
Convergent Architecture Table of Contents

-1-

Convergent Architecture—Building Model-Driven
J2EE Systems with UML

Convergent Architecture: Building Model Driven J2EE Systems with UML

by Richard Hubert

John Wiley & Sons © 2002

Companion Web Site Printer friendly format

Table of Contents

 Convergent Architecture—Building Model-Driven J2EE Systems with UML

 Foreword

 Introduction

 Chapter 1 -
IT-Architectural Style—Professional engineering disciplines use
architectural styles

 Chapter 2 - The Convergent Architecture Roadmap—Defining and managing
the big picture

 Chapter 3 - The Convergent Architecture Metamodel—The vision and principles
of the architecture

 Chapter 4 -
The Convergent Component Metamodel—Components as the
vehicle of architecture

 Chapter 5 - The IT-Organization Model—The business of building IT systems

 Chapter 6 - The Development Process Model

 Chapter 7 - The Architectural IDE—Automating the architecture

 Chapter 8 - Tutorial Example: Applying the Convergent Architecture

 Bibliography

 Index

 List of Figures

 List of Tables

 TE
AM
FL
Y

Team-Fly®

Convergent Architecture Press Information

-2-

Convergent Architecture—Building
Model-Driven J2EE Systems with UML

Richard Hubert

Wiley Computer Publishing John Wiley & Sons, Inc.

Publisher: Robert Ipsen
Editor: Robert Elliott
Assistant Editor: Emilie Herman
Managing Editor: John Atkins
Associate New Media Editor: Brian Snapp
Text Design & Composition: MacAllister Publishing Services, LLC

Designations used by companies to distinguish their products are often claimed as
trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim,
the product names appear in initial capital or ALL CAPITAL LETTERS. Readers,
however, should contact the appropriate companies for more complete information
regarding trademarks and registration.

Copyright © 2002 by Richard Hubert. All rights reserved.

Published by John Wiley & Sons, Inc.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate
per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher for
permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax
(212) 850-6008, E-Mail: <PERMREQ@WILEY.COM>.

This publication is designed to provide accurate and authoritative information in
regard to the subject matter covered. It is sold with the understanding that the
publisher is not engaged in professional services. If professional advice or other
expert assistance is required, the services of a competent professional person
should be sought.
Library of Congress Cataloging-in-Publication Data

Hubert, Richard
Convertent architecture: building model-driven J2EE systems with UML / Richard
Hubert.
p. cm.

Convergent Architecture Press Information

-3-

"Wiley Computer Publishing."
Includes bibliographical references and index.
ISBN: 0-471-10560-0
1. Computer architecture.2. System design.3. Information technology.I. Title.

QA76.9.A73 A82 2001
658.4'038'011--dc21

2001046537

10 9 8 7 6 5 4 3 2 1
Advance Praise for Convergent Architecture: Building Model-Driven J2EE
Systems with UML

"Software engineering is a well established discipline by now. However, the role
and importance of a proper underlying architecture is very often not yet
recognized by the software community. This book-with its positioning of
architectural styles in general and the Convergent Architecture specifically-
provides another major step towards the ultimate goal of architecture-driven
software engineering. This is critical for companies that wish to meet the specific
challenges of today's e-business world-flexibility and adaptability, time-to-market,
and quality of software solutions. The author not only describes the fundamental
principles of Convergent Architecture and the integration of system design with
business and project design, but also covers the methodology, organizational
structure, and support necessary to effectively translate the conceptual framework
into action."

Jürgen Henn
Principal and Practice Leader, e-business Architecture Consulting

IBM Business Innovation Services

"Bridges generally work reliably. Large software systems generally don't. The
essential difference is in design complexity, and in our inability to tame it.
Ironically the management of this complexity has precedents in the architecture of
buildings, and in this book Richard Hubert identifies the concept of Architectural
Styles as the missing ingredient in large software initiatives. Architectural Styles
and the Convergent Architecture are about systematic reuse and progressive
refinement of collective software design wisdom. Anyone involved in complex
software projects should read this book cover to cover."

Barry Morris
Chief Executive, Total Business Integration

"Engineers dream of a tool-supported design process for transforming high-level
models of system requirements into robust systems. In software engineering there
are many partial answers, but a comprehensive approach has been lacking until
now. This book gives a lucid account of a full life-cycle approach to designing
large-scale, Internet-oriented business systems where Model Driven Architecture,
combined with a mature architectural style, is the key. Readers-whether managers,
designers, or programmers-will profit from this and incorporate architecture-
centric design in their own practice."

Dr. David Basin
Professor for Software Engineering

University of Freiburg, Germany
To Stephanie

Convergent Architecture Press Information

-4-

OMG Press Books in Print
(For complete information about current and upcoming titles, go to
www.wiley.com/compbooks/omg/)

� Building Business Objects by Peter Eeles and Oliver Sims, ISBN: 0-
471-19176-0.

� Business Component Factory: A Comprehensive Overview of
Component-Based Development for the Enterprise by Peter Herzum
and Oliver Sims, ISBN: 0-471-32760-3.

� Business Modeling with UML: Business Patterns at Work by Hans-
Erik Eriksson and Magnus Penker, ISBN: 0-471-29551-5.

� CORBA 3 Fundamentals and Programming, 2nd Edition by Jon
Siegel, ISBN: 0-471-29518-3.

� CORBA Design Patterns by Thomas J. Mowbray and Raphael C.
Malveau, ISBN: 0-471-15882-8.

� Enterprise Application Integration with CORBA: Component and
Web-Based Solutions by Ron Zahavi, ISBN: 0-471-32720-4.

� Enterprise Java with UML by CT Arrington, ISBN: 0-471-38680-4
� Enterprise Security with EJB and CORBA by Bret Hartman, Donald J.

Flinn and Konstantin Beznosov, ISBN: 0-471-15076-2.
� The Essential CORBA: Systems Integration Using Distributed

Objects by Thomas J. Mowbray and Ron Zahavi, ISBN: 0-471-
10611-9.

� Instant CORBA by Robert Orfali, Dan Harkey and Jeri Edwards,
ISBN: 0-471-18333-4.

� Integrating CORBA and COM Applications by Michael Rosen and
David Curtis, ISBN: 0-471-19827-7.

� Java Programming with CORBA, Third Edition by Gerald Brose,
Andreas Vogel and Keith Duddy, ISBN: 0-471-24765-0.

� The Object Technology Casebook: Lessons from Award-Winning
Business Applications by Paul Harmon and William Morrisey, ISBN:
0-471-14717-6.

� The Object Technology Revolution by Michael Guttman and Jason
Matthews, ISBN: 0-471-60679-0.

� Programming with Enterprise JavaBeans, JTS and OTS: Building
Distributed Transactions with Java and C++ by Andreas Vogel and
Madhavan Rangarao, ISBN: 0-471-31972-4.

� Programming with Java IDL by Geoffrey Lewis, Steven Barber and
Ellen Siegel, ISBN: 0-471-24797-9.

� Quick CORBA 3 by Jon Siegel, ISBN: 0-471-38935-8.
� UML Toolkit by Hans-Erik Eriksson and Magnus Penker, ISBN: 0-

471-19161-2.
About the OMG

The Object Management Group (OMG) was chartered to create and foster a
component-based software marketplace through the standardization and
promotion of object-oriented software. To achieve this goal, the OMG specifies
open standards for every aspect of distributed object computing from analysis and
design, through infrastructure, to application objects and components.
The well-established Common Object Request Broker Architecture (CORBA)
standardizes a platform- and programming-language-independent distributed
object computing environment. It is based on OMG/ISO Interface Definition
Language (OMG IDL) and the Internet Inter-ORB Protocol (IIOP). Now recognized

Convergent Architecture Press Information

-5-

as a mature technology, CORBA is represented on the marketplace by well over 70
Object Request Brokers (ORBs) plus hundreds of other products. Although most of
these ORBs are tuned for general use, others are specialized for real-time or
embedded applications, or built into transaction processing systems where they
provide scalability, high throughput, and reliability. Of the thousands of live,
mission-critical CORBA applications in use today around the world, over 300 are
documented on the OMG's success-story Web pages at www.corba.org.

CORBA 3, the OMG's latest release, adds a Component Model, quality-of-service
control, a messaging invocation model, and tightened integration with the Internet,
Enterprise Java Beans, and the Java programming language. Widely anticipated by
the industry, CORBA 3 keeps this established architecture in the forefront of
distributed computing, as will a new OMG specification integrating CORBA with
XML. Wellknown for its ability to integrate legacy systems into your network, along
with the wide variety of heterogeneous hardware and software on the market
today, CORBA enters the new millennium prepared to integrate the technologies
on the horizon.

Augmenting this core infrastructure are the CORBA services, which standardize
naming and directory services, event handling, transaction processing, security,
and other functions. Building on this firm foundation, OMG Domain Facilities
standardize common objects throughout the supply and service chains in industries
such as Telecommunications, Healthcare, Manufacturing, Transportation,
Finance/Insurance, Electronic Commerce, Life Science, and Utilities.

The OMG standards extend beyond programming. OMG Specifications for analysis
and design include the Unified Modeling Language (UML), the repository standard
Meta-Object Facility (MOF), and XML-based Metadata Interchange (XMI). The UML
is a result of fusing the concepts of the world's most prominent methodologists.
Adopted as an OMG specification in 1997, it represents a collection of best
engineering practices that have proven successful in the modeling of large and
complex systems and is a well-defined, widely accepted response to these
business needs. The MOF is OMG's standard for metamodeling and meta data
repositories. Fully integrated with UML, it uses the UML notation to describe
repository metamodels. Extending this work, the XMI standard enables the
exchange of objects defined using UML and the MOF. XMI can generate XML Data
Type Definitions for any service specification that includes a normative, MOF-based
metamodel.
In summary, the OMG provides the computing industry with an open, vendor-
neutral, proven process for establishing and promoting standards. OMG makes all
of its specifications available without charge from its Web site, www.omg.org. With
over a decade of standard-making and consensus-building experience, OMG now
counts about 800 companies as members. Delegates from these companies
convene at week-long meetings held five times each year at varying sites around
the world, to advance OMG technologies. The OMG welcomes guests to their
meetings; for an invitation, send your email request to <info@omg.org>.
Membership in the OMG is open to end users, government organizations, academia,
and technology vendors. For more information on the OMG, contact OMG
headquarters by phone at 1-508-820-4300, by fax at 1-508-820-4303, by email at
<info@omg.org>, or on the Web at www.omg.org.
2001 OMG Press Advisory Board

Convergent Architecture Press Information

-6-

Karen D. Boucher
Executive Vice President
The Standish Group
Carol C. Burt
President and Chief Executive Officer
2AB, Inc.
Sridhar Iyengar
Unisys Fellow
Unisys Corporation
Cris Kobryn
Chief Technologist
Telelogic
Nilo Mitra, Ph.D.
Principal System Engineer
Ericsson
Jon Siegel, Ph.D.
Director, Technology Transfer
Object Management Group, Inc.
Richard Mark Soley, Ph.D.
Chairman and Chief Executive Officer
Object Management Group, Inc.
Sheldon C. Sutton
Principal Information Systems Engineer
The MITRE Corporation
Acknowledgments

I would like to thank and at the same time congratulate the many convergent
engineers and information technology (IT) consultants who have helped evolve,
test, and refine the concepts of the Convergent Architecture throughout numerous
projects. This includes, of course, the consultants and developers at Interactive
Objects Software GmbH, who continue to serve as sparring partners and
codevelopers of the Convergent Architecture. The contents of this book bear clear
witness to the value of our long-term team effort.

Although this book builds on the accomplished works of many experts, particular
recognition goes to my friend and mentor, Dr. David A. Taylor, who not only
helped the IT industry explain object technology to the masses but also back in
1995, with his book on convergent engineering, helped us discern the critical path
of IT architecture through the next decades of the Internet age. Without David's
contribution, the "Convergent" in Convergent Architecture would not exist.

Last but not least, I would like to thank my reviewers, in particular Dr. Jan Vester
from Simulacrum GmbH and Axel Uhl from iO GmbH, whose relentless constructive
feedback and attention to detail helped improve this book in many aspects.
RICHARD HUBERT is an accomplished software architect who has own numerous
international awards for large-scale software systems and architectural tools. As
founding director of Interactive Objects Software GmbH (iO), he leads a large team
of professional architects who apply Convergent Architecture across diverse
industry segments. In 2000, iO introduced its Architectural IDE for MDA, ArcStyler.
The author is also an active contributor to the OMG's MDA standardization effort.

Convergent Architecture Foreword

-7-

Foreword
Imagine if every office building was designed and engineered from scratch. I mean
truly from scratch, with each architect working from first principles to solve the
problems of fabricating raw materials, achieving structural integrity, providing
protection from the elements, putting out fires, moving people among the floors,
and delivering air, light, power, and water to the occupants. It would be a disaster.
The costs would be astronomical; each building would be an isolated tower of one-
off systems, and maintenance would be an engineering nightmare. Worse,
catastrophic failures would be so routine that they wouldn't even make the
morning paper.

Does this sound familiar? It should; it's a fair portrayal of how business software is
designed and constructed today. The results are no better than we have a right to
expect.

Someday, application development will outgrow its painful adolescence and gain
the kind of maturity that building architecture now enjoys. As with modern office
buildings, business applications will be assembled out of proven components that
offer standard solutions to recurring problems. Each will be a unique construction,
but—like buildings—they will share compatible subsystems, be easily maintained,
and deliver reliable service.

This book is a seminal contribution to that goal. It offers, both through its content
and by the example it sets, the possibility of coherent architectures for business
software. The particular architecture it describes, the Convergent Architecture,
may well be the most comprehensive, detailed framework ever proposed for large-
scale business applications. Although many parts of the architecture are new, it
incorporates the best of current practices, such as Model Driven Architecture
(MDA), Responsibility Driven Design (RDD), and the Unified Modeling Language
(UML).

The inspiration for this architecture is a discipline called convergent engineering—a
discipline my colleagues and I developed a decade ago to facilitate the design of
scalable, maintainable business systems. The founding premise of convergent
engineering is that the design of a business and its supporting software should be
one and the same. For each key element of the business, there is a corresponding
software object that acts on its behalf. These objects come in many forms, but
they fall into three broad categories: organizations, processes, and resources.
Rules govern how these three kinds of objects can be combined and how they
interact. For example, processes consume and generate resources, and can take
place only in the context of an owning organization. These rules bring useful order
to the difficult task of re-engineering a business, and they do so in a way that
directly specifies the software to support that business.

Richard Hubert learned convergent engineering in May 1996, when he took my
week-long certification course at the Convergent Engineering Institute (CEI).
Within a year, Richard had gone on to receive his master's certificate, entitling him
to certify others, and had opened the second international branch of CEI in
Freiburg, Germany. He and his staff of consultants at Interactive Objects Software
(iO) were soon using convergent engineering in large-scale development projects
throughout Germany, combining it with other techniques to expand it into a more
comprehensive architectural style.

Convergent Architecture Foreword

-8-

Frustrated by the lack of adequate tools, Richard and his team began developing
software to better capture the results of their design efforts and to automate the
generation of code. The end result was the release of iO's award-winning ArcStyler
product, a suite of tools that models a business in terms of organizations,
processes, and resources, and then drives that model into an executable system
that can be deployed on any of the major Java application servers. Remarkably,
the business model remains visible throughout the development lifecycle. If a
process is improved or an organization restructured, the necessary changes are
made to the corresponding business objects using high-level design tools, not by
altering the low-level code. The tool is a compelling demonstration of Convergent
Architecture, and it gives the architecture a solid grounding in the hard realities of
software development.

The architecture described in this book is a significant contribution to the software
industry on two distinct levels. At the most evident level, it provides a detailed
prescription for application development, one that can be adopted as is or adapted
as desired. At a deeper level, it illustrates the kind of effort that will be necessary
to impel the industry out of its prolonged adolescence and into a mature
engineering discipline. For the first time, we have a coherent, compelling vision for
application architecture combined with precise instructions for implementing that
vision, including all the necessary tools to go from concept to code. It is a
combination that is certain to raise the bar for the application-development
community.

—David Taylor, Author, Business Engineering with Object Technology

Convergent Architecture Introduction

-9-

Introduction

But what's the point of having everything measured by poles? Why not
build everything higgedy piggedy, like a house?

First, because it's cheaper this way. All the arches of the arcade are
identical, so we can re-use the falsework arches. The fewer different sizes
and shapes of stone we need, the fewer templates I have to make. And so

on.
Second, it simplifies every aspect of what we're doing, from the original

laying-out — everything is based on a pole square-to painting the walls —
it's easier to estimate how much whitewash we'll need. And when things

are simple, fewer mistakes are made. The most expensive part of building
is the mistakes.

Third, when everything is based on a pole measure, the church just looks
right. Proportion is the heart of beauty.

Ken Follett, The Pillars of the Earth

Would any serious engineer design a jet airplane with a helicopter propeller on top
of it? Common sense would tell any decision maker that such an aircraft would
hardly be able to take off. And the approaches and methods used in mature
engineering disciplines, such as aeronautics, simply prohibit such a development.

Yet, irrespective of your position in the information technology (IT) industry, you
will almost definitely have come across a software system or an IT organization
that very much looks like a jet airplane with a helicopter propeller on top of it.
Even though as members of the IT industry we are aware of the problems of poor
design, inefficient organizations, and ad-hoc solutions, most of us have been asked
to buy, design, or participate in the development of such a thing. What is it that
distinguishes mature engineering disciplines from our industry? The answer is
architectural style—the main topic of this book.

Have you ever wondered why system development is still so complex despite the
rich array of products, techniques, and tools available today? Certainly, modern
development aids such as design methodologies, patterns, computer-aided
systems engineering (CASE) tools, Web application servers, and packaged
solutions—just to name a few examples—can serve as useful parts of an IT
strategy. However, just having these diverse parts is not enough. To be effective,
all these pieces must be positioned within the context of an IT architecture. Few
would dispute this statement, but repeatedly achieving good IT architecture in
diverse situations has long been an elusive task. This is mostly because trying to
nail down the key aspects of IT architecture leads to some other fundamental
questions:

 What role does IT architecture play in our overall IT strategy, and what
does this look like?

 How can we repeatedly achieve the advantages of solid IT architecture
across multiple teams and even across globally distributed
organizations?

Convergent Architecture Introduction

-10-

 How can our existing IT organization evolve to new levels of
architectural quality in realistic increments?

 Can we define and implement an architectural big picture that
realistically simplifies all our diverse IT constellations from a single
project to a global IT landscape?

These are some of the questions answered by this book, which defines IT
architectural style and demonstrates its advantages using a mature architectural
style called the Convergent Architecture.

The qualities of good IT architecture have always been difficult to define and even
more difficult to reproduce consistently in practice. In fact, many of the qualities of
good IT architecture have been so elusive as to remain undefined and unnamed on
the whole. This book is about capturing these qualities and making them
systematically attainable in practice.

First and foremost, this book explains and applies IT architectural style. It defines
IT architectural style and gives a vague and amorphous set of key architectural
qualities both a name and a number of tangible features. Then the major portion
of the book proceeds to show how these features are applied in the Convergent
Architecture. The Convergent Architecture not only clearly demonstrates how
architectural qualities are captured in IT architectural style, but also proves that
they can be consistently applied, taught, and effectively automated using available
technologies. It explains how the Convergent Architecture resolves many of
today's complex IT-related problems at the source instead of just dealing with
their symptoms. By addressing the sources of error and complexity, it
revolutionizes the effectiveness of IT teams and, more significantly, of whole IT
organizations—with the returns increasing in proportion to the size of the
organization. In short, this book demonstrates how to achieve a new level of
quality in IT systems. And this quality now has a name: Convergent Architecture.
Second, this book can be seen as the applied sequel to Dr. David A. Taylor's book
entitled, Convergent Engineering: Business Engineering with Object Technology
(Wiley 1995). The Convergent Architecture was born out of applying the concepts
of Convergent Engineering in diverse corporate environments. One of its principal
goals is to transport the vision of Convergent Engineering into the field of applied
architecture. In doing this, it shows, for example, how to apply the Rational Unified
Process and the concepts of the OMG Model Driven Architecture (MDA) to achieve
Convergent Engineering using state-of-the-art tools and technology.

Third, this book is for practitioners. It is written not only for IT strategists and chief
architects, but also for project managers and developers in the field. Although
beginning with the important conceptual underpinnings of IT architectural style, it
quickly moves into the nuts-and-bolts usage of Convergent Architecture. The
concepts, techniques, and tools employed in this book have been tried and tested
in practice. They are the result of hands-on experience in diverse environments.
Based on this experience, the Convergent Architecture has defined how to optimize
the application of the Unified Modeling Language (UML), the Rational Unified
Process (RUP), and J2EE/EJB to achieve new levels of architectural integrity. It
demonstrates how all these parts work together in an integrated tool environment,
the architectural IDE. In this sense, the Convergent Architecture is an architectural
style for MDA as currently envisioned by the OMG. As long-time members of the
OMG, we are actively participating in the MDA initiative in order to ensure

Convergent Architecture Introduction

-11-

alignment of the Convergent Architecture and to help drive progress in this very
promising area of standardization.

Lastly, this book presents an IT architectural style to the public. It puts a stake in
the ground by defining something concrete that can be used, discussed, and
improved on by many parties over time. We are convinced that the Convergent
Architecture constitutes a reasonable and logical step in the ongoing evolution of
the Information Age. In other words, we do not think that it is a question of
whether many of the concepts demonstrated in this book become widely used in
the software industry; rather, it is just a question of when and under what name
or designation.

We also believe that after reading the first few chapters of this book, strategic
decision makers will feel at home with our approach to continuous long-term
improvement. One of the primary goals of the Convergent Architecture is to help
strategic IT managers at the corporate level to instill a sense of overall direction
and purpose into their IT strategy. It should help them remove numerous sources
of complexity and stress across their entire organization and help them put an end
to the frustrating cycles of reactive symptom control. By introducing the era of
corporate architectural style, the Convergent Architecture will help IT managers
open new doors to otherwise unachievable returns at all levels of a business.

How This Book Is Organized

This book proceeds with increasing levels of detail. It begins with the design and
justification of IT architectural style in general and moves on to explain each part
of the Convergent Architecture in a logical manner. The coverage of the
Convergent Architecture begins with an outline, or roadmap, and then drills down
into the specific features of the roadmap. Each subsequent chapter then describes
the design and justification of one of these features. It also explains how to apply
this feature beginning at the level of individual projects on up to the level of
corporate IT organization.

Chapter 1 introduces the concept of architectural style in general and its potential
in the IT field. Analogies and examples are used from other industries to explain
the significant advantages attainable through an IT architectural style. It also
defines IT architectural style and its design—its structure, models, principles, and
relationships—and the application of a style in reality-scale situations.

Chapter 2 provides an overview and roadmap of the Convergent Architecture as an
IT architectural style. It describes how the concepts and design from Chapter 1 are
applied in the Convergent Architecture. It also presents the anatomy and the big
picture of the Convergent Architecture, introducing each stylistic feature and its
advantages in real-world projects. Each feature is then detailed in the remaining
chapters of the book.

Chapter 3 justifies and defines the Convergent Architecture metamodel. This top-
level feature of the Convergent Architecture composes the long-term vision and
fundamental design principles of the architectural style.

Chapter 4 presents the Convergent Component metamodel as a prime vehicle of
the architecture. This is the first of three design models that visibly transport the

TE
AM
FL
Y

Team-Fly®

Convergent Architecture Introduction

-12-

principles from Chapter 3 into real-world modeling styles, techniques, tools, and
automated infrastructure mappings. It defines the application of MDA and an
architectural tool suite (the architectural IDE) in the context of an architectural
style.

Chapter 5 outlines the IT organization model and its application of the RUP. This
model constitutes a concrete reference frame for the business of building IT
systems in the context of an architectural style. It defines the organization,
workers, roles, tools, and interactions of all stakeholders in the Convergent
Architecture.

Chapter 6 presents the Development-Process model, which complements the IT
organization model. This detailed development process constitutes an applied
instance of the RUP and its architectural tool support in the context of the
architectural style.

Chapter 7 illustrates the integrated architectural tool suite and how it supports the
architectural style as defined in Chapters 1 through 6—how it supports the
component, organization, and process models of the Convergent Architecture. The
tool suite, known as an architectural IDE, is described in detail. The chapter
exhibits how the concepts of MDA and the Convergent Architecture are applied
using an available architectural IDE (ArcStyler) that embeds and drives best-of-
breed component tools such as Rational Rose, JBuilder, and diverse J2EE/EJB
application servers in the context of the architectural style.

Chapter 8 is a tutorial that applies the concepts of the Convergent Architecture in
an end-to-end example using the architectural IDE. It exhibits each step of the
model-driven development process from the initial business design through to the
generation, deployment, and testing of J2EE/EJB components, including their Web
services and Web front-ends. It shows how MDA is supported by the architectural
IDE to develop and manage all four tiers of the J2EE blueprints (J2EE Blueprints
2001) in the context of a comprehensive architectural style.

In addition, a bonus chapter in Microsoft Word format can be found on our
companion Web site (www.ConvergentArchitecture.com), which constitutes a
reference manual and user's guide containing the design and usage details of the
MDA modeling styles and the J2EE/EJB technology mappings that were introduced
in Chapter 4 and applied throughout the book. It also shows how these features
are explicitly supported by the architectural IDE. This detailed reference material is
available on the Web so that it may be easily maintained, thus providing the
reader with an up-to-date version at all times. However, the material in this
chapter can only be properly understood and applied when read in conjunction
with this book because the chapter makes extensive reference to the architectural
concepts, terms, processes and tools covered in Chapters 1 through 8.

Who Should Read This Book

A variety of readers will be interested in the subject matter covered in this book,
each from a different perspective. The following reading sequence is recommended
for each respective audience:

Convergent Architecture Introduction

-13-

 CEOs/CIOs and business consultants will find the message regarding
IT-architectural style and Convergent Architecture in Chapters 1
through 3 of particular relevance. For the next level of detail, they
should proceed to the introductions in Chapter 5, "The IT Organization
Model," and Chapter 6, "The Development-Process Model."

 Chief architects, IT consultants, project managers, lead developers, and
those interested in the OMG Model-Driven Architecture Initiative are
the prime audience for the entire book.

 J2EE/EJB developers and Web service developers may want to first
read the tutorial example (Chapter 8) to get a hands-on feeling for the
development process and environment, and then move to the chapters
explaining the development process (Chapter 6), the architectural IDE
(Chapter 7), and the details on the Modeling Style and Technology
Projections (the bonus Web site chapter). At some point, Chapter 2
should be read in order to better understand the big picture and
roadmap of the architectural style.

Tools You Will Need

The examples in the first seven chapters of this book, as well as the hands-on
tutorial in Chapter 8, use the following tools to demonstrate the model-driven
approach and the integrated architectural environment:

 A J2EE/EJB application server. Borland Application Server, BAS 4.5
or higher, available from www.Borland.com, or the WebLogic Server
6.1 or higher, available from www.BEA.com.

 Java IDE. JBuilder or JBuilder Enterprise version 5 or higher, which
includes the BAS application server, available from www.Borland.com.

 UML Modeling Tool. Rose 2001 or 2001 A Modeler Edition or higher,
available from www.Rational.com.

 Architectural IDE. The latest release of the ArcStyler Architectural
IDE for MDA, available from www.ArcStyler.com.

The Convergent Architecture Web Site

Of course, it is impossible to put everything concerning the Convergent
Architecture into a concise book outlining the entire architectural style. Extensive
material pertaining to the Convergent Architecture is available in addition to this
book. Also, the Convergent Architecture continues to evolve, so new material and
updates will emerge. Thus, a Web site has been created to accompany this book
with new and complementary material in a readily accessible forum at
www.ConvergentArchitecture.com.

The basic contents of the site are as follows:

 Tutorial and sample material applying the Convergent Architecture
including its MDA/RUP features and tools

Convergent Architecture Introduction

-14-

 References, case studies, presentations, papers, and demonstrations

 Extended specifications and user guidelines

 Reusable assets ranging from open-source, reusable projectware to
extension modules for the architectural IDE

 Updates to the architectural IDE and related product information

 Contacts, community, and event information

From Here

The concepts, techniques, and tools presented in this book have been applied in
numerous IT environments, both large and small, to achieve significantly higher
levels of IT effectiveness. The purpose is to enable corporate architects, CIOs,
project managers, and individual project team members to immediately leverage
MDA in the context of a holistic architectural approach by applying a well-defined
IT architectural style.

We hope that the definitions and examples in the initial chapters convince you of
the far-reaching advantages of IT architectural style as we define it. Above all, we
hope to convey the advantages of a tried and tested IT architectural style, the
Convergent Architecture, as a lasting remedy to significant problems experienced
by almost every IT organization today.

The bottom line is that the Convergent Architecture was developed by practicing IT
architects to help any IT endeavor achieve higher goals. It is about making the
sum of our efforts much greater than the individual parts. It is about defining how
we approach business design, project design, and system design at all levels of an
organization in a cumulatively synergistic manner. It is about putting diverse
pieces together in a holistic big picture to provide IT organizations with a long-
term vision and lasting improvements. It is about achieving a consistent cycle of
simplification and optimization across the entire landscape of IT development and
throughout its long-term evolution. And it's about the positive energies that we all
share when we do things with style.

Convergent Architecture Chapter 1: IT-Architectural Styel

-15-

Chapter 1: IT-Architectural Style—
Professional engineering disciplines use
architectural styles

Overview

In many industries, engineers repeatedly improve on large, complex systems and
achieve impressive levels of productivity and quality. What enables industrial
architects and airplane and automobile engineers to deliver solid improvements
year after year? Why is the software industry still a far cry away from such
engineering maturity? A key answer to both these questions is architectural style.

This chapter introduces architectural style as a crucial element of mature
engineering disciplines and suggests how it may be applied to obtain the same
levels of maturity in the information technology (IT) industry. First, this chapter
looks at how architectural style has been used for centuries to ensure the success
of major engineering efforts. History reveals architectural style as the most
important means of efficient, high-level communication among developers.
Without it, we would not have many of the masterworks of architecture and
engineering that we now take for granted. After the short historical outline, I
define modern IT-architectural style and explain how it may be applied to improve
software development significantly across the board.

This chapter focuses on the definition of architectural style, its elements, and its
principles in the context of software engineering. These concepts form the design
foundation for the Convergent Architecture, an IT-architectural style. You should
read this chapter if you want to understand the concepts of IT-architectural style
above and beyond their specific application in the Convergent Architecture. Above
all, this chapter is important if you want to create your own IT-architectural style
or contribute to the further development of the Convergent Architecture.

Discovering the Source of High Returns

In the mid- and late 1990s, I was involved as chief architect in several large
projects. The requirements in these projects were all quite similar and are common
to almost every large institution: An established IT organization with a complex,
heterogeneous landscape of mission-critical systems needed to modernize and
Internet-enable its corporate IT infrastructure. My mission in each case was to
establish architecture-driven design in the existing IT organization and to return
the internal IT team to the point of self-sufficiency using modern architecture,
tools, and technologies. I did not want to leave the team with a short-term
solution; to the contrary, the biggest problem was the existing ad hoc landscape of
short-term solutions. In each project I was continually confronted with one central
problem: How to effectively instill architectural concepts into the entire
organization? How to get everybody working constructively and in concert toward
the common goal? How to make this a permanent process of optimization, in every
discussion, at every level, without requiring an experienced architect to be
omnipresent in each instance? In other words, how to establish IT architecture as

Convergent Architecture Chapter 1: IT-Architectural Styel

-16-

a culture, a school of thought across the entire organization, and not just as
another short-term solution?

These are not easy questions to answer as any lead developer or project manager
can confirm, although they are by no means unusual. Consultants are paid to deal
with just these types of problems. However, there was something else bothering
me. I had a feeling that we—the IT field at large—were still missing out on some
approach, some technique, something, whatever it was, that other industries use
in such situations. It just appeared to me that other industries have reached a
level of architectural competence and expression that we had not yet reached. I
could not put my finger on it, but the feeling grew with each day. Maybe this
nagging feeling came from my background first as a chemical engineer and then as
an IT architect. In any case, I wanted to figure it out and to see if I could apply it
to solve my problem.

My search intensified. I was reading everything about project management,
process methodologies, and IT design that I could get my hands on. As early as
1994, this search took me to Austin, Texas, to hear Jim Coplein (1995), a father of
the pattern movement, speak about IT design patterns. Indeed, patterns were
helpful, as they still are, but neither patterns nor any other available IT knowledge
allayed my suspicion that we were still missing something, that there was more to
this than meets the eye. Thus, I broadened my search to include more and more
cross-industry sources on product design, civil architecture, and project
management.

I am not sure exactly when, but with time, the answer began to evolve, and one
day, a form began to appear in the fog. However, I do know when I became
certain that I had the answer and, at the same time, that I also knew its name:
architectural style. I had picked up a book in Atlanta, Georgia, in 1997 in a
bookstore specializing in civil architecture. The book was a compilation of German
manuscripts that had been translated into English. The original texts had been
written by a group of architects in a period from 1828 to 1847 at the University of
Karlsruhe, Germany. The book was titled, In What Style Should We Build? The
German Debate on Architectural Style (Herrmann 1992). While I was reading
about these disputes, everything started to fall into place. These architects were
debating contemporary architectural style, but it was clear from the discussion that
the Greeks had started this debate thousands of years ago. It turns out that this
thing called architectural style is a powerful design and communication tool that
the entire IT field has been missing out on. It was clear to me that we had not yet
reached the level of design communication already in use many years ago in other
industries. Finally, I had found an effective and lasting way to solve my problem. I
had seen proof that it works, and I even knew its name. I knew where I needed to
go. Now I determined to get there.

That was 1997. Since then, a lot has happened. Over time, I used my observations
on architectural style to define a form tailored for use in the IT field, which I call
IT-architectural style. My colleagues and I also developed a particular IT-
architectural style, the Convergent Architecture, which has evolved and has been
refined through intensive use over the years. The Convergent Architecture is a
concrete application of IT-architectural style that makes up the lion's share of this
book. First, however, I would like to share with you some of the observations and
analogies that helped me not only comprehend architectural style in general, but

Convergent Architecture Chapter 1: IT-Architectural Styel

-17-

also understand how it can be applied to achieve manifold benefits across the field
of IT design and system development.

Before I get started, it is important to note that the concept of IT-architectural
style appears to be a logical and natural evolution in the field of IT architecture—it
is in the air. My early start elaborating, developing, and practicing IT-architectural
style has been encouraged by increasing evidence from respected sources that I
am on the right track. In recent years I have seen the term architectural style
mentioned repeatedly in the IT context, albeit briefly and at a contemplative level.
One notable reference here is the "Introduction" to the Rational Unified Process
(Kruchten 1998), which I can recommend for its concise introduction to IT
architecture in general. In his book, Mr. Kruchten briefly mentions the relevance of
architectural style as a viable IT-architectural concept. I agree, of course, that an
IT-architectural style increases both the uniformity and understandability of
designs. Kruchten and I are also in vehement agreement that an IT-architectural
style achieves this, for example, by optimally combining patterns, tools,
descriptions, and frameworks to better support IT architects. It is now time to take
a more in-depth look at IT-architectural style both in theory and at work.

A Long History of Success

At a first glance, it is difficult to recognize the use of architectural styles in some
industries. This is because no industry uses architectural style exactly as another
industry. Each has its own terminology, its own unique, customary way of doing
things. This means that architectural style appears in various shapes and forms,
making it sometimes difficult to see parallels between industries. However, these
parallels—the use of some form of identifiable architectural style—do exist. We will
look at a few of these parallels in the rest of this section to better understand what
architectural style is and how it can significantly improve the way we work in the
IT industry.

Architectural styles have been around for thousands of years. For example, Greek
architects spent hundreds of years perfecting an architectural style: the Ionic
temple architecture. Civil architects consider the Parthenon in Athens to be the
epitome of the Ionic temple—meaning that it is the exemplary instance of an
architectural style. Over the years, hundreds of architects built hundreds of
temples according to this style, each making his or her own contribution to its
perfection over time. Each of these contributions was to the clear advantage of the
next generation of architects as well as the benefactors of each individual temple.
In modern terms, we would call this a win-win situation.

Ionic temple architecture is not an isolated example. Gothic[1] architecture was
perfected in the same manner over hundreds of years. Each Gothic cathedral, for
example, is an instance of the Gothic architectural style. The architect of each
cathedral based his or her complex design on the proven achievements of other
professional architects who had used the Gothic style to build other cathedrals. In
turn, many of these architects made contributions to the Gothic style to the benefit
of the next generation. The architectural style evolved, step by step, through
generations of highly skilled designers. No single designer, no matter how skilled,
could have achieved this feat alone. If you ever have the chance to travel in
Europe, it is fascinating to visit and observe the churches and cathedrals bearing
clear evidence of the evolution of several distinct architectural styles. For example,
early Gothic churches consisted of basic pointed arches with thick walls, small

Convergent Architecture Chapter 1: IT-Architectural Styel

-18-

windows, and low ceilings. They were pretty dark and dreary. This was so because
the architects of that period did not yet know how to effectively combine high
ceilings and large windows. Hundreds of years and hundreds of churches later, the
same style had evolved to manifest magnificent vaulted ceilings, large windows,
and thin walls supported by flying buttresses on the outside. Notre Dame de Paris,
the Koelner Dom in Cologne, Germany, and the Strasbourg Munster in France are
prime examples of highly evolved Gothic architecture. Engineers still marvel at
these masterworks. None of this would have happened without the cooperative
culture of architects contributing to incrementally improve the architectural style.
Each instance of the style, each Gothic structure, consists of contributions
accumulated and refined over hundreds of years, all adding up to significant
engineering progress.

From a more modern perspective, the similar use of architectural style can be
observed in every mature engineering discipline, from boat design to city planning,
from airplane design to automobile production. Prime examples of architectural
style in the automobile industry are the roadster, the pickup truck, or the Formula
One racing car. In the aerospace industry, we can easily distinguish jets,
helicopters, or even Zeppelins as clear representatives of architectural style
analogous to the Gothic architecture just described.

A Higher Level of Communication

Not only does the architectural style define how things look—cathedrals, cars,
airplanes, and so on—it also often defines other critical design properties such as
aerodynamic features, tolerances, and capacities. In addition, it defines how these
properties may be achieved dependably with particular materials, tools, and forms
(or patterns). Whether it needs to define these aspects, and how it precisely
defines them, depends on the particular field. Moreover, where easily
distinguishable styles turn up depends on the field. In the automotive industry, for
example, we recognize several distinct styles of motor design (Otto, Diesel, or
Wankel), each manifesting an intense focus on the intricate performance and
thermodynamic properties of internal combustion engines (compression ratios,
combustion chambers, fuel mixtures). The consistent evolution of motor
performance over the past decades, with little change in their external form,
emphasizes that styles also convey hard-to-see design optimizations, not just the
definition of external form.

An architectural style expresses the language and design culture that helps stake-
holders at all levels to communicate at a higher, more effective level. All mature
schools of art, engineering, and science have their own special languages that
have evolved over years to help experts express themselves more accurately. If
you listen to a group of surgeons conversing during an operation, you probably
would not understand much, but they are communicating in a highly effective
manner. They are versed in the language of their trade. Such languages are more
highly developed, meaning more expressive or more formalized, in some fields
than in others. Civil architects have most actively addressed their special language,
as indicated by such titles as "The Classical Language of Architecture," "Classical
Architecture: The Poetics of Order," or "A Pattern Language" (Alexander 1977),
where the grammar and vocabulary of various architectural styles are discussed.
For example, terms accurately describing structures such as arches (archivolt,
architrave) and columns (Ionic, Doric, Corinthian) are the words of an architectural

Convergent Architecture Chapter 1: IT-Architectural Styel

-19-

language. Correspondingly, the organization of structures with respect to one
another forms the grammar of the language: The rose window of a Gothic
cathedral is always round and is placed above the portal. These words and the
grammar are then used to express complete styles—Gothic, Romanesque, Ionic—
just as styles of writing, theater, and poetry exist in literature.[2] The style is the
next higher level of design expression.

In an IT-architectural style, this translates to, for example, the use of accurate
terms for component structures and their relationships to express something the
architect considers to be of higher value. In the Convergent Architecture, such
structures are its convergent[3] organizations, processes, and resources (OPRs) and
their relationships. Processes and resources are managed by an organization; a
process consumes and produces resources, and so on. Together, and only together,
these characteristics lead to the high-level property of convergence in a system
based on the Convergent (style) Architecture.

Clearly, there is still much progress to be made concerning the language of IT
architecture. Today the common language used by IT designers is very weak. Even
though they often use the same words, they are not communicating well. All too
often, we experience IT design situations in which people have to explain the
terms they use from ground zero. Such meetings can go on forever while making
little progress, and everyone has to explain their basic words and grammar to each
other every time a new group convenes. Viewpoints then change from one meeting
to the other, so the whole frustrating process starts again. It is not just the rare or
special term being discussed, but very fundamental concepts such as basic
component designs or role definitions. It is as if each designer had entered the
meeting having defined his or her own private time system. First, the whole group
must discuss and agree on the time system before a simple time plan can be made.
Inevitably, each individual will define terms differently. It is no wonder that IT
projects are so expensive and high-risk.

The agreement on a language, on a particular style, is often more important than
the language itself. No architectural style claims to be the only way to build
something, nor does it claim to have found some absolute truth. An architectural
style is always a proposition. It is putting a stake in the ground. It is saying that
people can build something successfully if they agree to work this way. In other
words, there is more than one way to skin a cat, and there will always be several
ways to define an architecture. However, this did not keep civil architects from
agreeing on architectural styles, whether Gothic, Romanesque, or Renaissance,
and then using and refining these styles for hundreds of years. They understood
that the major benefits are attained as soon as an organization agrees on an
architectural style, not beforehand. By the same token, what large IT organizations
need is less philosophical discussion regarding absolute truths and more
agreement on an architectural style.

Thus, to improve the present situation immediately, designers can start by
agreeing on a common basis; they can begin at the level of an existing
architectural style. This provides a common reference frame in which words and
other critical design features are defined accurately. Designers then begin
communicating at an effective level and can work from there. In addition, using an
architectural style as the basis for definitions means that the developers do not
have to convince the whole world that their definition is the correct one.
Establishing a worldwide standard, that is, a worldwide definition, for the many

Convergent Architecture Chapter 1: IT-Architectural Styel

-20-

aspects of architecture is not something that most designers have time to do.
Besides, it may be an impossible task anyway. This is one reason architectural
styles exist in most fields. The architectural style lets large communities of
designers work more effectively without having to wait for the whole world to
agree on something. In other words, the style complements worldwide standards
with stylewide standards. It defines the common dictionary of a specific
architectural language. The language can be used across time, persons, and
projects to communicate better. Needless to say, the design patterns movement
and standardization work on component models, such as J2EE/EJB, have been a
very significant step in the right direction. However, someone still has to define
exactly what forms of the patterns or components are being used and how they
will work together to add relevant advantages. As you will see, an IT-architectural
style does exactly this by incorporating tools, techniques, patterns, and component
standards as part of its language. It then goes on to refine the language in
additional important areas. These additions enable, for example, a more accurate
expression of such things as architectural principles, development life cycles, tool
integration, or the relationships among project, business, and system design.
Once an organization has agreed on an architectural style as its language of IT
architecture, it can move beyond improved communication in the development
organization to improved communication between all levels of the business. For
example, the Convergent Architecture formalizes the expression of business-IT
convergence by defining convergent organizations, processes, and resources as
parts of its language. These elements form a sort of architectural grammar that
has both business and technical significance. This means that business specialists
can use these elements to communicate with technical specialists, and vice versa.
Misunderstandings and culture clashes are avoided from the outset. For example,
when a designer and a business strategist discuss a billing process, both of them
know exactly what is meant by a billing process. Once this level has been achieved,
the next level is possible. This is where the IT system graduates from being a tool
for implementing business strategies to an effective business optimization tool. In
1995, Dr. David A. Taylor explained how this works in his book entitled,
Convergent Engineering. The Convergent Architecture is the IT-architectural style
that then transports these concepts into applied system design. Introducing an IT-
architectural style therefore is one of the best investments an organization can
make toward business optimization in the Information Age.

More than a Macro Pattern

Why don't we just call the IT-architectural style a macro pattern or meta pattern?
The simple answer to this question is: for the same reason we do not call a
component a macro-object. The best reason to introduce a new word is to denote
important differences. The word component was defined in the IT field to
distinguish it from an object or a macro-object. Although components leverage
object technology, they add significant design aspects such as composition and
deployment on top. To use the word object to refer to both objects and
components would simply confuse two important concepts. By the same token, an
IT-architectural style is more than a pattern. It uses and consolidates specific
patterns, but not all patterns. In addition, it comprises other development aspects
such as component standards, modeling languages, business design concepts, and
technology mappings. It even includes its own streamlined development process.
Thus, just as components accompany and complement object technology, IT-
architectural styles leverage and complement patterns.

Convergent Architecture Chapter 1: IT-Architectural Styel

-21-

The Next Level of Design

An architectural style constitutes the next level above applied architectures. This
level is the place where design knowledge of all sorts is packaged to be reused by
many individual architecture projects. It is the level where proactive design
preparation takes place that enables design projects to get off to a better start.
This means that we now recognize the following three levels of development,
beginning with the architectural style at the top and ending with the finished
system or construction.

 The architectural style. Examples of this would be, Gothic (civil)
architecture, the Diesel (motor) architecture, and the Convergent (IT)
Architecture. This level is developed and maintained outside a
particular production project.

 The architecture. This is an instance of the architectural style,[4] the
application of the style for a particular situation. For example, the
architecture of Notre Dame de Paris is an instance of the Gothic
architectural style, the architecture of the CAT900 series diesel motor is
an instance of the Diesel style motor architecture, and the architecture
of the Travel Exchange portal is an instance of the Convergent
Architecture style. Normally, the chief architect or the corporate
architecture team leverages an architectural style to develop many
compliant instances over long periods of time or across many projects
in parallel.

 The system or construction. This is the end result, the system or
construction itself. There may be any number of systems or
constructions, each being an individual instance (or incarnation) of the
architecture. Examples are the Notre Dame de Paris cathedral itself,
each and every CAT900 series motor built, and release 2.0 of the
Travel Exchange portal. Each of these is the result of an individual
production project to construct something according to the architecture.

An Everybody-Wins Approach to Quality

One of the most important aspects of an architectural style is its built-in quality
controls. The style will only survive if it offers tangible, long-term engineering
value. Its contributors are a diverse group of practicing developers who carry out
their day-to-day business using the architectural style. It is critical to their success
in real-world situations. The use of new concepts and technologies in the style will
not be accepted without first completing ample due diligence. The temptation of
quick fixes or marketing-driven technology trends[5] is reduced because the
designs must stand up to maximum scrutiny by quality-conscious peers.
Developers gladly participate in a perpetual cycle of reuse, evaluation, and
improvement because it is an everybody-wins situation. This is because everyone
benefits from improvements in the style, and every repeated application of the
style contributes to higher quality. This process of nonpartisan evolution helps
ensure that the architectural style remains a high-quality engineering instrument.

One way the architectural style ensures an increasing level of repeatable quality is
by prescribing properties of design. In addition to properties, it also may prescribe
procedural aspects of development. It is the repeated use of these properties that
distinguishes an architectural style from ad hoc approaches in terms of both
recognition and quality. For example, Gothic cathedral architecture strictly requires

TE
AM
FL
Y

Team-Fly®

Convergent Architecture Chapter 1: IT-Architectural Styel

-22-

the building to be cruciform. It also prescribes numerous form characteristics of its
portals and windows. These mandatory characteristics constitute key elements of
the architectural style. This does not mean that the style is a straightjacket for the
designer or that it dictates every last detail. However, the mandatory elements,
even when subtle, exist for good reasons: They increase quality for all users of the
style. Whether this quality is measured on an engineering, aesthetic, or even a
theological scale depends on the target group of the style. An architect recognizes
the value of these mandatory elements and makes creative adaptations only within
the degrees of freedom they allow. This is why the architects of Gothic cathedrals
did not randomly mix in stylistic elements from Romanesque architecture. If they
had, they would have taken unnecessary risks. In this respect, an architectural
style is also like a good recipe. You can make creative alterations in many areas,
but to arrive at the intended dish, you had better pay attention to the advice in the
recipe, even if it appears to be minor at first glance. If the recipe says to add a
pinch of salt and you decide to dump in the whole box of salt, then you have
missed the point.

The consequences of disregarding the advice of a recipe are obvious to us all.
However, complex systems—buildings, motors, airplanes, IT systems—all possess
subtle design elements that are far from obvious. Often, these elements must act
in concert with others across the entire design to produce the desired effect, no
single one of these elements being visibly critical in its own right. For example, it
took several decades, numerous companies, and hundreds of engineers to figure
out how to build motors that did not knock and rattle. The changes made were
hardly visible in each new generation of motor. This is because they consisted of
hundreds of small changes at many places in the motor, which made a big
difference only when they worked together. Lastly, it is important to note that
these consolidated efforts to constantly improve quality did not happen in single
projects, in single companies, or in standards organizations; they happened at the
everybody-wins level—at the level of architectural style.

Evolution without Revolution

An architectural style evolves continuously to take advantage of the best available
techniques and technologies. Entire communities of developers repeatedly create
instances of the style. Over time, situations arise within this community in which a
developer is able to make an improvement to the style itself. Normally, an
improvement is first made in a particular project, for whatever reason. After
proving itself in the field, the improvement may be added to the style as a whole.
This happens on a regular basis. If it did not, then the style would not be in use for
very long. This is so because the users of the style expect it to leverage the best
technologies available. Depending on the field, this evolution can be very rapid.
Formula One motors, for example, evolve at an extremely rapid pace. A
corresponding example from the Convergent Architecture consists of the many
improvements to leverage new Internet and component standards such as
J2EE/EJB or CORBA components.

Often, the variations made to a specific architecture, an instance of a style, are not
general enough to be candidates for the style itself. Instead, they are adaptations
made by the designer to meet the special requirements of the particular situation.
No one Gothic church, for instance, is exactly the same as another. This is because
every town in which one was built had special requirements and constraints, such
as the availability of building materials, machines, and labor. The wishes of the

Convergent Architecture Chapter 1: IT-Architectural Styel

-23-

church community or bishop to create something special and unique also played an
important role. It is important to note that changes were not made to the style
itself. In fact, the style supported such efforts by freeing the architect from the
standard engineering problems and allowing him or her to be creative in
completely new areas. The architectural style did not hinder creative design
modifications to meet these needs. It simply defined a standard reference frame—
not a normative standard—by which both developers and users of the
enhancement orient themselves. This brings us to another point regarding
standards and architectural styles.

An architectural style is never finished until the community of designers stops
finding improvements for it or until it just goes out of style. The Ionic temple is an
example of both these situations. First, its architectural style went out with the
dispersal of ancient Greek culture. The religious reasons to build such temples
became a remnant of history. However, the Parthenon is still considered to be the
epitome of an Ionic temple. Constructions based on its architecture were built
hundreds of years later in Rome, Paris, and even Thomas Jefferson's Virginia.[6]
Each of these reproductions bears witness to the relevance and value of an
accomplished architectural style, which is reused as is, perfectly fulfilling its
purpose each time.

There are also cases of architectural styles experiencing a renaissance by being
reactivated into the active engineering mainstream. Often, it is sufficient for just a
few parameters to change within the paradigm, such as the availability of certain
materials, a new processing technology, or a shift in the economic settings in order
to give the style completely new potential. The crash of the Hindenburg in 1937,
for example, put an abrupt end to the first era of Zeppelin-style airships. The
Zeppelin style, however, has now been revived and further evolved. Modern cargo
airships are now being designed by several large consortiums to transport certain
goods much more economically than airplanes. These are continuations of the
Zeppelin architecture—a clearly distinguishable architectural style.

If so many persons are using and contributing to the architectural style, then who
defines and maintains it? I refer here to the current owner of the style. This is the
person or group of persons who are both respected practitioners in the field and
are willing to manage the process of consolidating diverse inputs, publishing new
reference documents, and informing all interested parties. This can be a tricky
situation because, conceivably, two parties could claim concurrent ownership to a
particular style or two diverging branches of the style. Such branches are a healthy
and natural consequence of evolution. To prevail over time, an architectural style
clearly must have an active owner or an owning group and contributors who
continuously use and add value to the style.

Adding Innovation while Hedging Risks

An architectural style defines how standards are best applied, as does any good
architecture. However, it hedges risks by providing an additional level of verified
innovation above and beyond standards. Risk is always associated with
development projects. This is because designers must break new ground to add
value or to build unique solutions. Widely accepted standards do not provide
complete systems; they are, at best, parts of a complete solution. The cost and
risks due to necessary innovation above and beyond standards are usually

Convergent Architecture Chapter 1: IT-Architectural Styel

-24-

extremely high. This is especially true in the IT industry, where intrepid optimism
often leads to the fiery death of projects. An architectural style hedges these risks
by providing a level of innovation that has been developed and evaluated by many
experts. In other words, it lowers the amount of experimentation necessary. It
also ensures that the innovations preserve architectural integrity and do not lead
to the long-term problems of ad hoc design.

Consider the following scenario: The Triple-A Motor Company wants to develop the
most modern diesel motor on the market and has a few innovative ideas for
technical improvements on currently available diesel motors. Now, the current
normative standard for fuel injection in diesel motors specifies the use of
mechanical injection, whereas modern diesel motors all use electronic injection to
achieve superior performance. In other words, the standard says to use
mechanical injection, whereas the architectural style has already evolved to
electronic injection. If the Triple-A Motor Company remains at the level of the
standard, it is no longer competitive, and if it reinvents electronic injection, it has
added no value. Thus, instead of developing the electronic injection, Triple-A uses
the design, tools, and instructions of others who have added this (nonstandard)
innovation successfully to the diesel motor. Achieving this level of innovation, often
referred to as the industry standard, is provided by the architectural style, not by
the standard. At this point, Triple-A can better afford to add its own unique
innovation, such as a new cylinder geometry, without taking on unnecessary risk.
If things are not working out with the new, experimental cylinder geometry, Triple-
A can fall back immediately to an industry standard electronic injection motor. By
doing this, Triple-A has hedged its risk. If things go well, the new motor sets a new
level of industry standard. Some day, this feature may even become part of an
official international standard. In other words, if the experiments fail, then Triple-A
still has a marketable fallback, ensuring that it can deliver and that it will live to try
again another day. This scenario emphasizes the important role architectural styles
play in helping developers use standards effectively to manage risk and maintain a
future-safe architecture.

There is an additional advantage: Since Triple-A will build many generations of
diesel motors in the future involving many different design projects, it defines and
maintains its own corporate architectural style. The style provides stipulations
regarding critical design and process features, such as its new cylinder geometry.
By using the corporate style, projects are less likely to diverge from the path of
architectural integrity. In addition, each project can better reuse not only design
know-how, but also parts, tools, infrastructure, and procedures. This reduces both
risks and cost by improving the overall quality of design information.

The Importance of Style in IT Architecture

Thus, why is it that architectural styles are not yet widely used in the IT industry?
This is most likely due to the relative youth and fledgling status of the IT industry
as compared with others—we just have not gotten to it yet. Certainly, technologies
and techniques are being handed down across generations of IT engineers. This
happens today in the form of patterns, frameworks, methodologies, and blueprints.
However, this is not happening at the level it could—not at a level commensurate
with the architectural styles found in other industries and not at the level distinctly
possible today in the IT industry.

Convergent Architecture Chapter 1: IT-Architectural Styel

-25-

There is a second reason of equal importance: You cannot see the 90 percent of
the design (or lack thereof) of IT systems without tools. In contrast to every other
type of system or construction, you cannot stand in front of a running IT system
and see how it was designed. Humans do not have sense organs for the virtual
worlds of IT. The only thing a human can easily judge is the human interface of an
IT system. This is the tip of the iceberg. Many a system has been delivered with
adequate (or inadequate) user interfaces but with a design and implementation
more characteristic of a time bomb than anything else. The problem is that you
cannot walk into an IT system like you can walk into a house or a cathedral and
experience, with eyes and ears, aesthetic pleasure or easily observe many parts of
its structure. This is also the reason poor design often goes unnoticed in the
traditional IT industry. This is particularly disconcerting because IT systems are
almost pure design. Aside from the hardware, few raw materials are required to
produce and run IT systems. Even more unusual, there is virtually no raw material
cost to reproduce software. Essentially, design work dominates the cost of building
and maintaining software systems.

The fact that IT systems are design-intensive virtual worlds means that models
and tools take on a particular importance. IT development tools are the only
means for a human to see and manipulate the IT architecture effectively. There is
a lot of room for improvement here not only in the use of tools, but also in the
tools themselves. To ensure the effective visualization and manipulation of its
specific virtual world, an IT-architectural style must address the area of tools and
their use. The tools will evolve with the style that makes them more effective with
each generation. Ironically, other industries have been more aggressive in their
move to computer-aided design (CAD) tools than the IT industry itself. This
situation is especially baffling because before the advent of CAD tools, these
industries could at least physically see and feel their prototypes and constructions.
This is not the case with the IT industry. Without the proper design tools, a
developer of large-scale systems is practically blind. The result of this blindness is
easy to see in the problematic ad hoc architectures that plague large organizations
today. Sooner or later, the increasingly critical role of IT will force these
organizations to move to an IT-architectural style that defines tools to visualize
and manipulate effectively all levels of design. Only with such tools will an
organization finally be able to view and verify its IT-architectural style and thus its
architectural integrity.

To date, the open-source UNIX and Linux community has achieved the most
significant step in the direction of architectural style in the IT world. The
evolutionary development approach to Linux offers undisputed proof of the benefit
and productivity of the everybody-wins situations I associate with architectural
style. However, in the IT world, there is much more potential in architectural style
than anything currently available. This is why I am reluctant to call UNIX or Linux
an architectural style despite their success. I could live with calling them a strong
forbearer and a case in point of many advantages promised by IT-architectural
styles. In the following chapters I will define what I consider to be the features and
the potential of a modern IT-architectural style.

My colleagues and I consider IT-architectural style to constitute a natural and
inevitable step in the evolution in the IT industry. I will not just leave you with this
assertion and some historical analogies; I will back this up in later chapters with a
concrete IT-architectural style, the Convergent Architecture, as proof of my

Convergent Architecture Chapter 1: IT-Architectural Styel

-26-

conviction. Having said this, I reiterate that I certainly have not perfected the
universal definition of IT-architectural style or even arrived at the epitome of a
single IT-architectural style. However, I am convinced that we are on the right
track and continue gaining experience with an ever-increasing number of talented
designers. Exciting progress is already being made with the Convergent
Architecture, which makes up the lion's share of this book. My intention in this
book is, in fact, not at all a debate on IT-architectural style in general. My primary
goal is to explain how pragmatic advantages can be achieved today with the
Convergent Architecture. With it, I hope to convince you of the virtues of IT-
architectural style and win you as a fellow designer in a rewarding cultural
experience along the road to the next generation of IT systems.

[1]Definition from the American Heritage Dictionary: "Of or relating to an architectural
style prevalent in Western Europe from the 12th through the 15th century and
characterized by pointed arches, rib vaulting and flying buttresses. Of or relating to
an architectural style derived from medieval Gothic."

[2]A similar analogy can be made with music.

[3]Many aspects of convergence will be discussed in detail in later chapters.
Essentially, it means the alignment of business and IT models into one common,
synchronized model.

[4]This use of the word architecture conforms with many accepted definitions and
taxonomies of IT architecture. For a good definition, see IEEE (2000).

[5]Marketing-driven designs conceived to create or capitalize on a trend in the
marketplace irrelevant of the maturity or long-term contribution of the design.
Analogous to many prêt-à-porter fashion trends in the clothing industry.

[6]The Virginia State Capitol is described as the "first adaptation of a temple for a
modern public building not only in America, but in the world" (Girouard 1963).

Designing an IT-Architectural Style

Thus far I have introduced architectural style in general, mostly from a historical
perspective. It is now time to move to the present-day situation and concentrate
on IT-architectural style from the perspective of software design. In this section I
outline a design for any IT-architectural style. The Convergent Architecture
constitutes a particular IT-architectural style. However, any other IT-architectural
style may be formulated or enhanced according to the design presented here.

First, since everyone likes short, one-sentence summaries, no matter how broad
the field, I will begin with a condensed phrase for the concept of architectural style
that includes IT-architectural style:

An architectural style conveys the principles and the means to most effectively
achieve a design vision.

Convergent Architecture Chapter 1: IT-Architectural Styel

-27-

The basic concept of an IT-architectural style also can be derived from the widely
accepted definition of IT architecture established by the IEEE Computer Society
(IEEE 2000): "Architecture is the fundamental organization of a system embodied
in its components, their relationships to each other and to the environment, and
the principles guiding its design and evolution." Based on this definition, it can be
said that

An architectural style is a family of architectures related by common principles and
attributes.

An IT-architectural style is both a holistic and a specific approach to IT architecture.
It is holistic in that it covers the entire software life cycle, including project design
and tool design aspects. It is specific in that it consolidates and integrates the
many structural, procedural, and descriptive aspects that have been addressed as
separate entities in traditional methodologies. Every experienced developer or
project manager has at some point suffered through the integration and
coordination of such critical elements as tools, patterns, component technologies,
and methodologies, just to name a few. These things are intimately related to each
other, and to work well together, they must be considered together, as pieces of a
whole—holistically. Once this has been achieved, the structure, relationships, and
application of each of the pieces must be simplified by being as specific as possible
about its nature and its use.

In other words, the IT-architectural style addresses both breadth and depth. It
tackles the problem of the "big picture" while being specific about the parts of the
big picture. This is important in today's complex world of specialists: Somebody
has to specialize in the relationships between all the specialties—somebody must
specialize in the big picture. This role can be compared with that of a composer.
The composer focuses on creating a (whole) concerto to be played by musicians
using (specific) instruments. Every experienced developer knows how difficult it is
to make all the parts of an IT development work together in concert. Defining and
implementing such aspects as the right process in conjunction with the effective
use of component standards, patterns, tools, and implementation technologies are
daunting tasks even for experts. Many a project has met its demise by attempting
to make all these things work together while at the same time trying to develop a
system—like trying to compose a concerto before understanding the musical
instruments. The proactive definition of the big picture and instructions on how it is
applied specifically across many projects are not just desirable; they are critical for
large software organizations.

The breadth and depth covered by an IT-architectural style enable even the best
IT organizations to achieve higher levels of effectiveness and returns. For example,
consider the long-awaited breakthroughs due to object technology, many of which
have eluded the entire industry for years. Contrary to what is often written in the
IT tabloids, it is not the fault of object technology that many of these
breakthroughs have not yet been realized; rather, object technology has been a
victim of ad hoc architecture. In other words, the failure is due to a reluctance on
the part of companies to address tough IT architectural issues. Just as an apple
tree will not bear fruit if it is planted in the desert, the advantages of object
technology cannot be cultivated without the proper IT environment. An IT-
architectural style defines this environment. It defines how reuse is to be handled
in the entire development life cycle across all projects in an enterprise. The high-
level returns due to reuse, just to name one advantage of object technology, can

Convergent Architecture Chapter 1: IT-Architectural Styel

-28-

now occur realistically in the context of the IT-architectural style discussed in this
book.

This brings me to the inevitable question of whether the breadth-and-depth
approach of an IT-architectural style is realistic. This question often arises because
breadth, or holistic, is often confused with generality. Breadth does not mean that
the IT-architectural style is completely general in nature and thus of limited use in
practice. This would conflict with the requirement that it be specific. Breadth
means that it coordinates a wide spectrum of activities and structures. Specific
means that it does this down to a level that is detailed enough to be applied
effectively and rapidly. Can this be achieved while still being useful for diverse
systems across entire organizations or domains? Yes, it can. In fact, this is what
good architects achieve in all industries. It requires one of the most important
skills of an IT architect: the skill of abstraction. Over time, the designers of the
style recognize simple, widely applicable solutions that can be used to solve
specific problems. Design patterns are one example of such useful design
abstraction. Carefully selected design abstractions are then coordinated as a whole
to form an IT-architectural style. This continuous process of abstraction, selection,
and specific coordination is paramount. More formally, it can be said that an IT-
architectural style provides a useful set of reasonable alternatives—not all
alternatives—and coordinates them to work well together.

This can be achieved at a level that meets the needs of entire domains and entire
organizations. The Convergent Architecture is my proof. An example scenario from
a mature industry should make this point more obvious. Suppose an airplane
manufacturer wants to build the next generation of planes. It is clear that an
architectural style exists for each of the broad areas of propeller planes, jet planes,
and helicopters. Each of these architectural styles supports an entire industry. A
single manufacturer uses one of these styles, not all three at once. Our particular
manufacturer envisions building the best jet planes on the market. Even though a
new generation or new model of plane is being built, the manufacturer will start
with the existing jet-plane style. The designers do not start by considering all
alternatives; instead, they start more effectively by considering the reasonable
alternatives offered by the style. For example, the style does not offer them the
alternative of a helicopter propeller on top of a jet plane. Sure, this is imaginable,
but it has obvious drawbacks. The reason a jet-plane style omits this as a viable
alternative is evident. However, thousands of more subtle design decisions, each
expressed by the reasonable alternatives in the style, are far from obvious. Such
things as material choices, thrust requirements, and the intimately related
guidelines for shape and weight distribution are the result of millions of dollars of
research and experimentation over many decades. The jet-plane style helps the
designers proceed with a high return on investment to build the next generation of
jet aircraft. However, this style will not help them build a helicopter—that is a
completely different animal, even though both of them fly. More important, if the
jet-plane designers want to use liquid hydrogen as a fuel instead of standard
aviation fuel, they will have to make modifications to the style. The style helps
them with all the rest of the decisions, but it does base its design on the
reasonable assumption that the standard fuel will be used. In contrast, it does not
prevent the designers from making alterations for liquid hydrogen in a specific
instance of the style.

Convergent Architecture Chapter 1: IT-Architectural Styel

-29-

By comparison, if one looks at the IT industry today, one observes a whole lot of
jet planes with helicopter propellers on top. This is so because designers are not
yet working at the level of architectural style. Instead, they reinvent, beginning at
an extremely low level each time. It does not help if they can buy expensive
components from the marketplace—the propellers and turbines of the IT world—if
these are not applied properly. Without an IT-architectural style, the developers
cannot leverage the millions invested by others in experimentation and research.
They are unaware of the extremely subtle but decisive design decisions made in
previous, very similar designs. They are bound to repeat a lot of costly mistakes.
The bottom line is that most production IT systems in large enterprises will remain
at the level of initial experimentation—the experimental prototype—until an IT-
architectural style is introduced. Nobody ever built a modern jet plane without
using an existing architectural style as a stepping stone. The same logic will apply
for IT systems in the future.

The IT-architectural style explicitly targets the problem of unnecessary complexity
in IT architecture. It simplifies the design as well as development work by showing
why things are done and how things work together in the overall big picture. It
achieves this by starting from its basic principles. From these principles, it derives,
justifies, and explains each level and part of an architecture, including process and
tool aspects. This means that the concepts of IT architecture can be taught, or at
least clearly explained, to key individuals at all levels of an enterprise—starting
with top-level management. These concepts are then applicable to not just one,
but all systems and designs using the architecture, such as the entire IT of a major
organization. Based on their common knowledge of why things are done, the
proper persons can be actively involved at each level of design. This means that
better decisions are made, systems become more effective, and risks are removed
from development.

