REAL LIFE

MMMMMMMMMMMMMMM

Real-Life MDA

Morgan Kaufmann OMG Press

Morgan Kaufmann Publishers and the Object Management Group™ (OMG) have
joined forces to publish a line of books addressing business and technical topics
related to OMG's large suite of software standards.

OMG is an international, open membership, not-for-profit computer industry
consortium that was founded in 1989. The OMG creates standards for software
used in government and corporate environments to enable interoperability and
to forge common development environments that encourage the adoption and
evolution of new technology. OMG members and its board of directors consist
of representatives from a majority of the organizations that shape enterprise and
Internet computing today.

OMG’s modeling standards, including the Unified Modeling Language™ (UML®™)
and Model Driven Architecture® (MDA), enable powerful visual design, execu-
tion and maintenance of software, and other processes—for example, IT Systems
Modeling and Business Process Management. The middleware standards and
profiles of the Object Management Group are based on the Common Object
Request Broker Architecture® (CORBA) and support a wide variety of industries.

More information about OMG can be found at http://www.omg.org/ .
Forthcoming Morgan Kaufmann OMG Press Titles

UML 2 Certification Guide: Fundamental and Intermediate Exams
Tim Weilkiens and Bernd Oestereich

Real-Life MDA: Solving Business Problems with Model Driven Architecture
Michael Guttman and John Parodi

Architecture Driven Modernization: A Series of Industry Case Studies
Bill Ulrich

Real-Life MDA

Solving Business Problems with
Model Driven Architecture

Michael Guttman
John Parodi

AMSTERDAM « BOSTON « HEIDELBERG « LONDON

NEW YORK « OXFORD e PARIS « SAN DIEGO M { <®

o Solfes SAN FRANCISCO e SINGAPORE « SYDNEY « TOKYO
ELSEVIER Morgan Kaufmann Publishers is an imprint of Elsevier

MORGAN KAUFMANN PUBLISHERS

Publisher Denise E. M. Penrose

Senior Editor Tim Cox

Publishing Services Manager ~ George Morrison

Production Editor Dawnmarie Simpson

Assistant Editor Michelle Ward

Assistant Editor Mary E. James

Cover Design Alisa Andreola

Text Design Chen Design Associates
Composition Integra Software Services, Pvt., Ltd.
Technical Ilustration Integra Software Services, Pvt., Ltd.
Copyeditor Graphic World Publishing Services
Proofreader Graphic World Publishing Services
Indexer Graphic World Publishing Services
Interior printer The Maple-Vail Book Manufacturing Group
Cover printer Phoenix Color, Inc.

Morgan Kaufmann Publishers is an imprint of Elsevier.
500 Sansome Street, Suite 400, San Francisco, CA 94111

This book is printed on acid-free paper.
© 2007 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks
or registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of
a claim, the product names appear in initial capital or all capital letters. Readers, however,
should contact the appropriate companies for more complete information regarding
trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means—electronic, mechanical, photocopying, scanning, or otherwise—without
prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in
Oxford, UK: phone: (+44) 1865 843830, fax: (4+44) 1865 853333, E-mail:
permissions@elsevier.com. You may also complete your request online via the Elsevier

homepage (http://elsevier.com), by selecting “Support & Contact” then “Copyright and Permission”
and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Guttman, Michael.
Real-life MDA: solving business problems with model driven architecture/Michael Guttman and John Parodi.
p. cm.
Includes bibliographical references and index.
ISBN 0-12-370592-4 (alk. paper)

1. Information technology—Management—Case studies. 2. Computer software—Development—Case
studies. 3. Software architecture—Case studies. 4. System design—Case studies. 5. Management
information systems—Case studies. 1. Parodi, John. II. Tite.

HD30.2.G884 2005
658.4'038—dc22
2006023686

ISBN 13: 978-0-12-370592-1
ISBN 10: 0-12-370592-4

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.books.elsevier.com

Printed in the United States of America
06 07 08 09 10 54321

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER o Sabre Foundation

To Lynn and Alison

This page intentionally left blank

ABOUT THE AUTHORS

Michael Guttman is a information technology industry executive with a impres-
sive 30-year track record delivering innovative solutions and professional services
to Global 1000 clients. He is also a well-known visionary in the areas of IT strategic
planning and enterprise architecture, and has been active in the development of a
number of industry standards, including CORBA, UML, and MDA. Mr. Guttman
has also served as Director of the MDA FastStart program for the Object
Management Group (OMG), a 500+ member international software industry
consortium.

Mr. Guttman is currently CTO of The Voyant Group, responsible for the
company’s technical vision and strategy, including the development all profes-
sional services offerings. Mr. Guttman was formerly CEO of the Miriam Institute, a
IT strategy company which recently merged with Voyant. Previously, Mr. Guttman
was Director of Strategic Technology at IONA Technologies, PLC and CTO and
co-founder of Genesis Development, which was merged into IONA in June of
2000.

Mr. Guttman is the co-author of two other books, “The Object Technology Revolution™
(1996), and “Developing E-Business Systems and Architectures” (2000). He is a regular
columnist in Software Magazine and serves as a Senior Consultant on enterprise
architecture at the The Cutter Consortium. He lives in Chadds Ford, PA, with his
girlfriend Lynn and brother David, where he enjoys hiking, collecting antiques,
and playing the piano.

John Parodi has more than twenty-five years of experience in software technical
communication, including award-winning white papers, user documentation and
trade press articles, on topics that include middleware, enterprise integration,
security, software architecture, and development methodologies. He recently acted
as editor for the book “The MDA Journal: Model Driven Architecture Straight From The Masters”
(2004).

vii

viii ABOUT THE AUTHORS

During his career, Mr. Parodi has worked in a number of capacities for several
leading software vendors and professional services companies, including DEC,
IONA, and Genesis Development Corporation. His favorite jobs have involved
capturing and articulating the ideas of technical staff.

Mr. Parodi currently works as a consultant and serves as the Director of Technical
Communications with The Voyant Group. He lives with his wife Alison, and cat
Duster, in central New Hampshire.

CONTENTS

FOREWORD
David S. Frankel

PREFACE
ACKNOWLEDGMENTS

| INTRODUCTION

2 COMPUWARE/STATE OF OHIO JOB AND
FAMILY SERVICES

Background

Why Ohio JFS Chose An MDA Approach and What They
Hoped to Achieve

Challenges

Expanding Goals (or Lack Thereof)

How MDA Was Used

Process and Tools

Division of Labor

Project Experience

Organizational Development

Ongoing and Planned Use of MDA

3 SOLUTA.NET/COOPSERVICE CASE STUDY:
FACILITIES MANAGEMENT INDUSTRY

Background
Why Coopservice Chose an MDA Approach and What They
Hoped to Achieve

Xiii

XVii
xxi

13
13

14
16
18
19
25
27
28
33
35

39
39

41

CONTENTS

Challenges 42
Expanding Goals 42
How MDA Was Used 44
Process and Tools 45
Division of Labor 46
Project Experience 48
Organizational Development 57
Results and Benefits 59
Client Assessment of the MDA Experience 60

SELECT BUSINESS SOLUTIONS/AUSTRIAN

HEALTH AUTHORITY 65
Background 65
Why Hauptverband Chose an MDA Approach and What They

Hoped to Achieve 66
How MDA Was Used 68
Process and Tools 69
Division of Labor 72
Project Experience 73
Results and Benefits 76
Client Assessment of the MDA Experience 77

INHERIT/HARRIS CASE STUDY:

TELECOMMUNICATIONS INDUSTRY 83
Background 83
Why Harris Chose an MDA Approach and What They

Hoped to Achieve 85
Challenges 87
Expanding Goals 88
How MDA Was Used 89
Process and Tools 92
Division of Labor 97
Project Experience 98
Results and Benefits 104
Ongoing and Planned Use of MDA 104

DATA ACCESS TECHNOLOGIES/GSA:
EXECUTABLE ENTERPRISE ARCHITECTURE 11

Background 111
Why GSA Chose an MDA Approach and What They Hoped
to Achieve 112

CONTENTS

Challenges

Expanding Goals

How MDA Was Used

Process and Tools

Division of Labor and Training

MDA and the Federal Government’s Software Development

Approach
Project Experience
Organizational Development
Results and Benefits
Ongoing and Planned Use of MDA

INTERACTIVE OBJECTS/DAIMLER CASE STUDY:

AUTOMOTIVE INDUSTRY
Background

Why Daimler Chose an MDA Approach and What They

Hoped to Achieve
Expanding Goals
How MDA Was Used
Process and Tools
Division of Labor
Model Driven Offshoring (MDO)
Project Experience
Organizational Development
Results and Benefits
Ongoing and Planned Use of MDA
Assessment of the MDA Experience

SUMMING UP THE PARTS

Making the Business Case for MDA

Separation of Concerns

Traceability and Governance

Stakeholder Communication

Agile and Iterative Development

The OMG's FastStart Program

MDA FastStart Activities and Deliverables
MDA FastStart Assessment
MDA Enterprise Architecture Review
MDA Transition Plan

113
115
116
120
122

123
124
125
131
132

137
137

138
139
140
141
144
145
147
148
148
150
152

155

155
157
160
163
166
168
169
169
169
170

MDA Executive Seminars
MDA Practicum

APPENDIX
GLOSSARY
INDEX

CONTENTS

170
170

173
181
185

FOREWORD

In a single generation the IT industry has successfully automated many of the most
common and mundane information processing tasks of the modern enterprise.
This has allowed organizations of all kinds—and the people they employ—to scale
up their operational scope and efficiency beyond the wildest dreams of pre-IT
yesteryear.

But precisely because this kind of basic scalability is now largely taken for
granted, the computing industry finds itself at a crossroads. Some industry experts,
most notably Harvard’s Nicholas Carr, have even asserted that this commoditization
of traditional IT begs the question of whether IT even matters anymore' . Therefore,
many businesses are now working diligently to restructure and downsize their
traditional IT functions, primarily through such vehicles as acquiring third-party
packages, outsourcing and out-servicing.

Many of these new IT restructuring approaches certainly make some immediate
economic sense. (In fact, as you will see, some of the case studies presented in
this book actually address them directly.) But does that mean that IT really doesn’t
matter at all anymore?

This book clearly demonstrates otherwise. In six potent case studies, the authors
have captured the dynamics of a new breed of IT organizations that are using a
powerful approach, MDA, in order to shed their traditional role of ‘data janitors’
and refocus on the task of directly helping the businesses they serve become
significantly more agile, innovative and competitive.

What makes MDA so powerful in this respect? What is leading these and many
other organizations to explore, adopt, and adapt MDA to become more agile and
competitive? MDA is powerful because it synergistically exploits three proven

| Does IT Matter? Information Technology and the Corrosion of Competitive Advantage, Harvard Business
School Press. Carr, Nicholas. 2004.

xiv FOREWORD

principles of industrial production: models (or blueprints), componentization,
and patterns. We cannot mindlessly apply these principles in the same way that
we apply them to the production of physical things, but there are many useful
lessons to draw from industrial experience.

Even when they are not explicitly labeled as such, you can readily see how
each of those industrial principles is applied in every case study in this book.
In each case, MDA was used to create formal models of the desired solution
using customized tooling that enforces precise design and architectural patterns.
The resulting models then went through a series of formalized MDA transfor-
mations that ultimately produced deployable software artifacts assembled from
standardized, reusable, architecturally-compliant components.

Now, there are certainly other books that more thoroughly describe the theory
and mechanics of MDA, but this book chooses to demonstrate the use of MDA
from a different and perhaps more visceral and human viewpoint. In this book,
what you will see are six different sets of real IT practitioners working on six
different kinds of mission-critical applications—each figuring out what makes MDA
tick, and puzzling out how to best to adapt and apply it to their own unique
situations.

It can be (and has been) sensibly argued that, in systematically applying princi-
ples of industrial production to the software production lifecycle, MDA represents a
‘revolutionary’ approach for IT. However, as with other ‘revolutionary’ approaches
to IT, we can confidently predict that the overall industry adoption of MDA will
be evolutionary. That is, we can expect MDA tools, standards, and best practices
to continuously evolve over the next 10—15 years before MDA, too, ultimately
comes to be perceived as a ‘commodity.’

Because we are relatively early in this process, the industry needs to have an
ongoing conversation about which techniques, tools, and approaches are working,
which are not, and why. In this way we can build on that knowledge to move
along the transition curve as efficiently as possible. That is another reason why
this book is so important—it puts the experiences gained in real-life MDA projects
out there for the world to see, in the words of the participants, enriching that
conversation.

We also need case studies that more closely examine the organizational impacts
of MDA, as these will surely influence the industry transition as much—if not more—
than any technical aspects. Once again, this book makes a major contribution, since
each of its case study narratives specifically address a wide range of organizational
and process issues that are often overlooked in the more common technology-
focused books and articles about MDA. As you read through these case studies,
it becomes increasingly clear how new roles are emerging (such as Business
Modeler, Process Architect, and Services Modeler and Services Architect) that will
redefine the way that business and IT must interact in order achieve a new and
more effective end-to-end solution creation process.

XU

1
1
F X FOREWORD
1
1

In particular, each of the book’s six case studies also creates a demonstrable link
between MDA and service oriented architecture (SOA). The connecting theme is
the idea of capturing business logic in technology-independent business models,
and then using some form of SOA to realize the elements of those models in a set
of modularized, platform-independent service-oriented software components. The
industry will gradually move to a reality in which the business process expert, who
sits at the Business-IT intersection on the business side, models a business process,
while a process architect, who sits at the intersection on the IT side, configures
the steps of the business process to invoke pre-built service components. This is
the business process management (BPM) vision of executable business models,
which the parallel and intertwined evolution of MDA and SOA will bring about
in the coming years.

In the end, this book shows that it is not so much that it is easier to do BPM
and SOA with MDA, or MDA with BPM and SOA, but that you need all three to
reach the goal of providing executable solutions that directly support the need
of the business to constantly innovate. Collectively, these case studies document
the problems and successes that we face along the way to the long term goal, as
well as the importance of providing real business value today, even before the full
vision comes to fruition. This is the essence of making IT relevant to the business
in the global ‘innovation economy.’

David S. Frankel,
SAP Labs

This page intentionally left blank

PREFACE

‘Model Driven Architecture’ (MDA) was formally introduced by the OMG in
2001 as an umbrella term to cover a wide range of OMG software modeling and
architecture specifications. Since then, both the set of MDA specifications and their
usage have expanded substantially, and the term ‘MDA’ (and the more generic
term ‘model-driven’) is now widely recognized around the globe—a clear success
story for the OMG, the growing community of MDA practitioners, and (we’d like
to think) the IT industry at large.

However, at the same time, this has led some people to complain that the term
‘MDA’ has become much too broad and is in danger of losing its ‘essence’—a
common enough side effect of success in the constant churn of buzzwords that has
always characterized the IT industry. There is an on-going debate about ‘exactly
what MDA is’ or, as one wag put it, ‘will the real MDA please stand up.’

Therefore, during the course of writing this book, we tried to get our subjects to
provide their own definition of the ‘essence of MDA’. The most concise articulation
we encountered (again we quote George Thomas of the GSA) is that MDA is
“using software to generate software.”

In this light, MDA can be seen as simply the latest step on the long journey that
began with the replacement of pure binary machine coding by assembly language,
and reached various well-known milestones along the way—higher-level (3GL)
languages and compliers, OO programming, and a plethora of computer aided
software engineering tools. All of these approaches also used increasingly sophis-
ticated software generating tools to create increasingly sophisticated end-user
software.

However, MDA actually goes one step further than any of these earlier
approaches. Rather than dictate one specific way of ‘using software to generate
software’, it instead provides a framework for managing and integrating many
different ways to rationalize and automate the specification, development, deploy-
ment, integration and management of software. Given the nature and number

xvii

xviii PREFACE

of the problems in that space, it would not be possible for any single technical
approach to address them all.

That’s why a number of people now make use of the ‘software factory’
analogy to describe the collection of model-driven approaches that encompass
MDA. As in a classical factory, there are many distinct areas of concern, each
with its own technical sub-culture and vernacular. Somehow, however, all of
these pieces fit together in a common architecture that supports the common
goal—manufacturing products.

Within the MDA community, what we now see is different people using
model-driven approaches to attack different pieces of a huge puzzle—requirements
gathering, business analysis, process modeling, systems design, service definition,
systems integration, solutions design, platform code generation, automatic trans-
formations, metadata management, etc., etc. MDA is the glue that ties this all
together.

The term MDA can thus be used to describe any one of these approaches, or all
of them combined. It should therefore be no surprise that if you read six different
books on MDA, you may well get six distinct views of what MDA is and how it
can best be applied.

This book raises that ante—it provides six different case studies, each with its
own view of how to use MDA, all under one single cover. That is, we have tried
to paint a picture of the ‘essence of MDA’ not by being exclusive or proscriptive,
but by being inclusive.

Our methodology for choosing and documenting these case studies was rela-
tively simple, and not particularly ‘scientific’. Within the MDA professional services
community (specifically the OMG’s MDA FastStart Program), we asked for volun-
teers. Successful participants were line developers, architects and project/program
managers who claimed to be using MDA in real mission-critical projects which
were near or recently past completion. In each case, we interviewed participants
both from the end-user companies, and the professional services firms that had
been helping them to learn and apply MDA.

Then, with our trusty digital voice recorder rolling, we asked each set of inter-
viewees a similar set of questions about their project and its use of MDA. In
particular, we focused on organizational issues—how the use of MDA impacted
how they conducted their project, and what longer-term impacts to their orga-
nization would likely result from MDA’s wider use in the future. That’s because
we had noticed that such issues are not typically covered in technical books about
MDA, even though we know that many people are quite curious about them.

What emerged was a picture of MDA that was largely congruent to what you
can read in other more technically oriented books, but from a much broader set
of viewpoints and frames of reference. In putting together the final narratives,
rather than distill everything we had heard down into our own pet theory about
MDA, we chose to quote our sources as much as possible, and minimize our own

1 1
1 1
P X PREFACE . xix
1 1
1 1

verbiage and analysis. While the result is not ‘scientific,” it does reflect the real and
we hope instructive experiences of the participants, who creatively honed MDA
to fit their particular needs.

As authors, we found that there was something very refreshing about this
approach. Most of the interviewees were being interviewed about their experiences
with MDA for the first time, and many seemed to experience interesting revelations
and reach new conclusions even during the course of their interviews. At some
points, we felt like those talk hosts who get their subjects to open up in ways that
surprise everyone.

More importantly, this underlines the dynamic nature of MDA itself. On the
surface, MDA may be a set of specifications ‘owned’ by the OMG. But the OMG
is just a commercial organization responding to the needs of the marketplace. It’s
how MDA is really applied, adapted and perceived in the field that will determine
how it develops over time. MDA is still young and growing, and people like the
ones we have interviewed for this book are breathing new life into it every day.

Michael Guttman, Chadds Ford, PA
John Parodi, Epsom, NH

This page intentionally left blank

ACKNOWLEDGEMENTS

This book would not have been possible without the help of many people scattered
across at least five countries and nine time zones. Our thanks go to our case
study end-users who were far-sighted enough to adopt MDA to address a business
problem, and then were willing to spend some of their valuable time to share
their experiences with us. Of the many surprises we encountered in writing this
book, perhaps the most pleasant were the insights and honesty these end-users
provided.

