it stopped. During idle mode, all on-chip resources (real-time clock; OS timer;
interrupt controller; GPIO; power manager; DMA and LCD controllers; etc.) are on. The PLL also
remains in lock so that the processor can be brought in and out of the idle mode quickly.

• Sleep mode. Sleep mode offers greatest power savings for the processor and, consequently, lowest
functionality. When transitioning from run/idle to sleep mode, the SA-1110 performs an orderly
shutdown of on-chip activity, applies an internal reset to the processor, and negates the power
enable (PWR_EN) pin, thus indicating to the external system that the power supply can be turned
off. Running off the 32.768 KHz crystal oscillator, the sleep state machine watches for a prepro-
grammed wake-up event to occur. Sleep mode is entered in one of two ways: through software
control or through a power supply fault. Entry into sleep mode is accomplished by setting the
force sleep bit in the power manager control register (PMCR). This bit is set by software and
cleared by hardware during sleep so that, when the processor wakes, it finds the bit cleared. The
entire sleep shutdown sequence takes about 90 ms. 

Table 14.4 shows the power consumption in various modes of the SA-1110 processor at two different
frequencies and the corresponding voltage specification [10]. Note that the minimum operating voltage

FIGURE 14.7  Degradation in DVS savings with increase in workload variance.
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required (as shown in Table 14.3) at the two frequencies is slightly lower than what is shown in
Table 14.4. Although the idle mode results in about 75% power reduction, the sleep mode saves almost
all the power.

14.4.4 OS Architecture

The sensor OS is based on Redhat eCos, an open-source, real-time operating system for embedded
applications [11]. It meets the requirements of the embedded space that Linux cannot yet reach. Linux
currently scales from a minimal size of around 500 KB of kernel and 1.5 MB of RAM, all before taking
into consideration application and service requirements. eCos can provide the basic runtime infrastruc-
ture necessary to support devices with memory footprints in the tens to hundreds of KB, with real-time
options.

The original eCos OS is designed to be completely scalable across platforms as well as within a given
platform. Essentially, source level configuration allows the user to add or remove packages from a source
repository based on system requirements. For example, the user might choose to remove math libraries
and the resulting kernel will be leaner. The core eCos system consists of a number of different components,
such as the kernel, the C library, an infrastructure package, etc. Each of these provides a large number
of configuration options, allowing application developers to build a system that matches the requirements
of their particular applications.

To manage the potential complexity of multiple components and lots of configuration options, eCos
has a component framework: a collection of tools specifically designed to support configuring multiple
components. Furthermore, this framework is extensible, allowing additional components to be added to
the system at any time. The eCos component description language (CDL) lets the configuration tools
check for consistency in a given configuration and point out any dependencies that have not been satisfied. 

At the core of the eCos kernel is the scheduler. This defines the way in which threads are run, and
provides the mechanisms by which they may synchronize. It also controls the means by which interrupts
affect thread execution. To allow threads to cooperate and compete for resources, it is necessary to provide
mechanisms for synchronization and communication. The classic synchronization mechanisms are
mutexes/condition variables and semaphores. These are provided in the eCos kernel, together with other
synchronization/communication mechanisms that are common in real-time systems, such as event flags
and message queues. 

The kernel also provides exception handling. An exception is a synchronous event caused by the
execution of a thread. These include the machine exceptions raised by hardware (such as divide-by-zero,
memory fault, and illegal instruction) and machine exceptions raised by software (such as deadline
overrun). The simplest, and most flexible, mechanism for exception handling is to call a function. This
function needs context in which to work, so access to some working data is required. The function may
also need to be handed some data about the exception raised — at least the exception number and some
optional parameters. As opposed to exceptions, which are synchronous in nature, interrupts are asyn-
chronous events caused by external devices. They may occur at any time and are not associated in any
way with the currently running thread and are harder to deal with. The ways in which interrupt vectors
are named, how interrupts are delivered to the software, and how interrupts are masked are all highly
hardware specific. On the SA-1110, two kinds of interrupts are supported: fast interrupts (FIQ) and
regular interrupts (IRQ); both can be masked. 

TABLE 14.4 Power Consumption of the SA-1110 Processor

Power Consumption Modes

Frequency Supply Voltage (V) Normal (mW) Idle (mW) Sleep (μA)

133 1.55 <240 <75 <50
206 1.75 <400 <100 <50
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The kernel also provides a rich set of timing utilities such as counter, clocks, alarms, and timers. The
counter objects provided by the kernel provide an abstraction of the clock facility that is generally
provided. Application code can associate alarms with counters, where an alarm is identified by the number
of ticks until it triggers, the action to be taken on triggering, and whether the alarm should be repeated.
Clocks are counters associated with a stream of ticks that represent time periods. Clocks have a resolution
associated with them, whereas counters do not.

14.4.5 Sensor-Specific Application Programming Interface Extensions

Table 14.5 illustrates some sample functions in the power management API. The functions are available
to the μAMPS application developer to enhance the power efficiency of the sensing application. Programs
written for the sensor node do not need to satisfy any unusual requirements, but some differences always
exist between programs written for real-time OS platforms and those written for a time-sharing, virtual
memory system like UNIX or Windows. 

14.5 Results

Figure 14.8 shows the power consumption of the sensor node in the fully active state (all modules on)
as a function of the operating frequency of the SA-1110. The figure shows the power consumption using
DVS and only frequency scaling (done at a fixed core voltage of 1.65 V). The system power supply was
4.0 V. In the active mode, DVS is the primary source of power management. When running at the
maximum operating voltage and operating frequency, the power consumption of the system is almost
1 W. Active power management using DVS results in about 53% maximum system-wide power savings.
The actual savings depend on the workload requirement. 

With DVS, minimum energy consumption results when the processing rate variation is minimized
because of the convexity of the energy workload model. Figure 14.9 plots the relative battery life improve-
ment as a function of the variance in workload. Each workload profile is Gaussian with a fixed average
workload. Although the average workload might be constant, the battery life improvement from DVS
will degrade as the fluctuations in workload increase.

Table 14.6 shows the measured power consumption of the sensor node in various modes of operation.
The sensor node can be classified as a processor power-dominated architecture. The radio module follows
the processor in power requirement (estimated at about 70 mA at 3.3 V). DVS can reduce system power
consumption by 53%. Shutting down each of the components (analog power supply, radio module, and
the processor) results in another 44% power savings, i.e., idle power management accounts for about
97% of system-wide power savings. Figure 14.10 shows overall power savings attributed to various power
management hooks. 

TABLE 14.5 Typical Power Management Functions

Function 
Type Functions Available

UAMPS_ENABLE_DVS(), UAMPS_SET_VOLTAGE(),
DVS UAMPS_SET_PROC_CLOCK(), UAMPS_CHECK_VCORE_STABLE(),

UAMPS_SET_PROC_CLOCK(), uamps_set_proc_rate(),
uamps_dvs_scheduler()

UAMPS_PERIPHERAL_POWER_ON(), UAMPS_PERIPHERAL_POWER_OFF(),
UAMPS_V3_STANDBY_ON(), UAMPS_V3_STANDBY_OFF(),

Shutdown SA11X0_PWR_MGR_WAKEUP_ENABLE, SA11X0_PWR_MGR_GENERAL_CONFIG,
SA11X0_PWR_MGR_CONTROL, uamps_set_proc_idle(),
uamps_set_proc_sleep(), uamps_goto_sleep_state()
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FIGURE 14.8  System-level power savings distribution.

FIGURE 14.9  Battery life improvement as a function of duty cycle and active workload in a sensor node compared
to a node with no power management.
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TABLE 14.6 Measured Power Consumption in Various Sensor 
Modes

Component Modes Power
System Mode Processor Radio Analog  (mW)

Active Active Max Freq on on 975.6
States Low Active Min Freq on on 457.2

Idle idle on on 443.0
Sleep Receive idle on off 403.0
States Sense idle off off 103.0

Sleep sleep off off 28.0

FIGURE 14.10  System level power savings distribution.

FIGURE 14.11  Battery life improvement in the sensor node compared to a node with no power management as a
function of duty cycle and active workload.
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Actual energy savings in the field depend significantly on processing rate requirements and event
statistics. To estimate the energy savings from active mode power consumption, one would need an
estimate of the workload variation on the system. If it is assumed that the average workload requirement
is 50%, with slow variation, the estimated energy savings are about 30%.

Idle mode energy savings, on the other hand, can be significant. If it is assumed that the operational
duty cycle is 1%, the estimated energy savings are about 96%. This implies that sensor node battery life
can be improved by a factor of over 27 (i.e., a node that lasts for a day with no power management will
now last for almost a month). With a 10% duty cycle, the battery life improvement is by a factor of about
10. The important point is that the system is energy scalable, i.e., it has the right hooks to tune energy
consumption based on computational load and sensing requirements. Figure 14.11 shows the factor by
which battery life of the sensor node can be enhanced by using power management techniques as a
function of the workload and duty cycle requirement.
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15.1 Introduction

 

Wireless sensor networks (WSNs) are an emerging paradigm posing new challenges for researchers in
wireless communications [1]. This new class of networks closely resembles the behavior of wireless ad
hoc networks. Nevertheless, they have a few unique differences; the principal one is the small size of
nodes constituting a WSN. Although smaller nodes make WSNs suitable for several existing and emerging
applications related to information sensing, this also implies that the nodes have limited resources, i.e.,
CPU speed, memory, battery, and radio interface. Because the nodes are resource constrained, they
require network designs that can be customized for different types of application environments, thus
placing significant demands on algorithm design, protocol specification, and technologies. 
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This chapter focuses on medium access control (MAC) schemes for WSNs. Unique features of these
networks will be briefly discussed in order to highlight the issues demanding special attention during
the design of MAC schemes. Significant research efforts currently underway in this context will be studied
along with MAC schemes for generic wireless ad hoc networks (WAHNs) and wireless local area networks
(WLANs). Finally, the challenges and open issues related to MAC algorithm design for the effective
deployment of future WSNs will be discussed. 

 

15.2 Unique Characteristics of Wireless Sensor Networks

 

WSNs consist of large numbers of distributed nodes that organize themselves to form a multihop wireless
network. Each node consists of one or more types of sensors, an embedded processor, small memory,
and a low-power radio transceiver. Generally, these nodes are battery powered and coordinate among
themselves to achieve a common task. Compared to nodes in a generic WAHN operating under IEEE
802.11 [2] or Bluetooth [3, 4] protocols, these nodes are extremely small in size and possess limited
energy resources. The transmitting power and thus the communication range are much lower, which is
largely compensated by a higher density of nodes in most cases. WSNs can have distributed, hierarchical,
or clustered architectures, as illustrated in Figure 15.1. 

The lack of centralized control is common to WSNs as well as to other WAHNs. Nevertheless, the
behavior of a WSN is largely governed by the application for which it is used. Even considering a single
application, the desired role of nodes would be different from time to time. For example, in a battlefield
application, it may be employed to monitor the ambient data patterns silently and generate alarms if the
specified deviations are observed. The same network may be used to track the movement of a detected
vehicle at another time. Such dynamic changes of network objectives and the corresponding change in
node behavior are uncommon in most of the other generic WAHNs. 

Furthermore, nodes of a sensor network are mostly unattended after deployment, permitting neither
upgrade of energy sources nor troubleshooting. The node hardware is designed so that the overall cost
is extremely low and nodes can be abandoned once the power sources are exhausted. Voids of discarded
nodes may be filled with redundant nodes due to high node density, and perhaps by the deployment of
additional nodes if the need arises. It is necessary that the network should accommodate such losses and
new additions with least effort. These are unique issues pertaining to WSNs compared to generic WAHNs
in which the nodes are mostly attended; energy sources are high capacity and can be recharged or replaced;
and nodes have direct and individual interaction with users. Comparison between a WSN and a generic
ad hoc network is summarized in Table 15.1. 

 

FIGURE 15.1  
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15.2.1 Why Are MAC Layer Design Issues Important?

 

In all wireless networks, nodes must share a single medium for communication. Network performance
largely depends upon how efficiently and fairly the nodes can share this common medium. Note that
the packet transmission is directly handled by the MAC layer. Compared to a wired medium, a significant
portion of the node’s energy is spent on radio transmissions and on listening to the medium for
anticipated packet reception. On the other hand, wireless networks always have restricted power sources;
thus, careful design of the MAC scheme is necessary for the optimal performance and extended lifetime
of the network. 

In the context of WSNs, this requirement is extremely critical. According to the characteristics high-
lighted previously, nodes of a WSN carry extremely low energy resources and remain unattended after
deployment; therefore, the node lifetime depends entirely on how energy is conserved during commun-
ication. Although some exhausted nodes could be compensated using redundant neighboring nodes,
certain situations may arise rendering a part of the network completely inactive due to low connectivity
and insufficient coverage, or making that part of the network inaccessible and isolated from the other
parts. Such scenarios could be averted by avoiding unnecessary transmissions and longer listening periods
— activities that consume the highest amount of power in nodes.

Another related issue is the high node density in WSNs. Although the transmission ranges are lower,
a fairly high number of nodes can contend for the medium, at least in certain portions of the network.
By the same token, transmissions from each node would increase the background noise for a large number
of nodes, which may disrupt their own receptions. Thus, the MAC schemes for WSNs should be carefully
designed to achieve the optimum performance toward the intended application. Previous surveys [1, 5]
discuss some issues related to medium access in WSNs and WAHNs.

 

TABLE 15.1 

 

Comparison of Features for WSNs and WAHNs

 

  

 

Wireless Sensor Network Wireless Ad Hoc Network

 

Nodes involved in sensing the environment; events 
occurring in the environment can initiate certain 
communication in the network 

No sensing behavior; network communication governed by 
user applications

Nodes are smaller in size Larger nodes (e.g., PDAs, laptops)
Small and limited capacity power sources High-capacity power sources
Inexpensive nodes Relatively expensive nodes
Nodes unattended after deployment and designed for a 

prolonged lifetime with no maintenance or 
troubleshooting

Node troubleshooting and battery replacement possible

Node lifetime depends on the usage of attached power 
source

Node lifetime does not depend on energy resources because 
power sources are replaceable or rechargeable

Higher node density/highly redundant networks Low node density/less redundant networks 
Shorter transmission range (3 to 30 m) Longer transmission range (10 to 500 m)
Limited processing and memory capacity Higher processing power and memory
Nodes may stay in sleep mode for a significant amount of 

time
Nodes will be listening to the wireless medium most of the 

time
Data-centric communication; packet destination will 

depend on attributes of gathered data
Communication mostly occurs between specific nodes 

according to user requirements
Traffic profiles likely have statistically correlated properties 

comprising bursty traffic in case of event detection and 
low, continuous traffic during other times

Mostly continuous traffic, e.g., multimedia data streams 

Low bandwidth (1–100 kb/s) High bandwidth (e.g., 1 to 54 Mbps in IEEE 802.11-based 
WAHNs)

Network operation can be task oriented Operation similar for all applications
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15.3 MAC Protocols for Wireless Ad Hoc Networks

 

The closest types of networks rendering a similar behavior to WSNs are WAHNs, although they have
marked differences as highlighted in our discussion. Properly standardized MAC protocols designed to
cater to the ad hoc and distributed nature of WAHNs have been developed and are in commercial use.
Also, some of them focus on energy savings, mainly for mobile applications. These features are highly
sought after in WSNs as well. 

Currently available MAC protocols for wireless ad hoc networks are of two major types: 

 

contention
based

 

 (CSMA) and 

 

scheduling based

 

 (TDMA, FDMA, or CDMA). In contention-based MAC schemes,
the nodes compete among each other for channel access, whereas in scheduling-based methods, a specific
schedule of channel access is used in time, frequency, or code domains. This section will briefly discuss
several important medium access schemes belonging to both categories, including IEEE 802.11 [2];
Bluetooth [3, 4]; energy-conserving MAC (EC-MAC) [6]; and the power aware multiple access (PAMAS)
[7]. Their merits, drawbacks, and suitability for WSNs will be highlighted. 

 

15.3.1 IEEE 802.11 

 

IEEE 802.11 is a standard developed for wireless LAN (WLAN) applications intended to replace conven-
tional wired LANs so that the same applications can run seamlessly with media in 802.3 and 802.5
standards. Nodes in such networks would be mostly laptops and other typical equipment connected to
a LAN. The distributed coordination function (DCF) in IEEE 802.11 is the access method used to support
asynchronous data transfer on a best-effort basis when the network functions in an ad hoc mode. DCF
can also coexist with an infrastructure network. 

This is a contention-based protocol based on MACA [8] and MACAW [9] schemes proposed as
improvements to the original CSMA scheme developed in Kleinrock and Tobagi [10]. It uses carrier sense
multiple access with collision avoidance (CSMA/CA). Collision detection (CD) is not used because a
node is unable to listen to the channel for collisions while transmitting. The scheme attempts to avoid
the hidden terminal and exposed terminal problems in the original CSMA scheme. 

 

15.3.1.1 Operation 

 

Each node maintains a backoff counter controlling the channel access. Before a node starts data trans-
mission, it senses the wireless medium. If the medium appears to be idle for a specified period of time
(distributed interframe space — DIFS), it starts decrementing the backoff counter. If the carrier is detected
during this time, the backoff counter is frozen; otherwise, it starts transmission once the backoff counter
reaches zero. The sender and receiver exchange short request-to-send (RTS) and clear-to-send (CTS)
control frames to establish a session. Data transmission is followed by an acknowledgment (ACK) frame
to confirm successful reception. The gaps among RTS, CTS, DATA, and ACK frames are specified by
short interframe space (SIFS). Duration of SIFS is relatively shorter than DIFS, thereby giving priority
to the ongoing transmission. Contention for the channel access between two nodes, N1 and N2, is
illustrated in Figure 15.2. Initially N1 is transmitting frame 1 followed by ACK reception. After waiting
for the DIFS period, it starts decrementing the backoff counter in an attempt to transfer another packet.
Because the backoff counter of N2 reaches zero first, it captures the medium and transmits a frame while
N1 senses the medium is busy. Following the transmission of N2, N1 recaptures the medium for
transmission of its second frame.