This also means that IT-architectural style is most valuable when used as the basis
for entire IT infrastructures. Although it can be used for individual projects, the
most compelling reason to introduce an IT-architectural style is its ability to
support architectural integrity across many projects. This is so because it replaces
many ad-hoc designs with a single, well-understood style. Its holistic approach to
the software life cycle enables IT managers and developers to base entire IT
landscapes on the style and to evolve such landscapes in a controlled manner over
long periods of time.

Getting down to detail, the remaining sections of this chapter define the features
and principles of any IT-architectural style. This sets the stage for the remaining
chapters of this book, which detail a concrete architectural style, the Convergent
Architecture. Chapter 8 then shows, step by step, how an actual instance of the
style is created and used in a concrete development situation.

The Four Features of an IT-Architectural Style

An IT-architectural style comprises four high-level features, or layers. These
features have been distilled out of observations from diverse IT architecture
projects over the last decade. They have been identified as critical to the success
of an IT-architectural style. In addition, several principles are deemed particularly
important to the designer of any IT-architectural style. These are also covered in

Convergent Architecture Chapter 1: IT-Architectural Styel

-30-

this section. Needless to say, the process of analysis and evolution of these
concepts continues.

An IT-architectural style fulfills its purpose by implementing these four features.

1. An architectural metamodel

2. A full-life-cycle development model

3. A full-coverage tool suite

4. Formal technology projections

The Architectural Metamodel

The architectural metamodel is the top-level model. It is a metamodel, meaning
that when applied, it produces or influences another model as its result. In this
particular case, the architectural metamodel influences practically every decision
made in the entire architecture. It does this by defining the vision and principles of
the architecture. It sets the fundamental judgment criteria for every design
decision, analogous in many ways to a constitution, which sets the judgment
criteria for legal decisions. The metamodel justifies why we do things the way we
do throughout the architecture and provides the basis for individuals to make the
proper decisions at all levels. It is the reference frame in which the architecture is
refined and evolved over time. It also defines under which constraints such
refinement and evolution take place.

The principles in the architectural metamodel can be seen as the basis for the laws
of the architecture. These principles describe the important high-level vision and
goals of the style, and they do this in a way that can be understood by a large,
diverse audience. This is important from the perspective of architectural integrity
because only persons who understand where laws come from normally will follow
them or even change them in a coordinated manner. In other words, it permits
people to start communicating in terms of the vision and the principles that
determine its design character—the elements characteristic to the particular style.
This level of communication is key to achieving a set of common goals. For
example, the long-term vision of convergence in the Convergent Architecture has a
significant impact on all levels of its design, its development process, and its use of
tools and technology. Once the concept of convergence has been understood,
stakeholders can see and comprehend more easily how the other layers of the
style achieve this vision. By understanding the principles driving design decisions,
people are put in control of technology instead of technology controlling them.
They begin to understand and see how technology is being applied in the context
of a style to realize its principles across any number of projects. They begin to
perceive the important role they play and become more involved in the creative
improvement of the design. This is the first important step toward creating a
design culture of people who share a common sense of style. Having a shared
culture and a shared sense of style is the best way, if not the only way, to achieve
long-term architectural integrity.

A few analogies may serve to illustrate the significance of the architectural
metamodel. Good examples of this metalevel are the Bible, the Koran, the

Convergent Architecture Chapter 1: IT-Architectural Styel

-31-

Communist Manifesto, or the United States Constitution. Each of these defines
specific visions, principles, and identifiable elements of style for religion or for
government. The mere success of these pillars of religion and government is
evidence enough that this level of formal communication is necessary in many
cases and at least advantageous in others. The fact that we start at this level in an
IT-architectural style may rub some persons the wrong way at first sight; however,
we are just dealing with reality. Beliefs, whether they be religious, political, or
architectural, are the only way to bind persons into a strong culture over long
periods of time—in this case into a culture of solid IT architecture. People get
emotionally involved in their beliefs, not in their knowledge. The IT industry is no
exception to human nature. For example, the commonly cited "IBM culture" and
the "Microsoft way" bind people by the beliefs and principles they share. They are
not bound by their technical knowledge, which could be applied at either company.
In civil architecture, a prime example of a large group sharing common principles
is the Bauhaus school of architects. Bauhaus began in Europe around 1919 (Droste
1998) and remained active in the United States through the 1950s, where it gave
rise to the International Style of civil architecture (Heyer 1993). Bauhaus produced
astonishing works of architectural and product design, most of which are still in
mainstream use. The shared set of identifiable principles helped these groups of
individuals work together, over long periods of time, to achieve a common goal.
The architectural metamodel serves this purpose in IT architecture.
A precise example at the level of an architectural metamodel from the Bauhaus
school was their vision to harmoniously unite form and function in their designs. In
other words, they believed that an aesthetically pleasing form should not be
something added after the structural engineering is finished. Their slogan was "Art
and technology, the new unity." Essentially, this meant that every design element
could be structurally functional while at the same time contributing to a pleasing
form. This was a real challenge, but the Bauhaus school of designers believed that
it should be done, and they succeeded. Their achievement of this vision and their
contribution to architecture and product design remain undisputed to this day.

A corresponding example from the architectural metamodel of the Convergent
Architecture is its long-term vision of convergence. Essentially, convergence says
that business and IT models can be united into one common model. This vision,
which also can be formulated as a set of principles, motivates and justifies many
decisions throughout all levels of the Convergent Architecture, and it is responsible
for many of its most recognizable elements of style.

The architectural metamodel helps avoid risk by clearing up potential
misunderstandings and disagreements early. Using the architectural metamodel,
the chief architect puts a stake in the ground and defines a clear, long-term
direction—the architectural vision—for an entire organization, not just for one
project. This extremely important step is carried out by any professional civil
architect at the outset of a major undertaking. It is important for two reasons.
First, the chief architect must have a long-term strategy and communicate it
clearly at all levels of an organization. Without such a long-term strategy, the
proliferation of ad hoc architecture, both at business and IT levels, cannot be
avoided. Second, if the stakeholders are not clearly informed and in agreement
regarding the strategy, big problems will arise later. The later these problems arise,
the worse they are. Take a look at cities around the world to see clear proof of this
point. To cite a couple of positive examples, both Paris and Washington, D.C., owe
much of their lasting beauty first to a chief architect with a clear, long-term vision
and second to stakeholders who joined in and supported this vision over many

TE
AM
FL
Y

Team-Fly®

Convergent Architecture Chapter 1: IT-Architectural Styel

-32-

years. Without the clear architectural vision, neither of these impressive, lasting
achievements in civil architecture would have occurred. A clear architectural vision
is particularly important with respect to IT systems. This is so because, contrary to
civil architecture, the soundness of an IT system is not clearly visible to anyone
who cares to look. The state of today's IT systems bears ample evidence of the
problems that creep up behind the scenes due to an unwatched architecture. The
architectural meta-model is the most important step toward resolving this problem:
It tells the stakeholders first that there is something to look for and then, in
principle, what it should look like. The rest of the architectural style picks up at this
point and provides the necessary detail.

It is clear that if an organization cannot agree on the general principles of the
architectural metamodel, then agreeing at every other level will be an even bigger
problem. This means that the only way to avoid the problems of ad hoc
architecture is to agree on an architectural style, beginning with the basic
principles in the architectural meta-model.

The Full-Life-Cycle Development Model

The second-level model is the development model, and it defines how we achieve
the vision and fulfill the principles expressed in the architectural metamodel. It
formulates and transports principles into concrete structures, such as components
and development organizations, as well as procedures, such as the development
process. These structures and procedures are the vehicle of the architectural style.

Only with the existence of the architectural metamodel is it possible to define
appropriate development structures. Let's return to the example from the
preceding subsection, where we saw that the U.S. Constitution is at the level of
the architectural metamodel. At that level, it expresses principles such as equality
and the presumption of innocence. The vehicle of these principles, corresponding
to the development model, is the judicial branch of the U.S. government. The
concrete structure and the procedures of the entire judicial system are derived
from the principles in the U.S. Constitution. Essentially, it would be impossible to
set up an effective judicial system without the Constitution. By the same token, it
is impossible to set up a highly effective development model without the
architectural metamodel.

Similarly, referring again to the Convergent Architecture as an example in the IT
field, the development model defines the specific structural features, such as
Convergent Components for OPRs, within the architecture. In addition, a specific
project organization and development process are defined at this level to
effectively meet the particular requirements of the architectural metamodel. For
example, a specific instance of the Rational Unified Process (RUP) is defined to
most effectively prepare and erect convergent systems. Together, the specific
structures and procedures are the prerequisite for a specific, highly effective tool
environment, the job of the next layer of an IT-architectural style.

The managed evolution of an IT infrastructure would be very difficult without the
development model. What, for instance, would happen if developers unilaterally
changed fundamental design and development structures in individual projects?
When things such as component models, techniques, and tools are defined
unilaterally in individual projects, ad hoc architecture is the inevitable result.

Convergent Architecture Chapter 1: IT-Architectural Styel

-33-

Without the development model, such changes occur automatically and
unintentionally. There is no effective way for project managers or developers to
synchronize themselves across projects without a common development model.
The only way ad hoc dilution of an architecture can be avoided is to provide the
lead designers of projects with a development model. If fundamental structural
changes do need to be made, for instance, then they are made relative to the
common model as used by all projects. Experts can then properly assess the
impact on all designs, systems, and organizations, both present and future. At this
point, a solid basis for a decision founded on dependable information exists. In
addition, once decisions to modify the architecture are made, the migration of
every aspect of the architectural style can be planned and coordinated properly.
Above all, such decisions are not made in an ad hoc manner by, perhaps, the
wrong persons. This is the most important step toward managed system evolution.

The development model is very different from generalized design methodologies in
that it is concerned only with aspects specific to the particular IT-architectural style,
not with generalized advice. For example, it should not present a discourse
comparing various pattern approaches, development process alternatives, or
component models. It should be as specific as possible, telling the developers
which processes, patterns, and components to use and, concisely, why this choice
was made. Whenever design options are provided, then precise decision criteria
should be available as to when a given option applies. This is so because the
probability of ad hoc and incompatible constellations increases with the number of
unclear or competing alternatives.

To ensure adequate coverage (depth and breadth), the following three
fundamental themes should be addressed by the development model:

 The development structures theme. This describes the concrete
resources used to design, implement, and deliver the system. The
focus here is on describing the structures to be built and the structures
required along the design and development path. These include such
things as layers of the architecture, component stereotypes with their
models and their diagrams, and other artifacts used to construct and
deploy systems. The ownership of these structures and how they are
derived are described in the IT organization and development process,
respectively. The full-coverage tool suite layer, presented in this
chapter, outlines how these structures are manipulated and managed
with the help of specific tools as part of the process.

 The development process theme. This describes the specific
development tasks. These tasks focus on the creation and evolution of
the development artifacts and are specifically supported by the tools
and organization of the style. Its process should at least cover the
entire critical development path, which must be defined by the style,
including the repeat cycles necessary to address the change and
evolution of the system properly. However, defining the process is not
enough; it must be coordinated properly by an IT organization.

 The IT-organization structure theme. This defines how
responsibilities, roles, and persons are best coordinated to simplify and
support the specific development process. Often, methodologies
neglect the intimate relationship between the process and organization,
assuming that the process is complete. However, no matter how
complete and well-thought out the process is, there is no way to cover

Convergent Architecture Chapter 1: IT-Architectural Styel

-34-

everything that can possibly occur during a development effort. An
organization must be prepared to handle everything that happens in
between and around well-defined tasks, both the everyday things and
the surprises. In addition, not everything can or should be defined as a
specific task. For example, attempting to define the activities of an IT
architect as a series of tasks would be fruitless. The tasks are too
complex and intertwined to be able to be described in an appropriate
way. On the other hand, establishing an architecture organization with
specific responsibilities and tools is extremely useful. Thus, the IT-
organization structure both complements and supports the
development process.

How each of these themes is presented is left up to the IT-architectural style itself.
In any case, this entire development model will evolve with time, just as any other
layer in the style. Things will be added, removed, modified, and refined in the
spirit of an evolutionary approach.

The Full-Coverage Tool Suite

Based on the specific requirements set forth by the preceding features of the IT-
architectural style, the third feature of a style defines effective tools to support
architecture-driven development. Due to the coverage and specificity of the
development model, tools can be designed, integrated, or implemented to actively
assist style-conforming development. They can be tuned specifically to intelligently
support development according to the development model. Without the previous
definition of the features of the style, a comparable range of coverage, intelligent
support, and tuning would be impossible. How else is the tool developer to know,
specifically, what the developer requires?

Since specific requirements for tools are set in the models of the IT-architectural
style, experts can be used to develop and tune the tools in one place to support all
projects using the style. This means that the time, costs, and risks associated with
tool development are reduced. Moreover, the tools are more effective. A project
starting with the tools can get started faster, at lower risk, with fewer persons and
deliver better results. This sounds like a marketing ploy. However, it is simply the
result of sitting down and thinking about a shared IT-architectural style, including
its tool suite, before projects are started. The situation is comparable in many
aspects with the use of specialized CAD tools by manufacturing industries. First,
the designers of the tool sit down and think about the specific requirements for
their tool in a given industry context—not in all industry contexts. The specific CAD
tool then can be applied to improve efficiency in many development projects within
the particular industry. It is used to design various models and to support
production, for example, in the special context of helicopters. Similarly, in the IT
industry, we use the architectural tool suite to produce various models and to
support production in the special context of a particular IT-architectural style.

The IT-architectural style improves the effectiveness of the development
environment by raising its level of coverage and precision. The specific information
regarding procedures and structures along the entire development life cycle
permits tools to be developed that more specifically reflect the developer's intent
and needs than can generalized tools. The level of assistance and intelligence of
each tool can be increased. For example, a design model can be checked for its

Convergent Architecture Chapter 1: IT-Architectural Styel

-35-

proper use of structural features such as patterns because the style defines which
patterns are applicable. The tool also can actively clean and improve the model. It
becomes a development environment in which the designer can add creative value
rapidly instead of being confronted continually with the problems of tool
integration and the poor performance of lowest-denominator tool support.

The Formal Technology Projections

As pointed out earlier, tools can be defined to support many more development
tasks in the context of an IT-architectural style than would be possible without a
well-defined style. Above all, significant new levels of automation are possible.
Today the accepted level of automatic construction is the compiler. The compiler
translates source code, such as Java or C++, into executable byte code or machine
code. The compiler is a code generator that every developer takes for granted in
everyday practice. Nobody in his or her right mind would consider producing
machine code by hand. Instead, we program in a higher-level language, which is
read by a generator—the compiler in this case. This generator gives us immediate
feedback regarding many errors while allowing us to describe a program precisely
at the level of source code. At this level, the source code can be seen as the model,
which is interpreted by the compiler. The compiler produces a predictable result in
every situation; it is a formal mapping of source code to machine code. Suppose
now that we move our source code to a completely different type of hardware,
where the machine code is different. Today's compilers take care of such tasks.
The compiler on the new system generates the proper machine code with formally
predictable behavior. In other words, the compiler, as a generator, formally
projects the source-code model onto any number of different target platforms. We
call this a formal technology projection.

In a modern IT-architectural style, the level and effectiveness of such formal
technology projection are raised several levels above the compiler. This next level
of technology projection is simply a natural evolution of the scenario presented in
the preceding paragraph. In this scenario, the value of source-code-driven
projection is very clear. There is no reason why this process cannot evolve to the
level of model-driven projections to entire server platforms. Examples of such
platforms would be middleware infrastructures, application server infrastructures,
or even mainframe infrastructures. Model-driven technology projection simply
means that we translate high-level models to entire IT infrastructures instead of
just translating source code to machine code. Such higher-level generators cover
much more ground than the source-code-based compilers while delivering
comparable dependability and quality. There is no downside to this scenario if it is
positioned properly as part of an overall IT-architectural style. However, if not
used in the context of an IT-architectural style, such generators just become a
faster way to produce ad hoc architecture.

Code generation from models is starting to catch on in the IT marketplace.
However, generating code from just any model is the best way to produce a
software landscape that practically nobody understands, nobody can reuse, and
nobody can maintain. The models and tools of an IT-architectural style provide the
only sound basis for high returns from the technology projection of models to
diverse implementation technologies—not just to source code. Within the context
of the IT-architectural style, the development model provides guidelines as to what
models and their resulting systems should look like. The architectural tool suite
then supports these design guidelines to help designers produce consistent models

Convergent Architecture Chapter 1: IT-Architectural Styel

-36-

according to the organization's IT-architectural style. The tools can actively check
models before generation, based on the guidelines for modeling and technology
projection. This level of model checking is analogous to the immediate feedback
provided by a compiler, only at a higher level. This is a best-of-both-worlds
situation. The effectiveness of the generator is increased because a model contains
more information about the entire infrastructure than just source code. The quality
of the model is increased, which means that it is of more value as documentation
and as a basis for design reuse. Lastly, the developer is more effective because
much of the development work can now be completed, and verified, in a high-level
model.

Technology projections are, as required by an IT-architectural style, as complete
as possible. All the information a model can provide should be used to generate as
much of the technology infrastructure as possible—reducing programming,
configuration, and build environment development to a minimum. This is important
because completing these tasks by hand adds virtually no value to the information
already available in the model. To the contrary, these are the areas where,
currently, much of the risk is incurred in projects. In contemporary development
organizations, most of the time is spent coding by hand from poorly elaborated
models. This is also where the most expensive mistakes are made—from both the
short- and long-term perspectives. By raising the coverage and level of automatic
technology projection, an IT-architectural style immediately increases quality and
speed in individual projects while at the same time attaining the long-term cross-
organization benefits of IT architecture.

Technology projections should be as formal as possible while not losing sight of
usability; there is always a pragmatic tradeoff between usability and formal
specification that must be made in each IT-architectural style. Although compiled
programming languages are formal descriptions, most every level of abstraction
above them is, at best, semiformal today.[7] For example, the widely accepted
modeling language UML is semiformal and will remain so for some time. This does
not mean that UML is not useful—to the contrary. However, the long search for the
best possible mix of formal rigor and ease of use continues. This mix is not
localized to one particular area of design. It stretches across the whole
development process, from business model representations to technical model
representations to technology projections of the models. This is why the entire
process is covered by the IT-architectural style. It is a prerequisite platform for
improving the interaction between design models and technology projection, an
area where much progress will be made in years to come.

The technology projection must separate two life cycles that do not belong
together: the life cycle of the business-relevant architecture models from the
completely different life cycle of implementation technologies. Implementation
technologies change at a breakneck pace. The market and vendors dictate these
changes, not the system architect. Instead of evolving, implementation
technologies often are simply replaced by alternative technologies. This pace of
change is one of the most significant problems in today's IT systems.

Contemporary design models, if they exist at all, are tailored to the underlying
technology. They are more or less images of the implementation technology. In
these cases, when the implementation technology changes or is replaced, the
design model breaks with it. This is a big problem because it means that the life
cycle of our business is disrupted by the life cycle of external software and the

Convergent Architecture Chapter 1: IT-Architectural Styel

-37-

decisions of software vendors. For this reason, most design models seldom live
longer than one system generation. Unfortunately so, because this means that the
model never gets past the level of a prototype. Little or no incremental
improvement takes place.

The bottom line is that the business and design models must live and evolve over
time as independent as possible of technology life cycles. This is what the
technology projection guarantees. It reads a design model and translates it to the
current best implementation technology. It is a useful level of abstraction that
cleanly separates the concerns of business and system modeling from their
mapping to highly volatile, rapidly changing technologies. This enables the
business and design models to improve over time in a natural, evolutionary
manner.

The benefits of technology projection stem from a forward, architecture-driven
approach.[8] As pointed out in the preceding paragraph, the clean separation of
design from variants and the volatility of technology platforms can, with rare
exceptions, only be achieved via forward technology projection. Normally,
attempting to derive a model from the technology platform recouples the model
with the life cycle and volatility of the platform or with the requirements of one
particular platform. A good analogy to illustrate this point is the translation of
human languages. Written language in the form of text is analogous to design
models in that the text is a written, structured expression of ideas, in many ways
similar to a modeling language. Now, suppose that we have an English text. We
want to effectively improve and extend this text over time, analogous to the way
we need to refine and extend a business model at our own pace, with many
iterations. Forward-translating the English text to several different languages is
relatively simple. This is comparable with forward-translating a design model to an
IT infrastructure. Western languages are the simplest targets because they have
Latin alphabets and similar grammar, but I can translate my English sentence to
more exotic Asian and Arabic languages as well. I can repeat this forward-
translation as often as I like, for every edition of my text and to any languages I
want. Each new translation improves with the quality of my text. However, the
reverse direction poses a major problem. If I try to recreate my text from any of
these translations, it will be different. Not only the structure but often the precise
meaning of my text will have changed and usually will differ from the ideas I
originally wanted to convey. In addition, the recreated text is different for each
language, even for the similar Western languages. Is this the same text? Are any
of them better than my original? Can I ever get my original, which I understand
best, back? The obvious answer is no.

From this scenario it is clear that the reverse derivation of nontrivial models from
implementation technology, for whatever reason, does not meet our requirement.
In other words, forward technology projection has every advantage, but reversing
the process causes the exact problem that we are trying to avoid. A forward
technology projection to, for example, various application servers on various
operating systems or even to mainframe infrastructures is quite useful, even
though each of these requires significantly different artifacts and code structures to
represent the same model. In summary, a forward technology projection is the
only long-term means to benefit from the positive aspects of new technology while
protecting the business from its negative aspects.

Convergent Architecture Chapter 1: IT-Architectural Styel

-38-

Aspects Affecting Any IT-Architectural Style

A few general aspects or principles are of particular importance when creating an
IT-architectural style. These aspects affect the refinement and use of each of the
top-level features listed previously. If they are not taken into account when
defining the style, then it will most certainly be more difficult to apply than it
should be. Since this is not an introduction to IT design, I will not cover adjectives
describing self-evident features of any good design, such as pragmatic,
understandable, useful, adequate, and so on. This does not mean that these
aspects should be ignored. It means that they are so basic to overall design that I
consider them to be self-evident and omnipresent in every design decision of a
skilled designer.

Specificity

Designers are paid to build systems and prefer to spend their time completing this
task, not on preparatory work such as the invention or definition of an IT
organization, the refinement of the development process, or tool integration—to
name just a few. Sadly, most contemporary methodologies are collections of
generalized best practices that are too nonspecific to be applied directly in a
project. They require considerable tailoring, refinement, and experimentation
before they can be used in a particular instance. In addition, they often contain
many overlapping alternatives, obscuring any clear guidelines for their specific use
to get the job done.

The closer we can come to a cookbook, the better, as long as our recipes are still
valid for the situations at hand. In other words, the more specific an architectural
style is, the better. Of course, the degree of specificity in any given area depends
on the amount of flexibility required. This is where the architectural style can add
significant value. The designers of the architecture preselect the most effective set
of tradeoffs to best meet the goals of the architecture. The specific mixture of
tradeoffs is precisely what differentiates one IT-architectural style from another.
Referring once more to the analogy from the automobile industry, it is obvious that
a roadster-style automobile addresses simply a different set of design priorities or
tradeoffs than a pickup-truck-style automobile.

For another example nearer to home, the developers of the Convergent
Architecture have taken volumes of generalized methodologies such as the Object-
Oriented Process Environment and Notation (OPEN 1997) and the Rational Unified
Process (RUP 1998) and filtered out the best set of specific practices for its style of
design. It tightly integrates these specific practices and defines exactly how they
fit together. The designer no longer has to deal with a sack full of alternatives and
options. Instead, more specific roles, procedures, and techniques are applied using
tools designed to support these specific features. The definition of specific
techniques and procedures is clearly a prerequisite to defining high-productivity
tools to support specific techniques.

Specific guidelines reduce ambiguity—a major source of error, risk, and cost.
Without specific guidelines, it becomes next to impossible to build things to be
compatible. Consider, for example, a scenario where several groups are given the

Convergent Architecture Chapter 1: IT-Architectural Styel

-39-

task of building something as simple as a chair. If instructions are not given as to
the height, size, and basic structure of the chair, every group will produce
something different. However, since everyone knows from experience what a chair
looks like, all the chairs probably will work. Now extrapolate this situation to
something as complex as an automobile and as invisible as an IT system. It is
clear that every bit of specific information, together with the quality of the tools,
will help avoid frustrating problems, particularly when diverse groups build pieces
of systems that should work together.

Specificity is not limited to low-level detail. It pays off at every level of abstraction.
A high level of clarity and effective communication can begin just by naming the
particular IT-architectural style. Compare this, for example, with the specification
of cultural cooking preferences used by most of us quite frequently. A whole lot is
communicated simply by specifying a French restaurant, in contrast to a Chinese
or fast-food restaurant. Once the style of cooking has been named, many details
are automatically clear to all parties involved.

Specificity, when done properly, is not synonymous with aggravating constraints.
To the contrary, it means highlighting the best path to success in a complex
constellation of alternatives. This is not something that happens as a by-product of
day-to-day development projects. It is only achievable through a concerted effort
by people who have enough experience and an ample portion of constructive
foresight—the owner (or owners) of the IT-architectural style.

The Force of Entropy

Even in the field of software design, some laws of physics or, more precisely, laws
of thermodynamics apply. To make progress, any engineer must recognize the
fundamental laws of physics and act accordingly. Otherwise, bridges fall and
software systems fail dramatically—sooner or later. Virtually all software systems
today suffer to an unnecessary degree from the force of entropy.[9] The larger the
system or set of systems, the worse the problem tends to be. An IT-architectural
style is the best place to counter this trend.
Simply put, the force of entropy means that uniform disorder is the only thing that
happens automatically and by itself. In other words, if you want to create a
completely ad hoc IT architecture, you do not have to lift a finger. It will happen
automatically as a result of day-to-day IT activity. Everybody has seen entropy at
work. Most of us have worked hard cleaning out the attic or the garage. Who
worked on creating the mess? Nobody, the mess happened by itself. The only way
to prevent it is to work against it up front, by installing shelves, for example, or
otherwise investing energy to better organize the attic or garage. In large software
systems, the word architecture is synonymous with work invested at the proper
level to organize the system. IT architecture defines the organization of a system.
However, most IT architectures today are done within single projects or small
groups of projects. This is like letting one person define the order and shelving in
one portion of the garage and allowing others to determine it in other parts of the
garage without thinking about the organization of the entire garage first. In this
case, the entropy simply takes its toll at another level, namely, in between the
projects and systems, which is not much better than no architecture at all. This is
precisely the reason many companies have started addressing Enterprise
Application Integration (EAI). EAI devotes itself to the problems caused by the lack
of a holistic, overall architectural strategy. Unfortunately, EAI usually only deals
with the symptoms of entropy, not the source. It only patches the problems

Convergent Architecture Chapter 1: IT-Architectural Styel

-40-

caused by entropy. If EAI is not applied in the context of an overall IT-architectural
strategy, it itself becomes subject to the force of entropy. This means that, over
time, EAI becomes part of the very problem it is attempting to solve. The holistic
approach taken by an IT-architectural style handles this problem at the proper
level, across any number of projects and systems comprising an overall IT
landscape, that is, across the whole attic or garage. It curbs the force of entropy
not only within projects, but also across projects. This sounds like a lot of work,
and it is, both for the owner of the IT-architectural style and for the chief architect
in a large organization. However, the payoffs more than remunerate for the effort.

In summary, design levels that are left to chance will result in ad hoc, creeping
entropy that significantly increases complexity—the source of most IT-related
problems. In contrast, explicitly accounting for the intrinsic force of entropy
(software entropy) will be the single most significant contribution to overall
simplification an IT-architectural style can make.

The Designer's Paradox

Be aware of what some see as a paradoxical relationship between design flexibility
and design coverage, known as the designer's paradox. There is a tendency to
believe that to keep a design and its resulting system flexible and independent of
change in a particular area such as technology, tools, or organizational structures,
it is best to ignore this particular area in the design. In other words, if you leave it
out of the equation, then you are free to change it at will. The contrary is true: If
you want to be flexible and independent of something, it must be explicitly covered
in the design; otherwise, you risk an implicit coupling that resists change.

For example, I once worked on a large project where the support of major
organizational changes was of utmost priority. When I entered the project, I was
confronted with a design that showed no trace of an organizational unit, although
the current organization clearly had been used to partition the design. When I
inquired how the team intended to repartition the system to fit new organizational
structures, the answer was: We left the organizational structure out of the design
to remain independent of it. The paradox was that this omission had the opposite
effect. The current design was completely bound to the current organization—its
partitioning of work, its access control, its profit centers. There was no clear way
to reconfigure the system to compensate for significant organizational changes. To
enable such flexibility, the design team had to introduce the concept of
organizational structure into the models.
The apparent paradox here is that we are dependent on our design models and
techniques to attain independence in our system. Our designs must explicitly focus
on things that we want to flexibly change. This means that to increase business
flexibility, the business must be visible in the IT model. If a business process
needs to be changed, then it had better be visible in the design. Otherwise, time
and effort will be wasted as well as risk increased just figuring out where the
process is and how it can be changed. By the same token, to achieve
independence from the constraints of technologies, these constraints must be dealt
with explicitly in the design style and in the tools we use.[10]

There are two important messages here for the developer of an IT-architectural
style. First, the style must try to cover all areas where independence and flexibility
are required in the business of building IT systems. Second, the style and its tools
should avoid constraints that would inhibit them in their capability to achieve

Convergent Architecture Chapter 1: IT-Architectural Styel

-41-

flexibility through design. To the contrary, the style should increase design
expressiveness while at the same time simplifying the design and development
process as a whole. This principle alone rules out most, if not all, fourth-generation
language concepts and tools as candidates for IT-architectural style. Although such
tools may simplify some particular situations, they also severely constrain the
designer.

Organic Order

Many observations of the Bauhaus school of architecture and modern architectural
icons such as Christopher Alexander directly apply to the field of IT architecture.
An aspiring IT architect can learn a great deal from such observations, which are
not limited to the domain of civil architecture.

Of these observations, the principle of organic order as formulated at length by
Christopher Alexander (Alexander 1975) is particularly important when developing
an IT-architectural style. In short, he states that "[A rigid master plan] ... creates
an entirely new set of problems, more devastating in human terms than the chaos
it is meant to govern." This principle emphasizes that properties of complex
systems cannot be predicted over long periods of time no matter how gifted the
designer. For this reason, these properties cannot be determined or governed by a
rigid master plan. The principle of organic order also confirms that the long-term
success of large system designs is as much a factor of the people involved and
their motivations as of the techniques and technology used.

This is another way of saying that waterfall-like development efforts do not work in
the area of complex system design. Thus, a good IT-architectural style will
consider the human-organizational requirements of IT development in addition to
the development structures and the development process. It also will foresee an
iterative, incremental approach and the distribution of responsibilities required to
achieve healthy organic order.

Organizational Evolution

Large IT projects place significant requirements on both the IT organization and
other organizations of the business. To achieve positive change, these
organizations will have to adapt. Sadly, the capability to adapt also must evolve;
most organizations resist change. They too can only evolve incrementally.
Alexander (1975) refers to this as "piecemeal growth." The bottom line is that the
architect must view business organizations as living systems, not formally
designed machines. Thus, a successful IT-architectural style will assist the
architect in achieving incremental evolution at the organizational level in addition
to the technological level.

Correspondingly, Dr. David A. Taylor (Taylor 1997) observed that the long-term
goal of any business must be to reduce the impedance to positive change. It must
strive to evolve organizations from reactive to creative adaptivity: "Move
organizations from a reactive to pro-active adaptivity and then from pro-active to
creative adaptivity." How well this human factor can be supported actively by an
IT-architectural style is questionable. However, the owner of the style certainly can
recognize this goal to ensure that its features and tools, as well as the systems

TE
AM
FL
Y

Team-Fly®

Convergent Architecture Chapter 1: IT-Architectural Styel

-42-

produced using the style, do not constitute an additional barrier to creative
adaptivity.

Describing the Style Using Standards

The holistic breadth and specific depth of an IT-architectural style require the
expert integration of diverse notational and description standards. No one
modeling or notational standard could be expected to effectively cover the entire
development life cycle at so many levels of abstraction. For example, even the
most comprehensive standards for architectural description, such as IEEE 1471-
2000 (IEEE 2000), or contemporary proposals for design reuse, such as Rational's
Reusable Assets Specification, are quite correctly defined to cover certain design
elements at specific levels of abstraction, not all elements at all levels. For
example, these standards leave the definition of modeling languages and notations
such as UML and XML up to the respective experts. They complement and add
value to these standards; they do not replace and compete with them. The role of
the IT-architectural style is complementary in a similar way. It uses a combination
of architectural description standards, modeling standards, and other standards to
describe the holistic and specific aspects unique to the style. It adds value by
applying these standards in concert at all levels of the big picture. It does this in a
particular fashion to best meet specific principles—the essence of a style.

The scope of an IT-architectural style requires extensive know-how to define an
effective and synergistic constellation of standards. The complexity of this task is
already visible at the highest levels of an architecture. The four top-level features
of an IT-architectural style traverse many design domains, each of them having its
own best means of representation. As you will see in the Convergent Architecture,
representations exist for such diverse aspects as business design, the IT
organization and process design, large-scale and detailed component system
design, tool and repository design, deployment and reuse design, code generation,
and build environment design.

According to the principle of specificity, this does not mean to use all standards
and all views available. The developer of an IT-architectural style must select
among many standards and views to best represent the big picture at every level.
This means that a specific constellation should be defined to best support learning
and use of the style. Such a constellation, for example, would optimally represent
each design level with minimal overlap and without translation loss. Not many
developers possess the broad experience, nor do they have enough time, to
properly complete this task. Nonetheless, it is a prerequisite for effective
development of large systems. Thus, once completed by an expert and packaged
in the context of an IT-architectural style, all users of the style immediately reap
considerable benefits.

[7]Formal specification languages such as B, Z, and VDM remain the domain of
mathematicians. However, progress is being made to improve the formality of
widespread modeling techniques.

[8]This is in contrast to reverse engineering or implementation-driven approaches.

[9]American Heritage Dictionary (1994): "en·tro·py n., pl. en·tro·pies. 1. Symbol S
for a closed thermodynamic system, a quantitative measure of the amount of

Convergent Architecture Chapter 1: IT-Architectural Styel

-43-

thermal energy not available to do work. 2. A measure of the disorder or
randomness in a closed system. 3. A measure of the loss of information in a
transmitted message. 4. A hypothetical tendency for all matter and energy in the
universe to evolve toward a state of inert uniformity. 5. Inevitable and steady
deterioration of a system or society."

[10]This is not the case in most design styles and tools today, where, in every
instance, upstream from the compiler, design styles and tools operate in the
optimistic bliss of zero constraints only to hit the wall of reality during system
implementation.

Summary

This first chapter described the origin of architectural style and its potential
advantages when these concepts are applied in the field of IT architecture in the
form of an IT-architectural style. It then defined the design of any IT-architectural
style. This will enable readers to better understand the fundamental concepts
behind the Convergent Architecture, a specific IT-architectural style presented in
the remainder of this book. In addition, the definition in this chapter will help
readers describe, enhance, or even create their own IT-architectural style.

A historical perspective compared various forms of architectural style as found in
civil architecture and many mature industries. Examples showed the rationale for
architectural style, and analogies were used to convey its potential benefits in the
IT industry. Scenarios from today's most significant problems in enterprise IT
systems and software design were used to show how an IT-architectural style can
provide permanent solutions. The scenarios explain why many of the current-day
approaches only doctor up the most visible symptoms of a more fundamental
architectural neglect. They demonstrate how an IT-architectural style goes further
to actually remedy the fundamental source of the problems—the only long-term
solution. The chapter reveals IT-architectural style as a significant, evolutionary
advance in IT system development, not just another workaround or quick fix.

In this chapter, an IT-architectural style was defined as consisting of four major
features:

 The architectural metamodel

 The full-life-cycle development model

 The full-coverage tool suite

 Formal technology projections

In addition to justifying and explaining each of these four features, the chapter
also covered several important aspects that should be considered when creating
any IT-architectural style:

 Specificity

 The force of entropy

Convergent Architecture Chapter 1: IT-Architectural Styel

-44-

 The designer's paradox

 Organic order

 Organizational evolution

Now that the advantages of the IT-architectural style are clear, it is time to show
how these concepts manifest themselves in a particular IT-architectural style, the
Convergent Architecture. The next six chapters of this book provide a complete
description of the Convergent Architecture. Chapter 8 then gives a pragmatic
hands-on example to get projects off to a fast start. It is important to note that the
rest of the book is not just an example of IT-architectural style; rather, it is a
complete style that is in active use today in many projects. Chapter 2 starts the
journey through the Convergent Architecture by providing the top-level roadmap.
This is the big picture, the bird's-eye view. It introduces the four features of IT-
architectural style as realized in the Convergent Architecture and explains how
they complement each other. The subsequent chapters provide detail on each of
the features and their relationships. This roadmap approach should help designers
and project managers orient themselves at any time within the big picture while
exploring the details of the Convergent Architecture.

Convergent Architecture Chapter 2: The Convergent Architecture Roadmap

-45-

Chapter 2: The Convergent Architecture
Roadmap—Defining and managing the
big picture

Overview

A roadmap is key to communicating information technology (IT) architecture
effectively. The first thing that an experienced planner does in any field is to orient
his or her team according to a common scheme or roadmap. Whether it is an
expedition, a military event, a construction plan, or an IT strategy, the roadmap
helps visualize and coordinate common goals and, more important, indicates the
best path to take. It is the single most important form of information management.
The larger and more complex the endeavor, the more important it is to start with a
roadmap. Even small IT projects are complex enough to require a roadmap. A map
is essential to any IT organization that must coordinate persons, projects, and
ever-changing technology effectively over large periods of time.

In fact, most IT organizations will require several levels and types of roadmaps to
guide themselves properly along the precarious journey to effective systems. First,
a high-level roadmap is required to show the path between major milestones of
the journey. This level corresponds, for example, to a highway map between Paris
and Berlin. Once the organization is moving in the proper general direction, more
detailed maps can be used. However, if the general direction is wrong, detailed
maps will not help much. Buying a detailed map of Rome will not help much if we
are on our way from Paris to Berlin. In other words, the maps do not just help us
find the best route somewhere, they also help us figure out where we are at any
given time, where we have come from, and how we get back home. Above all,
they help us explain to others where we are, how to find us, and even better, how
to get there alone, without requiring an experienced guide at every turn in the
road. There will never be enough experienced guides—experienced IT architects—
to go around. Nobody would expect an automobile driver to know a route
automatically without having looked at a map. By the same token, it is obvious
that not every driver can have an experienced taxi dispatcher in the passenger
seat. However, this does not seem to be so obvious in the IT industry. Many
organizations do expect each and every one of their developers to somehow know
the route and, although they often have never met each other, to even agree on
the destination and a common route. These are clearly unreasonable expectations
that inevitably lead to major problems. To be successful, organizations must get
accustomed to using the destinations and roadmaps for system design published
by IT architects. This chapter presents the roadmap of the Convergent Architecture.

It is hard to understand how modern organizations even manage to get along
without an easily understandable IT roadmap. Actually, they usually have no IT
roadmap at all. As a result, most IT organizations are just barely surviving, driven
from one problem to the next, always teetering on the edge of a breakdown. They
spend so much time finding detours and correcting dead ends that their backlog of
unfulfilled requirements is bursting at the seams. How do these IT organizations
know where they are going? The honest answer is that they usually do not really
know, not past the next generation of systems anyway. They cannot know where
they are going because they have never set a long-term destination. It is as if

Convergent Architecture Chapter 2: The Convergent Architecture Roadmap

-46-

everyone were under the impression that, one day soon, we will not need
information management and IT any more, so why should we bother to think
about where we are going in the next decades? Why look to the horizon when
nobody is interested in the direction anyway? In light of this situation, it is easy to
understand why contemporary IT organizations are experiencing considerable
difficulty. The perpetual zigzagging has gotten almost everybody confused, from
the top management to the end customers.

The cost of this zigzagging is exorbitantly high. The cash consumed by recent IT
startups alone is dizzying evidence of this cost, which is magnitudes higher in large
organizations. Do these IT organizations know where they are now? No, they
cannot know where they are because they do not have a roadmap for their IT
architecture. If you don't care where you end up, then you don't need a roadmap.
However, if you want to produce increasingly effective systems over time, and if
you ever want to reach the long-term advantages of IT architecture, then a
roadmap is the only way to get there.

The roadmap to the IT-architectural style is also a decisive factor in the quality of
information and knowledge management in any organization. Contrary to what
some modern marketing campaigns would have us believe, knowledge
management is not something that parts of IT systems do; knowledge
management is what all IT systems do. It is the raison-d'être of IT systems. Every
IT system, even a computer game, is built specifically to put order into data, to
organize data into information, and to formulate and connect information to
increase human knowledge. Essentially, the design of every IT system is a design
for information and knowledge management. There are, of course, good ways and
bad ways to manage information: A good design is synonymous with good
information and knowledge management.[1] Information management goes further
than simply structuring information within a system. To design systems that truly
help humans better manage information, in contrast to just data, an organization
must figure out how it wants to define, structure, and relate information to make it
more useful. This is one of the most important aspects of IT architecture: It forces
an organization to address issues of how information will be best managed and
used at all levels. This emphasizes IT-architectural style as the foundation for
superior information and knowledge management not just at the level of the
individual system but for an entire organization, well beyond the traditional scope
of IT systems. Thus the Convergent Architecture, beginning with its roadmap, lays
the groundwork for improved knowledge management by communicating how the
process of IT development directly supports information design.

There is another, more subtle reason behind the roadmap. It has to do with the
expectations placed on consultants by contemporary managers. Organizations
require software to support complex, mission-critical tasks. This means that a
consultant who has been engaged to build a system first must work with the
business to understand and clearly structure, that is, model, the mission-critical
tasks. He or she must construct a roadmap of the structures and procedures in the
particular business domain, whether it is automobile production, financial trading,
or state government, so as to design and build an effective IT system. In other
words, the consultant has been hired to define and realize a roadmap for a
business. As a prerequisite, we should expect the consultant to have a roadmap
for his or her own business—the business of IT architecture—that clearly structures
the mission-critical task of IT architecture. We cannot reasonably expect someone

Convergent Architecture Chapter 2: The Convergent Architecture Roadmap

-47-

to develop a high-quality roadmap for another business domain if that person does
not yet have one in his or her own domain.

The remainder of this chapter presents the top-level roadmap of the Convergent
Architecture in terms of the important stops along the recommended route to
building convergent IT systems. It shows the locations and milestones along the
road of IT architecture as well as their orientation with respect to each other. This
is the "big picture" of the Convergent Architecture, which will significantly simplify
and expedite the entire IT endeavor, no matter how extensive that endeavor may
be. Its primary objective is to begin simple and stay as simple as possible,
ruthlessly abrogating unnecessary complexity at every step along the way.

Since the milestones of the Convergent Architecture are not necessarily everyday
landmarks that we all know and understand—like highways, mountains, and
lakes—the roadmap also must explain its own particular landmarks and elements
of geography—the highways, mountains, and lakes of IT architecture. Thus, along
with the roadmap, this chapter also presents the high-level anatomy of the
Convergent Architecture in terms of its significant parts and the important function
of each part in the overall organism. This anatomy lesson began in the preceding
chapter, where the significant features of any IT-architectural style were explained.
The four features of an IT-architectural style are clearly visible in the Convergent
Architecture. However, they now take on additional character, the character of this
particular style.

After introducing the roadmap and anatomy here, the remaining chapters of this
book take us on a journey through the Convergent Architecture, according to the
roadmap, and present a detailed map at each stop along the road to building
convergent IT systems.

[1]I am not alone in this point of view. See Lewis (1999), for example.

The Anatomy of the Convergent Architecture

Figure 2.1 shows the combined elements of structure, process, and tools that
make up the Convergent Architecture. This is both its anatomy and the top-level
roadmap. As with any roadmap, the orientation of its elements is significant.
Layers of abstraction run from top to bottom and left to right. In other words, it
should first be read from top to bottom and then from left to right. The top two
layers represent the models of the style and indicate their long-term influence on
the lower layers, which represent tool and technology categories. The time
perspective flows from left to right and shows the relationship between
development process flow, tool modules, and technologies in any given project.

Convergent Architecture Chapter 2: The Convergent Architecture Roadmap

-48-

Figure 2.1: Roadmap and anatomy of the Convergent Architecture.

The layers of the Convergent Architecture and their correspondence to the four
features of an IT-architectural style are

1. The Convergent Architecture metamodel. This layer fulfills the role
of the architectural metamodel, as defined in Chapter 1.

2. The development model. This layer fulfills the role of the full-cycle
development model, as defined in Chapter 1.

3. The architectural IDE and its associated reusable assets. These
two layers fulfill the role of the full-coverage tool suite, as defined in
Chapter 1.

4. The technology projections. This layer fulfills the role of the formal
technology projections, as defined in Chapter 1.

Each of these layers is introduced in the following sections before being covered in
detail in a subsequent chapter.

The Convergent Architecture Metamodel

The Convergent Architecture metamodel defines the long-term vision and
fundamental design principles on which we base our design decisions. In summary,
it comprises the following elements:

 The three pillars of holistic architecture. The intimately related
themes of project design, business design, and system design are
addressed to provide adequate coverage of the areas critical to an IT
organization and its many interrelated projects. The project design
pillar refers to how we set up, coordinate, and run the IT organization,
its projects as well as its development workflow. It sets the stage for
both effective business and system design. The business design pillar
refers to the techniques and tools required to refine the business

Convergent Architecture Chapter 2: The Convergent Architecture Roadmap

-49-

strategy and to represent it in a form that can be understood widely
and mapped efficiently to an IT system. The system design pillar then
indicates how we get from the business design to an IT system that
optimally supports the business.

 Convergence and Convergent Engineering. Dr. David A. Taylor
(Taylor 1995) formulated convergence in the context of IT systems in
his introduction to Convergent Engineering. Convergent Engineering
demonstrates how business and IT models can be united into one,
simplifying model to resolve many of today's most complex operational
and business-IT problems. It also recognizes the concept of integrated
modeling and the proper use of object-oriented technology as critical
factors for lasting improvement.

 The machine shop metaphor. Picture a well-run machine shop or
workshop setting in any mature industry, and compare this picture with
the settings of contemporary software development. It is clear that
most, if not all, software settings allow significant room for
improvement. The Convergent Architecture strives to achieve the level
of a well-run machine shop by creating a comparable software shop. In
contrast to a consultant arriving at a project with some ideas about
how one could possibly begin building a software shop, the convergent
architect is better prepared. He or she starts with a working, tried, and
tested software shop that covers the whole process from conception to
finishing, analogous to a well-organized machine shop.

 Reduced Abstraction Set Computing (RASC). Based on years of
empirical research, IT architects have been able to identify a reduced
set of design elements, or design abstractions, to significantly simplify
many aspects of design and the design process. This improvement is
analogous to the discovery of Reduced Instruction Set Computing
(RISC) in computer hardware design, which was recognized as a
desirable alternative to Complex Instruction Set Computing (CISC) in
most situations. RASC constitutes a high-level language and lexicon
that can be shared by both business and IT designers to achieve
convergence in IT systems. The Convergent Architecture recognizes six
significant RASC abstractions, from which it derives its family of
components, the convergent components.

 Conceptual isomorphism. If a concept can be learned once and
applied similarly in many situations, then we speak of conceptual
isomorphism. The concepts of the Convergent Architecture are targeted
for use across many domains. They resolve general problems at a
general level instead of repeatedly solving the same problem differently
at the level of specific systems. The Convergent Architecture can be
used equally and with the same identifiable concepts across the diverse
organizations of a bank, an automobile manufacturer, and a
government agency, for example. A high level of conceptual
isomorphism increases the understanding of models, tools, and
systems across domains, simplifying communication while also reducing
learning curves. Widely usable design patterns often are good
examples of conceptual isomorphism.

 Component metamorphosis. There are few physical or material
constraints to developing software systems. They are indeed "soft" in

Convergent Architecture Chapter 2: The Convergent Architecture Roadmap

-50-

that we can conceivably manipulate and grow our designs any way we
want. The principle of component metamorphosis invokes an
intentional analogy with the metamorphosis of a butterfly. Instead of
developing software systems as done today, in radical heaves of
translation and reformulation of information, they can be evolved
through steady stages of information enhancement and growth,
comparable with the metamorphosis of a butterfly. It required a
concerted effort in the Convergent Architecture to create structures,
processes, and tools to enable component metamorphosis.

A detailed description of the Convergent Architecture metamodel is presented in
Chapter 3.

The Development Model

The Convergent Architecture's development model formulates the principles of its
architectural metamodel in terms of specific design structures, a development
organization, and a development process. It distinguishes the following three
interacting models:

 Convergent component metamodel. Convergent components are
the most important structural vehicle for the principles of the
Convergent Architecture. They realize these principles in terms of
concrete component structures, behavior, and relationships. The
metamodel defines technology-nonspecific concepts for organizations,
process and resource components, utility components, accessor
components (system-interface accessors, user-interface accessors),
assembly components, and sentinels. It also organizes these
components into architectural layers, specifies their mapping to
technology and runtime systems, and defines their specific
development process and tool support.

 The IT-organization model. This model defines a template IT
organization in terms of the organizational structure, roles, and
responsibilities required for effective support and management of the
entire IT life cycle. It defines the canonical project organization and
project team as well as organizations for IT architecture, development
support, software development, and operational systems.

 The development-process model. Based on concepts from several
professional frameworks for software development, the Convergent
Architecture defines a specifically tailored approach, or instance,
according the Rational Unified Process, known as RUP (Kruchten 1998),
and the Object-Oriented Process Environment and Notation, known as
OPEN (Graham 1997). The development-process model focuses on
highly specific coverage of the core development workflow as well as on
critical aspects of the supporting workflows according to the RUP.

 A detailed description of these three interacting models is presented in
Chapters 4, 5, and 6, respectively.

To simplify orientation from this point on, Figure 2.2 paraphrases the relationships
between the three models outlined in this section, as well as their relationship to

Convergent Architecture Chapter 2: The Convergent Architecture Roadmap

-51-

the remaining two layers, the architectural IDE and the technology projections,
which are covered in the next two sections.

Figure 2.2: The development model and the layers below.

The Full-Coverage Tool Suite (Architectural IDE)

The full-coverage tool suite is an integral part of the Convergent Architecture. It is
at the level of a preconfigured "machine shop" that has been designed specifically
to meet the requirements of the architecture. The tightly integrated tools and
automated assistants support immediate and effective construction of architecture-
conform IT systems. We call this comprehensive approach to high-level
architectural tools an IT-architectural IDE.[2]

As emphasized in Chapter 1, the definition of the IT-architectural IDE must be part
of the IT-architectural style. Thus, the Convergent Architecture specifies the
modules of its own IT-architectural IDE. However, it does not specify who should
provide the IT-architectural IDE or any one of its modules. To provide the reader
with pragmatic, hands-on examples, a concrete IT-architectural IDE is used in this
book, the ArcStyler (iO 2001). This IT-architectural IDE embeds the well-known
modeling tool, Rational Rose (Rational 2001), as one of its central modules.
Although the ArcStyler was developed to support architecture-driven development
in general, it provides explicit support for the Convergent Architecture style.

A central aspect of the IT-architectural IDE is its support for mapping design
models to available technologies. We call this mapping the technology projection,
which is covered in its own section in the following. The Convergent Architecture
leverages J2EE/EJB standards and J2EE-compliant application servers as its default
technology projection. To properly illustrate the various levels of design and
implementation independence provided by the IT-architectural IDE, two different
J2EE application servers will be used with the ArcStyler in several examples in this
book. The J2EE/EJB application servers used for the examples are those from

TE
AM
FL
Y

Team-Fly®

Convergent Architecture Chapter 2: The Convergent Architecture Roadmap

-52-

Borland (Borland 2001) and BEA Systems (BEA 2001). However, other J2EE/EJB-
compliant application servers easily could have been used in their place.

In the Convergent Architecture, the IT-architectural IDE is arranged into five major
modules, as shown in Figure 2.3. These modules are not just tool descriptions.
More important, they are used by the Convergent Architecture to simplify
understanding and application of its development style. Each development
technique is presented pragmatically in the following in conjunction with its specific
tool support:

Figure 2.3: The modules of the IT-architectural IDE.

 Convergent Business Object Modeler (C-BOM). This module assists
both the IT designer and the business-domain expert in their joint task
of requirements analysis and elaboration of the business structure and
dynamics. It provides visual modeling assistance to help identify and
document a convergent system using the RASC components described
previously. It does this using the proven techniques of responsibility-
driven design (RDD) and class responsibility cards (CRC), as prescribed
by convergent engineering (Taylor 1995) and OPEN (Graham 1997).
Cross-functional teams use this module during the highly collaborative
task of modeling, documenting, and testing the business structure and
business dynamics. This task also leverages analysis by design (ABD)
and dynamic walk-through/run-through techniques to verify model
completeness and quality, as described by convergent engineering.
Run-through results are recorded both as formal state transition tables
(STTs) and as a more intuitive graphical form. The graphical
representation provides visual documentation, tracking, and playback.

Convergent Architecture Chapter 2: The Convergent Architecture Roadmap

-53-

The rules of the modeling style are used to automatically verify and
report on the model's integrity and completeness in both structural and
dynamic aspects at any time. These reports, based on verified models,
serve as design signoff documents. They also include test cases in the
form of STTs and the visual scenarios documenting all run-through
paths through the convergent business system. The results of the
business modeling session are stored in a repository based on the
standard Unified Modeling Language (UML) metamodel and the
eXtensible Markup Language (XML). This repository is used in a
federated manner by all other modules of the IT-architectural IDE to
guarantee the translation-free, loss-less enrichment of design
information according to the principle of component metamorphosis.

 Convergent Pattern Refinement Assistant (C-RAS). This module
picks up the results of the C-BOM and helps a designer graphically
evolve the business model into a more detailed, more technically
precise model representation in UML. This task proceeds in a structured
manner according to the principle of convergent engineering. This is
achieved by using refinement patterns based on those developed by
the OPEN Consortium (Henderson-Sellers 1998), which are employed
to guide the designer and to check the integrity of the refinement. With
the visual support provided by this tool, the CRC component
representations from the business model are mapped to UML
component representations without losing track of their origin and
without losing the existing information on the business components:
The information is enhanced and refined, not translated or replaced. In
the spirit of assisted modeling, much of the UML refinement is handled
automatically by the tool itself according to the patterns and UML
modeling style defined by the Convergent Architecture. For example,
the projection to a standard J2EE/EJB component model starts here.
The UML model is elaborated automatically into a J2EE/EJB-compliant
design using reasonable defaults. The designer can influence these
defaults, but the tool suggests a well-formed standard structure for the
designer to build on or tune in the subsequent stages of refinement.
Once again, all results are stored in the federated UML repository.

 Convergent UML Refinement Assistant (C-REF). This module reads
the results of the C-RAS and now presents the convergent component
model at the level of an advanced UML modeler for further enrichment
and tuning of the design. This is the point where system interaction and
access, whether via Internet[3] or other channels, and interaction with
external systems, whether internal or via Internet,[4] is elaborated in
detail using the standard UML. This tool provides several intelligent
architecture assistants during this phase to further preserve
convergence and model integrity and to ensure technological feasibility
of the design. The first assistant checks at any time whether the
detailed model is complete and well formed according to the UML,
J2EE/EJB, and Java standards. Another assistant helps the designer
proceed according to the specific modeling style of the architecture by
providing specialized wizards, dialogs, views, and diagrams. A third
assistant helps generate UML models for default user-access and test
components (which we call accessors), based on the existing business-
component model. This allows the designer to model and reuse
complex Internet access and interaction logic in UML. A fourth assistant

Convergent Architecture Chapter 2: The Convergent Architecture Roadmap

-54-

helps the user configure a particular technology projection and its
runtime environment. Based on this configuration, the assistant then
checks the model at any time for its technological feasibility. This
verification step is analogous to a compiler, except it is working at the
level of a UML model. Based on the capabilities and constraints of the
configured technology projection, the assistant points out which
aspects of the model cannot be mapped effectively to the selected
implementation technology. With this just-in-time feedback, the
modeler can better maintain architectural integrity and ensure the
quality of the subsequent system generation.

 Convergent Translative Generator (C-GEN). This module reads the
UML model in parts or in its entirety from the C-REF tool and generates
the complete component infrastructure, including the environment for
configuration, construction, and deployment of the convergent system.
The generator translates the UML model to the particular infrastructure
while preserving convergence. To do this, it uses transformation scripts,
code-generation templates (for example, for Java, HTML, J2EE/EJB,
XML, or a Java-IDE), technology capability tables (for example, for a
J2EE/EJB application server), and other information. All transformation
instructions belonging to a particular technology projection are
encapsulated in a so-called generator cartridge, which can be installed,
configured, and used as a unit by the developer. The generator
cartridge is referred to simply as a cartridge when used in this context.
There can be any number of cartridges, one for each particular
infrastructure. The C-GEN is oblivious of the specific content of the
cartridge. In addition, combinations of cartridges can be used in
concert to guarantee proper modularity and separation of concerns
between coexisting types of infrastructure, as explained with the C-BOB
module below. The source code and other artifacts generated by the
cartridge are of consistent, predetermined quality. The internals of the
artifacts generated (for example, source code, deployment
configuration, build configuration) can be modified at places deemed
appropriate by the IT-architectural style. The cartridge uses several
techniques to enable the controlled modification of generated artifacts.
These techniques are presented in detail in Chapter 7. However, it is
important to note here that the Convergent Architecture mandates
clean model-based, model-driven development. This means that all
artifacts that generated from the UML model can only be extended or
modified in a controlled manner—as defined by the architectural style.
This is an explicit enforcement of the model-driven development
approach. However, the rigor of this enforcement can be regulated
using the C-GEN-IDE (see the following) to modify the rules of the code
generation.

Not all aspects of a system can be represented reasonably in UML models or
derived and generated from UML models. These aspects must be developed at the
source-code level. To do this, the IT-architectural IDE leverages one of the several
programming IDEs available on the market. The programming IDE may be used to
refine, compile, and debug artifacts generated by the C-GEN module. These
artifacts include Java programs, configuration files, the build environment, test
infrastructure, and deployment information. During the generation process, the
cartridge clearly demarks and annotates the areas where additions can or should

Convergent Architecture Chapter 2: The Convergent Architecture Roadmap

-55-

be made in the Java IDE. This helps the developer make rapid additions while
maintaining structural integrity and synchronization with the UML models. In
addition, the cartridge generates the artifacts required by the Java IDE to load,
build, deploy, and test the system in the context of a specific runtime
infrastructure. This includes default test code to permit evolutionary modification
and testing of the system.

 Convergent Generator IDE (C-GEN-IDE). This IDE is the visual
development environment for a generator cartridge. The development
of a cartridge can be regarded as metaprogramming because the
scripts developed here drive the translative generation of many other
programs. The C-GEN-IDE is required only when a developer needs to
extend or adapt a cartridge. In this case, the cartridge is developed
visually, tested, traced, and debugged in a similar fashion to well-
known programming IDEs for C++ or Java. The C-GEN-IDE is used, for
example, to modify the HTML- and J2EE-generation templates in order
to produce a different look and feel in compliance with a particular Web
site branding or a corporate identity. Using the C-GEN-IDE, the chief
architect and lead designers of large, multiteam IT organizations have
a tool to tailor and adapt the IT-architectural style in a well-defined
place and form. This helps guarantee a consistent level of well-
documented quality and architectural integrity across all projects.

 Convergent Implement, Deploy, and Test Environment (C-IX).
The models of the Convergent Architecture require that model-based
development also cover the areas of user interaction and access to and
from external systems. This is achieved in part in the C-REF module, as
described earlier, where the appropriate modeling capabilities and
assisted modeling style are provided. In addition, the UML models must
be mappable to a stable deployment infrastructure to enable consistent
generation, deployment, and testing of high-performance
implementations. This infrastructure is provided by the accessor
cartridge, which complements the modeling style by furnishing a stable,
reusable framework in addition to its technology projection. For
example, the accessor cartridge for J2EE provides a stable deployment
and test infrastructure based on standards such as JSP, servlets, and
Web archives. The framework complements these J2EE standards in
areas required to enable effective model-based development in UML
but not yet standardized in J2EE. It also provides a higher level of
abstraction that increases model expressiveness while guaranteeing a
transparent migration to relevant standards should they emerge.

A more detailed description of the IT-architectural IDE is presented in Chapter 7.

The Technology Projections (J2EE/EJB)

A technology projection in the Convergent Architecture specifies how convergent
components and other modeled elements are mapped (projected) to standard
component frameworks and then to various implementation technologies. By
default, the Convergent Architecture recommends and specifically supports
technology projections to infrastructures based on J2EE/EJB standards. This book
covers the technology projections to standard J2EE/EJB infrastructures and uses
projections to existing application servers from BEA Systems (BEA 2001) and
Borland (Borland 2001) application servers in its examples.[5] However, several

Convergent Architecture Chapter 2: The Convergent Architecture Roadmap

-56-

other technology projections to non-J2EE technologies have been developed
already for the Convergent Architecture. These include projections to CORBA
(Visibroker, BEA WLE), OODB Systems (Versant enJin), and pure-Java RMI
frameworks.

There are two aspects to a technology projection:

1. Things that can be generated automatically, effectively, and with
reasonable effort

2. Things that cannot be generated automatically

Both of these must be addressed to maintain architectural integrity because
together they define the tangible results of the architecture.

The boundary between what can and cannot be generated reasonably often is
fuzzy and usually changes with time. However, both aspects invariably exist in
real-world projects. There will never be a way to automate everything because
once we have automated one thing, we attack the next challenge, which we
usually cannot automate immediately. In other words, our insatiable appetite for
progress always keeps us out in front of the moving automation boundary. In
addition, some things are not worth automating at all, namely, unique,
nonrepetitive instances. For example, a complex adapter to a legacy system
invariably must be written or tuned by hand using all kinds of proprietary
technology. However, the component that cleanly encapsulates this adapter from
the perspective of the architecture may be generated automatically from a UML
model. Since the adapter is completely unique, it is not worth developing an
automated technology projection for the special case.

In the Convergent Architecture, the design integrity of the automatically generated
aspects is handled by the generator cartridge, which not only automates the
management of technology, but also documents how the technology is managed.
The concepts and workings of a generator cartridge were outlined in the preceding
section and are detailed in Chapters 4, 7, and the bonus chapter on the Web site.
The integrity of parts that cannot be generated automatically is addressed by so-
called sentinels. A sentinel complements the generator cartridges by specifying the
proper use of the technologies that are not managed explicitly by automatic
generation. A sentinel is a document or some other structure in which the architect
designates how a particular technology is to be used from the perspective of the
architectural style. This is the only way to keep an IT landscape clean as a whole.
It is one of the best investments against software entropy. Sentinel documents, or
sentinels, are also important because they tell developers what is in bounds and
what is out of bounds from the perspective of the architecture. They draw a
boundary to more clearly delimit what is good and bad in terms of architectural
integrity.

For example, large organizations usually want to integrate many packaged
systems, such as Lotus Notes or Microsoft Exchange, into the overall system
landscape. In such a situation, the architect[6] writes a sentinel defining which
interfaces and features of Lotus Notes can be used in the company's software, as
well as any constraints pertaining to their use. If this is not done, then parts of

Convergent Architecture Chapter 2: The Convergent Architecture Roadmap

-57-

Lotus Notes' infrastructure will creep unnoticed and unhindered into the IT
landscape, causing a complex, uncontrolled intermingling of the organization's
systems with the external technology and design philosophy of Lotus Notes. Once
this happens, the organization's IT-architectural style has been polluted: Creeping
entropy has begun to take its toll. I call this process creeping dilution (or pollution)
of the architecture. Once it starts, the company should not wonder why both IT
complexity and the number of unpleasant surprises steadily increase. If a sentinel
were in place, anybody could see where and how the Lotus Notes' infrastructure is
used or should be used in a controlled, organized manner from the perspective of
the architecture. Metaphorically speaking, the sentinel heads software entropy off
at the drawbridge. It is an important measure taken by the architecture to guard
itself from intruders. More details on sentinels will be provided in later chapters.
The technology projection (Chapter 4 and the bonus chapter on the Web site)
simplifies risk mitigation by defining three distinct categories of sentinel. They are
used to communicate and manage the long-term risks of change and coupling
related to the use of externally developed technology. Externally developed
technology refers to any design or implementation that has occurred outside the
context of the IT-architectural style. The problem with externally developed
technology is that its design, its implementation, and its life cycle are not
controlled by the architecture, but it still must be managed effectively by the
architecture. Defining the high-value, low-risk use of externally developed
technology within an organization is key to achieving overall high-returns from
technology. The following three categories of sentinels classify external
technologies in terms of their potential for risk from the perspective of the
architecture:

 Ubiquitous technologies. These are the technologies that are used
widely to implement and interface the convergent components (see
Chapter 4) across an entire IT landscape. These technologies include
the corporate IT infrastructure down to its lowest level. Examples here
begin with the networking infrastructure, computer operating systems
that underlie all installed software, but also include other ubiquitous
technologies, such as the Java Development Kit, XML exchange formats,
and the myriad technologies bundled with or encapsulated by J2EE/EJB
application servers (which includes databases). These sentinels ensure
that the automated aspects of the architectural style also define how
they use and remain in sync with the rest of the IT environment.

 CC-encapsulated technologies. These are technologies that fall
outside the ubiquitous technologies category. As such, they will always
be cleanly encapsulated within convergent components. Such
technologies are, for example, special communication middleware to
access packaged applications and legacy systems, special B2B file and
exchange formats, high-security mechanisms, or hardware interfaces.
These sentinels define the architecture-conform use of the technologies
they encapsulate.

 Peripheral tools. The Convergent Architecture specifies the tools that
directly influence the critical development workflows (see Chapter 6).
However, other tools and their underlying technologies exist that
influence IT development and operations indirectly (or peripherally).
These tools still have an impact on the effectiveness and quality of the
IT landscape as a whole and must be addressed by a holistic

Convergent Architecture Chapter 2: The Convergent Architecture Roadmap

-58-

architecture. Examples of peripheral tools include e-mail systems, text-
processing tools, backup systems, and virus checkers. These sentinels
ensure that no tool is introduced into an organization without
addressing its long-term, full-cycle effect from the IT perspective.

These sentinel categories are used by the architecture organization (see Chapter 5)
to mitigate risks due to external technologies (both new and old) that cannot be
addressed explicitly in advance by the architectural style. In the interest of holistic
architecture, the style specifies how they will be handled appropriately in the given
instance using sentinels. The IT organization now has a means to ensure uniformly
clean, high-return use of technologies across its entire IT landscape.

[2]IDE is an acronym for integrated development environment, made popular in the
IT field by mainstream programming IDEs. IT-architectural IDE may be abbreviated
to architectural IDE when the IT context is clear.

[3]Often referred to as business-to-customer (B2C) interaction.

[4]Often referred to as enterprise application integration (EAI) and business-to-
business (B2B) interaction, respectively.

[5]See the Convergent Architecture Web site, www.ConvergentArchitecture.com, for
projections to further J2EE/EJB servers as well as to other implementation
frameworks.

[6]As explained later in this book, I call a person who is effectively fulfilling the role of
architect according to the Convergent Architecture a convergent architect.