When George Thomas of the General Services Administration said his project
description was “. . . not the kind of happy talk you usually see in a case study but it is reality”
he was speaking for himself, but he might have been speaking for all the end-users
who participated. We thank him, as well as Chris Fornecker of GSA; Angelo Serra
of the State of Ohio Job and Family Services; Walter Siri of Coopservice; Lorenz
Lercher of the Austrian Health Authority; David Almeida and Lewis Pearson of
Harris Corporation; and Wolfgang Kifer of DaimlerChrysler TSS.

We are also very grateful to the people in the MDA Qualified Service Provider
consulting firms, who helped the end-users build their respective business solu-
tions, and who helped us understand the many innovative ways in which MDA
is being applied today. We thank Gary Dykstra and Vasil Hlinka of Compuware;
Pierfranco Ferronato of Soluta.net; Barry Maybank and Uta Terlinden of Select
Business Solutions; Rob Mitchell and Robert Lario of Inherit, LLC; Ed Harrington
and Cory Casanave of Data Access Technologies; and Alberto Perandones, Thomas
Maurer, and Christian Jaschke of Interactive Objects Software GmbH.

We also want to thank the many other people in the MDA community who gave
us help and encouragement in researching and writing this book. This includes all
the OMG staff, most especially Bill Hoffman and Richard Soley, whose leadership
of the OMG made both MDA and this OMG Press book series possible. We thank
our reviewers, Dragan Djuric, Roland Preif3, Art Sedighi, and Dave Hollander.
Special thanks also to our long-time colleagues, who contributed many valuable

xxii ACKNOWLEDGEMENTS

ideas; they are Jason Matthews, Oliver Sims, Michael Rosen, and David S. Frankel
(who was also kind enough to review the book and write the foreword).

This book would certainly not have been possible without the steady love and
support of our respective families and friends, who helped us endure the many
months of trials and tribulations involved in researching, writing, and editing six
case studies and integrating them into a single (hopefully) coherent opus. We
appreciate that love and support more than these words can express.

Real-Life MDA

There are a lot of MDA
products, even though
MDA “compliance” is as
yet undefined

CHAPTER ONE
INTRODUCTION

This is a book of case studies in which each study is an example of how some
form of Model Driven Architecture® (MDA®) has been introduced into an orga-
nization to help solve a real-life business problem. These organizations include
three large corporations (two in Europe and one in the United States) whose
yearly revenues range from $450 million to $182 billion (U.S. dollars), as well as
three governmental agencies (two in the United States and one in Europe) whose
sizes span a similar range.

The respective projects involved are commercially important-in some cases
vital—to each of these organizations. Moreover, each organization made a
conscious and significant commitment to a new approach to managing their soft-
ware life cycle both when they first decided to use MDA and as they continued to
absorb the many implications of that decision. All of them have plans to expand
their use of MDA in the future, sometimes in ways they had not previously
considered. MDA, it seems, can be somewhat addictive.

So, what is MDA? At the conceptual level, MDA is a holistic approach to
improving the entire information technology (IT) life cycle—specification, archi-
tecture, design, development, deployment, maintenance, and integration—based
on formal modeling. More specifically, MDA is a framework of technical standards
progressively being developed by the members of the Object Management Group
(OMG)—an open industry consortium supporting this approach—along with a set of
usage guidelines for enabling the application of those standards with appropriate
tools and processes.

Exactly as intended, the release of MDA by the OMG has spawned a wide
variety of commercial products purporting to be “MDA compliant.” Exactly what
that label means is not clear, in that at the moment neither the OMG nor any other
organization has any formal mechanism for testing product compliance with any
specific MDA standard. There are also a number of vendors selling products that
purport to support a “model-driven approach” without specifically claiming to
implement or support MDA per se—that is, as defined by the OMG.

4 INTRODUCTION

Just as predictably, the increasing availability of MDA-based tools is spawning
a host of new books and articles about MDA and related approaches (including by
the authors of this book). Most of these focus on explaining the theory of MDA,
surveying the various standards, or describing in detail the features of specific
MDA-based products or techniques. We welcome these books, even if we don’t
always agree with all of them, and hope for many more to come.

For this book, however, we decided on a different approach—to produce a
book about MDA based solely on real-life case studies. In our experience, a good
case study is the best (and easiest) way for most people to begin to determine
whether or not any particular approach is likely to work for themselves or their
organization. If they come to the conclusion that the approach will work for
them, they will more likely be willing to wade into the more formidable technical
details. Furthermore, by including a healthy half-dozen of such case studies in
a single book (drawn from a wide range of organizations and applications) we
hope that nearly every reader will be able to find examples that speak directly to
their own needs and experience.

So, rather than plunge into MDA per se we simply present the stories of six very
different organizations, each of which used MDA to address its business needs in
very different ways. For the most part, we believe these case studies stand on their
own and speak for themselves (both individually and collectively) and therefore
have not tried to embellish them with additional details. That is, what you will
read is pretty much just what we were told by the participants.

The really good news is that you don’t need to know much about MDA itself
to understand these case studies. Anyone with a general familiarity with typical
information technology (IT) issues and jargon will have no trouble identifying
with most, if not all, of the individuals and organizations involved. That said, for
those who might need it we have included a short MDA primer as an appendix,
a bibliography, and a glossary that should fill in any remaining conceptual or
buzzword gaps.

Otherwise, our primary purpose in writing this book is to “explain” MDA
through real-life examples in order to help you, the reader, consider the business
case for adopting MDA in your own organization. In each of our case studies,
there is an MDA “champion,” someone who sensed early on that MDA could really
make a difference and who pushed through its acceptance by the organization (at
least for the project in question). Perhaps you already are, or will soon be, that
person in your own organization.

As you will see in the case studies, that champion may come from IT or from
the business itself. He or she may be a C-level corporate officer, an enterprise
architect, or a program/project manager. But in every case that champion found a
way to demonstrate effectively how the introduction of MDA could substantially
benefit the business. Nobody described in the book was just trying to add another

Champions tout MDA’s
business benefits rather
than its shiny new
technology

MDA is about gaining
control over the life cycle
of business solutions

There, we said it: MDA is a
paradigm shift

I 1
1 1
/ ' Introduction . 5
| 1
1 1

acronym to his or her resume, or merely playing around with some sexy new
tools.

That is important to point out, because some people still believe that MDA is just
another technical approach for generating code—a new form of CASE (computer-
assisted software engineering) based on the popular Unified Modeling Language
(UML)—and therefore something far from the concerns of the business. It is true
that MDA was originally based on UML, and also true that it is often used to
automatically generate code and other software life cycle artifacts. To that extent,
MDA carries forward some of the ideas of CASE. But that’s really yesterday’s news.

Today, as our case studies clearly show, MDA is being applied as an overall
approach to gaining control over and systematically improving the entire life cycle
of IT solutions—from modeling the overall business and capturing specific solutions
requirements to developing, deploying, integrating, and managing many kinds of
software components. Today’s MDA is less about generating code per se and much
more about precisely capturing requirements, enforcing architectural standards,
maintaining traceability, and facilitating effective communication between the
business and IT (and between different parts of IT).

On the surface, MDA often seems to be different things to different people.
To some, MDA is still mainly about generating code from models. To others,
MDA is about capturing business requirements more precisely and completely. To
yet others, MDA is a way of managing the evolution and integration of existing
systems. And as in the story of the blind men and the elephant, all of these
perceptions—and more—are equally valid and equally incomplete. This suggests
that like the proverbial elephant MDA is already emerging to be much more than
the sum of its currently perceived parts.

We really believe that the emergence of MDA represents one of those so-called
paradigm shifts, and that it will eventually change everything about the way
software systems are specified and built. This is always a controversial position,
particularly in IT, which has seen so many supposedly revolutionary “paradigm
shifts” come and go. If the readers of this book ultimately reach the same conclu-
sion, it will be because of what they learn from our case studies rather than our
attempts to convince them with theory or technical details.

That said, before jumping into the case studies we would like to put our own
view about MDA in some type of perspective by way of an analogy. Reasoning by
analogy is always risky, but it can sometimes be useful where the very concepts
under discussion may be new or unfamiliar to the reader.

By now, most of you have probably already heard the term software factory. It
may even be that this beguiling label has led some of you to MDA, and even to
this very book. The term itself evokes the powerful image of developing software
as a form of “manufacturing.”

In this context, the “big idea” is that like a modern physical factory the workings
of a typical IT department may ultimately be reduced to a set of precisely defined

6 INTRODUCTION

processes supported by appropriate tooling, which can reliably produce high-
quality software at ever-decreasing costs and time-to-market. Now, who could
argue with that?

Let’s remember that the roots of the word manufacture are the Latin words for
“hand” (manus) and “make” (facere). Most modern manufacturing industries began
as “crafts,” in which the production of each unit of a given product was largely
a unique one-at-a-time process. The “factory” was just a convenient locale where
this took place, not a carefully constructed enabler of the manufacturing process
itself.

In the twenty-first century, we rightfully tend to think of the craft-based model
of physical production as slow and inefficient, suitable only when some form
of artistic output is desired. Moreover, even more serious drawbacks manifest
themselves later in a product’s life cycle, when it is time to repair or replace a
handcrafted unit or to integrate it with other units.

For this reason, the concept of a factory based on an “assembly line” (assem-
bling standardized parts) was invented, ultimately replacing the craft model in
nearly all forms of “manufacturing.” The current popular definition of manufac-
turing now almost completely belies its Latin etymology. Few today would expect,
or even want, most “manufactured” goods to be literally “handmade.”

The notion of assembling finished products from standardized parts is often
attributed to the American Eli Whitney (also of cotton gin fame). Whitney
famously demonstrated the idea to the U.S. Congress in the late 1790s as a more
efficient way of both manufacturing guns and maintaining them in the field. Of
course, the basic idea of standardization is much older than that, dating to classical
times and attributable to others (such as John Hall and Marc Isambard Brunel,
who deserve some of the credit for refining the idea in more modern times).

However, neither Whitney nor anyone else actually succeeded in making the
idea of true “manufacturing” from standardized interchangeable parts practical until
the 1850s. The long delay between the concept and its practical realization had
several causes. Although Whitney et al. could design interchangeable parts, could
make prototypes of those parts, and could show how useful that would be, what
they could not do was reliably mass produce those parts or get anyone else to. The
measurement standards of the time were not precise enough, nor was sufficient
machining capability available, to make this possible.

In a nutshell, Whitney just didn’t have the tools needed to make the tools needed
to make the interchangeable parts. An entirely new industry—machine tools—had
to be invented before Whitney’s main idea of interchangeable parts could become
a reality. But once those machine tools—and all of the standardized processes they
required—became widely available every other form of manufacturing was soon
revolutionized.

What emerged is now commonly called the “factory model.” This factory
model is not just about putting raw materials in at one end of a building and

Eli Whitney had a lot of
help-and still did not
succeed at his stated goal

Current software
development practices
resemble those used by
seventeenth-century
craftsmen

I 1
1 1
/ ' Introduction . 7
| 1
1 1

getting out finished product at the other end. After all, even the most hide-
bound traditional craft-based “factory” could do that. No, it’s about an entire
science of breaking the products down into standardized parts, while breaking
the production process down into standardized activities, all based on formal
specifications. Moreover, this componentization of both parts and activities is
applicable not just to assembly but to design, procurement, maintenance, and
other areas.

And it’s not just the end product that is ruthlessly componentized—it’s the
factory itself! Modern factories aren’t just designed to produce one product, or
even a predetermined set of products. Companies with those types of factories
go out of business quickly, the first time the market for their particular product
changes. Ergo, modern factories themselves must be able to change what they
manufacture at will, albeit within certain boundaries. This means the factories
themselves must be built from standardized parts, which can be changed or
upgraded using standardized processes.

So, what does all this have to do with today’s notion of “software manu-
facturing”? Unfortunately, by any reasonable standard the typical IT shop is still
stuck back in the craft-based world of manufacturing. That is, the specification,
development, and deployment of each new solution is still a one-off project,
whether we are starting from scratch or trying to integrate disparate systems.
This is true even though we may use some fancy tools, sit in a modern office
(the “factory”), and share some sophisticated technical infrastructure. From a
modern “manufacturing” point of view, though, we still develop software not
much differently than a group of craftsmen building custom firearms—one at a
time—in a seventeenth-century munitions workshop.

How does this relate to MDA and the more modern vision of a “software
factory”? In spite of the (at least) decade-old hype surrounding “reusable software
components” and “assembling software,” the truth is that nobody has yet been
able to fully deliver on that vision. In practice, you either find vendor-proprietary
sets of “components” or you don’t get real components at all.

In any case, even the most advanced software developers today still spend an
enormous amount of time and money patching together various tools, platforms,
and existing applications to build the “components” they need and then to inte-
grate them into a new solution. Most of them probably do not realize they are
following in the footsteps of gunsmiths who wore out numerous files in making
“standard” parts actually fit. The resulting modified “parts,” of course, are even
less “standard” than the originals.

Does that mean that the idea of a modern “software factory” can’t be achieved?
Not at all. It simply means is that the IT industry hasn’t yet fully defined the notion
of “machine tools” for software. Sure, we have some fancy development tools,
but as yet they are not standardized to the point that they can be easily and reliably

8 INTRODUCTION

configured to produce “interchangeable parts” or “components” that can then
reliably be combined into real solutions based on a set of formal specifications.

That’s where MDA comes in. MDA is an approach that focuses on the standards
and processes necessary to create true components and a reliable product life-
cycle process for software through formal specifications. In terms of achieving
industry-wide interoperability, MDA is still a work in progress. However, as these
case studies amply illustrate MDA can already be used to figure out the best way
for even a single company to architect a component-based strategy and to start
transitioning toward a factory model for its entire software life cycle. Today, that
MDA-based software factory might still have a few bottlenecks and shortcomings
but at least we can identify and focus our efforts on removing them.

To extend the analogy a bit, we can loosely compare Whitney's achievements
in the 1790s to the invention, some 200 years later, of interface definition
languages (IDLs) in the software industry. That is, Whitney could show standard
interfaces (interchangeable parts or components) and examples of those interfaces
(prototypes). He could show how you could in theory make a system (a rifle) if
you assembled those parts.

What he could not do with this equivalent of an IDL was reliably manufacture
the components/parts that could support those interfaces. The inability to make
those parts to the required tolerances in turn meant that there was no way to
manage the “rifle life cycle” other than by taking a file to a lot of not-quite-
interchangeable parts.

So, an IDL-style approach is necessary—but not sufficient—to support the factory
model for software. The MDA standards, in contrast, provide a much more robust
framework that will ultimately let us specify both the structure of a component
and all of the associated semantics related to the way a component must function
throughout its life cycle—a complete functional specification, if you will. The
precise semantics of an MDA model correspond to the precise tolerances in a
physical model because each determines whether the parts actually do what you
want them to do—as opposed to simply appearing to fit together.

So, like the proprietary software vendors of today, Eli Whitney was able to
show what could be done if you could make parts to certain specifications. He
successfully demonstrated being able to shoot the gun assembled from (prototype)
parts, replace a part, and then shoot again. At the time, it was an amazing feat, but
there were too many missing standards and tooling technologies for the vision to
be realized completely.

No matter how hard he tried, Whitney just could not build a factory—and
he could not describe how anyone else could build a factory either. He could
not describe a reliable process by which close-tolerance parts could be created,
and he could not tell you how to build a machine that could reliably support
the execution of such a process. More importantly, he did not yet even have a
language with which to describe any of this.

MDA focuses on the
environment-the standards
and processes-that enable
the creation of software
components

New capabilities enable
the creation of formerly
unimaginable things, and
we do not think that MDA
is an exception to this rule

MDA, although very
general today, will branch
into industry-specific
specialties over time

I 1
1 1
/ ' Introduction . 9
| 1
1 1

It took another 60 years to get to the point of a standardized manufacturing
model, and then about another 70 years to perfect the end-to-end technology
needed to support Whitney's big idea across a wide range of industries. By the
1920s, innovators such as Henry Ford had worked out enough of the technical
and logistical kinks to support the production of automobiles—a far more complex
process than anything Whitney was thinking about in 1790. But once that powerful
blend of technology and logistics was generally understood, it ultimately enabled
not only the mass production of rifles but of infinitely more complicated and
sophisticated mechanisms. This is to be expected. New capabilities typically enable
the creation of formerly unimaginable things.

We believe that MDA now provides the foundations for achieving all of these
things in support of a true software factory. It has taken 15 years to get from IDL
to MDA, so—even giving our industry credit for operating in “Internet time”—we
are certainly still less than halfway to our ultimate goal of the universal software
factory.

That is, we are still at an early stage in developing and applying MDA tech-
nology, and we should not be shocked that we don’t yet have highly compo-
nentized interchangeable system modules available off the shelf for every kind of
application. Fortunately, with the emergence of MDA we are finally at the point
where we have a common language for defining true software components and
for adequately describing the tools and processes necessary to create and assemble
such components.

But look at what happened to the notion of the physical “factory” after it
reached a similar point! Today there are many different types of factories: contin-
uous process flow, factories that assemble parts from other factories, “lights-out”
factories with little or no human presence, and so on. Visionaries are talking about
factories that maintain themselves, and even factories that produce factories. With
nano-manufacturing, the concept is being brought down to the molecular and
even biological level. So, the general concept of the “factory” has grown along
with our overall capabilities, and has been adapted to the specific needs of various
industries.

It seems reasonable to expect the same sort of thing to happen to MDA tech-
nologies over time. As these case studies show, there are already many flavors of
MDA in the real world today, including MDA for real-time systems, for embedded
systems, for systems integration, and so on. We see no reason why this number
shouldn’t grow. Today, the general concept of MDA is still just being introduced
to the software industry, along with some general MDA tools. But each industry
always finds its own way of applying such things, just as industries applied the
notion of a factory in different ways.

This “branching” of MDA was actually anticipated by the OMG, which assumed
that many special interest groups (SIGs) and task forces (TFs) would emerge,
each with its own flavor of MDA. As of this writing, there are already nine

10 INTRODUCTION

such MDA SIGs and TFs formally operating within the OMG: Business Enterprise
Integration; Consultation, Command, Control, Communications, and Intelligence
(C4I); Finance; Healthcare; Life Science Research; Manufacturing Technology
and Industrial Systems (ManTIS); Software-based Communications; Space; and
Transportation.

The case studies in this book are another type of real-life demonstration of this
branching of MDA. They illustrate and inform us about all of the elements that go
into using MDA to guide the building of business solutions in various environ-
ments. Because we are still in the relatively early stages of MDA’s development,
these case studies are perhaps the best way to present the emerging big picture,
including which parts of that picture are not quite yet in focus.

When you read these case studies, you begin to see what people have to think
about when they try to apply MDA to real-life problems. Someday, this will be
second nature. Everyone will be attuned to modeling, to the process of modeling,
and even to modeling the process of modeling, and so on. As the standards mature,
more and more support will be built into the supporting “machine tools.” Today,
people still have to work their way through the overall approach and adapt it to
their specific needs “by hand.” But even so, these case studies show that they can
still gain great advantages and benefits in the process of doing so.

So this is where we are with respect to MDA today. The industry is still in the
early introductory period of MDA adoption. We are at the point where, if you
are willing to fill in some of the blanks yourself, there are some very interesting
proto-tools available and great benefits to be gained by applying them correctly.

Eventually, the early adopters who take this approach will not only be contin-
uously rewarded (that is already happening as we type) but will be moving faster
than their competition in the global race toward a brave new model-driven world.
They are already gaining hard-earned knowledge about what it takes to develop
using an MDA-based approach. So, as the MDA tools and standards continue
to improve these people will be in the best position to rapidly exploit those
improvements as well.