The DCF adopts a slotted binary exponential backoff mechanism to select the random backoff interval
in case of unsuccessful transmission or after the completion of a successful transmission. This random
number is drawn from a uniform distribution over the interval [0, CW-1], where CW is the contention
window. After an unsuccessful transmission, CW is doubled; once CW reaches a maximum value (CW

 

max

 

),
it will remain there. In the case of a successful transmission, the CW value is reset to a minimum value
(CW

 

min

 

). 
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The control frames RTS and CTS, as well as the data frames, include a parameter indicating the
expected data transfer duration for the current session, which is used by the other nodes to update their
network allocation vector (NAV). NAV is used to maintain a timer at each node, thus avoiding unnecessary
transmission attempts before the current transmission is completed. This is termed a 

 

virtual carrier
sensing

 

. During the backoff period and the NAV timer active period, the node will be in idle mode
listening to the channel with no transmission attempts. 

 

15.3.1.2 Power-Saving Mode in IEEE 802.11

 

IEEE 802.11 standard also defines a power saving (PS) mode in which certain nodes can “go to sleep.”
Under DCF operation, PS nodes “wake up” periodically for a short interval called the Ad Hoc Traffic
Indication Map (ATIM) window. It is assumed that hosts are fully connected and synchronized so that
the ATIM windows of all PS hosts will start at about the same time. During this window, each node will
contend to send a beacon frame. Any successful beacon serves the purpose of synchronizing node clocks
and also inhibits other hosts from sending their beacons. After receiving the beacon, an active node can
send a direct ATIM frame to a node in PS mode. These transmissions are also contention based and use
the same DCF access procedure described earlier. On reception of the ATIM frame, the PS node will
reply with an ACK and remain active for the rest of the period. Data transfer will take place after that. 

 

15.3.1.3 Merits, Drawbacks, and Implications for WSNs

 

Recent work has shown that the energy consumption using IEEE 802.11 MAC protocol is significantly
high because the nodes are listening to the channel most of the time. Although the 802.11 standard
defines the PS mode, it provides very limited policy about when nodes should go to sleep. PS mode is
designed for single-hop networks in which all nodes can hear each other. When used in multihop
networks, IEEE 802.11 may have problems in clock synchronization, neighbor discovery, and network
partitioning — thereby degrading the performance. Clock synchronization in a multihop WAHN is
difficult because there is no centralized control; also, the synchronization packets exchanged among
neighbors have variable delays due to unpredictable node mobility and radio interference.

PS mode is typically supported by letting low-power nodes wake up only at specific times. Without precise
clocks, a host may not be able to know when other PS hosts will wake up to receive packets. Furthermore, a
host may not be aware of a PS host at its neighborhood because a PS host will reduce its transmitting and
receiving activities so that it cannot be detected. Such incorrect neighbor information may be detrimental to
most routing protocols because the route discovery procedure may incorrectly report that there is no route
even when routes exist with some PS hosts in the middle. Tseng et al. [11] proposed three sleep schemes to
improve the PS mode in the IEEE 802.11 for its operation in multihop networks. 

Requirements for clock synchronization and the suboptimal power saving makes this scheme an
improper candidate for medium access in WSNs. Nevertheless, the idea of having a portion of nodes
sleeping in the network while others are active may be an applicable concept to WSNs. The presence of
redundant nodes in a WSN implies that all the nodes need not be active all the time because other nodes
in the neighborhood can perform sensing and communication tasks covering the target area. Therefore,
properly chosen redundant nodes can be put into sleep mode to achieve network-wide power savings.
Open issues to be explored include the selection of redundant nodes and wake-up and connection
reestablishment procedure for these nodes. 

 

FIGURE 15.2  

 

Contention between nodes N1 and N2 in IEEE 802.11 DCF.
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15.3.2 Bluetooth 

 

Bluetooth [3, 4] is a short-range wireless networking for electronic consumer devices (mobile phones,
pagers, PDAs, etc.). It uses a TDMA and CDMA hybrid scheduling-based MAC scheme. The topology
is a star network in which several slave nodes are attached to and synchronized with a master node to
form a piconet. The number of nodes in a piconet is limited to eight in order to keep a high-capacity
link among all the units and to limit the overhead required for addressing. Basic piconet configurations
are shown in Figure 15.3(a) and (b). Along with the basic TDMA scheme, Bluetooth uses frequency
hopping code division multiple access (FH-CDMA), which uses a large number of pseudorandom
hopping sequences. Interpiconet communication is achieved by forming ScatterNets as shown in Figure
15.3(c) and (d). A single node can be a master in one piconet while it is a slave in another. Also, a node
can be a slave in two piconets. 

 

15.3.2.1 Operation 

 

The master node determines hopping sequence, provides clock synchronization information for each
slave node, and also controls the traffic in the piconet. The master/slave role is only attributed to a unit
for the duration of the piconet. When a piconet is cancelled after a certain period of time, the master
and slave roles are also cancelled and new piconets will be formed. Any node can become a master or
slave. By definition, the unit that establishes the piconet becomes the master. Mechanisms are in place
for multiple piconets to interconnect and form a multihop topology. 

The time slots are alternately used for master and slave transmissions. The master transmission includes
slave address of the unit for which the information is intended. In order to prevent collisions on the
channel due to multiple slave transmissions, a polling technique is used: for each slave-to-master slot,
the master decides which slave is allowed to transmit. This decision is performed on a per-slot basis: only
the slave addressed in the master-to-slave slot directly preceding the slave-to-master slot is allowed to
transmit in this slave-to-master slot. If the master has information to send to a specific slave, it is polled
implicitly and the slave can return information. If the master has no information to send, it must poll
the slave explicitly with a short poll packet. Because the master node schedules the traffic in the uplink
and the downlink, intelligent scheduling algorithms that take into account the slave characteristics must
be used. The master node control effectively prevents collisions among the participants of the piconet.
Independent collocated piconets may interfere when they occasionally use the same hop carrier. 

 

FIGURE 15.3  

 

Piconet configurations in Bluetooth.

(a) Point to point (b) Point to multipoint

(c) ScatterNet type1

Piconet 2

Piconet 1

Piconet 1

Piconet 2

Master in Piconet 1
/ Slave in Piconet 2

(d) ScatterNet type2
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15.3.2.2  Merits, Drawbacks, and Implications for WSNs

 

Compared to contention-based MAC schemes, TDMA schemes have a natural advantage of energy
conservation because the duty cycle of the radio is reduced and there are no contention-introduced
overheads or collisions. Nodes can be put to sleep to save energy during the off intervals of the duty
cycle, thereby making this an obvious candidate for WSNs.

Use of a TDMA protocol usually requires the nodes to form real communication clusters such as the
piconets described here. Nodes in such clusters are restricted to communicate within the cluster, except
for the master node and possible gateway nodes. Managing intercluster communication and interference
is not an easy task. Moreover, when the number of nodes within a cluster changes, it is not easy for a
TDMA protocol to change its frame length and time slot assignment dynamically. Thus, its scalability is
normally not as good as that of a contention-based protocol. 

In Bluetooth, nodes within a piconet must be synchronized to use the TDMA scheme. Achieving local
synchronization within the cluster is not a difficult task. However, network-wide synchronization will be
almost impractical, especially in WSNs. Thus, proper mechanisms need to be developed for intercluster
communication, perhaps based on contention-based schemes. 

 

15.3.3 Energy-Conserving Medium Access Control (EC-MAC) Protocol for 
Wireless ATM Networks

 

This particular MAC protocol is briefly described here because of its significant contribution toward
minimizing the power consumption of nodes in wireless and mobile ATM networks. Goals of this access
protocol are to conserve battery power; to support multiple traffic classes; and to provide different levels
of service quality through bandwidth allocation. Although the IEEE 802.11 and Bluetooth standards
address energy efficiency, this was not one of the central design issues in developing these protocols. The
EC-MAC protocol [6], on the other hand, was developed with the issue of energy efficiency as a primary
design goal. 

 

15.3.3.1 Operation 

 

The EC-MAC protocol is defined for an infrastructure network with a single base station serving mobiles
in its coverage area. This definition can be extended to an ad hoc network by allowing the mobiles to
elect a coordinator to perform the functions of a base station. Transmission in EC-MAC is organized by
the base station into frames and each frame equals the basic unit of wireless data transmission.

The frame structure of EC-MAC protocol is shown in Figure 15.4. At the start of each frame, the base
station transmits the frame synchronization message (FSM), which contains synchronization information
and the uplink transmission order for the subsequent reservation phase. During the request and update
phase, each registered mobile transmits a new connection request according to the transmission order
received in the FSM. Collisions are avoided during this phase by having the base station send the explicit
order of transmission using the FSM. 

New mobiles that have entered the cell coverage area register with the base station during the new-
user phase. Collisions during this phase are unavoidable and thus it may be operated using a variant of
ALOHA. This phase also provides time for the base station to compute the data transmission schedule.
The base station broadcasts a schedule message that contains the slot assignments for the subsequent
uplink and downlink data transmissions (see Figure 15.4). Downlink transmission from the base station

 

FIGURE 15.4  

 

Frame structure in EC-MAC.
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to the mobile is scheduled considering the QoS requirements; similarly, the uplink slots are allocated
using a suitable scheduling algorithm.

 

15.3.3.2 Merits, Drawbacks, and Implications for WSNs

 

Energy consumption is reduced in EC-MAC due to the use of a centralized scheduler, as in Bluetooth.
Therefore, collisions over the wireless channel are avoided, thus reducing the number of retransmissions.
Additionally, mobile receivers are not required to monitor the transmission channel as a result of
communication schedules. The centralized scheduler may also optimize the transmission schedule so
that individual mobiles transmit and receive within contiguous transmission slots. This scheme highlights
the fact that scheduling algorithms that consider mobile battery power level in addition to packet priority
may improve performance for low-power mobiles. Techniques used to minimize the energy consumption
and performance of EC-MAC in this regard are discussed in detail in Sivalingam et al. [6].

In contrast to Bluetooth, this scheme allows new mobile nodes to join the cluster without completely
disassembling it. In certain WSN applications, the network may consist of a significant portion of mobile
nodes among the stationary nodes. Certain stationary nodes may act as sink nodes analogous to the base
stations or cluster heads discussed here. When mobile nodes roam around these clusters, a concept similar
to EC-MAC can be used to attach new mobile nodes to an existing group or cluster. After such an
attachment and schedule update, the mobile nodes can communicate with the cluster head, using the
set schedule, at a minimal expense of its energy.

 

15.3.4 Power-Aware Multiple Access (PAMAS) Protocol

 

PAMAS (power-aware multiple access) is a contention-based protocol [7] designed for ad hoc networks
with energy efficiency as the primary design goal. It modifies the MACA protocol [8] by providing
separate channels for RTS/CTS control packets and data packets (out-of-band signaling), thereby avoiding
overhearing among neighboring nodes.

 

15.3.4.1 Operation 

 

In PAMAS, a mobile with a packet to transmit sends an RTS message over the control channel and awaits
the CTS reply message from the receiving mobile. If CTS is received, then the node transmits the packet
over the data channel. This procedure is shown with nodes N3 and N4 in Figure 15.5. With the start of
receipt of the data packet, the receiving mobile transmits a busy tone (BT) over the control channel with
more than twice the duration of RTS/CTS packets, thus enabling users tuned to the control channel to
know that the data channel is busy. Also, if it hears any other RTS packets (from node N6 in Figure 15.5),
it transmits a busy tone. 

If an idle node receives an RTS, it will check whether any of its neighbors is transmitting (by sensing
the data channel) or receiving (by sensing BT). In either case, it will not reply with CTS (shown with
nodes N2 and N5), thus causing the sender of RTS (nodes N1 and N6) to back off using a binary
exponential backoff (BEB) scheme. Power conservation is achieved by requiring mobiles that are not able
to receive or send packets to turn off the wireless interface. The use of a separate signaling channel allows
nodes to determine when and for how long to power off. A mobile should power off when: (1) it has no
packets to transmit and a neighbor begins transmitting a packet not destined for it, or (2) it has packets
to transmit but at least one neighbor pair is communicating. 

Once a node is powered off, two main issues arise. First, the latency due to sleeping is an issue because,
if some other node wants to transmit data to a sleeping node, it must wait until this node powers up
again. However, it should be noted that, even if the node was awake in this scenario, the sender must
wait until the other transmissions are finished. This is a valid argument as long as the node will wake
up as soon as the neighboring transmissions and receptions are complete. Therefore, the mechanisms
that a node will use to decide exactly when to wake up are crucial.

The second issue is determining the length of sleep duration. It is addressed using a special probe
packet. When a node wakes up after some time, it will send out a probe packet over the signaling channel
asking any receiving nodes how much time it will take for the current transmission to end. If no collision
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occurs, the querying node will receive the exact time from the receiving node and will go back to sleep
until this time. If the probe packet was destroyed due to a collision, the node will continue a binary
search, sending more probe packets. Thus, the use of these probe packets ensures that the node sleeps
no longer than necessary, thereby leaving the latency and throughput unchanged. 

 

15.3.4.2 Merits, Drawbacks, and Implications for WSNs

 

Simulation results have established that this method reduces the power consumption by more than 50%
in fully connected networks and at least 10% in highly loaded sparse networks. The essence of this scheme
lies in the introduction of the additional signaling channel. This is also a major drawback of the scheme
because employing an additional signaling channel requires additional hardware to be built into the nodes.
It poses additional challenges, especially in WSNs in which node hardware is highly miniaturized. 

Nevertheless, the significance of this protocol is that it can achieve high energy savings without
compromising the network throughput and delay. Perhaps the concept of out-of-band signaling used
here may be adaptable for intercluster communication in WSNs in which lack of synchronization does
not permit using scheduling-based schemes. Such an out-of-band signaling channel can be used to set
up data transfer directly between cluster heads or via gateway nodes. This will be remarkably effective
for event-driven sensor networks (discussed in Section 15.4.2) in which intercluster communication
occurs mostly in cases of a detected event and the regular communication is restricted primarily to nodes
within the clusters. 

A major contribution of the PAMAS protocol is the power savings achieved without sacrificing
network throughput and latency. However, a major drawback observed here is that the power
consumption of the nodes during excessive switching between the sleep and wake-up states is not
given due attention. With the present WSN hardware designs, power consumption during state
switching is significant. At the face of this, the PAMAS method may not perform satisfactorily without
appropriate modifications for WSNs. Table 15.2 provides a brief comparison of these four medium
access methods for WAHNs. 

 

FIGURE 15.5  

 

Operation of PAMAS.
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15.4 Design Challenges for Wireless Sensor Networks

 

As discussed in the first section, nodes in a WSN possess unique characteristics, especially the energy
constraints, compact hardware, low transmission ranges, event- or task-based network behavior, and
high redundancy. For a WSN, the extension of its lifetime is the most important issue. Therefore, power
awareness is prominent in almost every aspect of the operation of WSNs. Currently, the research related
to hardware of WSNs is focused on developing ultra low-power sensors, processors, and radio transceivers.
Other drives are to reduce the form factor of batteries and improve technologies for power sources to
keep nodes alive in active operation for many years. Meanwhile, software and middleware development
is focused on minimizing power consumption during network operation. As highlighted in Section 15.2.1,
it is extremely critical that the medium access control scheme be power optimal. 

Energy consumption of a WSN occurs in three domains: sensing; data processing; and communica-
tions; among these, radio communication is the major consumer of energy. As highlighted in Pottie and
Kaiser [12], energy for transmitting 1 kb over a distance of 100 m is estimated as 3 J. With the same
amount of energy, a general purpose processor with 100 MIPS/W power could execute 3 million instruc-
tions. The sensing circuitry consumes less power than the processor board in a typical WSN platform
such as MICA [13, 14]. However, the radio consumes two to three times the power of the processor
during packet transmission. Power consumption of the radio during listening to the channel for reception
is also higher than the processor at full operation, but relatively lower than the transmitting power. The
MICA sensor network platform defines four modes of operation, and Table 15.3 shows the typical current
draw and power consumption of each node. 

Thus, it is clear that the research focus should be on optimizing the medium access method in order
to extend the lifetime of the network. In addition to energy conservation, the ability of the MAC scheme
to adapt to network size, node density, and topology is also important. To be used in sensor networks
aimed for dynamic applications, a MAC scheme should be highly scalable. Other important attributes
include fairness, latency, throughput, and bandwidth utilization. However, these issues are considered
secondary compared to energy considerations because they determine the entire lifetime of the network. 

 

TABLE 15.2

 

Comparison of Media Access Protocols for Wireless Ad Hoc Networks

 

Protocol Applications Features Implications to WSNs

 

IEEE 802.11 DCF Wireless LAN Optional PS mode Redundant nodes can be sent to sleep 
and wake up as need arises

Bluetooth Wireless networking for 
personal consumer devices

Piconets; centralized 
scheduling

Node clustering; local synchronization 
among nodes in clusters 

EC-MAC Wireless and mobile ATM 
networks

Scheduling for mobile 
nodes

Attaching mobile nodes to clusters 
without disassembling clusters

PAMAS MAC protocol designed for 
WAHNs

Out-of-band 
signaling

Use of out-of-band signaling for 
intercluster communication

 

TABLE 15.3

 

Modes of Operation in MICA

 

Mode
Typical Current 

Draw
Power 

Consumption

 

Transmit (peak power) 32 mA 95 mW
Receive 18 mA 55 mW
Idle/sense 8 mA 25 mW
Sleep 20 

 

μ

 

A 60 

 

μ

 

W

 

Source

 

: Crossbow Inc., Data sheet for MICA2 wireless measurement
system, 2003.
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Similar to the schemes described in Section 15.3, MAC schemes for sensor networks can be funda-
mentally categorized into 

 

contention-based

 

 or 

 

scheduling-based

 

 schemes. The inherent advantages of
contention-based schemes in the context of WSNs include: 

• No synchronization requirements 
• No central scheduler required
• More robust to network dynamics
• No clustering necessary
• More suitable for event-driven WSNs

However, in terms of energy savings, contention-based schemes are not very attractive. Several sources
of energy wastage in contention-based schemes during communication [15] can be identified: 

•

 

Collision

 

. Usually data gathered by a node are exchanged with others using the radio. Two nodes
may transfer data to each other at the same time or several nodes transfer data to the same node
at the same time. When a transmitted packet is corrupted, it must be discarded and, thus, the
follow-on retransmissions increase energy consumption. Collision increases latency as well. 