The Operational Environment

Successful architecture in any field pragmatically must target existing operational
environments. The architecture should enable an organization to make low-risk
evolutionary changes in its operational environment instead of high-risk radical
modifications. In addition, it must permit an organization to leverage reliable, cost-
effective operating technology. This means rigorously avoiding the temptation of
trends, marketing illusions, or wishful thinking at all times. The Convergent
Architecture defines an operational environment that meets these criteria. It
promotes the move to a standard-based environment with Internet-centric
component technology. However, first and foremost, it shows how existing
systems and external providers can be leveraged in a noninvasive fashion to
become part of a convergent system. Figure 2.4 summarizes how the Convergent
Architecture covers all the bases of enterprise IT integration in the operational
environment. It is deceivingly simple. However, as described below, the
convergent components in their respective roles meet all the requirements. Such
simplicity is one of the major benefits of working out the IT-architectural style first,
before diving into individual projects.

Convergent Architecture Chapter 2: The Convergent Architecture Roadmap

-59-

Figure 2.4: The operational environment.

The elements in the figure represent those found in any IT infrastructure. Some
organizations will have more of one element than another, of course. At the far left
of the figure are the existing systems, packaged systems, and external Internet
systems, including Internet marketplaces and application service providers (ASPs).
The center of the figure shows the convergent components contained by a
J2EE/EJB container.[7] At the right are examples of diverse user access channels.
All elements are shown working together to form a single convergent system. A
convergent system is defined as any operational system based on the Convergent
Architecture.

Moving from left to right, the figure indicates that external systems, whether
Internet or other external systems, are embraced as part of the convergent
system via the system-interface accessors (SI-accessors). The SI-accessors are
components that cleanly encapsulate the special interaction requirements of
external systems. They are model-driven, which means that they are modeled in
UML and generated in part or in whole from the model. The SI-accessors are
within the architectural boundary. This boundary, indicated by the large rectangle
in the figure, delimits the elements the architecture has under its design control
from elements it cannot influence directly—the externally developed technology, as
described earlier. The architecture must interface and adapt cleanly to the external
systems to preserve its own internal integrity. This is achieved with the SI-
accessors. The architecture-external side of the SI-accessors localizes and defines
the interaction with external systems, whereas the architecture-internal side
provides the components of the convergent system with common, well-formed
structural and behavioral characteristics. This allows all other components within
the architecture to be modeled and generated uniformly to leverage external
systems without knowing the particular idiosyncrasies of those external systems. It
allows existing systems to be integrated quickly as part of the overall convergent
system without having to first redesign such systems according to the Convergent
Architecture. For example, packaged applications for finance and administration
(F&A), enterprise resource planning (ERP), production planning systems (PPS), or
other modules from, for example, the company SAP can each be leveraged fully by
convergent components via SI-accessors. This type of uniform system integration
is often referred to as enterprise application integration (EAI). However, the same
scheme applies for business-to-business (B2B) communications with systems on

Convergent Architecture Chapter 2: The Convergent Architecture Roadmap

-60-

the Internet. Internet banks, ASPs, Internet marketplaces, and exchanges each
become a model-driven SI-accessor that then can be used transparently by all
convergent components. In the Convergent Architecture, this type of integration
with Internet systems is simply a logical extension of EAI into the Internet, or
Internet EAI (i-EAI).

The entities labeled as organizations, processes, and resources in the center of the
figure represent elements of the organization's core business model. Directly below
them are the convergent components that directly represent the elements of the
business model within the IT system. These components use, on the one side, the
SI-accessors to interact with the external systems and, on the other side, the so-
called user-interface accessors (UI-accessors) to interact with humans. This
system-to-human interaction aspect is shown to the right of the figure.
In addition to the classic user interfaces in local area networks, the interaction with
humans via diverse Internet communication channels, such as Web browsers and
mobile assistants, has become very significant. This type of interaction is often
called multichannel business-to-client (B2C) interaction. Complicating the
multichannel aspect are the many look-and-feel technologies possible for each of
the possible communication channels. To communicate with any given client, there
may be several different look-and-feel technologies, such as Hypertext Markup
Language (HTML), Wireless Markup Language (WML), and XML/Swing dialects, just
to name a few. To be successful in the Internet Age, convergent systems will have
to flexibly handle all these forms of human interaction as well as new, currently
unknown forms of interaction in the future. To achieve this, the Convergent
Architecture introduces UI-accessors and UI-representers. The design and
mechanisms of UI-accessors are congruous with the design and mechanisms of the
SI-accessors. In fact, they are identical in almost every aspect, which further
simplifies the architecture. The only significant difference is the requirement for
multiple look-and-feel technologies when interacting with humans. This difference
is cleanly localized by the architecture in the user-interface representers (UI-
representers) shown at the right in the figure, which are also model-driven
components. As shown in the figure, a UI-accessor may interact with human users
via one or more UI-representers. Both UI-accessors and UI-representers are
present in the design model. This enables a designer to model the user-interaction
dynamics and structure, including the interaction of the user interface with
business components, and then to generate the end-to-end infrastructure from the
model. Of equal significance is the documentation and reusability of the UI-
accessor and UI-representer components provided by the model.

As indicated in the figure, all convergent components, including the accessors, are
physically located in a J2EE/EJB environment and can access external systems
using the best-available technology for the situation at hand. The UI-representers
run wherever the particular look-and-feel technology requires this.

[7]Or a J2EE/EJB-type environment, such as a closely related CORBA components
server. Mapping alternatives to other server infrastructures are discussed in Chapter
7 and in the Web site chapter.

Convergent Architecture Chapter 2: The Convergent Architecture Roadmap

-61-

Summarizing the Cumulative Improvements

The final task in creating the roadmap is to provide a "big picture" summarizing
how and where major improvements can be harvested based on the Convergent
Architecture. This interim summary of benefits is important for several reasons.
First, the roadmap will not be used unless it is worth the trip. Second, although
many experienced developers and IT project managers will understand the
benefits without this summary, many of the benefits are not obvious at first glance.
Many of them are cumulative, with the highest returns emerging from the holistic
combination of elements over time: The music is often in the concert, not the
individual instruments. Third, non-IT managers and skimming readers will find this
digest of the highlights very useful.

Table 2.1 provides a top-10-style overview of cumulative improvements observed
in different instances of the Convergent Architecture. The numbers are
conservative. Although percentages are provided to indicate the time saved while
simultaneously producing higher quality, there is no intent to infer a high level of
mathematical precision. The increases in quality are more important than the
increase in speed: Building poor systems faster cannot be our goal. The estimates
are averages based on several years of consulting experience using the concepts in
various organizations. There are neutral sources outside the current users of the
Convergent Architecture who also have endorsed the advantages slated here.
However, the main objective of this section is to explain briefly and justify how
these slated improvements are achieved, based on what you have already read in
this chapter.

Table 2.1: Overview of Cumulative Improvements

AREA

TIME
REDUCTION,
~%

QUALITY
INCREASE[a]

Business and requirements modeling 20% ++

Design evolution and UML modeling 30% +

Web (B2C) and system (B2B) accessor
development

50% ++

Implement, build, deploy cycle 60% ++

Testing 50% +

Development tool environment 70% ++

Documentation 60% ++

Runtime environment 60% +

Project management and development
process

50% +

[a]+ = significant.

The area of business and requirements modeling is concerned primarily with
structuring the way an organization can and should operate in the future. The

TE
AM
FL
Y

Team-Fly®

Convergent Architecture Chapter 2: The Convergent Architecture Roadmap

-62-

principal challenge at this level is to work with a group of non-IT-domain experts
to unambiguously formulate the structures and processes of a business. To be
successful, the business clients must understand the requirements and the model
at this level. Modeling with the RASC organizations, processes, and resources
using the CRC technique is so intuitive to non-IT-domain experts that they
immediately feel comfortable with this form of refining and structuring their
requirements. They can participate actively in the responsibility-driven design
sessions; they become codesigners of their convergent system. The walk-
through/run-through technique is a simple and fun way to debug and verify the
integrity of business logic before time and effort are wasted refining ambiguous,
incomplete business requirements.

The resulting CRC structure and dynamic scenarios document complex business
situations using simple visual techniques almost anybody can understand
immediately. Due to its universal understandability and high-fidelity representation,
it is much superior as a project signoff document than traditional textual
specifications. Because business-IT convergence is preserved in the subsequent
development steps, this model remains valuable as the high-level documentation
and specification of the IT system. Due to the highly human-interactive nature of
business and requirements modeling, the time savings resulting from the use of
the architecture and its tools, while still significant, is less here than the savings in
subsequent development steps. However, the concomitant increase in quality is
more significant than the time saved. This is so because many projects fail
completely because of problems in business and requirements modeling. This
emphasizes the conservative nature of the figures in the table.

The subsequent area of design evolution and UML modeling concerns the process
of refining a business model into a convergent component model. In contemporary
system development, models are converted from one to the other during the
process of design. These conversion steps subsequently lose track of the original
business model from which they were derived, if a business model even existed in
the first place. In the Convergent Architecture, the sequence of model conversions
is replaced by the evolution of a single model: The components in the business
model are the components in the resulting system. The refinement of the model
can be tracked visibly throughout the development process. The developer can
move freely between each level of the model in incremental refinement steps
instead of major, error-prone conversions. The model and its evolution remain
understandable. In addition, intelligent verifiers, debuggers, and assistants in the
IT-architectural IDE help a developer stay on the most direct, high-quality path
toward a convergent system. The specific application of patterns and standards,
such as J2EE/EJB, by the architecture allows the tools to automate many of the
error-prone and redundant tasks still handled by hand in traditional development
scenarios.

In most, if not all, development organizations, the area of Web and system
accessor development is still at the level of hand-made craftsmanship. This is not
only costly, but also produces proprietary, complex systems that few understand.
This type of hand-crafted access to a system is a far cry from model-driven
development. The Convergent Architecture improves this situation by promoting
the design and delivery of system access components to the same level of model-
driven development used to develop the business components of the system. The
development of both UI- and SI-accessors is part of the IT-architectural IDE in the

Convergent Architecture Chapter 2: The Convergent Architecture Roadmap

-63-

Convergent Architecture. The UML-based modeling of system access allows a
developer to visually represent, document, and reuse both the structural and
dynamic aspects of, for example, a B2C or B2B design. The interactions with the
convergent components are also part of the UML model, so code can be generated
for the end-to-end system, from the server-side business components to the user's
Web interface.

The steps in the implement, build, and deploy cycle traditionally have involved
extensive hand coding, even though many of these tasks are highly redundant and
repetitive. The tools traditionally used for each of these steps are extremely
generic and unaware of each other. As such, they are unable to assist each other.
In addition, these activities still take place at a relatively low, complex, and error-
prone level. For example, contemporary code design and implementation usually
are performed in a programming IDE. UML models are still used rarely as a
proactive structuring tool to guide subsequent code generation from the UML
model. This is where the mutual awareness of the development model and the IT-
architectural IDE in the Convergent Architecture provides extensive benefits. The
payoff is in terms of turnaround time, structural quality, and reduced coding effort
in all three steps of the frequently repeated implement, build, deploy cycle. The
translative generation from a verified UML model automatically produces major
portions of reliable program code, the build environment, and deployment artifacts.
Using the UML model as a basis provides reliable documentation and ensures the
structural quality of the implementation generated. Using the generator IDE, the
extent of generation from the UML model can be increased with time to further
reduce both the cycle time and the cycle quality. This also reduces the number of
programmers and testers required to produce a given result.

The task of testing always has been accompanied by an intensive effort in test
development. There are two ways to reduce the testing effort while increasing
quality. First, raise the quality of the code produced in the first place. Second,
simplify the definition and development of effective test instruments. The
Convergent Architecture addresses both these areas. The code generated is of
superior quality for two reasons. First, UML models are verified for their style
compliance and completeness in the C-REF module before being used for code
generation. Second, the generator itself repeatedly produces reliable results, much
faster and with fewer errors than a programmer. This is known as implicit quality
because the source of errors is removed transparently as a by-product of the
development process. Although reduced in magnitude, explicit testing is still
required. Such explicit tests are particularly important to verify that business logic
has been implemented accurately. This requires precise business test scenarios.
The definition of business test scenarios is an automatic result of the business-
modeling task in the Convergent Architecture. The C-BOM module generates both
graphical and tabular-state flowcharts from the recorded business run-throughs.
These can then be used to model and generate test accessors, leveraging once
again—this time in the area of test development—the advantages of model-driven
components and accessors mentioned earlier. The end result is not only less
testing overall, but also well-documented, higher-quality tests using specifications
produced automatically by the domain experts during the process of business
modeling.

An effective development tool environment is always required for successful
progress in IT projects. However, an adequate environment rarely exists at the
onset of a project. In addition, the intense effort to develop and integrate a mature

Convergent Architecture Chapter 2: The Convergent Architecture Roadmap

-64-

tool environment is chronically underestimated. There are ample accounts of
projects succumbing to what is known as "death by tools." This is the problem
addressed by the IT-architectural IDE in the Convergent Architecture. With it, the
tool coverage of the critical development path is completely stable before a project
starts. This also means that the project effort and risks can be better estimated
because it is clear how the project will proceed and how tools will support the
development.

Documentation always has been a burden for IT projects, often resulting in the
production of poor user documentation and little or no design documentation. The
model-centric, convergent approach of the Convergent Architecture alleviates this
burden by producing high-quality design documentation as a by-product of
development. The model-driven code generation ensures that the technical aspects
of the system are accurately documented and up-to-date at all times—
automatically, with no extra effort. This also increases the quality and usability of
the documentation. Due to the convergence of the business and technical models,
the same applies to documentation of the business model. The business model
documents the current business and its supporting system behavior. It is
automatically up-to-date and may be used as a basis for training literature and
handbooks.

The effort required to adapt development and tools to a particular runtime
environment traditionally is very high. A project often will spend much of its time
experimenting with the best way to leverage the selected runtime infrastructure,
for example, a particular application server. This lengthy trial-and-error process
results in a zigzag path of wasted programming effort, wasted modeling effort, and
project plan alterations. The generator cartridges alleviate this problem by defining
a place to reuse and cumulatively improve knowledge on the runtime environment
across projects. The cartridge packages the results of experiments done by others
and allows a developer to repeatedly produce effective mappings from UML models
to the particular infrastructure. Moreover, this infrastructure-specific knowledge is
used to check the UML models to avoid wasteful zigzagging during the modeling
phase. The generator IDE is then used to further tune or adapt the technology
projection, thus reducing the need to alter models and hand-written code.
The areas of project management and the implementation of a development
process are broad areas that always constitute an inexact science. However, much
of the effort and some of the inexactness are reduced by the development model
and, in particular, the IT-architectural IDE in the Convergent Architecture. First,
not only is the development process more specifically tuned; it also is supported
explicitly and automated by the IT-architectural IDE. Thus, the effort required to
implement and support the process is reduced. Second, tracking the project from
the project manager's perspective is more effective and more precise. The
modules of the IT-architectural IDE each present a window into the current status
of design evolution. The verifiers in these modules present just-in-time information
regarding the completion, integrity, and technological feasibility of the model. The
immediate generation of a complete system infrastructure including user access
aspects from a model allows the developer and the project manager to
continuously verify the state of the design at the most reliable feedback level
possible—the level of a deployed, running system.

Convergent Architecture Chapter 2: The Convergent Architecture Roadmap

-65-

Summary

This chapter presented the "big picture" and high-level roadmap of the Convergent
Architecture. It served as both an overview and a common reference frame for use
by any stakeholder in projects applying the architecture. It also covered the
anatomy of the architectural style, including the role of its parts, how they are
related, and how they support one another. It brought the concept of IT-
architectural style to life by summarizing how each of its four features is realized in
the Convergent Architecture.

Chapters 3 through 7 and the bonus chapter on the Web site follow the roadmap
presented in this chapter. Each chapter details a major part of the Convergent
Architecture, following the same order in which they were introduced in this
chapter. Chapter 8 is the place to go from here if you are anxious to first see a
hands-on tutorial example using the Convergent Architecture.

Convergent Architecture Chapter 3: The Convergent Architecture Metamodel

-66-

Chapter 3: The Convergent Architecture
Metamodel—The vision and principles of
the architecture

Overview

The Convergent Architecture metamodel defines the top-level vision, principles,
and rules by which decisions are made within the architectural style and its
instances. It constitutes a common reference frame of engineering and project-
management principles shared by all stakeholders of information technology (IT)
systems built according the Convergent Architecture. The general purpose and
positioning of this metamodel within any IT-architectural style were described in
Chapter 1. Chapter 2, then, presented its role in the top-level roadmap of the
Convergent Architecture and summarized its contents, which consist of the
following major themes:

 The three pillars of holistic architecture: project design, business design,
and system design

 Convergence and convergent engineering

 The machine shop metaphor

 Reduced abstraction set computing (RASC)

 Conceptual isomorphism

 Component metamorphosis

This chapter covers these themes in detail. It should be read to get a firm grasp on
the foundations of the Convergent Architecture. Architects, lead designers, and
project managers need to be familiar with these topics to properly apply this IT-
architectural style.

The Three Pillars of Holistic Architecture

It is obvious that every IT architecture has something to do with large-scale
system design. However, a holistic approach to IT architecture requires a broader
perspective. It also must address the critically important areas of project design
and business design. Project design says how projects are set up, organized,
managed, and coordinated. This goes beyond what typically is known as the
software development process. Business design specifies how a business strategy
is refined and represented to enable effective IT support of the business.
These three design areas-project design, business design, and system design—
play a complementary role in the effective development of modern IT systems (see
Figure 3.1). They are intimately related, considerably influencing each other in
many ways. If a development project starts without a well-prepared project design,
then it should be no surprise when the project slips due to coordination problems.
Similarly, if a system is developed without a proper business design, then it should
be no surprise if the resulting IT systems do not support the business adequately.
To neglect the intimate relationships between these three themes is to ignore

Convergent Architecture Chapter 3: The Convergent Architecture Metamodel

-67-

significant factors influencing large-scale system design. Neglecting any one of the
three throws the other two off balance. The significance of their mutual
reinforcement makes them the three pillars of holistic IT architecture.

Figure 3.1: The three pillars of a holistic architecture. IT-architecture is only
complete when it covers these three intimately related themes.

Many of the problems experienced by contemporary IT organizations can be
attributed to the fact that the areas concerning the design of a business and the
design of a project are handled in an ad-hoc manner. Attempting to design
complex IT systems without first designing an appropriate project organization, its
roles, and its processes is the best way to waste time and effort. Sadly, many IT
consultants do not possess clear project design concepts when they enter into an
engagement, leaving the crucial project design component up to the customer,
who often has little experience with modern IT development. In such cases,
system development takes place without a proper frame of work, often in an
unchanneled, chaotic manner, resulting in systems that reflect this chaos.

Even greater problems can occur when projects are set up using antiquated project
management methods having little to do with modern IT development. Software
development projects have unique requirements. Project management
organizations and techniques that still may be well-suited for traditional (non-IT-
centric) projects often will fail or be extremely inefficient when it comes to modern
software development. The application of inappropriate project management
principles to software design is the single most significant reason for the high
failure rate of software projects. Large companies and government organizations
with a long tradition of project management are the most susceptible to this
hazard. It is no coincidence that software projects in these large traditional
organizations are notorious for their ineffectiveness, and the resulting software is
notorious for its inadequacies.

Often, the only counterbalance to a completely inappropriate project design in
these organizations is their high tolerance of inefficiency and their extensive cash

Convergent Architecture Chapter 3: The Convergent Architecture Metamodel

-68-

reserves. In the past, these cash reserves have been accrued through traditional
product or service lines that had, at most, only a tangential dependency on IT
systems. These business units could make money independent of the quality of
their IT support. This situation is changing fast. Even the most resilient cash cows
in large companies and government agencies are becoming critically dependent on
IT. The cash cows are becoming the victims of the very IT inadequacy they
subsidized. The traditional tolerance of software-inept project design in these
organizations now has led to a vicious circle that already has begun to take its toll.

A similar situation exists in the area of business design. In the burgeoning
Information Age, software no longer just supports isolated parts of the business,
but the business in its entirety. Business strategies are no longer achievable
without intensive IT support. This means that business design is now essentially
synonymous with IT design. Business design and IT design can no longer be seen
as separate entities: Future business designs also will be, to a great extent, IT
designs. This evolution is reflected by the increasing significance of corporate
information officer (CIO) positions in large organizations in recent years. In fact,
many companies at the forefront of the Information Age have even abolished the
CIO position in favor of a general IT awareness among all employees. The entire
organization, starting with the chief executive officer (CEO), is IT-centric: Every
employee is actively aware of the central role IT plays in the business. It is obvious,
then, that a successful IT architecture for modern organizations clearly must
communicate how the business and its IT systems fit together as one consolidated
system. It must consciously address the intimate relationship between business
and system design. Once again, this is not the case in the great majority of today's
IT systems. The intimate relationship between the business and its systems has
not been a central theme in IT development.

Traditionally, IT development has focused on secluded operational problems of a
business, not on the business design itself. In fact, most organizations do not even
possess a business design, not to mention a visible mapping of the business design
to its commensurate IT support. Even worse, if you ask five coordinators in any
large organization to give you a consistent picture of how the business works, that
is, what its goals and priorities are and how things work together, you will get five
very different descriptions. Usually, none of these descriptions is consistent and
concise enough to design an IT system. Each of these persons has his or her
unique perspective of the way things should work. There is nothing fundamentally
wrong with this situation except for the fact that it is a terrible basis for creating
an effective IT system. If IT systems are to integrate the business, then there has
to be a consistent model of the business. There is no way to build an effective IT
system that caters to numerous, imprecise opinions of how the business should
work. This is why most contemporary IT systems are so woefully inadequate.
Someone must be in charge of consolidating the various cross-functional opinions
into one big picture, one consistent scheme that can be used to build a system
that supports all the units of an organization—the entire organization, not just
parts of it. Logically, one of the persons who must play a decisive role in creating
this big picture should be the IT architect, since he or she also must ensure the IT
component of the business model, which, as we have seen, cannot be developed
as an afterthought. They are intimately related. Thus, the IT architect must
possess powerful techniques and tools to assist in developing and evolving the big
picture of the business domain in conjunction with its supporting IT systems.

Convergent Architecture Chapter 3: The Convergent Architecture Metamodel

-69-

In the vast majority of cases, the act of business design as part of IT architecture
will lead to an overall increase in business quality. The simplifying conciseness
required by IT designs forces a business to get serious about defining and
representing how it operates. The resulting business model alone is an important
step toward improving business quality, regardless of the IT system. Above all, it
unambiguously communicates to everyone in the business how the business works.
The five business coordinators mentioned earlier now have one clear model instead
of five different models. If this business model has been developed as part of the
IT architecture, the corresponding IT aspects are now visible and positioned
correctly as an essential part of the business equation. A continuous, positive cycle
of change and feedback can now take place—first the business design, followed by
its IT support, followed by operational feedback, leading to adjustment of
parameters in the business equation. The IT systems have now become valuable
tools to represent and optimize the business instead of just being a troublesome
source of risk and cost. However, this cycle of continuous optimization cannot
begin until business design and system design take place within the context of
joint projects. Combining these themes into joint projects has the pleasant side
effect of removing the traditional impedance wall between business and IT
organizations. Here again, an appropriate project design is key to successfully
integrating business and system design.

Lastly, it is interesting to note the relationship between the theme of business
design and so-called standard or packaged software. Packaged software comprises
a partial, common-denominator business model to solve common, widespread
business problems. However, many organizations have been seduced into thinking
that their entire IT needs can be met adequately by using packaged software. This
is rarely the case in medium and large organizations. Usually, these organizations
must add value by providing unique products or services. At some point, these
products and services will require unique IT systems that must be either developed
from scratch or integrate packaged software in unique combinations. In this sense,
packaged software can be compared with the refrigerators or washing machines in
a modern household. These machines package services required by most
households. However, there is no packaged solution for the entire house. The
house must meet the particular needs of its builder. Custom integration work is
required to position and integrate the washing machine and refrigerator properly
into the house. The parts in between the machines—the rooms, the cabinetry, an
so on—must be custom-designed. Both an architect and an architecture are
required if the whole house is to be constructed effectively to meet the special
needs of the builder. Most businesses and their IT systems are orders of
magnitude more complex than a house, making professional architecture orders of
magnitude more important, above and beyond packaged solutions.

The following sections detail each of the three pillars of a holistic architecture. The
principles in each section are formulated as requirements because the charter of
the architectural style is to meet these requirements. These requirements are then
fulfilled in the subsequent layers of the Convergent Architecture. In addition, as
will be evident later in this chapter, the principles in the Convergent Architecture
metamodel influence each other. This is quite natural because requirements are
not necessarily unidirectional or independent.

Convergent Architecture Chapter 3: The Convergent Architecture Metamodel

-70-

Project Design

The project design theme is concerned with the optimal coordination of single and
parallel projects operating at various levels of an organization. It must address the
needs of consolidated business and system design.

From the perspective of project design, the architecture should do the following:

 Define the IT organization structure, roles, and responsibilities before
beginning IT projects.

 Define the development team structure, roles, and responsibilities.

 Define procedures for the setup, planning, organization, and
coordination of projects. In particular:

o Project conception and bootstrapping.
o The software development process in the context of an IT

organization, where multiple projects may exist in parallel.
o Project management, in particular project definition,

estimation, planning, coordination, and tracking.

 Provide tool and infrastructure support for the critical project workflow
and the most critical supporting areas.

Business Design

The business design theme is concerned with the consolidation and optimization of
the entire business in conjunction with consolidation and optimization of its
supporting IT systems.

From the perspective of business design, the architecture should do the following:

 Define the relationships between the business as a whole and its IT
organization.

 Show how the business model and IT model interact as parts of the
overall business equation and how to represent this to the various
stakeholders in combined business and system development.

 Show how to represent the business strategy in terms of a business
model, including its needs for flexibility and change.

 Define how IT models emerge from the business model without losing
track of the business model.

 Enable IT systems to be modeled and evolved through active
participation of business-domain experts and IT designers.

 Provide tool support for the activity of business design in close
conjunction with the design of its supporting IT system.

System Design

The system design theme is concerned with simplifying the development of
effective IT systems in the context of an entire organization.

Convergent Architecture Chapter 3: The Convergent Architecture Metamodel

-71-

From the perspective of system design, the architecture should do the following:

 Define the use of unambiguous structures and mechanisms covering
critical design areas such as design layers, components, human access,
system access, applications, and packages.

 Provide clear development guidelines and constraints to meet the
technical requirements of enterprise systems (for example, transactions,
persistence, security, scalability, availability, operations) using
available technology. In addition, it should be as specific as possible in
order to avoid complexity due to ambiguity and to replace fussy
alternatives with clear guidelines.

 Address subtle epiphenomena.[1]

 Provide tool and infrastructure support for the critical-project workflow
and the most critical supporting areas.

 Formulate the insuperable constraints of run-time and deployment
technologies and leverage this knowledge to provide highly feasible
design structures and mechanisms.

 Provide tool and infrastructure support for the activity of system design
in accordance with the project and business design themes: modeling,
documentation, automation, environment, and development flow.

[1]Epiphenomenon: A term coined by Douglas Hofstadter (Hofstadter 1979) denoting
emergent properties (Taylor 1997) of a system that cannot be attributed to a single
act or unitary feature within a system, but rather is a cumulative result of complex
interactions within a system. Adjectives used to explain software or team behavior,
such as performance, reliability, and usability, are usually epiphenomena.

Convergence and Convergent Engineering

In 1995, Dr. David A. Taylor coined the term convergent engineering to name the
vision and techniques he presented in his milestone book entitled, Business
Engineering with Object Technology. In his book, Dr. Taylor outlines in no
uncertain terms why IT system development as practiced today will no longer
succeed in the burgeoning Information Age. He then provides a solution to this
dilemma by clearly explaining the appropriate use of object technology (object-
oriented technology) to achieve a form of evolutionary business and system design
unattainable with traditional techniques. The central concept of convergent
engineering will be described briefly in the following sections. For greater detail, Dr.
Taylor's book should be consulted as the ultimate source of these concepts (Taylor,
1995).

Convergent engineering essentially is concerned with completing the paradigm
shift to object technology in an unadulterated manner and realizing its full
potential despite numerous distractions along the way. You may be surprised at
the power of object orientation exhibited in convergent engineering because it
goes beyond what is commonly in use today.

TE
AM
FL
Y

Team-Fly®

Convergent Architecture Chapter 3: The Convergent Architecture Metamodel

-72-

The essence of convergent engineering is the consolidation, or convergence, of
business and system design into a single harmonious whole. The critical reliance of
today's organizations on information technology requires us to think of them as a
single, intimately related system. The business cannot succeed without technology.
By the same token, technological innovation drives the capabilities of the business.
However, most contemporary organizations treat business strategy and its IT
support as two separate worlds. These worlds rarely communicate, and when they
do, they do so via obscure, poorly defined channels. This causes a continual
divergence between the worlds of business strategy and IT strategy. Divergence
means that it is not clear how IT really supports the business. The mapping
between the two is at best vague and in most cases essentially unknown. Normally,
divergence is synonymous with intractable system complexity. This leads to a
myriad of familiar problems, for example, IT systems that impede business change,
ad-hoc IT designs, and constant communication problems between an
organization's core business management and its IT departments.

Convergence is the simplest solution to these critical problems. It says that an
organization may represent both its business and its IT design with a common
model. This common model can be viewed from two perspectives, the business
perspective and the software perspective, as shown in Figure 3.2. The business
and IT stakeholders have two views of one common model. To achieve this,
convergent engineering applies the simplifying concepts of object-oriented design
equally to both business and IT design. Historically, object-oriented design has
been associated with simplifying the development of IT systems. This is an
injustice to the powerful concepts of object-oriented design, which are a means of
dealing with complexity in general and have no inherent connection with IT. Thus
object-oriented design serves equally well to simplify the development of business
models. Convergent engineering recognizes and leverages this strength to simplify
business models. The most significant simplification is achieved by having an
object-oriented business model, which can then be mapped easily to object
technology.

Figure 3.2: Converging business and IT models. Convergence = two perspectives of
one model.

To achieve convergence, the business is modeled incrementally using the concepts
of object-oriented design one critical piece at a time. The central objects used in
this process are organizations, processes, and resources. Since the resulting
business model leverages the concepts of object technology, it also can be used as
the software model. This convergence into a single model is maintained throughout

Convergent Architecture Chapter 3: The Convergent Architecture Metamodel

-73-

system development and even into the run-time system. This is achieved by using
IT components that directly represent the modeled business objects (that is,
business organizations, processes, and resources), as shown in Figure 3.3. A
system based on these concepts is called a convergent system.

Figure 3.3: The convergent component.

Contemporary business analysts often stress the benefits of "aligning the business
with technology." In doing this, they emphasize one of the many advantages of
convergence. Clearly, a convergent system aligns the business with technology in
that it keeps track of how business processes and organizations are supported by
the IT system. A change in a business process may be realized quickly in the
operational environment by changing the corresponding process representation in
the IT system. Another benefit is that the process of convergent engineering
improves communication between business managers and the IT department.
Since they refer to the same model, they develop a common understanding of
organizations, processes, and resources. This simplifies discussions regarding
changes in the business and commensurate changes in the IT system. In addition,
due to the common concepts and language used in both worlds, the IT department
can make considerable contributions to business optimization. Another advantage
is the reduction in development effort and risks. This is so because fewer
translation steps are required between the business concept and the IT system.
There is a visible correlation between business-domain design and technical design.
Projects no longer have to take the one-way street of translating business models
into technical models. These translation steps are often the greatest source of
error, cost, and risk in projects.

Despite its conceptual simplicity, convergence cannot be achieved overnight. This
is so because organizations and their systems are already entrenched in the
traditional problems. A rapid overhaul of the organization and its IT practice is not
practical. A long-term migration to convergence is the only pragmatic approach.
However, each small step along the road to convergence can bring measurable
benefits. For example, modern application and middleware vendors are moving
toward object-oriented, component-based systems. Thus, an architecture that
focuses on convergent engineering is the best way to prepare businesses and IT
departments to leverage new technologies as they become available in the
mainstream IT market.

Convergent Architecture Chapter 3: The Convergent Architecture Metamodel

-74-

Lastly, it is important to note that, like all ideal models, convergent engineering
may never be completely achievable in its purest form. This, however, does not
reduce its applicability or value as a basis for IT architecture. This point is
emphasized by the OPEN Group, which refers to convergent engineering as a basis
for its third-generation object-oriented development process, the OPEN process
(Graham, 1997).

In summary, convergent engineering is the cornerstone of simplification and the
key to resolving many of the pathologic problems suffered by IT organizations. It
drastically simplifies both business and software development by consolidating the
aspects they have in common. It correctly recognizes the object-oriented paradigm
as a universally applicable means of simplification. Consequently, the reader will
see me use object-oriented concepts in some unexpected places—everywhere from
business design, to project design, to system design. The ubiquitous use of object-
oriented concepts may look like the easy way out, and as a key simplification, it is.

The Machine Shop Metaphor

Effective IT development requires an operational environment to support highly
specialized techniques, templates, and tools to be used by teams of developers.
Sadly, most projects start without such an environment and often fail for this very
reason. The well-known concept of a machine shop exemplifies the environment
used in mature industries to build complex systems. When comparing the outset of
a typical IT project with the outset of a typical machine shop project, it is clear
that the IT field has a lot of catching up to do. The Convergent Architecture uses
the symbol of a machine shop to represent its target development environment. It
strives to provide IT projects with an operational development environment
commensurate with that of a well-run machine shop.

The metaphor of a machine shop is particularly applicable in the context of an IT-
architectural style. This is so because an effective machine shop is always
designed with particular types of products in mind. It is sensitive to the style of
systems being built and has been highly tuned to build such systems, for example,
motors, boats, or skis, but not all three at once. Thus, in the IT field, the
effectiveness of a machine shop can only be achieved realistically in the context of
an IT-architectural style where the style of system is also known. Like a machine
shop, the development process, tool modularity, design partitions, and skills
distribution all can be tuned to the specific requirements of the style. These
requirements are formulated in the architecture and development models of the
Convergent Architecture. The fact that these models are not project-specific
enables a style-effective shop to be built and tuned outside the limited context of a
particular project and to be reused by many projects. Just as in mature industries,
the shop can be in place and operational before a project begins, thus reducing
time, cost, and considerable uncertainty in the area of project estimation and
management.

The machine shop approach has other advantages. The IT architecture in all its
many facets will be best understood and applied most effectively in an operational
environment similar to a machine shop. In this environment, relatively abstract
concepts, such as the development guidelines, design patterns, and structures of
the architecture, can be experienced directly in conjunction with work cells and
tools supporting their proper application. The shop embodies the abstract forms of
architecture as tangible, operational forms in a working environment that can be

Convergent Architecture Chapter 3: The Convergent Architecture Metamodel

-75-

learned easily and applied effectively by a wide audience. Since the shop is tuned
for development according to a particular IT-architectural style, once a developer
has learned how the shop works, this knowledge can be reused in other projects or
to train other developers. In addition, each time the shop is used, important
feedback is gained that leads to consistent improvements in the quality of the shop
environment.

Most contemporary organizations are in dire need of the machine shop approach
for several other reasons. First, when a group of developers gets together at the
onset of a new project, experience shows that they have a hard time agreeing on a
common approach—to put it mildly. Second, even if they can agree, they are
usually not experienced in the complex area of tool design and integration at the
level of IT architecture. The endeavor to define the IT architecture and its
procedures and then to construct an effective development landscape all within the
context of a project is unrealistic. Such attempts have led to the demise of
countless projects. Third, experience shows that if this all takes place within the
framework of a single project, the resulting development environment will not be
well-suited to other projects. Lastly, once the project is completed, who will make
sure that the environment continues to evolve with modern concepts, technologies,
and tools? These points make it clear why mature industries always start critical
projects with a well-tested machine shop. Starting without a machine shop is
equivalent to experimenting: It almost guarantees that nothing will be built
effectively. Moreover, a newly conceived machine shop is not a whole lot better
because high-quality, effective work can only occur in a shop environment that has
been tuned across many project generations.

In summary, the effectiveness of IT projects can be increased significantly if they
begin with a well-tuned, style-specific development environment comparable with
machine shops found in mature industries.

Reduced Abstraction Set Computing (RASC)

The principle of reduced abstraction set computing (RASC) says that the core
abstractions of convergent engineering (that is, organizations, processes, and
resources) form the basic types with which we can model all business-domain
aspects of a convergent system regardless of the actual business domain. This also
includes technical businesses, such as manufacturing and government domains.
These three core abstractions can be mapped directly to available technology with
minimal translation loss. Two additional abstractions complement the core
abstractions to complete the RASC set. These are the accessors and the utility
components. Accessors address the access to and from human users and external
systems. Utility components denote the purely technical utilities of an IT
environment. The set of RASC abstractions is embodied by the convergent
components in the Convergent Architecture.

The RASC organizations, processes, and resources (OPRs) are the basic building
blocks in the convergent approach. The number of distinct building blocks, as well
as their type, is extremely important from the perspective of a designer. RASC
addresses this aspect of design by proposing a set of generally applicable
abstractions as the optimal set of building blocks for designing and developing
convergent systems. RASC says that there exists a certain set of building blocks,
the RASC set, that enables us to maximize the expressiveness of models while

Convergent Architecture Chapter 3: The Convergent Architecture Metamodel

-76-

keeping the models simple and easy to understand. More than this set of building
blocks would be "too many," which would lead to unnecessary complexity and
confusion. Fewer building blocks would be "too few," which would hinder adequate
expression. The RASC building blocks form a pattern language consisting of this
optimal set of abstractions. This set is used consistently in the Convergent
Architecture to express (model) and build all three pillars of a holistic IT-
architecture, not only the IT system. For example, from the perspective of
business design in the Convergent Architecture, the three OPR building blocks, that
is, the core abstractions of the RASC set, have been found to provide optimal
results: As shown later in this section, four abstractions turn out to be too many,
and two abstractions are too few.

The intended analogy with reduced instruction set computing (RISC) designs in the
hardware industry emphasizes the benefits of using a useful set of reduced
abstractions to deal with complexity successfully. The following statements from
"mips RISC Architecture" (Kane, 1988) bear witness to the similar problems faced
by both hardware and software designers and emphasize the benefits of what
Kane refers to as "a simplifying architecture":

 "The uniform instruction set is easier to use."

 "There is a closer correlation between instruction count and cycle count,
making it much easier to measure the true impact of code optimization
activities."

 "Programmers can have a higher confidence in hardware correctness."

 Similarly, by focusing on RASC, corresponding levels of simplicity and
design effectiveness can be achieved in the software world. Several
aspects contribute to the improvements. First, the small set of effective
abstractions form a simple, common language to improve the quality of
discussions and designs. Second, anybody and everybody can
understand this small set easily at the appropriate level. Third, this
small set of abstractions can be refined and tuned over time to produce
high-performance systems while still maintaining the simplicity of
models. In addition, just as with RISC, the tools used to develop and
maintain the systems can be more focused, more specific, and more
highly tuned while still remaining easy to understand. Lastly, the RASC
set enables a small set of canonical components, the convergent
components in the Convergent Architecture, to be introduced and
refined over time. From the designer's perspective, the components are
in many ways analogous to the concept of the canonical C++ class
proposed by Jim Coplien (1992) in his book, Advanced C++ Idioms.
The components simplify modeling, models as well as code style, while
enabling more effective automatic code generators. This all adds up to
reduced software entropy with increased design power and design
communication.

In addition to its analogy with RISC in the hardware industry, important evidence
of a RASC-type approach exists in the software industry. First of all, the RASC set
used in the Convergent Architecture builds on the three core business abstractions
proposed in 1995 by convergent engineering. These are the organization, the
process, and the resource abstractions. Convergent engineering recognized three
abstractions, not two and not four, to provide an optimal working set. These three

Convergent Architecture Chapter 3: The Convergent Architecture Metamodel

-77-

core abstractions and their basic relationships are shown in Figure 3.4. However,
Convergent engineering is not alone in selecting these three abstractions. The
respected Advanced Network System Architecture (ANSA) (Iggulden, 1994), the
predecessor and principal basis for ISO Open Distributed Processing (ODP)
standards, also recognized a universally optimal set consisting of three core
abstractions. It is interesting to note that both the ANSA/ODP architects, and Dr.
David A. Taylor arrived at a reduced abstraction set consisting of three core
abstractions independently of one another at approximately the same time.

Figure 3.4: Independent derivations of RASC (simultaneously on different sides of
the world).

Even more significant than the timing and number of these core abstractions is the
similarity of their types, their semantic similarity.[2] Not only did these experienced
designers arrive independently at the same number of abstractions (building
blocks) to achieve the optimum, but also the types of abstractions they defined as
optimum are essentially equivalent. The rigor, substance, and reasoning that lead
these two groups to the same result are evident in the respective sources, but the
results can be observed by comparing the two RASC sets. In Figure 3.4, the ANSA
agents clearly fulfill the same role as the convergent engineering organizations.
They manage the access and life cycle of activities (that is, processes) and
resources. The ANSA activities clearly correspond to convergent engineering
processes. The activities transform resources, whereas in convergent engineering,
it is said that the processes use, consume, and produce resources—essentially
identical. Resources are the intelligent units of work and value common even in
name to both models. The only real difference between the two sets is that
convergent engineering names its abstractions using common business
terminology and positions them in the context of convergent engineering, whereas
ANSA has chosen more technical terms, in particular the term agent, and has
positioned them in the context of ODP. The Convergent Architecture recognizes
and builds on the mutually confirming results of convergent engineering and ANSA.

In summary, RASC in the Convergent Architecture builds on the concepts of
convergent engineering and stakes the following claim: The most useful set of
abstractions to use in all cases of domain modeling, whether the domain is a global

Convergent Architecture Chapter 3: The Convergent Architecture Metamodel

-78-

financial institution or a machine manufacturer, is organizations, processes, and
resources. These are embodied by their respective convergent components
throughout the entire architecture. More than these three is too many, and fewer
than these three is too few. Other types of abstractions are less effective. In
addition to the three core business abstractions, two others exist to simplify the
technical and access aspects of design. These are the utility components and the
accessor components, which also belong to the family of convergent components.

[2]In 1995 I investigated this similarity and am convinced that neither party knew of
the other's work at the time.

Conceptual Isomorphism

Part of simplifying anything is the consistent use of familiar terms and concepts
wherever possible. When a concept has been reused in a similar form in two
different areas, then we say that conceptual isomorphism has been achieved.[3]
Conceptual isomorphism in the area of software development means that a design
concept is applicable in diverse development situations while still maintaining its
familiar form. It means that all stakeholders in an IT project can reuse the
concepts and that the knowledge and experience regarding these concepts can be
reused effectively in other projects. Although the reuse of technology and, more
recently, modeling languages has become widely accepted as just plain common
sense, the reuse of design concepts at the level of IT architecture across projects
and domains is not yet widespread. The Convergent Architecture strives to raise
the awareness and use of conceptual isomorphism to the level of convergent
business and IT design. The goal is for the concepts of the IT-architectural style to
be both understood uniformly and applied uniformly across diverse organizations,
projects, and technologies.

There are several different areas where conceptual isomorphism can be used
immediately to simplify and optimize both business and IT design. The first of
these areas concerns the applicability of development concepts across all IT
projects of an organization and across multiple organizations. An experienced IT
architect selects development concepts that increase the effectiveness of
developers and systems while at the same time being equally applicable in any
organization, new or old. These are not vertical, domain-specific development
concepts. They have the exact opposite, horizontal focus. Their goal is to counter
the effect of the perpetual focus on vertical point solutions found in most
organizations today. Just as a government must strive to avoid the disarray of
compounded individual or point solutions in a society, so must an IT-architectural
style help organizations to avoid repeatedly developing vertical point solutions to
very general design problems. To replace redundant point solutions, architectural
concepts are selected that may be reused everywhere to improve the vertical,
domain-specific systems. These concepts solve general problems at a general level
instead of expecting projects to repeatedly solve the same problem differently at
the level of specific systems. This may sound like common sense—and it is—but it
is not being achieved very often in today's IT organizations. The positive side
effect of putting horizontal, cross-project, cross-functional architecture concepts in
place is the creation of domain-specific systems that can be understood by persons
from outside the domain. These systems have become conceptually compatible,
and often technically compatible, with ones in other domains. There is a whole lot
of room for these architecture-level concepts in most organizations. Substantial

Convergent Architecture Chapter 3: The Convergent Architecture Metamodel

-79-

improvements are possible in the extensive areas of business modeling, technical
detailing, technology mapping, and tools, for example. The convergent
components are one example of such horizontal concepts in the Convergent
Architecture. The convergent components may be applied equally to the
convergent representation of human organizations, for example, a business unit or
a train station, and to the representation of more technical organizations, such as
a fabrication cell or an automobile motor.

Another area where conceptual isomorphism can make a big difference is in the IT
organization or IT department of any company. There is no reason why the IT
organization should not become part of the overall business model. If the IT
architect can model a business, then there is no reason why he or she should not
start by modeling his or her own business, which is the business of building IT
systems. The organization responsible for this part of the business is, of course,
the IT organization. It seems very reasonable to expect an IT architect to possess
a model of his or her own business domain as a prerequisite to modeling someone
else's domain.[4] If the same concepts are used to model the IT organization as
those used to model other organizations—and there is no reason why this should
not be the case—then the pleasant side effect of conceptual isomorphism results.
The model shows all stakeholders not only how the IT organization works, but also
how the design concepts will be used to model and support other business
organizations. In addition, it substantiates the architecture itself by applying its
own concepts in the spirit of "practice what you preach." As described earlier, the
project design pillar of the Convergent Architecture requires this form of
conceptual isomorphism. The result is the IT organization model of the Convergent
Architecture, which employs the same concepts used to model other business
domains.

One of the most significant advantages of conceptual isomorphism is its positive
influence on the longevity and usefulness of knowledge. One of the biggest
problems large organizations have today is the short half-life of expensive
knowledge. The people who understood the concepts used in one project one year
are in another project the next year. The design concepts and the way they were
applied in the one project are invariably different in the other project. A simple
move between IT-related projects within a traditional organization makes much of
the knowledge from a previous project obsolete. If these projects used similar
concepts in places where this is readily possible, then the knowledge could be
reused and would be more valuable to the individual as well as to the company.
Thus, shared architectural concepts enable persons who have been involved in one
project to use more of the acquired knowledge later on in other projects. The
longevity of the knowledge has been increased. This fuels the motivation to learn
because the mileage of learning is increased. This form of conceptual isomorphism
is also an indispensable step toward simplicity and efficiency in large organizations
because, without it, nobody, not even the IT gurus of a company, can keep up with
the number of different design concepts applied across diverse projects.

Conceptual isomorphism in IT system development does not happen by itself or as
a by-product of everyday IT projects. This is so because these projects are not
concerned with the subject of conceptual reuse across other projects. Trying to
reapply design concepts from the narrow problem domains addressed by everyday
IT projects across many domains will not work. To the contrary, this approach
would increase software entropy rapidly because every project would have to
modify the design significantly. Instead, it takes a major concerted effort to figure

Convergent Architecture Chapter 3: The Convergent Architecture Metamodel

-80-

out which concepts can be reused readily and widely as part of an overall
architectural approach. In addition, these concepts can only be used effectively
when structured within the context of an IT-architectural style that has been
designed specifically for this purpose. For these reasons, little conceptual
isomorphism in the area of IT is found in organizations today.

Lastly, conceptual isomorphism is not the same thing as convergence. It does not
mean that we should attempt to converge all business domains into a single
uniform domain. Domains are separated logically according to their differences.
Convergence focuses more on the vertical integration within a business domain.
We converge business-domain designs and IT, but we do not try to converge
reasonably distinct business domains with each other. Such attempts would be
counterproductive because the result would be more complex and less effective
than treating the business domains as logically separate categories. Conceptual
isomorphism complements convergence from the horizontal perspective; it says
that we can reuse many of the same concepts across diverse business domains.
In summary, the first step to high-value reuse of both technology and knowledge
begins with the use of common concepts across diverse projects. This is known as
conceptual isomorphism, which provides several significant advantages. First, it
reduces learning effort and increases the longevity of knowledge. Second, the
uniform application of design concepts, abstractions, and patterns across domains
permits both knowledge and tools to be improved incrementally through reuse.

[3]American Heritage Dictionary (1994): "i·so·mor·phism n. 2. Mathematics. A one-
to-one correspondence between the elements of two sets such that the result of an
operation on elements of one set corresponds to the result of the analogous
operation on their images in the other set."

[4]It is disconcerting to see that this is not usually the case. Most IT consultants, in
fact, have never attempted to model their own business domain.

Component Metamorphosis

There are few physical or material constraints to developing software systems.
They are indeed "soft" in that we can conceivably manipulate and grow our designs
any way we want. The principle of component metamorphism invokes an
intentional analogy with the metamorphosis of a butterfly to express a better way
to manipulate and grow software designs. Component metamorphosis says that we
can leverage the context of an IT-architectural style to create active software
components that assist in their own development. As illustrated in the Figure 3.5,
a component can become an active entity beginning with its conception early in
the analysis process. It can then actively participate in its elaboration throughout
its entire life cycle.

Convergent Architecture Chapter 3: The Convergent Architecture Metamodel

-81-

Figure 3.5: Component metamorphosis. Convergent components actively support
users during a given life-cycle stage and work context.

There is no reason why a component should first spring to life late in the
development cycle, after days or weeks of development. In its embryonic stages, a
component can act in concert with its tool environment to significantly assist the
developer with many tasks associated with its development. This includes such
tasks as the acquisition and coordination of analysis information and business
requirements, creating and manipulating models, and recording documentation
and test scenarios. In addition, it can actively ensure that a healthy component is
evolving at each step along the way. Based on the design features in the models of
the IT-architectural style, a component can possess knowledge early on in its
development regarding its style-consistent growth. It can use this knowledge to
check and report on its style-consistent progress, as if it had an active immune
system. For example, it can actively report on the structure and quality of its
contents, whether it has adequate information to proceed to the next stage, or
whether its current design provides adequate support for its intended role in the
system. The component can take an active role in maintaining the integrity of the
overall architecture by ensuring, at every step along the way, that it evolves
according to the IT-architectural style. It can even tell us whether its current
design status will permit it to be mapped appropriately to a particular technology.

Component metamorphosis is indeed possible if the IT-architectural style meets
two principal requirements. First, it must stipulate how components evolve in the
development model. Second, it must provide proactive support for this evolution in
its tools and development infrastructure—its IT-architectural IDE. The process of
metamorphosis can then replace the current mode of developing software in
radical heaves of translation and reformulation of information. Components can be
evolved through steady stages of information enhancement and growth—

TE
AM
FL
Y

Team-Fly®

Convergent Architecture Chapter 3: The Convergent Architecture Metamodel

-82-

comparable with the metamorphosis of a butterfly. Mother nature achieved this for
the butterfly over several million years, but we would like to move a little faster.

Component metamorphosis requires that we sharpen the tools of IT development.
However, it turns out that sharpening our tools is probably the simplest step to
take. This is due to the ironic imbalance between the systems the IT industry
develops for others and the systems it develops for itself. As if dutifully fulfilling
the proverbial truism of the cobbler's children having the worst shoes, we observe
software in many business domains that does a much better job of managing
information than we currently observe in our own ranks—in the business of
building IT systems. It is a well-kept secret that the analytical and information-
management capabilities of common finance and accounting systems, for example,
put contemporary IT development tools to shame.

There is no good reason for this situation. However, there are reasons. First, IT
designers have just been too busy improving tools for other domains to do the
same in their own domain. Second, plenty of money is being made without good
tools. Third, given the relative youth of the IT industry, customers are not IT-
savvy enough to readily recognize how rudimentary and ineffective the
contemporary techniques and tools are. Nor are they experienced enough to
suggest—or better, to insist on—improvements. Fourth, and probably most
important, the "softness" of software makes it possible to jerry-rig anything at any
time, making tools appear to be a luxury. This could not be further from reality, as
pointed out in Chapter 1. Component metamorphosis requires that we finally
sharpen our own tools. It says to take the knowledge and experience that have
been formulated in the models of the IT-architectural style and use them to create
more intelligent components and tools. Together, this constellation will be the next
best thing to cloning an experienced IT architect. The components become the
vehicles of architectural knowledge and active architectural assistants, ready to
help any developer anytime.

The principles of RASC and the machine shop metaphor are important
prerequisites to achieving component metamorphosis. Without RASC, the
components could not know much about their role in the architecture or anything
about their intended features as mature components. Without the machine shop
metaphor, tools could not optimally leverage the intelligence of the component or
the high quality of information it provides. Combining the style-specific intelligence
of the RASC components with the synergy of the machine shop approach in the IT-
architectural IDE of the Convergent Architecture will ensure higher architectural
fidelity even among less experienced designers and developers.

Component metamorphosis is not very trendy. It precludes for the most part
codederived architecture or code-driven modeling. This is in direct conflict with the
socalled round-trip engineering (RTE) features currently endorsed by some tool
vendors. Component metamorphosis requires a channeled, architecture-driven
approach. Any structural changes made in source code following a model-driven
code generation constitute an afterthought or ad-hoc change to the architecture.
Such changes should constitute a rare exception and should be avoided if at all
possible. In any case, they should not be encouraged. This is so because the
component and tools cannot proactively coach to the evolution of features when
they are changed late in the development chain. In such cases, the component has
no way to ensure a well-balanced, healthy infrastructure. Such code-level

Convergent Architecture Chapter 3: The Convergent Architecture Metamodel

-83-

structural changes bypass the features of a well-formed architecture, which begins
early in the development cycle, and revive the very problems architecture is
intended to solve.

Consider, for example, just one aspect of a component, its documentation.
Component metamorphosis means that the documentation of a component will be
enhanced and maintained at every stage of its development, each stage adding
information regarding use, associations, risks, side effects, and so on. This type of
documentation can be compared with the information sheet one receives with
pharmaceutical products, such as a box of aspirin. The documentation is product-
specific and is of extremely high quality. This quality cannot be achieved as an
afterthought. It is the result of a long and well-controlled process that
accompanied the development of the pharmaceutical product over its entire life
cycle. If this process permitted late, ad-hoc modifications to the product, outside
the defined process, there would be no way to ascertain the true quality of the
product or its documentation. The mere fact that late, out-of-stream changes are
allowed reduces the credibility of any information regarding the product,
regardless of whether actual changes take place or not. The documentation
becomes practically useless, despite the effort involved creating it. Similarly, if the
controls of architecture-driven development are abrogated by arbitrarily modifying
code at the end of the cycle, then high quality cannot be reasonably expected.

To ensure integrity, such changes must be made to the component by returning to
the proper stage of metamorphosis (this is indeed possible in software in contrast
to the real world). The changes can then be guided by the component and the IT-
architectural IDE through all stages of development. Changes made without
returning to the proper stage of metamorphosis constitute tumor-like growths in a
design, which must be repaired later at a high cost. If this form of ad-hoc
development persists, then the number and size of the tumors increase, causing a
proportional degradation in the health of the overall system. In fact, a healthy
component should even resist changes when these are attempted at inappropriate
stages in its development. By doing this, it can proactively counter software
entropy and irreparable pollution of the architecture.

In summary, component metamorphosis requires that components actively
support their complete life cycle, in an entire community of components, beginning
with the first identification of the component in the phase of business analysis.
Once a component has been identified, it actively assists the designer throughout
its architectural conform enhancement and evolution. It matures through the
refinement stages of development from a basic, skeletal component to a fully
functional component. This process resembles the metamorphosis of a butterfly
and has been named accordingly.

Summary

This chapter presented the architectural metamodel of the Convergent Architecture.
As we saw in Chapter 1, this is the highest-level model of the IT-architectural style.
This chapter described the visions and principles of the Convergent Architecture,
which directly influence the forms and mechanisms found in its subsequent layers.
These visions and principles serve to define the spirit and goals of the architecture
as a whole. They help diverse stakeholders at all levels of system design share a
mutual understanding and mutual sense of direction across all IT projects in an
organization. They instill a common sense of style in the entire organization, which

Convergent Architecture Chapter 3: The Convergent Architecture Metamodel

-84-

results in more effective decisions and more compatible progress despite highly
diverse projects.

The sections on the individual principles revealed how important synergies emerge
from the cumulative contributions of the principles. They explained how the vision
and the principles interact to influence the design of the structures and
mechanisms in the IT-architectural style. The resulting structures and mechanisms
are found in the development model of the style, which is covered in the next
three chapters.

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-85-

Chapter 4: The Convergent Component
Metamodel—Components as the vehicle
of architecture

Overview

The development model of the Convergent Architecture is comprised of three
subdivisions. The first of these is the convergent components metamodel, which is
covered in this chapter.

The convergent component metamodel defines components as vehicles that
transport the principles of the architectural style into elements of concrete design,
tools, and technologies. It formulates the architectural style at the level of
component design. It is a metamodel because it describes how to create a
convergent component model that leverages particular standards (for example,
UML or J2EE/EJB) and end technologies (for example, application servers) while
fulfilling the requirements of the architectural style at large. Its requirements
encompass project, business, and system design. As such, the metamodel has an
impact on much more than just the way components are structured. It influences
how they are derived, refined, and reused to achieve model-driven development
using available standards and technologies such as UML, XML/HTML, J2EE/EJB, and
Java.[1] The architectural IDE described in Chapter 7 is a prime example of the
broad influence exercised by the convergent component metamodel. Every module
in the integrated development environment (IDE) is more capable as an
architectural assistant because the metamodel defines how such aspects as
business design, project management, and technology management are related at
the level of component development.

At a high level of abstraction, the structures and concepts in the convergent
component metamodel are independent of particular standards and technologies.
However, it would be contrary to the principles of the Convergent Architecture to
stop at a high level of abstraction. The convergent component metamodel is
explained and applied at ever-increasing levels of detail as we move through this
book. Along the way, it is interesting to note how important the metamodel is as a
visible and driving element of style and to discern its positive influence on the IT
organization, the development process, and the architectural IDE.

This chapter presents the convergent component metamodel, its structure
reflecting the logic in which the model moves from abstraction to detail. Each
section addresses aspects of component structure, modeling style, patterns, and
the technology projection:

 Overview and fundamentals. This section presents the underlying
concepts and structure of the metamodel.

 Architectural layers. This section outlines major aspects of the
layered component infrastructure and introduces the various types of
components and their hierarchical organization.

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-86-

 Common aspects of all convergent components. This section deals
with the basic design and structures common to all convergent
components to prepare the stage for the subsequent description of
individual components. These commonalities comprise aspects such as
component dimensions, modeling styles, and a technology projection.
They address and build on the concepts known as Model Driven
Architecture (MDA) as currently envisioned by the OMG (MDA 2001).

 Convergent components. This section provides detailed descriptions of
component structure, modeling style, patterns, and the technology
projection of the following components:

o Assembly components. The top-level units of design and
deployment.

o Accessor components. For multichannel user interface
and system interface access.

o Convergent OPR components. Representations of
business organizations, processes, and resources.

o Utility components. Technical services supporting the
superior layers.

[1]Aspects that we are actively contributing to the Model-Driven Architecture (MDA
2001) initiative at the OMG.

Overview and Fundamentals

The convergent component metamodel does not build everything new from the
ground up. Rather, it uses a solid foundation of existing concepts and standards,
as shown in Figure 4.1.

Figure 4.1: The foundation of convergent components.

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-87-

To the left, this figure shows that significant aspects of the convergent components
are based on the concepts of convergent engineering (Taylor 1995). Above all,
convergent engineering prescribes the types and meaning of the business-relevant
components-organizations, processes, and resources. It defines why and how
these types of components are best suited to simplify both the process of business
modeling and the software representation of the business model.

The UML shown at the center of the figure is used to represent the component
structures, types, and concepts in a standard, semiformal modeling language.
Based on the UML representations, the component models can be communicated,
reused, and manipulated more easily by teams of developers using modern tools.
More important, the UML models used for convergent components serve to
abstract the design from the particular implementation technology. The model then
serves as the basis for automatic infrastructure generation using the technology
projection, as introduced in Chapter 2. This model-centric approach to
development is often referred to as a model-driven design or model-driven
architecture.

The right of the figure shows that the J2EE/EJB specifications are used as the basis
for the reference modeling style. The modeling style, which is covered in more
detail later in this chapter, defines how we effectively manage and tune standards
and technologies using high-level UML models. The term reference is also
significant and has several implications here. First, the reference modeling style
provides a concrete proof that the approach works: The reference modeling style
can be used by default to build real systems, as will be seen later in this book.
However, it also is a learning reference, used to effectively teach modeling styles
and model-driven development in detail. It also serves as a starting point to build
modeling styles for other platforms. The reference modeling style documents, in
detail, how components and their relationships are unambiguously represented in
UML. It provides an important basis for simpler, more expressive designs that, in
turn, enable higher levels of model verification, testing, and code generation.

The current reference modeling style uses 100 percent J2EE/EJB. Other modeling
styles also meet the requirements formulated by the Convergent Architecture. For
example, in the context of specific projects, modeling styles and their respective
technology projections have been developed for pure Java/RMI (not J2EE), CORBA,
and OODB (Versant enJin) infrastructures.[2] A modeling style for the .NET platform
is clearly possible but has not been attempted yet. The modeling styles, their
technology projections, and the corresponding features of the architectural IDE are
evolving in conjunction with the MDA initiative at the OMG. This projected
evolutionary path is also indicated in the figure.

It is important to emphasize that our requirement for specificity produces modeling
styles that are intentionally sensitive to a particular standard or platform. However,
specificity is not necessarily synonymous with counterproductive dependence on
specific implementations. The following sections explain how we achieve a best-of-
both-worlds approach—models that serve as precise drivers of high-quality
technology projections while still retaining maximum independence from the
individual implementations. Using this approach, the convergent components have
been mapped to many specific J2EE/EJB containers without changing the common
UML models of the business components and without mitigating the
expressiveness of these models.

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-88-

Summarizing this in one sentence, it can be said that the convergent components
apply standard UML in the context of convergent engineering with a default
technology projection to J2EE/EJB. For this constellation, the full set of
documentation for the convergent component metamodel, including its reference
modeling style, consists of the material presented in this book plus the following
base specifications:

 The UML Foundation Metamodel Specification

 The Java 2 Enterprise Environment and the Enterprise Java Beans
Specification

 Convergent engineering as described in the book, Business Engineering
with Object Technology (Taylor 1995)

 In the near future, the finished works addressing MDA as it evolves at
the OMG (MDA 2001)

The goal is to always keep up with the newest release of each of these
specifications, of course. Central to the convergent component metamodel are the
convergent components themselves, which define a meaningful set of named
design entities for use throughout the Convergent Architecture. They serve as a
focal point for development organizations, development activities, design
techniques, and tools. There are four distinct classifications or types of convergent
components (CCs): assembly components, accessor components, business
components, and utility components. A single type of convergent component may
comprise closely related variants or subcomponents. The convergent components
are partitioned into architectural layers, which are described in the next section,
followed by sections detailing each type of component individually.

[2]See the Convergent Architecture Web site, www.ConvergentArchitecture.com, for
more information on such resources.

Architectural Layers

The convergent components form a layered component infrastructure, as depicted
in Figure 4.2. The following list summarizes these layers, the convergent
components they contain, and the important abbreviations for these components
before each layer is examined in detail later in the section:

 Assembly component layer. Contains assembly components (ASCs).

 Accessor component layer. Contains accessor components (ACCs).
These accessors are subdivided into two categories: the system
interface accessors (SI-accessors) and the user interface accessors (UI-
accessors). In addition, each accessor component is associated with
one or more representers, one for each type of interface channel.

 Business component layer. Contains organization (O), process (P),
and resource (R) business components, also known as the OPRs.

 Utility component layer. Contains the utility components (UCs).

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-89-

Figure 4.2: The architectural layers. Convergent components form four layers
to best manage a design.

The intent of these layers is to reduce undesired coupling while increasing cohesion
in design models, tools, and runtime infrastructures. Each layer corresponds to one
or more convergent component types found in the layer. Thus, the component
types are the primary vehicles for enforcing these layers. Each layer is
hierarchically superior to the ones below it. This means that components are used,
managed, and controlled by specific components in the same layer or the next
higher layer.

The assembly components (assemblies) form the layer of packaging, distribution,
and installation in the architecture. The clients of the assembly components are
the operational and administrative personnel who install and maintain the IT
landscape for end users. These components contain the intelligence required to
install, update, adapt, and test an installation without requiring the operations
personnel to possess detailed knowledge regarding the internals of the assembly.
Instead, the assembly provides operational personnel with information and
facilities to tune the installation and to monitor and adjust the steady-state
operation of the assembly. From the perspective of the software developer, the
assembly manages all convergent components required by a particular business
application and ensures a clean evolution of these components into the operational
environment. It integrates and intelligently manages every aspect of the
deployment process. It takes care of the interaction with other assemblies,
including migrational aspects concerning versions of assemblies. It proactively
reduces software entropy and ensures the preservation of convergence in the
runtime environment.

The accessor components (accessors) form a layer of interaction with all entities
external to the architecture. They support any type of interaction channel or

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-90-

technology required to interact with the external environment. The external
environment is partitioned into two major groups: human users and external
systems. A family of related accessors exists for each of these groups. UI-
accessors cater to the special requirements of human-to-system interaction,
whereas SI-accessors cater to the special requirements of system-to-system
interaction.[3] From the perspective of the software developer, accessors are
modeled and developed as first-class, reusable components of a system. Each
accessor manages one or more representer components, one for each type of
interaction channel or interaction technology. Thus, a single accessor may interact
with multiple channels. On the inside, the accessors encapsulate the interaction
with OPR components in the next lower layer of the system. An accessor may be
specific to a single OPR component, or it may be associated with an assembly and
interact with many different OPR components. This all adds up to a style-specific
constellation corresponding to the well-known model view controller (MVC) pattern.
The use of many other well-known patterns and less commonly known design
patterns can be observed in the UML modeling style and technology projection of
the accessors and the other convergent components.[4]

The business components (OPRs) form a layer of organization, process, and
resource components according to convergent engineering. They represent the
core business aspects of the IT system. Their clients are the accessors and other
OPRs in the context of an assembly. From the developer's perspective, the OPRs
use non-business-relevant utility components in the next lower layer as well as a
well-defined modeling style, such as the J2EE/EJB modeling style used in this book,
to represent the core business functionality. In addition, the business-
representation aspects of these OPRs, the socalled business dimension (discussed
later), is explicitly separated from the purely technical-representation aspects, the
so-called IT dimension.

The utility components (utilities) form a layer of reusable services that are, on the
one hand, indispensable to the development and maintenance of high-performance
convergent systems but, on the other hand, are not provided by standards or
implementations of these standards. Other convergent components use utility
components as necessary enhancements to the capabilities of the underlying
standards. They are also employed to insulate the life cycle of the superior layers
in the architecture from the very different life cycle and high-risk aspects of the
implementation technologies.

Based on the components and their layers as just described, Figure 4.3 shows how
convergent relationships are attained between use cases in the business domain
and convergent components. To the left of the figure are the three types of use-
case models employed to represent distinct aspects of the business domain. Note
that the business-domain partitions correspond in a very logical manner to the
architectural layers and their respective component types.

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-91-

Figure 4.3: Convergent model-to-component relationships.

The intuitive convergence illustrated in Figure 4.3 simplifies many aspects of
development. First, in the upper left of the figure, business use-case scenarios
capture both structural and dynamic aspects of the core business in a business
model. The business model represents both requirements and business entities in
terms of organizations, processes, and resources (OPRs). The business OPR
components then serve to map the business model directly to its corresponding
representations in the IT domain. The OPR business components are represented
in UML. This allows the OPRs to be mapped (projected) automatically to a
particular IT infrastructure. The figure also indicates that commonality among the
OPRs is cleanly represented in a base business component, labeled BC. This and
other details of the OPRs will be discussed later.