These are exactly the types of things the people in our case studies have told us:
“We realized the important things were people and process,” and “We realized
this would allow us to sell a whole different kind of product to our customers.”
More than anything else, these case studies are examples of organizations that in
going through the process of adopting—and adapting—MDA are coming up with
innovations that not only give them a competitive advantage but help drive the
global MDA revolution.

Here’s one final thought before you proceed to the case studies themselves. In
this early phase of MDA’s own development, its current rapid dissemination must
be credited not only to the OMG, to the emerging class of MDA tool vendors,
and of course to the brave end users but also to the many consultants who are
now introducing their clients to the benefits of a model-driven approach. In each

Modeling will someday be
second nature-to
practitioners and tools

Each case study
showcases not only a
satisfied end user but a
dedicated consulting
organization

11

I
1
/ ' Introduction
|
1

of our case studies, there is not only a generally satisfied end user but also a
dedicated professional services provider helping that end user learn the ropes and
avoid the pitfalls that inevitably come with transitioning to a new approach.

At a higher level, these MDA consultants are playing a key role in making
MDA work in the overall marketplace. Fortunately, very early in MDA’s life cycle
a group of such consultants took the step of banding together to create an OMG-
sponsored program—MDA FastStart—specifically designed to help end users new to
MDA begin their transition to a model-driven approach.

At this writing, the MDA FastStart program has grown to include more than 30
consulting organizations, each of whom the OMG recognizes as a Qualified Service
Provider (QSP). Every one of the consultants involved in our case studies comes
from this group of QSPs. As much as anyone else, their dedication to helping
others learn about and correctly apply MDA is making a major contribution to the
upcoming MDA revolution.

We want to personally thank those consultants, and their end users, for
contributing their very valuable time and attention to this book. As you can
imagine, none of these folks have a lot of free time to spare. Yet, for each case
study they agreed to sit through several hours of interviews over a several-week
period. In addition, each participant agreed to review the resulting transcripts and
provide additional comments and clarifications. We hope you will agree with us
that, judged by the results, it was time well spent.

Ohio’s Job and Family
Services organization had
a federal mandate to
implement a statewide
Child Welfare

Information system

CHAPTER TWO

COMPUWARE/STATE OF
OHIO JOB AND FAMILY
SERVICES

A state organization faces and overcomes some software development credibility issues, the system is
delivered just as the requirements are officially signed off, and MDA adoption is done in “stealth mode.”

BACKGROUND

The Job and Family Services (JES) department of the Ohio State government has a
sophisticated IT department with a budget of about $300 millon a year. Although
they employ a large IT staff, they also look for ways to automate processes so that
they can carry out the duties of government more efficiently. In 1993, the federal
government mandated per-state software systems to support child welfare, and
Ohio’s Statewide Automated Child Welfare Information System (SACWIS) project
was undertaken as a result of this mandate.

Dynamics Research Corporation (DRC) is a publicly held company, head-
quartered in Andover, Massachusetts. DRC’s primary mission is to deliver solutions
and services to federal, state, and local government.

Compuware, founded in 1973, is a very large IT solutions company. Their
Optimal] product was introduced in 2001 as a J2EE developer productivity tool,
and is now recognized as a leading implementation of MDA standards. Compuware
is a long-time member of the OMG and an MDA Qualified Service Provider,
and has contributed heavily to the creation of the OMG standards that form the
foundation of MDA.

DRC was the prime contractor for the Ohio SACWIS project, with responsibility
for overall project management and requirements. Compuware was responsible
for the development of the system and conversion from the old system (unlike the

13

14 COMPUWARE/STATE OF OHIO JOB

federal government, the state of Ohio has no requirement that prevents a single
vendor from undertaking any or all aspects of a single project).

WHY OHIO JFS CHOSE AN MDA APPROACH
AND WHAT THEY HOPED TO ACHIEVE

For the State of Ohio JFS, adoption of an MDA approach did not spring primarily
from a conscious decision to employ MDA. Their use of MDA was in part a side
effect of the vendors they chose to help implement the SACWIS project.

JES released a SACWIS request for information (RFI) in February of 2002.
Several vendors responded, including six vendors who had experience in SACWIS
implementations (in Wisconsin, West Virginia, Colorado, Maine, Indiana, and
Montgomery County in Ohio).

JES then released a request for proposal (RFP) to vendors in December of 2002.
The major criteria for evaluating RFP responses were:

* People: SACWIS experience
e Process: How SACWIS will be developed
e Product: Proposed functional and technical solution

JES chose DRC in part because DRC’s people have been involved in SACWIS
development/implementation since 1996, with both prime contractor and project-
leading credentials. DRC’s process is SEI/CMM Level 3 certified [DRC uses a
customized version of the Rational Unified Process (RUP)]. In addition, DRC’s
“product” in this context includes their successful SACWIS implementations in
other states. Angelo Serra, project manager for the JES SACWIS project, described
the path to an MDA-based project this way:

When we began the process, we realized that this would be a massive project and
we knew that a number of other states had experienced difficulties in implementing
similar projects. So, we knew that we would need something to jump-start our
process. We had already begun researching MDA, and researching how some of the
more agile software development processes could assist us in delivering what we
had to deliver in a timely fashion.

We had been given a deadline which, while not arbitrary, was certainly politically
expedient. We had been given eighteen months by the director of the agency and
we wanted to make sure that we had something that would allow us to deliver
within that timeframe.

As a result of the bidding process, the winning bidder—Dynamic Research
Corporation—proposed an MDA model to guide the project. We had begun to move
down this path in the first place, and the winning vendor arrived with a very
polished way of proceeding down this path to implement it more effectively.

JFS chooses partners with
impeccable credentials in
software methodology and
SACWIS implementation

Critical success factors:
focus on business
outcomes, broad executive
involvement, change
management, and a
strong process

MDA’s presence in the
process was not widely
advertised at first...

1
2 : Why Ohio JFS Chose an MDA Approach 15
1

DRC in turn chose Compuware as their implementation partner, in part because
Compuware had successfully implemented child welfare systems in Cuyahoga and
Montgomery counties in Ohio. As it turned out, Compuware took the initiative of
suggesting modifications to the RUP development methodology to include MDA,
and this hybrid process was adopted after some refinement.

The SACWIS contract deliverables included the categories Project Management,
Change Management, System Analysis and Design, Conversion, System Develop-
ment, and System Testing. JFS realized that SACWIS was simultaneously a process
initiative, a technology initiative, a people initiative, and an organizational initia-
tive. More importantly, they realized that the most frequent reasons given for
project failure have to do with people issues rather than technology issues.

With DRC’s help, they made explicit the factors they considered critical to
success, which included focusing on business outcomes, broad executive involve-
ment, careful attention to change management, strong process, and a strong team
of decision makers. Their attention to change management was perhaps the most
far-reaching part of their approach. JES views change management as “promoting
and fostering the awareness, acceptance, and implementation of SACWIS and
the corresponding changes in business processes and workflows.” This view was
translated into a very strong and comprehensive program to keep stakeholders
informed, to assess the organizational impediments to success, and to address
those impediments in an open and forthright manner.

But what about MDA? On the one hand, the project documentation (see
http:/ijfs.ohio.gov/sacwis/) clearly indicates that MDA is central to the development
process, and Compuware’s OptimalJ tool certainly has an MDA foundation.

On the other hand, the MDA-based technical and developmental aspects of
the JFS SACWIS project, however important, are only one part of the efforts that
made this project a success. Still, we were somewhat surprised by the answer
Gary Dykstra, Global Client Advisory Board Manager at Compuware, gave when
we asked what he thought about the client’s opinion of MDA and the MDA
experience, which follows.

You know, I spent all day with the customer yesterday, and we talked at length
about the project, but the term MDA never came up. I think it is kind of transparent
to the end user. They don’t think along the lines of, “This is MDA and MDA is
responsible for our success here.” Certainly MDA was used here, and many of the
benefits the customer might cite come from the MDA approach, but I don’t know
if there is a broad realization that MDA was at the heart of the success of the
project.

I think that MDA is a paradigm shift and that its use will make all aspects of IT more
successful. We have struggled with the notion of MDA from a marketing perspective
from the very beginning. Do people like or not like MDA? Does mentioning MDA
give us any leverage in the marketplace? Or do we just start making stuff that works
and perhaps put in a footnote that says “MDA is what made this successful.” Even in

16 COMPUWARE/STATE OF OHIO JOB

technology-driven organizations, they tend not to get down to the level of what's
making it go.

There is food for thought here. Perhaps MDA will not be truly successful
unless and until it is ubiquitous—and entirely “under the covers.” Angelo Serra of
JES had a slightly different, though equally interesting, take on the matter. His
comment was:

One of the things I've learned from my experience in the government space is that
if you come charging in and say something like “We are using the rational unified
process” or “We are using MDA” or “We are using extreme programming” people
will immediately run out and form an opinion about what that means. Good, bad,
or indifferent, they will form an opinion and charge forward with it.

And technical people, who tend to be very exacting and precise in order to deliver
the products that they have to deliver, will try to do things precisely as specified
in the approach or technology that’s been announced. And if there is any departure
from the canonical approach, as they understand it, they tend to throw a fit.

So, you find yourself burning a lot of time convincing people that it doesn’t
necessarily have to be that way, and that these are guidelines rather than absolute
rules. But these arguments are time consuming, and painful, and counterproductive.

While there are a number of things we’re doing that are very much MDA, we have
not used that specific term in some cases. In fact, we have recently begun using the
term MDA and telling people that they have been using it all along. They now realize
that the modeling work done by various teams, in sequence but independently of
each other (for example, PIM, then PSM), is all MDA.

If we had started out by telling them we were doing MDA—they would have
regarded it as yet another “flavor of the month” initiative from management. And
they would have researched it to death and reached some perception of MDA overall.
But they would not have understood all the individual pieces of the MDA process
and how they fit together.

But by having first worked through those individual pieces, they have now come
to the realization that they are working with something bigger. Yes, it has the MDA
name attached to it. And it is working! It is doing what it is supposed to do. And
while it may not be “pure” MDA (if there is such a thing) it is certainly working
for us.

CHALLENGES

There are 88 counties in Ohio, each of which is responsible for the care of
children. At the beginning of this statewide project, some of those counties had
automated childcare support systems in place and some did not. The result was a
patchwork environment of legacy procedures, proprietary per-county procedures,
various paper-based systems, and legacy data in various forms—all of which had
to be assimilated into the new SACWIS system.

... but MDA’s benefits are
now well understood

Existing county systems
had to be assimilated and
federal-level technical and
policy mandates had to be

met-all on a very
tight schedule

Change management and
motivation of people are
the keys

The perception of “state
employees” was a
potential issue

1
2 ' Challenges 17
1

The State of Ohio approached the project by having a three-month rapid
requirements definition phase, in which they considered the range of solutions/
systems that were in place, their various respective data models, an exhaustive list
of use cases, and legacy systems whose functions had to be integrated or replaced.
Of course, there were also federal requirements—in both the policy and the tech-
nical realm—that had to be met in order for the state to receive federal money.

One of the main motivations for adoption of an MDA approach was that when
the Compuware team looked at the project proposal they realized it was very
optimistic about what could be accomplished in the agreed-upon time frame—and
the client had a firm fixed-price engagement in mind. Compuware argued that if
the project was done using traditional development methods it was approximately
30% overcommitted before it even began. Thus, cutting development time was
one of the main motivations for adopting MDA.

In addition, in the time since the 1993 federal government mandate for such
statewide child welfare systems there had been numerous attempts by states to
implement them. Some of these projects—notably in California, New York, and
Florida—failed to meet their original schedules and budgets by large margins. The
State of Ohio did not want an experience like that, and there was a great deal of
pressure to get it right in light of these past failures. These issues were certainly
going through the client’s collective mind as they were figuring out how to get
their SACWIS project done successfully.

Perhaps the most important challenge to be overcome by the JES organization
was dealing with change, including the technical changes required by the new
web-based application style and the changes implied by working in tandem with
vendor organizations to develop the code. Angelo Serra of JFS described how he
prepared his group for these changes and motivated them to accept the challenges:

We had already begun preparing our group for a change. For example, we knew
this was going to be a web-based system. We knew we would be using an updated
version of the database on the back end. And we knew that we were not building a
client server application. Instead, we were building a multi-tier application. So, we
had already set up some of the basic training classes needed to cover these topics. For
example, how web applications work, what is standard and what is not standard, as
well as some basic coding and design principles for HTML and Java. We knew this
sort of thing was coming at us because all the vendors who had given proposals up
to that point had mentioned these things.

We then gathered up the IS staff, and had a very frank conversation with them.
I said, “We have folks coming in from the private sector,” and at that point there
was the expected grumbling and groaning. I told them that they had a choice to
make for today, as well as for the ensuing months of this project, because the
people coming in from the outside may have a certain view of state workers.
Often the perception of state workers is that of coffee-swilling, donut-munching,
shovel-leaning group where you have five people watching and one person
working.

18 COMPUWARE/STATE OF OHIO JOB

I told them, “You will be a major part of our development team. And if you
cannot show that you can add value to that team, to pull your own weight and add
knowledge and skills to the effort of delivering SACWIS for the State of Ohio, you
will be sidelined very quickly. Your choice today is to decide whether you have
skills to bring forward to help make this happen, or not. And if you don’t have
those skills, the next question is whether you want to acquire those skills and bring
them to the team to help make this work, or not.”

I told them that if you don’t want to do this, that’s fine—I will help you move to
a situation where you will be happy, and where you will have a career path, if you
want to move on. But I said that I would rather not see anyone do that because I
knew very well that everyone there on the IT side understands why we are here—we
are here to help the kids in Ohio.

And the one great advantage that our group had, which may be somewhat
uncommon in the government sector, is dedication to the mission. They're very
committed to dealing with the issues of foster care, adoptive care, and child
abuse/neglect issues. Everyone is. There are people within the group who are adop-
tive parents and foster care parents as well. Some have family members who are
participating in this way and others were themselves in the system when they were
younger. So they have a vested, personal interest in what is going on.

I then said, “You are going to make this decision. And if you decide to participate,
I want to give you the tools that you need to become a productive member of the
team.” And every one of them opted in. They said they were in for a penny, in for
a pound, and ready to go.

EXPANDING GOALS (OR LACK THEREOF)

It is fairly common for goals (project goals, organizational goals, enterprise
goals) to expand as users become more familiar with MDA and what it can
achieve. However, after seeing the extensive up-front work JFS undertook—both
in requirements gathering and project scoping—we suggested to Angelo Serra that
the SACWIS project was already so big and risky that there really wasn’t much
room for expanding goals. His reply follows.

No, there wasn’t. The federal people paid us a big compliment, though I found it
kind of frightening. They had to approve our RFP before we published it, and they
said that we had done an awesome job of putting together our requirements ahead
of time. And being the skeptical people we are, we couldn’t help but ask, “What
did everyone else do?” Because we knew very well that we still had a lot more to
do. There is always some ambiguity in requirements. You never have time to nail
down the requirements as well as you would like, and we felt some trepidation
about ours.

We had a couple of curveballs thrown at us in the project, but for the most
part we were prepared for almost everything that occurred because we had spent so
much time, not only in talking with the policy people at the state level but also in

The JFS IT staff accepts
the challenge

A compliment from the
federal people

1
2 \ How MDA Was Used 19
1

discussions with various other teams to understand the various needs of the county
and how they relate to the needs of the entire state.

We took their input on these requirements and even took the extra step of
distributing the requirements document back to them and asking them whether we
had gotten it right. The requirements that went into the RFP were based on the
seventh or eighth revision of that document.

But even then, the machinery of the state does not sit still. We significantly
changed our risk and safety assessment model-how we look at families and children
at risk in the state, and their level of safety. There are two distinct models: actuarial
and clinical. The actuarial model is very simplistic, with a laundry list of questions
whose answers are numerically weighted. You answer the questions and calculate
the total, and if you are over a certain number then there is a risk, and if you are
under there is no risk.

That works well in large counties with a high turnover of caseworkers who don’t
have the clinical background needed to make judgments. The clinical model requires
descriptions of the home condition, of the interrelationships between the adults and
children in the family, of the school situation, and so on. These are broad and soft
questions that, unless the caseworker has a lot of experience, will be difficult to
answer. There are many people who believe in this clinical model-that you have to
spend time with a family in order to understand the dynamics.

The SACWIS project And for years we had put off the debate over which model is best for the
provides the oppqrtunity to State of Ohio. When SACWIS came along, we decided it was time to address this
debate an actuarial versus model question. We came up with a hybrid model, put together here in Ohio,

clinical approach which is unique to the 50 states. We are being watched by a number of other

states, and are starting to pilot this model outside of the SACWIS application and
model. There is another team within the policy office that is running this project.
But, we had to put in a change order to get this hybrid model into the first
version of our SACWIS project, and that was very painful—perhaps the single biggest
modification we had to deal with—and this reflects how well the requirements team
did their jobs.

HOW MDA WAS USED

MDA and agile software One of the interesting aspects of this case study was its combining of a rigorous
development are. \[DA-based process and agile development. Many projects experience some level
complementary ideas ¢ tension between those who believe in the importance of process rigor in
determining schedule tracking, productivity metrics and so on, versus those who
see process as an impediment to getting things built. Some in the IT industry have
even argued that these two things are mutually exclusive.

The results of this case study rebut this argument. They support the notion that
agile development and MDA are complementary, and even have a synergistic effect
when used together. The idea that MDA and agile development are complementary
boils down to this: A major tenet of agile programming is the importance of

creating working software as soon as possible.

20 COMPUWARE/STATE OF OHIO JOB

This is achieved by short development iterations, each followed by a check with
the business community to determine the correctness/validity of the iteration’s
output. The advantage of using an MDA-compliant tool for code generation is that
you can achieve short development/implementation iterations more easily with
MDA. And these iterations have much more business logic content because so
much of the low-level code is automatically generated, allowing the development
team to focus on providing application functionality.

We asked Vasil Hlinka, Compuware Project Manager for the SACWIS project,
about this particular point because other case study participants had told us thatin a
typical large project only 15% of coding tasks are really of interest to programmers
(the rest being low-level drudgery). Thus, one of the real advantages of MDA and
associated code generation is that developers can concentrate on the 15% of project
code that implements interesting things such as business logic and algorithms.
Vasil agreed with the thrust of this statement, although he said that he thought
the proportion of interesting code was more like 40% on this project.

In a sense, this 60/40 split is what actually allows agile programming to be used
for large projects—but where it is appropriate rather than everywhere. I think the
agile methodologies are very good for small teams and small projects (five to eight
people).

In that situation, you might not need the rigor that MDA brings. But if you want
to build an enterprise system that involves the interrelations and complexities of a
statewide child welfare system, this is the way to enable agile methods to work on
a large project.

I would add that I think that MDA, and in particular the Optimal] tool, were
key enablers for the use of agile development techniques on this project. OptimalJ
provided the necessary structure and cohesion down to the code level, which proved
invaluable to our effort, especially during the late phases of the project.

In this project, requirements definition/refinement, system design, and the
development iterations themselves were driven by rapid requirements definition
(RRD) sessions and joint application design (JAD) sessions. The following descrip-
tions of these processes were taken from the SACWIS page on the State of Ohio’s
web site (http:/jfs.ohio.gov/sacwis/).