•

 

Overhearing

 

. When a node picks up packets destined to other nodes, overhearing occurs. In an
ad-hoc fashion, a transmission from one node to another is potentially overheard by all the
neighbors of the transmitting node; thus, all of these nodes consume power even though the packet
transmission was not directed to them. 

•

 

Control packet overhead

 

. Sending and receiving control packets such as routing updates consumes
energy and effectively reduces the network bandwidth for data packets. 

•

 

Idle listening

 

. Nodes must listen to the channel often in order to receive possible traffic that is not
sent. This is especially true in many sensor network applications because, if nothing is sensed,
nodes are in idle mode for most of the time. Actual measurements have shown that idle listening
consumes 50 to 100% of the energy required for receiving in such networks.

Scheduling-based schemes attempt to determine network connectivity first (i.e., discover the neighbors
of each node) and assign collision-free links to each node. Links may be assigned as time slots (TDMA),
frequency bands (FDMA), or spread spectrum codes (CDMA). However, the miniature hardware design
of nodes in a WSN may not permit employing complex radio transceivers required for FDMA or CDMA
systems. Thus, TDMA schemes are preferred as scheduling methods for WSNs. Inherently, TDMA
schemes have a distinct advantage over the other methods. Except for the transmission, receiving and
sensing durations, nodes can be put to sleep in order to achieve the highest amount of energy savings
possible.

Nevertheless, the task of assignment of channels (i.e., TDMA slots, frequency bands, or spread spec-
trum codes) to links between neighbors so that packets do not collide is difficult. To ease the assignment,
often a hierarchical structure is formed in the network to localize groups of nodes and make the task of
channel assignment more manageable. This requires formation of node clusters and elect leaders for each
cluster. 

For TDMA schemes, time synchronization is a crucial factor, also. In contrast to generic WAHNs,
maintaining perfect synchronization over the whole network is almost impossible, mainly because of
the wide range of deployment, lower transmission ranges, and less control packet transmissions
permitted due to energy constraints. Under a hierarchical clustering scheme, synchronization within
each cluster can be maintained, but intercluster communication poses problems because of lack of
synchronization.

 

15.4.1 Why Existing Methods for Wireless Ad Hoc Networks Cannot Be Used

 

The main goals of WAHNs are to provide a high throughput and low delay at a high bandwidth. In such
networks, all nodes are engaged in the same type of activity and each user deserves equal opportunity
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in accessing the media. Thus, per-node fairness is an important issue. Network lifetime is not considered
significant because the energy sources can be recharged or replaced, although power-saving schemes are
recommended. 

In contrast, for a WSN, extending the network lifetime is one of the priorities. To this end, it is necessary
to conserve energy at each node during network operation. Toward achieving this objective, one must
be ready to compromise network throughput and latency to a certain extent. Moreover, based on the
type and operation of the WSN, as described in Section 15.4.2, throughput and latency requirements
will depend on the application.

Also in contrast to WAHNs, nodes in WSNs are highly redundant; thus, some nodes can afford to be
in sleep mode until a need arises, while others are active. Certain nodes acting as cluster heads, gateways,
or sink nodes would accumulate, process, and relay larger quantities of data than ordinary, leaf-level
sensor nodes. Additionally, from time to time during certain applications, the importance of data sensed
by a node may vary in its importance or relevance to the current network objective. These issues call for
maintaining distinct node priorities in WSNs in contrast to per-node fairness desired in WAHNs. Thus,
employing MAC schemes that are developed for WAHNs would not be satisfactory in sensor networks
without proper modifications. 

In summary, novel MAC protocols are needed for WSNs because:

• Extending network lifetime is the primary goal in WSNs.
• Throughput and delay performance become secondary goals.
• QoS requirements may vary from time to time (e.g., in an event-driven WSN).
• Per-node fairness is not desired; instead, distinct node priorities may need to be considered for

resource allocation.

 

15.4.2 Communication and Application Types in Sensor Networks 

 

This section attempts to categorize the application-led behavior and possible communication types in
WSNs. This is a general categorization that may help to identify relevant issues in designing an optimum
medium access scheme for WSNs. Depending on application characteristics, sensor networks will behave
in one of the following ways. It is possible that the same network may adopt a different role due to
changes in the system objectives or firing of certain events in the observation field.

•

 

Centralized

 

 data gathering and decision making. These networks are hierarchically organized, thus
easier to set up and manage. At the top of the hierarchy, one or more root (sink) nodes collect all
data from leaf nodes. Local processing may be performed at the sensor nodes at the bottom of
the hierarchy, but the root node is responsible for gathering final data and, for the most part,
governing the operation of the whole network.

•

 

Distributed

 

 data gathering and decision making. Tasks in these networks are highly distributed
and it is difficult to identify a particular network architecture or a hierarchy. An example would
be a set of sensor nodes dropped in a harsh environment with no central control. Individual nodes
must perform whatever sensing operations they can, discover their own neighbors and perhaps
collectively make decisions on discovered events, and relay the decisions to the outside world via
any relay nodes in reach. Instead, they would control certain actuators within their reach to perform
certain reactive actions individually or by temporarily appointed leader nodes.

In both data gathering schemes, the following types of communication can occur:

• Unicast messages:
•

 

Local

 

. When a real-world event in the network occurs, nodes are expected to perform some
in-network processing. This will generally involve local messages being exchanged between
neighbors. In a cluster-based scheme, this will include the messages exchanged between two
nodes in the cluster or between a member node and the cluster head. 
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•

 

Multihop

 

. In centralized data gathering applications when a node requires sending data to the
sink node (node-to-sink reporting), the sink node will not be in its direct reach most of the
time. Thus, it will pass the message with the intended recipient address over multiple hops.
This needs a proper addressing scheme as well as an efficient routing scheme. 

• Multicast messages:
•

 

Local

 

. These are messages originating from a node intended for several neighbors within its
direct transmission range. For a clustering-based scheme, this is limited to multicast within
the cluster.

•

 

Multihop

 

. An example is a situation in which a sink node or a root node requires passing a
control message to a set of nodes. In a clustering-based scheme, this may be communication
from a root node to a set of cluster heads, or from one cluster head to several others. All such
multihop messages need a proper addressing scheme as well as an efficient routing scheme, as
mentioned earlier.

• Broadcast messages:
•

 

Local

 

. Messages will be broadcast by a node to all the neighbors within its reach. Such messages
will include anything of local importance to the neighborhood. In a clustering-based scheme,
these will include messages broadcast among all nodes in a group. 

•

 

Multihop

 

. These are the messages that will impose the heaviest communication burden on the
network. For instance, in a monitoring and surveillance application, a node may observe an
alarming condition and may need to alert all others in the network. Unrestricted flooding may
not be appropriate for such a situation, but a combination of multihop–multicast with local
broadcast may be used.

Based on the application, optimal communication strategy for a sensor network would also be different.
Two major categories of sensor networks dictated by their applications [16] have been identified:

•

 

Event driven sensor networks

 

. In an event-driven sensor network, sensor nodes do not send data
(and are most likely asleep) until a certain event occurs. For example, in a fire-monitoring
application, until a rise in temperature or smoke is detected, no data need be sent. In this way,
node energy can be maximally saved. When an event occurs, how quickly the event can be reported
to a central station, or how quickly other neighboring nodes can be alerted, become important
issues. The main difficulty in an event-driven sensor network is to wake up the entire network,
or at least the nodes along a path to the base station, when an event occurs. Moreover, the traffic
pattern of the network may drastically change in case of an event. 

•

 

Continuous monitoring sensor networks

 

. In a continuous monitoring sensor network, data are
sampled and transmitted at regular intervals. For example, an ambient temperature monitoring
station can take periodic readings and send it to a central monitoring station only at specific
intervals. In these types of networks, the traffic patterns are more stationary and the routing tables
(if any) remain unchanged most of the time. Scheduling-based MAC schemes can be used effec-
tively in these networks for maximum energy savings.

The behavior and communication types identified in this section need to be considered for the optimal
performance of energy-aware MAC schemes. Next, several MAC schemes proposed for WSNs will be
discussed, along with their applicability to these different types of networks. 

 

15.5 Medium Access Protocols for Wireless Sensor Networks

 

Recently, several authors have suggested energy-aware medium access schemes for WSNs, a number of
which are modifications of existing protocols for WAHNs. This is still a growing area of research calling
for attention to several open issues yet to be addressed. This section discusses four such recently proposed
schemes, with their merits and drawbacks, in the context of WSNs. These include sensor MAC (SMAC)
[15]; self-organizing MAC for sensor networks (SMACS) [17]; traffic adaptive medium access protocol
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(TRAMA) [18]; and power-efficient and delay-aware medium access protocol for sensor networks
(PEDAMACS) [19].

 

15.5.1 Sensor MAC (SMAC)

 

The main objective of SMAC [15] is to conserve energy in sensor networks; it takes into consideration
that fairness and latency are less critical issues compared to energy savings. Thus, this scheme compro-
mises fairness and latency to a certain degree. In order to save energy, SMAC establishes a low duty cycle
operation in nodes. It reduces idle listening by periodically putting nodes into sleep in which the radio
transceiver is completely turned off. As discussed in Section 15.2.1, a high bandwidth utilization is a goal
in generic WAHNs, compelling nodes to operate in fully active mode all the time. In SMAC, the low
duty cycle mode is the default operation of all nodes in the network. Nodes only become more active by
changing the duty cycle when heavy traffic is present in the network, or once an event occurs in case of
an event-driven WSN.

 

15.5.1.1 Operation 

 

During the design of SMAC, the following assumptions have been considered:

• Short-range multihop communications will take place among a large number of nodes.
• Most communications will be between nodes as peers, rather than to a single base station.
• In-network data processing is used to reduce traffic. 
• Collaborative signal processing is used to reduce traffic and improve sensing quality.
• Applications will have long idle periods and can tolerate some latency.
• Network lifetime is critical for the application.

All nodes in the network will be following a sleep-and-listen cycle called a frame, as shown in Figure
15.6. The duration of the listen period is normally fixed and the sleep interval may be changed according
to application requirements, changing the duty cycle. 

The same RTS/CTS/DATA/ACK procedure as that in IEEE 802.11 is adopted here for unicast packets
in order to ensure collision avoidance and to avoid hidden terminal problem. Broadcast packets are sent
without using RTS/CTS; NAV timer update information is included in all four types of packets. Thus,
this scheme uses virtual and physical carrier sensing. After a successful exchange of RTS and CTS, the
sender will start transmission and will extend it into the sleeping duration as well, if required. The nodes
do not follow their sleep schedules until they finish the transmissions, thus increasing the performance.

 

15.5.1.2 Coordinated Sleeping

 

Although a node can freely choose its own active/sleep schedules in SMAC, it attempts to reduce the
overhead by synchronizing schedules of neighboring nodes together. Nodes exchange their schedules by
periodically broadcasting a SYNC packet to their immediate neighbors at the beginning of each listen
interval. A set of nodes synchronized together will form a virtual cluster. Because the whole network
cannot be synchronized together, neighboring nodes are allowed to have different schedules. However,
neighboring nodes are free to talk to each other, no matter to which listen schedules they adhere. A
considerable portion of the nodes will belong to more than one virtual cluster, enabling intercluster
communication. Thus, this scheme is claimed to be adaptive to topology changes. 

 

FIGURE 15.6  

 

Periodic listen-and-sleep schedule in SMAC.
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When the network is first deployed, each node tries to retrieve a sleep schedule from a neighbor first.
In case of failure, it adopts one of its own and also tries to announce it to the neighbors by broadcasting
a SYNC packet. Broadcasting SYNC packets must also follow the normal carrier sense and random
backoff procedure. If a node receives a different schedule after it announces its own schedule, it must
adopt one of the following:

• If the node detects no other neighbors, it can discard the current schedule and adopt the new.
• If it has one or more neighbors and is already a part of an existing virtual cluster, it can adopt

both schedules by waking up at the listen intervals of both.

The active interval of a node is divided into three parts for SYNC, RTS, and CTS as shown in Figure
15.7. If CTS is received, data transmission will be immediately followed. Here nodes 1 and 3 are syn-
chronized to the schedule of node 2 by receiving its SYNC packet, thus falling into the same virtual
cluster. Node 3 initiates an RTS/CTS exchange with node 1 followed by a data transmission. While node 2
follows its normal sleep schedule, nodes 1 and 3 stay active until the completion of the data transfer,
altering their usual schedule. 

 

15.5.1.3 Neighbor Discovery in SMAC

 

When a new node powers on, it listens to the channel in anticipation of a SYNC packet. However, it is
possible that a new node fails to discover an existing neighbor because of collisions or delays in sending
SYNC packets by neighbor due to busy medium. To prevent a case in which two neighbors cannot find
each other when they follow completely different schedules, SMAC protocol employs a simple periodic
neighbor discovery procedure by requiring each node to listen periodically to the channel for the whole
synchronization period. The frequency can be varied depending on the network conditions, etc. 

 

15.5.1.4 Synchronization

 

Clock drift on each node can cause errors in the coordination of schedules among neighboring nodes. To
minimize this problem, it uses relative timestamps in SYNC packets. Also, the listen period is made signifi-
cantly longer than possible clock drift. Although this technique can tolerate relatively larger clock drifts,
neighboring nodes are still required to update each other periodically with their schedules to prevent possible
errors. Using experiments, authors claim that the clock drift between two nodes does not exceed 0.2 ms per
second [15]; however, these figures may not be valid for certain applications of WSNs. 

 

FIGURE 15.7  

 

Timing schedules among different nodes in SMAC.
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15.5.1.5 Adaptive Listening

 

An adaptive listening strategy that enables each node to adjust its schedule according to the network traffic
is also used in SMAC to minimize latency. When a sensing event occurs, it is desirable that the sensing data
can be passed through the network without much delay. When each node strictly follows its sleep schedule,
potential delays are possible on each hop in the multihop path. The technique is that, if a node overhears its
neighbor’s RTS/CTS transmission during a listen period, it will receive the estimated length of that data
transmission before going to sleep according to its normal schedule. However, the node will wake up for a
short period of time at the end of that transmission to check whether it is the next hop in this multihop
message. If so, the neighbor will immediately pass the data to it after RTS/CTS exchange, thus avoiding the
neighbor’s waiting for the next scheduled listen time of this node and minimizing latency.

 

15.5.1.6 Merits and Drawbacks 

 

Compared to other schemes designed for the mobile ad hoc networks explained in Section 15.3, SMAC
is designed particularly for use in wireless sensor networks. It attempts to combine the advantages of
TDMA scheduling for power saving by periodically requiring sensing nodes to go to sleep. The sleeping
patterns are coordinated in order to minimize the latency, as discussed before. Nevertheless, a solution
with a fixed duty cycle does not give the optimal performance. 

Authors claim that this scheme forms a flat topology and intercluster problems are absent; however,
this may not be true in cases in which the application requires real clusters to be formed, at least
temporarily. In such a case, the communication patterns will depend on the cluster formation and that
these real clusters and the virtual clusters formed will coincide is not guaranteed. The adaptability of this
scheme to such a situation should be investigated. 

A significant portion of nodes will belong to two or more virtual clusters under this scheme. The
energy consumption of such nodes would be higher compared to nodes within a single virtual cluster.
Hence, the portion of such nodes and its effect on performance should be analyzed under real application
scenarios. Also, the performance of this MAC scheme should be studied along with different routing
schemes in order to assess its performance of intercluster communication, especially for multihop unicast
and multicast messages. Data routing across virtual clusters needs to be studied further for its latency
and throughput. 

In WSN applications, it is possible for certain nodes to be exhausted with power and new nodes to be
added. Performance of SMAC during times when a significant portion of nodes is discarded or added,
or in cases with a higher portion of mobile nodes, should be studied. Another instance to be observed
is what happens if the coordinated sleep schedules of two neighboring clusters are completely opposite.
In such cases, it is not clear whether the bordering nodes could adopt both schedules.

 

15.5.2 Self-Organizing MAC for Sensor Networks (SMACS) and Eavesdrop 
and Register (EAR) Algorithms

 

Self-organizing MAC for sensor networks (SMACS) is designed for network startup and link layer
organization in a static WSN [17]; it is one of the earliest attempts to develop MAC protocols for sensor
networks. In this scheme, each node maintains a TDMA frame in which the node schedules different
time slots to communicate with its known neighbors. During each time slot, it only talks to one neighbor.
To avoid interference between adjacent links, the protocol uses different frequency channels (FDMA) or
spread spectrum codes (CDMA). Although the frame structure is similar to a typical TDMA frame, it
does not prevent two interfering nodes from accessing the medium at the same time. The actual multiple
access is accomplished by FDMA or CDMA.

 

15.5.2.1 Operation 

 

For the correct operation of the SMACS protocol, the following assumptions are made. 

1. Nodes are able to tune the carrier frequency to different bands. It is assumed that the number of
available bands is relatively large.
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2. Nodes are randomly deployed. After deployment, each node wakes up at some random time
according to a certain distribution.

3. The network is assumed to consist primarily of stationary nodes, with few mobile nodes. 

Each node assigns links to its neighbors immediately after they are discovered. When all nodes hear all
their neighbors, they have formed a connected, multihop network. Because each node is only partially
aware of the radio connectivity in its vicinity, it is possible that collisions can occur if a simple TDMA
scheme is used alone. To avoid this, frequency bands chosen at random from a large pool are assigned
for each slot.