The center and bottom rows in the figure show that, similar to business scenarios,
system-access scenarios are also modeled and mapped explicitly to a
corresponding technical representation. The left side of the figure outlines the
requirements and scenarios for human interaction. The accessor use-case
scenarios are represented by a UI-accessor model in UML. Similar to the OPRs,
these representations are technically refined in UML and are then projected
(generated) to a particular IT infrastructure. The same schema applies to access to
and from external, nonhuman entities, as shown at the lower left in the figure,
where SI-accessors are produced. Just as with OPRs, commonality among the
accessors is cleanly consolidated into a common base accessor component. Lastly,
the architectural layers are also evident in the figure: The accessors use the OPRs
hierarchically, and the assembly is used to package the convergent components.
It is now possible to show how the architectural layers cover the needs of an entire
IT landscape in both modeling and runtime environments. The first of the following
two figures (Figure 4.4) is an example of the runtime configuration for a typical e-
payment intermediary portal. Figure 4.5 shows how such a runtime configuration is

TE
AM
FL
Y

Team-Fly®

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-92-

generated automatically based on the convergent components in a UML component
model.

Figure 4.4: Example: Components in an e-payment portal.

Figure 4.5: Example: Model-to-infrastructure relationship.

In Figure 4.4, a single assembly component contains the sum of convergent
components for the e-payment portal. The SI-accessors to the left of the figure
encapsulate the access idiosyncrasies of the external back-end systems required
by the e-payment portal. Each external system may use a different representer to
serve its particular communications and format requirements. However, these
representers use a single SI-accessor for a given task. To the right, a similar
scenario applies to the UI-accessors. Each UI-accessor may serve several different
representation channels via its different representers. The OPR components
representing core business organizations, processes, and resources are situated in
the middle and are accessed via the accessor components. These OPRs are the

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-93-

"decision makers" that determine the implementation of the business strategy. In
this example, the process components delegate complex work-flow decisions to a
utility component specialized in rule-based workflow control.

Figure 4.5 illustrates how most of a deployed assembly component and its
environment is derived automatically from convergent components in the UML
model. The bar at the top of the figure indicates that the entire process takes place
in the architectural IDE (see Chapter 8). The UML model of convergent
components created in Rational Rose is illustrated at the far left. In the model, the
classic separation of presentation and business models is clearly visible: the
accessors with their representers at the top and the OPR components at the
bottom. The accessors and the OPR components each have a technology projection
that, as shown to the right of the UML model, manifests as a technology projection
cartridge in the architectural IDE. All arrows emitting from the projection cartridge
(or simply cartridge) indicate artifacts generated on the basis of the UML model.
The projection cartridge for J2EE accessors at the top generates all the artifacts
required for a working Web archive (WAR), including its build and test environment.
These generated artifacts are all shown to the right of the cartridge. At the bottom,
a cartridge for WebSphere in conjunction with Versant enJin generates the artifacts
required to create the rest of the assembly. The build and test environment
generated by both technology projection cartridges is configured to leverage an
advanced Java IDE, in this case JBuilder, shown at the lower right of the figure.
JBuilder is used to implement low-level Java business logic and to automate the
build, test, and deploy cycle. The assembly generated in this J2EE technology
projection is a J2EE enterprise archive (EAR), as shown to the far right in the
figure. The EAR is deployable as an intelligent unit into the combined
WebSphere/Versant/TomCat application server represented at the far right of the
figure.

This section presented the "big picture" of the convergent component metamodel
at the level of architectural layers, the four convergent component types, and their
use in both runtime and development environments. The next section moves down
one level of detail and covers the metamodel from the perspective of each
convergent component. The discussion begins with a description of the aspects
common to all convergent components and moves on to detailed explanations of
each type of component in subsequent sections.

[3]In modern Internet terminology, UI-accessors cater to the specific requirements of
business-to-customer (B2C) interactions, whereas SI-accessors address the specific
requirements of business-to-business (B2B) interactions, B2X, business process
integration, and Web services.

[4]Although patterns permeate Convergent Architecture, this is not a book on
patterns. Some of the patterns used are well known, some are recently published,
and others are unpublished. They are applied in a matter-of-fact way throughout the
architectural style and, in the interest of my focus on architectural style, will not be
pointed out explicitly in each instance. Outlining each pattern and describing how it is
used and implemented would constitute enough material for an entire book itself. For
a good starting point on many of the design patterns used by Convergent
Architecture, see java.sun.com/j2ee/blueprints/design_patterns.

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-94-

Common Aspects of All Convergent Components

Several features are common to all convergent components. Before getting into
the structural and stylistic features, let's take a short look at the components from
the economic perspective of the IT organization.
Convergent components are important resources of an IT organization. They are
named entities consisting of manifold models, documentation, and various forms of
implementation technology. They are planned, built or bought, deployed, and
maintained. They consume significant time and personnel. In short, they are
extremely costly resources. In the interest of return on investment (ROI), an
organization should be sure that these costly resources also turn out to be valuable
resources. In order to measure and track the value of a resource, it must first be
visible and have characteristics that can be measured. To this end, all convergent
components are visible and measurable as managed resources of the IT
organization, as you will see in the next chapter. The emphasis here is on the term
resource. Although convergent components will represent many aspects of a
business in its IT systems (for example, organizations and processes, as
mentioned earlier), they all share the common property of being a clearly
delimited resource within the IT organization. For example, a convergent
component representing the sales process in a business system is also a resource
from the perspective of the IT organization. The IT organization is the owner of
this valuable resource and manager of its entire life cycle, ultimately being
responsible for its ROI. This relationship showing that convergent components are
managed resources in the IT organization is illustrated by the managed IT
resource at the top of Figure 4.6.

Figure 4.6: The technology projection component.

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-95-

Aside from their common home as resources in the IT organization, convergent
components share several structural and stylistic features. These features are
grouped into two categories, each covered separately in the following sections:

 Technology projection component. This contains the modeling style,
guidelines, and artifacts defining how convergent components are
associated with specific standards and implementation technologies.

 Component dimensions and personalities. This defines the basic
internal structure of all convergent components.

The Technology Projection Component

Figure 4.6 shows the technology projection component (TPC) as a central feature,
common to all convergent components. The TPC defines how we create convergent
components models that meet the following three criteria:

1. They provide a level of (UML) detail that enables the automatic
generation of well-tuned, standard-based technology, including its build
and test environment, from the model: support for reality-scale model-
driven automation.

2. The model must be expressive enough for power developers, meaning
persons highly skilled in the respective technology. It must provide
them with adequate, powerful tuning features within the model-driven
approach so that these developers will not be tempted to circumvent
the model-driven process.

3. Its partitioning and abstraction levels must permit effective, automatic
projections to multiple implementations of a common platform or
standard.

4. Meeting these three criteria at the same time is challenging, but it can
be achieved by defining, first, an appropriate modeling style and,
second, how the modeling style will be mapped to various technologies.
When a model that conforms to a modeling style is mapped to a
particular technology, this is called a technology projection. The term
technology projection is also used to denote the definition of this
mapping. The TPC represents a particular modeling style and its
respective technology projections and defines how these are related to
the rest of the architecture.

As indicated in Figure 4.6, the TPC is situated above the hierarchy of convergent
components. It is not itself a convergent component. However, it significantly
influences the modeling, refinement, and generation of the convergent
components. All convergent components inherit the modeling style and its
associated technology projections from the TPC. We call this type of inheritance
style-trait inheritance because there is no direct, one-to-one correspondence
between this component and a single physical component in the runtime
infrastructure. Instead, it imposes traits of the particular style on its descendants.
Such style-trait inheritance is designated by dashed lines in the figure.

As its name suggests, the TPC contains detailed information about how a model
and its technology projection are related. It is where the rubber hits the road: The
TPC manages (in the form of modeling style guidelines and other artifacts) design

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-96-

properties and the development process in order to preserve maximum
independence from implementation technologies.

The modeling style is a core feature of the TPC. A modeling style is a set of
guidelines used equally by system developers, development-process experts, and
tool developers. It provides a UML profile for named technologies. Usually, these
technologies are based on a standard. The UML profile is a detailed definition of
UML modeling primitives based on the features or on the UML metamodel of the
technology. Based on the UML profile, the modeling style defines the precise
meaning of the UML modeling primitives and the way a designer uses them to
manage and tune real-world infrastructure. It also provides explicit modeling
extensions to allow power users to tune systems at the model level without
coupling the entire model to an implementation. The modeling style also possesses
information about the rest of the architectural style, its upstream origins, and the
downstream intent, which can be used to automatically complete and tune
significant aspects of a model.

Needless to say, UML, as a generalized notation and modeling language, and
generalized UML modeling tools cannot provide these specifics. Such tools are used
rather to support one or more modeling styles.

The modeling style complements the generalized UML standard by adding precise
meaning to elements of the UML notation relative to the architectural style and
selected technologies.

It defines how these primitives relate to the structures and behaviors on both sides
of the UML model in the development stream. On the upstream side, the modeling
style defines how business concepts are expressed in UML, and on the downstream
side, it defines how each UML representation influences the actual system
implementation. This is analogous to defining the playing rules in a particular sport.
If the rules are not clear, then every game is different, complex, and fraught with
dispute about what the rules are. Moreover, it is hard for a team to prepare for the
season if the rules of the game are not set. Finally, before we can define clear
rules of the game, we first need to know what type of sport we are defining the
rules for. The rules required for chess or horseback riding are quite different from
those required for rugby or soccer. The analogy drives home the point that a
modeling style is the prerequisite of a well-working development process. It is also
a prerequisite for developing an architectural IDE to effectively support the
development process.

The TPC is key to enabling the Convergent Architecture to achieve the advantages
of specificity while avoiding the downside of coupling. It addresses the influences
of technology while remaining independent of these influences. This sounds
contradictory at first. However, it is not. It just requires due respect for the
designer's paradox (see Chapter 2). Formulated for the situation at hand, the
designer's paradox says that significant requirements and constraints due to a
technology projection must be accommodated explicitly by the architectural style
(its models and tools) in order for the style to remain independent of these
constraints. The TPC contributes to this goal by addressing how upstream aspects
of the development models and process must be adjusted to flexibly handle these
downstream constraints. If this is not done, then the early stages of design are

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-97-

being carried out in a vacuum, and the resulting models can only be used to
communicate concepts at best.

For example, in the J2EE technology projection, the TPC defines the necessary
influence of the EJB component standard and environments on the UML modeling
style for convergent components. For a .net technology projection, the TPC would
be different. It would define the UML modeling style for convergent components
based on the requirements of the COM component model and other constraints of
the .net environment. Each of these component standards, J2EE/EJB and COM,
place manifold, rigid requirements on the structure of the convergent components
and thus on their respective modeling styles. In addition, these component
standards result in many subtle but important constraints on the way developers
and their tools work. For example, the J2EE/EJB standard specifies how
documentation properly accompanies code down to the exact positioning and
JavaDoc syntax of the documentation within the code. This will affect, at some
level, the way developers document their design and how the architectural IDE
acquires, formats, generates, packages, and stores documentation.

The TPC is indeed abstract, as denoted by its dotted outline in the figure, because
it may take on different forms depending on the particular technology projection.
This flexibility of content is required because TPCs will need to address platforms in
the future, not just the platforms we recognize today. By default, as you will see in
subsequent chapters, the TPC defines (contains) the technology-sensitive UML
modeling style in the form of a specifications and guidelines document. In addition,
it is associated with the corresponding set of technology projection cartridges and
the support for these cartridges in the architectural IDE.

There is nothing mysterious about the TPC. It simply applies the fundamental
object-oriented principle known as factoring commonality. In this case, stylistic
aspects of design related to its mapping to technology are being factored and
packaged; that is all. However, as shown in detail in the bonus chapter on the Web
site, it is important to note that the TPC is more than a UML profile as foreseen by
the UML standard: It is a UML profile plus detailed guidelines for the modeling style
and its comprehensive technology projection. The modeling style constitutes the
combination of a UML profile and stylistic guidelines.[5] Improved quality and more
powerful tool support are two of the good reasons to complement UML profiles with
the additional characteristics of the TPC. Just one example: The objective is to
represent business invariants using the Object Constraint Language (OCL)
(Warmer 1999) in UML models. Both the Java language and the J2EE/EJB standard
place constraints on how such invariants can be implemented reasonably in the
runtime infrastructure. Thus, the technology projection must deal with these
constraints in order to generate working systems based on the model. This, in turn,
places a requirement on the modeling style for J2EE/EJB. The style guideline in
this instance is: All attributes associated with an OCL invariant must be private and
exclusively accessible via set and get operations.[6] Only then can the generator
properly generate the code to check OCL invariants without coming into conflict
with the UML model. If this stylistic guideline is defined as part of the TPC, then it
can be enforced in the tools—the architectural IDE can better assist the developer.
The next section will look at the common structural features of convergent
components, including some examples of how these look when projected to
different standard technologies.

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-98-

Component Dimensions and Personalities

At the highest level of design abstraction, all convergent components also have a
common internal structure. Figure 4.7 presents this top-level anatomy of a
convergent component. It shows that every convergent component can be seen as
consisting of quadrants formed by partitioning it into two distinct dimensions, the
business and IT dimensions, each dimension consisting of two personalities, the
client and server personalities.

Figure 4.7: Convergent component dimensions and personalities.

The Business and IT Dimensions

Every convergent component starts out as a technology-independent
representation of a business entity in a business object model (BOM). The
characteristics of the BOM and how it is derived will be covered in subsequent
chapters. The business-relevant aspects of a convergent component are clearly
identifiable early in the development process and should remain so throughout the
component's life cycle. I refer to these purely business-relevant aspects of a
convergent component as the business dimension. The content and life cycle of the
business dimension should remain independent of all nonbusiness-relevant aspects
of the system. These non-business-relevant aspects of a component constitute its
ancillary technical infrastructure. Although this infrastructure makes up a
significant portion of a component, it is only there to allow us to support the
business dimension in a particular IT environment. I refer to these ancillary
technical aspects as the IT dimension of the convergent component. Every running
convergent component has an IT dimension, and if the component has core
business relevance (in contrast to pure IT relevance), it also has an explicit
business dimension.

An analogy is perhaps best to explain the reasoning behind these two dimensions:
When you tune a radio, you have to deal with two things. First, you select the
channel (content) you want. This is comparable with the business dimension. It is

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-99-

the content that you are concerned with in this dimension. You do not care how it
gets here. The platform vehicle could be a television, a car radio, a portable radio,
whatever. Second, you select the proper platform and make sure that the
reception is ok. This is comparable with the IT dimension. Dealing with the
complexities of reception, that is, the spectrum of poor to very good, frequency
type, location and position of the antenna, the quality of receiver, and the quality
of sound filters are all technology-related "annoyances" that have nothing to do
with the content. If you swap the platform, you still get the same content, but with
different technological properties. For example, if you switch from a waterproof
portable radio to a living room stereo, you still get the same content, but the
delivery platform has changed. Switching these two platforms to deliver the same
content is equivalent to swapping technology projections in the Convergent
Architecture to deliver the same business dimension to different IT dimensions.

Such clear separation of domain content versus technology content is highly
desirable but has not been achieved by many IT systems. Attaining this clean
separation of concerns is the intent of the explicit recognition of business versus IT
dimensions in the very basis of the convergent component metamodel.

Put more concisely, we identify and maintain the following partitions of a
convergent component throughout its life cycle:

 Business dimension. This dimension of a convergent component
represents the core business or domain aspects in the IT world. This is
the business object being "represented" by the component.

 IT dimension. This dimension comprises, quite simply, everything that
is not part of the business dimension. These are the IT-specific
"representation" aspects of a convergent component. This is the
ancillary part of a convergent component that does not contain any
information or logic pertaining directly to the core business.

Although both dimensions always exist, the business dimension is only present
when required. If a component is initially purely technical in nature, then the
business dimension is simply empty. If this component takes on business-relevant
intelligence at some later stage, then this functionality is positioned in an explicitly
designated business dimension, not just anywhere within the component.

The Client and Server Personalities

Each convergent component is partitioned into a so-called client personality (CP)
and a server personality (SP). These personalities exist to cleanly encapsulate and
denote the two design partitions inevitably required of any component if it is to be
distributed. They exist to optimally support a component's use and reuse within a
distributed environment. The client and server personalities permit a component to
be physically distributed while remaining logically intact, that is, logically
centralized. This enables a design to support the inevitable component-specific
optimizations for use in a distributed system without becoming unduly complicated,
as will be shown by the following examples. The actual distribution of the
convergent component is optional but always possible. It is intended by the base
design but not required, thus providing the designer with maximum flexibility.

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-100-

The principal justification for a client personality as a separate design entity is to
provide designers and programmers with a uniform place to put important client-
side aspects of a distributed environment. It supplies a defined structure in which
to tune distributed systems without having to subvert the encapsulation of the
component as a useful design abstraction.

Both client and server personalities may have a business dimension and an IT
dimension, as indicated in Figure 4.7. Thus, at the highest level of abstraction, a
convergent component consists of named quadrants: the business and IT
dimensions of its client and server personalities, respectively. How the business
dimension is distributed between the two personalities depends on the type of
system and the particular role of the component in the system. Various distribution
models often are required even within a single assembly, depending on such things
as the number and type of clients or whether the component must operate in a
local network, an intranet, the Internet, or a nomadic environment. For real-world
applicability of the architecture, all these distribution models must be equally
possible within the component metamodel because none of them can be predicted
in advance of the particular assembly design.

The quadrants of a convergent component in conjunction with the architectural
layers make it easier to represent and communicate the design permeations
required by distributed systems, including Internet-centric systems. Figure 4.8
shows how various distribution models are realized using convergent components
with their respective client and server personalities. The examples in the figure are
just points along a continuum between the two poles of 100-percent server-side
implementation and 100-percent client-side implementation. These poles apply not
only to the physical distribution of the component, but also to the partitioning of
the business dimension between the client and server personalities. Once again,
this is a constellation that corresponds to interwoven design patterns as applied by
the architectural style first at the abstract design level and then at the level of
technology projections to particular technologies. Several of these patterns were
documented recently in the context of J2EE (J2EE Patterns 2001).

Figure 4.8: Enabling various distribution schemes.

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-101-

An EJB container fills the role of object factory shown in the figure when the
components are projected to J2EE application servers. J2EE currently is the
preferred technology projection because it provides standards onto which we may
project any of these distribution constellations. Figure 4.9 shows how, for example,
the ultra-lightweight constellation is projected to any J2EE application server that
conforms to the J2EE blueprints (J2EE Blueprints 2001).

Figure 4.9: Projection of an ultra-lightweight client constellation to J2EE.

The next two figures provide a more detailed illustration of the client and server
personalities of a component and their projection to various technologies. Figure
4.10 shows how ultra-lightweight constellations are projected to J2EE. Figure 4.11
shows how the personalities have been projected equivalently to a mixed-language
(Java/ C++) CORBA-based infrastructure.

Figure 4.10: Detail: Ultra-lightweight client constellation to J2EE.

TE
AM
FL
Y

Team-Fly®

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-102-

Figure 4.11: Projection of a fat client scheme to a CORBA Infrastructure (Java/C++).

In Figure 4.10, client personalities of an OPR component are shown in an EJB
container. The OPRs are implemented as entity beans and are accessed by a
distributed accessor. The server personality of the accessor is projected to a
session bean in the EJB container. The client personality of the accessor is
projected to one or more Java server pages (JSPs) and Java classes, both of which
are deployed to a servlet engine. In the figure, the accessor's client personality
manages three HTML (or any other lightweight protocol) representers to serve an
Internet browser as its access channel.

Figure 4.11 shows the quadrants of a convergent component projected to a mixed-
language CORBA infrastructure that also encapsulates a legacy infrastructure
implemented in embedded SQL (ESQL). The client personality shown in the figure
corresponds to the fat client scheme because it contains both the Java/Swing user
access implementation and the entire business dimension. The C++ server

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-103-

personality simply serves to encapsulate database access and legacy ESQL code
and make these available to one or more fat client personalities.

We now move to the next level of detail for each type of convergent component,
one section for each of the four architectural layers.

[5]In current OMG/MDA terminology, the TPC constitutes the core UML models (UML
profiles) and the standard mappings plus additional stylistic guidelines and the
respective automation levels of the technology projection.

[6]Which in theory is always a good idea, but is not always practical.

Assembly Components

Assembly components (assemblies) actively coordinate constellations of reusable
components in both the development and deployment phases of the component
life cycle. These constellations often correspond to traditional applications. The
coordination provided by an assembly also extends into the operational phases of
the life cycle. As shown in Figure 4.12, assemblies constitute the top-level, macro
unit of system packaging and deployment. As the macro units of a system, they
also drive the macro planning and development process.

Figure 4.12: Assemblies as macro units.

Assemblies are convergent components that exist to manage and package other
convergent components. Normally, assemblies are the only convergent

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-104-

components deployed alone as units. All other convergent components are
deployed in the context of an assembly. During the deployment phase, the
assembly component helps manage the installation process. This concept of an
assembly component corresponds to the CORBA components' (CCM) definition of
an assembly. In the J2EE technology projection, an assembly maps to a J2EE EAR.
Convergent components can be reused by several assemblies. In Figure 4.12,
Assembly 2 uses components B and C from Assembly 1. Thus, an assembly can be
referred to and used by other assemblies at the level of its convergent components.
However, a convergent component is always owned and managed by a single
assembly. Assembly 1 owns components B and C. Using a term explained in more
detail in Chapter 5, every convergent component has a single resource owner.
These reuse relationships are tracked and managed by the assembly development
team (also defined in Chapter 5) during system development. This explicit
ownership ensures that the reuse is managed throughout the entire life cycle of a
component in the context of a single assembly. This means that although
individual convergent components are still installable units, they are always
installed in the context of an assembly. The assembly is responsible for the
integrity of the overall system. For example, to update a single resource
component in an assembly, a new version of its assembly is installed. The
assembly may in fact only update this single resource component, but the
assembly also must guarantee the continued integrity of its entire development
and runtime environment. Guaranteeing such integrity is no small task. This is one
reason why this task is clearly assigned to a component, the assembly component,
and to its corresponding team, the assembly development team (for details, see
Chapter 5) in the Convergent Architecture.

Accessor Components

As indicated by their name, accessor components (accessors) provide access to
and from external entities. The definition of an external entity is very simple: It is
anything that is not installed as part of an assembly or part of its direct runtime
platform.

At the highest level, it is possible to distinguish between two basic types of
accessor components. The similarities between these two types actually
outnumber their differences, as will be seen:

1. User interface accessors (UI-accessors and UI-ACCs). These are
the mediators between an IT system A and a human user B. These user
interfaces are not limited to graphical user interfaces (GUI); they can
also be voice-based, text-based, and so on.

2. System interface accessors (SI-accessors and SI-ACCs). These
are the mediators between two systems A and B. They can be used to
integrate different architectures (system integration) or different
installations (an interface between the installations of the same system
in different organizations).

Accessors serve two important purposes. First, they delimit and defend the
architectural boundaries throughout the system life cycle. They are used to coerce
and convert things external to the architecture into things that conform to the
architectural style. This is the best way—and probably the only way—to ensure

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-105-

long-term architectural integrity no matter how many external entities are involved
in an integrated system. Second, they separate the modeling of system access
from the particular implementation of the access to provide developers with a
clean separation of concerns.

The separation of the access model from its implementation permits us to develop
long-lived, reusable models independent of the underlying technology and the life
cycle of the implementation technology. This separation allows developers to
effectively reuse accessor components at the level of UML models, thus promoting
the advantages of model-driven, component-based development into the
important field of system access and system integration. In addition, the clean
separation of the accessor component layer from the business component layers of
the architecture permits different development tasks and roles to be carried out
independently: Business-model design, application development, and B2C or B2B
design now can be performed by different, specifically trained specialists using
specialized tools. This improves flexible adaptation, reuse, and maintenance at
many points in the system life cycle. For example, with this separation of concerns,
it is possible to redesign the type of user access or external system access at the
UML level without touching the business component behind the scenes. By the
same token, new use cases can be realized and new user interface technologies
can be leveraged with little or no change to existing accessor models.

To date, the IT industry has been slow to address model-driven development in
this area of user and system access—the terrain covered by accessors. This has
not been due to neglect; it is simply because the IT industry at large has been
more focused on improving the central, server-side aspects of system design.
There is nothing amiss here; it just means that the accessor components have less
standard infrastructure on which we can base their modeling style and its model-
driven technology projection. Although the accessor design leverages the
standards available in this space, they must currently define more of the model-
driven infrastructure than the other convergent components. For this reason, the
accessor metamodel and the runtime environment, which will be introduced in the
following sections, are the most extensive parts of the Convergent Architecture.

The Accessor Framework

Figure 4.13 illustrates the use of accessor components to support different
channels of access to a software system. It shows that an accessor component
actually consists of several separate parts. Many of these parts are modeled
separately in the interest of the clear separation of concerns. However, they are
interrelated as parts within a system of patterns. Together they form what is called
the accessor framework.

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-106-

Figure 4.13: The model-driven parts of the accessor framework.

This figure manifests some additional separation of concerns that has not been
mentioned yet. First, beginning at the top of the figure, the accessor framework
recognizes that various forms of access may differ only at the level of their
external representation; all other aspects, such as information content, information
flow, and event flow, remain equivalent across the various representations. In
addition, new forms of access may arise at any time, while other existing forms
may be deprecated over time. Thus, the modeling and production of these various
representation channels are encapsulated by so-called representers. These
representers run in so-called representer containers. A representer container is
another important abstraction: It encapsulates a specific runtime environment for
a group of interrelated representers. For example, an HTML browser is a
representer container that may manage one representer per HTML frame. This
level of model-driven granularity is required by modern Internet portals. Nothing
less will suffice for a model-driven production of such systems. Another important
advantage to this constellation is that it permits representers to be reused in
different accessor models.
A single accessor may support any number of representers. Figure 4.13 shows
three representer channels being supported by a single UI-accessor. It also shows
a single representer being supported by the SI-accessor. Similar to representer
containers, accessors are also housed in accessor containers. An example of an
accessor container is a servlet engine or a Java/Swing framework. Based on this
separation of concerns in both modeling and runtime environments, a single,
reusable accessor may serve significant functionality to multiple representation
channels, that is, to multiple representers. This is called multichannel access to a
single accessor. Moreover, new channels may be added or existing ones removed
at any time via the UML model without having to circumvent, and compromise, the
model-centric architecture.

The following sections provide more detail on each part of the accessor framework.

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-107-

Model-Driven Accessors

The accessor framework introduced in the preceding section complements the OPR
business components during all phases of a system's life cycle. Thus, we require a
corresponding level of model-driven development and IDE support for accessors.
To achieve this, an accessor modeling style with technology projection has been
defined to consolidate available standards and the architectural style. These are
introduced here, while detailed guidelines regarding the accessor modeling style
and its technology projection are presented in Chapter 8 as part of the J2EE/EJB
technology projection component.

An accessor model is used to describe the accessor components in the context of
an assembly. Every accessor model is an instance of the accessor metamodel. The
accessor metamodel, in turn, is an extension of the UML metamodel. The accessor
metamodel addresses the view and controller aspects of the well-known model-
view-controller (MVC) paradigm. It is used to model interactions with the
underlying business model, which fills the model role in the MVC paradigm.
The accessor modeling style specifies how to use the elements of the accessor UML
metamodel to create a particular accessor model. An accessor model defines both
the control flow and the data flow to and from an external entity (external as
defined previously). The model contains the information necessary to generate
deployable accessors and representers as part of the accessor framework. This
information includes, for example, aspects covering display structure, reading and
interpreting events, user or system interaction, and interaction with underlying
OPR business components to handle input or output. This procedure applies to
both UI- and SI-accessors alike.

Accessor models usually are based on well-defined application use cases, so-called
accessor use cases. These use cases describe how a user in a specific role interacts
with the IT system to perform a specific task. Identifying accessor use cases is
part of the analysis-by-design workflow covered in Chapter 6. In accessor
modeling, these use cases are transformed into accessor components in UML.
Based on the accessor model, the technology projection then generates an
implementation and environment for a particular technology. The J2EE technology
projection generates, for example, Java server pages (JSPs), Java servlets, HTML
representations, and their ANT build and test infrastructure.

SI-accessors are identical to UI-accessors from the modeling perspective. The
differences between the two are in their respective technology projections. The
technology projections must be different because SI-accessors support various
system-interface technologies in contrast to the user-interface technologies
supported by the UI-accessors. To keep the following sections in proportion, only
an overview of the accessor metamodel will be presented, with a focus on UI-
accessors and their J2EE technology projection. Extensive detail on the accessor
metamodel can be found on the Convergent Architecture Web site.

Accessor (MVC Controller)

An accessor is the key concept within the accessor metamodel. An accessor is a
specialization of the UML metatype class. It represents an external interface of a
software system. External interfaces can be of two types: user interfaces and
system interfaces. A (graphical) user interface is an interface that enables a

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-108-

human user to interact with the software system. Further, a software system often
must be integrated with other existing systems. The interaction between systems
is made possible through system interfaces. Examples of such interfaces are
CORBA interfaces, Java JMS-based communication interfaces, XML-based
standards for enterprise application integration (EAI), and so forth.

All UML foundation modeling constructs may be used to describe the structure and
behavior of an accessor. Thus, accessors can have attributes and methods, they
can be freely associated with other classes, and they can inherit from other classes
and can implement interfaces.

In the context of the MVC paradigm, an accessor fills the role of the controller.
UML activity/state diagrams are used to model the dynamic behavior of an
accessor. UML states and stereotypes have been configured and extended
especially to represent accessors. One of these UML-conform extensions is the
presence of representers (see the following section) in the activity/state diagrams.
Representers are the parts of an accessor model that define the content and
dynamics of an external interface. However, the accessor model does not have to
specify explicitly whether a representer is intended for a user interface or a system
interface. This is important and emphasizes the similarities between modeling user
and external system interaction. The selected technology projection determines
whether a user interface or system interface is produced based on the model; the
model itself may be used for both. This means that one model potentially can
serve both user- and system-interface channels.

Accessors extend the model-driven component paradigm into the world of system
and user interaction. Accessors, meaning entire accessor models, including
structure and dynamic aspects, constitute components with clear interfaces that
may be embedded in other accessors' models. Thus, the arbitrary composition and
reuse of accessors are possible.

Representer (MVC View)

A representer is used to model an interface element, in particular its input and
output properties. It is a specialization of the UML metatype class. As such, it can
have attributes, methods, and associations with other classes, and so on. An
external interface may consist of one or more representers. For example, a
multiframed HTML interface consists of one representer per frame. The accessor
model handles interactions between representers. Output properties of a
representer are information originating from convergent components and being
presented to the external entity. For example, output could be to a field in a GUI
presented to a human, or it could be to an element within an XML document to be
presented by the representer for interpretation by an external system. Similarly,
input properties specify the input facilities the representer provides. Based on its
input, the representer triggers activities in other convergent components. In the
context of the MVC paradigm, the representer fills the role of the view. However,
in contrast to most MVC interpretations, when modeling a representer, the
designer only specifies the kind of information and input facilities to be provided by
the representer, not the concrete form and layout of the information. The layout,
which may be derived directly from the model information, is handled in a channel-
specific manner by the technology projection.

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-109-

Accessor and Representer Containers

Accessor components do not imply a particular runtime environment. Instead,
accessor models may be mapped to different runtime environments. Examples of
such different runtime environments are J2EE servlets (for example, HTML or
WML), Java applets, Java/Swing environments, or portable mobile assistant
environments. As shown in Figure 4.13, the accessor and representer containers
are abstractions of runtime environments that enable us to model and configure
important aspects of these environments.

An accessor container provides basic, standardized runtime services that will be
leveraged by the accessor. This corresponds to an EJB container that provides
standardized runtime services for OPR business components. For example, the
accessor container normally is capable of activating accessors, managing
interaction with the operating environment, and providing facilities to manage
communication protocols in a highly robust, standardized framework.

An accessor container also may be a central object in a stand-alone application.
Examples of such objects include servlets in the context of stand-alone Web
applications and executable Java classes that create and manage a Swing frame
component. The accessor container can be seen as the leading controller object in
the MVC paradigm. All other accessors are created and managed either by the
leading controller or by an accessor in the same accessor container. As an
abstraction for the technical runtime environment, accessor containers normally
are not visible in accessor models. Instead, they are configured automatically as
part of the technology projection.

A representer container is an abstraction of a runtime environment for
representers. An example of a representer container is an HTML/XML browser such
as Netscape or Internet Explorer or a WML browser in a portable mobile assistant.
The representers in these examples are then the HTML/XML pages or WML frames.
Such representers often exhibit complex interaction relationships within the
context of the representer container, such as the relationships between HTML/XML
frames. Thus, these relationships may be modeled explicitly in an accessor model.

The representer container houses and manages the active representers and
displays their graphic interface to users or, in the case of SI-accessors, provides
another form of interface to the external entity. Representer containers may be
composed freely to form a hierarchy of representer containers. The root container
in the hierarchy is the top-level representer container, which is managed by its
associated accessor container.

Lastly, from the perspective of the convergent component metamodel, both
accessor and representer containers are utility components (defined later).

The Extended State Machine Model

The accessor metamodel also defines a UML-compliant extension to activity/state
diagrams in order to model the behavior of an accessor effectively. This extended
state machine model consists of several specializations of the UML type state.
These are as follows:

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-110-

 RepresenterState. This describes the state of a representer in a
representer container. In a GUI, the state determines whether input or
view elements are to be displayed. For example, in a system interface,
the transition to a RepresenterState can trigger an XML document to be
dispatched. In this case, the interface would wait for a response
document containing input information provided by the external system.
The events triggered through inputs of a representer are handled as
InputEvents. InputEvents can trigger transitions in the activity diagram
of an accessor.

 EmbeddedAccessorState. This describes a special state in the
accessor's activity diagram composed of many (reused) accessors. A
transition to an Embedded AccessorState initializes and activates the
subordinate accessor. The originating accessor remains in the
EmbeddedAccessorState until the embedded accessor reaches its
terminal state. When the subordinate accessor reaches its terminal
state, it triggers a TerminalStateEvent, which usually triggers a
transition in the originating accessor. Optionally, the originating
accessor can provide its own representer(s) in an active representer
container. In this case, transitions to the originating state also can be
triggered by InputEvents from the representer(s); the subordinate
accessor is deactivated without reaching its terminal state.

 JumpState. This defines a special terminal state in the accessor's
activity diagram where the accessor hands over control to another
accessor, the jump target. In contrast to the EmbeddedAccessorState,
the current accessor loses control; that is, on activation of the jump-
target accessor, the current accessor is deactivated. If the current
accessor is embedded in another accessor, its encapsulating accessor
will be deactivated when a JumpState in the activity diagram of the
current accessor is reached. If the encapsulating accessor is itself an
embedded accessor, this deactivation mechanism will recurse up the
entire active accessor stack. Afterwards, the jump-target accessor is
initialized and activated, now being the only active accessor.

Activities and decisions are standard features of UML activity/state diagrams that
take on special meaning in the context of an accessor. They are used to describe
all behavioral aspects of an accessor that are not involved in activating and
transitioning between representers (RepresenterState) or involved in managing
accessors (EmbeddedAccessorState or JumpState). Typically, activities and
decisions express the interactions of the accessor with its supporting convergent
components. Activities and decisions trigger various ProcessEvents. In particular,
activities can produce Exception-Events, which are a special kind of ProcessEvent
used to handle exceptional situations. The exception-handling mechanisms are
detailed in the bonus chapter on the Web site.

Resource Mapping

Using the elements described thus far (that is, special states, activities, decisions,
events, and transitions), it is possible to model the control flow of an accessor. To
describe the data flow within the accessor's state model, the accessor metamodel
defines the ResourceMapping abstraction. A ResourceMapping is used to pass
parameters within the accessor model. In general, a ResourceMapping is a rule for
passing a single value from a source element to a target element on the

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-111-

occurrence of a particular event. The ResourceMapping consists of source and
target references that specify the source and target elements, respectively. A
reference is described by a ReferencePath, which refers to the referenced model
element. The ReferencePath can be composed of an arbitrary number of
ReferencePaths, thus forming a navigation path through the model.

ResourceMappings are used in the following places:

 In RepresenterStates. A ResourceMapping in a RepresenterState
typically is used to map values of accessor attributes to attributes of
the representer(s) associated with that RepresenterState.

 In EmbeddedAccessorStates. A ResourceMapping in an
EmbeddedAccessorState typically is used to map values of attributes in
the superior accessor to attributes of the subordinate accessor
associated with the EmbeddedAccessorState.

Further levels of detail are necessary to completely describe the model-driven
accessor components, their modeling style, and their technology projections. This
detail is provided in the bonus chapter on the Web site, which covers the entire
Technology Projection Component.

OPR Business Components

The business component layer defines a finite set of component types, the OPRs,
according to the principles of convergent engineering and RASC as described in
Chapter 3. The most important advantage of the business components is their
business relevance, the business dimension, regardless of their technical
representation, the IT dimension, which may change quite often. The process of
modeling with these components helps business and IT experts communicate,
represent, evolve, and tune business operations. During the definition of an IT
system, business components are first considered from this business perspective.
The resulting business model is then evolved into an IT infrastructure according to
the clear patterns and rules of the architectural style, thereby automatically
avoiding the pitfalls of complex translation losses and conceptual drift—in other
words, avoiding divergence. Avoiding divergence is the job of the convergent OPR
components, each covered in its respective section here.

The OPR Business Perspective

In this section we focus on the business dimension of the business components. In
addition to the extensive use of object-oriented design techniques in the IT
dimension, they are also used at the level of business design. When applied
properly, the object-oriented approach simplifies the entire modeling process at
both technical and business levels. This is due to the fact that anybody can learn
quickly to read an object-oriented model. It is easier to understand an object-
oriented model than any other representation because object orientation leverages
everyday concepts that we are all familiar with. For example, the concept of
inheritance, one of the three pillars of object orientation,[7] and its power to
simplify business models can be understood immediately even by persons with no
previous exposure to software development. Thus, object-oriented design can be

TE
AM
FL
Y

Team-Fly®

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-112-

used by anyone to simplify both the representation of the business and the
communication of this representation. However, there is one catch: Someone still
has to define how these powerful concepts will be used to best represent a
business as well as its respective IT systems. A set of guidelines, the modeling
style, must exist to define how object-oriented and other concepts will be applied
uniformly across the many projects and systems in an organization. In the
Convergent Architecture, the modeling style for OPR business components begins
here in the convergent components model. However, it also influences the
activities of the development process and the UML modeling style, both covered in
later chapters.

For the OPR components, the modeling style starts with the business model. It
defines a set of modeling abstractions that will be used uniformly in all business
models. These abstractions are the OPRs, from convergent engineering (Taylor
1995). Figure 4.14 uses a typical constellation of OPRs to exhibit how they can be
used to represent any business operation. Remember, the term business used
here is relative to the domain or industry. A technical business domain also may be
represented using the OPR abstractions.

Figure 4.14: Business engineering with object technology.

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-113-

In the figure, the business designers have recognized a business unit, its reception,
and its departments as significant organizations. Purchase-order documents and
personnel and product information sheets have been determined as significant
resources. Lastly, the fulfillment process has been identified as a significant
process in the operation of the business. The act of representing the business
OPRs alone often reveals immediate possibilities for improvement. When carried
out in the context of an overall IT architecture, the task of business modeling is an
investment in the successive improvement of the entire business operation. These
improvements may be the result of better automation of the business using
information technology. However, immediate, non-IT-related operational
improvements often outnumber the IT-related improvements in the initial stages
of business modeling. The reasons for this are explained in Taylor (1995).

In addition to defining the three intuitive OPR business abstractions, the modeling
style also can provide information on how these abstractions are related. Such
predefined types of relationships help create more uniform models. More important,
they are in the interest of constructive foresight down the development channel.
They enable effective preparation downstream in the development process without
constraining the expressiveness of a business model. This is analogous to traffic
rules stating that you may drive anywhere you want as long as you drive on the
right side of the road. This simple constraint in the way we drive enables the entire
signage and signaling of roads to be prepared effectively, once and for all, without
having to ask every driver what side of the road he or she intends to drive on.[8] It
also simplifies the rules and signaling at intersections, making them easy to learn
and uniformly enforceable. Without this constructive foresight, a driver would
never know what the intention of another driver is at a crossroad, and the
definition of standard signaling (the automation and the tools) would be impossible.
Just as the clear rules of the road significantly reduce the risk of driving, the
constrictive foresight of the modeling style reduces development risks and enables,
for example, more effective security mechanisms. The days of arbitrary rules of
the road are gone forever. By the same token, the days of arbitrary object models
as the default approach are passé in the Convergent Architecture.

The OPR business abstractions and their relationships form a pattern, as shown in
Figure 4.15. To achieve convergence, this top-level pattern visibly evolves to other,
more detailed patterns throughout the various levels of refinement, from the
business model to various IT representations to the final running system. The
objective is to preserve the basic relationships shown in the figure throughout all
phases of system development.

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-114-

Figure 4.15: The basic OPR relationships and the semantics of OPRs.

In the figure, the base business object leverages inheritance in order to simplify
the model. All OPRs inherit its common features, including its relationships: All
OPRs are business objects. The association line and caption to its left indicate that
all business objects are, by default, searchable and traded via their designated
owning organization. The dotted line denotes that this mechanism is possible and,
in the absence of overriding circumstances, is the default relationship. This means
that all positions downstream in the architecture provide features enabling
effective searchability and trading. However, the precise meaning of "Internet
searchable, traded" is not defined by the business model. It is defined by the
technology projection chosen for a particular instance of the Convergent
Architecture. The business model and subsequent UML models only define how
searchability and trading features are configured, not their precise implementation.
The models are not simply a notational translation or visualization of a particular
implementation. Instead, depending on the technology projection, they may be
mapped to many different implementations. The architectural IDE actively
supports the task of configuration according to the constraints of a specific
technology projection. This well-defined relationship with the technology projection
downstream in the design flow is important because, in order to remain simple and
compatible, models cannot arbitrarily define how such complex mechanisms as
searchabilty and trading will work, nor should they be ambiguous about such
business-relevant aspects of a system.

The relationships associated with the organization in the figure show that
organizations are managers of all OPRs and are the centers for trading and
dispatching these contained OPRs. All business objects locate OPRs and negotiate
their access and use via the organization. Thus, the organizations are the top-level
enforcers of security policy as well as the principal quality of service (QoS) query
interfaces by which potential users locate the OPRs best suited to their needs.
Aside from being a business object, the process has the possibility (denoted by the
dotted line) to more directly associate itself with resources. This direct association
means that it may possess references to specific resources over long periods of

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-115-

time. Such direct binding, like all other relationships in the diagram, brings with it
a certain set of tradeoffs downstream in the development process. The
architectural style's preference for the set of tradeoffs associated with trading is
expressed by the presence of trading as the top-level default, automatically
inherited from the base business object. However, the fact that processes often
require an explicit, direct association is also recognized by the style and indicated
by the potential to overload the business object's default with the direct
alternative—at a cost. Once again, the precise tradeoff set associated with the
alternatives can only be defined by the selected technology projection—more
evidence of the sensitive relationship between business design options and system
design reality.

Analogous to a process, a resource also may have direct relationships with other
resources. As all business objects, a resource has a particularly intimate
relationship with its owning organization. Once again, the precise properties of this
relationship depend on the technology projection.

This focus on the business perspective of the OPRs in this section emphasizes the
relationship between the business, project, and system design, this time at the
level of business modeling. Alas, not even the business model is exempt from the
designer's paradox. Even the business designers must somehow deal with
engineering realities to keep such realities from creeping up and, often, wreaking
havoc on projects down-stream in the development effort. Experience shows that
investments in models, business models or other models, that cannot be projected
easily to available technologies are at best dubious regarding their effectiveness
and returns. One step toward avoiding such dubious investments is not to leave
the designer in the dark concerning the relevance of constraints that await him or
her downstream. Reformulating this from the perspective of a project manager,
modelers, including business consultants, should no longer work in the optimistic
bliss of zero constraints until the project hits the wall of reality down-stream in the
development flow. To avoid this, the realities of the technology projection
(including the programming and implementation phases) must be propagated at
the appropriate level of abstraction upstream, producing a higher level of design
sensitivity. This does not mean that the designs are any worse or any harder to
produce. In fact, just the opposite is the case: They are cleaner, simpler, and more
effective because they express the business strategy, the OPRs, using a modeling
style that understands how the model should evolve, by hand or automatically,
and with higher quality into the next level of refinement. To come back to the
analogy: Who cares whether we drive on the right or the left side of the road?
Simply by specifying this inert driving constraint up front in the design stream, we
improve the quality and effectiveness of the entire transportation system
downstream. Moreover, such design sensitivity does not mean that the business
and system design are inextricably coupled. To the contrary, although some level
of coupling must exist in the interest of engineering reality, unnecessary coupling
is avoided by explicitly dealing with the existence of these realities in the
architectural style—the designer's paradox.

The OPR Convergent Components

This section complements the preceding section by focusing on how a business
model is transposed via components into an IT system. Figure 4.16 illustrates the
convergent mapping of the business design into IT components. To the left, we see
the model from the business perspective, as developed using the reduced set of

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-116-

abstractions: organizations, processes, and resources. The right side of the
diagram shows the same reduced abstraction set from the software perspective.
This alignment of the business model with the component model is a high-priority
goal in the Convergent Architecture.

Figure 4.16: The convergent OPR components.

In the software perspective, we see that the components add the IT dimension
aspects while visibly preserving the features of the business dimension in the
business components. The figure also shows the relationship between utility
components (defined later) and the business-component hierarchy. The utility
component does not inherit from the base business component because it is, in
effect, the antithesis of the business component: By definition, it has no business
relevance.

The business component is shown as the first component with business relevance
and, as such, with a visible business dimension. Its dotted outline suggests that it
too is abstract and serves primarily to factor out common characteristics of the
OPRs. The visibility of the business dimensions in the OPRs exists to preserve
convergence, emphasizing that the designer and tools are to map the OPR
business object model at the left of the figure to the convergent components at the
right of the figure. Alone, the visibility, tractability, and reversibility of this
convergent mapping simplify both technical and conceptual aspects of a design.[9]
The process, patterns, techniques, and tools for convergent mapping are covered
in Chapters 6 and 7 in conjunction with their concrete application using the
architectural IDE. From the perspective of the convergent component metamodel
itself, the UML modeling and technology projection of the OPRs remains to be
discussed.

UML Modeling and Technology Projection of OPRs

Starting from the business model, it is important to keep the OPRs clearly visible
through the UML models and into the runtime environment. The modeling style,
part of the TPC, defines how the quadrants of the OPRs are modeled using
standard UML for a given technology projection such as J2EE/EJB. Maintaining the

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-117-

business and IT dimensions as separate entities throughout the design flow is
particularly valuable. First, it permits the workers on a team to be more
appropriately allocated: Business logic developers can focus on the clearly visible
business dimension. In addition, due to the model-level support of these
dimensions, the IT dimension can be generated automatically from the model for a
particular technology projection. The architectural IDE also can better support the
very different life cycles of the two dimensions. The business dimension, which
contains the majority of an organization's business logic, can be modeled,
versioned, documented, and stored as separately managed entities. Even the
generated build and deployment infrastructure (that is, directory structures, files,
and build scripts) and the resulting runtime system (that is, components, classes,
and objects) can separate the two life cycles. For example, a J2EE technology
projection generates the business dimension into a completely different directory
structure, separate from one or more IT dimensions. This single business
dimension can then be used together with several different IT dimensions. Thus,
different application servers can be deployed or tested in parallel with the same
business dimension, or a version upgrade from one server infrastructure to
another can be handled simply by regenerating the IT dimension from the model.
These improvements by themselves result in significantly higher development
quality in less time with fewer resources.

Developing an effective technology projection for the OPRs is far from trivial. This
is not due to any inherent problems in the OPR structures or semantics; rather, it
is caused by the fact that the business dimensions of the OPRs are, by design (see
Figure 4.15), closer to the business than they are to currently available technology.
The challenge of the specific technology projection is then to place as few
constraints on the business dimension of the OPRs as possible while still supporting
a robust, assisted, or automatic projection to available technology. This turns out
to be a real challenge because the OPRs, as simple as they appear, push the limits
of even the best technologies. In addition, our basic principles require that the
technology projection avoids coupling with short-lived, proprietary
implementations, which, quite correctly, narrow the options available to the
designer of a technology projection.

To date, essentially two approaches have been taken to technology projection.
These approaches affect to some extent the technology projection of all the
convergent components. However, the OPRs, as the core business components,
define the driving tradeoff set. These approaches represent two ends of a
spectrum of reasonable tradeoff sets. Different IT organizations invariably select
different positions within this spectrum. The first approach is to complement
available technology by implementing high-level features of OPRs. This approach
enables more powerful OPRs from the business design perspective at the cost of
requiring some proprietary extensions to standards-based technologies. The extent
of these improvements currently strains our requirement that we avoid coupling
with proprietary technology. The second approach, and the one taken by the
default J2EE technology projection described in this book, represents the other end
of the tradeoff spectrum. It maps the OPRs to the robust features of available
standards-based technology, such as a J2EE server, and avoids any significant
extensions. Nevertheless, we do allow it to smooth out the rough edges of a
particular J2EE server without drifting from the standard. This approach turns the
tradeoff set around: The OPRs are no longer in the driver's seat. Instead of placing
hard requirements on the infrastructure, the OPRs willingly submit to its limitations.

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-118-

In this approach, the OPRs are more limited in their capabilities, whereas the
technology projection is better aligned with mainstream technology, more portable,
and easier to communicate.

Any point in this tradeoff spectrum is equally well supported by the Convergent
Architecture as long as the point is specifically selected. A closer look at the two
approaches, the two ends of the spectrum, shows how this works.
The first approach has been around longer than the second approach. This is
because component standards and standards-based infrastructures have only
recently reached a level where they can reasonably support reality-scale systems.
Before the advent of J2EE/EJB, the first approach projected organizations to
CORBA-trader-compliant components in CORBA-centric infrastructures. Process
and resource components were the traded CORBA objects. Process components
leveraged proprietary workflow technology in order to reasonably support UML
process models. Oddly, de facto standards for modeling process workflow in UML
were available before any implementations of these de facto standards. Thus, the
TPC and the architectural IDE could support standards-based UML modeling for
processes, such as the method of event-driven process chains (EPCs) (Aalst 1998),
while having to project these UML models to proprietary implementations.

Using current J2EE/EJB standards and technology for the first approach is similar.
In these constellations, organizations are modeled and projected to EJB
components that have been extended to use the EJB query mechanisms in the
form of a component trader. CORBA-trader concepts often are leveraged here.
Alternatively, an entire EJB container represents a single organization. The EJB
modeling style for organizations is explicitly extended to expose relevant trader
features in UML, and the technology projection is extended to map these features
to the particular J2EE implementation. Similar to the CORBA-centric approach
earlier, processes are modeled using a process-modeling extension in the UML
modeling style. These models are then projected to proprietary, organization-
specific extensions to EJB or, preferably, to purchased workflow engines.

In the first approach, it is important to note that any extensions may be generated
to several different technologies. However, the effort required to maintain the
technology projection for each platform may be significant—an important
consideration in the tradeoff set.

In the second approach, the IT organization decides that the advantages due to
standards and mainstream alignment outweigh the advantages of high-end OPR
semantics. In this approach, the capabilities of the OPRs submit to the constraints
of available technologies. Although still valuable, the OPRs are not as powerful as
we would wish. Over time, developers can increase their power based on
improvements in standards and mainstream technology. This is a slower
incremental approach, but it is low risk and low resistance from the perspective of
the IT organization. On the other side of the coin are the compromises that must
be made in the OPR designs. Organizations are designed in UML as EJBs that are
preconfigured to use the best available query features and association
management features, as long as these features remain close to the EJB standard.
The technology projection then selects and tunes the best configuration of these
features for the particular implementation technology. In other words, there is no
standard way to use the implementation of a standard. There are several ways to
skin a cat, and a good technology projection, while remaining close to the standard,

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-119-

differentiates itself from run-of-the-mill code generators by providing expert tuning
of the features of a particular J2EE/EJB implementation. Such tuning is complex
but important because the various J2EE/EJB application servers do differ
significantly in the implementation and tuning of their standard-conform J2EE
features.

In the second approach, the same basic rules apply to processes and resources.
Processes are, of course, much more challenging to map than resources. In fact,
processes are the place where the most compromises must be made when using
current J2EE/EJB technologies. Several major problems can occur when
implementing EPCs (discussed previously) using current state-of-the-art standards
and their implementations. These problems range from coordinating concurrency
in the presence of isolated transactions (the so-called lost update problem) to the
severe limitations on multithreading that arise as a side effect of transactional
constraints in the EJB standard. The list of problems here is long and complex, but
the bottom line is that without proprietary extensions, projecting processes
modeled along the lines of EPC is out of the question. This is improving, but the
currently available technology just does not make it possible using standard-
compliant features. Instead, the modeling style in the second approach requires
process models to be simpler. Currently, this translates to some restraints in the
concurrency and asynchronous behavior of processes. Since the UML modeling
style is explicit as to its capabilities, the architectural IDE can still check whether a
process in the UML model complies to the specific constraints of a projection or not.
The advantage of this approach is found in the long-term perspective. When
standards and their implementations improve, the modeling style and the
technology projections can cash in immediately on these improvements. This is so
because they have not deviated previously from the mainstream flow. The
restraint and resistance to the temptation of proprietary features can result in
significant returns in the long run. The only prerequisite to this payoff is a clear,
consistent path, a consistent architectural style.

[7]Object orientation adds three powerful modeling tools to traditional procedural
representations. One of these tools is type abstraction, also known as inheritance.
The other two are class-level data abstraction (encapsulation) and function
abstraction (polymorphism). See Taylor (1997) for a pragmatic introduction to these
concepts.

[8]Another well-known style defines driving on the left side of the road as its standard.

[9]With respect to current OMG/MDA concepts, the business components begin with a
core model at the level of a responsibility-driven design at the CRC business model
level and evolve along a structured path, via mapping patterns, into UML along the
course of convergent model refinement (see Chapter 6).

Utility Components

Utility components, short for technical utility components, are convergent
components without any business-domain relevance. They are not (do not inherit
from) business components and as such do not possess any predefined business
behavior or relationships. Similar to accessors, utility components encapsulate
external technology to explicitly ensure the integrity of the architecture. In
contrast to accessors, the technologies encapsulated by utility components are

Convergent Architecture Chapter 4: The Convergent Component Metamodel

-120-

coinstalled as part of the convergent system: They are either physically part of an
assembly, that is, installed as part of the assembly, or they are part of the
prerequisite installation platform required by the assembly.

Utility components are used to implement any purely technical aspects of a
convergent system and to abstract the other convergent components from fast-
changing aspects of implementation technologies. Thus, as shown in several of the
preceding figures, a utility component does not normally implement a business
dimension; its only active dimension is its IT dimension. Typical examples of utility
components include logging facilities, administrative or monitoring facilities,
security servers, key servers, and configuration servers used uniformly by all
convergent components.

Summary

The convergent component metamodel presented in this chapter plays a major
role in the architectural style. It defines convergent components as a vehicle to
assist business designers and developers along the path from high-level business
modeling to effective design representations to running IT systems.

The metamodel first defines how the concepts of convergent engineering, the UML
standard, and component design standards such as J2EE/EJB are combined to
model and implement convergent components. It partitions convergent
components into architectural layers and specifies how each of these layers
contributes to the model-centric development of a convergent system.

The responsibilities, relationships, and structure of each convergent component are
described in conjunction with its positioning as part of a UML modeling style. In
each case, the important properties of the technology projection are discussed as
well as the factors realistically influencing projection to current and future
technologies.

In the following chapters, convergent components and the associated concepts
seen in this chapter will be used to streamline the IT organization, the
development process, and the architectural IDE and to increase the effectiveness
of each one of these cog-wheels in the clockwork of holistic architecture.

Convergent Architecture Chapter 5: The IT-Organization Model

-121-

Chapter 5: The IT-Organization Model—
The business of building IT systems

Overview

The development model of the Convergent Architecture is comprised of three
subdivisions. The second of these is the IT-organization model, which is covered in
this chapter.

The information technology (IT) organization is one of the most significant
organizations of any modern business. Its services are critical to the success of the
business as a whole because the systems it produces are the lifeblood of other
organizations in the business. This means that the IT organization is essentially
responsible for representing and optimizing the operational aspects of other
business organizations. We saw in previous chapters that the process of building
the IT systems is synonymous with the process of understanding and optimizing
the business. The business, however, consists of many various organizations, each
striving to improve the business as a whole and each crucially dependent on IT
systems to achieve this goal. The IT organization is the only organization in a
position to facilitate cross-functional optimization across all other organizations and
to help these organizations represent, optimize, and support their strategies as
part of a holistic whole. However, to be successful in this central role, the IT
organization must first win the confidence of other business organizations. It must
itself lead the way as the role model of effective design and IT support. If it did not,
every effort to help other organizations optimize their work would be regarded,
quite correctly, as pretentious. An organization responsible for business
optimization must itself practice what it preaches. This professionalism is
important not only from the perspective of credibility, but also from the
perspective of being effective in the business of building IT systems. This is why
the Convergent Architecture positions the IT organization first and foremost as the
business organization that must get its respective house in order before
attempting to help others improve theirs. From this perspective, the task of the
architectural style is to define what its house should look like and how it should be
run in order to optimally produce systems according to the style.
The following sections provide a structured representation, or model, of the IT
organization as it should operate to best support the other features of the
architectural style. When creating an instance of the Convergent Architecture, this
model is used as the roadmap to set up a new IT organization. It is also employed
for the evolution of existing organizations. The result is a situation-specific
representation, or model, of an IT organization. As explained in Chapter 2, the
Convergent Architecture "uses what it sells." This means that the IT organization is
modeled using the same concepts the Convergent Architecture uses to model any
business organization. These are the business abstractions: organizations,
processes, and resources.

The IT-organization model focuses on organizational structure and the resources
that populate this structure. These are the resources relevant to system
development, such as workers, development teams, and software. When referring
to an IT organization as defined by the Convergent Architecture, I use the spelling
IT organization. The IT organization is where both resources and processes live. It
defines the structure in which the entire development process operates. It is where

TE
AM
FL
Y

Team-Fly®

Convergent Architecture Chapter 5: The IT-Organization Model

-122-

the components of the development process find the resources they require and
deliver the resources they produce. It adds an aspect of calming continuity and
order, which effectively directs the ever-changing landscape of development
projects. Thus, the IT organization, as covered in this chapter, is the prerequisite
foundation on which the development process is built. The corresponding process
model—the development process model—presented in the following chapter is
based on this foundation.

Before getting into details, let's turn our focus to the IT organization and its
positioning within a business organization, as illustrated in Figure 5.1. In this and
subsequent figures, organizations are represented as rounded rectangles in
accordance with convergent engineering. Figure 5.1 depicts the IT organization as
an integral part of the overall business. The outermost organization represents the
top-level business organization. The organizations to the right in the diagram (that
is, the sales and finance and administration organizations) are typical examples of
other core business organizations. All the organizations outside the IT organization
are the organizations it supports. They are its clients or its customers. The figure
also shows the internal structure of the IT organization. It is comprised of its
internal or suborganizations. Each of the IT organizations is summarized here:

 IT organization. This is concerned primarily with project design as
well as the environment and mechanisms required to effectively
coordinate manifold IT-related projects. It sets up and manages the
following four internal organizations and represents their cumulative
responsibility as the interface to external or client organizations.

 Architecture organization. This is responsible for defining and
maintaining the Convergent Architecture and ensuring its proper use. It
also has technical, project management, and mentoring responsibilities
focused on achieving the high returns of professional IT architecture
across all organizations.

 IT-support organization. This is responsible for critical support
services shared by the other IT organizations, including all software
development projects. It can be seen as the operational systems
organization supporting the business of IT development. The IT-support
organization is comprised of sub-organizations for change and
configuration management, base infrastructure administration, project
information management, and test center management.

 System-development organization. This houses and manages the
system-development teams. It coordinates individual software projects
and the skills pool of developers working in these projects. It also
defines the goals and guidelines for a successful software development
project, as well as the structure, roles, and responsibilities for a
successful software development team, the so-called canonical
development team.

 Operational-systems organization. This is the operational runtime
organization responsible for deploying systems and maintaining their
production use by other business organizations. The operational-
systems organization is comprised of suborganizations for software
deployment, user support, and base infrastructure administration.

Convergent Architecture Chapter 5: The IT-Organization Model

-123-

Figure 5.1: The IT organization in a business context.

The following sections cover each of these organizations in more detail.

Features Common to All IT Organizations

In accordance with the principles of the architectural metamodel, we use the
techniques of responsibility-driven design and object-oriented technology to
describe the IT organizations. This begins by defining the features common to all
IT organizations and outlining the structure and terminology used to describe all IT
organizations. Readers familiar with object-oriented technology would intuitively
call this the base IT organization.

The characteristics of the organization, process, and resource abstractions (OPRs),
common to both the IT-organization model and its related development process
model, are covered in the remainder of this section. OPRs are design patterns
introduced by Dr. David A. Taylor in his book on convergent engineering (Taylor
1995). The models of the Convergent Architecture leverage and build on these
patterns; however, Dr. Taylor's book should be consulted for the rationale and
detail behind these patterns. To assist readers who are not yet very familiar with
convergent engineering, the necessary OPR fundamentals are reviewed here in
conjunction with descriptions of how they are applied specifically in the IT
organization. You may want to refer to Figure 3.4 while reading the following
descriptions.

Organization, Process, and Resource Abstractions (OPRs)

OPRs are units of well-defined responsibility. Such responsibilities also include the
relationships OPRs maintain with each other, as described here. In general, OPRs
are fractal in both structure and behavior. This means that they may be nested to
any level, with each level maintaining compatible behavior. This applies to all
subtypes of OPRs. For example, as you will see, the IT organization contains an
architecture organization. They are both organizations, and as such, they inherit
the compatible structures and behavior of an organization. The architecture
organization may contain other organizations. Such nesting may go on indefinitely.
This constitutes what is known in convergent engineering as a fractal structure
because no matter how far you drill down into the details of the structure of the IT
organization, you still see the familiar forms and behavior of organizations.
Persons familiar with object-oriented technology recognize that the power of

Convergent Architecture Chapter 5: The IT-Organization Model

-124-

fractal structures and fractal behavior is the result of applying the three pillars of
object-oriented technology: data abstraction (encapsulation), type abstraction
(inheritance), and function abstraction (polymorphism). However, you do not have
to be an expert in object-oriented technology to understand and apply these
powerful concepts to simplify the IT organization.

Organizations

Organizations manage processes, resources, and other organizations. They group
people and other resources charged with carrying out specific business processes.
An organization coordinates and represents the cumulative responsibilities of its
contained OPRs. For example, just as in "real" business organizations, an
organization prioritizes the access and use of its OPRs, implements security
measures, and tracks their use. In the IT-organization model presented here,
organizations are defined according to their responsibilities, their workers (see
"Resources"), and the responsibilities of these workers.

Processes

Processes are goal-directed sequences of activities or tasks that are enabled by
resources. They access or consume resources in order to enhance or produce other
(hopefully more valuable) resources. For example, a process may consume a
person's time to produce a document describing another new process. The
document is a resource that has been produced by the process. Since processes
may be nested to any level of granularity (all OPRs are fractal), they can represent
high-level workflows as well as highly granular tasks. In the IT-organization model,
we distinguish two types of processes to represent the granularities we require.
The granularities and names used for these processes are in full alignment with the
rational unified process. They are

 Workflows. Long-term, identifiable groupings of logically related
activities.

 Activities. Identifiable groups of logically related tasks. Tasks are
measurable, atomic units of work that usually are associated with a
specific technique. They are the smallest unit of planned and assigned
work in an organization.

Resources

Resources are intelligent units of value, cost, and action in an organization. They
represent sources of business value, work, and information used by other OPRs.
Three types of resources of particular relevance exist in the IT organization:

 Workers. Humans are important resources for an organization, of
course. Moreover, the roles a person can fulfill are resources. In the IT-
organization model, the relationship between a human resource and a
role fulfilled by a human is known as a worker. This corresponds to the
term worker as used in the rational unified process. A single person
may have many worker relationships. For example, if Susan possesses
the skills to fulfill the role of component developer or lead developer in
a project, she may be assigned as the worker fulfilling both these roles.

Convergent Architecture Chapter 5: The IT-Organization Model

-125-

This explicit separation of humans from their potential roles, as well as
the representation of the worker relationship between these two, is
another important pattern in convergent engineering. As part of their
responsibilities, workers coordinate all other, inanimate resources
within an organization such as machinery, money, time, and so on.

 Artifacts and change sets. Also in line with the Rational Unified
Process (RUP), we denote the resources produced or used by the IT
organization in the context of system development as artifacts.
Artifacts may be versioned alone or grouped into versioned sets. Such
versioned groups are known as change sets. A change set may contain
one or more artifacts. Change sets are managed using a configuration
and change management (CCM) system, as described later. Thus, for
our purposes, change set and artifact are synonyms, except that a
change set may contain several named artifacts. We use the term
change set when we speak of the artifacts grouped by the change set.
In the IT-organization model, the artifacts and the change sets to
which they belong are presented together with their respective
managers. How and when these artifacts are created, and by whom, is
the topic of the process model.

 Technologies (reference technologies). The IT organization
practices the same rules of technology management that it applies to
other organizations of a business. Just as the IT organization rigorously
plans and optimizes the application of technologies in other business
organizations, the coordinated and planned use of technology is
important for its own effective operation. Technologies developed
outside the IT organization have been conceived in their own
technological scope, oblivious of the concepts unifying a particular
architectural style. This requires that certain critical technologies be
positioned properly within the architectural style to avoid pollution of its
concepts. At the same time, the architecture should leverage modern
technologies effectively. To this end, the IT organization recognizes
externally developed technologies as a special set of artifacts. It
specifies those technologies used to support highly specialized activities
in the IT organization. It does not specify a technology in cases where
the choice of technology is noncritical (tangential) or noninvasive (for
example, general office tools) from the perspective of the architectural
style. In addition, the manager of the technology and its intended use
in the IT organization are presented. Naming specific technologies in
critical areas helps an IT organization get off to a running start. Clearly,
the technologies specified here are reference technologies because they
may be somewhat different in a particular instance of the Convergent
Architecture. Even so, it is easier to get started based on a concrete,
tried-and-true reference set. These technologies also will evolve with
time, but the types of technologies used and their roles will remain
stable. In other words, their evolution will be steady and clearly visible,
not abrupt and obscure. As time goes by, the experience of the chief
architect, in accordance with this worker's responsibilities, certainly will
suffice to make the appropriate adaptations.

Using this new OPR terminology, we can now say more precisely that the IT-
organization model covered in this chapter focuses on the IT organization, its
contained organizations, and the artifacts (resources) associated with the

Convergent Architecture Chapter 5: The IT-Organization Model

-126-

organization. The development process model covered in the next chapter then
explains how activities (processes) operate in conjunction with these organizations
and how the activities use, produce, and manage artifacts.

Worker roles are always defined within the context of a particular organization.
Thus, the sum of the worker roles in the organization essentially defines the
responsibilities of the organization. In addition, a worker fulfilling a particular role
is always working in the context of a specific organization, not just a process. This
is important for two reasons. First, skills and roles should be grouped to achieve
synergies. These groups are the organizations. Second, it is important to know
which organization is responsible for coordinating the person fulfilling the role—the
worker. If a person fulfills roles in two different organizations, then, by default, this
person is managed on the level of the next higher organization. This is necessary
because only the next higher organization possesses an undisputable authority to
coordinate the time allocated by this person to each of the suborganizations.

