
FAST, EFFICIENT AND PREDICTABLE MEMORY ACCESSES

Fast, Efficient and Predictable

Memory Accesses

Optimization Algorithms for Memory Architecture

Aware Compilation

by

LARS WEHMEYER

University of Dortmund, Germany

and

University of Dortmund, Germany

PETER MARWEDEL

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN-10 1-4020-4821-1 (HB)

Published by Springer,

P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

www.springer.com

Printed on acid-free paper

All Rights Reserved

© 2006 Springer

No part of this work may be reproduced, stored in a retrieval system, or transmitted

in any form or by any means, electronic, mechanical, photocopying, microfilming, recording

or otherwise, without written permission from the Publisher, with the exception

of any material supplied specifically for the purpose of being entered

and executed on a computer system, for exclusive use by the purchaser of the work.

Printed in the Netherlands.

ISBN-13 978-1-4020-4822-7 (e-book)

ISBN-13 978-1-4020-4821-0 (HB)

ISBN-10 1-4020-4822-X (e-book)

For Antje

Contents

Acknowledgements . xi

1 Abstract . 1

2 Introduction . 3
2.1 Motivation . 5
2.2 Contributions of this Work . 11
2.3 Overview . 13

3 Models and Tools . 15
3.1 Instruction Set Architecture Model . 17
3.2 Memory Models . 18

3.2.1 SRAM . 19
3.2.2 DRAM. 21
3.2.3 Flash Memory . 24
3.2.4 Caches . 25

3.3 Timing Models . 29
3.3.1 Processor and Instruction Timing 29
3.3.2 Memory Timing . 31

3.4 Energy Models . 36
3.4.1 Sources of Energy Dissipation . 37
3.4.2 Processor Energy . 40
3.4.3 Memory Energy . 45

3.5 Simulation Models . 61
3.5.1 Processor Simulation Model . 61
3.5.2 Memory Simulation Model . 66

3.6 The encc Compiler Framework . 75
3.6.1 Workflow . 77
3.6.2 enprofiler . 81
3.6.3 Memory Architecture Aware Compilation 82

vii

viii Contents

4 Scratchpad Memory Optimizations . 89
4.1 Related Work . 90
4.2 Multi Memory Optimization . 97

4.2.1 Memory Objects . 99
4.2.2 Prerequisites . 100
4.2.3 Energy Functions . 101
4.2.4 The Base model . 102
4.2.5 The Top-Down Model . 104
4.2.6 The Bottom-Up Model . 111
4.2.7 The ARM TCM Model . 115
4.2.8 Leakage-Energy Aware Memory Configuration 117
4.2.9 Results for Multi Memory Optimization 120

4.3 Impact of Scratchpad Allocation Techniques on WCET. 136
4.3.1 Related Work . 140
4.3.2 Tools and Workflow . 142
4.3.3 Required Annotation Information 145
4.3.4 Benchmarks and Memory Hierarchy Configuration 151
4.3.5 WCET Results for Static Allocation 152
4.3.6 WCET Results for Dynamic Allocation 161

5 Main Memory Optimizations . 171
5.1 Related Work . 172
5.2 Main Memory Power Management . 174

5.2.1 Motivating Example . 177
5.2.2 Prerequisites . 178
5.2.3 Memory Objects and Energy Functions 179
5.2.4 Binary Decision Variables . 182
5.2.5 Objective Function . 184
5.2.6 Constraints . 184
5.2.7 Results for Main Memory Power Management 186

5.3 Execute-In-Place using Flash Memories . 192
5.3.1 Analysis of the Copy Function . 194
5.3.2 Main Memory Partitioning . 195
5.3.3 Prerequisites . 197
5.3.4 Preselection of Memory Objects to enable Deep Power

Down . 199
5.3.5 Formalization of the Preselection Algorithm 203
5.3.6 Formalization of the XIP Allocation Problem 204
5.3.7 Results for XIP . 207

6 Register File Optimization . 217
6.1 Related Work . 218
6.2 Implementation of the Register File . 219
6.3 Register Allocation and Lifetime Analysis 220
6.4 Workflow and Methodology . 222

Contents ix

6.5 Benchmark Suite . 224
6.5.1 Results for the Ratio of Spill Code to Total Code Size . . 224
6.5.2 Results for the Number of Cycles . 226
6.5.3 Results for Energy Consumption . 229

6.6 Compiler Guided Choice of Register File Size 230

7 Summary . 233

8 Future Work . 239

References . 243

Index . 255

Acknowledgements

This work would not have been possible without the help of several people.
The support of our colleagues and the technical discussions with Heiko Falk,
Markus Lorenz, Robert Pyka, Stefan Steinke, Jens Wagner and Manish Verma
have always been a great help. Special thanks go to Heiko Falk for all the
support that he provided.

Working with students has been a most rewarding part of our work during
the past years. We thank in particular the master students Lars Hornbach,
Sergej Schwenk, Urs Helmig, André Kernchen and Thorsten Wilmer for the
good cooperation and for having contributed to this work.

Finally, we are deeply indebted to our families who have given us the love
and support that enabled us to write this book.

Dortmund, February 2006 Lars Wehmeyer
Peter Marwedel

xi

1

Abstract

The influence of embedded systems is constantly growing. Increasingly power-
ful and versatile devices are being developed and put on the market at a fast
pace. The number of features is increasing, and so are the constraints on
the systems concerning size, performance, energy dissipation and timing pre-
dictability. Since most systems today use a processor to execute an application
program rather than using dedicated hardware, the requirements can not be
fulfilled by hardware architects alone: Hardware and software have to work
together in order to meet the tight constraints put on modern devices. This
work presents approaches that target the software generation process using an
energy and memory architecture aware C-compiler. The consideration of en-
ergy dissipation and of the memory architecture leads to a large optimization
potential concerning performance and energy dissipation.

This work first presents an overview over the used timing, energy and
simulation models for one processor architecture and for different memory
architectures like caches, scratchpad memories and main memories in both
SRAM, DRAM and Flash technology. Following an introduction to the used
compilation framework, the compiler based exploitation of partitioned scratch-
pad memories is presented. A simple formalized Base model is presented that
models the consequences of statically allocating instructions and data to sev-
eral small scratchpad partitions, followed by a number of extensions that treat
memory objects and their dependencies at a finer granularity. A method for
allocating objects to separate scratchpad memories for instructions and data,
as found in the most recent ARM designs, is also presented. Finally, a model
that also considers the leakage power of memories is introduced. Results show
that significant savings of up to 80% of the total energy can be achieved
by using the presented scratchpad allocation algorithms. The flexibility and
extensibility of the presented approaches is another benefit.

Many embedded systems have to respect timing constraints. Therefore,
timing predictability is of increasing importance. Whenever guarantees con-
cerning reaction times have to be given, worst case execution time (WCET)
analysis techniques are being used during the design of the system in order

1

2 1 Abstract

to provide a guaranteed upper bound on the WCET. The contribution of this
work deals with the influence of scratchpad memories on timing predictability.
It is shown that scratchpad memories, allocated using the algorithms men-
tioned above, are inherently predictable, since the positions of all objects in
the different memories are fixed at compile time and no dynamic decisions have
to be taken at runtime. The results show that the determined WCET values
for systems with a scratchpad memory scale with the performance benefit ob-
served during average case simulation, indicating that scratchpad memories
lead to improvements both concerning average case and worst case. In par-
ticular when compared to caches, the WCET analysis for scratchpad based
systems is simpler, yet allows the generation of tighter bounds. The effects of
allocating instructions and data to the scratchpad using a dynamic allocation
algorithm are shown in this work for the first time. This allocation technique
both outperforms the cache and leads to better timing predictability, mak-
ing scratchpad memories a natural choice for timing constrained embedded
systems.

Advances in main memory technology include the availability of mem-
ory chips with integrated power management. The first optimization target-
ing main memories exploits these features by allocating memory objects to
a scratchpad partition in order to allow the main memory to be put into
power down mode whenever instructions and data are being accessed from
the scratchpad memory. The allocation problem uses the standby energy of
the main memory in SDRAM technology to allocate objects to the scratch-
pad memory so as to maximize the power down periods of the main memory.
Total energy savings of up to 80% were achieved. In the second main memory
optimization, suitable Flash memories are being used as instruction memo-
ries using eXecute-In-Place (XIP). By considering the tradeoff between the
overhead required to copy instructions to the faster SDRAM and the bene-
fits achieved due to the faster execution, the compiler determines an optimal
allocation of instructions to Flash and SDRAM memories. The main benefit
of this approach is significant savings in the required amount of instruction
memory in SDRAM technology, one of the main cost factors for embedded
systems.

Finally, the influence of the size of the register file on the quality of the
generated code is studied. It is shown that if the register file is too small, then
a lot of code overhead is generated due to the need to spill register values to
memory. Beside presenting results for the spill code overhead, performance and
energy dissipation of the generated code, a compiler guided method to choose
an adequate size for the register file for a certain application is presented.

The work is concluded by a summary and an outlook on future work.

2

Introduction

Over the years, a change concerning the use and perception of computing sys-
tems can be observed. While in the old days of computing, computers filled
whole living rooms and were only affordable by research institutes and gov-
ernments, desktop computers have lead to the computer becoming a common
object in everyday life for most people. In the past few years, embedded sys-
tems that are not perceived as computers by the user have become popular.
Mobile phones are a prime example for this development: they are used by
many people all over the world, yet in general, the user is not aware of the
fact that his mobile phone contains a processor and executes a program.

In general, computers are moving away from the desktop and can now be
found everywhere, which is why the terms “ubiquitous computing” or “perva-
sive computing” have become popular. They express the change in paradigms
concerning computer systems in catchy buzzwords: the computer systems of
the future are everywhere, they can either be carried around by the user, or
they are found in the form of electronic entertainment devices, in cars, trains
and planes and in many other objects that we encounter every day. The fact
that computer systems are embedded in devices that offer a certain service
makes it hard to perceive these system as being computers. Many of the ser-
vices offered by embedded systems would not even be possible without them:
an anti lock braking system in a car could hardly be implemented without an
embedded system to control it. The availability of safety or comfort functions
has stimulated the demand for new services and applications. The area of
embedded systems is thus experiencing a rapid growth.

The following, incomplete list provides a couple of popular examples for
embedded systems and some of their properties:

Handheld Devices: Small embedded systems with a mobile energy supply
that can be carried everywhere are now very common: mobile phones,
personal digital assistants or portable MP3 players are examples of such
handheld devices. For some tasks like taking notes and scheduling appoint-
ments, PDAs have taken the role of paper organizers, at the same time

3

4 2 Introduction

providing a load of additional convenience features like automatic alarms,
repeating appointments and games. The emergence of mobile phones has
increased people’s availability, influencing business as well as private life.
The clear distinction between these different mobile devices is blurring:
designers are working towards universal personal assistants. Smartphones
that incorporate both PDA and mobile phone are one example, mobile
phones with integrated digital cameras another. In the future, the user
may only have to carry around a single highly personalized embedded
system to meet all his needs.

Automotive/Avionics: The use of electronic control units is very common
in the automotive industry today: Cars without anti lock brake system
or engine management system could hardly be sold. The car used to be
the domain of electrical and mechanical engineers. Now, embedded sys-
tems are more and more taking over control in the automotive area. Since
changing the hardware is expensive once it is integrated into the product,
processors executing software applications that can be modified using a
Flash update are being used extensively. In modern cars like the BMW
7 series, there are more than 60 MB of software running on up to 70
microcontrollers and processors [Saa03]. Technologies like “drive-by-wire”
which are still lacking acceptance in the automotive sector are considered
state-of-the-art in avionics. Modern aircraft can not be flown by the pilot
alone without the aid of computers, which is why these aircraft have been
described as “computers with wings”.

Telecommunication: Modern telecommunication switching centers used to be
controlled by relays and lots of hardware. Today, embedded systems have
taken over. These systems are expected to work for a long time in a re-
liable way. An interesting aspect is the fact that the maximum heat that
can be tolerated during operation of these devices is strictly limited due to
the high packaging density of the corresponding systems in the automatic
telephone exchange. For the home user, telephone systems provide conve-
nient services like in-house phone-to-phone calls or automatic activation
of a fax machine. The fact that these systems are really computers show
when firmware updates have to be installed, or when the system crashes
and has to be restarted.

The previous examples give a very limited overview over the relevance
of ubiquitous or pervasive computing: computers surround us everywhere,
and a lot of our everyday lives are directly or indirectly influenced by this
development. This broad invasion of embedded systems has become possible
due to a number of developments. However, in order to further improve the
performance and convenience of using embedded devices, there is still a lot of
room for improvement.

All the embedded systems mentioned so far consist of some kind of proces-
sor that executes an application program in order to deliver a certain service
or to control its environment. While in particular microcontrollers have been

2.1 Motivation 5

programmed in assembly language for a long time, the increasing complexity
of the software executed on embedded devices makes the use of high level
programming languages mandatory. Currently, using the C programming lan-
guage is one of the most popular ways of developing software for embedded
systems. One advantage of C is the higher level of abstraction that the lan-
guage offers compared to assembly programming, yet the programmer has
the chance to access “low level” functions of the processor using inline as-
sembly code for performance-critical sections of code. The use of a high level
language makes it necessary to provide efficient compilers that translate the
application program into the used processor’s machine code. Efficient opti-
mizing compilers are available to translate the C programming language into
the machine code of many popular processors used in embedded devices. For
the popular ARM7 processor series that was used in the experiments in this
work, several alternative compilers exist. Beside commercial vendors, ARM
offers a complete compiler toolsuite which also contains assembler, linker and
an instruction set simulator [ARM98a]. Furthermore, there is a version of the
popular gcc [GCC05] that generates efficient code for the ARM processor. In
general, the quality of the application code executed on the target system has
a strong impact on the performance and the energy dissipation of the entire
system. In fact, the requirements of future systems will only be met if both
hardware and software work together.

This work uses a specific research compiler to generate code from an app-
lication program written in C. The special feature of the used compiler that
distinguishes it from competitors is the fact that it is capable of generating
code that is optimized for energy using an instruction level energy model. In
addition, it takes into account several properties of the surrounding memory
architecture in order to generate optimized code that effectively exploits the
architectural features that are present in the system. The algorithms and opti-
mizations described in this work target the memory hierarchy of the system
under consideration in an attempt to make memory accesses fast, efficient and
timing predictable.

The following section provides a general overview over the problems and
issues encountered during the design of embedded system today, highlighting
in particular issues related to the generation of optimized code. The contri-
butions of this work are presented in the subsequent section. Finally, the last
section of this introduction provides a short overview over the entire work.

2.1 Motivation

A number of properties have to be fulfilled by embedded devices in order to
be accepted and attractive for the potential user. On one hand, the customer
buys e.g. a portable device since he is interested in the services offered by the
product. In contrast to e.g. desktop processors, there will hardly ever be a
discussion about the processor used in a mobile phone: what really counts is

6 2 Introduction

that the system meets the user’s requirements, how this is done is not relevant.
In order to provide unobtrusive service, the device should have a sufficiently
high performance to e.g. show good reaction times to the user’s requests or to
be able to playback a video without flickering. It is therefore one prime concern
of designers to implement high-performance embedded systems. If the proces-
sors found in commonly used embedded systems today were not as powerful
as they are and dedicated hardware was used instead of software applications,
most of the devices that are widely used today would be unaffordable.

Considering the effect of performance alone will lead to powerful proces-
sors and abundant peripherals to be included used in the system. However,
portable devices in general have to operate on battery power instead of using
abundant power from wall sockets. In particular for those systems, the run-
ning time with a single charge of the battery is an important aspect. Users
will hardly accept a mobile phone whose battery needs to be recharged every
other day, or even risk missing calls due to empty batteries. Even if the perfor-
mance of the system is satisfactory, the battery standby and operating times
are another vital aspect. Therefore, the designer has to determine a tradeoff
between the performance of the processor and the acceptable energy dissipa-
tion. In addition, lower currents flowing through the device’s circuits will also
lead to improved long-term reliability of the system.

Having considered performance and energy dissipation in the processor,
other factors that influence the performance and the energy dissipation of
embedded systems should be mentioned. In general, a development that has
so far mainly affected desktop computers is currently becoming a problem
for embedded systems: the increasing demands concerning the versatility of
embedded devices inevitably leads not only to the use of faster processors,
but also to the requirement for larger memory capacities. The development
of processors is proceeding at a fast pace, and more powerful processors that
consume less energy per operation are developed with great speed. The fact
that processors today perform operations at a speed that was only reached by
application specific circuits a couple of years ago is one of the main reasons
for the widespread use of embedded systems. Recent developments indicate,
however, that the increasing size of the memories used to store both the app-
lication’s instructions and data will turn out to be the real bottlenecks. In
fact, it is to be expected that in a couple of years, slow memories will domi-
nate the performance not only of embedded systems, but of computers in
general. This effect has been termed the “Memory Wall” by [Mac02, WM95].
Figure 2.1 shows that currently, processor performance is improved by around
50 to 100% per year, whereas memory speed is only increased by about
7% in the same time. This leads to an increasing gap between the speed
of the processors and the memories. In fact, the gap doubles in size every
two years. The slow development concerning the performance of main memo-
ries in DRAM technology is caused by the fact that that developments in
this area have primarily been targeted at increased capacity rather than
speed.

2.1 Motivation 7

1000

100

10

1
0 1 2 3 4 5 6 7 8

Years

CPU Speed max
CPU speed min
DRAM speed

R
el

at
iv

e
pe

rfo
rm

an
ce

Fig. 2.1. Gap between CPU and memory performance [Mac02]

Publications about the memory wall argue that in a couple of years, highly
efficient processors will spend most of their time waiting for the slow memories.
In addition to dominating the performance of systems, memories are also
responsible for a high percentage of the energy dissipated in a computing
system: researchers have found that the energy dissipated in the memory
subsystem can be higher than that consumed by the processor [KVIY00].
Thus, just like the memory wall has already been found to be a major threat
for the future development of systems concerning performance, a similar effect
can be expected to occur concerning energy dissipation as well.

For any given technology, access times as well as the energy required for
one single memory access are a function of the memory size: The larger the
memory, the larger the access times and the energy consumed per access.
This relationship is shown in Figure 2.2. The fact that more and more memory
capacity is required in order to fulfill the various tasks demanded of computing
systems today increases the growing gap between the ever-faster processors
and the slower main memory.

Several techniques can be used to take into account the effects of the
memory subsystem on the design targets. In order to reduce the negative
effect of the large main memories on the overall system performance, several
small memories are usually found in modern systems in the form of a memory
hierarchy. This is possible since most application programs exhibit a high
degree of temporal and spatial locality: Temporal locality means that an item
that has been accessed in the recent past is likely to be accessed again in
the near future. Spatial locality means if an object has been accessed in the
past, then it is probable that an element in the vicinity of that object will
be accessed in the future. By placing small and efficient memories close to
the processor that exploit the applications’ locality, the long access times and

8 2 Introduction

64 128 256 512 1k 2k 4k 8k 16k 32k
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Memory Energy

Memory Access Time

Memory size [bytes]

E
ne

rg
y

pe
r

ac
ce

ss
 [n

J]
A

cc
es

s
tim

e
[n

s]

Fig. 2.2. Energy and time per access for increasing memory sizes

high energy consumption of larger background memories can be avoided. The
storage locations that are closest to the processor are the registers that all
operands are read from in RISC architectures. If all values can be kept in the
registers instead of having to access main memory, maximum performance can
usually be obtained from the system. However, if the main memory has to be
accessed, the gap between the fast registers and the slow main memory is still
very large. Thus, more intermediate levels are introduced into the memory
hierarchy. The most popular instantiation of this concept is the use of caches:
the cache automatically loads a value requested by the processor and keeps it
for future reference. Since caches that are close to the processor are usually
quite small, the performance of the system is not impaired if the requested
values can frequently be fetched from the faster cache instead of the main
memory.

In particular for desktop PCs, caches are the solution usually found in
order to improve the performance of the memory subsystem. Caches are ca-
pable of automatically detecting whether a requested item is stored within
their data memory (cache hit) or not (cache miss). If the item is not in the
cache, the next level of the memory hierarchy is accessed in order to retrieve
the requested data. The ability to keep track of their current contents is the
main advantage of caches: since they do this automatically, a system can
benefit from the presence of a cache without requiring any further change in
hard- or software. The drawback of caches lies in their unpredictable beha-
vior, which can lead to performance degradations instead of improvement if

2.1 Motivation 9

wrong cache parameters are chosen, and in the additional energy consumed
by the architecturally complex address comparison circuitry. In fact, it has
been determined in [KG97] that onchip caches can consume 25 to 45% of the
total chip power.

Despite the fact that no software or compiler support is required to take
advantage of a cache, knowledge about the cache architecture can help to gen-
erate code that exploits the cache more efficiently, e.g. by choosing addresses
in such a way that no conflict misses occur, or by using optimizations like loop
tiling which reorganizes the application program such that its iterations and
reused data elements match the cache’s organization to provide a minimal
number of cache misses.

Scratchpad memories are another concept to build a hierarchy of several
memories in order to improve performance and energy dissipation. A scratch-
pad memory is simply a small memory that is usually located close to the
processor. In most cases, the scratchpad will be on the same chip as the
processor to allow fast and efficient accesses. Consisting only of a small mem-
ory array, it is not capable of automatically keeping track of its contents like
the cache is. The drawback of this property is that explicit software support,
provided either by the programmer or by the used compiler, is required to
exploit the presence of a scratchpad memory by e.g. allocating instructions
and data to this memory region and generating code that accesses the ob-
jects from the small, fast and efficient scratchpad instead of main memory.
The advantage, on the other hand, is that due to the missing comparison
logic, scratchpad memories are both smaller and more energy efficient than
caches [BSL+02]. However, scratchpad memories are not as widely accepted
and understood as caches. Despite their advantages, which will be covered in
detail in the further course of this work, a complete and consistent toolchain
for their utilization is still missing in industry.

There are basically two ways of allocating objects to an available scratch-
pad memory: the static case, where code and data is loaded in the scratchpad
before the start of the program and all memory objects stay on the scratch-
pad throughout the execution, and the dynamic case, where objects may be
swapped between main and scratchpad memory at runtime to react to chang-
ing working sets of the executed program. Even in the dynamic case, the
instructions to copy certain memory objects to and from the scratchpad are
already inserted into the application at compile time, meaning that no dyna-
mic decisions have to be taken at runtime.

This property of fixing program behavior at compile time not only im-
proves the obtainable performance and energy dissipation, but also the timing
predictability of the system. Timing predictability is an important issue e.g. in
automotive equipment. A popular example is the airbag system: if the airbag
is not fully inflated within 40 milliseconds following a crash, the entire system
is worthless. In such hard real time systems, it is not performance that plays
the major role, but timing predictability. To design a predictable system, the
designer needs to be able to specify at design time an upper bound on the

10 2 Introduction

execution time that is always guaranteed and never exceeded, even under the
worst of circumstances. This upper bound is called the worst case execution
time (WCET). If in the actual operating environment, a safety critical system
does not meet the WCET specifications guaranteed by the designer, severe
injuries may occur. Note that the aspect of building a timing predictable sys-
tem is quite different from optimizing a system for average case performance.
While e.g. a cache can help improve the observed average case execution
time of a system, the integration of caches into WCET analysis techniques
is not trivial: to determine a guaranteed upper bound on the execution time,
either pessimistic assumptions concerning cache performance have to be made
which lead to poor WCET results, or complex analysis techniques have to be
employed to predict the dynamic runtime behavior of the cache in advance.

Main memories are in general large and slow, and they should only be
accessed when no smaller memory that is located closer to the processor can
supply the required data element. Due to their size and due to the long bus
lines connecting main memory and processor, the energy dissipation for access-
ing the main memory is very high. To overcome these disadvantages, modern
SDRAM memories provide power management features that allow e.g. parts
of the circuit to be shut down if they are not being used.

Most embedded systems today feature another memory type that is some-
times only used at startup of the device: Memories in Flash technology are
being used as non-volatile memories that store applications and data as well
as configuration information even when the power supply of the system is
switched off. Usually, the contents of the Flash memory are copied to the
correct locations in the memory hierarchy at startup of the device and then
executed or accessed from there. Not using the Flash memory during normal
operation of the systems is actually a waste of resources: Flash memories in
NOR technology may be used as so-called eXecute-In-Place (XIP) memories,
which means that the processor fetches instructions directly from the Flash
memory instead of first having to copy them to another memory region. The
fact that Flash memories are relatively slow compared to e.g. SDRAM main
memory results in a tradeoff of selectively allocating instructions either to the
Flash or to SDRAM memory.

Finally, the register file, being the part of the memory hierarchy that is
closest to the processor, must not be neglected. Due to its small size, it pro-
vides very fast access. Since in a RISC processor, the register file is generally
used to hold all operand values for all performed operations, it is a place of
extremely high switching activity and thus high energy dissipation. Based on
the fact that in the energy efficient M*Core architecture, 16% of total proces-
sor power and as much as 42% of the data path power is consumed within the
register file [SLAM98], it is mandatory to treat the register file with care when
it comes to designing energy efficient embedded systems. The code generated
by the compiler is also influenced by the size of the register file: if an insuf-
ficient number of registers is available to hold the required values, a strong
overhead concerning code size, performance and energy is introduced since

2.2 Contributions of this Work 11

register values have to be saved to memory if insufficient space is available in
the register file.

The discussed topics represent challenges both to designers of embedded
systems and to compiler architects. The following section shows how this work
contributes to solving several of the mentioned problems and issues.

2.2 Contributions of this Work

In order to observe and evaluate the performance of embedded systems, a
timing model for the considered processor is required. An instruction level
timing models for the ARM processor is thus presented. This model is used
within the compiler environment to optimize and evaluate the performance of
the generated code.

Instruction level processor energy models are required to observe the influ-
ence of generated code on the energy dissipation of a system. The used energy
model for the ARM7 is based on actual physical measurement. It can be used
in the compiler framework to generate code that considers the energy dissipa-
tion of the generated code sequences and thus leads to energy optimized code.
In addition, the model allows the evaluation of the code quality. However, in
RISC architectures the choice of available instructions to perform a certain
operation are limited, so that the compiler hardly ever has a choice of gener-
ating code that is significantly more energy efficient than an alternative code
sequence that performs the same operation. The results for energy optimized
code are usually identical to the results for performance optimization, at least
if the memory hierarchy is not considered.

In order to provide more potential for compiler optimizations, the used
memory architecture should thus be included in the considerations. This work
handles caches by providing a flexible memory hierarchy simulator that is
capable of simulating arbitrary configurations of different memories, including
different cache organizations. No explicit optimizations that directly target the
use of caches are presented, since the concept of using scratchpad memories
offers more promising optimization potential. Energy models for both caches
and the more energy efficient scratchpad memories are presented in the work.

Unlike caches, scratchpad memories require explicit support from either
the programmer or the compiler. In this work, the compiler is used to auto-
matically allocate memory objects, i.e. instructions and data, to the fast and
energy efficient scratchpad memories. Allocation can be performed in a static
or in a dynamic way, as explained in the previous section. In both the static
and the dynamic case, the compiler analyzes the code concerning loops and
frequently accessed data elements which are promising candidates for allo-
cation to the scratchpad. Allocating these candidates usually both improves
performance and reduces the energy dissipation when the program is executed.
This work presents detailed algorithms and analyses of static allocation algo-
rithms that take advantage of partitioned scratchpad memories. Since smaller

12 2 Introduction

memories require less energy per access (cf. Figure 2.2), providing 4 kB of
scratchpad memory as e.g. two memories of 2 kB each can be expected to be
more energy efficient than using one single partition. This work first provides
a formal representation of the basic concept of exploiting partitioned scratch-
pad memories in the compiler using static allocation techniques. This basic
model is subsequently extended significantly by providing formalization and
experimental data for three different approaches that differ in the treatment
of memory objects at a fine granularity. In addition, generating code that sup-
ports the TCM architecture found in the most recent ARM designs [ARM04a]
and taking into account the leakage energy dissipation of multiple scratchpad
partitions are novel contributions.

Both static and dynamic allocation approaches fix all decisions concerning
memory layout at compile time. This concept leads to an inherent predictabi-
lity of systems that use a scratchpad memory and the proposed allocation
algorithms. This work presents results that show the effect of both a cache and
a statically allocated scratchpad on the achievable worst case execution time
(WCET). The results in this work for the first time consider the allocation of
basic blocks instead of only complete functions, which further improves the
quality of the achieved results. It is shown that while a cache, despite requiring
complex analysis techniques, does not improve the WCET of a system, the use
of a scratchpad memory has a positive effect both on the average case perfor-
mance and on the WCET. As a further novel contribution, this work for the
first time considers the effect of a dynamic scratchpad allocation algorithm
on the WCET of a system. Results show that even in the dynamic case, the
scratchpad remains inherently predictable. As a side note, the dynamic allo-
cation algorithm is capable of outperforming an architecturally more complex
4-way set associative cache.

Main memories are one of the main contributors to both runtime and en-
ergy dissipation in computing systems. Today, the large main memories are
usually built using SDRAM technology. These dynamic memories are more
difficult to handle in the compiler than the previously considered static mem-
ories, since their timing and energy dissipation depends on the access pattern.
In addition, the standby power dissipation of SDRAM memories is very much
higher than that of static RAM cells due to the necessity to periodically re-
fresh the memory contents. This refresh power has to be considered when
SDRAM memories are integrated into the system. SDRAM timing and en-
ergy models are introduced and their integration into the compiler framework
is presented. An optimization that targets the power management features of
modern main memories is formalized and integrated into the compiler. As a
result, the compiler statically allocates instructions and data to an available
scratchpad memory partition in order to maximize the time the main SDRAM
memory can be kept in power down mode.

The exploitation of the presence of Flash memories in most embedded
systems is also covered in this work. Instructions can either be executed di-
rectly from the slower Flash memory, or they can be copied to the faster

2.3 Overview 13

main memory at startup of the device. The resulting tradeoff can be solved
by the compiler, which thus determines a suitable allocation of objects to the
Flash and the SDRAM memory. As a result of this proposed optimization,
significant savings in the required SDRAM instruction memory are reported.

Finally, the effect of the register file size on the achievable code quality is
studied. The results show that the register file size is an important factor for
the efficient execution of application code on the processor, since an insufficient
number of registers results in a large amount of spill code to be inserted into
the generated code that copies register values into memory and reloads them
when required. As a novel contribution of this work, the compiler can also
analyze an application program in order to determine an optimal register file
size. Since the compiler is aware of the register pressure at all times during
the application’s execution, it can find the minimal register file size that leads
to an acceptable amount of spilling. While register files used to be fixed in
size, the increased use of configurable cores also puts this parameter under
the control of the system designer.

This concludes the short look at this work’s contributions concerning mem-
ory architecture aware compilation. The following section provides a short
overview over the structure of the remainder of this work.

2.3 Overview

Following this introduction and overview, Chapter 3 presents the models and
tools that were used in the further course of the work in order to capture the
properties of both the processor and the memories with respect to behavior,
timing and energy dissipation. The timing and energy models are used within
the compiler to generate optimized code according to the respective optimiza-
tion, and also to evaluate the generated code concerning performance and en-
ergy dissipation. This evaluation is usually done by performing a simulation
run of the generated code on the assumed hardware. To allow for maximum
flexibility for simulation, several simulator models are presented that can be
used depending on the performed compiler optimization. Section 3.6 presents
the used encc compiler in-depth and also provides information concerning the
development environment and the used workflow to perform memory archi-
tecture aware compilation.

Chapter 4 presents the optimizations that primarily target the scratchpad
memory. Following a look at related work, a static allocation model of both
instructions and data to a partitioned scratchpad memory is presented. This
simple Base model is subsequently extended to treat memory objects at a finer
granularity and to map objects to a Harvard-style TCM-architecture found in
modern ARM designs. Finally, results for taking into account memory leakage
power are presented.

In the second half of Chapter 4, the impact of scratchpad memories on the
worst case execution time (WCET) of real time capable systems is examined.

14 2 Introduction

The results of both using a static and a dynamic scratchpad allocation indi-
cate that since scratchpad memories are inherently predictable, no additional
analysis techniques are required to obtain good results concerning WCET.

The power management features of modern main memories in SDRAM
technology are the target of Chapter 5. First, an energy model based on the
standby energy of the main SDRAM memory is used to allocate memory
objects to a scratchpad in such a way that the main memory can be kept in
the energy-saving power down mode for a maximum amount of time. Following
the results for this algorithm, an optimization that uses a Flash memory as
instruction memory is presented. Since the entire application is assumed to
be kept in the Flash memory when the power is turned off, significant savings
in terms of SDRAM instruction memory requirements are observed.

Finally, the size of the register file and its impact on the quality of the
generated code is considered in Chapter 6. Following the observations made
by modifying the compiler and generating code for different register file sizes,
a compiler guided method of determining an adequate size for the register file
is presented.

The summary and an outlook on possible future work conclude this work.

3

Models and Tools

In order to perform architecture aware compilation, optimization and simu-
lation, it is necessary to model the environment that is to be optimized with
respect to the used cost function. In the context of memory architecture aware
compilation, the entities that need to be considered are the processor and the
memory subsystem. The tools used in the course of code optimization each
require knowledge about certain aspects of the processor and the memory
subsystem. This information is passed to the optimizing toolchain through
the use of models. The entire system with its information flow is shown in
Figure 3.1. Starting at the left hand side of the figure, processor and memory
both have a certain timing and energy behavior captured in a corresponding
model that can then be used during code generation and optimization. Simu-
lation models are useful to determine the effect of an optimization and to
evaluate its benefit. An instruction set model is additionally required for the
processor.

The right hand of the figure comprises the tools generally used in code gen-
eration and optimization: the compiler with integrated optimization routines
and a simulator to evaluate optimization results. To generate code of high
quality, the compiler and the optimizer require detailed information concern-
ing both the timing and the energy dissipation of instructions. In general, the
entire instruction set architecture (ISA) of the used processor must be known
in order to be aware of all code generation and optimization alternatives.
Additional information can be used within the compiler to generate more effi-
cient code using the optimizer. The link between compiler and optimizer is so
close that these two tools are usually integrated, indicated in Figure 3.1 by
the dotted box. If the code is to be optimized with respect to performance,
then instruction timing is vital. If energy dissipation within the processor is
an issue, then the processor energy model provides the information on how
much energy is required to execute a certain instruction.

Within an architecture aware compiler and optimizer, memory timing also
has to be considered. If the code is optimized for performance, then the access
times to different memories are taken into account e.g. in the decision to either

15

16 3 Models and Tools

Fig. 3.1. Required models for memory architecture aware optimization

temporarily store a value in memory or to regenerate the result. Timing in-
formation may also include the ability of a memory to support burst transfers
which make sequential accesses faster. Information concerning several mem-
ories with different properties and how they can be exploited will generally
have an influence on optimization decisions and on the quality of the gener-
ated code. Energy dissipation information concerning the used memories can
also be used by the compiler and optimizer to improve the quality of the gen-
erated code. Instructions and data elements may be distributed among several
memory partitions depending on their energy behavior. Availability of power
management functions allow the memories to be shut off memories whenever
they are not used for a longer period of time. All this information is required
in order to generate optimal code with respect to a used memory hierarchy.

After code generation and optimization, the resulting code should be eva-
luated. Despite the fact that the used cost function allows a first assessment
of the expected improvements during code generation and optimization, not
all factors may have been considered, since parts of the required information
(e.g. cache behavior) is only available at run time. In order to validate the
optimization and to actually quantify the benefit, simulating the entire system
with the optimized code is helpful. This simulation run is accompanied by
an evaluation step that analyzes in detail how the system behaves during
execution of the program. In general, the behavior of the processor is encapsu-
lated within an instruction set simulator. At least one homogeneous memory
is supported by most simulators. More complex memory hierarchies may be
modeled, but in order to gain maximum freedom in specifying the memory
subsystem, a separate memory simulator may have to be used. For single pro-
cessor systems with a single issue pipeline which are considered in this work,
the times required for instruction execution on the processor and the times

3.1 Instruction Set Architecture Model 17

required to access instructions and data from memory can be appropriately
combined in order to determine overall performance and energy consumption.

In the following sections, the models that make up the optimization and
simulation environment will be discussed in detail. We start with the instruc-
tion set model of the used processor and the behavior of the considered mem-
ories, then proceed to the timing and energy models of both processor and
memories. Finally, the simulation models provide the required information for
the evaluation of the optimization results.

3.1 Instruction Set Architecture Model

The memory hierarchy aware compilation techniques in this work consider the
ARM7TDMI [ARM01], which implements the ARM instruction set architec-
ture version 4T. The ARM7 is widely used in embedded systems like portable
audio players, wireless headsets and digital cameras. It is recommended in par-
ticular for ultra low energy applications, making it a suitable target processor
for the proposed memory aware compilation optimizations.

The integer unit of the ARM7TDMI processor features 16 general purpose
registers with 32 bits each as well as an ALU, a hardware multiplier and a
dedicated barrel shifter. The three-stage instruction pipeline consists of the
fetch, decode and execute stage. The processor is connected to its environment
by 32 bit data and address buses.

Apart from the integer core, our ATMEL implementation of the ARM7
processor, the AT91M40400 microcontroller, also carries a 4 kB freely address-
able so-called scratchpad memory implemented directly on the processor die.
No caches are provided in this processor model.

In order to provide a trade off between reduced energy consumption and
performance, the ARM7TDMI features two instruction sets: first, the full
32 bit “ARM” instruction set and second, the 16 bit “THUMB” instruction
set. The THUMB instruction set offers less functionality compared to the
32 bit ARM instruction set. In particular, the number of directly addressable
registers is reduced to only 8 (compared to 16 in ARM mode), since only 3 bits
are available to code the register number in the 16 bit instruction word. The
range of immediate values within an instruction is also restricted, making e.g.
long conditional branches and direct loading of large constants more complex
than in the ARM instruction set. In the 32 bit ARM instruction set mode,
the barrel shifter can be used in parallel with the ALU, whereas in THUMB
mode, shifting always requires a dedicated instruction.

Beside the reduction in number of usable registers, the strongest restriction
is the fact that conditional execution of instructions is not possible: in ARM
code, it is possible to execute or skip an instruction depending on the value
of the processor status bits. In THUMB mode, explicit conditional branches
are required, leading to longer code with complex control flow and also more
potential pipeline stalls at runtime.

18 3 Models and Tools

The advantage of using THUMB mode is the increased code density:
according to [SCG95, KG02], an average increase in the range of 30% is achiev-
able compared to ARM code, promising a better utilization of the available
instruction memory. THUMB mode is also recommended for ultra low energy
applications, since for each instruction, only 16 bits have to be fetched from
memory. Since instruction fetches account for a large percentage of overall
energy, the reduced bit width generally results in energy savings. Despite the
reduced capabilities of the THUMB instruction set, execution times do not
increase significantly compared to ARM mode. For some timing-critical sec-
tions of the code, ARM code may be preferred in order to meet deadlines.
Switching between ARM and THUMB modes is done by executing a special
branch instruction, so that 32 bit and 16 bit code can be freely mixed to benefit
from both instruction sets’ advantages. There have been several studies that
consider using both instruction sets at varying granularity [KG02].

In summary, THUMB code is considered the first choice for energy aware
embedded systems. Apart from the situation where features only supported
by the ARM instruction set can be used effectively, twice the amount of in-
structions can be allocated to a memory of a certain size. This is of particular
interest considering the fact that our implementation of the ARM7TDMI on
the evaluation board provides an onchip scratchpad memory of only 4 kB
capacity. Using THUMB mode, the restricted capacity of this highly energy
and performance efficient memory can be used for holding instructions in a
beneficial way.

In order to generate executable programs for the evaluation board, the
ARM software development toolkit can be used. It contains a compiler for
both ARM and THUMB mode, assembler and linker, provides communica-
tion software to transfer the generated program to the board and also supports
the Angel debug monitor to allow remote debugging and tracing of the pro-
gram on the processor. The toolkit also contains an instruction set simulator
called ARMulator which can be used to easily validate the correctness of a
generated program without having to execute it on the actual hardware. In
our workflow, the compilers provided with the software development toolkit
were mostly used to validate the correctness of our own encc compiler which
will be described in section 3.6.

The instruction timing of the ARM7 processor, derived from the instruc-
tion set description in a straightforward way, will be described in detail in
Section 3.3.1. The employed energy model was derived from the actual hard-
ware using physical measurement [SKWM01] and will be summarized in Sec-
tion 3.4.2.

3.2 Memory Models

Memories have in the past couple of years undergone a significant develop-
ment that is comparable to that of processors: They are becoming smaller,

3.2 Memory Models 19

yet have more capacity and shorter access times. Still, memories do not grow
in size and speed quite as fast as processors do. The resulting speed gap has
become an increasing concern to system designers, since the development has
reached a point where the memory can severely limit the overall performance
and dominate system power. It is therefore interesting to find a subtle bal-
ance between memories and processors such that e.g. the memory does not
impair the performance of the entire system. To perform these studies, it is
necessary to consider current processor as well as memory technologies. The
processor model used in this work was described in the previous section. The
memories used in embedded systems today can in general be split into three
categories:

• Static Random Access Memory (SRAM)
• Dynamic Random Access Memory (DRAM)
• Flash Memory

Read-only memories like ROMs, EPROMs and EEPROMs were previously
used in embedded systems to hold information that does not change over
time. However, they are increasingly being replaced with Flash memories since
updating a ROM requires additional efforts and architectural modifications
(e.g. the use of UV lamps or additional voltage levels for erasing). This makes
them less suitable for use in embedded systems where it is desirable to have
an easy way of performing e.g. firmware updates. If Flash memories are used,
this task can even be left to the user who simply needs to insert a CD-ROM
containing the new firmware.

The following sections present an overview over these memory types along
with a description of their functional behavior, special performance and power
enhancing features as well as their integration into an embedded system. The
timing behavior and energy dissipation of the different memories will then be
covered in sections 3.3.2 and 3.4.3, respectively.

3.2.1 SRAM

The basic storage principle of a single static memory cell can be compared to
that of a flipflop. Each memory cell, capable of storing a single bit, is made
up of 6 transistors (cf. Figure 3.2). If the cell is accessed using the address
lines, then the stored value (denoted as “0” and “1”, respectively in the figure)
can be read from the opposite “Data” and “Data” lines. If the data lines are
forced to opposite values from the memory circuitry, this new value will be
stored in the 6-transistor cell.

Despite the fact that SRAM memories occupy a relatively large area per
bit, they are frequently implemented directly on the processor die as so-called
onchip memories since the same production processes used for the processor
transistors can also be used for the SRAM cells. This keeps the manufacturing
process simple and helps reduce the cost. Typical onchip SRAM memories are
fast: in most systems, it is possible to access such an onchip memory within

20 3 Models and Tools

VDD

Address

Data Data

‘1’

‘1’

‘0’

‘0’

‘0’

‘1’

Fig. 3.2. Basic 6-transistor SRAM cell [B0̈2]

one processor cycle, a fact that is also owed to the fact that the memories
need to be kept small since area is a scarce resource.

The asynchronous protocol used to access an SRAM memory is fairly
simple: the memory’s inputs comprise the address bus, chip select, output
enable and write enable and the bidirectional data bus.

For a read access to an SRAM, chip enable and output enable both need
to be active, i.e. ‘0’, whereas write enable is ‘1’. After the address is applied
and the specified read time has elapsed, the data will be available on the data
output pins.

For a write access, write enable is set to ‘0’ and the data and the address
are both put on the corresponding bus. After the specified write cycle time,
the data is latched into the memory on a positive edge of either write or chip
enable.

Operated in the standard asynchronous read/write mode, the timing and
energy behavior of a single SRAM memory can be described using a relatively
simple model: for each access, the same amount of time as well as energy can
be assumed. The generation of timing and energy models for SRAM will be
covered in more detail in sections 3.3.2 and 3.4.3, respectively.

On the evaluation board used in this work, SRAM memories are used
both as main memory and in the 4 kB scratchpad memory located directly
on the processor chip. Since in contrast to caches, which will be described in
Section 3.2.4, the scratchpad does not come with a hardware control logic, the
utilization of this small, energy efficient memory is left to the programmer or
the compiler. In industry, the use of scratchpad memories is now becoming
more common (cf. the “Tightly Coupled Memory” in the newer ARM9 designs
[ARM]). Yet, as of today, a complete toolchain to systematically exploit the
advantages of this architectural feature is largely missing [MWV+04]. This is

3.2 Memory Models 21

illustrated by the fact that the software delivered with the evaluation board
is not capable of providing adequate support for utilizing the scratchpad.

The latest development in current SRAM technology goes toward synchro-
nous SRAMs (SSRAM), which have an increased throughput due to the use of
internal pipelining. Despite the fact that onchip SRAM cells are usually capa-
ble of reading or writing one data item per processor cycle, SSRAM memory
cells also offer a burst mode where the address is automatically incremented,
thus relieving the address bus of the necessary address transfers [B0̈2]. The
drawback of SRAM’s large area requirements is currently being tackled by
completely new fabrication techniques using thin film transistors, with an
expected reduction of SRAM memory areas by up to 50%.

3.2.2 DRAM

Dynamic (DRAM) memory cells are architecturally simpler than static cells,
since they are made up of only one single switching transistor and a storage
capacitor per stored bit (cf. Figure 3.3). They thus require only about one
sixth of the area per bit compared to an SRAM. In addition, DRAM offers
the capability to store a lot of information at a cheap price, making it the
first choice for large main memories where high access speed is not as crucial
as for the higher levels of the memory hierarchy.

On the downside, the protocol used to access DRAM is more complex
than the corresponding SRAM counterpart. Since the small capacitors used
to store the bits lose their information after a short period of time, DRAMs
require a more sophisticated surrounding logic to refresh the contents of the
memory periodically.

To enhance DRAM performance, synchronous DRAMs (SDRAMs) are be-
ing used in current architectures. DRAM memories are already described by
memory cell vendors (e.g. Micron Technology Inc.) as being obsolete. There-
fore, only the currently used SDRAM will be considered in the following.
SDRAMs use a synchronous protocol by latching control and address bit val-
ues in registers, then reading the actual memory array in the background.
After a certain number of clock cycles, the information is made available to

Word Select

Data

Fig. 3.3. Basic 1-transistor DRAM cell

22 3 Models and Tools

the processor on the data bus. Additionally, pipelining is performed within the
memory to improve throughput. By organizing DRAM in several banks and
ensuring an interleaved access pattern, some delays stemming from refresh
periods or addressing overhead can be hidden.

Another performance improvement can be achieved by using so-called dou-
ble data rate SDRAM (DDR-SDRAM). These cells can achieve twice the
throughput of regular SDRAMs by supplying data on both the rising and the
falling clock edge. Since the internal memory cells operate at the same speed
as conventional SDRAM cells, this is achieved by always accessing two cells
in parallel, then buffering the results and providing results in an interleaved
fashion. Furthermore, more complex synchronization logic is required in order
to guarantee correct timing of DDR-SDRAM cells.

To achieve generality, we will describe the typical behavior of an SDRAM
without considering the double data rate feature. The input and output signals
of such an SDRAM component are shown in the block diagram in Figure 3.4.

As an illustration for the possible states and transitions during SDRAM
operation, please refer to Figure 3.5.

The Clock enable signal (CKE) controls whether the clock signal (CLK) is
propagated to the memory. If CKE is low, then the memory goes to the power-
down state, shutting off parts of the circuitry to provide a low standby power
consumption. In Figure 3.5, this corresponds to the PDN state. If CKE is high,
then the clock input (CLK) can be used to control the timing of the memory,
since all inputs are latched into the memory on a positive edge of the clock
signal. Chip select (CS) must be active to enable the command decoder. Write
Enable (WE), Column Address Strobe (CAS) and Row Address Strobe (RAS)

Fig. 3.4. Simplified DRAM block diagram

3.2 Memory Models 23

Fig. 3.5. Simplified state machine for SDRAM

which go directly into the command decoder of the control logic determine
which action is to be taken by the memory. To start an access from the standby
state (STBY), the memory first requires an Activate command, issued by
setting RAS to high and CAS to low. The address bits applied at this time
are latched as the row address, and the memory goes to the active state (ACT).
One entire row of data is read from the memory array, amplified and stored in
the I/O buffer. On the next clock edge, the column is read from the address
inputs when RAS is low and CAS is high. With the Write Enable signal set
to low, this corresponds to a Read command (state RD). In this case, the
requested data element (column) is forwarded to the data register. Reading
the line from the memory array destroys the values stored in the memory itself,
since the capacitors are discharged in order to drive the bit lines. Therefore,
the whole line has to be written back from the I/O buffer to the memory
by issuing a precharge command (state PRE). A similar procedure is used for
writing data (state WR): The line of data containing the word to be written is
read, then the modified value is read from the data register and stored in the
corresponding positions of the buffer. Finally, the entire line is written back
to the memory array. This write-back process is also known as “precharge”,
since it also precharges all bit lines within the memory array to ‘1’ in order
to allow faster access for subsequent read operations.

Even when a certain line of data is not accessed, the capacitors within the
DRAM cell lose their information within a short time. They therefore have to
be rewritten periodically, which essentially means reading the entire memory
to the buffer and subsequently writing back the read values.

24 3 Models and Tools

The fact that a complete line is always addressed and put in the out-
put buffer can be exploited to increase throughput of DRAM memories. The
time required for a subsequent access to a data element within the same line
is reduced since there is no need to address and read the same row again.
Rather, only the column address needs to be changed, and the value can
be read directly from the buffer. Current SDRAMs assume that more than
one data element is to be read from a particular row. They therefore inter-
nally increment the column address to deliver values contained in the accessed
row successively. Such fast accesses that do not require any re-addressing are
generally known as “burst mode” accesses. Their timing is described e.g. as
5-1-1-1, meaning that the initial memory access (including row and column
addressing) requires 5 cycles, but the four subsequent sequential reads only
require one cycle each.

The performance enhancing burst feature makes SDRAM cells attractive
in particular for instruction memories which show a high percentage of se-
quential memory accesses. At the same time, burst transfers make it more
difficult to accurately model DRAM with respect to timing, since the time
required for a single access may depend on the accesses in the past.

To account for this complex timing behavior during code generation, a
couple of measures have to be taken in order to represent the memory’s be-
havior in a timing model. The methods used in this work to model DRAM
memories will be presented in section 3.3.2.

3.2.3 Flash Memory

In contrast to static and dynamic RAMs, Flash RAM cells are non-volatile
memories which means they keep their information even when the supply
voltage is switched off. For this reason, Flash memories are frequently used
in embedded systems to permanently store e.g. the boot loader, operating
system and applications that do not change frequently.

For read accesses, Flash memories require a low amount of energy per
access, and their standby energy dissipation is negligible. This would make
them an ideal read-only memory for embedded systems. However, Flash mem-
ories are a lot slower than SRAM and even DRAM, which can impair overall
system performance. To overcome this performance penalty, the applications
stored in an embedded system’s Flash memory are usually first copied to
SRAM or DRAM memory at startup of the device and then executed from
the faster memory (“Store-And-Download” architecture). Either the complete
application is loaded into working memory at startup (fully shadowed code)
or accessed pages are loaded at runtime (demand paged code).

Flash memories can not be used as the only memory component due to
their limited ability to execute write operations: only 105 to 106 store or erase
operations are possible on current Flash memory technology before the chip
becomes unusable [HP03]. Also, all write operations to a Flash memory have
to be performed in a blockwise fashion, which consumes a considerable amount

3.2 Memory Models 25

of energy. Concerning their organization, there are two different kinds of Flash
memories: NOR and NAND Flash. They differ in the way the cells are orga-
nized internally, in the access speed and the granularity of write operations.

NAND flash is cheaper compared to NOR flash, and reaches higher den-
sities due to its serial internal organization which requires less contact pins.
Concerning write accesses, NAND flash memories offer smaller write and erase
blocks than those built in NOR technology. Due to the strict organization in
pages and the necessity to re-read the entire page if one element is accessed
in a non-contiguous way, NAND flash memories are not suitable as random
access memory in embedded systems. In file system based devices, however,
sequential read operations are common, which is why NAND flash memories
are mainly being used in such devices, e.g. in SmartMedia Cards or USB mem-
ory sticks. NAND Flash memories require a certain amount of error correction
including ECC algorithms and bad block marking because of the frequently
occurring read and write errors.

NOR flash, on the other hand, offers an acceptable random read access
behavior. Due to its parallel structure, data within one page can be accessed
in acceptable time using so-called intra-page accesses. The write behavior,
however, is poor: only very large blocks of data can be erased and rewritten
at a time (e.g. 128 kB for a Micron Q-Flash MT28F640J3 [Mic04b]). This, of
course, does not impair the use of NOR flash as a read-only memory in an
embedded system, making NOR Flash cells attractive for use as “execute in
place” (XIP) memories. Code that is executed “in place” is fetched directly
from the Flash memory into the processor. This avoids the overhead of copy-
ing less frequently used parts of the program and reduces the requirements
concerning main memory capacity since parts of the application code can re-
main in the Flash memory, even at runtime. This approach and its application
within a compiler will be discussed in-depth in chapter 5.3.

The communication protocol used by the mentioned Micron Flash memory
is a simple asynchronous protocol similar to the one used by SRAM cells that
only requires the processor to apply the requested address and subsequently
enable the output pins of the memory. The Flash memory then provides infor-
mation from its internal data array on the output pins if “write enable” is not
activate. Since the block-oriented writing to Flash memories is not required
in the scope of this work, this issue will not be discussed.

3.2.4 Caches

Caches are common in today’s processors and computing systems. Despite the
fact that a cache is not considered a memory technology, a description of the
general behavior and the parameters is provided at this point since caches are
commonly used in many computing systems today. In particular in Section 4.3
of this work, the influence of caches and scratchpad memories concerning the
predictability of a system is compared.

26 3 Models and Tools

The word cache comes from the French “cacher”, to hide. One aspect of
caches is thus that they are in general hidden both from the user and also
from the compiler: if a cache is present in the system, it will be used automati-
cally without requiring any change in the workflow. Of course, optimizations
that improve the performance of a cache-based system are still possible, but
compared e.g. to a scratchpad memory, the presence of a cache can also be
exploited without explicit support.

Caches are small memory arrays that hold frequently accessed data and/or
instructions. Due to their small size, accesses can be performed in a fast and
energy efficient way. However, to ensure that the current working set is always
available in the cache in an automatic way, additional circuitry is required:
for every read access, the cache first determines whether the requested infor-
mation is currently in the cache memory. If it is, then it is forwarded to the
processor (“cache hit”). If the element is not in the cache (“cache miss”), it is
fetched from the next lower level of the memory hierarchy. To determine a hit
or a miss, the cache uses the stored tag bits of the data elements’ addresses
(cf. Figure 3.6):

The accessed address is split into tag, index and offset bits, the sizes of
which depend on the parameters of the cache. The index bits are used to
address the cache’s tag memory and to read the corresponding tag bits. The
stored tag is then compared to the tag part of the original access address.
If they are identical, then the requested element is stored in the data array
of the cache, resulting in a cache hit. In this case, the offset bits are used to
determine the requested word within the cache line. The valid bits that mark
a cache line as being up-to-date are not shown in Figure 3.6 for simplicity.

If two data elements have the same index bits, then they will occupy the
same cache line and thus cause each other to be evicted from the cache if a

Fig. 3.6. Example cache architecture using a direct mapping

3.2 Memory Models 27

direct mapping as shown in Figure 3.6 is used. If this happens frequently (an
effect known as “cache thrashing”), the performance of the cache will degrade.
To overcome this problem a set associative mapping is used in many caches.
The tag and data arrays are present two or more times (depending on the
associativity), and the tag bits of all the sets are compared in parallel. If one
set contains a matching tag, then the requested element is stored in the corre-
sponding data array. If all comparisons fail, then the line needs to be fetched
into the cache. In this case, a replacement strategy is required to determine
from which set the cache line is to be evicted. Commonly used replacement
strategies include “random” or “least-recently-used” (LRU), the latter be-
ing more efficient and providing better predictability, but also requiring more
control logic.

The ARM7TDMI processor used on our evaluation board does not provide
caches. Therefore, all experiments concerning caches in the ARM architecture
were performed using the similar ARM710T architecture. Since the ARM710T
was not physically available, the cache behavior was investigated using cache
simulation. For this reason, it was possible to study a wide range of varying
cache configurations.

To conclude this section, a short overview over possible design parameters
of caches is given:

• Split or unified caches: In a split cache architecture, instructions and data
do not share the same cache. Split caches in general show superior per-
formance compared to their unified counterparts since accesses to both
instructions and data usually show a high degree of locality. However, if
sequential instruction fetches are interrupted by data accesses, this poten-
tial locality is lost and data and instructions may evict each other. On the
other hand, including separate caches for instructions and data leads to a
higher amount of required space, thus increasing the cost of the device.

• Number of cache levels: In common desktop processors, lacking the strict
space and cost constraints of embedded systems, several levels of caching
are now common, with the first level cache (L1-cache) usually situated on
the processor chip. The caches are connected with the neighboring cache
levels, meaning that an element not present in a certain cache level is ac-
cessed in the following level and so forth. Such multi-level cache hierarchies
are thus generally considered to be fully inclusive, i.e. any data contained
in one cache is also contained in all lower level caches. Multi-level caching
strategies require a careful sizing of the individual cache levels to treat the
cost-performance tradeoff adequately.

• Cache Size: The capacity of a cache is indicated in terms of number of bytes
of data that it can accommodate, regardless of the fact that additional
space is required for the tag memory. The larger the cache, the better its
potential performance (since it can hold more data), but the higher the
area and energy overhead.

28 3 Models and Tools

• Associativity: Using a direct mapping scheme bears a high risk of cache
thrashing. Therefore, direct mapped caches are usually only used as in-
struction caches since instructions accesses are in general more sequential
than data accesses, which avoid excessive thrashing. For other purposes,
at least two-way set associative caches are usually used, unless the given
space constraints prevent the inclusion of the required additional compari-
son circuitry. Since the comparison operation of several sets are performed
in parallel, the influence on performance can be expected to be minimal,
but the energy will increase with the chosen associativity due to the in-
creased switching activity.

• Write Strategy (Write Through vs. Write Back): When memory words are
being written in the presence of a cache, two strategies are possible: either,
the word is only updated in the cache and a “modified” flag is set. Since
subsequent reads will results in a cache hit, the updated value will be
read from the cache without accessing memory. If a modified cache line is
replaced, then it needs to be written back to memory before being evicted
(“write back”). On the other hand, it is also possible to write the modified
data element immediately both in the cache and in the memory (“write
through”). This may result in an increased number of write operations on
the main memory, however, it saves the modified-bit in the cache lines. In
order to increase performance, write buffers are usually introduced such
that the memory write can be performed when the bus is available, without
unnecessarily having to stall the processor.

• Line Allocation on Write Miss: If a data word is written and the access
results in a cache miss, then the line containing the missed word can either
be loaded into the cache (“allocate on write miss”), or the value can simply
be written to memory (“no allocate”). The allocation of a line on write miss
can make sense assuming that the written value, due to access locality, will
soon be accessed for reading again.

• Cache Line Fill Strategy (Critical Word first, complete vs. incomplete
line): On cache miss, the line that caused the miss is brought into the
cache. Usually, the accessed word is read first so that the memory latency
experienced by the processor is minimal. In instruction caches, streaming
can help keep the miss penalty low: instructions that are being read to fill
the cache line are also directly forwarded to the CPU. Once the end of the
line is reached, the data before the element that initially caused the miss
is usually fetched to fill the complete line and set the valid bit of that line
to true. If, instead of only having one valid bit per cache line, one bit per
word is provided, then there is no need to fetch all words of the line if they
are not accessed.

Controlling all these parameters to design a cache such that it optimally
fits a certain device and application is a difficult task, in particular because all
parameters are connected and have a certain impact on each other. It should
also be noted that the considered optimization goal is of importance: authors

3.3 Timing Models 29

have shown in [SC99] that performance and energy optimization of a cache
results in a different cache organization. The compiler can be used to extract
some basic information concerning a beneficial cache organization.

3.3 Timing Models

Knowledge about the timing of considered components is of substantial im-
portance in the course of architecture aware compilation. Timing models for
the processor and the memory are required in order to understand and simu-
late the components’ behavior. For code generation, the timing of instructions
needs to be known in order to choose those instructions that lead to minimum
execution times of the final application. Performance in terms of number of
cycles is still the prime optimization goal pursued by the majority of designers
and compilers today.

But even if reduced energy dissipation is the goal of the optimization, it
is vital to be aware of the influence that execution time has on energy, since
energy depends on both power and time (cf. Section 3.4.1).

During simulation and evaluation, the timing of the processor and the
memories has to be known so that the simulated behavior matches that of
the actual hardware. If wrong assumptions about the timing behavior of the
underlying components are made, then the performance and energy evaluation
results will certainly differ from the results obtained on the physical system.

3.3.1 Processor and Instruction Timing

Of the two subtasks of describing processor and memory timing, the processor
is the easier one. Information about the timing of the processor is usually
provided by the vendor. While timing is unambiguous for most instructions,
there may well be instructions with operand dependent cycle counts (e.g.
multiplication operations, depending on the hardware support provided).

The ARM7 architecture provides a three-stage pipeline consisting of the
stages fetch, decode and execute. A single instruction therefore requires at
least three cycles to pass through the pipeline. Assuming a filled pipeline
and a standard ALU operation, one instruction can be executed per cycle.
A complete overview over the instruction cycle timing of the ARM7TDMI
processor can be obtained from the reference manual [ARM01]. Table 3.1
summarizes the timing of relevant instructions.

The number of cycles per instruction are not given in absolute processor
cycles, but depend on the used memory. This is on one hand due to the fact
that the ARM processors’ pipeline is stalled whenever the CPU is waiting for a
memory access, both data and instruction fetches. On the other hand, since the
considered ARM7 does not use caches, it is directly dependent on the timing
of the memory. For an ALU operation to be performed, the instruction timing
is thus assumed to be the number of cycles it takes to fetch the subsequent

30 3 Models and Tools

Instruction Cycle Count

ALU op S
Load S+N+1
Store 2N
Load Multiple nS+N+1
Store Multiple (n-1)S+2N
Branch 2S+N
Multiplication S+mI

Table 3.1. Instruction cycle timing summary for ARM7TDMI

instruction. This is denoted in table 3.1 as “S” cycles, denoting one sequential
memory access. In case of a LOAD operation, the data element also has to be
fetched from data memory. Since this may be an access to a different region
of the memory, it is assumed to be a non-sequential access, “N”. The LOAD
operation of the ARM always requires one additional processor cycle in order
to determine the access address. The STORE operation is assumed to take
two non-sequential accesses since a write access among read accesses is always
assumed to be non-sequential, thus the following instruction fetch has to be
considered as an “N” access. This reasoning can be extended to the LOAD-
Multiple and STORE-Multiple instructions, which are assumed to access n
different data items.

When a BRANCH instruction has reached the execute stage of the
pipeline, it determines whether the branch is taken, and it will always fetch
the instruction at the current PC from memory using a sequential access (cf.
instruction “Inst M” in Figure 3.7). The fetch can not be prevented, despite
the fact that this instruction may not be executed. If the branch is taken, the
next instruction is then fetched from the branch target address (“Inst A”) in
a non-sequential access. Since the pipeline is not yet filled with valid instruc-
tions, the instruction following the branch target is fetched using a sequential
access. The branch target instruction then proceeds to the execute stage of
the pipeline, finishing the execution of the branch instruction after “2S+N”
cycles. This is pictured in Figure 3.7.

If the branch is not taken, then it behaves just like an ALU operation,
meaning it requires only one “S” cycle to execute. In the ARM documenta-
tions, this information can be found in the description of the 32 bit ARM
instruction set’s conditional execution [ARM01] as an instruction that is not
taken due to the processor status bits.

The “Branch Link” instruction represents an exception in the THUMB
instruction set: while all instructions have a length of 16 bits, a “BL” is
encoded in two subsequent 16 bit values, with the second halfword containing
the remaining bits of the target address that do not fit into the immediate
fields of the first 16 bit instruction. This encoding is necessary to allow function
calls across large distances within the memory address space: distances of up
to 4 MB are possible using “BL”, compared to only 256 bytes for conditional

3.3 Timing Models 31

Fig. 3.7. Pipeline stall due to a branch for the ARM processor

and 2 kB for unconditional jumps. The timing of the “BL” instruction is
similar to that of an unconditional jump: the first 16 bit instruction word is
read and executed in a single cycle, while the second halfword has the same
timing as any branch instruction.