Length of the frame 

 

T

 

frame

 

 is fixed for all nodes in the network; however, these frames need not be
synchronized and the time slots assigned inside the frame need not be aligned. This is possible because
different frequency band or CDMA codes are used for communication during each slot. Such an ability
to assign nonsynchronous slots is the key property that enables nodes to form links on the fly. This is
illustrated in Figure 15.8, in which nodes A, B, C, and D are in the same neighborhood after deployment
and they wake up at times 

 

T

 

1

 

 to 

 

T

 

4

 

, respectively. 
Nodes A and B discover each other first and establish their own schedules for transmission and

reception. Nodes C and D wake up at later times, discover each other, and establish their own schedules.
However, note that all schedules are not aligned and also that the transmission slots of pair A/B and pair
C/D overlap. This is made possible by using distinct frequencies fx and fy. After a schedule is established,
a node will turn on its transceiver ahead of appropriate slots to communicate with others. Similarly, it
will turn off the radio when no communication is scheduled, thereby enabling significant energy savings.
In most WSN applications, mobile nodes will be present among other stationary nodes. In order to attach
these mobile nodes in an energy conserving manner to the already formed network using SMACS, the
eavesdrop and register algorithm (EAR) is introduced and discussed in the following section. 

FIGURE 15.8  Nonsynchronous scheduled communication in SMACS.
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15.5.2.2 EAR Algorithm

The EAR algorithm enables seamless interconnection of mobile nodes in the field of stationary wireless
nodes. This protocol performs the mobility management of the network allowing mobile nodes to listen
to the communication from the stationary nodes and establish connectivity with them. Because of energy
limitations, the communication channels between the mobile and stationary sensors in the network must
be established using as few messages as possible. This is accomplished by allowing the mobile node to
decide when to invite the stationary node to establish a connection as well as when to drop a connection.
In this manner, mobile nodes assume full control of the connection process to avoid the unnecessary use
of power associated with lost messages. 

According to the preceding third assumption, only a few stationary sensors will be within the reach
of a mobile sensor at any given time. During some predetermined slot in the frame of each stationary
node, it transmits an invitation message to the surrounding neighborhood with the intent of inviting
new nodes to join the local network. Stationary nodes do not necessarily require a response to this
message, but a mobile node with the intention of joining the network will be eavesdropping on such
messages. These pilot messages will trigger the EAR algorithm in mobile nodes.

Each mobile node will maintain a list of neighbors according to the invitation messages received. It
compares parameters, such as the received SNR, node ID, transmitted power, etc., and decides which
node to connect. When the energy saving requirements are stringent, the decision will aim solely for
minimal power connectivity. Accordingly, the mobile nodes will initiate a connection with a stationary
node. Stationary nodes will also maintain a simple list of mobile nodes that have formed connections
and remove the entries when the link is broken. 

15.5.2.3 Merits and Drawbacks

Merits of this scheme include the ability to form links with any neighbor on the fly, with no restrictions
on synchronization, which largely reduces the latency. Another advantage is that this scheme is applicable
to WSNs with neither physical nor virtual clustering. This will allow the MAC scheme to function
independently of any application-based clustering requirements of WSN.

However, a significant waste of resources is a trade-off to low latency. The main drawback is that the
time slots are wasted if a node does not have data to send to the intended receiver. Also, the frames of a
large number of nodes will mostly be vacant if the nodes are sparsely distributed in certain areas. Defining
a smaller Tframe value will not be permitted in this case because some areas of the network may have a
higher density of nodes. SMACS does not attempt to utilize these vacant time slots in order to maintain
simplicity; rather, this protocol uses FDMA or CDMA and thus unnecessarily complicates the node
hardware design. Bandwidth utilization would also be lower for the same reasons. Another major draw-
back is that the energy waste during the switching between sleep and active states is not considered.
Because of assigning time slots on the fly without any synchronization, the nodes must switch between
active and sleep states many times. This will drain the energy sources of nodes unnecessarily. 

Apart from these drawbacks, this EAR protocol should be studied further in order to develop effective
ways to manage WSNs with mobile as well as stationary nodes.

15.5.3 Traffic Adaptive Medium Access Protocol (TRAMA) 

TRAMA is a recently introduced MAC protocol for energy-efficient and collision-free channel access in
WSNs [18]. It uses traffic-based information to decide on schedules for individual nodes and thus is
adaptive to network traffic. It is claimed that, because of this adaptability, it can deliver adequate
performance and energy efficiency in both network types discussed in Section 15.4.2. TRAMA provides
support for unicast, broadcast, and multicast traffic. 

15.5.3.1 Operation 

TRAMA assumes a single, time-slotted channel for data and signaling transmissions. The time schedule
of each node is organized in two major sections, as shown in Figure 15.9. One consists of a collection of
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signaling slots using random access and the other of data transmission slots using schedules access.
The duty cycle of switching between these states could be adjusted according to the application
requirements and also according to the different network types described in Section 15.4.2. For
stationary networks, the random access periods occur less frequently and vice versa for highly dynamic
networks. Cycle duration is usually of the order of tens of milliseconds, making this scheme less prone
to even significant clock drifts around 1 msec, which are highly unlikely in typical networks. Thus,
the scheme assumes that adequate synchronization can be achieved using one of the synchronization
schemes suggested for WSNs. 

Communication in TRAMA consists of three major components: neighbor protocol (NP); the adaptive
election algorithm (AEA); and the schedule exchange protocol (SEP). NP is used to exchange one-hop
neighbor information among neighbors and to gather two-hop topology information for each node in
the network. This is performed by exchanging small packets among neighbors during the random access
period. Nodes always start in random access mode with NP. Also, the synchronization is performed
during the random access period and the node should be in active state (transmit, receive, or listen)
during this interval. 

During the random access period, NP exchanges short signaling packets that include the information
about connected neighbors of the sender; the goal is to provide the two-hop neighbor information to
each node. Note that these include incremental information to keep the packet length small, i.e., it
contains the node IDs of newly added neighbors and disconnected neighbors. These short packets are
also used to maintain connectivity between neighbors. 

During scheduled access, AEA selects transmitters and receivers so that collision-free transmission is
achieved. AEA is based on the neighborhood-aware collision resolution protocol (NCR) proposed in Bao
and Garcia–Luna–Aceves [20]. This technique claims to avoid data packet collisions among neighbors
due to hidden terminals. AEA uses traffic-based information exchanged among nodes during SEP to
make efficient use of the channel avoiding idle slots. The same traffic information is also used in AEA
to perform receiver selection. During these selections, the node priorities in the network and two-hop
neighbor information exchanged during NP are considered. By selecting the transmitter and receiver for
each time slot, AEA enables nodes to switch into sleep mode whenever possible, thus achieving maximum
energy savings. 

SEP is used to exchange traffic schedules among neighbors during scheduled access mode. These
schedules contain the set of receivers for the traffic currently originating at the node and its scheduled
transmission slots. This information is periodically broadcast to the node’s one-hop neighbors during
scheduled access. Each node computes a schedule interval depending on how often it needs to transmit
data according to its current application requirements. Following this, the node selects the highest priority
slots it can acquire according to AEP; an example is illustrated in Figure 15.10. This information (sched-
ule) is transmitted to its neighbors typically during the last slot of its schedule. Also, after emptying the
current data buffers, it announces the release of its vacant time slots so that the other nodes can acquire
them. 

State of a node at a particular time slot is determined based on its two-hop neighborhood information
and the schedules announced by its one-hop neighbors. Three possible states of a node are: transmit,
receive, and sleep. At a given time slot, a node is in transmit state if it has the highest priority among its

FIGURE 15.9  Time slot organization in TRAMA.
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contending set and also if the node has data to send. A node is in the receive state when it is the intended
receiver of current transmitter. If neither of these cases occurs, the node will be switched off to the sleep
state in order to save energy. In other words, if a node is not the currently selected transmitter by AEP,
it will consult the schedule sent by the current transmitter. If the transmitter does not have traffic destined
for this node in the current slot, it can go to sleep. Under this scheme, a sleeping node is required to
wake up at the schedule announcement slot (usually the last transmission slot in each schedule interval)
to update itself on possible schedule changes. For this purpose, it should always be aware of the schedule
of each of its one-hop neighbors.

15.5.3.2 Merits and Drawbacks

The authors provide extensive simulations to compare TRAMA with SMAC and several other comparable
MAC schemes [18]. It is shown that the scheduled-based medium access protocol based on neighbor-
hood-aware collision resolution protocol (NCR) achieves better data delivery than the contention-based
protocols such as IEEE802.11, CSMA, and S-MAC. The main reason highlighted for the improvement
in delivery is that the freedom from collision is guaranteed at all times during data transmission.

It is also shown that the scheduled-based medium access protocols incur higher average queuing delays.
The average queuing delay for TRAMA is relatively large due to overhead involved in scheduling. Within
every schedule interval, a transmission slot is used for announcing schedules in TRAMA. This decreases
the effective channel access probability for data transmission and is not favorable for continuous data
gathering type WSNs described in Section 15.4.2 because the traffic is homogenous across the network
and all the nodes periodically generate traffic.

Simulation results also show that TRAMA exhibits high throughput compared to SMAC and IEEE
802.DCF because it avoids collisions due to hidden terminals using NCR protocol [20]. Energy savings of
TRAMA depend mainly on the traffic pattern of the network as compared to duty cycle-dependent energy
savings in SMAC. In TRAMA, the random access period duration plays a significant role in energy con-
sumption. Significant features in TRAMA are the time slot reuse; using neighborhood information for
collision avoidance; and use of a hybrid scheme of random and scheduled access for optimal performance.

15.5.4 Power-Efficient and Delay-Aware Medium-Access Protocol for Sensor 
Networks (PEDAMACS)

PEDAMACS [19] medium access protocol combines the characteristics of cellular networks with those
of type 2 sensor networks for the continuous data gathering applications described in Section 15.4.2. It
assumes that a single access point (AP) exists in the network and all nodes communicate with this AP.
Also, it assumes that AP has no energy constraints and is capable of transmitting at higher power levels
when needed so that it can reach any node in the network in a single hop. In contrast, the sensor nodes
have limited transmission power and will reach the AP using multiple hops. Although it may not be
possible always, in certain applications it may be possible to include a few nodes with higher energy
resources to act as APs of each node cluster. The extra effort required may be compensated with optimal
power savings in low-power sensor nodes. 

FIGURE 15.10  Example schedule of a node in TRAMA.
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15.5.4.1 Operation 

The algorithm consists of three major phases: topology learning phase; topology collection phase; and
scheduling phase. During the topology learning phase, each node identifies its interferers, neighbors, and
parent node. This phase begins with a topology learning packet transmitted by AP over the longest range
(highest power) in one hop to all sensors. This packet includes the current time so that each node updates
its time and synchronizes with the other. Also, it includes the next anticipated incoming packet time so
that every node will stop transmitting and listen for the next broadcast message of AP at this future time,
as illustrated in Figure 15.11(a). 

Following this, AP floods the network with a tree construction packet over a medium range (medium
power). This packet contains a hop count field to avoid any retransmission loops and to facilitate choosing
the parent node in the tree as shown in Figure 15.11(b). At the end of this phase, each sensor node
decides the parent node to be the one with the smallest number of hops to AP, and the neighbors and
interferers as the nodes with the received signal level above and below some interfering threshold,
respectively. Because no prior topology information is available during this phase, the authors suggest a
simple CSMA scheme with a random delay before carrier sensing. 

The topology collection phase starts next with the AP transmitting a topology collection packet (with
the same format as that shown in Figure 15.11(a) over the longest range [highest power]). The trans-
mission time is announced in the incoming packet time field of the topology learning packet earlier. This
packet also contains current time and next incoming packet time. Following this, each node transmits
its topology packet containing its parent, neighbor, and interferer information to AP as shown in Figure
15.11(c). Here again, the CSMA scheme with some random delay before the transmission is used. 

During the scheduling phase, each node is explicitly scheduled by AP based on the complete topology
information obtained during the previous topology collection phase. The scheduling frame is divided
into time slots. At the beginning of this phase, AP performs the scheduling of the sensor nodes in the
network and announces the schedule of how all the traffic will be carried during the scheduling frame
by broadcasting a schedule packet over the longest range. The schedule packet includes the transmitter
information corresponding to each time slot in addition to current time and next incoming packet time
fields as shown in Figure 15.11(d). At the beginning of the scheduling frame, each node samples the
sensor and generates one packet, which is then carried to AP according to the schedule. 

FIGURE 15.11  Packet formats in PEDAMACS.
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15.5.4.2 Merits and Drawbacks

Although in certain specific applications such a scheme may be able to be used for sensor networks,
characteristics of this scheme are not preferred for sensor networks in general. This is mainly due to the
use of a central access point that can reach all sensor nodes using high transmitting power. This assump-
tion is not realistic in most of the sensor network applications in which the nodes are distributed over
large areas or in indoor environments. Authors argue that in such cases, several APs can be used, but fail
to provide details on how to establish proper coordination and synchronization among all such APs.
Furthermore, it has yet to be analyzed how the large overhead associated with such a scheme affects the
network performance. This overhead also makes this scheme unusable for event-driven sensor systems
or dynamic systems with frequent addition and removal of nodes from the network. Authors suggest
using a CSMA scheme with implicit ACKs for the topology collection phase, but this may not be an
appropriate solution to avoid the huge number of possible collisions. 

15.5.5 Comparison

Table 15.4 summarizes and compares the previously discussed four MAC schemes for WSNs. 

15.6 Open Issues 

Having discussed application and communication categories of WSNs and compared several MAC
schemes for WSNs, the open research issues yet to be addressed will be discussed in this section. Designing
optimal, energy-aware MAC schemes for WSNs is still an open and fast growing research area. In this
context, the following issues are highlighted for consideration in future research. 

TABLE 15.4   Comparison of MAC Schemes for Sensor Networks

SMAC SMACS/EAR TRAMA PEDAMACS

Features TDMA scheduling
Coordinated sleeping 

schedules among 
neighbors

Adaptive listening
Virtual clustering

Hybrid TDMA/FDMA 
scheduling

Mobile node attachment

Random access 
(CSMA) for 
neighbor discovery

Scheduled access 
(TDMA) for data 
transmission

Access point (AP) 
with high-power 
transmitter

Centralized TDMA 
scheduling by AP 
node

Hierarchical 
organization

Applications WSNs with more 
stationary nodes

Low traffic WSN with 
strict latency 
requirements

Event-driven WSNs Centralized data 
gathering WSNs

Merits Reduced latency for 
multihop messages

Simple hardware for 
TDMA

Low latency
Ability to create links on 

the fly
No clustering 

requirements
No synchronization 

requirements

TDMA slot reuse
No collisions due to 

hidden nodes
Traffic adaptable

Higher energy 
savings in 
centralized WSNs

Drawbacks Synchronization required
Virtual clusters may not 

coincide with physical 
clusters

Complex hardware for 
FDMA or CDMA

Waste of time slots
Low bandwidth utilization
Frequent switching can 

cause heavy energy losses

Synchronization 
required

Low bandwidth 
utilization in 
periodic data 
gathering WSNs

Centralized control 
necessary

AP node requires 
high power

High overhead for 
scheduling
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Adaptability to network objectives. How much sensor node energy to spend on a particular task
entrusted on a WSN depends on how critical current application objectives are. As explained in Section
15.2 and Section 15.4.2, the same network used for a low-frequency continuous monitoring application
may be employed for mission-critical tracking or emergency threat alert in the next instance. In such a
scenario, less critical goals of a sensor network become highly critical and the energy saving requirements
become secondary as compared to latency and throughput. A challenging and open issue is to develop
medium access schemes for WSNs that have changing missions. SMAC [15] and TRAMA [18] attempt
to achieve this to a certain extent; nevertheless, more work must be done in this area. 

Optimal schemes depending on WSN type. Certain applications such as habitat monitoring may have
stationary traffic patterns mostly over the total lifespan of the WSN employed. For these types of
applications, achieving energy savings to extend the network lifetime remains the primary objective
throughout the monitoring period. Medium access schemes can be optimized for energy efficiency in
WSNs used for such applications. TDMA scheduling-based schemes similar to SMAC [15] may be the
ideal candidate for these applications. However, the synchronization requirements and virtual clustering
need to be reconsidered in this respect. 

Cross-layer design. Conventional WAHNs have neatly defined protocol stacks with independent oper-
ation of each layer. For example, medium access scheme would function independent of the node
connectivity, routing requirements, and application context. However, the primary goal of energy saving
is tightly coupled with all these factors in a WSN and thus medium access cannot be considered alone
for optimal savings. It is increasingly clear that power efficiency cannot be addressed completely at a
single layer in the networking stack [21, 22]. It will often be necessary to use parameters propagated
from upper layers to adapt the medium access protocol, especially in situations in which network
objectives change considerably from one time to another. Another issue that must be effectively coupled
with medium access is the data aggregation. No significant research efforts have been observed so far in
this regard and the next generation medium access schemes for WSNs beyond SMAC and TRAMA should
take these aspects into thorough consideration. 

Effects of time synchronization. It is observed that higher energy savings are mostly obtained using
TDMA based-scheduling schemes in WSNs. Inherently, these schemes require time synchronization of
participating nodes in a single schedule. Synchronization errors always tend to degrade the end-to-end
throughput performance of the network. As highlighted in Section 15.3.2.2 and Section 15.4, it may be
impractical to achieve network-wide synchronization in WSNs. As an alternative, it is better to have
globally asynchronous and locally synchronous architectures in which local node clusters maintain
synchronization for TDMA schemes aiming for maximum energy savings, while intercluster commun-
ication is mostly contention based and asynchronous. Coupling such schemes for optimal energy saving
medium access has yet to be explored.

Cluster-based hierarchy. Most WSN applications may require hierarchical architectures. This favors
clustering-based systems, which is assumed in most of the research on WSNs. Highly energy-efficient
medium access methods could be developed for such networks, using the cluster head as a centralized
scheduler, data sink, and relay for the whole cluster. Issues arising in such contexts include ways to achieve
intercluster communication, minimizing intercluster interference, and the possibility of having same appli-
cation-specific clusters in the MAC layer for optimal performance. All these issues need further investigation. 

Scalability. Compared to generic WAHNs, WSNs have a larger node count as well as higher density.
This should be a critical consideration in designing medium access schemes. Less scalable protocols may
cause unbearable overheads when applied to large networks and may cause extreme energy drains in
certain nodes, even causing network failure. On the other hand, quality of service degradations can be
severe. In this context, the scalability of currently available MAC schemes should be further investigated.