A detailed description of the organizational structure begins by presenting the roles
and responsibilities common to all IT organizations. Although some of these roles
and responsibilities may appear obvious to the seasoned developer or project
manager, experience shows that many of them are not being defined and fulfilled
effectively in projects. Ironically, the largest projects are often the worst offenders.
A realistic project manager or other stakeholder in a software project will not
permit himself or herself to get pulled into a situation where these roles are being
ignored. Each one of them is critical to the project's success. Ignoring any of them
increases the project's risk.

Worker Roles and Responsibilities

The roles and responsibilities of workers common to all organizations are as follows:

 Organization manager. The organization manager is responsible for
the overall fulfillment of an organization's responsibilities. The term
manager simply communicates a higher level of responsibility and
commensurate authority.[1] Not only do managers coordinate in the
context of the Convergent Architecture, they also may do hands-on
content work, depending on the organization, and they may engage
staff to help them carry out their responsibilities. Above all, the
organization manager focuses on optimizing investments with respect
to the overall business priorities as agreed with the management of
higher-level organizations. More important, the organization manager is
the safety net, picking up all the ad-hoc tasks and responsibilities that
were not predefined explicitly but are deemed to fall logically in the
organization. In particular, the organization manager

o Is the highest escalation point and top-level decision maker
in the organization.

o Is the principal communications and management interface
to external organizations—the clients. This includes
constructive feedback regarding designs and procedures in
the form of requirements channeled to the requirements
manager (defined later).

Convergent Architecture Chapter 5: The IT-Organization Model

-127-

o Defines, plans, tracks, and optimizes projects in the interest
of client organizations. This includes coordinating and
prioritizing requirements placed on the organization by
others.

o Is a member of the steering team (discussed later) in the
next higher organization and convenes and leads the
steering team meetings in his or her own organization.

o Plans and coordinates the suborganizations and is fully
responsible for them.

o Performs functional management of the personnel and
facilities of the organization. This includes procurement and
administration of all resources required by the organization.

o Is a Convergent Architecture-specific instance of the RUP
worker: a project reviewer primarily from the IT-
organization perspective. The project reviewer from the IT
architecture perspective is the chief architect (discussed
later).

 Project manager. Analogous with the organization manager but
responsible for the overall fulfillment of a defined project's
responsibilities, the project manager is the manager of a well-defined
project. Once the organization manager has defined a project, the
project manager runs the project from its initial planning through to the
final project closure. He or she reports to the organization manager and
may be asked to participate in steering team meetings.

 Sponsoring client. The sponsoring client is a person or organization
(external or internal) that sponsors a project. The sponsoring client
may be an external software client or a representative of an entire
software market (for example, a software product manager). In cases
where the sponsoring client consists of a group or consortium, a client
steering team is defined to provide an authoritative, representative
body acting in the interest of the sponsoring client. The IT organization
manager initiates the client steering team, if required, and coordinates
its interaction with the rest of the IT organization.

 Workflow owner, activity owner, resource owner. This worker
takes full responsibility for the completion of a named workflow,
activity, or life cycle of a named artifact, respectively. Each workflow,
activity, and resource has a single owner.

 Steering team. The steering team is responsible for global (horizontal)
planning and optimization in organizations that contain multiple
suborganizations. This includes the identification, bootstrapping, or
modification of projects, as well as handling escalation situations. The
steering team convenes at the discretion of the organization manager.
It consists of the organization managers of the next lower level of
organizations in the hierarchy. For example, the steering team of the IT
organization consists of the organization managers of the architecture,
IT support, system development, and operational-systems
organizations. Each member of the steering team represents the
perspective of his or her managed organization. This mixture of
competence and responsibility ensures well-informed, rapid decisions
as well as proactive optimization across the entire organization. The IT-
Organization Steering Team

Convergent Architecture Chapter 5: The IT-Organization Model

-128-

o Officially kicks off system development projects based on
the results of the project initiation activity.

o Terminates system development projects based on iteration
planning or review results and in escalation situations.

These worker roles and responsibilities exist within all IT organizations. They will
not be listed repeatedly in each of the organization-specific sections to follow.
However, any of these roles may be refined or specialized in the context of a
particular organization. In such cases, the specialized aspects of the role are
described and simply will refer to the common or base role it refines.

[1]Some prefer the term owner to manager because manager has so many different
interpretations. I have chosen to use the term manager to remain in line with the
RUP terminology, and then to define what I mean when I use the word manager.

The IT Organization

The top-level IT organization (IT-O), shown in Figure 5.2, is the highest instance of
decision and escalation concerning the development and operation of IT systems.
Its customers are the non-IT-focused organizations of the business. Its steering
team consists of the manager of the IT organization and the organization
managers of the four organizations it contains, as shown in the figure. This
particular steering team is the official interaction interface to all customers and
stakeholders outside the IT organization.

Figure 5.2: The top-level IT organization.

Worker Roles and Responsibilities

Worker roles and responsibilities in the IT organization include the following:

Convergent Architecture Chapter 5: The IT-Organization Model

-129-

 IT-organization manager. In addition to responsibilities as an
organization manager, the manager of the IT organization is specifically
responsible for

o Developing a situation-specific IT-organization model and
implementation plan based on the IT-organization model.
He or she carries out the implementation of the IT
organization by kicking off workflows (see Chapter 6); that
is, he or she is the top-level operational owner of the
development process.

o Initiating the four internal organizations and the top-level
steering team. This begins with the architecture
organization, which then bootstraps the Convergent
Architecture and participates in the detailed planning and
buildup of the other suborganizations.

o Procuring and administrating the human resource pool. This
is the central pool of all human resources allocated to the IT
organization and all its fractal suborganizations. This
responsibility may be delegated in part to other
organizations.

o Administrating the client relationship with both sponsoring
clients and other non-IT organizations of the business.

o Producing and administrating project proposals.
o Performing centralized facilities management, procuring

resources, and handling bookkeeping. This responsibility
may be delegated in part to other organizations.

 Administrating the relationship with external partners. This includes
centralized legal and contract management.

Owned resources:

o Change sets (artifacts): The IT-organization model and
implementation plan, project proposals, and contractual and
administrative artifacts.

Owned activities: Bootstrap the IT organization, project initiation and
tracking, top-level owner of all operational workflows (not of workflow
definitions, which are owned by the chief architect as part of the architectural
style).

The Architecture Organization

The architecture organization (Arch-O), shown in Figure 5.3, ensures a high return
on IT investments by providing professional system engineering skills to the entire
IT organization. It prevents the ad hoc growth of incompatible infrastructures and
competing design philosophies. It unites the most experienced IT personnel with a
professional chief architect to ensure that the Convergent Architecture is
communicated, established, and enforced properly.

Convergent Architecture Chapter 5: The IT-Organization Model

-130-

Figure 5.3: The architecture organization.

Worker Roles and Responsibilities

Worker roles and responsibilities in the architecture organization include the
following:

 Chief (convergent) architect. The chief architect is the organization
manager of the architecture organization and the single top-level
authority on decisions regarding the Convergent Architecture and its
use. In addition to a high level of technical and communication skills,
the chief architect must have a wide range of hands-on experience with
various roles in real-world development projects. The logical career
path leading to the required skill set starts with work as a component
developer, then lead developer, and then convergent architect. These
worker roles are defined below. The chief architect has the following
specific responsibilities, which may be delegated to another convergent
architect (discussed later) in the organization:

 Defines a specific instance of the Convergent Architecture for the IT
organization and consistently evolves the instance. This includes the
coordination and prioritization of requirements on the architectural
style together with the requirements manager (discussed later). It also
includes working closely with the architectural Integrated Development
Environment (IDE) specialist (discussed later).

 Monitors and controls proper use of the style across all system
development projects. This includes reviewing all system project plans
and monitoring development-process workflows. Operational problems
in workflows are delegated to the IT-organization manager, whereas

Convergent Architecture Chapter 5: The IT-Organization Model

-131-

modifications in workflow definitions are worked into the instance of the
Convergent Architecture.

 Assists in detailed planning and buildup of the IT support, system
development, and operational systems organizations. The chief
architect regularly reviews these organizations and works with them to
simplify and optimize overall operations from the perspective of the
three pillars of holistic architecture: project design, business design,
and system design.

 Selects technologies and designates the resource owner for the
technology. The chief architect identifies the need for sentinels for
specific technologies and works together with the respective resource
owner to define the sentinel.

 Reviews project teams to ensure adequate skill sets and preparation.

 Assists lead developers as a participant in system development projects
(discussed later), particularly in the project inception and elaboration
phases.

 Is a Convergent Architecture-specific consolidation of the following RUP
worker roles: architect, process engineer, business process analyst,
architecture reviewer, design reviewer, business model reviewer, and
project reviewer from the IT-architecture perspective.

 Owned resources:
o Change sets (artifacts):
o Convergent Architecture style reference. This

describes an organization-specific instance of the
Convergent Architecture as defined in this book. The
instance may be a one-to-one application of the entire
style as described in this book or a documented variant
that remains compatible with the architectural and
development models as described in this book.

o Assembly architecture review. This is a review report
confirming and explaining the architectural compliance
of a particular assembly component.

o Unified glossary. This consolidates all glossaries
produced by assembly developers (discussed later).

o Sentinels. All sentinels describing the architecture-
conform positioning and the use of technology within the
IT organization, including its system development
projects.

o Top-level OPR business model and context diagrams.
o Specialized Technologies: None pre-defined.

Owned activities: T-bar business analysis and architectural evolution.

 Convergent architect.[2] This apprentice or assistant to the chief
architect gains experience as a convergent architect while assisting the
chief architect in day-to-day activities. The number of convergent
architects required depends on the size and maturity of the IT
organization. A convergent architect accompanies each system
development project and serves as the technology-versed counter-part
to the system project manager (discussed later). His or her primary
role is to guarantee cross-project integrity of the architecture, timely

TE
AM
FL
Y

Team-Fly®

Convergent Architecture Chapter 5: The IT-Organization Model

-132-

feedback between the architecture organization and other IT
organizations, and mentoring of lead developers. The number of
convergent architects also must suffice to ensure adequate redundancy
and long-term continuity in this critical area. This worker is a
Convergent Architecture-specific instance of the following RUP worker
role, the same as the chief architect previously.

 Speaker of the architecture. This communicator professionally
explains and teaches the architecture to its many stakeholders at all
levels of the organization. Due to the critical importance of the IT
architecture in all aspects of the entire business, it is important that it
be properly communicated at all levels of the business. The speaker of
the architecture focuses on this specialized task. This person must be a
master in the skills required to communicate the features, goals, status,
advantages, and plans of the architecture and the architecture
organization. The chief architect does not necessarily fulfill this role. In
fact, in large organizations, this speaker frees up the chief architect to
carry out his or her core responsibilities.

 Requirements manager. This central figure organizes, refines, and
prioritizes the continuous stream of business and technical
requirements from all sources. The requirements manager is the single,
official sink for all requirement requests that do not have a predefined
sink in another IT organization or software development project. Any
requirement without a clearly defined and receptive sink lands with the
requirements manager. Once requirements have been sifted, sorted,
and prioritized, the requirements manager then dispatches the
requirements to organization managers (according to their
organization's responsibilities) for the planning of new projects or
organizational changes. This worker is the Convergent Architecture-
specific consolidation of the following RUP worker roles: requirements
reviewer and change control manager.[3]

 Owned resources:

o Change sets (artifacts): Requirements pool.

o Specialized technologies: Rational Requisite-Pro.
Owned activities: Global requirements management

o Architectural IDE specialist. This tool specialist is
the single top-level authority on the use and evolution
of the IT-architectural IDE and other development-
support tools used in the IT organization. He or she
defines, refines, and maintains the reference tool
topology. The primary responsibility is to ensure that
the tools optimally support the goals and features of
the architectural style and that the tools remain
consistent and compatible across projects. This worker
normally has extensive experience as a development
toolsmith (discussed later). This worker is a
Convergent Architecture-specific instance of the
following RUP worker role: tool specialist.

Owned resources:

o Change sets (artifacts):

Convergent Architecture Chapter 5: The IT-Organization Model

-133-

 IT-architectural IDE. Technology projection component (modeling
style guides, cartridges), installation kit for IT-architectural IDE
modules, and installation verification tests.

 Tools integrated by the architectural IDE. JBuilder Java IDE,
Rational Rose Modeler, J2EE Application Server (for example, Borland
BAS, BEA WLS, IBM WebSphere, and so on), Apache WebServer,
persistent resource manager for J2EE application server (for example,
TopLink, Oracle, Sybase), Cygnus GNU Tools.

o Specialized technologies: Same as change set.

[2]A system architect, as defined by the RUP, who is effectively fulfilling this role in
the context of Convergent Architecture is a convergent architect.

[3]This is a style-specific application of the concepts formulated in RUP Technical
White Paper TP505, "Applying Requirements Management with Use-Cases" (Oberg
2000).

The IT Support Organization

The IT support organization (IT-Sup-O) provides the technical infrastructure and
services for all IT organizations except for the operational systems organization. In
other words, it provides support for the complete development-oriented
infrastructure. Often, development support environments are neglected in project
plans or are delegated to the persons responsible for the operational systems of an
organization, and both approaches result in major problems. Just as the
environment in an automobile factory does not much resemble that of a service
station, the environment required for effective IT system development is much
different from the environment in which the IT systems eventually operate. In
addition, the system developers cannot be responsible for both development of
new IT systems and development and maintenance of their supporting
environment at the same time. These are two completely different jobs.
Experience has shown that it is much more effective to have a well-defined IT
support organization to handle the myriad support activities required by system
development projects. Since the system development projects adhere to the same
IT-architectural style, the IT support organization can better reuse its systems and
services across development projects. As always, such reuse enables superior
optimization of support procedures and systems—everybody wins.

As indicated in Figure 5.4, the IT support organization is partitioned into four sub-
organizations. All its responsibilities and roles, aside from those common to every
IT organization, are delegated to the suborganizations, which are covered
individually in the following sections.

Convergent Architecture Chapter 5: The IT-Organization Model

-134-

Figure 5.4: The IT support organization.

The Infrastructure and Base Systems Organization

New, innovative systems can only be developed effectively once the fundamental
base systems on which the development effort depends are robust and well
organized. The infrastructure and base systems organization (InfraBas-O) is
responsible for providing these fundamental base systems. The chief architect
defines the common-denominator system environments together with this
organization. The infrastructure and base systems organization then implements
and supports the environment for all IT organizations except for the operational
systems organization. Continuity and consistence with the operational systems
organization are maintained through frequent, iterative project interaction in the
due course of system development projects and the activities of the test center
organization (see the following section).

Worker Roles and Responsibilities

Worker roles and responsibilities in the infrastructure and base systems
organization include the following:

 Infrastructure and base systems organization manager. In addition to
the responsibilities of an organization manager, the manager of the
infrastructure and base systems organization is specifically responsible
for the following:

o Defining the basic system environment and services with
the chief architect and ensuring the robust implementation
of this environment.

o Procuring, installing, administrating, supporting, and
maintaining the infrastructure (both hardware and software)
in at least the following areas: networks, file servers, and
application servers for general use; operating systems;
office applications; security and backup systems; and basic
utilities as defined by the chief architect.

o Defining and maintaining the tools and associated
procedures used to support the base infrastructure.

Owned resources:
o Change sets (artifacts): Infrastructure and

base systems guide. This guide documents the
structure, installation, maintenance, and use of
the infrastructure and base systems for the
respective user of the base system.

Convergent Architecture Chapter 5: The IT-Organization Model

-135-

 System administrator. This specialist in system administration
operates and maintains the infrastructure. This worker is a Convergent
Architecture-specific instance of the following RUP worker role: system
administrator.

The Change and Configuration Management Organization

The change and configuration management organization (CCM-O) houses the team
and the systems required to effectively manage the versioned and archived
artifacts of the IT organization. Versioned artifacts are things such as source code
that are managed online in terms of their precise versions. These versions must be
reproducible at any time. A change and configuration management system
supports this complex task. Archived artifacts are one of two things: They are
either artifacts that do not require the precise tracking of version history, or they
are artifacts that cannot be managed reasonably within a configuration
management system. The latter may still be versioned as part of a system
configuration. In both cases, mechanisms must exist to identify and manage these
artifacts outside the configuration management system and in many cases offline.
Examples of offline archived artifacts are CDs containing software kits or
specialized, software-version-dependent hardware such as a smart-card reader.

Worker Roles and Responsibilities

Worker roles and responsibilities in the change and configuration management
organization include the following:

 Change and configuration management organization manager.
In addition to the responsibilities of an organization manager, the
manager of the change and configuration management organization is
specifically responsible for the following:

o Defining the system and service levels for both archived and
versioned pools of artifacts based on the projections of the
other IT organizations. This is done in conjunction with the
managers of each IT organization and the chief architect.
The granularity, partitioning, and quantities of versioned
and archived artifacts can be reasonably estimated due to
the common component and process models and the
common architectural IDE employed across all projects in
the architectural style.

o Managing the software inventory, library, and licenses, as
well as the hardware inventory.

o Cataloging existing convergent components for reuse and
assisting others in locating them. This includes maintenance
of consistent naming conventions and a clean, unambiguous
name space at the level of convergent components.

o Maintaining offline software archive and literature library.

 Configuration manager. This specialist in configuration management
operates and maintains the versioned and archived pools. The
configuration manager has the following specific responsibilities:

o Structuring and optimizing the versioning and archiving
activities according to schemes defined by the rational

Convergent Architecture Chapter 5: The IT-Organization Model

-136-

unified change management (UCM) methodology for the
artifacts and change sets in the Convergent Architecture.
The development model and the architectural IDE specify
many artifacts and change sets, such as the convergent
components, as well as their partitioning.

o Supporting the users in the entire IT organization in
effectively meeting their specific change and configuration
management requirements. In particular, this entails
creating a configuration management reference according to
the UCM for each assembly component.

o Creating a base or template configuration management
reference and using it as a basis for assembly-specific
configuration management references.

o Assuring that all artifacts required to reproduce assemblies
are versioned or archived. This is carried out in conjunction
with the test center organization (discussed later).
Examples of these artifacts include models, generated
sources, build environments, tools, and utilities, that is,
essentially everything required to reproduce the
development environment.

o Convergent Architecture-specific instance of the following
RUP worker role: configuration manager

Owned resources:

 Change sets (artifacts): Versioned UCM pool,
archived pool, UCM usage guidelines, base UCM
configuration management reference.

 Specialized technologies: ClearCase UCM
system including clients.

 Repository toolsmith. This CCM system expert defines,
deploys, maintains, and evolves the UCM infrastructure
and tool environment. The specific definition of the CCM
system and accompanying tools is carried out together
with the chief architect. The repository toolsmith is also
responsible for tailoring the CCM-related tools for
effective use with the architectural IDE and for
supporting users in this context. He or she works closely
with the development toolsmith and configuration
manager.

o Owned resources:

 Change sets (artifacts): None.

 Specialized technologies: ClearCase UCM
system including clients.

The Project Information, Events, and Training Organization

The project information, events, and training organization (PET-O) helps the IT
organization achieve optimal use and reuse of information across organizational
and project boundaries. It is responsible for the proactive definition of effective
communication and learning mechanisms for the entire organization. It provides a

Convergent Architecture Chapter 5: The IT-Organization Model

-137-

pragmatic platform for the timely flow and availability of valuable information,
which is often lost in system development organizations. It achieves this, for
example, through the proactive design of how information will be harvested and
structured both in the IT organization and for the end-user of its system
development products. It then provides well-defined access channels to this
information such as a Web site, regular events, and educational material. In
addition to planning and structuring the information, an important goal of this
organization is to support the direct, well-coordinated contribution to the
information pool by all stakeholders. Lastly, this is the organizational home of all
workers specializing in the consolidation, presentation, and publishing of
information in the IT organization.

Worker Roles and Responsibilities

Worker roles and responsibilities in the project information, events, and training
organization include the following:

 Project information, events, and training organization manager.
In addition to the responsibilities of an organization manager, the
manager of the project information, events, and training organization is
specifically responsible for the following:

o Working with other organizations and projects to define
their particular information, documentation, and training
requirements.

o Coordinating and administrating educational and
information events appropriate to the size and plans of the
other organizations.

o Providing the central definition, coordination, and support
for the suite of electronic office tools used by the entire IT
organization.

 Technical writer. This specialist in technical documentation produces
the final forms of any official documents. He or she is also responsible
for the selection, preparation, and maintenance of publishing tools and
the production of document styles and templates. These preparatory
artifacts are defined together with the chief architect. The technical
writer participates in system development projects to ensure that high-
quality documentation is produced in the course of the normal
development activities leveraging maximum synergies between
contributors. This worker is a Convergent Architecture-specific instance
of the following RUP worker role: technical writer.

o Owned resources:

 Change sets (artifacts): Documentation
development set (documentation style guide, document style
templates), design documentation, end-user documentation.

 Specialized technologies: FrameMaker,
Quadralay Webworks.

 Course developer. This specialist focuses on the development of
educational material and is otherwise analogous to the technical writer. He or
she is often an experienced educator (discussed later). This worker constitutes

Convergent Architecture Chapter 5: The IT-Organization Model

-138-

a Convergent Architecture-specific instance of the following RUP worker role:
course developer.

o Owned resources:

 Change sets (artifacts): Training development
set (training style guide, training style templates), developer courses,
and end-user courses

 Specialized technologies: PowerPoint.
 Educator. This expert delivers training courses in his or her particular

field using materials prepared by the course developer. This worker is often
also the course developer.

 WebDirector. This specialist in Web site definition sets up, administers,
and supports the use of a central Web site for the IT organization, the IT-Org-
Website. This Web site directly reflects the structure of the IT organization.
The WebDirector works with all other organization managers to define and
finetune their Web content, provision, and maintenance. He or she is also
responsible for the selection of tools and maintenance of the entire Web
infrastructure. IT organizations are instructed by the WebDirector on how to
enter and manage their own pages and content in the Web site. He or she
continually supports, monitors, and optimizes the process of distributed
information contribution.

o Owned resources:
 Change sets (artifacts): The IT-Org-Web site,

which is where all project documents, reports, and general
information are published in standard HTML format.

 Specialized technologies:
 HTML is used for all IT organization

internal documents and internal communications. Microsoft
FrontPage (or an equivalent tool) is used for editing, just-in-time
team contribution, and content management. Transmission of
documents is either via e-mail of via the IT-Org-Web site
depending on the target audience and information half-life.

 Visio (or equivalent) with HTML
output is used for context-free graphics such as context diagrams.

 Graphic artist. This specialist in graphic design and related tools is
responsible for the end production of all graphic design-intensive artifacts.
Examples of such artifacts include user-interface icons and graphics for
packaging, logos, Web logos, installation logos, stereotype logos,
documentation figures, and educational and presentation graphics. The
graphic artist also defines the specialized graphic tool and format landscape
with the chief architect and the other specialists in the PET organization. He or
she maintains the tools and provides user support for others using the tools
and formats produced by the tools. This worker constitutes a Convergent
Architecture-specific instance of the following RUP worker role: graphic artist.

 Computer ergonomics and GUI expert (CEG). This specialist in the
layout, flow, and general usability of GUIs assists accessor developers
(discussed later). The CEG (pronounced "keg") is in particular involved in the
production of ergonomic, aesthetically pleasing representers. Thus, he or she
must be an expert in the high-end Web page design tool selected for
representer customization. This worker also develops the look-and-feel
guidelines for the specific organization or industry segment and may develop
reusable accessor components and accessor-generation templates at the

Convergent Architecture Chapter 5: The IT-Organization Model

-139-

request of the architecture organization outside the context of a system
development project.

o Owned resources:

 Change sets (artifacts): GUI look-and-feel
guidelines, representer GUI of UI-accessor components.

 Specialized technologies: Macromedia
UltraDev (or equivalent).

The Test Center Organization

The test center organization (TestCenter-O) ensures that nonpartisan, effective
testing skills and coordination contribute to timely quality control in the IT
organization. Professional testing is a complex area. It is an extremely
nonstandardized field involving complex technologies as well as difficult tradeoffs
regarding effort and payoff. A well-run test organization can save an organization
significant time and money, whereas a poorly run test organization can cause
more problems than it solves. Thus, a professional testing organization is required
to ensure that the proper decisions are made, that proper preparation takes place,
that well-managed testing is performed, and that the results contribute to
improving overall quality and efficiency. In addition, since test design, preparation,
and execution affect every IT organization at some point in the development life
cycle, this organization is required to provide the necessary expertise, focus, and
continuity in this important area.

Worker Roles and Responsibilities

Worker roles and responsibilities in the test center organization include the
following:

 Test manager (test center manager). The test manager is the
organization manager of the test center organization and the single top-level
authority on decisions regarding the Convergent Architecture and its use. In
addition to the responsibilities of an organization manager, the test manager is
specifically responsible for the following:

o Defining and maintaining the test infrastructure
corresponding in character with the current or planned infrastructure in
the operational systems organization, including all real constraints of the
operational environment.

o Working with the chief architect to customize the test
features of the development model (for example, unit testing features of
convergent components) and the architectural IDE to meet specific
requirements of the organization. This results in the specific testing
guidelines document and, in some cases, the addition of specialized
testing tools and infrastructure to the architectural IDE.

o Working with the lead developer and deployment manager
in each system development project to specify the assembly test plan,
including the test environment. Then the test manager allocates and
coordinates one or more testers to assist with unit testing and to carry out
assembly testing.

o Reviewing tester results and test reports and determining in
the later iterations of a project whether an assembly has reached the
initial operation capability and, as such, may be released for deployment
by the transition organization (discussed later).

Convergent Architecture Chapter 5: The IT-Organization Model

-140-

o Developing long-term evaluations and statistics regarding
not only the quality and end results of tests in general, but also the
quality of testability in the IT organization, and providing this as regular
and timely feedback in the form of a consolidated quality evaluation report
to the other IT organizations or through the requirements manager.
Owned resources:

� Change sets (artifacts): Testing guidelines
document, including guidelines for the organization's
specific test infrastructure, assembly test plan, and
consolidated quality evaluation report.

 Tester: This test specialist sets up and administers the test
environment (application server, assembly components) and carries out the
test according to the assembly test plan as a participant in a system
development project. This is a Convergent Architecture-specific instance of the
RUP worker role: tester.

o Owned resources:

 Change sets (artifacts): Assembly test results
report.

 Specialized technologies: None pre-defined.
 Testing toolsmith. This specialist in the test tools and infrastructure

supports the integration and operation of test tools in the architectural IDE.
This expert user of the testing components and capabilities of the IDE
supports users of these features throughout the development life cycle.

o Owned resources:

 Change sets (artifacts): Specialized testing
tools if required.

 Specialized technologies: JUnit.

The System Development Organization
The system development organization (SysDev-O) is where the actual
development and delivery of all convergent components take place. In this
organization, effective system development projects are set up in terms of two
predefined teams, as shown in Figure 5.5. These teams are specially configured to
best address two different types of development projects. Assembly development
teams are specialists in the highly integrative aspects required to deliver entire
assembly components. Component development teams specialize in the reusable
parts of assemblies and usually work in the context of an assembly development
team. The teams define the sets of workers and responsibilities that best
complement each other during the system development life cycle.[4] The
development process described in Chapter 6 will cover the coordination and flow of
activities in and around these predefined teams.

Convergent Architecture Chapter 5: The IT-Organization Model

-141-

Figure 5.5: The system development organization.

Worker Roles and Responsibilities

Worker roles and responsibilities in the system development organization include
the following:

 System development organization manager. In addition to the
responsibilities of an organization manager, the manager of the system
development organization is specifically responsible for the following:

o Supporting the effective production of convergent
components by providing an optimized organization environment for the
entire pool of system development projects. This worker is involved in the
initiation of each project and accompanies all projects from the
perspective of organizational support and synergies. The significance of
this responsibility increases with the number of projects in the project pool.

o Assuring optimal allocation of developers and resources to
and across system development projects.

o Pro-active training of developers and establishing an
optimal team development environment.

o Providing consolidated feedback based on the observations
of manifold parallel system development projects, formulating feedback in
the form of requirements to the requirements managers, and working with
the chief architect to refine and optimize the definition of the system
development project and the canonical development teams (discussed
later) for the specific organization.

 Development toolsmith. This trained and experienced user of the
architectural IDE makes a project-specific configuration of the IDE and
architecture-compliant extensions/modifications to the IDE in the context of
specific projects. He or she helps developers effectively apply the IDE by
setting up and tuning the development environment together with each
developer. He or she continually evaluates the IDE from the project
perspective and submits new requirements or change requests to the
architectural IDE specialist or requirements manager.

 System project manager. In addition to being a project manager,
this is a specialist in system development projects, as defined in the following
section, and is specifically responsible for the following:

o Bootstrapping and accompanying a system development
project as defined in the following section according to the development
process model as presented in Chapter 6. This includes initial project
analysis and planning and managing project iterations according to the
project management workflow (see Chapter 6).

TE
AM
FL
Y

Team-Fly®

Convergent Architecture Chapter 5: The IT-Organization Model

-142-

o Building and supporting assembly development teams and
their component development teams (discussed later).

o Convergent Architecture-specific instance of the following
RUP worker role: project manager.
Owned resources:

 Change sets (artifacts): System project plan
(long-term development strategy, current iteration plan with work
orders for both assembly and component development projects), but
no predefined specialized technologies.

 Specialized technologies: None pre-defined.
 Developer. A collective term denoting any developer in the system

development organization. This includes the lead developers, assembly
developers, component developers, and accessor developers, covered in this
chapter.

The System Development Project
A system development project is something specific in the Convergent Architecture.
Just as in most organizations, the IT organization sets up explicit projects to create
valuable processes and resources. The processes and resources produced by a
project are then used by organizations in ongoing processes or as building blocks
in other projects. Thus, projects are the central driver in an infinite cycle of
progress and change. Although projects in all organizations share common
features, my focus here is on the development of IT systems—on system
development projects.

I speak of system development instead of software development because the
resulting systems are not limited to pure software. Although my focus here is on IT,
these projects also include aspects of business organization that have little to do
with technology. A system development project also addresses the infrastructure
and operational elements of systems that have more to do with the configuration
and maintenance of hardware, packaged-software, and human infrastructure than
they do with software development. The consolidation of these various aspects
helps us produce more effective systems, not just a piece of software.
System development projects in the IT context are the raison d'être of the system
development organization, regardless of whether the system is actually developed
in-house, is outsourced, or, as is most often the case, is a mixture of both.
Although still called development projects, these projects also address the long-
term aspects of the system life cycle. To achieve this, the structure and focus of
these projects must deal explicitly with the dichotomy of short-term deliverables
versus long-term returns.
The short- and long-term perspectives of system development form two competing
poles in any development organization. Whereas the clients of development
projects normally are interested only in their short-term, immediately tangible
deliverables, IT architects are also concerned with the long-term, often hidden
qualities of systems. Most clients have an acute problem. They only want to pay
for the minimum effort required to solve their particular problem. On the other
hand, the IT architect realizes that a purely short-term focus to system
development will cause significant long-term problems. Ironically, the costs to
rectify these problems eventually are borne by the client, so professional IT
architecture also is in the client's interest. The IT architect determines how long-
term planning and investment can significantly reduce the costs of each client over
time. On the other hand, a purely long-term focus to system development often

Convergent Architecture Chapter 5: The IT-Organization Model

-143-

ends up in an unchecked academic exercise, which, sooner or later, will be
condemned by clients as "utopist"—usually with good reason.

Although a modern iterative development approach helps a project deal with these
poles within a single project, it is not very specific about how they should be dealt
with across multiple projects and across multiple generations of systems. The
system development organization emphasizes the following specific short- and
long-term aspects of development to help projects and project teams improve the
equilibrium between these two poles.

Long-Term: Deliver Business-Centric OPRs

When a convergent component is identified as significant during the business-
modeling workflow, particular attention is paid not to refine it into an accessor-
specific component that meets only the punctual requirements of a particular
application. Instead, care is taken to also represent the inherent features of the
business domain, regardless of the particular application. To achieve this, domain
experts and the lead developers do not focus only on the accessor use cases
associated with a particular accessor component. They know that the OPR
components of the business may be used by any number of accessors, many of
these accessors being currently undefined. Thus, the business use case scenarios
are employed to help the domain experts and designers identify more business-
centric, in contrast with problem-centric, OPRs. These OPRs result in cross-
application convergent components that can be reused and evolved over time
more easily from the long-term perspective, according to the requirements of the
business at large. However, to prevent this from becoming an academic exercise,
this evolution takes place in the context of individual system development projects,
each driven by the needs of a particular assembly component. This approach is
compatible with the short-term aspect discussed later.

A good example of this long-term aspect is the classic situation of a customer
component that will be used by manifold assemblies in many different business
contexts. In the case where a customer is required by a particular application, that
is, by an accessor component, the design team first attempts to locate an existing
assembly that owns a customer component. It then reuses this component from
within the new assembly. In the advent of new requirements, the team adds or
adapts the responsibilities of this component in the business object model to also
fit the requirements of the new assembly. Manipulation or adaptation of the
customer component is coordinated with its resource owner. Depending on the
number of deployed assemblies already using the customer component, more
planning and coordination effort may be required than just developing a new one
for the specific case. Thus, at first glance, the process of reuse and evolution is
more costly. However, the investment clearly pays off in the long term by avoiding
expensive and error-prone coordination of multiple customer representations
across systems. If this investment is not made at this point in the development life
cycle, risks and quality problems due to software entropy increase, and the costs
to reverse this trend rise steadily.

To keep the activity of long-term optimization from digressing into an academic
exercise in business design and component reuse, I introduce the second aspect of
equally high priority.

Convergent Architecture Chapter 5: The IT-Organization Model

-144-

Short-Term: Deliver a Business-Relevant Assembly
Component

System development projects need measurable short-term goals. This priority is
addressed by setting up each project around a deliverable assembly component.
The assembly components are application-driven. As described in the convergent
components metamodel, they exist to encapsulate and install a well-defined
business application with all components required by the application. This
application-specific focus also serves to channel and drive the project toward its
concrete deliverable.

The concrete application is represented directly by the accessor components of an
assembly. Accessor use cases formulate the client's immediate requirements on
the system. Reusable accessor components also may be leveraged or created, of
course. The requirements of the accessors drive and channel the detailed planning
and implementation of an assembly component, the short-term deliverable of a
system development project.

The subtle balance between the two poles of long- and short-term focus has a
significant impact on the return on IT investments. Moving too close to either of
the poles can cause the IT organization to miss its potential by several orders of
magnitude. It is difficult to avoid the temptation of short-term focus in today's
world, where the horizon often ends at the next quarterly report. One of the best
ways to keep an organization on the right track is to have the proper constellation
of experience and skills in system development teams. This is the focus of the next
subsections.

The Canonical Development Team
The canonical development team defines the critical workers in each system
development project, as shown in Figure 5.6. The shaded area of the figure
indicates the core team. The workers shown within this area are known as core
project workers because their responsibilities lie in the critical path of the
development project. In other words, without the core workers, the project could
not proceed. Other important workers whose participation usually is required in a
project are shown straddling the edges of the shaded area. These workers are
known as participating workers because, in general, they participate in several
teams simultaneously. Core project workers normally are allocated to a single
team. Both participating and core project workers have official work plans in a
project. The responsibilities of each worker in association with his or her role in the
canonical development team are presented below.

Convergent Architecture Chapter 5: The IT-Organization Model

-145-

Figure 5.6: The canonical development team.
Two predefined specializations of canonical development teams exist, as shown in
Figure 5.5. These specialty teams are the ones used in concrete development
projects. The canonical development team serves as the basis for both these
teams because they both have the same basic structure, core workers and
participating workers. Assembly development teams focus on the highly integrative
aspects required to deliver assembly components. Component development teams
specialize in the reusable components that the assembly owns and manages. How
each specialty team differs from the canonical development team is covered in the
following respective subsections. If a project only has one team, then this team
must be comprised of the workers and responsibilities of both specialty teams.

Worker Roles and Responsibilities

Worker core roles and responsibilities in the canonical development team include
the following:

 Domain expert. This experienced business operator possesses up-to-
date, practical knowledge on the workings of the business. He or she
accompanies the project as its business domain "champion," modeler, and
advisor throughout all phases of the project to ensure the business relevance
and correctness of the system. This person is the primary communication
channel to business organizations influenced by or influencing the
development of the component. Due to other business obligations, this worker
normally cannot participate as a full-time team member. However, this worker
must be intimately involved in development and share responsibility for
success of the team. In particular, the domain expert does the following:

o Provides rapid, authoritative decisions on the essential and
"nice to have" future requirements of the domain.

o Develops applied work scenarios covering the relevant
business domain, including potential use scenarios of a new system. The

Convergent Architecture Chapter 5: The IT-Organization Model

-146-

development of scenarios may be delegated to other domain specialists
under the direction of the domain expert.

o Works with the lead developer to drive development from
the business perspective.

o Convergent Architecture-specific consolidation of the
following RUP worker roles: business designer and use-case specifier.

Owned resources:
o Change sets (artifacts): Business use-case

scenarios (BUCS) and accessor use-case scenarios (AUCS).
o Specialized technologies: C-BOM components

of the architectural-IDE.
 Lead developer. This is the single authoritative technical leader of the

team. In addition to fulfilling the role of assembly developer in the assembly
development team (discussed later) or of component developer in the
component development team (discussed later), the lead developer is the
principal authoritative technical contact for all participating team workers and
external stakeholders of the team. In particular, the lead developer does the
following:

o Carries out all design sessions with the domain expert to
ensure a concise definition of business terminology and convergent,
business-relevant results.

o Works with the convergent architect to consolidate the
convergent business model and terminology across all projects and, in
general, to ensure architectural integrity across projects.

o Remains resource owner of the respective convergent
component across all generations until it is retired from use.

o Defines best-fit CCM change-sets for the convergent
components together with the convergent architect and configuration
manager.

o Convergent Architecture-specific consolidation of the
following RUP worker roles: component developer (discussed later) or
assembly developer (discussed later) depending on the development team,
plus RUP business designer and RUP code reviewer.
Owned resources:

 Change sets (artifacts): See component
developer or assembly developer depending on the development team.

 Specialized technologies: The entire
architectural-IDE.

 Component developer. Depending on the scale of the project, there
may be additional component developers as described later in the chapter in
the component development team. There should be a maximum of six
component developers in a single team.

 UI-accessor developer. This expert in UI-accessor development
develops any human interfaces required by a convergent component. This
worker is a Convergent Architecture-specific instance of the following RUP
worker roles: user-interface designer, designer, and implementer.

o Owned resources:

 Change sets (artifacts): UI-accessor
component (accessor models, documentation, implementation).

Convergent Architecture Chapter 5: The IT-Organization Model

-147-

 Specialized technologies: The component of
the architectural-IDE from C-REF on down.

 SI-accessor developer. This expert in accessor development
develops any SI-accessors required to interact with external entities. A UI-
accessor developer may fill this worker role because there may be an overlap
in development skills. In addition to understanding accessor development, this
worker should, at best, already be familiar with the types of external systems
that will be accessed by the component. This worker is a Convergent
Architecture-specific instance of the following RUP worker roles: designer and
implementer.

o Owned resources:

 Change sets (artifacts): SI-accessor
component (accessor models, documentation, models,
implementation).

 Specialized technologies: The components of
the architectural-IDE from C-REF on down.

Participating Workers

The system project manager plans participating workers in the same way core
workers are planned. Two differences exist between participating and core workers.
First, participating workers may not be needed in every project or may not be
required in each project iteration. They are not the permanent spearhead of the
critical development path. Instead, they participate at different stations along the
critical development path. Second, participating workers usually provide special
services to several projects in parallel. This cross-project participation is important
to ensure integrative or "horizontal" synergies and design uniformity in each highly
specialized area. The participating workers are measured by the system project
managers concerning their individual project contributions and by the steering
team regarding their optimizing contribution across all projects in which they
participate. Each participating worker contributes as follows to the development
team:

 System project manager (participates from the system
development organization). This manager accompanies the team effort as
team initiator, planner, organizer, and facilitator. He or she is the escalation
interface to the steering team in the IT organization. His or her principal goal
as participant is to enable technical personnel to optimally apply their
respective skills toward critical, measurable project goals. This is rarely a full-
time job for a properly staffed project.

 Convergent architect (participates from the architecture
organization). The convergent architect consults the system project manager
and lead developer on project and iteration planning activities. He or she is a
design coach and reviewer who normally is assigned to these activities at the
beginning and end of each project iteration. He or she assesses and enforces
intraproject quality through reviews and consulting and ensures interproject
quality through parallel participation in many projects. This worker also
ensures timely feedback regarding quality and optimization potential of the
architectural style. The convergent architect also may spend considerable time
as a coach and codeveloper within a single team.

Convergent Architecture Chapter 5: The IT-Organization Model

-148-

 Development toolsmith (participates from the system
development organization). This worker helps team members configure
and tune the architectural-IDE and other tools to the requirements of a
specific project.

 Graphic artist (participates from the project information, events,
and training organization). This worker develops project-specific artwork.
This artwork normally is associated directly with the convergent component.

 Computer ergonomics and GUI expert (participates from the
project information, events, and training organization). This worker
assists the UI-accessor developer with representer design and development.

 Educator (participates from the project information, events, and
training organization). This worker helps assess training needs in the initial
planning stages of the project. This includes both the training needs of the
project team and training for end users of the developed system. He or she
arranges the timely education of team. members, develops end-user training
with the technical writer, and coordinates the delivery of training with the
domain expert and deployment manager.

 Technical writer (participates from the project information,
events, and training organization). This worker plans and compiles both
design and user documentation. He or she also may produce educational
materials. This includes ensuring that other team members understand their
responsibilities as contributors to quality documentation. For example, well-
documented models, in-code documentation, and usage samples are produced
by developers for documentation, not produced from scratch by the technical
writer. In the course of creating high-quality documentation, the technical
writer verifies the accuracy of the documents and samples and provides
continuous feedback to the developers.

 Test manager (participates from the test center organization).
This worker plans, designs, and coordinates project-specific testing with the
lead developer. He or she provides each component developer with clear
testability requirements and instructions for individual testing responsibilities
such as unit testing.

 Deployment manager (participates from operational systems
organization). This worker contributes project-specific requirements from the
operational systems organization, including deployment, transition, and
education aspects. He or she works with the system project manager and lead
developer to ensure fulfillment of these requirements early on in the project
and coordinates and carries out operational deployment tests and the
operational transition.

The Assembly Development Team
The assembly development team specializes in the highly integrative aspects
required to deliver an operational assembly component. Figure 5.5 shows that
component development teams operate in the context of a single assembly
development team. This is so because the assembly component encapsulates and
exclusively manages convergent components. The assembly development team, in
particular the lead developer of the team, is the resource owner of the assembly

Convergent Architecture Chapter 5: The IT-Organization Model

-149-

component, and the lead developer of the respective component development
team is the resource owner of its convergent components. Any development teams
outside the context of the assembly must coordinate design changes to the
convergent components with their respective resource owners.

The assembly development team may manage several component development
teams. Alternatively, at the discretion of the assembly development team, a single
component development team may develop more than one of its convergent
components.
As discussed in Chapter 4, an assembly may be comprised of accessor components
that are particular to the assembly but not uniquely associated with any single
component within the assembly. The assembly development team normally
develops such accessors.

Many assembly components may exist in various stages of development or
deployment at any time in the system development organization. The lead
developer of each assembly component remains its resource owner throughout its
entire life cycle and accompanies its evolution through generations of development
and deployment.

Worker Roles and Responsibilities

Worker-specialized roles and responsibilities in the assembly development team
include the following:

 Assembly developer. This is the lead developer of the assembly
development team who normally has extensive experience as a component
developer. This worker has the following additional responsibilities as owner of
the assembly component:

o Begins with the inception phase of a development project to
delimit and define the project and help the system project manager
produce the longterm development strategy.

o Develops the BUCS, AUCS, and the convergent business
object model for the entire assembly together with the domain experts
involved in the assembly.

o Works in the project planning stages to define the
component development teams required by the assembly, partitions
development among the teams, and works closely with the lead
developers of these teams.

o Develops the assembly-specific configuration management
reference together with the lead developers and configuration manager.

o Produces the assembly architecture reference, which
describes the overall design of the assembly in the context of the
Convergent Architecture style reference. The assembly architecture
reference consolidates the component design references produced by its
component development teams.

o Defines, implements, and carries out integration tests,
business-case tests, and installation and deployment tests for the entire
assembly. Assembly tests are carried out in the test center organization
assisted by its respective workers.

o Defines and carries out the deployment plan for the
assembly with the deployment manager. The deployment plan covers both
tests and operational releases.

Convergent Architecture Chapter 5: The IT-Organization Model

-150-

o Develops the assembly installation kit, which drives the
intelligent installation and deployment of the assembly.

o Coordinates the development of design and end-user
documentation with the technical writer and the component development
teams.

o Coordinates and tracks the reuse of any of its enclosed
convergent components by other assemblies. This tracking information is
recorded in the assembly models. By the same token, he or she
communicates the reuse of external convergent components with the
respective assembly developer.

o Remains resource owner of the assembly across all
generations until it is retired from use.

o Convergent Architecture-specific consolidation of the
following RUP worker roles: same as component developer (discussed
later) plus RUP system analyst and RUP integrator.

Owned resources:
o Change sets (artifacts): Assembly component

(assembly architecture reference, assembly glossary, assembly
configuration management reference, architectural IDE artifacts
[convergent business object model, assembly UML model, project
configuration files, generation cartridges, build and test environment,
Java-IDE environment], assembly installation kit, user documentation,
developer documentation, application server configuration). The
following specifications apply:

o The convergent business object
model is comprised of the structural CRC model and dynamic
state-transition-flow models (visual and recorded run-throughs)
of BUCS and AUCS.

o The assembly UML model is
comprised of the cumulative accessor component models and
business component models (optional UML representations as
required for explanatory or documentation detail: use-case
representations of BUCS and AUCS, sequence diagrams, and
activity diagrams for convergent components).

o The assembly installation kit normally
deploys an enterprise archive (EAR) in the J2EE technology
projection and is comprised of all convergent component
installation sets (discussed later), J2EE Web archives containing
accessors, EJB archives, client Java archives, uninstaller,
consolidated user documentation, assembly installation guide and
release notes, and the consolidated installation verification test.

o Specialized technologies: Same as Lead
Developer plus Zero-G Install Anywhere.

The Component Development Team

Component development teams specialize in the reusable parts of assemblies.
Although the convergent components will be managed exclusively by their owning
assembly, they often will be reused by other assemblies.[5] Thus, the component
development team plays an important role in producing effectively reusable
convergent components.

Convergent Architecture Chapter 5: The IT-Organization Model

-151-

Worker Roles and Responsibilities

Worker-specialized roles and responsibilities in the component development team
include the following:

 Component developer. This worker is a developer in the context of
the component development team. A component developer may be designated
as the lead developer of the component development team, in which case he
or she is the definitive owner of the following specific responsibilities as well as
the responsibilities of the lead developer described earlier. If not designated as
the single lead developer in the team, then the component developer works
under the direction of the lead developer to help fulfill these responsibilities:

o Further refines the convergent business objects allocated to
the component development team by the assembly developer into
deployable convergent components. This includes model refinement,
technical modeling, model-driven implementation, and testing of the
components.

o Defines artifact partitioning (for example, UML models, Java
archives, Java packages, and documentation) with the assembly
developer to ensure effective consolidation of these artifacts into the
assembly component.

o Refines the accessor use cases specific to the assigned
convergent components together with the domain expert and defines and
drives accessor development.

o Develops the convergent component installation set for the
component in conjunction with the assembly developer.

o Works with the technical writer to create design and user
documentation materials.

o Convergent Architecture-specific consolidation of the
following RUP worker roles: test designer, developer, capsule developer,
implementer, database designer.

Owned resources:
o Change sets (artifacts): Convergent

components (architectural-IDE artifacts [UML models, configuration
files, generation cartridges, build and test environments, Java-IDE
environments, project configuration files], component installation sets,
user documentation materials, developer documentation). The
following specifications apply:

o The component installation set for
the J2EE technology projection (Chapter 8) comprises: J2EE
WebArchives containing accessors, EJB archives, client archives,
and an installation verification test.

o Specialized technologies: Same as lead
developer.

[4]This is a style-specific application of the concepts formulated in the RUP Work
Guideline, "Developing Large-Scale Systems with the Rational Unified Process"
(Kruchten 2000).

[5]Note that an assembly is an organization from a purely IT perspective. It organizes
deployable IT resources. It does not represent a core business organization and is
assigned this special name to make this distinction clear.

TE
AM
FL
Y

Team-Fly®

Convergent Architecture Chapter 5: The IT-Organization Model

-152-

The Operational Systems Organization

The operational systems organization (OPS-O) is where assemblies are deployed
and put into operational use. The specialty and prime responsibility of this
organization is to provide a robust, stable environment as specified by the
assembly development teams in the assembly installation guide. The assembly,
including its operational installation, is developed in conjunction with the
operational systems organization (deployment manager) to ensure feasibility and
realistic expectations of all stakeholders regarding deployment, test, maintenance,
and long-term operation of the assembly. The chief architect works with the
operational systems organization to ensure that the simplest possible operational
environment evolves to fulfill the diverse requirements of assemblies.
The operational systems organization also exists when the IT organization is
developing software to be sold to external customers. The only difference is the
focus on external customers in contrast to internal customers. The operational
needs of these two customer groups are essentially identical from the perspective
of the IT organization. In the case of external customers, the transition
organization described later manages prerelease tests (beta-test programs) and
the rapport with customers during the transition phase of system development. In
parallel, it channels the rollout of the software product to the respective marketing,
sales, and distribution organizations. With regard to the other organizations
described in the chapter, the user support organization becomes the customer
support organization and the local infrastructure and base systems organization
provides necessary base systems for these activities. The feedback channels and
relationships with the other IT organizations remain unchanged.
As indicated in Figure 5.7, the operational systems organization is partitioned into
four suborganizations. All its responsibilities and roles, aside from those common
to every IT organization, are delegated to the suborganizations, which are covered
individually in the following subsections.

Figure 5.7: The operational systems organization.

The Transition Organization

The transition organization (Transition-O) is concerned with effectively moving
assemblies into the operational environment. Such movements may occur not only
at the end of the development cycle, but also at the end of iterations during
elaboration and construction of an assembly. This organization is responsible for
reducing impedance and friction between the development phases of the system's
life cycle and the operational phases of its life cycle. To achieve this, the transition
organization is involved in the entire life cycle of the system to ensure compatible

Convergent Architecture Chapter 5: The IT-Organization Model

-153-

planning and development of capabilities in both system development and
operational systems organizations.

Worker Roles and Responsibilities

Worker roles and responsibilities in the operational systems organization include
the following:

 Deployment manager (participates in canonical development
team). This IT operations expert works in the context of system development
projects to ensure that the requirements of the operational environment are
met. This includes such aspects as infrastructure, installation, testing, training,
administration, and upgrades. He or she also coordinates and manages the
transition tests and final operational transition of an assembly. This worker is a
Convergent Architecture-specific instance of the following RUP worker role:
deployment manager.

The User Support Organization

The user support organization (UserSupport-O) provides professional front-line
support to end users of assemblies.

Worker Roles and Responsibilities

Worker roles and responsibilities in the user support organization include the
following:

 User support specialist. This worker is an experienced user of the
assembly and has been trained to ensure an effective work environment for
end users of the assembly. He or she fulfills the following specific
responsibilities:

o Sets up and configures the end-user environment for an
installed assembly.

o Provides everyday front-line user support and hot-line
services.

o The single escalation interface for end-users to the system
development organization and the assembly developer. He or she provides
change requests and feedback to the requirements manager.

 End-user educator. This experienced user support specialist is
responsible for training groups of new assembly end-users. The trainings are
organized with and coordinated by the project information, events, and
training organization.

The Infrastructure and Base Systems Organization

Commensurate with the infrastructure and base systems organization in the IT
support organization, the operational infrastructure and base systems organization
(OPS-InfraBas-O) is responsible for supporting the operational systems
organization. An operations-specific organization is required because the priorities
and constraints of the operational environment differ significantly from those of the
development environment. For example, security, availability, and migration
aspects play a much more significant role in the operational environment than they
do in the development environment.

Convergent Architecture Chapter 5: The IT-Organization Model

-154-

The chief architect defines the common-denominator operational environments
together with this organization. The infrastructure and base systems organization
then implements and supports the environment for the operational systems
organization. Continuity and consistence with the IT support organization are
maintained through frequent, iterative project interaction in the course of system
development projects and the activities of the test center organization.

Worker Roles and Responsibilities

Worker roles and responsibilities in the infrastructure and base systems
organization include the following:

 OPS system administrator. This worker is the operational
counterpart to the system administrator in the IT support organization.

 Container operator. The container operator takes up where the OPS
system administrator leaves off. He or she is a specialist in a specific type of
application server container and manages this environment in the interest of
all deployed assemblies and their users. This includes professional
management of the underlying data stores (databases) and proactive
performance management such as clustering and load balancing. For the
J2EE/EJB technology projection, this worker installs and manages a distributed
J2EE/EJB container environment, including its associated databases. This
worker also provides timely feedback on container-specific tuning
requirements to the deployment manager and the requirements manager.

 Assembly operator. Assemblies may be extensive, heavily used, and
widely distributed. The assembly operator complements the container operator
in large installations to ensure proper administration, maintenance, and tuning
of a specific assembly in the operational environment. This worker also carries
out assembly-specific activities in the operational environment such as online
monitoring, security management, problem tracing, and infrastructure
migration. He or she works closely with the container operator and provides
feedback regarding operational improvements to the assembly developer,
deployment manager, and requirements manager.

Summary

A properly prepared IT organization is fundamental to producing effective IT
systems. Above all, a well-tuned organization simplifies things by adding continuity
and order to the constantly moving landscape of development activities, workers,
and artifacts involved in system development. The IT-organization model
presented in this chapter defined such a well-tuned organization. It described a
reference organization that has been streamlined to support large-scale system
development according to the architectural style. The effectiveness of this
reference organization stems from the fact that it is sensitive to the style of
systems that will be built. As such, it can be more specific about the resources,
processes, and tools used to create these systems.
In this chapter, the basic OPR concepts presented in Chapter 3 were used to
structure the IT organization and to define the roles and responsibilities of workers
in the context of concrete organizations. In addition, the artifacts created by these
workers were specified along with any specialized tools these workers use to
produce and manipulate these artifacts.
The reference IT organization may be used as a basis to prepare IT organizations,
large or small, to consistently produce systems according to the Convergent

Convergent Architecture Chapter 5: The IT-Organization Model

-155-

Architecture. It also sets the stage to present the process—the specific flow of
activities between workers, tools, and artifacts. This flow of activities within the IT
organization is the focus of the process model in the next chapter.

Convergent Architecture Chapter 6: The Development Process

-156-

Chapter 6: The Development Process
Model

Overview
The preceding chapter addressed the design of the information technology (IT)
organization. This chapter will focus on the development process model, also
referred to as the Convergent Architecture (CA) process, that complements and
leverages the responsibilities, workers, and artifacts of the IT organization. This is
the third and last component in the development model of the Convergent
Architecture.

The existence of hundreds of books covering the software process is clear evidence
of the central importance of this process in professional software organizations.
Although there is ample discord—with a touch of religious fanaticism—as to which
precise approach is best, many of the modern methodologies exhibit more
similarities than differences. Their principal differences lie in the structure of their
presentation, their weighting or emphasis of particular process aspects, and their
scope. Indeed, there is no precise definition of where process begins and where it
leaves off. This is why the Convergent Architecture sees process as just one aspect
of a holistic approach that addresses the three pillars of project design, business
design, and system design.
The CA process is not yet another generalized development process or
methodology. As you will see in the following section, the CA process refines
aspects of existing methodologies. However, instead of taking a process-centric
approach, it takes a style-centric approach: It considers process in the context of
the rest of the architectural style. By doing this, features of the architecture can be
tuned to assist each other in all directions. This is in stark contrast to many
methodologies that expend considerable effort trying to make things work together
that were not designed to work together. In other words, in the development of
the CA process, two questions are of main concern. First, how can the CA process
help us achieve our style-specific goals using the other features of the style—the
organization model, the convergent component metamodel, the architectural
integrated development environment (IDE), and so forth? Second, and most
important, how can the other features of the style help us simplify the CA process?
The answers to these questions results in a continuous fine-tuning from the
perspectives of both the development process and its surrounding environment.
Such comprehensive optimization from various perspectives enables efficiencies
and synergies not possible from a unidirectional, process-centric perspective. This
multidirectional tuning contributes to what I call reference-frame continuity, an
intrinsic property of the architectural style: Every project benefits from it
automatically and immediately.

Before moving into the details, let's look at one example of reference-frame
continuity and how it simplifies the CA process. A good example is the interaction
between the modeling style and the architectural IDE, which, although not
themselves part of the CA process, are part of the style. As such, they are a
dependable part of a reference frame that can be leveraged by other parts of the
style. In this particular example, the architectural IDE and the modeling style
combine forces to simplify several workflows, thus simplifying the CA process.
Based on the modeling style, the IDE can actively assist the developer through
many activities.[1] In many situations, the developer only needs to set a few key

Convergent Architecture Chapter 6: The Development Process

-157-

properties in the model to enable the IDE to automatically derive other models and
properties. These derived design features are later used by the IDE to generate
source code, also according to the modeling style. In such cases, the developer
can be successful without having an expert background and/or having extensive
experience with these activities. For example, during accessor development,
complex design mechanisms such as user event dispatching or the interaction
between the frames of an Internet representer are now carried out in the context
of assisted modeling. As such, these aspects no longer need to be handled in the
workflow description. They are delegated to the style-specific IDE. This new level
of assistance and automation constitutes a logical step toward higher design
capabilities similar to the improvements brought about by third-generation
compilers. Just as no other development processes would describe the internal
workings of a compiler as part of the workflow, the workflows of the CA process do
not need to cover the aspects handled automatically by its architectural IDE. From
the perspective of the developer, the complexity disappears (without being ignored
by the architecture), and this aspect of development becomes a simple step in the
workflow description.

Let's now look at the foundations and basic structure of the CA process before
detailing each of its workflows in a separate section.

[1]I refer to this as style-driven assisted modeling.

Foundations and Structure
As shown in Figure 6.1, the CA process is an architectural-style-specific instance of
the Rational Unified Process (RUP) (Kruchten 1998). However, the RUP is only one
of the modern methodologies that has influenced the CA-specific process
throughout its evolution. The figure shows the other major contributors from which
the CA process was derived. It also indicates the progression that took place over
the years. The major players in this progression are explained below the figure.

Figure 6.1: A specific instance of process architectures. CA's relationship to third-
generation SW process frameworks.
The lines in the figure illustrate the process of combining and filtering several
methodologies over the years to form the CA process as it stands today. It begins
at the left with a very broadly scoped software engineering process architecture

Convergent Architecture Chapter 6: The Development Process

-158-

(Graham 1997). The methodologies in the center of the figure are more specific,
each having its own specific focus, strength, and scope. Consolidated parts of
these methodologies flow into a CA-specific instance shown at the right. Along the
way, each of these streams is integrated and configured to best fulfill the principles
and requirements from the other models of the architectural style. Moving from
left to right, the contributing methodologies and their relationships from the
perspective of the CA process are as follows:

 The OPEN Process Specification (OPEN) (Graham 1997). This is
known as a third-generation methodology because it focuses on modern
concepts such as the object paradigm, metamodels, and patterns in software
development. This includes particular emphasis on the principles of convergent
engineering, including responsibility-driven design (RDD) and analysis by
design (ABD). The direct line between OPEN and the CA process indicates that
the OPEN concepts were a mainstream basis for the CA process before being
later influenced by RUP and catalysis.

 The Rational Unified Process (RUP) (Kruchten 1998). Although
not a direct derivative of OPEN, RUP complements and refines many concepts
found in OPEN. In addition to its different weighting of certain concepts, RUP
adds structural clarity and pertinent management-level explanations of the
modern development process. In particular, RUP recognizes and explains the
importance of process instances and is designed to serve as a basis for such
instances. This is one reason it is used as the foundation for a CA-specific
instance.

 The evolutionary project management (EPM) method (Gilb
1988/1999). Although not based on RUP, EPM was found to complement RUP
with pragmatic project-management features. The EPM features that most
influenced the CA process were in the area of evolutionary team building and
evolutionary development, implicit requirements management, implicit quality
control, iteration planning, and team configuration.

 The catalysis approach (D'Souza 1998). This reflects many of the
concepts found in OPEN or RUP and adds its own particular emphasis in the
area of component-centric development and component design patterns. It
also addresses the UML Object Constraint Language (OCL 1999) as a
semiformal means of specifying design constraints as a complement to the
fundamental UML notation.

The CA process at the right of the figure emphasizes that these contributors
influenced aspects in all three pillars of the Convergent Architecture. As such, the
influence is not localized to the CA process but is also evident in the other features
of the architectural style.

The following subsection introduces the structure and content of the CA process.

Overview: Workflows and IDE Support

To achieve the goals of the Convergent Architecture, RUP is streamlined—as is
fitting when creating an instance of RUP. Some aspects of RUP are repartitioned or
weighted differently. As set forth by RUP, the CA process comprises workflows that
are subdivided and detailed in the form of activities. Similar to RUP-based workers
and artifacts in the IT organization, the workflows in the CA process are derived
from corresponding RUP workflows. Then adaptations are made according to the
models of the architectural style. No aspect addressed by RUP has been left out,
but aspects may be implicitly or explicitly handled elsewhere in the architectural

Convergent Architecture Chapter 6: The Development Process

-159-

style. As pointed out in the introduction, there is no reason to explain an activity
that has been taken care of implicitly or automatically elsewhere in the style.
A case in point: Many of the activities in the RUP environment workflow correspond
to responsibilities in IT organization in the Convergent Architecture. This is
because the IT organization is a separate model in the Convergent Architecture; it
is the entire environment of the CA process, and it is not a workflow. Workflows in
the CA process define activities above and beyond the responsibilities of the IT
organization. These are activities that can be well defined to enhance the
responsibilities of the IT organization; however, they do not replace the IT
organization. The IT-organization model exists to handle the myriad important
aspects of software development that cannot, and should not, be defined as an
explicit workflow or activity.[2]
As explained in the preceding chapter, RUP workflows and activities denote
hierarchies of processes. I have already defined the concept of a process in the
Convergent Architecture. Applying this definition in the context of this instance of
the RUP, workflows and activities complement the ongoing responsibilities of the IT
organizations by defining and naming goal-oriented sets of tasks. These tasks
describe how specific aspects of the IT organizations and their respective resources
are used to produce more valuable resources.

Lastly, the CA process considers the multiproject scope of an entire IT organization,
no matter how extensive this organization may be. This is important because
today's IT landscapes consist of many distributed contributors across many
organizations and projects. In addition, significant optimizations due to an
architectural style occur at the cross-project, cross-system, and cross-organization
levels. For example, the workflows in the CA process describe how we use
information gained in one project to optimize both the design and development
workflows across other projects. It covers how projects come and go in the normal
course of the overall workflow cycle or how projects drive their own reconfiguration
in the interest of business optimization. Here again, much of this happens through
interaction with the IT-organization model.

To achieve this, the workflows in the CA process are partitioned into two major
categories:

 Preparatory and cross-project workflows. These workflows are not
associated with any particular project. They are initiated before the first
development project and act in a cross-functional manner across all projects.

 Canonical project workflows. Similar to the canonical development
team presented in Chapter 5, the canonical project workflow describes the
development process used by the canonical development team.

I distinguish here between two categories of workflows:

 Critical-path workflows. These constitute the main, essential thread
of the development effort. Without these workflows, we would not require the
supporting workflows.

 Supporting workflows. These are tangential to the critical path and,
as such, receive less style-specific attention than the critical-path workflows in
this book. The reduced attention is necessary to maintain proper focus on the
architectural style. For supporting workflows in particular, I refer to the
guidelines and examples provided on the Convergent Architecture Web site.
The supporting workflows are labeled as such in this chapter.

Convergent Architecture Chapter 6: The Development Process

-160-

The following sections are breakdowns of these categories. Each section contains a
summary description of the workflows in the category. It also lists which aspects of
the architectural IDE are used to support each activity.

Preparatory and Cross-Project Workflows

The IT organization begins business by initiating the following workflows:
 IT-environment workflow. This bootstraps and maintains the IT

organization. The IT-organization manager develops an IT-organization model
tailored to the specific situation based on the model described in Chapter 5. He
or she then implements the model by populating each of the IT organizations
and preparing each organization to fulfill its responsibilities. The extent, speed,
and scale of this preparation are determined by the two cross-project
workflows indicated below that define system development projects, their
extent, their training requirements, and so on.

 Activity owners. IT-organization manager.

 Specialized technologies. None.
 T-bar business modeling and requirements workflow. This

manages the top level of an overall analysis-by-design workflow (see the
following section) according to the T-technique as unanimously endorsed by
convergent engineering (Taylor 1995), Microsoft (Ambler 1997), and RUP
(Kruchten 2000). This workflow applies the responsibility-driven design (RDD)
concepts as formulated by convergent engineering and RUP's "Work Guidelines:
Role Playing" (Rational 2000).

 Activity owners. Chief architect, IT-organization manager,
requirements manager.

 Specialized technologies. Architectural IDE, primarily the
C-BOM module; Visio (or equivalent).

 Architectural evolution workflow. This evolves, refines, adapts, and
maintains the organization-specific instance of the Convergent Architecture.

 Activity owners. Chief architect.

 Specialized technologies. Architectural IDE.

Canonical Project Workflows

Assembly and component development teams proceed hand in hand as described
in the preceding chapter. They are logical subdivisions, each producing parts of
one unit, the assembly. Each assembly development team has much in common
with the component development team; they just have a different focus while
moving along a similar path toward a common goal. For this reason, a canonical
project workflow also corresponds to the canonical project team and its variants
defined in the IT-organization model. In the description of canonical project
workflows, the activities of the workers in both assembly and component
development teams are pointed out as we step through the workflow. Whether a
particular activity applies specifically to an assembly or component development
team is clear by the worker designated as the activity owner of the individual
activity. The workflows are as follows:

 Project management workflow. This consists of a four-pass iteration
planning and tracking activity to detail and monitor the RUP phases and
iterations at the level of measurable criterion and personal accountability.

Convergent Architecture Chapter 6: The Development Process

-161-

 Activity owners. System project manager.

 Specialized technologies. Architectural IDE for tracking
and monitoring.

 Development environment workflow (supporting). This sets up
and verifies the development environment for each team member.

 Activity owners. Development toolsmith.

 Specialized technologies. Intimately familiar with the
setup and test of the entire suite of development tools and technologies
used in a system development project. The basic set of tools consists of
the architectural IDE, unified configuration management (UCM) tools, unit
testing tools, application server environment, and Web server
environment.

 Configuration and change management (CCM) workflow
(supporting). This defines and sets up the CMM features required by a
particular team member.

 Activity owners. Configuration manager.

 Specialized technologies. ClearCase UCM system.
 Analysis-by-design (ABD) workflow. This consolidates the RUP

business modeling, the RUP requirements, and the RUP analysis and design
workflows into three phases of convergent refinement, each representing a
critical stage in the metamorphosis of a business strategy into the OPRs of a
convergent system.

 Activity owners. Assembly developer.

 Specialized technologies. Architectural IDE with focus on
the upstream modules C-BOM, C-RAS, and C-REF/Rose; ClearCase UCM
clients; Front-Page (or equivalent); Requisite-Pro (or equivalent).