The timing of the multiplication operation depends on the operand values:
depending on the number of bits in the second operand that are set to zero,
it takes more or less cycles, which is represented by the parameter “m”. The
letter “I” represents a “memory idle” cycle, meaning that there is no activity
on the memory bus during the calculation of the multiplication result. Since
the operand values of a multiplication can generally not be determined within
the compiler, an average-case execution time of the multiplication operation
is assumed. Using a bit level data flow analysis as presented e.g. in [WL02b],
some information concerning the values of operands could be gathered, how-
ever this complex analysis is only common for processors that support bit
level operations.

In general, the instruction cycle counts were also validated through physi-
cal simulation and analysis using an oscilloscope. These validated results were
then transferred to a database used within the compiler to enable the code
generation process to be aware of the resulting execution times.

3.3.2 Memory Timing

If a complete system is to be modeled with respect to timing behavior, only
considering the processor is not sufficient. The memory subsystem plays an
important role for the overall timing of a device, in fact memory performance
can be the bottleneck of a system. This becomes manifest in the integration of
ever larger first- and second level caches into e.g. Intel’s and AMD’s processor
designs. Since accesses to the large, slow main memory can easily consume the
equivalent of several hundred instruction executions, caches are introduced in
such a size that they are able to hold the current working set of the executed
applications most of the time. Pessimistic observers fear that even the time

32 3 Models and Tools

required to initially fill the caches may become the limiting factor in memory
performance [WM95].

With memory timing being a vital part of the behavior of a system, there
is a need to model memory timing, and in particular to capture the used
memories’ timing in the workflow.

The main properties of three memory technologies (SRAM, DRAM and
Flash) were already discussed in Section 3.2. In this section, the timing be-
havior of the different types of memory will be considered in-depth. Timing
information for a certain memory can usually be acquired from data sheets
provided by the memory cell vendors. Measurements are another possibility
to obtain information on the memory timing of a system that is physically
available to perform the required measurements.

SRAM Timing Model

For static RAM cells, the available data sheets can provide information con-
cerning the used memory timing. Since regular SRAM memories like those
used on our ARM7 evaluation board do not support any kind of burst mode,
sequential and non-sequential accesses all take the same time to complete. This
significantly simplifies the memory timing model, since no state-dependent in-
formation has to be considered. Data sheets usually provide the memory access
times in nanoseconds. By transformation to a multiple of the processor’s clock
period, each type of access using SRAM memory takes a certain number of
clock cycles. The scratchpad memory embedded directly on the processor die
usually takes only one clock cycle per access, meaning that the processor does
not have to insert any wait cycles to wait for data or instructions.

On our ARM evaluation board, SRAM cells are also being used as main
memory. Since the effects of longer bus lines and larger capacitances have to
be accounted for, the resulting overall memory timing was measured instead
of solely relying on processor and memory data sheets. For the setup on the
evaluation board, memory timing depends on the width of the memory access,
since two memory chips each featuring an 8 bit bus are connected to the
processor in parallel. This allows 16 bits to be transferred per access. If a
32 bit value is to be read or written, then two sequential accesses to both
memories are required. The two 16 bit values are then assembled to form one
32 bit value which can finally be stored to a processor register (cf. figure 3.8).

This memory setup results in a 32 bit memory access requiring three wait-
states in addition to the actual memory access cycles. 8 or 16 bit accesses only
require one additional wait cycle. These additional wait cycles required within
the processor are summarized in table 3.2. Since the actual access cycle is usu-
ally hidden by the pipelining within the processor, these values are regarded
as the additional number of cycles required to access main memory. In the
course of our measurements, we validated the wait states using an oscilloscope
to monitor the address and data bus lines connecting processor and memory.

3.3 Timing Models 33

Fig. 3.8. Main SRAM memory setup on the ATMEL evaluation board

Access Width Scratchpad Memory Main Memory

1 byte (8 bit) 0 waitstates 1 waitstate
2 bytes (16 bit) 0 waitstates 1 waitstate
4 bytes (32 bit) 0 waitstates 3 waitstates

Table 3.2. Memory timing for the ARM7 SRAM memory

DRAM Timing Model

In order to understand and model the timing of a DRAM cell, some closer
understanding of the internal structures and the operating modes (cf. Sec-
tion 3.2) is required. We will concentrate on the timing behavior of current
synchronous DRAM (SDRAM) since the sale of regular DRAM cells has been
discontinued by most memory chip vendors.

To describe the timing behavior of SDRAMs, it is essential to be aware
of the current state the memory is in, since timing can vary significantly
depending on whether an initial random access or a burst access is taking
place. Figure 3.9 shows the situation for the case of a random access: the
corresponding line within the data array first has to be activated. The required
time “active to read/write delay” is designated as tRCD in the data sheet and
describes the duration of RAS-to-CAS delay, i.e. the time it takes for the
row address to be considered valid. Following the row activation, the column
address is put on the address bus. In case of a read access, the internal “CAS-
latency” TCAS delay is required to transfer data to the output register. In case
of a single random read access, a precharge command is required to terminate
the access. A delay of “precharge command period” tRP needs to pass before
the memory can once again be activated. Altogether, a single random read
access, assuming a 16 bit wide memory, thus takes

TSDRAM RND16 RD =
⌈

tRCD

tCLK

⌉
+ TCAS + TDOUT +

⌈
tRP

tCLK

⌉
(3.1)

34 3 Models and Tools

T0 T1 T2 T3 T4 T5 T6 T7

tCH

tCLtCLK

Command

Clk

DQ

NOPNOP ActiveNOP

Dout

tRAS

tRC

CAS LatencytRCD tRP

ReadNOPActive Precharge

Fig. 3.9. Access timing for a random read access to an SDRAM

if we assume that an additional TDOUT cycles are required to actually drive
the output data. tCLK , the duration of one clock cycle is used to scale the
absolute time values tRCD and tRP to the used clock. The “ceiling” operators
are required to account for the fact that data is only latched on the rising
clock edge of the memory. If a low operating frequency is used, the slack time
before the next clock edge can be substantial. It is therefore vital to tune
the frequency to the timing characteristics of the used memory in order to
achieve maximum performance. TCAS and TDOUT are specified in multiples
of the cycle time in the data sheet.

Assuming a write access, the “write recovery time” tWR which describes
the duration from valid input data to the next possible precharge command
has to be added to the equation, whereas the time to transfer the data element
to the output register TCAS and to drive the output data TDOUT is omitted:

TSDRAM RND16 WR =
⌈

tRCD

tCLK

⌉
+

⌈
tWR

tCLK

⌉
+

⌈
tRP

tCLK

⌉
(3.2)

In order to initiate a burst read access, the first access is considered to be
a random read access. Reading from contiguous addresses following the initial
read address is then possible in the faster burst mode. In case of a 16 bit wide
memory, this applies in particular for reading 32 bit words: the first access is
in the general case considered to be a random access, whereas the second half
of the 32 bit word can be assumed to be read in burst mode. The speedup
caused by a burst mode access is considerable: for the subsequent memory
accesses, only the data output time TDOUT is required. The time to read a
single 16 bit value in burst mode is thus

TSDRAM SEQ16 RD = TDOUT (3.3)

and the time required to read a 32 bit value from a random position in the
memory amounts to

TSDRAM RND32 RD = TSDRAM RND16 RD + TSDRAM SEQ16 RD (3.4)

If TDOUT is one cycle (as is frequently the case), this means that after the
initial access, one word per cycle can be read from the memory. Write bursts

3.3 Timing Models 35

can also be performed by passing one new data value to the data port of the
memory every TDIN cycles:

TSDRAM SEQ16 WR = TDIN (3.5)

In the SDRAM configuration register, the maximum burst length defines
how many accesses can be performed in the burst mode. The maximum value
is limited by the organization of the SDRAM: no burst access is possible
across rows, since the row activation has to be performed if a new row is
accessed. Shorter bursts than the value defined in the configuration register
are possible by using the “burst terminate” command. New SDRAM cells even
allow a burst to be interrupted, freezing the current state of the memory, and
to continue the burst access at a later point in time.

This concludes the timing behavior of a typical SDRAM memory. For
double data rate SDRAMs, the speedup of being able to deliver data on both
the rising and the falling edge of the clock signal in a burst access has to be
accounted for. Apart from that, the timing is similar to that of SDRAM.

In a compiler, not all aspects of SDRAM timing can be considered. For
example, it is not known during code generation which addresses will actually
be contiguous in the final executable. Therefore, the compiler has to assume
approximate values e.g. for the relative number of possible burst accesses. The
precision within the compiler can be improved by performing one simulation
of the application before considering memory optimization and keeping track
of the different access types. The collected information can then be used in the
optimization process to allow more precise energy models to be used. Details
of this approach will be presented in Section 3.4.3.

Flash Memory Timing Model

There are three different modes of accessing Flash memories for reading:

• asynchronous random access
• intrapage access
• burst access (in synchronous mode)

Random read accesses are the standard way of accessing a Flash, and any
first access to a certain page of the Flash memory is always a random access. It
requires the “address to output delay” tAA to complete. Assuming a memory
bit width of 16 bits, the time required for one read access is given as

TFLASH RND16 RD =
⌈

tAA

tCLK

⌉
+ TDOUT (3.6)

again assuming TDOUT cycles to drive the output values.
If the next access goes to the same page, then this initial delay is not re-

quired, since the page is already open. Rather, only the shorter “page address
delay” tAPA is required to determine the next address. Since Flash memories

36 3 Models and Tools

use an asynchronous protocol, the access times taken from the data sheet can
be directly used to model the timing behavior of the memory. The time for a
random 32 bit access to a 16 bit Flash memory is

TFLASH RND32 RD = TFLASH RND16 RD +
(⌈

tAPA

tCLK

⌉
+ TDOUT

)
(3.7)

where the term in parentheses can be interpreted as TFLASH SEQ16 RD.
Writing to Flash memories always requires entire blocks to be erased and

written. Since in embedded systems this is usually only done in order to
perform e.g. firmware updates and not during the standard operation of the
device, write accesses to Flash memory are not considered in this work.

A new development for Flash memories is the use of a synchronous in-
terface, which allows the use of burst mode accesses in a similar way as for
the SDRAM memories described above. Synchronous memories will not be
considered in this work.

Cache Timing Model

The timing for caches has to be divided into timing for cache hits and misses,
since hits are usually serviced much faster than a cache miss, which also
includes several accesses to the next lower level of the memory hierarchy.

The time required for a cache hit can be derived by only looking at the used
cache model. We have used the CACTI model [WJ94, WJ96] to determine
characteristic properties of a certain cache architecture. Beside the overall
access time, CACTI generates detailed data on the timing of the individual
components within the cache, including the comparators and sense amplifiers.
For our cache models, knowing the time for accessing a data item on a cache
hit is sufficient. Another simplification is possible in our model since most
of the considered caches can be accessed in a single processor clock cycle. In
these cases, accessing the cache can therefore be assumed to take one cycle in
case of cache hit. In case of a miss, the time taken to service the miss is made
up of the time it takes to establish the miss (i.e. one cycle in general) plus
the time it takes to fetch the entire cache line from the next level of memory
in the hierarchy. This level may be another cache or an SRAM/DRAM/Flash
memory whose timing was described above. In this way, the cache timing
behavior is sufficiently described.

3.4 Energy Models

Energy is becoming one of the most important optimization factors in embed-
ded system design. It is now common knowledge that it is vital to consider
energy dissipation at an early stage in the design process to avoid lengthy
redesigns if the requirements are not met. In order to model energy at an

3.4 Energy Models 37

early time, energy models are required that cover all parts of the system that
are under the control of the designer and that have an impact on energy
dissipation.

Beside the pure architectural hardware view on system design, the software
side also has to be considered when energy is an issue, since only optimizations
in hardware and software together will be able to meet the increasing demands
on the energy consumption of embedded devices. Energy models for use within
the compiler can help generate energy aware code, and providing the compiler
with information concerning the energy consumption of e.g. different memories
that are present in the system will allow code generation to be performed in
such a way as to minimize the overall energy consumption of the software.

It is an important requirement for a complete energy model of a system
to cover all relevant components to avoid the situation where e.g. optimizing
for memory energy leads to additional overhead within the processor which
might negate any benefit obtained through the initial optimization. Another
important aspect of a model is its granularity: if software is to be optimized
using an energy model within a compiler, then the model should be able to
distinguish between the energy contribution of different instructions, other-
wise, instruction selection will not have any impact on the energy when using
this model.

It can often be observed that optimizing for high performance, i.e. short
execution times, will in general also yield acceptable results concerning energy
consumption. However, there are exceptions to this rule when the memory
subsystem is also considered. In this case, code may take longer to execute,
but still achieve an overall reduction in energy consumption. An example
for this kind of behavior is the register pipelining optimization presented
in [SSWM01], where energy is decreased by 17% whereas execution time
increases by nearly 9%.

In the design of caches, it has also been found that the optimal config-
uration with respect to performance can be quite different from the energy
optimal solution [SC99]. The paper shows that accepting a higher number of
cache misses (and thus, reduced performance) can yield a benefit for energy,
since a simple, smaller and thus more energy efficient cache can be used.

These examples show the necessity to consider energy as a distinct cost
function in addition to performance considerations if energy optimal results
are to be obtained.

In the following section, a short introduction to the terms and units used in
energy optimization is given, followed by the processor energy model used in
this work. Finally, the energy contribution of the memory system is captured
using memory energy models.

3.4.1 Sources of Energy Dissipation

In the literature, power and energy are often used synonymously. The terms
“low power” and “energy aware” are both being used to describe efforts to

38 3 Models and Tools

enhance the battery lifetime of portable applications, despite the fact that
power and energy are not identical.

Electrical power is defined as the product of Voltage V and Current I
and is measured in the unit “Watt”:

P = V · I = Vdd · I (3.8)

Power is an important factor when considering reliability and the overall
lifetime of electronic devices: high currents in the connecting buses can lead
to electromigration, where atoms of the connecting metal are torn out by
the flowing electrons, in particular when the wiring shows sharp bends. The
missing material can eventually lead to failure of the entire device. These
effects are of particular interest for systems that are required and expected
to have a long lifetime, such as the electronics used in telephone switching
systems.

In electronic devices, the operating voltage is usually assumed to be con-
stant. Thus, it is sufficient to measure the flowing current in order to deter-
mine how the power changes over time. Optimizing a device’s average power
dissipation would then mean to avoid high currents. Since the use of slower
instructions that incur a lower current in the circuits is encouraged, this can
lead to an increase in the running time of the program.

Energy is described by the integral of power over time and is measured
in the unit Watt-second or “Joule”:

E =
∫

P dt =
∫

V · I dt (3.9)

Assuming that the measured current does not show a high degree of vari-
ation over a certain period of time t (or an average value can be determined
for the current during the interval t), and, as above, considering voltage to be
constant, the equation can be simplified to

E ≈ V · I · t (3.10)

As a simplification, current and voltage in the used compiler toolchain are
modeled as being constant during the execution of one single instruction or
one single memory access.

Since practically all computers and embedded devices are built using
CMOS technology, we now take a quick look at the reasons for energy dissipa-
tion at the transistor level. In a typical CMOS circuit, there are two comple-
mentary transistors: one nMOS and one pMOS transistor. The circuit shown
in Figure 3.10 inverts the input signal In by switching the nMOS transistor
when the input signal is high, thereby connecting the output to ground. In the
opposite case, only the pMOS transistor is conductive, thus producing a high
logic level on the output. The reasons for energy consumption in this example
circuit are threefold: Since the transistors are never perfect insulators, even
when they do not switch, there is always a small leakage current that flows

3.4 Energy Models 39

N

P Ilk

Ilk

Isc

Cload

Gnd

In Out

Vdd

Isw

Fig. 3.10. Example CMOS inverter cell (taken from [Syn96])

from the supply voltage Vdd to Gnd. This current is depicted in Figure 3.10 as
Ilk. The second current only flows at the moment when the inverter changes
its state, i.e. when the input logic level changes. Due to the different switch-
ing times of nMOS and pMOS transistors, there is a short time when both
transistors are conductive, leading to the short circuit current Isc to flow bet-
ween the supply voltage Vdd and ground Gnd. Finally, the capacitance on the
output, shown as Cload in the figure, has to be driven whenever the inverter
output changes its value. This switching current Isw is the largest of the three
currents that make up the energy consumption of the CMOS inverter cell,
accounting for 70 to 90% of the total energy in active (i.e. switching) circuits.
Short circuit power can consume up to 30% of the total energy budget if the
circuit is active and if the transition times of the transistors are long [Syn96].
In active circuits, leakage current only contributes up to about 1% to total
energy, but it is quite relevant for idle circuits. Considering e.g. a mobile
phone’s active and standby times, it becomes obvious that the idle energy is
of growing importance for a prolonged battery lifetime. In the near future,
the importance of considering leakage energy will increase strongly due to the
smaller feature sizes of the underlying technology.

Reducing the overall energy dissipation has in the recent past become one
of the prime concerns for the design of embedded systems. The amount of
energy used by a device has a direct influence on the standby or operating
time of portable, battery operated devices like e.g. mobile phones, PDAs or
portable MP3 players. The batteries in these devices can only store a limited
amount of energy, and since battery technology is unable to keep up with
the ever increasing energy requirements caused by faster processors and large
memories required to hold increasing amounts of application data, the energy
dissipation of the used components must be controlled in a strict way to meet
the consumers’ demand for long uptimes of battery operated systems.

40 3 Models and Tools

Due to this high relevance of energy dissipation in the design of embedded
systems, the following sections will concentrate on the modeling and mea-
surement of energy dissipation in those components of embedded systems
that contribute a high percentage to the overall energy budget: the processor
and the used memories.

3.4.2 Processor Energy

The need to model processor energy is a natural consequence of optimizing
an embedded system for power: the processor, being the central part of any
device should receive a fair amount of attention, since it is responsible for a
high percentage of overall energy dissipation of a system. If a compiler is to be
used to reduce energy consumption, then it needs information on all relevant
parts of the embedded system. Since the compiler generates the processor
instructions, it has to be aware of the consequences of choosing a particular
sequence of instructions.

Before a description of the processor energy model used in this work is
presented, we first give an overview over the possible approaches that were
investigated to model processor energy. After that, the energy model for the
ARM7 processor is presented.

Related Work

There has been a substantial amount of work on the field of processor energy
models.

One concept for a very simple processor energy model assumes a certain
average current to flow whenever the processor is busy. In this model, the
choice of instruction sequences does not have any impact on the energy con-
sumption. This is unsatisfactory, since it is well known that some instructions
require less power than others, and should thus be preferred in the code sele-
ction process. This oversimplification can be overcome by using a number
of methods to model the processor energy consumption in a more precise
way. Three different approaches can generally be distinguished: energy mod-
els based on component data sheets are relatively easy to generate since the
required information is provided by the hardware vendor. The granularity is
one issue, since hardware vendors usually do not supply very low-level or fine
granularity information in order to protect their IP. Simulation-based models
are somewhat more elaborate, since processor model simulations may be quite
time consuming. This is true in particular for low-level simulations required
to achieve an improved accuracy of the obtained results. As the third main
concept, physical measurements may be performed on the actual hardware
if it exists and is suitable for this purpose. The advantage of physical mea-
surements is that actual energy values can be derived, potentially taking into
account all effects that take place in the processor.

3.4 Energy Models 41

We now take a look at several publications that have used these principles
to build energy models.

The prime advantage of the data sheet based energy models is the readily
available power information provided by hardware vendors. Using the energy
information, it is usually possible to construct a convincing energy model of a
system. The problems lie in the granularity of the model and in the possibly
differing assumptions made by the vendors concerning typical scenarios.

A publication by Brooks et al. [BTM00] uses parameterizable power mod-
els of common structures found in modern microprocessors. In this way, a
model of the processor can be assembled and its energy consumption can be
estimated. One main advantage of this approach is the high speed at which
energy can be evaluated.

Simunic et al. [SBM99a] propose an energy model based on available com-
ponent data sheets. Each of these components is assumed to be in one of two
states at any time: active or idle, depending on the processor state at that
particular time. By providing energy values for components both in active
and idle states, the authors build up an energy model by adding the active
and idle energies of all modeled components for each cycle. For long sequences
of instructions, the model achieves an acceptably high precision of within 5%
compared to hardware measurements. For short sequences or even individual
instructions, the results may show a large margin of error. Since only cumula-
tive effects are accurately captured, this model is not suitable for use within
a compiler to e.g. guide decisions during instruction selection. The model was
used in [SBM99b] to analyze and optimize the energy dissipation of an ARM-
based embedded system.

Simulation based methods are in general more elaborate since the energy
behavior of all components has to be captured in a suitable way. A large
number of simulation runs may be necessary to model the energy contributions
of certain processor states and components. The question of granularity can
be addressed by appropriately choosing the level of simulation. The available
choices are, with increasing complexity:

• behavioral simulation
• register transfer level simulation
• gate level simulation
• transistor level simulation
• layout simulation

Behavioral simulation only ensures that the model shows a correct outside
behavior. RTL simulation covers components and their interaction to achieve
the observed behavior. Gate level simulation considers the internal struc-
ture of the components and the way they provide their functionality using
simple logic gates. These gates are in turn made up of transistors, which have
to be layed out in a specific way. These last two simulation levels are usually
too complex and time consuming to be really useful for the generation of an
energy model.

42 3 Models and Tools

Behavioral simulation can be used to measure the switching activity e.g. on
bus lines that are known to have a high capacitance and therefore consume a
relevant amount of energy when their value changes. The measured switching
activity can then be used as a measure for the dissipated energy. However, the
quantitative impact of bus toggling on overall energy consumption can vary
significantly. Generally, such simulation results require validation against real
hardware to show their applicability and the margin of error.

Assuming that the simulation is performed using a VHDL model of the
processor to be measured, then commonly available VHDL simulators can be
used to generate information concerning the switching activity at the different
levels sketched above. At the behavioral level, switching activity on all pins
can be used as a measure for energy consumption. If the behavioral model
is synthesized down to a gate level description using synthesis libraries char-
acterized for power, then energy values can be derived on this level as well
with the advantage of taking into account glitching, i.e. very fast, unwanted
transitions in an otherwise stable signal which do not occur in behavioral
simulation. Using this method, it is possible to obtain a good estimate on
processor energy dissipation. In practice, however, it is difficult to control all
possible parameters, and the used tools are known to have limited accuracy.
For a gate level simulation assuming a zero delay model, the accuracy of sim-
ulation versus a low-level SPICE simulation is within 10 - 25% according to
the Synopsys Power Tools reference manual [Syn96].

A simulation based approach to determine an energy model for the M3-
DSP was e.g. presented by the authors of [LLM+01] who used gate level
VHDL simulation in conjunction with the Synopsys Power Tools to generate
an energy model for the M3-DSP. An energy model for the LEON proces-
sor [Gai] based on VHDL simulation is presented in [Sch03]. The SyCHOSys
system [KHZA00] compiles a processor description into a performance and
energy simulator. Using capacitance annotations from the circuit layout, an
energy evaluation of a data path circuit showed a precision of within 7% com-
pared to SPICE simulation [KHZA00].

Physical measurement of e.g. the processor or memory current to deter-
mine energy values is another method. The advantage of measured values is
their direct connection to the hardware and their high credibility. In spite of
possible measuring errors, the qualitative energy consumption can be deter-
mined by measuring the actually flowing currents, which guarantees that all
effects within the actual hardware are being taken into account. One of the
problems with physical measurement is its applicability: for a processor like
the ARM7, measuring the current that flows through the processor is feasible
since the used evaluation board features pins for this purpose. If, however,
more components are used in the processor, like e.g. a cache, then it becomes
increasingly difficult to extract energy values solely for the processor, with-
out any interference from the cache. Complex pipeline structures or branch
prediction units make it increasingly difficult to find test patterns that put
the processor through all possible states and transitions in order to provide

3.4 Energy Models 43

a sufficiently complete energy model which enables the compiler to estimate
the effects of the decisions it takes.

One of the first measurement based energy models was presented by Vivek
Tiwari, who published detailed information on the energy consumption of an
Intel 486DX2 processor, a RISC and an embedded processor [TL98, TMW94a,
TMW94b, TMW96]. Later measurements using his energy model were also
taken for an ARM processor by Sinevriotis [SS99]. Tiwari’s energy model is
based on “instruction base costs” and “inter-instruction costs”. While the
processor executes a long sequence of one single instruction, the average
processor current is measured. This value is used as the “base cost” for the
instruction under consideration. Having determined base costs for all instruc-
tions, long sequences of pairs of two different instructions were measured.
Additional costs caused by circuit state changes were observed in this case.
This difference between the average currents of the involved instructions is
called the “inter-instruction effect”. The authors found that measuring pairs
of instructions is sufficient to capture inter-instruction effects. In fact, the
additional overhead incurred by executing different instructions was usually
around 5%. To simplify the energy cost model, a fixed amount is added to the
base cost to account for any inter-instruction effect.

The authors of [SBT00] also adopted the energy model to speed up power
estimation. They have refined the consideration of inter-instruction costs and
have added the value of instruction operands to the scope.

The main drawback of Tiwari’s model is the fact that only the processor
itself is being modeled, thus neglecting the memory subsystem. This can lead
to a mismatch between the predicted energy consumption of the processor
and the energy dissipation of the complete system, including the memory.
Therefore, Tiwari’s model was extended by Steinke et al. [SKWM01] to also
account for the energy consumed within the memories. Since their energy
model is also used for the ARM7 in this work, it will be described in detail in
the following section.

An energy model for a far more complex architecture, the VLIW M3-
DSP, is presented in [LLM+01]. It is also based on Tiwari’s work, though
the model was first developed using VHDL simulation and only later vali-
dated using the actual produced silicon of the processor. It was found that
the approximations were better when the notion of inter-instruction effect was
completely dropped from the model. Instead of Tiwari’s “base cost” for each
instruction plus “inter-instruction cost” between instructions, the model al-
ways considers pairs of instructions. The M3’s four stage pipeline is initially
filled with the instructions under observation, then four cycles are executed
and traced. In this way, one pair of instructions is observed as it moves through
the entire pipeline. The resulting energy model is used in such a way that a
sequence of instructions is broken down into pairs of instructions, for which
the energy contribution is added. Some care has to be taken to treat start
and end instructions correctly for short instruction sequences. The model is
used in [LWD02] to show the effectiveness of compiler optimizations using a

44 3 Models and Tools

genetic code generator. Comparing the values predicted by the energy model
and VHDL simulation results for a specific example shows that the differences
are below 0.5%. Compared to measurements on real hardware, differences of
less than 2% are reported.

Another measurement approach with specialized equipment was performed
by Chang et al. [CKL00]. They produced the required test data using an
FPGA vector generator and measured the flowing current for every clock
cycle and every pipeline stage. To construct an energy model, the hamming
distance and the number of ones in subsequent instruction was used.

To generate an energy model for a design implemented on an FPGA, the
authors of [LNC03] set up complex measurement devices using the “switched
capacitor method” to capture the power required by the device at every clock
cycle. These contributions were summed up to form the overall energy dissi-
pation.

ARM7 Energy Model

The used energy model for the ARM7 processor has been described in some
depth e.g. in [Ste03] and in [SKWM01].

It is based on the results of a master’s thesis [The00] where the ARM7
evaluation board was measured according to the energy model proposed by
Tiwari et al. [TMW94b]. In this model, as in Tiwari’s work, the overall average
inter-instruction effect contributes less than 5% energy dissipation for nearly
all instructions. Therefore, the inter-instruction effect was taken into account
by adding a constant offset to the base costs of the instructions.

In [SKWM01], this energy model is extended to also cover the used mem-
ories. The system’s energy consuming components are modeled using a simple
and generic block diagram which also includes data and instruction memories.
The energy costs are divided into the CPU costs (instruction and data depen-
dent) and memory costs (instruction dependent for instruction memory, data
dependent for data memory). For each of these costs, the model considers the
number of bits that are set to one (“number of ones”) on the connecting bus
lines as well as the hamming distance between the current and the subsequent
word on the bus, since these two factors were found to have a strong impact
on energy consumption. The “number of ones” and the hamming distance
are weighted with parameters α and β, whose size is determined using a de-
fined measuring procedure. In this way, the proposed energy model can be
adapted to other processors as well, without requiring detailed knowledge of
the internal architecture of the processor.

The measured values are used to describe the energy consumed by a spe-
cific sequence of instructions using Tiwari’s energy model [TMW94b]. Vali-
dation of the used model shows that the average deviation of the predicted
values from the measured results was only 1.7%, making this energy model
sufficiently precise for use within a compiler.

3.4 Energy Models 45

In some cases, the energy consumption of the processor and of the memory
show different trends when e.g. the hamming distance of subsequent instruc-
tions is increased. It is therefore obligatory to consider the memory present
in the system in order to get the full picture concerning energy behavior.
The used energy models for different classes of memory architectures will be
described in the following section.

3.4.3 Memory Energy

The energy dissipation of the processor has for some time been the main target
of research, since its contribution to the energy consumption of a system
is obvious. Several studies have shown, however, that the memory’s contri-
bution to overall energy dissipation is increasing. Onchip caches were found
to consume the majority of a processor’s energy [KG97], and the ever in-
creasing requirements for data storage in modern embedded systems make
the integration of more and larger caches and main memories necessary.
All of these memories consume a large amount of energy, and just like the
“memory wall” [WM95] has already been found to be a major threat for the
future development of systems concerning performance, a similar effect can
be expected to occur concerning energy dissipation as well.

For these reasons, it is vital to have working and valid models for the
energy consumption of all sorts of memories that are to be used in a design
to be able to estimate the overall energy dissipation during an early phase of
development. Failure to assure that restrictions concerning energy are met at
an early phase may lead to costly redesigns.

In the following section, we first take a look at related work concerning
energy models for different kinds of architectures. We then present the energy
models used in our environment for SRAM memories that are mainly being
used as onchip scratchpad memories, but are also part of the memory arrays
in caches. Then, we consider DRAM memory modules, a technology that
is being used to implement larger main memory. Since nearly all embedded
systems today include a non-volatile Flash memory region, an energy model
for Flash memories is also presented. The Flash memory is either used to store
configuration data or to safely hold the program and data when the device
is switched off. Alternatively, Flash memories can also be used as instruction
memory using “execute-in-place” (XIP), which is described in Section 5.3.

Related Work

Many researchers have considered the issue of modeling memory energy dis-
sipation. The work is motivated by the observation that only optimizing the
processor without also considering the used memory hierarchy does not always
lead to satisfactory results with respect to energy consumption of the entire
system. This is due to the high percentage of overall system energy being spent

46 3 Models and Tools

in the memory subsystem. Onchip caches using SRAM were found to consume
25 to 45% of the total chip power [KG97]. In the StrongArm 110 processor,
a later version of the ARM7 used in this work, the cache consumes 43% of
total processor energy [Mos01]. An entire system including both processor and
memory was considered in [KVIY00], where energy consumption is reduced
using well known compiler optimizations. The results indicate that more en-
ergy is consumed within the memory subsystem than in the processor core
itself, at least if unoptimized code is being used.

In our work, memory energy models are used in two different stages of
the system design and software generation process: on one hand, the energy
model is used within the compiler to e.g. evaluate the benefit of storing a
certain memory object in a specific partition of the memory. On the other
hand, once the program has been compiled, it can be executed using e.g. an
instruction set simulator. The information generated during this simulation
can then be combined with the memory energy model to provide information
on the energy dissipated within the memory by this particular application. For
some memories that have an access-dependent timing and energy behavior,
like e.g. DRAM cells, only this evaluation of a complete access trace can
provide accurate results, since within the compiler, information concerning
dynamic run-time decisions concerning branches is not available, and therefore
the precise address sequence is not known.

Despte the fact that some publications provide a more fine grained enu-
meration, there are basically three different general approaches to develop an
energy model for a memory.

• Data Sheet Models: If data sheets are available for the used memory cell,
then the given information can in general be used to provide an insight
into the energy dissipation of this memory in a system. Depending on
the kind of memory, different parameters will be specified in the data
sheets. This information can be used to generate a sufficiently accurate
energy model. For SRAM memories, there is usually an “energy per ac-
cess” value, since all accesses to these memories have the same impact
on energy. For DRAMs, however, there will usually be a typical current
for different states during memory accesses. The model must then also
include all known information about access frequency and address traces
in order to determine how long the memory is considered to be in a par-
ticular state. Once a model has been developed and integrated into the
workflow, a different memory can be integrated by simply exchanging the
values from the data sheet.

The DRAM energy model published by Micron Technology Inc. [Mic01]
is an example for a data sheet based memory energy model that is being
widely used, e.g. in [MCB+03]. It also forms the basis of Section 3.4.3 in
this work. The work of Simunic et al. [SBM99a] also relies on data sheets
to estimate the energy dissipation of memories, assuming that a memory
can either be active or idle.

3.4 Energy Models 47

• Measurement based Models: If a certain memory is physically available
and integrated into a system context, then it may be possible to measure
the current flowing through the memory during different accesses. In this
work, measurement was only done for SRAM memories, since each ac-
cess can be assumed to consume the same amount of memory. For DRAM
models, different access modes (e.g. burst access) also have to be consid-
ered in order to build a valid energy database, making the model and also
the measurement more complicated. In general, physically measuring the
energy consumption of a memory is not an easy task, since designers usu-
ally do not provide a means for measuring. Thus, the supply pins of the
memory, if accessible, will have to be cut in order to connect an ammeter.
Despite the fact that the measurements performed on our evaluation board
were successful, it is not probable that all memories, in particular newer,
faster cells, will still work with an ammeter (or any other measurement
instrument) in place. All measurement-based energy models can be used
only for the memory that was used to measure the initial energy values.

Measurement based memory energy models have been described e.g.
in [SKWM01], where a high-level representation of the entire system,
including data and instruction memory, is used to formulate a model which
is then connected to actual energy values using physical measurement.
The authors of [SJC+03] describe a complex measuring methodology in
conjunction with a state machine to characterize the energy dissipation of
SDRAM memories, including the memory buses.

• Analytical Models: These energy models are probably the most versatile
models, since neither a physical memory nor data sheet information is
required. Analytical models are based on observations that are true for all
memories of a particular kind. They would e.g. assume a certain amount of
energy for a full access to a DRAM cell, and a lower energy amount for a
sequential burst access. Some analytical models go down to the transistor
and layout level in order to justify their assumptions and values. Still, it can
be difficult to provide a realistic margin of error for these models. The big
advantage of these models is their versatility, meaning they can be adjusted
to cover many forms of memory organization. If all underlying assumptions
are understood, then such a model can be ported to new technologies as
well, at the risk of losing precision if some of the dependencies are not fully
understood.

The reason that an analytical models are at all possible and common
for memories is that memories, in contrast to e.g. processors, have a highly
regular structure and only few states that need to be covered.

A well known example for an analytical memory model is the CACTI
tool [WJ94, WJ96], which, based on information collected during HSPICE
simulations, determined an analytical description of the dependencies
between the organizational parameters of a cache and its timing and energy
dissipation.

48 3 Models and Tools

In the following sections, we will present memory energy models for those
kinds of memories commonly found in embedded systems. We start with
SRAM memory, which is frequently used as onchip memory, e.g. in caches
or scratchpad memories. In some systems, SRAM can also be found as main
memory, though DRAM is more common for this purpose. Following the data
sheet based DRAM energy model, we finally present a way of modeling the
energy consumption of Flash memories.

SRAM Energy Model

Concerning timing, SRAM memories can be modeled quite easily, as shown in
Section 3.3.2. Similar accesses are assumed to take an equal amount of time,
since standard SRAM cells do not support the notion of burst transfers or
improved sequential accesses. With respect to energy, one way to determine
the impact of a memory access on the energy dissipation is to perform a
physical measurement on the used memory. Alternatively, analytical models
can be used to determine the energy consumption by reasoning about the
internal structure of a memory. Finally, data sheets may be used to determine
the energy dissipation during an access in a certain state of operation.

• Data Sheet based model: Using data sheets to model memory energy is
quite simple and straightforward for SRAM cells: the cost per read or
write access can be directly determined from the data sheet and used in
the model. This energy value is then included in the energy databases used
throughout the workflow. This method was not adopted for SRAM in the
considered workflow, since measurement based values were available.

• Measurement based method: Since SRAM cells show similar behavior for
each access of a certain type, it is relatively easy and straightforward to
physically measure the consumed energy per access. In order to measure
the energy consumed by the SRAM used on our ARM7 evaluation board
as main memory, the supply pins of the memory chip were cut in order
to connect the ammeter. We found that for the main memory located on
the evaluation board, the current (and therefore the energy per access)
differs depending on the width of the access. This is mainly due to the
fact that two memory chips have to be addressed in case of a 32 bit access.
Also, different values were recorded for reading and writing. Therefore, our
test programs repeated a number of e.g. read operations for a certain bit
width, and the average current was determined and included in the energy
model. Using the current, the supply voltage and the timing of the accesses
(determined as described in section 3.3.2), energy values for the different
accesses were determined and stored in the energy data base. Table 3.3
gives an overview over the determined values for different access widths
and for read and write operations.
The reason for the strong dependence of the used energy on the access
width is due to the way the main memory is connected to the processor

3.4 Energy Models 49

Access Width Read Energy Write Energy

1 byte 154.8 µJ 149.8 µJ
2 bytes 240.0 µJ 298.8 µJ
4 bytes 493.2 µJ 411.0 µJ

Table 3.3. Measured energy values for accessing main memory

(cf. Figure 3.8 on Page 33): two memory chips with an 8 bit data interface
each are being used. Thus, to access a halfword, both memory chips are
accessed, resulting in a significantly higher energy dissipation. If a 4 byte
word is accessed, then both memories are accessed over a duration of two
cycles, roughly doubling the previous energy amount.

For the scratchpad memory located directly on the processor chip, it
was not possible to determine the current in the way described above,
since the current flowing through this part of the processor can’t be mea-
sured in isolation from the other processor components. The effect of using
the scratchpad memory can thus only be measured in combination with the
processor energy. Since the scratchpad memory is accessed whenever the
address of an instruction or of a data item lies within the scratchpad’s ad-
dress range, test programs were generated that kept their memory objects
either on the scratchpad or in the main memory. In this way, it was possi-
ble to determine one average overhead value caused within the processor
when the scratchpad memory was being accessed (cf. [The00] for details).
This value is used in the energy model as the “energy per access” value
of the scratchad memory. It was found to be an order of magnitude lower
than that for a main memory access. Since the scratchpad memory can
not be switched off completely on our evaluation board, the standby base
cost of the scratchpad is always consumed, a fact which is also reflected in
the energy model. Newer processor designs would probably allow the user
to switch off the scratchpad memory, enabling further energy savings e.g.
by compiler controlled energy management.

In general, physical measurements are assumed to be the most trust-
worthy possibility of obtaining energy values, since they respect all aspects
of the used memory and the way it is integrated into the system context.

• Analytical model: One drawback of measurement based energy models is
the fact that energy can only be determined for the exact configuration
that was used during the measurement experiments. To allow the evalua-
tion of the impact of different sizes of scratchpad memories in our system,
an analytical approach was adopted. In [BSL+02], the authors describe
how an analytical energy model for caches can also be used to model the
energy consumption of a scratchpad memory. The idea behind this ap-
proach is that a cache consists of a data memory array which is organized
just like a scratchpad memory. A cache in addition requires a tag mem-
ory and comparators in order to perform automatic hit/miss detection.

50 3 Models and Tools

By simply eliminating the energy contribution of those components not
present in a scratchpad, the cache is stripped down to its data memory
array, which is very similar to a scratchpad. [BSL+02] have used the well-
known CACTI cache model [WJ94, WJ96] to also determine the energy
dissipation for scratchpad memories of different sizes. This analytical cache
model gives detailed information concerning the timing and energy con-
tribution of several architectural parts of the cache memory. This made
it possible to extract those values relevant for a plain memory and thus
determine the “per access” energy dissipation of a scratchpad memory.
CACTI is used to generate values for a direct mapped cache that has the
same data memory size as the scratchpad memory to be modeled. Direct
mapping is used since the data memory organization for this associativity
is closest to a plain memory array. From CACTI’s output, only those com-
ponents that are also present in a scratchpad memory are considered. This
means that all values belonging to the comparison logic part of the cache
are omitted. In Figure 3.11, those components that were not considered
for the energy dissipation of the scratchpad memory are shown within a
grey box.
Despite the fact that the CACTI model is known not to be 100% accurate
(estimates are within 6% of HSpice results according to [WJ96]), it is being

Access Address

Tag Index Offset

tag array data array

column
muxes

sense
amps

com-
parators

mux
drivers
output
driver
valid

output

data
output

Fig. 3.11. Block diagram of the CACTI cache model

3.4 Energy Models 51

widely used by many research groups. It delivers an easy way of generating
energy models for different caches and memories in a fast and efficient way.
Since we do not have access to the SPICE simulation values used by the
developers of CACTI to validate their model, it is difficult to estimate
the actually attained accuracy of the model. Due to the consideration of
all underlying assumptions as discussed in [BSL+02], we believe that the
model stays very close to the precision of the original CACTI model.

This completes the considered possibilities of generating an energy model
for SRAM based memories. It should be mentioned that the advances in tech-
nology may make it necessary to consider different, advanced techniques in
the future, since SRAM memories are now being tuned for better performance
as well as energy consumption. One way of increasing access speed is the
use of overlapping read and write operations. So-called synchronous SRAM
(SSRAM) cells operate their address and data registers at the processor’s
speed and use pipelining to increase throughput. In addition, some SSRAM
cells offer a burst mode, where the address is incremented automatically, thus
simplifying the access since no new address needs to be generated and trans-
ferred to the memory, but on the other hand complicating the energy model
since the accesses thus become state dependent. Currently, there is a strong
trend towards low power SRAM cells with decreased operating voltages. A
voltage of 1.8 V is being pursued, with further reductions planned in the
future.

DRAM Energy Model

The energy dissipation of DRAM memories is somewhat more elaborate to
determine than that of SRAM memories. The point that makes the consid-
eration of DRAM memories more complex than SRAM cells is the fact that
their timing and energy behavior strongly depends on previous accesses. A
precise energy model therefore has to consider a sequence of accesses in order
to determine the energy contribution of a single access. Additionally, DRAM
memories have to be refreshed in order to keep their contents. The energy
required to refresh (i.e. read and re-write) the values in the memory is al-
ways consumed, independent of accesses. This standby or background energy
has to be considered in the energy model to provide realistic values. Due to
these reasons, there is no easy way of performing physical measurements to
capture a DRAM’s energy dissipation. The test programs would have to con-
sider the state the memory is in and guarantee that the assumptions about
previous states and accesses are always met. Since this is a difficult task, the
energy model presented here represents a mixture between a data sheet and
an analytical approach. The values in vendor specific data sheets are used to
determine the average currents flowing through the memory when it is in a
certain state. The analytical part of the model then connects these partial
power figures to one final energy value, using assumptions about number and

52 3 Models and Tools

nature of state transitions as well as the time spent in the different states. The
general idea of this model has been described in [Mic01], a detailed description
can be found in [Ker05].

The energy model itself does not treat each memory access individually:
by monitoring the memory access patterns during simulation, it is possible
to determine the amount of time the memory spends in the different states
(e.g. power down, active, precharged etc.). These durations are then used
to determine the overall energy dissipation of the memory. This idea, which
makes the final energy model easier to handle (since otherwise, each state
transition would have to be considered) was also presented in [Mic01] and is
being used by many other energy models as well.

Note that the maximum precision of this energy model can only be ob-
tained when a complete application is being simulated and monitored, since
only then is it possible to determine the sequence of memory accesses in order
to determine the overall energy dissipation. The energy model used within
the compiler has to be simpler, since during program generation, the com-
plete memory access sequence is not yet known. To improve the precision of
the model used within the compiler, one profiling run of the application can
be performed in order to obtain a general idea of the number and kind of
accesses to the main memory, e.g. the percentage of potential burst accesses.
These statistics may be updated within the compiler when optimization algo-
rithms change the memory layout or program behavior.

Due to the fact that regular DRAM memories are no longer consid-
ered state of the art, the currently used technology of synchronous DRAM
(SDRAM) will be considered in this section.

Depending on the current state of the memory, it can consume different
amounts of energy. The values provided in the vendors’ data sheets together
with an adequate energy model enable the user to estimate the total energy
dissipation of an SDRAM memory. The values provided in the data sheets
are more or less identical, even among different vendors, which makes it pos-
sible to choose arbitrary memory cells and use the values provided in their
data sheets. In some cases, it may be necessary to consider different naming
conventions. Also, the supplied parameters may be different depending on the
precise organization of the used memory. In our examples, we use the values
provided by Micron for both SDRAM and a double-data rate (DDR) SDRAM.
Using these two memory architectures, we show how the given values can be
used to generate an energy model for both architectures.

The overall energy dissipated within the memory is made up of the integral
over time of the current flowing through the memory, multiplied with the
operating voltage (which, in our model, is assumed to be constant):

ESDRAM =
∫

ISDRAM · VDD dt =
∫

PSDRAM dt (3.11)

In order to simplify this equation, an average current is determined for each
of the different operating states of the memory, and this average is assumed

3.4 Energy Models 53

throughout the time the memory is in this state. The overall power of the
memory is thus made up of the power consumed in each of the possible states,
which comprise power down, standby, active, read, write, driving data and
refresh:

PSDRAM = PSDRAM PDN + PSDRAM STBY

+PSDRAM ACT + PSDRAM RD

+PSDRAM WR + PSDRAM DQ

+PSDRAM REFRESH (3.12)

Using these average power figures as the base, we can now determine the
overall energy by simply multiplying with the time the complete application
requires to execute on the CPU:

ESDRAM = PSDRAM · tCPU (3.13)

In the following paragraphs, the above-mentioned power values for all
states of the DRAM memory will be determined from the values provided
in the memory’s data sheet. Once all individual power figures have been cal-
culated, the overall energy dissipation can be determined using Equations 3.12
and 3.13.

Typically, SDRAM data sheets provide values for the current that flows
through the memory in a certain state. Table 3.4 shows which current values
for both an SDRAM and a double data rate DDR-SDRAM are provided by
a typical data sheet, using the naming conventions of Micron Technology
Inc. When the table shows an ‘X’, the corresponding current value for that
component will be provided in the data sheet. With these currents, the known
supply voltage and considering the time the memory spends in a certain state,
it is possible to determine the overall energy dissipation of the memory cell
with sufficient accuracy. Despite the fact that different values are given for
the two memory architectures, it is possible to determine the required power
figures for both SDRAM and DDR-SDRAM using our model.

There are four major different kinds of contributions to the overall power
of an SDRAM: state-related power, activation related power, access related
power and refresh related power. We will cover the contributions in this order.
In order to simplify the presentation, we will first only consider the SDRAM
memory.

• State related power for SDRAM:
The overall operation mode of the memory is controlled by the control
signal “Clock enable”. If it carries a low signal, then all buffers and the
internal clock are disabled, leading to a reduced energy dissipation in the
powerdown state (PDN). On a positive edge on this signal, the memory
is activated and changes to the standby state (STBY). These are the two
main states the memory can be in when no access is taking place.

54 3 Models and Tools

Value name symbol SDRAM DDR-SDRAM

active precharge current IDD0 - X

active operating current IDD1 X -

precharge power-down standby current IDD2P - X
idle standby current IDD2F - X
power-down standby current IDD2 X -

active power-down standby current IDD3P - X
active standby current IDD3N - X
active standby current IDD3 X -

read current IDD4R - X
write current IDD4W - X
operating current IDD4 X -

auto refresh current IDD5 X X

Table 3.4. Typical data sheet information

If the memory changes from active to the power down state, the current
IDD2 can be assumed to flow for a regular SDRAM. The power consumed
while the memory is in the power down state can thus be determined as

PSDRAM ACTP DN
= IDD2 · VDD (3.14)

In order to perform an operation, one row of the memory has to be
opened by issuing an “activate” command, putting the memory in the
active state (ACT). Since no access is taking place at this time, the current
that flows when the memory is active is given as IDD3 (active standby
current). Thus, active standby power is determined as

PSDRAM ACTST BY
= IDD3 · VDD (3.15)

Following an “activate” command, a “precharge” command is always
required to finish any access. When this happens, the memory is in the
precharged state (PRE). Depending on the clock enable signal, it can either
be in the precharged power down or in the precharged standby mode. For
SDRAMs, the same currents as for the active state (ACT) are used for
the precharged state, therefore the model can be simplified by assuming
identical values for precharged and active memories:

PSDRAM PDN = PSDRAM PREP DN
= PSDRAM ACTP DN

(3.16)

PSDRAM STBY = PSDRAM PREST BY
= PSDRAM ACTST BY

(3.17)

Besides ACT and PRE, the memory can also be in the deep power down
or sleep mode. If the memory goes to this mode (and loses all its contents

3.4 Energy Models 55

due to the suspended refresh), a very small current called IZZ is specified
in the data sheet.

PSDRAM DPD = IZZ · VDD (3.18)

• Activation related power for SDRAM:
In order to determine the power caused by the activation of the memory by
an “activate-precharge” pair of commands without considering any power
for the actual access to an SDRAM memory, we first need to consider the
data sheet value for the “active operating current” IDD1, which represents
the average current for two successive read accesses within the same row.
By subtracting the current of the two read operations, the power for an
“activate-precharge” pair activation can be determined for an SDRAM
memory. The “operating current” IDD4 of an SDRAM is the average cur-
rent required to perform either a read or a write access. To only account
for the additional overhead incurred by the read operation, the “active
standby current” IDD3 needs to be subtracted. The actual read accesses
are assumed to take two clock cycles for our memory. The distance between
two activations of the memory is assumed to be tRC . This information leads
to the following equation for the activation current IDD0:

IDD0 = IDD1 −
(IDD4 − IDD3) · 2 · tClk

tRC
(3.19)

It is only necessary to determine this activation current value for
SDRAM memories, since for DDR-SDRAM, the value is directly speci-
fied in the data sheet. The net activation power can now be determined
by subtracting the constant current value IDD3:

PSDRAM ACT = (IDD0 − IDD3) · VDD (3.20)

• Access related power for SDRAM:
Having opened a single row, the actual read or write access can take place.
To model its power contribution, the average current IDD4 is introduced
for both read and write accesses. In some cases, two values may be pro-
vided, but they are usually very close to each other. Since any read or
write operation can only take place between two activate commands, the
activation current IDD3 must be subtracted from the read/write value sup-
plied in the data sheet in order to determine the contribution of read/write
operations in isolation:

PSDRAM RD = PSDRAM WR = (IDD4 − IDD3) · VDD (3.21)

One contribution that needs to be considered for a read access in addi-
tion to the previous values is the fact that when a memory is being read,
the output buffers need to drive the values from the output buffers onto
the bus. The capacitative load is represented by the value CLOAD, and the
net load depends on the number of data bit lines DQ and the number of
output control bits (data strobe) DQS.

56 3 Models and Tools

Depending on the operating frequency CLK of the memory, the driving
power of the memory amounts to

PSDRAM DQ =
1
2
· CLOAD · (VDD)2 · CLK · (DQ + DQS) (3.22)

• Refresh related power for SDRAM:
The only operating phase that has not been covered so far is the refresh
cycle of DRAM memories. The data sheet value IDD5 (auto refresh cur-
rent) represents the average refresh current in power down state. Thus, in
order to determine the current for the continuously occurring auto refresh
during normal operation, we need to subtract the constant power down
current:

PSDRAM REFRESH = (IDD5 − IDD2) · VDD (3.23)

This concludes the considerations for a regular SDRAM memory. For a
DDR-SDRAM, different values are usually provided as shown in Table 3.4. In
the following, we will therefore quickly cover the determination of the required
power values for a DDR-SDRAM. In most cases, the reasoning behind the
equations is similar to the SDRAM case, and only the differences will be
explained:

• State related power for DDR-SDRAM:
IDD3P denotes the active power down current of a DDR-SDRAM, thus

PDDR ACTP DN
= IDD3P · VDD (3.24)

For the active state (ACT), IDD3N is provided:

PDDR ACTST BY
= IDD3N · VDD (3.25)

In the precharged state (PRE), the current flowing in a DDR-SDRAM is
represented by IDD2P if buffers and the clock input are deactivated and
IDD2F if they are active:

PDDR PREP DN
= IDD2P · VDD (3.26)

PDDR PREST BY
= IDD2F · VDD (3.27)

Note that for a DDR-SDRAM, active and precharged states are not con-
sidered to be identical, as was the case for SDRAM.
The equation for deep power down is identical to the SDRAM case and is
thus omitted for brevity.

• Activation related power for DDR-SDRAM:
In contrast to a regular SDRAM, the active precharge current IDD0 is
directly specified for a DDR-SDRAM and does not need to be computed.
The activation power can thus directly be expressed as:

PDDR ACT = (IDD0 − IDD3N) · VDD (3.28)

3.4 Energy Models 57

• Access related power for DDR-SDRAM:
This contribution is identical to the SDRAM case. Assuming distinct val-
ues for read and write accesses, the read and write power is:

PDDR RD = (IDD4R − IDD3N) · VDD (3.29)

PDDR WR = (IDD4W − IDD3N) · VDD (3.30)

The power required to drive the data bit lines is identical to the SDRAM
case.

• Refresh related power for DDR-SDRAM:
Refresh power is determined by subtracting the precharge power down
standby power from the auto refresh current:

PDDR REFRESH = (IDD5 − IDD2P) · VDD (3.31)

To conclude this section, we now describe how to determine the overall
energy dissipation of a regular SDRAM memory cell using the values deter-
mined above on one hand and information about an application’s memory
access pattern on the other. To determine the latter information, the applica-
tion is simulated and the memory accesses are recorded. For each cycle, the
corresponding memory state is determined and a counter is incremented. In
the end, a distribution of the overall runtime of the application to the differ-
ent memory states is obtained. Other models have proposed the use of profiles
(e.g. “moderate usage”, “high stress”) to account for different usage scenarios,
however this is usually associated with some loss of precision. In particular,
the following values are required:

• BNKACT : fraction of program cycles at least one of the memory banks is
activated, putting the memory in the active state

• BNKPRE : fraction of program cycles the memory is in the precharged
state. Deep power down is not considered in this context, since it causes the
memory to lose all its information. Therefore, we can assume BNKPRE =
(1 − BNKACT)

• CKELO PRE : fraction of BNKPRE during which CKE is ’0’
• CKELO ACT : fraction of (1 − BNKPRE) during which CKE is ’0’
• RD/WR: fraction of program cycles during which data is being read or

written, respectively

Furthermore, during actual operation of a memory, it cannot be assumed
that all activation commands will occur in direct succession. Rather, a certain
average time will be spent until the next activation takes place. This time (in
cycles) is introduced as nACT and can also be determined from the application
simulation. It is used to scale the activation power determined above:

PSDRAM ACT = (IDD0 − IDD3) ·
tRC

nACT · tCK
· VDD

= (IDD0 − IDD3) ·
tRC

tACT
· VDD (3.32)

58 3 Models and Tools

Not only the activation frequency of a memory has to be scaled according
to the actual situation: the same is also true for the operating frequency and
the used voltage. The power equations above assume the memory being run
with the maximum specified frequency fspec, while a memory that is actually
installed in a system may use a different operating frequency fuse. All power
values that depend on the operating frequency thus need to be scaled with
the factor

scalef =
fuse

fspec
(3.33)

The only power values that do not need to be scaled, since they do not
depend on the frequency, are

• PSDRAM PDN (or PSDRAM PREP DN
and PSDRAM ACTP DN

, if considered
separately), since the memory does not receive a clock signal in this state

• PSDRAM ACT , since this power value solely depends on the time between
activations tACT

• PSDRAM REFRESH , because the refresh power is determined using an ab-
solute interval which is independent from the frequency

If the supply voltage is changed from the maximum voltage specified in
the data sheet, then all voltage values need to be scaled with the factor

scaleVDD
=

(VDDuse
)2

(VDDspec
)2

(3.34)

The scaling factor contains the squared voltage values since when voltage
is reduced, the operating currents also decrease. Therefore, e.g. a 5% reduction
in the supply voltage also reduces the current by about 5%, resulting in a 9.8%
reduction in power if scaleVDD

is used accordingly:

Puse = Pspec ∗ scaleVDD
= Pspec ∗

V 2
DDuse

V 2
DDspec

(3.35)

The data driving power is not scaled, however, since the voltage used in
PDQ is not necessarily identical to the memory supply voltage.

The power consumed in a certain state of the SDRAM memory is denoted
as PSDRAM state, as before. The power that also includes the percentage the
memory is in the considered state will be written as PSDRAM .

For SDRAM memories, the values for precharge power down and active
power down are identical (cf. Equation 3.16). Therefore, CKELO PRE and
CKELO ACT can be summarized to CKELO, which corresponds to the frac-
tion of total program execution cycles during which the memory is in the
power down state. The same is true for the active standby and precharged
standby states (cf. Equation 3.17):

PSDRAM PDN = PSDRAM PDN · CKELO · scaleVDD
(3.36)

PSDRAM STBY = PSDRAM STBY · (1 − CKELO) · scaleVDD
· scalef

3.4 Energy Models 59

Access related power can be determined using the corresponding fraction
of access cycles:

PSDRAM RD = PSDRAM RD · RD · scaleVDD
· scalef (3.37)

PSDRAM WR = PSDRAM WR · WR · scaleVDD
· scalef (3.38)

PSDRAM DQ = PSDRAM DQ · RD · scalef (3.39)

Finally, the activation and refresh components still need to be considered.
Since the activation power has already been weighted with tACT and refresh
is assumed to occur throughout the execution time, only voltage scaling needs
to be done for these values:

PSDRAM ACT = PSDRAM ACT · scaleVDD
(3.40)

PSDRAM REFRESH = PSDRAM REFRESH · scaleVDD
(3.41)

This concludes the calculation of all the power components of an SDRAM
memory. To determine the overall energy, the partial power contributions need
to be added and multiplied with the overall execution time of the application
(cf. Equations 3.12 and 3.13).

Flash Memory Energy Model

To determine the energy dissipation of a Flash memory, we again resorted to a
data sheet based approach similar to the one employed for SDRAM memory.
Flash memories integrated in embedded systems are generally used only for
reading data, since the number of write cycles is limited. Therefore, we only
consider read accesses.

As already described in Section 3.2, a Flash memory is first accessed by an
asynchronous random access, possibly followed by an intrapage access, if the
subsequent read goes to the same page. Finally, synchronous Flash memories
may support a burst mode, a feature that is not covered in this work.

The characteristics of a Flash memory both concerning timing and energy
dissipation can easily be extracted from the corresponding data sheet. Again,
the names chosen by different vendors are usually very similar. Table 3.5
shows the designations as used by Micron Technology Inc. Since both power
and timing values are required to determine the energy dissipation, both char-
acteristics are given in the table.

In contrast to DRAMs, Flash memories do not require a thorough modeling
of all possible states, since only the two access types mentioned above need
to be distinguished. Additionally, the background power of Flash memories
when they are not being accessed is very low and thus negligible. For these
reasons, the Flash energy model can be kept simpler than the DRAM model,
similar to the per-access-model used for SRAMs.

60 3 Models and Tools

Designation Unit Symbol

Supply Voltage V VDD

Read async. access time ns tAA

Read intrapage access time ns tAPA

Read burst access time ns tCLK

Read async. access current mA IDD1

Read intrapage access current mA IDD2

Read burst access current mA IDD3

Table 3.5. Flash memory characteristics

The first read access, assuming a 16 bit wide memory, is always per-
formed as a random access, requiring the corresponding time and current
from Table 3.5:

PFLASH RND16 RD = VDD · IDD1 (3.42)
EFLASH RND16 RD = PFLASH RND16 RD · tAA + EFLASH DQ

TFLASH RND16 RD = TDOUT +
⌈

tAA

tCLK

⌉

EFLASH DQ, similar to the SDRAM case, is the energy required to drive the
data outputs of the Flash memory. TDOUT is the time it takes to drive the
output values (cf. Section 3.3.2).

Accessing a 32 bit word requires one initial random access, as above, plus
one faster and more energy efficient intrapage accesses:

PFLASH SEQ16 RD = VDD · IDD2 (3.43)
EFLASH SEQ16 RD = PFLASH SEQ16 RD · tAPA + EFLASH DQ

EFLASH RND32 RD = EFLASH RND16 RD + EFLASH SEQ16 RD

To determine the energy required to access the Flash memory when it
is operated in synchronous burst mode, the same equation as for intrapage
access can be used, if the corresponding current and timing values are inserted
accordingly.

Cache Energy Model

The CACTI model was already mentioned in Section 3.4.3 where a subset of
the energy values was used to estimate the energy dissipation of an onchip
SRAM array according to the method described in [BSL+02]. Using CACTI,
the energy per access of a cache can be determined by specifying the parame-
ters of the considered cache. The analytical CACTI model then determines
the energy consumed when this kind of cache is being accessed. The energy
results are separately given for different parts of the cache, like the tag and
the data parts of the cache. To model the energy dissipation of the cache

3.5 Simulation Models 61

Access Type Cache Accesses

Read Hit 1
Read Miss 1 + N
Write Hit 1
Write Miss 1

Table 3.6. Number of accesses to a cache

appropriately, Table 3.6 provides information on how many accesses to the
cache are necessary for read and write accesses that may either result in hits
or misses:

In case of a read hit, the cache is only accessed once to determine the hit
and the corresponding value is forwarded to the CPU. In case of a miss, one
cache access is required to read and compare the corresponding tag elements.
If no match is found, then the entire cache line of size “N” is fetched from the
next level of memory in the considered cache architecture. For write accesses,
only one single access is assumed in our model, since the energy required to
update the cache entry is negligible compared to the initial tag comparison.
Assuming a no-allocate-on-write miss strategy, a write miss also comprises
only one access to establish the miss. The given table only specifies the number
of accesses, not the cycles it takes e.g. to fill the cache line. The timing of a
cache line fill is usually dominated by the accesses to the next lower level of
memory in the hierarchy, such that the actual timing has to be determined
considering the access timing of that level.

3.5 Simulation Models

Following the structure of the previous sections, this section first presents
an overview over possible simulation models required to derive information
about the behavior of the processor. Following previous and related work, a
description of the ARM7 simulator used in the course of this work is given. In
the subsequent section, the simulation of arbitrary memory hierarchies using
MEMSIM is presented in-depth, again putting previous work on the topic into
perspective.

3.5.1 Processor Simulation Model

Processor simulation is widely used in both in hardware and software deve-
lopment. Developers and researchers resort to the simulation of processors for
a number of reasons, among others:

• Unavailability of a physical processor: the situation that an actual proces-
sor is not available can be found in particular in hardware design, when the
processor under development has not been manufactured as a prototype.

62 3 Models and Tools

The designers still need to perform simulation runs early in the design
phase in order to prevent costly re-designs after production of the device.

• Cost: Due to the high hardware costs, software engineers whose programs
need to support a variety of different processors may not be able to physi-
cally acquire a specimen of all supported processor architectures only to
ensure correct software behavior.

• Complexity: Using a physical processor to perform measurements or to
validate the correctness of software may be appropriate for one single desk-
top processor, but for embedded processors, the situation is quite different:
a large number of different processors is used in embedded systems, all of
which require a certain environment in order to function correctly. An ex-
ternal memory is generally required, just like a circuitry that generates
the processor clock signal. If peripheral devices are to be tested, the inter-
faces have to be supplied and either the devices themselves or analytical
tools have to be connected. In addition, each processor and each evalua-
tion board used during the early testing phase may require different sets of
tools e.g. to transfer the software to be simulated to the processor. Setting
up suitable environments for a number of different processors may thus be
a complex task.

Processor simulation offers a way out of the situations described above:
by using a processor simulator, a simple software toolchain is set up in order
to simulate a program on a processor. If a cross-compiler is used, then the
compiler and the simulator may even be executed on the same machine, fur-
ther facilitating the software development process. Generally, in addition to
simulation, final tests will have to be performed on at least one instance of
the actual hardware for validation.

There are a number of possibilities of performing processor simulation at
different levels of abstraction. The following section gives a short overview
and highlights a small number of available solutions.

Related Work

To describe the behavior of new systems, hardware architects today use hard-
ware description languages like VHDL [HPH+00], Verilog [Pal03] or Sys-
temC [GLMS02]. Beside generating a synthesized description which can be
used to actually manufacture the processor, simulation at a higher, behavioral
level is also possible to ensure that the device under test behaves according
to the specification. A number of simulators for the various HDLs are avail-
able, including Symphony EDA’s free version of VHDL Simili [Sym], Synopsys
VCS [Syn] or the popular ModelSim [Men] from Mentor Graphics.