Mobility management. In certain scenarios, several mobile nodes may be roaming the region of
deployment of a WSN among stationary nodes already organized under a certain hierarchy for commun-
ication. Sometimes the mobile nodes might serve as gateways, sinks, or localization devices, requiring
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their proper attachment to certain stationary points of the network. This problem is addressed partially
in the SMACS/EAR algorithm described in Section 15.5.2; however, the EAR algorithm does not ensure
the optimal use of resources. Thus, further investigation is required in this regard. 

Hardware constraints. It is argued that energy savings can often be improved using FDMA or CDMA
scheduling schemes, for example, as in SMACS [17]. However, the complexity of the required radio
interface poses challenges due to compact hardware of sensor nodes. Use of such schemes must be done
in conjunction with a suitable TDMA scheme for energy savings because nodes must listen to the channel
all the time under pure FDMA or CDMA schemes. Nevertheless, with possible future improvements in
hardware fabrication, such hybrid schemes might have a potential to play a greater role in energy savings
while giving superior throughput and delay performance. The main challenge in such schemes is to
optimize use of resources, for example, time slots and frequency bands. Transmission ranges of nodes
are relatively lower in WSNs, so frequency reuse may be possible in hierarchical, cluster-based WSNs as
in traditional cellular networks. Moreover, frequency reuse might require nodes to listen only to a limited
number of channels, making such hardware more feasible. 

Comparison metrics. While novel medium access schemes for optimum energy savings are developed,
due attention should be paid to the metrics used in comparing these schemes. Often a trade-off takes
place between energy savings and network performance. Thus, unified metrics should be used during
comparisons or this will lead to unfair conclusions and probable confusion. The total energy savings of
a WSN depend on percentage sleep time and average length of sleep interval. If used alone, percentage
sleep time does not account for the possible higher frequency of switching that may drain a significant
amount of node energy. Average sleep length is a preferred metric because it can account for the node
switching. Appropriate benchmarks should be developed to facilitate accurate comparison of metrics
among different MAC schemes.

15.7 Conclusions 

Unique features of WSNs in comparison with generic WAHNs were identified in this chapter. Four
prominent ad hoc network medium access methods were briefly discussed, as well as their merits,
drawbacks, and implications toward WSNs. Design challenges in MAC for WSNs were emphasized with
a classification of application and communication types in WSNs. Four medium access schemes recently
proposed toward energy savings in WSNs were discussed, comparing their merits and drawbacks. In
addition to these four schemes, a few other medium access schemes that have been recently proposed
for WSNs [23–26] were not discussed here to preserve brevity of this chapter.

Finally, several open issues related to energy aware MAC protocol design for WSNs were emphasized.
Several research efforts are already underway in this area and are being tested on open source platforms
like MICA/TinyOS [27]. Significant research efforts are still required to address these open issues in order
to achieve the ultimate objective of energy optimal medium access in sensor networks. Also, it is antic-
ipated that such research efforts will soon lead to open standards for WSNs similar to the currently
available, commercially deployed standards for WAHNs.

References

1. I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, Wireless sensor networks: a survey,
Computer Networks, 38(4), 393–422, 2002.

2. The Institute of Electrical and Electronics Engineers, Wireless LAN medium access control (MAC)
and physical layer (PHY) specifications, IEEE Standard 802.11, June 1997.

3. J.C. Haartsen, The Bluetooth radio system, IEEE Personal Commun. Mag., 28–36, Feb. 2000.
4. Bluetooth SIG Inc., Specification of the Bluetooth system: core, http://www.bluetooth.org, 2001.
5. C.E. Jones, K.M. Sivalingam, P. Agrawal, and J.C. Chen, A survey of energy efficient network

protocols for wireless networks, Wireless Networks, 7(4), 343–358, 2001.

7037_C015.fm  Page 24  Tuesday, November 1, 2005  12:26 PM

© 2006 by Taylor & Francis Group, LLC

www.bluetooth.org


Design Challenges in Energy-Efficient Medium Access Control 15-25

6. K.M. Sivalingam, J.-C. Chen, P. Agrawal, and M. Srivastava, Design and analysis of low-power
access protocols for wireless and mobile ATM networks, Wireless Networks, 6(1), 73–87, 2000.

7. S. Singh and C.S. Raghavendra, PAMAS: power aware multi-access protocol with signaling for ad
hoc networks, ACM Computer Commun. Rev., 28(3), 5–26, July 1998.

8. P. Karn, MACA — a new channel access method for packet radio networks, in Proc. ARRL/CRRL
Amateur Radio 9th Computer Networking Conf., 1, 134–140, 1990.

9. V. Bhargawan et al. MACAW: a media access protocol for wireless LANs, Proc. ACM Sigcomm ’94,
24(4), 212–225, 1994.

10. L. Kleinrock and F. Tobagi, Packet switching in radio channels: carrier sense multiple access modes
and their throughput delay characteristics, IEEE Trans. Commun., COM-23(12), 1400–1416, Dec.
1975.

11. Y. Tseng, C. Hsu, and T. Hsieh, Power-saving protocols for IEEE 802.11-based multi-hop ad hoc
networks, in Proc. IEEE Infocom, 1, 200–209, New York, June 2002. 

12. G.J. Pottie and W.J. Kaiser, Wireless integrated network sensors, Commun. ACM, 43(5), 51–58,
May 2000.

13. Crossbow Inc., Expected battery life vs. system current usage and duty cycle URL: www.xbow.com/
Support/Support_pdf_files/PowerManagement.xls, Energy specifications for MICA motes, 2003.

14. Crossbow Inc., Data sheet for MICA2 wireless measurement system, 2003.
15. W. Ye, J. Heidemann, and D. Estrin, An energy-efficient MAC protocol for wireless sensor networks,

in Proc. IEEE Infocomm, 3, 1567–1576, New York, June 2002.
16. S.R. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong, The design of an acquisitional query

processor for sensor networks, in Proc. (SIGMOD’03), 1, 491–502, San Diego, CA, June 2003.
17. K. Sohrabi, J. Gao, V. Ailawadhi and G. Pottie, Protocols for self-organization of a wireless sensor

network, IEEE Personal Commun. Mag., 7(5), 16–27, Oct. 2000.
18. V. Rajendran, K. Obraczka, and J.J. Garcia–Luna–Aceves, Energy-efficient, collision-free medium

access control for wireless sensor networks, in Proc. ACM SIGMOBILE Int. Conf. Embedded
Networked Sensor Systems (SenSys 2003), 1, 181–192, Los Angeles, CA, November 2003.

19. S. Coleri, PEDAMACS: power efficient and delay aware medium access protocol for sensor net-
works, M.S. Thesis, Department of Electrical Engineering and Computer Science, University of
California, Berkeley, December 2002.

20. L. Bao and J.J. Garcia–Luna–Aceves, A new approach to channel access scheduling for ad hoc
networks, in Proc. IEEE MOBICOMM 2001, 1, 210–221, Rome, 2001.

21. R. Min, M. Bhardwaj, S.-H. Cho, N. Ickes, E. Shih, A. Sinha, A. Wang, and A. Chandrakasan,
Energy-centric enabling technologies for wireless sensor networks, IEEE Wireless Communica-
tions, 9(4), 28–39, August 2002. 

22. E. Shih, S.-H. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, and A. Chandrakasan, Physical layer driven
protocol and algorithm design for energy-efficient wireless sensor networks, in Proc. MOBICOMM
2001, 1, 272–287, Rome, 2001.

23. A. Woo and D. Culler. Transmission control scheme for media access in sensor networks, in Proc.
MOBICOMM 2001, 1, 221–235, Rome, 2001.

24. R. Kannan, R. Kalidindi, S.S. Iyengar, and V. Kumar. Energy and rate based MAC protocol for
wireless sensor networks, ACM SIGMOD Record, Special section on sensor network technology
and sensor data management, 32(4), 60–65, December 2003.

25. K. Arisha, M. Youssef, and M. Younis, Energy-aware TDMA-based MAC for sensor networks, in
Proc. IEEE Integrated Manage. Power Aware Commun., Computing Networking (IMPACCT
2002), New York City, May 2002.

26. J.M. Van-Dam, An adaptive energy-efficient MAC protocol for wireless sensor networks, M.S.
thesis, Delft University of Technology, June 2003.

27. University of California, Berkeley, TinyOS homepage. URL http://webs.cs.berkeley.edu/tos/
index.html, 2003.

7037_C015.fm  Page 25  Tuesday, November 1, 2005  12:26 PM

© 2006 by Taylor & Francis Group, LLC

http://webs.cs.berkeley.edu
http://webs.cs.berkeley.edu


                               

7037_Book.fm  Page 1  Thursday, September 8, 2005  2:44 PM

© 2006 by T
16
Security and Privacy

Protection in Wireless
Sensor Networks

16.1 Introduction ....................................................................  16-1
16.2 Unique Security Challenges in Sensor Networks and 

Enabling Mechanisms .....................................................  16-2
Security-Related Properties • System-Level Security • Mobile 
Code • Metering

16.3 Security Architectures .....................................................  16-4
Cell-Based WSNs • Ad Hoc Sensor Networks 

16.4 Privacy Protection .........................................................  16-11
Principle of Minimal Generalization • Privacy of Location 
Information

16.5 Conclusion.....................................................................  16-15

16.1 Introduction

Security and privacy protection are of extreme importance for many of the proposed applications of
wireless sensor networks (WSNs). The list of potential applications that require protection mechanisms
includes early target tracking and monitoring on a battlefield; law enforcement applications; automotive
telemetric applications; room occupation monitoring in office buildings; measuring temperature and
pressure in oil pipelines [1]; and forest fire detection. All these applications have unlimited benefits and
potential; however, if the sensor information is not protected properly, possible compromises in user
information, the environment, and even physical actuators could result.

The primary driving impetus for the development of sensor networks has been military applications,
where security requirements are at their highest [2]. Although a WSN deployed on a battlefield can offer
a reliable assessment of battlefield conditions without risking lives, an inadequately protected network
could become a powerful weapon for an enemy. Strong security requirements for such applications are
often combined with an inhospitable and physically unprotected environment. For commercial applica-
tions of WSNs, the issue of privacy protection is as important as secure and reliable functioning of a
network. The protection of personal physiological and psychological information is expected by any user.
As the applications of WSNs become more complex and widespread, the ability to protect such systems
from any unauthorized access will become increasingly important.

Sensor networks operate in a variety of physical environments and under varieties of constraints. The
limited resources of sensor nodes require the development of customized system architectures for each
particular WSN application so that the sensor node resources are efficiently used. Because security and
privacy protection mechanisms require a significant amount of computational and storage resources,
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such mechanisms must be tailored to the corresponding sensor system architectures and security threats
specific to a given physical environment. Section 16.2 describes the unique properties of WSNs and the
security challenges that they bring. Security implications and corresponding security solutions for two
basic WSN system architectures, cell-based WSNs and ad hoc WSNs, are discussed in Section 16.3. The
overview of the privacy protection solutions proposed for WSN, as well as the solutions originally
developed for other environments but applicable in WSN, is given in Section 16.4. Section 16.5 summa-
rizes and concludes the chapter. 

16.2 Unique Security Challenges in Sensor Networks and 
Enabling Mechanisms

WSNs share several important properties with traditional wireless networks, most notably with mobile
ad hoc networks. Both types of networks rely on wireless communication, ad hoc network deployment
and setup, and constant changes in the network topology. Many security solutions proposed for wireless
networks can be applied in WSNs; however, several unique characteristics of WSNs require new security
mechanisms. In this section, four characteristics specific to WSNs and their resulting security challenges
are discussed. Additionally, it presents work performed in the areas, system-level security, mobile code,
and metering, which can be foundations for the development of security techniques in WSNs.

16.2.1 Security-Related Properties

Four properties that are specific for WSNs and require attention are hostile environment, limited
resources, in-network processing, and application-specific architectures.

• Hostile environment. WSNs can be deployed in hostile environments such as battlefields. In these
cases, the nodes cannot be protected from physical attacks. Security information potentially could
be collected from compromised nodes. The development of tamper-proof nodes is one approach
to security in hostile environments. However, as shown in Anderson and Kuhn [3], the develop-
ment of such systems is far from simple and certainly not cheap in terms of computational and
memory requirements. Because of the physical accessibility of sensor nodes, the security mecha-
nisms for WSNs are specifically concerned with situations in which one or more nodes are
compromised.

• Limited resources. Sensor network nodes are designed to be compact and therefore are limited by
size, energy, computational power, and storage. The limited resources limit the types of security
algorithms and protocols that can be implemented. Security solutions for WSNs operate in a
solution space defined by the trade-off between resources spent on security and the achieved
protection. Limited energy available to nodes allows for new types of attacks, such as a sleep
deprivation torture attack [4].

• In-network processing. Communication between the nodes in a WSN consumes most of the
available energy, much less than sensing and computation do. For that reason, WSNs perform
localized processing [5] and data aggregation [6]. An optimal security architecture for this type
of communication is one in which a group key is shared among the nodes in an immediate
neighborhood. However, in an environment in which the nodes can be captured, the confidenti-
ality offered by the shared symmetric keys is easily compromised.

• Application-specific architectures. As a result of the previously mentioned properties, WSN system
architectures must be designed to be application specific. The flexibility of a general-purpose
architecture is traded for the efficient utilization of the resources. Almost every aspect of a WSN
can be adjusted to improve performance and optimize resource consumption in a network for a
particular application. This allows a network designer to determine the importance of various
security threats and adjust security mechanisms to these threats.
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16.2.2 System-Level Security

Three types of cryptographic tools have been developed for practical security of real-life systems: firewalls,
honeypots, and intrusion detection techniques. Each will be discussed briefly in order to illustrate the
types of approaches that exist in the field. Although these techniques may not be well suited for WSNs
as proposed, modifications of their notions may be excellent security approaches for WSN. 

A firewall is a policy enforcement point (node) for a part of a network designed to restrict access from
and to that subnetwork. Several classes of firewalls exist: packet filtering according to a particular set of
rules; access to particular servers or ports; or application-level firewalls that protect by remembering the
state of the network connection. Firewalls still face denial of service (DoS) attacks and they try to address
them by filtering suspicious connections. Among the several limitations of firewalls is the fact that they
do not protect the network from insider attacks and that filtering can only be done against already known
attacks.

Honeypots are systems placed on networks specifically for the purpose of being attacked or compro-
mised [7, 8]. Because they are not designed for true use, they exist only to detect and collect information
about security attacks. Advantages of honeypots include low false positives; ability to capture unknown
attacks; and ability to facilitate interaction with the attacker in order to gain better insights into actions
and thinking. Intrusion detection techniques aim at recognizing statistical or pattern irregularities in the
incoming or outgoing traffic. The most recent approach to detection of Internet attacks is probabilistic
deduction of the IP traceback [9–12]. Finally, virtual private networks are logical extensions of private
networks over insecure channels provided by the Internet.

16.2.3 Mobile Code

Once deployed, access to the nodes in a WSN for management and code updates poses security threats
and drains resources. Despite difficulties, mechanisms that allow changes in application and system code
on the nodes are necessary. One feasible solution for remote configuration and application code updates
is network-wide deployment of mobile code. A legitimate mobile code is injected into the network
through several nodes and then spread throughout the network [13]. This subsection surveys proposed
code manipulation approaches (attacks) and techniques for secure execution of mobile code. Among
mobile code intrusion techniques, four have been most popular: viruses, Trojan horses, buffer overflow,
and covert communication channels.

A computer virus [14] can be defined as a small program that attaches to the host computer and co-
opts its resources for the purpose of creating new copies of the virus. Detailed analysis of viruses and
models of their proliferation can be found in Cohen [15] and Kephart and White [16]. Trojan horses
[17, 18] disguise themselves as programs that appear to perform a function while actually performing
another function. Buffer overflow has been by far the most common type of attack of computer security
in the last decade [19]. These attacks use the functions of a privileged program in such a way that the
attacker can take control of the program and corrupt the computer. This is commonly achieved by making
suitable code available in the program address space and then inducing a program to jump to that space
with suitable parameters. Recently, the first constraint-based analysis technique for automated detection
of buffer overflow has been proposed [20].

Covert communication channels [21] arise from resource sharing in computer systems. For example,
a process with high priority can pass information to a process with low priority by interfering or refraining
from interfering with the timing of the process. The most popular and simplest is the timed Z-channel,
in which the communication alphabet consists of time values [22]. Numerous generalization of the timed
Z-channel have been proposed and analyzed [23–25]. 

Smaller mobile devices have created a strong impetus for the development of mobile code security
techniques. At least three major approaches for mobile code security have emerged: code signing, sand-
boxes, and proof-carrying code. Code signing follows a typical client- and server-authenticated handshake
protocol such as SSL or WTLS [26]. Recently, sandboxing has attracted a great deal of attention [27] as
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a security paradigm; Brigner [28] presented a 3-MB Java applet that implements a sandbox. In addition,
Sekar and Uppuluri developed a security layer that includes a sandbox designed to protect the application
against malicious users and the host from malicious applications [29]. Proof-carrying code is a mecha-
nism that allows a host computer to determine if a program can be executed with certainty despite being
provided by an untrusted source [30, 31]. 

16.2.4 Metering

One aspect of WSN security threat that is not often addressed as an attack is consumer access to the
sensor data. As WSNs become more advanced and versatile, the notions of user access, application-
specific sensor designs, and licensing of network usage will become an issue. Metering is one approach
to handling these types of issues. Although many of these approaches are too computationally or memory
intensive for WSNs, they provide a starting point for development of WSN techniques.

SiidTech Inc., an Oregon startup company, has proposed an approach for integrated circuit identification
from random threshold mismatches in an array of addressable MOSFETs. The technique leverages on process
discrepancies unavoidably formed during fabrication. This analog technique can be used in tracking semi-
conductor dies, authentication, and intellectual property (IP) tagging [32]. Sampling and auditing are the
two main methods used for measuring the usage of media channels. Sampling conducted by Nielsen Media
Research and NetRatings Inc. is based on surveys among a representative group of users [33]. Web page access
metering has been addressed by a number of researchers and companies [34–36]. 