 Implementation cycle workflow. This is the model-driven refine,
generate, edit, deploy, and test cycle.

 Activity owners. Developer.

 Specialized technologies. Architectural IDE with a focus
on downstream modules C-REF/Rose, C-GEN, and C-IX; Java IDE; J2EE
application server with associated database tools; Apache server; Tomcat
Web server; Cygnus GNU tools; ClearCase UCM clients; FrontPage; Install
Anywhere; ANT-based build environment.

 Test workflow. This provides explicit quality checks and a just-in-time
diagnosis at each stage of the development life cycle.

 Activity owners. Lead developer (component testing) and
developers (unit testing).

 Specialized technologies. Architectural IDE; JUnit;
installation of J2EE application server according to the constraints of the
operational environment.

 Documentation workflow (supporting). This covers the production
of documentation, help files, and training material.

 Activity owners. Technical writer.

 Specialized technologies. FrameMaker, WebWorks,
Javadoc.

TE
AM
FL
Y

Team-Fly®

Convergent Architecture Chapter 6: The Development Process

-162-

 Deployment and monitoring workflow. This provides a transition to
the operational environment and monitoring within the operational
environment.

 Activity owners. Assembly developer.

 Specialized technologies. Operations-level installation of
J2EE application server.

[2]Defining every detail of software development as an activity is impossible. Trying
to achieve this would bloat the process to the point where nobody paid any attention
to it. Not only would it be too voluminous, it also would be unrealistically
constraining. An effective process must be very selective about what it prescribes
and what it leaves up to the well-defined responsibilities of the IT organization.

Preparatory and Cross-Project Workflows

The preparatory and cross-project workflows exist outside of the context of
individual projects. These workflows begin before the first project and continue
across project generations. They are the continuum that initializes, accompanies,
and controls the overall constellation of projects.

IT-Environment Workflow

The IT-environment workflow addresses the recurring, ongoing activities of each IT
organization in support of the overall IT effort. These activities are in fulfillment of
the organization's responsibilities as defined in the IT-organization model.

 Activity. Bootstrap the IT organization.
 Activity owner, principal participants. IT-organization manager,

chief architect, steering team.
 Artifacts produced/refined. IT-organization model and

implementation plan.
 Guidelines and artifact/tool usage:
 The IT-organization manager uses the IT-organization

model as a template and develops a concrete IT-organization model for
the specific situation. Based on the model, he or she then fills the
organization manager positions of its direct suborganizations. The steering
team now exists.

 In conjunction with the steering team, each organization
owner refines the aspects of the IT-organization model relevant to his or
her organization. Based on the refined model, the organization manager
sets up and prepares the organization to fulfill its responsibilities. The rule
of thumb for this activity is to start small and build once things work, that
is, get things working at a small scale before scaling up.

 Once prepared, the architecture organization kicks off the T-
bar business modeling and requirements workflow (discussed later), which,
through the identification of system development projects, influences the
speed and extent of the IT-environment workflow.

 With the establishment of the steering team and the kickoff
of this first T-bar workflow, the self-regulating cycle of operational
workflows has commenced. As stated in the IT-organization model, the
active, operational workflows are owned as a whole by the IT-organization
manager. This sounds like more work than it really is. Since each instance
of an activity within a workflow has its own owner, the IT-organization

Convergent Architecture Chapter 6: The Development Process

-163-

manager is more a proactive monitoring and escalation point than
anything else. It simply confirms the IT-organization manager as the top-
level owner of the operational development process. This should not be
confused with the owner of workflow definitions—the definition of the
process. It is the chief architect who maintains these definitions as part of
the Convergent Architecture-style reference.

T-Bar Business Modeling and Requirements Workflow
This workflow and the ABD workflow detailed here exercise different hierarchical
levels of the T-technique as described in convergent engineering (Taylor 1995) and
unanimously endorsed by Microsoft (Ambler 1997) and RUP (Kruchten 2000). In
addition, both workflows and their respective tools in the architectural IDE
constitute a style-specific application of the responsibility-driven design (RDD)
concepts formulated by convergent engineering (Taylor 1995) and RUP's "Work
Guidelines: Role Playing" (Rational 2000). Complementing the T-technique,
techniques such as class responsibility collaboration cards (CRC) and walk-through,
as described in convergent engineering and RUP, are used to derive and validate
requirements and to ensure a high-fidelity business model.

The T-bar business modeling and requirements workflow (or simply T-bar workflow)
derives its name from its focus on the highest level of business modeling as
represented by the bar of the T—the crossbar of the T—in the T-technique. It
serves to identify business requirements and business partitioning as a
prerequisite to defining system development projects. This workflow initiates
system development projects and, as such, initiates the project management
workflow. It also serves as the top-level consolidator of feedback and requirements
arising from the sum of all system development projects.

Effective global optimization of the business and its IT infrastructure is achieved by
consolidating the feedback and requirements at this level, according to the T-
technique. This is also where the non-IT-related organizational impact of system
development projects is assessed, communicated, and coordinated with the entire
business and its projects.

This workflow comprises the following ordered activities:
 T-bar business analysis. This produces the top-level OPR business

model, including scenarios and analyses of contexts, constraints, and urgency,
and it produces project proposals.

 Project initiation and tracking. This initiates system development
projects or other projects in the IT organization.

 Global requirements management. This provides uniform
prioritization, coordination, dispatching, and the tracking of requirements,
including change requests from diverse sources and levels.

 Activity. T-bar business analysis.
 Activity owner, principal participants. Chief architect, business

managers (sponsoring clients or their representatives) and domain experts,
IT-organization manager, requirements manager, lead developers.

 Artifacts produced or refined. Top-level business object model,
context diagrams, project proposals.

 Guidelines and artifact/tool usage:

Convergent Architecture Chapter 6: The Development Process

-164-

 The chief architect or an appropriately experienced
convergent architect heads up this activity to ensure effective information
modeling and requirements gathering. The architect defines and mediates
T-bar business analysis sessions. Another architect or lead developer may
assist during modeling and results processing. The IT-organization
manager coordinates and administers participation of the appropriate
mixture of business managers and domain experts.

 The sessions normally last two to four days; the business
managers and domain experts are only involved half-days. There are a
maximum of three active business managers or domain experts per
session plus the architect and, optionally, one lead developer. This
constitutes a T-bar business analysis team (or T-bar team). During the
morning, the joint requirements gathering and modeling activity proceed
according to the convergent engineering schema shown in Figure 6.2. In
the afternoon, the business managers and domain experts are freed up to
carry out their daily business. During this time, the architect and lead
developer work on consolidating, documenting, and generally improving
the model. Above all, they advance into the invention phase shown at the
right of the figure. The results of the consolidated business model and the
tentative invention results are then the basis for discussion when the
session resumes together with the business managers and domain experts
on the next morning.

Figure 6.2: The core analysis-by-design process. Simple and effective.
Business components evolve incrementally. The first model is usually a
real eye-opener.

 Session results that include top-level OPRs and top-level
business scenario models are recorded in the C-BOM tool. The analysis-
by-design workflow (discussed later) and the C-BOM section of Chapter 7
provide details on this task. In addition, context information and
constraints of the IT and organizational environment are recorded in
sketches. The need for immediate, ad hoc responses to problems in the
existing operational environment is also prioritized. Figure 6.3 exhibits the
necessary effort split along the road to convergent systems.

Convergent Architecture Chapter 6: The Development Process

-165-

Figure 6.3: The effort split: Graduating to convergence. Convergent
Arcihtecture deals with the reality of the existng IT environment.

 The session ends with one or more proposals for system
development projects together with assessments of those proposals that
address the organizational and business impact of the project.
Requirements deemed as tangential, secondary, or of interest at a later
stage are recorded, sanity-checked, and handed over to the requirements
manager for further coordination and qualification in the normal course of
the global requirements management activity.

 As part of the T-bar team, the IT-organization manager
sanity-checks and refines the project proposals from the organizational
perspective. The chief architect and lead developers ensure realistic
development estimates in the project proposal, thus avoiding long, costly
sanity-check cycles. The IT-organization manager then produces project
proposals and proceeds to the project initiation and tracking activity. The
T-bar business analysis is repeated regularly at the discretion of the chief
architect or the IT-organization manager. Normally, this will occur at least
twice a year. The very first T-bar business analysis may require numerous
sessions to get past the initial organizational impedances and learning
curve.
Figure 6.2 illustrates the core analysis-by-design process from convergent
engineering. This process is used at two different levels of granularity in the
Convergent Architecture. It is used by the T-bar business analysis activity to
identify and structure the high-level OPRs and the associated constraints and
requirements of the business at large. It is then used at the analysis-by-design
workflow to successively refine the T-bar results into operational OPRs.
Figure 6.3 shows that migrating from a traditional IT landscape to a convergent
system requires a planned effort split. An organization graduates over time from
problem-driven responses to architecture-driven change. To ensure that this
graduation takes place, the immediate-response track must be recognized and
addressed by the convergent systems track. No matter how motivated the IT
organization is, an entire enterprise cannot be migrated overnight. Instead, the
convergent architect ensures that new barriers to convergence do not occur as a

Convergent Architecture Chapter 6: The Development Process

-166-

result of immediate-response efforts. As the capabilities of the IT organization and
systems in the convergent systems track increase, the demands on the
immediate-response track are reduced through the managed migration of existing
IT systems or by the introduction of new project and system design techniques.
The speed of progression into the convergent systems track is organization-
dependent. An organization that is pushed too fast may go into a mode of
destructive resistance to change. One of the primary reasons for regular T-bar
business analysis activity is to constantly take the pulse of the organization and to
adjust the correct speed and stride of change at the proper level before expensive
setbacks occur during projects.

 Activity. Project initiation and tracking.
 Activity owner, principal participants. IT-organization manager,

project manager/system project manager, steering team, sponsoring client,
requirements manager, lead developers.

 Artifacts produced or refined. Consolidated project reviews.
 Other end results. Project kickoff or termination.
 Guidelines and artifact/tool usage:
 The project proposals from the T-bar business analysis

activity are used by the IT-organization manager to initiate new projects.
This is a separate activity because the initiation of a project normally
requires considerable effort, particularly in large organizations. Whether
all proposed projects actually progress beyond the inception phase is
determined during this activity. The IT-organization manager, as a
member of the T-bar team, understands and can communicate the
interrelationship between the project proposals and aspects of the
business strategy. If a project does not progress beyond the inception
phase, then adjustments in all related projects as well as consequential
effects on the business strategy are immediately made at the T-bar
business analysis level. Major deviations from project proposals may call
for an exceptional T-bar business analysis session. Such exceptional
sessions are, on the one hand, a sign of healthy iterative analysis by
design and, on the other hand, should send a warning signal that the T-
bar business analysis is not as effective as it should be. The tight loop
between the project initiation and tracking and T-bar activities ensures
that timely corrections and optimizations are made.

 In this activity, the IT-organization manager simply initiates
the project management workflow (discussed later). As described in the
workflow, project initiation requires the allocation of a potential project
manager and the clear intent by a sponsoring client to fund the project
based on the initial estimates in the project proposal. The project initiation
activity proceeds in this scope until the project is officially kicked off or
terminated by the steering team. The project manager drives the initiative
to achieve kickoff. However, project kickoff and reviews are normal
responsibilities of the IT-organization steering teams, and they occur in
the course of the regular steering team meetings as run by the IT-
organization manager.

 Successfully initiated projects are tracked at the steering-
team level to ensure global optimization across all projects through timely
input to ongoing T-bar activities as well as feedback to prevent a drift
from T-bar goals. The procedure for tracking is simple: The organization
manager of the system development organization presents the status of
each active project, whereas the other organization managers, which
include the chief architect (and all normal members of the steering team),

Convergent Architecture Chapter 6: The Development Process

-167-

provide input and feedback regarding problems and potential optimization
or synergies.

 Activity. Global requirements management.
 Activity owner, principal participants. Requirements manager,

chief architect, IT-organization manager, steering team.
 Artifacts produced or refined. Requirements pool.
 Guidelines and artifact/tool usage:
 Requirements tracking includes change management in the

Convergent Architecture. It is a straightforward activity if taken seriously.
However, it cannot be handled in an ad hoc manner. The key to success is
having a dedicated and well-organized requirements manager working at
the nonpartisan level of the architecture organization, as shown in the IT-
organization model. The requirements manager organizes all requirements
in a global requirements pool. The pool may be a simple document, but
larger IT organizations require a more sophisticated tool such as Rational
RequisitePro. At a minimum, the global requirements pool must order
requirements according to the source, priority, responsible sink, and
status. Once a priority is set, the requirements manager officially
dispatches the requirement to a sink (defined later) and tracks the status
of the requirement. There is no clear definition of what a requirement
must look like or how it will be fulfilled. This is because requirement is a
very ambiguous word. Nevertheless, a whole lot of these ambiguous
requirements appear from all directions at all times in an IT organization.
If these are sorted and handled with a due portion of discipline according
to the following simple procedure, a whole lot of progress will be made.

 Getting more specific, the requirements manager willingly
accepts any sort of requirement, no matter how obscure, that has not
found an official sink anywhere else in the IT organization. It is easy to
locate an official sink for many requirements by locating the appropriate
responsibility in the IT organization. However, just locating the
responsible person is not all; the person must be able to accept and fulfill
the requirement. Thus, an official sink is anybody willing to take on official
responsibility for fulfilling a requirement. This means that the source and
sink agree on the definition and priority of the requirement. Taking official
responsibility means committing to fulfill the requirement along the lines
of the official organizational and workflow stream of the IT organization.
This includes all side effects (time, resources, risk, impacts) associated
with fulfilling the requirement. If any doubt exists about the official sink,
then the requirement is submitted to (through) the requirements manager.
Such sinkless requirements can range from arbitrary good ideas to high-
priority change requests from the operational systems organization that
cannot be allocated directly to a particular assembly owner. Another
example would be if the assembly owner and the source of the change
request cannot agree immediately on the solution, priority, or fulfillment
timing of the requirement. In this case, no official sink has been found,
and it is immediately escalated to the requirements manager. Thus,
everybody knows where to go with every requirement, no matter how
obscure the requirement may be. There is no impedance to the flow of
requirements, and all requirements find a responsible owner according to
the path of least resistance. Requirements that fit into the normal work
stream are handled properly without any extra administrative overhead.
The remaining requirements are handled by the requirements manager as
follows:

Convergent Architecture Chapter 6: The Development Process

-168-

 Once a requirement lands with the requirements manager,
it is tracked in the requirements pool. Thus, all requirements in the IT
organization end up either in the official plan of a workflow activity or an
IT organization or in the requirements pool, or both. Once in the
requirements pool, the requirements manager goes about finding an
official sink for the requirement. To find the official sink, the requirements
manager sorts, filters, and consolidates the requirement with the existing
requirements pool. Based on his or her investigations and consolidation,
the requirement may be dispersed into parts of other existing
requirements. The requirements manager then sets out to achieve a
consensus regarding priorities via the official responsibility hierarchy of
the IT organization. Based on this consensus, he or she then dispatches
the requirements into official sinks such as the owners of current project
proposals, owners of assemblies, or organization managers. Another
completely viable official sink is to declare the requirement as insignificant.
Declaring a requirement as insignificant can only be done by the
requirements manager as a nonpartisan representative of the entire IT
organization. Requirements that cannot be resolved reasonably to an
official sink are escalated by the requirements manager to the IT-
organization manager, who may bring the issue to the steering team for
resolution. The steering team is then in the position to immediately
address any side effects due to an exceptional resolution that may be
inconsistent with the currently active workflow.

Architectural Evolution Workflow

An instance of the Convergent Architecture defines the way the entire IT
organization operates, including how it designs and delivers convergent systems.
Clearly, this is a long-term approach that must take changes and the passage of
time into account to be successful. The architectural style workflow makes sure
that changes relevant to the architectural style take place in a proactive,
constructive manner as part of the normal, self-optimizing activities in the IT
organization. Through this workflow, the architectural style embraces change as
part of its own design and ensures that it does not begin to impede its own goals
with the passage of time. This activity starts with the creation of the very first
instance of the Convergent Architecture.

 Activity. Architectural evolution.
 Activity owner, principal participants. Chief architect, steering

team.
 Artifacts produced or refined. Convergent Architecture style

reference.
 Guidelines and artifact/tool usage:
 As outlined in Chapter 5, the Convergent Architecture style

reference describes an organization-specific instance of the Convergent
Architecture as defined in this book. The instance may be a one-to-one
application of the entire style book or a documented variant that remains
compatible with the architectural and development models, both described
in this book. The chief architect allocates adequate time to maintain the
Convergent Architecture style reference and to ensure that changes are
understood and implemented throughout the IT organization. The extent
of this effort will depend on how far the variant instance of the Convergent
Architecture deviates from mainstream evolution of the architectural style.
Although one of the principal goals of the style is to reduce the invasive

Convergent Architecture Chapter 6: The Development Process

-169-

effects due to change, change will occur. For example, even a stable,
fundamental standard such as UML will evolve. Many, if not most, changes
to the architectural style will have a minor impact so long as they are
introduced incrementally. The trick is to handle this steadily and step by
step. The best strategy an organization can take to avoid problems due to
change while at the same time benefiting from new developments is this
ongoing activity of observation and incremental change—that is, evolution.
This allocation of the chief architect's time is a wise investment in
constructive foresight to ensure that changes take place at the best time
and at the right place.

 In addition to continuous investments by the chief architect,
this activity will involve efforts from other members of the IT organization.
For example, the architectural IDE may need to be adapted by the
toolsmiths who are responsible for its usage in individual projects.
However, timely adaptations to the reference IDE will help avoid costly
problems in active projects down the road.

Project Management Workflow
The project management workflow applies the RUP phases, its milestones, and its
concepts on incremental development. This begins with a canonical iteration
planning and tracking activity that applies an optimizing four-pass approach. This
planning activity is canonical in the sense already used in the IT-organizational
model. It is applied equally to every iteration with slight variations relative to the
current life-cycle phase of a project. This canonical planning activity in conjunction
with conceptual proximity of the IT organization and the architectural IDE enables
a simple, highly effective project management workflow.
The project management workflow coordinates and drives all other canonical
project workflows. It also interacts with the cross-project workflows, in particular
with the T-bar business analysis activity as described previously. This interaction is
intentional along the lines of the T-technique: The project management workflow
handles the lower levels of the T, as denoted by the vertical strut of the T, whereas
the T-bar business analysis activity absorbs and consolidates information at the
upper level of the T, the T-bar. This relationship is illustrated in Figure 6.4.

Figure 6.4: The flow and scope of an iteration.
The figure also illustrates the logical orientation of the other canonical project
workflows, from top to bottom, along the critical path of each iteration in a system
development project. The project management workflow initiates and terminates
each iteration, as indicated by the innermost arrow in the figure returning from the

Convergent Architecture Chapter 6: The Development Process

-170-

review and termination of an iteration at the bottom, back to the top of the
workflow, where the next iteration is planned. Clearly, the project management
workflow brackets the other critical-path workflows into the context of planned
iterations of a project. As emphasized in the RUP, the workload distribution among
the workflows is highly dependent on the current phase (and state) of the project.
The intended distribution of workload across the iterations of a project is signified
by the scales to the right of the figure. Lastly, the vertical positioning of two
supporting workflows, the development environment workflow and the
configuration and change management (CCM) workflow, indicate that, although
important, they do not lie directly in the critical path of each iteration. These
supporting workflows are ongoing in the context of a project with a peak load for
workers from the IT support organization toward the beginning of the project.

 Activity. Canonical iteration planning and tracking (base activity), with
phase-specific variants each covered individually later after the guidelines
covering the canonical aspects:

 Inception-phase variant (project initiation)
 Elaboration-phase variant
 Construction-phase variant
 Transition-phase variant
 Activity owner, principal participants. System project manager,

assembly developer, other lead developers in the system development project,
convergent architect.

 Artifacts produced or refined. System project plan (long-term
development strategy, current iteration plan with work orders for both
assembly and component development projects).

 Guidelines and artifact/tool usage:
 Each iteration of a system development project begins with

a variant of the common canonical iteration planning and tracking activity
described here. The canonical procedure combines the factors required for
timely, reality-driven optimization of each project iteration. Reality-driven
means that the participants in the project are consistently freed from their
respective illusions (optimism, wishful thinking, overestimation of
capabilities, quality of requirements) to arrive at a plan based on a
consensus of the real constraints and requirements in the project.

 To achieve this, each iteration is planned using a rapid,
four-pass process. This process produces, or updates, the long-term
development strategy document and the current iteration plan. The
current iteration plan exists in the form of a features summary and a
simple task ownership matrix (TOMA), which is covered in more detail
with Figure 6.6. Each task in the TOMA comprises a work order specifying
the five W's (who, what is done, when, with whom, and where do the
deliverables go), as described later, for each specific task. This short four-
pass session and its resulting TOMA are all that are needed to guarantee
that each participant contributes the maximum to the progress, synergy,
risk management, tracking, and steering of a project in harmony with
other active projects. In addition, this approach leads to a significant
reduction of the number of iterations required for a given set of features.
This is so because the sanity-checking capacity of the iterative approach is
amplified by the four-pass approach to planning. The following subsections
explain how this works.

 The initial planning for each and every iteration proceeds
according to this logic: The system project manager schedules a four-pass
iteration planning session with the assembly developer and the other lead

Convergent Architecture Chapter 6: The Development Process

-171-

developers slated for the system development project. How the initial
group of lead developers is defined is explained in the section on the
inception-phase variant. The requirements manager also participates at
the beginning and end of the session. In addition, the sponsoring client
and domain experts should be on call in order to immediately clear up
issues. The session can last anywhere from two hours to four days,
depending on the extent of the project and, above all, on the number of
illusions that still exist in the group's collective mind. The session takes
place in a room equipped with plenty of white-board space and the
capability to copy the contents of the white boards (copy boards). The
four-pass iteration planning session then proceeds according to the
flowchart illustrated in Figure 6.5.

Figure 6.5: Planning an iteration: The four-pass approach. Carry out
these steps with the lead developers and primary customer.

The four-pass approach is as follows:
 Pass 1 (talk-through). In pass 1, the assembly developer groups and

lists the requirements to be fulfilled as blocks on the white boards. The
requirements are grouped into major requirements and related
subrequirements. The assembly developer normally has a good idea of the
requirements on the iteration. The source of these requirements is the review
of the previous iteration (if available), the project proposal, and any new input
from the requirements manager. Then all requirements are broken down in
terms of deliverable features, core business features, technical features, and
project-specific IT-organizational aspects. The core business features are listed
in terms of business models or convergent components. Features are broken
down into subfeatures if necessary to enable the realistic estimation of
resource requirements: worker skills, time, and infrastructure. While listing the

TE
AM
FL
Y

Team-Fly®

Convergent Architecture Chapter 6: The Development Process

-172-

blocks of requirements/features, they are also prioritized: 1 being highest
priority and 3 the lowest. Things that must be accomplished together or as
prerequisites for others are recognized in the priorities. Also, the dependencies
from other projects (other assemblies) that depend on the assembly being
planned must be reflected in the priorities—a clear responsibility of the
assembly developer. The participants set the priorities as a group by reaching
a consensus or through a consensus via democratic majority if reaching a
complete consensus proves difficult. This step ensures that priorities,
sequencing, and prerequisites are agreed on among participants, both project
management and developers, from the start.

 Pass 2 (allocate and estimate). In pass 2, realistic resource
estimates (worker, worker time, infrastructure) are made for all priority 1
features and requirements. Once a worker has been assigned, the fulfillment
of the feature or requirement becomes a task for the worker. The resource
estimate is for everything related to the task up to the delivery of the results
at the end of the iteration. Thus, the estimate also includes testing and
administrative efforts, for example. All participants in the session must agree
on the resource estimate to ensure that the feature is defined adequately. If
they cannot agree, then the features and requirements in question must be
broken down into further detail. If this is not possible, an additional
requirement for further investigation usually is the solution. At best, a person
is immediately allocated to carry out the task instead of defining a worker role.
This nails down the precise skill set and permits optimal developer synergies
to be created by the experienced team of lead developers. Allocating the
proper persons to requirements significantly influences the effort estimates
both for the task itself and in other areas of the development effort. Thus, the
immediate allocation of a person makes the estimate more precise. If no
person can be allocated directly, then the details regarding required skills and
experience must be recorded for the next pass.

 Pass 3 (walk-through). This pass is the first sanity-check and
adjustment pass. The resource estimates from pass 2 are listed and compared
with the available resources for the project. At this point, hard decisions are
made by the planning team or, in case a problem cannot be resolved, must be
escalated by the team. Three so-called free variables can be adjusted in this
pass: feature set (requirements), time invested, and available worker skills.
These are the only three variables that need to be considered. They are known
as free variables to suggest their similarity to free variables in classic
engineering and physical science disciplines. Each free variable may be
adjusted and then the totals recalculated. Time and person skills can be
converted to cost, of course, at any time. In contrast to some science
disciplines, the three free variables noted here are not completely independent
of one another. This is one reason why the experience of the lead developers
is imperative in the planning effort. For example, dependencies between the
features must be addressed with each change of the free variables. Also, the
total time allocated for an iteration should not be stretched, contrary to the
RUP's recommended practice for iterations. As a rule of thumb, the mean
iteration length should not be more than 12 weeks.

 Pass 4 (run-through). In the final pass, the team runs through the
results of pass 3, checks for consistency and consensus, finalizes the so-called
W5 details (discussed later) for each task, and records the unfulfilled
requirements/ features. The W5 details ensure that all features are planned at
the level required by the system project manager to construct the TOMA and
its associated work plans. Figure 6.6 illustrates a TOMA. The columns in the

Convergent Architecture Chapter 6: The Development Process

-173-

TOMA represent the named tasks to be completed during the iteration. The
rows in the TOMA represent the workers (persons) available to the project. In
the TOMA, each task has an owner, which is denoted by a large circle at a
node in the TOMA, as shown in the figure. Also, tasks may have significant
participants, denoted by the smaller squares in the figure. Each task-owner
pair in the matrix (the large circles in the figure) is associated with its
respective W5 work plan details. The W5 specifies who (the owner and
participants), what is done (what are the deliverables), when (when are things
due), with whom (the significant contributors), and where the deliverables go
(where are the resulting artifacts to be delivered). Based on the run-through
consensus, the system project manager then produces the final feature list,
TOMA, and W5 work plans. In addition, the system project manager is the
owner of a task for regular iteration reviews and the final iteration review.
These cumulative results comprise the new current iteration plan.

Figure 6.6: Work plan: The task ownership matrix (TOMA) is used to
communicate work plans.

Based on the information quality won during the iteration planning session, the
planning team produces or refines long-term prognoses for the project. This long-
term plan includes estimates covering the number and extent of projected
iterations, staged releases, test versions, and RUP life-cycle milestones. It also
formulates the strategy for achieving these goals. This information is compiled by
the system project manager to produce or update the long-term software
development plan. This plan enables the IT organization and its steering team to
make long-term forecasts and proactive management decisions. Updating the
long-term plan with each iteration plan ensures the maximum accuracy of
forecasts. It also enables the team to gain experience regarding the quality of its
estimates and to more objectively assess the state of the development process
and the IT organization. Let's now look at project phase variations to the canonical
iteration planning and tracking activity.

RUP Inception-Phase Variant (Project Initiation)
The project initiation activity begins with the results from the T-bar business
analysis. Its primary goal is to delimit the project domain and define the solution
strategy. It begins with a very small team consisting of an experienced assembly
developer, the system project manager, and a few (not more) other developers,
depending on the extent of the proposed project. This initiation team also must

Convergent Architecture Chapter 6: The Development Process

-174-

have access to the relevant domain experts and experts familiar with the existing
operational IT environment. In addition, the convergent architect participates in
the initiation team by providing constructive feedback regarding the development
strategy on a regular basis. The initiation team works for a period of approximately
one to eight weeks to produce the long-term development strategy. The length of
this initiation activity is essentially dependent on the number of T-prototypes
(investigative prototypes in the spirit of the T-technique) that must be developed.
There are often many unknowns at this stage because we are at the very
beginning of the project investigation. However, the project proposal often
contains reasonable estimates. The precise number and length of T-prototypes and
other tasks in this iteration are determined in the iteration planning and tracking
activity, which the initiation team also uses to plan this initial iteration.

In this phase, the initiation team proceeds with a streamlined approach to the ABD
workflow (discussed later). The streamlined approach focuses on the critical
unknowns and risk factors in the project. The scope and content of the streamlined
ABD workflow are at the discretion of the experienced accessor developer, with
feedback from the convergent architect. The team produces a long-term
development strategy that consists of critical results from the initial ABD workflow
as well as an initial cut of the assembly architecture reference. It also includes the
priorities, content, and coverage of the projected iterations, with more detail for
the early iterations of the project. These initial results may change significantly
during the elaboration phase. Overall, these results fulfill the requirements for the
RUP life-cycle objective (LCO) milestone.

At the end of the phase, an LCO review is carried out with the initiation team, the
steering team, and the sponsoring client. The results of this review determine
whether

 The project should be continued according to the long-term
development strategy, in which case the iteration planning and tracking
activity for the first iteration of the elaboration phase is commenced.

 The project proposal should be revised and a second iteration carried
out in the inception phase.

 The knowledge gained during the inception phase requires a complete
review at the T-bar business analysis level, in which case the requirements
and feedback are formulated for input into the T-bar analysis activity, and the
cycle begins again at the T-bar level.

RUP Elaboration-Phase Variant

The elaboration phase begins with the first full-scale version of the iteration
planning and tracking activity. Its focus is on the ABD workflow, as defined later.
During the iterations of the elaboration phase, the system project manager and
convergent architect ensure well-directed progress of elaboration. The system
project manager checks that the agreed-on content and schedule in the work plans
are being fulfilled. This is done in part by using the architectural IDE to track the
progress of component metamorphosis in each view of the model. Each view can
be checked for completeness and integrity with its respective model verifier in the
architectural IDE. The convergent architect also monitors the views from the
perspective of the overall, cross-project, cross-system integrity of the architectural
style.

Convergent Architecture Chapter 6: The Development Process

-175-

As elaboration progresses, the assembly developer ensures that each member of
the assembly development team and its subordinate component development
teams produce increasingly elaborated versions of their owned resources, with
focus on the ABD workflow aspects. Remember, the owned resources and the
worker responsibilities are also defined in the IT-organization model. Once well
elaborated, the results of the ABD workflow, the owned resources, fulfill the
requirements for the RUP life-cycle objective (LCO) milestone. This means that the
assembly developer has arrived at a stable version of the assembly component
(also defined in the IT organization) from the design and architectural perspective.
At this point, significant structural changes have slowed to the level where UCM
coverage becomes reasonable and necessary for many artifacts, as described in
the CCM workflow (discussed later). The remaining effort now concentrates on the
completion, tuning, and testing of the business logic.
Initial operational capabilities normally should be demonstrable at the end of the
second iteration in the elaboration phase. Beginning with the second iteration, an
operational increment of the system is presented in the operational test
environment (in the test center organization). Each of these operational
increments increases the operational scope of the system. However, they are not
yet transitioned into the operational systems organization for end-user use. They
remain in the operational test environment. This is so because radical changes
may still occur in the design and realization of these increments until later in the
construction phase.

RUP Construction-Phase Variant

The construction phase constitutes a smooth, practically unnoticeable shift of focus
toward the implementation cycle workflow. In these iterations, the ABD workflow
has diminished significantly, with a proportionate increase of time spent in the
implementation cycle and test workflows. These workflows are now the center of
activity, with the models from the ABD workflow still driving development and, in
particular, code generation. In our model-driven approach, the ABD workflow does
not come to an abrupt end. It just shifts focus during the iteration of the
construction phase, leading to rapid increases in the visible capabilities of the
system.

The assembly developer, deployment manager, and system project manager plan
and drive the construction-phase iterations to fulfill the requirements for
deployment into the operational systems organization. The last iteration in this
phase concludes with the RUP initial operational capability (IOC) milestone, where
the test center manager and deployment manager agree to release the assembly
to the transition organization for prerelease testing by end users in the operational
systems environment.

RUP Transition-Phase Variant

The goal of the transition phase is the public release of the assembly into general
usage. In this phase, the assembly development team works closely with the
transition organization and focuses on the deployment and monitoring workflow.
During an iteration, problem reports from the deployment and monitoring workflow
propagate via the deployment manager back into the implementation cycle
workflow aspects of development and result in new prerelease versions of the
assembly. New feature requirements and major change requests flow to the

Convergent Architecture Chapter 6: The Development Process

-176-

requirements manager, not to the assembly development team, as defined in the
requirements management activity previously.
In addition to testing the deployed system, the operational user support
organization and infrastructure and base systems organization (see the IT-
organization model) are brought up to speed by the assembly development team.
The end of this phase is marked by the transition manager declaring that the
assembly is ready for public release. This also ends development for a single,
versioned release of the assembly, which may be followed by subsequent versions
during its entire life cycle. A final review is held with the assembly development
team. This review provides constructive feedback to each of the IT organizations.
In addition, the review addresses further releases and further ownership of the
assembly. If the normal planning flow has not already foreseen a subsequent
release, then the responsibility for further planning regarding the assembly lies
with the IT-organization manager, as described in the IT-organization model.
Alternatively, the ongoing T-bar business analysis and requirements workflow may
reinitiate a project proposal for a new version of the assembly at any time in the
due course of its activities. Ownership of the assembly and its contained
convergent components remains with their respective developers. If this is not
possible, then resource ownership for the artifacts reverts to the architecture
organization until new resource owners can be assigned.

Precisely the same approach applies to projects developing software to be sold to
external customers. The only difference, as already noted in the IT-organization
model, is that the operational systems organization manages prerelease tests
(beta testing) with external customers (as sponsoring clients) during the transition
phase and, in parallel, channels the rollout of the software product to the
respective marketing, sales, and distribution organizations.

Development Environment Workflow

The development environment workflow is a supporting workflow that sets up and
verifies the technical environment for any team member. It also tunes the
development environment for each new iteration of a project as the detailed
requirements on the development environment change. This workflow is concerned
primarily with verifying that the technical development environment is at its
effective best throughout the development life cycle. This enables developers to
concentrate on their core development duties along the critical development path.

 Activity. Set up and tune the development environment.
 Activity owner, principal participants. Development toolsmith,

developer, or the other workers requiring a development-like environment.
 Artifacts produced or refined. None.
 Other end results. Tuned development environment.
 Guidelines and artifact/tool usage:
 The development toolsmith and developer work closely

together in this activity. By assisting the toolsmith in this activity, the
developer is learning and influencing the environment he or she will use.
The first thing the development toolsmith does is to engage the
infrastructure and base systems organization to ensure that the basic
hardware and software platform is operational.

 Then the toolsmith and developer proceed to jointly tackle
the following tasks, more or less in this order:

o Set up the developer's particular view of the
project directory structure and ensure that the backup strategy is in
order.

Convergent Architecture Chapter 6: The Development Process

-177-

o Create the physical UCM structure in the local
environment and the views appropriate for the current phase of
development. The detail and range of the views usually change as the
project progresses. The artifacts that need to be managed in each
phase of the project are covered in the CCM workflow (see Figure 6.7).

Figure 6.7: Workflow, tools, and core artifacts.

o Set up the local architectural IDE and local
runtime/test environment (see Chapter 7 and the following test
workflow section). This includes the application server and its storage
tier (for example, the underlying database). Configure these to use
the CCM and backup strategy as appropriate for the current phase of
the project (see the CCM workflow section).

The technical CCM capabilities are set up and verified together with
the repository toolsmith.

o Test the development environment from
beginning to end to reduce the possibility that problems will be
discovered later when they may inconvenience the entire
development team. Using the reference technologies described in this
book, it is possible to carry out these tests completely automatically.
This precedes using ANT procedures (ANT 2000) to call and exercise
each tool used along the critical development path. An automated test
procedure at this stage provides all the advantages it has anywhere
else: predictable results, fast and simple, enabling incremental

Convergent Architecture Chapter 6: The Development Process

-178-

improvements. See the Convergent Architecture Web site for more
information and resources regarding such test procedures.

 Setting up the initial development environment entails most
of the effort during this activity, but the activity normally must be
revisited at the beginning of each iteration. For the sake of project
efficiency, iterations each require a level of formal tool support
appropriate to the phase. For example, as will be pointed out in greater
detail, the rigor of CCM and the test support required will increase with
the number of iterations. Enabling these features too early can, in fact,
severely hinder development. The tools environment will be configured
successively to enable, or even to enforce, the appropriate rigor as the
project progresses.

Configuration and Change Management Workflow
(CCM Workflow)
CCM is a supporting workflow that accompanies the entire critical development
path and its tools. The requirements management activity (discussed previously)
handles change management from the perspective change requests and the flow
of these requests in the IT organization. CCM addresses the environment and
mechanisms to technically manage the artifacts produced and changed within the
IT organization, most notably by system development projects. CCM is concerned
primarily with effectively partitioning, versioning, and archiving artifacts
throughout the development life cycle. This requires a dedicated, highly technical
workflow. For this supporting workflow, the Convergent Architecture leverages
UCM, as recommended by RUP (Kruchten 1998). This section describes how
special artifact types are handled in the UCM context. These are the artifacts that
are specific to the architectural style and, as such, are not covered as part of the
standard UCM workflow guidelines.

Since the CCM environment manages artifacts at the technical level, it is also close
to the physical environment; it must deal with the diverse storage requirements of
tools, frameworks, and operating systems. In fact, the architectural IDE leverages
the CCM environment to help insulate it from the idiosyncrasies of the low-level
physical environment. The Convergent Architecture Web site provides examples to
help set up and manage CCM environments in conjunction with the architectural
IDE and for large development teams.

 Activity. Activate UCM (manage CA-specific artifacts in a UCM
workflow).

 Activity owner, principal participants. Assembly developer,
configuration manager, repository toolsmith, developer, or other worker
requiring the CCM environment.

 Artifacts produced or refined. Assembly configuration management
reference, UCM repository.

 Other end results. Project-specific versioning and archiving of
artifacts.

 Guidelines and artifact/tool usage: This activity may commence
any time after the development environment workflow has installed and tested
the basic UCM infrastructure. However, it normally does not start until the
second iteration of the project or even later. This is so because the UCM model,
procedures, and tools are designed to manage relatively stable artifact
topologies, not to handle rapid changes in topologies. The initial phase of a
project is called the inception phase for a good reason: Much of the topology is

Convergent Architecture Chapter 6: The Development Process

-179-

not known yet. During the initial iterations, a team is rapidly inventing,
creating, and concurrently changing the component and package topology.
Artifacts are changed and exchanged many times a day between the members
of the project. Experience shows that trying to introduce the complete UCM
model too early results in hindering this dynamic team process due to the
administrative overhead required to make changes. In the initial iteration, a
canonical project team may go through 10 or 20 UCM cycles (integration-
baseline cycles) per day. At this stage of a project, this amounts to high time
consumption with essentially zero returns. Thus, this activity usually starts
later, at the discretion of the assembly developer, who will know when the
component topology and other artifacts can be managed reasonably using the
UCM model. Up to this point, a basic client-server version control system, for
example, a basic ClearCase infrastructure, is the best bet.

Similar to other supporting activities, the UCM activity is also a team effort, where
the developer helps specify and set up his or her local UCM environment while
learning and practicing its use. To ensure that the UCM partitioning is coordinated
across the entire project as well as with other projects, the assembly developer
participates in this activity. The assembly developer works with the developer to
define the UCM contents and structure and the UCM views, access rights,
responsibilities, and ownership issues. This task must be lead by the assembly
developer because it has a lot to do with project planning and design foresight:
Improper partitioning and assignment of artifacts at this stage will invariably lead
to confusion and friction in the development effort. During this task, the
configuration decisions are made in accordance with guidelines in the assembly
configuration management reference or serve to extend these guidelines to handle
a special case. The initial assembly configuration management reference is created
by the assembly developer based on the template provided by the configuration
manager. This ensures maximum CCM uniformity across projects. At the end of
this activity, the assembly developer creates a new version of the assembly
configuration management reference.
In addition to versioned artifacts, the team identifies archived artifacts. Archived
artifacts are those entities that cannot, or should not, be handled by the UCM
repository directly. These are things such as handbooks that do not exist in
electronic form or things such as software installation CDs that would unduly
burden the UCM repository. Such archived artifacts normally are represented as
versioned proxy artifacts (also known as reference artifacts) within the versioned
UCM pool. Managing versioned proxies of the archive artifacts enables a labeled
release to be managed in the UCM system without losing track of the relevant
archived artifacts.
Figure 6.7 illustrates the special types of artifacts produced along the CA process
workflows using the architectural IDE. These artifacts lie in the critical
development path and need to be under UCM management. Following the figure, I
explain how each of these artifacts normally should be handled in the context of
the IT organization and its canonical development team. Before covering each
artifact, it is important to note that we do not need to version purely generated
artifacts in the UCM pool. Instead, we only version and manage the source
artifacts that are used to generate these other artifacts. The exception to this is at
the end of an iteration, where the released assembly, including all generated and
deployable artifacts, is versioned and labeled. Since the Convergent Architecture
focuses on a model-driven approach along the entire life cycle, significantly fewer
artifacts must be managed as compared with traditional development
environments.

Convergent Architecture Chapter 6: The Development Process

-180-

Figure 6.7 shows the evolution (metamorphosis) of a convergent model through
the workflows of the CA process and the special types of artifacts created using the
architectural IDE during each workflow. The following list describes the artifacts
that must be UCM-coordinated among participants in the canonical development
team. The design internals of these artifacts will be discussed in more detail in
Chapter 7.

 repos-UML/XML, prj/XML. The repos-UML/XML is the UML repository
that manages the convergent model across all stages of development and
across the various tool modules that operate on the UML representation of
convergent components. The XML signifies that import-export and partitioning
of the model among developers is achieved via XML/XMI-formatted modules.
These XML partitions are units that may be managed on a per-developer basis
in the UCM pool. In addition, the IDE configurations for the team and for each
developer are managed in a XML project file, prj/XML. At some stage, this
project configuration information also will need to be in the versioned UCM
pool.

 mdl, cat, sub, prp. Beginning with the convergent refinement III
activity of the ABD workflow, the IDE embeds Rational Rose as a foundation
for its UML completion assistants. This produces additional Rose-specific
artifacts to support team development using Rose. These artifacts are the
ASCII model files mdl, category files cat, subsystem files sub, and model
properties files prp. You will see in the next chapter how these artifacts relate
to the UML/XML repository. These artifacts also will enter the versioned pool
on a team and a per-developer basis as soon as the partitioning of the model
has stabilized.

 tpl, py. Some projects require extensions or modifications to the
default technology projection cartridges. These extensions normally are in the
form of metaprograms consisting of template files tpl or JPython scripts py
that have been developed and tested in the translative generator IDE. These
extensions must be versioned in the UCM pool to coordinate them with other
versioned artifacts that require these generator extensions.

 jpx. To support the implementation cycle workflow, the IDE embeds
JBuilder for completion, compilation, and testing of the business dimension. To
support these activities, JBuilder-specific project files in XML jpx are generated
from the UML model. If these artifacts are modified above and beyond their
purely generated aspects, they too must be versioned similar to the project-
specific configuration files.

 WEB-WAR, EJB-JAR, Client-JAR, UTest-JAR, ATest-JAR, EAR. For
the implementation cycle, test, and deployment workflows, the translative
generator produces source code (for example, Java, C++, COBOL, XML, HTML),
configuration files, deployment descriptors, build environment files, and test
utilities. It also produces information to package these artifacts as deployable
units. These deployable units are the JAR (Java archive) files shown in the
figure, which together comprise the assembly. The assembly is packaged as
an enterprise archive (EAR) file. Any of these files may contain style-conform
refinements by the developer above and beyond their generated content. Any
of these artifacts that deviate from their generated form must enter the
versioned pool.

Analysis-by-Design (ABD) Workflow

The concept of analysis by design is central in convergent engineering, and as
applied here, it consolidates the RUP activities of business modeling, requirements

Convergent Architecture Chapter 6: The Development Process

-181-

analysis, and design activities. The analysis-by-design workflow is divided into
three phases, each representing a critical refinement stage along the
metamorphosis from a rough business strategy into the OPRs of a convergent
system. Each activity of the workflow covers one of these three phases:

 Convergent refinement I (convergent business modeling). This
begins with the results from the T-bar business analysis activity and produces
a verified business object model, including its use-case scenario models using
the C-BOM module of the architectural IDE.

 Convergent refinement II (convergent UML representation). This
begins with the results from convergent refinement I and produces an initial
convergent UML model using the C-RAS module of the architectural IDE.

 Convergent refinement III (convergent UML completion). This
begins with the results from convergent refinement II and produces a fully
elaborated UML model using the C-REF/Rose module of the architectural IDE.

 Activity. Convergent refinement I (convergent business modeling).
 Activity owner, principal participants. Assembly developer, domain

experts, lead developers.
 Artifacts produced or refined. Convergent business object model,

refined context diagrams.
 Guidelines and artifact/tool usage:
 The first activity in the three-phase refinement process is

known as convergent business modeling or simply convergent refinement
I. The only prerequisite is the results from the T-bar business analysis
activity. The refinement activity takes high-level T-bar business models
and requirements and refines them into a tested convergent business
object model that includes both structural and dynamic detail. It uses the
C-BOM and UML model repository modules of the architectural IDE to
support this activity and to manage the resulting artifacts.

 In this activity, the assembly developer organizes business
modeling sessions with lead developers and domain experts according to
the convergent engineering approach (Taylor 1995). These sessions are,
in many ways, similar to the T-bar sessions described earlier. At this stage,
the focus is on further refining parts of the T-bar results, as defined in the
project proposal and current iteration plan. First, business use-case
scenarios (BUCS) and accessor use-case scenarios (AUCS) are created.
These scenarios pick up where the top-level scenarios from T-bar activity
leave off. These are normally textual scenarios. BUCS describe business
operations, independent of the particular user or system access
mechanisms. If required (discussed later), AUCS add scenarios specific to
one or more access channels from the perspective of an external user or
an external system. The AUCS simply specify the structure and interaction
aspects of each of the accessor's representers (an access channel) from
the perspective of the user. It takes a flat perspective: It just talks about
how the user interacts via the particular representer; it does not cover the
business logic stream behind the scenes, which is covered by the BUCS.
The AUCS may refer to one or more BUCS, of course.

 Once initial, first-cut BUCS and AUCS exist, the rest of the
activity proceeds as illustrated in Figure 6.8. This approach is summarized
following the diagram; details and extensive examples may be found in
the convergent engineering reference (Taylor 1995). Details regarding the
C-BOM tool support and modeling style are also covered in subsequent
chapters.

TE
AM
FL
Y

Team-Fly®

Convergent Architecture Chapter 6: The Development Process

-182-

Figure 6.8: Recording and verifying business designs. Role playing
verifies and debugs the design and achieves consensus with domain
experts regarding requirements and priorities.

 In a talk-through, the developers discuss a scenario, step
by step, with the domain experts. Along the way, convergent components
are identified and recorded as CRC cards with their respective
responsibilities and collaborators in the model. During this process, the
business use-case scenario is also refined into a use-case scenario model
(scenario model), a visual representation of the dynamic business flow
and transitions between the convergent components. Scenario models
only need to be created for BUCS; the accessor use-case scenarios are
further refined in step 3 of the refinement process.

 The responsibilities on each CRC card are categorized in
terms of visible and hidden responsibilities, corresponding to things of
internal, private nature to the business component or things that must be
exposed to collaborators of the component. In addition, each responsibility
is allocated to one of the following three responsibilities categories:

o Knowing. These are passive information entities
held or referenced by the business object, an address or account
number, for example.

o Doing. These are active procedures or
algorithms carried out by the business object, the act of transferring
funds, for example.

o Enforcing. These are preconditions,
postconditions, and invariants that must be ensured by the business
object. An example here would be an invariant indicating that a client
cannot also be a member of staff.

 These categories are not always orthogonal in nature. This
means that one may be expressed in terms of another—responsibilities
are, after all, written in human language. For example, one could express
a responsibility for enforcing the customer's good standing in terms of one
doing a check on a customer's good standing instead. However, it is often
easy to categorize the responsibilities, especially with some experience.
Also, the nonorthogonality is not a critical problem at this point in design:
The focus of this level of design is on high-quality business requirements,
not on 100-percent orthogonality of representation. Using these
categories still helps simplify and streamline the pattern-matching process
in subsequent activities. Refer to the OPEN toolbox of techniques
(Henderson-Sellers 1998) if you require more background on these three
categories.

 In a walk-through, a RUP-compliant role-playing technique
is used to further refine and check the completeness and business

Convergent Architecture Chapter 6: The Development Process

-183-

relevance of the model. A walk-through often results in changes to
optimize the model. Several walk-throughs may be required until the
entire team, which represents both business and system perspectives of
the convergent model, is satisfied with the operational improvements and
the feasibility of the model. Not only is each walk-through a refinement
and optimization step, but it is also a debugging and sanity-check
procedure.

 To ensure that all team members concur on the quality of
the model, a run-through must be completed and recorded. In a run-
through, the team runs through the
scenario models, including each separately modeled path. A run-through
is successful when no more errors are found, and all parties are satisfied
with the content and quality of the model. Thus, this step represents a
sanity-verification and consensus check. Each run-through produces a
state-transition table that documents each of the respective paths through
the convergent model. The results of the run-through are recorded
together with the CRC and scenario models.

 The three steps—talk-through, walk-through, and run-
through—are repeated for a number of paths through the business
operation and model, not just a single best-case path. The recorded
results of each path define the acceptance tests for the resulting
convergent system. They also serve as a signoff document for the life-
cycle objective (LCO) milestone of the project.

 In this activity, accessors may be modeled in the form of
CRC cards with associated accessor use-case scenarios. However, since
accessors are not core business objects, they do not have to appear in the
business model. Often, accessors are introduced into the model in the
third refinement stage, the pure UML stage. This is more effective because,
once in the UML stage of refinement, default accessors and many aspects
of custom accessors can be derived automatically from the business
component model. Many accessor models can be generated automatically
from the business component model once the UML stage has been
reached. The decision is whether accessors should be detailed and
documented in refinement phases I and II, the extent of detailing being
left to the discretion of the assembly developer. By default, I recommend
beginning with the automatic generation of accessor models in phase III
of refinement.

 Activity. Convergent refinement II (convergent UML representation).
 Activity owner, principal participants. Assembly developer, lead

developers.
 Artifacts produced or refined. Pattern-refined convergent business

object model.
 Guidelines and artifact/tool usage:
 This second activity in the three-phase refinement process

is also called convergent UML representation because it complements the
business dimension with the structures to effectively represent both
business and IT dimensions in UML. In this activity, the developer or
developers from Convergent Refinement I sessions refine their results into
a convergent UML model. Patterns from the OPEN Consortium
(Henderson-Sellers 1998) are used to help ensure that trackable
convergence takes place and that uniform refinement style is established
across projects. Similar to the previous activity, this is a creative design
process that cannot be 100 percent automated; however, it can be

Convergent Architecture Chapter 6: The Development Process

-184-

partially automated and significantly supported by an intelligent tool. This
support is provided by the C-RAS module of the architectural IDE, which
assists the designer with the process of pattern-driven refinement, design
style checks, and other checks for completeness and quality. Details
regarding the C-RAS tool support and the relevant aspects of the modeling
style are covered in subsequent chapters. In particular, an example of the
OPEN refinement patterns is shown in the C-RAS section of Chapter 7.

 In this activity, the developer steps through the convergent
business object model and refines each of the recorded responsibilities
and collaborations of a CRC card. Each responsibility and collaborator is
explicitly assigned a UML representation according to the defined (or
configured in the case of a tool) UML modeling style. How such
assignment takes place is determined by patterns mentioned earlier. The
explicit assignment in the IDE according to patterns permits bidirectional
trackability and convergence between the refinement stages.

 After completion of this activity, the model has been
detailed and partitioned to the point where the assembly developer can
make effective assignments concerning resource ownership in due course
of the project management workflow. Thus, at this point, further stages of
refinement and implementation may be assigned to a number of
component development teams.

 Activity. Convergent refinement III (convergent UML completion).
 Activity owner, principal participants. Lead developer, accessor

developer, CEG.
 Artifacts produced or refined. The UML model of convergent

components has been refined and verified to the level of technical feasibility
for a specific technology projection.

 Guidelines and artifact/tool usage:
 The third activity in the three-phase refinement process is

known as convergent UML completion because it results in a UML
representation that is complete enough to support automatic technology
projection into a deployable system. To achieve this, the lead developers
and accessor developers use the modeling style for one or more
technology projections. This process of completion is actively supported by
the C-REF module of the architectural IDE in conjunction with technology
projection cartridges and their respective model verifiers.

 The canonical development team starts by agreeing,
together with the assembly developer, on the partitioning and unique
ownership of the convergent components if not already completed in the
previous phase. Accessors are usually allocated to accessor developers
and other convergent components distributed among component
developers. The relative responsibilities and interaction between these
team members and other participants in the team follow the logic defined
in the IT-organization model.

 Once the developer knows which convergent components he
or she is responsible for (resource owner), refinement can begin in the C-
REF/Rose module. The first thing that the developer will notice on opening
the detailed UML view is that much of the UML model has been completed
behind the scenes by the architectural IDE. The IDE has accompanied
each step of refinement with an automatic metamorphosis of the
components according to the modeling style. In other words, the creative
input of the developer thus far has been used by the architectural IDE to
derive other models and properties. The developers now continue with this

Convergent Architecture Chapter 6: The Development Process

-185-

process of style-driven assisted modeling by setting key properties of the
model at the UML level and letting the IDE derive other models and
properties.

 The developer should now configure a particular technology
projection cartridge in the architectural IDE if this has not already been
done. As pointed out in Chapter 4, the technology projection cartridge
extends the modeling style with aspects sensitive to a particular runtime
infrastructure. The IDE uses this information to help the developer check
or complete the model not only at the level of UML and J2EE/EJB
standards (assuming the default J2EE/EJB modeling style), but also in
terms of the capabilities (positive features and performance aspects) and
constraints (the problems and limitations) of the particular infrastructure.
It also adds defaults for infrastructure-specific properties that can be used
reasonably to tune the generated system from the UML model.

Now the developer proceeds to refine the following four areas:
1. Business-relevant behavior (business dimension aspects) from the

higher-level models is refined at the UML level. For example, exceptions that
were noted in the business scenario models may now be detailed in the UML
model according to the modeling style for exceptions. Similarly, the UML-level
details of associations, multiplicities, and inheritance can now be completed in
detail by the component developer. Business components are associated, for
example, not only with each other, but also with their supporting utility
components in the model. Examples of such utility components are logging
sinks, specialized decoders, or device drivers.
At this point, some projects may want to provide more detailed documentation
to represent especially complex sequences of component interactions, for
example. To do this, optional UML diagrams such as process model activity
diagrams, sequence diagrams, and other activity diagrams may be created in
the UML model. These are optional in nature because they are not necessary
to generate the deployable infrastructure.

2. The accessor use-case scenarios are refined into accessor models. This
normally begins by generating so-called default accessor models based on the
existing business component models. Default accessor models may be
generated automatically for common system access features such as viewing
components, editing a component, querying and browsing lists of components,
and so on. Based on these or in addition to these, custom accessors can be
modeled and refined in UML according to the accessor modeling style.

3. To address specific physical requirements of the system, the IT
dimension is tuned and the physical package structure of assemblies is defined
in the UML model. Physical requirements concerning distribution, caching,
querying, or database mapping may all be influenced by changing the
J2EE/EJB properties of the components in the UML model. Based on the
configured technology projection cartridge, every component has received
defaults for these properties. These defaults may be changed to tune specific
aspects of the runtime environment. During the generation phase, the
technology projection interprets each of these tuning parameters, including
combinatorial interactions with other parameters, and generates optimized
features for the particular infrastructure. In addition to standard properties
available from J2EE/EJB, separate property sheets expose properties specific
to the particular technology projection. Here also, the defaults in the UML may
be changed to tune the specific added-value features of the respective
implementation technology.

Convergent Architecture Chapter 6: The Development Process

-186-

The developer then creates the assembly model, which consists of the physical
partitioning of all other convergent components in the model into the
deployment modules such as client-side JAR files, EJB JAR files, and Web
archives (WARs). These are configured as physical components in the UML
model with the help of modeling assistants.

Also, the developer may decide to repartition the IT dimension of a component
to meet special distribution or query requirements. For example, EJB-
dependent values may be split out to transport the state of an object between
the client and server personalities of a component. Another such case would
be the use of a special query-utility component to increase the performance of
extensive, distributed queries. Such utility components often are generated by
the technology projection cartridge to leverage special features of a particular
application server.

4. Unit and component test aspects are modeled or configured to enable
the automatic generation of test structures and test instrumentation. These
aspects are covered in more detail in the test workflow section below.

In general, this refinement takes place as a series of development increments,
each increment being a compressed iteration across the remaining workflows of
the development process. In each of these compressed iterations, the model is
verified, generated, and tested using the architectural IDE to provide timely
feedback to all members of the development team. The UML model verifier is used
frequently by the developer to check the style integrity, completeness, and
technical feasibility of the model. Such verification permits the developer to make
more extensive changes per increment before having to traverse the other
workflows.

Refinement Continuity Across Workflows
Before moving to the implementation cycle workflow, it is important to address
how continuity of refinement is achieved in the Convergent Architecture. The
visibility of the business dimension and the IT dimension of components identified
and refined in the ABD workflow is conserved in the subsequent implementation
cycle and test workflows. In these workflows, refinement occurs in Java (or C++,
COBOL, PL/1, and so on; Java is simply the reference example) using the Java IDE
in the context of the architectural IDE. In the Java IDE, low-level business logic is
added into the generated Java infrastructure. In a convergent system, adding
source code is still part of the structured refinement process. The source code is
another level of the model, visibly derived from the UML model. In the refinement
process, the Java-level additions to the business dimension remain clearly visible
and easily distinguishable from the generated business dimension and IT
dimension aspects. This visibility is achieved by using intelligent protected areas in
the Java code, as you will see in subsequent chapters.

The protected areas allow us to carry the model-driven paradigm and the clear
separation of concerns into the code base. At the source-code level, the
convergent component is still clear, and it is clear which aspects of this component
were derived from the UML model. Everything outside a protected area is
generated from a higher-level model; everything within the protected area is
specified at the Java level of the model. The metamorphosis of the component is
still visible: The model-driven approach does not dissipate when one gets to source
code.

Convergent Architecture Chapter 6: The Development Process

-187-

Each level of refinement and each view of the model, including its Java view, has
its justification as a structured step in convergent refinement. This is because
important things cannot be represented in UML. UML is, after all, just a level of
abstraction. If we tried to represent everything in UML, then it would be just as
complex as the machine code generated by compilers. Some aspects of the
business dimension are best understood and represented at the Java level of the
model, some are best understood and expressed further upstream in the UML
model, and others are best understood and formulated as CRC cards in the top-
level business model. The aspects best represented in Java are the low-level "if,
then, else" aspects of business logic. This logic implements, for example, the
conditional transitions that we captured upstream in the BOM scenario models or
the complex algorithmic aspects of responsibilities described in the CRC cards.

In the Convergent Architecture, the Java (or C++, COBOL) compiler is viewed as
just one of many model-driven automation steps. For example, the generator and
technology projection cartridge (for one or more technologies) is used to get from
the UML model to the Java level of the model, and the compiler (for one or more
platforms) is used to get to the next level below Java. In fact, there are additional
automation steps. On deploying an assembly, for example, the application server
also generates masses of new code behind the curtain in order to complete the IT
dimension in the context of the particular application-server environment. This
application-server-specific automation step is driven by things (deployment
descriptors and Java, for example) generated by the technology projection
cartridge, which, in turn, is driven by the UML model.
To summarize the continuity across workflows, it can be said that the model-driven
development of a convergent system consists of a series of repeatable, style-
driven stages of refinement and automation (metamorphosis) that begin with
business modeling and progress consecutively through to the final runtime system.

Implementation Cycle Workflow

The implementation cycle workflow describes the steps required during the stage
of development following the ABD workflow. It is called a cycle because it is
repeated quite often, beginning with the enhancement phase of a project and
increasing in frequency through the iterations of the construction phase.
The implementation cycle begins in the Convergent Architecture with a mouse click.
Based on the models developed in the ABD workflow, the generator module of the
architectural IDE now takes over and generates somewhere between 50 and 90
percent of the environment required to build, test, and deploy the system further
downstream. The integrity of the generated code is the responsibility of the
technology projection component (see Chapter 4 and the bonus chapter on the
Web site).

The remaining percent of the system is low-level logic that is filled into the
generated infrastructure by the developer. The environment generated from the
UML model can be built, deployed, and tested immediately. However, since the
Java-level business logic has not yet been implemented, many business-relevant
features will not be completely functional. To add the Java-level (or C++, COBOL,
and so on) logic, build the assembly, deploy the assembly, and test the assembly,
a high-end programming environment, a Java IDE such as JBuilder, is leveraged.
The complete configuration required to leverage the Java IDE is also generated
from the UML model. Thus, after generation, the developer can load the generated
artifacts automatically into the Java IDE and can get down to business immediately

Convergent Architecture Chapter 6: The Development Process

-188-

completing and testing business features. The individual tasks carried out by the
developer during this cycle are described in the following activity.

 Activity. Model-driven implementation cycle.
 Activity owner, principal participants. Developer, test manager.
 Artifacts produced or refined. Assembly component or convergent

components as defined by the IT organization (see Chapter 5) depending on
the worker (assembly developer or component developer).

 Guidelines and artifact/tool usage:
 In this activity, the developer begins with results from the

ABD workflow. These results consist of a UML model that has been verified
for technical feasibility in the C-REF module of the architectural IDE. The
next step is to generate the infrastructure and the environment for the
implementation cycle using the C-GEN module of the IDE. To prepare for
generation, the developer uses the dialog provided to configure details of
the technology projection cartridges and other aspects of the project
environment. For example, in addition to checking the configuration of the
application server itself, the developer enters information pertaining to the
database or persistent storage environment, the Java IDE environment,
and the current operating system environment.

 The developer then selects the UML model and activates the
generator from the UML environment. Individual parts of the UML model
or parts of the technology projection may be selected for generation. For
example, to selectively generate the Web accessors, only the accessor
cartridge is selected, and all the other cartridges are deselected for the
generation run.

 Once the generator is finished, the developer switches to
the Java IDE and loads the generated project file (if this has not already
been done by the Java IDE). At this point, the compile, build, and test
cycle can be started right away using the generated infrastructure. This
permits the developer to immediately test aspects derived from the UML
model in the runtime environment. However, the business dimension is
still incomplete, so not much business logic can be tested yet. The next
step is to complete the business dimension in the Java IDE.

 To complete the business dimension and its interaction with
the IT dimension, the developer edits protected areas that were generated
into the Java/J2EE infrastructure. The location of these protected areas is
also derived from the UML model. Depending on the quality and coverage
of the modeling style and the technology projection cartridges (or
extensions to these, respectively), the developer may have to edit
protected areas within the IT dimension. In any case, anything written
within the boundaries of protected areas remains unchanged across
repeated generation runs.

 Implementation guidelines for hand coding also exist. These
are the sentinels (see Chapter 7) that are defined or designated by the
chief architect to govern the architecture-conform usage of certain
technologies as required by the local instance of the Convergent
Architecture. The default sentinel for the Java development kit, for
example, contains a reference to widely accepted Java coding conventions
found at java.sun.com/docs/codeconv/.

 Ensuring the testability of the components is a normal part
of the implementation cycle workflow. Both unit tests and component
tests are created and maintained by the developer as part of each
convergent component. Similar to other artifacts, significant parts of these

Convergent Architecture Chapter 6: The Development Process

-189-

test artifacts can be generated from the UML model and completed in the
Java IDE. The test workflow described later provides more information on
test artifacts.

 At this point, the developer begins a rapid design and
implementation cycle. Each cycle consists of an incremental increase in
system capability and its commensurate test features. In each cycle, the
developer moves back to the UML model, changes or extends the model,
and regenerates the respective infrastructure.[3] The developer then
proceeds to the Java IDE to add more custom code to the component and
its test artifacts. The Java IDE is used to automatically compile, build,
deploy, and run the components, including the accessors. The developer
then runs the accessors and the test artifacts in the Java IDE to check the
business and technical features of the system and to trace and debug any
problems introduced during custom coding.

 In the later iteration or the construction phase, editing may
be unnecessary. The developer or testers may want to regenerate, build,
and test the system without accessing the UML tool or the Java IDE. This
is especially true for automatic tests of assemblies and components,
where entire models are checked out directly from the UCM pool and then
generated, built, deployed, and tested without human intervention. Such
automatic tests will be carried out on a regular basis, nightly, for example,
once the project has matured well into the construction phase. To support
the large-scale automatic testing of components, infrastructure, and tools,
the technology projection cartridges also generate command-line scripts
to carry out the cycle. Based on these scripts, command-line processing
can be started by calling the generator (C-GEN module) from the
command line to access the UML model (via the C-REF module) and
generate the infrastructure. The scripts also provide command-line
commands for the rest of the compile, build, deploy, and test cycles. The
level of support for these phases depends, of course, on the particular
technology projection cartridge.

 Developers may need to modify or extend the capabilities of
technology projection cartridges. This is done using the generator IDE
module of the architectural IDE. A simple modification that is frequently
made to a cartridge is, for example, to add the corporate logo and other
graphics to the default HTML representers. As explained in Chapter 4, the
HTML representer is the HTML front end generated by a cartridge. To
modify the graphic design produced every time the generator is run, a
developer or development tool expert may edit, test, and debug the new
graphic design using the generator IDE. Once tested, this cartridge
change may become part of the default cartridge to be used by all other
projects. However, such changes to cartridges should only be made with
consent of the chief architect. More details concerning the content of
cartridges and their relationship to the architectural IDE are provided in
the next two chapters.

[3]The desirable side effect of this cycle is that the design is always in sync with the
implementation, the integrity of the design is immediately verified at the UML level,
and the system design is implicitly documented in UML.

Convergent Architecture Chapter 6: The Development Process

-190-

Test Workflow

A mature model-driven approach significantly reduces the amount of code that
must be tested. However, at least three good reasons remain as to why effective
test coverage is needed. First, even the best UML models and their technology
projections are not formal proof that the generated system will work as expected.
Mature modeling and well-tested technology projection cartridges do reduce the
source of error significantly, but one is never 100-percent sure until the system is
tested. This uncertainty is inherent in the complexity of application-server and
networked-system environments. Clearly, these servers and environments are
themselves not without error. Second, any models and code entered by humans
during the implementation workflow are subject to human oversight. Testing is the
only effective way to check their correctness. Third, and most significant, we need
to verify that the business representation, the business dimension, is really doing
what we said it would. No matter how good we are at reducing errors, there will
always be residual uncertainties—in the foreseeable future anyway—that can be
reduced further only through adequate testing. The architectural style deals with
this reality by encompassing a test workflow and its respective organizational and
tool support.
Here again, the model-driven approach affords the most effective test coverage.
Figure 6.9 illustrates this approach as supported by the architectural IDE. To the
left are the UML models that conform to a well-defined modeling style. Thus,
significant aspects of the test infrastructure can be derived and generated
automatically from the models. Similar to the generation of default accessor
models mentioned earlier, testing models also can be derived from the business
component models—models used to generate other models.[4] Based on the default
test models, a developer can add specialized testing features at the UML level. The
right of the figure shows how test components, instrumentation, and the
automation infrastructure are generated, as always, by way of the technology
projection cartridge. The generated infrastructure is now model-specific, enabling
the test of both business logic and technical infrastructure. The level of
automatically generated support for various types of tests is evolving rapidly and is,
as always, dependent on the current state of the modeling style and particular
technology projection.