Rapid Requirements Definition: The purpose of the RRD Sessions is to establish
the baseline requirements for SACWIS by clarifying and verifying the Systems
Requirements Document (SRD) that was developed by the Business Partners Group
(county and state staff) and the SACWIS Assessment Review Guide (SARGe) that was
developed by the Administration for Children and Families.

Joint Application Design & Development: The design and development of Ohio
SACWIS uses an “iterative” approach. The large business processes are divided
into smaller, logical pieces. Each piece comes to life through the Joint Applica-
tion Design and Development (JAD) process. The JAD Sessions elaborate each use

MDA is an enabler for the
use of agile software
development techniques
on large projects

Rapid requirements
definition and joint
application design and
development processes
were central to the
success of the project

The RRD process defines
project scope, while the
JAD process fleshes out

the details

1
2 \ How MDA Was Used 21
1

case (e.g., Worker Creates Intake Referral) developed in the Rapid Requirements
Definition (RRD) Session to create the details necessary to develop the software
components (i.e., Inputs, Outputs, Detailed Business Rules).

The workings of the RRD and JAD processes, described in more detail in the
material following, were central to the success of the project. As Gary Dykstra of
Compuware put it:

What we were able to employ on this project, and facilitated by use of the tool
in automating code generation, was that they were able to have a working build
every two weeks. At the end of each two-week iteration they could check in with
the business and ask them if it was what they wanted, whether the use cases were
implemented correctly, etc.

So, there was a constant, and short, feedback loop between the developers and
the business stakeholders. It was not at all like the old approach where you develop
for eighteen months behind closed doors and roll out the result only then for user
approval. There was constant checking with the business.

In the event, the rigor was at the architectural level. The MDA approach and the
tooling facilitated that, in the sense that the architecture is codified in the tool, and
in the transformation patterns that transform a PIM to a PSM, and a PSM to generated
code.

But note that the agile development took place in the business logic implemented
by individual developers. As you build out the business logic, and do the development
work that cannot be automated, that is where you employ agile process at the
development level. But at the architectural level you have the rigor and control, as
well as the metrics needed by management.

This project almost looks like the old waterfall methodology, but when you get
down to the implementation of a business use case by a programmer you see the agile
development processes: working in small teams, paired programming, collaboration,
quick iterations, face-to-face meetings, and all the tenets of agile programming. But
this is part of the larger framework that offers management what they need as well.

The project did not create a formal CIM, although the output of the RRD sessions
can be characterized as baseline business models. During the requirements capture
phase, a modeling specialist from Compuware was involved, which resulted in
high-level business models and refinement of these models in subsequent RRD
iterations.

The purpose of the RRD sessions was to “scope out the project” by determining
the number of use cases to be implemented, and then to create preliminary/rough
descriptions of these use cases. After that was done, the JAD iterations began, each
of which was on a strict 10-day schedule. Each JAD iteration took the rough use
cases created during RRD and fleshed out the details.

The tight schedule demanded an organization in which five teams worked
concurrently and independently on different functional aspects of the application.

22 COMPUWARE/STATE OF OHIO JOB

Each of the five teams spent a 10-day JAD iteration on a set of use cases, with the
intent of completing the use cases and their high-level designs and then getting
the stakeholders to sign off that the use cases were complete and the design met
the requirements.

Upon completion of the JAD iteration, the work specified was put on the
construction queue. The construction team, which was also working on 10-day
iterations (offset by one, of course) took finished designs and use cases from
the queue and begin building them, again in an iterative fashion, and these
implementation iterations included the creation of PIM and PSM and the generation
of code. The relationship of the JAD and implementation iterations (as well as the
associated quality control and management functions) is shown in Figure 2.1.

Although the iterative requirements/design/development processes described
previously seem straightforward, there was one very unusual aspect of this in
the SACWIS project. The requirements that drove the design and implementation
were not officially signed off by the client until the first quarter of 2006—more
than 18 months after the project began, when the system was about to start the
User Acceptance Testing phase! We discovered this fact while we were inter-
viewing Vasil Hlinka of Compuware in early December of 2005. We asked him
about the MDA-related factors that allowed the team to succeed with a schedule
that was clearly too optimistic for traditional development approaches. His
answer:

MDA, coupled with the iterative development approach that we put together, have
been a key component to our success. We are currently in the sixth week of system
test, and roughly the eighteenth month of the project. The functional spec, which
represents requirements, was submitted to the client a few weeks back. It represents
the sum total of use cases, requirements, report specs, and screen specs that have
been developed during the JAD sessions. This was formally put before the client
only a few weeks ago.

Because we have been working with the State, with its many constituents, getting
consensus on requirements is very, very difficult. So, only now have we been able
to submit the requirements for formal sign-off. Technically, at this point we should
be sitting around a table and discussing whether we should start coding in January,
now that we've finally got final requirements in place.

Rather than doing that, we are seriously considering giving the client a finished
product for formal user acceptance in January! That’s a huge contrast. But with MDA
and incremental development we have been able to simultaneously build consensus
on the requirements, and build the application, in an iterative fashion. So, many of
the benefits that you read about with MDA have come to fruition here, especially
the ability to nail down requirements in a very difficult environment. I can’t say
enough about the benefits of MDA, not only for us but for the client as well.

When we interviewed Angelo Serra in January of 2006, we asked whether the
requirements had yet been officially signed off. His response was as follows.

10-day iterations of RRD,
JAD, and construction
phases

Requirements are formally
signed off-at about the
same time coding is
completed

Nailing down requirements
in a very difficult
environment

23

1
1
2 X How MDA Was Used
1
1

Project Approach - Iteration Approach

Analysjis & Design j(lteration X+§1)

Subject Matter Expert
Kickoff JAD Design | Architecture Business Review Lessons
ickof . Perform JAD f . . f
Preparation | High Level Design | Roundtable Learned
Update Business Models

Customize lteration Baseline
Author | Lessons

Unit Test | { Learned
Unit Test | |

Define Test Data
Kickoff Write Test Cases Lessons
Learned

Write Test Scripts

Management (Iterhtion X & XM

py

Software Configuration Management i Future

ey [ReleasoManagememt | =0

A | Release Management p

Planning Activity Tracking & Oversight B ¥ d (REETETED Project
i Defect Management Metrics | Planing

Process Improvement

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10

FIGURE 2.1 TIterative development process.

The requirements feedback We have signed off on those requirements. As is the case in any large project,

process is expanded and especially in the user acceptance phase, we are finding things to tweak. We're finding

reapplied to system that some of the things created in JAD sessions, and which were thought to be
testing

captured in the requirements, in fact were not captured and did not make it into the
application.

There are perhaps seven or eight of these things and we are now going back to
update the document, bring them forward in use cases, and give them to develop-
ment. So, the same feedback processes used in the JAD and RRD sessions are being
expanded and reapplied to system test.

We are not deviating from the previous process, which is now very comfortable
to people. Our requirements feedback process is like a security blanket. By reusing

24 COMPUWARE/STATE OF OHIO JOB

these processes, people have a basis to work from, and the comfort that it has worked
in the past.

We then asked for an example of something that had to be tweaked, and how
that was handled. Angelo replied as follows.

One was the address function. We have a complex process to get an address into the
system, checking that it is correct for the postal service, et cetera. What we initially
modeled was at too high a level, and after starting user acceptance testing we found
situations that had not been foreseen. There were two loops where testers found
themselves reentering addresses over and over, to no effect.

We reopened that model, retraced the address-capture steps based on the user
feedback, to see what was going wrong. Right now, we have one vendor developer
and one of my guys working on the problem and how to streamline the process.
They are scheduled to generate code tomorrow, and we should see the results in a
build next week.

This kind of thing would have taken 14 to 21 days before MDA, instead of the
seven or so days it takes now. In the old days we would have first walked through
the code, created a model from it (for example, on a whiteboard), and had people
weigh in on the technical aspects. We would then invite the business people, bring
them up to speed on what was happening, and then together decide what to do.

In this case, we already had a model with a direct connection down to the code,
so we did not have to worry about back-and-forth reconciliation between model and
code to ensure that the model was correct. We could look at the model, make our
decisions from it, and then have people look at the implementation for validation
that the requirements had been met successfully, or to produce an updated plan for
necessary modifications. The model would then be modified, code generated, and
out pops the new version.

We ventured that this back-to-front approach to requirements was somewhat
risky for both the consulting companies and the client organization. Back in the
old days, you had to have the requirements nailed down and signed off so that
everyone was “covered,” so to speak. We asked Angelo Serra about this risk. He
commented as follows.

Yes, we all took some level of risk in this. We did make sure that we had check
points along the way where we could measure progress, and we encouraged people
very strongly to think hard about things up front, and discouraged people from
changing their minds about requirements without very good reason.

But we did all take a risk by doing it this way. Was it a huge risk? I don’t think
so. Had other groups done this before? Probably not, at least not within this state.
Our group does tend to take some risks because otherwise we wouldn’t get anything
done. But it is possible that some people would look at what we've done and call it
crazy, and say that there was no way it could succeed.

Tweaking a
function-yesterday versus
today

Justifying the risk of
simultaneously defining
requirements and
implementing the system

JFS, DRC, and Compuware
jointly create a modified
software development
process

25

1
2 ' Process and Tools
1

We then asked Angelo whether he had ever found himself in front of a
more senior manager, answering the question, “How can you possibly go
ahead with this project when the requirements aren’t even settled?” He laughed
and said:

Yes we did. And this is perhaps another advantage of using MDA. By the time you
are able to publish the higher-level models you can also describe how you will go
about implementing them. You can demonstrate that you are not simply shooting
from the hip, and that you are following a process that you have every reason to
believe will work.

You can show someone the necessary feedback loops, the checkpoints, activities,
et cetera. And once people saw that we had taken the time to plan this carefully,
once they saw the plan, they had some level of assurance that we knew what we
were doing and would succeed. In other words, it was not a case of us saying, “Just
trust us, this will work.”

PROCESS AND TOOLS

Although the State of Ohio SACWIS project did not begin with a proof-of-concept
or pilot, Compuware had previously participated in another project for the JFS
organization, and that project used Compuware’s Optimal] tool. However, at that
time Optimal] was less mature than it is today. Although the client was pleased
with the delivered application, the problems encountered in the course of that
project drove a lot of discussion about whether Optimal] was appropriate to use
for in the SACWIS project.

For prime contractor DRC, and for JFS, the methodology of choice was the
Rational Unified Process (RUP). JES was a bit nervous about the newness of MDA
itself and about the new version of the Optimal] tool. They wanted to mitigate
their risks, and one of their mitigation strategies was to require that their high-
level business models be done in Rose. Another requirement was that JBuilder
should be used in addition to Optimal]. Here again they were just covering all the
bases.

However, Compuware representatives suggested some modifications to the
RUP process, and refined that process further in discussions with both JFS and
DRC. In the end, the project adopted this modified process. In an arrangement
similar to that of the JAD teams, there were five development teams, one for each
functional area.

o Team I: Intake and Investigation, Person Management, Central Registry
 Team 2: Case Management, Court, and Adoption
¢ Team 3: Resource Management

26 COMPUWARE/STATE OF OHIO JOB

o Team 4: Administration (Staff Management, Alerts and Ticklers, Security,
Case Assignment and Transfer, Reports Framework)
e Team 5: Financial Management, Eligibility, and Interfaces

In addition, a sixth team was organized after a few iterations had been
completed. The sixth team worked on technical use cases—infrastructure pieces
that did not map to any particular functional requirement for the application.

The six development teams were on a strict 10-day implementation iteration
schedule. Day 1 of a development iteration always started with a review of the iter-
ation plan. Days 2 and 3 were devoted to mapping the high-level design produced
by the JAD session—in the form of Rose models, VOPCs (“view of participating
class” diagrams), data dictionaries, and some flow diagrams—into Optimal].

Optimal] provides two kinds of models. One is the business-centric Domain
Model, which is free of technology details and equivalent to an MDA PIM
(Platform-Independent Model). Once the Domain Model is complete, Optimal]
automatically transforms it to an Application Model, which is equivalent to an
MDA PSM (Platform-Specific Model), and it is targeted to the J2EE platform.
The transformation from Domain Model to Application Model is mediated by
Optimal]’s Technology Patterns.

When developing or enhancing an Optimal] Domain Model, designers can
define business rules in a declarative way. All Domain Model definitions are reused
and inherited by the lower-level Application Models and the actual code. Thus,
the more that is defined in the Domain Model, the more detail in the Application
Model and the more code generated automatically.

Therefore, implementation teams would create a detailed design from JAD
artifacts, using the Optimal] tool to build a PIM that implemented the logical
design as specified in the Rose model created by the JAD team. Each development
team had a modeler (they were called Enterprise Java Beans (EJB) developers), who
was the senior developer responsible for modeling and for use of the Optimal]
tool and code generation. The evolution of these models is shown in Figure 2.2.

When the detailed design was complete, some additional coding was done in
the business tier and other tiers. Each team also had one or two Java/JSP developers
who were primarily responsible for web tier coding and the Java action classes and
JSPs used in the Struts environment—essentially, all of the presentation-tier work
that supported the OptimalJ-generated code. The senior developer would then
generate code, and that code would be released to the rest of the development
team for further work.

On day 9 or thereabout, the developers would finish up and tag their work
in preparation for the build/deploy step on day 10. On day 10, they performed
a build and deployed the result. In the early iterations, some deployment issues
needed to be addressed at that point, but the teams were usually able to avoid this
in later iterations. The last step of the 10-day schedule was a “lessons learned”
session, followed by preparation for the next iteration.

Modeling with
Compuware’s OptimalJ tool

27

1
1
2 \ Division of Labor
1
1

Project Approach - Model Evolution

ROSE MODEL OPTIMALJ MODEL Target "CLUSTERED" Database

Subject Area 1 Import
Area Business
1 Model JAD

Area 1
PIM

Iterative Design Using PSM

Import

Subject Area 2
Area Business H Iterative Design
2 Model JAD
Baseline Application Code

" x Subject Subject Subject
Subject Ar_ea 3 Imest - - Area Area Area
Area Business Iterative Design 1 2 3
3 Model D

Using PSM

Subject Subject Core
Subject Area 4 Area Area Area
Area Business Iterative Design 4 5

4 Model

rmoo=E »->»0

Baseline Conversion Staging DB

Subject Area5
Area Business Iterative Design
5 Model

N—=0>0W rcTmuumOcwn

Using PSM

Core
Business Iterative Design
Model

FIGURE 2.2 Model evolution.

DIVISION OF LABOR

The State of Ohio’s SACWIS Integrated Project Team consisted of the following.

« State Management Information Systems and Business Project staff
The DRC/Compuware team

e County IT and subject matter experts

* State subject matter experts

e More than 100 state IT staff

28 COMPUWARE/STATE OF OHIO JOB

The RRD teams consisted of the following.

 County subject matter experts
* State subject matter experts

e Project business analysts
 Contractor business analyst

The JAD team included the RRD participants and added the following.

e Project programmer/analyst

e Contractor J2EE architecture lead
* Project testing specialist
 Contractor testing specialist

» Automated systems trainer

» Contractor training specialist

The development teams varied in size from five to eight developers (most teams
had five members, and on these teams there were typically two JFS employees).
Again, each development team had a modeling expert—a senior developer who
was also responsible for use of the Optimal] tool and code generation. Each team
also had one or two Java/JSP developers who were primarily responsible for web
tier and Struts coding.

The SACWIS project team created the marvelous pictures shown in Figures 2.3
and 2.4, which respectively capture the division of labor over the entire project
schedule and the various development techniques used along the way.

Angelo Serra estimated that the core JFS team consisted of 13 developers and
three managers on the technical side, and 18 analysts on the business side, but
this does not include all of the SMEs (subject matter experts) who were brought
in to help at various times. At its peak, the JFS headcount for the entire project
was 136, while at its lowest point it was perhaps 40 (which is also the planned
staffing level for post-implementation support).

PROJECT EXPERIENCE

In addition to the challenges that were obvious at the outset of the project, other
challenges were encountered along the way. That is no surprise in a project this
large, but what is surprising is the fact that they weathered these problems—such
as major functionality changes, significant staff turnover, and the generally chaotic
process of introducing a new methodology in a large project whose development
staff was unfamiliar with MDA—with very little impact to the schedule or the
functionality delivered.

Composition of
development teams

29

1
1
2 X Project Experience
1
1

Timeline Overview

User
Project System Acceptance
Planning RRD Development Iterations Test Test Cleanup Pilot Statewide Implementation

2/05 3/05 4/05 5/05 6/05 5 8/05 9/05 10/05 11/05 12/ /06 4/06 5/06 6/06 7/06 8/06 9/06 10

10/27/06
160
150
140
130
120
110
100
90 |
80 |
70 |
60 |
50 |
40 |
30 |
20 |
10

wnoOo~cowo D

e] e g

M1 M2 M3 M4 M5 Mé M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24 M25 M26 M27 M28 M29 M30

Months

FIGURE 2.3 Timeline and division of labor.

We asked Vasil Hlinka, Compuware Project Manager for the SACWIS Project,
why these change requests occurred and how the team handle them. His response

follows.
Mid-project changes, small There were a great many small change requests that did not register as “official”
and large change requests but were still accommodated. As for the major ones, they had to do

with what are called “architectural use cases.” We tried to convince our partner and
the client that such use cases have to be assigned a priority based on a technical as
well as a business perspective.

Security was something we wanted to tackle very early on. And there were some
key business use cases that were core to the application, which we said needed to
be done early in the project. Unfortunately, for a number of reasons security was

30 COMPUWARE/STATE OF OHIO JOB

Project Approach - Development Philosophy

DFEVEL ONIET
Subject Matter Experts Rapid Requirement Definition (RRD) RequisitePro
Analysis Business Analysts
Interface Designers Joint Application Design (JAD)

Subject Matter Experts
Business Analysts
Design Modeling Specialist Model Driven Architecture (MDA) OptimalJ
System Architects
System Analysts

Developers)
> J Builder
Development D@ Base_ Amh'tec.ts. DreamWeaver
Data Conversion Specialists : DevPartner
Subject Matter Experts Iterative Development Approach AT
QualltleontroI Specialist Mercury Testing Tools
Business Analysts i
Test . . . Bugzilla
Subject Matter Experts QualityPoint PVCS Dimensions
Developers

Capability Maturity Model (CMM)
Project Stakeholders
ProcessMax

Management Project Managers Project Management Book of

Knowledge (PMB MS Project

FIGURE 2.4 Project approach and development philosophy.

left to the very end. The very core of the business behavior of the application was
also left to the very last use cases developed. And finally, because of scheduling
issues the reports specification was late. We argued that the report specs had to be
done concurrently with the use cases, because you can’t verify your inputs without
checking the report output.

But all of these challenges were imposed on the project. You can imagine the
difficulties of waiting until the end of the project to do security. And it was not
a simple security scheme. It was role-based security with a great deal of flexibility
in the final design. In addition, the specific business task the user was undertaking
affected his security credentials. All this happened very late in the project, but we
were able to accommodate and absorb these changes without significantly affecting
the schedule.

There were a few changes requested by the client that resulted in scope changes.
For those we put in official change orders, and got additional resources and monies

The consistency and
efficiency of MDA-based
tooling increases project

throughput

Shakedown results in
adjustments to the
process

31

1
2 X Project Experience
1

for them. By the time the security design was nailed down, we had already built
approximately 40% of the screens. So, there were two additional iterations paid for
by the customer to accomplish that retrofit.

We then asked what it was about the process that allowed the team to solve
these problems. Was it the agile aspect? Was there some MDA-related characteristic
that allowed the team to overcome these difficulties? Vasil responded as follows.