Licensing is the most common approach to protecting software. It provides a certain degree of control
to the vendor in terms of software distribution and may prevent unauthorized duplication of software
packages. The most common technique is based on the license key concept. A key is encrypted by using
a string of data that contain software package ID and its usage constraints (e.g., expiration date) and the
serial number of the computer where the key is installed. The invocation of the software package is done
automatically when software is invoked by using one of the password schemes [37, 38]. A large number
of patented licensing protocols have been proposed; for example, licenses can be used to authenticate
the legal users, as well as to upgrade the products and other after-market information transmissions [39]
or licensing using smart cards [40, 41].

16.3 Security Architectures

This section describes security protocols developed for two typical WSN system architectures: cell-based
WSN and ad hoc WSN, with particular concentration on key establishment and distribution algorithms
because they set up the necessary infrastructure for security protocols. The proposed WSN system
architectures differ in many aspects, which is not surprising because WSNs operate in vastly different
physical environments, supporting different applications and using different sensor nodes. The main
benefit of the development of a specific architecture for each WSN application is the efficient utilization
of scarce sensor node resources.

Many elements of WSN architecture, including hardware architectures of sensor nodes, routing pro-
tocols, and level of abstraction between the layers of the architecture, can be adjusted to improve
performance and optimize resource consumption. One possible categorization of wireless ad hoc network
systems, which includes WSN systems, is given in Law et al. [42]. Here, only the security architectures
for WSN systems are discussed, while Papadimitratos and Haas [43] give an overview of security archi-
tectures for general wireless ad hoc network architectures. From the security point of view, the WSN
system architectures can be broadly divided in two categories:

• Cell-based WSNs consisting of low-power low-cost sensor nodes and base stations, operating in
relatively friendly environments of houses and office buildings, or in easily accessible outdoor areas

• Ad hoc WSNs consisting only of low-cost sensor nodes distributed in an ad hoc manner into
remote and inhospitable environments without any wireless infrastructure
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These two network architectures differ in terms of the security threats to which they are exposed and in
terms of security requirements and abilities to support security architectures of various levels of com-
plexity. The cell-based WSN allows for more sophisticated and resource-consuming protocols and algo-
rithms because the additional computationally expensive workload can be assigned to the base stations.

16.3.1 Cell-Based WSNs

In cell-based WSN, the nodes are organized around one or more base stations that have significantly
more computing and energy resources than the regular sensor nodes. These networks are most often
used for user and object tracking systems in home and commercial building environments, as well as in
outdoor perimeter-monitoring systems. The base stations collect information from the network and
provide a link between the WSN and the outside world. Cell-based networks are often used in an
environment in which it is easy to add new nodes, remove the ones that are not functioning, and even
recharge the energy supplies for nodes. However, even in such an environment, the nodes can still be
captured or damaged, and unauthorized nodes can be added.

The presence of base stations in a WSN offers at least two significant benefits:

• Base stations represent a trusted base that cannot be compromised. They can be used as a safe
source of mobile code and configuration parameters, which enables safe bootstrapping and con-
figuration of the network, as well as the addition of new nodes.

• Base stations offer computational resources that can be used in asymmetric security protocols in
which they perform the majority of intensive computations. Such protocols allow stronger security,
while not exhausting the limited resources of regular sensor nodes.

An example of a WSN organized around one or more base stations and SPINS, the security protocol
suite for that network, is described by Perrig and colleagues [44]. The network consists of a trusted
backbone of base stations with unlimited power supply and a large number of motes (low-cost, low-
power sensor nodes described by Hill and colleagues [45]), distributed in the area covered by the base
stations. The operation of the network is fully controlled from the base stations. A routing structure is
formed as a set of routing trees; each base station is the root of one such tree. The traffic mainly consists
of requests initiated at the base stations and sent down the trees to the nodes and the responses sent
from the nodes back to the base stations. When the same request is sent to all nodes, the communication
is most efficiently performed through broadcast messages. If a base station needs to send a unicast message
to a particular node, source routing is used.

The SPINS protocol suite assumes that the base stations share a unique master key with each node in
the network. The system architecture and security protocols require that the base station keep track of
the route to each node and of the secret key. All other keys that the base station and a node use for
communication are derived from the master key. Even though the base station is a single point of failure,
it is trusted, implying no one can capture the station and recover all keys.

This security architecture efficiently uses the resources of the base stations. To keep a separate key for
each node would not be possible in an architecture in which all nodes have limited resources. Also, this
solution is not applicable to networks in which any two nodes are likely to communicate directly. However,
because the bulk of traffic in the network is between the base station and the nodes, the inability of the
nodes to communicate securely without involvement of the base station is of limited importance.

The SPINS protocols suite consists of two building blocks, sensor network encryption protocol (SNEP)
and µTESLA. SNEP protects the unicast communication between the base stations and the nodes, while
µTESLA provides secure broadcast communication. Each of these protocols will be discussed in more
detail.

16.3.1.1 SNEP

The basic confidentiality of messages in any secure system is achieved through encryption. Encryption
protects the network from adversaries who have the capability to listen to network traffic. SNEP uses
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RC5 block cipher [46] for basic encryption. The original RC5 encryption algorithm is implemented with
lowered functionality and generality in order to fit in the limited storage space of nodes. In addition to
basic confidentiality, SNEP offers semantic security, which means that the encryption of the same
plaintext produces a different encrypted message each time. This is achieved by keeping a shared counter
on each of the two entities involved in the message exchange and incrementing the counter for each
message.

Because the value of the counter is an initialization vector for the RC5 block cipher, it is guaranteed
that the encrypted messages differ even if the content is the same. An additional benefit of the counters
is that they ensure freshness of messages, i.e., a receiver can establish the partial message ordering of the
messages from a particular sender. Finally, each node has its separate master key, so SNEP guarantees
authentication of messages that the nodes receive from the base station.

An important property of such a solution is that it can be used in environments with relatively static
forwarding structure, in which the nodes communicate with a limited number of other nodes or base
stations, usually smaller than the number of neighbors. The number of the keys and counters can be
estimated, and the efficiency of such a solution is known in advance. In a network with a dynamic
forwarding structure in which any neighbor can be a previous or a next hop for any message, it may be
prohibitively expensive to keep counters and separate keys for all possible sources and destinations.
However, for a limited number of cases, two nodes that need to communicate directly can use their
master keys to generate and exchange a session key through the base station.

16.3.1.2 µµµµTESLA

The second element of the SPINS protocol suit is µTESLA. The master key shared between each node
and the base station ensures confidentiality and authentication of unicast messages exchanged between
the nodes and the base station. However, if the same message is sent from a base station to all nodes, it
is much more efficient to broadcast the message. SNEP does not support secure broadcast because each
master key is unique; allowing nodes to accept unencrypted, unauthenticated messages would allow an
adversary to send arbitrary requests to nodes. Therefore, for secure broadcast communication, SPINS
proposes µTESLA, the goal of which is to ensure authentication of broadcast messages sent from the
base stations to the nodes.

In µTESLA, a base station generates a reverse key chain containing the keys K0, K1,…, Kn. The key
chain length and the key Kn are determined before the key chain is generated. Other keys are determined
using one-way function F, Ki = F(Ki+1). The key K0 is not used to authenticate any of the messages, but
is distributed initially as a commitment to the key chain. The distribution of the commitment K0 in
µTESLA requires that each node and the corresponding base station share a secret key unique for that
node. Then, the base station sends K0 to all nodes as a sequence of unicast messages, before any broadcast
message is transmitted.

The time is divided into the intervals I1,…, In, as shown in Figure 16.1, where each interval Ii corre-
sponds to the key Ki. During the interval I1, the base station sends broadcast messages with attached
message authentication code (MAC) calculated using the key K1. Because the key K1 has not been disclosed
yet, the messages could not have been forged by any of the nodes. The function F is a one-way function,
so no one can determine K1 from K0. The nodes authenticate the messages received during the interval
I1 at the end of that interval, when the key K1 is disclosed. At that time, the nodes compare K0 with the
value derived from F(K1). If the values match, then the messages authenticated with K1 are sent from
the base station, because only the base station could have known the value of K1 before that key was
disclosed. After K1 is disclosed, the following broadcast messages are authenticated, using K2, until K2 is
disclosed, and the process continues until the interval In expires.

Because the keys are disclosed in periodic intervals, the base stations and nodes must be at least loosely
synchronized. If a node does not receive a message with a disclosed key and its clock is late, an adversary
who received the disclosed key can forge and send messages with the MAC calculated using that key. A
node with an unsynchronized clock would accept such messages for the interval equal to the delay of
the node’s clock.
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Even if a node does not receive all the keys, it can still authenticate all messages. Once the node receives
the key Ki+1, it can derive all previous keys K0,…, Ki by successively applying the function F, and then
use these keys to authenticate messages received in the corresponding intervals. However, buffering the
messages for a prolonged time requires additional storage. Nodes have limited available memory, so
additional mechanisms are needed to ensure that the keys are disclosed to all nodes in a timely manner.

If some nodes are deployed later and begin receiving messages during the interval Ii, they need to
receive the key Ki at the end of the interval. The initialization process for those nodes is the same as for
the nodes initialized when the whole network is bootstrapped; the only difference is that instead of the
commitment K0, the nodes receive the key Ki–1 as a commitment. By doing so, new nodes save a certain
amount of computation because they do not need to compute all keys from the chain K0,…, Ki–1 to
compare the value of the key K0 with the value of Fi(Ki); they would need to do this if they received K0

as a commitment. Instead, the nodes simply compare the commitment Ki–1 with the value of F(Ki).
The initial distribution of the key chain commitments requires that a base station send a separate

unicast message to each node. In addition to the energy consumption of sending multiple unicast
messages with the same information, the time required to initialize thousands of nodes is measured in
tens of seconds, as calculated by Liu and Ning [47], who proposed that instead of costly initialization
using broadcast messages, the commitment K0 be embedded into the nodes during initialization, before
deployment of the nodes. This solution brings significant savings for the majority of the nodes deployed
together. For the nodes added later, there is a trade-off between computation expenses incurred when
the new nodes authenticate a broadcast by comparing the embedded commitment K0 and Fi(Ki) and
when the added nodes receive unicasts containing Ki–1 and authenticating broadcast with only one
calculation of the function F(Ki).

The decision as to which mechanism for initialization of the added nodes is preferred could be
potentially based on the number of new nodes that should be initialized. If the number is small, then
the delay incurred by sending unicast messages is acceptable; however, if many nodes are added, it is
more efficient to have the nodes use K0 as a commitment. Unfortunately, the decision about the preferred
commitment distribution mechanism cannot be made online because delivering the decision to the nodes
would require sending authenticated unicast (which is the expense to avoid if the number of new nodes
is large) or sending a nonauthenticated broadcast, which then could be a message forged by an adversary.

An implicit assumption in µTESLA is that the base stations have sufficient memory storage to hold a
long key chain or that they have enough processing power to compute keys fast enough while keeping
in memory only the last member of the chain. That assumption saves the nodes from buffering too many
messages because the intervals can be arbitrarily short; the key chain is still long enough not to require
frequent costly commitment distributions. Liu and Ning [47] propose a hierarchical organization of the
keys that decreases the required memory storage at the base stations. The basic principle behind this
solution is that the base stations keep only a high-level key chain in memory, while the elements of the
low-level key chains are generated using the high-level keys. The keys K0,…, Kn from the high-level chain
are not used for message authentication. They only authenticate messages containing low-level key chain
commitments K<0,0>, K<1,0>,…, K<i,0>,…, K<n,0>.

FIGURE 16.1  The key distribution timeline. The messages sent during the interval Ii have attached MAC calculated
using the key Ki. The key Ki is disclosed at the end of the interval Ii.

I1 Ii–1 InIi

MACK1(...) MACKi–1(...) MACKi+1(...)MACKi(...) MACKn(...)

K1 disclosed Ki–1 disclosed Ki disclosed Kn disclosed

K0 disclosed
in advance

Ii+1

Ki+1 disclosed
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This extension of µTESLA needs to keep the property of the original scheme that even if some key
disclosure messages are lost, the later key disclosures can be used to authenticate previous messages.
Otherwise, the network would need to ensure that all messages are received at all nodes — an expensive
proposition for WSNs. In order to enable authentication despite lost messages, the high-level key Ki+1 is
used to generate the last key for the low-level key chain for the interval Ii, K<i,m> = F1(Ki+1). Without this
relation, if a message with the commitment K<i,0> is lost, the nodes could not authenticate the messages
from the interval Ii. Even in this solution, if the message with the commitment K<i,0> is lost, the nodes
must keep all messages from the interval Ii in a buffer until the key Ki+1, or some other later key, is
disclosed in the interval Ii+2. Because the high-level intervals are intentionally kept long so that the number
of keys stored in the memory of the base stations is small, the memory required to store the messages
may be prohibitively large. One possible solution is to repeat messages frequently that contain key
commitments.

Authentication of broadcast messages sent from the base stations to the nodes is supported by µTESLA.
It may be possible to use the protocol in cell-based networks in which the nodes send broadcast messages
too. Two possible solutions for this problem are: (1) a node sends a unicast to the base station using the
key that the node and base station share, and then the base station broadcasts the message using the
original µTESLA broadcast authentication mechanism; or (2) a node broadcasts the message and the
base station handles the distribution of a key for that broadcast.

16.3.2 Ad Hoc Sensor Networks

Certain military, law enforcement, and disaster recovery WSNs are deployed in remote and inhospitable
environments without any wireless infrastructure. Nodes must self-organize and bootstrap a network
without any support from base stations. Such networks distributed in an ad hoc fashion must be capable
of accepting requests from various points within the network because a user walking through the area
may not have the capability to connect to the designated gateway. Any node in such an architecture can
be a source of or a destination for messages. 

Even more than in other networks, the nodes in such systems are exposed to a danger of capture or
destruction. The most dangerous physical threat regarding security is physical possession of a sensor
node by an adversary. Sensor nodes may contain keys that allow the adversary to decrypt the messages
and even to inject false messages into the network. In circumstances in which long-term security of all
nodes in a network cannot be guaranteed, the best solution is to extend the lifetime of the network as
much as possible. There are two aspects of extending the lifetime of a network:

• The time period from when the network is deployed to the moment a node is compromised should
be as long as possible. An adversary can determine the positions of nodes using various technol-
ogies. The easiest way is to listen to the messages exchanged between the nodes because they
usually contain the locations of nodes that detected an event. In Slijepcevic et al. [48], messages
are encrypted with a separate encryption algorithm for locations of nodes; this is stronger than
the encryption for the rest of the message content so that the adversary has less encrypted text
for cryptanalysis. If the information about the locations of nodes is adequately protected, the
adversary is left using trilateration, which requires more equipment and effort than simply extract-
ing the locations of nodes from the messages.

• Once some of the nodes are detected, the keys that these nodes contain can be extracted and used
to decrypt previously exchanged messages as well as future ones. Key distribution mechanisms in
WSN and secure protocols must be designed so that the security exposure is minimized when any
of the cryptographic keys is compromised.

In a system architecture in which all nodes are potential senders or receivers, symmetric cryptography
suits the low-power nodes better than public cryptography. Because symmetric cryptography assumes
that the keys are shared, the design space between two extreme solutions remains: (1) all nodes share
only one key embedded in them before the deployment; and (2) each pair of nodes shares a unique key.
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The first solution is simple, does not require too much memory space, and has the broadcast primitive
available. However, when one node is compromised, the adversary can decrypt all messages from the
network. The second solution has a perfect security property: if a node is compromised, the recovered
keys are useless because no other nodes use those keys. However, the memory space for all keys for
networks of thousands of nodes is not available on most sensor node platforms. Even if only a handful
out of thousands of keys is actually used when a network is deployed, the nodes must store them all
because their exact physical locations are not known before the deployment, and they cannot know which
nodes will be located close to each other.

Additionally, sending broadcast messages is not possible, so each broadcast message must be replaced
with multiple unicast messages, and the energy consumption is multiplied accordingly. The key distri-
bution algorithms proposed for WSNs try to find a trade-off among the various requirements. The
important factors for the key distribution algorithms are:

• Impact of compromise of one or more nodes on security of the traffic in the network
• Ability of algorithm to include additionally deployed nodes into the security infrastructure
• No single point of failure
• Spatial and temporal variation in keys to reduce encrypted material for cryptanalysis
• Support for broadcast

16.3.2.1 Key Distribution Schemes

Most key distribution mechanisms shy away from key distribution after the nodes are deployed. Such
schemes exist for various wired and wireless networks and they mainly include key distribution servers.
They consider self-organized wireless network with no security infrastructure. Therefore, no central
authority, no centralized trusted party, and no other centralized security service provider exist. The
standard solutions for authenticated broadcast are not applicable. The solution used in wireless networks
with more capable nodes [49, 50] employs public key cryptography to ensure authenticity of messages.
However, in many WSN projects [44, 48, 51], the public key algorithms are considered too expensive in
terms of memory and processing requirements to be used in WSNs, except as a one-time protocol for
exchange of private keys. A thorough discussion about the energy requirements of the public key encryp-
tion algorithms and their performance on various processors is given by Yuan and Qu [52].

A possible solution for key distribution is to assign some nodes to be key distribution servers, delivering
symmetric keys to nodes that need to communicate. The use of online key distribution servers in WSN
has a disadvantage; because all nodes are physically exposed, key distribution servers would become single
points of failure because of failures and especially because they would allow an adversary to get hold of
all keys used in networks. Therefore, the key distribution algorithms presented here are based on key
assignment before deployment. The addition of new nodes and the loss of previous nodes does not
require an immediate key distribution process, as is the case in Internet multicast algorithms in which
new nodes must not be able to read previously exchanged messages, and the old nodes must not be able
to read future messages. In WSNs, new nodes are trusted and old nodes are most likely out of energy.

Eschenauer and Gligor [51] propose a probabilistic key distribution in which a node shares a key with
a certain percentage of other nodes. Before the deployment, an initial pool of P keys is generated. For
each node, k keys are selected from the initial pool for a key ring. After the deployment, the nodes
announce and compare their key rings, looking for at least one key that belongs to both key rings. If
such a key is found, those two nodes can communicate directly. When all such pairs are found, they
represent the connectivity graph for the network. Now, even the pairs of neighboring nodes that do not
have a direct connection can use an established secure path to generate a key, or pick a key from a set
of unused keys from the key rings and exchange that key. Eventually, each pair of neighboring nodes will
share the key, under the condition that the network graph was connected initially. If that was not the
case, a certain number of nodes are permanently excluded from the network.