After successful behavioral simulation, the design entity is usually synthe-
sized using a hardware manufacturer specific synthesis library (cf. Figure 3.12)
which maps the behavioral descriptions of the VHDL model (e.g. “+” op-
erator) to the available building blocks within the library (e.g. full adder).

3.5 Simulation Models 63

Fig. 3.12. Workflow of synthesis and post-synthesis simulation

Post-synthesis simulation is required to ensure that synthesis did not change
the behavior of the entity. One disadvantage of VHDL simulation is speed:
for complex models, even high-level behavioral VHDL simulation can take a
long time due to the fine granularity of VHDL simulation, which is generally
not required to achieve high-level estimation results.

In particular for software developers, instruction set simulators are an att-
ractive alternative, since even a high-level VHDL description of a processor
contains more details than a programmer generally needs to be aware of. In-
struction set simulators in general do not model the actual building blocks of
the system, but are capable of reproducing system behavior at the instruc-
tion level. For a certain input application, the behavior of the system is thus
simulated in terms of executed machine instructions and a sequence of proces-
sor states (e.g. register contents), abstracting from low level details found on
the register transfer level. The use of low level assembly instead of high-level
programming languages is necessary since only machine instructions have a
defined impact on the target hardware.

In order to allow an efficient estimation of the performance and the energy
dissipation of a program executed on a certain target hardware, information
about the number and kind of executed instructions, number of cycles as well
as accesses to different stages of the memory hierarchy should be provided
by the instruction set simulator. The analysis of e.g. energy consumption
or memory accesses may either be directly integrated into the simulator or
developed as a separate tool. The advantage of a tight integration is that only
one single tool is required, whereas a separate analysis step can be developed in
such a way that it can be used to evaluate energy models of several processors,
if a uniform interface is used.

There are two main approaches to implement high-level instruction set
simulators: compiled and interpreted simulation. They differ in the way the
application program to be simulated is integrated into the simulator:

In a compiled simulation, one single executable containing the application
to be simulated as well as the simulator is generated. In [WL02a], the authors

64 3 Models and Tools

describe how assembly level processor instructions can be transformed to C++
code and thus directly included into the simulator. Some additional data struc-
tures to represent e.g. the processor’s status bit registers or the memory are
required in order to represent an instruction’s effect on the processor state.
One advantage of this method is the fact that a pseudo-debugger for the target
architecture can easily be generated. Using a debugger interface, the debug-
ger’s output can be controlled in such a way that only the original assembly
instructions and e.g. register contents are displayed. The second advantage of
using compiled simulation is the faster simulation speed: the executable con-
tains all required information, can be compiled using an optimizing compiler
for the host machine and is then executed.

In a simulator using interpreted simulation, the simulator itself is an exe-
cutable, but the application program whose execution is to be simulated on
the target hardware is not. The simulator may use operating system calls
to read the application from a disk file, parse its content, instruction by
instruction, and then simulate the instructions accordingly. This process is
slower than a compiled simulation, since the program has to be read, ana-
lyzed and simulated at runtime. However, changing the simulated application
program only requires modifying the assembly code and restarting the simu-
lator, whereas a compiled simulation additionally requires the simulator, along
with the application, to be recompiled.

Some work has been carried out concerning the automatic generation of
simulators from an architecture description of a processor. In the generic low-
level intermediate representation (GeLIR) [Lor03, LMD+04] used in a genetic
algorithm based compiler, this is realized by specifying the behavior of the
machine instructions of the target machine in C++. This specification is used
with the application to perform a compiled simulation. By providing an in-
terface to describe the effect of machine instructions, it is possible to generate
low-level simulators for different machines with little overhead.

The process of generating a compiled simulator from a processor described
in an architecture description language (ADL) is further automated in the
LISA framework [PHM00]. An HDL description of the processor itself (in
the form of a SystemC-model) and common software tools (compiler, debug-
ger) are automatically generated from the processor description in the LISA
ADL. The simulators generated by LISA also use the principle of compiled
simulation.

After this short overview over different simulation techniques, the next
section discusses the ARM instruction set simulator provided with the ARM
software development toolkit.

ARM7 Simulation Model

To support software development for the different models of available ARM
processors with their respective features, ARM Ltd. provides one universal

3.5 Simulation Models 65

configurable cycle-true instruction set simulator called ARMulator. Depend-
ing on the configuration settings, it is able to simulate

• different ARM processor cores, ranging from ARM2 to ARM9
• one level of caches with configurable size and organization
• THUMB and ARM instruction sets
• external memories with configurable parameters

Since the simulator is only distributed as an executable, no information
concerning the used internal data structures is available. The simulator pro-
vides an interface to e.g. user-specific memory models that may be attached
to the simulated processor core. However, the possibilities of this interface are
limited, so that the development of a more flexible memory hierarchy simu-
lator was necessary (cf. Section 3.5.2). Also, the possible cache configurations
only allow one single level of caching to be used, which is insufficient to per-
form cache design space exploration. ARMulator is capable of providing a
number of values during simulation of an application program, it is e.g. possi-
ble to set breakpoints to halt the processor and examine register and memory
contents. If instruction logging is activated, every simulated instruction as
well as memory access information is written to a tracefile. In our workflow,
the generated tracefiles are later analyzed using the enprofiler tool (cf. Sec-
tion 3.6.2). A typical ARMulator tracefile excerpt for an architecture without
caches is shown in Figure 3.13.

The lines beginning with the letter “M” denote memory access lines, with
the following letters specifying sequential or non-sequential accesses, read or
write access, opcode fetch and access width. Lines beginning with “IT” denote
taken instructions, whereas “MI” stands for memory idle. For details please
refer to [ARM98a].

MNR2O__ 00500060 B500

MSR2O__ 00500062 480A

MSR2O__ 00500064 210A

IT 00500060 b500 PUSH {r14}

MNW4___ 006FFFF4 0040000D

MNR2O__ 00500066 F7FF

IT 00500062 480a LDR r0,0x50008c

MNR4___ 0050008C 00500090

MI

MSR2O__ 00500068 FFCB

IT 00500064 210a MOV r1,#0xa

MSR2O__ 0050006A 2101

IT 00500066 f7ff (1st instr of BL pair)

MSR2O__ 0050006C 1E48

IT 00500068 ffcb BL 0x500000

Fig. 3.13. ARMulator tracefile

66 3 Models and Tools

3.5.2 Memory Simulation Model

Since in embedded systems, a majority of the energy is consumed within the
memory hierarchy, the memory costs also need to be considered, including
multiple levels of caches, scratchpad memories, loop buffers and main memo-
ries.

In order to overcome the limitations imposed by ARMulator’s memory
model (in particular the restriction to only one level of caching), a new flexi-
ble memory hierarchy simulator called MEMSIM was developed. It is capable
of simulating arbitrary memory hierarchies specified by the user. These hier-
archies may contain caches at different levels of the hierarchy. Different archi-
tectural cache parameters, cacheable and non-cacheable regions, loop caches
and scratchpad memories are also supported. The input for MEMSIM consists
of the description of the memory hierarchy and an instruction and memory
access trace of a program. Using MEMSIM, it is possible to evaluate the effect
of changes in the memory hierarchy, such as increasing associativity in a cache
or integrating a loop cache into the design.

MEMSIM was developed in order to overcome limitations both of the used
ARM software development toolkit and of available cache simulation frame-
works. It was our intention to be able to evaluate simulation results for a
variety of memory hierarchies on a single processor platform. The obtained
results should include the number of cycles required to execute an applica-
tion and the energy consumption of all components of the memory hierar-
chy. Since caches are notorious for their unpredictable behavior, simulation
is one convenient way to study the impact of different memory layouts on
the performance. In this design space exploration, the designer should not
be restricted by limitations of the used simulation tool, which should thus
offer a high degree of flexibility and configurability. Much of the previously
published simulators that cover caches do not fulfill this requirement. The
properties and limitations of existing cache simulators will be discussed in the
following section. After that, some design parameters of the proposed memory
hierarchy simulator will be illustrated.

MEMSIM has been used in a number of publications [VWM04a, VWM04c]
to produce results for a system with both scratchpad memory and a cache and
also to compare these results with the commonly used loop cache architecture.

Related Work

Cache simulation at different levels of abstraction has been widely studied as
an approach to provide performance estimates for caches.

One of the most well known and cited cache simulators is Dinero IV [EH].
The main limitation of this simulator is the fact that it supports no notion
of time. This makes it difficult to accurately model memories with different
access times during the simulation. The only information provided by Dinero
is the number of cache accesses, separated into cache hits and cache misses.

3.5 Simulation Models 67

Additional efforts would have to be taken in order to determine the timing
behavior of the complete memory hierarchy. Also, Dinero is not a functional
simulator, meaning that no contents of caches are considered. While this is
not a fundamental drawback, examining cache contents can sometimes help
to understand the behavior of a cache. Dinero only supports the simulation
of caches, other architectures like e.g. loop caches or scratchpad memories are
not explicitly covered.

The same author also developed the Tycho cache simulator [HS89]. Beside
being somewhat outdated, the available configuration options of the simulated
caches are restricted. Tycho accepts as input a trace file consisting of mem-
ory accesses. From this memory trace, it evaluates several alternative single
processor cache architectures in one simulation run. It is mainly useful to ob-
tain first performance estimates and thus to reduce the size of the search space
while the exact evaluation of particular cache configurations is not supported.

The simulator described in [SSR01] serves a somewhat different purpose:
it features a model that can be used to determine the performance of an appli-
cation, taking into account information about the used memory hierarchy. It
estimates the number of accesses to the different levels of the memory hierar-
chy and thus calculates the number of cycles using a Latency-of-Data-Access
model. The simulator also supports the modeling of multiprocessor systems,
including e.g. an implementation of the MESI protocol. The main drawback
of this work is that only data accesses are considered - the instruction mem-
ory hierarchy is completely ignored. Also, all data accesses within the used
application program have to be instrumented with additional function calls in
order to enable counting of cache events, which in general is not acceptable.

The widely used SimpleScalar simulator [Aus, ZKSI03] is a complete sys-
tem simulator infrastructure that can be used for detailed microarchitecture
modeling and hardware-software co-verification. Available extensions allow
e.g. power estimation, but this framework is too complex for our projected
task of evaluating the impact of the memory hierarchy. Although a cache
simulator is available, it can only be configured to simulate a maximum of
two levels of instruction- and data caches. Also, only a flat main memory
model is supported, meaning that no memory regions with different access
characteristics as required for scratchpads can be specified.

The Valgrind memory debugging tool [SNF04] features a cache analysis
tool which determines the number of hits and misses within a cache hierarchy
consisting of split L1 caches and a unified L2 cache. The configurability of
the hierarchy is thus restricted to using just this setup. Also, Valgrind is only
capable of analyzing executables for x86-Linux. No notion of memory parti-
tions with different access properties is supported. Valgrind’s main purpose is
to serve as a debugger for memory related problems in application programs.

RSIM (e.g. used in [PRASA99]) is another popular project that allows sim-
ulation of highly complex multiprocessors using instruction level parallelism
and out-of-order scheduling. The memory hierarchy, however, is restricted to
using a two level cache hierarchy, which does not meet our demands.

68 3 Models and Tools

An overview over computer architecture simulators, including, but not
limited to cache and memory hierarchy simulators, can be found at the
Computer Architecture Page at the University of Wisconsin-Madison [XMBH].

We can thus conclude that no simulators that meet the requirements men-
tioned for our investigations were found. For this reason, MEMSIM was con-
ceived and developed.

Technical Requirements

The following issues were taken into account during the design and implemen-
tation phase of MEMSIM. They describe our requirements for the complete
system. According to its prime purpose of providing performance and energy
values for complex memory hierarchies, MEMSIM has to be:

• Cycle true: Since performance and energy consumption of the memory
hierarchy under investigation are the vital characteristics we want to
extract using MEMSIM, the simulator has to be cycle-true. If execution
times are not modeled precisely, energy and performance will not be deter-
mined in a correct way. We chose a cycle-based simulation that is capable
of accounting for the delays incurred by the used components.

• Configurable: Since the simulator is to be used to explore the design space
of possible memory architectures and hierarchies, there is a need for an
easy way to configure and modify the used memory components as well
as the connections among them. The parts of the memory hierarchy can
be chosen and configured using a graphical user interface which allows
to place and connect the components in building-block style. Attributes
for the components, like delays or energy consumption can also be set.
In order to accelerate the simulation speed and reduce the host’s memory
requirements, the feature of actually considering the transmitted data is
configurable and can be deactivated.

• Capable of handling complex memory hierarchies: Most available simu-
lators only support modeling simple one- or two-level cache hierarchies.
Features that are more advanced, e.g. multi-level caches, loop caches and
non-cacheable regions are usually not supported, making those tools un-
suitable for detailed studies concerning the memory hierarchy. MEMSIM,
on the other hand, is capable of simulating a wide range of configura-
tions of the memory hierarchy, given that new components are modeled
according to the uniform interface specification.

• Adaptable to different processors: The memory hierarchy simulator should
be usable not only for one given processor architecture since the processor
plays a secondary role during memory hierarchy design space exploration.
Therefore, the simulation of the processor itself is not considered to be
part of MEMSIM. Rather, a memory access trace file is used as input,
making the memory simulation independent of the underlying processor.

3.5 Simulation Models 69

The memory access trace consists of a list of memory accesses performed
by the processor during the execution of an actual application benchmark.
The processor delays which are implicitly contained in the trace file can
then be appropriately overlayed with the delays configured within the com-
ponents of the memory hierarchy, leading to overall performance results.
The energy consumed within the memory hierarchy can also be determined
using these timing values. Note that the support of multiprocessor systems
is not in the scope of MEMSIM.

Workflow

Due to the integration of MEMSIM into our toolchain, we can evaluate the
effect of compiler optimizations on the runtime and the energy consumption
of an application assuming a more complex memory hierarchy than was previ-
ously possible. Thus, the encc compiler which will be presented in Section 3.6
optimizes the application program with respect to the used memory architec-
ture and MEMSIM subsequently provides the actual performance and energy
values when the program is executed on the target hardware. The general
workflow is shown in Figure 3.14.

The first step consists of compiling the application program using the
encc compiler. Encc also requires some information on the used memories
such that the application can be optimized with respect to e.g. a scratchpad
present in the system. The resulting executable is simulated using ARMulator
as described above, assuming a flat memory model such that all timing delays
are caused by the processor, whereas the memory is modeled to require only
one cycle per access without additional wait cycles. The tracefile generated

Fig. 3.14. General workflow of encc used in conjunction with MEMSIM

70 3 Models and Tools

during this ARMulator simulation contains all executed instructions as well
as the accesses to the flat main memory. This trace file is then passed on
to MEMSIM, which analyzes all memory accesses found in the trace file and
processes them according to the provided memory hierarchy information.

The additional delays caused within the memory hierarchy, e.g. by slow
main memory accesses or cache misses, are accounted for by the components
within MEMSIM. Since the processor’s delays are already captured within the
input trace file, the memory access times can simply be overlayed with the
processor execution time to generate correct values for the overall execution
time of an application. The energy models incorporated into the components of
the memory hierarchy are used to determine the energy contribution for each
of these objects, resulting in an overall energy value for the considered memory
architecture. Note that modeling processor energy was not considered part of
MEMSIM, since it should stay focused on memory considerations. However, an
approximated energy value for the processor energy can easily be determined
by appropriately scaling the original CPU energy value determined during
processor simulation with ARMulator. Taking into account the configured
memory hierarchy, a different cycle count for the execution of the application
is determined using MEMSIM. The original CPU energy value can then be
scaled with the ratio of these two execution cycle counts. In this way, the
average power dissipation of the CPU is assumed to remain constant, while
the time during which this power is consumed is varied. This reflects the fact
that the memory configuration only changes the timing, but not the functional
behavior of the CPU.

The diagonal line in the “Memory Hierarchy Info” box in Figure 3.14 indi-
cates that the number of components supported by encc does not necessarily
have to match the number of available components that can be simulated
using MEMSIM: it is e.g. possible to optimize the code within the compiler
for only one scratchpad memory and then show the effect of adding a cache
during simulation. This was done in [VWM04a], where the authors show that
a cache does indeed change the situation to an extent that renders the origi-
nally beneficial scratchpad optimization useless when a cache is introduced
into the system. The mentioned publication also uses MEMSIM to integrate
loop buffers into the complete framework and evaluate their benefit compared
to caches or a scratchpad.

Simulation Kernel

In order to be able to simulate the parallel activity inherently present in
hardware, the simulation kernel distributes a global clock to all components.
In every clock cycle, all memory components that have scheduled an activity
for that cycle are first identified. In a second step, these components are
activated. This two step approach is repeated until there is no more activity
in this cycle. This scheme allows for an arbitrary number of actions within
one cycle, similar to the δ-cycle concept used e.g. in VHDL [HPH+00, Mar93].

3.5 Simulation Models 71

If there is no more activity in a clock cycle, then the global clock cycle
counter is incremented and distributed to all components of the memory hier-
archy. For the CPU in particular, a new clock cycle and no pending memory
access requests means it has to read the next line of the trace file and schedule
an appropriate activity if the line represents a memory access.

Except for the global clock, no global communication among the compo-
nents is used during simulation. Each component solely communicates with
its direct neighbors. This allows even complex hierarchies to be simulated
without requiring modifications to the simulation kernel itself.

The performance and energy values are also taken care of by the individual
components. The energy and delay information is thus kept local to the used
components, which helps improve configurability and scalability.

Components

This section describes the concept and implementation of the components
that make up MEMSIM’s memory hierarchy.

• Components are objects: Each instance of a component of the memory
hierarchy is implemented as an object derived from a class describing the
properties of that particular kind of component. This guarantees simple
instantiation of components as well as uniform interface functions for all
components of the same kind.

• Internal state: Each component has to keep track of the state it is cur-
rently in using an internal state machine. The component can thus react
to a stimulus (e.g. request for data) coming from another component by
changing to a “processing” state. In general, it will only be free to accept
new requests after the previous stimulus has been properly processed. A
cache can e.g. receive a request for data. Upon checking the contents of
the tag array, a cache miss is detected. The cache thus changes to the
“cache miss” state and issues a request for the missing data to be fetched
from the next lower level of the hierarchy. Once the data has arrived, the
cache services the initial data request and returns to the “ready” state.
This organization together with the two-step approach within the cen-
tral simulation instance enables MEMSIM to accurately model parallel
activity.

• Flow of information: The components communicate with each other di-
rectly and do not require the central simulation instance to act as a mes-
sage passing and routing system. Messages are sent using function calls to
the neighboring components. Information is transferred in the parameters
of the function call. In order to keep the communication simple, all com-
ponents only communicate with a neighboring “hub” component which
serves mainly as connecting entity. A hub may, however, decide which re-
cipient a function call will go to. The hubs’ functionality will be described
in the following section.

72 3 Models and Tools

• Energy and Time: The energy spent by a component as well as the time it
takes to service a certain request for data is computed within the compo-
nent itself. When a component, e.g. a memory is instantiated, the mem-
ory’s latency and its energy consumption thus has to be set up in order
for the memory to show the desired behavior.

• Simple interfaces: All components have similar interfaces which are kept
as small and simple as possible. The abstract “component” class provides
the minimal interface that all components have to implement in order to
be valid memory hierarchy components. Apart from this minimal interface
which includes the functionality to accept requests and react accordingly,
individual components are free to implement additional functions that
they require. As an example, caches may provide functions to query the
number of cache hits and misses. This concept allows an easy extension of
MEMSIM’s capabilities by adding new components.

Each component only needs to know and exchange information with
its direct neighbors. The direction of data requests in general goes to
the successor nodes, whereas the actual data is delivered back to the
requesting predecessor. Thus, the CPU component usually has no pre-
decessor, whereas memories in general do not have a successor. Usually,
data requests contain the address of the requested item so that the queried
component can react accordingly. Once the information is available (e.g.
after the memory access time of a memory has passed), the successor com-
ponent notifies the querying component, at the same time transmitting the
data element.

• Notion of time: To model time, the global clock has to be passed from the
simulation kernel to the components. Since each component is aware of its
own delay ∆t in servicing a memory request arriving at time tnow, it can
schedule the reaction to this request for cycle tnow +∆t. Once the internal
clock counter has reached this number, it will react and e.g. send the data
to the requesting component.

To ensure a proper coordination, all components are queried for activity
in every clock cycle. If a component is not idle, then it is inserted into a list
of active components. Once all components have been queried for activity,
the list is processed and all components that scheduled an activity in this
cycle are activated, allowing the component to e.g. transfer a retrieved
data element to its predecessor. This process of querying and activating is
repeated until there is no more activity in this cycle. This notion is neces-
sary for those components that have a zero-cycle-delay in their reaction,
e.g. components that model buses. These so-called hub components that
connect the individual components to form a memory hierarchy may send
information on to the recipient in the same cycle, since a transfer along a
bus does not necessarily require one full CPU cycle.

Due to the uniform interface, all components used within MEMSIM
have a similar basic behavior. The differences in the internal organization

3.5 Simulation Models 73

of the already implemented components will be described in the following
paragraphs.

• CPU: MEMSIM currently only supports single processor systems. In each
of the simulation cycles, the CPU component reads the next line of the
trace file. If it finds a memory access in that line, it schedules an activity.
The memory access request is sent to the CPU’s successor. The CPU then
waits for the request to be processed and remains idle during this time.
Only when the successor delivers the requested data does the CPU read
the next trace line. The CPU can additionally keep track of the number
of executed instructions and the number of issued memory accesses. Since
MEMSIM was initially conceived as a memory simulator, we have refrained
from also integrating a detailed analysis of the CPU energy dissipation in
order to keep the design centered on memory hierarchy evaluation.

For more sophisticated processor architectures, some modifications may
have to be considered. If parallel memory accesses are to be modeled, e.g.
assuming completely separate instruction- and data-memories, then the
CPU component is required to have two memory bus interfaces instead of
just one.

• Cache: Caches are internally made up of several objects, which is due
to their origin from another simulation project. To reuse them, it was
only necessary to add an appropriate interface for use with MEMSIM.
Any communication from the interface is then passed to the actual cache
object. The cache is simulated along with the tag bits corresponding to the
stored data elements. If a requested element is found to be in the cache,
the element is returned, otherwise, a cache miss occurs. This miss is passed
to the successor components via the cache interface, which also handles
the reception of new elements to fill up the cache. The cache itself counts
the cache hits and misses and keeps track of the time and energy spent
during cache accesses.

• Memory: In our initial implementation of memory components, the data
that is actually being stored is not modeled. As mentioned above, this can
be useful in order to reduce the host computer’s memory requirements and
to increase performance. If simulation of actual memory data is required,
e.g. to allow debugging of memory contents, the data within the mem-
ory can easily be integrated into the system. The values for access times
and energies are always required for a memory. These may be different
depending on the bit width of the access, so it is mandatory that the bit
width is also taken into account. For each memory access that occurs, the
memory accumulates the number of cycles spent in fetching the data and
the energy consumed by the access.

• Hubs: Hubs were introduced into MEMSIM to model the energy and de-
lay of connecting buses, which can be significant e.g. for a wide off chip
bus connecting the system to a large background memory. In this case, it
is possible to actually attribute e.g. the energy consumption to the bus

74 3 Models and Tools

instead of the memory, which helps to keep the components independent
from the way they are connected. Also, hubs help to keep the components’
interface simple. Any component only needs a means to communicate to
its neighboring hub, regardless of what is connected to it. Finally, hubs
also act as address decoders and routers within the MEMSIM environ-
ment. If a memory access from the CPU goes to the scratchpad memory,
then the hub acts as a decoder and, depending on the address, sends it to
the appropriate successor node.

Three different kinds of hubs are required: the simplest hub only has
one predecessor and one successor (cf. Figure 3.15 a)). All requests from
the predecessor are passed on to the successor. Once the successor delivers
the requested information, it is sent back to the predecessor. The next form
of hub has two successors (cf. Figure 3.15 b)). It accepts requests from the
one predecessor and decides which of the two successors is addressed by a
request depending on the accessed address. This facility makes it straight-
forward to implement a scratchpad or a non-cacheable area in MEMSIM
by configuring the hubs accordingly. Finally, the third kind of hub has
one successor and two predecessors. While the hub described above can
be considered as a split-node, this hub serves as the merge or join node
(cf. Figure 3.15 c)) to e.g. model cacheable and non-cacheable areas within
one memory.

Using the three types of hubs shown in Figure 3.15, it is possible to con-
struct arbitrary memory hierarchies. If required, the hubs can be arranged
in a cascading manner to allow one node to have more than two succes-
sors or predecessors. A complex example memory hierarchy using all three
hubs is shown in Figure 3.16. The uppermost hub is used to differentiate
between cached and uncached regions. Accesses to the cached region go
to the right hand side of the figure, all other accesses are passed to the
next hub on the left hand side. Depending on the access address, this hub
either routes the access to the scratchpad memory, or passes it to the main
memory via the lower hub.

a) Hub b) Hub12 c) Hub21

Fig. 3.15. Three different kinds of hubs

3.6 The encc Compiler Framework 75

Fig. 3.16. Example memory hierarchy using hubs

Configuration

The memory hierarchy to be used by MEMSIM can be configured using
a graphical setup tool that allows the detailed description of components
such as the processor, memories, caches and hubs along with their respec-
tive attributes like delays and energy consumption. The components can be
interactively placed and connected on the screen. The tool allows the user to
automatically check for mistakes in the setup (e.g. a hub that is only connected
to one other component). If the setup passes this check, it can be saved to a
file in XML format. This file includes all information that MEMSIM requires
in order to perform a simulation of this hierarchy. The file contents are read
using the XERCES library [Apa04] and consequently used to generate the in-
ternal data structures that represent the memory hierarchy. This is done in a
two-step approach: first, the constructors of all memory hierarchy components
are called, followed by the setting of their attributes. Finally, the connections
between the components are set up so as to reflect the structure that was
graphically entered by the user. When the hierarchy is thus generated, the
actual simulation can begin.

3.6 The encc Compiler Framework

All compiler optimizations presented in this work are integrated into the en-
ergy aware C compiler encc. The encc compiler framework was developed to

76 3 Models and Tools

generate code for the 16 bit THUMB instruction set of the ARM7 processor.
encc is an energy-aware compiler, meaning that beside performance optimiza-
tions, it can also take into account the energy dissipation of instructions during
code selection by using an energy model provided for the used processor (cf.
Section 3.4.2). The initial motivation for the development of the encc com-
piler was to investigate the energy savings achievable during the instruction
selection phase. However, since the ARM processor uses a RISC type instruc-
tion set, the choice of instructions or addressing modes in order to perform a
certain operation is usually very much restricted. The code generated using
energy as cost function was mostly identical to the performance optimization
(optimizing for number of cycles) due to the close relationship between energy
and time (E ≈ P ·t, cf. Equation 3.10 in Section 3.4.1). By extending the focus
of the work to also include the available memory hierarchy on the evaluation
board, using energy dissipation as a minimizing cost function produced differ-
ent results compared to the classical performance optimization: the standard
compiler optimization register pipelining [SSWM01] uses a number of free
registers to avoid repeated accesses to the main memory. Using this optimiza-
tion, the energy dissipation of applications was reduced by 17% on average,
while the execution time increased by more than 8%.

The main memory was modeled as consisting of static RAM cells because
the used evaluation board only contained memories in SRAM technology.
Dynamic RAM cells (DRAM, cf. Section 3.2.2), commonly used as large main
memory today, have now also been integrated into the encc compiler frame-
work. The power saving features of currently available DRAMs can be used to
further improve the energy behavior using compiler supported main memory
optimizations. These will be presented in Chapter 5.

The consideration of Flash memories completes the encc compiler frame-
work with respect to the memory technologies used as main memories in cur-
rent systems. Using the Flash memory commonly found in embedded devices
to enable execute-in-place (XIP, cf. Section 5.3) is a promising technique to re-
duce energy dissipation and, more important, also bring down the production
cost due to the reduced main memory requirements.

Apart from main memory optimizations, it is very profitable with respect
to both performance and energy dissipation to also consider the compiler sup-
ported utilization of other memories available in the memory hierarchy. Since
the ARM7 processor used in this work features a 4 kB scratchpad memory (cf.
Section 3.1), techniques to utilize this freely addressable memory integrated
into the ARM core were developed. First, a static approach that considered
moving both instruction and data to the energy efficient scratchpad using
the well-known knapsack problem formulation was published in [SWLM02].
To further improve results, in particular compared to a highly dynamic and
adaptable cache, a dynamic approach that only copied instructions to and
from the scratchpad memory followed [SGW+02]. To complete the picture,
a recent publication [VWM04b] uses the encc compiler framework to distri-
bute both instructions and data to the scratchpad memory in a dynamic way.

3.6 The encc Compiler Framework 77

The effect of using not one, but a number of scratchpad memories for static
scratchpad allocation will be presented in Section 4.2, followed by a look at
the integration of a DMA unit to efficiently copy data and instructions among
the memories.

In addition, the encc compiler framework was used in conjunction with
the worst case execution time (WCET) analysis tool aiT from the German
company AbsInt GmbH [Abs04b] to study the effect of scratchpad memories
on timing prediction and analysis. Results in Section 4.3 show that scratch-
pad memories are indeed effective in reducing the WCET, with a reduced
analysis effort compared to a cache capable of delivering similar average-case
performance.

3.6.1 Workflow

Figure 3.17 shows the general workflow employed when using the encc compiler
to generate an executable.

The application, written in ANSI C [ANS], is scanned and parsed using
the LANCE2 frontend [Leu00, Leu01]. After lexical, syntactical and semantic
analysis, standard optimizations like constant folding, constant propagation,
common subexpression elimination and dead code elimination are performed
on the LANCE2 intermediate representation (IR). The IR can alternatively be
written to a file as a low-level three-address-C-code, or it can be represented
as a data structure modeling a forest of data flow trees (cf. figure 3.18 a). This
latter format is used as the interface between LANCE2 and the encc compiler
backend.

Instruction selection within the compiler’s backend is performed by a
code generator implementing a tree based pattern matching algorithm. The
code selector, generated using the olive tool [FHP00], uses a grammar file to
transform each of the LANCE2 data flow trees into a sequence of machine

Fig. 3.17. General Workflow using the encc compiler

78 3 Models and Tools

a) b)

Fig. 3.18. a) Example Data Flow Tree, b) example CFG basic block (both figures
generated using AbsInt’s aisee graph visualization tool)

instructions. The choice of an optimal cover for a particular data flow tree is
controlled using a user-supplied flexible cost function, which in encc defaults
to the energy dissipation according to the instruction level energy models
described in Section 3.4.2. The compiler thus generates energy optimal code se-
quences. The energy models are made available to the compiler using an energy
database containing information about the power consumption of instructions
as well as memory accesses.

In this way, the LANCE2 intermediate representation is transformed into
a control flow graph (CFG) containing 16 bit THUMB mode assembly instruc-
tions. This CFG is the main internal data structure used throughout the encc
backend. An example representation of a basic block is shown in figure 3.18 b).

Optimizations concerning to the instructions themselves (e.g. instruction
scheduling [Muc97]) as well as optimizations related to the used memory
hierarchy are conducted after instruction selection, since most optimizations
require knowledge at the assembly level in order to evaluate their pros and
cons. Using register pipelining [SSWM01] as an example, the length of the reg-
ister pipeline has a strong impact on the quality of the generated code: if too
many registers are used (which usually improves results), then the necessity
to introduce spill code can actually negate any benefits from the optimization.
Similarly, most memory related optimizations need to be aware of the exact
sequence of memory accesses, which is only true on the assembly level. In the
C source code, loading the starting address of an array may not be perceived
as a memory load operation. For these reasons, all optimizations described
in the following operate on the assembly-level CFG data structure within the
encc backend.

3.6 The encc Compiler Framework 79

Following the assembly code generation process, the tools from the ARM
software development toolkit SDT [ARM98a] are used to assemble and link
the code into one executable file. The SDT supports a so-called “scatter-
loading” mechanism that allows program and data to be distributed to dif-
ferent memory regions. Assuming the executable program is first uploaded to
the target device’s Flash memory, a routine is inserted that copies individual
program parts to different memory regions upon startup. The specification of
target addresses is contained in a scatter-loading file provided to the linker.
Scatter-loading is used in all optimizations that take advantage of the different
memories’ properties in the system.

The resulting executable can then be simulated e.g. using the ARM in-
struction set simulator described in Section 3.5.1. The process of simulation
and performance and energy evaluation is shown in Figure 3.19. For simplicity,
the encc frontend and backend with all optimizations and intermediate steps
have been summarized in the node labeled “encc” (cf. the grey box shown in
Figure 3.17).

The ARMulator is set up to generate a trace file containing information
concerning all executed instruction and all memory accesses, including ac-
cessed address and access width. If a memory hierarchy that is not supported
by ARMulator is to be simulated, then the more flexible MEMSIM simulator
can be used following the initial instruction set simulation as described in
Section 3.5.2.

All information supplied in the ARMulator (or MEMSIM) tracefile is then
analyzed by the energy and performance profiling tool “enprofiler”, which will
be described in-depth in the following section. Enprofiler uses the same energy
database also utilized during code generation to determine the overall perfor-
mance and energy dissipation by summing up the individual contribution of
each instruction and also considering memory accesses.

In order to perform memory related optimizations, it is often necessary to
obtain knowledge about “hot spots” within the application, consisting of basic
blocks within innermost loops which are executed frequently during execution
of the application. Optimizations that concentrate on these hot spots have
a high chance of substantially improving the code quality of the generated
program. Determining these innermost loops can in a first step be obtained
by static analysis of the control flow graph: by e.g. assuming each back edge
in the CFG to be a loop edge and by assuming a fixed number of iterations for
each loop, the innermost loops can be determined in a straightforward way.

Fig. 3.19. encc-Workflow including enprofiler

80 3 Models and Tools

Fig. 3.20. encc-Workflow with dynamic profiling

If two individual loops are at the same level, however, this simple static
analysis alone can not decide which of them is executed more often, unless
data flow analysis is used to determine the loop bounds. This has been fre-
quently studied, but is out of the scope of this work. Instead, a simulation
and profiling run is also capable of providing an exact execution count of each
basic block, thus delivering precise profiling data which can be exploited dur-
ing the optimization phase. This notion of simulating a complete application
and back-annotating information from this simulation run into the compiler
is known as “dynamic profiling”, shown in Figure 3.20: The application is
compiled once with only standard optimizations applied, then simulated and
analyzed, in general assuming a flat memory model. All analysis results ob-
tained from the enprofiler report file are then fed back into the encc compiler,
which uses the information to annotate the control flow graph accordingly.
The optimizations within the compiler can use the annotated values to pro-
vide better estimates concerning the effects of different possible solutions. The
grey box in Figure 3.20 again denotes the encc compiler including dynamic
profiling, which will be denoted as the “encc” box in the following figures for
simplicity.

Despite being a fairly simple and popular technique, dynamic profiling
is not without problems. On one hand, the time required to generate the
final executable is increased not only by having to compile twice, but also by
the possibly long simulation times. However, for each application, it is only
necessary to perform dynamic profiling once and reuse the obtained results
in later compiler runs. Care also has to be taken concerning the data values
provided for the simulation run of the application: since an application may
show a different behavior depending on the input data, a certain dependency
between the input data and the analysis and optimization results may be in-
troduced by dynamic profiling. In order to overcome this effect, typical input
data should be used which has been proven to generate a realistic behavior
for the application. Also, several input data sets can be used and the average

3.6 The encc Compiler Framework 81

determined from these profiling runs may be used in the actual optimization.
This of course further increases compilation times. If guarantees concerning
execution times have to be provided, worst case execution time analysis tech-
niques (cf. Section 4.3.1 for an overview) should be used instead of simulation.

3.6.2 enprofiler

In order to perform dynamic profiling (as described in Section 3.6.1 above)
and also to evaluate the effects of the optimizations that will be presented in
the following sections, a means of measuring an application’s overall energy
consumption at runtime is required. Since the original physical measurement
of the energy consumption of instructions and memory accesses is very time
consuming, it should not have to be repeated for every application. Therefore,
the energy models described in Sections 3.4 are not only being used during
code generation to guide the compiler towards energy-saving optimizations,
but the energy model is also used to validate the effect of energy optimizations
at execution time.

This is done by simulating the executable generated by the encc com-
piler using the ARMulator instruction set simulator according to the work-
flow shown in Figures 3.19 or Figure 3.20 in the previous section. ARMulator
generates a tracefile which includes the sequence of all executed instructions
as well as all memory accesses. A short sequence of an example trace file is
shown in Figure 3.13 in Section 3.5.1 on Page 65.

The trace file contains information on all taken and skipped instructions,
as well as all memory accesses, including information concerning the bit width,
read or write access and whether an opcode fetch was performed. This trace
is then fed into the enprofiler tool, which accumulates the time and energy
contributions of all instructions and all memory accesses using the timing and
energy models presented in Sections 3.3 and 3.4, respectively. The analysis is
performed by first considering an instruction fetch line, which is always the
first occurrence of a potentially executed instruction in the ARMulator trace.
Execution cycles and possible memory accesses of this instruction are con-
nected with this instruction and summed up to determine this instruction’s
contribution to the overall cycle time and energy dissipation. If DRAM mem-
ories are used, enprofiler first has to determine the fraction of time spent in
the different operating states (cf. Section 3.4.3), which allows it to determine
a value not only for the access-related energy, but also for the standby power.
In this way, the performance (in terms of number of cycles) and energy con-
sumption of an entire application can be determined. Since the tracefile also
contains information about the addresses of memory accesses, it can distin-
guish e.g. between an access to the main memory and accesses to the energy
efficient scratchpad memory. By using different energy models within enpro-
filer, it is possible to also consider the effect of different memory sizes or even
completely different technologies, as described in section 3.4.3. Beside the to-
tal number of cycles and the overall energy consumption, enprofiler provides a

82 3 Models and Tools

large amount of information collected during the execution of the application,
mainly:

• used memory areas in the corresponding memory partitions
• number of executions, processor and memory energy for each function and

for each basic block
• execution schemes for all basic block combinations (e.g. how often BB2

was executed following BB1)
• number of accesses to variables and related energy for each basic block
• total energy dissipated in accessing variables
• number of executed instructions
• number of CPU cycles
• energy consumed by the CPU, memory and total
• hamming distances and additional ones-cost

Some of this information is of direct interest to the programmer or the de-
signer of an embedded device, like the energy dissipated or the number of exe-
cuted instructions. Other information is mainly collected for use in dynamic
profiling. In this case, information is back-annotated from a first simulation
run to the internal compiler data structures in order to provide additional in-
formation. Knowledge about the number of times that certain basic blocks are
executed in direct succession can e.g. be used to add a weight to the edges of
the control flow graph. These edge weights express how close the relationship
between two basic blocks is. Another relationship, namely which variable is
accessed from within which basic block, will be exploited in Section 5.2.

Enprofiler also supports the analysis of caches. In this case, the cache en-
ergy and the time it takes to e.g. service a cache miss is also stored along with
each instruction. In the end, hit/miss ratios as well as the energy dissipation
within the caches are also reported.

To improve the configurability of enprofiler, the entire analyzer uses an
inherently object-oriented design. This makes it easier to determine which
part of the program is responsible for handling a specific input trace line.
Also, the concept of a “TraceConverter” was adopted which reads the specific
ARMulator trace file format and stored the information in a data structure
that is subsequently used by enprofiler. This decoupling of the trace file format
from the information is vital to obtain flexibility concerning new trace file
formats: if a new format is to be supported, only the TraceConverter class
needs to be adjusted, and if the same amount of information is provided by
the new trace file format, then the analysis of enprofiler does not have to be
modified to adapt to the new input format.

3.6.3 Memory Architecture Aware Compilation

Optimizing for minimal execution time of the generated program is one of the
most popular and intuitive optimization criteria. Apart from the recognized

3.6 The encc Compiler Framework 83

and widely accepted necessity to generate performance efficient code, mini-
mizing the memory requirements for storing the executable is also a common
optimization goal. In particular for embedded portable systems, the available
memory is restricted, making it necessary not to waste any space. The notion
of optimizing code to meet other requirements than the two mentioned criteria
is not as common. One such potential optimization goal that is increasingly be-
ing studied is the energy dissipation of an application, which can be influence
to some degree by the compiler. In particular for the simple and efficient RISC
processor architectures often found in embedded devices, research results have
shown that code selection alone does not provide sufficient potential to save
energy [CKI+01]. Since the memory hierarchy has been found to consume a
large percentage of a device’s overall energy [KG97, KVIY00], extending the
compiler to also consider optimizations with respect to the memory architec-
ture is a logical step. Since the compiler directly determines the number and
the kind of memory accesses in the final program, it does have a high degree of
control over how the available memory is used. By e.g. modifying the data lay-
out, the code generator directly influences the memory access behavior of the
application. By providing information to the compiler concerning the memory
architecture, optimizations can be integrated into the code generation process
that help reduce the energy dissipation and thus increase the standby times
of the battery for handheld portable devices.

Beside exploiting a given memory hierarchy by passing information to the
compiler and generating code accordingly, the code generation process can
also be used to perform a design space exploration of one or more memory
hierarchy parameters. The compiler is given an initial set of memory parame-
ters and generates code taking this information into account. The code is then
simulated, assuming the same memory setup that was also used to generate
the code. The performance results of this simulation run are recorded. Then,
the parameter under observation is varied, and the process of code generation,
simulation and evaluation is repeated. In this way, it is possible to traverse
parts of the possible design space and determine a suitable memory setup for
the given application.

If accurate models of the design space to be explored are available within
the compiler, the effects of varying parameters may even be estimated within
the compiler’s cost functions without actually having to generate and simulate
code. In practice, however, combinations of several parameters may produce
unpredictable results, making accurate models that capture the system be-
havior in an appropriate way difficult to obtain. Caches with their dynamic
run time behavior are one example for the difficulties with this approach. In
other cases, however, the compiler may be able to suggest design parameters
due to its detailed knowledge during code generation: by e.g. analyzing the
maximum register pressure observed during execution of a program, the com-
piler can without additional effort determine the number of required registers,
an approach that will be described in Section 6.6.

84 3 Models and Tools

As discussed above, the encc compiler framework is capable of using energy
as a cost function as well as considering the used memory architecture to
generate code that optimally exploits the given memories. Before presenting
a selection of optimizations and obtained results in the further course of this
work, this section first provides an overview over a superset of possible memory
design parameters and how they can be exploited by the compiler. Knowledge
about these parameters may analyzed by the compiler in order to generate
optimized code for the considered memory architecture parameter settings.
On the other hand, the presented parameters may also be actively modified
by the compiler, depending on either the results of simulation runs or static
analysis results. The following list of memory hierarchy parameters mainly
covers those aspects that the compiler can have an influence on in either of
these two ways:

• Memories:
– Memory Size: Minimizing memory requirements is one of the tradi-

tional optimizations integrated into compilers, usually called “opti-
mization for code size”. Additionally, the compiler can analyze the
used data structures and their access patterns and thus determine the
minimum required memory size during execution of the application if
only statically objects are used. In addition to the overall size, it can
also determine the most frequently accessed elements and can thus pro-
pose an adequate size for the scratchpad memory size that should be
present in the system in order to provide a tradeoff between perfor-
mance, energy and area.

– Memory Bit Width (Bus Width):
The bit width of the memories used in the system can make the use
of data types with a certain number of bits preferable to others. If e.g.
an access to main memory can fetch a maximum of 16 bits within one
cycle, then 32 bit data types should be avoided to improve application
performance. On the other hand, the bit width is usually fixed in the
application, since knowledge about the possible value ranges is neces-
sary to the number of bits for a variable. Using data-flow analyses or
even bit-level analysis [WL02b], the compiler can give hints on vari-
ables that only use a fraction of their possible values and could thus
be reduced in length.

– Memory Banks: Due to their increasing size, modern memories are
increasingly subdivided into banks, which allow the compiler to opti-
mize several aspects. On one hand, switching among the different banks
during subsequent accesses can help to hide latencies that occur during
addressing: the next desired address can already be decoded in another
bank while the previous bank is still being accessed. On the other
hand, modern memories support power down modes, usually at the
granularity of banks. If the data and instructions can be reorganized
in such a way that one bank of the memory is not accessed for a longer

3.6 The encc Compiler Framework 85

period of time, then this bank can be switched off to reduce its standby
energy dissipation. For the frequently used DRAM memories, this will
be discussed in Chapter 5.

– Burst accesses: In particular instruction memories are often accessed in
a sequential manner, i.e. the addresses only need to be incremented to
access the next instruction. Consequently, memories offer a burst access
mode: in a burst access, the first element is fetched in a random ac-
cess. The following data can be read at a higher speed, since an internal
counter can increment the address (cf. Section 3.3.2 for details). The
compiler can exploit burst mode accesses e.g. by arranging instruc-
tions in the order they will most probably be accessed in. This can
be achieved by using so-called traces [TY96], consisting of maximum
straight-line sequences of instructions without any interfering control
flow.

– Memory Timing: The timing of the used memories is a crucial element
for the behavior of the entire system. If the processor frequently has to
wait for instructions or data from the memory, the memory subsystem
becomes the bottleneck of the entire system. If faster and slower mem-
ories are available, then the compiler should allocate as much data and
instructions as possible to the fastest memory. Since fast memories are
usually restricted in their capacity, the allocation can be formulated as
an instance of the well-known knapsack problem [Sed98].

– Dedicated Memory Regions (memory mapped I/O, hardware registers,
cacheable vs. non-cacheable memory): These memory regions require
special treatment by the compiler and thus have to be known for proper
code generation. In the case of memory-mapped I/O, the used variables
should be declared as “volatile” in the C source code, since their value
may change at anytime if they are used to implement input routines.
For memory-mapped hardware registers, it may be necessary to execute
certain instruction sequences before the results are valid. Finally, the
compiler should know which parts of the memory regions are cached
and which are not in order to distribute memory objects accordingly.

– Energy Dissipation: As previously mentioned, the energy dissipation
within the memory subsystem makes up a large fraction of the total
system energy [KG97, KVIY00]. If memory regions with different en-
ergy consumption are available, then the compiler should choose to allo-
cate as many memory objects as possible to the most energy efficient
memory. Since efficient memories are usually small, an extension of the
knapsack problem can be used to solve this class of problems. The cor-
responding algorithms and results have been presented in [SWLM02]
and are summarized in Section 4.1.

– Partitioned Memories: The fact that the access times and energy
dissipation per access increase with the size of the used memory (cf.
Figure 2.2 in the Introduction) leads to the idea of partitioning one
memory into several smaller ones to improve both access times and

86 3 Models and Tools

energy dissipation. Care must be taken, however, to also consider the
overhead associated with additional memories integrated into a system:
data and address buses have to be inserted, accesses to the memories
have to be controlled and distributed by a decoder. Additionally, every
memory requires a certain amount of energy even when it is not ac-
cessed. These issues, as well as the distribution of memory objects to
a set of partitioned memories, will be presented in Section 4.2.

– Background Power: Beside the “energy per access”, a compiler should
also be aware of the background power that is always required if a
certain memory is present in the system. By not using a memory and
shutting it down completely, energy dissipation may be reduced sig-
nificantly. The compiler should thus also be aware of the background
power of the used memories, as already explained for DRAM memories
in Section 3.4.3.

– Read-Only Memories: Usually, memories that can not be written to are
only used in embedded devices to store that part of the application or
the operating system that is not bound to change, e.g. the bootloader.
For all other parts of the software, Flash memories are now being used,
which only provide a limited number of write accesses. This makes
them unsuitable for use as data memories. However, instructions are
generally only fetched and never written. Reading a Flash memory is
relatively fast and energy efficient. Therefore, Flash memories can be
used in an embedded system to store instructions. This execute-in-place
(XIP) concept will be presented in Section 5.3.

• Caches:
– Cache Size: By analyzing data and instructions within the application

program, the compiler can determine the size of the maximum working
set and thus provide information concerning the required cache size.

– Line Size: The number of words in one line of the cache influences the
behavior of the cache by changing the granularity of considered address
ranges: if long long cache lines are being used, then a cache hit can be
sustained for more elements compared to a shorter line size. On the
other hand, allocating such a long line to the cache causes additional
overhead and is only beneficial if all elements of the line are actually
accessed by the application. In case of unfavorable decisions concerning
data eviction, long cache lines aggravate the situation.
The influence of both cache and line size on the performance has been
investigated e.g. in [PDN97, PDN99a] where the authors propose an
iterative algorithm to find the cache size that optimizes performance.

– Associativity: The compiler can exploit knowledge about the associa-
tivity of a cache obtained during the linking phase: data or instructions
that are part of the same working set should be mapped to addresses
that do not evict each other from the cache. If this can not be achieved,
the compiler should propose a higher associativity for the cache.

3.6 The encc Compiler Framework 87

– Write Strategy (Write Through vs. Write Back): Assuming a write-
back strategy, code can be generated in such a way that a maximum
number of write operations is performed on one cache line before it is
evicted and written back to memory. If the program is found to contain
a large number of sequential write operations, then the compiler can
propose to use a write-back instead of write through strategy.

– Line Allocation on Write Miss: The allocation of a new cache line fol-
lowing a a write miss is only useful if the line is subsequently read,
which can be determined by the compiler.

– Cache Line Fill Strategy: Fetching the critical word first is usually a
good practice, since the processor is stalled until this element arrives.
Whether or not the entire line is fetched can be decided depending on
the access pattern of the application.

– Dynamically Configurable Caches: From the compiler’s point of view, a
dynamically reconfigurable cache represents a good choice: the compiler
can control the cache behavior by adding the corresponding com-
mands to reconfigure the cache to the generated program. Reconfig-
urable caches have been a target of research, with configurable cache
size, associativity and line size. Dynamic way-management in caches
is a popular approach [Alb99] to trade off performance against en-
ergy. Dynamically configurable caches are also available commercially:
the Motorola M*CORE M340 processor can be configured concerning
memory writes, way management and store buffers [MMC00]. However,
while dynamic reconfigurability is capable of improving performance,
the impact on energy has to be considered carefully, since the configura-
bility requires additional circuitry in the caches, which can potentially
overcompensate the performance gains.

Note that for some of the mentioned cache optimizations, the final ad-
dresses of instructions and data elements generally need to be known in
order to determine if data elements will be mapped to the same cache line
or not. Dynamic profiling is capable of transferring this information from
the linker back to the compiler. Care must be taken however, since code
modifications can change the program address layout to a degree where
no previous information can be reused.
The parameters with the highest impact that will be worthwhile consider-
ing are the cache size, the cache line size and the associativity.

• Registers:
– Total Number of Registers: The number and kind of registers is an im-

portant input data for the register allocation phase within the compiler.
During register allocation, the virtual registers used during instruction
selection and much of the remaining code generation process need to be
mapped to the actually available physical registers of the processors.
Since the number of virtual registers may be very large, depending
on the application, the mapping process is an NP-hard task usually
solved by graph coloring algorithms. The register allocation algorithm

88 3 Models and Tools

is crucial for the quality of the entire code since additional spill instruc-
tions have to be inserted if the registers are not used efficiently. Looking
at compiler guided architectural exploration, reducing the size of the
register file size according to the register requirements of the applica-
tion can help decrease the energy dissipation of the register file, which
is a large percentage of the entire data path [SLAM98]. The results of
this approach will be presented in Chapter 6.

– Bit Width of Registers: The bit width of the registers, which usually
also defines the bit width of the data path, is a parameter affecting
the entire processor and also the memory subsystem. As already men-
tioned under “Memory Band Width”, if many bits are not used during
actual computations, then a lot of energy may be lost. In general, the
compiler is aware of the given bit width of the data path and generates
code accordingly. It may additionally perform analyses to determine
possible value ranges for registers in order to minimize the used bits.
One approach to solve the problem of “wasted bits” is the Valen-C ap-
proach developed by Yasuura et al. [YTIE97]. In their work, the pro-
grammer annotates information concerning the bit width of variables
to the source code of the application. The generation of an efficient
architecture and code is then done by the Valen-C compiler.

4

Scratchpad Memory Optimizations

It is a well-known fact that one of the main contributors to execution time
as well as energy consumption, beside the data path, is the memory used
to store instructions and data [CFW+94, KVIY00, KG97]. Furthermore, the
performance gap between processors on one side and the memory subsystem
on the other side has been widening significantly. Since the 1980s, processor
speed has improved by 50-100% per year, whereas DRAM speed has only
increased by about 7% annually [HP03]. Figure 4.1 shows that the gap between
CPU and memory performance is widening in an exponential way: assuming
the above-mentioned values, the gap is doubled every two years. This will
eventually lead to what the authors of [WM95] call the “memory wall”: the
performance of a system will only depend on the memory system, since the
memories will be unable to provide data and instructions at the pace required
by the processor.

In order to narrow the gap between current CPU and memory speeds,
memory systems today generally form a hierarchy so that accesses to bigger,
slower memories can be avoided if the data is available in a smaller, faster
memory. This approach also helps to improve energy dissipation. Small memo-
ries and in particular caches are therefore being placed close to the processor.
Caches, however, have a number of drawbacks in embedded systems. Onchip
caches require a large amount of chip area since beside the actual memory,
they also need a tag memory and the comparison logic [HP03]. Additionally,
the authors of [WM95] claim that even the relatively few compulsory misses in
caches will lead to performance problems. Additionally, caches are not suitable
for real-time capable embedded systems, an issue that will be discussed in
Chapter 4.3.

As an alternative to caches, the use of scratchpad memories has been
proposed. Scratchpads are small onchip memories that are freely addressable
and can in general be used to store data and/or instructions. They require less
space than a cache since only the actual memory array is required [BSL+02].
Since no automatic hardware controlled allocation of memory objects to the
scratchpad is done at runtime, it is left to the user or the compiler to find a

89

90 4 Scratchpad Memory Optimizations

1000

100

10

1
0 1 2 3 4 5 6 7 8

Years

CPU Speed max
CPU speed min
DRAM speed

R
el

at
iv

e
pe

rfo
rm

an
ce

Fig. 4.1. Increasing gap between CPU and DRAM performance (semi-logarithmic
scale) [Mac02]

suitable mapping of memory objects to the scratchpad space. Using its know-
ledge of iteration spaces of loops and memory access patterns, the compiler
can decide which elements are most frequently used and should consequently
be allocated to the scratchpad memory. Due to their small size, scratchpad
memories can be accessed very quickly (usually within one processor cycle)
and since they are close to the processor, they are also very energy efficient as
long bus lines are avoided. For a detailed description of scratchpad memories’
architectural features, please refer to the sections on SRAM in Chapter 3.

This chapter first takes a look at previous and related work concerning the
use of scratchpad memories. The static scratchpad allocation algorithm that
considers both instructions and data [SWLM02] is described in detail since
it forms the basis of the multi memory allocation for partitioned scratchpad
memories presented in Section 4.2. The initial and rather simple “Base” model
is refined in the subsequent sections to consider dependencies between mem-
ory objects as well as the current ARM TCM architecture and the standby
leakage current of scratchpad memories to obtain a compiler guided memory
configuration. The results obtained using these models are presented in Sec-
tion 4.2.9. Finally, in Section 4.3, the influence of using a scratchpad memory
on the worst case execution time (WCET) is presented.

4.1 Related Work

Despite the fact that scratchpad memories are generally accepted as efficient
and beneficial alternatives to the prevailing cache architectures commonly

4.1 Related Work 91

found in desktop processors, a full-featured toolchain for the efficient utiliza-
tion of scratchpad memories is still missing in industry today. There has been
a lot of research work, which can in general be classified according to the
following three dimensions:

• the kind of memory objects that are allocated to the scratchpad memory:
either instructions, or data, or both instructions and data

• the allocation strategy: static or dynamic allocation. Using a static allo-
cation, the contents of the scratchpad do not change at runtime, while
a dynamic allocation in general inserts instructions to swap scratchpad
contents at runtime

• fixed memory architecture: some approaches are based on modifications of
the used hardware

Most of the previous work on the allocation of scratchpad memories deals
with assigning data elements to the scratchpad. The most obvious candi-
dates are frequently accessed arrays, e.g. in innermost loops of an application.
Panda, Dutt and Nicolau [PDN99b] consider an architecture with both a cache
and a scratchpad memory. In this way, elements that are too large to fit in
the scratchpad are accessed via the cache to avoid the performance penalty of
the slow main memory. In [VSM03], the authors propose a different approach
for large arrays by splitting them at an optimal splitting point such that at
least the most frequently accessed fraction of the large array can be allocated
to the scratchpad.

Alternatively, the scratchpad memory has also been used as a storing lo-
cation for spilled register contents: in [CH98], the scratchpad used for this
purpose is called “compiler controlled memory”. To reduce the required
scratchpad space, values with non-overlapping lifetimes are assigned the same
address.

The authors of [KKS01] use Presburger formulas to determine which set
of data should be kept in the scratchpad memory. In contrast to the afore-
mentioned work, they not only consider a static allocation of elements to
the different levels of the memory hierarchy, but also consider copying data
elements from e.g. main memory to the scratchpad at runtime.

Several views are put into perspective in the publication [PCD+01]: beside
source-to-source optimizations, the application specific synthesis of suitable
memory hierarchies is also considered. Despite the fact that scratchpad memo-
ries and caches are mentioned, no real methodology for the exploitation of
scratchpad memories is presented.

The first approach to assign both data and instructions to the scratchpad
memory in a static way was presented in [SWLM02]. It will be described in
depth later in this section since it forms the basis for the multi memory alloca-
tion presented in Section 4.2. The same authors also considered only copying
instructions dynamically at runtime [SGW+02]. This lead to improvements in
particular for small scratchpad sizes which are not able to hold all hot spots
of an application at the same time. Despite the fact that the allocation and

92 4 Scratchpad Memory Optimizations

deallocation of instructions to the scratchpad memory is done at runtime, all
decisions are taken and fixed at compile time, resulting in an inherent pre-
dictability even of the dynamic scratchpad algorithm, an aspect that will be
discussed in Chapter 4.3.

Until recently, no work considered the dynamic allocation of both instruc-
tions and data to a scratchpad memory. A relatively new paper [VWM04b] for
the first time made this most flexible and versatile allocation possible. It uses
a technique based on a register allocation algorithm for CISC architectures
using flow equations to allocate both instructions and data to the scratch-
pad in a dynamic way. Considerable savings of up to 38% concerning energy
consumption compared to a static approach are reported.

The multi memory allocation technique presented in the following section
is an extension of the static single scratchpad allocation algorithm presented
in [SWLM02]. The allocation is performed in a static way, meaning that the
contents of the scratchpad never change during the runtime of the application.
The objects which are to be allocated to the scratchpad memory may consist
of functions, basic blocks and global variables. Since local variables are usually
kept in registers or on the stack, they are not considered in the basic approach.
The allocation algorithm uses the encc compiler described in Section 3.6 to
utilize the scratchpad found in the ARM7 processor. It uses an integer linear
programming (ILP) representation to formulate a variant of the well-known
knapsack problem [Sed98] in order to find an optimal allocation of memory
objects to the scratchpad memory.

To model the energy dissipation of a global data object v, the number of
accesses #acc(v) to this object as well as the energy required to access one
element of data Edata(mem) is required, where mem specifies which memory
the access goes to. The data energy can thus be expressed as

E(v,mem) := #acc(v) · Edata(mem) (4.1)

For instructions, the situation is somewhat more difficult since functions
and basic blocks are not independent. Rather, functions consist of basic blocks.
Functions executed on the ARM processor are called using the branch link
“BL” instruction, execution starts at their beginning and terminates with a
return instruction. Therefore, functions can be handled as self-contained mem-
ory objects which do not require any further modification when allocated to
the scratchpad memory. The energy dissipation of a function f is determined
using the number of executions #exec(k) of each instruction k and the en-
ergy consumption of a single instruction fetch Eifetch from memory mem as
follows:

E(f,mem) :=
∑

k

#exec(k) · Eifetch(mem) (4.2)

4.1 Related Work 93

The number of executions of each instruction of the function can be de-
termined at compile time either using static analysis or dynamic profiling, as
described in Section 3.6.1.

Functions are composed of several basic blocks. Considering these basic
blocks for scratchpad allocation incurs an additional overhead: If basic blocks
that are executed sequentially are allocated to different memories, then an
additional jump has to be inserted to jump to the other memory, shown in
Figure 4.2 by the bold control flow edges. This energy Elongjump(mem) caused
by the longjump instruction has to be considered in the ILP formulation as
an overhead.

Fig. 4.2. Allocation of basic blocks to main and scratchpad memory

The energy dissipation of a basic block bb is given by the number of instruc-
tions n(bb) within this basic block, the number of executions #exec(bb), the
energy required for a single instruction fetch Eifetch(mem) and l(bb) jumps
between the memories:

E(bb,mem) := #exec(bb) · n(bb) · Eifetch(mem) + (4.3)
l(bb) · Elongjump(mem)

With the energy dissipation of instructions and data thus formulated, the
implications of storing these memory objects in different memories can be
expressed by forming the difference between the energy required to read an
object from either the main memory or the scratchpad memory. For an arbi-
trary memory object x, this value EB represents the resulting energy benefit if
the considered element is allocated to the scratchpad instead of main memory:

EB(x) := E(x,MainMemory) − E(x, Scratchpad) (4.4)

94 4 Scratchpad Memory Optimizations

The binary decision variables required for the ILP formulation are defined
as

m(x) :=
{

1, if x is moved to the scratchpad
0, otherwise (4.5)

Using the sets of all variables V , all functions F and the set of all basic
blocks BB, the optimization problem can be formulated as follows:

Maximize
∑

f∈F

m(f) · EB(f) + (4.6)∑
bb∈BB

m(bb) · EB(bb) +∑
v∈V

m(v) · EB(v)

In general, it will be profitable to place as many objects as possible onto the
efficient scratchpad memory. However, due to its small size, space constraints
have to be respected in the ILP problem’s constraints. Size(x) therefore de-
notes the size of memory object x in bytes, and the optimization has to be
performed subject to the size constraint:

∑
f∈F

m(f) · Size(f) + (4.7)∑
bb∈BB

m(bb) · Size(bb) +∑
v∈V

m(v) · Size(v) ≤ Scratchpadsize

In addition, it has to be ensured that either a function or its comprising
basic blocks are allocated to the scratchpad. This can be achieved using the
following constraint:

∀bb ∈ BB, bb is contained in f : m(bb) + m(f) ≤ 1 (4.8)

This version of the ILP formulation does not yet consider the benefit from
moving contiguous basic blocks to the scratchpad: if two subsequent blocks
are moved, there is no need to jump between the memories, since execution
can simply continue in the scratchpad memory.

In order to model the advantage obtained from moving contiguous basic
blocks together, [SWLM02] explicitly enumerates all possible combinations of
sequential basic blocks and includes them in the equations as the set of so-
called multi basic blocks. The Bottom-Up model in Section 4.2.6 will present
a more elegant way to handle multi basic blocks.

Feeding the linear equation system into an ILP solver results in a so-
lution that specifies the set of memory objects that should be allocated to
the scratchpad memory. This information is then used to modify the program

4.1 Related Work 95

representation within the compiler accordingly, e.g. address modifications and
inserting all required jumps to maintain correct control flow among the basic
blocks.

Results for this method indicate that the overall energy dissipation of the
considered system can be reduced by 12% to 43% with an average of 23%
compared to a unified 4-way set associative cache of the same capacity as
the scratchpad [SWLM02]. Compared to a system comprising only a main
memory, savings of up to 75% are reported when a scratchpad is utilized
according to the above approach [Ste03].

In the following section, this static scratchpad allocation technique will be
extended to allocate memory objects to multiple scratchpad partitions. The
motivation behind considering partitioned memories is the following: since
larger memories require more energy and longer access times (cf. Figure 4.3), it
is beneficial to use several smaller memories, each of which is fast and requires
less energy per access. Partitioning large memories to exploit the efficiency of
smaller memories has been considered by a number of researchers:

64 128 256 512 1k 2k 4k 8k 16k 32k
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Memory Energy

Memory Access Time

Memory size [bytes]

E
ne

rg
y

pe
r

ac
ce

ss
 [n

J]
A

cc
es

s
tim

e
[n

s]

Fig. 4.3. Energy and time per access for increasing memory sizes

Nachtergaele et al. [NCB+95] propose a memory partitioning that is closely
fitted to a particular application, a medical image analysis program. They
found that by partitioning the image data and allocating it to two different
memory partitions, the memory energy dissipation can be reduced signifi-
cantly, however at the cost of increased complexity in the data access scheme.