It was actually a combination of those two. For the majority of use cases, once the
development team received them for a given iteration there were inevitably follow-
up questions, changes, and clarifications. These were indeed accommodated by the
agility of the process itself.

But in addition to that, having an MDA-based tool gave us additional consistency
and efficiency, and that certainly helped us absorb these changes with minimal
schedule impact. In the last iteration, we were pumping out a very large number of
very difficult use cases.

I'm convinced that we could never have sustained that throughput without having
a mechanism that let us generate the CRUD code—pretty much worry-free because
of the Optimal] tool—so that we could focus on the screens, the business rules, and
so forth.

There were also mid-course corrections that had to be applied to the JAD
process. The first few JAD iterations were described as “fairly chaotic” because
JAD training had to accommodate new participants and stakeholders, and in some
cases they did not really understand the notion of iterations or what the JAD
process itself was all about.

In the early iterations, many aspects of the design were of course subject to
change. A side effect of accommodating these changes was that some process
problems were identified and the team made a number of adjustments in response.
For example, the initial development/construction process very optimistically
assumed that testing would be done “just in time.” That is, the first few days
of modeling were to be followed by some coding, and the last few days of the
iteration were to be allocated to having the QA (quality assurance) team test the
code destined for the build of that iteration.

The team quickly found out that there was too much overhead in the testing
process to achieve this goal. They adjusted the process so that the testing team
worked on the previous iteration, rather than on the one undergoing construction
by the development team.

Adjustments were made in the process of inter-team coordination as well. At
first, the team employed an architecture “round table” meeting to review the
high-level design created by the JAD sessions. However, they found that they had
to set up an additional round table meeting to allow the modelers to address
inconsistencies in the way various PIMs were created, and to coordinate the

32 COMPUWARE/STATE OF OHIO JOB

creation of services shared among multiple models. These coordination processes
were put in place for the fourth and subsequent iterations.

Although the overall development process worked very well, other mid-course
corrections were made. For example, each development team was seated together
in the same area. Business analysts worked in same facility, and were “within
shouting distance” of the developers—and by all accounts, development teams
viewed that as a good thing.

Another very positive aspect of the development process was that the client
developers were fully integrated within the development teams. A common
problem in projects like this is that once the application is built the client may
have difficulty taking it over for maintenance. But in this case, client developers
were first-class citizens in the development team from the very beginning. They
are now fully productive and capable of accepting the handoff from Compuware.
Vasil Hlinka said:

The majority of them were not even really Java developers when we started. J2EE is
complex enough, and this is a very complex J2EE application. So, they were on a
steep learning curve throughout, and this is another example of the benefits of this
methodology.

They were brought up to speed with no measurable impact on the overall
productivity of the teams. Part of that was because we applied some of the notions
of pair programming and some aspects of XP [eXtreme Programming] as well.

Pair programming has different connotations—this was certainly not the variety
where you have two coders who share a workstation and trade off the “driving.”
But there are some very positive aspects of pair programming which we did

apply.

Angelo Serra of JES told an amusing story (after ensuring that no names would
be used) that illustrates the interchangeability of technical contributors from JFS
and the vendors.

The telling point for me came after one of the change orders. A vendor representative
told me this story, in order to make sure I heard it from him and would not be
upset. He said, “We need a couple of extra days to put together the Statement of
Work for this change order,” and I responded that this would not be a problem.

He then said, “Well, I have a problem. I have this draft Statement of Work and
I realized that some of the people on it are State of Ohio employees. I really don’t
think that you would go along with me billing you for the use of your own people!

But this conversation alone tells you that all of our developers stepped up. They
stood behind the answer to that question we asked them almost two years ago
today. Essentially, while we weren’t looking our guys became interchangeable with
the vendor developers. And they now have the confidence necessary to really move
things forward.

Development teams

composed of JFS and
vendor personnel were
completely integrated

Staff turnover is a problem
to overcome

Organizational structure is
driven by project needs

33

1
2 : Organizational Development
1

Although there were instances where people on a development team were not
getting along and had to be shifted around, team membership in general remained
constant and the teams worked well together. There was one major shift during
the very last iterations, when some negative dynamics were noticed and addressed.
An example of this would be an attitude of “We're doing our piece correctly,
and while we notice some issues with code from other teams we're not going to
spend any time in highlighting the issue or in helping fix their problems because
we're just worried about our piece.”

In another case, one of the teams (in a very critical area) was struggling and
in general making things more difficult for themselves. This was noticed because
of the large proportion of custom code created by that group. Project manage-
ment addressed this issue by swapping team leads and members, thus changing
the makeup of the problem team. This helped with the transfer of knowledge
throughout the staff, and provided a better balance of technical aptitudes across
the application teams.

The problem of staff turnover was caused mainly by external events outside
the control of the project team. Because so much training would be required, the
project was staffed rapidly. But much to their chagrin, project management found
that by the start of the first iteration they had already experienced about a 15%
turnover. And at the time of this writing, staff turnover was 56%!

We asked Vasil Hlinka of Compuware about the cause of this undeniably high
rate of turnover. He said:

We had a bit of bad luck on this project, in part because the job market in the
region got very hot. We had lined up some of the most talented Java people in the
area for this project, and the attrition affected some of our best staff. In fact, some
of the people in whom we invested the most time and training, and on whom we
planned to rely, ended up leaving before we started the iterations.

By any measure, we have run into more than our share of potholes on this road.
But this is another reason for us to be very happy with the MDA process and the
results we've achieved.

ORGANIZATIONAL DEVELOPMENT

We always ask case study participants about the effect of MDA adoption on the
client’s organization. The answer we got in this case is a bit unusual. In essence,
a new organizational arrangement was consciously crafted as part of the delivery
of this project. In other words, they did not try to fit the tooling and MDA into
an organizational structure. Instead, they built the team to suit the project.

In this case the client divided the application into five functional areas so that
they could divide 40 developers into teams of five to eight for each area, a tenet

34 COMPUWARE/STATE OF OHIO JOB

of agile development. The theory is that communication breaks down if you have
more than that number of people working on one thing.

But those five functional areas had to work together to deliver an application,
so there had to be some common oversight as well. Thus, a joint application
development team was added, with separate responsibilities over the course of
the two-week iterations. Their job was to oversee the application as a whole and
to work on infrastructure pieces that spanned multiple functional areas, in order
to support interdependencies among those areas.

Compuware’s experienced project leaders and development leaders tried to
accommodate the client’s wishes with respect to tooling and process. And their
experience was helpful in the creation of the successful organizational structure.

But some tweaks were tried along the way. For example, at first they co-located
business analysts with the development teams, but that didn’t “flow well” and the
two groups were separated (but remained physically close enough for continuous
communication). They also swapped people in and out of teams because of various
personality issues. But the fact that the organization had enough built-in flexibility
to make such changes dynamically was very important.

At the end of every two-week iteration, each of the six development teams
spent a day examining “lessons learned” during that iteration. They discussed
the problems they encountered, how things were working in general, and what
could be done better. So, this wasn’t a case of figuring out improvements in spare
moments but was part of the process.

“Organizational development” refers to the people in an organization as well
as organization itself. Angelo Serra of JFS described some of the approaches JFS
used to further the development of individual JFS contributors after the project
was started.

In the context of the way the state does things, you get to a point where you know
the issuing of a contract is imminent. At that point you can begin to figure out
when various things will occur. From that point, as we got more information about
what approaches and tools and versions would be used in the project we set about
not only procuring necessary training for everyone but also setting up study groups
for people within the project.

For example, we got copies of the “Gang of Four” patterns book' for everyone
on the project, and one of the study groups was dedicated to a discussion of this.
Once a week we would get together to dig through the patterns to gain a better
understanding of them, and figure out how they might be used in the course of the
project, as well as whether and how we might have used these patterns already in
the past. Other study groups included one to understand the Java language, which

| Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of Reusable Object-
oriented Software. New York: Addison-Wesley Professional, 1995, ISBN: 0201633612.

Examination of “lessons
learned” is part of the
process

35

1
2 : Ongoing and Planned Use of MDA
1

we knew we would need, as well as Java server pages which deliver HTML on the
back end.

I myself took on the design patterns study group, though I probably had no
business doing so. But I did the same reading everyone else did, and brought my
questions to the group along with theirs, and we spent an hour and a half each week
working through them to reach a better understanding.

For the developers—and we have some very resourceful people—we found four
fairly beefy desktop machines that were allocated to the group, and which we
set up as a “sandbox” so that people could start programming in Java, doing JSP
work, setting up the database, application server, and web server, and running
the architecture in a limited fashion. Two people went out and got their Java
programming certification from Sun. And this was all before the official start of the
project.

So, I think we are doing pretty well. We have our faults and foibles, but our
success speaks to the dedication and focus of the team we have. And their dedication
is not to whiz-bang technical features but rather to the delivery of a useful case
worker system to the State of Ohio, and they all understand that.

ONGOING AND PLANNED USE OF MDA

We asked Angelo Serra of JES about any plans for using MDA for other projects
within JES. His response was that he expects that MDA will be used in an upcoming
Medicaid application.

We have been talking with other groups within JFS. There have already been other
efforts, much like ours, in other small pockets. One of the larger efforts that may
benefit is that of a new Medicaid application. We are in the process of seeking bids
on this, and have already put out an RFP from various vendors, but I think MDA
will figure prominently in that.

This will definitely be an important proof point, because this Medicaid application
will be an order of magnitude larger than the SACWIS project we are doing. So,
it will be even more important for the Medicaid project to be up to speed and know
what is going on in this process.

They will be using MDA because of the various technologies that must be brought
to bear and integrated for this Medicaid system. Obviously, there will be heavy
mainframe-based transaction processing on the back end, but they will also want to
take advantage of a web front end, either via Java or .NET, to get information to
various classes of users, either internally to state employees or externally to citizens
of the State of Ohio.

And they will also want to build XML interfaces for interaction with various other
systems. So this will really be a massive effort, and if I were a betting man I'd bet
that this is where MDA will pop up next for us.

36

COMPUWARE/STATE OF OHIO JOB

We then asked how the MDA message was being received elsewhere within
the State of Ohio. Angelo said:

I'm not sure I can speak to that, because a lot of those changes happen outside of
my purview. I do think that one organizational dynamic that we will see more of is
trying to educate teams ahead of time instead of as they go along, and not just on
the technical side but also on the policy side.

Our policy and business partners are working hand in hand with us to develop
the SACWIS application, and they have gone through a significant amount of work
to prepare their people; for example, to understand what it is like to work with a
contractor and to understand some of the technical wrinkles we are dealing with.

I think we will see this more and more, not only in the Medicaid application
but also in a child care application that will soon be rewritten. We are already
starting down that path on both the business and technical sides, making sure they
understand how they need to capture and then flesh out their requirements.

So, we are starting to see a movement, almost a grassroots movement on a
project-by-project basis, that MDA looks like a good thing to do, so let’s make sure
our people are as prepared as we can make them.

In the past, it was more of an “on-the-job training” approach, and the reason
for this is that we don’t have a huge training budget, and we've been careful not
to burn it up unless we can see a direct benefit. But the SACWIS project has indeed
shown a direct relationship and a benefit between the training we got and what we
were able to produce.

TABLE 2.1 Project Profile: Statewide Automated Child Welfare

Information System

Company/Organization

QSP/Consultants

Name: State of Ohio Job and Family Services (JFS).
Industry/Function: Support for all of Ohio’s state and local child
welfare agencies, covering a population of more than 11.5
million people across 88 counties.

Project Size and Duration: 80 to 130 participants; 18 months.
Geographical Extent: State of Ohio, USA.

URL: http:/ /jfs.ohio.gov/sacwis/

Name: Compuware.

Areas of Experience/Expertise: MDA Qualified Service Provider,
providing enterprise IT solutions in areas that include IT
governance, application development, quality assurance, and
application service management.

Size: More than $2B in yearly revenue, with 7,500 employees
worldwide.

(Continued)

Ongoing and Planned Use of MDA 37

TABLE 2.1 Project Profile: Statewide Automated Child Welfare
Information System—Cont’d

Business Pain Points

Tools Used

Model-based Artifacts
Created

Project Role: Responsible for the development of the system and
conversion from the old system.

URL: www.compuware.com

Name: Dynamics Research Corporation.

Size: $300M revenue (2005), 2,000 employees.

Areas of Experience/Expertise: DRC’s primary mission is to deliver
solutions and services to U.S. federal, state, and local
governments.

Project Role: Prime contractor for the State of Ohio SACWIS
project, with responsibility for overall project management and
requirements.

URL: www.drc.com

Federally mandated implementation; 18-month deadline.
Required support for, and integration of, a patchwork of
systems across 88 counties.

Some previous implementations of SACWIS in other states had
encountered serious difficulties, including cost overruns and
functionality shortfalls.

Compuware’s Optimal], Rational Rose, JBuilder.

High-level business models (Rational Rose).
Platform-Independent Model (Optimal] “Domain” model) and
Platform-Specific Model (Optimal] “Application” model). The
PIM is automatically transformed to a PSM, as mediated by
Optimal]’s Technology Patterns.

CHAPTER THREE

SOLUTA.NET/
COOPSERVICE CASE
STUDY: FACILITIES
MANAGEMENT
INDUSTRY

An employee-owned company in the facilities management industry uses MDA to implement a governance
layer while simultaneously rationdlizing its IT infrastructure and supply chain. A business-to-business
(B2B) portal and facilities management reference model bring industry leadership in the form of the
“integration point” of choice for cooperative projects.

BACKGROUND

Coopservice is an interesting and unusual company. Like many other enterprises
in the local region (Emilia Romagna, Italy), it is a “cooperative,” meaning that
it is owned by its employees, who are called “associates.” The mission state-
ment on the Coopservice web page describes its goals in relation to associates
rather than customers, and these goals include the improvement of economic,
social, and professional conditions; the safeguarding and development of jobs;
the involvement and recognition of workers in achieving company goals; and the
empowerment of associates in both business and social arenas.

In spite of this internal focus—or perhaps because of it—Coopservice has
become a market leader in offering facility management services. Coopservice (see
Figure 3.1) has more than 10,000 employees, €374 million in yearly revenue, and
€50 million in assets (the official estimated revenue for 2006 is €450 million).

39

40 SOLUTA.NET/COOPSERVICE CASE STUDY

400 -
350

300 -

250 A

200 A O Revenue in
€Millions
150 A

100 -

50 -

2000 2001 2002 2003 2004

FIGURE 3.1 Coopservice yearly revenue.

Coopservice began in 1991 as the merger of two cooperatives, Cierrepi and
Coopsicurezza, whose combined expertise included private security and sanitation.
The resulting enterprise has become one of the more dynamic Italian cooperatives,
and its fast growth reflects that of the facilities management industry itself.

The cutting edge of the facilities management industry is the provision of
services to large enterprises—to deal with cleaning, waste and environmental
services, maintenance, building and property management, security, and catering,
among other things. A facilities management project is a big undertaking (the
typical Coopservice facility management project lasts three or four years, and
is valued at about €80 million), and requires the combined efforts of multiple
companies to provide the required services.

For example, Italian hospitals often demand a complete packaged solution to
their facility management requirements, because of the difficulty and expense of
managing the many different individual services (or service providers) required.
A hospital needs elementary services such as linen cleaning, building and property
management, and security and catering, as well as more sophisticated services such
as warehousing and administration. On average, 20 small and medium enterprises
and several hundred workers are required to deliver this type of service package.

To provide such a package, Coopservice typically outsources many subservices
through a network of collaborating enterprises. In other words, Coopservice acts
as the prime contractor and coordinates a temporary association of companies for
specific customer contracts.

Coopservice wanted to take advantage of technology to improve its business
position in the market, and launched the Pant@ project to accomplish this. Its
goal was to be able to manage its entire supply chain with a single enterprise
architecture that presented two different appearances and sets of capabilities:
a custom enterprise resource planning (ERP) application that supports intra-
enterprise processes and a B2B capability for connections to other enterprises.

Large enterprises want
“one-stop shopping” for
facilities management
services

Coopservice wanted
supply chain management
for its own purposes and a
B2B capability to
coordinate service delivery
with partners

41

1
3 : Why Coopservice Chose an MDA Approach
1

Soluta.net, a Qualified Service Provider (QSP) in OMG’s FastStart program,
was engaged by Coopservice to drive the Pant@ project. Soluta.net is an inter-
national company staffed by senior consultants and architects. It has offered
component-based software solutions, consulting services, and technical leadership
for distributed enterprise applications since 1994. Soluta.net emphasizes the use
of modeling in defining software architectures in order to increase the reuse, and
therefore the value, of IT investments. Their expertise spans a number of domains,
including telecom, pharmaceuticals, tourism, healthcare, radio communication
network infrastructures and terminals, customer relationship management, and
enterprise application integration.

WHY COOPSERVICE CHOSE AN MDA
APPROACH AND WHAT THEY HOPED
TO ACHIEVE

Coopservice was not aware of MDA when the decision was originally made to
undertake the project—but they were certainly aware of the difficulties of realizing
a project of this size using traditional development tools and methodologies. So,
when Soluta.net described the MDA approach in a short nontechnical presentation
that described the enterprise-level advantages of MDA Coopservice quickly grasped
its significance. They decided to use MDA, and they agreed to undertake a quick
proof-of-concept (POC) using Soluta.net’s open-source tool JunoMDA. Because
the potential benefits were so great, they also increased funding for the effort.
When we asked Walter Siri, Project Manager at Coopservice, why they chose an
MDA approach and what they hoped to achieve by that choice, he said:

The main reason we chose an MDA approach for Coopservice was the ability to
model the business—for example, business processes—in a way that did not depend
on the technology platform or computing techniques.

And when we asked about the business driver behind this choice, he said:

As a company, we offer service solutions in the areas of cleaning, security, and
industrial processes. The delivery of these solutions requires the cooperation of other
companies. MDA allowed us to change our approach to the realization and delivery
of the solution, to the economic benefit of our customers. We need to be able to
dynamically change the process by which we connect with our partners, and in
order to do that we need a software development and deployment approach that
allows us to respond much more quickly.

The result was the Pant@ project.

42 SOLUTA.NET/COOPSERVICE CASE STUDY

CHALLENGES

The Pant@ project had to overcome many interrelated challenges: functional,
organizational, technical, and process related. On the B2B infrastructure side, there
was a dual goal of automating the transfer of delivery, scheduling, and activity
report information to and from partners and creating an inter-business electronic
community for the exchange of goods and services.

The goal of the ERP effort was to integrate and streamline all legacy applications
such that the application functions would be available to business process work-
flows. In other words, Coopservice wanted each business process to be a single
automated flow that could traverse internal business units and applications. In
addition, Coopservice saw the need for a governance layer on top of ERP functions
to enable better monitoring and control over the entire firm.

A technical challenge was presented by the fact that Coopservice’s existing IT
infrastructure consisted of 45 unrelated applications spread across five major lines
of business (LOBs), where each LOB had to support approximately 40 primary
use cases. Further, these applications used different implementation technologies:
IBM AS400, Microsoft .Net, and Java EJB. So, the technical goals of the project
included reimplementation on a single architectural style (SOA implemented via
EJBs and web services) and the eventual retirement of the legacy systems.

The final challenge was related to Coopservice's belief that their business models
and business processes are strategic assets and competitive advantages. Therefore,
they wanted to retain tight control over them rather than sharing control and
visibility with suppliers and software vendors.