The main advantage of this scheme is its resiliency in the case of compromised keys. If a node is
captured, all of its k keys are available to the adversary. The probability that a particular key is used for
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encryption of a link is the same for all keys, so a probability that the adversary can decrypt traffic on a
particular link is k/P. As will be explained later, k is significantly smaller than P; thus, that probability is
low. The scheme also achieves significant memory savings compared to a scheme in which each pair of
nodes shares a key. Furthermore, when new nodes are added to the network, they announce their key
rings in the same way as the nodes deployed during the initialization of the network.

Because different keys are used throughout the network, the amount of encrypted material for cryp-
tanalysis is smaller in such a key distribution scheme than in the scheme with a shared key for all nodes.
If the lifetime of the network is so long that the keys should be replaced, the nodes can revoke the keys
with the expired lifetime. After some keys are revoked, the process of establishing secure connections
must be run again, with fewer keys. The removal of keys decreases the probability that the network will
be fully connected, so the key revocation has limited usage. Finally, the scheme does not support
broadcast. However, after a node establishes secure paths to all its neighbors, it can distribute one of its
keys as a broadcast key in the case of increased broadcast traffic. Obviously, the applications running on
top of the WSN running this key distribution scheme need a certain amount of control over the deploy-
ment of certain mechanisms; such mechanisms are not always needed, but their deployment consumes
energy.

The parameters of the scheme are determined as a trade-off between security in the case of
compromised nodes and the probability that the network is connected. The parameter k, the size of
a key ring, is determined by the size of the memory reserved for the keys. The size of the network
and the average number of nodes within a communication range are determined by the network
application and topology. The only parameter that can be changed over a large range of values is the
size of the initial key pool, P. If P decreases, the probability that two key chains selected from the
keys from P have one or more common keys increases. However, the value of the expression k/P,
which represents the probability that an adversary can compromise a communication link when a
node is compromised, also increases.

A result from graph theory, presented by Spencer [53], determines the probability, p, that an edge is
between two vertices in a graph, for which the probability that the graph is connected rises from a small
probability to “certainly true.” Then, P is determined from the condition that the probability of two key
chains with one or more common keys is equal to p. For a network of 10,000 nodes, with d = 40 neighbors
per node on average and the size of a key ring k = 15, if the size of the initial pool is P = 100,000, the
network is fully connected with the probability .99999.

Chan and colleagues [54] offer two improvements to the described scheme. The first change is that
two nodes can establish a secure link only if they share q keys, instead of one as in the original scheme.
The advantage of this approach is that, for a small number of captured nodes, the probability that any
link in the network can be compromised is lower than if the nodes establish a link with only one shared
key. However, with the increased number of captured nodes, the relation between these two probabilities
changes, so with a sufficiently high number of captured nodes, an adversary has better chances of
compromising the secure links than in the original scheme. This trade-off improves the protection of
the network against small-scale attacks, which are easier to execute and therefore more likely, and
decreases the protection against larger attacks, which are more expensive to perform.

The second improvement from Chan and colleagues [54] allows pairs of nodes that have a secure link
between each other to establish new keys. That way, more keys are used, while the amount of the memory
required to hold the keys is kept low, at the order of magnitude of the number of neighbors. The price
paid for this improvement is increased traffic for key exchanges. It is also important to mention that the
two schemes proposed here should not be used at the same time. The first scheme requires that the
number of keys in the initial pool be kept low to ensure the connectivity of the network. At the same
time, the second scheme tries to use different keys; however, during the exchange of the keys the
probability of capture of these keys is increased.
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16.4 Privacy Protection

The previous sections have examined the security architectures for two broadly defined types of WSN.
The main goal of the presented architectures is to establish secure communication channels within a
network in order to protect transmitted information from unauthorized access. In many WSNs, especially
in military and law enforcement systems, sensor nodes and communication between them are the most
exposed part of the network. In such networks, reliable and secure communication is the most important
and best guarantee of uninterrupted functionality.

For another class of WSN systems — those intended for use in commercial settings — the privacy
protection of individuals observed by a WSN whose living and working spaces are populated by sensor
nodes is as important as the protection of applications’ functionality. It is still necessary to ensure secure
communication channels in commercial WSNs in order to prevent unauthorized access to the person-
alized information about the users of the system. However, even if the communication security archi-
tecture ensures that the personal information is well protected during transfer through the network, once
such information is collected at a data collection point, the information is protected as much as the data
collection hosting system is. Commercial systems tend to have lower standards for security protection of
acquired information than military and law enforcement systems do. The news frequently reports about
systems in which system security at data collection points was compromised and social security numbers,
credit card numbers, and many other highly sensitive and personal data ended up publicly available to
anyone on the Internet. These cases illustrate the need for additional mechanisms that will ensure a
certain level of privacy protection without interfering with the functionality of commercial WSN systems.

16.4.1 Principle of Minimal Generalization

Sensor nodes’ sensing capabilities, size, and low cost allow a large number of sensor nodes to be deployed
in and a large amount of information to be acquired from physical surroundings. Except in rare cases,
the larger the amount and the higher the precision of the sensing data available to a WSN, the better the
performance of applications is. Although the applications may perform better if more data are available,
privacy protection, by definition, strives for the minimum amount of data to be acquired about a single
individual. Although the performance of applications and the need for privacy protection may seem to
be two opposing goals, many applications can function effectively with their information precision at a
lower level than the level of precision that WSNs are capable of delivering. That interval between the
required and potential accuracy can be effectively used for privacy protection.

Samarati and Sweeney [55] have proposed a mechanism for generalization of data in databases in
order to prevent matching individuals and their medical records. The medical records with the names
removed, but with ZIP codes, dates of birth, and other information, are easily matched with the identities
acquired from voter lists, city directories, and other publicly available sources. To prevent reidentification,
nonessential information is removed, i.e., the year of the birth is kept, while the exact date is removed.
The goal of the process is to depersonalize medical records so that multiple identities are equally likely
to correspond to a particular medical record. This approach is called the principle of minimal general-
ization. The same principle can be applied in the context of the privacy protection in WSNs. Naturally,
this may affect applications that operate on generalized data, so the principle can be applied only if the
application can retain the required performance level. An informal description of the principle of minimal
generalization is: accurate private information about the users of a system should be generalized so that
the acquired data can be matched to no less than k identities, where k is the required level of anonymity.

Under the assumption that a data collection point and a WSN are under separate control, this principle
is beneficial for both entities. The WSN offers higher privacy protection for its users, while the data
collection system does not need to expend resources for privacy protection purposes and does not need
to risk liability for possible breaches of privacy protection.
aylor & Francis Group, LLC



16-12 Smart Dust

7037_Book.fm  Page 12  Thursday, September 8, 2005  2:44 PM

© 2006 by T
16.4.2 Privacy of Location Information

This principle is demonstrated on several WSN applications that rely on location information about
users. Protection of the location information is highlighted for three main reasons:

• The most frequent tasks for WSN systems are concerned with detection of location of an event.
Even if the goal of an application is to perform a more complex task, the location information is
present as a part of the individual observations generated by sensor nodes.

• The privacy protection of location information for users observed by a WSN is a prime example
of the importance of data protection because, with access to the location data for a user, an
adversary can infer additional private information — for example, medical conditions, shopping
habits, and patterns of social interactions between monitored users.

• Protection of location information allows the principle of minimal generalization to be demon-
strated in an easily understandable case study. Generally, location discovery systems are often
capable of locating users within meters indoors and within tens of meters outdoors. For many
applications, that level of precision is more than required for basic functionality, so it is acceptable
to reduce the precision of the information in order to achieve a required level of privacy protection.

The general system architecture for which privacy protection solutions are described is shown in Figure
16.2. The crucial part of the privacy protection framework for WSNs is the location server. The server
is a part of the trusted zone, which in this context means that the server adheres to the same security
policies and is controlled by the same entity as the accompanying network of sensor nodes. In fact, the
location server is likely to be implemented as a service running on a gateway between the sensor network
and the outside world. The assumption that sensor nodes are trusted and that they do not forward any
information to an unauthorized party extends here to a location server. The responsibility of the location
server is to transform the locations of users observed by the network into a representation that keeps the
level of location privacy protection above a certain threshold. The main difference between various privacy
protection algorithms is in the types of transformations performed by a location server. The transformed
location information is then forwarded to any of the servers offering location-based services (LBS). The
services are offered by various entities that do not share security trust with the WSN.

FIGURE 16.2  The architecture of the system connecting a wireless sensor network and a location-based service.
The location server transforms location information, so the identities of users are hidden.
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Many WSN and wireless network applications may run on top of a system architecture similar to the
one shown in Figure 16.2. Two applications, which offer road maps and road condition information
based on the location of a car, are proposed in several projects [56] and are commercially available
[57–59]. In Beresford and Stajano [60], various proposed applications are implemented on the top of
an indoor location system in an office building environment. Gruteser and coworkers examine the privacy
concerns of applications that track the use of different building areas [61].

In all these applications, users send information about their locations to an LBS to update their
locations or to request services offered in their vicinity. Without transformation performed in a location
server, each user request or update would be accompanied with as precise location information as the
location discovery technology used allows. In automotive applications, precision is defined by the pre-
cision of a GPS receiver, while in an indoor environment location precision depends on the density of
the sensor network, usually precise enough to locate a room where a person is correctly located. If the
information from these location discovery services is compromised, the location precision allows for easy
recovery of users’ movements by LBS.

The first step to protect users’ privacy is to disconnect the location information from the explicit user
identification. The location server performs this task by assigning an alternative identification or a
pseudonym to each user. Some kind of identification is necessary because a response to each request
among a possibly large number of requests handled by a location server must be forwarded to the original
user. For many LBSs, it is not necessary for a service to be aware of a user’s real identity. A road map
can be generated for a user based only on the user’s current location. However, two problems occur with
privacy protection through anonymity of identifications. The first is the possibility that if a user uses the
same pseudonym when connecting to various LBSs, the combined data from all LBSs can give a full
overview of that user’s activities. That problem can be solved simply by using different pseudonyms for
various LBSs, similar to a solution for the same problem outside the context of WSNs, as proposed by
Chaum [62].

The second problem is that a user can be easily identified despite different pseudonyms, if requests
for LBSs are coming from specific locations that can be directly connected to the user. In the case of a
request for a road map that an LBS issued from a location that can be identified as a private garage, the
anonymous identification can be attached to the owner of the garage, and then all the movements of
that ID can be personalized. In the same way, in an office building environment, an ID that spends most
of the time in a particular office can be connected to the regular occupant of that office.

The solution for this problem is in the combination of the principle of minimal generalization and
temporary anonymous identifications. Before details of the mechanism are described, it is necessary to
include a more formal definition of privacy in order to be able to compare the benefits of different
approaches to this problem. The measure of privacy in this context is the notion of k-anonymity. The
meaning of the term anonymity in privacy protection research is formally defined by Pfitzmann and
Koehntopp [63]; they define it as a quality of not being identifiable within an anonymity set containing
a set of subjects. Then k-anonymity, as defined by Samarati and Sweeney [55], is anonymity within a set
with the cardinality of k. This term is used to define an acceptable level of privacy protection in which
a person cannot be distinguished from k – 1 other individuals. For the application using location
information, k-anonymity means that the attached location information for that user comprises location
information for k – 1 other users. If a stretch of a freeway of the length d contains k cars, a user whose
location is defined with the resolution d is k-anonymous.

Gruteser and Grunwald [56] achieve k-anonymity by transforming precise, high-resolution GPS–orig-
inated location information available to a location server to low-resolution location information sent to
the LBS. Additionally, the identity of a user is hidden in order to avoid continuous tracking of his location.
If a user’s location is defined by the intervals [x1,x2] and [y1,y2] in two-dimensional space and the time
interval [t1,t2] in time dimension, k-anonymity is achieved by extending and contracting the intervals
until k – 1 or more objects share the resulting parallelepipe in the three-dimensional space-time coor-
dinate system. Depending on the nature of the application, Gruteser and Grunwald have proposed two
different algorithms [56] that transform resolution of location information:
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• If the application requires a timely response, the spatial resolution is brought to a level at which
k-anonymity is achieved. The implementation of this algorithm starts from the entire area covered
by the LBS. The area is then divided into subareas, until the subarea containing the specified user
also contains less than k – 1 other users. Examples of such applications are road map and road
condition LBSs in which the delay must be on the level of minutes; otherwise, the information
returned from the LBS cannot be effectively used. 

• If a delay is acceptable, the application can set a threshold on the spatial resolution, requiring that
the area confined with the intervals [x1,x2] and [y1,y2] is never above the given threshold. The
property of k-anonymity for a user is then achieved by extending the temporal interval [t1,t2] by
simply waiting until k or more users pass through the space limited by the spatial intervals. Now,
the LBS side of the application deals with a more precise location information, which is beneficial
for the quality of service that LBSs offer.

In Gruteser and colleagues [61], the underlying application counts the number of people in various
parts of a building to estimate the utilization of the rooms in the building. The nodes in the network are
organized in a hierarchical structure, with sensor nodes at the lowest level detecting individuals in their
vicinity, usually only in one part of a room. The nodes at the next level count the number of individuals
in each room, using the sensing data from the nodes from the lowest level. The hierarchy structure
assumes nodes at the floor level as the next level and then, finally, a location server that gathers the data
from the floor level. Without privacy protection, the information about occupancy of the rooms would
be simply transferred up to the location server. The application requirements are such that it can perform
its task without identifying individuals occupying rooms. However, similar to the applications mentioned
previously, if an adversary can access the data gathered at a data collection point, he can reidentify
individuals from the rooms that each of them occupies most frequently. Now, identified individuals can
be tracked by observing counterchanges in various parts of the building.

The solution proposed in this work leverages the hierarchical network architecture of the WSN [61].
A node determines a count of individuals in its area, by sensing, if at the lowest level of the system
hierarchy, or by aggregating the counts received from the nodes one level below, if at one of the higher
levels. The node then compares the count with a threshold value k. If the value is below k, that value is
propagated to a higher level with decreased resolution of the location information. If the value is above
k, the value sent to the upper level is the nearest multiple of k. In that case, the location information is
accurate. Using this algorithm, even a location server does not need to belong to a trusted zone because
the obfuscation of the location information is already performed in the network.

The work in Beresford and Stajano [60], in which anonymous users are tracked through a building,
notes the same problem with permanent anonymous IDs that can be connected to a particular user based
on location information from a private area. However, the applications from that work cannot allow for
a location precision coarser than the level of a room, so the increased resolution is not an acceptable
solution. On the other hand, at the room level, the location information can easily be used to find out
which identifiers spend the most time in a particular room.

These authors propose a solution in which the concept of k-anonymity is used in special areas called
mix zones where users change their temporary anonymous IDs [60]. The manipulation of identifiers is
a responsibility of a location server. However, the authors also note an important weakness of the solution
with mix zones. They demonstrate that the initial assumption that, if two individuals cannot be tracked
when they enter a mix zone from opposite directions and then reappear from them with different
pseudonyms does not hold well if an adversary uses a statistical analysis. The experimental results show
that the probability that each individual will return to the same direction from which he came is 1%, so
if an adversary assumes that a user who entered from one direction and the user who left the mix zone
at the other end are one person, regardless of IDs, he will be correct in 99% of cases.

There are certainly applications that do not conform completely to the system architecture from Figure
16.2. The possible differences are the expansion of the trusted zone to include an LBS, in which case a
location server is not needed. The example of this type of application is provided in Priyantha et al. [64]:
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indoor user location detection system. The beacons embedded in the building transmit the information
about their locations. A device carried by a user detects the signals from beacons, and then determines
the location of a user from multilateration of distances acquired from the signal strengths of beacons’
signals. In this case, the information about the location is kept on the user’s personal device, so privacy
is not a concern. However, this simple case has a downside because the user must perform additional
work in order to match his location to the location of an interesting object or service. Such a solution
is possible only for applications in which results are stored at a device controlled by a user.

Finally, in some applications, it is necessary to maintain relationships between an individual and his
profile at a data collection point on an LBS. An example of such an application is Networkcar service
[65]. A network of sensors in a car checks the state of the engine and other functioning units in a car.
Each car has a built-in gateway that connects the car with a mobile telephony network. At the same time,
the gateway uses a GPS client to determine the position of the car. All this information is stored on a
Web server. A user of the service (an owner or an authorized car mechanic) can log on to the service
through the Web and examine the current location of the car, the conditions of its engine, and other
information. The owner of the car receives a message if it has been stolen and taken out of a certain area.
This type of application cannot use the proposed techniques in which the precision of location infor-
mation is reduced because the continuous connection between user and location information sent to the
database must be maintained.

16.5 Conclusion

For many military and civilian applications of wireless sensor networks, security and privacy protection
protocols and algorithms are an indispensable part of the system architecture. Because of their unique
properties, most notably limited resources and physical exposure of sensor nodes, sensor networks require
a new type of security protocols. These protocols are tailored to the underlying system architecture,
patterns of network traffic, and specific security requirements so that security-related resource consump-
tion is minimized. Physical exposure of nodes, as well as the threat that their cryptographic secrets are
potentially available to an adversary, demands that security protocols in sensor networks protect the
integrity of the network even if cryptographic secrets are compromised.

Privacy protection is especially important for certain commercial applications of sensor networks.
Users who are monitored by sensor networks expect their private information not to be publicly available.
However, sensor networks need services from other entities that may not have satisfactory privacy
protection mechanisms. In cases in which applications require less precise data than are available, a
certain level of privacy protection can be achieved by decreasing precision of the data; therefore, the data
cannot be easily matched to any particular individual.
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17.1 Introduction

Distributed sensor networks (DSNs) are composed of numerous small, low-cost, randomly located nodes.
The network can be scalable to thousands of nodes that cooperatively perform complex tasks such as
intelligent measurement. The network must be able to self-organize, adapt to random node spacing,
execute algorithms for signal processing, and operate as power efficiently as possible. The major appli-
cations of DSNs are for monitoring environmental conditions, tracking the movements of birds and
small animals, monitoring product quality, and building automation and defense networks. Smart Dust
is a term recently coined at the University of California, Berkeley, to describe massively distributed sensor
networks consisting of cubic-millimeter sized motes [1, 2]. The small size and anticipated low cost of
the motes will help to collect information cost-effectively and less intrusively.