Partitioning a data cache and only using the active part of the cache at a
time is discussed in [GAV95]. The authors decide which data to place in which
partition of the cache by splitting the data according to spatial or temporal

96 4 Scratchpad Memory Optimizations

locality. One problem with this approach involves the decision to appropriately
activate and deactivate cache partitions.

The authors of [PMP04] deal with multi-processor SOCs and consider par-
titioned memories as an energy efficient alternative to the multi port memories
commonly found in multi-processor systems. The address space of the applica-
tion is partitioned and mapped to a multi-bank memory architecture. Energy
savings of about 56% and slight performance penalties are reported compared
to multi port memories.

Address clustering is used in [MMP03] to increase the locality of memory
access profiles and thus to improve the efficiency of partitioning. This cluster-
ing leads to average improvements of 25% compared to a partitioned memory
architecture synthesized without address clustering.

The authors of [BMP00] propose the partitioning of onchip SRAM memo-
ries into smaller independent banks that are used to hold data objects. The
memory is synthesized and allocated according to the results of a dynamic
execution profile, leading to energy savings of 42%. A similar approach is
presented in [ABC03]. It uses dynamic programming and achieves polynomial
execution time. Since partitioning overhead is considered, the user does not
have to provide an upper bound for the number of partitions.

A recent PhD thesis [His05] presents algorithms for partitioned memory
hierarchies in embedded systems that allow the designer to study the impact
of particular memories on the system without having to simulate the design.
Compiler algorithms take care of memory object allocation to the partitions
using a greedy algorithm. However, as in most of the previous work, only data
is considered.

[UNS02] solves a problem that is closely related to the multi memory
allocation taking into account memory leakage energy, which will be presented
in Section 4.2.8. Given a collection of available memories including energy
and capacity data, the algorithm decides which subset of memories should be
used and how data elements should be distributed in order to minimize overall
memory energy dissipation. Our approach extends the considerations to not
only allocate data, but also instructions to the partitioned memories.

The idea of allocating both instructions and data to partitioned memo-
ries using a compiler was first described in [Hel04], and a description of the
“Bottom-Up” model was subsequently published in [WHM04]. That work is
extended here by providing a comparison among the different allocation ap-
proaches, presenting measures for the size of the generated ILP problems and
by two extensions of the general allocation model.

In the following section, the general idea and approach of multi memory
optimization is described, including the definition of required sets and vari-
ables to formulate an ILP problem to solve the allocation problem. An initial
ILP formulation is then provided in form of the Base model, which solves the
multi memory allocation problem by allocating global variables and individual
basic blocks to partitioned scratchpad memories. However, it does not take
into account the relationship between functions and their comprising basic

4.2 Multi Memory Optimization 97

blocks, which in general leads to suboptimal results. The Top-Down model,
which is described in the subsequent section, allows the allocation of either a
complete function or an arbitrary number of basic blocks contained in that
function to any scratchpad partition. This model improves the achievable re-
sults by considering the advantage of allocating complete functions instead of
separate basic blocks. Finally, the Bottom-Up model is described, which in
addition to considering complete functions also takes into account the bene-
fit of moving contiguous basic blocks to a particular memory. Following the
description of the mentioned approaches, extensions to also allocate memory
objects to the Harvard-style ARM TCM architecture and the notion of using
the compiler to determine a suitable memory architecture configuration are
presented. Results for all described models are presented and compared. Also,
the size of the corresponding ILP systems in terms of number of constraints
and number of decision variables is given.

4.2 Multi Memory Optimization

The scratchpad allocation algorithm [SWLM02] presented in the previous
section can be extended to support not only one available scratchpad memory,
but to partition the memory space into a number of smaller parts in order
to enable further energy savings. Since smaller memories generally require
less energy per access (cf. Figure 4.3), reducing the used memories’ size and
finding a way to allocate instructions and data to them will result in extra
savings. The fact that smaller memories also require less time for an access
has not been considered, since scratchpad memories are typically capable of
delivering values within one single processor clock cycle. If larger scratchpad
memories are assumed to introduce additional wait states during which the
processor has to be stalled, then the benefit of partitioning memories becomes
even more obvious due to the additionally achievable performance gains. In
industry, a trend towards smaller partitioned memories can also be found:
The ARM9E features two “tightly coupled memories” (TCMs), each of which
is dedicated to either storing data or instructions [ARM00]. The more recent
ARM11 architecture provides two regions of SRAM memory, separated into
one data and one instruction partition, that can be individually configured
either as TCMs or as SmartCaches. In the latter case, the SRAM mirrors
a contiguous region in the background memory. This allows a simplified tag
comparison in order to save energy [ARM04a]. If configured as TCMs, the
SRAMs in the ARM11 architecture may be filled and written back to main
memory using DMA transfers.

In contrast to ARM’s current architecture model that uses a Harvard ar-
chitecture, a more general approach is pursued in this work: we assume a
multi-purpose scratchpad memory that is partitioned into several small con-
tiguous regions, each of which is allowed to hold instructions as well as data,
as shown in Figure 4.4. The scratchpad memory partitions are connected to

98 4 Scratchpad Memory Optimizations

Fig. 4.4. Processor core with partitioned scratchpad memories

the processor by one single bus. The presented general approach can be modi-
fied in a straightforward way to match ARM’s TCM architecture, which will
be shown in Section 4.2.7.

The multi memory algorithm can either perform static program analysis
or use the dynamic profiling workflow presented in Section 3.6.1 to obtain pre-
cise information concerning instruction executions and data object accesses.
Furthermore, an architectural description of the currently used memory par-
titioning is required. The latter also includes the “energy per access” values
of the considered memory partitions. Using this information and the energy
model presented in Section 3.4, the optimization problem is formulated as an
integer programming problem. A commercial ILP solver [ILO05] is then used
to find a mapping of memory objects to memory partitions which minimizes
energy dissipation.

An ILP representation to model the allocation problem was chosen for a
couple of reasons. First, experiments show that the solving times to find solu-
tions for the given system of equations are acceptable. Despite the fact that
ILP solution algorithms can generally exhibit a poor runtime behavior in par-
ticular for increasing problem sizes, this does not hold for the class of problems
described in this work. This is due to the fact that all allocation problems de-
scribed here are variations of packing problems, which are easier to solve than
general ILP problems. In addition, it is known that pseudo-linear or even
linear approximation algorithms exist for this class of problems. Since the
overall solution times were acceptable, and in particular since good solutions
are usually found very soon in the solving process, the use of approximation
algorithms is not considered in this work. Another reason to use ILP is its sim-
plicity: once a system of ILP equations has been designed carefully, generating
a text based ILP problem file and using a solver to find the optimal solution
is much less error prone than describing different allocation algorithms in an

4.2 Multi Memory Optimization 99

arbitrary programming language. Finally, one of the main reasons that lead to
the choice of ILP representations is their flexibility: using a generic ILP gen-
eration framework makes modifications of existing ILP problems very easy.
Without having to go through the tedious implementation of different algo-
rithms in a programming language, the known data values (consisting e.g. of
object sizes and energy dissipation) are written to a file in the form of ILP
equations and the ILP solver subsequently finds the desired optimal solution
which is then read and processed within the compiler accordingly. As will
be shown in the subsequent sections, it is straightforward to extend a simple
basic model by integrating more and more information into the ILP problem.
Note that the general workflow within the compiler always stays the same:
profiling data is collected, an ILP problem is generated and solved, and the
solution values are used during the final code generation process.

4.2.1 Memory Objects

In order to model the optimization problem, variables, functions and basic
blocks need to be considered for allocation to the available memory partitions.

• Variables: The set of variables is denoted as V . The allocation of a vari-
able v ∈ V to the scratchpad memory is performed within the linker
by changing the base address of the corresponding data element. This is
straightforward for global variables kept in a data region of the applica-
tion. Since local variables within a function are usually kept in registers
or on the stack, these data objects do not have an address that can be
treated accordingly. Moving the stack to the scratchpad memory is sup-
ported by the encc compiler, but the lack of detailed analyses makes this
approach unsafe if the space required for the stack can not be determined
in a sufficiently precise way. For this reason, local variables are not con-
sidered in this approach. The approach to allocate the entire stack to the
scratchpad memory proposed in [Ste03] could however be integrated into
the proposed model, allowing some of the local variables to be accessed
from a scratchpad partition.

Every global data element is considered as a single allocatable unit.
Splitting larger data structures like structs or arrays into smaller parts and
the resulting finer granularity may lead to improved results, however there
is a risk of increases in code size due to the introduced addressing overhead.
The array splitting approach proposed in [VSM03] can be integrated into
the method without any changes in the workflow since the arrays are split
on the source code level.

• Functions: Just like global variables, functions f ∈ F can be moved to
different memory partitions by changing their starting address. Since func-
tions are self-contained memory objects which, assuming a structured pro-
gram, are always executed starting at the first instruction and ending with
a return statement, they can be assigned to an arbitrary address without
modification.

100 4 Scratchpad Memory Optimizations

• Basic Blocks: Basic blocks bb ∈ BB require special treatment when they
are allocated to a different memory partition, as already described in the
previous section for the single-scratchpad memory allocation. The addi-
tional branch (or longjump) instructions have to be considered in the en-
ergy cost function as well as in the space constraints, since they consume
energy when executed as well as additional space. The allocation of ba-
sic blocks to different memory partitions can be seen in Figure 4.5 which
shows the additionally inserted long jumps using bold lines as well as edges
between basic blocks allocated to the same partition. In order to improve
the granularity of allocatable basic blocks and thus achieve better opti-
mization results, [Hel04] proposed to split basic blocks into smaller units.
This approach, albeit producing slightly improved results, leads to an in-
crease in the number of considered memory objects and is not considered
in this work.

In contrast to the single-scratchpad case, the enumeration of all blocks
of contiguous basic blocks (so-called “multi basic blocks”) considering all
possible allocations to different memories is not feasible due to the strong
increase in the number of combinations which would lead to unacceptably
long ILP solving times. As a solution, two alternative approaches (“Top-
Down” and “Bottom-Up”) will be presented to model the relationship
between functions and basic blocks.

Fig. 4.5. Allocation of basic blocks to multiple memory partitions

4.2.2 Prerequisites

Before proceeding to generate an ILP model, some auxiliary variables and
definitions are required. The set of all m available memory partitions, which
also includes the main memory, is defined as

MP := {mp1,mp2, . . . mpm} (4.9)

4.2 Multi Memory Optimization 101

Each of the memory partitions has certain attributes like their starting
address or the size. Since the latter is required in the formulation of the ILP
problem, function Size(mpj) is defined as the size in bytes of memory partition
mpj .

To make the ILP notation more legible, the set O contains all variables
v ∈ V , functions f ∈ F and all basic blocks bb ∈ BB as follows:

O ⊆ V ∪ F ∪ BB := {v1, . . . vp, f1, . . . fq, bb1, . . . bbr} (4.10)

There is a total number of n memory objects: n = p + q + r. Like for
memory partitions, there is a function Size(oi) which returns the size of an
arbitrary memory object oi ∈ O. If oi happens to be a basic block, then the
maximum number of required long jumps is always included in the size to
make sure the scratchpad capacity is not exceeded.

4.2.3 Energy Functions

To model the optimization as an ILP problem, a cost function that optimizes
the energy dissipation within the memory subsystem is used. Similar to the
model presented in the previous section, the energy attributed to a global
variable v in the multi memory model corresponds to the sum of all accesses
to this variable throughout the application execution #acc(v), taking into
account the per-access energy of the memory partition mpj used to store the
global variable:

E(v,mpj) := #acc(v) · Edata(mpj) (4.11)

A function’s energy contribution is defined by its instructions k, by the
number of executions of each of the instructions #exec(k) and by the instruc-
tion fetch energy from partition mpj holding function f :

E(f,mpj) :=
∑

k

#exec(k) · Eifetch(mpj) (4.12)

For basic blocks, energy is defined by the number of executions #exec(bb),
by the number of instructions n(bb) in the basic block and by the instruction
fetch energy for memory partition mpj . To consider the potentially inserted
additional long jumps for each basic block, the number of successors #succ(bb)
of each basic block is determined from the control flow graph of the program:
The maximum number of jumps required is equal to the number of successors
of the basic block, since each successor may have to be reached using a long
jump to a different memory partition.

102 4 Scratchpad Memory Optimizations

This conservative assumption of every basic block requiring the maximum
number of jump instructions will later be corrected in the ILP model.

E(bb,mpj) := #exec(bb) · n(bb) · Eifetch(mpj) + (4.13)
#exec(bb) · #succ(bb) · Elongjump(mpj)

Note that during code generation, when the basic blocks are actually dis-
tributed to the different memory partitions, an automatic analysis is per-
formed by the compiler whether the currently considered basic block actually
requires the additional jump instruction assumed in the ILP model. If the
longjump is not required (since the corresponding successor node is allocated
to the same memory), then no additional jump will be added so as not to
waste any memory space. This is a postpass optimization that takes place in
the compiler during the actual code generation and may improve the perfor-
mance and energy dissipation of the application when not all relationships of
basic blocks are accurately modeled in the ILP formulation, which applies to
the Base and the Top-Down model.

4.2.4 The Base model

This first basic model simplifies the formulation of the ILP problem by not
taking the relationship of functions and their comprising basic blocks into
account. In the Base model, functions are excluded from the set of considered
memory objects, so that only individual and independent basic blocks and
global variables are considered. In order to simplify the notation, the set of
functions F is assumed to be the empty set and q = 0 for the Base model.

The decision variables in the ILP formulation denote whether a certain
memory object oi ∈ O is to be allocated to a memory partition mpj ∈ MP or
not. Since there are n memory objects and m memory partitions, an n × m
matrix of binary decision variables results:

Õ :=

⎛
⎜⎝

õ1,1 · · · õ1,m

...
. . .

...
õn,1 · · · õn,m

⎞
⎟⎠ (4.14)

The value of matrix element õi,j is defined as

õi,j :=
{

1, if oi ∈ O is allocated to mpj ∈ MP
0, otherwise (4.15)

The ILP solver thus has to determine values for all binary decision vari-
ables õi,j in order to find an optimal solution to the optimization problem.
With the main optimization goal being energy dissipation in the memory sub-
system, the objective function consists of the energy functions for the different

4.2 Multi Memory Optimization 103

memory objects. Since multiple memory partitions are considered, the mem-
ory partition the object is allocated to also has to be specified in the objective
function:

E(oi,mpj) :=
{

E(v,mpj), if oi ∈ V, oi = v is allocated to mpj

E(bb,mpj), if oi ∈ BB, oi = bb is allocated to mpj
(4.16)

The objective of the allocation algorithm is to allocate all memory objects
to specific memory partitions in such a way that the overall energy dissipation
is minimized. This objective function has to be minimized since it expresses
the energy dissipation.

Minimize
n∑

i=1

m∑
j=1

E(oi,mpj) · õi,j (4.17)

To generate a valid solution, a number of constraints have to be considered:
Each memory object must be allocated to exactly one memory partition, so
the optimization is performed subject to

∀i : 1 ≤ i ≤ n :
m∑

j=1

õi,j = 1 (4.18)

In addition, the size constraints of all the memory partitions have to be
respected, since no partition can hold more bytes than its capacity:

∀j : 1 ≤ j ≤ m :
n∑

i=1

[Size(oi) · õi,j] ≤ Size(mpj) (4.19)

The energy and size functions of basic blocks in this case both include the
additional energy required to perform the potential long jump between memo-
ries. Since some of these jumps may be removed during code generation when
the compiler finds that two basic blocks are actually allocated to the same
partition, the results obtained by the Base approach after simulation may ac-
tually be better than what could be expected from the ILP model alone. The
Base model uses a pessimistic assumption about basic blocks requiring addi-
tional jumps since this is the easiest way to model the optimization problem.

Up to this point, the optimization problem thus consists of the objective
function and one constraint per memory object to make sure that each object
is allocated to one memory partition. In addition, one constraint for each of
the m memory partitions is required to ensure the partitions’ capacities are
not exceeded. Since the relationship between functions and basic blocks is not
modeled in this simple approach, ignoring the function objects (i.e. F = ∅)
and only considering the p variables and r basic blocks as memory objects
will lead to valid, albeit not necessarily optimal, results. This leads to the
following model complexity in terms of number of constraints:

#Constraints(Base) = m + p + r = m + n (4.20)

104 4 Scratchpad Memory Optimizations

Another metric to describe the complexity of an ILP problem is the number
of decision variables. The dimensions of the matrix Õ specify that m·n decision
variables are required to specify the Base model.

The Base model’s objective function and constraints are summarized in
Figure 4.6. To further improve this basic model, the benefit of moving com-
plete functions or blocks of contiguous basic blocks will be introduced using
two different approaches in the following sections.

Set of memory objects:

O ⊆ V ∪ BB := {v1, . . . , vp, bb1, . . . , bbr}; n = p + r

Decision variables:

Õ :=

⎛
⎜⎝

õ1,1 · · · õ1,m

...
. . .

...
õn,1 · · · õn,m

⎞
⎟⎠

Objective function:

Minimize

n∑
i=1

m∑
j=1

E(oi, mpj) · õi,j

Subject to space restrictions:

∀j : 1 ≤ j ≤ m :

n∑
i=1

[Size(oi) · õi,j] ≤ Size(mpj)

Select each object once:

∀i : 1 ≤ i ≤ n :

m∑
j=1

õi,j = 1

Number of constraints/decision variables:

#Constraints(Base) = m + p + r = m + n

#DecisionV ariables(Base) = m · (p + r) = m · n

Fig. 4.6. Complete ILP formulation of the Base model

4.2.5 The Top-Down Model

The Top-Down model extends the Base model by specifying the relationship
between functions and their contained basic blocks. As the name suggests,
the Top-Down model starts its considerations at the function level and con-
sequently models the contained basic blocks as dependent objects. The moti-
vation to consider these connections among memory objects is the fact that

4.2 Multi Memory Optimization 105

when basic blocks are allocated to different memory partitions, additional
jump instructions may have to be inserted which consume additional space,
time and energy (cf. Figure 4.5 on page 100). It is therefore beneficial to
allocate an entire function instead of separate basic blocks to a particular
memory partition since a function does not require any additional jumps to
sustain correct control flow. However, the allocation of a complete function to
an energy-efficient memory partition implies that all basic blocks within that
function are allocated to this partition, even including those basic blocks that
are e.g. only executed once. It is the ILP solver’s task to use the additional
information provided by the extended model to trade off the advantage of
allocating complete functions against the more flexible allocation of single
basic blocks.

One additional advantage of the Top-Down approach is the fact that in
the worst case, the Base model may choose an allocation that distributes
the basic blocks of a function across all available partitions. Using the Top-
Down approach, this diversion of control flow can be avoided once a complete
function fits into one memory partition, resulting in more stable results of the
allocation process.

The Top-Down model only considers either a complete function or an arbi-
trary subset of its contained basic blocks. The additional advantage of alloca-
ting a sequence of contiguous basic blocks is not modeled using the Top-Down
technique since this would strongly increase the size of the model, making it
practically unusable. An elegant solution to model contiguous basic blocks
will be presented in the following section using the Bottom-Up approach.

The Top-Down model was presented for the first time in [Hel04]. However,
no results were presented for this allocation technique since the proposed
representation lead to a complex ILP representation resulting in very long
runtimes and high memory requirements of the ILP solver, making the model
inefficient for practical use. In this work, a novel representation is presented for
the first time which effectively reduces the complexity of the ILP representa-
tion and allows a faster generation of results even for larger benchmarks. The
general idea that leads to the better performance of this improved Top-Down
model is the use of additional decision variables to capture the relationship
of functions and basic blocks instead of using a large number of constraints.
Despite the fact that the relationships modeled by the old and the new Top-
Down formulation are identical, the new representation leads to results in
significantly reduced ILP solver execution times.

To model the relationship between functions and their comprising basic
blocks using the Top-Down model, the application’s functions need to be
considered in the set of considered memory objects (in contrast to the Base
model, which ignored all function objects). To achieve a consistent model,
either an entire function or its comprising basic blocks can be allocated to a
memory partition. If a function is completely allocated, then its comprising
basic blocks must not be considered for individual allocation anymore, and
their binary decision variables should be assigned the value 0 for all memory

106 4 Scratchpad Memory Optimizations

partitions. Thus, the constraining Equation 4.18 needs to be modified to allow
each object to be assigned to at most one partition (instead of exactly one):

∀i : 1 ≤ i ≤ n :
m∑

j=1

õi,j ≤ 1 (4.21)

This is the set of constraints that was used by the Top-Down model pre-
sented in [Hel04]. As mentioned above, it is beneficial for the efficient formu-
lation of the model to introduce new decision variables. These variables carry
information about which memory objects are allocated to a certain memory
partition and which objects aren’t. The following modified set of constraints
includes one new binary decision variable hi ∈ {0, 1} for each function object
f ∈ F , but is otherwise identical to Equation 4.21 above:

∀i : 1 ≤ i ≤ n :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m∑
j=1

õi,j − hi = 0 , if oi ∈ F

m∑
j=1

õi,j ≤ 1 otherwise

(4.22)

Note that the two representations 4.21 and 4.22 are equivalent, except for
the fact that in the second notation, decision variable hi is set to the value
one if function oi is allocated to a memory partition as one whole memory
object, and to zero otherwise. The fact that both constraints 4.21 and 4.22
allow memory objects not to be allocated to a partition bears the problem
that a trivial solution now becomes valid: By setting all decision variables to
the value 0, all constraints can be satisfied, at the same time minimizing the
energy dissipation. However, not allocating any object to any partition is not
a desirable solution. One way to avoid this problem is to modify the used
energy function accordingly by turning it into a maximization instead of a
minimization problem. In this way, the trivial solution of not allocating any
objects to a partition still represents a valid solution, but it is not attractive
due to the fact that the modified objective function is to be maximized.

In order to transform the objective function, the energy values E(oi,mpj)
are negated to −E(oi,mpj) and an offset value is added to the energy that is
large enough to make all energy values positive. This is always possible since
the energy values appearing within a program are bounded by some maximum
value Emax:

E′(oi,mpj) := Emax − E(oi,mpj) (4.23)

Consider the example illustrated in Table 4.1: basic blocks A and B have an
energy dissipation of three and four units, respectively, when they are allocated
to a particular memory partition. If they are not allocated, the resulting cost
is zero. In the initial minimization problem with energy function E, the solver
will choose not to allocate any object to any partition, since this results in

4.2 Multi Memory Optimization 107

minimal costs. The desired solution would be to first allocate basic block A
(since it has a lower cost value), then basic block B, given there is sufficient
space on the considered memory partition.

Assuming that the maximum occurring energy Emax is six, using the new
energy function E′ results in basic block A and B having energy values of three
and two units, respectively. Using a maximizing objective function, basic block
A will be allocated first, since it leads to a higher objective function value. If
sufficient space is available, then basic block B will also be allocated to the
partition. Note that the trivial solution of not allocating A or B is still valid,
but will not be chosen since it does not maximize the objective function.

Object Name E E’

Basic Block A 3 3
Basic Block B 4 2

Table 4.1. Negating the energy function to avoid the trivial solution

Care must be taken, however, that the ratio of energy dissipation between
basic blocks and functions is maintained during this transformation. Since the
maximum energy value Emax is added to the negated energy value of every
single basic block, precisely the same amount also has to be added to the
complete function in order to make it equally attractive in the maximization
objective function. In other words: functions require that the value Emax ·
BBC(f) be added to them, where BBC(f) is the number of basic blocks
contained in Function f . To formalize this, two new functions are introduced
to determine the number of basic blocks contained in a function. For both
functions, let f ∈ O and bb ∈ O:

σ(f, bb) :=
{

1, if f ∈ F, bb ∈ BB and bb is contained in f
0, otherwise (4.24)

BBC(f) :=
n∑

i=1

σ(f, oi) (4.25)

Function σ(f, bb) is defined for all objects f, bb ∈ O, but only returns the
value 1 if f is a function and bb is a basic block and if bb is one of the basic
blocks of function f . Function BBC(f) returns the number of basic blocks
contained in function f .

Assume that in the original representation, the sum of the basic blocks’
energy coefficients was greater than the coefficient of the function f (as in the
first equation below) due to additionally required jumps. If each basic block
is negated and the maximum energy Emax added to it, then the function f
on the right hand side requires an addition of Emax multiplied with BBC(f),

108 4 Scratchpad Memory Optimizations

the number of basic blocks in that function, in order to maintain the correct
relationship between function and basic blocks:

E(bb1) + . . . + E(bbBBC(f)) > E(f)

| · (−1)

−E(bb1) − . . . − E(bbBBC(f)) < −E(f)

| + BBC(f) · Emax

(Emax − E(bb1)) + . . . + (Emax − E(bbBBC(f))) < (BBC(f) · Emax) − E(f)

To illustrate this, consider the example given in Table 4.2: function F ,
comprising two basic blocks A and B, has an energy dissipation of five en-
ergy units, whereas the individual basic blocks consume three and four units,
respectively. If either the function or the two basic blocks are to be allocated
to a memory partition using the original minimization objective function, the
function would be selected since its energy dissipation is less than the sum of
the basic blocks’.

Object Name E E’

Basic Block A 3 3
Basic Block B 4 2

Function F 5 7

Table 4.2. Modified energy function for the Top-Down approach

Setting the new energy value of function F to (BBC(f) · Emax) − E(F)
and assuming that Emax = 6 results in the values in the third column of the
table. The energy of the function is thus (2 ∗ 6) − 5 = 7, which generates
an ILP maximization problem which is equivalent to the original problem
formulation.

Equation 4.23 thus has to be refined to the following representation:

∀oi ∈ BB, V : (4.26)
E′(oi,mpj) := Emax − E(oi,mpj)

∀oi ∈ F : (4.27)
E′(oi,mpj) := (BBC(f) · Emax) − E(oi,mpj)

Using this definition of energy functions E′, the new objective function is
given as

Maximize
n∑

i=1

m∑
j=1

E′(oi,mpj) · õi,j (4.28)

4.2 Multi Memory Optimization 109

Due to this maximization formulation, the solver will now try to set as
many decision variables as possible to the value 1 without violating any of
the constraints. This effectively prevents the solver from accepting the trivial
solution.

Having adjusted the objective function appropriately, it is still necessary to
express the connections between functions and their comprising basic blocks.
First, the set of basic blocks contained in a function f is defined as

BBs(f) := {bb ∈ BB : σ(f, bb) = 1} (4.29)
= {bbf,1, . . . , bbf,BBC(f)}

The additional constraints have to prevent the solver from assigning both
a complete function and any of the basic blocks contained in that function
to a memory partition. This is modeled using another new set of integer (not
binary) decision variables h′

i which count the number of individually allocated
basic blocks within each function oi:

∀oi ∈ F, ox ∈ BBs(oi) :
BBC(oi)∑

x=1

m∑
j=1

õx,j − h′
i = 0 (4.30)

In this way, h′
i for each function contains the number of basic blocks that

are allocated to an arbitrary memory partition. If the complete function is
allocated, then the number of individually allocated basic blocks must be 0.
This is achieved by the following, final set of constraints:

∀oi ∈ F : BBC(oi) · hi + h′
i ≤ BBC(oi) (4.31)

For each function oi, the constraint ensures that if the entire function is
allocated to a memory partition, implying hi = 1, then no individual basic
block within this function may be individually allocated, thus h′

i must be set
to zero in order to satisfy the constraint. If, on the other hand, the complete
function is not allocated to a partition as a whole memory object (and thus
hi = 0), then all of the individual basic blocks have to be allocated to some
arbitrary memory partition. In this case, h′

i = BBC(oi) is achieved due to
the maximization of the objective function. The presented set of constraints
thus successfully prevents the allocation of both a function and its comprising
basic blocks to any memory partition.

To guarantee the generation of valid solutions, the space constraints from
the Base model also have to be included for each of the memory partitions
which concludes the formulation of the Top-Down model.

Note that due to the negation of the objective function and the subsequent
addition of Emax, a potential problem is introduced during the solution of the
ILP problem: those energy values that were initially very small are now very
close to the maximum occurring energy value. This implies a certain loss of
precision: while floating point numbers have a high precision for small absolute

110 4 Scratchpad Memory Optimizations

values, the minimal distance between two distinguishable floating point num-
bers grows as their absolute size grows. This can cause some of the originally
small, but distinct energy values to be projected onto the same floating point
value. In most of the considered benchmarks, the maximum energy coefficients
in the ILP formulation are in the range of 108, so that the described effect can
actually occur for the performed experiments. However, the problem mainly
concerns memory objects that originally had a small energy value associated
to them, meaning that the most relevant objects will still be treated correctly.

Set of memory objects:

O ⊆ V ∪ F ∪ BB := {v1, . . . vp, f1, . . . fq, bb1, . . . bbr}; n = p + q + r

Decision variables:
Õ :=

⎛
⎜⎝

õ1,1 · · · õ1,m

...
. . .

...
õn,1 · · · õn,m

⎞
⎟⎠

∀i : p + 1 ≤ i ≤ q,

oi ∈ F :

hi ∈ {0, 1}, h′
i ∈ IN

Objective function:

Maximize

n∑
i=1

m∑
j=1

E′(oi, mpj) · õi,j

Subject to space restrictions:

∀j : 1 ≤ j ≤ m :

n∑
i=1

[Size(oi) · õi,j] ≤ Size(mpj)

Select each object at most once:

∀i : 1 ≤ i ≤ n :

⎧⎪⎪⎨
⎪⎪⎩

m∑
j=1

õi,j − hi = 0 if oi ∈ F

m∑
j=1

õi,j ≤ 1 otherwise

allocate either complete function or individual basic blocks:

∀oi ∈ F, ox ∈ BBs(oi) :

BBC(oi)∑
x=1

m∑
j=1

õx,j − h′
i = 0

∀oi ∈ F : BBC(oi) · hi + h′
i ≤ BBC(oi)

Number of constraints/decision variables:

#Constraints(Top-Down) = m + n + 2q

#DecisionV ariables(Top-Down) = m · n + 2q

Fig. 4.7. Complete ILP formulation of the Top-Down model

4.2 Multi Memory Optimization 111

The complexity of the Top-Down model as it was originally described
in[Hel04] was very high in particular with respect to the number of consi-
dered memory partitions. In fact, the number of constraints can be determined
to be m + n + m · q2 and the number of decision variables was m · n for
the original approach. This high complexity makes the Top-Down model as
proposed in [Hel04] unusable for practical benchmarks. The memory require-
ments of the ILP solver [ILO05] using the original Top-Down model were so
big that our compute server (a dual-processor Sun Fire V240 server featur-
ing two UltraSPARC IIIi processors running at 1.3 GHz with 4 GB of main
memory) was incapable of finding a solution for any of the larger benchmarks.

By introducing the new decision variables hi and h′
i for each function

object oi, the complexity of the model could be reduced significantly, since
a large number of constraints can be expressed using the value of the new
decision variables that were not present in the original representation of the
Top-Down model. In addition to the m memory size constraints, n constraints
are required to model each memory object being allocated to at most one
memory partition, at the same time setting the binary decision variables hi

to correct values. An additional q constraints (q representing the number of
functions in the application) are required to determine the values h′

i for every
function. Finally, another q constraints guarantee that either functions or their
comprising basic blocks are allocated to memory partitions. The number of
additional decision variables is determined as 2q, one hi and one h′

i for each
function object. All in all, the number of constraints and decision variables
required for the novel Top-Down model presented in this work is

#Constraints(Top-Down) = m + n + 2q (4.32)

#DecisionV ariables(Top-Down) = m · n + 2q (4.33)

This concludes the description of the Top-Down model. Figure 4.7 shows
the entire ILP formulation of the Top-Down approach. Results generated using
the Top-Down model will be presented in Section 4.2.9.

4.2.6 The Bottom-Up Model

In contrast to the Top-Down Model, the Bottom-Up Model perceives functions
only as a number of contiguous basic blocks - hence the name “Bottom-Up”.
Thus, only global variables and basic blocks are considered in the model and
allocated to the different memory partitions. The achievement of this model
is that it accurately models the effect of moving single basic blocks as well
as arbitrarily long sequences of contiguous basic blocks, implicitly including
functions. When only one basic block is allocated to a different memory par-
tition, then long jump instructions are required to jump to this basic block
and back again. If, however, two basic blocks connected by a control flow edge
are allocated to the same memory partition, then no modification of this edge

112 4 Scratchpad Memory Optimizations

is necessary: either, the original jump condition is used to pass from one ba-
sic block to the next, or they are allocated to contiguous memory addresses
and are just executed sequentially by incrementing the program counter. To
avoid the increasing complexity in describing the number of combinations of
contiguous basic blocks allocated to a number of partitions, the edges of the
control flow graph are used in the constraints of the ILP problem to model
the fact that it is beneficial to move two connected basic blocks to the same
partition. By using the edges of the control glow graph, this more fine-grained
approach results in higher energy savings and at the same time reduces the
size of the ILP problem.

The edges of the control flow graph are represented in the ILP formulation
by the set C which is defined as

C := {c1, · · · , cs} (4.34)

To express that two basic blocks are connected by an edge, an additional
function is required. Function V (x, y) returns the index number k of the con-
necting edge if both ox and oy are basic blocks, and if they are connected
by a control flow edge. If ox and oy are not basic blocks, or if they are not
connected by a control flow edge, the function returns −1.

V (x, y) :=
{

k, if ox, oy ∈ BB and edge ck = (ox, oy) ∈ C
−1, otherwise (4.35)

The set C and function V (x, y) are used to add another matrix of decision
variables C̃ to the model. This matrix contains one binary decision variable
c̃k,j for each edge k and every memory partition j which models the connection
of basic blocks by control flow edges. A decision variable c̃k,j is assigned the
value 1 if memory partition j is not left when control flows along edge k. In
other words: if two basic blocks connected by a control flow edge are allocated
to the same memory partition, then the corresponding decision variable is
set to 1. With this additional matrix, a modified objective function can be
formulated. The potential additional jump instructions are already included in
the original problem formulation (cf. Equation 4.14 on page 102). To account
for the benefit of staying within one memory partition, the Bottom-Up model
subtracts this additional overhead if no jump between memories is required.
Thus, if a control flow edge does not leave memory partition mpj , an energy
benefit E(longjump,mpj) is considered in the objective function.

Assuming the decision variables c̃k,j are set correctly, the objective func-
tion is formulated as

Minimize
n∑

i=1

m∑
j=1

[E(oi,mpj) · õi,j] (4.36)

−
s∑

k=1

m∑
j=1

[E(longjump,mpj) · c̃k,j]

4.2 Multi Memory Optimization 113

Note that the original form of the energy function from the Base model
can be used here: Since functions are not considered as memory objects, each
object can again be assumed to be allocated to exactly one partition (Equa-
tion 4.18). One other constraint does require modification, however: since the
connecting edges, the allocation of objects to memory partitions and thus
the required long jumps between basic blocks are now known within the ILP
model, this knowledge also has to be considered in the size constraints: similar
to the objective function, the additional overhead assumed for additional long
jumps is subtracted if control flow along this edge does not leave the memory
partition, i.e. if the corresponding decision variable c̃k,j is set:

∀j : 1 ≤ j ≤ m :
n∑

i=1

[Size(oi) · õi,j] (4.37)

−
s∑

k=1

[Size(longjump) · c̃k,j] ≤ Size(mpj)

Up to this point, the additional decision variables c̃k,j were considered to
correctly reflect the control flow among the memory partitions. The following
set of constraints ensures that the variables are set correctly:

(k = V (x, y),∀k 	= −1, 1 ≤ x ≤ n, 1 ≤ y ≤ n), (∀j, 1 ≤ j ≤ m) :

õx,j + õy,j − 2 · c̃k,j ≥ 0 (4.38)

This constraint implies that a decision variable c̃k,j must be set to 0 if the
two basic blocks connected by edge k are not allocated to the same memory
partition j. Setting all possible decision variables c̃k,j to 1 is not explicitly
modeled in this constraint, however: this is being taken care of automatically
by the ILP solver, since setting the c̃k,j to 1 where this is possible without
violating constraints helps to minimize the objective function.

During experiments, the Bottom-Up model was found to show a suffi-
ciently fast ILP solution time, despite the fact that it accurately models the
relationship between functions and basic blocks. Beside the objective func-
tion, m constraints are required to make sure that the memory capacities of
the memory partitions are not exceeded. Each of the n objects is again allo-
cated to exactly one memory partition, leading to n constraints. Modeling the
control flow requires every edge of the control flow graph to be considered for
each of the memory partitions, resulting in m·|E| constraints, where |E| is the
number of edges in the control flow graph. The total number of constraints
for the Bottom-Up model is thus

#Constraints(Bottom-Up) = m + n + m · |E| (4.39)

Since every basic block can have a maximum of two successors, the rela-
tionship |E| ≤ 2n holds for all regular control flow graphs. In the experiments

114 4 Scratchpad Memory Optimizations

Set of memory objects:

O ⊆ V ∪ BB := {v1, . . . , vp, bb1, . . . , bbr}; n = p + r

Decision variables:

Õ :=

⎛
⎜⎝

õ1,1 · · · õ1,m

...
. . .

...
õn,1 · · · õn,m

⎞
⎟⎠ C̃ :=

⎛
⎜⎝

c̃1,1 · · · c̃1,m

...
. . .

...
c̃s,1 · · · c̃s,m

⎞
⎟⎠

Objective function:

Minimize

n∑
i=1

m∑
j=1

[E(oi, mpj) · õi,j] −
s∑

k=1

m∑
j=1

[E(longjump, mpj) · c̃k,j]

Subject to space restrictions:

∀j : 1 ≤ j ≤ m:

n∑
i=1

[Size(oi) · õi,j] −
s∑

k=1

[Size(longjump) · c̃k,j] ≤ Size(mpj)

Select each object exactly once:

∀i : 1 ≤ i ≤ n :

m∑
j=1

õi,j = 1

Restrict decision variables c̃k,j to correct values:

(k = V (x, y), ∀k �= −1, 1 ≤ x ≤ n, 1 ≤ y ≤ n), (∀j, 1 ≤ j ≤ m) :

õx,j + õy,j − 2 · c̃k,j ≥ 0

Number of constraints/decision variables:

#Constraints(Bottom-Up) = m + n + m · |E|
#DecisionV ariables(Bottom-Up) = m · n + m · |E|

Fig. 4.8. Complete ILP formulation of the Bottom-Up model

we found that the matrix C̃ containing m · |E| additional decision variables
does not seem to have a negative impact on the runtime of the ILP solver. The
same is true for the additional m·|E| decision variables used in the Bottom-Up
model. All presented results were generated within an acceptable time.

This concludes the presentation of the Bottom-Up model, which is sum-
marized in Figure 4.8. Results generated using all of the approaches presented
above will be shown in Section 4.2.9.

4.2 Multi Memory Optimization 115

4.2.7 The ARM TCM Model

In the currently available ARM9 and ARM11 processors, the partitioned
scratchpad memories (or TCMs) can not be exploited using the equations
supplied above, since one of the memories can only hold instructions while
the other can only hold data, as shown in Figure 4.9.

Fig. 4.9. ARM TCM architecture using separate instruction- and data buses

This restriction is due to the Harvard architecture with separate buses for
instructions and data found in the recent ARM designs [ARM00, ARM04a].
If one of the scratchpad memories is to be used as a SmartCache, then the
original model for only one scratchpad [SWLM02] can be used if the considered
memory objects are restricted to either only variables or only functions and
basic blocks, depending on which of the two scratchpad memories is being
used as a TCM. If both scratchpad memories are to be used in addition to
the main memory, the Top-Down or Bottom-Up version of the multi memory
approach may be used with a slight modification to allocate memory objects
to the TCM partitions accordingly. Assuming that in the most general case a
number of memory partitions can only hold instructions, others can only hold
data, and the remaining partitions can hold both instructions and data, the
original multi memory allocation model can be adapted to the new situation
in the following way:

The set of available memory partitions MP := {mp1, . . . mpm} is parti-
tioned into three disjoint sets at positions g and h such that 1 ≤ g ≤ h ≤ m:

MPI := {mp1, . . . ,mpg} only instructions (4.40)
MPD := {mpg+1, . . . ,mph} only data (4.41)

MPID := {mph+1, . . . ,mpm} both instructions and data (4.42)

116 4 Scratchpad Memory Optimizations

A correct allocation of memory objects to memory partitions can then be
performed by assuring that the corresponding memory objects are only allo-
cated to suitable memory partitions. The set of memory objects was defined
as

O ⊆ V ∪ F ∪ BB := {v1, . . . vp, f1, . . . fq, bb1, . . . bbr} (4.43)

with v being global variables, f being functions and bb basic blocks. By
adding the following constraints to the optimization problem, it is ensured
that no data object is allocated to an instruction partition and vice versa:

∀j : 1 ≤ j ≤ g :
p∑

i=1

õi,j = 0 (4.44)

∀j : (g + 1) ≤ j ≤ h :
n∑

i=p+1

õi,j = 0 (4.45)

The straightforward addition of these two constraints to the optimiza-
tion problem shows the advantages of choosing an ILP representation for
the allocation problem: Modifications like supporting a Harvard architecture
can be easily incorporated into the model without requiring a tedious re-
implementation of the entire allocation algorithm.

The complexity of the underlying model is actually reduced by this modi-
fication, since the setting of decision variables to the fixed value 0 effectively
removes them from the ILP equation system and they do not need to be
considered by the solver anymore. With |I| being the number of instruction
memories and |D| the number of data memories, the number of equations is
thus increased by |I| + |S| compared to the Bottom-Up model, leading to a
total of constraints. However, the solver will be able to reduce the number of
constraints and decision variables in the first iteration of its algorithm by the
amounts given below:

#Constraints(Harvard) = m + n + m · |E| + |I| + |D| (4.46)

• |D| · |E| edge constraints can be removed, since there are no edges between
basic blocks in any of the data partitions

• |D| · |E| decision variables for edge constraints can be removed, since the
constraints were removed

• |D| · (n − p) decision variables that handle instructions allocated to data
partitions can be removed, since their value is 0

• |I| · p decision variables that handle data elements allocated to instruction
partitions can be removed, since their value is 0

4.2 Multi Memory Optimization 117

• |I| + |D| constraints can be removed, since by removing all of the above
elements, it is already ensured that no instructions are allocated to data
partitions and vice versa

This leads to a reduction of |D|(|E| + (n − p)) + |I| · p decision variables
compared to the Bottom-Up model. If we assume both the number of data
and instruction partitions in the system to be one, which is the situation
found in current ARM designs, the overall number of decision variables for
the Harvard allocation can be determined as (m − 1) · (n + |E|). This means
that the ILP formulation using separate data and instructions partitions has
the same complexity as the general Bottom-Up model with the number of
memory partitions reduced by one.

Thus, a reduction in the complexity of the model has actually been
achieved. Since experiments have shown that the ILP solver is capable of
efficiently eliminating redundant constraints and decision variables, we have
refrained from actually generating the more efficient ILP representation with
the mentioned constraints and decision variables removed. The reduced com-
plexity is also reflected in the solving times, which were significantly reduced
compared to the Bottom-Up approach for most of the considered benchmarks.

4.2.8 Leakage-Energy Aware Memory Configuration

The idea of partitioning scratchpad memories in order to improve the energy
dissipation is based on the fact that larger memories require more energy
per access than smaller memories. Taken to an extreme, this partitioning ap-
proach in theory would lead to a large number of very small memories, each
barely large enough to hold a single memory object. In practice, however,
introducing a large number of very small memories is not feasible – ARM as
the market leader in embedded processor cores merely provides two scratch-
pad memories in their designs. This is on one hand due to the fact that the
wiring required to connect a large number of memories would require a high
amount of the valuable and scarce onchip space, making the resulting chip
more expensive. Additional address decoders will also be required in the sys-
tem to decide which memory partition is to be accessed. On the other hand,
the mere presence of a memory will cause a certain amount of leakage energy
to be dissipated, independent of its utilization or access frequency. Leakage
currents will always flow within the transistors of the memory, causing a noti-
ceable energy dissipation. The fact that leakage is becoming more important
and will in fact dominate overall energy dissipation in particular for future
submicron technologies [Bor99] emphasizes that the consideration of leakage
energy is vital in particular during the design of embedded systems.

In the multi memory allocation schemes presented in the previous sections,
the partitioning of the memory was assumed to be given in a fixed form. If the
target system and its memory structure are yet to be designed, the designer
has to determine suitable memory partition parameters, including number and

118 4 Scratchpad Memory Optimizations

size of partitions, for a particular application. This section presents a solution
where the information available within the compiler can be used to help the
designer to only utilize the most beneficial memory partitions from a set of
available memories. The compiler needs to be aware of the cost of integrating
extra scratchpad memories (in terms of leakage energy) so that it can trade
off the benefit due to reduced energy per access against the overhead caused
by a large number of small partitions. The energy per access cost is a well-
known metric and has been used for all previously presented optimizations.
The overhead of an additional scratchpad partition is modeled by assuming
each partition has a certain power dissipation when it is present in the system.
This power is spent throughout the execution time of the application and
represents the leakage energy of the memory. In order to keep the used model
simple, only this leakage energy value is added to the set of ILP equations. If
the additional overhead required for the wiring and necessary decoders is to be
modeled, it is straightforward to introduce additional variables to model these
restrictions appropriately. In the presented model, however, we refrain from
representing each of these factors by a separate variable and summarize the
overhead caused by including a scratchpad memory partition in the abstract
leakage energy value. By scaling this value as required, the designer can control
the result of the tradeoff and thus achieve less memories to be used when the
leakage for partitions is set to a high value. The compiler can thus be used
to help the designer decide whether the benefit from allocating objects to an
extra partition is outweighed by this partition’s overhead or not.

This task can be accomplished by modifying the multi memory allocation
technique. The representation of the problem in the form of ILP equations
can again be exploited, since the notion of a leakage current can be inte-
grated into the allocation model in a straightforward way. The leakage energy
Eleakage(mpj) is introduced as an additional property for each of the mem-
ory partitions. It expresses the amount of energy that is always constantly
dissipated by memory partition mpj , even when it is not accessed. The total
energy of this memory partition consists of the leakage energy and the energy
caused by the accesses to this partition.

An additional set of decision variables needs to be integrated into the multi
memory allocation problem to reflect whether a certain memory partition is
being used, i.e. whether at least one memory object is allocated to it. This set
of decision variables is defined as

M̃P := {m̃p1, · · · m̃pm} (4.47)

where each decision variable m̃pj has the value 1 if the corresponding
memory partition mpj is being used. Assuming these decision variables are set
correctly, the objective function can be modified to also consider the leakage
energy of the used memory partitions:

Minimize
n∑

i=1

m∑
j=1

[E(oi,mpj) · õi,j] +
m∑

j=1

[Eleakage(mpj) · m̃pj] (4.48)

4.2 Multi Memory Optimization 119

In order to set the new decision variables mpj to correct values, additional
constraints are required to guarantee that a decision variable will be set to the
value 1 if and only if this partition is being used to hold at least one memory
object. This can be achieved with the following set of constraints:

∀j, 1 ≤ j ≤ m :
n∑

i=1

õi,j − n · m̃pj ≤ 0 (4.49)

These constraints will guarantee that the decision variable mpj is set to
the value 1 if any of the õi,j are 1, since otherwise the equation would take a
positive value and thus be violated. All remaining decisions variables mpj will
automatically be set to 0 since this helps to minimize the objective function.

If the designer provides a value for a certain memory’s leakage energy, then
the compiler is able to determine which memory partitions should be used for
maximum benefit, leading to a compiler guided multi memory configuration.
No memory objects will be allocated to a partition if its benefit is outweighed
by the overhead caused by its leakage energy dissipation. If the memory ar-
chitecture design is fixed, the unused memory partitions can be turned off,
assuming the presence of modern memories’ power management features, in
order to eliminate their leakage energy.

If the memory architecture is not given and design space exploration is be-
ing performed, the designer can determine an appropriate number of memory
partitions and their corresponding size by offering the compiler a large set of
available memories and using the compiler’s knowledge about the application
behavior and memory requirements to decide which ones are most profitable
from the compiler’s point of view. Results generated using this method will
be presented at the end of the following section.

The complexity of the multi memory allocation problem is only increased
marginally by also considering the standby energies of memories: one addi-
tional constraint is required per memory partition in order to determine
whether it is being used or not, leading to m additional constraints. Assuming
the leakage consideration is added to the Bottom-Up model, the total number
of constraints is

#Constraints(Leakage) = m + n + m · |E| + m (4.50)

whereas the number of decision variables is increased by m, one variable
per memory partition, to a total of

#DecisionV ariables(Leakage) = m · (n + |E| + 1) (4.51)

120 4 Scratchpad Memory Optimizations

4.2.9 Results for Multi Memory Optimization

This section presents experimental results obtained using the different versions
of the multi memory optimization approach.

For the scratchpad memories used in this section, the per access energy
values shown in Table 4.3 were used to generate results. These values were
determined using a subset of the CACTI cache model [WJ96] as described in
Section 3.4.3 and in [BSL+02], assuming a technology feature size of 0.5µm.

Memory Size Per access energy
[bytes] [nJ]

64 0.50
128 0.57
256 0.60
512 0.69
1024 0.84
2048 1.05
4096 1.44
8192 2.14
16384 4.05
32768 6.53

Table 4.3. Per access energy values for scratchpad memories

The main memory energy values were determined using measurements on
our ARM evaluation board. In contrast to the onchip scratchpad memory
model, main memory accesses require a different amount of time and energy
depending on the type of memory access (read or write access) and on the bit
width of the access. The reasons for this fact are explained in detail in Sec-
tion 3.4.3 on page 33. The values for the main memory are given in Table 4.4.

Access Width Read Energy Write Energy Waitstates

1 byte 154.8 µJ 149.8 µJ 1
2 bytes 240.0 µJ 298.8 µJ 1
4 bytes 493.2 µJ 411.0 µJ 3

Table 4.4. Measured per access energy values for main memory

An important aspect that has to be considered for the experimental work
concerning multi memory partitions is which set of partitions should be used.
The number of combinations of different memory partitions is very large if
more than three partitions are included in the model. Therefore, a systematic
approach is necessary to restrict the number of possibilities to an accept-
able level. The total scratchpad memory capacity is assumed to vary between
64 bytes and 32 kB, which is a useful range for the considered benchmarks. The

4.2 Multi Memory Optimization 121

partitioning of the scratchpad is performed according to the following rules:
One memory partition that holds the entire capacity is divided into two parts
of equal size. In an iterative process, the smallest partition is then repeatedly
divided in two until the smallest memories reach the minimal size of 64 bytes.
This procedure automatically takes care of a problem encountered during the
first experiments: whenever there are two or more identical memories, the so-
lution of the ILP problem takes a substantially longer time, since the solver is
not aware of the fact that a couple of memories are alike and that accordingly,
several equivalent allocation patterns exist in this case. Early pruning of the
search space is thus not possible, and the memory requirements and runtimes
are increased considerably. Using our proposed approach, only two memories
of equal size are ever present in a setup, which helps avoid the problem. As an
additional rule, the total number of memories was also restricted to a maxi-
mum of eight, which makes sense considering e.g. the area and wiring overhead
required to provide a large number of scratchpad memories. Table 4.5 shows
the considered memory partitions using the example of a scratchpad memory
with a total capacity of 4 kB.

For all of the performed experiments, a time limit of 15 minutes was set
for the ILP solution algorithm in order to generate results within a reasonable
amount of time. Due to the existence of equivalent solutions when two identical
memories are present, it could often be observed that a near-optimal solution
was found very soon during the solving process, however the entire search
space (i.e. all of the equivalent solutions) still had to be explored in order to
ascertain that no better solution exists.

Total Size Number of number of partitions of size:
[bytes] partitions 4K 2K 1K 512 256 128 64

4096 1 1 0 0 0 0 0 0
2 0 2 0 0 0 0 0
3 0 1 2 0 0 0 0
4 0 1 1 2 0 0 0
5 0 1 1 1 2 0 0
6 0 1 1 1 1 2 0
7 0 1 1 1 1 1 2

Table 4.5. Example choice of memory partitions for 4 kB total capacity

The benchmarks that were chosen to demonstrate the effectiveness of the
multi memory allocation approach are shown in Table 4.6. They consist of
typical applications frequently found in embedded devices. Sorting integer
elements is a task that frequently has to be performed by any computing
device. The G.721 benchmark performs an encoding and decoding of sam-
ple data according to the “Adaptive Differential Pulse Code Modulation”
(ADPCM) standard G.721 proposed by the International Telecommunica-
tion Union. Fourier transformations and discrete cosine transformations are

122 4 Scratchpad Memory Optimizations

frequently required operations in the domain of digital signal processing often
performed on embedded devices. The reference inverse discrete cosine trans-
formation operates on “double” data types, whereas the Fast IDCT imple-
mentation uses integer representations.

Benchmark Code Size Data Size Description
[bytes] [bytes]

Multi Sort 716 1204 Sorting benchmark
(combining several sorting algorithms)

G.721 2784 2424 Encoding and decoding according to G.721 using
“Adaptive differential Pulse Code Modulation”

FFT 480 15364 Integer implementation of
Fast Fourier Transform (FFT)

Ref IDCT 588 2564 Reference (float) implementation of
inverse discrete cosine transform (IDCT)

Fast IDCT 1428 6552 Integer implementation of
inverse discrete cosine transform (IDCT)

Table 4.6. Selected benchmarks to evaluate the multi memory allocation approach

Comparison of Base, Top-Down and Bottom-Up

Using the energy values and memory partitions described above, results to
compare the three primary approaches, i.e. the Base model, the Top-Down
refinement and finally the Bottom-Up method, are provided. To clearly and
concisely show the differences between the three approaches, only one single
application, the Multi Sort benchmark, was chosen for the comparison. For
both the Top-Down and the Bottom-Up models, values considering all of the
benchmarks are provided later in this section.

First, we show the possible improvement in memory energy when the three
allocation approaches are used. Since the proposed models control the alloca-
tion of objects to the memory partitions, the results presented in this section
are given in terms of energy saved within the memory subsystem. These re-
sults are given as an improvement relative to a system with only SRAM main
memory (using the same access parameters as assumed in our experiments).
This minimalistic point of reference was chosen since if e.g. a single scratchpad
was present in the reference system, then the allocation technique used to fill
this scratchpad would interfere with the comparison of the Base, Top-Down
and Bottom-Up approach.

• The Base model: Results for the Multi Sort application allocated to the
partitioned scratchpad memory using the Base approach are shown in
Figure 4.10. For a single scratchpad partition, the improvement of energy
dissipation within the memory subsystem compared to a system with no

4.2 Multi Memory Optimization 123

scratchpad rises steeply up to a level of about 94% for a scratchpad ca-
pacity of 4096 bytes. Increasing the size of the single scratchpad partition
does not improve the energy dissipation any further, since larger partitions
require more energy per access. If a single scratchpad partition of 32 kB is
used, the energy savings are reduced down to 75%. Increasing the number
of partitions however leads to a better energy behavior for larger capaci-
ties: if the scratchpad is partitioned into two halves (i.e. two partitions of
16 kB each), then the relative energy savings are increased to about 85%.
Further partitioning of the scratchpad leads to even higher savings, demon-
strating that the maximum savings achievable for one scratchpad can be
sustained or in some cases even improved. This shows that if a processor
with a given amount of scratchpad memory is used, it can be beneficial to
provide the total capacity not as one big scratchpad, but rather as several
smaller partitions, provided the compiler is able to exploit this kind of
memory architecture. Energy savings within the memory subsystem of up
to 97% were obtained using the multi memory allocation technique, while
the average solution time of the ILP equations was below one second.

64 128 256 512 1024 2048 4096 8192 16384 32768
0

10

20

30

40

50

60

70

80

90

100

1 part.

2 part.

3 part.

4 part.

5 part.

6 part.

7 part.

8 part.

Total scratchpad capacity [bytes]

R
el

at
iv

e
en

er
gy

 im
pr

ov
em

en
t [

%
]

Fig. 4.10. Energy savings for the Base model compared to a system with no
scratchpad

Further improvements, in particular for smaller scratchpad sizes, are to
be expected if the allocation algorithm is aware of the relationship between
basic blocks and functions.

124 4 Scratchpad Memory Optimizations

• Results for the Top-Down model: The Base model does not consider the
relationship of functions and basic blocks at all during the optimization
of the ILP problem and thus pessimistically assumes that additional jump
instructions are always necessary when a basic block is moved to any mem-
ory partition. The Top-Down model considers the allocation of complete
functions in addition to separate basic blocks.

The results obtained for the Multi Sort application using the Top-
Down approach are shown in Figure 4.11. It can be observed that for the
small memory partitions, the Top-Down allocation algorithm generates
the same results as the Base approach. This is due to the fact that if no
complete function can be allocated because of size constraints, the same
individual basic blocks as in the Base case are chosen. Once a function fits
entirely into one memory partition, it is selected and allocated accordingly,
leading to a reduced energy dissipation compared to the Base approach.

64 128 256 512 1024 2048 4096 8192 16384 32768
0

10

20

30

40

50

60

70

80

90

100

1 part.

2 part.

3 part.

4 part.

5 part.

6 part.

7 part.

8 part.

Total scratchpad capacity [bytes]

R
el

at
iv

e
en

er
gy

 im
p

ro
ve

m
en

t [
%

]

Fig. 4.11. Relative energy for the Top-Down model

The smallest scratchpad size where this becomes visible is 512 bytes:
while for the Base model, the splitting of functions into separate basic
blocks leads to energy savings of 71.82% for 4 memory partitions, the
Top-Down model can allocate an entire function and achieve savings of
74.72%, thus outperforming the Base approach by about 3% percentage
points.

For a total capacity of 1024 bytes, the improvement for the Top-Down
model can be observed for all data points: while the Base model achieves

4.2 Multi Memory Optimization 125

savings of about 86%, the Top-Down model reaches 88% for two partitions.
While this is only an improvement of 2 percentage points, considering the
absolute energy values of 704.14µJ and 828.22µJ for Base and Top-Down
model, respectively, the Top-Down model outperforms the Base model by
a total of 15% with respect to absolute energy dissipation.

In summary, the Top-Down model on average generates similar, in
some cases better results than the Base approach, as expected. Achievable
gains of up to 15% in energy dissipation were observed compared to the
Base model.

This work has shown that the new implementation of the Top-Down
model, in contrast to the original formulation presented in [Hel04], is capa-
ble of generating valid results without any of the previously encountered
runtime and memory requirement problems during the solution of the ILP
problem. Since the Top-Down model is more complex than the Base model,
the ILP solving times are increased, but the presented results can still be
generated in an acceptable time, in particular due to the effect of equi-
valent solutions mentioned above, which results in good approximations
being found early in the optimization process.

64 128 256 512 1024 2048 4096 8192 16384 32768
0

10

20

30

40

50

60

70

80

90

100

1 part.

2 part.

3 part.

4 part.

5 part

6 part.

7 part.

8 part.

Total scratchpad capacity [bytes]

R
el

at
iv

e
en

er
gy

 im
pr

ov
em

en
t [

%
]

Fig. 4.12. Relative energy for the Bottom-Up model

• The Bottom-Up model: The results of the Bottom-Up approach compared
to a scenario without scratchpad are shown in Figure 4.12. In particular
for small scratchpad sizes, the Bottom-Up approach is able to save more
energy than the Base and Top-Down approaches since it is aware of the

126 4 Scratchpad Memory Optimizations

fact that moving contiguous basic blocks to the small scratchpad is bet-
ter than moving non-contiguous blocks. For the smallest single-partition
setup using a scratchpad of 64 bytes, the Bottom-Up model saves 33% of
energy compared to only 16% for Base and Top-Down approach. This gen-
eral advantage becomes obvious for all scenarios where smaller scratchpad
partitions are present in the system. This shows that for portable embed-
ded systems where energy efficiency is a prime concern, the Bottom-Up
allocation technique should be used since it is capable of exploiting even
the small scratchpad memories found in these devices.

The Bottom-Up approach is thus the most beneficial allocation tech-
nique to be used in practice. The solving times usually stayed well below
the 15 minute time limit, showing that the Bottom-Up description, albeit
capturing the relationship among functions and basic blocks in the most
accurate way, does not create an additional overhead that would prevent
the efficient generation of memory layouts.

Finally, the results of the three approaches are directly compared in Fig-
ure 4.13. It shows the relative benefits of the Top-Down and the Bottom-Up
models compared to the Base approach using the Multi Sort application.

64 128 256 512 1024 2048 4096 8192 16384 32768
−20

−17,5
−15

−12,5
−10
−7,5

−5
−2,5

0
2,5

5
7,5
10

12,5
15

17,5

Base

Top-Down

Bottom-Up

Total scratchpad capacity [bytes]

R
el

at
iv

e
en

er
gy

 im
pr

ov
em

en
t [

%
]

Fig. 4.13. Comparison of Top-Down and Bottom-Up relative to the Base approach

In the figure, the maximum relative energy savings (in percent) were chosen
for each total scratchpad capacity and the maximum value for the Base case
was subtracted, putting the Base approach at a constant “0” for comparison.

4.2 Multi Memory Optimization 127

The graph thus shows savings in terms of percentage points, not absolute
energy savings.

It can be seen that the Base approach forms the baseline: since it is only
capable of allocating single basic blocks to memories, it can not take advan-
tage of the connections and dependencies that are present in the application’s
structure. The Top-Down approach improves the situation for scratchpad ca-
pacities of more than 256 bytes, where it is for the first time possible to
allocate a complete function to one scratchpad partition. For smaller scratch-
pad partitions, the Top-Down approach chooses the same allocation as the
Base case. For the allocations between 256 bytes and 2 kB, the Top-Down
approach is always marginally better than the Base case. This is due to the
fact that it allocates complete functions whenever a partition is large enough
to do so, which is more efficient than only allocating single basic blocks.

For the Bottom-Up allocation, the results are clearly superior to the Base
case and to the Top-Down case, in particular for small scratchpad partitions,
where being able to allocate contiguous basic blocks is a big advantage. Fur-
ther improvements of up to 16% (in terms of percentage points) compared to
the Base allocation’s improvement can be observed.

The scratchpad capacity of 2 kB marks a special case for this application,
since both the Bottom-Up and the Top-Down allocation perform equally well
for this capacity. This is caused by the fact that for this scratchpad size and a
partitioning into two 1 kB memories, two complete functions can be allocated
to one scratchpad memory. This is of course beneficial compared to the Base
algorithm’s allocation, which randomly distributes the basic blocks among the
memories.

The presented savings in terms of percentage points were obtained by
comparing the relative percentual improvements of the different approaches.
If the minimum absolute energy values are used as the basis for comparison,
the achieved relative gains are higher. Consider the 2 kB scratchpad capac-
ity, where the reduction of the energy by 94% for the Base case and by 97%
for Bottom-Up results in a gain of 3 percentage points. If the corresponding
absolute energy values of 356µJ and 142µJ , respectively, are used for com-
parison, then this corresponds to a significant improvement of 60% for the
Bottom-Up approach.

For the remaining scratchpad capacities, the disadvantages of the Base ap-
proach are hardly visible any more. All memory objects fit into one scratchpad
partition and therefore, no more additional jumps are actually inserted into
the code. The small advantage of the Bottom-Up approach stems from the
possibility to use e.g. a scratchpad partitioned into two instead of one single
scratchpad partition without additional overhead.

To summarize, the allocation using the Bottom-Up approach yields the
best results for all scratchpad configurations. The most benefit from this ap-
proach can be obtained for small scratchpad capacities due to its capability
of efficiently exploiting small partitions by allocating contiguous basic blocks.
The Top-Down approach does not offer as much benefit compared to the Base

128 4 Scratchpad Memory Optimizations

approach, but it can be used if small functions are to be allocated to scratch-
pad partitions.

64 128 256 512 1024 2048 4096 8192 16384 32768
0

10

20

30

40

50

60

70

80

90

1 part.

2 part.

3 part.

4 part.

5 part.

6 part.

7 part.

8 part.

Total scratchpad capacity [bytes]

R
el

at
iv

e
en

er
gy

 im
p

ro
ve

m
en

t [
%

]

Fig. 4.14. Multi Sort: total energy savings (CPU and memory) using the Bottom-
Up model

Since our simulation framework also allows the evaluation of overall sys-
tem energy, Figure 4.14 shows the overall energy savings, including CPU and
memory subsystem, obtained by the Bottom-Up model compared to a system
without scratchpad. Since scratchpad memories have a significantly shorter
access time compared to the main memory (cf. Table 4.4), the energy dis-
sipated within the CPU is also reduced, albeit not at the same rate as the
energy savings in the memory system alone. Still, overall energy savings of up
to 80% can be achieved by using partitioned scratchpad memories.