Coopservice felt it had to maintain control over specification of the architecture
and business process customization, as well as over project management and coor-
dination. Architectural leadership was provided by Dr. Pierfranco Ferronato, Chief
Architect of Soluta.net, together with Roberto DalleMura of AIM Consulting—but
the larger question became, “How do we coordinate and harmonize the many soft-
ware vendors and integrators needed for this project?” Although acknowledging
that the challenges were formidable Pierfranco pointed out one very significant
advantage in tackling this project.

For the first time in my career I encountered a customer who said he preferred to
build things better rather than just quicker. I was amazed.

EXPANDING GOALS

Over the course of the project, goals and expectations changed—especially for the
B2B and business process aspects as Coopservice became familiar with MDA. At
the start of the Pant@ project the goals were “merely” to rationalize existing

The existing infrastructure
contained 45
nonintegrated applications
on three different
implementation
technologies

Business models and
business processes as
strategic assets and
competitive advantages

A common reference
model for facilities
management is a business
advantage in an
environment of
“coopetition”

Coopservice is increasing
its business agility and
leveling the playing field
for small- and
medium-sized enterprises

43

1
3 X Expanding Goals
1

applications and integrate the supply chain to make it easier for partners to
participate in large-facilities management projects.

However, Coopservice soon realized the value of creating a B2B community
of facilities management companies, including providers, suppliers, and partners.
Through the use of MDA, Coopservice saw an opportunity to provide a common
functional reference model for facilities management that would enable partners
and enterprises to quickly join together in response to the needs of large customers.

To be able to cooperate with each other in this way, partners need an IT system
built to support this goal. Before the Pant@ project, the only way IT support could
be provided for such a multipartner effort was for all partners to use the IT system
of the “lead” (prime contractor) company.

For prime contractors, this resulted in a patchwork of adapters and inconsistent
data formats from their subcontractors. Subcontractors had to deal with a different
IT system for each of their prime contractors.

Coopservice has also embraced the concept of “coopetition”—that is, cooper-
ating with industry players in some cases while competing with them in others.
We asked Project Manager Walter Siri of Coopservice how the new B2B capabil-
ities would provide a business advantage in an environment of coopetition. He
answered this way:

We pursue service contracts with enterprises on a competitive basis. But we offer
services from a network of companies, and these companies collaborate to fulfill
those service contracts. The B2B capability makes it easier for us to define and deliver
that solution because it works with all the IT systems that individual cooperating
companies use. These cooperating partners find it easier to work with us than with
competing “prime contractors,” and that is a business advantage for us.

In order to succeed with a coopetition strategy, Coopservice wanted to provide
a new—and open—IT system for facilities management. And rather than selling
this product/technology, Coopservice wants to maintain industry leadership by
becoming the “integration point of choice” for cooperative projects. By 2007,
Coopservice expects that their B2B system will provide an open environment for
negotiations among industry players, including competitors. In the long term,
Coopservice hopes that this effort will be embraced by the International Facility
Management Association (http:/www.ifma.org/).

The plan is for Coopservice to “level the playing field” for small and medium-
size enterprises that cooperate to fulfill large contracts. They plan to do this
by providing a common functional reference model for facilities management.
Because this reference model embodies the formal specification of functional
requirements, the coordination and provision of services become much easier to
manage and the organization for managing it can be set up much more quickly.

In addition, many of Coopservice’s partners are also cooperatives, and providing
assistance to other cooperatives is an important goal. But even partners with more

44 SOLUTA.NET/COOPSERVICE CASE STUDY

typical organizations can realize the benefits of sharing the same open IT support
system for facilities management. If a partner does not have an IT support system,
they will be able to use the IT framework of Coopservice’s B2B portal.

The facilities management industry is growing fast in terms of overall market
size, number of players, and size of projects. Coopservice has come to understand
that they must exploit cutting-edge technology to take advantage of these trends.
And the MDA expertise that Coopservice developed over the course of the project
resulted in the expansion of another goal, that of providing the system with a
“governance layer.” As Pierfranco Ferronato put it:

The implementation of a governance layer was always a main goal of the project.
However, there were many other challenges we had to face before addressing that
one, and we thought that we would not be able implement a governance layer
until late in 2006. But after four or five months of experience with MDA tools and
model-driven development processes we found that it was much easier to do the
governance layer than we thought it would be.

A part of this governance layer is already in place. We have implemented a
“governance cockpit” that allows real-time monitoring of business processes, and
also provides controls for modifying these processes, even if they span lines of
business within Coopservice. If properly modeled, these process modifications do
not require coding, deployment, or system updates. Thus, at Coopservice governance
is not simply portfolio management, it is business process management.

HOW MDA WAS USED

The Soluta.net/Coopservice collaboration began with POC and pilot projects before
the Pant@ project itself was launched, although the Pant@ project certainly built
upon these preliminary efforts. The POC project used Soluta.net’s JunoMDA open-
source product to create a web-based demonstration application in a few days.
Coopservice was impressed with the results and decided to perform another devel-
opment iteration—the pilot project—that would further explore MDA capabilities
and create usable components for the eventual Coopservice system.

After delivery of the POC, the team spent a short time identifying and defining
the set of business-support components to be created in the pilot project. They
identified those components that would be most useful to Coopservice as typical
and widely used functions and features. Most of these components involved
the integration of legacy systems to support the provision and consumption of
information across general interfaces that could be used by the pilot components
as well as the not-yet-defined components in the eventual system.

The goal of the pilot project was to create enough of a system to allow
Coopservice to carry out some part of its business using the components and their
associated user interface. The pilot components contained enough business logic

A governance layer that
supports business process
management

“Tender management”
pilots the governance layer

Finantix Studio is used to
model the application as
well as business processes

45

1
3 ' Process and Tools
1

to demonstrate the ability to manage and modify business processes at runtime
through the use of a control console.

Interestingly, the most important component of the pilot was “tender
management”—the first piece of the governance layer. Tender management is the
handling of bids to perform a service at a specified cost or rate. The component
implemented the business process by which Coopservice received and exam-
ined tenders of service. It allowed them to determine which tenders required a
response, and it applied the relevant business rules that govern the response. This
was a workflow implementation based on the very complex business processes
involved in responding to a tender. The complexity came in part because the
tender response might cut across various business functions, including security,
facilities, cleaning, food services, and so on.

Other, less complex, components were delivered during the pilot project as
well. All in all, the pilot resulted in the creation of half a dozen enterprise
business components over a four-month period. All were based on computation-
independent models (CIMs) and Platform-Independent Models (PIMs). The pilot
demonstrated the ability to create a functional MDA-based project, and the decision
was made to proceed with the additional development iterations encompassed by
the Pant@ project.

PROCESS AND TOOLS

As mentioned previously, Soluta.net’s open-source MDA tool was used to develop
the POC demonstration project. The pilot project, and the Pant@ project itself,
relied on Finantix Studio—a transformative MDA tool that operates within the
Eclipse development environment. Finantix Studio was supplied by Finantix.
Finantix, like Soluta.net, is a QSP within OMG’s MDA FastStart program.

Finantix Studio is called a transformative MDA tool because it allows an appli-
cation to be modeled once and then transformed to target implementations on
various architectures (e.g., three-tiered browser-friendly architectures, three-tiered
architectures enhanced by a portal server, or rich client architectures).

An application modeled in this way accommodates business-level organizational
boundaries in the implementation of business functions, and it clearly separates
the specification of business functions from technical concerns. In this way, the
intellectual property inherent in the definition of a business function is kept wholly
in a PIM.

Further, Finantix Studio allows business functionality to be fully reusable across
multiple technology platforms. For example, if a data item is limited in length this
limit is propagated to generated code for data input (e.g., Javascripts), network
service interfaces (e.g., web services), and data output (e.g., an RDBMS). Thus,

46 SOLUTA.NET/COOPSERVICE CASE STUDY

reusability applies not only to business logic but to presentation logic, displayed
data, persisted data, configuration parameters, and external transactions.

In addition, the tool allows the team to specify business logic via a domain-
specific language (DSL), including the modeling of business processes (specifically
using Business Process Modeling Notation [BPMN] and XML Process Definition
Language [XPDL]). Any business component implemented with Finantix Studio
is based on a PIM that specifies the function of the component. The PIM is trans-
formed to a PSM (Platform-Specific Model) by the Finantix Studio transformation
engine, and this transformation can be optionally enriched by model annotations
specified in the DSL.

The DSL implemented by Finantix supports sophisticated concepts such as
persistence, integration, transactions, security, data constraints, conﬁguration, and
workflow. The workflow-oriented constructs were particularly useful in the Pant@
project’s efforts to formalize and manage their business processes.

DIVISION OF LABOR

When a consulting company undertakes a project with a client, and that project
uses a technology or approach new to the end user, there are often two goals.
The first is ensuring that the project succeeds, by putting in place people with
the right skills. The second is ensuring that the client organization gains enough
knowledge and experience to become self-sufficient going forward.

Soluta.net integrated their own skilled consultants with client personnel at all
levels in the project while AIM Consulting provided a technical architect, Roberto
DalleMura, to work with the project manager and to be responsible for the tech-
nical infrastructure as well as legacy integration (such as integration with existing
Coopservice security systems). Typically, Soluta.net personnel undertook leader-
ship of the analysis and process activity because they had much more experience in
thinking in terms of methodology and enterprise architecture. The actual makeup
of the Pant@ project team, and the duration of team positions, was as follows.

» One project architect (provided by Soluta.net): 6 months

 One technical architect (provided by AIM Consulting): 12 months

 One functional architect (provided by Soluta.net): 12 months

» Three business analysts (provided by Coopservice): 15 months

» Four MDA developers (provided jointly): 14 months

» Two or three business analysts to customize models for web services and
EJB component-based development (provided jointly): 6 months

The first phase of the Pant(@ project was aimed at improving enterprise resource
planning capabilities within Coopservice, primarily by integrating existing legacy

An integrated project team
tackles legacy integration,
process automation, and
B2B support

Functional teams for
project coordination, CIM
analysis, PIM design, and

PIM development

47

1
3 \ Division of Labor
1

applications. This phase was expected to take a total of 18 months, including
two months for the first development iteration after MDA was introduced to the
organization.

The second phase was aimed at automating internal/private Coopservice busi-
ness processes. In this phase, business models—including associated services and
use cases—are created using BPMN, with the goal of providing application support
for these private processes. The second phase began in October of 2005 and is
expected to end in Q2 2006.

The third phase is aimed at providing intra-enterprise support, including
creation of a B2B portal. Another deliverable of this phase is a Facility Management
Reference model, which will provide the basis for a common IT infrastructure
for the management of multi-company facilities management solutions. The third
phase is ongoing at the time of writing and is not expected to end before the end
of 2006.

Four “functional teams” make up the overall Pant@ project team.

¢ The Project Coordination team took the project strategy as input. Its
iteration-driven output took several forms: a roadmap, functional domain
analyses (such an analysis is a component model, a related set of
system-level components consisting of business, entity, and process
components), component specifications, and a “feature catalog” that
specified required capabilities in the system to be built. This output was in
the form of Microsoft Word documents, Excel spreadsheets, and UML
diagrams created with NoMagic's MagicDraw. These deliverables together
controlled the strategy plan.

e The CIM Analysis team took as input information about Coopservice
functional domains, required business components (as well as their
respective software life cycles), and a component model for external and
legacy systems. The output from this team is driven by use cases, and
includes formal use case models, prototypes, and component models for
external and legacy systems. The mechanisms for generating this output
include UML 2.0 and MagicDraw. In this way, the CIM Analysis team
controls the functional architecture, component-based development targets,
and model-driven conceptual framework for the project.

 The PIM Design team was responsible for CIM-to-PIM mapping. This team
took the use case models, prototypes, and external/legacy component
models produced by the CIM Analysis team and produced finer-grained use
cases, component and interface specifications, and an integration strategy.
Through MagicDraw-generated UML models, the PIM Design team
controlled the technical architecture, the migration plan, and the
downstream aspects of the model-driven conceptual framework. The UML
models included sequence diagrams, class diagrams for persistent and

48 n SOLUTA.NET/COOPSERVICE CASE STUDY

Logical Model

ATI Leader

Partner ~ Customer/Supplier

" Remote *

sites

Pant@-Bus

WEB
Portal

FIGURE 3.2 Pant@project logical model.

transient business modeling, and implementation diagrams for component
specifications (which describe ports, required interfaces, middleware per
port, and dependencies).

e The PIM Development team took as input the integration strategy, the
fine-grain use cases, and the component and interface UML models
produced by the PIM Design team. Using the FSX component-based
development conceptual framework and the DSL of Finantix Studio, this
team produced executable use cases that were run in the test environment.

Figure 3.2 illustrates the logical model of the system to be built.
Figure 3.3 illustrates the technical architecture developed for the Pant@ project.

PROJECT EXPERIENCE

MDA proponents claim that it can improve the communication between an orga-
nization’s business and IT communities. Pierfranco Ferronato agreed that MDA
helped improve such communication in this case but pointed out that you still

49

1
3 X Project Experience
1

Technical Architecture

- WS
WS WS
; (EAI)
=] =
WS EJB
=
— .
Data 3 o =]
integr Wi e
ation N\ y
XMI/WSDL C e
Model Repositol
(E) (Service Registry)

WS

UDDI APIs

Java .Net

FIGURE 3.3 Pant@ technical architecture.

The PIM was independent
of any MDA tool, which
mitigated the risk of
tool-related problems

have to be careful about drawing the boundaries between what is of interest to
business people versus technical people.

We talked with the business community about dependencies between components,
functional features (essentially use cases), business object models, business processes,
business events, and so on. But we did not discuss computation-specific issues such
as interfaces or exceptions.

Thus, the first step of the project was the creation of a CIM or domain model,
which captured the desired behavior of the business. Figure 3.4 shows a small
portion of the CIM.

In the next step, the PIM was developed using Finantix Studio. The Studio
tool uses the Eclipse Modeling Framework (EMF) as an MDA repository, and it
can import and export models. While the language used to create this model
was Finantix specific, the PIM itself was independent of Finantix and in fact
independent of any specific MDA tool. This fact guarded against any failure caused

o<

R
<<Business Process Component>>,
Gestione Gara EE'|

Realization Elements
Specification Elements

<<Entity Business Component>> |
Gara

Specification Elements

Realization Elements]

<<Enlity Business Component>1
Protocollo

Realization Elements)
Specification Elements.

<<enumeration>>
RuoloEsterno

-Cliente
-Fornitore
-RisorsaUmana

SistemaEsterno

Soggetto
-uuID 0." Mappatura
Ragi : charf] _UUID
|-CodiceFiscale DS
|-Partital VA

|-PersonaFisica : boolean|

-email

[<<System Level Camponenb>ﬂ
GestioneClienti i

Responsabile Area

Generico

‘Specification Elements. Realization Elements

[Sottometti per ri-Valutazione]

i durante lter

[Continua lter]

[Scartata]

Scartata

GestoreSoggetti

GestoreSoggetti

Notifica Responsabile

-CodiceEsterno

=

-IdRuoloEsterno : RuoloEstemo

1.7

AmbitoApplicativo

<<Service>>

-AmbitoUsoLegacy : RuoloEsterno

odiceSi:

<<inclpde>>

AssociareCodiciEsterniNonCollegati

extension points
Soggetto non esistente

Sistemalegacy

<<extend>>

<<extend>>

ggetto ‘

InserireSoggetto

Trascodifiche

tto non esistente)

points

localizzare

-
=

FIGURE 3.4 CIM sample.

Business analysts were
not expected to learn UML
or tool usage, but were
able to define and manage
business processes

MDA does aid
communication, but
bridging the business/IT
gap is a difficult problem

UML profiles help in
keeping technical details
out of the PIM

51

1
3 X Project Experience
1

by potential issues with Finantix Studio because it allowed replacement of Finantix
Studio with some other tool, if necessary, through the import/export of models
expressed via XMI (XML Metadata Interchange). The PIM captured 90% of the
application semantics (the other 10% being information about data migration
and legacy integration). Figure 3.5 illustrates a small portion of the PIM, and
Figure 3.6 illustrates the respective content of CIM, PIM, and PSM.

We asked whether Coopservice personnel were required to learn UML (or
at least a subset of UML stereotypes for modeling elements specific to their
business) versus using only the DSL of the Finantix tool. The answer was that
in general business analysts were not expected to be able use the Finantix tool
itself. Although the tool exposes some UML semantics (including class diagrams,
component dependency diagrams, business classes, and state diagrams for use case
collaboration), users can specify behavior either by creating a graphical diagram or
by using a textual language. The Finantix tool maintains semantic synchronization
between the diagram and the textual language.

When a user interaction is defined in Finantix DSL, a state diagram is generated,
as shown in Figure 3.7. The state diagram is related to events, and the interaction
it specifies executes in the context of a single user session. But business analysts are
not expected to manage artifacts such as a state diagram because it is a relatively
simple piece of a more complex business process.

Instead, the business users wanted to be able to define the management process
for an entire business process (in the same way they defined the tender manage-
ment process in the pilot) rather than becoming involved in how the user interacts
with the application. Thus, business analysts use the Finantix business process
console to manage an entire business process (see Figure 3.8). Once the technical
team had captured and developed a sufficient set of fine-grain user interactions,
the business analysts could use the business process console to quickly adapt the
business process to various purposes and to change the logical workflows.

Pierfranco had more to say about the ability of MDA to bridge the gap between
the business and technology communities and the inherent difficulty of the
problem.

The CIM specification is actually just a “concept” in the OMG specification, and
moving from the CIM to the PIM is not an easy task. MDA itself says very little about
this transformation, and we had some difficulty in bridging the two models.

Of course, there are obvious advantages to this separation. We are able to
create specifications that capture requirements in a form that is understandable by
less-technical stakeholders; for example, the project manager. These people were not
comfortable with the PIM, but were perfectly able to understand the CIM.

However, the transformation from CIM to PIM requires a lot of energy, and
we at Soluta were creating approaches to address this aspect of the project. In the
creation of the PIM, we needed to identify and precisely define interfaces: how many
interfaces for each component, signatures for methods, ports and responsibilities for

(44

<<business process>> <<component>>$:| <<component>>$:|
: gestioneGara :gara

<<component>> il
: adidoc

. use case : assegnazione gara
B-Ba gestione gare
EI cirr 1: assegnare()
E=1 pim

51 persistent bom
£5) transient bom

= lport 1

2 | gestioneGara
ﬂ}] assegnare gara-casol

H]J asseghare gara-caso2
rexample:: Commerciale: ¢

—I@ :example;: Commerciale:c

GestioneStatiGara

outward : EJB

<<Component>> |
gestioneGara

public {default

2: getGara() 5]

3: getPiotocolNumber()

4: update(gara)

Gesti

<<component>> 3]
adidoc

]

Gara Gara

protocolNumber

public : default

FIGURE 3.5 PIM sample.

Project Experience 53

w

CIM
prassesenceny
Feature PIM ! psm i
Catalogue _
Business e ntoract
Processes ERIeraction
Modelling
COD:
Business Implementation
Dictionary Model
EJB
Transient
Use Cases Object
e Webservice
Business Persistent
Rules Object g
Model Various
Scripts
Col\nlwlponlent Integration
ode Modelling HTML/
Java Scripts

FIGURE 3.6 CIM, PIM, and PSM content.

components. And we needed to decide which responsibilities—which services—need
to be exposed externally (outside the company) and internally. We were trying to
discern patterns.