Convergent Architecture Chapter 6: The Development Process

-191-

Figure 6.9: Model-driven test infrastructure. UML-driven (OCL) test generation,
instrumentation, build, and runtime.

The Convergent Architecture specifies the following test categories to enable
optimal coverage and synergies during each phase of development:

 Unit tests. These automate testing of individual technical units such as
Java classes.

 Component tests. These automate testing of entire convergent
components.

 Assembly tests. These automate testing of entire assemblies and
their interactions with other assemblies (integration tests).

 Interaction and response tests. These verify accessor use-case
scenarios, user interfaces, and response performance.

 Business flow and convergence tests. These check the fidelity of
the system with respect to the business object model.

The test development and execution activity explains the tasks associated with
each of these test categories.

 Activity. Test development and execution.
 Activity owner, principal participants. Lead developer, developer,

test manager, tester.
 Artifacts produced or refined. Test models and environment, unit

tests, component tests, assembly test plan, assembly tests, assembly test
results report.

 Guidelines and artifact/tool usage:
 Once the developer is sure that a particular unit in the UML

model, a class, for example, is relatively long-lived, he or she creates unit
tests to test this unit in the runtime environment. The structure of these
unit tests may be modeled in UML, or the structure may be derived
automatically from the model by the technology projection cartridge. For
the J2EE/EJB technology projection, the JUnit (JUnit 2000) framework is
used as a basis for testing, and the ANT (ANT 2000) framework is used to

TE
AM
FL
Y

Team-Fly®

Convergent Architecture Chapter 6: The Development Process

-192-

automate the tests. By stipulating JUnit up front in the process, both
modeling style and technology projection can be tuned specifically for this
framework.

 Based on the unit tests, the developer creates component
tests. Component tests are suites of unit tests that test the sum of the
features comprising a convergent component. In addition to testing the IT
dimension and basic structures of the business dimension, business-logic
tests occur at the component test level. The code required to test the
business-logic aspects of the component is often as complex as the
custom business logic itself. As such, it is currently added at the Java level
in the Java IDE. However, the basis for these tests may be derived
directly from the preconditions, postconditions, and invariants entered in
the model for each operation of the component. These conditions and
invariants were recorded as needed in the beginning in the convergent
refinement II stage of the ABD workflow (using the CREF module of the
architectural IDE). If these preconditions, postconditions, and invariants
have been specified using the Object Constraint Language (OCL) (Warmer
1999), then they are not only more concise than natural language, but
they may, at some point in the future, also serve to generate business-
level test logic. Significant progress is being made in the areas of
formalizing OCL as part of a modeling style, thus enabling technology
projections to automatically generate business-level test logic.

 The next level of testing happens at the assembly level.
These are the assembly tests. In contrast to unit and component tests,
which are developed continuously and run by developers in local test
environments, assembly tests are specified and carried out carefully in
conjunction with the test center organization. Late in the construction
phase, they will be used by the test center to test both the assembly itself
and significant interactions with other assemblies. The assembly tests are
the ultimate level of automated testing. They are the basis for regression
testing. The results of the assembly tests carried out in the test center
organization determine whether an assembly is ready to be released into
the transition phase. To this end, an assembly test plan is created by the
test manager together with the assembly developer. The assembly
developer is then responsible for ensuring that the assembly is testable
according to this plan. For the most part, the assembly test consolidates
and integrates the component tests. Thus, the assembly developer and
test manager must ensure early on in the elaboration phase that all
developers are working according to a common modeling style for the test
framework. As stated earlier, in the Convergent Architecture, this
modeling style and framework currently are based on JUnit and JUnit-
compliant extensions for J2EE/EJB environments.

 Accessors that were modeled and built during the normal
course of the ABD and implementation cycle workflows are extremely
valuable test tools. Both custom and default accessors may be used by
human testers or by regression testing tools such as Rational Robot to
check two aspects of the system. First, they can be used for so-called
interaction and response tests. These tests can be used to verify the
access channels defined in the accessor use-case scenarios. More
important, they may be used to test user interaction quality and system
performance. The system performance is tested in this case at its most
relevant point—the response times at the user interface. The
automatically generated default accessors can be used right off the bat to

Convergent Architecture Chapter 6: The Development Process

-193-

test the general interaction and response behavior of the components
without having to create any custom accessors.

 The second aspect tested using accessors is the fidelity of
the system with respect to the initial business object model. This step is in
fact also testing the degree of convergence that has been achieved, so it
is called business flow and convergence testing. During the construction
phase of the project, custom accessors have been derived and built from
the scenario models developed in the BOM. Remembering back to the ABD
workflow, each scenario model was associated with a set of recorded run-
throughs, each documenting a business-relevant path through the
convergent system. The architectural IDE automatically documents this
set of business paths in the form of state-transition tables. The tester or
test recorder uses the accessors to test each of the documented paths
through one or more state-transition tables. The results of these tests
provide valuable feedback concerning the completeness of the convergent
system, the quality of the current business dimension, and the ease of use
of the system to support the intended business operations.

[4]This is equivalent to applying patterns to generate other customized or more highly
specific patterns.

Documentation Workflow

Experience has shown that developing quality, high return on investment (ROI)
documentation necessitates a dedicated support workflow that runs parallel to the
critical development path. Above all, the same developers who are responsible for
the critical development path cannot be expected to also be experts in
documentation. Also, normally they are supposed to apply their special
development skills to the critical path, not to documentation. Producing reasonable
documentation is a highly skilled job of its own. Anyone without the proper skills
and focus will produce poor documentation, which, in turn, may cast an unjustified
shadow on the entire development results. To ensure that high-quality
documentation is produced at lowest risk and lowest cost, the Convergent
Architecture takes the following basic approach.

First, the organizational coordination of a worker with the proper skills is instated
in the IT-organization model: the technical writer. Second, the model-driven
approach and the architectural IDE are designed to produce much of the
documentation automatically as an explicit side effect of component
metamorphosis. The focus on convergence in the architecture creates an easily
understood stream of artifacts that serves as the system documentation. Clearly, if
the system can be generated from the UML model, then the model is accurate
documentation of the system design. And if the UML model was visibly refined
from a previous model, then we have the next level of design documentation, and
so forth, all the way up to the highest-level business model. Thus, after style-
conform development of a convergent system, the artifacts managed by the
architectural IDE document the business design, not just the system design—the
essence of convergence. Other important synergies also emerge in this
constellation. The developer is in fact producing a whole lot of the documentation.
The developer is essentially unaware that much of the documentation is being
produced as a side effect of the critical development path. The approach also

Convergent Architecture Chapter 6: The Development Process

-194-

ensures that the documentation automatically reflects the real state of the design
and its resulting system at all times.

The documentation preparation and production activity covered here describes the
steps required to ensure the quality of the design documentation and to produce
the end-user documentation for an assembly component.

 Activity. Documentation preparation and production activity.
 Activity owner, principal participants. Technical writer, developer,

test manager, deployment manager.
 Artifacts produced or refined. Documentation development set,

design documentation, end-user documentation.
 Guidelines and artifact/tool usage:
 The documentation preparation and production activity is

driven by the technical writer (the writer) as participant in every canonical
development team. During the iterations of the enhancement phase, the
writer begins work with the assembly developer to develop a
documentation roadmap for the assembly. Then the writer works with
each developer to plan his or her contribution to the documentation set in
each phase. When properly planned up front, this contribution is not a
particular burden on the developers; it simply specifies and coordinates
how models are documented. The intent is to improve the quality of the
models and to produce material for the documentation as a side effect.
The writer ensures that each developer does the following.

 First, for each stable model element created by the
developer, a description should be entered in the places provided by the
architectural IDE. This includes documenting preconditions, postconditions,
invariants, and other details of the business dimension and IT dimension
in the respective view of the convergent model. The partitioning and
structure for these documentation entries are provided by the
architectural IDE. For example, preconditions and postconditions have
their own editors. It is important to note that the developer does not have
to document anything already covered by the architectural style itself: The
principles and structures of the architecture are already clear across all
projects, as is the modeling style and the technology projection for
convergent components. All these are already documented. The developer
just has to address his or her particular usage of the style. The developer
and writer can use the verifiers in the architectural IDE to check that the
elements of the model have been documented.

 Based on the UML model, the technology projection
cartridge generates code with documentation in the standard JavaDoc
format. When adding custom Java code, the developer may need to
extend these JavaDoc entries to more precisely describe the behavior.

 Design documentation. Once the preceding tasks are
completed, the models in the architectural IDE serve as ample design
documentation. If required, special reports and special statistical views of
the convergent design can be generated based on the information in the
architectural IDE. The information exists and is easily accessible through
the various views provided by the architectural IDE itself or by external
tools via Java and XML, for example. The model is the documentation of a
convergent (business and software) design. If this is not the case, then
something is awry because this is one of the principal goals of the
architectural style.

Convergent Architecture Chapter 6: The Development Process

-195-

 The end-user documentation is a special compilation and
extension of the design documentation for end users of the system. To
create these documents, the writer derives the basic usage of the system
from the existing accessor models and the look and feel of the accessors
themselves. Little or no additional input is needed from the developers. As
part of the end-user documentation, the writer begins developing tutorials
for the end users during the construction phase of the project. This task
has an important side effect to further increase the ROI of the
documentation workflow: The writer is testing the usability of the system
from the perspective of the end user. By developing tutorial
documentation, the writer provides the assembly developer with early,
impartial feedback concerning the usability of the system.

 The writer also produces online help documents. The end-
user documentation serves as a single documentation source from which
the online help is produced automatically. This is to prevent the online
help from becoming a branch of the documentation that must be
synchronized continuously with the main trunk of documentation. Such
branches are error-prone and costly. The single-source approach is not as
simple as one might think but is indeed possible with the reference tools
defined in the IT-organization model (see Chapter 5). Using these tools,
the online help becomes a by-product of a central documentation stream
and does not constitute an extra documentation effort.

 As stipulated in the IT-organization model, all projects
create documentation according to a single documentation style. This style
is defined in the documentation development set created by a technical
writer in the PET organization during the IT-environment workflow.
Documentation templates and style guides for a documentation
development set are publicly available for FrameMaker, the reference
documentation tool in the Convergent Architecture.

Deployment and Monitoring Workflow

Deployment and monitoring, although directly in the critical path, turn out to be
fairly simple in the Convergent Architecture—who said it has to be hard! This is
primarily due to progress made in recent years in the area of standards-based
application servers. When used properly, such application servers can provide a
stable, high-performance, easy-to-manage platform that far surpasses that of
many mature mainframe environments.

The trick is not just to install an application server, but also to leverage the
powerful features of these new server infrastructures. Several aspects of the
convergent components and the architectural IDE help developers and operators
use these features to reduce deployment effort and risks while improving the
monitoring and adjustment capabilities of the system. The deployment and
monitoring activity covered here describes how participants on the canonical
development team contribute to achieve these capabilities and how the workers in
the operational systems organization use these capabilities.

 Activity. Deployment and monitoring activity.
 Activity owner, principal participants. Assembly developer,

deployment manager, assembly operator, container operator, user support
specialist, component developers.

 Artifacts produced or refined. Assembly component, application
server environment.

 Guidelines and artifact/tool usage:

Convergent Architecture Chapter 6: The Development Process

-196-

 This activity is driven by the assembly developer and begins
in the elaboration phase. Later, once the assembly component has been
deployed into the operational systems organization, the assembly operator
takes over the responsibility for proactive monitoring and adjustment of
the operational assembly as well as for providing feedback to the
assembly developer.

 In the late iterations of the elaboration phase, the assembly
developer works with the deployment manager to define the special
installation requirements, monitoring accessors, instrumentation, and
model-driven tuning requirements from the operational systems
organization. As participant on the canonical development team, the
deployment manager represents the entire operational system's
organization and may solicit direct participation from other members of
this organization for this task. The significant development aspects to be
addressed in this context are as follows:

o Above and beyond the type of application server
envisioned for the operational environment, there will be special
requirements and constraints concerning the existing operational
environment. These requirements usually will affect the development
of the assembly installation set and may affect the tuning of the
assembly model at the UML level.

o In addition to standard application-server
features that are set in the UML model, a particular system
environment may require special instrumentation to enhance
monitoring and logging capabilities. This proprietary instrumentation
can be activated via a separate module in a technology projection
cartridge for a particular environment without polluting the standard-
based aspects of the UML model. If these features need to be
adjusted at the UML model level, then the modeling style also can be
extended modularly to expose these features in the UML model view
of the architectural IDE.

o Special accessors and utility components may be
desired to allow a portable diagnosis or runtime tuning at the level of
convergent components, regardless of the underlying application-
server infrastructure or the particular access channel.

 Assembly components are designated as the intelligent
deployment units in the architecture. In the default J2EE/EJB technology
projection, these units are enterprise archives (EARs). In the case of high-
end J2EE/EJB application servers, EARs may be deployed automatically
and configured into the J2EE/EJB containers via several paths, each path
accommodating a particular phase of development and its deployment
requirements. Assembly components can be generated to support three
deployment paths: an ANT-script-driven deployment to be used for
automated test cycles (such as assembly tests), a Java-IDE-driven
deployment to support the implementation cycle workflow within the test
environment, and a release-level deployment via the console of the
operational application server to support the transition workflow and
operational deployment.

 After release, the steady-state operation of the assembly is
handled by the assembly operator in coordination with the container
operator. Two aspects are important when considering runtime monitoring
and the adjustments to an assembly as a result of monitoring:

Convergent Architecture Chapter 6: The Development Process

-197-

o Some tuning parameters, such as EJB
transaction modes and caching parameters, which were set in the
UML model and generated into the runtime infrastructure, may be
modified in the runtime EJB container environment from the
monitoring console. Based on changes in the runtime environment,
these parameters may require short- or long-term adjustments. In
the case of long-term adjustments, a change is also fed back to the
assembly developer for a permanent change in the source model for
the next release. More important, if a change in the runtime
environment is dubious or uncertainty exists regarding its possible
side effects, the assembly developer can provide proactive, high-
quality advice based on the originating UML model.

o The convergent components are visible in the
management console of the application server. Here again, their
convergence with the upstream models simplifies the monitoring and
feedback channels. All stakeholders can communicate rapidly and
unambiguously the source of problems to the responsible
organizations. This is so because the convergent component is visible,
so its resource owner, beginning with the assembly developer, is also
clear. Also, the component in question can be located and inspected
easily at any position along the development stream. This enables
more rapid and professional responses to problems and suggestions
from the field.

 Lastly, feature requests and major change requests may
arise during the deployment and monitoring activity. Requests not
willingly absorbed by assembly development teams are relayed to the
requirement manager, as described in the global requirement
management activity previously.

Summary
This chapter covered the system development process aspect of the Convergent
Architecture. This is known as the CA process and is the third and last component
in the development model. The introduction pointed out the rest of the
architectural style, which enables both the optimization and simplification of the
development process. This simplification is due to the inherent continuity between
all elements of the style, a property referred to as reference-frame continuity.
The CA process is not a new development process; instead, it is a derived
refinement of several other modern process frameworks and methodologies. Above
all, it is a style-specific instance of the RUP (Kruchten 1998). In addition, it was
influenced by OPEN (Graham 1997), EPM (Gilb 1988/1999), and catalysis (D'Souza
1999).

As an instance of RUP, the CA process consists of workflows that are subdivided
into activities. The workflows are organized in terms of two major categories:

 Preparatory and cross-project workflows. These workflows are not
associated with any particular project. They are initiated before the first
development project and act in a cross-functional manner across all projects.

 Canonical project workflows. Similar to the canonical development
team presented in Chapter 5, the canonical project workflow describes the
development process from the perspective of the canonical development team.

Each of these categories was described in terms of the workers involved, the
results produced, and the tools used to achieve these results. In addition,

Convergent Architecture Chapter 6: The Development Process

-198-

guidelines were presented within each activity outlining the tasks carried out by
each worker and the usage tools employed to support the tasks.
The development model is now complete. The next chapter provides detail on how
the architectural IDE supports the development model. The final chapter presents
a tutorial to show how all the parts work together based on a concrete example
using the architectural IDE. In this example you will see how key features of the
architectural style work together to provide tangible advantages in a real-world
environment.

In addition, the bonus chapter on the Web site provides complete details of the
technology projection component in the form of a reference manual.

Convergent Architecture Chapter 7: The Architectural IDE

-199-

Chapter 7: The Architectural IDE—
Automating the architecture

Overview

The third and fourth main features of an information technology (IT) architectural
style as realized by the Convergent Architecture (refer to Figure 1.1) are the full-
coverage tool suite and the formal technology projections. The focus of this
chapter is the tool suite.
In the previous chapters we saw how the architectural integrated development
environment (IDE) plays a central role in supporting and simplifying various
aspects of the Convergent Architecture. Up to this point, the perspective has been
from the various topics of the development model. The support provided by the
IDE was pointed out with respect to the local topic of each section. Although
important, the local perspective does not present the overall picture of how all
these things work together. This chapter takes a close look at the sum of the parts:
the interdependence of the individual pieces. It also analyzes some aspects not
covered from the local perspectives of previous chapters. These aspects include
the integrative and flow characteristics of the architectural IDE that enable it to
better support the architecture as a whole instead of only covering parts of a
development flow. Figure 7.1 summarizes the coverage of the architectural IDE
with respect to the Convergent Architecture (CA) process.

Figure 7.1: Architectural IDE: Critical path coverage. Covering the critical-path
workflows.

The principal objective of the architectural IDE is to automate and assist the
critical-path workflows in the context of the entire development model. In the
figure, the critical-path workflows are shown as they progress with time from left
to right. Situated below each workflow are major categories of artifacts that must
be created, integrated, and manipulated during the workflows. Analyzing the figure,
we can briefly summarize the requirements on the architectural IDE as follows:

 Concerning business and requirements models. The T-bar
business analysis and requirements workflow requires tools to easily record

Convergent Architecture Chapter 7: The Architectural IDE

-200-

and manipulate business structures and flows. The modeling activities in this
workflow are highly interactive. Thus, the tool must help a designer to rapidly
record and structure significant amounts of business information without
hindering the dynamics of group-analysis sessions. The resulting models
should then be equally valuable as a source of business information and for
convergent refinement into software systems.

 Concerning a common model repository. The business and
requirements models should initiate a trackable thread of information and
design refinement across all other workflows. To support this thread, both
business and technical design information should be saved in a well-defined
central format (Unified Modeling Language, or UML) or common model
repository. This repository must be open to incremental exchange and
integration at any time with other tools (XMI/XML, open Java API).

 Concerning UML design models. The creation of UML models
according to the analysis-by-design workflow should proceed in an automated
or assisted manner using the patterns defined by the architectural style.
Further automation should help the developer refine UML models according to
the well-defined modeling style. This process of tool-assisted modeling should
continue until the model is sufficiently complete to permit the automatic
generation of all those aspects of a software system that can be reasonably
represented in UML (as defined by the modeling style). To enable the
generation of high-value artifacts, the tools must permit the developer to
automatically verify and debug the UML model according to the requirements
of the modeling style and the requirements of the target deployment
environment.

 Concerning implementation, build, deployment, and test
artifacts. Significant portions of these artifacts can be generated
automatically from any UML design models that conform to the modeling style.
This generation occurs according to a technology projection that has been
designed to map a style-conform UML model to a particular technology. Thus,
the IDE must support the pragmatic, flexible configuration of technology
projections and their automatic use in an incremental development process.
Lastly, the tools must help developers create new technology projections or
modify and extend existing technology projections.
The rest of this chapter shows how an architectural IDE meets or exceeds these
high-level requirements. It also illustrates the individual features of the
architectural IDE that were referred to in previous chapters on the development
model. First, however, we need to see how the basic categories and requirements
from Figure 7.1 are mapped to concrete modules of a real-world architectural IDE.
This is done in Figure 7.2, which introduces the main modules of the ArcStyler, an
architectural IDE as defined by the Convergent Architecture. The figure positions
these modules of the IDE with respect to the critical-path workflows and the
supporting workflows of the CA process. It also shows some of the major tools that
are currently encapsulated or explicitly coordinated by the IDE: Rational Rose and
JBuilder, J2EE/EBJ application servers, Web infrastructure, and so on.

Convergent Architecture Chapter 7: The Architectural IDE

-201-

Figure 7.2: The modules and environment of the architectural IDE.

The following sections describe each of these modules, one module per section:
 The convergent business object modeler (C-BOM)
 The federated UML/XML model repository (C-MOD)
 The convergent pattern refinement assistant (C-RAS)
 The convergent UML refinement assistant (C-REF) with Rational Rose
 The convergent translative generator (C-GEN)
 The convergent generator IDE (C-GEN-IDE)
 The convergent implement, deploy, and test environment (C-IX) with

JBuilder and a J2EE application server

Since the architectural IDE covers a whole lot of ground, the overview will be
some-what selective. To maintain the focus, each section is limited to one or two
screenshots that exhibit several of the most style-relevant features of the module.
Based on the screenshot, I explain how the module supports the development
model of the architectural style. Only the highlights and the most critical features
are explained; many features of the tool modules are not covered. Additional
information at the user's guide or a user's reference level is available on the
Convergent Architecture Web site.

The architectural IDE leverages a specific set of best-of-breed tools in its standard
constellation (in particular, Rational Rose and JBuilder). These tools were selected
to enable the most effective overall platform. However, as a pure Java component
environment itself, the IDE is not inextricably coupled with these technologies.
Alternatives to this particular set of embedded tools are conceivable.

The Convergent Business Object Modeler (C-BOM)
The C-BOM module (see Figure 7.3) supports both the T-bar and analysis-by-
design workflows. It is used to capture and organize the business requirements
and the business model. Figures 7.4 and 7.5 show its two primary views, first the
CRC modeling view to capture the business components and then the

TE
AM
FL
Y

Team-Fly®

Convergent Architecture Chapter 7: The Architectural IDE

-202-

corresponding scenario modeling view to capture the business dynamics. Together
these views constitute a contract-based design.

Figure 7.3: Orientation of the C-BOM module.

Figure 7.4: Business object modeling.

Convergent Architecture Chapter 7: The Architectural IDE

-203-

Figure 7.5: Use-case scenario modeling.

The teams in the T-bar and analysis-by-design sessions record convergent
components in the form of CRC cards, as shown in the figures. The CRC cards are
used to record the business responsibilities, collaborators, private ownership, and
inheritance relationships of the components. The tabs of each card are designed to
hold the information on both documentation and special requirements in areas
such as security, migration, coordination with other components, and so on.

The hierarchy browser to the left of the figure serves to organize the design into
logical groupings corresponding to organizations and assemblies. In addition, the
scenario models and recorded run-throughs are organized in the hierarchy browser.
The hierarchy browser remains visible throughout the entire development cycle in
all tool modules. Each module of the IDE will show the hierarchy containing the
artifacts from the previous module plus the additional, module-specific artifacts.
This allows convergence to be tracked in both directions along the development
path.
Figure 7.5 shows the scenario model view of the C-BOM module. It is used by the
teams to investigate and record the business dynamics in terms of component
message flow, conditional transitions, and visual run-throughs.

This figure exhibits a scenario model for the "Execute one transfer" scenario. Each
node constitutes a contract between two components. It records a significant
business action and how this business action is handled by one of the components
in the CRC view. The scenario node documents the client component of the action
and documentation describing the action. It also records the server component
that fulfills the action as well as the particular responsibility of the server

Convergent Architecture Chapter 7: The Architectural IDE

-204-

component that is used. Different paths through the model are determined by the
transition conditions, as shown by the transition "Insufficient Funds" in the model.
The paths in the scenario models allow designers to visually document the precise
contract behavior among business components for any or all important business
cases.

The run-through console shown to the right of the figure is used to record and
store any number of business-relevant paths through the system. Each run-
through can be stored and visually replayed at any time. These run-throughs are
used to generate detailed state flow tables (SFTs) at the end of the session. As
pointed out in the CA process, the SFTs play an important role in subsequent
testing of the business system.

Both the CRC and scenario model views have verifiers. Each verifier checks the
integrity of the view according to the contract-based business modeling style. As
pointed out in the CA process, this modeling style is based on widely accepted
concepts of responsibility-driven design. At this level of design, the modeling style
is perennial and independent of a particular technology projection component.

The verifier also can be used to check the completeness and cleanliness of the
model. The results of the modeling sessions are stored automatically in the
federated UML/XML model repository (discussed later). In addition, consolidated
HTML/XML reports and documentation of the model may be generated at any time
from the C-BOM module. Once the run-throughs have been recorded and verified,
these reports constitute the signoff documents for the business model. At the end
of a business modeling session, the developer may move on to the next stage of
refinement by activating the C-RAS module via its respective button in the toolbar.
The buttons for each of the currently enabled modules of the architectural IDE are
shown in the toolbar at the upper right of the figure.

The Federated UML/XML Model Repository (C-MOD)
The Federated UML/XML model repository (see Figure 7.6) automatically integrates
and coordinates the results from the various modules and their respective views
into one shared UML/XML model. The repository is a Java implementation of the
UML foundation metamodel that accommodates input and output via UML-based
Java interfaces as well as XML/XMI. The UML foundation metamodel is extended by
UML-compliant profiles to support the modeling styles of the Convergent
Architecture. The repository is integrated and synchronized with the repositories of
other tools embedded by the IDE, in particular with Rational Rose.

Figure 7.6: Orientation of the C-MOD module.

The UML repository is invisible to the user of the architectural IDE except in a few
well-defined areas as follows: First, a repository browser lets the developer view

Convergent Architecture Chapter 7: The Architectural IDE

-205-

the precise contents and UML structure of the repository at any time. The user
may import and export the entire model or portions of the model (merge) in
standardized UML/XML format according to the OMG/UniSys XMI standard. The
import or export is carried out via a menu in the architectural IDE.

Second, just as other IDE modules, the C-GEN and C-GEN-IDE both access the
repository via Java programming interfaces and scripting interfaces. This scripting
interface is used, for example, from the C-GEN module during infrastructure
generation or from the C-GEN-IDE when extending and testing the technology
projection cartridge.
Third, the C-MOD also may be used from any Java program via its Java application
programming interface (API). This API is essentially an exposure of the UML meta-
model and the additional UML-compliant extensions in Java. It is documented in
JavaDoc and, aside from being used by the default modules of the architectural
IDE, is used by a variety of other modules and programs for special tasks.
Information and the availability of such special modules, known as reusable assets,
are provided on the Convergent Architecture Web site.

The Convergent Pattern Refinement Assistant (C-RAS)
The C-RAS module (see Figure 7.7) supports primarily the convergent UML
refinement activity of the analysis-by-design workflow. It is used by a developer to
further refine the business object model from the C-BOM module into a UML model
according to the currently enabled modeling style-J2EE/EJB by default. The tool
assists the designer in achieving style—conform convergence by channeling the
development according to documented refinement patterns. Figures 7.8 and 7.9
show the C-RAS module and an example of one of the OPEN refinement patterns
used by the module.

Figure 7.7: Orientation of the C-RAS module.

Convergent Architecture Chapter 7: The Architectural IDE

-206-

Figure 7.8: Pattern-based refinement.

Convergent Architecture Chapter 7: The Architectural IDE

-207-

Figure 7.9: C-RAS-OPEN pattern example. With permission (Henderson-Sellers
1998, Fig. 2.3)
Figure 7.8 illustrates the refined state of the same model presented in the C-BOM
section earlier. Here again, the hierarchy browser to the left of the figure shows
the convergent components. When expanded, each component reveals its current
state of refinement from the particular perspective of the C-RAS module. Note that
the same business objects are still visible, but significant detail has been added.
Each part of the CRC card for each convergent component is now displayed in the
browser. In the figure, the account's responsibility for knowing/visible, "Know
balance," is selected. To the right, in the work area, the results of this selection
can be seen.

In the work area, an overview of the refined "Know balance" is shown. It can be
seen that this responsibility has been mapped to an attribute and an operation,
both residing in the default facet of the account component—an OPR resource
component. Note that the facet is labeled with <none>. This manifests that the
mapping patterns together with the J2EE-based modeling style understand that
J2EE/EJB components currently only provide single interfaces. Facets are a
component feature stemming from the CORBA component metamodel. They exist
to support components with multiple interfaces, provided it is allowed by the

Convergent Architecture Chapter 7: The Architectural IDE

-208-

modeling style (with its corresponding technology projection). In this case, the
default J2EE/EBB projection is used. It is important to note that intelligent
sensitivity toward the particular deployment infrastructure begins here. If the
designer was allowed to model multiple interfaces, that is, facets, then the model
could not be mapped cleanly (neither automatically nor by hand) to the intended
J2EE/EJB infrastructures. By adding this constructive foresight, the developer is
assisted in creating a model that can be used to effectively drive all downstream
stages of development, many of them automatically.
The tabs at the top of the work area show how a developer refines a selected
responsibility. Each tab presents the paths available for refinement according to
the refinement patterns. One of these patterns is shown in Figure 7.9. This is the
pattern for UML refinement of public/visible responsibilities from CRC cards in the
business object model.

The pattern in the figure indicates that a public/visible responsibility for knowing,
which corresponds to the currently selected responsibility, may be refined to
visible operations or properties (attributes) of a component. When proceeding
farther down in the pattern, it can be seen how these operations and attributes
may be further refined. These refinement options are made available to the
developer by the C-RAS for the selected responsibility. The developer then uses
the tabs to create the required set of operations and attributes and to configure
their details. Such details are, for example, the attribute's name, the operation's
parameter list, or its preconditions and postconditions.

The lower part of the workspace provides directions and explanations to the
developer concerning each type of refinement according to the patterns. As in all
modeling modules, a verifier helps the developer see the integrity and status of
refinement for each entity in the model. The entities marked by a green check
have been sufficiently refined to satisfy the pattern. A red exclamation point
means that refinement is still incomplete for that entity. The developer does not
have to refine all entities before proceeding to the next module; he or she can
come back later and complete the model in increments, each time removing a new
set of red exclamation points. This process can begin with changes at the C-BOM
level as well, of course. At the end of each refinement session, the developer
moves on to the next stage of refinement by activating the C-REF/Rose tool via the
Rose button. This button is shown at the upper right of the figure in the toolbar of
the architectural IDE.

The Convergent UML Refinement Assistant (C-REF)
The C-REF module (see Figure 7.10) embeds Rational Rose and supports the later
phases of the analysis-by-design workflow and all model-driven activities
downstream from the analysis-by-design workflow. It assists the developer during
UML refinement of all convergent components according to the currently enabled
modeling style—J2EE/EJB by default. It is also used to configure and manage
model-driven activities (generate, build, test, deploy) from the perspective of a
project team as well as from the perspective of the special configuration
requirements of a particular installation.

Convergent Architecture Chapter 7: The Architectural IDE

-209-

Figure 7.10: Orientation of the C-REF module.
Figures 7.11 through 7.14 exhibit several aspects of UML model refinement. This
begins with a diagram of a completed business component model in UML, followed
by a look at how details of the modeling style are managed in this module. Figures
7.13 and 7.14 are corresponding Internet accessor and process models in UML.

Figure 7.11: Convergent J2EE/UML refinement.

Convergent Architecture Chapter 7: The Architectural IDE

-210-

Figure 7.12: Details of the default J2EE/EJB modeling style.

Convergent Architecture Chapter 7: The Architectural IDE

-211-

Figure 7.13: The multichannel assessor design.

TE
AM
FL
Y

Team-Fly®

Convergent Architecture Chapter 7: The Architectural IDE

-212-

Figure 7.14: The process design.
The figures shown thus far in this chapter originate from a development tutorial
called iBank. The screenshots used from here on out in this chapter are taken from
a completely different business case, a system for trip planning and flight booking.
The trip-planning case bears witness to the universal applicability of the
convergent components and the architectural IDE across business organizations
and domains and allows me to show some more complex aspects of the
architectural IDE. More extensive tutorial examples are also available on the
Convergent Architecture Web site.
Figure 7.11 exhibits the trip-planning model in the C-REF/Rose module. In the C-
REF module, Rational Rose is embedded as a component within the architectural
IDE. The C-REF module (a Java system) adds numerous features to assist the
architecture-conform use of Rose. In other words, Rose is configured and actively
"driven" by the C-REF module to support the UML-related stages of development
according to the architectural style. The intelligent feedback and automation
provided by the C-REF ensure a more effective, higher-quality approach both at
the individual developer level and at the cross-project or corporate architecture
level.

Here again, the hierarchy browser in the C-REF displays the convergent
components that were created and refined in the C-BOM and C-RAS modules. They
remain visible so that their evolution can be tracked in both directions along the
development path. The UML-level adornments of the components are now also
visible. Many of these adornments were created automatically by the C-RAS or via

Convergent Architecture Chapter 7: The Architectural IDE

-213-

the wizards and modeling assistants in the C-REF. In addition to the elements
imported from the C-RAS step, the developer can add new convergent components
directly in the C-REF. Such newly added components are subsumed automatically
to the C-RAS and C-BOM levels via the common repository. They can then be
completely documented at the C-RAS and C-BOM levels later. This means that the
developer can begin designing in the C-REF/Rose if appropriate for the task at
hand. Beginning at the UML level is often reasonable when developing assemblies
of utility components, assemblies consisting mostly of accessors, or for ad hoc
testing and evaluation of alternatives in early investigation stages of the project.
The workspace in the figure shows that the developer has added an EJB
DependentValue in the UML model to optimize the transport of the component's
state in a distributed environment. As part of the J2EE/EJB specification,
DependentValues are clearly addressed by the modeling style and the
corresponding technology projections. This means that instead of creating arbitrary
UML constellations, such aspects can be created or modified in the UML model
according to the modeling style and then verified for a configured technology
projection—a prerequisite for the extensive generation of a high-value
infrastructure. How the C-REF supports each of these style-based enhancements is
exemplified by the Figure 7.12.
In this figure, the convergent resource component "Flight" from Figure 7.11 is now
being detailed and verified. The dialog to the right is the Rose specification dialog
for the flight component. In the dialog, the Rose UML tabs have been
complemented by a number of tabs to support the architectural style. The content
of one such properties tab, the ArcStylerEJB1.1 tab, is selected and fully visible in
the figure. This tab permits the developer to optimize the EJB configuration of the
component. The properties in the tab are standard EJB1.1 properties. In addition,
properties in the tab affect the generation of certain EJB conform features. The
gray properties are the defaults provided by the technology projection component
(that is, the modeling style in conjunction with the configured technology
projection cartridge). These defaults are by no means arbitrary. They have been
selected by experts based on extensive testing and experience to be the best
default combination in this particular constellation. The developer may override
these defaults. This is carried out within the tolerances of the modeling style, of
course. Knowing these tolerances is good because they represent the real-world
tolerances of the J2EE/EJB infrastructure. To override a property while remaining
style-conform, the property in the dialog is selected to display the options available.
The black-colored properties in the figure are ones where the default setting has
been overridden by the developer. For example, the developer has modified the
property determining the generation of default factory operations for the
component. In this case, the selected setting instructs the cartridge to generate
factory operations that expose all attributes of the component as formal
parameters.
The other tabs visible in the top of the dialog contain important groupings of
properties for such aspects as tuning the object-to-relational mapping of the
component or the container-managed persistence (CMP) engine of a particular
J2EE/EJB infrastructure. In addition, tabs addressing unique features of a
particular J2EE/EJB infrastructure appear with each newly installed technology
projection cartridge. For example, Figure 7.12 shows the tabs for the Borland
Application Server (BAS) as well as the tabs for the BEA Web Logic Server (WLS).

These separate property groups, as manifested by tab sheets in Rose, ensure a
clean separation of concerns. Each grouping may change independently from the
others. However, this does not mean that the technology projection cartridge is

Convergent Architecture Chapter 7: The Architectural IDE

-214-

oblivious to interactions between the groupings. In fact, one of the primary
advantages of having a well-defined modeling style and intelligent technology
projection support in the IDE is the fact that such interactions can be checked and
optimized. This is no small task when one considers the number of possible
interactions between the various possible tuning parameters.
The technology projection cartridge can globally optimize the interactions between
model properties when code generation occurs. During code generation, the
currently enabled technology projection cartridge interprets each and every one of
the properties and generates code and an infrastructure tuned to the particular
EJB/J2EE infrastructure and its environment. This is in stark contrast to generators
that produce lowest-common-denominator code. Such lowest-common-
denominator code is essentially useless in real-world situations. Generating
optimized code means not only that each parameter in the modeling style must be
mapped intelligently by the cartridge, but also that the interactions between any
number of parameters can be considered in order to generate a well-rounded,
globally optimized implementation for the particular infrastructure at hand. Such
global interactions of properties and structures in the UML model may affect
myriad aspects of code generation, as clearly shown in the bonus chapter on the
Web site. This is known as fan-out coordination and fan-out optimization because a
single property change may affect many parts of an infrastructure. Proper
coordination of the fan-out, the prerequisite to global optimization of the fan-out,
precludes the use of so-called round-trip engineering (RTE) as it is currently
defined by the tool industry. In addition, models produced via RTE of arbitrary
code would make it impossible to maintain and automate a clean modeling style
across designs, projects, and implementations.
Another advantage of the well-formed, clean modeling style is shown in the second
dialog of Figure 7.12, the model-validation dialog. This dialog is used to
automatically verify architectural integrity according to the architectural style. It
asserts whether the current model or the selected model element conforms to the
requirements of the currently configured technology projection component. The
dialog shows that various levels of conformity can be checked at any given instant.
In addition to structural conformity and completeness of the model, the "EJB
cartridge constraints" allow the developer to verify the feasibility of any modeling
decisions with respect to the available runtime infrastructure. In this particular
case, the Borland Application Server (BAS) version 4.5 is currently configured and
will be used to check the technical feasibility of the model. If the developer has
used modeling constructs that cannot be reasonably (realistically) mapped to the
given BAS version, then a warning or error dialog will display an explanation.
Warnings dialogs signal possible design conflicts or dubious constellations, whereas
error dialogs inform the developer of why an effective technology projection of the
given UML construction is impossible in the current configuration. An example of
an error situation would be the use of component inheritance in the UML model in
conjunction with one of the many J2EE/EJB containers that do not support
component inheritance.[1] Via the model validation dialog, the designer receives
just-in-time feedback regarding the problem. This is comparable with the just-in-
time feedback provided to a programmer by traditional compilers, now at a much
higher level of design expression—the UML level.
Figure 7.13 shows part of an accessor design in the C-REF module. This particular
accessor diagram shows a default editor accessor with its default representers for
the same flight component shown in the preceding figures. The default accessor
was generated automatically by selecting the flight component and then selecting
the desired type of default accessor. Based on the information in the Flight
convergent component, the accessor was derived automatically according to the

Convergent Architecture Chapter 7: The Architectural IDE

-215-

modeling style. The developer can use the default accessors to then create custom
accessors or can use the default accessor as is. The dialog in the lower part of the
figure exhibits one of several accessor configuration dialogs. It shows the
interaction attributes and event-handling properties as created with the default
editor accessor.

The accessor diagram itself is a UML-compliant activity diagram. The diagram in
the figure exhibits two representers, two embedded (reused) accessors, and the
event-driven transitions between these elements. Based on this information, the
technology projection cartridge for J2EE accessors generates the servlet, JSP, and,
in this particular configuration, the HTML infrastructure to access the flight
component. The hierarchy browser to the left shows that considerable detail
regarding accessors and representers is available to the developer and to other
modules of the IDE as required.
The last C-REF figure (see Figure 7.14) displays a process design diagram for the
same trip-planning system. The diagram to the right of the figure indicates the
structural relationships between the process convergent component,
BookingProcess, and other OPR convergent components in the model. A process
flow diagram is visible in the center of the figure. Similar to accessor diagrams,
process flow diagrams are UML-compliant activity diagrams that have been
enhanced by the architectural IDE to support the overall architectural style. The
small Process Component dialog to the upper left of the figure shows one example
of such an enhancement. The dialog illustrates how the modeling style coordinates
the creation and assignment of process roles to process types in the model. This is
just one of several process-modeling dialogs that may be used by the developer to
refine the process (also known as workflow) aspects of the OPR model based on
the concepts described in Chapter 4.
Once the model has been validated, optimized code can be generated without
leaving the C-REF module. To this effect, the convergent translative generator (C-
GEN) module is activated, as described in the next section.

[1]Component inheritance is not defined by the current J2EE/EJB standard; thus any
support for component inheritance constitutes a unique, added-value feature of the
particular application ser ver. The extent and usability of these features differ greatly
between application servers.

The Convergent Translative Generator (C-GEN)
The C-GEN module (Figure 7.15) is another self-contained component in the
architectural IDE. It is normally activated directly from the C-REF module so that
the developer can perform rapid increments of UML modeling and subsequent
infrastructure generation. However, the C-GEN also can be called as an
independent Java component via a Java API or from the command line.

Figure 7.15: Orientation of the C-GEN/C-GEN-IDE module.

Convergent Architecture Chapter 7: The Architectural IDE

-216-

The basic concept behind translative generation as employed by the C-GEN also
has been referred to as a third-generation design for code generators (Mellor
1999). The C-GEN implements translative generation by reading the C-REF/UML
model from one source, the model repository, and reading the translation
information on one or more infrastructures from another source, the technology
projection cartridges. This constellation allows the developer to plug in various
translation aspects in the form of cartridges. Once the cartridges are configured,
generation can begin.
Figure 7.16 illustrates how technology projection cartridges are configured into the
architectural IDE and stored as part of the project configuration. The figure shows
the project configuration dialog that is used by the entire architectural IDE to edit
and store project information. In this particular screenshot, the tab to configure
the C-GEN has been selected, and a subtab, Projections, has been activated to
configure the technology projection aspects. In this particular project, two
cartridges have been configured, one for the Borland Application Server version
4.5 (BAS45) and one for J2EE/JSP accessors. The BAS45 cartridge is selected in
the figure, which means that its cartridge details are displayed for configuration in
the center of the dialog. Some of these details are set automatically on installation
of the architectural IDE because they can be derived from the local environment.
Others are initialized to cartridge-specific defaults. They can be modified to adapt
to changes in the environment. For example, the parameters affecting the
generation, build, and execution of the test environment can be modified. In the
case of the BAS45 cartridge shown in this dialog, test clients require a port number
for the Visibroker Smart Agent. Since this port number may need to be changed,
for instance, to enable parallel testing by several developers, the default port may
be modified in the configuration dialog.

Convergent Architecture Chapter 7: The Architectural IDE

-217-

Figure 7.16: Configuring cartridges and projects.
Figure 7.17 shows the graphical interface to the C-GEN module. In the C-GEN
module, the convergent components are visible in the hierarchy browser to the left,
as always. The figure shows that the trip-planning project from earlier is now
ready to be generated using the configured technology projections. The tabs
shown at the top of the work area are used to select the information and output
consoles for each of the configured technology projection cartridges, respectively.
The cartridges contain information regarding grouping and dependencies with
other cartridges. This information is used by the C-GEN module to let the
developer select various valid subsets for generation. For example, the developer
can selectively generate the J2EE/JSP accessor aspects of the model or of a model
element without having to generate its entire EJB infrastructure each time.

Convergent Architecture Chapter 7: The Architectural IDE

-218-

Figure 7.17: Generating infrastructure and environment.

The lower portion of the work area in the figure shows the C-GEN output console.
The cartridge writes progress and log information, in this case from the J2EE/JSP
accessors, to this console. In this particular case, log information for the generated
Tomcat servlet-engine configuration, JBuilder support, and ANT build support is
visible.
What if the component developer wants to change or extend the behavior of the
cartridge for a particular test environment? Or the chief architect and architectural
IDE specialist want to change the behavior of the cartridge used in every project
across the entire IT organization? In such cases, they use the C-GEN-IDE module
described in the next section.

The Convergent Generator IDE (C-GEN-IDE)

The C-GEN-IDE module of the architectural IDE is used to edit, test, and debug
technology projection cartridges. Each cartridge contains templates, JPython
scripts, and other artifacts that are organized according to the so-called cartridge
architecture. It is important to note that technology projection cartridges
themselves are extensive programs. They are referred to as metaprograms
because they generate other programs and infrastructures via the C-GEN module.
As such, it can be seen as a metaprogramming IDE that provides the developer
with a modern environment comparable with familiar Java IDEs. In fact, much of
the architectural IDE itself is generated based on UML models and technology
projection cartridges. Thus, it is important that the cartridge infrastructure itself be
well designed.
The cartridge architecture defines how cartridges are structured in order to
guarantee all the things we expect from well-designed systems: the proper use of
object-oriented design, locality of cartridge code, reuse of cartridge code, modular

Convergent Architecture Chapter 7: The Architectural IDE

-219-

composition of the cartridge, modular extension points, evolutionary updates to
cartridges, and so forth. However, only the architectural IDE specialists and, in
rare cases, the development toolsmith (see Chapter 5) must understand the
working features of the cartridge architecture. It is used by these workers to
extend and develop cartridges according to the cartridge architecture.
Figure 7.18 is a typical screenshot of the C-GEN-IDE in action. This figure shows
that the C-GEN-IDE is a module in the architectural IDE. Just like all the other
modules, once activated, it (dynamically) adds itself at the appropriate point in the
architectural IDE. It then conforms in look and feel to all other modules described
thus far because it shares their common infrastructure. The hierarchy browser to
the left displays the current project, as always, at the same level of abstraction
that appears in the C-GEN itself. By default, the work area is divided into
quadrants as follows:

 The quadrant at the upper left contains the context-sensitive source
editor for the template source, JPython source, or other artifacts of the
currently selected cartridge. The files appear as tabs at the bottom of the
editing area, as shown in the figure. Many of these files will be loaded
dynamically by the IDE as a result of testing or browsing tasks. When a code
area is marked in the source editor, the corresponding areas are highlighted in
the intermediate code viewer in the quadrant to its right: the JPython code
viewer.

 The JPython code viewer to the upper right shows the translated result
of the code in the source editor. This is the intermediate JPython code that is
used to generate the actual infrastructure.[2]

 The quadrant to the lower left contains both the debugging toolbar and
the output/log console. Debugging proceeds just like in any programming IDE.
Break points can be set, and then the generator can be started to run to the
break point, using watch points along the way as required. Other normal
debugger features such as single-step, step-over, step-into, and so on. are
also available. The console area displays the cartridge output and log
information just as in the C-GEN console. In addition, if selected, the console
shows the end result of each generation step—the Java code, XML files, IDE
project files, deployment descriptors, build scripts, test scripts, and so on.

 The quadrant at the lower right is the extensible evaluation panel. It is
comparable with a flexible register list or stack viewer in a source-code
debugger. In addition to several standard watch expressions, it may be
extended by the developer using arbitrary JPython expressions to watch any
other aspect of the generator or cartridge.

Convergent Architecture Chapter 7: The Architectural IDE

-220-

Figure 7.18: Using the generator IDE. The meta-programming environment.

[2]There are several very good reasons for generating intermediate JPython code
from all the interacting parts of the cartridge, for example, to improve reuse,
debugging, and generation performance.

The Implement, Deploy, and Test Environment (C-IX)
The implement, deploy, and test environment module (C-IX) (see Figure 7.19)
leverages a high-end programming IDE (for example, Java or C++ IDE) and
deployment and test tools. Similar to the embedded UML tool in the C-REF module
(Rational Rose), the C-IX encapsulates, integrates, and drives these tools to assist
the developer along the critical development path. Like the C-REF, the C-IX
achieves this by enhancing and complementing the Java IDE (JBuilder in this case),
tools, and infrastructure with two things. First, it seamlessly integrates the C-IX
components with the rest of the architectural IDE; this integration applies to the
modules conceptually before, after, above, and below the Java IDE and the other
tools coordinated by the C-IX. Second, it adds architectural-style-specific features
such as the modeling style and model-driven technology support for the code, test,
build, and deployment aspects of the system.

Convergent Architecture Chapter 7: The Architectural IDE

-221-

Figure 7.19: Orientation of the C-IX module.
The following three figures are used to exhibit several of the central features of the
C-IX module. Figure 7.20 displays the generated code and test infrastructure as
used to deploy and test the convergent components in the context of the Java IDE.
Figure 7.21 shows the generated accessors as they are displayed for testing or
refinement in either the Java IDE or, equivalently, in a Web-design tool such as
DreamWeaver or UltraDev. Figure 7.21 illustrates the convergent components as
deployed in the operational environment or the assembly test environment.

Figure 7.20: Implement, deploy, and test components.

TE
AM
FL
Y

Team-Fly®

Convergent Architecture Chapter 7: The Architectural IDE

-222-

Figure 7.21: Implement, deploy, and test accessors.
Figure 7.20 shows the trip-planning project in JBuilder. The JBuilder project files
and build environment for the trip-planning project were generated automatically
from the C-REF/UML model shown in previous sections. The two browsers at the
left of the figure indicate that convergence has still been preserved at the source-
code level: The flight component and other OPRs from the business model are
clearly visible in the browsers. As always, the browser shows the accompanying
artifacts relevant to the component in this life-cycle stage and to this module of
the architectural IDE.

In the work area, we see one of the generated Java files, FlightBean.java,
displayed in the code editor. In the editor, the generated comments and protected
areas are colored green. The long number at the bottom of each protected area
comprises so-called check-sum information and other information that is used by
the C-GEN to intelligently manage the protected area across repeated generation
runs. In the upper protected area, the developer has added a single line of
business logic to check whether the sum of booked seats plus the number of
requested seats surpasses the number of available seats.
In the tool bar, the developer has activated the Run Project menu. The menu
presents the unit test projects for both client and server aspects of the assembly.
This infrastructure, including the JBuilder project configuration required to build
and run the tests, also was generated from the C-REF/UML model. The developer
uses this menu to build and test the assembly or parts of the assembly. Remember
that the packaging of the convergent components into testable units also was
modeled in the C-REF/UML module as described in Chapter 6. This enables the
generation of a properly partitioned test infrastructure.

The result of activating the generated menu item "EJB test server" is shown at the
bottom of the figure. When the menu item is activated, the project dependencies
are checked automatically, and the components are built. If compilation is
successful, the test proceeds to automatically package the components together
with the other generated artifacts required for deployment—the J2EE/EJB
deployment descriptors, for example. Then the application server is activated, and

Convergent Architecture Chapter 7: The Architectural IDE

-223-

the package is automatically deployed into the application server. In JBuilder, this
all happens within the Java-IDE environment. The output at the bottom of the
figure shows the active Borland Application Server as well as the active Tomcat
servlet engine. Once the test server is loaded, the unit test clients and accessors
may be built and started automatically in a similar fashion.
Figure 7.21 shows an example of such accessors in the trip-planning project.
These accessors were generated from the C-REF/UML model shown in Figure 7.13.
In this figure, the JBuilder project for the accessors package has been selected in
the browser. This unit was given the name WebApplication in the C-REF/UML
model. The browser shows the accessors and their corresponding representers just
as they appeared in the corresponding C-REF/UML browser (the left side of Figure
7.13). These artifacts, including the JBuilder project and other infrastructures
required to build, deploy, and test the accessors, were all generated directly from
the C-REF/UML model.
In the figure, one of the representers, Flight_EditorDR, has been selected and
appears in the JBuilder editor to the right. This is the default representer (indicated
by the suffix DR).[3] This model is shown on right side of Figure 7.13. For the
flight-editor representer, the HTML/JSP view has been selected by the JBuilder
editor. This view allows the developer to visually edit the HTML/JSP representation
in JBuilder. However, the graphic editing of representers normally is done by the
computer ergonomics and GUI expert (see Chapter 5). As explained in the
development model, this expert uses high-end Web page design tools such as
DreamWeaver or UltraDev to polish the Web page layout. Such editing also occurs
using exactly the same generated representers. Both Java-IDE and Web design
tools are completely complementary components of the C-IX module. JBuilder is
used by the accessor developer to manipulate, build, and test the accessor
internals, whereas the Web design tool is used by the GUI expert to manipulate
the HTML/JSP representers of the accessor—the optimal separation of concerns.
Both the accessor developer and GUI expert operate in their area of expertise with
their high-end tools, and the results are completely harmonious. The representer
files saved by the Web design tool can be updated immediately in JBuilder and can
be tested immediately with the rest of the assembly.
The steps taken to build, test, and deploy the accessors are identical to the
procedure described previously (see Figure 7.20) for the server-side aspects of the
assembly: The developer uses the preconfigured Run Project menu in the JBuilder
toolbar, and testing proceeds via the test clients and accessors. In this particular
example, the Web accessors may be started within the JBuilder environment or
from a standard Web browser outside the environment, depending on the level of
instrumentation required. The standard Web browser is used to test the look and
feel of the application from the end-user's perspective. This brings us to Figure
7.22, which shows one view of the trip-planning assembly as deployed in the
operational environment. As described in the CA process (see Chapter 6), this
environment is also used to test the assembly before release.

Convergent Architecture Chapter 7: The Architectural IDE

-224-

Figure 7.22: The operational deployment and assembly test.

This figure shows an application server console. In this particular case, it is the
console for the Borland Application Server; however, it could just as well be the
console for the BEA WebLogic Server, the IBM WebSphere Server, or other
application servers. The view selected in this figure displays the deployed assembly.
It provides clear evidence that convergence has been achieved for the trip-
planning system. The convergent components are visible in the browser to the left
of the figure: the business components in the EJB container branch and the
accessors in the Web container branch. In this particular screenshot, the EJB
references view of the business components has been selected. This shows the
convergent components and their reference in the deployed J2EE/EJB environment.
Note that the OPR business components—flight, reservation, trip—are still clearly
visible in the operational monitoring environment.

This aspect of the C-IX module permits the assembly to be manipulated and
monitored in the operational infrastructure during the various phases of its life
cycle: Assembly tests, transition activities, and day-to-day and operational
activities are all carried out in this environment. This level of automation makes
operational tests possible in early iterations of the development project. For
example, developers can integrate, deploy, and test the assembly in this

Convergent Architecture Chapter 7: The Architectural IDE

-225-

operational constellation directly from JBuilder. This allows parts of the system to
be instrumented and tested from the Java-IDE environment by one component
developer while using other parts of the assembly that have been deployed by
other component developers. In addition, it lets the assembly developer, the test
manger, and the deployment manager verify the deployment and monitoring
capabilities of the operational environment early on in the project. These diverse
deployment and testing needs, each corresponding to different stages of the
critical development workflow, are intelligently supported by the C-IX module as a
part of the overall architectural IDE.

[3]It is important to note that this constitutes generated code that was automatically
derived from a previously generated model, which was derived in an assisted manner
from a business model. Not just one automation step, but a whole series of
increasingly powerful automation steps are made possible by the architectural style.

Summary
This chapter provided concrete illustrations and descriptions of the architectural
IDE and its important role as a part of the Convergent Architecture. In particular, it
addressed the mechanisms of the third and fourth features in an IT-architectural
style described in Chapter 1 (refer to Figure 1.1). These features are the full-
coverage tool suite and the formal technology projections, with the focus in this
chapter being on the tools and their high-level support of the development model
(see Chapters 4, 5, and 6). In the next chapter the focal point will be shifted to the
formal technology projection aspects.
Screenshots from an actual architectural IDE, ArcStyler, were used to show how
mature tools such as Rational Rose, JBuilder, and J2EE/EJB application servers are
integrated and enhanced to intelligently support holistic architecture in reality-
scale projects. Each section presented one major module of the architectural IDE
and illustrated how it supports the development of convergent components, as
described in Chapter 4, the in the context of the IT organization covered in
Chapter 5 using the CA process defined in Chapter 6. This began with tool support
for the business modeling and requirements workflow using the business object
modeling module (C-BOM). It then proceeded through the three levels of
convergent refinement using the pattern-based refinement assistant module and
the UML refinement module for Rational Rose (C-RAS and C-REF). Finally, support
for the implementation cycle, test workflows, deployment, and monitoring
activities were illustrated using the translative generator and its metaprogramming
modules (C-GEN and C-GEN IDE), followed by the module for the implementation,
deployment, and test environment (C-IX).
Up to this point, the technology projection component (which includes the
guidelines for a modeling style and its technology projections) has been covered
from the perspectives of design rationale, positioning, and structure as a part of
the architectural style, as well its pragmatic usage in the architectural IDE. The
next chapter will cover the last, most detailed perspective of the technology
projection component: its content. It will provide the reader with detailed insight
into this important aspect of the Convergent Architecture before the final chapter
will move back to a pragmatic usage level.

Convergent Architecture Chapter 8: Tutorial Example

-226-

Chapter 8: Tutorial Example: Applying
the Convergent Architecture

Overview

This chapter demonstrates the Convergent Architecture at work. It consists of a
short, step-by-step tutorial that applies significant portions of the Convergent
Architecture (CA) process in the context of the architectural integrated
development environment (IDE). It demonstrates the tasks required to develop a
convergent J2EE/EJB system including its Web accessors (the Web application)
using the ArcStyler with Rational Rose, JBuilder/ANT, and technology projection
cartridges for JSP Web accessors and J2EE/EJB application servers. The particular
examples used in this tutorial demonstrate the use of the J2EE/EJB cartridges for
the BEA Web Logic Server (WLS) and the Borland Application Server (BAS).

The tutorial includes the following steps, each covered in its own section:
 Business modeling with C-BOM
 Refinement into an initial UML model with C-RAS
 UML modeling of the EJB components with C-REF
 Code generation for the EJB components with C-GEN
 Building, deploying, and testing the EJB system
 Unified Modeling Language (UML) modeling of the Web accessor

components with C-REF
 Code generation for the Web accessor infrastructure with C-GEN
 Building, deploying, and testing the Web application

Needless to say, familiarity with the Convergent Architecture is a prerequisite to
best understanding the underlying concepts and advantages presented in this
tutorial.

The J2EE/EJB System: A Convergent iBank
In this tutorial, you will develop the heart of an Internet banking (i-bank) system:
its account management features. In summary, the iBank consists of two
components: an Account (resource) component and a Transfer (process)
component. The Account component possesses an account number and a balance
and is capable of making transactional withdrawals and deposits. The Transfer
component can transfer funds between a source account and a destination account.
The Account component will be modeled and implemented as an EJB entity bean
using container-managed persistence. The Transfer component will be modeled
and implemented as an EJB stateful session bean. They will be modeled into a
single assembly and deployed in an EJB container.

Then, Web accessors are developed and deployed to provide a Web-based user
interface for account management. This Web front end enables bank personnel to
manipulate accounts: create new accounts and edit or delete accounts.

Tutorial Solution
A complete solution for this example, which includes models and all other
development artifacts, may be found on the Convergent Architecture Web site:
www.ConvergentArchitecture.com.
In some places, notational conventions are combined. For example, project.asprj
is used to designate a project file for which the name is specified by the user.

Convergent Architecture Chapter 8: Tutorial Example

-227-

The notational convention for navigating menus is Menu → Submenu . . . → .
Context menus are accessed by clicking the right mouse button.

Business Modeling with C-BOM
This section covers the business modeling and requirements acquisition aspects of
the analysis-by-design work flow (see Chapter 6). The tasks of this work flow are
supported by the convergent business object modeler (C-BOM) module, which
assists in

 Modeling of business object responsibilities and collaborations (static
structure of the model)

 Modeling of use-case scenarios (dynamic behavior of the model)

The completed business object model includes the following deliverables:
 Detailed domain requirements in the form of a business object model
 Debugged domain scenarios in the form of visual business use-case

scenarios, state transition tables, and run-throughs
 Descriptions regarding specific design themes such as migration,

security, and host-integration
 Model-generated HTML documentation for official business model

information and project signoff

SOFTWARE PREREQUISITES

The following software prerequisites must be met for hands-on use of this tutorial:

 ArcStyler version 2.6 or higher.
 Rational Rose 2000e or 2001 or 2001 a.
 JBuilder4 or 5. The use of JBuilder (or other Java IDE) is optional

because the ANT (command-line) build environment is also explained in this
tutorial. The advantages of each were explained in Chapter 7.

 The ArcStyler technology projection cartridge for your target J2EE/EJB
container (BEA WLS 5.1 and Borland Application Server 4.5 are used in the
example).

 Tomcat servlet engine 3.2 or compatible engine (usually delivered with
the application server).

 ArcStyler iO_JSP_accessors technology projection cartridge.
NOTATIONAL CONVENTIONS
Table 8.1 lists the notational conventions used in this tutorial.

Table 8.1: Notational Conventions

NOTATION DESCRIPTION

iBank.asprj
Bold font is
used for the
names of
interfaces, files,
and language
keywords.

Name
Italics are used

Convergent Architecture Chapter 8: Tutorial Example

-228-

Table 8.1: Notational Conventions

NOTATION DESCRIPTION

for elements
that are
variable.

Cancel A sans-serif
font is used for
the names of
GUI widgets,
dialogs, menus
and their
contents, and
information you
enter into the
GUI field.

ENTER All capital
letters
designates keys
on your
keyboard.

#define
A fixed-width
font is used for
code and for
information you
enter at the
command line.

This section contains the following subsections:
 Setting up a project
 Modeling CRC cards
 Modeling a business use-case scenario
 Model verification and documentation

Setting Up a Project

Start the ArcStyler from the command line or from your system menu. The
ArcStyler commander appears on your desktop.
Before you start modeling, you need to set up an ArcStyler project. An ArcStyler
project file is an XML file with the file extension *.asprj. It stores the project
configuration information. In particular, it contains tags specifying the UML/XML

Convergent Architecture Chapter 8: Tutorial Example

-229-

repository file model.asrep and the Rose model model.mdl associated with the
ArcStyler project.
Figure 8.1 shows the ArcStyler commander after creating the iBank project and
repository. The repository already contains a default package, iOCATBase. This
package contains some basic model elements, such as elementary data types. It is
imported automatically in each newly created ArcStyler repository.

Figure 8.1: The ibank project and repository.

Modeling CRC Cards

You will now design the static structure of your business model. The business
objects of your model are represented by class responsibility collaboration (CRC)
cards.

Adding a Package

CRC cards must be modeled within a business model package. Therefore, you
must first add such a package to your repository.

Optionally, you may enter the initial textual project or scenario description.

Adding CRC Cards
In this section you design the CRC cards for the Account and Transfer business
objects. Begin with the Account object. Proceed as follows:

 Add a new resource CRC card, Account, to the iBank package.

Convergent Architecture Chapter 8: Tutorial Example

-230-

 Add the responsibilities listed in Table 8.2 in the Responsibilities field
of the Account CRC card.

Table 8.2: Responsibilities of the Account Business Object

RESPONSIBILITY KIND VISIBILITY

Know account number Knowing Visible

Know balance Knowing Visible

Make deposit Doing Visible

Make withdrawal Doing Visible
Model the Transfer object as follows:

 Add a new process CRC card, Transfer, to the iBank package.
 In the Responsibilities and Collaborators fields of the CRC card, add

the responsibilities and collaborators shown in Table 8.3.

Table 8.3: Responsibilities and Collaborators of the Transfer Business
Object

RESPONSIBILITY KIND VISIBILITY COLLABORATOR

Know source account Knowing Visible Account

Know destination
account

Knowing Visible Account

Know amount to be
transferred

Knowing Visible

Execute transfer Doing Visible

Figure 8.2 shows the completed CRC cards.

Convergent Architecture Chapter 8: Tutorial Example

-231-

Figure 8.2: CRC cards in the ibank business model.

Modeling a Business Use-Case Scenario

In this section you enter a business use-case scenario for the transfer process. The
transfer scenario includes the following steps: Check the balance of the source
account, make a withdrawal from the source account, and make a deposit on the
destination account. To model this scenario, do the following:

1. Add a new business use-case scenario, Execute one transfer, to the
IBank package.

2. Add three scenario steps.
3. Insert transitions between the following steps:
 Start point and step 1
 Step 1 and step 2
 Step 2 and step 3
 Step 3 and endpoint

4. Select step 1, and choose Transfer as Client and Account as Server
from the respective drop-down lists in that part of the workspace. Select the
Know balance responsibility as the server's Responsibility.

5. Add the following Note to step 1: Check if funds are adequate in
source account.

6. Select step 2, and set the same client and server, but select Make
withdrawal as the server's Responsibility.

7. Select step 3, set the same client and server, but select Make deposit
as the server's Responsibility.

8. Add the following Note to step 3: Withdraw and deposit must be an
atomic transaction.
Figure 8.3 shows step 9 of this business use-case scenario modeling procedure.

TE
AM
FL
Y

Team-Fly®

Convergent Architecture Chapter 8: Tutorial Example

-232-

Figure 8.3: Creating the business use-case scenario.
To test the scenario, you now perform a walk-through, as described in Chapter 6,
the CA process. Once the scenario is verified, the walk-through may be recorded.
Playing back the recording constitutes a run-through, as described in Chapter 6.
Figure 8.4 shows the walk-through recording procedure.

Convergent Architecture Chapter 8: Tutorial Example

-233-

Figure 8.4: Recording a walk-through.
You can now play back (run-through) the scenario by selecting the Execute one
transfer: default case walk-through from the drop-down menu below the
workspace and clicking the Run Through button.

Model Verification and Documentation

At this point, the static structure and dynamic behavior of the business model have
been modeled. To complete the business-modeling step, you can now verify your
model and generate an HTML documentation.

Verification

The C-BOM module provides a configurable model-verification mechanism to verify
the structural correctness and completeness of your business model. The following
aspects can be validated by default:

 Duplicate class names
 Responsibilities not referenced in a scenario
 Business objects not referenced in a scenario
 Cards without responsibilities
 Empty business object documentations
 Business objects not referenced as collaborators

Convergent Architecture Chapter 8: Tutorial Example

-234-

You can verify single model elements or the entire model. The verifier notifies you
about the results of the validation. If the validation is not successful, you will get
warnings or error messages. In the case of errors, the model must be fixed in
order to maintain integrity as defined by the architectural style.

Documentation

Now you can generate the HTML documentation from the model. This report is
then used for design review and signoff.

The structured hypertext in this report contains the business-model structure and
flows with their descriptions and requirements broken down as follows:

 Model packages and their descriptions
 CRC cards and their descriptions, including the recorded special design

themes
 Visual business use-case scenarios
 Walk-throughs and their resulting state transition tables

This document can be placed immediately on the company's intranet or the IT
organization's intranet (see Chapter 5) for review.

At this point, you have completed the convergent refinement I (convergent
business modeling) activity of the analysis-by-design work flow. Note that this
procedure has eliminated the high-risk, high-cost step of translating a domain
analysis into a system model.
The initial iBank business modeling is now complete. The results have been
verified and documented.

Refinement with C-RAS

This section covers the refinement of the business-object model into an initial UML
component model. This is the convergent refinement II (convergent UML
representation) activity of the analysis-by-design work flow and is supported by
the convergent refinement assistant (C-RAS) module.
As detailed in Chapters 6 and 7, the C-RAS bridges the gap between business
modeling and UML refinement using convergent mapping patterns and rules as
defined by the OPEN Consortium. The result of this refinement step is a convergent
design that preserves direct visibility of the business model in the resulting UML-
based J2EE/EJB component model. This step increases quality and project
transparency by providing bidirectional tracking to the original requirements as
well as between rapid-development iterations.

This section contains the following subsections:
 Starting C-RAS
 Refining the account business object
 Refining the transfer business object
 Model verification

Starting C-RAS
Start the ArcStyler, open the project file iBank.asprj that you created in the
previous section, and click on the C-RAS button in right corner of the ArcStyler tool
bar to activate the C-RAS tool.
Figure 8.5 shows the yet unrefined model. The elements visible in the hierarchy
browser to the left of the figure are the business objects from the C-BOM, each

Convergent Architecture Chapter 8: Tutorial Example

-235-

containing its list of as yet unrefined responsibilities. Each unrefined element is
labeled with an exclamation mark (!).