Figures 4.15 and 4.16 show the maximum energy improvements obtained
using the Top-Down and the Bottom-Up approach, respectively, for all con-
sidered benchmarks. For each total scratchpad capacity, that number of par-
titions was chosen which resulted in the highest energy savings. The results
are again compared against a system without scratchpad. Both figures show
that the trends for the Multi Sort application are confirmed for the other
applications: the energy dissipated in the memory subsystem is significantly
reduced by the use of partitioned scratchpad memories, and the savings can
be sustained for large capacities since a number of smaller scratchpad parti-
tions with their reduced energy dissipation can be used to obtain the total
capacity.

4.2 Multi Memory Optimization 129

64 128 256 512 1024 2048 4096 8192 16384 32768
0

10

20

30

40

50

60

70

80

90

100

Multi_Sort

G.721

FFT

Ref_IDCT

Fast_IDCT

Total scratchpad capacity [bytes]

R
el

at
iv

e
en

er
gy

 im
pr

ov
em

en
t

[%
]

Fig. 4.15. Maximum energy savings using the Top-Down model for all benchmarks

64 128 256 512 1024 2048 4096 8192 16384 32768
0

10

20

30

40

50

60

70

80

90

100

Multi_Sort

G.721

FFT

Ref_IDCT

Fast_IDCT

Total scratchpad capacity [bytes]

R
el

at
iv

e
en

er
gy

 im
pr

ov
em

en
t [

%
]

Fig. 4.16. Maximum energy savings using the Bottom-Up model for all benchmarks

Comparing the two figures, it becomes clear that the Top-Down approach
performs as well as the Bottom-Up approach for the considered benchmarks,
the only exception being Multi Sort for small scratchpad capacities. This is
due to the fact that all other benchmarks contain a larger number of smaller
functions that can be allocated even to small scratchpad partitions. For most

130 4 Scratchpad Memory Optimizations

considered total capacities and number of partitions, the Bottom-Up alloca-
tion slightly outperforms the Top-Down model.

Looking at more detail at the curves for the individual applications in
Figure 4.16, the results obtained for the “Ref IDCT” benchmark are surpris-
ingly low compared to the other benchmarks, meaning that only little energy
could be saved. This is due to the fact that floating point values are used
in this application. Lacking a floating point unit, the ARM7 processor has
to perform the floating point calculations by calling library functions. These
libraries are linked to the executable only after the compiler has finished its
analysis. Since nothing is known about the used library functions, they can
not be allocated to scratchpad partitions, despite the fact that a high per-
centage of the time is spent in these routines. The results for this benchmark
show one limitation of the presented approach: precompiled libraries are not
suitable for multi scratchpad allocation. If library calls are required in an ap-
plication, the source code of the libraries should be provided in order to allow
all functions to be mapped to the appropriate memory partition.

For the “FFT” application, the results show up to 40% of energy savings
in the memory subsystem compared to a system without scratchpad. The fact
that less energy could be saved compared to the other benchmarks is due to
the data access style used in this program: the Fourier transform is highly
data dominated (cf. Table 4.6), and in order to provide efficient access to the
large arrays, one of the arrays is solely accessed using pointer arithmetic and
pointer dereferencing. Generally, a complex pointer alias analysis is required in
a compiler to determine which array is being accessed when pointers are used.
Since encc does not include a pointer alias analysis, it can not determine the
array that is being accessed by the pointer in the application and thus finds
no accesses to one of the arrays at all. The ILP solver consequently decides
not to allocate the array to the scratchpad memory, since this would not
improve the value of the objective function. One of the frequently accessed
arrays thus stays in the main memory, and the high amount of energy per
access to this array is responsible for the reduced gains for this application.
This example shows that the extent of achievable savings not only depends on
the exact formulation and solution of the allocation problem, but also on the
information provided by the compiler, and by the programming style found
in the application program.

Finally, Figure 4.17 shows the maximum improvement that could be
obtained over the previous work, namely the static scratchpad allocation
technique using only one single partition as presented in [SWLM02]. As in
Figure 4.16, that partitioning was chosen which resulted in maximum energy
savings. Using partitioned memories instead of a single scratchpad yields
energy improvements in the memory system of up to 22%.

If the comparison is restricted to only that single scratchpad partition size
that yields maximum savings and the corresponding partitioned capacity, then
the obtainable savings are reduced to around 7% which is mainly caused by
the limited size of the used benchmarks. Considering the fact that ARM based

4.2 Multi Memory Optimization 131

64 128 256 512 1024 2048 4096 8192 16384 32768
0

2,5

5

7,5

10

12,5

15

17,5

20

22,5

Multi_Sort

G.721

FFT

Ref_IDCT

Fast_IDCT

Total scratchpad capacity [bytes]

R
el

at
iv

e
en

er
gy

 im
pr

ov
em

en
t [

%
]

Fig. 4.17. Maximum energy savings using the Bottom-Up model compared to a
single partition for all benchmarks

systems today are shipped with 32 kB of scratchpad memory (partitioned into
16 kB data and 16 kB instruction TCMs) [LSI04], we can conclude from the
presented results that if a system has a certain scratchpad size available, it is
advantageous to provide the total capacity in multiple partitions instead of
one single memory.

The following sections consider the extensions supporting the ARM Har-
vard Architecture during multi partition allocation and the compiler guided
memory configuration based on the leakage energy of memories.

Results for the ARM TCM Architecture

To compare the possibilities provided by ARM’s Harvard style architecture
concerning memory allocation with the results from the previous section, all
benchmarks are once again evaluated, this time assuming the Harvard style
memory setup found on the ARM9 and ARM11 processors (cf. Figure 4.9).
The two available memory partitions have the same storage capacity and are
capable of only holding either instructions or data. The Bottom-Up approach
is used as the reference allocation technique since it generated the best achiev-
able results so far. The comparison shows that restricting the free choice of
allocating instructions and data to the available memories incurs an overhead
in terms of energy dissipation since the memories’ storage capacity can not be
exploited in an optimal way: frequently executed instructions that should be
stored on the scratchpad memory may not fit into the instruction partition,
whereas the data partition still has sufficient capacity.

132 4 Scratchpad Memory Optimizations

The absolute energy values for the Multi Sort benchmark are shown in
Figure 4.18. The reference allocation technique, the Bottom-Up approach,
clearly outperforms the Harvard style allocation for small memory sizes. Once
both instruction and data memories are large enough to hold all the hot spots
of the program, the two allocation techniques result in identical energy values.

128 256 512 1024 2048 4096 8192 16384 32768
0

250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000
3250
3500
3750
4000

Harvard

Unified

Total scratchpad capacity, 2 partitions

M
em

or
y

en
er

gy
 [µ

J]

Fig. 4.18. Bottom-Up vs. Harvard allocation for Multi Sort benchmark

Figure 4.19 provides a comparison of the Harvard style allocation with the
results obtained by the Bottom-Up approach for all considered benchmarks.
The energy values obtained using the Bottom-Up allocation technique are
normalized to the baseline “0”. Only memory configurations with two equally
sized memory partitions were selected to allow a direct transfer of the obtained
results to the TCM architecture found in current ARM designs.

It can be observed that the energy dissipation can suffer severely by using
separate instruction and data memories. For the Multi Sort benchmark, an
overhead of up to 97% can be observed for two 1 kB scratchpad partitions.
Most of the other applications show a significantly increased energy dissi-
pation compared to the Bottom-Up approach. For two benchmarks, namely
“Ref IDCT” and “FFT”, the results using the TCM model are nearly identi-
cal to those achieved with the Bottom-Up model. For “Ref IDCT”, this is due
to the reasons already mentioned in the previous section: it uses function calls
to unallocatable library functions to handle float data types, which has a neg-
ative effect both for the Bottom-Up and for the TCM model. For the “FFT”
application, the used data arrays are so large that they do not fit into the

4.2 Multi Memory Optimization 133

128 256 512 1024 2048 4096 8192 16384 32768
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

Multi_Sort

G.721

FFT

Ref_IDCT

Fast_IDCT

Total scratchpad capacity, 2 partitions

R
el

at
iv

e
en

er
gy

 im
pr

ov
em

en
t [

%
]

Fig. 4.19. Bottom-Up (normalized to “0”) vs. Harvard allocation

smaller scratchpad memory partitions no matter which allocation technique
is being used. With the scratchpad partition sizes used in the experiments, the
number of arrays that fit into the scratchpad are identical for both Bottom-Up
and TCM allocation, leading to similar results. This picture may change in
favor of the more general Bottom-Up allocation model if a setup is chosen in
which both scratchpad memory partitions are large enough to accommodate
a data array. The TCM model could only allocate one array to the scratchpad
data partition, whereas the Bottom-Up allocator would allocate both data
arrays to the two available scratchpad partitions.

In general, it is advantageous if the compiler can use the available scratch-
pad partitions freely, without any restriction concerning their ability to hold
only instructions or data. A free allocation of memory objects to the scratch-
pad partitions results in an optimal exploitation of the available resources.

Results for Compiler Guided Memory Configuration

By increasing the amount of leakage energy assumed for the memory par-
titions, the total number of partitions that are chosen for allocation by the
compiler is expected to decrease when the leakage energy value is so high
that it overcompensates the benefit of reduced energy per access. Figure 4.20
shows the number of partitions utilized by the compiler for increasing leakage
energy values using the Multi Sort benchmark as an example.

The compiler was given a wide choice of memories: two identical memories
of each capacity from 64 bytes up to 1 kB were provided as input. The first

134 4 Scratchpad Memory Optimizations

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

1

2

3

4

5

6

7

8

9

10

Number of memories

Leakage energy factor

T
ot

al
 n

um
be

r
of

 s
cr

at
ch

pa
d

pa
rt

iti
on

s

Fig. 4.20. Number of partitions for increasing leakage energy

data point labeled “0”, represents a leakage current of 20 = 1 time the access
energy for each of the memories. The following entries increase the leakage
energy in an exponential way moving from left to right: every subsequent data
point assumes twice the leakage value of the previous one. In addition, since
the access energies only increase at a very slow rate for small memories (cf.
Table 4.3), an additional factor was included to ensure that larger memories
have a higher standby power dissipation. This effectively puts the compiler
into a dilemma: on one hand, a minimal number of scratchpad memories is to
be selected since only those partitions that are being used will contribute to
the leakage energy. If a large number of objects should be allocated to the few
memories, however, memories with large capacities have to be chosen, which
in turn consume more standby energy.

For a large region of leakage energy values, the number of memories nearly
remains constant at around nine. At a leakage energy factor of 215 times the
energy per access, only six memories are chosen. Since the Multi Sort bench-
mark performs a total of 227154 memory accesses (which is below 218), the
leakage energy in this region approaches the total access energy of the small
scratchpad memories. The gain achievable by using an additional scratchpad
memory is thus reduced up to the point where it makes sense to also utilize
the large and energy hungry main memory. Since the main memory is as-
sumed to be always required as background memory in an embedded system,
it was considered to have no additional leakage energy, which is why it be-
comes increasingly attractive for higher scratchpad leakage values. The main
memory is being utilized starting from a leakage energy factor of 216 (shown
as an unfilled box in Figure 4.20). The use of the main memory with its high
energy per access changes the overall situation for the compiler in such a way
that more scratchpad memories are again being used, but only up to a leakage

4.2 Multi Memory Optimization 135

energy factor of 217. From that point on, the number of memories decreases
up to the point where only two memories are being used: the main memory
and one additional scratchpad memory.

Figure 4.21 shows the obtained results in some more detail: As in the
previous figure, the leakage energy factor increases exponentially on the x-axis,
but the y-axis uses stacked bar elements to show which memory partitions
were being chosen for a particular leakage energy value.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

3750

4000 1 kb partition

1 kb partition

512 bytes partition

512 bytes partition

256 bytes partition

256 bytes partition

128 bytes partition

128 bytes partition

64 bytes partition

64 bytes partition

Leakage energy factor

T
ot

al
 s

cr
at

ch
pa

d
ca

pa
ci

ty
 [b

yt
es

]

Fig. 4.21. Selected scratchpad memory partitions for increasing leakage energy
values

The height of the stacked bar elements representing the different memory
partitions corresponds to the size of the memory partitions. The total mem-
ory capacity corresponding to a certain leakage energy factor can thus be
determined by checking the bar’s total height on the y-axis. The use of main
memory is again indicated as an unfilled box around the rightmost stacked
bars.

For small leakage energy factors, the large scratchpad memory partitions
are preferred by the algorithm, since they offer sufficient space for a large
number of memory objects. As the leakage factor is increased, however, the
largest memories receive the highest penalty concerning their contribution to
leakage. Once the main memory with its relatively high per-access costs, but
without any leakage energy dissipation, is sufficiently attractive to be used,
only scratchpad partitions smaller than 1 kB are being used in the system.
As the leakage further increases, smaller and fewer scratchpad memories are
chosen. The rightmost data point only considers using a single scratchpad
of 128 bytes capacity, whereas the two previous points additionally use two
64 bytes partitions.

136 4 Scratchpad Memory Optimizations

It was thus shown that it is straightforward to extend the ILP based
formulation of the multi memory allocation problem to account for additional
parameters and to more accurately model the behavior of the entire system.
Using the leakage factor of the scratchpad memories as an input parameter,
the designer can have the compiler choose an appropriate memory architecture
design and have objects allocated to the proposed memories at the same time.
This is of particular interest with respect to the increasing popularity of fixed
processor cores which can be modified according to the customer’s requests
in order to meet the goals for his individual design.

4.3 Impact of Scratchpad Allocation Techniques
on WCET

In addition to the energy and performance issues discussed so far, another
notion is gaining more importance in the design of embedded systems. In
particular safety-critical embedded systems, like the ones used in avionics
and automotive environments, are expected to be extremely dependable. This
applies in particular to the timing requirements that can frequently be found
in these areas. Timing predictability is therefore becoming one major concern
in devices that have to meet real-time constraints. One well-known and widely
used example for a hard real-time system is the airbag found in nearly every
car today: if the airbag controller fails to trigger the airbag such that the
airbag is fully inflated within about 40 milliseconds following a crash, then
the whole system is worthless. On the contrary, inflating the airbag at a later
point in time may actually pose a threat to the emergency staff or to possibly
wounded passengers. For hard real-time systems it is therefore critical that
their timing conditions are never violated. In general, the guaranteed timing
behavior of the system has to be determined and fixed at design time. This
guarantee is usually given by supplying an upper bound for the maximum
reaction time of the system, called the Worst Case Execution Time (WCET).
This upper bound must never be exceeded since lives may depend on this
particular timing property. Beside hard real-time, there are also systems that
have to obey so-called soft real-time constraints, where the violation of timing
constraints, despite being undesirable, does not cause a lot of damage. An
example for this is an MP3 player: if it cannot decompress the audio samples
in time, the listener will notice an interruption in the audio stream. If this
happens too frequently, the device will lose market shares due to unsatisfied
customers.

In order to avoid costly re-design cycles, it is vital that the timing proper-
ties of a system can be determined at design time. The important metric for
the predictability of a device is its worst case execution time, i.e. the maxi-
mum time that the system will take to perform a certain task under worst
case conditions. Several ways of specifying the WCET are possible: as in the
airbag example, it may be the time from an event to the completion of the

4.3 Impact of Scratchpad Allocation Techniques on WCET 137

system’s action. In other scenarios, the time between two events within the
system must not be exceeded. Since reactive systems are not in the scope of
this work, the notion of WCET considered here is the maximum execution
time of an application. The results of WCET analysis are thus provided in the
form of an upper bound for the execution time of the application under con-
sideration. This upper bound is guaranteed to be safe by the WCET analysis,
meaning that it represents an upper bound that will never be violated under
any circumstance. While it is mandatory at least for hard real-time systems
that the upper bound is guaranteed to be safe, it is also desirable to provide
an upper bound that is as tight as possible, i.e. a bound that is as close as
possible to the actually occurring worst case execution time. The advantage
of a tight upper bound is thus that the system can be implemented using the
minimal resources required to meet the WCET deadline. If the WCET is not
tightly bounded, the designer may decide the system has to be more powerful.
This results in an oversized system, which is an expensive and unnecessary
safety precaution.

Since real-time aspects are of growing significance in different sectors, this
section first takes a look at a couple of architectural features that have an
influence on the predictability of a system. Many processors today use com-
ponents to enhance performance, e.g. pipelines, memory hierarchies, branch
prediction units and others. While in the general, average case, these archi-
tectural enhancements improve the performance of computing systems, they
are not necessarily helpful in providing timing predictability:

• Pipelining: Nearly all processors designed and built today include some
kind of pipeline. Pipelines increase the throughput of the processing units
by performing several tasks in parallel. The standard five stage pipeline
frequently found in many different processors consists of the stages Fetch,
Decode, Execute, Memory Access and Write Back. Every instruction has to
pass through these stages during its execution. By performing these steps
in an interleaved way and not waiting for one instruction to go through
the entire processing, the throughput can be improved. If each stage takes
one cycle, then one instruction can be completed in every cycle once the
pipeline has been filled. Of course, structural, control and data depen-
dency hazards which interrupt this ideal pipelining have to be taken into
account [HP03]. These hazards are one issue that make pipelines difficult
to predict concerning their timing. The time it takes for one single in-
struction to pass through all stages of the pipeline depends not only on
the instruction itself, but also on all instructions that are in the pipeline
with it. If the instruction itself is processed without any additional delay,
it may enter the first stage of the pipeline in cycle i and be completed
(i.e. leave the fifth stage of the pipeline) at cycle i + 5. However, if any
other instruction in the pipeline causes a hazard or a pipeline stall, then
the considered instruction is also stalled. The frequency and effect of haz-
ards is difficult to predict at design time, since e.g. control flow hazards

138 4 Scratchpad Memory Optimizations

depend on conditions that are evaluated at execution time, like the value
contained in a register at a certain point in time. The outcome of these
decisions is difficult, if not impossible, to predict at the design time of the
system. One simple way to provide a safe upper bound for the maximum
execution time of an instruction sequence or an entire application is there-
fore to assume that the maximum number of possible pipeline hazards
will actually occur. This is obviously a very pessimistic and conservative
approach, but it is the only simple technique that can guarantee that no
timing deadline will ever be violated. Since such a high overestimation is
usually not acceptable, complex pipeline analyses have to be used in order
to determine sufficiently tight upper bounds for the WCET. The advan-
tage of using a pipeline in the average case thus turns into a disadvantage
concerning predictability.

• Branch Prediction: Since branch predictors take their decisions in a dy-
namic way at runtime, the reasoning concerning pipelines also applies to
branch prediction: in the average case, the branch predictor may have a
probability of more than 50% in successfully predicting the outcome of a
branch decision, i.e. whether a branch is taken or not. In case it success-
fully predicted the branch, some cycles can be saved since the predicted
branch target instruction can immediately be fetched, avoiding a pipeline
stall. If maximum execution times have to be guaranteed, however, the
designer will have to assume (in a simple approach without additional
complex analyses) that the branch prediction unit will mispredict every
single branch to be on the safe side and to guarantee that the deadline will
always be met. Always mispredicting a branch has a higher negative im-
pact than using no branch prediction at all. This shows that while branch
prediction in general has a positive effect on the average case runtime, it
results in worse, less tight bounds on the guaranteed worst case execution
time.

• Caches: It has been mentioned that most modern computer systems utilize
a memory hierarchy in order to overcome the increasing speed difference
between processor and memory. The most frequently used architectural
feature to bridge this gap is the cache. Whenever an instruction or a data
element is accessed, the cache first checks whether it contains the requested
element. If it does, then the item is directly supplied from the cache, saving
an access to the large, slow and energy consuming main memory. If the
element is not in the cache, then the main memory has to be accessed
and the element is both passed to the processor and saved in the cache
for future accesses. As for pipelines and branch prediction, the cache takes
its decisions concerning cache hits or misses at runtime, and it is hardly
possible to determine the current working set contained in the cache at
design time, making it difficult to determine which memory access will
result in a cache hit. Once again, in order to guarantee that deadlines are
never violated, and without resorting to complex cache analysis techniques,
the designer has to assume that all cache accesses will result in a cache miss

4.3 Impact of Scratchpad Allocation Techniques on WCET 139

and consequently in an access to the main memory. Since several elements
are usually transferred to the cache in case of a miss, this results in more
memory accesses and bus traffic than if no cache was used, showing that
caches generally help to improve performance in the average case, but do
not help concerning the predictability of a system.

• Scratchpad Memories: This alternative to using caches has already been
presented in-depth in the previous section of this work. Scratchpad mem-
ories are small memories that, in contrast to caches, do not take any
decisions dynamically at runtime. They are controlled by the programmer
or the compiler at design time. It is thus always known which elements
are allocated to the scratchpad memory. Even in the case of dynamic
allocation where the contents of the scratchpad memory can change during
the execution time of the application [SGW+02, VWM04b], the compiler
controls the insertion of code that swaps instructions and data between
the scratchpad and the main memory, which again results in full control
over the location of elements within the memory hierarchy and over time.
Since no dynamic decisions are taken, there can never be a hit or a miss
when the scratchpad is accessed. Rather, each memory access either goes
to the main memory or to the scratchpad memory. If the timing pro-
perties of the used memories are known at design time, then an accurate
and tight upper bound for the worst case execution time can be deter-
mined. Scratchpad memories are thus useful both for the average case and
for WCET analysis. As shown in the previous sections and in numerous
publications, scratchpad memories achieve significant savings concerning
both execution time and energy [SWLM02, VWM04b, WHM04]. But in
contrast to the other features described in this section so far, they do not
impair worst case execution time analysis. On the contrary, they are help-
ful in providing tight upper bounds on the WCET: if a program is found
to execute faster due to the use of a fast and energy efficient scratchpad
memory, then this performance improvement can be expected to translate
directly into an improved upper bound for the WCET analysis. This will
be investigated and shown using experimental results in the further course
of this section.

The remainder of this section is structured as follows: after taking a look
at related work in the field of real-time embedded systems and worst case
execution time analysis, the tools and the workflow used to generate results
will be presented. The impact of a statically allocated scratchpad memory
on the worst case execution time is then investigated, followed by a direct
comparison of the scratchpad memory with a cache. Finally, the dynamic
allocation algorithm presented in [VWM04b] is used to show the effect of this
allocation strategy on the predictability of an embedded system.

140 4 Scratchpad Memory Optimizations

4.3.1 Related Work

Due to the ever increasing need for improved computing power, modern sys-
tems have to become faster and more powerful in order to meet performance
expectations. Most performance-enhancing features target the average case
performance, which is the dominating factor for marketing a system, since the
average case performance is the speed generally observed by a user. Processors
and computing systems are becoming increasingly complex by including dif-
ferent kinds of performance-enhancing features that mostly rely on dynamic
decisions taken at execution time of the system. Some examples like branch
predictors and caches were mentioned in the previous section.

In contrast to standard PCs and high-performance computer systems, sys-
tems that have to meet real-time requirements do not focus on the average case
performance, but should rather provide a high level of timing predictability.
This means that even at design time, tight upper bounds for the worst case
execution time of the device can be provided. These guaranteed upper bounds
will never be violated during the actual execution of applications on the sys-
tem. Timing predictable systems in general only contain those performance
enhancing features that will still allow the specification of a tight upper bound
on the execution time. For this reason, many of the features found in modern
processors are not included in such real-time capable, timing predictable sys-
tems. One of the obvious design decisions is not to use a cache in such systems,
since in general, caches do not improve the worst case performance. If caches
or other features that take decisions dynamically at runtime are present, the
required worst case execution time analysis techniques become increasingly
difficult [HLTW03].

In particular when caches or other features that target the average case
performance are present in a system, simulation must not be used to validate
the timing of safety-critical systems. Simulation can provide a general idea
about the expected average case performance, but there is no guarantee that
the given deadlines will always be met, even if the deadlines are never vio-
lated during simulation. The use of different input data sets may lead to a
completely different picture, in particular in the presence of data caches. The
task of finding a worst-case input set is in general not feasible for arbitrary
applications: no guarantee can be given that no other input set can ever be
found that will cause a longer execution time.

Since soft real-time is of growing significance, the idea of making WCET
analysis easier for such systems is becoming popular. For systems that do
not have to guarantee hard real-time constraints, simulation with an assumed
worst-case input set is being used as a cheaper alternative to an actually gua-
ranteed WCET [Pus99]. The results generated by this method are sometimes
called “observed worst case execution time”. While WCET analysis becomes
a lot easier when the upper bound is not required to be absolutely safe, all
WCET analysis results presented in this work are guaranteed to be safe, since
this is the notion of WCET used in the tools chosen to generate results. Since

4.3 Impact of Scratchpad Allocation Techniques on WCET 141

simulation is not a viable method to determine safe upper bounds, advanced
and complex analysis techniques have to be used to be able to guarantee
correct timing even in worst-case scenarios. This analysis is performed in
WCET analysis tools.

A general overview over available WCET analysis techniques for the ar-
chitectural features mentioned above can be found in [PB00]. Of particular
interest is the work by Li et al. [LMW95], who consider the presence of a
direct mapped instruction cache in the WCET analysis of embedded systems.
A cache conflict graph is used to approximate the behavior of the cache and
to determine the total number of hits and misses. A follow-up paper [LMW96]
extends the work to also cover set associative instruction caches as well as data
and unified caches. One solution to the problem of considering data caches
presented in [Lun02] is the introduction of predictable data structures, which
should be used by the programmer for timing critical code. Tan et al. [TM04]
extended the consideration of caches to also cover the case of multi task-
ing systems. In this case, the preemption of tasks can lead to additional cache
miss overhead which has to be considered and evaluated, further complicating
cache analysis.

A concept for separating program path analysis and microarchitectural
analysis into two steps in order to reduce the complexity of WCET analysis
is presented in [TFW00]. Results are reported to be comparable to combined
analysis techniques. This approach is also used in aiT [Abs04b], a commercial
WCET analysis tool that is available for several processor and cache archi-
tectures. aiT is actively used in industry, e.g. by Airbus Industries in order
to determine upper bounds for the execution times of critical avionics soft-
ware. As input, the tool takes an executable for a specific platform along
with user supplied annotation data concerning e.g. loop bounds and access
addresses as well as architectural information concerning the memory layout.
The tool then generates a safe upper bound for the expected WCET. Using
aiT, the elaborate (if at all feasible) task of finding input sets for which a
simulation run yields the maximum execution time is no longer required. The
commercially available version of aiT for the ARM7 processor is currently
not equipped with a cache analysis. AbsInt GmbH provided us with a simple
experimental cache analysis for the ARM7 cache that uses only a subset of
the analysis techniques available with commercial versions of aiT [Fer97]. One
of the difficulties with caches integrated into ARM processor cores is the fact
that they use a random replacement policy, making precise estimates for cache
behavior difficult. For caches that use an LRU replacement, WCET analysis
can generally determine tighter bounds.

Summarizing the cache-related previous work, it becomes clear that a lot
of work has gone to the integration and analysis of caches concerning their
impact on a system’s WCET. Despite the existence of complex and often
time-consuming analyses, designers of hard real-time constrained systems in
general still refrain from using caches in their designs. In this context, it does
make sense to consider the use of small, fast scratchpad memories instead

142 4 Scratchpad Memory Optimizations

of caches in time constrained systems: the benefits concerning performance
are comparable to those of caches, and in addition scratchpad memories are
more energy efficient than caches: in [SWLM02], 23% of energy savings are
reported when a scratchpad is used in the system instead of a cache. At
the same time, no further analysis techniques are required to determine the
WCET of a system when only scratchpad memories are being used, since no
uncertainty concerning memory access timing is introduced into the system.
A scratchpad memory can simply be introduced as a new, distinct memory
region with certain properties, e.g. a fast access timing.

Scratchpad memories are becoming more popular and are now widely avail-
able in processors for embedded systems, e.g. as Tightly Coupled Memories
(TCM) in the ARM9 processor series [ARM00]. Some methodologies of ac-
tively exploiting scratchpad memories by having the compiler allocate memory
objects to the fast and energy efficient memory regions has already been pre-
sented in this work. All of the approaches fix their decisions at compile time
and thus do not depend on unpredictable dynamic decisions to be taken at
runtime.

Both static allocation techniques [PDN99b, SWLM02] and their dynamic
counterparts [KKS01, SGW+02, VWM04b] keep the contents of the scratch-
pad memory under full control of the compiler or the programmer, making
these methods inherently predictable. The integration of scratchpad memo-
ries instead of caches is a viable and promising alternative approach which
allows the system to benefit from a performance gain comparable to that of
caches while at the same time maintaining predictability. The fact that caches,
despite requiring complex techniques, can have a negative impact on the pre-
dicted WCET is shown in the generated results. The estimated WCET for
scratchpad memories on the other hand scales with the achieved performance
gain at no extra analysis cost.

4.3.2 Tools and Workflow

The experimental work presented in the following sections is based on the idea
of allocating instructions and global data to the scratchpad memory and eva-
luating its impact both on the average case execution time, using simulation
with typical input data, and on the worst case execution time, using the aiT
analysis tool. Results for both a static and a dynamic allocation of objects
to the scratchpads are presented. For the static allocation, the Bottom-Up
allocation technique presented in Section 4.2.6 was used to allocate instruc-
tions and data to the scratchpad. To reduce the complexity of the presented
results, the approach was restricted to only consider a single scratchpad par-
tition. Using this configuration, the multi memory allocation algorithm gene-
rates similar memory layouts as the single scratchpad memory allocation
algorithm described in [SWLM02]. Using multiple scratchpad partitions will
not change the general statement of the results, since for the WCET analysis,
only the timing and not the energy dissipation of the scratchpad partitions is

4.3 Impact of Scratchpad Allocation Techniques on WCET 143

being considered. Since all scratchpad partitions were assumed to be acces-
sible within one processor cycle, several partitions can be merged to form one
larger partition. Except for the additionally required longjumps between the
memories, the timing determined both by the simulated program and by the
WCET analysis will not change.

Note that the results presented in this work for the first time cover the
allocation of individual basic blocks combined with WCET analysis: both
in [WM04] and in [WM05], only complete functions were allocated to the
scratchpad memory using the allocation algorithm described in [SWLM02],
since this reduced the number of annotations concerning longjumps between
the memories. In this work, the more fine-grained allocation of basic blocks is
used for the first time, leading to better utilization in particular of the smaller
scratchpad memories.

In the second part of the experimental evaluation, the approach presented
in [VWM04b] was used to allocate memory objects to the scratchpad memory
in a dynamic way. The generated programs are again both simulated and
analyzed using aiT, as described in the following section.

In order to analyze the generated programs using a WCET analysis tool,
detailed information about the used memory architecture, including main
memory and scratchpad memory timing and address information, has to be
provided to the tool. Apart from this, no further information or analysis is
required compared to a system that only uses main memory.

To compare the impact of the proposed scratchpad allocation algorithms
on WCET with caches, an executable generated without using the scratchpad
optimization in the compiler is simulated using unified, four-way set asso-
ciative caches of different sizes. WCET analysis is performed using a cache
analysis tool for the ARM7 processor.

An overview over the workflow used to compare the impact of scratchpads
and caches on WCET analysis results is shown in Figure 4.22. The benchmark
programs, written in the C programming language, are compiled using the
encc compiler (cf. Section 3.6) into binary executable files.

The left branch of Figure 4.22 shows the scratchpad setup: The compiler
reads the size and the energy per access of the scratchpad to be used. This
information is used to generate the ILP representation of the “Bottom-Up”
allocation problem (cf. Section 4.2.6). After solving the optimization problem,
basic blocks, functions and global data elements are statically allocated to
the single scratchpad memory. For the second set of experiments involving a
scratchpad memory, the dynamic allocation approach presented in [VWM04b]
was used within encc to distribute the memory objects to the scratchpad
memory at runtime.

Note that just as in Section 4.2, energy dissipation is the only metric
that is used in the compiler’s cost function to determine the allocation of
memory objects to the scratchpad and main memories. No notion of worst
case execution time is included in the compiler at this time.

144 4 Scratchpad Memory Optimizations

Fig. 4.22. Workflow for evaluation of scratchpad memories on WCET

The generated executable is then simulated using the workflow presented
in Section 3.6.1. The ARM instruction set simulator ARMulator is used to
determine the number of cycles required to execute the benchmark using a
typical example input data set, taking into account the reduced access laten-
cies of the scratchpad memory compared to main memory. The result of this
step is a simulated average case execution time.

The influence of using a scratchpad on WCET was determined using the
aiT worst case execution time analysis tool developed by AbsInt Angewandte
Informatik GmbH [Abs04b]. aiT takes the executable of the application as
input. To analyze the compiled binary file, it extracts information about the
program structure, most of which is done automatically. The remaining infor-
mation like loop bounds that could not be determined automatically or infor-
mation that is not included in the application itself, e.g. concerning memory
regions, has to be provided by the user. The required annotation information
will be presented in the following sections. Using its analysis techniques, aiT
then determines the worst case execution time and provides a guaranteed, yet
tight upper bound for the execution time of the application. The aiT tool in-
cludes a detailed pipeline-analysis that is capable of predicting the behavior of
the ARM7 processor’s pipeline, thus enabling tight upper bounds despite the
presence of a pipeline. Information about the pipeline state can be generated
from aiT for different spots in the application program.

Since changing the capacity of the used scratchpad memory results in dif-
ferent memory layouts and thus different executables, code generation, simu-
lation as well as the annotation and analysis of the executable using aiT has
to be repeated for each of the considered scratchpad sizes.

The workflow used to evaluate the impact of a cache in the processor is
shown in the right hand side of Figure 4.22. Since using a cache in the ar-
chitecture is considered to be transparent for the compiler, the cache is not
considered during the code generation step. Information concerning the cache

4.3 Impact of Scratchpad Allocation Techniques on WCET 145

architecture is on one hand required to perform a simulation of the appli-
cation program assuming a cache is present in the system, again generating
an average-case execution time using the same typical input data that was
also used for the scratchpad simulation. On the other hand, information con-
cerning the cache architecture is also required for the WCET analysis. In
contrast to using a scratchpad memory, a complex cache analysis is required
for this purpose. While AbsInt provides commercial cache analysis tools using
sophisticated algorithms [Fer97] for different processors, no thoroughly eva-
luated and certified cache analysis currently exists for the ARM7 processor.
On our request, however, AbsInt provided an experimental cache analysis for
the ARM7 which was used to generate the results presented in this section.
While this cache analysis does not contain all the features available in com-
mercial versions of aiT, it still allows an evaluation of how caches affect the
worst case execution time. Of course, the simplified cache analysis that does
not consider all possible effects within the cache can potentially overestimate
the cache’s contribution to WCET. Using a full-featured cache analysis may
improve the results obtained for the cache, but it is not very probable that
the good results concerning WCET obtained for a scratchpad memory can be
obtained when a cache is assumed in the system. This is partly caused by the
fact that the caches in the ARM architecture use a random replacement policy
which makes it hard to determine the current working set contained in the
cache, but even for direct mapped caches with their improved predictability,
the results presented in [WM05] coincide with the findings presented here.

Except for the task of allocating memory objects to the scratchpad mem-
ory at compile time, only some additional annotations concerning the memory
regions and their corresponding access times are required. Specifying the tim-
ing of memory regions is required even if only the main memory is being used.
The annotation of memory regions as well as other required information that
has to be passed to aiT is discussed in the following section.

4.3.3 Required Annotation Information

Much of the information required to perform WCET analysis is automatically
extracted from the executable of the application when the executable is read
by aiT. Information not contained in the application, like the configuration of
the memory hierarchy, and information that can not be extracted by aiT auto-
matically, including the number of times that some of the more complex loops
are executed, has to be provided by the user. It is vital for the WCET analysis
that this information is known for all loops present in the application. Other
information, like the address ranges accessed by load and store operations,
help to generate tighter bounds on the WCET and thus improve the quality
of WCET analysis results. Finally, annotation information is required for all
longjump instructions inserted into the code to jump from main memory to
the scratchpad and vice versa. Since the only jump that can cover the distance
between the distinct memory regions is the “BL” instruction, it is necessary to

146 4 Scratchpad Memory Optimizations

annotate that these longjumps are not to be interpreted as function calls. The
required annotation files and formats for all of these aspects will be presented
in this section. For further details concerning annotation information, please
refer to the aiT reference manual [Abs04a].

• Memory Configuration: The memory configuration considered in this sec-
tion takes the ARM7 evaluation board as the basis. The main memory
access times on the evaluation board depend on the bit-width of the ac-
cess: for 8 and 16 bit accesses, two cycles are required, whereas a 32 bit
access takes 4 cycles. This is due to the fact that two 8-bit memory chips
are connected to the processor using a multiplexer to retrieve one 16 bit
value, as shown in Figure 3.8 on Page 33. Since aiT does not currently sup-
port the specification of memory access times depending on the accesses’
bit width, the different memory regions within the executable of the appli-
cation have to be enumerated with their corresponding access times. This
information is included in the aiT annotation files.

Code:

MEMORY_AREA: 0x400000 0x400f0f 1:1 2 READ-ONLY CODE-ONLY

Literal Pool:

MEMORY_AREA: 0x400f10 0x400f1f 1:1 4 READ-ONLY DATA-ONLY

Code:

MEMORY_AREA: 0x400f20 0x408fff 1:1 2 READ-ONLY CODE-ONLY

Data, 32 bit:

MEMORY_AREA: 0x409000 0x4090ff 1:1 4 READ&WRITE DATA-ONLY

Data, 16 bit:

MEMORY_AREA: 0x409100 0x40910f 1:1 2 READ&WRITE DATA-ONLY

Scratchpad memory region:

MEMORY_AREA: 0x409110 0x410000 1:1 1 READ&WRITE CODE&DATA

Fig. 4.23. Example memory region annotation file for aiT using a scratchpad
memory

Figure 4.23 shows an example annotation file that describes the mem-
ory setup. Since the encc compiler generates 16 bit THUMB code, fetching
a single instruction from the code region in the main memory requires a
total of two cycles (one cycle for the access itself plus one wait state).
Within the code section, it is often necessary to store large constants that
contain e.g. the starting address of an array. ARM calls these tables of
constant values “Literal Pools”. An access to a constant stored in a literal
pool generally requires four cycles in total, since it is performed as a 32 bit
access. Following the literal pool, the 16 bit code region is continued in
the example.

4.3 Impact of Scratchpad Allocation Techniques on WCET 147

The data region can hold arrays and other global data structures.
Depending on the bitwidth of the data types stored in the corresponding
region, each access takes either two or four cycles.

Up to this point, only accesses to the main memory have been con-
sidered in the example. This part of the annotation always has to be per-
formed, regardless of whether or not a scratchpad is being used. The last
region in the example describes the scratchpad region: whatever is stored
in the scratchpad requires one cycle per access, resulting in one single an-
notation entry for the entire scratchpad. The specification of “CODE&DATA”
tells aiT that both instructions and data may be stored in the scratchpad
region.

The starting addresses of functions, basic blocks and global data ele-
ments change when the application is recompiled using a different memory
configuration since a new allocation of objects to the scratchpad memory is
performed. Consequently, a unique annotation file has to be generated for
every considered scratchpad size. The overhead caused by this annotation
is limited since the extraction of required information from the executable
is largely automated.

If a cache and the experimental cache analysis are to be used during
WCET analysis, the annotation file has to be adjusted to reflect the differ-
ent access mode implied by a cache. An example for the annotation format
if a cache is present in the system is shown in Figure 4.24. Whenever a
cache hit occurs, the requested value is available within one clock cycle,
making the cache as fast as the scratchpad. If a miss occurs, however, one
entire line consisting of four 32 bit words is fetched from the main memory.
One cache line fill was determined to requires twelve cycles to complete.

CACHE_CONFIG: 0

CACHE_SIZE: 1024

CACHE_LINESIZE: 16

CACHE_ASSOC: 4

START_CACHE: empty

PERSISTENCE: no

MAY_ANALYSIS: no

MEMORY_AREA:

0x000000 0xffffff 1:1 1-12,1-3,1-3,1-3 CACHED READ&WRITE CODE&DATA

Fig. 4.24. Example memory region annotation file for aiT using a cache

The cache configuration and timing are annotated for aiT as shown in
the example: the cache size, bytes per cache line and the associativity
are required for cache analysis. Persistence analysis is only supported in
the commercial cache analysis versions of aiT. The same is also true for
the “May”-analysis [Fer97]. The annotation example specifies that the

148 4 Scratchpad Memory Optimizations

entire memory region is cached, implying a unified cache, and that a cache
hit takes one, a cache miss 12 cycles. The remaining entries concerning
cache timing are ignored in the currently used experimental cache analysis
version. Current embedded systems assume up to 100 processor cycles for
a cache miss. If longer main memory latencies are assumed, the advantage
of using a scratchpad memory instead of a cache for timing-aware systems
will become even clearer. This again emphasizes the fact that the com-
parison of scratchpad and cache based systems is fair, despite only using
an experimental cache analysis. The mentioned cache configuration was
used for all caches in the performed experiments, both for simulation and
WCET analysis. The only parameter that was varied from one experiment
to the next was the cache size.

• Loop bounds: If the maximum loop execution count can be determined
from the executable using static analysis, aiT automatically extracts the
maximum number of times a loop is executed. In some cases, e.g. when the
number of loop iterations depends on input data or when the automatic
analysis of loop bounds fails, the information has to be provided by the
user. Since the number of loop iterations has an immediate impact on the
WCET, it has to be specified for every loop within the application in order
for aiT to be able to generate results.

An example specification of loop bounds that were not automatically
determined by aiT is shown in Figure 4.25. Three loops whose iteration
counts were not analyzed automatically are specified with their address
and the maximum number of executions. The address of a loop is the
starting address of the basic block that represents the loop head. The
keyword “end” states that the check for the loop bounds is performed at
the end of the loop.

LL79_2 (0x400024)

loop 0x400024 end max 6;

LL15_0 (0x400056)

loop 0x400056 end max 99;

LL41_2 (0x400124)

loop 0x400124 end max 49;

Fig. 4.25. Example loop annotation for aiT

The more intuitive annotation of loop bound information directly
within the application program is currently only supported for the Texas
Instruments TMS470 C compiler.

• Annotation of Longjump instructions: During the analysis of the exe-
cutable, aiT extracts information concerning the control flow of the ap-
plication such that a complete control flow graph is obtained. When a

4.3 Impact of Scratchpad Allocation Techniques on WCET 149

scratchpad memory is being used during compilation, longjump instruc-
tions are inserted into the code to jump from the main memory to the
scratchpad and vice versa. The only instructions hat are capable of bridg-
ing the gap between the main memory and scratchpad regions are “Branch
and Link” instructions. Since “BL” instructions are usually used to per-
form a function call, aiT requires the additional information that the added
BLs are really jumps and not function calls. If the BLs are not annotated
accordingly, aiT complains about recursive function calls whenever a loop
is partially assigned to the scratchpad memory. To avoid this situation and
to achieve a correct control flow graph, longjumps have to be annotated
as shown in Figure 4.26.

BL target: _M_29

instruction 0x4001ee is a branch and never returns;

instruction 0x4001ee branches to thumb::0x400000;

BL target: LL79_2

instruction 0x400252 is a branch and never returns;

instruction 0x400252 branches to thumb::0x400024;

Fig. 4.26. Example longjump (BL) annotation for aiT

The annotation tells aiT that the specified longjump instructions are
not function calls, but are simply to be considered as branches. Addition-
ally, the target address is specified. This annotation is fully automated in
the workflow: all required information can be extracted from the applica-
tion executable. With some knowledge about the code generation process,
only those BL operations that are inserted due to the scratchpad memory
allocation can be isolated and annotated accordingly.

• Start address and initial stack pointer value: In order to determine the
WCET from the start to the end of an application, the entry point for the
binary image has to be supplied in the form of a start address. The first
instruction of the actual application should be specified here. In conven-
tional C programs, this corresponds to the starting address of the “main”
routine which is the first function of a program that is executed after some
initial setup routines from the operating system.
To allow aiT to derive correct timing information for stack related accesses,
the initial value of the stack pointer should also be supplied. In this way,
the access parameters of the stack memory region are known and aiT
can determine tight bounds for the timing of e.g. “PUSH” and “POP”
operations.

• Address regions accessed by Load and Store instructions: Once the memory
regions have been specified, loop bounds provided, longjump instructions
annotated accordingly and the starting point for the application is known,

150 4 Scratchpad Memory Optimizations

aiT is capable of generating upper bounds for the WCET. Additional an-
notation information can help to improve the quality of the results, i.e. to
make the upper bound tighter. In general, it is not possible to statically
analyze which address is being accessed by a particular load or store op-
eration, since usually, register-offset addressing is being used. A complex
data flow and range analysis would have to be performed to be able to de-
termine the accessed address range for at least some of the data accesses.
To generate safe results, aiT always assumes the maximum memory access
time found in the memory specification for all accesses with undetermined
target address. Allocating data to the scratchpad memory thus has no
impact on the generated WCET, unless all references to the scratchpad
memory are annotated. During cache analysis, the possible range of ad-
dresses covered by a specific load or store operation is also relevant to
determine the worst case impact on the information stored in the cache:
if no information concerning possible addresses is provided, aiT has to as-
sume that any cache line may have been replaced by a load operation. By
restricting the range of addresses that are potentially accessed, the number
of lines in the cache affected by this operation can be reduced.

SymbolName: my_array3

instruction 0x00400038 accesses FROM 0x4010e8 TO 0x401276;

SymbolName: my_array

instruction 0x0040027e accesses FROM 0x401408 TO 0x40159e;

SymbolName: my_array

instruction 0x00400282 accesses FROM 0x401408 TO 0x40159e;

SymbolName: my_array2

instruction 0x004002a2 accesses FROM 0x401278 TO 0x401406;

Fig. 4.27. Example load/store annotation for aiT

With some knowledge about the used benchmarks, e.g. by ensuring
that no operation ever tries to access past array bounds, it is safe to assume
one certain load or store operation in the generated executable will always
access one particular array or scalar variable. Instead of using complex
analysis techniques, it is thus possible to determine the array accessed by
a certain load or store operation from the simulation trace file and annotate
the instructions accordingly. Figure 4.27 shows an example annotation for
a couple of load and store instructions occurring in an application.

Following the annotation, aiT determines an upper bound for the worst
case execution time of the application. The used benchmarks and the configu-
ration of the memory hierarchy are described in the following section, followed
by the generated results for different scratchpad and cache configurations.

4.3 Impact of Scratchpad Allocation Techniques on WCET 151

4.3.4 Benchmarks and Memory Hierarchy Configuration

The benchmarks used to generate results are presented with their code and
data sizes in Table 4.7. They comprise applications from different areas of
embedded systems: a speech codec according to the G.721 standard, a mix
of several sorting algorithms, an ADPCM en- and decoding algorithm and
finally an integer implementation of an inverse discrete cosine transform.

Benchmark Code Size Data Size Description
[bytes] [bytes]

G.721 2784 2424 Encoding and decoding according to G.721 using
“Adaptive differential Pulse Code Modulation”

Multi Sort 716 1204 Sorting benchmark
(combining several sorting algorithms)

ADPCM 724 6928 Encoder and decoder using Adaptive Differential
Pulse Code Modulation

Fast IDCT 1428 6552 Integer implementation of
inverse discrete cosine transform (IDCT)

Table 4.7. Selected benchmarks to evaluate the effect scratchpad memories and
caches on WCET

The scratchpad memory used in the system can be accessed within a single
cycle, which is the only relevant parameter for the results presented in this
section, since energy is not being considered except in the compiler to guide
the allocation process. The energy values used during this optimization both
for the scratchpad and the main memory are the same as those given in
the section describing the results of the Bottom-Up allocation (Table 4.3,
Page 120). More important for the results presented here is the timing of
the main memory: according to the measurements performed using the ARM
evaluation board, a 32 bit main memory access requires 4 cycles to complete,
i.e. one cycle for the access itself plus three additional waitstates. For 16 and
8 bit access, the number of waitstates is reduced to only one.

Note that in contrast to the previous publications [WM04, WM05], the
experimental setup in this work does not use the scatter-loading mechanism
to distribute memory objects from the Flash memory (used to permanently
store the application) to their corresponding physical address ranges. The
copying of memory regions from the Flash memory to the main memory or
to the scratchpad partition is not fully analyzable by aiT and thus leads to
confusing analysis results for some benchmarks. Without scatter-loading, aiT
is only aware of addresses within the Flash memory region (starting with
0x4....). The main memory as well as the scratchpad region are thus mapped
to regions within the Flash memory. Due to the complete timing annotation
for all used memory addresses, the results remain equivalent and comparable
to the ones presented in the previously published work.

152 4 Scratchpad Memory Optimizations

The caches, being the final element of the memory hierarchy considered
in this section, are organized as unified caches, i.e. there is only one cache for
both instructions and data. The cache size is varied from 64 bytes up to a total
capacity of 8 kB. The cache is organized as a 4-way set associative cache with
16 bytes or 4 words per cacheline, which is a common configuration found in
ARM processor cores [ARM98b]. A cache access resulting in a hit takes one
cycles to complete, whereas accessing the main memory to fill an entire line
takes 12 cycles. As in most ARM designs, the cache uses a random replace-
ment strategy. This makes the precise analysis of the cache’s contribution to
the WCET more difficult, since most of the cache analysis tools assume an
LRU replacement strategy, which is more predictable. However, in the pre-
vious work [WM05], a direct mapped cache was used where the cache only
has one single way and thus no replacement strategy is required. Even for
this cache configuration, the results were similar to the ones presented in this
section, which shows that using more predictable replacement policies only has
a limited influence on the quality of the generated WCET, at least consider-
ing the experimental cache analysis for the ARM7. The 4-way set associative
cache configuration was chosen in this work in order to present results that
closely reflect the currently used ARM architecture.

4.3.5 WCET Results for Static Allocation

The impact of using a scratchpad memory on the energy dissipation of em-
bedded systems has already been shown in previous sections of this work. In
this section, results concerning the effects of a scratchpad memory on worst
case execution time analysis are presented. The scratchpad memory that is
assumed to be present in the system is statically allocated using the Bottom-
Up allocation technique described in Section 4.2.6. The obtained results are
then compared to the effect of the commonly used cache on WCET.

The first extensive set of figures is shown for the G.721 benchmark since it
shows the typical behavior also observed for the other benchmarks in the set.
Figure 4.28 shows the number of simulated processor cycles when the appli-
cation is executed using ARMulator with a typical input data set and varying
scratchpad capacities, as well as the corresponding worst case execution time,
determined using aiT’s analysis techniques. The impact of using a scratchpad
memory on both the average case execution time and on the WCET can thus
be seen in the figure.

Looking at the darker bars that represent the simulation values, the figure
once again underlines the benefit of utilizing a scratchpad memory in embed-
ded systems: from the initial performance of more than 2 million cycles when
only main memory is utilized, the performance is improved by 39% when a
scratchpad memory of 2 kB is present in the system. In this configuration,
the G.721 benchmark only requires about 1.3 million cycles to complete with
the used typical input data set. Even for the smallest considered scratchpad

4.3 Impact of Scratchpad Allocation Techniques on WCET 153

0 64 128 256 512 1024 2048 4096 8192
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

WCET SP [cycles]

Simulation SP [cycles]

Scratchpad capacity [bytes]

T
im

e
[1

00
0

cy
cl

es
]

Fig. 4.28. Simulation and WCET for the G.721 benchmark using a scratchpad

memory of 64 bytes capacity, the gains of nearly 17% in terms of executed cy-
cles are remarkable. Note that this strong improvement for a small scratchpad
memory is only possible if the allocation algorithm distributes memory objects
at a fine granularity. In the previously published results [WM05] which only
considered functions but not basic blocks as instruction memory objects, the
smallest scratchpad size that improved the performance of the G.721 bench-
mark was 512 bytes, since this was the first time that an entire function could
be allocated.

The second, lighter set of bars in Figure 4.28 represents the worst case
execution time determined by the WCET analysis using aiT. The executable,
with parts of the instructions and the data allocated to the scratchpad memory
according to the Bottom-Up model, is passed to aiT along with the required
annotation information as described in the previous section. aiT uses all infor-
mation, in particular the specified access times for different memory regions,
to determine a guaranteed upper bound for the WCET. It is remarkable that
despite a certain offset, the decrease in the WCET values follows the shape of
the observed performance using simulation. This means that when a scratch-
pad memory is present in the system, then the benefit of this scratchpad
memory does not only apply to the typical average case execution, but it also
has a positive effect on the WCET of the system. For designers of real-time
systems, this means that the benefits achieved by integrating a scratchpad
memory and the corresponding allocation algorithms immediately improves
the WCET of the system as well, without requiring any additional analysis
effort in the WCET tool. This is a clear advantage of the scratchpad memory

154 4 Scratchpad Memory Optimizations

over the other performance-enhancing architectural features mentioned in the
previous section.

0 64 128 256 512 1024 2048 4096 8192
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

WCET cache [cycles]

Simulation cache
[cycles]

Cache capacity [bytes]

T
im

e
[1

00
0

cy
cl

es
]

Fig. 4.29. Simulation and WCET for the G.721 benchmark using a cache

In contrast, Figure 4.29 shows the situation when a cache of different sizes
is present in the system instead of a scratchpad memory. For the performance
values obtained during simulation, the curve shows a significant increase in
the number of cycles for very small cache capacities. This is caused by the
high number of cache misses for these small cache sizes: during the execution
of the application, not all memory objects of the current working set can be
kept in the cache. This leads to the so-called “cache thrashing”, with memory
objects repeatedly evicting each other from the cache without ever resulting in
a cache hit. This makes it clear that more care must be taken when choosing
the dimensions of the cache, since in contrast to a scratchpad memory, a cache
that is too small will actually result in a reduced performance of the system.

For larger cache sizes, the number of cycles are reduced down to the level
that is attainable using a scratchpad, and even below that. Depending on
the application, the cache may be more beneficial compared to a statically
allocated scratchpad since it can react to changes in the current working set of
the application. To compensate this effect, the next section will consider using
a scratchpad memory that is allocated using a dynamic scheme, i.e. allowing
the scratchpad contents to change at runtime so as to further improve the
scratchpad memory’s performance.

Looking at the WCET analysis results when a cache is present in the sys-
tem, the strong increase in the number of cycles determined as the upper

4.3 Impact of Scratchpad Allocation Techniques on WCET 155

bound is apparent. For a small cache size, it is difficult to determine a guar-
anteed number of cache hits, in particular since the used cache analysis algo-
xsrithm does not use all known analysis techniques. For larger caches, the
analysis determines that more cache hits will take place which can be seen in
the decreasing WCET values for larger caches. In contrast to the scratchpad
case, however, the WCET values do not decrease at the same rate as the ob-
served simulation times. Of course, for a worst case input data set, the actually
observed execution time may be longer than what was simulated using typical
input data, but the figure clearly shows that the G.721 benchmark benefits
from increasing cache sizes of up to 4 kB, whereas the WCET values do not
change after a cache capacity of 1 kB. In addition, the differences between
the observed and the worst case execution time are very much higher for all
cache sizes than for the corresponding scratchpad memory capacities. This is
underlined in Figure 4.30, which shows the determined worst case execution
time values for both a scratchpad memory and a cache in one figure.

0 64 128 256 512 1024 2048 4096 8192
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

WCET SP [cycles]

WCET cache [cycles]

Scratchpad/cache capacity [bytes]

T
im

e
[1

00
0

cy
cl

es
]

Fig. 4.30. Comparison of WCET values for scratchpad and cache for the G.721
benchmark

In this direct comparison, the overhead in the determined WCET values for
a cache becomes evident: while using a scratchpad keeps the WCET values
low, and shows a steady decrease for growing scratchpad sizes, the cache
WCET values are very much higher, and they do not scale well with the
higher performance gains of the cache. In fact, it should be noted that while
the scratchpad memory keeps the ratio between simulated performance and
guaranteed WCET nearly constant for all considered scratchpad capacities,

156 4 Scratchpad Memory Optimizations

the WCET for the cache steadily increases compared to the actual execution
times, in particular for the larger cache sizes.

0 64 128 256 512 1024 2048 4096 8192
0

0.25
0.5

0.75
1

1.25
1.5

1.75
2

2.25
2.5

2.75
3

3.25
3.5

3.75
4

WCET/Sim SP

WCET/Sim Cache

Scratchpad/cache capacity [bytes]

R
at

io
 W

C
E

T
/s

im
ul

at
io

n
tim

e

Fig. 4.31. Ratio of overestimation for scratchpad and cache for the G.721 bench-
mark

The ratio between the simulated performance and the determined WCET
values makes it possible to consider the overestimation that occurs both when
using a scratchpad and when using a cache in one single graph, which is shown
in Figure 4.31. For the scratchpad setup, the ratio for the overestimation of the
WCET compared to the observed simulation performance always stays below
the value of 1.4 which is a reasonable value. More important than the value
itself is the fact that the ratio stays nearly constant over the entire range of
scratchpad sizes. The overestimation ratios for larger caches are significantly
higher: while for a small cache of 64 bytes, it is only a factor of about 1.7,
the overestimation for the 4 kB cache amounts to a ratio of 3.8, meaning that
the WCET is nearly four times higher than the actually observed execution
time. The consequence of this effect is that when a large cache is used in
a system, then the upper bound on the WCET will become less tight. This
clearly shows that while the presence of a scratchpad has a positive effect both
on the observed average case performance and on the WCET analysis results,
the cache’s performance benefit in the average case does not translate to an
improved WCET, due to the inherent unpredictability of a cache.

For the other considered benchmark applications, similar findings as those
presented for the G.721 program were found. In the following paragraphs,
only the differences and additional observations will be discussed.

4.3 Impact of Scratchpad Allocation Techniques on WCET 157

0 64 128 256 512 1024 2048 4096 8192
0

250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000
3250
3500
3750

WCET SP [cycles]

Simulation SP [cycles]

Scratchpad capacity [bytes]

T
im

e
[1

00
0

cy
cl

es
]

a)

0 64 128 256 512 1024 2048 4096 8192
0

250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000
3250
3500
3750

WCET cache [cycles]

Simulation cache
[cycles]

Cache capacity [bytes]

T
im

e
[1

00
0

cy
cl

es
]

b)

Fig. 4.32. Simulation and WCET analysis using scratchpad and cache for
Multi Sort

For the Multi Sort benchmark shown in Figure 4.32 a), using a scratch-
pad memory results in a maximum of nearly 50% reduction in number of
cycles for the simulation, and in a reduction of more than 40% concerning the
WCET. Note that for this application, the determined WCET is very much
higher than the observed simulation performance. This is due to the fact that
in contrast to the G.721 benchmark, Multi Sort is less data-dominated and
includes a large number of control-flow instructions. These create different
paths through the executable, of which the longest path always has to be
considered for the WCET, whereas much shorter paths may actually be taken
during simulation (if e.g. a part of an array that is to be sorted is already in
the desired order). For a true worst case input set, the overestimation will be-
come negligibly small, so the large difference between simulation and WCET
is actually only caused by the used typical input data and not by imprecisions
in the methodology (this was validated using the Bubble Sort sorting algo-
rithm for which the worst case input set, an array sorted in the reverse order,
can be easily determined). Despite the high overestimation, the scratchpad
memory’s average case improvement directly translates to improved WCET
analysis results: for increasing scratchpad sizes, the WCET decreases at about
the same rate as the observed simulation time.

For the cache, shown in Figure 4.32 b), the initial high WCET value for a
cache size of 64 bytes does not change at all when larger caches are being used
in the system, despite the fact that the simulated performance is improved
by nearly 50% for the larger caches. aiT is not able to guarantee a significant
number of cache hits, which is due to the mixed accesses to large data arrays
and to instructions. Since a unified cache is used in the considered setup, the
cache analysis fails in determining accesses that have to go to different sets or
lines of the cache. Thus, the large number of assumed cache misses is sustained
throughout the range of considered cache sizes.

Summarizing the effects, Figure 4.33 shows the ratio of overestimation for
the two memory configurations. While the scratchpad setup always stays at
a level of well below 4, the WCET analysis overestimates the execution by

158 4 Scratchpad Memory Optimizations

0 64 128 256 512 1024 2048 4096 8192
0

1

2

3

4

5

6

7

8

9

10

11

WCET/Sim SP

WCET/Sim Cache

Scratchpad/cache capacity [bytes]

R
at

io
 W

C
E

T
/s

im
ul

at
io

n
tim

e

Fig. 4.33. Ratio of overestimation for scratchpad and cache for Multi Sort

more than a factor of 10. The constant overestimation ratios for the scratchpad
show that the WCET scales well with the actually observed improvements in
execution time. The relatively high absolute overestimation ratio of between
3 to 4 is caused by the used input data set which, in this case, is far from the
worst case set. The fact that the ratio does not change significantly throughout
the range of scratchpad sizes still shows that WCET benefits directly from the
use of this memory architecture, whereas the cache has a negative influence
for this benchmark.

Figure 4.34 shows the results obtained for the ADPCM benchmark. The
findings are again similar to the previous benchmarks and underline the fact
that using a scratchpad memory is beneficial for real-time embedded systems.
The overestimation caused by the used input data set is quite small for this
application, and the reduction of simulated as well as WCET cycles can be
seen clearly in part a) of the figure. The right hand side again shows that for
small cache sizes, the performance is degraded, whereas large caches lead to
reductions that are similar to those obtained from using a statically allocated
scratchpad. While the observed performances of scratchpad and cache based
systems are comparable, the WCET using a cache is once again very much
higher than that determined for the scratchpad. The WCET value does not
change even if the cache size is increased from 64 bytes to 8 kB.

This can also be seen in Figure 4.35 which shows similar ratios of overes-
timation for scratchpad or cache sizes of up to 128 bytes. From that point on,
the cache values rise up to a ratio of 3.5, while the scratchpad ratios stay well
below 1.5.

4.3 Impact of Scratchpad Allocation Techniques on WCET 159

0 64 128 256 512 1024 2048 4096 8192
0

50

100

150

200

250

300

350

400

450

500

550

600

WCET SP [cycles]

Simulation SP [cycles]

Scratchpad capacity [bytes]

T
im

e
[1

00
0

cy
cl

es
]

a)

0 64 128 256 512 1024 2048 4096 8192
0

50

100

150

200

250

300

350

400

450

500

550

600

WCET cache [cycles]

Simulation cache
[cycles]

Cache capacity [bytes]

T
im

e
[1

00
0

cy
cl

es
]

b)

Fig. 4.34. Simulation and WCET analysis using scratchpad and cache for ADPCM

0 64 128 256 512 1024 2048 4096 8192
0

0.25
0.5

0.75
1

1.25
1.5

1.75
2

2.25
2.5

2.75
3

3.25
3.5

3.75

WCET/Sim SP

WCET/Sim Cache

Scratchpad/cache capacity [bytes]

R
at

io
 W

C
E

T
/s

im
ul

at
io

n
tim

e

Fig. 4.35. Ratio of overestimation for scratchpad and cache for ADPCM

For Fast IDCT, the final benchmark application, only a small overesti-
mation of WCET to simulated cycles can be observed, highlighting the high
precision of the used WCET analysis. This benchmark’s execution time hardly
depends on the values of the used input data set: all present data is processed
according to the inverse fourier transform. Only two “if” statements are
present in this application which lead to the very slight overestimation for
the scratchpad case shown in Figure 4.36 a). The minimal overestimation is
sustained for all scratchpad sizes. For a cache size of 64 bytes, the number
of cache misses is accurately determined, since the small cache size and the
fact that both instruction and data are accessed through the unified cache

160 4 Scratchpad Memory Optimizations

result in a high number of misses. Increasing the cache size results in strong
improvements concerning the average case performance, but the WCET ana-
lysis values do not reflect this: for a cache size of 2 kB, the WCET is more
than twice as high as the simulated cycles.

0 64 128 256 512 1024 2048 4096 8192
0

50
100
150
200
250
300
350
400
450
500
550
600
650
700
750

WCET SP [cycles]

Simulation SP [cycles]

Scratchpad capacity [bytes]

T
im

e
[1

00
0

cy
cl

es
]

a)

0 64 128 256 512 1024 2048 4096 8192
0

50
100
150
200
250
300
350
400
450
500
550
600
650
700
750

WCET cache [cycles]

Simulation cache
[cycles]

Cache capacity [bytes]

T
im

e
[1

00
0

cy
cl

es
]

b)

Fig. 4.36. Simulation and WCET analysis using scratchpad and cache for
Fast IDCT

Considering the ratios of WCET to simulated cycles shown in Figure 4.37,
the very slight and constant overestimation of WCET compared to the actu-
ally simulated cycles of the scratchpad setup becomes clear. The cache ratio
rises from initially very small ratios up to a level of nearly 2.5.