For each of these patterns, we might provide a use case, business classes, depen-
dencies, cardinalities, and operations. These responsibilities must be captured from
the outside. So, we had to figure out how to use profiles, and how to use UML to
describe CIM model elements that are close to the PIM, without specifying all the
details required in the PIM.

You need to organize the CIM in such a way that the process of transforming it
to a PIM becomes clearer. In some cases, it is difficult to decide whether something
should be specified in the CIM versus the PIM, and by extension where this thing
should appear within the software factory.

A CIM analyst may have to decide how a legacy system provides requested data
in order to fulfill a business requirement. And the question becomes whether to
specify the provision of this information in the CIM or the PIM. If it is in the
PIM, what is the best representation? A stereotype? A use case? An operation? An
interface? If we decide, for example, to use a stereotype for a use case representing
an API or a service that is invoked by an external system we need to map this into a
technology.

54 SOLUTA.NET/COOPSERVICE CASE STUDY

SearchMunicipalityProvince

@9 2zzhis.z zppedMu...
@9 this.mappedMu... /

(Editstate 1 — n
Views SearchMunicipalityProvinceState
Views

& editable this.m....
@ state.fncSzarch

Asserts

g this.searchMun... Selectltem
@ this.searchMun... e
‘] thiszconfirm <\/
‘] this.cancel
Cancel
Asserts \

Cancel this.mappedM
¢ R Ethun|C|pal|tyProvmceC0mboSeIectzd SearchMunicipalityProvinceCombo

ConfirmSitoErogazizne

Cancel

@ State.fncSearchCombolLoc

SearchMunicipalityProvinceCom\t/)pS...

lews

Asserts

SearchMun|C|paI|tyProvmceCombo

EndS...
EthumcnpaInyProvmceComboSeIected

(Insert State w
Views

& editzble this.mappedMznic...
@9 this.mappedMunicipalityPr...
@9 this.mappzdMunicipalityPr...
; this.searchMunicipalityProz...
#ll this.searchMunicipalityPrz...

ConfirmSitoErogazizne
wr this.confirm

@ this.cancel

Cancel
Asserts

& this.mappedMunicipalityPr...

N y

SearchMunicipalityProvince

Selectltem

FIGURE 3.7 Finantix Studio state diagram.

One problem is that at this time the transformation of CIM to PIM is not well
supported by MDA tools. Not every MDA project begins with a CIM, but those that
do may find that the CIM can become disconnected from the software life cycle of
the overall MDA project. Essentially, this happens because even CIM models that

Other UML extension
mechanisms aid in
mapping from CIM and
PIM to PSM

55

Chiusuda Pldco

1
1
3 X Project Experience
1
1

‘ Valudazione Iniziale ’

dalutazione Finald

1]10e BAJY 8|Iqesuodsay |

€ partedipa m—

Predarazione

Actesa Esito

Visuaddzza Esito

Richiesta Documendazione

Documendtazione arrivdta

Documentazione sufficiente I
| | Attesa Docdmentazione

Nedessaria documentadione

Invio Sollecito /
after (t;mw

Scartata sdnza Ringr

\— Scartata

Disualizza Esito

Scartata (Izon Ringr. I

| Scartata senda ringrdziamdnto

‘ Invio Ringraziamento If
\ Preparazione

EE’ Scartata con Ringr partecipal
»
©
» \
g
©
o /
rtecipa2
a‘ partecipa

/

Preparadione

FIGURE 3.8 Finantix Studio business process model.

56 SOLUTA.NET/COOPSERVICE CASE STUDY

are precise and complete are not necessarily directly computable. So, this breach
in the CIM-to-PIM transformation must be bridged manually.

It takes considerable time and effort to manually trace back and forth between
PIM and CIM model elements. Those who need to do CIM/PIM mapping must
decide which kinds of UML models to use for CIM modeling because that choice
will affect the amount of effort needed to perform the mapping.

Pierfranco also felt strongly that CIM analysis is becoming more and more
important. In the past, developers could fix analysis errors “on the fly” because
analysis was simply a way to nail down requirements in the form of a wish list
whereas functional errors were detected and addressed during coding.

In contrast, Soluta.net and the Pant@ project have developed a team philosophy
and culture that says that the CIM is the application, while the PIM is its projection
in concrete IT artifacts. Coopservice now has one person in charge of maintaining
the template of patterns, which people can refer to in order to understand how
to transform one aspect of a business process from the CIM to the PIM. And
they are trying to keep the CIM and PIM metamodels aligned enough such that
the energy required to transform a model element from the CIM to the PIM is
minimized.

Before the start of the Pant@ project, Coopservice had a panel of business
experts whose job was to capture business processes. Coopservice was one of the
relatively few companies that had developed a set of full, rich business processes.
These business processes had been captured/specified using Visio and placed on
an internal web site that was not part of the IT organization.

The project team was able to use these defined business processes to great
advantage in the Pant@ project, even though there was no connection between
these process definitions and IT infrastructure. These were abstract or theoretical
process definitions, and people simply knew that certain process steps required
various applications as well as manual steps such as phone calls and faxes. However,
a significant part of the project’s business analysis was based on this work. The
Pant@ project took responsibility for all business process definitions, and for
making such definitions formal and rigorous.

Currently, there is an external company that conducts interviews to capture such
business information—from sources throughout Coopservice, not just IT. Their
output consists of drawings of business processes, which are then implemented
and maintained by IT. The project was also very fortunate to have the Pant@
Project Manager Walter Siri as a source of business information. His years of
experience at Coopservice meant that he knew the business inside and out, and
he was instrumental in the process of cross-checking and validating business
information.

In researching this book, the authors often asked questions about “Aha!
moments” experienced by the end-user organization—in other words, about events

The CIM is the application;
the PIM is its projection in
terms of IT artifacts

Abstract “paper” process
definitions were made
rigorous and formal

“Aha!” moments

MDA changes both
organizational structure
and responsibilities
associated with

job function

57

1
3 : Organizational Development
1

that caused end users to understand an important benefit of MDA they had not
realized before. For the Pant@ project, two such examples were provided.

One had to do with the first time the team provided features in the testing
environment. The network manager had been very concerned about the usage
of the HTTP protocol encoding. Two people worked for a couple of weeks to
address the network manager’s requirements in the matter, and were able to fulfill
the requirements without changing a single line of functional code. The network
manager was very much impressed.

The second “Aha! moment” had to do with the first time the team modified a
process using the BPM console. They were able to dynamically change a threshold
condition to say, in effect, “If the project is under €100,000, we are not interested
in it.” People working on the application were amazed that the application’s
behavior could be changed on the fly in that way.

ORGANIZATIONAL DEVELOPMENT

Although organizational change was not a goal of the original project, exposure
to the MDA development process resulted in a significantly changed organization.
This is a common occurrence in MDA projects, and Soluta.net had informed
Coopservice that such changes were likely.

In the past, Coopservice employed only a very small IT staff for infrastructure
maintenance. They did not have an internal team dedicated to software develop-
ment and instead outsourced most of that function. But because of their desire
to maintain strategic control over their architecture, the IT organization had to
change to match its new responsibilities.

For example, there was a need to employ new types of analysts. Most IT
organizations still have the classic “analyst/developer,” and Coopservice was no
exception. Coopservice COBOL analysts/developers had a good understanding of
the business but they had to learn how to maintain the code in an MDA-based
system.

An MDA project requires analysts who can provide computable UML models,
rather than just functional documentation. And as yet there are not many pure
MDA developers available for hire. The project addressed these issues in two ways:
through bottom-up training of classical developers to become MDA developers
and through top-down training of classical analysts to be MDA analysts. So, the
Pant@ project created the organization shown in Figure 3.9.

The Coopservice IT team has been completely restructured as a result of the
Pant@ project, and its structure borrows heavily from the Pant@ project’s organi-
zation. Coopservice IT now has a software factory consisting of three teams: a CIM
team, a PIM team, and testers (plus a small team for maintenance). The people in

58

SOLUTA.NET/COOPSERVICE CASE STUDY

Enterprise
Architect
Functional Platform
Architect Architect
MDA Platform
Analigy Developer J Developer

FIGURE 3.9 Project team organization.

these groups are more focused and organized than before. Whereas the previous
organization was almost completely flat, there is much more specialization in the

new organization. The structure and operation of the software factory is illustrated

in Figure 3.10.

Project Coordination

Functional
Architecture

Technical
Architecture

Domain Experts

« Component Analysis...........-

* Component Model
* Feature Catalogue

Component Driven

Iteration n-1

Use Case Driven

[+

CIM Analysis

PIM Design

PIM Development

Test Execution| | Deploy

Test Cases creation

Development
(PS)

FIGURE 3.10 Software factory process.

The PIM proves to be a
valuable and reusable
strategic asset

Business process
automation improves
accuracy, agility, and

understanding

59

1
3 \ Results and Benefits
1

RESULTS AND BENEFITS

One of the major software life-cycle benefits realized by the Pant@ project was
the reuse of the PIM across architectural styles. The first release used the default
architectural style of Finantix Studio, whereas a customized architectural style
was applied to the second release. This had the immediate benefit of allowing
the client to avoid complex and error-prone re-factoring of code, and it proved
that the PIM was a valuable and reusable strategic asset. In essence, the PSM and
its custom architectural style became additional strategic assets whose cost was
essentially zero.

In addition, the fact that the MDA approach decoupled the functional and
technical specifications of the system lessened the impact of IT turnover, as well
as making it much easier to adapt the system to future technology platforms. For
instance, the functionality that has already been developed benefited from the
introduction of the Rich Internet Application (RIA) based on AJAX. There was no
cost for functional re-factoring because it required only a new generation cartridge
provided by the tool vendor. We asked Walter Siri to give a specific example of
the business benefits of the Pant@ project. He described the use of Coopservice’s
new governance capability.

The best example has to do with tender management or tender negotiation. When
we begin to assemble the partners who deliver services within a large enterprise
contract, we post public tenders, to which our partners respond. These tenders might
be created by the Italian government, for example, or a large hospital, and they
describe the business parameters that determine a response. Once a partner responds
to a tender, Coopservice needs to decide which business unit is responsible for
this tender, and whether or not to continue the negotiation. This internal business
process is quite complex, and the automation of this process was included in the
first release of the governance layer.

Now that Coopservice has automated the negotiation and management of these
tenders, the business process executes much more quickly. Face-to-face meetings are
no longer required, and supplementary documentation about the service require-
ments can be provided to partners automatically. So, the process is both much faster
and much less prone to errors. And the business console lets us look at the process
itself and quickly understand whether it can be improved.

It was not unusual for companies in this industry to have defined their own
tender management process. But before this capability was provided to Coopservice
its process was described by way of PowerPoint slides. So, although this process was
well defined it was not automated or even connected to IT systems.

It was also difficult and time consuming to modify this process. Now this process
can be modified to support a particular partner very quickly—in seconds. And the
commercial process (that of signing service delivery contracts with partners) has
been separated from the process of managing these relationships.

60 SOLUTA.NET/COOPSERVICE CASE STUDY

The business advantage of this capability is significant. Fewer resources are needed
to carry out the process, and it all happens much more quickly. Where it typically
used to take a week to reach agreement on a tender it now takes only two days. This
is extremely important because tender offers have a deadline, and if Coopservice
does not respond in time the tender lapses.

In addition, the time saved in responding to a tender can be used to manage
the tender and the relationship with the partner. Coopservice has a large network of
partners in the delivery of their enterprise service solutions, but the key capability
in assembling these multipartner solutions—and winning the enterprise business—is
the ability to respond quickly to tenders from those partners.

This tender management capability has only recently gone into production, so
hard statistics on the business improvements are not yet available, but the most recent
release has allowed Coopservice to respond to all tenders that have been offered. In
the past, the slowness of the process typically resulted in failure to respond to 30%
of tenders.

The Pant@ project is ongoing, but the results so far have demonstrated signif-
icant improvements over traditional software development approaches. The team
estimated that over three years the analysis phase took only 20% more time
than typically required in the classical development process. But on the devel-
opment side they achieved a reduction of more than 80% in the time spent in
platform-specific coding—essentially because the MDA tool was already providing
a great part of the required PIM-to-PSM transformations.

Overall, the team estimated that the project would have taken 16.5 labor-years
of traditional software development. The project in fact required only 7.5 labor-
years (once MDA processes and tools were in place), resulting in a total reduction
of 53% and an estimated saving of 28% in elapsed time (the team estimated that
they could achieve a further 40% reduction in elapsed time in future projects now
that they are proficient in MDA techniques). Over three years, the estimated total
savings in cost was approximately €510.000.

CLIENT ASSESSMENT OF THE MDA
EXPERIENCE

Walter Siri was quite clear about what he originally found intriguing about
MDA: the separation of concerns (i.e., the ability to model and examine
the business separately from the technical details of the supporting system
or its development platform). What he found most impressive about MDA
was that it actually delivered on this promise. When we asked how MDA
changed the thinking patterns and behavior in the company and its employees,
he said:

61

1
3 : Client Assessment of the MDA Experience
1

MDA did not change the business vision of the company. But it does allow us to
fulfill our business requirements much faster and more efficiently than before.

We then asked, “If someone in a position like yours said they were thinking
of starting an MDA-based project, what advice would you give them?” His
answer was:

I would tell this person to first make an assessment of tools used in the company,
as well as IT assets such as legacy systems, and to track down the dependencies
between these systems. Then, try to optimize the integration of these applications
in order to improve business response time. MDA lets you think in terms of the
business viewpoint rather than the technology viewpoint, and you should take the
business viewpoint.

Walter Siri has a good sense of humor, too. When we asked, “If a nontechnical
person asked you what MDA is how would you answer?”, he said:

It is something that can allow you to do business without falling into a trench—or at
least warn you that you are about to fall into a trench.

TABLE 3.1 Project Profile: Coopservice Pant@ Project

Company/Organization Name: Coopservice.
Industry: Facilities management.
Size: €450M (estimated 2006 revenue).
Geographical reach/extent: Italy.

URL: www.coopservice.it

QSsp Name: Soluta.net.

Areas of experience/expertise: MDA Qualified Service
Provider, emphasizing the use of modeling in
defining software architectures; provider of
component-based software solutions, consulting
services, and technical leadership for distributed
enterprise applications.

Business Pain Points Dual goal of automating the transfer of delivery,
scheduling, and activity report information to and
from partners, and of creating inter-business
electronic community for the exchange of goods
and services.

(Continued)

62

SOLUTA.NET/COOPSERVICE CASE STUDY

TABLE 3.1 Project Profile: Coopservice Pant@ Project—Cont’d

Tools Used

Model-based Artifacts Created

Existing IT infrastructure consisted of 45 unrelated
applications spread across 5 major lines of business,
with each LOB supporting approximately 40 primary
use cases.

Applications used different implementation
technologies: IBM AS400, Microsoft .Net, and Java EJB.

Need to retain control over business models and
business processes as strategic assets and competitive
advantages.

JunoMDA (open source).

Finantix Studio.

CIM.
PIM.
PSM (code).

Business process models.

This page intentionally left blank

CHAPTER FOUR

SELECT BUSINESS
SOLUTIONS/AUSTRIAN
HEALTH AUTHORITY

An Austrian government social services agency incorporates MDA into its software development process in
order to integrate the IT infrastructure of its distributed suborganizations and to standardize and enforce
its technical architecture.

BACKGROUND

The Austrian Health Authority (Hauptverband) is the central organization of the
public social security (Soziale Sicherheit) organizations of Austria. Such public
companies are effectively government agencies that serve the good of the country,
much like the National Health Authority in the UK or the Social Security Admin-
istration in the United States.

Austria has a population of about 8 million people and a size of about 84,000
square kilometers, so their healthcare infrastructure is widely distributed, as are
the supporting information systems. The Hauptverband provides services in the
areas of methods, tools, and infrastructure to the 20+ members of the Austrian
Healthcare Association.

Select Business Solutions (SBS) is a leading international software company with
customers drawn from the Global 1000. SBS provides comprehensive solutions
consisting of pragmatic tools and services for business-critical IT software devel-
opment, deployment, management, information access, and enterprise reporting.
Headquartered in Boulder, Colorado, SBS operates sales offices throughout North
America and Europe in addition to a network of international distributors.

66 SELECT BUSINESS SOLUTIONS

The project to be undertaken by the Austrian Health Authority was called
Zentrale Partner Verwaltung (central partner administration) and involved the
creation of a web-based system to manage information about all of the parties with
which the organization does business, including doctors, employers, and insured
parties. The project itself required the cooperation of suppliers, contractors, and
internal teams from the various healthcare association suborganizations.

Hauptverband wanted to move its central infrastructure toward the Java/J2EE
platform, and to use a rigorous Java software development process that would
allow them to work more effectively with their internal teams, as well as with
outsourced suppliers and contractors. They want to standardize an architecture
and a development approach across the organization.

In the past, projects were based on a custom methodology, which originated
more than 10 years ago and has been adapted to specific projects from time to
time. Hauptverband was looking to incorporate new and more productive ways of
doing things. You could say that they are simply a forward-looking organization
that wants to use modern technology to better accomplish their goals.

They are trying to integrate the old with the new, and therefore they want
to leverage legacy systems. They needed to create an architecture that integrates
those legacy systems in a more flexible and agile way and therefore wanted to do
things such as “wrapping” legacy applications to provide service-based access to
legacy functions.

In essence, they are creating a scalable architecture that allows new technologies
to coexist with old and that provides a clear path on which to move forward.
They chose the Zentrale Partner Verwaltung (ZPV) project to test the SBS MDA
approach to see whether that would help them achieve these goals.

WHY HAUPTVERBAND CHOSE AN MDA
APPROACH AND WHAT THEY HOPED
TO ACHIEVE

Hauptverband’s selection of an MDA approach was mainly a side effect of their
relationship with SBS. Hauptverband had been using SBS tools for more than a
decade. Hauptverband became aware of MDA on their own (that is, apart from
their relationship with SBS), and they realized that MDA might provide the type
of project methodology they needed to achieve their goals of architectural and
development consistency, use of best practices, and high productivity. Due to their
long-standing relationship with SBS, Hauptverband engaged SBS in 2000 to help
them better understand SBS’s MDA product offerings.

In 2004, SBS demonstrated how their approach and tool set could help
Hauptverband realize some of their architectural ideals and aspirations. Hauptver-
band evaluated this proposed MDA solution, as well as SBS’s ability to provide

Hauptverband wanted a
more rigorous
development process and
a standardized approach
to architecture

SBS is selected because
of their MDA tooling and
proven professional
services expertise

An intense focus on their
original business goals,
and an almost stealthy

approach to the adoption

of MDA

1
4 X Why Hauptverband Chose an MDA 67
1

professional services in support of this project, and chose SBS to help them
develop it.

A significant driver of this decision was the ability of SBS’s MDA tools (specifi-
cally, Select Component Architect) to generate a variety of implementation artifacts
from a PSM, and to support Hauptverband’s higher-level architectural and orga-
nizational goals. Hauptverband wanted to formalize a model-driven approach to
software development in order to increase productivity in development activities,
to enforce architectural standards and best practices for the J2EE platform, and to
increase reuse of artifacts in other projects.

They hoped that the use of UML models that reflect problem and solution
domains, and MDA’s ability to synchronize these models, would increase their
ability to reuse and maintain intellectual property. They also hoped that the use
of UML would ensure consistent communication flow between teams.