Each mote depends on low-capacity batteries as energy sources. Practically, the chance for battery
replacement is nonexistent. As a result, every aspect of the Smart Dust networks, from mote location
through computing and communication, is viewed from the low-power perspective.

17.2 Location

A deployment may leave numerous motes located in different areas of a large geographical region. The
location of the motes affects energy efficiency in a number of ways. Sensor readings are of interest if only
bound to a known location. Interrogation of motes before a location procedure would be a loss of energy.
The global positioning system (GPS) is able to locate network nodes in outdoor environments. However,
cost, power consumption, and size of the currently available GPS receivers are prohibitive for Smart Dust
motes. Optical communication emerges as the most efficient method if a central station may be harnessed
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to provide energy for location tasks. Because motes may move, some applications would demand updating
the positions regularly. Also, radio-frequency (RF) communication can be used by motes to locate
themselves via beacon signals from reference points [3, 4].

As soon as the location procedure has been completed, some nodes will be actively involved in sensing,
while others will wait for events and can be turned off to save energy. An event tracking, such as following
light shadow edges over a sensor field, can be organized in two ways:

• All motes deactivate all subsystems except sensors that can obtain relevant data. If the sensors
provide binary readings, they can be used to awake the motes in case of events. 

• A more sophisticated power reduction approach will turn off all motes, except motes in the close
vicinity of the event, completely. However, in case of a dense deployment the distance alone is not
sufficient as a criterion.

Liu et al. [5] have developed a method for event tracking. The method identifies motes that will not
be immediately approached by the event and can be turned off to save energy. The method is based on
dual space transformation [6]. Figure 17.1 shows an example for event tracking.

With no loss of generality, it can be assumed that the event is a moving light shadow edge. The edge
is presented in the primal space as the E line and the motes’ locations are indicated as points. The line
is uniquely defined in the primal space by the p slope and the y-intercept q. The line is transformed into
the e point in the dual space; in turn, the points from the primal space are transformed into lines in the
dual space. As a result, the dual space is partitioned into cells. The e point is contained in the shaded
cell. Because the e point cannot intersect the m2 line before it crosses one of the cell boundaries, the M2
mote can stay turned off as long as none of M1, M3, and M4 sense a transition.

17.3 Sensing

The mote’s sensors vary from application to application: temperature, light, magnetic field, vibration,
and acoustic. Recent advances in technology have made it possible for these sensors to be released in
ultralow sizes and power versions [2, 7].

Sensors convert physical variables into electrical signals. Typically, the signals are in the microvolt or
millivolt range. An input signal conditioner is used to filter and amplify the signals. Energy is consumed
in the sensor, amplifier, and analog-to-digital converter (ADC). The power consumption can be reduced
with appropriate power management. The ADC’s resolution has a significant impact on the energy
budget. For instance, if the ADC’s resolution is increased from 15 to 16 bits while keeping the other
parameters unchanged, the power consumption is increased from 100 to 400 mW [8].

A common method for analog-to-digital conversion is the successive approximation [9]. Because the
ADC determines one bit of the result in each cycle, it would be possible to apply selective resolution.
Consequently, different samples will have different numbers of bits and different energy costs. Finally,
one may only want to test if the input value belongs to a certain range. In this case, a microcontroller
with an on-chip analog comparator can be a power-efficient solution. Microcontrollers such as the Atmel
ATmega161L are capable of turning off the comparator to reduce the power consumption [10].

17.4 Computation

Motes incorporate a processor to carry out computations locally. Functionality typically requires the
processor to run in outbursts separated by idle periods. Within the idle period, the processor may enter
a power reduction mode to save energy [9]. The battery lifetime is influenced by the power efficiency of
a running processor and the balance between active and idle periods.
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17.4.1 Asynchronous Processors

The synchronous processor’s clock distribution network is characterized by significant power consump-
tion. Moreover, synchronous systems tend to maximize supply current transients. Smart Dust motes may
have analog subsystems that are influenced by the electromagnetic radiation. Asynchronous designs
promise to overcome the clock-related problems. In particular, a class of asynchronous implementations,
termed self-timed systems, is capable of operating as fast as circumstances allow.

FIGURE 17.1  Primal-to-dual space transformation indicates the sequence of transitions.
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17.4.2 Variable-Frequency Processors

Using variable-frequency processors, power consumption can be gradually controlled by scaling the clock
frequency. Typically, a phase lock loop (PLL) circuitry can multiply the oscillator frequency and an
adjustable prescaler can divide the oscillator frequency. Based on the current task’s deadline, the clock
frequency may decline as much as possible. However, if the processor completes the task ahead of the
deadline and enters a power-saving mode, the energy could be minimized [11]. In this case, the task’s
deadline period, TDL, accommodates the active period, TACT, and the power-saving period, TPS:

(17.1)

Assume that the power consumption scales linearly with the clock frequency:

(17.2)

(17.3)

If the task’s functionality requires NC processor clocks, the energy per task,

(17.4)

Take the first derivative and calculate the critical numbers

(17.5)

Consider two cases for the positive value:

• Let nACT > nPS. Based on the second derivative test, the energy per task has a minimum for

(17.6)

• If nACT ≤ nPS, the clock frequency must be selected as low as possible. The power-saving mode is
not used.

(17.7)

Equation 17.6 does not guarantee that the deadline will be met. In some cases, the calculated clock
frequency must be increased to meet the deadline.

Figure 17.2 shows an example mesh plot for the clock frequency. Assume that the processor is char-
acterized by nACT = 1 mW; nPS = 0.1 mW; and kPS = 1 mW/MHz. The example is based on 256
combinations of deadline periods and cycles per task. For two combinations, the optimal clock frequencies
have been replaced by higher values.

Actual tasks, which require replacement of the optimal clock frequency, can be viewed as targets for
further improvement. Optimization of the code or relaxing the timing constraints would be an appro-
priate course of action.
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17.4.3 Variable-Voltage Processors

Variable-voltage processors are capable of operating over a wide voltage range. Allocating such a processor
for the network nodes allows power reduction by dynamically varying the supply voltage [12–15]. The
method is often termed dynamic voltage scaling (DVS). DVS is an efficient method for power reduction;
however, it imposes some limitations for the system:

• The system components must be capable of operating over a wide voltage range.
• A voltage converter loop hardware must be available.

Hong et al. [16] developed a design methodology for DVS. Figure 17.3 illustrates how to tune the
voltages for extra power reduction. The tasks are specified by their arrival times, deadlines, and execution
times at a nominal voltage. The schedule is viewed as a first iteration. It would be beneficial to extend
the T2 task and reduce the V2 voltage. T1 is scheduled for V2 to shrink the execution time. The new
border between T1 and T2 is placed just in the middle of the interval indicated by an arrow; no conflict
takes place with the arrival time and the change is accepted.

Similarly, T3 is scheduled for V2 to allow extension for T2. The intention is to place the new border
just in the middle of the interval marked by an arrow; however, T2 fails to meet the deadline and the
border is aligned with the deadline. If the new schedule is more energy efficient, it is accepted.

17.5 Hardware–Software Interaction

A mote includes a CPU, memory, and peripherals. As a rule, peripherals possess three types of registers:
data, control, and status. Data registers are employed as buffers between the CPU and peripherals, while
control registers are used to adjust the I/O device functionality for a specific application. Status registers

FIGURE 17.2  Mesh plot for the clock frequency.
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are read by the processor to check whether a specific operation is done. In spite of the huge variety of
peripherals, the communication between the CPU and the I/O devices remains routine and easy to define.

Modifying one or more bits in a register, the CPU must keep the rest of the pattern unchanged. A
common way to implement bit manipulation is to read a register, modify bits, and write the result back.
The two memory accesses make the read–modify–write instructions power inefficient. In an attempt to
improve the situation, Atmel has taken another approach with the AT91 microcontroller [17]. Instead
of one control register, the microcontroller employs three registers mapped into three consecutive mem-
ory locations. The first register is used to set individual bits, the second to clear bits, and the third to
obtain the current pattern. To set or reset a bit, a high bit is written to the corresponding position at the
set or reset register.

In the AT91 microcontroller, a PLL circuitry and a programmable prescaler complement the
ARM7TDMI core to a variable-frequency processor. The PLL circuitry multiplies the oscillator frequency;
the highest multiplication factor is 64. As a result, the oscillator may run at a frequency 64 times lower
than the actual clock and thus the oscillator saves energy. The programmable prescaler with a division
factor of 64 allows the AT91 clock frequency to go down to 512 Hz. The CPU and embedded peripherals
can be individually enabled and disabled. The ARM processor clock is enabled from the next interrupt
or reset. The on-chip RAM reduces external memory accesses and allows further power reduction. Finally,
the processor may switch to the 16-bit instruction set and benefit from a narrower memory.

Similarly to the analog-to-digital conversion, the measurement of time intervals also falls under the
accuracy–power trade-off. Figure 17.4 shows how a counter/timer determines a time interval using
different clock rates. The highest possible frequency provides the highest accuracy. If a Smart Dust
application is based on the AT91 microcontroller, the number of counter transitions for a 50-ms period
may vary with the frequency up to 50,000.

FIGURE 17.3  A schedule is modified for extra power reduction.

FIGURE 17.4  Using different frequencies to measure a time interval.
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17.6 Communication

In a wireless sensor network, communication is the major consumer of energy. Smart Dust networks
have two recognized communication styles: (1) RF is characterized with power consumption in the
milliwatt range; (2) optical communication is associated with a lower energy cost but requires accurate
pointing. Consequently, optical communication is more suitable for interaction between network motes
and a central station. The RF approach is very common for communication between motes [8, 18, 19].

17.6.1 Mote-to-Mote Communication

The procedures for establishing and operating a network require the motes to communicate with one
another. The task of routing packets from a source to a destination can be broken down into discovering
the position of the destination and the actual forwarding of packets [20]. Furthermore, channel access
can be implemented by two different methods: contention or explicit organization [21]. The contention-
based approach is not suitable for DSNs because of its requirement to monitor the channel for a long
span of time. Because the reception and transmission have almost the same energy cost, the organized
channel access is characterized with better energy efficiency. At the same time, the process of establishing
time division multiple access (TDMA) slots or frequency bands also consumes energy. In an attempt to
alleviate this problem, some protocols employ a hierarchical structure that requires partitioning the
network.

The two basic schemes to limit the mote’s RF transmission power are: (1) a transmitter can vary its
power to cover different distances under different environmental conditions; or (2) the link can be
partitioned into several short intermediate hops and use constant transmission power. Any DSN with a
sufficient density of nodes can benefit from multihop communication.

The energy used to send a bit over a distance d may be written as 

(17.8)

where A is a proportionality constant and n depends on the environment [18, 22]. The greater-than-
linear relationship between energy and distance promises to reduce the energy cost when the link is
partitioned.

Rewrite Equation 17.8 for NH number of hops. Also, include the energy for receiving ER and energy
for computation EC:

(17.9)

Assume equal distances for each hop. D > 1 is introduced to take into account the longer path inevitably
associated with multihop communication. The energy has a minimum for 

(17.10)

Figure 17.5 shows a plot for the energy per bit using different numbers of hops. The distance d = 50 m;
n = 4; A = 0.2 fJ/m4; D = 1.2; and ER + EC = 30 pJ. The energy per bit has a minimum for four hops.

A subtle effect of multihop communication is that energy consumption is distributed over the motes
fairly. If the motes consume energy at about the same rate, the system lifetime is increased. Chen et al.
[23] developed a coordination algorithm to increase the energy efficiency further. The algorithm is based
on an assumption that when a wireless network has an ample density of nodes, only a small number of
them need to be active to forward traffic. A distinctive feature of the method, named SPAN, is that the
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motes make a decision whether to sleep or be active based not only on the topology of the network, but
also on the amount of energy available in the battery.

All motes of the network are dynamically split into two sets: motes that sleep and motes that stay
awake to participate in the forwarding backbone topology. According to SPAN’s terminology, the active
motes are named coordinators. Each mote of the network makes periodic, local decisions on whether to
sleep or become a coordinator. Coordinators are elected to achieve two goals: improved connectivity of
the network and equal levels of energy remaining at each mote. All noncoordinator motes periodically
participate in an election procedure to become coordinators; in parallel, all coordinators periodically
pass through a withdrawal procedure to switch back to a sleep state. Figure 17.6 shows this election–with-
drawal cycle. A mote becomes a coordinator to link two neighbor motes that cannot communicate directly
or via one or two coordinators. Because several motes can run an election procedure simultaneously,
there might be an overlap in the connectivity they introduce. The method attempts to minimize the
number of coordinators to save energy.

To resolve contention, the election procedure is extended with a variable delay. As soon as the delay
period is over, a coordinator announcement is sent out. If, at the end of the delay the mote receives other
announcements for new coordinators, it reconsiders the need to become a coordinator. The election
procedure distinguishes between two cases:

• All applicants for coordinators have equal energy left in their batteries. In this case, the more pairs
of motes the applicant connects, the shorter is the delay. Also, to rotate coordinators with time, a
random value influences the delay. 

• The participating motes have unequal energy available in their batteries. In this case, the delay
period is calculated on the base of the connection improvement and the amount of energy scaled
to the maximum amount of energy the mote can have. The random factor is still included.

Each coordinator periodically runs a withdrawal procedure. A coordinator can go back to sleep if every
pair of its neighbors can reach each other directly or via some other coordinators. Initially, the mote will
stay as a coordinator if its withdrawal affects the network connectivity. However, after some time it will

FIGURE 17.5  Energy-per-bit scales with the number of hops.
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switch to noncoordinator state to give other neighbors a chance to become coordinators. As shown in
Figure 17.6, a mote continues to serve as a coordinator for a fixed period of time after its withdrawal
announcement is sent out. Thus, the routing protocol can use the old coordinator until a new coordinator
is elected.

17.6.2 Mote-to-Central Station Communication

When one or more central stations communicate with a field of dust motes, optical systems are charac-
terized by the lowest energy budget. Two methods can be used to apply optical communication for Smart
Dust: passive reflective systems and active-steered laser systems [2]. Figure 17.7 shows an example of a
passive reflective device, a corner-cube retroreflector (CCR). A CCR reflects the light via three mutually
orthogonal mirrors. When a light beam enters the CCR, it bounces off the mirrors and is reflected back
parallel to the direction from which it entered. Because one of the mirrors is mounted on a spring at an
angle slightly askew from perpendicularity to the other mirrors, in this state little light returns to the
remote receiver. No reflection of the light is considered a low logic level. To return the light to its source,
high logic level, the mirror is shifted to a position perpendicular to other mirrors. The low-to-high
transition consumes less than a nanojoule [2]. The high-to-low transition requires almost no energy.

Active-steered laser systems are suitable for mote-to-mote and mote-to-central station communica-
tions. The device consists of a semiconductor diode laser, collimating lens, and a two-degree-of-freedom
micromirror [2]. Central stations can use imaging receivers to process transmissions from different angles.

FIGURE 17.6  Span’s election withdrawal cycle.
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This approach of separating transmissions according to their originating location is termed a space
division multiple access (SDMA).

17.7 Orientation

Many applications will deploy motes in random orientation. Consequently, it will not be possible for all
CCRs to return light to the central station. A CCR quadruplet is a solution that improves the accessibility
of the motes. At the same time, some directions may be characterized with noise emissions and should
be avoided. Furthermore, applications may require the motes to be invisible from a certain area.

It is proposed that the motes be magnetized and the CCR oriented to a predefined direction. When
the motes fall through the air after being deployed, they will orient themselves. If the network has a
sufficient density of motes, it may not need the motes, which change orientation upon landing. This
approach for zero-power orientation is even more efficient for motes floating on the water. They could
freely rotate to orient themselves. Figure 17.8 shows a deployment of two types of motes that differ in
their CCR orientation; two central stations interrogate the motes. The DSNs community is growing and
projects that simultaneously employ a single field can benefit from SDMA.

17.8 Conclusion

The low-power design of Smart Dust networks has a lot in common with many other computer appli-
cations. By allocating variable-frequency processors for the Smart Dust motes, clock frequency scaling
can be applied to decrease power consumption. It is necessary to distinguish between two types of
processors in order to decide whether it is more power efficient to operate quickly and then wait quietly,
or just operate at the minimum speed possible. For the first case, the optimal clock frequency is calculated
based on the required number of clock cycles and a deadline period. This approach also allows identifying
tasks that require replacement of the optimal clock frequency. Thus, a set of tasks emerges as a target for
further improvement. Variable-voltage processors could combine voltage scaling with frequency scaling
if the hardware overhead is not prohibitive for a cubic-millimeter sized mote.

Hardware–software interaction also provides ample reserve for power reduction. Scaling down the
theme of variable frequency from processors to counters, motes could measure time intervals, trading
accuracy against number of transitions. The hardware–software interaction and the sensing show that
redundant accuracy wastes energy in the same way as redundant computation speed.

The energy spent for communication is crucial for the success of wireless networks such as Smart
Dust. Multihop communication can help power consumption to decline significantly and avoid obstacles
for RF and optical systems. As an additional benefit, multihop transmissions distribute power consump-
tion over the motes fairly and increase system lifetime.

FIGURE 17.7  Microfabricated corner-cube retroreflector. (From Hsu, V., Kahn, J.M., and Pister, K.S.J., www-ee.
stanford.edu/~jmk/pubs/hsu.ms.11.99.pdf. With permission.)
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The location of the motes is a process specific to the network operation. Some applications may require
only relative positions. Relative positions can be used to turn off motes, especially in case of event tracking.
Finally, optical communication is associated with pointing and orientation. By using the Earth’s magnetic
field, zero-power orientation of the motes can be implemented for SDMA.
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