0 64 128 256 512 1024 2048 4096 8192
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

WCET/Sim SP

WCET/Sim Cache

Scratchpad/cache capacity [bytes]

R
at

io
 W

C
E

T
/s

im
ul

at
io

n
tim

e

Fig. 4.37. Ratio of overestimation for scratchpad and cache for Fast IDCT

4.3 Impact of Scratchpad Allocation Techniques on WCET 161

In summary, for all considered benchmarks, the utilization of a scratch-
pad memory is beneficial both for the actually observed performance of the
system and for the WCET analysis. Using a scratchpad memory allows the
WCET analysis tool to generate upper bounds on the maximum execution
time of the application whose overestimation only depends on how far the
used input data set is from the worst case input set. This can be observed in
particular for the Fast IDCT benchmark: due to the fact that the performed
computations hardly depend on the values of the input data, the overesti-
mation of the WCET compared to the observed simulation cycle count is
negligible. In contrast to that, the Multi Sort benchmark shows a very much
higher overestimation which is due to the fact that the performance of sorting
algorithms is highly dependent on the input data. The fact that the WCET
to simulation ratio stays constant for the scratchpad environment emphasizes
the fact that the overestimation is only caused by the used input set and not
by imprecisions in the workflow.

4.3.6 WCET Results for Dynamic Allocation

For the results presented in the following, the dynamic scratchpad allocation
algorithm described in [VWM04b] was used instead of the static Bottom-Up
allocation approach. This section first provides a summary of the dynamic
allocation algorithm along with its requirements. After that, results for two
benchmarks are presented that show how using the dynamic allocation algo-
rithm and a scratchpad memory affects the WCET. These values are again
compared to a system that uses a cache.

Static allocation techniques in general assign the most frequently accessed
or executed memory objects to the scratchpad memory at compile time and
load them onto the scratchpad before actually starting the application. In
contrast to that, the dynamic allocation attempts to always keep the current
working set of memory objects on the scratchpad at runtime. As an exam-
ple, a program may have two or more “hot spots”, e.g. innermost loops that
contain frequently executed basic blocks. If the two hot spots don’t fit on the
scratchpad at the same time, then the static allocation has to decide which
of the loop bodies should be allocated to the scratchpad. The dynamic allo-
cation can choose to reuse the scratchpad space and thus allocate both hot
spots to the scratchpad when they are executed: before executing the first hot
spot, it is copied to the scratchpad and then executed from there. When the
second hot spot is to be executed, it can replace hot spot number one in the
scratchpad. In this way, the scratchpad can be more efficiently used than in
the static allocation scheme. However, there is an increased overhead for the
copying of instructions and data from main to the scratchpad and vice versa.

The approach presented in [VWM04b] uses a modified algorithm that is
known from global register allocation for CISC processors. Instructions and
data elements can be considered as values in the data flow graph of an ap-
plication, whereas the scratchpad memory corresponds to the scarce resource

162 4 Scratchpad Memory Optimizations

that the objects have to be allocated to. This is very similar to the situation of
allocating a program’s currently live values to the small number of registers.
It is vital for an efficient execution of the application that register allocation
optimally exploits the register file by reusing the registers for different data
as much as possible. The same is true for the dynamic scratchpad allocation
algorithm: if a certain memory object is not required in the further course of
the application, it should be replaced by a more promising object, at the same
time keeping the copy costs in mind. The copying of objects to and from the
scratchpad corresponds to the spilling of register values to and from memory.
The dynamic allocation algorithm presents an extension of the register allo-
cation approach since for register allocation, all considered memory objects
are of uniform size.

The algorithm operates in two steps: first, the sets of memory objects
that are to be allocated to the scratchpad memory and their copy points are
determined. In a second step, scratchpad addresses are assigned to the chosen
memory objects and the code is modified such that the copy operations are
performed at the correct point in time during execution, and the instructions
and data elements that were copied to the efficient scratchpad memory are
subsequently accessed instead of the copies on the slower and larger main
memory.

The considered memory objects consist of global variables, local non-scalar
variables and instruction sequences in the form of traces. Trace generation is a
well-known technique [TY96] that has been used to improve the performance
of caches by trying to arrange the code in such a way that the percentage of
straight-line code is increased. This involves analyzing the frequency of taken
and untaken branches and modifying the code layout accordingly. The reason
that traces are used for the dynamic allocation algorithm is that every trace
has a single entry point and always ends with an unconditional jump. This
attribute causes traces to be freely placeable anywhere within the address
space without requiring additional modifications. The consideration of basic
blocks instead of traces made it necessary in the previous sections to consider
the influence of additional jump instructions to maintain correct control flow
for the static scratchpad allocation algorithms. The models that consider ba-
sic blocks and their connections show an increased complexity, as shown in
Sections 4.2.5 and 4.2.6. If traces are used instead, the modification of con-
trol flow is no longer necessary, thus simplifying the treatment of instruction
memory objects at a finer granularity.

However, there is a drawback involved in using traces which becomes visi-
ble in particular for the 16 bit THUMB instruction set of the ARM archi-
tecture: in order to guarantee that traces can be freely placed anywhere in
the processor’s address space without modification, all jumps that leave the
current trace have to be implemented as longjumps, i.e. as “BL” instruc-
tions, since they are the only jumps in THUMB mode that can cover the
distance between two distant memory regions (cf. Section 3.3.1). Therefore,
every conditional or unconditional jump that leaves one particular trace has

4.3 Impact of Scratchpad Allocation Techniques on WCET 163

to be replaced with a longjump, which requires two instruction fetches instead
of just one. In addition, conditional jumps have to implemented using a con-
ditional jump followed by a longjump if the current trace is to be left. These
implementation details lead to a certain overhead when trace generation is
performed using the THUMB instruction set. Postpass optimizations can be
used to reduce the amount of overhead, however this aspect is not considered
in this work.

The dynamic allocation algorithm first performs a liveness analysis of
memory objects. Those objects that have non-overlapping lifetimes may share
the same scratchpad space. An extended concept of DEF-USE chains is used
to express the lifetimes of objects. Using flow constraints that consider the
liveness information of memory objects, an ILP formulation of the allocation
problem is generated and solved. The solution specifies which memory objects
are to be copied to the scratchpad and back to main memory at which point
in time during execution of the application. In the following step, the objects’
addresses in the scratchpad memory are determined. To do this, another ILP
problem is generated and solved.

Except for using a dynamic allocation algorithm to fill the scratchpad, the
experimental setup used in this section is identical to the method described
above for the static scratchpad allocation. The executable generated using
the dynamic allocation algorithm is analyzed in the same way as the stati-
cally allocated applications: a simulation run using a typical input data set is
performed to determine the average case number of cycles required to execute
the application with varying scratchpad capacities. Then, WCET analysis is
performed to determine whether the benefits concerning predictability of a
scratchpad memory can also be obtained when it is allocated in a dynamic
way. The annotation information described in the previous section also has
to be provided for the dynamic allocation. The dynamic copying of code and
data to the scratchpad and subsequent execution from there make the an-
notation more complex, however the amount of information that has to be
specified for aiT to generate valid results remains roughly the same. For that
reason, the technical details concerning annotation for the dynamic allocation
are omitted here.

In the static approach, all memory objects were assumed to be present
in their corresponding memory when the actual application was started. For
the dynamic allocation, the overhead required to copy instructions and data
to the scratchpad and back to main memory is considered to be part of the
application program’s execution. To allow a fair comparison between static al-
location on one hand and dynamic allocation on the other, the initial copying
of memory objects to the scratchpad memory when the static approach is be-
ing used was considered to be part of the application for the results presented
in this section. Furthermore, since the trace generation step is considered as
a preparatory step and not part of the dynamic allocation algorithm, the pre-
sented values for the static allocation were also generated following a trace

164 4 Scratchpad Memory Optimizations

generation step. In this way, both static and dynamic allocation operate on
the same input application.

Two benchmarks were chosen due to the properties found in their code: the
Multi Sort application executes a sequence of several sorting algorithms. Each
of the sorting algorithms has its own hot spot or innermost loop, such that
the dynamic allocation can be expected to show an improved performance
compared to the static approach, since it can always keep the currently active
hot spot in the scratchpad memory. The ADPCM benchmark has a different
structure: the bodies of its innermost loops are larger than for the Multi Sort
application, thus they will not all fit into a small scratchpad memory. In
addition, it was observed in the static case that the cache performance for
the ADPCM application was pretty poor. It is thus interesting to see how the
dynamic allocation approach handles this benchmark.

0 64 128 256 512 1024
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

WCET SP [cycles]

Simulation SP [cycles]

Scratchpad capacity [bytes]

T
im

e
[1

00
0

cy
cl

es
]

Fig. 4.38. Simulation and WCET for Multi Sort with traces using a scratchpad
with static allocation

Figure 4.38 shows the results of applying the static allocation algorithm by
Steinke et al. [SWLM02] to the Multi Sort application after the initial trace
generation step. For a single scratchpad memory partition, this algorithm
generates results that are very similar to those generated by the Bottom-Up
approach. The memory objects that were chosen for static allocation to the
scratchpad memory are copied at the beginning of the Multi Sort application’s
main function. Looking at the simulated values, a steady decrease can be
observed for a scratchpad size of up to 256 bytes. The savings concerning
WCET follow the curve for the average case simulation, as in the previous
section.

Comparing this result to Figure 4.39 shows the advantage of utilizing a
dynamic scratchpad allocation algorithm: the cycle count that is obtained

4.3 Impact of Scratchpad Allocation Techniques on WCET 165

using a static allocation and 128 bytes of scratchpad memory can already
be achieved with half the scratchpad capacity of 64 bytes for the dynamic
allocation. This shows that it is beneficial to be able to adapt the contents of
the scratchpad to the current working set of the application. In particular for a
scratchpad capacity of 64 bytes, the static allocation achieves cycle savings of
16% compared to the case without scratchpad, whereas the dynamic allocation
is capable of saving 34%. Since the dynamic allocation is mainly beneficial for
small scratchpad memories and no significant gains were achieved past a size
of 1 kB, only these scratchpad sizes are considered here. The results up to
this point were already described in [VWM04b].

0 64 128 256 512 1024
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

WCET SP [cycles]

Simulation SP [cycles]

Scratchpad capacity [bytes]

T
im

e
[1

00
0

cy
cl

es
]

Fig. 4.39. Simulation and WCET for Multi Sort using a scratchpad with dynamic
allocation

The novel contribution of this work concerns the second set of bars in
Figure 4.39. The results of WCET analysis show that the increased perfor-
mance of the dynamic allocation algorithm also translates to improved upper
bounds on the worst case execution time: while the average case simulation
cycles are reduced by a maximum of about 48% for a scratchpad capacity of
1 kB compared to the case without scratchpad, the WCET values show an
even higher reduction of about 54% for the same comparison. The reason for
this behavior is due to the reduced access times of the scratchpad memory:
if an additional 32 bit memory access is assumed in the WCET analysis that
does not occur in the simulation run, then four additional cycles are counted
in the WCET analysis for the main memory, compared to only one additional
cycle for an access to the scratchpad. The improved average case performance
of the application when a dynamic allocation approach is used thus directly
translates to improved WCET figures as well: in contrast to the mentioned
54% reduction in WCET for the dynamic case, only 44% were achieved using

166 4 Scratchpad Memory Optimizations

the static approach. It can thus be concluded that the dynamic allocation al-
gorithm is fully predictable, despite the fact that memory objects are copied
to and from the scratchpad at runtime. The reason for this predictability is
that all decisions concerning memory object placement are taken at compile
time. Despite the slightly increased annotation effort, no further modifica-
tion of the used WCET analysis techniques are required. Using the presented
workflow, tight bounds can be determined for the WCET using the aiT tool
without requiring any additional analysis modules.

0 64 128 256 512 1024
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

WCET cache [cycles]

Simulation cache
[cycles]

Scratchpad capacity [bytes]

T
im

e
[1

00
0

cy
cl

es
]

Fig. 4.40. Simulation and WCET for Multi Sort using a cache

This is very much in contrast to a cache based system. Despite the fact that
an additional complex cache analysis is required to analyze a cache’s impact
on WCET, the results both concerning average case simulation and WCET
analysis are superior for the compiler controlled dynamic allocation approach.
The results for a system utilizing a cache are shown in Figure 4.40. To make
the results directly comparable, the executable used for cache simulation and
WCET analysis was also generated using the preparatory trace generation
step. As in the previous cases, very small cache sizes tend to lead to a per-
formance degradation. In addition, the observed average case performance
for all cache sizes is below that of the corresponding scratchpad values using
the dynamic allocation approach. While a dynamically allocated scratchpad
of 1 kB reduces the average case simulation time by 48%, a cache of the
same capacity only results in savings of round about 5%. This effect is due to
the fact that profitable memory objects may be evicted from the cache when
other, rarely accessed memory objects are loaded. The dynamic allocation ap-
proach, on the other hand, is capable of consciously selecting those memory
objects that will results in the maximum savings. While the cache’s average

4.3 Impact of Scratchpad Allocation Techniques on WCET 167

execution time was superior to the statically allocated scratchpad in most
observed cases, the dynamic allocation performs better, and is able to outper-
form the cache. Finally, the WCET analysis results for the cache setup are
similar to the ones seen in the previous section: a high overestimation is obvi-
ous from the figure, and while the number of worst case misses can be reduced
slightly for a 128 byte cache compared to 64 bytes, the overall results of the
WCET cache analysis again show very loose upper bounds on the WCET.

0 64 128 256 512 1024
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

WCET/Sim SP

WCET/Sim Cache

Scratchpad capacity [bytes]

R
at

io
 W

C
E

T
/s

im
ul

at
io

n
tim

e

Fig. 4.41. Ratio of overestimation for dynamic scratchpad allocation and cache for
Multi Sort

Comparing the ratios of overestimation in Figure 4.41, it can be observed
that for the dynamically allocated scratchpad, the values stay nearly constant
at a value of around 3, whereas the cache analysis overestimates the WCET
compared to the average case simulation by increasing factors of up to 5.5.
These values underline the inherent predictability of a scratchpad memory
even when a dynamic allocation algorithm is used: the improved performance
of the system when larger scratchpad memories are used directly translates
to better WCET analysis results. In contrast to that, the WCET values for
the cache hardly change at all, despite the small, yet noticeable performance
benefit observed during simulation.

The findings for the Multi Sort benchmark were confirmed using ADPCM:
Figure 4.42 a) shows the static allocation results using Steinke’s algorithm
following trace generation, whereas the right hand side shows the results for
dynamic allocation. It can be seen that the ADPCM benchmark does not
offer as much additional potential for the dynamic allocation. The dynamic
scratchpad algorithm still outperforms its static counterpart, which is visible
in particular for a scratchpad capacity of 128 bytes. The obtained WCET

168 4 Scratchpad Memory Optimizations

values scale with the achieved average case performance gains. The low over-
estimation of WCET over the simulated cycles are based on the fact that
ADPCM hardly depends on the used input data set, as explained in the pre-
vious section.

0 64 128 256 512 1024
0

100

200

300

400

500

600

700

800

900

1000

WCET SP [cycles]

Simulation SP [cycles]

Scratchpad capacity [bytes]

T
im

e
[1

00
0

cy
cl

es
]

a)

0 64 128 256 512 1024
0

100

200

300

400

500

600

700

800

900

1000

WCET SP [cycles]

Simulation SP [cycles]

Scratchpad capacity [bytes]

T
im

e
[1

00
0

cy
cl

es
]

b)

Fig. 4.42. Simulation and WCET for ADPCM with a scratchpad a) using Steinke’s
static algorithm b) using dynamic allocation

Figure 4.43 a) shows the results obtained for the cache: the performance
gains do not translate to improved WCET bounds. For this benchmark in
particular, the overhead of using a cache that is too small is significant. The
ratio of WCET to simulation shows the same picture as before: while it stays
the same for the scratchpad setup, it increases with larger cache sizes.

0 64 128 256 512 1024
0

100

200

300

400

500

600

700

800

900

1000

WCETcache [cycles]

Simulation cache
[cycles]

Scratchpad capacity [bytes]

T
im

e
[1

00
0

cy
cl

es
]

a)

0 64 128 256 512 1024
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

WCET/Sim SP

WCET/Sim Cache

Scratchpad capacity [bytes]

R
at

io
 W

C
E

T
/s

im
ul

at
io

n
tim

e

b)

Fig. 4.43. a) Simulation and WCET for ADPCM with a cache, b) ratio of WCET
for scratchpad and cache

These results show that the use of a scratchpad memory in conjunction
with a dynamic allocation algorithm is beneficial both for the average case
performance and for the obtainable results concerning WCET. Taking into

4.3 Impact of Scratchpad Allocation Techniques on WCET 169

account the high performance of the scratchpad together with its inherent
predictability, it can be expected that in the future, a number of embedded
devices will be equipped with scratchpad memories that are utilized using the
presented allocation algorithms. In particular when real time aspects have to
be considered during the design of an embedded system, the use of a scratch-
pad memory will result in WCET values that scale with the average case
execution time.

5

Main Memory Optimizations

The requirements for storage capacities in all sorts of computing devices are
increasing at a fast pace. New applications make larger memories necessary,
mobile phones and PDAs are increasingly used to take pictures and to store
music – the vast amount of user data requires increasing memory capacities
to be available in the system. The necessary increase in memory sizes leads
to several problems that need to be solved by system designers in order to
allow further innovation, in particular in the embedded and portable market.
One of the problems that designers are facing is the growing performance
gap between processors and memories, which has been called the “Memory
Wall” by Wulf et al. [WM95]. Since the speed of memories is not improving
at the same rate as that of processors, there is an increasing gap between
the capabilities of the processor and the memory system (cf. Figure 4.1 on
Page 90). Introducing a hierarchy of memories is one possible solution to
at least slow down this effect. Memory hierarchies consisting of scratchpad
memories, caches and the register file are being described in this work.

Another crucial issue, in particular for portable embedded devices, is the
energy dissipation. It has been shown in several publications that the memory
subsystem consumes a considerable amount of the total system energy [KG97,
KVIY00, Mos01]. This chapter in particular targets savings achievable by
exploiting features of the main memory.

Most modern main memory chips support some kind of energy manage-
ment, allowing the main memory to be put into a power down mode when it is
not being used. The following section takes a look at previous work concerning
power management and saving energy in the main memory. The subsequent
section presents an optimization that exploits the presence of a scratchpad
memory in order to shut down the main memory when instructions and data
are accessed from the scratchpad and the main memory is thus not used for
a certain amount of time. The optimization allocates memory objects to the
scratchpad memory in in a way similar to that described in Section 4.2. How-
ever, a different cost function is being used here: in contrast to the multi
memory allocation strategies where all energy savings were obtained from the

171

172 5 Main Memory Optimizations

reduced access-related energy per access of the scratchpad memory, the allo-
cation considered in this section allocates objects to the scratchpad memory
in such a way that the non-access related standby energy of the main mem-
ory in SDRAM technology is minimized. This is achieved by maximizing the
time during which the main memory can be kept in the power down mode. In
addition, the fact that connections between global variables and basic blocks
that access these variables were modeled for the first time results in significant
energy savings for one of the example applications.

The second part of this chapter takes into account the efficient utiliza-
tion of a Flash memory found on most of today’s embedded devices as a
non-volatile memory. Flash memories in NOR technology (cf. Section 3.2.3
on Page 24) can also be used as instruction memories using the so-called
Execute-In-Place (XIP) technique. The main memory can again be put into
power down mode when the Flash memory is being accessed. As an additional
benefit, the amount of main memory required for a system can be significantly
reduced.

5.1 Related Work

With energy dissipation gaining importance in particular in the design of
embedded devices, hardware vendors are providing means of controlling the
energy required for the operation of a device when the full computing power
is not required. These features are known as “Dynamic Power Management”
(DPM). In general, they reduce the power dissipated by a system depending
on the currently required performance. This is generally achieved by a power
manager which observes and controls the transitions between different opera-
ting states at runtime. These power states may be implemented in different
ways: It is possible to shut down parts of the system that are not required,
thereby reducing the leakage power dissipation in these units. Current designs
allow operation at a number of predetermined frequencies. The power manager
can change the operating frequency during runtime with a certain overhead
required for the transition. If the operating frequency is lowered, then the
supply voltage can also be reduced, leading to significant energy savings since
both the frequency and the square of the supply voltage are factors in the
general energy equation

E = α · CL · (VDD)2 · f · #cycles (5.1)

An illustrating example for the savings achievable by statically assigning
voltages to tasks can be found in [IY98]. This contribution also presents an al-
gorithm to statically determine the optimal operating voltage for a set of tasks
running on a processor. Each possible operating voltage is linked to a corre-
sponding operating frequency. If the worst case execution time of the tasks in
the task set can be determined statically, then the allocation of voltages to the

5.1 Related Work 173

tasks can be solved in an optimal way by using a set of ILP equations. The
paper concludes that even a small number of different voltages results in con-
siderable energy savings. In another publication by the same authors [OIY99],
a solution for the problem of assigning voltages to a set of tasks in a dynamic
way is presented. Again, the set of tasks together with their worst case ex-
ecution times are known. Different approaches are presented depending on
whether the arrival time of tasks is known or not.

In a system that involves user interaction, tasks may be generated and
terminated dynamically at runtime. In these systems, the behavior of the en-
tire system is hard to predict, which makes power management more difficult.
One way to decide when the system can be put into a lower power mode is to
watch the system and heuristically assume that if the system was idle for a
certain amount of time, than it will remain in the idle state for a sufficiently
long time to make the transition to a low power mode worthwhile. As an
alternative, the run time monitor can also keep track of the behavior of the
system and predict the point in time when it will most probably become idle,
e.g. when a set of input data has been handled and the system is waiting for
new input. In both cases, wrong decisions taken by the monitor can cause an
increase in the overall energy dissipation, since the transition between active
and power down mode consumes a certain amount of time and energy, which
has to be compensated by sufficiently long idle periods. More sophisticated
methods make use of stochastic models to determine when it is worthwhile to
put the system into power down mode.

A more complete overview over different power management techniques
is provided in the survey paper [CY02]. It covers static techniques, applied
at design time, as well as dynamic power management techniques that con-
trol the energy dissipation at runtime. The modeling of energy is done at
different levels, from RTL to system and even a cluster level. Different imple-
mentations of dynamic voltage scaling are compared, and some system-level
and operating-system supported techniques are mentioned. The survey also
mentions some approaches for compiler-based power management.

In [BBM00], the authors consider dynamic power management on the sys-
tem level, describing power-manageable components and how they can be
configured to adapt to changing demands concerning computation power and
energy dissipation. The Strong-ARM SA1100 processor with its three opera-
ting modes “Run”, “Idle” and “Sleep” and a hard disk with power manage-
ment are provided as examples.

Several approaches have been developed to restrict the dominating main
memory energy. Most system today employ a memory hierarchy that allows
the frequently accessed memory objects to be stored in a more energy effi-
cient, small memory that is closer to the processor. The advantages and dis-
advantages of several memory architectures that may be used for this purpose
(caches, scratchpad memories) were already discussed in Section 4.3. This sec-
tion deals with savings that are achievable by exploiting power management
features present in modern main memories. The fact that in particular for

174 5 Main Memory Optimizations

embedded systems, the application to be executed on a device is usually known
at design time can be exploited by performing a static power management at
compile time.

In contrast to the multi-task static power management technique men-
tioned above [IY98], a compiler usually only has an influence on a single task
executed on a system, meaning the scope has to be changed from the task-
to the application level. For one considered application, the compiler has de-
tailed knowledge of the execution and access frequencies of basic blocks and
variables, respectively, and can take this into consideration during code gen-
eration. The gathered information can e.g. be used to determine regions in
the code where only a low computing power is required, such as when the ap-
plication is waiting for data. Since the processor considered in this work, the
ARM7TDMI, does not provide power management features, it is not possible
to modify the operating frequency or the voltage. However, since the mem-
ory hierarchy was found to consume a large percentage of the overall system
energy [Mos01, KVIY00], it is worthwhile to consider power management
within the compiler that targets the memory subsystem. In the presented ap-
proach, the compiler is able to exploit the power down modes provided by the
used SDRAM memory chips. By allocating code and data to a small, energy
efficient scratchpad memory, the main memory can be put into power down
mode when the application is executed from the scratchpad. The objective
function of the presented algorithm is to allocate those memory objects to the
scratchpad memory that result in a maximum power down time of the main
SDRAM memory.

The techniques and results presented in this section were first described
in [Ker05], however some modifications to the cost function and the used ILP
equation were performed in order to improve the obtained results.

5.2 Main Memory Power Management

As described in the sections on the behavior, timing and energy dissipation
of DRAM memories in Chapter 3, the dynamic nature of DRAMs has to
be considered in their behavioral and energy models, meaning that not only
the action that is currently being performed is relevant, but past events also
have to be accounted for in order to accurately capture their behavior. One
obvious example for this is the burst access scheme: a faster burst access
is only possible if the accessed addresses are contiguous. Another example
that involves the consideration of the memory’s behavior over time is the
exploitation of power down modes: if the memory is not accessed for a longer
period of time, it may be worthwhile with respect to the energy dissipation
to put the memory into a power down mode. However, since the transition
to and from power down takes a certain amount of time and energy, the
memory should not be powered down unless it can remain in power down for
a sufficiently long time.

5.2 Main Memory Power Management 175

Figure 5.1 shows the state machine representing the behavior of an
SDRAM. The states can generally be split into two subsets: active and in-
active. The inactive subset consists of two states: Deep Power Down (DPD)
and Self Refresh. DPD allows the largest energy savings, at the cost of the
memory losing all its information.

Fig. 5.1. SDRAM state machine, divided into inactive and active subsets

Using the Self Refresh mechanism, it is also possible to sustain the memory
contents despite putting the memory into an inactive state. In Self Refresh
mode, modern memories can take advantage of the Partial Array Self Refresh
(PASR) and Temperature Compensated Self Refresh (TCSR) mechanisms.
The former signifies that only those banks of the memory that contain live
data are refreshed. Therefore, if some of the banks of the memory do not con-
tain live data, the self refresh power can be reduced. TCSR, on the other hand,
detects the temperature of the memory chip and controls the required refresh
intervals accordingly: the maximum refresh frequency is required only if the
memory or its environment is very hot. If the memory chip can be kept cool,
less refresh operations per unit of time need to be performed, which effectively
reduces the required refresh power. Since the energy savings achievable using
PASR and TCSR are not very promising and are more suitably exploited us-
ing a run-time monitor rather than a compiler, they are not considered in this
work. In addition, since the used compiler framework considers single applica-
tion examples without sufficiently long idle periods, it is to be expected that
the temperature readings from the memory chips will not change significantly
during the execution of an application, and therefore not offer a lot of poten-
tial for TCSR optimization. Also, no means to estimate the temperature of
the memory chip during execution of an application are integrated into our
framework. For these reasons, self refresh mode is not considered in this work.

176 5 Main Memory Optimizations

Putting the memory into DPD mode has a couple of disadvantages as
well: Since a transition to DPD leads to a complete loss of information within
the memory, any live data would have to be copied e.g. to a different memory
before the transition to DPD can be performed. This represents a considerable
overhead that can easily outweigh the benefits of DPD energy savings. Another
drawback involved in using DPD during execution of a program is the fact
that the transition from the DPD state to an active state takes a considerable
amount of time (150µs, corresponding to 15,000 cycles at 100 MHz for the
considered memory) during which the memory can not be used. During the
active execution of an application, it is in general not acceptable for a memory
to require such a long time to react to a request. The compiler may choose to
insert wake-up dummy instructions that access the memory so that it can wake
up in time for the first “real” access, but the memory would not be in the DPD
state during this long transition anymore. In general, the overhead of changing
between DPD and active states is too high to be beneficial. Therefore, only
the energy saving potential in the active subset of the SDRAM state machine
will be considered in this section.

Considering the states belonging to the active part of the state machine,
the memory will usually be in the standby state from where it can be activated
and subsequently accessed for reading or writing. To save energy, it can be
put into a power down mode which is split into “precharge power down”
and “active power down”. The actually assumed power down state depends
on whether all banks of the memory are in the idle state (precharge power
down) or not (active power down). As can be seen from the timing diagram
of the considered memory [Mic04c], the transition from the active state to the
power down state and back only requires three cycles, which is an acceptably
short time even for an active device executing an application. During the
transition, the energy dissipation of the memory can be modeled according to
the assumptions for the standby state. Once the power down state has been
reached, all in- and output buffers of the memory are deactivated, leading to
considerable energy savings as shown in Table 5.1. It becomes evident that
the power down mode is able to save up to 95% of the memory’s active power.
If DPD was also considered, it would increase this factor to 99.9%. However,
this additional gain of roughly 5 additional percentage points is outweighed
by the disadvantages of the DPD for the considered setup.

Memory State Power [mW] Percentual savings

Active (access) 99.00 0.00%
Standby 66.63 32.70%
Power Down 3.60 96.36%
DPD 0.018 99.98%

Table 5.1. Average power values for different states of SDRAM memory [Mic04c]

5.2 Main Memory Power Management 177

5.2.1 Motivating Example

Assuming a system with a main memory and a scratchpad memory, the idea
of the proposed optimization is to allocate memory objects, i.e. instructions as
well as data, to the scratchpad memory in such a way that the main memory
can be kept in the energy preserving power down mode for a maximum amount
of time. This approach to energy minimization has been described for the first
time in [Ker05], however some of the multi memory allocation equations were
revised to generate the results presented here. The increasing impact of leakage
energy on the energy dissipation of contemporary devices [Bor99] indicates
that using leakage energy as a cost metric for energy optimization will gain
importance in the future. The optimization goal of this approach differs from
the the previous work on scratchpad allocation [SWLM02, WHM04], since in
the previous work, only the access counts of memory objects and the resulting
access-related energy dissipation were considered, but not the relationship of
memory objects over time.

Fig. 5.2. Sequence of basic blocks of an example application in main memory

Consider the example given in Figure 5.2: A program consisting of four
basic blocks A, B, C and D is executed from main memory in the sequence
shown. In the previous scratchpad allocation approaches, the memory objects
were weighted according to the number of accesses or their execution frequency
and allocated to the scratchpad accordingly, leading to the distribution shown
in Figure 5.3 a): Basic blocks A, B and D are stored in the scratchpad memory,
only basic block C remains in main memory since it is executed only once. If
the potential power down states of the main memory are taken into account,
however, then the allocation shown in Figure 5.3 b) may actually be more
beneficial, since the memory can be put in the power down mode (lightly
shaded area) for a longer period of time. Additionally, only one transition
from active to power down mode (darker shaded area) is required. In the
optimization strategy considered in this section, the latter allocation is chosen
since it results in higher savings concerning the standby energy of the main
memory.

To summarize, the proposed optimization is aimed at reducing the standby
energy of the main memory. This is in contrast to the previous scratchpad
allocation techniques which were all aimed at reducing the access-related en-
ergy costs of memories. Based on the given example, an allocation of objects
to the available memories based on the consideration of standby energy is

178 5 Main Memory Optimizations

a) b)

Fig. 5.3. Scratchpad allocation strategies: a) Traditional allocation optimizing for
access energy, b) New allocation optimizing for main memory power down

expected to result in energy savings when the considered main memory pro-
vides a power down state.

A dynamic memory power manager is assumed to be present in the con-
sidered system that is capable of putting the main SDRAM memory into
power down mode whenever it is not accessed. Since the presented optimiza-
tion modifies the access sequence to the main memory in such a way that the
power down times are maximized, it can be assumed that whenever one of
the scratchpad partitions is being accessed, the main memory will not be used
for a longer period of time. Thus, a transition to power down mode can be
initiated whenever one of the scratchpad memories is accessed. The configu-
ration of the dynamic memory power manager has to be adjusted so that it
performs a transition to power down after a minimal time without activity on
the SDRAM main memory. Using this optimistic method, it may occur in rare
cases that a transition to power down is being done when the overhead for
the transition is actually higher than the savings obtained by a short power
down period. However, generating additional instructions to actively control
the main memory states, and considering them in the model is not required
in this setup.

5.2.2 Prerequisites

In the motivating example it was implicitly assumed that the main memory
can be put to power down mode if memory objects are accessed from the
scratchpad memory. This includes the assumption that no accesses to the
main memory will take place during this time. There are two issues that
require special attention in this context:

• Stack Accesses: if the stack is located in the main memory, and it is ac-
cessed while a basic block is executed from scratchpad memory, then the
power down phase of the main memory is interrupted due to the access to
the stack. To avoid this behavior, the stack was transferred to a special
scratchpad partition for the experiments using the technique described

5.2 Main Memory Power Management 179

in [Ste03]. It has to be ascertained that the stack will not exceed the
bounds of the scratchpad partition, which is the case for the considered
benchmarks.

• Global variables that are stored in the main memory and are accessed
from within a basic block that is executed from the scratchpad memory
will lead to the main memory being activated. To avoid this behavior, the
relationship of basic blocks and the variables accessed by them is consi-
dered in the formulation of the optimization problem. The algorithm can
thus allocate basic blocks and their related variables to the scratchpad
together in order to prevent the main memory from being activated for a
data access.

5.2.3 Memory Objects and Energy Functions

The sets V and BB contain all global variables and basic blocks of the appli-
cation program, respectively:

V := {v1, . . . , vp} (5.2)

BB := {bb1, . . . , bbr} (5.3)

Together, BB and V form the set of memory objects O:

O := V ∪ BB = {v1, . . . , vp, bb1, . . . , bbr} (5.4)

The total number of memory objects is denoted as n = p + r. For every
memory object oi, there is a query function Size(oi) that returns the size of
object oi in bytes.

The set of m available scratchpad memory partitions is defined as

SPM := {spm1, . . . , spmm} (5.5)

Note that in contrast to the definition of MP used in Section 4.2, the main
memory is not included in this set of scratchpad memory partitions. The size
of scratchpad memory partitions is available by using function Size(spmj).

The number of cycles required to execute one basic block oi ∈ BB from
the SDRAM main memory is denoted as TSDRAM (oi). This time always in-
cludes accesses to variables that take place from within this basic block. The
background energy dissipated in the main memory during the execution of
this basic block consists of the standby and the refresh power that need to be
spent over this time period:

ESDRAM (oi) = (5.6)
(PSDRAM STBY + PSDRAM REFRESH) · tCK · TSDRAM (oi)

Cycles (denoted as T) are transformed into time values (denoted as t) by
multiplying them with the duration of a single clock cycle tCK . Note that

180 5 Main Memory Optimizations

since the optimization uses only the standby energy of the main memory as
the objective function, the actual access energies of objects are not considered
in the cost functions.

If the considered basic block oi was instead executed from one of the avail-
able scratchpad memory partitions, the time required to fetch the basic block’s
instructions would be reduced, since scratchpad memories are generally faster
than SDRAM main memories. If the number of cycles required to execute the
basic block oi from the scratchpad is denoted as TSP (oi), then the main mem-
ory could be put into the power down state for this period of time, assuming
that no global variables in the main memory are accessed from within oi. The
energy dissipation during the transition to power down is modeled, according
to the vendor’s specification, by assuming the memory is in the standby mode
during this time. The overhead time for the transition is TOH cycles, whereas
for the remaining TSP (oi) − TOH cycles, the main memory is in power down
mode. Figure 5.4 shows the states of the main memory when memory object
oi is executed from the scratchpad memory: The light grey area denotes the
power down state, whereas the darker bars represent the transition from ac-
tive to power down and vice versa. The number of cycles to change to power
down and to wake up the memory are summarized in the value TOH .

T (o)- TSP i OH

T (o)- TSP i OH

Power Down
State

Transition Time
(Standby State)

TOH

Fig. 5.4. Main memory power dissipation during scratchpad execution

The standby energy dissipated in the main memory while basic block oi

is executed from the scratchpad memory is expressed as

ESP (oi) = EOH + PSDRAM REFRESH · tSP (oi) +
PSDRAM PDN · (tSP (oi) − tOH) (5.7)

with

EOH = PSDRAM STBY · tOH (5.8)

assuming that no other main memory accesses are required. EOH models
the energy dissipated during the transition to the power down mode.

5.2 Main Memory Power Management 181

Since dynamic profiling was performed in our experiments to determine
accurate execution and access counts, the number of executions of basic block
oi can be determined as #exec(oi). Also from dynamic profiling, the number
of times that control flow passes along a particular edge connecting two nodes
oi and ok is known. This value is attributed to the corresponding edge as
e(oi, ok). Finally, enprofiler also determines the number of accesses to variables
from within each basic block (cf. Section 3.6.2 on Page 81 for a description
of the statistics generated by enprofiler). The relationship between a basic
block bbi and a variable vk is modeled as an additional, artificial dummy edge
within the control flow graph. It is annotated with the number of accesses
#acc(oi, vk). Assuming a number of l accesses to global variables when basic
block oi is executed once from the scratchpad memory, a pessimistic estimate
for the additional background energy required can be expressed as

tDAT = l · tCK · (TDAT + TOH) (5.9)
EDAT = PSDRAM STBY · tDAT (5.10)

with TDAT being the time it takes to access the global variable (which
may depend on the length of the data type). To determine the total energy
required in the SDRAM main memory when basic block oi is executed from
the scratchpad memory, but variables in the main memory are accessed, the
energy required to access the variables has to be added to Equation 5.7. At the
same time, the main memory’s power down time is reduced by tDAT , which
is thus subtracted accordingly, leading to:

ESP (oi) = EOH + EDAT + PSDRAM REFRESH · tSP (oi) +
PSDRAM PDN · (tSP (oi) − tOH − tDAT) (5.11)

Figure 5.5 demonstrates the situation of the main memory having to tran-
sition to the active state and going back to power down mode after the variable
access. Note that the effect of having to perform additional transitions from
power down to the active state and vice versa is modeled within EDAT by con-
sidering l times the overhead time tOH and multiplying it with the standby
power.

Up to this point, every basic block was assumed to require a certain over-
head time and energy to transition to the power down state. This energy is
not required for basic blocks ok if the main memory is still in power down
due to the previous basic block oi also being executed from the scratchpad
memory. In this case, the transition overhead E+

OH , which is equivalent to
(PSDRAM STBY − PSDRAM PDN) · tOH , can be subtracted from the energy
equation 5.7 for the subsequent basic block ok, which yields

ESP (ok) = (PSDRAM REFRESH + PSDRAM PDN) · tSP (ok) (5.12)

182 5 Main Memory Optimizations

Power-Down
State

Access to
global variable

Standby
State

Fig. 5.5. Main memory status when a global variable is accessed in the main
memory

assuming no variables are accessed from within basic block ok. In a similar
way, basic blocks accessing variables that are not stored in main memory, but
are also allocated to a scratchpad memory partition, receive a benefit E+

DAT

since the main memory does not have to perform a transition to the active
state. This benefit is given as

E+
DAT = (PSDRAM STBY − PSDRAM PDN) · tCK · (TDAT + TOH) (5.13)

This equation expresses the energy savings obtained if one access to the
corresponding variable goes to the scratchpad memory and thus one transition
from power down to the active state and vice versa can be saved.

5.2.4 Binary Decision Variables

In order to formulate the optimization problem as a set of ILP equations,
binary decision variables need to be defined. The results presented in the
following section were generated using multiple scratchpad memory partitions
using a setup similar to the one described in Section 4.2. Therefore, the model
has to be able to handle partitioned scratchpad memories for allocation.

Assuming that m scratchpad memory partitions are present, the decision
variables are arranged in a matrix

Õ :=

⎛
⎜⎝

õ1,1, . . . , õ1,m

...
. . .

...
õn,1, . . . , õn,m

⎞
⎟⎠ (5.14)

The meaning of the decision variables õi,j is defined as

õi,j :=
{

1, if oi ∈ O is allocated to scratchpad partition spmj ∈ SPM
0, otherwise

(5.15)

5.2 Main Memory Power Management 183

The case of a memory object being allocated to the SDRAM main memory
is captured in a separate decision variable which is defined as

õi,SDRAM :=
{

1, if oi is assigned to the SDRAM main memory
0, otherwise (5.16)

Additional decision variables that denote control flow along an edge with-
out having to leave the current scratchpad memory partition are used to model
the size benefit that results when two basic blocks connected by a control flow
edge are assigned to the same memory partition. As explained in detail in
Section 4.2.6, a longjump instruction is always assumed to be required for
each control flow edge. When two connected basic blocks are assigned to the
same partition, then the size of the longjump instruction is subtracted since
the longjump is not required. This correction is only done for the space con-
strained scratchpad memory partitions, since the main memory is assumed to
be sufficiently large. The corresponding decision variables are defined as

xi,k,j :=
{

1, if oi and ok ∈ O are both allocated to partition spmj ∈ SPM
0, otherwise

(5.17)
In addition, decision variables are required to express the fact that when-

ever control passes from one scratchpad memory partition to another without
touching the main SDRAM memory, then the SDRAM can remain in the
power down mode and thus, the energy benefit E+

OH may be subtracted from
the objective function’s energy value. The decision variable yi,k representing
an edge between two basic blocks oi and ok is defined to take the value 1
when none of the two basic blocks are allocated to the main memory, and 0
otherwise:

yi,k :=
{

1, if neither oi nor ok ∈ O are assigned to main memory
0, otherwise (5.18)

Due to the uniform modeling of both control flow and variable accesses as
edges between memory objects, the variables yi,k can also be used to consider
data accesses that go to scratchpad memory partitions and thus do not wake
up the main memory. In this case, the energy benefit E+

DAT is subtracted. Note
that the introduction of this decision variable is a novel contribution of this
work. In [Ker05], only the decision variables xi,k,j were used to represent the
positive effect of not having to wake up the main memory. However, there is
no reason that two memory objects connected by an edge have to be assigned
to the same scratchpad memory partition in order to achieve the mentioned
benefit concerning prolonged power down periods of the main memory: as
long as none of the memory objects is assigned to the main memory, the
SDRAM can stay in power down mode and the benefit E+

OH or E+
DAT may

be subtracted from the objective function.

184 5 Main Memory Optimizations

5.2.5 Objective Function

The objective function which allocates memory objects to the scratchpad
memory in order to maximize the time the main memory can be kept in
the power down state is formalized as a minimization function. It takes into
account both the allocation of basic blocks and variables either to the main
SDRAM memory or to one of the scratchpad memory partitions. Additionally,
the benefit of not having to wake up the main memory when only scratchpad
partitions are involved is also considered. Assuming ok ∈ V and ol ∈ BB, the
objective function takes the following form:

Minimize
p∑

i=1

m∑
j=1

#acc(vi) · ESP (oi) · õi,j + (5.19)

r∑
i=1

m∑
j=1

#exec(bbi) · ESP (oi) · õi,j +

p∑
i=1

#acc(vi) · ESDRAM (oi) · õi,SDRAM +

r∑
i=1

#exec(bbi) · ESDRAM (oi) · õi,SDRAM −

n∑
i=1

(∑
ok∈Succ(oi)

e(oi, ok) · E+
OH · yi,k +

∑
ol∈Succ(oi)

e(oi, ol) · E+
DAT · yi,l

)

The first four lines of the objective function determine the energy cost of
each memory object individually: if it is allocated to one of the scratchpad
memory partitions, the background energy ESP is consumed in the main
memory with every access or execution. The energy ESDRAM is dissipated if
it is allocated to the main memory.

The fifth and sixth lines determine the energy benefit that can be achieved
if connected basic blocks are moved to scratchpad memory partitions, or if
variables that are accessed from within a basic block are not kept on the
main SDRAM memory. These relationships are expressed using the decision
variables yi,k and yi,l, respectively.

5.2.6 Constraints

Every memory object has to be allocated to one memory partition, either
main memory or one of the scratchpad partitions:

∀i : 1 ≤ i ≤ n :
m∑

j=1

õi,j + õi,SDRAM = 1 (5.20)

5.2 Main Memory Power Management 185

The limited memory capacity of the scratchpad memory partitions (but
not of the sufficiently large main memory) also has to be considered to gener-
ate valid results. If two memory objects oi and ok are connected by a control
flow edge, i.e. ok is a successor of oi, and they are both allocated to the same
scratchpad memory partition spmj ∈ SPM , then the size of the longjump al-
ready considered in the model can be subtracted again to allow more memory
objects to be allocated to the limited scratchpad space:

∀j : 1 ≤ j ≤ m : (5.21)
n∑

i=1

(
õi,j · Size(oi) −

∑
ok∈Succ(oi)

Size(longjump) · xi,k,j

)
≤ Size(spmj)

The correct setting of the decision variables modeling control flow within
one scratchpad partition is provided by the following set of constraints, where
m only specifies the number of scratchpad memory partitions:

∀i : 1 ≤ i ≤ n, 1 ≤ k ≤ n,∀j : 1 ≤ j ≤ m :
õi,j + õk,j − 2 · xi,k,j ≥ 0 (5.22)

This set of constraints will prevent variable xi,k,j to be set to 1 if the two
memory objects oi and ok are not allocated to the same scratchpad partition.
Setting any of the decision variables xi,k,j to the value 1 has a positive effect
on the objective function’s value, since it will cause more memory objects to
fit onto the limited scratchpad space. An additional constraint that ensures
the value 1 for xi,k,j is thus not required.

The additional benefit of not having to wake up the main memory when
two basic blocks connected by a control flow edge both being allocated to
arbitrary scratchpad partitions, but not to the main memory, is modeled by
the decision variables yi,k, with ok being oi’s successor node. The correct
setting of these decision variables can be achieved using ILP equations by
defining

õi,SDRAM + yi,k ≤ 1
õk,SDRAM + yi,k ≤ 1

which can be summarized for all basic blocks to

∀i, k : 1 ≤ i ≤ n, ok ∈ Succ(oi) :
õi,SDRAM + õk,SDRAM + 2yi,k ≤ 2 (5.23)

186 5 Main Memory Optimizations

Since a value of 1 for the decision variables yi,k will directly improve the
value of the objective function, these constraints that force these decision
variables to be set to 0 when one of the basic blocks oi or ok is assigned to
the main memory are sufficient to achieve correct results.

The same reasoning also applies if object oi is a basic block and ok is a
variable that is accessed from within this basic block: in this case, the benefit
value E+

DAT may be subtracted from the objective function that is to be
minimized.

In total, the number of constraints and decision variables used in the pre-
sented model amounts to

#Constraints(PowerDown) = n + m + (m + 1) · |E| (5.24)
#DecisionV ariables(PowerDown) = (m + 1) · (n + |E|) (5.25)

During the execution of the ILP solver, no difficulties with long solution
times were encountered. The straightforward addition of the decision variables
yi,k has again shown that the high flexibility is a clear benefit of utilizing ILP
equations to model optimization problems.

5.2.7 Results for Main Memory Power Management

The results presented in this section were generated by exploiting the pre-
sence of a partitioned scratchpad memory in order to put the main memory
to power down mode. The presented optimization solely considers the standby
energy dissipation of the main SDRAM memory in the objective function. It
was used in a setup similar to the one described in Section 4.2, consisting of
several scratchpad memory partitions that memory objects may be allocated
to. However, the main memory is not in SRAM technology, as in Section 4.2,
but rather consists of a dynamic SDRAM memory that offers an energy saving
power down mode exploited using the presented optimization. The SDRAM
main memory used for the experiments presented in this section is a 128 MBit
mobile SDRAM chip [Mic04a] operating at 3.3 Volts and 33 MHz to fit into
the environment of the ARM7TDMI.

The standby energy dissipation of the SDRAM main memory is deter-
mined according to the data-sheet and profiling based methodology described
in Section 3.4.3 on Page 51. Due to the highly dynamic nature of SDRAM
memories, it is not possible to provide energy per access values, since the en-
ergy dissipation of SDRAM depends highly on the access pattern. The used
values derived from the vendor’s data sheet are summarized in Table 5.2. The
names IDD1 through IDD5 are the common designations found in SDRAM
data sheets.

Only the background, standby energy of the considered main memory in
SDRAM technology is used as the metric for energy dissipation in this model.
No notion of access related energy is included in the model, neither for the

5.2 Main Memory Power Management 187

Value name Symbol Current
[mA]

active operating current IDD1 130.0

power-down standby current IDD2 0.45

active standby current IDD3 40.0

operating current IDD4 115.0

auto refresh current IDD5 3.0

Table 5.2. Data sheet values used for the experiments [Mic04a]

SDRAM nor for the scratchpad memory partitions. Since scratchpads are usu-
ally built using SRAM technology which has a very low standby energy com-
pared to the access energy, the energy contribution of the scratchpad memory
partitions can be neglected in this model. In the simulation run following the
optimization, all energy contributions, including access related energy, are be-
ing considered. The optimization minimizes the standby energy of the main
memory by exploiting the presence of the scratchpad memory partitions and
keeping the main memory in the power down state.

The application benchmarks considered consist of an acceptably large
number of memory objects. In addition, the proposed allocation algorithm
considers the relationship of global variables and their accessing basic blocks.
To allow the exploitation of this detail, global variables should be present in
the benchmarks. The benchmarks used to generate results are summarized in
Table 5.3.

Benchmark Code Size Data Size Description
[bytes] [bytes]

ME 796 4 Media application using intensive
integer arithmetic

FIR 136 2732 Finite Infinite Response Filter Application

ADPCM 724 6928 Encoder and decoder using Adaptive Differential
Pulse Code Modulation

Multi Sort 716 1204 Sorting benchmark
(combining several sorting algorithms)

Table 5.3. Selected benchmarks to evaluate the energy management aware alloca-
tion

All results generated using the proposed energy management aware allo-
cation technique are compared to the Bottom-Up multi memory allocation
technique since it provided the best results. The potentially large number of
possible combinations of memory partitions was restricted in order to provide
a concise overview over the obtained results. In this section, a maximum of two
memory partitions is considered. The maximum size of each individual parti-
tion is 1024 bytes. In addition, the maximum combined size of the scratchpad

188 5 Main Memory Optimizations

partitions is kept below the total size of the considered benchmark, since
otherwise all objects are allocated to the scratchpad and the main memory
is not used at all. This represents a trivial solution in the considered setup
which does not allow a comparison of the used allocation techniques.

Note that the results presented in this section for the Bottom-Up approach
are not directly comparable to the ones shown in Section 4.2.9, since in this
section, a main memory in DRAM technology is assumed in contrast to the
SRAM in the multi memory allocation results. The energy dissipation of the
SDRAM main memory and that of the scratchpad partitions is used to con-
trol the Bottom-Up optimization algorithm. It decides which memory objects
are allocated to which partitions according to the ILP problem presented in
Section 4.2.6. However, when the resulting application is later simulated, the
main memory partition is considered to be put in the power down mode when
it is not used. In contrast, the optimization algorithm presented in the previ-
ous section takes this effect into account and tries to allocate memory objects
in such a way that the length of the power down times for the main memory
are maximized.

The following figures show the overall energy savings that are achievable
when scratchpad memory partitions of different capacities are present in the
system. When only one single scratchpad partition is assumed, its size is given
on the x-axis. If multiple scratchpad partitions are assumed, then both the
total capacity and the two comprising scratchpad sizes are mentioned. The
results are expressed as relative improvements compared to the case that no
scratchpad is used. The proposed allocation algorithm that takes the power
down of the main memory into account is labeled as “PowerDown Allocation”,
whereas the Bottom-Up approach is denoted as “MultiMemory Allocation”.

64 128 192
(128+64)

256
0

10

20

30

40

50

60

70

80

90

100

PowerDown Alloc.

MultiMemory Alloc.

Scratchpad capacity [bytes]

R
el

at
iv

e
en

er
gy

 im
pr

ov
em

en
t [

%
]

a)

64 128 192
(128+64)

256
0

10

20

30

40

50

60

70

80

90

100

PowerDown Alloc.

MultiMemory Alloc.

Scratchpad capacity [bytes]

R
el

at
iv

e
en

er
gy

 im
pr

ov
em

en
t [

%
]

b)

Fig. 5.6. Power down aware allocation for a) ME b) FIR

The ME application only contains one single scalar global variable. The
optimization potential is therefore restricted to the allocation of instructions
to the scratchpad memory in order to enable prolonged power down periods.
As can be seen in Figure 5.6 a), both the PowerDown and the Bottom-Up

5.2 Main Memory Power Management 189

multi memory allocation techniques generate similar, if not identical results:
they both utilize the fast and energy efficient scratchpad memory to store
instructions and thus reduce the energy dissipation within the memory sub-
system. The motivation behind this utilization of the scratchpad resource is
different, however: while the Bottom-Up model uses the scratchpad due to
the reduced access related energy costs, the PowerDown approach uses the
scratchpad memory in order to put the main memory into low power mode.
Since the execution time of the application is reduced due to the use of the
faster scratchpad memory, additional non access related energy dissipation
can be saved. For large scratchpad partitions, both approaches obtain an im-
provement concerning energy dissipation of around 80%. This shows that the
presented allocation performs at least as well as the multi memory allocation
using the Bottom-Up model.

Nearly the same behavior can be observed for the FIR benchmark shown in
Figure 5.6 b), which consists of fewer basic blocks, some of which are frequently
executed and can reduce the overall energy dissipation by more than 70% even
for a scratchpad partition of only 64 bytes. Increasing the scratchpad size does
not lead to significant additional energy savings. Again, both the Bottom-Up
allocation and the proposed power down aware technique yield similar results.

While the ADPCM benchmark uses a number of global variables, the high
execution counts of the basic blocks limit the optimization potential for al-
locating variables to the scratchpad memory. For a total scratchpad capacity
of 256 bytes, consisting of two 128 byte scratchpad partitions, Figure 5.7 a)
shows that about 2 percentage points of additional savings could be obtained
compared to the Bottom-Up approach, even though the allocation only dif-
fers in two basic blocks. This small change in the allocation results in a time
prolonged by about 5% during which the main memory can stay in the power
down state. In addition, a reduction of the execution time of around 3% can
be observed. These two effects, shown in Figures 5.7 b) and c), respectively,
together result in the achieved savings. For larger available scratchpad capac-
ities, both approaches again save more than 80% of energy compared to a
system without scratchpad.

For the Multi Sort benchmark (cf. Figure 5.8), most scratchpad partition
sizes result in similar results for the energy management aware allocation
technique and for the Bottom-Up approach. However, increased savings of 5
percentage points can be observed for a scratchpad capacity of 768 bytes. The
reason for these savings lies in the fact that the relationship between variables
and their accessing basic blocks is taken into account in the model: in contrast
to the Bottom-Up model, which is not aware of this connection between mem-
ory objects, the proposed allocation technique allocates a frequently accessed
array to the scratchpad memory.

Since in this way, both the accessing basic blocks and the accessed data
are on the scratchpad, the time that the main memory can be in the power
down state is increased by more than 30%. The execution time is reduced by
9% compared to the Bottom-Up allocation.

190 5 Main Memory Optimizations

128 256
(128+128)

 384
(256+128)

512
0

10

20

30

40

50

60

70

80

90

100

PowerDown Alloc.

MultiMemory Alloc.

Scratchpad capacity [bytes]

R
el

at
iv

e
en

er
gy

 im
pr

ov
em

en
t [

%
]

a)

 256
(128+128)

0

10

20

30

40

50

60

70

80

90

100

110

PowerDown
Alloc.

MultiMemory
Alloc.

R
el

at
iv

e
po

w
er

 d
ow

n
tim

e
[%

]

b)

 256
(128+128)

0

10

20

30

40

50

60

70

80

90

100

PowerDown
Alloc.

MultiMemory
Alloc.

R
el

at
iv

e
ru

nt
im

e
[%

]

c)

Fig. 5.7. Power down aware allocation for ADPCM: a) Results, b) power down
intervals, c) execution time for 128 bytes capacity

256 512 768
(512+256)

1024
0

10

20

30

40

50

60

70

80

90

100

PowerDown Alloc.

MultiMemory Alloc.

Scratchpad capacity [bytes]

R
el

at
iv

e
en

er
gy

 im
pr

ov
em

en
t [

%
]

a)

 768
(512+256)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

PowerDown
Alloc.

MultiMemory
Alloc.

R
el

at
iv

e
po

w
er

-d
ow

n
tim

e
[%

]

a)

 768
(512+256)

0

10

20

30

40

50

60

70

80

90

100

PowerDown
Alloc.

MultiMemory
Alloc.

R
el

at
iv

e
ru

nt
im

e
[%

]

b)

Fig. 5.8. Power down aware allocation for Multi Sort: a) Results, b) power down
intervals, c) execution time for 764 bytes capacity

In order to allow a clear presentation of the obtained optimization results
and to provide a fair comparison and benefit analysis with respect to the pre-
vious work which serves as the baseline, burst mode accesses to the SDRAM
main memory were not considered in the presented results since burst accesses
were not supported by the previously studied allocation strategies. The energy
savings achieved by taking the possibility of burst accesses into account when
the SDRAM main memory is accessed would add an additional aspect to the
analysis of the presented results, since the absolute number of possible burst
accesses varies with the number of main memory accesses. The presented op-
timization exploits the presence of scratchpad memories, thus the number of
accesses to the main memory will decrease for growing scratchpad sizes, and
so will the potential for energy savings due to burst accesses. To demonstrate
this point, some of the experiments involving the power down optimization
were performed taking burst accesses into account. The results are shown in
Figure 5.9 for the ME and the Multi Sort benchmarks. The figures compare
the results obtained by the power down optimization when bursts are consi-
dered to the case without bursts.

5.2 Main Memory Power Management 191

0 128
(64+64)

 192
(128+64)

 320
(256+64)

 576
(512+64)

 1088
(1k+64)

 2112
(2k+64)

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

No Burst

Burst

Scratchpad memory partitions

T
ot

al
 e

ne
rg

y
di

ss
ip

at
io

n
[µ

J]

a)

0 128
(64+64)

 192
(128+64)

 320
(256+64)

 576
(512+64)

 1088
(1k+64)

 2112
(2k+64)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

No Burst

Burst

Scratchpad memory partitions

T
ot

al
 e

ne
rg

y
di

ss
ip

at
io

n
[µ

J]

b)

Fig. 5.9. Considering burst accesses for the PowerDown optimization a) ME
b) Multi Sort

While a large amount of energy can be saved when no scratchpad memory
is present in the system (more than 50% for the ME application), the bene-
fit obtained from burst accesses, as expected, is reduced significantly when
scratchpad partitions of increasing capacities are added to the system. Con-
sidering burst accesses within the main memory would thus cause the savings
obtained by the optimization and by the burst accesses to be overlayed, which
would not allow a clear view on the achieved savings of the optimization. For
this reason, and to be able to compare results to the previous work, burst
mode accesses were not considered in the presented results.

In summary, the presented results show that the proposed memory allo-
cation strategy that takes into account non-access related memory costs and
tries to maximize the time that the main memory can be kept in the power
down state performs at least as well as the previously presented Bottom-Up
approach. Additional energy savings can be achieved when global variables
are allocated to the scratchpad memory together with the basic blocks that
access them. This leads to the situation where the main memory may not be
required for a prolonged period of time, since both instructions and data can
be read from the fast and energy efficient scratchpad. The consideration of
non access-related standby energy represents a novel contribution leading to
additional energy savings in the presence of main memories that offer power
management features. A possible extension of the proposed models includ-
ing a combination of both access and non access related energy dissipation is
discussed in Chapter 8, “Future Work”.

192 5 Main Memory Optimizations

5.3 Execute-In-Place using Flash Memories

Most currently available embedded systems offer a variety of memories to
meet the user’s needs to store large amounts of data on one hand, and to
achieve low cost, small size and high performance on the other hand. Also,
embedded systems require a non-volatile memory to store e.g. configuration
information or the boot sequence instructions. This information should not be
lost, even when the batteries are drained. The non-volatile memory utilized in
most systems today is manufactured using Flash memory technology. Current
Flash memory technology offers acceptably fast read accesses (though it is still
significantly slower than e.g. SDRAM) and a low standby energy dissipation.
On the downside, only a limited number of slow block-wise write accesses are
possible, making Flash memories unsuitable for storing frequently changing
data. The descriptions of Flash memory in Section 3.2.3 on Page 24 offer more
detailed information.

In general, Flash memories can be used in several ways in an embedded sys-
tem: in “Store-And-Download” architectures, parts of the content of the Flash
memory are first copied to a different memory before actually accessing them.
This mechanism is also used by the evaluation board and the supporting soft-
ware considered in this work: a linker script contains information concerning
the placement of memory objects in the main memory. A small Flash-based
boot loader handles the task of copying the required instructions and data
to the designated memory and then executes the application from there. In
most systems, the entire operating system and applications are first trans-
ferred from Flash memory to the main memory at boot time, which is known
as “fully shadowed code”. As another option, the application or the operating
system can request additional pages to be loaded from the Flash to the main
memory (“demand paged code”). The full potential of Flash memories is not
exploited in these cases, since Flash memories built in the NOR technology are
suitable for use as Read-Only memories, e.g. to serve as instruction memory.
This technique of directly executing instructions from the Flash memory is
called eXecute In Place (XIP). As a relatively new development, Flash memo-
ries in NAND technology are now being fitted with additional circuitry to also
allow them to be used as XIP memories [PSB+03]. In the further course of
this section, the special case of XIP using NAND Flash memories will not be
considered. The main advantage of using XIP is the fact that there is no need
to transfer the entire operating system or application program to the main
memory (or to any other memory within the hierarchy) at startup, since the
code can remain in the Flash and be accessed and executed from there.

The prolonged Flash access times and the increased energy dissipation of
the Flash compared to the SDRAM main memory have to be traded against
the advantage of not having to transfer the memory objects to the main
memory. An optimization targeting a NOR-Flash memory’s XIP capabilities
thus has to be capable of taking timing as well as energy dissipation into
account. In the end, those basic blocks that are frequently executed will be

5.3 Execute-In-Place using Flash Memories 193

copied to the faster main memory. For the remaining instructions, the small
number of accesses can not compensate the high copying overhead. They
therefore remain in the Flash memory. During accesses to the Flash memory,
the SDRAM main memory with its normally high standby energy dissipation
may be put into power down mode, leading to additional energy savings.
Finally, using parts of the Flash memory to execute code leads to reduced
main memory requirements which translates to reduced cost of the device:
since the Flash memory is always required to permanently store the operating
system and the application software, it may just as well be used during normal
operation of the device rather than only at boot time.

In order to integrate the XIP optimization into the encc compiler frame-
work, the assumed operating frequency of the memory bus has to be adjusted
to a value that allows both SDRAM main memory and Flash memory to be
operated in realistic scenarios. In general, the external bus frequency depends
on the internal frequency of the CPU: either, processor and bus operate at the
same frequency, or the external bus frequency is the CPU frequency divided
by an integer value. If the memory bus is too slow, then the speed difference
(in terms of cycles per access) between Flash and SDRAM memories is neg-
ligible in the model and consequently, no advantage for the faster SDRAM
memory can be determined. This will lead to optimization results that execute
the entire application from the Flash memory using XIP due to the advantage
of not having to copy objects at startup. In a realistic scenario, however, the
speed and energy benefits of the SDRAM main memory may lead to energy
savings when parts of the application are allocated to the SDRAM, despite
the necessity to copy memory objects at startup. To make this effect apparent,
the memories need to be operated at sufficiently high frequencies. Since the
ARM7 CPU on the used ATMEL evaluation board only operates at 33 MHz,
it is necessary to increase the processor speed in order to provide a sufficiently
fast external bus frequency for the used modern SDRAM and Flash memo-
ries. However, changing the CPU operating frequency requires some thoughts
concerning the used processor energy model that was established based on the
slower processor.

The average power of the processor is given by the general equation

P = α · CL · (VDD)2 · f (5.26)

with α denoting the switching activity, CL the load capacitance of e.g.
external bus wires, VDD the supply voltage and f the frequency. Based on our
energy model, the average power consumption in the considered ARM7TDMI
processor operated at 3.3 Volts and 33 MHz is round about 150 mW. If the
processor frequency is increased to 100 MHz, the average power is increased
to about 450 mW according to Equation 5.26. Current processors that are
capable of operating at a clock frequency of 100 MHz are usually implemented
using a smaller feature size which in turn allows the supply voltage to be
dropped to between 1.7 and 1.9 Volts. Since the operating voltage is squared

194 5 Main Memory Optimizations

in Equation 5.26, the factor of three introduced by increasing the frequency
is thus compensated.