Figure 8.5: The initially unrefined business model.

Refining a business object means refining its responsibilities. In general, a
responsibility can be refined to one of the following UML model elements within the
context of a component interface:

 Attribute
 Operation
 Association

The refinement patterns suggest that responsibilities for Knowing are normally
refined to attributes or associations, whereas responsibilities for Doing are refined
to operations. A responsibility is refined by selecting it in the browser and using its
Refine → <RefiningElement> context menu.

Refining the Account Business Object
Refine the responsibilities of the Account object as follows:

1. Refine the Know balance responsibility with an attribute,
accountNumber, of type string. Figure 8.6 shows the result of this
procedure.

Convergent Architecture Chapter 8: Tutorial Example

-236-

Figure 8.6: Refining the Know account number responsibility.

2. Similarly, refine the Know balance responsibility with an attribute,
balance, of type double. Figure 8.7 shows the result of this procedure.

Convergent Architecture Chapter 8: Tutorial Example

-237-

Figure 8.7: Modeling the balance attribute.

3. Refine the Make deposit responsibility with an operation,
makeDeposit, with return type <none> and a parameter, amount, of type
double and direction IN. Figure 8.8 shows the result of this procedure.

Convergent Architecture Chapter 8: Tutorial Example

-238-

Figure 8.8: Modeling the makeDeposit() operation.

4. Similarly, refine the Make withdrawal responsibility with an operation,
make-Withdrawal, with return type <none> and a parameter, amount, of
type double and direction IN.

Refining the Transfer Business Object
Now we refine the Transfer object.

1. Refine the Know source account with an attribute, source, of object
type Account. Figure 8.9 shows this procedure.

Convergent Architecture Chapter 8: Tutorial Example

-239-

Figure 8.9: Modeling the source attribute.

2. Similarly, refine the Know destination account responsibility with an
attribute, destination, of type Account.

3. Refine the Know amount to be transferred responsibility with an
attribute, amount, of type double.

4. Refine the Execute transfer responsibility with an operation, execute,
with return type <none> and no parameters.
Now the refinement of the business-model objects to UML convergent components
has been completed, as indicated by the checkmark in the Figure 8.10. The
checkmark indicates that the refinement of the model element is completed.

Convergent Architecture Chapter 8: Tutorial Example

-240-

Figure 8.10: Refined to UML components.

Model Verification
The C-RAS module provides a model-verification mechanism to verify the
structural correctness and completeness of the UML model. You can verify single
model elements or the entire model using the element's Verify context menu.

The verifier notifies you as to the results of the validation. If the validation is not
successful, you will get warnings or error messages. In the case of errors, the
model must be fixed in order to maintain integrity as defined by the architectural
style.

At this point, the UML convergent component model has been created.

J2EE/EJB Modeling with C-REF/UML

This section covers the technical refinement of the UML component model. This is
the convergent refinement III (convergent UML refinement) activity of the
analysis-by-design work flow, which is supported by the convergent EJB/UML
refiner for Rational Rose (C-REF).
The C-REF module assists you in refining the UML model according to the UML
modeling style and technology projection, as described in Chapter 7. The C-REF
provides design assistants and defaults to technically refine all components and
their relationships. This simplifies modeling while still permitting extensions and
adjustments by experts.

This section contains the following subsections:
 Starting the C-REF
 Modeling the account component

Convergent Architecture Chapter 8: Tutorial Example

-241-

 Modeling the transfer component
 Modeling deployable components
 Model verification

Starting the C-REF
The C-REF module operates as an architectural shell around Rational Rose.
Performance, compatibility, and ease of use from within the Rose environment are
a high priority. To achieve this, the ArcStyler consolidates its open UML/XML
repository (C-MOD) with the Rose internal repository. This consolidation is
encapsulated properly and, as such, is transparent to all modules of the ArcStyler.
The consolidated format is referred to as the Rose native format. The conversion
between the Rose native format and the ArcStyler UML/XML repository is
bidirectional and lossless. Also, it only needs to be carried out when you move
back and forth between the C-RAS and C-REF modules. To move from the C-RAS
module into the Rose-centric C-REF, you import the external C-MOD repository
into its corresponding C-REF/Rose repository in Rose (Rose native format). Once in
the C-REF/Rose environment, modeling proceeds using Rose within the ArcStyler
shell. All modules use the C-REF/Rose native format. The ArcStyler C-MOD
repository can be stored and reloaded in the Rose native format or exported to the
external C-MOD at any time.

From C-RAS to C-REF
When you have completed the initial UML refinement in C-RAS, click on the Rose
button in the right corner of the ArcStyler tool bar. This saves the current project
and domain configuration, starts Rational Rose, and automatically loads the
current ArcStyler project file, iBank.asprj.
You will be asked to import the model information from the ArcStyler repository,
iBank.asrep, associated with the project. A new Rose model, iBank.mdl, will be
created as target of the import (or an existing iBank.mdl will be loaded as the
target). After the import is completed, save the Rose model using the Rose menu
File → Save. The new Rose model, iBank.mdl, is automatically associated with
the ArcStyler project file, iBank.asprj.
Once the repository has been imported, this import does not have to be repeated
unless you explicitly move back and make changes in the C-BOM. The repository
information has been automatically stored in Rose, and the project constellation
has been stored in the ArcStyler project file. From now on, a double-click on the
iBank.asprj file will start the C-REF/Rose.
At this point, the C-REF/Rose environment should resemble Figure 8.11.

TE
AM
FL
Y

Team-Fly®

Convergent Architecture Chapter 8: Tutorial Example

-242-

Figure 8.11: The initial C-REF/Rose model.

Modeling the Account Component
In this section you will model or tune the following EJB properties of the Account
component:

 Entity bean with container-managed persistence (CMP)
 Attribute accountNumber as key attribute
 Default create () method with empty parameter list
 User-defined create () method with parameter accountNumber

In the UML model, these properties are managed in the component's ArcStyler
property sheets.

EJB Properties
The EJB properties of the Account component are specified in the ArcStylerEJB
1.1 property sheet of component's Rose specification dialog. The following
properties are relevant for the Account component:

 ModelingStyle—Compact. The bean is modeled using the compact
bean pattern.

 Bean Home Name—<empty>. This specifies the JNDI name the
container uses to look up the home interface. If nothing is specified, the
component name will be used.

 BeanType—Entity.
 PersistenceManagement—Container. The Account component is

implemented as entity bean with container-managed persistence.

Convergent Architecture Chapter 8: Tutorial Example

-243-

 IsReentrant—False. The entity bean is not reentrant.
 TransactionType—Container. The transaction management is

handled by the container.
 ContainerTransaction—Required. The container invokes the bean

with a valid transaction context. See the EJB 1.1 specification.
 CommitOption—Cartridge Default. This specifies that the database

access during a transaction is defined by the technology projection cartridge.
 GenDfItFactories—EmptyParameterList. A default create method

with empty parameter list is generated in the bean's home interface.
 GenFindAllInstances—True. A findAllInstances() method is

generated in the bean's home interface.
Figure 8.12 shows the completed ArcStylerEJB 1.1 property sheet for the
Account component.

Figure 8.12: EJB properties of the account component.

Convergent Architecture Chapter 8: Tutorial Example

-244-

By default, all nonderived attributes of the CMP entity bean are stored persistently.
Now you will specify the accountNumber attribute of the Account component as
key attribute. This is done in the ArcStylerEJB 1.1 property sheet of the
attribute's Rose specification dialog by setting the PartOfPrimaryKey property to
True, as shown in Figure 8.13.

Figure 8.13: EJB properties of the accountNumber attribute.

User-Defined Factory Method
You will further customize and tune the design by modeling a user-defined factory
method that takes the accountNumber attribute as parameter. To do so, proceed
as follows:

1. Add a new operation, create, with the stereotype create to the
Account component.

2. Add a parameter, accountNumber, of type string to the operation.
The technical refinement of the Account component is now complete.

Convergent Architecture Chapter 8: Tutorial Example

-245-

Modeling the Transfer Component
In this section you will model the following EJB properties of the Transfer
component:

 Stateful session bean
 Default create method with all attributes as parameters

EJB Properties
The EJB properties of the Transfer component are specified in the ArcStylerEJB
1.1 property sheet of the component's Rose specification dialog. The following
properties are relevant for the Transfer component:

 ModelingStyle—Compact.
 Bean Home Name—<empty>.
 BeanType—Session.
 StateManagement—Stateful. The Transfer component is

implemented as stateful session bean.
 TransactionType—Container.
 ContainerTransaction—Required.
 GenDfItFactories—AllAttributesAsParameters. A default create

method with all attributes as parameters is generated in the bean's home
interface.
Figure 8.14 shows the completed ArcStylerEJB 1.1 property sheet for the
Transfer component.

Convergent Architecture Chapter 8: Tutorial Example

-246-

Figure 8.14: EJB properties of the Transfer component.
The technical refinement of the Transfer component is now complete.

Modeling Deployable Components
Now you will model the assembly in terms of its individual deployable components.
At this point, the assembly includes an EJB archive that packages the Account and
Transfer components as well as an EJB client archive needed by the Web
accessors. The Web application will be developed later in the tutorial, but we want
to first deploy and test the business components in the EJB container.
Deployable components are modeled in a package in the Component View of the
Rose model. To model an EJB archive, proceed as follows:

1. Add a new package, libs, to the Component View.
2. Add a new component, model, with the stereotype EJB Archive to the

libs package.
3. Assign the Account and Transfer components to the EJB archive by

dragging the components to the model component.
4. Make sure that the Set in the cartridge-specific property sheet of the

model component (for example, BAS 4.x, WLS 5.1) is set to EJBArchive,
and check the Test Server Address and Test Server Port properties in this
property sheet.

Convergent Architecture Chapter 8: Tutorial Example

-247-

The Web accessors or any other clients will need an EJB client archive component
as well, which you also can create now:

1. Add a new component, stubs, with the stereotype EJBClientArchive
to the libs package.

2. Drag and drop the Account and Transfer beans to the client archive.
3. Make sure that the Set in the cartridge-specific property sheet of the

stubs component is set to EJBClientArchive, and check the Test Server
Address and Test Server Port properties in this property sheet.

Model Verification
It is now time check the stylistic integrity of the UML model and make sure that it
can be projected successfully to the selected infrastructure. The C-REF tool
provides a configurable model-verification mechanism (also known as model
validation) to validate the UML model according to the requirements of the
architectural style. The following aspects can be verified:

 Structural correctness
 UML constraints
 Rational Rose constraints
 Technical feasibility (Java constraints, container-specific J2EE/EJB

constraints)

You can verify single model elements or the entire model. If problems are found,
messages regarding the problems, their causes, and their severities are presented.
Warning messages manifest dubious or suboptimal model constellations, and error
messages indicate problems that must be fixed in order to remain style-conform.

At this point, you have a refined the UML model of your business components and
assembly components to the level where the convergent generator (C-GEN)
generator, and technology projection cartridge can take over and generate a
deployable infrastructure.

Generating the EJB Components with C-GEN

This section covers the code-generation steps in the architectural IDE that
essentially support all the construction-phase work flows in the CA process.
In this step, the C-GEN module and the technology projection cartridge are
activated from the C-REF UML model to create major portions of the deployment
infrastructure as well as the test and build environment. As explained in Chapter 7,
the depth and width of this infrastructure are so extensive that it is referred to as
fan-out.

The C-GEN is a powerful JPython-based generator engine that uses one or more
technology projection cartridges to program and drive the generation process. A
cartridge provides the templates, scripts, and optimization rules for a particular
runtime environment (for example, an J2EE/EJB container). Moreover, it supplies
the model verifiers used by the C-REF module (see preceding section) to verify the
technical feasibility of the UML model with respect to the target technology.

This section contains the following subsections:
 Configuring the code generator
 Running the code generator

Convergent Architecture Chapter 8: Tutorial Example

-248-

Configuring the Code Generator

Before you can start with the code generation, you must configure the code
generator. In particular, you must specify the following:

 A source code output directory
 A technology projection cartridge for the target runtime environment
 A template path specifying where the templates (and template

extensions) are located
 Database configuration information
 Configuration of the tools used by the build process (for example,

J2EE/EJB container, Tomcat servlet engine)
The code generator is configured in the C-GEN tab of the ArcStyler configuration
dialog.

The Generate Panel
In the Generate panel of the C-GEN tab, you must specify the following:

 Generated Source Directory. This specifies the source code output
directory.

 Template Directory. This specifies the path where the code generator
searches for the templates.

 Project Name. This specifies the name of the project, for example,
IBank Tutorial.
Figure 8.15 shows the completed configuration of the Generate panel.

Convergent Architecture Chapter 8: Tutorial Example

-249-

Figure 8.15: The Generate panel.

The Projections Panel
In the Projections panel of the C-GEN tab, you must specify the following:

 Chosen Technology Projections. This specifies the technology
projection cartridges to activate.

 Each cartridge provides cartridge-specific properties that must be
configured. To configure these properties, select the projection.tpr file in the
Chosen Technology Projections field.
Figure 8.16 shows the Projections panel for the BEA Weblogic server cartridge.

Convergent Architecture Chapter 8: Tutorial Example

-250-

Figure 8.16: The Projections panel.

The Database Panel
In the Database panel of the C-GEN tab, you must configure the database used
by the container to store entity beans with container-managed persistence. Usually,
an EJB container provides a default database. For simplicity, we will use this
default database in this tutorial.
To do so, choose Cartridge Default from the Database Type drop-down menu.
The default configuration for the container's default database will now be
generated automatically into the EJB deployment descriptors.

All other fields can be left empty for the default database.

For details about the database configuration and the default database of a
particular EJB container, please refer to the corresponding cartridge documentation.

The Tools Panel
In the Tools panel of the C-GEN tab, you must configure the tools used by the
target technology projection. In particular, you must configure the installation root
of your EJB container because this may vary on any given machine.

Convergent Architecture Chapter 8: Tutorial Example

-251-

To do so, select the target tool from the Choose the tool you want to configure
drop-down menu. In the Installation field you must specify the installation path
of the tool. Use the Browse button to open a directory selector dialog. If required
by the tool, you may specify a license key in the License field.

For details about the tool configuration needed for your technology projection
cartridge, please refer to the appropriate cartridge documentation.
Figure 8.17 shows the Tools panel for the BEA Weblogic server container.

Figure 8.17: The Tools panel.
Now that you have configured the code generator, save the configuration using the
Rose menu Tools → ArcStyler → Save Configuration.

Running the Code Generator
Now run the code generator. In the Rose browser, select the entire Logical View
package, and use its ArcStyler → Generate context menu to generate all
artifacts. These artifacts include the following at this point. The JSP and other Web
artifacts will be generated in later section using an accessor cartridge.

 Java sources (home interface, remote interface, bean implementation
class).

 The Java sources are generated in the
%SRC%/<container_id>_gen/ibank directory, where %SRC% is the
source-code output directory you configured in the Generate panel.

 Default test client.

TE
AM
FL
Y

Team-Fly®

Convergent Architecture Chapter 8: Tutorial Example

-252-

 The default test client, modelTestClient.java, is generated in the
%SRC%/components/libs/model directory.

 Standard deployment descriptor.
 The standard deployment descriptor is generated in the

%SRC%/components/libs/model/META-INF directory.
 Container-specific deployment descriptors.
 The container-specific deployment descriptors are generated in the

%SRC%/components/libs/model/<container_id>/META-INF directory.
 Container-specific build support files.
 The container-specific build support files are generated in the

%SRC%/components/libs/model/<container_id> directory.
Progress and information pertaining to the code generation are logged to the Rose
log window. Figure 8.18 shows an example of the generator output in the log
window.

Figure 8.18: Rose log window.

Building, Deploying, and Testing the EJB Components

This section shows how to use one of several build, deploy, and test constellations
supported by the architectural IDE. It exhibits support for the implementation
cycle work flows, test work flows, and several aspects of the deployment and
monitoring work flow.

After the code has been generated, the following tasks are at hand:
 Customize the code.
 Build the EJB JAR file.
 Deploy the EJB JAR file in a test container.
 Test the EJB components using the default test client.

Convergent Architecture Chapter 8: Tutorial Example

-253-

The simple, ANT-based execution of these tasks is covered in the following
subsections:

 Code customization
 Build support

Code Customization
In this section, you will implement some custom business logic in the Account and
Transfer beans. Moreover, you will implement custom test code in the default test
client.
As explained in Chapter 7, the code generator uses the concept of protected areas
to support round-trip development. Protected areas are code segments that are
preserved across subsequent runs of the code generator. Custom business logic
and other information that cannot be specified in the UML model are entered in
these protected areas.
You can use any editor to customize the source code. However, Borland's Java IDE
is explicitly supported by the architectural IDE for this purpose. A JBuilder project
file, model.jpr, was generated in the
%SRC%/components/libs/model/<container_id> directory. It contains
information regarding the Java sources, deployment descriptors, test packages,
and other JBuilder information associated with the EJB archive component, model,
that you created in the previous C-REF section.

The AccountBean.java File
The AccountBean.java file was generated into the
%SRC%/<container_id>_gen/ibank directory. In this file you must
implement the following methods:

 ejbCreate () for the custom, user-defined factory method you added
previously

 makeDeposit ()
 makeWithdrawal ()

The following code fragment shows the implementation of the user-defined factory
method:

 public java.lang.String ejbCreate(java.lang.String accountNumber)

 throws CreateException

 {

 /* START OF PROTECTED AREA <<ejbCreate:string>> */

 // @todo - initialize all key attributes

 // insert custom code here

 // this return value is ignored by the container (EJB 1.1 Spec,

 §9.4.2)

 this.accountNumber = accountNumber;

 return null;

 /* END OF PROTECTED AREA 2022d7ea000000b5 */

 }
The following code fragment shows the implementation of the makeDeposit ()
method:

 public void makeDeposit(double amount)

Convergent Architecture Chapter 8: Tutorial Example

-254-

 {

 /* START OF PROTECTED AREA <<makeDeposit:double>> */

 // insert custom code here

 setBalance(getBalance()+amount);

 /* END OF PROTECTED AREA 9d700c2d0000002b */

 }
The makeWithdrawal () method is implemented analogously as follows:

 public void makeDeposit(double amount)

 {

 /* START OF PROTECTED AREA <<makeDeposit:double>> */

 // insert custom code here

 setBalance(getBalance()-amount);

 /* END OF PROTECTED AREA 9d700c2d0000002b */

 }

The TransferBean.java File
The TransferBean.java file also was generated into the
%SRC%/<container_id>_gen/ibank directory. In this file you must
implement the execute () method. This is done as follows:

 public void execute()

 {

 /* START OF PROTECTED AREA <<execute>> */

 // insert custom code here

 try

 {

 source.makeWithdrawal(amount);

 destination.makeDeposit(amount);

 }

 catch(Throwable ex)

 {

 ex.printStackTrace(System.err);

 }

 /* END OF PROTECTED AREA 9d700c2d0000002b */

 }

The modelTestClient.java File
The modelTestClient.java file was generated into the
%SRC%/components/libs/model directory. In this file you must implement
the custom test code. The test code is implemented within the <<main>>
protected area. The following code fragment shows an example implementation:

 /* START OF PROTECTED AREA <<main>> */

Convergent Architecture Chapter 8: Tutorial Example

-255-

 // sample type casting instruction

 // SampleHome home = (SampleHome)

 javax.rmi.PortableRemoteObject.narrow(ref,SampleHome.class);

 // insert your custom code here

 System.out.println("Welcome to the IBank Tutorial!");

 Object ref = context.lookup("Account");

 AccountHome home = (AccountHome)

 javax.rmi.PortableRemoteObject.narrow(ref,AccountHome.class);

 Account sourceAccount = null;

 Account destinationAccount = null;

 try {

 // try to lookup source account object

 sourceAccount = home.findByPrimaryKey("00001");

 destinationAccount = home.findByPrimaryKey("00002");

 } catch(FinderException e) {

 // account does nor exist yet so value of sourceAccount

 remains null

 System.out.println("Source account not found on server.");

 } catch (RemoteException e) {

 System.out.println("-> Remote Exception "+e);

 System.exit(1);

 }

 try {

 // create accounts if previous find was unsuccessfull

 if (sourceAccount==null){

 System.out.println("Create source account's remote

 interface");

 sourceAccount = (Account) home.create("00001");

 System.out.println("-> AccountBean created");

 }

 if (destinationAccount==null){

 System.out.println("Create destination account's remote

 interface");

 destinationAccount = (Account) home.create("00002");

 System.out.println("-> AccountBean created");

 }

 // put money on source account

 System.out.println("Deposit 1000 on account " + "00001");

Convergent Architecture Chapter 8: Tutorial Example

-256-

 sourceAccount.makeDeposit(1000.0);

 // show balance of accounts before transfer

 System.out.println("Balances of accounts before transfer:");

 System.out.println("Balance of account " +

 sourceAccount.getAccountNumber()

 + " is " +

 sourceAccount.getBalance());

 System.out.println("Balance of account " +

 destinationAccount.getAccountNumber()

 + " is " +

 destinationAccount.getBalance());

 // create transfer object

 System.out.println("Create transfer remote interface");

 ref = context.lookup("Transfer");

 TransferHome home2 = (TransferHome)

 javax.rmi.PortableRemoteObject.narrow(ref,TransferHome.class);

 Transfer transfer = (Transfer)

 home2.create(sourceAccount,destinationAccount,300);

 System.out.println("-> TransferBean created");

 // execute transfer

 System.out.println("Making transfer of 300 from account " +

 "00001"

 + " to account " +"00002");

 transfer.execute();

 // show balance of accounts after transfer

 System.out.println("Balances of accounts after transfer:");

 System.out.println("Balance of account " +

 sourceAccount.getAccountNumber()

 + " is " +

 sourceAccount.getBalance());

 System.out.println("Balance of account " +

 destinationAccount.getAccountNumber()

 + " is " +

 destinationAccount.getBalance());

 java.util.Collection col = home.findAllInstances();

 java.util.Iterator it = col.iterator();

 System.out.println("Found the following accounts:");

 while (it.hasNext()) {

Convergent Architecture Chapter 8: Tutorial Example

-257-

 Account acc = (Account)

 javax.rmi.PortableRemoteObject.narrow(it.next(),Account.class);

 System.out.println("Account " + acc.getAccountNumber());

 }

 return;

 } catch (RemoteException e) {

 System.out.println("-> Remote Exception: "+e);

 e.printStackTrace();

 System.exit(1);

 } catch (Exception e) {

 System.out.println("-> Exception: "+e);

 e.printStackTrace();

 System.exit(1);

 }

 /* END OF PROTECTED AREA 88807f8b000000bb(C) */
Moreover, you must implement the <<import>> protected area at the beginning
of the file as follows:

 /* START OF PROTECTED AREA <<import>> */

 // insert your import statements

 import ibank.*;

 import javax.ejb.*;

 import java.rmi.*;

 /* END OF PROTECTED AREA d86cd7c700000022(C) */

Build Support
In this section you will build the EJB archive, model.jar, and the EJB client archive,
stubs.jar.

The ArcStyler provides extensive support for building, deploying, and testing your
EJB component system. This includes both ANT-based command-line build support
and Java IDE-based build support.

ANT-Based Build Support
The C-GEN generated ANT scripts for the EJB archive component, model, and the
EJB client archive component, stubs, in the
%SRC%/components/libs/model/<container_id> and
%SRC%/components/libs/stubs/<container_id> directories, respectively.
The build targets are defined in the ANT build file, build.xml. The Java properties
needed for the build process are defined in the build.properties file. Both files
contain protected areas so that you can customize the build process at any time.
To build, deploy, and test the EJB archive, open a command shell and go to the
%SRC%/components/libs/model/<container_id> directory. Now activate
the following build targets. These are the critical-path subset of the available build
targets.

Convergent Architecture Chapter 8: Tutorial Example

-258-

 Compile the Java sources and generate the EJB JAR file, model.jar,
using the following command: build. The JAR file is stored in the
%SRC%/components/libs directory.

 Start the EJB container and deploy the EJB JAR file using the following
command: build runServer.

 Run the default test client, modelTestClient, using the following
command: build runClient.

 To build the EJB client archive, open a command shell and go to the
%SRC%/components/libs/stubs/<container_id> directory. The main
target to build the EJB client archive is build. It compiles the Java sources and
generates the EJB client JAR file, stubs.jar. The JAR file is stored in the
%SRC%/components/libs directory.

In general, the build process is highly container-specific. For details, please refer
the respective technology projection cartridge documentation. One such cartridge
document is presented in the bonus chapter on the Web site, which covers the
details of the technology projection component in reference manual form. Other
cartridge documentation is also available via the Convergent Architecture Web site.
Figure 8.19 shows the output from the default test client as started from the
command line.

Figure 8.19: Test client output for the iBank tutorial.

Convergent Architecture Chapter 8: Tutorial Example

-259-

IDE-Based Build Support
In the previous steps, build support for Borland's Java IDE JBuilder also was
generated automatically. The respective JBuilder project files, libraries, and
configurations were generated into the
%SRC%/components/libs/model/<container_id> and
%SRC%/components/libs/stubs/<container_id> directories, respectively.

The advantage of Java IDE-based build support is that you can use the IDE for
visual debugging and testing.

For details, refer the respective technology projection cartridge documentation.
One such cartridge document is presented in the bonus chapter on the Web site,
which covers the details of the technology projection component in reference
manual form. Other cartridge documentation is also available via the Convergent
Architecture Web site.

Modeling the Web Accessors in C-REF
In the preceding sections you completed development of the business components.
The business components are now deployed and ready to do business as EJB
components in an application server. In the remainder of this tutorial you will take
on the role of accessor developer (see Chapter 5) and develop the accessor
components for Web access—a graphic user interface (GUI) that enables clients to
interact with the EJB component system. This will be achieved according to the CA
process as defined in Chapter 6 with support of the architectural IDE as described
in Chapter 7.

You will proceed as follows:
 Create accessor models in UML using the C-REF/Rose module.
 Generate accessor infrastructure for a Web-channel using the JSP

accessor cartridge.
 Build, deploy, and test the Web user interfaces.

This section covers the UML modeling steps. It contains the following subsections:
 Generating default accessor models
 Extending the default accessor model
 Modeling the Web application deployment component

Generating Default Accessor Models

The accessor modeling style and its automation support in the architectural IDE
enable us to generate default accessor models based on an existing business
component model. These default accessors are designed to cover the most
common accessor use-case scenarios. The most common scenarios involve the
following client interaction with the business component system:

 Show a particular instance of a business component.
 Show all existing instances of a business component.
 Create an instance of a business component.
 Remove a particular instance of a business component.
 Modify a particular instance of a business component.

For details on default accessors and their underlying design, consult the bonus
chapter and other information available on the Convergent Architecture Web site.

Convergent Architecture Chapter 8: Tutorial Example

-260-

In this tutorial we will use the default accessor model generator to generate
accessors to manipulate Account components: create new accounts and edit or
delete existing accounts. To do so, proceed as follows:

1. Select the Account component in the C-REF/Rose browser and use its
ArcStyler → Accessors → Create → Collection Editor accessor context
menu. This will create a subpackage in the iBank package,
DefaultaccessorsPackage.

2. In order to use brief notations in your model, rename the
DefaultaccessorsPackage package into GUI package.
Figure 8.20 shows the new default accessor package with its new name, GUI.

Figure 8.20: The default accessor package.

The GUI package contains various accessors, represented by the icon, and
representers, symbolized by the icon:

 Account_CreatorDR. Representer representing a GUI that enables the
client to enter the account number of the account to be created

 Account_EditorDA. Accessor controlling the edit interaction with an
account

 Account_EditorDR. Representer representing a GUI that enables the
client to manipulate an account

 Account_SEditorDA. Accessor that controls the manipulation of a
collection of accounts

Convergent Architecture Chapter 8: Tutorial Example

-261-

 Account_SEditorDR. Representer representing a GUI to display a
collection of accounts and enable clients to trigger activities to manipulate
accounts
An accessor component is a UML class with the stereotype Accessor (see the
bonus chapter on the Web site for detail on modeling style). It represents the flow
control of a user interface. Accessors can have attributes to store information
processed within the accessor. A representer component, a subunit of an accessor,
is also a UML class with the stereotype Representer. It is used to display
information to the client and to receive input from the client. Representers can
have attributes to store the information displayed to or received from the client.

The Generated Accessor State Model
Observing the newly generated default accessors, the main accessor is the
Account_SEditorDA. It controls the entire user interface. The flow control of an
accessor is modeled in a state/activity diagram that also has been generated
automatically. Figure 8.21 shows the state/activity diagram for the
Account_SEditorDA accessor.

Figure 8.21: State/activity diagram of the Account_SEditorDA accessor.
The central element in the Account_SEditorDA's state/activity diagram is the
EditAccountS representer state. This state is associated with the
Account_SEditorDR representer. The Account_SEditorDR represents a GUI
that displays all existing accounts and provides trigger elements to trigger
transitions in the accessor's state model. As indicated in the model, the client can
trigger the following transitions:

 Create a new account. The Account_SEditorDA accessor transitions
to the createAccount representer state. This state is associated with the
Account_CreatorDR representer. The Account_CreatorDR represents a

TE
AM
FL
Y

Team-Fly®

Convergent Architecture Chapter 8: Tutorial Example

-262-

GUI that enables the client to input the account number for the new account.
From the createAccount representer state the accessor either transitions
back to the EditAccountS representer state, or it transitions to the add
activity. This activity is responsible for creating a new Account component
with the account number provided by the client. From the add activity the
accessor transitions to the Account_Editor state.

 Edit an account. The Account_SEditorDA accessor transitions to the
Account_Editor state. This is an embedded accessor state associated with
the Account_EditorDA accessor. In this state the main accessor,
Account_SEditorDA, delegates the control to the embedded accessor,
Account_EditorDA. This accessor controls the edit interaction for a single
account. It provides a representer, Account_EditorDR, that is a GUI where
the client can edit the balance of the selected account. For details, take a look
at the corresponding state/activity diagram of the Account_EditorDA
accessor component. From the Account_Editor state the accessor transitions
back to the EditAccountS representer state. Two transitions are provided:
Cancelled and Edited. Which one is used depends on the end state of the
embedded accessor, Account_EditorDA.

 Delete an account. The Account_SEditorDA accessor transitions to
the delete activity. This activity is responsible for deleting the selected
Account component. From the delete activity the accessor transitions back to
the EditAccountS representer state.
A representer state must be associated with a specific representer, and an
embedded accessor state must be associated with an specific accessor. This is
done in the RepresenterState's or EmbeddedAccessorState's ArcStyler
specification dialog. Figure 8.22 shows the dialog for the EditAccountS
representer state.

Figure 8.22: State specification dialog.

Convergent Architecture Chapter 8: Tutorial Example

-263-

In the lower part of the state's property sheet you can specify the resource
mapping for the state. This maps the attributes of the associated representer or
embedded accessor in the left panel, Properties, to the respective attributes of
the controlling accessor (in our example this is the Account_SEditorDA accessor)
shown in the right panel.

The resource mapping defines the data flow in the model. A resource mapping
causes the attribute of the representer or embedded accessor to be initialized with
the current value of the associated attribute of the controlling accessor.

Modeling Representers
Representers are detailed using the representer's ArcStyler specification dialog.
Figure 8.23 shows the dialog of the Account_SEditorDR representer.

Figure 8.23: Representer specification dialog.
At the top of the dialog you can specify the Representer type: COLLECTION,
which specifies that the representer will display a collection of instances (for
example, the Account_SEditorDR representer), or SLICE, which means that the
representers will display exactly one instance (for example, the
Account_CreatorDR representer).
In the left panel you can model the Interaction Attributes and Events provided
by the representer. Interaction attributes represent edit fields or text fields in the
representer (for example, edit fields in a JSP). Events represent buttons in the
user interface that trigger corresponding transitions in the state machine of the
controlling accessor.

Convergent Architecture Chapter 8: Tutorial Example

-264-

In the lower right part of the representer's specification dialog you can specify the
resource mapping between an interaction attribute and the associated representer
attribute to be displayed in the interaction attribute's text or edit field. Figure 8.23
emphasizes the resource mapping between the Interaction Attribute,
accountNumber, and the accountNumber attribute of the representer's
accountS attribute.

Extending the Default Accessor Model
In this section you will start from default accessor model to create your own
customized accessor. You will add an activity, init, to the state/activity diagram of
the main accessor, Account_SEditorDA. This activity will be responsible for
finding all existing accounts and initializing the accountS attribute of the
Account_SEditorDA accessor with the found collection of accounts.

Proceed as follows:
1. Add a new activity, init.
2. Redirect the activate transition from the Start state to the init activity

by dragging the transition arrow.
3. Add a new transition from the init activity to the EditAccountS

representer state.
Figure 8.24 shows the completed diagram for the customized accessor.

Figure 8.24: Modified state/activity diagram

Convergent Architecture Chapter 8: Tutorial Example

-265-

Modeling the Web App Deployment Component
Now you will extend the assembly model in terms of the accessor's deployable
components for the Web application. You will model the a Web application archive
(WAR) that packages the accessor and representer components of the model for
automatic deployment into a Web server.

To model the Web application archive, proceed as follows:
1. Add a new component, webapp, with the stereotype Webapplication

to the libs package you created earlier for the business components.
2. In the webapp component's ArcStyler specification dialog, specify the

Account_SEditorDA accessor as root accessor that takes the main control.
Figure 8.25 shows the result.

Figure 8.25: Assigning the root accessor.
In order to guarantee a complete assembly for the deployed environment, the
deployment dependencies between the packaged Web accessor components and
the packaged business components is also modeled. In the UML model, this is
expressed by adding a dependency relation between the Web application
component and the EJB client archive component, stubs. To model this
dependency, proceed as follows:

1. Add a component diagram, Dependencies, to the libs package.
2. Drag and drop the stubs and webapp components from the Rose

browser into the diagram and insert a dependency from the webapp
component (client component) to the stubs component (server component).
Figure 8.26 shows the Dependencies diagram.

Convergent Architecture Chapter 8: Tutorial Example

-266-

Figure 8.26: The Dependencies diagram.

At this point, you have a refined the UML model of your accessor components and
assembly components to the level where the C-GEN generator and technology
projection cartridge can take over and generate a deployable infrastructure.

Generating the Web Application with C-GEN

This section covers the code-generation steps for the Web accessors. The
architectural IDE is now used to support these accessor-specific aspects of the CA
process work flows.

In this step, the C-GEN module and accessor technology projection cartridge are
activated from the C-REF UML model. These are used to generate major portions
of the deployment infrastructure as well as the test and build environment for the
JSP/servlet-based Web application.

Configuring the Code Generator

Before you start generating accessor code, you must configure the code generator
using the ArcStyler configuration dialog.

The Generate Panel
In the Generate panel, you must specify the following:

 Generated Source Directory. This specifies the source-code output
directory.

 Template Directory. This specifies the path where the code generator
searches for the templates.

 Project Name. This specifies the name of the project, for example,
iBank Tutorial.

Convergent Architecture Chapter 8: Tutorial Example

-267-

Figure 8.27 shows the completed configuration of the Generate panel.

Figure 8.27: The Generate panel.

The Projections Panel
In the Projections panel, you must specify the technology projection cartridges
needed for accessor code generation. Add the following projection.tpr files in the
Chosen Technology Projections field:

 projection.tpr file corresponding to your target EJB container. You
should have done this already in a previous section of the sample.

 iO_JSP_accessors.tpr file corresponding to the JSP/servlet cartridge.
 For this cartridge, you also must configure the JBuilder version installed

in your local environment.
Figure 8.28 shows the Projections panel configured with the accessor cartridge as
well as the Borland Application Server cartridge and JBuilder4.

Convergent Architecture Chapter 8: Tutorial Example

-268-

Figure 8.28: The Projections panel.

You have now configured the code generator. Save the configuration.

Running the Code Generator
By default, the C-GEN generates code for all technology projections configured in
the Projections panel. However, because the EJB business components were
already generated in previous sections, we only need to generate the code for the
Web accessors here. To do so, select the entire Logical View package in the C-
REF/Rose browser and use its ArcStyler → Configure Generation context menu.
The selector dialog shown in Figure 8.29 pops up where you should select only the
JSP/servlet cartridge.

Convergent Architecture Chapter 8: Tutorial Example

-269-

Figure 8.29: The cartridge selector dialog.
Now you can run the code generator. In the C-REF/Rose browser, select the
Logical View, and use its ArcStyler → Generate context menu in order to
generate all artifacts for the Web accessor infrastructure. In this instance, the
generated infrastructure includes the following:

 Java sources for the accessor and representer components.
 The Java sources are generated in the

%SRC%/ui_jsp_gen/java/ibank/GUI directory, where %SRC% is the
source-code output directory you configured in the Generate panel.

 JSP sources for the representer components.
 The JSP sources are generated in the

%SRC%/ui_jsp_gen/site/ibank/GUI directory.
 Web application build support files.
 The container-specific build support files are generated in the

%SRC%/components/libs/webapp/ui_jsp directory.
Progress and information pertaining to the code generation are logged to the Rose
log window, as shown in the Figure 8.30.

Figure 8.30: Rose log window.

Convergent Architecture Chapter 8: Tutorial Example

-270-

Building, Deploying, and Testing the Web Application

This section shows how to use one of several build, deploy, and test constellations
for Web accessors. It exhibits the architectural IDE support for accessor aspects of
the implementation cycle work flows, test work flows, and deployment and
monitoring work flow.

Once the infrastructure has been generated, the following tasks are at hand:
 Customize code.
 Build the Web application WAR file.
 Deploy the WAR file in a Web server.
 Test the Web application in an Internet browser.

This section contains the following subsections:
 Code customization
 Build support
 Running the Web application

Code Customization
In this section you will implement the init activity methods modeled in the
state/activity diagram of the Account_SEditorDA accessor. Moreover, you will
customize some properties in the web.xml file generated for the Web application.
You can use any editor to customize the source code. However, Borland's Java IDE
is explicitly supported by the architectural IDE for this purpose. A JBuilder project
file, webapp.jpx, was generated in the
%SRC%/components/libs/webapp/ui_jsp directory. It contains the Java
sources, the JSP sources, the web.xml file, a launch.html file to test the Web
application in an Internet browser, and other JBuilder-specific configuration
information.

The Account_SEditorDA.java File
The Account_SEditorDA.java file was generated into the
%SRC%/ui_jsp_gen/java/ibank/GUI directory. In this file you must complete
the generated doInit() method for the init activity.
The following code fragment shows the implementation of the doInit() method:

 java.util.Collection col = getAccountHome().findAllInstances();

 java.util.Iterator it = col.iterator();

 m_AccountS = new ibank.Account[col.size()];

 int i=0;

 while(it.hasNext()) {

 ibank.Account acc = (ibank.Account)

 javax.rmi.PortableRemoteObject.narrow(it.next(),ibank.Account.class);

 System.out.println("Account " + acc.getAccountNumber());

 m_AccountS[i++] = acc;

 }

Convergent Architecture Chapter 8: Tutorial Example

-271-

Build Support

The ArcStyler provides extensive support for building, deploying, and testing Web
applications. In this section you will complete these tasks using both ANT-based
command-line support and, optionally, the JBuilder Java IDE support.

ANT-Based Build Support
The C-GEN module generates ANT scripts in the
%SRC%/components/libs/webapp/ui_jsp directory. The build process is
configured in the jsp.xml file. The Java properties needed for the build process are
defined in the project.properties file. Both files contain protected areas so that
the build process can be customized at any time.

Now activate the following build targets. These are the critical-path subset of the
available build targets.

 build. This compiles the JSP and Java sources and generates the WAR
file, webapp.war. The WAR file is stored in the %SRC%/components/libs
directory.

 build startTomcat. This starts the Tomcat servlet engine.

In general, the build process is highly container-specific. For details, please refer
the respective accessor cartridge documentation. One such cartridge document is
presented in the bonus chapter on the Web site, which covers the details of the
technology projection component in reference manual form. Other cartridge
documentation are also available via the Convergent Architecture Web site.

IDE-Based Build Support
In the previous steps, build support for Borland's Java IDE JBuilder also was
generated automatically. The respective JBuilder project files, libraries, and
configurations were generated into the
%SRC%/components/libs/webapp/ui_jsp directory.

The advantage of Java IDE-based build support is that you can use the IDE for
visual debugging and testing.

For details, please refer the respective accessor cartridge documentation.

Running the Web Application

Before you run the Web application, make sure that business components are
deployed in the running EJB container and that the Tomcat servlet engine has been
started as described previously.
Now start your favorite Internet browser by activating the launch.html file that
was generated in the %SRC%/components/libs/webapp/ui_jsp directory.
This will run the Web application. Figure 8.31 shows one of the interrelated
accessor GUIs you developed earlier. This accessor GUI was generated from the
Account_SEditorDR representer.

TE
AM
FL
Y

Team-Fly®

Convergent Architecture Chapter 8: Tutorial Example

-272-

Figure 8.31: The running Web application.

Summary

The iBank tutorial presented in this chapter has led you sequentially through many
central aspects of the CA process and its commensurate support in the
architectural IDE.

The tutorial started you off with convergent business modeling and moved you
through the stages of convergent UML refinement stages to arrive at an assembly
of deployable J2EE/EJB business components. You then learned how to generate
and refine Web accessor models and how to generate the entire J2EE/EJB
infrastructure from the UML model. Lastly, you saw how to build, deploy, and test
both the EJB business component and the Web accessors using the generated
infrastructure.
For additional tutorials and samples, refer to the Convergent Architecture Web site:
www.ConvergentArchitecture.com.

Convergent Architecture Bibliography

-273-

Bibliography

Books

Alexander, C. 1975. The Oregon Experiment. New York: Oxford University Press.
ISBN 0-19-501824-9.

Alexander, C., et. al. 1977. A Pattern Language: Towns, Buildings, Construction. New
York: Oxford University Press. ISBN 0-19-501919-9.

Coplein, J. 1992. Advanced C++ Programming Styles and Idioms. Reading, MA:
Addison-Wesley. ISBN 0-201-54855-0.

Coplien, J., Schmidt, D., eds. 1995. Pattern Languages of Program Design. Reading,
MA: Addison-Wesley. ISBN 0-201-60734-4.

Droste, M. 1998. Bauhaus 1919–1933. Berlin: Bauhaus-Archiv Museum fuer
Gestaltung, Klingelhoeferstr. ISBN 3-8228-7601-1.

D'Souza, D. 1998. Objects, Components, and Frameworks with UML: The Catalysis
Approach. Reading, MA: Addison-Wesley. ISBN 0-201-31012-0.

Gilb, T. 1988/1999. Principles of Software Engineering Management. Reading, MA:
Addison-Wesley. EPM99-EPM: Evolutionary Project Management: www.natural-
metrics.freeserve.co.uk/download.htm.

Graham, I., Henderson-Sellers B., Younessi H. 1997. The OPEN Process Specification.
Reading, MA: Addison-Wesley Longman. ISBN 0-201-33133-0.

Henderson-Sellers, B., Simons, Y. 1998. The OPEN Toolbox of Techniques. Reading,
MA: Addison-Wesley. ISBN 0-201-33134-9.

Herrmann, W., ed. 1992. In What Style Should We Build? The German Debate on
Architectural Style. Santa Monica, CA: Getty Center for the History of Art and the
Humanities. ISBN 0-89236-199-9.

Heyer, P. 1993. Architects on Architecture: New Directions in America. New York:
Van Nostrand Reinhold. ISBN 0-442-01751-0.

Hofstadter, D. 1979. Goedel Escher Bach. New York: Vintage Press. ISBN 0-394-
75682-7

Kane, G. 1988. Mips RISC Architecture. Englewood Cliffs, NJ: Prentice-Hall. ISBN: 0-
13-584749-4.

Kruchten, P. 1998. The Rational Unified Process. Reading, MA: Addison-Wesley
Longman. ISBN 0-201-60459-0.

Convergent Architecture Bibliography

-274-

Taylor, D. A. 1995. Business Engineering with Object Technology. New York: John
Wiley & Sons. ISBN: 0-471-04521-7.

Taylor, D. A. 1997. Object Technology: A Managers Guide, 2d ed. Reading MA:
Addison-Wesley. ISBN 0-201-30994-7.

Warmer, J. 1999. The Object Constraint Language: Precise Modeling with UML.
Reading, MA: Addison-Wesley Longman. ISBN 0-201-37940-6.

Papers and Articles

Aalst, V. 1998. "Formalization and Verification of Event-Driven Process Chains."
Computing Science Reports, 98/01; citeseer.nj.nec.com/208211.html.

Ambler, S. 1997. "Architecture Driven Modeling: The 'T' Approach." Microsoft MSDN
Online;msdn.microsoft.com/library/periodic/period97/Modeling.htm.

Girouard, M. 1963. "Monticello, Virginia, The Home of Thomas Jefferson from 1771 to
1826." Country Life, 133 (January 17, 1963): 108.

Iggulden, D., Rees, O., Van der Linden, R. 1994. "Architecture and Frameworks:
Advanced Network System Architecture Phase III (ANSA Phase III)." APM.1017.02,
October 25, 1994; www.ansa.co.uk.

Kruchten, P. 2000. "Developing Large Scale Systems with the Rational Unified
Process." RUP 2000, technical white paper;
www.rational.com/products/whitepapers/sis.jsp.

Lewis, T. 1999. "Where the Smart Money Is?" IEEE Computer, November 1999: 136;
computer.org.

Oberg, R. 2000, "Applying Requirements Management with Use-Cases." RUP 2000,
technical white paper TP505; www.rational.com/products/whitepapers/100622.jsp.

Standards (RFCs, ITU Recommendations, etc.)

EJB. 2001. The Enterprise Java Beans specifications may be found at
java.sun.com/products/ejb.

IEEE. 2000. "Architectural Description of Software Intensive Systems." IEEE
Standard 1471–2000, IEEE Computer Society; www.ieee.org.

J2EE Blueprints. 2001. Available from java.sun.com/j2ee/blueprints.

J2EE Patterns. 2001. Available to members of the Java Developer's Connection
through
developer.java.sun.com/developer/restricted/patterns/J2EEPatternsAtAGlance.html.

Convergent Architecture Bibliography

-275-

J2EE. 2001. The Java 2 Enterprise Environment specifications may be found at
java.sun.com/j2ee.

JCP. 2001. The Java Community Process. Available at
java.sun.com/aboutJava/communityprocess.

MDA. 2001. "OMG Model-Driven Architecture Initiative." Available at
www.omg.com/mda.

UML. 2000. "The OMG Unified Modeling Language Specification." Version 1.3, March
2000. Available at www.omg.org/cgi-bin/doc?formal/2000-03-01.

Tools

ANT. 2000. The Apache Jakarta Project. Available at
jakarta.apache.org/ant/index.html, jakarta.apache.org/ant/manual/index.html.

BEA Systems Corporation. 2001. The WebLogic Server. Available at www.beasys.com.

Borland Corporation. 2001. The Borland Application Server. Available at
www.borland.com.

iO GmbH. 2001. Interactive Objects Software GmbH. The ArcStyler Architectural IDE
for J2EE/EJB. Available at www.ArcStyler.com, www.io-software.com.

JUnit. 2000. Available at www.junit.org/.

Rational Corporation. 2000. The Rational Unified Process.

Rational Corporation. 2001. Rational Rose 2001 Modeler Edition. Available at
www.rational.com.

Convergent Architecture Index

-276-

Index

A
ABD (analysis by design), 38, 172–177
accessors, 40, 78, 92
container, 96
framework, 93–94
Account_SEditorDA accessor, iBank tutorial, 250–251
AccountBean.java file, iBank tutorial, 243
Account_SEditorDA.java file, iBank tutorial, 260
Account_SEditorDR representer, iBank tutorial, 252
activities, 113
accessors, 98
owner, 116
allocate and estimate phase, four-pass iteration planning session, 162
ANT scripts, iBank tutorial, 247
applied architectures, 7
architectural evolution workflows, 158–159
architectural IDE, 38–41, 193–195
C-BOM module, 196–197
C-GEN module, 209
C-GEN-IDE module, 211–213
C-IX module, 213–216
C-RAS module, 200–201
C-REF module, 203–207
Federated UML/XML model repository, 199
architectural layers, convergent component metamodel, 76–81
architectural styles. See IT architectural style.
architecture organization, IT organization, 118–120
ArcStyler projects, iBank tutorial, 222
artifacts, 113, 171
assemblies, 77, 91
assembly development team, 133, 137–138, 165
assembly tests, 184

B
build process, iBank tutorial, 260–261
build, test and deploy constellations, iBank tutorial, 242
business and requirements modeling, 48
business components, 78, 99–102
business flow and convergence testing, 185
business model packages, iBank tutorial, 220–222
business use-case scenarios, iBank tutorial, 223–224
business-relevant assembly components, 132

C
C-BOM module (Convergent Business Object Modeler), 38, 196–197, 220
C-GEN module (Convergent Translative Generator), 40, 209, 238–240
C-GEN-IDE module (Convergent Generator IDE), 41, 211–213
C-IX module (Convergent Implement, Deploy and Test Environment), 41, 213–216
C-RAS module (Convergent Pattern Refinement Assistant), 39, 200–201, 227

Convergent Architecture Index

-277-

C-REF module (Convergent UML Refinement Assistant), 40, 203–207, 232
canonical development team, 133–135
canonical project workflows, 150–151
catalysis approach, 148
CC-encapsulated technologies, 44
CCM workflow (Configuration and Change Management), 169–171
CCM-O (Change and Configuration Management organization), 123–124
CCs (Convergent Components), 76
change sets, 113
client personalities, convergent component metamodel, 87–88
code customization, iBank tutorial, 242
code generator, iBank tutorial, 238, 241
component development teams, 133, 139–140
components
dimensions, convergent component metamodel, 85–87
metamorphosis, 36, 68–70
tests, 184
conceptual isomorphism, 36, 65–67
construction phase, RUP, 166
convergence, 59
convergent architecture, 1, 11–14
architectural IDE, 193–195
C-BOM module, 196–197
C-GEN module, 209
C-GEN-IDE module, 211, 213
C-IX module, 213–214, 216
C-RAS module, 200–201
C-REF module, 203–207
Federated UML/XML model repository, 199
communication, 5
convergent component metamodel. See convergent component metamodel.
designer's paradox, 26–27
development process model, 145–147
ABD workflows, 172–177
architectural evolution workflows, 158–159
assembly development team, 165
canonical project workflows, 150–151
CCM workflows, 169–171
construction phase, 166
cross-project workflows, 149
deployment workflows, 188–189
development environment workflows, 167–169
documentation workflows, 185–187
implementation cycle workflows, 179–181
IT environment workflows, 152
monitoring workflows, 188–189
preparatory workflows, 149
project initiation team, 164
project management workflows, 159–163
refinement continuity, 178–179
T-bar workflows, 153–158
test workflows, 182–184
transition phase, 166

Convergent Architecture Index

-278-

workflows, 148–149
entropy, 25–26
evolution, 9
formal technology projections, 21–23
full coverage tool suite, 20
full lifecycle development model, 18–19
iBank tutorial. See iBank tutorial.
IT organization model, 109–112, 118–120
CCM-O, 123–124
IT support organization, 121–122
IT-O, 116
OPS-InfraBas-O, 143
OPS-O, 141
PET-O, 125–126
SysDev-O, 129–132, 135–139
TestCenter-O, 127–128
Transition-O, 142
UserSupport-O, 142
metamodels, 16–17
organic order, 27
quality, 8
specificity, 24–25
standards, 28
unnecessary complexity, 15
convergent architecture metamodel, 53
component metamorphosis, 68–70
conceptual isomorphism, 65–67
machine shop metaphor, 62
project design, 57
RASC, 63–64
system design, 58
convergent architecture roadmap, 31–33
architectural IDE, 38–41
cumulative improvements summary, 47–48, 50
development model, 36
metamodels, 34–36
operational environment, 44, 46
technology projections, 42–44
convergent component metamodel, 36, 73–74
accessors, 92–96
architectural layers, 76–81
assemblies, 91
client personalities, 87–88
component dimensions, 85, 87
extended state machine model, 97–98
model-driven accessors, 94–95
MVC controller, 95
OPRs, 99, 103
representers, 96–97
ResourceMappings, 98
server personalities, 87–88
TPC, 83–85
utility components, 107

Convergent Architecture Index

-279-

convergent engineering, 59–61
convergent systems, 60
convergent UML completions, 176
convergent UML representations, 175
CRC cards (class responsibility cards), 38, 223
cross project workflows, 149
cumulative improvements summary, 47–50
customizing accessor, iBank tutorial, 253

D
Database panel, iBank tutorial, 239
decisions, accessors, 98
default accessors, iBank tutorial, 249
deployment workflow, 188–189
design, 12–14
designer's paradox, 26–27
development environment workflow, 167, 169
development models, 36
development process model, 37, 145–147
ABD workflow, 172–177
architectural evolution workflows, 158–159
assembly development team, 165
canonical project workflows, 150–151
CCM workflow, 169–171
construction phase, 166
cross-project workflows, 149
deployment workflow, 188–189
development environment workflow, 167, 169
documentation workflow, 185–187
implementation cycle workflow, 179–181
IT environment workflows, 152
monitoring workflow, 188–189
preparatory workflows, 149
project initiation team, 164
project management workflows, 159–163
refinement continuity, 178–179
T-bar workflows, 153–158
test workflow, 182–184
transition phase, 166
workflows, 148–149
development tool environment, 50
divergence, 59
documentation, 50
documentation workflow, 185–187

E
EAI (Enterprise Application Integration), 26
EARs (Enterprise archives), 81
elaboration phase, RUP, 165
EmbeddedAccessorState, 97
entropy, 25–26
EPM (Evolutionary Project Management), 148

Convergent Architecture Index

-280-

extended state machine model, 97–98
external entities, 92

F
federated UML/XML model repository, 199
formal technology projections, 21–23
four-pass iteration planning sessions, 162–163
full-coverage tool suite, 20
full lifecycle development model, 18–19

G–H
Generate panel, iBank tutorial, 238
holistic approach to architecture design, 54–56

I
iBank tutorial, 219
AccountBean.java file, 243
Account_SEditorDA. java file, 260
ANT scripts, 247
ArcStyler project, 222
build process, 260–261
build, test and deploy constellations, 242
business model packages, 222
business use-case scenarios, 223–224
C-BOM business modeling, 220
C-GEN module
configuring code generator, 238
Database panel, 239
Generate panel, 238
generating EJB components, 238
Projections panel, 239
running code generator, 241
Tools panel, 240
C-RAS module, 227
C-REF module, 232
Acconut_SEditorDA accessor, 250–251
Account_SEditorDR representer, 252
customizing accessor, 253
default accessors, 249
Web accessors, 248
code customization, 242
CRC cards, 223
importing repository, 233
model documentation, 226
model verification, 225, 230, 237
model.jar archive, 246
modeling account component, 233–234
modeling deployable component, 237
modeling transfer component, 236
modelTestClient.java file, 244–245
refining account business object responsibilities, 228

Convergent Architecture Index

-281-

refining business object responsibilities, 227
refining transfer business object responsibilities, 230
running code generator, 257–258
stubs.jar archive, 247
TransferBean.java file, 244
Web application deployment component, 254
Web application generation, 255–257
web.xml file customization, 260
IDE (Integrated Development Environment), 193
implement, build and deploy cycle, 49
implementation cycle workflow, 179–181
implicit quality, 49
importing repository, iBank tutorial, 233
inception phase, RUP, 164
initiation team, 164
innovation without risk, 10
IOC (Initial Operational Capability), RUP, 166
IT architectural style, 1, 11
common language, 6
communication, 5
design, 12–14
designer's paradox, 26–27
entropy, 25–26
evolution, 9
formal technology projections, 21–23
full-coverage tool suite, 20
full lifecycle development model, 18–19
metamodels, 16–17
organizational evolution, 28
quality controls, 8
specificity, 24–25
standards, 28
unnecessary complexity, 15
IT dimensions, 86
IT environment workflows, 152
IT-organization development model, 36
IT-organization model, 109–112, 118–120
CCM-O, 123–124
IT support organization, 121–122
IT-O, 116
OPS-InfraBas-O, 143
OPS-O, 141
PET-O, 125–126
SysDev-O, 129–132, 135–139
TestCenter-O, 127–128
Transition-O, 142
UserSupport-O, 142
IT support organization, 121–122
IT-O (IT organization), 116

J–L
JumpState, 98

TE
AM
FL
Y

Team-Fly®

Convergent Architecture Index

-282-

LCO (Life-Cycle Objective), RUP, 165

M
machine shop metaphor, 61
metamodels, 16–17, 34–36, 53
business design, 57
component metamorphosis, 68–70
conceptual isomorphism, 65–67
convergent component. See convergent component metamodel.
holistic approach, 54–56
machine shop metaphor, 62
project design, 57
RASC, 63–64
system design, 58
model documentation, iBank tutorial, 226
model verification, iBank tutorial, 225, 230, 237
model-driven accessors, 94–95
model-driven design, 75
model.jar archive, iBank tutorial, 246
modeling account component, iBank tutorial, 233–234
modeling deployable component, iBank tutorial, 237
modeling transfer component, iBank tutorial, 236
ModelTestClient.java file, iBank tutorial, 244–245
monitoring workflow, 188–189
MVC controller, 95

O
official sink, 157
OPEN Process Specification, 147
operational environment, 44–46
operational increments, 166
OPRs (organizations, processes, and resources)
business components, 79, 99–102
business-centric, 131–132
convergent components, 103
IT organization model, 112
technology projections, 104–106
UML modeling, 104–106
OPS-InfraBas-O, IT organization, 143
OPS-O, IT organization, 141
organic order, 27
organization manager, 115
organizations, 112

P
peripheral tools, 44
PET-O (Project Information, Events, and Training organization), 125–126
preparatory workflows, 149
processes, 112
project design, 57
project initiation team, 164

Convergent Architecture Index

-283-

project management workflows, 159–163
project manager, 115
Projections panel, iBank tutorial, 239

Q–R
quality, 8
RASC (Reduced Abstraction Set Computing), 35, 63–64
RDD (responsibility-driven design), 38
reference artifacts, 171
reference frame continuity, 146
reference technologies, 114
refinement continuity, 178–179
refining responsibilities, iBank tutorial, 227–230
representers, 96
representer containers, 97
RepresenterState, 97
resource owner, 116
ResourceMappings, 98
resources, 113
responsibilities of workers, 115
RISC (reduced instruction set computing), 63
roadmap for convergent architecture, 31–33
architectural IDE, 38–41
cumulative improvements summary, 47–50
development model, 36
metamodels, 34–36
operational environment, 44, 46
technology projections, 42–44
run-through, four-pass iteration planning session, 163
runtime environment, 50
RUP (Rational Unified Process), 146–147
construction phase, 166
elaboration phase, 165
inception phase, 164
IOC (Initial Operational Capability), 166
LCO (Life-Cycle Objective), 165
transition phase, 166
workflows, 148

S
scenario models, 174
server personalities, convergent component metamodel, 87–88
SI-ACCs (system interface accessors), 92
specificity, 24–25
sponsoring client, 116
standards, 28
steering team, 116
STTs (state transition tables), 38
Stubs.jar archive, iBank tutorial, 247
SysDev-O, IT organization, 129–132, 135–139
system design, 58
system development projects, 130–131

Convergent Architecture Index

-284-

T
T-bar business analysis, 153–156
T-bar workflows, 153–158
talk-through, four-pass iteration planning session, 162
technologies (reference), 114
technology projections, 38, 42–44, 104–106
test workflow, 182–184
TestCenter-O, IT organization, 127–128
testing, 49
TOMA (Task Ownership Matrix), 161
Tools panel, iBank tutorial, 240
TPC (Technology Projection Component), 83–85
TransferBean.java file, iBank tutorial, 244
transition phase, RUP, 166
Transition-O, IT organization, 142
tutorials, iBank. See iBank tutorial.

U
ubiquitous technologies, 43
UI-accessors, 46
UI-ACCs (user interface accessors), 92
UI-representers, 46
UML (Unified Modeling Language), 39, 104–106
unit test, 184
unnecessary complexity, 15
use-case scenario models, 174, 223
UserSupport-O, IT organization, 142
utilities, 78, 107

W–X
Walk-through, four-pass iteration planning session, 163
WARs (Web archives), 81
Web accessors, iBank tutorial, 248
Web and system accessor development, 48
Web application deployment component, iBank tutorial, 254
Web application generation, iBank tutorial, 255–257
Web.xml file customization, iBank tutorial, 260
Workers, 113–115
Workflow owner, 116
Workflows, 113, 148–149
ABD, 172–177
architectural evolution, 158–159
canonical project, 150–151
CCM, 169–171
cross-project, 149
deployment, 188–189
development environment, 167–169
documentation, 185–187
implementation cycle, 179–181
IT environment, 152
monitoring, 188–189
preparatory, 149

Convergent Architecture Index

-285-

project management, 159–163
refinement continuity, 178–179
T-bar, 153–158
test, 182, 184
XML (eXtensible Markup Language), 39

Convergent Architecture List of Figures

-286-

List of Figures
Chapter 2: The Convergent Architecture Roadmap—
Defining and managing the big picture
Figure 2.1: Roadmap and anatomy of the Convergent Architecture.
Figure 2.2: The development model and the layers below.
Figure 2.3: The modules of the IT-architectural IDE.
Figure 2.4: The operational environment.

Chapter 3: The Convergent Architecture Metamodel—
The vision and principles of the architecture
Figure 3.1: The three pillars of a holistic architecture. IT-architecture is only
complete when it covers these three intimately related themes.
Figure 3.2: Converging business and IT models. Convergence = two perspectives
of one model.
Figure 3.3: The convergent component.
Figure 3.4: Independent derivations of RASC (simultaneously on different sides of
the world).
Figure 3.5: Component metamorphosis. Convergent components actively support
users during a given life-cycle stage and work context.

Chapter 4: The Convergent Component Metamodel—
Components as the vehicle of architecture
Figure 4.1: The foundation of convergent components.
Figure 4.2: The architectural layers. Convergent components form four layers to
best manage a design.
Figure 4.3: Convergent model-to-component relationships.
Figure 4.4: Example: Components in an e-payment portal.
Figure 4.5: Example: Model-to-infrastructure relationship.
Figure 4.6: The technology projection component.
Figure 4.7: Convergent component dimensions and personalities.
Figure 4.8: Enabling various distribution schemes.
Figure 4.9: Projection of an ultra-lightweight client constellation to J2EE.
Figure 4.10: Detail: Ultra-lightweight client constellation to J2EE.
Figure 4.11: Projection of a fat client scheme to a CORBA Infrastructure
(Java/C++).
Figure 4.12: Assemblies as macro units.
Figure 4.13: The model-driven parts of the accessor framework.
Figure 4.14: Business engineering with object technology.
Figure 4.15: The basic OPR relationships and the semantics of OPRs.
Figure 4.16: The convergent OPR components.

Chapter 5: The IT-Organization Model—The business of
building IT systems
Figure 5.1: The IT organization in a business context.
Figure 5.2: The top-level IT organization.
Figure 5.3: The architecture organization.
Figure 5.4: The IT support organization.
Figure 5.5: The system development organization.
Figure 5.6: The canonical development team.
Figure 5.7: The operational systems organization.

Convergent Architecture List of Figures

-287-

Chapter 6: The Development Process Model
Figure 6.1: A specific instance of process architectures. CA's relationship to third-
generation SW process frameworks.
Figure 6.2: The core analysis-by-design process. Simple and effective. Business
components evolve incrementally. The first model is usually a real eye-opener.
Figure 6.3: The effort split: Graduating to convergence. Convergent Arcihtecture
deals with the reality of the existng IT environment.
Figure 6.4: The flow and scope of an iteration.
Figure 6.5: Planning an iteration: The four-pass approach. Carry out these steps
with the lead developers and primary customer.
Figure 6.6: Work plan: The task ownership matrix (TOMA) is used to communicate
work plans.
Figure 6.7: Workflow, tools, and core artifacts.
Figure 6.8: Recording and verifying business designs. Role playing verifies and
debugs the design and achieves consensus with domain experts regarding
requirements and priorities.
Figure 6.9: Model-driven test infrastructure. UML-driven (OCL) test generation,
instrumentation, build, and runtime.

Chapter 7: The Architectural IDE—Automating the
architecture
Figure 7.1: Architectural IDE: Critical path coverage. Covering the critical-path
workflows.
Figure 7.2: The modules and environment of the architectural IDE.
Figure 7.3: Orientation of the C-BOM module.
Figure 7.4: Business object modeling.
Figure 7.5: Use-case scenario modeling.
Figure 7.6: Orientation of the C-MOD module.
Figure 7.7: Orientation of the C-RAS module.
Figure 7.8: Pattern-based refinement.
Figure 7.9: C-RAS-OPEN pattern example. With permission (Henderson-Sellers
1998, Fig. 2.3)
Figure 7.10: Orientation of the C-REF module.
Figure 7.11: Convergent J2EE/UML refinement.
Figure 7.12: Details of the default J2EE/EJB modeling style.
Figure 7.13: The multichannel assessor design.
Figure 7.14: The process design.
Figure 7.15: Orientation of the C-GEN/C-GEN-IDE module.
Figure 7.16: Configuring cartridges and projects.
Figure 7.17: Generating infrastructure and environment.
Figure 7.18: Using the generator IDE. The meta-programming environment.
Figure 7.19: Orientation of the C-IX module.
Figure 7.20: Implement, deploy, and test components.
Figure 7.21: Implement, deploy, and test accessors.
Figure 7.22: The operational deployment and assembly test.

Chapter 8: Tutorial Example: Applying the Convergent
Architecture
Figure 8.1: The ibank project and repository.
Figure 8.2: CRC cards in the ibank business model.
Figure 8.3: Creating the business use-case scenario.
Figure 8.4: Recording a walk-through.
Figure 8.5: The initially unrefined business model.

Convergent Architecture List of Figures

-288-

Figure 8.6: Refining the Know account number responsibility.
Figure 8.7: Modeling the balance attribute.
Figure 8.8: Modeling the makeDeposit() operation.
Figure 8.9: Modeling the source attribute.
Figure 8.10: Refined to UML components.
Figure 8.11: The initial C-REF/Rose model.
Figure 8.12: EJB properties of the account component.
Figure 8.13: EJB properties of the accountNumber attribute.
Figure 8.14: EJB properties of the Transfer component.
Figure 8.15: The Generate panel.
Figure 8.16: The Projections panel.
Figure 8.17: The Tools panel.
Figure 8.18: Rose log window.
Figure 8.19: Test client output for the iBank tutorial.
Figure 8.20: The default accessor package.
Figure 8.21: State/activity diagram of the Account_SEditorDA accessor.
Figure 8.22: State specification dialog.
Figure 8.23: Representer specification dialog.
Figure 8.24: Modified state/activity diagram
Figure 8.25: Assigning the root accessor.
Figure 8.26: The Dependencies diagram.
Figure 8.27: The Generate panel.
Figure 8.28: The Projections panel.
Figure 8.29: The cartridge selector dialog.
Figure 8.30: Rose log window.
Figure 8.31: The running Web application.

Convergent Architecture List of Tables

-289-

List of Tables
Chapter 2: The Convergent Architecture Roadmap—
Defining and managing the big picture
Table 2.1: Overview of Cumulative Improvements

Chapter 8: Tutorial Example: Applying the Convergent
Architecture
Table 8.1: Notational Conventions
Table 8.2: Responsibilities of the Account Business Object
Table 8.3: Responsibilities and Collaborators of the Transfer Business Object

	sample.pdf
	sterling.com
	Welcome to Sterling Software