In addition, according to [ARM04b], the average power dissipated by a
specific ARM processor is steadily decreasing with each generation, despite
the fact that the operating frequencies are increased to higher and higher levels
(cf. Table 5.4). This leads to the conclusion that by keeping the processor
energy model unchanged, the energy dissipated within the processor is never
underestimated. The influence of the used memories on the overall system
energy dissipation may thus be even higher than what was measured using
the unchanged processor energy model. Leaving the processor energy model
untouched is thus a conservative and safe approximation.

Feature Size Area Power Consumption Frequency
[µm] [mm2] [mW/MHz] (Worst Case)

0.35 2.14 2.07 45 MHz
0.25 1.0 0.80 60 MHz
0.18 0.5 0.25 84 MHz
0.13 0.3 0.06 125 MHz

Table 5.4. ARM7TDMI characteristics for different feature sizes

The following sections consider some of the preliminaries required to ex-
ploit the XIP capability of NOR Flash memories using an optimization within
the compiler.

5.3.1 Analysis of the Copy Function

In most of the previously described experiments in this work, the startup code
used by the ARM7 evaluation board was not included in the analysis, since
minimization of the energy dissipation during the actual execution time of
the application was the optimization goal. The XIP optimization presented in
this section considers executing instructions directly from the Flash memory
instead of first copying them to another memory in the system. This new
perspective makes it necessary to also consider the startup process in order
to determine the benefit achieved by not having to copy an object during the
startup process.

In the startup code, the source address, the target address and the length
of the block to be transferred are first loaded during an initialization phase.
The information concerning the source and target locations of code and data
is generated by the linker according to the used linker scripts. By performing
a thorough analysis of the copy routine that is executed following the initial
boot process of the processor, the time and the energy required to copy a
memory object oi can be determined. Since program objects are in general
copied from the Flash memory to the SDRAM main memory, the overhead

5.3 Execute-In-Place using Flash Memories 195

required to accesses these memories also has to be accounted for. This is done
using the number of accesses and the Flash and SDRAM timing and energy
models presented in the subsections of Chapter 3.

All considerations in the presented model are based on the actual copy
routine found in the ARM software development toolkit, despite the fact that
more efficient implementations of the copy routine are possible (cf. [Pet04] for
an example). In the copy routine, the 32 bit ARM instruction set is used. Since
the used instruction level energy model only covers the THUMB instruction
set with a distinct energy value for each instruction [Ste03], one average value
for all 32 bit ARM instructions IARM is assumed for the 32 bit instructions
used within the copy routine.

For details concerning the analysis of the copy function and the energy
equations, please refer to [Ker05]. For the further course of this work, it is
sufficient to define the energy required to copy a memory object oi from the
Flash to the SDRAM main memory. It consists of the energy dissipated within
the CPU and the energy required to access both the Flash and the SDRAM
main memory. The copy energy can thus be written as

ECOPY (oi) := ECPU (oi) + EMEM (oi) (5.27)

5.3.2 Main Memory Partitioning

In order to efficiently exploit the XIP functionality of Flash memories built
in NOR technology, it is essential that the main memory can be put into low
power mode whenever fetching of instructions is performed from the Flash
memory. Accesses to variables can make it necessary to wake up the main
memory, as shown for the power down optimization in Figure 5.5 on Page 182.
If a scratchpad memory is used as the alternative storage space, global vari-
ables can simply be allocated to the scratchpad along with the accessing basic
block in order to avoid the problem of frequently having to wake up the main
memory. Using a Flash memory instead of a scratchpad, this is not an option,
since Flash memories are not suitable for storing data. On one hand, they are
very slow since writing can only be performed in large blocks, on the other
hand a typical Flash memory only survives 105 to 106 write operations be-
fore it becomes unusable [HP03]. In order to still allow at least parts of the
SDRAM main memory to stay in power down mode for a long period of time,
it was partitioned as shown in Figure 5.10: one SDRAM partition carries the
global variables, the other carries the frequently executed instructions that
are copied from the Flash memory during startup. In this way, the SDRAM
instruction partition can stay in power down mode whenever instructions are
fetched from the Flash memory. Since Flash is not usable as data memory,
all data memory objects have to be copied to the SDRAM data partition at
startup. The stack is also moved to the data partition of the SDRAM main
memory. The SDRAM instruction partition can be chosen by the compiler to
accommodate frequently accessed basic blocks and functions, since the initial

196 5 Main Memory Optimizations

overhead caused by the copy operation can be regained due to the faster and
more energy efficient SDRAM accesses compared to the Flash memory. One
additional improvement of this partitioned main memory is the fact that it
allows the instruction partition of the main memory to be put into deep power
down mode once no more instructions have to be executed from it. If all in-
structions until the very end of the application can be fetched from the Flash
memory, then the SDRAM can be put into DPD mode, which corresponds to
the partition being switched off and losing all its contents. If data was also
stored in this partition, switching the memory off would not be feasible, since
many algorithms use the main memory as the final storing place for results,
which would be lost in case of a transition to DPD.

Fig. 5.10. Block diagram of the memory configuration for the XIP optimization

With this memory architecture in mind, the following experiments investi-
gate the energy dissipation, the performance and the total amount of required
main memory storage space using the following three allocation strategies for
the code section of the applications under observation:

• full code shadowing: the entire code section is copied from the Flash mem-
ory to the SDRAM main memory on startup. The code is then executed
from the SDRAM memory. This corresponds to the original behavior of
the used ATMEL evaluation board and the associated software.

• full execute in place (XIP): all instructions remain on the Flash memory
and are executed from there. Only data is initially copied to the data
SDRAM partition. The SDRAM instruction memory is not required during
the execution of the application and can thus remain switched off during
the entire runtime.

• compiler based allocation: the compiler decides which instructions are to be
copied to the faster SDRAM and which blocks should remain on the Flash
memory. Following the final instruction fetch from the SDRAM instruction
partition, it can be put into deep power down mode.

5.3 Execute-In-Place using Flash Memories 197

The data sections of the applications are always copied to the SDRAM
data partition at startup. In the following sections, the optimization problem
is formulated and a heuristic is presented to preselect a number of memory
objects that lead to energy saving opportunities using the DPD of the SDRAM
memory.

5.3.3 Prerequisites

The energy dissipated within the memories is first determined using a profiling
simulation run and a subsequent analysis by enprofiler as described in Sec-
tion 3.6. enprofiler determines the CPU and memory related energy dissipated
during the execution of the application, taking into account both the access
related and the non-access related energy values. In addition, the possibility
of burst accesses for the SDRAM main memory and intrapage accesses for
the Flash memory are considered. Note that the Flash memory described in
Section 3.2.3, which was also assumed for the experiments, is not capable of
operating in synchronous mode. Therefore, only intrapage accesses are used
to enhance the performance of the Flash memory. Sequential intrapage ac-
cesses are detected by enprofiler and weighted accordingly. During the initial
dynamic profiling run, enprofiler keeps track of the time and the energy it
takes to execute a particular memory object from both SDRAM and Flash
memory. The following values are determined:

• Executing memory object oi from SDRAM: Since the application programs
are compiled using encc, they use the 16 bit THUMB mode. The access
related energy spent during the execution of a particular memory object oi

can be determined according to the number of random (r) and sequential
(s) 16 bit read accesses:

ESDRAM ACC(oi) = r · ESDRAM RND16 RD +
s · ESDRAM SEQ16 RD (5.28)

Using the timing information collected during the profiling run, the
non-access related energy can be determined and added to the access
related energy. The access related energy of the data partition is not
considered in this section, since its contribution does not depend on the
instruction allocation decisions taken by the compiler. The non-access
related components have to be considered, however, since a substantially
longer execution time will also cause the data partition to spend more
standby energy.

When an instruction oi is executed from the SDRAM, the non-access
related standby energy is determined by the fact that the memory is active
(PSDRAM STBY) and needs to be refreshed constantly to keep its infor-
mation (PSDRAM REFRESH). The data partition is also assumed to be
active, but in the power down mode. This state was chosen in order not

198 5 Main Memory Optimizations

to overestimate the data partition’s contribution to overall energy, since
not every instruction accesses a data element from the data partition. The
letters I and D represent the standby energies of the instruction and data
partitions, respectively, in the following equations.

ESDRAM LEAKAGE(oi) = (5.29)
(PI SDRAM STBY + PI SDRAM REFRESH) · tCK · TSDRAM (oi) +
(PD SDRAM PDN + PD SDRAM REFRESH) · tCK · TSDRAM (oi)

To determine the overall cost for a memory object oi, the access re-
lated costs are added to the non-access related energy and to the cost
of executing oi on the CPU. This value, ESDRAM CPU (oi) is determined
according to the instruction level energy model, taking into account the
number of cycles required to access the SDRAM. This energy value has
to be multiplied with the number of executions #exec(oi) of this object.
By adding the initial copy overhead caused by copying the object from
Flash to SDRAM memory during startup, the overall energy dissipated
by executing memory object oi from the SDRAM memory is

ESDRAM (oi) = #exec(oi) · (ESDRAM LEAKAGE(oi) + (5.30)
ESDRAM ACC(oi) + ESDRAM CPU (oi)) +
ECOPY (oi)

• Executing memory object oi from Flash memory: To determine the energy
dissipation when memory object oi is executed from the Flash memory,
s intrapage accesses are assumed for sequential accesses, since the used
Flash memory does not support synchronous data transfers. Assuming r
random and s sequential accesses thus yields

EFLASH ACC(oi) = r · EFLASH RND16 RD + (5.31)
s · EFLASH SEQ16 RD

The Flash memory itself does not have any non-access related energy
costs in the used model. However, during execution of instructions from the
Flash memory, non-access related energy is dissipated in the instruction
and the data partition of the SDRAM memory. With TOH representing
the number of cycles it takes to perform a transition from the active state
to the power down state or vice versa (during which the memory can
be assumed to be in the standby state, as explained in Section 5.2.3), the
standby energy of the SDRAM during execution of memory object oi from
the Flash memory can be written as:

5.3 Execute-In-Place using Flash Memories 199

EFLASH LEAKAGE(oi) = (5.32)

(PI SDRAM STBY + PI SDRAM REFRESH) · tCK · TOH +

(PI SDRAM PDN + PI SDRAM REFRESH) · tCK · (TFLASH(oi) − TOH) +

(PD SDRAM PDN + PD SDRAM REFRESH) · tCK · TFLASH(oi)

It consists of the standby and the refresh power of the SDRAM in-
struction partition for the time TOH required to perform the transition to
power down mode. For the remaining time TFLASH(oi)− TOH , the power
down current and the refresh current are required. The data SDRAM par-
tition is assumed to be in power down mode during the whole execution
time of object oi from the Flash memory.

The total energy dissipated by the system when instructions are fetched
from the Flash memory and executed on the CPU is determined as follows:

EFLASH(oi) = #exec(oi) ·
(

EFLASH LEAKAGE(oi) + (5.33)

EFLASH ACC(oi) + EFLASH CPU (oi)
)

Note that no copy costs are required in this case, since the instructions
can be executed from the Flash memory directly.

This concludes the energy dissipation of memory objects when they are
executed either from the SDRAM main memory after having been copied
there, or from the Flash memory using XIP.

5.3.4 Preselection of Memory Objects to enable Deep Power Down

The actual optimization algorithm presented in the following section is ca-
pable of deciding whether it is beneficial to use the slower Flash memory to
execute certain instructions and at the same time put the SDRAM instruc-
tion partition into power down mode. Deep power down mode, with its even
higher energy saving potential, is not considered in the optimization itself. To
allow the SDRAM instruction partition to go to deep power down when no
more instructions are to be executed from it, and at the same time restrict the
complexity of the final XIP optimization problem, a heuristic algorithm first
selects those candidates for XIP execution on the Flash memory that allow
the exploitation of the instructions partition’s DPD.

The set S represents the execution of basic blocks over time, where each
sj ∈ S stands for a sequence consisting of only one basic block that may be
executed repeatedly:

S := {s1, . . . , su} (5.34)

osj
designates the basic block executed in sequence sj . The number of

executions of a particular basic block oi = osj
within basic block sequence

200 5 Main Memory Optimizations

sj is written as #exec(osj
). Figure 5.11 illustrates these notations. The total

number of executions of a basic block oi can thus be written as

#exec(oi) =
n∑

j=1

#exec(osj
) with osj

= oi (5.35)

Fig. 5.11. Example basic block sequence for preselection algorithm

To determine basic blocks that should be allocated to the Flash memory
in order to allow the instruction partition of the main SDRAM memory to
be put to deep power down mode, the sequence of basic blocks is traversed
from the last to the first basic block. In this way, the soonest point at which
the instruction partition is no longer required and can thus be shut down is
determined. All objects following this point in time are then executed from
the Flash memory and do not need to be copied to the SDRAM at startup.

Choosing a basic block sequence to be executed from the Flash memory
while the instruction partition of the SDRAM memory is in DPD mode re-
quires the energy dissipation of this sequence to be re-calculated, since in
contrast to the previous considerations, the DPD energy instead of the power
down energy has to be assumed for the SDRAM instruction partition. Since it
is difficult to integrate this aspect into a uniform ILP representation together
with the consideration of the power down mode of the SDRAM main memory,
a two step approach using a separate preselection of memory objects that al-
low the main SDRAM memory to go to deep power down was chosen. While
the instruction partition is thus in DPD, the data partition of the SDRAM is
still considered to be in the power down mode, as before, and thus consumes
its power down and refresh energy.

EDPD
FLASH LEAKAGE(osj

) = (PD SDRAM PDN + (5.36)
PD SDRAM REFRESH +
PI SDRAM DPD) · tCK · TFLASH(osj

)

The preselection algorithm first considers all basic blocks to be executed
from the Flash memory. Therefore, the energy required to copy the basic
blocks from the Flash to the main SDRAM memory is initially not considered

5.3 Execute-In-Place using Flash Memories 201

in the energy equations. It is considered during the course of the algorithm,
when basic blocks actually require copy operations. The cost of copying a set
of memory objects oi ∈ M to the SDRAM memory is determined as

ECOPY (M) =
∑

oi∈M

ECOPY (oi) (5.37)

using ECOPY (oi) as defined above in Equation 5.27.
The initial energy dissipation for executing a basic block sequence from

the SDRAM or the Flash memory is assumed to be

EDPD
FLASH(osj

) = #exec(osj
) · (EDPD

FLASH LEAKAGE(osj
) + (5.38)

EFLASH ACC(osj
) + EFLASH CPU (osj

))

EDPD
SDRAM (osj

) = #exec(osj
) · (ESDRAM LEAKAGE(osj

) + (5.39)
ESDRAM ACC(osj

) + ESDRAM CPU (osj
))

Finally, the preselection algorithm requires three sets, which are defined
as follows:

• A := {oi : oi has pending executions }
• M := {oi : oi is suitable for Flash execution }
• X := {oi : oi is executed from Flash }

Starting from the last executed basic block, the algorithm determines if
the currently considered basic block is being executed at an earlier point in
time. If it is, then this basic block is inserted into set A. If a basic block
has no more pending executions and may thus be executed from the Flash
memory, at the same time allowing the SDRAM instruction partition to be
put into DPD mode, then the object is put into set M . Finally, if the energy
dissipation is lower when an object and all the objects that are executed at a
later point in time are executed from the Flash memory and the SDRAM is
put into DPD mode, then all of these objects are inserted into set X. At the
end of the algorithm, the set X thus contains those basic blocks from the end
of the basic block sequence that should remain in the Flash memory instead
of being copied to the SDRAM instruction partition.

Note that since the instruction sequence S is determined using dynamic
profiling, it is possible that the preselection algorithm generates suboptimal
results: assume that during a dynamic profiling run with a certain input data
set, basic block sequence osj

is executed for the last time at point in time t.
The preselection algorithm decides to put the SDRAM instruction partition
into deep power down mode following this execution of sequence osj

. Due to a
different input set and data dependencies in the control flow of the application,
the sequence osj

is executed again at a later point in time t + x during the
actual execution of the application. Executing it from the SDRAM is not
possible anymore, since the instruction partition is already in DPD mode.

202 5 Main Memory Optimizations

However, each memory object also has a copy in the Flash memory. In
order to generate valid code, the compiler has to ensure that only basic blocks
in the Flash memory will ever be executed once the SDRAM instruction par-
tition has been put to DPD. This is possible by performing the corresponding
address transformations for all basic blocks in set X following the preselection
algorithm. The presence in set X implies that this basic block is never copied
to the SDRAM partition and is only executed from the Flash memory when
the instruction partition has been put to DPD. In this way, if data dependen-
cies cause a different behavior than expected by the preselection algorithm,
correct, albeit not optimal code will result if the basic blocks in set X are
modified accordingly.

The following example, using the sequence of basic blocks presented in
Figure 5.11, shows how the algorithm selects basic blocks in detail. Figure 5.12
illustrates the steps of the algorithm.

Fig. 5.12. Steps of the preselection algorithm

The algorithm starts at the end of the basic block sequence and first visits
basic block “E”. This object is only executed once and thus has no executions
pending at an earlier point in time. Since the object is only executed once, it
is beneficial to execute this basic block from the Flash memory instead of first
copying and then executing it from the SDRAM. It is therefore inserted into
set X (Figure 5.12 a). After this decision has been taken, the benefit value is
again initialized to “0”, and the algorithm assumes the SDRAM partition to
be put into DPD mode before basic block “E” is being executed.

The next memory objects are “D” and “C”, both of which have executions
pending earlier in the sequence. Therefore, these basic blocks are inserted into
set A (Figure 5.12 b).

5.3 Execute-In-Place using Flash Memories 203

Subsequently, the second occurrence of basic block “D” is found. Since it
has no further executions at an earlier point in time, it is removed from the set
A and its energy dissipation both in SDRAM and in Flash are estimated using
the equations presented above. In this example, we assume that since “D” is
executed frequently, it is better executed from the faster SDRAM than from
the Flash memory. Therefore, object “D” is inserted into the set M to mark
that it may be executed from the Flash memory if this is later determined to
be beneficial (Figure 5.12 c). At this point in the preselection algorithm, the
overall benefit value is negative.

Finally, the last execution of basic block “C” is found. The benefit value
from executing this object from the Flash memory is assumed to be so high
that the overall benefit value for objects “C” and “D” being executed from the
Flash memory is positive. Therefore, “C” is inserted into set X along with all
potential candidates in set M (Figure 5.12 d). Once again, the benefit value
is reinitialized and the algorithm continues to look for objects that should be
executed from the Flash memory.

In this example, when the algorithm has reached the first basic block “A”,
we assume a negative benefit value. Therefore, no new elements are inserted
into the final Flash execution set X, and the result of the algorithm is that
basic blocks “C”, “D” and “E” will remain in the Flash memory, and the
SDRAM instruction partition will be put into DPD mode once object “C” is
executed for the first time.

5.3.5 Formalization of the Preselection Algorithm

If a new sequence of basic blocks osj
is found that may potentially be executed

from the Flash memory, it is inserted into set M and the energy benefit
is adjusted by the difference between the SDRAM execution and the Flash
execution. The benefit is thus calculated as:

E+ = E+ +
(

EDPD
SDRAM (osj

) − EDPD
FLASH(osj

)
)

(5.40)

Since the SDRAM memory is in general faster and consumes less energy
compared to the Flash memory, a negative benefit value will usually be ob-
tained following this step. This can be compensated by not having to copy
memory objects from Flash to SDRAM memory, which will be considered in
the equations below.

At the beginning of the algorithm and after an object has been allocated
to the set X, the energy benefit E+ is initialized to the value 0.

The total number of executions of a particular basic block has already
been introduced as #exec(oi). The remaining number of executions (looking
from the end of the execution to the beginning of the execution, i.e. in the
direction of the preselection algorithm) is described by #exec∗(oi). When the
basic block sequence sj is being considered by the algorithm, the number of

204 5 Main Memory Optimizations

executions of basic block oi is reduced by the number of executions in the
current sequence if osj

= oi:

#exec∗(oi) = #exec∗(oi) − #exec(osj
) (5.41)

The algorithm can then determine pending executions of this basic block
by checking whether #exec∗(oi) is equal to 0. Depending on the outcome of
this comparison, the algorithm proceeds:

• #exec∗(oi) > 0:
Object oi is inserted into set A. The algorithm continues with the subse-
quent basic block sequence sj+1.

• #exec∗(oi) = 0:
Since no executions of basic block oi are pending, it is removed from set A
(if it was previously included in set A). After this operation, the algorithm
checks whether set A is the empty set:
– A 	= ∅: The currently considered object oi is inserted into set M .
– A = ∅: The copy energy that can be saved by executing the currently

considered object oi and all remaining objects in set M from the Flash
memory is added to the current energy benefit E+. The sign of the
benefit is then checked:. E+ + ECOPY (M) + ECOPY (oi) ≥ 0 : The advantage of not having

to copy the objects in set M to the SDRAM memory outweighs the
increased time and energy required to execute these objects from
the Flash memory. Thus, all objects in set M and the currently
considered object oi are inserted into set X and are executed from
the Flash memory. Following this step, the Energy benefit E+ is re-
initialized with the value 0, set M is the empty set. The algorithm
continues with the subsequent basic block sequence sj+1.. E+ + ECOPY (M) + ECOPY (oi) < 0 : Proceed as in the case of
A 	= ∅. The algorithm continues with the subsequent basic block
sequence sj+1.

The basic blocks in set X will be considered to have an energy dissipation
of 0 when they are executed from the Flash memory in the subsequent op-
timization. This guarantees that they will be allocated to the Flash memory
because the preselection algorithm determined that executing these objects
from the Flash memory and keeping the SDRAM instruction partition in the
DPD mode results in a higher benefit than what could be achieved by allocat-
ing them according to the XIP optimization which only assumes the SDRAM
to be in power down mode.

5.3.6 Formalization of the XIP Allocation Problem

Considering the costs of executing basic blocks from the Flash or from the
SDRAM as presented above, a minimization problem is formulated in ILP

5.3 Execute-In-Place using Flash Memories 205

notation. The set of memory objects considered in this optimization is only
formed by the r basic blocks of the application. Global variables are not
considered at all, since they are always allocated to the data partition in
SDRAM technology.

The energy costs for executing a basic block oi from the SDRAM partition
or from the Flash are determined as

ESDRAM (oi) = #exec(oi) ·
(

ESDRAM LEAKAGE(oi) + (5.42)

ESDRAM ACC(oi) + ESDRAM CPU (oi)
)

+

ECOPY (oi)

EFLASH(oi) = #exec(oi) ·
(

EFLASH LEAKAGE(oi) + (5.43)

EFLASH ACC(oi) + EFLASH CPU (oi)
)

The energy values of those basic blocks that have been allocated to the
Flash memory by the preselection algorithm are set to 0 for the Flash memory.
This ensures that they will always be allocated to the Flash memory, since
this causes no additional costs.

Additional adjustments of the energy dissipation are necessary since it is
assumed in the model that for every successor of a basic block, a long jump
to a different memory partition is required (cf. Section 4.2.3 for a detailed
description). Since the long jump is the last instruction in a basic block, it is
assumed that the long jump may be read sequentially both from the SDRAM
and the Flash memory. As in the Bottom-Up model, the edges of the control
flow graph are also considered in order to guarantee that the long jump energy
is only considered where long jumps are actually required.

Two different effects have to be considered: if the control flow between two
basic blocks stays on the same memory partition (i.e. either the SDRAM or the
Flash memory), then the execution of an additional longjump is not required,
meaning that the energy assumed for these longjump instructions can be sub-
tracted. Depending on the memory partition, the energy required to execute
one longjump instruction is defined as ESDRAM JUMP or EFLASH JUMP .

Additionally, when two connected basic blocks are both allocated to the
Flash partition, then the additional energy benefit E+

OH can also be sub-
tracted from the energy equation, since the SDRAM instruction partition can
remain in power down mode in this case (cf. Section 5.2.3 for a more detailed
description). To model these refinements of the energy model, the variables
e(oi, ok) are required which contain the information how many times control
flow passes along the edge that connects basic blocks oi and ok.

206 5 Main Memory Optimizations

Decision Variables

Two decision variables are introduced for every memory object oi to determine
whether it is allocated to the SDRAM or the Flash memory:

õi,SDRAM =
{

1, if object oi is allocated to SDRAM
0, otherwise (5.44)

õi,F lash =
{

1, if object oi is allocated to Flash
0, otherwise (5.45)

To model the control flow along the edges as mentioned above, an addi-
tional set of decision variables is introduced. The variables are assigned the
value 1 if the two basic blocks connected by the corresponding edge are allo-
cated to the same memory partition:

xi,k,SDRAM =

⎧⎨
⎩

1, if oi and ok are connected by an edge
and both allocated to SDRAM

0, otherwise
(5.46)

xi,k,F lash =

⎧⎨
⎩

1, if oi and ok are connected by an edge
and both allocated to Flash

0, otherwise
(5.47)

Constraints

Two sorts of constraints have to be satisfied: on one hand, each memory object
must be allocated either to the SDRAM or to the Flash memory.

∀i, 1 ≤ i ≤ r : õi,SDRAM + õi,F lash = 1 (5.48)

On the other hand, the decision variables for the edges may only be set to
1 if the corresponding object decision variables are set accordingly.

∀i, k : 1 ≤ i ≤ r, 1 ≤ k ≤ r : (5.49)
õi,SDRAM + õk,SDRAM − 2 · xi,k,SDRAM ≥ 0

õi,F lash + õk,F lash − 2 · xi,k,F lash ≥ 0

Note that considering the memory partition capacities is not required for
this particular optimization, since in contrast to the small scratchpad memo-
ries considered in the previous sections, both Flash and SDRAM main memory
are assumed to be sufficiently large to hold all basic blocks.

5.3 Execute-In-Place using Flash Memories 207

Objective Function

Finally, the objective function that is to be minimized by the ILP solver is
presented:

Minimize (5.50)
r∑

i=1

(ESDRAM (oi) · õi,SDRAM + EFlash(oi) · õi,F lash) −

r∑
i=1

∑
ok∈Succ(oi)

e(oi, ok) · E+
OH · xi,k,F lash −

r∑
i=1

∑
ok∈Succ(oi)

e(oi, ok) · (ESDRAM JUMP · xi,k,SDRAM +

EFlash JUMP · xi,k,F lash)

The first line of the objective function determines the energy contribution
of basic blocks if they are executed from the Flash or from the SDRAM
instruction partition. The following line subtracts the overhead energy E+

OH

required to wake up the SDRAM instruction partition if the SDRAM can
remain in the power down mode. This is the case when basic blocks oi and ok

are connected by an edge, such that ok is the successor of oi, and if they are
both allocated to the Flash memory. The last two lines subtract the energy
to execute the longjump instructions if they are not necessary due to two
adjacent basic blocks being assigned to the same memory partition.

With |E| being the number of edges in the control flow graph (including
the “dummy” edges introduced to model the relationship of basic blocks and
accessed variables), and r being the number of basic blocks, the size of the
described ILP problem can be determined as

#Constraints(XIP) = r + 2 · |E| (5.51)
#DecisionV ariables(XIP) = 2r + 2 · |E| (5.52)

5.3.7 Results for XIP

To evaluate and compare the results obtained using the optimization algo-
rithm presented in the previous section, three experiments were performed for
each benchmark application. First, only SDRAM main memory was assumed
to be present in the system, and the entire code section of the application was
copied to this SDRAM partition. The second experiment used only the Flash
memory partition to execute instructions using the XIP functionality. Finally,
the XIP optimization technique was used to allocate instructions to either the
Flash or the SDRAM partition to maximize the determined benefit. Beside

208 5 Main Memory Optimizations

the different timing and energy properties of Flash and SDRAM Memory, the
optimization takes into account the fact that instructions executed from the
Flash partition do not have to be copied to the SDRAM instruction partition
first. Furthermore, when instructions are executed from the Flash memory,
the SDRAM main memory can be put in power down mode to save addi-
tional energy. If no more instructions are to be executed from the SDRAM
instruction partition, it can even be switched off completely and be put into
deep power down mode, which causes the main memory to lose all of its con-
tents. Since in all the considered setups, data elements are always stored in a
separate SDRAM data partition, the loss of instructions in the main memory
does not imply a loss of data. For this reason, the deep power down mode can
be exploited in this configuration.

For the Flash memory, the data sheet of a Micron Q-Flash MT28F640J3
chip was used [Mic04b]. Results were generated using the Flash energy and
timing model presented in Sections 3.4.3 and 3.3.2, respectively, and the data
sheet values shown in Table 5.5

Designation Unit Symbol Value

Supply voltage V VDD 3.3
Read async. access time ns tAA 100
Read intrapage access time ns tAPA 20 / 10
Read burst access time ns tCLK -
Read async. access current mA IDD1 9
Read intrapage access current mA IDD2 8
Read burst access current mA IDD3 -

Table 5.5. Micron QFlash characteristics [Mic04b]

The used main SDRAM memory consists of two 64 Mbit Mobile SDRAM
chips [Mic04c] for the data and instruction partition. The corresponding data
sheet values are provided in Table 5.6.

Value name Symbol Current
[mA]

active operating current IDD1 50.0

power-down standby current IDD2 0.15

active standby current IDD3 35.0

operating current IDD4 80.0

auto refresh current IDD5 2.0

Table 5.6. Data sheet values used for the XIP experiments [Mic04c]

The benchmarks used to generate results are shown in Table 5.7, in-
cluding information concerning code and data size. Detailed information is

5.3 Execute-In-Place using Flash Memories 209

generated during a dynamic profiling run of the applications. As described in
Section 3.6.2, the generated values include execution and access counts which
are then used to generate an instance of the proposed ILP problem. Both the
size and the execution frequency of code objects have an influence on their
treatment by the allocation algorithm: objects that are large in size and are
not frequently executed have the highest probability of being allocated to
the Flash memory and executed using the XIP functionality. In contrast to
that, small and frequently executed basic blocks will be copied to the faster
SDRAM memory, since for them, the benefit achieved by the faster access
times overcompensates the copy costs for these objects. In addition, the al-
location algorithm also takes the potential for burst accesses into account,
which may restrict the benefit of allocating very small single basic blocks to
the SDRAM since they do not provide sufficient potential for beneficial burst
accesses. As shown in Figure 5.9 in the previous section, considering burst ac-
cesses can lead to significant savings of up to 50%, depending on the control
flow of the application under consideration.

Benchmark Code Size Data Size Description
[bytes] [bytes]

MPEG 15564 32032 MPEG2 decoding algorithm

ME 796 4 Media application using intensive
integer arithmetic

ADPCM 724 6928 Encoder and decoder using Adaptive Differential
Pulse Code Modulation

FIR 136 2732 Finite Infinite Response Filter Application

Fast IDCT 1428 6552 Integer implementation of
inverse discrete cosine transform (IDCT)

Multi Sort 716 1204 Sorting benchmark
(combining several sorting algorithms)

G.721 2784 2424 Encoding and decoding according to G.721 using
“Adaptive differential Pulse Code Modulation”

Table 5.7. Selected benchmarks for XIP optimization

The experimental setup consists of a Flash memory partition with XIP
capabilities and two SDRAM memory partitions, as shown in Figure 5.10. The
partitioning of the main SDRAM was introduced for several reasons: writable
data has to be allocated to an SDRAM memory due to the limited number
of write cycles for Flash memory. However, data elements accessed in a large
SDRAM partition can effectively prevent the memory from ever transitioning
to a power down mode. By moving the data to a partition of its own, the
instruction partition can be put into a low power mode while instructions
are being executed from the Flash partition. Additionally, storing data on
a separate SDRAM partition allows the SDRAM instruction partition to be
put to deep power down mode when no more instructions are to be executed

210 5 Main Memory Optimizations

from it. For the initial experiments, the intrapage access times of the Flash
memory were set to 20ns, which represents a relatively slow memory. Results
show that the achievable gains for this setting are not too high. By making
the Flash memory faster, assuming tAPA = 10ns, it becomes more attractive
with respect to overall energy dissipation and the savings by including an
XIP-capable Flash memory in the system are increased.

Figure 5.13 shows the obtained results for the MPEG decoding benchmark.
The left triplet of bars shows the results for energy dissipation, execution
time and SDRAM instruction memory requirements in the case that only the
SDRAM main memory is used to hold both instructions and data. The middle
triplet of bars represents the results obtained by the proposed optimization
which allocates memory objects to the SDRAM main memory or to the Flash
in an appropriate way. Since this is expected to be the best configuration in all
cases, all results were scaled such that the optimization results are at 100%.
Since the optimization result bars always have a height of 100%, they carry
no useful information and are thus omitted from the further figures. Finally,
the right triplet of bars shows the results if all instructions are solely allocated
to the Flash memory partition and executed from there.

294

SDRAM Optimization Flash
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

Energy

Execution Time

SDRAM Instruction
Memory Requirements

E
ne

rg
y/

ru
nt

im
e/

m
em

or
y

[%
]

Fig. 5.13. SDRAM vs. Flash optimization vs. XIP for MPEG, tAPA = 20ns

For the MPEG benchmark, the energy required for a pure SDRAM execu-
tion is slightly higher than the results obtained using the optimization. The
same is also true for the execution time. Since this benchmark application has
a high number of basic blocks and most of them are not executed frequently,

5.3 Execute-In-Place using Flash Memories 211

more than two thirds of the total 70 functions are allocated to the Flash parti-
tion by the optimization, leading to savings in SDRAM capacity requirements
of 66% when only XIP from the Flash memory is being used. Assuming that
the Flash memory always has to have the capacity to accommodate the en-
tire application in a non-volatile memory, the optimized version requires less
than 4 kB of additional SDRAM space, whereas the entire program would
require nearly three times that amount if all instructions were executed from
the SDRAM.

For the version that only utilizes Flash memory to execute instructions,
the energy dissipation is 6% above that of the optimized version. This is
mainly due to the slower Flash memory accesses which result in the fact that
the execution time is prolonged by nearly 40%. The rightmost bar in the
figure has a height of zero: If all instructions are executed from the Flash, no
SDRAM instruction partition is required.

Summarizing the results for this first benchmark, the optimization is ca-
pable of finding a good compromise between Flash and SDRAM execution of
instructions. While for the pure Flash execution, the execution time is longer
and consequently the energy dissipation higher, the optimized version that
only allocates those instructions to the Flash memory that result in maxi-
mum energy savings is capable of reducing the overhead introduced by the
slower Flash memory to zero. The optimized version even slightly outperforms
the SDRAM-only allocation due to saved copy costs and power down/deep
power down times of the SDRAM instruction partition. The most beneficial
effect of utilizing the optimization algorithm however lies in the fact that only
one third of the SDRAM main memory is required when the XIP functionality
of the Flash memory is exploited. Since the memory requirements are increas-
ingly becoming a main cost factor for embedded systems, it is mandatory to
also exploit the Flash memories’ XIP capabilities. The presented optimization
is capable of providing a suitable allocation of instructions to both XIP-Flash
and to SDRAM instruction memories.

SDRAM Flash
0

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180

Energy

Execution Time

SDRAM Instruction
Memory Requirements

E
ne

rg
y/

ru
nt

im
e/

m
em

or
y

[%
]

a)

SDRAM Flash
0

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180

Energy

Execution Time

SDRAM Instruction
Memory Requirements

E
ne

rg
y/

ru
nt

im
e/

m
em

or
y

[%
]

b)

Fig. 5.14. Flash memory XIP optimization for a) ME, b) ADPCM, tAPA = 20ns

212 5 Main Memory Optimizations

The benchmarks ME, ADPCM and FIR, shown in Figures 5.14 and 5.15 a)
show a similar behavior and are therefore discussed together. They all consist
of a smaller number of basic blocks compared to the MPEG application. For
all these benchmarks, the gains obtained concerning performance and energy
dissipation compared to a pure SDRAM execution were found to be mar-
ginal. However, on average two thirds of the SDRAM capacity could be saved
when the Flash memory is also utilized, which is significant for cost-sensitive
embedded systems.

SDRAM Flash
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

Energy

Execution Time

SDRAM Instruction
Memory Requirements

E
ne

rg
y/

ru
nt

im
e/

m
em

or
y

[%
]

a)

SDRAM Flash
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

Energy

Execution Time

SDRAM Instruction
Memory Requirements

E
ne

rg
y/

ru
nt

im
e/

m
em

or
y

[%
]

b)

Fig. 5.15. Flash memory XIP optimization for a) FIR, b) Fast IDCT, tAPA = 20ns

Compared to the Flash-only execution of instructions, the execution times
are reduced by 30% to 40% using the optimization. This is due to the fact
that many instruction accesses for the considered benchmarks can be per-
formed using fast sequential burst accesses when executed from the SDRAM.
An intrapage accesses from the Flash memory requires one additional cycle
compared to burst accesses from the SDRAM. The energy gain of round about
10% is also mostly due to this reduced execution time.

SDRAM Flash
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

Energy

Execution Time

SDRAM Instruction
Memory Requirements

E
ne

rg
y/

ru
nt

im
e/

m
em

or
y

[%
]

a)

SDRAM Flash
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

Energy

Execution Time

SDRAM Instruction
Memory Requirements

E
ne

rg
y/

ru
nt

im
e/

m
em

or
y

[%
]

b)

Fig. 5.16. Flash memory XIP optimization for a) Multi Sort, b) G.721, tAPA =
20ns

5.3 Execute-In-Place using Flash Memories 213

For the remaining benchmarks, namely Fast IDCT, shown in Figure 5.15 b),
Multi Sort and G.721 (Figure 5.16), only marginal improvements could be
achieved compared to a pure SDRAM execution, however a potential to save
up to 15% SDRAM capacity is present in these benchmarks. Compared to
a pure XIP-execution from the Flash memory partition, the execution times
were reduced by nearly one third, which is due to the faster access times of
the SDRAM compared to the Flash memory. Energy was reduced by 6%, also
mainly due to the saved execution cycles.

For the second set of experiments, the intrapage access times of the used
Flash memory were assumed to be reduced to 10ns instead of 20ns as be-
fore. This is expected to lead to make the Flash more attractive and to have
the optimization execute more instructions using XIP. The intrapage access
time is the only parameter that was varied between the two sets of experi-
ments, but the effects are clearly visible: for the two benchmarks shown in
Figure 5.17, G.721 and FIR, the optimization allocates all instructions to the
Flash memory and does not utilize the SDRAM partition at all. This leads
to significantly longer execution times, but identical energy values compared
to the SDRAM execution. This is due to the fact that the cost function used
by the optimization algorithm only optimizes for minimal energy dissipation.
Since no SDRAM is being used in the optimized version, no percentage can
be supplied for the SDRAM-only execution of instructions.

SDRAM Flash
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

Energy

Execution Time

E
ne

rg
y/

ru
nt

im
e

[%
]

a)

SDRAM Flash/Opt
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

Energy

Execution Time

E
ne

rg
y/

ru
nt

im
e

 [%
]

b)

Fig. 5.17. Flash memory XIP optimization for a) G.721, b) FIR, tAPA = 10ns

The benchmarks Multi Sort, ME (cf. Figure 5.18) and MPEG (Figure 5.19)
are discussed together since they show similar results. In all of these bench-
marks, the energy dissipation of the optimized version is slightly lower com-
pared to both the pure Flash and the pure SDRAM execution. Despite the
fact that a fast Flash memory with an intrapage access time of 10ns was used,
the execution times of the optimized version still outperforms the pure Flash
version by 30% on average. Compared to the SDRAM execution, the execu-
tion time is increased by only 4%, which is acceptable taking into account

214 5 Main Memory Optimizations

446

SDRAM Flash
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

Energy

Execution Time

SDRAM Instruction
Memory Requirements

E
ne

rg
y/

ru
nt

im
e/

m
em

or
y

[%
]

a)

SDRAM Flash
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

Energy

Execution Time

SDRAM Instruction
Memory Requirements

E
ne

rg
y/

ru
nt

im
e/

m
em

or
y

[%
]

b)

Fig. 5.18. Flash memory XIP optimization for a) Multi Sort, b) ME, tAPA = 10ns

SDRAM Flash
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

Energy

Execution Time

SDRAM Instruction
Memory Requirements

E
ne

rg
y/

ru
nt

im
e/

m
em

or
y

[%
]

b)

Fig. 5.19. Flash memory XIP optimization for MPEG, tAPA = 10ns

the considerable amount of SDRAM capacity that can be saved if part of the
program is executed from the Flash memory.

For the Fast IDCT benchmark in Figure 5.20 a), nearly the entire program
is executed from the Flash memory. Only 4% of the total program size is
allocated to the SDRAM memory, leading to a percentually large decrease in
the main memory requirements. Surprisingly, the energy dissipation could be
reduced by 4% compared to a pure SDRAM execution, caused by the reduction
of the initial copy costs from Flash to SDRAM memory. The optimization for

5.3 Execute-In-Place using Flash Memories 215

SDRAM Flash
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

Energy

Execution Time

SDRAM Instruction
Memory Requirements

E
ne

rg
y/

ru
nt

im
e/

m
em

or
y

[%
]

a)

SDRAM Flash
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

Energy

Execution Time

SDRAM Instruction
Memory Requirements

E
ne

rg
y/

ru
nt

im
e/

m
em

or
y

[%
]

b)

Fig. 5.20. Flash memory XIP optimization for a) Fast IDCT, b) ADPCM, tAPA =
10ns

energy results in an execution time that is prolonged by 18% compared to
SDRAM, but shorter by 4% compared to the Flash execution.

The ADPCM benchmark in Figure 5.20 b) is another benchmark where
the copy costs have a relevant impact on the outcome of the optimization. This
benchmark’s execution time is shortest for the optimized version. In contrast
to the other benchmarks where the slower Flash memory causes prolonged ex-
ecution times compared to the pure SDRAM execution, ADPCM is relatively
small and the execution counts of basic blocks are such that the copy costs are
actually the dominating part of the overall execution time. Since these copy
costs can be reduced by using XIP, the overall execution time can be reduced
even compared to the faster SDRAM.

The influence of the basic blocks’ execution counts on the allocation al-
gorithm was further examined using the digital signal processing benchmark
biquad N sections, a recursive filter application. By modifying the parameter
N , it is possible to simulate a higher order filter and thus to increase the
execution count of the basic blocks within the core of the filter routine. The
results shown in Figure 5.21 were generated using a Flash memory with an
intrapage access timing of 20ns.

For small execution counts (N = 4), the copy costs are responsible for a
high percentage of the execution time and the overall energy costs, whereas
the execution of the application from the Flash memory has the same energy
dissipation and execution time as the optimized version. This is also true for
N = 25, however the energy costs caused by copying are compensated by
the more frequent execution from the fast SDRAM. The same is true for the
execution time: when using SDRAM, it is slightly below the results of the
optimization, which still corresponds to executing the entire application from
the Flash memory. Since no SDRAM memory is used by the optimization in
these cases, the SDRAM bars are not shown in the figure.

For N = 100, both SDRAM and Flash execution are outperformed by
the optimized version, which is capable of finding an allocation of memory

216 5 Main Memory Optimizations

SDRAM
N = 4

Flash
N = 4

SDRAM
N = 25

Flash
N = 25

SDRAM
N = 100

 Flash
N = 100

SDRAM
N = 1000

 Flash
N = 1000

0

25

50

75

100

125

150

175

200

225

250

Energy

Execution Time

SDRAM Instruction
Memory Requirements

E
ne

rg
y/

ru
nt

im
e/

m
em

or
y

[%
]

Fig. 5.21. Effect of execution counts on XIP optimization results for bi-
quad N sections, tAPA = 20ns

objects to the Flash and to the SDRAM memory to minimize the energy
dissipation. For the final results using N=1000, the slower access times of the
Flash memory cause the pure Flash allocation strategy to consume more time
and energy.

In summary, the presented optimization that targets the XIP capabilities
of Flash memories built in NOR technology selects a suitable set of instruc-
tion memory objects that should be executed directly from the Flash memory
instead of copying them to the SDRAM main memory at startup. In general,
large basic blocks with few executions are likely to stay on the Flash mem-
ory, whereas basic blocks that are frequently executed can overcompensate
the initial copy costs by being fetched from the faster and more energy effi-
cient SDRAM instruction partition. As one main result of the optimization,
utilizing the Flash memory’s XIP capabilities can help to significantly reduce
the main memory requirements of the applications. Since memory is one of
the factors that determines the costs of a device, this result should encourage
designers to take full advantage of the Flash memories present in most designs
by considering the XIP option.

6

Register File Optimization

In the previous chapters, the memory hierarchy was shown to be responsi-
ble for a large amount of the overall energy consumed within an embedded
computing system. Having looked at the use of scratchpad memories as an
alternative to caches and at the energy saving potential offered by modern
main memory technologies, this chapter considers the part of the memory
hierarchy that is closest to the processor: the register file. It is essential for
an efficient operation of the processor that the use of processor registers is as
effective as possible. Especially in RISC architectures, all operations can usu-
ally only be performed on values stored within the register file. Only a couple
of special operations (e.g. Load, Store, Push, Pop) are capable of accessing
the memory at all.

Since all data in RISC architectures has to be made available in the register
file in order to be processed, the register file represents an area of the proces-
sor with extremely high switching activity, and consequently a high amount
of energy dissipation. For Motorola’s M*Core architecture, 16% of the total
processor power and as much as 42% of the data path power is consumed
within the register file [SLAM98], which shows the significance of considering
the register file during the design of an energy conscious system. In particular
for embedded systems, the intended group of possible applications is known
a priori. Therefore, typical use cases and scenarios can be used during the
design of the system to determine the requirements concerning the register
file.

The following section presents some related work dealing with the special
properties of the register file. After possible physical implementations of the
register file, a short overview over register allocation and lifetime analysis of
variables within the compiler is provided. Following that, results are presented
that show how the size of the register file influences code size, performance
and energy. The behavior of one example benchmark application is studied
in-depth. The conclusions drawn from this process are used to generate infor-
mation within the compiler which helps the designer of an embedded system

217

218 6 Register File Optimization

take decisions on the appropriate size of the register file which leads to an
energy- and performance-optimized design.

The results in this chapter were presented for the first time in [WJS+01].
This chapter gives an overview over the mentioned journal paper and extends
the idea by providing a compiler guided estimation of the required register
file size.

6.1 Related Work

The properties of the register file are important parameters for the design
of embedded systems. In particular the size of the register file has a strong
impact on the energy dissipation of the system. The fact that the compiler
is responsible to generate code that efficiently exploits the available registers
makes these considerations interesting in the context of compiler controlled
energy savings. If too few registers are available in the architecture of the
embedded system, the compiler has to insert so-called spill code to store values
that are required at a later point in time in the main memory instead of the
register file. This can lead to a severe loss of quality of the generated code,
since additional instructions make the executable larger, the spill instructions
increase the number of instructions that are executed without contributing
to the actual results, and the additional accesses to main memory will cause
both performance and energy penalties. Using a reconfigurable compiler, the
quantitative impact of changes to the register file size can be studied.

Retargetable or reconfigurable compilers have been a topic of research
for a long time, and they are even used in industry. However, due to the
fact that the reconfigurability in general results in poor code quality, they
are usually used only in the context of rapid prototyping. In the well-known
Trimaran compiler [KGK99, Tri], the machine description language MDES is
used to model the underlying hardware. Using this information, the compiler
can generate code for that particular architecture.

A different approach was taken by [Leu97]: in this work, a compiler can
be retargeted to different processors of the DSP domain described in the
MIMOLA hardware description language [JM93]. It is possible to specify the
architecture in the form of an executable specification and at the same time
supply the necessary information for the compiler.

Another way of specifying the hardware architecture is followed by the
LISA toolsuite, which allows the user to generate a simulator, a VHDL descrip-
tion to produce actual hardware, a compiler and other required tools using one
single processor description supplied in the LISA language [CHB+05]. Some
additional information concerning the instruction set of the processor and the
mapping of high-level constructs to assembly instructions is required in addi-
tion to the pure hardware description to allow the generation of compilation
tools.

6.2 Implementation of the Register File 219

One of the vital aspects when designing a new architecture is the definition
of the considered design space. A number of approaches to ASIP design where
the design space consists of e.g. number and kind of functional units, issue
width and the size of caches are summarized in a survey paper [JBK01]. Most
of the mentioned approaches search the design space for an area-time tradeoff.
The notion of energy dissipation is largely neglected in the reported strategies.
Energy is only being considered on the basis of low level circuit energy models
which are primarily non-application specific [KLMSP99, SRP+95]. In contrast
to that, this work presents results concerning both performance and energy
when the size of the register file is modified. Additionally, information from
the compiler can be used to automate the process of finding a suitable size for
the register file size. The compiler guided selection of an appropriate register
file size is a novel contribution of this work.

6.2 Implementation of the Register File

Since the register file is used to store information within the processor and
is thus part of the memory hierarchy of a system, it can be implemented
using the available standard building blocks that also make up memories.
Since the register file is the part of the memory hierarchy that is closest
to the processor, the requirements concerning throughput and efficiency are
very high. In addition, the register file lies on the critical path for most CPU
operations, since in RISC architectures, all operands are usually read from and
written to the register file. Due to these special properties of the register file
in the memory hierarchy, an efficient implementation is therefore mandatory
in order to avoid a performance degradation of the system.

Since most arithmetic and logic operations require two operands, it is
beneficial for the register file to have two read ports since this avoids an extra
cycle to read the second operand. Since most ALU operations only generate
one result value that has to be written back to a register, a single write port is
usually sufficient for the register file of RISC architectures. For processors with
a high degree of instruction level parallelism, the situation may be different. In
this work, we only consider the RISC architecture as found e.g. in the ARM7
processor.

If the register file is configurable by the user, e.g. in an ASIP that can
be tuned to the application that is to be executed, the register file is usu-
ally implemented using a multi port memory cell. This allows for an easy
modification of the register file by simply instantiating a different memory
within the processor. Since the efficiency and speed of the register file are
vital, SRAM technology is usually chosen to implement registers. The advan-
tages of DRAM (e.g. less space per bit, cf. Section 3.2.2) are usually more
relevant to implement larger memories, where the complex surrounding logic
does not dominate the total size of the memory. SRAM memory cells have the
further advantage that they can be manufactured using the same technology

220 6 Register File Optimization

as the transistors of the processor core, allowing the vendor to “drop in” the
requested memory cell to implement the register file. This effectively helps to
keep the production costs of the considered systems low.

6.3 Register Allocation and Lifetime Analysis

Register allocation is one of the tasks to be performed during code generation
within the compiler [Muc97]. The task of register allocation is to determine
a mapping of virtual registers to physical registers present in the processor.
Virtual registers are used during code generation to represent data values and
their dependencies. For every new value in an application’s data flow graph,
the compiler allocates a new virtual register. This means that the number
of virtual registers used in a program can be very high. The large number
of virtual registers then has to be mapped to the limited number of physical
registers in the target hardware architecture.

It is essential for an acceptable performance of the application that the
register allocation algorithm determines a suitable and efficient mapping of
virtual to physical registers. If the lifetimes of two virtual registers are non-
overlapping, i.e. they are never active or “live” at the same time, then these
two virtual register values may be mapped to the same physical register. In this
way, the reduced number of physical registers can be shared among different
virtual register values. To determine which data values have non-overlapping
lifetimes and can thus share a physical register, the register allocation al-
gorithm first performs a lifetime analysis of the application program’s data
values.

The lifetime of a value starts when its value is being defined for the first
time. It ends when the value is being read for the last time. Inbetween these
two points, the value (or virtual register) is said to be “live”. A simple example
for lifetime analysis is shown in Figure 6.1. The left hand side of the figure
shows the liveness information of the variables, starting from the top with a
filled circle and ending with an unfilled circle. On the right hand side, the
corresponding high-level source code is provided.

a b c d e Source Code

a = 5;

t

b = 3;

c =7;

d = a + b;

e = c − d;

Fig. 6.1. Lifetime Analysis: an example

6.3 Register Allocation and Lifetime Analysis 221

In this example, either the virtual register for variable a or b could share
one physical register with d since they are not live at the same time: the value
for d is generated after a and b have been read for the last time. Note that
it is possible to map a and d to the same register despite the fact that d is
generated by the same instruction that reads a. Since the operands have to
be read and processed by the ALU before the results can be determined, this
does not cause a problem. In the figure, the fact that register values a and b
are not live after the addition operation is indicated by the unfilled circle.

In order to find a valid mapping of virtual to physical registers, the register
allocation algorithm starts to determine the lifetimes of all values contained
in virtual registers in a part of the program. There are different approaches
that operate either on the basic block level or on entire functions [Muc97].
The lifetimes are used to generate a conflict graph which contains one node for
every virtual register in the program. Two virtual registers are connected by an
edge if their lifetimes overlap, i.e. if the values have conflicting lifetimes. The
register allocation problem can thus be solved by assigning different registers
to all nodes that are connected by an edge. This corresponds to the well-
known graph coloring problem, which tries to assign a color to each node of
a graph such that no two connected nodes have the same color. In the case
of register allocation, each color corresponds to one physical register. Once a
coloring for the entire conflict graph has been found, the register allocation
problem is solved. Several other methods of performing register allocation are
known [Muc97], however the graph coloring approach or related heuristics are
the most commonly used register allocation algorithms.

For the example given above, the conflict graph along with a valid solution
for the graph coloring is shown in Figure 6.2.

If the coloring of a conflict graph fails due to an insufficient number of
colors (or physical registers), the lifetimes of variables have to be split in
order to remove edges from the conflict graph. During code generation, this
corresponds to a live data value being stored or “spilled” to the main memory
in order to free the corresponding register. When the value is again required by
the program, the value has to be read back from memory into a register. Since
memory accesses are power and time consuming, spilling should be reduced
to a minimum. It is therefore vital that the register allocation can allocate
as many virtual registers to physical ones without requiring any additional
spill code. If spilling can not be avoided, the algorithm has to determine one

a b

c d

e

Fig. 6.2. Conflict Graph and Solution of Register Allocation

222 6 Register File Optimization

register to be spilled to memory that will cause the least spilling costs. This
can be determined by considering the number of accesses to this value, or by
analyzing the conflict graph to determine a candidate value that will cause
the highest number of edges to be removed from the conflict graph.

Since register allocation in general is an NP-complete problem [Muc97], the
encc compiler uses a heuristic algorithm to solve the graph coloring problem
as presented in [App98]. The heuristic performs register allocation on the
level of functions, not basic blocks. It assumes that all nodes in the conflict
graph with a degree less than the number of available physical registers can
always be colored. Once these candidate values have been assigned colors, the
algorithm continues with the remaining nodes that have a higher degree. If it
is not possible to color all nodes in this way, then one suitable node is chosen
whose value is spilled to main memory. The data flow graph of the application
is modified accordingly and the register allocation attempts to determine a
valid coloring for the new conflict graph.

6.4 Workflow and Methodology

The results presented in this section exploit the fact that the encc compiler is
parameterizable. By changing the configuration of the proposed target proces-
sor, it is possible to evaluate the effects of architectural changes on code quality
by reconfiguring the compiler, generating code for the given number of regi-
sters and then simulating and analyzing the code. By comparing the code
quality concerning code size, performance and energy consumption for differ-
ent register file sizes, the designer can get a first idea of how many register
should be present in the processor core to allow for an efficient execution of a
program. From studying the source code of the example benchmarks and the
profiling information retrieved from simulation, one common cause of perfor-
mance degradation was identified. In Section 6.6, we will show how available
information can be extracted from the compiler without having to generate
code and perform simulation.

The workflow of the experiments is shown in Figure 6.3: Using the re-
configurability of the encc compiler, the number of registers available for the
generated code is varied by changing the corresponding value in the com-
piler configuration file and rebuilding the compiler. This modified compiler is
then used to compile the chosen benchmarks. The resulting assembly code is
analyzed and executed using the instruction set simulator. Since only 16 bit
THUMB instructions are generated by the encc compiler, the maximum num-
ber of registers had to be restricted to eight, since only three bits in the opcode
are available to code the register number. The minimum number of registers
that have to be available to generate valid and executable code for our set of
applications was found to be three: a load operation from main memory that
accesses a value within an array generally uses the register-register addressing
mode since the offset in register-offset mode is limited to a maximum of 7 bits

6.4 Workflow and Methodology 223

Fig. 6.3. Workflow for register file evaluation

in the THUMB instruction set. To load one value from an array, a minimum
of two registers is thus required if the load operation overwrites the register
containing the array’s base address. If an operation with two operands is to be
executed, a minimum of three registers is thus required to load the operand
values into registers.

Reducing the number of registers in an architecture may severely degrade
the achievable performance due to additional spill code that has to be inserted
to store and retrieve values that can’t be kept in the processor registers.
However, there are also positive effects when the register file size is reduced:
A smaller register file size will cause less chip area to be used and will also
reduce power dissipation in the circuitry due to a reduction in the switched
capacitance. If the instruction set architecture of the processor can be modi-
fied, using less registers generally results in shorter instruction words, since
the operands in registers can be addressed with fewer bits. As an alternative
to making the instruction words shorter, some processors take advantage of
the unused patterns to code other useful information [KPL99].

These possible positive effects of reducing the size of the register file are
difficult to evaluate without a complete hardware evaluation toolchain. There-
fore, this work solely considers the effect of changes to the register file size on
the compiler generated code for the ARM processor architecture.

The evaluation board that forms the basis of the hardware used for the
experiments is described in-depth in Section 3.1. The evaluation board car-
ries an ARM7TDMI processor with a small 4 KB scratchpad memory. Since
program code and data together do not fit onto the scratchpad memory, the
chosen setup consists of keeping the global data elements in the main mem-
ory while instructions are allocated to the scratchpad memory. In this way,
instruction fetches will only account for a small part of the overall memory
energy, and it can be expected that the effect of additional data accesses due
to spilling will be clearly visible, since main memory accesses consume a con-
siderable amount of energy. If the scratchpad allocation algorithms presented
in Chapter 4 were used instead, the allocation results may be different for

224 6 Register File Optimization

every register file size, which would make it difficult to determine whether the
observed effects stem from the register file size or the allocation algorithm.

6.5 Benchmark Suite

The benchmarks used to investigate the effect of changing the register file size
are shown in Table 6.1. They cover the domains of digital signal processing
and multimedia, along with standard sorting algorithms. Since the memory
footprint of the applications is not relevant when the size of the register file is
modified, the memory space occupied by instructions and data is not provided
in this table. Note that all used benchmarks make use of arrays, so that a
minimum of three registers is always required to generate valid code.

Benchmark Name Domain

insertion sort standard sorting algorithm
lattice Lattice filter application
ME Media application
biquad N sections Filter application
matrix-mult Multiplication of two matrices

Table 6.1. Benchmarks used for the register file size experiments

The insertion sort algorithms sorts a given array of integers, lattice de-
termines the output of a lattice filter. The ME mediabench benchmark has
already been used in the previous chapters. It consists mainly of arithmetic
operations on integer data. The biquad N sections program, part of the DSP-
kernel benchmark suite [ZVSM94], performs the filtering of input values
through N biquad IIR sections. Finally, matrix mult implements the multi-
plication of two 2D matrices.

Note that the ARM7TDMI does not feature a floating point unit. Since
the use of the data types float or double would result in inefficient library
calls (as shown using the reference implementation of the IDCT benchmark
on Page 129), only data of type integer is used in the experiments.

6.5.1 Results for the Ratio of Spill Code to Total Code Size

When the number of available registers is decreased, the compiler may have
to insert additional spill code into the application’s executable. This addition
of spill code first of all leads to an increase in the application’s code size. The
spilling instructions are made up of memory load and store operations. The
absolute number of instructions related to spilling is counted during register
allocation within the compiler. Since the absolute number of spilling related
instructions is not very meaningful, the ratio of spill instructions to total code
size is presented in Figure 6.4.

6.5 Benchmark Suite 225

3 4 5 6 7 8
0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0,55

0,6

0,65

0,7
insertion_sort

lattice

ME

biquad_N_sections

matrix-mult

Register File Size

R
at

io
 o

f s
pi

llc
od

e
to

 c
od

e
si

ze

Fig. 6.4. Ratio of spill instructions to total number of instructions

As expected, the ratio of spill code increases strongly with decreasing num-
ber of registers. If e.g. only three registers are available, the code size for the
lattice benchmark is increased by nearly 70%. On average, for a register file
size of three, the code size is increased by about 44% compared to the theo-
retical code that could be obtained when no spilling occurs. For the maximum
of eight registers, this overhead is reduced to only 8%, and for two of the con-
sidered benchmarks, no spill code at all is required. Note that the THUMB
instruction set with its maximum register file size of eight registers frequently
requires spill code to be added to the program, whereas the 14 freely us-
able registers of the 32 bit ARM mode are usually sufficient to generate code
without spilling.

The ‘saturation’ point of the benchmark applications, i.e. the point where
no more spill code is present in the assembly code, varies between seven and
19 registers. This could be determined using the compiler despite exceeding
the number of possible registers, since the sole generation of assembly code
is possible for an arbitrary number of registers. However, it is not possible to
translate this assembly code to machine code due to the lack of bits in the
instruction words to code the larger register numbers. Despite the fact that
this code can not be translated into an executable, the value of 19 registers
provides an upper bound for the register file size for this set of applications:
if an ASIP designer wants to make sure that his application performance is
not impaired by spill code at all, he can always determine this ‘saturation’
value for a particular application. This can either be achieved by simulation,
as in this section, or the compiler can output information about the number
of simultaneously live values, as we have done in Section 6.6.

This initial static analysis of the code generated for different register file
sizes is useful when minimal code size, which is a static property of the code, is

226 6 Register File Optimization

the target. Code size, or the memory footprint of an application is an impor-
tant aspect in the development of embedded systems, since the memory is an
important factor driving the cost of a system. In a setting where the designer
has an influence on the register file, e.g. using an ASIP, it is therefore advis-
able to avoid code size increases due to spilling. Of course, the costs of adding
another register to the register file also have to be taken into account. The
designer thus has to determine a suitable trade-off between these two costs.

6.5.2 Results for the Number of Cycles

Beside the memory requirements, performance is another vital optimization
goal for embedded systems. If performance is to be evaluated, a purely static
analysis of the generated code is insufficient. Spill code introduced within the
innermost loop of an application has a strong negative effect on the applica-
tion’s performance, whereas the performance loss may not even be noticed in
code that is rarely executed.

To be able to estimate the influence of spill code on performance, the
benchmark applications were executed using the ARM instruction set simula-
tor after compilation. Using enprofiler, the cycle count of the applications was
determined. The obtained results for the considered benchmarks are shown in
Figure 6.5. To provide better comparability, the performance values for the
different benchmarks were normalized such that the relative performance us-
ing the minimum of 3 registers corresponds to the value zero and the obtained
performance improvement by adding registers is shown in percent.

3 4 5 6 7 8
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

insertion_sort

lattice_init

me_ivlin

biquad

matrix-mult

Register File Size

R
el

at
iv

e
pe

rf
or

m
an

ce
 im

pr
ov

em
en

t [
%

]

Fig. 6.5. Number of cycles over number of registers

6.5 Benchmark Suite 227

As expected, the size of the register file has a strong impact on the number
of executed cycles: for the ME application, the number of cycles could be
reduced by 75% by providing eight registers instead of three. For all considered
benchmarks, the performance is at least increased by 60%. In particular for
the matrix multiplication and the lattice filter, the saved cycles depend in a
nearly linear way on the number of registers for the observed range. For every
added register, a performance improvement of on average 10% was obtained.

The impact of spill instructions on the performance is very strong due to
the fact that the instructions used to access main memory require more than
one cycle to execute on the ARM7: a store operation to the main memory takes
two cycles, a load operation even requires three cycles (cf. Section 3.3.1). The
waitstates of the used memory have to be added to these cycle counts. For the
considered memory setup with 32 bit accesses to the main memory requiring
three additional waitstates, a load operation takes a total of 6 cycles. The
negative impact of spill instructions on performance is thus reinforced by the
fact that particularly slow instructions are being added.

Some of the curves in figure 6.5 show a remarkably sharp bend, which is
obvious in particular for the insertion sort benchmark. When the number of
registers is increased from four to five registers, the instruction count decreases
substantially, whereas an increase from five to six registers hardly changes the
number of executed cycles.

To understand the cause for this behavior, the innermost loop of the ap-
plication has to be considered, since it is the part of the application that is
executed most frequently and therefore has a strong influence on the dynamic
behavior of the program. The innermost loop is shown in the original C source
code and in the assembly code generated assuming eight available registers in
Figures 6.6 a) and b), respectively.

For this small code fragment, it is possible to determine which C variable is
stored in which physical register of the ARM7 processor by simply comparing
the two code fragments. For example, indx2 is stored in register r3 since it is
the result of the first subtraction in C as well as in the assembly code. indx
is kept in register r6, but since this variable is not read again within the loop
(it is only present in the loop initialization code), it is not live within the loop
and can therefore be neglected. Continuing the analysis of the assembly code,
the mapping shown in table 6.2 can be derived. The expression (indx2-1)*4
is used to address the one-dimensional array This[] whose elements of type
int require four bytes each.

Table 6.2 provides an explanation of the sharp bend in the curve for the
insertion sort benchmark: five registers (r0, r2, r3, r4, r7) are required to
hold the values that are live within the innermost loop. Reducing the number
of registers to four requires spill code to be inserted within the innermost loop,
which inevitably leads to a severe performance degradation.

The shapes of the other applications’ curves can be explained in a similar
way, i.e. by analyzing the required number of live values within the innermost
loop. To give one further example, the program biquad N sections contains

228 6 Register File Optimization

/* find the insertion point */

for (indx2 = indx - 1; indx2 > 0;)

{

int temp_val = This[indx2 - 1];

if (temp_val > cur_val)

{

This[indx2--] = temp_val;

}

else

break;

}

;; for (indx2=indx-1;indx2>0;)

SUB r3,r6,#1

CMP r3,#0

BLE LL8_0

LL12_0

;; int temp_val=This[indx2-1];

SUB r2,r3,#1

LSL r2,r2,#2

LDR r7, [r0, r2]

;; if (temp_val>cur_val)

CMP r7,r4

BLE LL8_0

LL10_0

;; This[indx2--]=temp_val;

MOV r2,r3

SUB r3,r3,#1

LSL r2,r2,#2

STR r7, [r0, r2]

;; for (indx2=indx-1;indx2>0;)

CMP r3,#0

BGT LL12_0

LL8_0

. . .
a) b)

Fig. 6.6. Inner loop of insertion sort : a) C code, b) assembly code

Variable Register

indx2 r3

indx2-1, (indx2-1)*4 r2

This[] r0

temp_val r7

cur_val r4

Table 6.2. Mapping of variables to registers

two frequently executed for-loops, each of them containing a statement of
the form array[loop_counter] = value. Each of these statements requires
four registers to hold the simultaneously live values. Therefore, it is logical
for this application to show a bend at the transition point from three to four
registers (cf. Figure 6.5).

As a conclusion, it is possible to determine at least a lower bound for the
register file size solely by analyzing the application code. Since this procedure
is rather tedious for large applications, Section 6.6 will show how this can

6.5 Benchmark Suite 229

be automated using information the compiler collects during liveness analysis
and register allocation.

6.5.3 Results for Energy Consumption

Beside performance in terms of number of cycles, energy is one of the prime
optimization goals for embedded systems. Using the energy model for the
ARM7 processor presented in Section 3.4.2 and the access parameters of
the considered memory, enprofiler analyzes the total energy dissipation of the
application that was compiled using different sizes for the register file size.

The energy values shown in Figure 6.7 are again normalized such that the
energy consumption using the minimum of three registers is represented as
the relative value 0. The general behavior of the curves is obvious: for very
small register file sizes, the energy consumption is high since a lot of spill
code has to be executed. The memory accesses to the spilled values in the
main memory cause an additional contribution to the energy consumption,
since the instructions that access main memory consume a lot more energy
than e.g. ALU instructions. This is on one hand due to their longer execution
times, on the other hand, these instructions cause a higher switching activity
in particular on the high-capacitative external bus wires.

The fact that the number of registers is an important factor during the
design process of an ASIP is underlined by the results provided in Table 6.3
which shows the relative energy savings possible by increasing the number
of available registers one by one. The average energy savings possible in the

3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

insertion_sort

lattice_init

me_ivlin

biquad

matrix-mult

Register File Size

R
el

at
iv

e
en

er
gy

 im
pr

ov
em

en
t [

%
]

Fig. 6.7. Relative energy consumption over number of registers

230 6 Register File Optimization

benchmark 3 → 4 4 → 5 5 → 6 6 → 7 7 → 8

insertion sort 45.47% 57.11% 5.60% 2.63% 0.92%
lattice 17.45% 20.97% 18.92% 19.78% 16.84%
ME 59.28% 43.16% 36.29% 18.24% 20.47%
biquad N sections 62.89% 13.35% 11.26% 10.42% 6.71%
matrix-mult 33.44% 18.57% 14.99% 24.26% 23.28%

Average improvement 43.71% 30.63% 17.41% 15.06% 13.64%

Table 6.3. Energy savings by changing register file size

range from three to eight registers amount to approximately 22%. Since all
curves are starting to level out even in the range we have considered here, it
is clear that the positive contribution of additional registers becomes smaller
the more registers are already present in the design. One should bear in mind,
however, that each additional register will also consume additional energy
due to added capacitances and required chip area. This energy has not been
considered in our approach, but may be the subject of future work.

6.6 Compiler Guided Choice of Register File Size

The knowledge that the compiler has about the generated code for different
sizes of the register file can be exploited to gain information concerning a
useful range of register file sizes. Since lifetime analysis is performed within
the compiler during the register allocation phase as described above in Sec-
tion 6.3, the compiler is aware of the number of simultaneously live values for
every point in the program. This number is known as the “register pressure”.
If no spill code is to be introduced into the application program, then the
maximum register pressure found within the application program determines
the minimum number of registers that have to be present in the processor.
However, this value is usually too large to be practically relevant.

In order to reduce the maximum register pressure, it is possible to per-
form instruction scheduling prior to register allocation. The encc employs a
simple heuristic which attempts to move the start (“DEF”) and the end of
the lifetime (“USE”) of values closer together. The simple, yet effective in-
struction scheduling moves all instructions that decrease the register pressure
(i.e. less values are live after execution of this instruction) as far towards the
beginning of the considered basic block as possible without violating any data
dependency constraints. Those instructions that increase the register pressure
are moved toward the end of the basic block. These steps effectively move the
definition and the use of values closer together, thus reducing the maximum
number of values that are live at the same time.

Even the register pressure that was reduced using instruction scheduling
is usually too high to serve as an indication for an upper bound of the register
file size. Since the execution frequency of basic blocks has a strong impact on

6.6 Compiler Guided Choice of Register File Size 231

both performance and energy, the compiler’s knowledge concerning the most
frequently executed basic blocks should also be taken into account. By using
either static or dynamic profiling (cf. Section 3.6.1), the compiler is aware
of the execution count of basic blocks. This information together with the
maximum register pressure found within a basic block can be used to find a
useful range for the register file size.

It is important to consider the position of this analysis in the code gen-
eration process: after register allocation, spill code will already have been in-
serted, and no more than eight values will ever be live at the same time since
otherwise the code could not be executed on the processor. The generation
of register pressure information thus has to be performed before the actual
register allocation step, but following code selection (so that the structure of
the code is already fixed and the virtual registers can be used instead of appli-
cation program variables) and instruction scheduling (to reduce unnecessarily
high register pressure).

For the insertion sort benchmark, the results generated by the compiler
are shown in Figure 6.8

*** Register Pressure Information ***

NodeList:

BBNode: ’LL12’, IterationCount: 2600, MaxRegPressure: 4

BBNode: ’LL10’, IterationCount: 1300, MaxRegPressure: 5

BBNode: ’_M_10’, IterationCount: 1000, MaxRegPressure: 5

BBNode: ’LL26’, IterationCount: 1000, MaxRegPressure: 4

BBNode: ’LL23’, IterationCount: 1000, MaxRegPressure: 4

BBNode: ’LL18’, IterationCount: 1000, MaxRegPressure: 4

BBNode: ’LL22’, IterationCount: 1000, MaxRegPressure: 2

BBNode: ’LL14’, IterationCount: 550, MaxRegPressure: 4

BBNode: ’LL15’, IterationCount: 500, MaxRegPressure: 4

BBNode: ’LL21’, IterationCount: 500, MaxRegPressure: 1

. . .

*** End of Register Pressure Information ***

Fig. 6.8. Register pressure information for insertion sort

The compiler generates one line for each basic block. To enable the task of
finding relevant basic blocks, the information is sorted by the iteration count
of the basic blocks such that the most frequently executed basic blocks appear
at the beginning of the list. Note that the basic blocks from the innermost
loop shown in Figure 6.6 can be found as the first entries in the list. The
maximum register pressure together with the iteration count provide infor-
mation concerning the number of required registers for an efficient execution
of the application. In the insertion sort example, the most frequently exe-
cuted basic block LL12 contains four simultaneously live values. The following
two basic blocks each contain 5 live values. It is these basic blocks LL10 and

232 6 Register File Optimization

_M_10 that are responsible for the sharp bend in the curve of the insertion sort
performance graph. The following basic blocks have both a smaller iteration
count and require less registers. They therefore do not have an impact on the
recommended register file size for this application.

To summarize, the designer has to partition the basic blocks according to
their iteration counts. By only considering the most frequently executed ba-
sic blocks, the number of required registers to avoid spill code to be inserted
within the innermost loops can be estimated. Of course, the information pro-
duced by the compiler could still be refined to e.g. contain the number of
accesses to potentially spilled values or the number of spill instructions that
would be generated if a value has to be spilled. Refining the information ob-
tained from the compiler will be part of the future work concerning the size
of the register file.

7

Summary

Concerning the development of embedded systems, the past years have seen
a large increase in the number of new devices. Innovative designs provide a
good potential on the highly competitive market. Depending on the appli-
cation, different requirements have been put forward for embedded systems.
The most important properties that are being asked of systems today are high
performance, low energy dissipation and, in particular for real time capable
systems, timing predictability. Since to achieve a high degree of flexibility,
a majority of embedded systems uses processors that execute applications
written in software, the compiler used to generate the executable code is of
vital importance to achieve satisfactory results concerning the mentioned re-
quirements. The contributions made in this work cover all three aspects, and
in particular include the consideration of the memory hierarchy in the given
system in order to generate code that optimally exploits the architectural
features of the different available memories.

Models are required to integrate the properties of the system under con-
sideration into the used compiler. To generate code, a precise definition of the
instruction set architecture is required, which is provided for the ARM proces-
sor. Timing and energy models for the processor are also provided in order to
optimize for performance and energy dissipation and to evaluate the gener-
ated code. Since this evaluation is performed using instruction set simulation,
simulation models are also required.

To also consider the used memory architecture, models of the memories
are required. Again, the important aspects that have to be covered to be able
to optimize code taking into account the properties of the memory hierarchy
are the access times and the energy dissipation of the used memories. Since
in particular the behavior of dynamic RAMs depends on the current circuit
state, some effort is required to integrate these memories into the toolchain
used by the compiler environment.

The first set of optimizations considered in this work deals with the
exploitation of multiple scratchpad memory partitions. Partitioning of scratch-
pad memories is considered for two main reasons: on one hand, using several

233

234 7 Summary

smaller memories compared to one large memory leads to reduced energy
dissipation, since the energy and access times depend on the size of the con-
sidered memory. On the other hand, recent designs by ARM Ltd. feature a
partitioned scratchpad memory in the form of a so-called Tightly Coupled
Memory (TCM). It can thus be observed that there is a trend towards parti-
tioned scratchpad memories in industry.

In contrast to caches, scratchpad memories require support from the pro-
grammer or the compiler to be exploited. In this work, the compiler auto-
matically assigns memory objects, i.e. instructions and data objects, to the
scratchpad memories. This is first formalized in a simple Base model that is
represented in the form of an ILP problem. The Base model considers ba-
sic blocks and global data as independent objects and allocates them to the
scratchpad memory according to their execution or access frequency. This
model is then refined to consider the relationship of basic blocks and func-
tions: while functions can be considered as atomic units that can be allocated
to any memory partition without modification, basic blocks require a special
treatment when their successors are not allocated to the same memory to
preserve the correctness of control flow. In the Top-Down model, additional
decision variables and constraints are used to achieve the selection of either a
complete function or of several individual basic blocks within that function.
The Bottom-Up model in addition also considers the advantage of allocating
blocks of contiguous basic blocks to the same scratchpad memory partition.
The edges of the control flow graph are used in this case in order to avoid a
strong increase in the complexity of the ILP representation. Results show that
all three approaches are capable of saving significant amounts of energy: for the
smallest scratchpad capacity of 64 bytes and one particular application, the
Top-Down approach saves 16% of the energy dissipated in the memory sub-
system, whereas the more precise Bottom-Up allocation saves up to 33%. For
larger scratchpad memory capacities, the Bottom-Up approach can save up to
97% of the energy spent in the considered memory setup for one considered
application, which translates to about 80% of total energy savings for the
complete system. For the other considered benchmarks, the maximum energy
savings in the memory subsystem amount to about 80%. For two benchmarks,
considerably lower savings were determined. In one case, this is due to calls
to libraries whose code can not be allocated to the scratchpad, in the other
case memory accesses to a global data array are not detected due to the use of
pointers instead of array accesses. The direct comparison of Base, Top-Down
and Bottom-Up approach reveals that the Bottom-Up allocation outperforms
the Base case by up to 17% for small scratchpad capacities. The results of
the Top-Down allocation are between the Base and the Bottom-Up model, as
expected.

To generate code for the Harvard-style ARM TCM architecture, the
Bottom-Up ILP model was modified so that instructions are allocated to one
scratchpad memory partition and data to the other. This effectively simpli-
fies the ILP problem, however it also leads to less energy savings, since the

7 Summary 235

compiler can not freely allocate instructions and data to the optimal par-
titions. A direct comparison of the Bottom-Up and the ARM-TCM alloca-
tion techniques shows that for some memory configurations, nearly twice the
amount of energy can be saved when the Bottom-Up technique is used. If
the considered system only supports the allocation of instruction and data to
separate memory partitions, then the ARM-TCM allocation model presented
in this work can be used to optimally allocate memory objects to the TCM
partitions.

Finally, the effect of leakage currents when many small scratchpad memory
partitions are present in the system is considered. By extending the ILP rep-
resentation of the allocation problem, each memory is modeled to introduce
a leakage energy into the system if it is being used by the allocation, i.e. if at
least one object is allocated to it. When the leakage energy assumed for each
of the memories is increased, the ILP solver decides to allocate objects to less
memory partitions in order to save the leakage energy. While for small leakage
values, up to ten scratchpad memory partitions are allocated and used, only
one scratchpad memory and the main memory is used for very large leakage
values. In this way, the compiler can help the designer of a system to decide
on the number of scratchpad memory partitions that should be used in the
system.

Scratchpad memories are being used to improve the performance and re-
duce the energy dissipation of embedded systems. They are better suited for
this purpose than caches since they are smaller and require less energy per
access than a cache of comparable capacity. One additional advantage is that
due to the allocation of memory objects to the scratchpad memory at compile
time, a scratchpad memory offers full predictability. This is in strong contrast
to a cache which takes decisions concerning hits and misses dynamically at
runtime, which is hard to predict at design time. During the design phase
of safety critical real-time systems, the designer has to be able to provide a
guaranteed upper bound on the worst case execution time (WCET) of the
system. The closer this upper bound is to the actual worst case performance
of the system, the less resources are required to implement the system. Tight
upper bounds can thus help to make a system cheaper. The WCET can be
determined at design time using WCET analysis tools which analyze the ar-
chitecture and the application and generate a guaranteed upper bound for
the maximum execution time. A lot of effort has gone into the integration of
caches into these WCET analysis tools. The used algorithms are very com-
plex, yet they frequently strongly overestimate the WCET. The quality of
the WCET analysis results also depends on the architecture of the cache:
if LRU replacement is used in set-associative caches, then the analysis can
determine which set will be replaced in case of a miss. The ARM processors,
however, use a random replacement policy which leads to less predictability
and thus loose upper bounds on the WCET. The comparison of caches and
scratchpad memories performed in this work underlines the fact that scratch-
pad memories are fully predictable, while the use of caches is not useful if

236 7 Summary

timing predictability is a design concern. Both an average case simulation
and a WCET analysis is performed for scratchpad memories and caches of
varying capacities. Memory objects are allocated to the scratchpad memories
using both the static Bottom-Up approach mentioned above and a dynamic
allocation technique.

In the static case, the cache was found to outperform the scratchpad allo-
cation in the average case for some benchmarks, while the use of a scratchpad
memory resulted in tighter upper bounds on the WCET. To be more precise,
the performance benefit obtained by using a scratchpad memory has a direct
influence on the WCET as well: the savings that were observed concerning
average case execution time were also found in the WCET. For the cache, the
situation is quite different. While for small cache sizes, the observed average
case performance is degraded due to a large number of conflict misses, larger
cache sizes lead to substantial savings in the average case, as expected. The
WCET, however, does not profit from these improvements: it usually stays at
the same high level as for a very small cache. This means that the used cache
analysis is unable to determine an acceptably high number of guaranteed
misses.

For the dynamic scratchpad allocation, the scratchpad retains its full pre-
dictability even if memory objects are copied from the main memory to the
scratchpad and vice versa at runtime. Using this allocation technique, how-
ever, the situation for the cache is even worse, since even in the average case,
the scratchpad memory shows superior performance. As a conclusion, scratch-
pad memories do not require any additional complex analysis techniques, they
can simply be introduced as distinct memory regions in the WCET analysis
tool. While a lot of effort has been spent to improve the quality of WCET
analysis when caches are present in a system, the use of a scratchpad is capable
of producing superior results at lower computational cost.

Beside the highly efficient scratchpad memories, optimization potential can
also be found in the main memories: in particular modern main memories in
SDRAM technology offer power management features like power down modes
that can be efficiently exploited using a compiler. In the considered setup,
a scratchpad memory is assumed to be present in the system along with an
SDRAM main memory. The compiler again allocates memory objects to the
scratchpad partition, however a different objective function is used: since the
main memory can be put in the power down mode if instructions and data
are both accessed from the scratchpad memory, the compiler optimization
tries to allocate objects in such a way that the main memory can be kept
in the power down mode for a maximum amount of time. To achieve this, a
model containing all non access related energy costs is constructed. In parti-
cular, this formalized model also considers the dependencies between variables
and their accessing basic blocks. By allocating both basic blocks and vari-
ables to the scratchpad at the same time, the optimization can prevent an
activation of the main memory solely to perform an access to a data element
when instructions are fetched from the scratchpad memory. The results ob-
tained by this model are compared to the Bottom-Up allocation approach

7 Summary 237

which uses the access related “per-access” costs instead of the standby energy
in the objective function. Despite this difference in the two optimization ap-
proaches, the obtained results are surprisingly similar. Total energy savings
of more than 80% can be achieved compared to a system without scratchpad
by exploiting the scratchpad memory and the power down mechanism of the
SDRAM main memory. In several cases, the new power down optimization
was able to outperform the Bottom-Up approach, since it was able to keep
the main memory in the power down state for a prolonged time. In one case,
a global array was allocated to the scratchpad instead of main memory. This
had the effect described above: the main memory stays in power down mode
for a longer time, since the global variable is accessed on the scratchpad mem-
ory partition. The general idea of formulating an optimization function based
on reducing the standby energies of memories is therefore a promising option
when memories with power management features are being used.

Most embedded systems deployed today are equipped with a non volatile
Flash memory to permanently store application programs and configuration
information. Usually, the Flash memory is only used at startup: following the
boot procedure, the operating system copies all instructions and data from
the Flash memory to the volatile main memory and accesses them from there.
The Flash memory is thus not used during normal operation of the device,
which is a waste of resources. Modern Flash memories are capable of directly
serving as instruction memories. This property is known as eXecute-In-Place
(XIP). Using XIP, instructions can be fetched from the Flash memory instead
of first being copied to e.g. the main memory and then being executed from
there. The fact that Flash memories are in general slower than the main in-
struction memory partition in SDRAM technology leads to a tradeoff that
can be solved by the compiler: if an object is frequently executed, it may
be beneficial to copy it to the faster SDRAM memory, if it is only executed
once, it may just as well be executed directly from the Flash memory, saving
the copy overhead. Since Flash memories should in general not be used for
frequent writing, it is not viable to allocate writable data to the Flash mem-
ory. As long as instructions are executed from the Flash memory, the main
SDRAM memory can again be put in the power down mode to save energy.
To avoid the situation where the main memory has to be activated due to
data accesses, the main SDRAM memory was partitioned into one data and
one instruction partition. An optimization problem was then formalized that
either copies instructions to the SDRAM instruction partition or executes
them directly from the Flash memory, taking into account both the access
and the non access related energy contributions. Since the data is stored in
a separate SDRAM partition, the instruction partitions of the SDRAM main
memory can be shut off completely when the last instruction has been fetched
from it and its contents are thus not required any longer. To also take these
improvements into account, a heuristic algorithm was implemented that first
selects those objects from the end of the application that should be executed
from the Flash memory so that the SDRAM can go to deep power down.

238 7 Summary

The results of the optimization are compared to using only SDRAM or using
only Flash memory as instruction memory. In general, the optimized version
can be expected to have similar execution time compared to a pure SDRAM
execution. When the performance of the optimized version is below that of
the SDRAM version, however, the requirements concerning the capacity of
the SDRAM instruction partition are reduced significantly, in particular if
a relatively fast Flash memory is used. For one benchmark, an increase in
the number of cycles by 5% resulted in 96% savings concerning the SDRAM
instruction partition’s size. For most of the other benchmarks, considerable
savings concerning the required SDRAM memory could be obtained. Since
the size of the main memory is one of the cost factors in embedded systems,
and since the Flash memory always has to be present in the system to store
the application when no supply voltage is available, the proposed optimization
strategy leads to substantial savings.

Finally, the compiler is also responsible for managing one of the most
effective memories in the memory hierarchy: the register file. During register
allocation, the compiler assigns all values that occur within a program to
the physically available registers of the target processor. If an insufficient
number of registers is available, then additional code has to be inserted to
spill the values to memory. In this work, results concerning the influence of
the register file size on the quality of the generated code are presented. It
was found that for a very small register file, the code size can be increased
by up to 70% compared to the case where no spilling is required. Concerning
performance, an average of about 60% of the cycles could be saved when
eight registers were available in the processor instead of the minimum three.
Average energy savings of 22% were observed in the same range. In addition
to these experimental results, the information available within the compiler
concerning basic block execution counts and the number of simultaneously live
data values are used to provide the designer with an information concerning
the recommended register file size.

8

Future Work

Despite the solutions and improvements achieved by the optimizations pre-
sented in this work, there is always a need to perform more research and to
strive for optimality concerning the exploitation of available resources. This
chapter lists further contributions that were not investigated and makes sug-
gestions for possible research and experimental work concerning the opti-
mization of compiler generated code taking into account the properties of the
memory architecture to achieve the objectives of high performance, low energy
dissipation and predictable access timing.

3 – Models and Tools
In this work, only the ARM7 processor architecture was considered.

It would make sense to additionally consider processors from other do-
mains, e.g. DSPs or VLIW architectures in order to validate the results
determined for the RISC class of machines. To evaluate results concerning
these new classes of processors, it would be useful to resort to the large
amount of work that has been performed concerning automatic generation
of processor simulators from architecture description languages.

Concerning memory models, a unified way of specifying the access as
well as non access related properties of different memory architectures
would be helpful in the integration of additional memory models.

The memory hierarchy simulator MEMSIM is a versatile tool that
should be extended to simulate more memory architectures, e.g. vic-
tim caches, loop buffers or take into account the energy dissipation of
way-management in caches. Additionally, the simulation model should
be extended to allow the consideration of both multi-process and multi-
processor simulation.

A unified configuration mechanism for the encc compiler framework
would be helpful in performing further experiments. Currently, the config-
uration is somewhat complex due to the incremental development process
of the compiler. Also, additional analysis techniques should be added to
the compiler to be able to detect array references performed using pointers.

239

240 8 Future Work

This would e.g. lead to better results concerning the FFT benchmark in
the multi memory optimization chapter. Finally, cache optimization algo-
rithms should be integrated into the encc compiler framework to allow a
better comparison between caches and scratchpad memories. Currently,
the “loop tiling” optimization which is expected to increase the cache
performance is being studied and implemented.

4.2 – Multi Memory Optimizations
The allocation of memory objects to partitioned scratchpad memories

has been implemented by generating an ILP formulation of the allocation
problem and solving it using an ILP solver. Since the allocation algorithms
that were studied in this work belong to the class of assignment problems,
efficient approximation algorithms exist to solve these problems.

They should be implemented and compared to the optimal results gene-
rated using ILP. Despite the fact the during the experiments, no problems
with the execution times of the ILP solver were encountered, the general
concern about this topic remains.

As a new optimization objective, a dynamic allocation of objects to par-
titioned scratchpad memories could be used. The dynamic approach used
for a single scratchpad would have to be extended to also find an allocation
of objects to several partitions. In this case, the execution times of optimal
solving algorithms may become a problem. In this case, a heuristic may
have to be used.

4.3 – Impact of Scratchpad Allocation Techniques on WCET
While the WCET results obtained for a scratchpad are better than

those for a cache, the annotation effort that has to be taken for every new
application is still quite high, despite the fact that the annotation process
is mostly automated. A fully automatic extraction of all required annota-
tion information from the executable of the application would help reduce
the manual annotation effort. Information that can not be determined
from the executable alone, like loop bounds that include complex expres-
sion, should be supplied in a single configuration file for the considered
benchmark.

Using a full featured cache analysis to validate the comparison between
cache and scratchpad concerning WCET is highly desirable. The com-
plexity of cache analyses is quite high, and considering the fact that the
ARM caches use an unpredictable random replacement policy, the results
for the cache may not improve very much.

An improvement of the obtained results for the scratchpad can be ex-
pected if the notion of WCET is also used within the compiler: for the
experiments presented here, the compiler allocated memory objects to the
scratchpad using energy dissipation as the cost function. If, in contrast to
that, the compiler allocated those objects to the scratchpad that lie on
the critical path of the application, an improvement concerning WCET
results is to be expected.

8 Future Work 241

5.2 – Main Memory Power Management
In the presented optimization, only the standby energy dissipation of

the SDRAM main memory was considered in the cost function, since the
optimization goal was to minimize the standby energy by keeping the main
memory in the power down mode. In the Bottom-Up model that was used
for comparison, only access related energy dissipation was considered. Des-
pite the fact that these two optimizations target different contributions to
the energy budget, the obtained results are surprisingly similar. A unified
model that takes into account both access and non access related energy
contributions could be formulated and solved. The methodology should
be straightforward, however, the similarity of results obtained from the
two models mentioned above leads to the assumption that no significant
changes would be achieved concerning the allocation of memory objects
to the scratchpad memory.

5.3 – Execute-In-Place using Flash Memories
The straightforward implementation of the actual XIP optimization

problem and the separate choice of basic block sequences that enable
the main memory to be shut off completely is not a very elegant solu-
tion. A uniform model should be generated that takes into account both
the power down and the deep power down states of the main SDRAM
instruction memory partition. Using additional decision variables to cor-
rect the energy dissipation of objects that are executed from the Flash
memory when the SDRAM partition is in deep power down mode should
be straightforward.

6 – Register File Optimization
The information generated by the compiler could be refined to also

include the number of accesses to different registers, the number of dif-
ferent expressions in the basic block and information concerning the spill
costs of the virtual registers. More detailed information would help the de-
signer to take a decision concerning the register file size based on the
compiler output. Furthermore, the architectural effects of modifying the
register file size should be considered and traded against the observed
effects concerning the quality of the code generated by the compiler.

References

[ABC03] Federico Angiolini, Luca Benini, and Alberto Caprara. Polynomial-
time algorithm for on-chip scratchpad memory partitioning. In Proc-
cedings of the International Conference on Compilers, Architecture
and Synthesis for Embedded Systems (CASES), pages 318–326, Octo-
ber 2003.

[Abs04a] AbsInt Angewandte Informatik GmbH. aiT Reference Manual, 2004.
[Abs04b] AbsInt Angewandte Informatik GmbH. aiT: Worst Case Execution

Time Analyzers. http://www.absint.com/ait, 2004.
[Alb99] David H. Albonesi. Selective cache ways: on-demand cache resource

allocation. In Proceedings of the International Symposium on Micro-
architecture, pages 248–259, November 1999.

[ANS] ANSI (American National Standards Institute). ISO/IEC 9899:1999
(or: C99), ”The ANSI C standard”. http://www.ansi.org.

[Apa04] The Apache XML project. Xerces C++-Parser. http://xml.apache.
org/xerces-c, 2004.

[App98] Andrew W. Appel. Modern Compiler Implementation in C.
Cambridge University Press, Cambridge, New York u.a., 1998.

[ARM] ARM Ltd. The ARM9 processor core family. http://www.arm.com/
products/CPUs/families/ARM9Family.html.

[ARM98a] ARM Ltd. ARM Software Development Toolkit Version 2.50 User
Guide, ARM Document Number DUI 0040D, 1998.

[ARM98b] ARM Ltd. ARM710T Datasheet, ARM Document Number ARM DDI
0086B, 1998.

[ARM00] ARM Ltd. ARM946E-S Technical Reference Manual, ARM Document
Number DDI 0155A, 2000.

[ARM01] ARM Ltd. ARM7TDMI Reference Manual, ARM Document Number
DDI 0210B, 2001.

[ARM04a] ARM Ltd. ARM1136JF-S and ARM1136J-S Technical Reference
Manual, ARM Document Number DDI 0211E, 2004.

[ARM04b] ARM Ltd. Cost-effective Per-Use Access to ARM Technology, ARM
Foundry Program Flyer. http://www.arm.com, 2004.

[Aus] Todd Austin. SimpleScalar LLC. http://www.simplescalar.com.
[B0̈2] Helmut Bähring. Microcomputing systems. Volume II: Buses, Memo-

ries, Peripherals and Microcontrollers (Mikrorechner-Systeme. Band

243

244 References

II: Busse, Speicher, Peripherie und Mikrocontroller) (in German lan-
guage). Springer-Verlag, 2002.

[BBM00] Luca Benini, Alessandro Bogliolo, and Giovanni De Micheli. A Survey
of Design Techniques for System-Level Dynamic Power Management.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
8(3):299–316, June 2000.

[BMP00] Luca Benini, Alberto Macii, and Massimo Poncino. A recursive algo-
rithm for low-power memory partitioning. In Proceedings of the Inter-
national Symposium on Low Power Electronics and Design (ISLPED),
pages 78–83, July 2000.

[Bor99] Shekhar Borkar. Design Challenges of Technology Scaling. IEEE
Micro, 19(4):23–29, July 1999.

[BSL+02] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M. Balakrishnan, and
Peter Marwedel. Scratchpad Memory: A Design Alternative for Cache
On-chip memory in Embedded Systems. In Proceedings of the Tenth
International Workshop on Hardware/Software Codesign (CODES),
May 2002.

[BTM00] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A
Framework for Architectural-Level Power Analysis and Optimizations.
In Proceedings of the 27th Annual International Symposium on Com-
puter Architecture (ISCA), pages 83–94, June 2000.

[CFW+94] Francky Catthoor, Frank Franssen, Sven Wuytack, Lode Nachtergaele,
and Hugo De Man. Global Communication and Memory Optimizing
Transformations for Low Power Signal Processing Systems. In Pro-
ceedings of the Workshop on VLSI Signal Processing, pages 178–187,
October 1994.

[CH98] Keith D. Cooper and Timothy J. Harvey. Compiler-Controlled Mem-
ory. In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems (ASP-
LOS), pages 2–11, October 1998.

[CHB+05] Jianjiang Ceng, Manuel Hohenauer, Gunnar Braun, Rainer Leupers,
Gerd Ascheid, and Heinrich Meyr. C Compiler Retargeting Based on
Instruction Semantics Models. In Proceedings of the Design, Automa-
tion and Test in Europe Conference (DATE), pages 1150–1155, March
2005.

[CKI+01] Lakshmi N. Chakrapani, Pinar Korkmaz, Vincent J. Mooney III,
Krishna V. Palem, Kiran Puttaswamy, and Weng-Fai Wong. The
emerging power crisis in embedded processors: what can a (poor) com-
piler do? In Proceedings of the International Conference on Compilers,
Architecture and Synthesis for Embedded Systems (CASES), pages
176–180, November 2001.

[CKL00] Naehyuck Chang, Kwanho Kim, and Hyung Gyu Lee. Cycle-Accurate
Energy Consumption Measurement and Analysis: Case Study of
ARM7TDMI. In Proceedings of the International Symposium on Low
Power Electronics and Design (ISLPED), pages 185–190, July 2000.

[CY02] Wissam Chedid and Chansu Yu. Survey on Power Management Tech-
niques for Energy Efficient Computer Systems. Technical report, De-
partment of Electrical and Computer Engineering, Mobile Computing
Research Lab, Cleveland State University, September 2002.

References 245

[EH] Jan Edler and Mark D. Hill. Dinero IV Trace-Driven Uniprocessor
Cache Simulator. http://www.cs.wisc.edu/˜markhill/DineroIV.

[Fer97] Christian Ferdinand. Cache Behavior Prediction for Real-Time Sys-
tems. PhD thesis, Universität des Saarlandes, Saarbrücken, 1997.

[FHP00] Christopher W. Fraser, David R. Hanson, and Todd A. Proebsting.
Engineering a Simple, Efficient Code Generator Generator. ACM
Letters on Programming Languages and Systems, 1(3):213–226, June
2000.

[Gai] Jiri Gaisler. LEON2 SPARC processor.
http://www.gaisler.com/products/leon2/leon.html.

[GAV95] Antonio Gonzales, Carlos Aliagas, and Mateo Valero. A data cache
with multiple caching strategies tuned for different types of locality. In
Proceedings of the International Conference on Supercomputing (ICS),
pages 338–347, July 1995.

[GCC05] GCC Home Page. GNU Project - Free Software Foundation (FSF).
http://gcc.gnu.org, 2005.

[GLMS02] Thorsten Grötker, Stan Liao, Grant Martin, and Stuart Swan. System
Design with SystemC. Springer, 2002.

[Hel04] Urs Helmig. Compiler supported Optimization of Accesses to Par-
titioned Memories (Compilergestützte Optimierung von Zugriffen
auf partitionierte Speicher) (in German language). Master’s thesis,
Embedded Systems Group, Department of Computer Science XII,
University of Dortmund, March 2004.

[His05] Jason D. Hiser. Effective Algorithms for Partitioned Memory Hier-
archies in Embedded Systems. PhD thesis, Department of Computer
Science, University of Virginia, USA, April 2005.

[HLTW03] Reinhold Heckmann, Marc Langenbach, Stephan Thesing, and Rein-
hard Wilhelm. The Influence of Processor Architecture on the Design
and the Results of WCET Tools. Proceedings of the IEEE, 91(7), July
2003.

[HP03] John L. Hennessy and David A. Patterson. Computer Architecture: A
Quantitative Approach, Third Edition. Morgan Kaufmann Publishers,
2003.

[HPH+00] Ulrich Heinkel, Martin Padeffke, Werner Haas, Thomas Bürner, Her-
bert Braisz, Thomas Gentner, and Alexander Grassmann. The VHDL
Reference. John Wiley & Sons, Ltd, 2000.

[HS89] Mark D. Hill and Alan Jay Smith. Evaluating Associativity in
CPU Caches. Transactions on Computers, pages 1612–1630, December
1989.

[ILO05] ILOG. ILOG CPLEX: High Performance Software for Mathemati-
cal Programming and Optimization. http://www.ilog.com/products/
cplex, 2005.

[IY98] Tohru Ishihara and Hiroto Yasuura. Voltage Scheduling Problem for
Dynamically Variable Voltage Processors. In Proceedings of the Inter-
national Symposium on Low Power Electronics and Design (ISLPED),
pages 197–202, August 1998.

[JBK01] Manoj Kumar Jain, M. Balakrishnan, and Anshul Kumar. ASIP De-
sign Methodologies: Survey and Issues. In Proceedings of the IEEE/
ACM International Conference on VLSI Design, pages 76–81, January
2001.

246 References

[JM93] R. Jöhnk and Peter Marwedel. MIMOLA Reference Manual Version
3.45. Technical Report 470, Embedded Systems Group, Department
of Computer Science XII, University of Dortmund, March 1993.

[Ker05] André Kernchen. Compiler supported energy reduction for SRAM
and Flash-based memory technologies (Compilergestützte Energiere-
duktion von SDRAM und Flash-basierten Speichertechnologien) (in
German language). Master’s thesis, Embedded Systems Group, De-
partment of Computer Science XII, University of Dortmund, January
2005.

[KG97] Milind B. Kamble and Kanad Ghose. Analytical energy dissipation
models for low power caches. In Proceedings of the International
Symposium on Low Power Electronics and Design (ISLPED), pages
143–148, August 1997.

[KG02] Arvind Krishnaswamy and Rajiv Gupta. Profile Guided Selection
of ARM and Thumb Instructions. In Proceedings of the conference
on Languages, Compilers, and Tools for Embedded Systems (LCTES)
and Software and Compilers for Embedded Systems (SCOPES), pages
56–64, June 2002.

[KGK99] Hansoo Kim, Kanchi Gopinath, and Vinod Kathail. Register allo-
cation in hyper-block for EPIC processors. In Proceedings of the
International Conference on Parallel Computing: Fundamentals &
Applications (ParCo), pages 550–557, August 1999.

[KHZA00] Ronny Krashinsky, Seongmoo Heo, Michael Zhang, and Krste
Asanović. SyCHOSys: Compiled Energy-Performance Cycle Simula-
tion. In Workshop on Complexity-Effective Design, held in conjunction
with the 27th Annual International Symposium on Computer Archi-
tecture (ISCA), June 2000.

[KKS01] Mahmut Kandemir, Ismail Kadayif, and Ugur Sezer. Exploiting
Scratch-Pad Memory Using Presburger Formulas. In Proceedings of
the Internationational Symposium on System Synthesis (ISSS), pages
7–12, September 2001.

[KLMSP99] Johnson Kin, Chunho Lee, William H. Mangione-Smith, and Miodrag
Potkonjak. Power Efficient Mediaprocessors: Design Space Explo-
ration. In Proceedings of the Design Automation Conference (DAC),
pages 321–326, June 1999.

[KPL99] Young-Jun Kwon, Danny Parker, and Hyuk Jae Lee. TOE: Instruc-
tion Set Architecture for Code Size Reduction and Two Operations
Execution. In International Workshop on Compiler and Architecture
Support for Embedded Systems (CASES), October 1999.

[KVIY00] Mahmut Kandemir, Narayanan Vijaykrishnan, Mary J. Irwin, and
Wu Ye. Influence of Compiler Optimizations on System Power. In
Proceedings of the 37th Design Automation Coference (DAC), pages
304–307, June 2000.

[Leu97] Rainer Leupers. Retargetable Code Generation for Digital Signal
Processors. Kluwer Academic Publishers, 1997.

[Leu00] Rainer Leupers. Code Optimization Techniques for Embedded Proces-
sors. Kluwer Academic Publishers, 2000.

[Leu01] Rainer Leupers. LANCE: A C Compiler Platform for Embedded
Processors. In Embedded Systems/Embedded Intelligence, Nürnberg,
Germany, February 2001.

References 247

[LLM+01] Markus Lorenz, Rainer Leupers, Peter Marwedel, Thorsten Dräger,
and Gerhard P. Fettweis. Low-Energy DSP Code Generation Using a
Genetic Algorithm. In Proceedings of the International Conference on
Computer Design (ICCD), pages 431–437, September 2001.

[LMD+04] Markus Lorenz, Peter Marwedel, Thorsten Dräger, Gerhard Fettweis,
and Rainer Leupers. Compiler based Exploration of DSP Energy Sav-
ings by SIMD Operations. In Proceedings of the Asia and South Pacific
Design Automation Conference (ASP-DAC), pages 839–842, January
2004.

[LMW95] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Performance
Estimation of Embedded Software with Instruction Cache Model-
ing. In Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 380–387, November 1995.

[LMW96] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Cache Mode-
ling for Real-Time Software: Beyond Direct Mapped Instruction
Caches. In Proceedings of the IEEE Real-Time Systems Symposium
(RTSS), pages 254–263, December 1996.

[LNC03] Hyung Gyu Lee, Sungyuep Nam, and Naehyuck Chang. Cycle-
accurate Energy Measurement and High-Level Energy Characteriza-
tion of FPGAs. In Proceedings of the Fourth International Symposium
on Quality Electronic Design (SQED), pages 267–273. IEEE, March
2003.

[Lor03] Markus Lorenz. Performance- and Energy-Efficient Compilation
for Digital SIMD Signal Processors using Genetic Algorithms
(Performance- und energieeffiziente Compilierung für digitale SIMD-
Signalprozessoren mittels genetischer Algorithmen) (in German
language). PhD thesis, Embedded Systems Group, Department of
Computer Science XII, University of Dortmund, January 2003.

[LSI04] LSI Logic Corporation. ARM Processor Cores. http://www.lsilogic.
com/products/arm, 2004.

[Lun02] Thomas Lundqvist. A WCET Analysis Method for Pipelined Micro-
processors with Cache Memories. Technical report, Dept. of Computer
Engineering, Chalmers University of Technology, June 2002.

[LWD02] Markus Lorenz, Lars Wehmeyer, and Thorsten Dräger. Energy aware
Compilation for DSPs with SIMD Instructions. In Proceedings of the
conference on Languages, Compilers, and Tools for Embedded Sys-
tems (LCTES) and Software and Compilers for Embedded Systems
(SCOPES), published in ACM SIGPLAN Notices, Volume 37, Issue
7, pages 94–101, June 2002.

[Mac02] Philip Machanik. Approaches to Addressing the Memory Wall. Tech-
nical report, University of Brisbane, November 2002.

[Mar93] Peter Marwedel. Synthesis and Simulation of VLSI-Systems (Synthese
und Simulation von VLSI-Systemen) (in German language). Carl
Hanser Verlag, 1993.

[MCB+03] Paul Marchal, Francky Catthoor, Davide Bruni, Luca Benini,
Jose Ignacio Gomez, Luis Piuel, and Henk Corporaal. SDRAM-
Energy-Aware Memory Allocation for Dynamic Multi-Media Appli-
cations on Multi-Processor Platforms. In Proceedings of the Design,
Automation and Test in Europe Conference (DATE), pages 516–521,
March 2003.

248 References

[Men] Mentor Graphics. ModelSim. http://www.mentor.com.
[Mic01] Micron Technology Inc. Calculating DDR Memory System Power.

Technical Report TN-46-03, Micron Technology Inc., 2001.
[Mic04a] Micron Technology Inc. 128Mbit Mobile SDRAM Data Sheet,

MT48 series. http://www.micron.com/pdf/datasheets/dram/mobile/
128Mbx16x32Mobile.pdf, 2004.

[Mic04b] Micron Technology Inc. Data Sheet for Micron Q-Flash MT28F640J3.
http://www.micron.com/pdf/datasheets/flash/qflash/MT28F128J3
15.pdf, 2004.

[Mic04c] Micron Technology Inc. MT48H4M16LF Data Sheet - 64Mbit Mobile
SDRAM. Document No. Y25L. http://www.micron.com/pdf/data-
sheets/dram/mobile/Y25L 64Mb.pdf, 2004.

[MMC00] Afzal Malik, Bill Moyer, and Dan Cermak. A programmable unified
cache architecture for embedded applications. In Proceedings of the
International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems (CASES), pages 165–171, November 2000.

[MMP03] Alberto Macii, Enrico Macii, and Massimo Poncino. Improving the Ef-
ficiency of Memory Partitioning by Address Clustering. In Proceedings
of the Design, Automation and Test in Europe Conference (DATE),
pages 18–24, March 2003.

[Mos01] Vasily G. Moshnyaga. Reducing Cache Energy through Dual Voltage
Supply. In Proceedings of the Asia and South Pacific Design Automa-
tion Conference (ASP-DAC), pages 302–305, January 2001.

[Muc97] Steven S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann Publishers, 1997.

[MWV+04] Peter Marwedel, Lars Wehmeyer, Manish Verma, Stefan Steinke, and
Urs Helmig. Fast, predictable and low energy memory references
through architecture-aware compilation. In Proceedings of the Asia
and South Pacific Design Automation Conference (ASP-DAC), pages
4–11, January 2004.

[NCB+95] Lode Nachtergaele, Francky Catthoor, Florin Balasa, Frank Franssen,
Eddy De Greef, Hans Samsom, and Hugo De Man. Optimization
of memory organization and hierarchy for decreased size and power
in video and image processing systems. In Proceedings of the IEEE
International Workshop on Memory Technology, Design and Testing,
pages 82–89, August 1995.

[OIY99] Takanori Okuma, Tohru Ishihara, and Hiroto Yasuura. Real-Time
Task Scheduling for a Variable Voltage Processor. In Proceedings of
the 12th International Symposium on System Synthesis (ISSS), pages
24–29, November 1999.

[Pal03] Samir Palnitkar. Verilog HDL. Prentice Hall, 2003.
[PB00] Peter Puschner and Alan Burns. A Review of Worst-Case Execution-

Time Analysis. Journal of Real-Time Systems, 18(2/3):115–128, May
2000.

[PCD+01] Preeti Ranjan Panda, Francky Catthoor, Nikil D. Dutt, Koen Danck-
aert, Erik Brockmeyer, Chidamber Kulkarni, Arnout Vandecappelle,
and Per G. Kjeldsberg. Data and memory optimization techniques
for embedded systems. ACM Transactions on Design Automation of
Electronic Systems (TODAES), 6(2):149–206, April 2001.

References 249

[PDN97] Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau. Archi-
tectural exploration and optimization of local memory in embedded
systems. In Proceedings of the International Symposium on System
Synthesis (ISSS), pages 90–97, September 1997.

[PDN99a] Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau. Local
memory exploration and optimization in embedded systems. IEEE
Transactions on Computer Aided Design, 18:3–13, January 1999.

[PDN99b] Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau. Memory
Issues in Embedded Systems-On-Chip. Kluwer Academic Publishers,
1999.

[Pet04] Klaus Petzold. Scratchpad Allocation Strategies for Multi-
Process Systems (Scratchpad-Allokations-Strategien für Multiprozess-
Systeme) (in German language). Master’s thesis, Embedded Systems
Group, Department of Computer Science XII, University of Dort-
mund, October 2004.

[PHM00] Stefan Pees, Andreas Hoffmann, and Heinrich Meyr. Retargetable
Compiled Simulation of Embedded Processors Using a Machine
Description Language. IEEE Transactions on Design Automation of
Electronic Systems, 5(4):815–834, October 2000.

[PMP04] Kimish Patel, Enrico Macii, and Massimo Poncino. Synthesis of Par-
titioned Shared Memory Architectures for Energy-Efficient Multi-
Processor SoC. In Proceedings of the Design, Automation and Test
in Europe Conference (DATE), pages 700–701, February 2004.

[PRASA99] Vijay S. Pai, Parthasarathy Ranganathan, Hazim Abdel-Shafi, and
Sarita Adve. The Impact of Exploiting Instruction-Level Parallelism
on Shared-Memory Multiprocessors. Transactions on Computers, Spe-
cial Issue on Caches, pages 218–226, February 1999.

[PSB+03] Chanik Park, Jaeyu Seo, Sunghwan Bae, Hyojun Kim, Shinhan Kim,
and Bumsoo Kim. A Low-cost Memory Architecture with NAND
XIP for Mobile Embedded Systems. In Proceedings of the 1st IEEE/
ACM/IFIP International Conference on Hardware/Software Codesign
and System Synthesis, pages 138–143, October 2003.

[Pus99] Peter Puschner. Real-Time Performance of Sorting Algorithms. Real-
Time Systems, 16(1):63–79, January 1999.

[Saa03] Alexandre Saad. Java-based Functionality and Data Manage-
ment in the Automobile. Prototyping at BMW Car IT GmbH.
http://www.javaspektrum.de. JavaSpektrum, 2:49–53, March 2003.

[SBM99a] Tajana Simunic, Luca Benini, and Giovanni De Micheli. Cycle-
Accurate Simulation of Energy Consumption in Embedded Systems.
In Proceedings of the Design Automation Conference (DAC), pages
867–873, June 1999.

[SBM99b] Tajana Simunic, Luca Benini, and Giovanni De Micheli. Energy-
Efficient Design of Battery-Powered Embedded Systems. In Proceed-
ings of the International Symposium on Low Power Electronics and
Design (ISLPED), pages 212–217, August 1999.

[SBT00] Akshaye Sama, M. Balakrishnan, and J. F. M. Theeuwen. Speeding
up Power Estimation of Embedded Software. In Proceedings of Inter-
national Symposium on Low Power Electronics and Design (ISLPED),
pages 191–196, July 2000.

250 References

[SC99] Wen-Tsong Shiue and Chaitali Chakrabarti. Memory Eploration for
Low Power, Embedded Systems. In Proceedings of the Design Auto-
mation Conference (DAC), pages 140–145, New Orleans, June 1999.
ACM/IEEE.

[SCG95] Simon Segars, Keith Clarke, and Liam Goudge. Embedded Control
Problems, Thumb, and the ARM7TDMI. IEEE Micro, 15(5):22–30,
October 1995.

[Sch03] Marc Schuller. Studying the switching activity of RISC processors
using the Leon processor (Untersuchung der Schaltaktivität von
RISC-Prozessoren am Beispiel des Leon Prozessors) (in German lan-
guage). Master’s thesis, Institut für Technische Informatik, Universität
Stuttgart, 2003.

[Sed98] Robert Sedgewick. Algorithms. AddisonWesley, Massachusetts, 1998.
[SGW+02] Stefan Steinke, Nils Grunwald, Lars Wehmeyer, Rajeshwari Banakar,

M. Balakrishnan, and Peter Marwedel. Reducing Energy Consumption
by Dynamic Copying of Instructions onto Onchip Memory. In Pro-
ceedings of the International Symposium on System Synthesis (ISSS),
pages 213–218, October 2002.

[SJC+03] Hojun Shim, Yongsoo Joo, Yongseok Choi, Hyung Gyu Lee, and Nae-
hyuck Chang. Low-Energy Off-Chip SDRAM Memory Systems for
Embedded Applications. ACM Transactions on Embedded Computing
Systems (TECS), 2(1):98–130, Februrary 2003.

[SKWM01] Stefan Steinke, Markus Knauer, Lars Wehmeyer, and Peter Marwedel.
An Accurate and Fine Grain Instruction-Level Energy Model support-
ing Software Optimizations. In International Workshop on Power And
Timing Modeling, Optimization and Simulation (PATMOS), pages
3.2.1–3.2.10, September 2001.

[SLAM98] Jeff Scott, Lea Hwang Lee, John Arends, and Bill Moyer. Designing the
Low-Power MCORE Architecture. In Proceedings of the IEEE Power
Driven Microarchitecture Workshop, pages 145–150, June 1998.

[SNF04] Julian Seward, Nick Nethercote, and Jeremy Fitzharding. Valgrind-
system for debugging and profiling x86-Linux programs. http://
valgrind.kde.org, 2004.

[SRP+95] Deo Singh, Jan Rabaey, Massoud Pedram, Francky Catthoor, Suresh
Rajgopal, Naresh Sehgal, and Thomas J. Mozden. Power conscious
CAD Tools and Methodologies: A Perspective. In Proceedings of the
IEEE, pages 570–594, April 1995.

[SS99] Giannis Sinevriotis and Thanos Stouraitis. Power Analysis of the ARM
7 Embedded Microprocessor. In Proceedings of the ninth International
Workshop on Power and Timing Modeling, Optimization and Simula-
tion (PATMOS), pages 261–270, October 1999.

[SSR01] Florian Schintke, Jens Simon, and Alexander Reinefeld. A Cache
Simulator for Shared Memory Systems. In Computational Science -
ICCS 2001, appeared in Lecture Notes in Computer Science, volume
2074, pages 569–578, May 2001.

[SSWM01] Stefan Steinke, Rüdiger Schwarz, Lars Wehmeyer, and Peter Mar-
wedel. Low power code generation for a RISC processor by register
pipelining. Technical Report 754, Embedded Systems Group, Depart-
ment of Computer Science XII, University of Dortmund, March 2001.

References 251

[Ste03] Stefan Steinke. Analysis of the energy saving potential in embedded sys-
tems through energy optimizing compliation techniques (Untersuchung
des Energieeinsparungspotenzials in eingebetteten Systemen durch
energieoptimierende Compilertechnik) (in German language). PhD
thesis, Embedded Systems Group, Department of Computer Science
XII, University of Dortmund, April 2003.

[SWLM02] Stefan Steinke, Lars Wehmeyer, Bo-Sik Lee, and Peter Marwedel. As-
signing Program and Data Objects to Scratchpad for Energy Reduc-
tion. In Proceedings of the Design, Automation and Test in Europe
Conference (DATE), pages 409–415, March 2002.

[Sym] Symphony EDA. VHDL Simili. http://www.symphonyeda.com/
products.htm.

[Syn] Synopsys Inc. Discovery Verification Platform - VCS http://www.
synopsys.com/products/simulation/simulation.html.

[Syn96] Synopsys Inc. Power Products Reference Manual Version 3.5. Synop-
sys, 1996.

[TFW00] Henrik Theiling, Christian Ferdinand, and Reinhard Wilhelm. Fast
and Precise WCET Prediction by Separated Cache and Path Analyses.
Real-Time Systems, 18(2/3):157–179, May 2000.

[The00] Michael Theokharidis. Measuring Energy consumption of ARM7-
TDMI Processor Instructions (Energiemessung von ARM7TDMI
Prozessor-Instruktionen) (in German language). Master’s thesis,
Embedded Systems Group, Department of Computer Science XII,
University of Dortmund, November 2000.

[TL98] Vivek Tiwari and Mike Tien-Chien Lee. Power Analysis of a 32-bit
Embedded Microcontroller. VLSI Design Journal, 7(3), 1998.

[TM04] Yudong Tan and Vincent Mooney. Integrated Intra- and Inter-task
Cache Analysis for Preemptive Multi-tasking Real-Time Systems. In
Proceedings of the 8th Workshop on Software and Compilers for Em-
bedded Systems (SCOPES), in: Lecture Notes on Computer Science,
LNCS3199, pages 182–199, September 2004.

[TMW94a] Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Compilation Tech-
niques for Low Energy: An Overview. In Proceedings of the IEEE
Symposium on Low Power Electronics (SLPE), October 1994.

[TMW94b] Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Power Analysis Of
Embedded Software: A First Step Towards Software Power Minimiza-
tion. In Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 384–390, November 1994.

[TMW96] Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Instruction Level
Power Analysis and Optimization of Software. Journal of VLSI Signal
Processing Systems, Special issue on technologies for wireless compu-
ting, 13(Issue 2-3):223–238, August/September 1996.

[Tri] Trimaran. Trimaran Homepage. http://www.trimaran.org.
[TY96] Hiroyuki Tomiyama and Hiroto Yasuura. Optimal code placement

of embedded software for instruction caches. In Proceedings of the
European Design and Test Conference (ED&TC), pages 96–101,
March 1996.

[UNS02] Sumesh Udayakumaran, Bhagi Narahari, and Rahul Simha. Appli-
cation Specific Memory Partitioning for Low Power. In Proceedings

252 References

of the Workshop on Compilers and Operating Systems for Low Power
(COLP), pages 03.1 – 03.8, September 2002.

[VSM03] Manish Verma, Stefan Steinke, and Peter Marwedel. Data Partitioning
for Maximal Scratchpad Usage. In Proceedings of the Asia and South
Pacific Design Automation Conference (ASP-DAC), pages 77–83,
January 2003.

[VWM04a] Manish Verma, Lars Wehmeyer, and Peter Marwedel. Cache Aware
Scratchpad Allocation. In Proceedings of the Design, Automation and
Test in Europe Conference (DATE), pages 1264–1269, February 2004.

[VWM04b] Manish Verma, Lars Wehmeyer, and Peter Marwedel. Dynamic Over-
lay of Scratchpad Memory for Energy Minimization. In Proceedings
of the International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS), pages 104–109, September 2004.

[VWM04c] Manish Verma, Lars Wehmeyer, and Peter Marwedel. Efficient
Scratchpad Allocation Algorithms for Energy Constrained Embedded
Systems. Proceedings of the Workshop on Power Aware Computer
Systems (PACS), published in Lecture Notes on Computer Science
(LNCS), Volume 3164, 3164:41–56, January 2004.

[WHM04] Lars Wehmeyer, Urs Helmig, and Peter Marwedel. Compiler-
optimized Usage of Partitioned Memories. In Proceedings of the 3rd
Workshop on Memory Performance Issues (WMPI2004), published
ACM International Conference Proceedings Series, pages 114–120,
June 2004.

[WJ94] Steven J.E. Wilton and Norman P. Jouppi. An Enhanced Access
and Cycle Time Model for On-Chip Caches. Technical Report 93/5,
Western Research Laboratory, July 1994.

[WJ96] Steven J.E. Wilton and Norman P. Jouppi. CACTI: An Enhanced
Cache Access and Cycle Time Model. IEEE Journal of Solid-State
Circuits, 31(5):677–688, May 1996.

[WJS+01] Lars Wehmeyer, Manoj K. Jain, Stefan Steinke, Peter Marwedel, and
M. Balakrishnan. Analysis of the Influence of Register File Size on
Energy Consumption, Code Size and Execution Time. IEEE Trans-
actions on Computer Aided Design, Special Issue on Software and
Compilers for Embedded Systems, 20(11):1329–1337, November 2001.

[WL02a] Jens Wagner and Rainer Leupers. A Fast Simulator and Debugger
for a Network Processor. In Proceedings of Embedded Intelligence,
February 2002.

[WL02b] Jens Wagner and Rainer Leupers. Advanced Code Generation for
Network Processors with Bit Packet Addressing. In Proceedings of
the Workshop on Network Processors (NP1), pages 91–115, February
2002.

[WM95] William A. Wulf and Sally A. McKee. Hitting the Memory Wall: Im-
plications of the Obvious. ACM Computer Architecture News, 23(1):
20–24, March 1995.

[WM04] Lars Wehmeyer and Peter Marwedel. Influence of Onchip Scratchpad
Memories on WCET prediction. In Proceedings of the Workshop on
Worst Case Execution Time Analysis at the ECRTS conference, pages
29–32, June 2004.

[WM05] Lars Wehmeyer and Peter Marwedel. Influence of Memory Hier-
archies on Predictability for Time Constrained Embedded Software. In

References 253

Proceedings of the Design, Automation and Test in Europe Conference
(DATE), pages 600–605, March 2005.

[XMBH] Min Xu, Milo Martin, Doug Burger, and Mark Hill. WWW Computer
Architecture Page. http://www.cs.wisc.edu/˜arch/www.

[YTIE97] Hiroto Yasuura, Hiroyuki Tomiyama, Akira Inoue, and Fajar N. Eko.
Embedded System Design Using Soft-Core Processor and Valen-C. In
Proceedings of the 4th Asia Pacific Conference on Hardware Descrip-
tion Languages (APCHDL), pages 121–130, August 1997.

[ZKSI03] Wei Zhang, Mahmut Kandemir, Anand Sivasubramanian, and Mary J.
Irwin. Performance, Energy, and Reliability Tradeoffs in Replica-
ting Hot Cache Lines. In Proceedings of the International Confe-
rence on Compilers, Architectures and Synthesis for Embedded
Systems (CASES), pages 309–317, October 2003.

[ZVSM94] Voijin Zivojnovic, J. Martinez Velarde, Chris Schläger, and Heinrich
Meyr. DSPstone: A DSP-Oriented Benchmarking Methodology. In
Proceedings of the International Conference on Signal Processing Ap-
plications and Technology (ICSPAT), pages 715–722, October 1994.

Index

A

aiT WCET Analyzer 77, 141–153, 157,
163, 166

allocation

Base ∼ model.127

Bottom-Up ∼ modelxs 94–97, 100,
105, 111–117, 119, 122, 125–133,
142, 143, 151–153, 161, 164, 187,
189, 234–236

dynamic ∼ 2, 11, 12, 14, 91, 92, 139,
142, 143, 161–168, 236, 240

leakage energy aware ∼ model
117–119

multi memory ∼ 90–92, 96, 120–136,
142, 171, 177, 188

register ∼ 87, 92, 161, 162, 217–231,
238

static ∼ 11–13, 77, 90–95, 130, 142,
152, 161–165, 167

TCM ∼ model 117, 131–133, 235

Top-Down ∼ model 97, 100, 102,
104–106, 109, 111, 115, 122,
124–130, 234

annotation

load store address ∼ 141, 149

longjump instruction ∼ 143, 148

loop bound ∼ 141, 148

memory region ∼141, 145, 146

ARM software development toolkit
(SDT) 18, 64, 66, 79, 195

array splitting 91, 99

assembler . 5, 18

assembly code 5, 64, 79, 222, 225, 227
associativity see cache

B

Base allocation model, see allocation
battery . 6, 38, 39, 83
benchmarks

ADPCM 151, 158, 164, 167, 168, 189,
212, 215

biquad N sections 224, 227
Fast IDCT . . . 122, 159, 161, 213, 214
FFT . 130, 132
FIR . 189, 212, 213
G.721.121, 152–157, 213
insertion sort 224–232
lattice . 224–227
matrix-mult 224–227
ME 188, 190, 191, 213, 224–227
MPEG 210, 212, 213
Multi Sort . . . 122–134, 157, 161, 164,

167, 189, 190, 213
Ref IDCT 122, 130, 132, 224

Bottom-Up allocation model see
allocation

C

cache
direct mapping 28, 50, 141, 145, 152
replacement policy 27, 141, 145, 152,

235
set associative mapping . . . 12, 27, 28,

66, 86, 95, 141, 143, 147, 152, 235
thrashing . 27

255

256 Index

D

design space exploration 65, 66, 68, 83,
88, 119

dynamic allocation see allocation
dynamic profiling 52, 80–82, 87,

93, 98, 99, 181, 186, 197, 201, 209,
222, 231

E

electromigration . 38
energy

cache ∼model 1, 11, 60
cost function 37, 76, 84, 100, 101,

106, 113, 177, 240
definition . 38
DRAM ∼model 1, 12, 35, 45, 46, 51,

52, 174, 186, 195
Flash memory ∼model 1, 45, 59, 195,

208
leakage ∼ 39, 96, 117–119, 133–135,

177, 235
processor ∼model 1, 5, 11, 15–18, 37,

40–45, 63, 78, 193, 194, 198, 229,
233

SRAM ∼model 1, 11, 20, 45, 48, 49,
51

standby ∼ 2, 177, 187, 191, 192, 197,
198, 237

execute-in-place (XIP) 2, 10, 12, 25, 45,
76, 86, 172, 192–216, 237, 241

G

graph coloring 221, 222

I

instruction set
ARM ∼ 17, 18, 30, 65, 195, 225, 226
simulator 5, 16, 18, 46, 63–66, 69, 70,

79, 81, 82, 144, 152
THUMB ∼ 17, 18, 30, 65, 76, 78, 146,

162, 163, 195, 197, 222, 223, 225

L

lifetime analysis (LTA) . . . 217, 220, 230
linker 5, 18, 79, 87, 99, 194
locality 7, 27, 28, 95, 96

M

memory wall 6, 7, 45, 89
MEMSIM memory hierarchy simulator

61, 66–75, 79, 239
MIMOLA hardware description

language. .218
multi memory allocation, see allocation

P

pervasive computing 3, 4
power

definition . 38
predictability, see timing predictability

R

register
allocation see allocation
file . . . 2, 8, 10, 11, 13, 14, 17, 88, 162,

171, 217–232, 238, 241
pipelining.37, 76, 78
spilling.2, 13, 78, 88, 91, 162,

218–232, 238, 241
reliability . 6, 38

S

scatter loading 79, 151
spilling, spill code . . see register spilling
static allocation see allocation
static analysis 79, 80, 93, 98, 148, 225,

226

T

TCM allocation model, see allocation
tightly coupled memory (TCM) 12, 13,

20, 90, 97, 98, 115, 131, 132, 142,
234, 235

timing
cache ∼model . 36
DRAM ∼model . . . 12, 24, 33–35, 195
Flash ∼model 35, 36, 195, 208
predictability 1, 2, 5, 9, 10, 136, 137,

140, 233, 235
processor ∼model 11, 17, 29, 233
SRAM ∼model 32

Top-Down allocation model see
allocation

Index 257

U

ubiquitous computing 3, 4

V

VHDL hardware description language
42–44, 62, 63, 70, 218

W

worst case execution time (WCET)
1, 2, 10, 12–14, 77, 81, 90, 136–169,

172, 173, 235, 236, 240
observed ∼ . 140

X

XIP see execute-in-place

 HistoryItem_V1
 InsertBlanks

 Where: after last page
 Number of pages: 2
 same as current

 2
 1
 1
 274
 211

 CurrentAVDoc

 SameAsCur
 AtEnd

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0c
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

<<
 /ASCII85EncodePages true
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (Euroscale Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0053007000720069006e006700650072004e004c002000300039002f0032003000300034>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [595.276 841.890]
>> setpagedevice