Finally, they expected that the ability of SBS tools to capture and enforce
their architectural, coding, and development process standards would increase
conformance across projects. Use of this tooling was also expected to increase
productivity in the modeling tasks (and artifact generation) associated with
Struts, the open-source Spring Framework, EJBs, and Hibernate data persistency
mappings.

The biggest challenges faced by Hauptverband included the heterogeneous IT
landscape, and distributed IT management, necessitated by the 20+ suborganiza-
tions involved in social security and healthcare activities across Austria. Different
mainframes and transaction monitors are used by the various suborganizations,
and decisions about IT infrastructure are decentralized.

At this point in some of our case studies, we have described the phenomenon
of “expanding goals” as organizations become more familiar with what can be
achieved with MDA. And although Hauptverband was pleasantly surprised by
the relative ease with which their MDA-based development process could handle
changes, and with the productivity increases they realized—both capabilities were
beyond their original expectations—their project goals did not expand as a result.

All of our case study participants chose MDA for business reasons, and all have
been exceedingly pragmatic about the adoption and use of MDA. But Hauptver-
band’s intense focus on achieving their original business goals—they expect the
project to deliver a functionally complete high-performance software application
on time and at budget—takes this pragmatism to a new level.

Although they were willing to discuss their general hopes and expectations for
using MDA in different ways, and in future projects, they simply would not talk
about any firm plans in these areas until this project is complete and the actual
results are tallied. It is also interesting to note that Hauptverband, like the State of
Ohio Job and Family Services organization, took almost a stealthy approach to the
introduction of MDA, at least outside the project team itself.

68 SELECT BUSINESS SOLUTIONS

Requirements and Specification
PIM
Java Architecture Defined:

trut:
l Apply Patterns SETBS
Hibernate

Multiple PSM models
{Application User Interface]

@

{ Business Services and Components}

Generated:
Struts Scripts

Session
Business Entities
Data Access Classes
Hibernate Scripts

FIGURE 4.1 PSM transformation and artifact generation.

HOW MDA WAS USED

Business and software analysts from both Hauptverband and SBS worked to create
a PIM, or logical analysis model, using the SBS Select Component Architect tool. In
this case, the Hauptverband personnel on the project team already had considerable
previous experience in architecture and UML modeling.

As Figure 4.1 shows, the PIM was transformed to a PSM for the target J2EE
platform, and the PSM incorporated the desired architectural patterns so that
they could be applied consistently throughout the application. Implementation
artifacts (including Java code and Hibernate scripts) were then generated from
the PSM.

We asked Barry Maybank, Professional Services Manager at SBS, to confirm that
the modeling effort began with a PIM rather than a CIM. His response was:

No, we did not [create a CIM], and this was purely a matter of pragmatics. We
began with the Platform-Independent Model. In fact, they had other models in place
from previous work, and some of those models went straight into the PSM. But the
work was essentially a matter of doing a PIM and then transforming that logical
model into the physical PSM.

Another useful change to the Hauptverband development process was the
notion of an iterative/incremental approach. We asked Uta Terlinden, Technical

The modeling effort begins
with PIM, not CIM

1 1
4 ' Process and Tools ' 69
1 1

Manager at SBS, whether modeling helped Hauptverband tighten up their require-
ments specification. She answered:

Yes, it did, because the old process they used for gathering requirements (which
could be characterized as structured design) is not really suitable for a UML-based
project. The changes that we've introduced into the process include the incremental
approach, and that helped.

In addition, MDA had an important effect on Hauptverband’s technical archi-
tecture, which we discovered when we asked about the gathering of requirements
and communication between the business and IT communities in light of the fact
that the project did not create a CIM as a “pure” business model. Uta answered:

It is true that no CIM was done. The requirements were gathered using a different
SBS product, in the context of a bigger project that was started earlier and was then
canceled.

So, the analysis phase for that project was done with a different tool. Later, they
began using an MDA approach after a new technical architecture was agreed upon
for the entire Hauptverband.

They had an earlier technical architecture, which was quite “heavyweight”—to
the extent that it was nearly impossible for specialists to roll out this technical
architecture for other projects. Essentially, the architecture had too many degrees of
freedom. The MDA approach was appreciated by the customer very much, because
they saw it as an opportunity to roll out a new technical architecture—for the first
time—to the entire organization.

In response, we suggested that this sounded as though MDA constrained the
technical architecture in some way (such that they had more guidance in how
they implemented it) and asked Uta to expand on this.

A new technical Yes, they had started with a PIM and a PSM, and they had a second team that was

architecture is rolled responsible for implementation of the technical architecture. They were using an

out-in which the correct Oracle database, Struts, and Hibernate for relational mapping. It wasn’t clear how
use of patterns is enforced they would deal with the rules for the technical implementation.

There was a team responsible for the core definitions. They had been rolled out
and tested during the project, and the technical team was able to enforce the use of
the correct technical constructs. This made it much easier to implement the technical
architecture.

PROCESS AND TOOLS

The ZPV project began near the end of 2004 with a training session conducted
by SBS. The training included a feasibility study and management seminars to

70 SELECT BUSINESS SOLUTIONS

explain the potential benefits of MDA. When the decision was made to proceed,
SBS began training project practitioners in the course of the project itself.

A one-week workshop introduced the MDA approach to the project team. The
aim of this workshop was to present the initial templates for model transformation,
and to demonstrate the generation of code. As a training exercise, the group was
successfully shown how to further develop templates. In that single week, the
group defined the rules for transformation from PIM to PSM, and from PSM to
code. For example, during this workshop they developed a template for mapping
from activity diagrams to Struts code and interactions. Uta Terlinden of SBS led
this workshop and described it in this way:

They were familiar with UML and had also done Struts projects before, so they
were very familiar with the target technical environment. After they understood our
approach—our metamodel, which is very important when using Struts—it was very
easy for them to write these PIM-to-PSM and PSM-to-code templates.

Uta said that since the workshop, she has visited the site once or twice and
has provided some advice by telephone, but “the project now runs by itself.”
Hauptverband has been using a well-defined methodology since about 1994. This
methodology is mandatory and is tailored to their specific needs, and it is now
being enhanced with MDA tools and techniques (such as the incremental/iterative
approach). We asked Barry Maybank of SBS to characterize Hauptverband’s current
development methodology. He answered:

It is definitely an incremental and iterative approach, as are many software devel-
opment methodologies. The client defines increments as a unit of delivery, and
they are seeing that MDA supports this incremental approach. It is not simply about
“top-down,” it is about both top-down and bottom-up, about defining units of
work, and being able to drive transformations based on those units of work.

So, MDA certainly supports this. For example, we were defining details in various
artifacts for only a limited scope of the project, as defined by the increments (that
is, involving a limited number of use cases).

But the model in its entirety was of course much bigger than that. MDA certainly
helped in the handoff of these increments from analyst to designer, and in doing
refinements between iterations. This of course fits in with the agile notion of
development as well.

At mention of the word agile we asked Barry whether he agreed with other
case study participants who told us that MDA and MDA tooling fit well with agile
methodologies—precisely because the quick generation of tedious and error-prone
low-level code allows developers to concentrate on developing business logic and
algorithms. He answered:

I would agree with that completely. This customer is working with large teams, and
with external contractors. So, although they want to be agile they also want to be

“... the project now runs by
itself.”

MDA plus agile software
methodologies....

... provide the benefits of
agility with better practices
and greater control

SBS tools specify and
enforce architectural
patterns and general

coding practices, including
variants

71

1
4 ' Process and Tools
1

in control of things. I think the MDA approach satisfies both those objectives. With
automated code generation, they can get the right level of control over productivity
and best practices—by exploiting MDA’s separation of concerns and by applying
patterns, which takes them right down to the code level.

That gives them a quick approach to their code base, and of course it can
quickly change things in them. The ability to control the transformation of models
means that they can control their implementation artifacts. This fits with the level
of rigor they want, as well as the agility and productivity they want from an agile
approach. So, I think MDA and agile development are complementary rather than in
opposition.

I find that some clients have XP-style teams. This works very well for small teams
where everyone knows what is happening. Communication is so efficient that things
usually work out. But most of our clients realize that this is not always the case. They
have much larger teams, distributed teams, and partially outsourced teams. They
want to retain the agility benefits but also get greater control and better practices.
So, the Austrian Health Service is using benefits of the MDA approach to satisfy all
those objectives.

Recall that the purpose of revamping the Hauptverband technical archi-
tecture was to help coordinate efforts across all suborganizations of the
Austrian Health Authority. The previous standard architecture (although clearly
defined) was somewhat outdated, and this became more and more limiting
for new projects. Inconsistency in project implementations caused many prob-
lems for Hauptverband, which they now believe can be addressed by an MDA
approach.

The SBS tooling lets them specify—and enforce—architectural patterns and coding
practices, but the overall process goes beyond implementation of the technical
architecture. It also describes the way a project works; for example, by specifying
the deliverables and the way in which those deliverables are mapped into the next
phase.

The process also supports variants in project deliverables, and these variants
can be described precisely in the transformation rules. Thus, Hauptverband has a
metamodel of the architecture that is always consistent and that is enforced by the
tooling and the related process descriptions.

And if a project needs to do something special, they can simply use the tool
to tweak the process in a well-defined way, rather than abandoning the process
completely. In this way, they can get the result they need without leaving the
overall architectural guidelines.

Figure 4.2 illustrates a sample architectural artifact. Analysts developed these
business entities in a PIM, and an MDA transformation generated business entities,
interfaces, data access objects, Hibernate mappings, and approximately 50% of
the implementation code (including inline comments).

The ZPV project went through project definition, requirements analysis,
product design, and product development stages. The functionality was provided

72 SELECT BUSINESS SOLUTIONS

T
«component» Busihess Controllers g_i__| 14.2 create
-= —_—
«Business Controller» pse:DTOPartnersu
chergebnis {new}
—_—
14.3.1 addPartnerDTO(Partner DTO Factory.create (IPartner partner))

[
\ 14.3%[i:=1..n] partner := pList.getNext()

l 15 pListe := findePartnerFamilienname(psb.getFamilienname())

1
«component» DataAccess E 16 create

«Data Access Object >
interface» pListe:List {new}
:IDAO Partner

A

«component» |Business Entities E‘

«Business Entity Interface»
:IPartner

«Data Access Object»

:DAOPartner

«Business Entity»
:Partner

FIGURE 4.2 Sample architecture artifact.

in three incremental releases. The chosen tooling is SBS’s Select Component Archi-
tect and the Select Solution for MDA Code Generation. Custom scripts are used to
generate code as well as other types of implementation artifacts, such as Hibernate
relational mapping logic.

DIVISION OF LABOR

The total size of the ZPV project is estimated to be 6,900 labor-days, with incre-
mental deliveries spanning 2005 to 2007 and a team consisting of one project
manager, one architect, six analyst/designers, and seven software developers.

At the beginning of the project, a one-day workshop was attended by managers,
architects, and analyst/designers. Its purpose was to define the concepts, principles,
benefits, and issues that surrounded the adoption of the MDA-based process.

Practitioners are
immediately taught to
create MDA templates for
Java architectural patterns

Hauptverband personnel
are responsible for more
than 80% to 90% of
project work

73

1
4 X Project Experience
1

A three-day workshop was then conducted for all practitioners, to prove the
concepts and to teach by example how Java architectural concepts are implemented
as MDA templates. Project initiation and rollout activities for SBS tooling took three
to five days over a four-week period. The architecture and design and activities
included SBS’s facilitation of the continuing effort to identify and define MDA
pattern templates and transformations, with the goal of ensuring that the new
MDA process was “fit for purpose” in implementing the new architecture and
process.

This was followed by a one-week period in which SBS coached all participants
on the process and identified and fixed any problems discovered in templates and
transformations developed to that point. An ongoing activity by architects and
process owners is the capture of recommended strategic approaches and solutions,
so that Hauptverband can consolidate lessons learned on this project into best
practices for the future.

The remarkable thing about the division of labor in this project is the large
proportion of work done by Hauptverband. SBS provided initial training about
the capabilities, benefits, and use of MDA. Hauptverband then implemented MDA
on the project. SBS continues to provide review and guidance on the project,
recommending best practice usage of MDA within the project environment and
architecture, but as Uta Terlinden said this review and guidance now amounts to
an occasional telephone call.

For the workshop and the initial project stages, three people from SBS and
10 people from Hauptverband were involved. In the project itself, there were
three people from SBS and 12 people from Hauptverband (including external
consultants), plus an additional Hauptverband team of three who were responsible
for the technical architecture and for implementation of transformation rules.
Lorenz Lercher, Chief Technical Architect at the ZPV Project of the Austrian Health
Association, described the division of labor in this way:

SBS provided significant resources at the beginning of the project, in order to give
us a quick start and to bring us up to speed on the use of the tools. After that, we
were able to do most things on our own and that is the case today. Overall, I would
say that SBS did between ten percent and twenty percent of the work during the
start-up phase and introduction of their MDA tooling.

PROJECT EXPERIENCE

As in the case of the Inherit/Harris case study (Chapter Five), this project was not
a “pilot” in the traditional sense, because it implements critical functionality for
Hauptverband and most of its suborganizations—that of replacing distributed and
redundant data stores with a central one, and migrating and unifying business
logic on a common platform. But it is a pilot in the sense that the level of success
of this project and methodology will drive the application of MDA in future

74 SELECT BUSINESS SOLUTIONS

projects. Lorenz Lercher responded in this way to our question about the specific
data-related goals of the project:

It is about managing the data. We have high-level services that can be used to
access the data, so there is no direct access to the underlying data for other systems.
Through those services, the system manages the data to ensure consistency.

The services also embody the business rules, so that by using the services and the
existing interfaces data can be entered, used, and managed by all the applications
and systems that have already been written.

There are two access modes. We provide real-time access during the day, so
that administrators and clerks can ask questions of clients, and get answers from the
system and update data, etc. And at night, batch applications run against the data;
for example, for mass changes.

We suggested that creating an architecture that allows an application to support
both complex batch and online transactions is no small problem, and asked how
MDA helped sort out the architectural issues involved. He answered:

The main use of MDA in this area was to ensure that, as far as possible, the same
business logic was applied in both kinds of access—for both online access and a batch
fetch. The main issue for the batch access is always performance. Still, we tried to
have as much business logic in common as possible for both tasks by changing only
the technical aspects of the data access; for example, transaction boundaries.

The project is not finished yet, so if it turns out that there are performance
problems in batch access we will do performance optimizations for data access and
will try not to duplicate logic. We want the same system for batch and online access.

Barry Maybank, Professional Services Manager at SBS, was involved in this
interview and added the following observations and question to the discussion.

When I was in Austria with you folks, I was witnessing MDA transformations to
create some of the application framework code. And I witnessed some of the EJBs
and session beans being generated from a logical model. And then, likewise, in
the data access layer using Hibernate, and you were using MDA to transform to
Hibernate scripts. Would that be an example of the kind of architectural patterns
that were enforced and automated with MDA?

From what I saw, it was a very well-architected system, delivering services to
one or more applications and having very well-defined sets of responsibility to solve
a complex problem in conjunction with the use of other technologies. And you
seemed to use MDA to enforce those architectural principles, as well as providing
the glue logic.

Lorenz responded:

Yes, that is true. We tried to pull out the business logic and separate business logic
issues and technical issues. So, for example, transactions are not part of the business

MDA clarifies architectural
issues related to data
access in both real-time
and batch modes

MDA relieves developers of
the “glue code” chore and
reduces duplicate
business logic

MDA’s effect on
deployment and
maintenance

75

1
4 X Project Experience
1

logic proper because in our use cases transactions simply start when the back end is
called and stop when the back-end service is finished.

In the user interface, which is a web application, the steps of the business process
are managed-—all other business logic is called as services from the back end. In
batch jobs, the business logic in the back end is reused; only technical aspects like
transaction boundaries are different.

The technical architecture we have is very well suited for reuse in combination
with MDA. It supports the separation of glue code and business logic. So, generally
this is a very important issue for us—on the one hand not having to write the glue
code by hand, and on the other hand not having to duplicate logic. Instead, we
reuse code automatically thanks to code generation and the use of frameworks like
Spring.

We often ask case study participants the very general question of whether
MDA improved communication. We asked Lorenz Lercher whether MDA artifacts
were exposed to any of the suborganizations that make up the Austrian Health
Association, and whether any of those suborganizations were involved in the MDA
aspects of the project.

He said that although those suborganizations see specifications from the project,
and are kept officially informed of results, this information is limited to prototypes
of the application, plus paper reports based on parts of the model and other
generated artifacts—much the same kind of information that has been provided
them in the past.

We then asked whether MDA made it easier to generate and deliver this
information to them, and whether this affected their ability to verify the quality
of the implementation. He responded:

I'm sure that it helped, but I have to say that they had similar information in previous
projects before MDA. So MDA is a good way to do this, but there were paper reports
before.

We were able to generate that information from the model. We did some
customizing of the tool in order to accomplish that, so I think that at least for this
project it is easier to get information out in those reports used by this group.

We also asked Lorenz whether he thought MDA would result in any improvement
in the deployment or maintenance characteristics of the new application. He said:

With respect to maintenance, I think that that is a function of the specific changes
that are required over the course of the application’s lifetime. MDA is a methodology
very well suited to this, because the changes can be specified at a high level, and it
is clear how the change will manifest itself in the code.

Most of the coding details are fixed as a result of the business logic being
specified. So, for maintenance MDA is a very good thing because the patterns in use
are always the same and are used in the same way. So, if you see a pattern in one
place you can be sure the pattern is used the same way throughout the application.

76 SELECT BUSINESS SOLUTIONS

Of course, developers have always tried to encourage this kind of uniformity in
usage, but in practice there were always slight differences. And this often caused
problems. I think this is the greatest MDA advantage in terms of maintenance.

I think deployment is really separate from MDA. It depends on the patterns, in the
background, that are used in the architecture. You use MDA to generate new code
and if it is a good architecture that makes deployment easier. But this is independent
of the technology used to generate for a specific architecture. If the architecture is
well designed then deployment will be easier. But in terms of dealing with changes
MDA is very important.

RESULTS AND BENEFITS

The results of this project cannot be completely described yet because the project
is ongoing. But all concerned are happy with the results so far, which include the
following.

« Enforcement of architecture and standards while increasing productivity in
both the design and development effort.

 Due to the automation provided by SBS tooling, the overall quality of the
development life cycle has improved, resulting in less rework and
consequently shorter development cycles.

* Model and implementation are synchronized, which provides much better
traceability for considering and measuring the impact of changes.

The project has thus far hit all key development milestones, even those near the
beginning of the project (March through April of 2005), where the learning curve
of participants had to be accommodated. The model-driven approach has increased
quality throughout the life cycle thanks to templates and transformations and has
improved the transformation between PIM and PSM, resulting in the automatic
generation of more than 50% of the Java implementation code (including inline
documentation). Thus, MDA has allowed them to formalize the architecture and
automate much of its enforcement.

Although the benefits of MDA as a communication medium have not yet
spread to the business community or to the suborganizations of the Austrian
Health Service, the SBS contingent believes that MDA did improve communication
between the analysts and designers. As Barry Maybank put it:

As is the case for many of our clients, some of the straight UML models became
too abstract and “too logical” for the designers to find much value in them, or
they became “too physical” in nature and therefore became incomprehensible to the
analysts.

So, there was a semantic mismatch between these two teams, and that is certainly
one of the reasons why Hauptverband felt that MDA was the right approach for

All key development
milestones have been
reached on time

Chances of MDA success
are increased in a
forward-looking
organization

77

1
4 ' Client Assessment of the MDA Experience
1

them: the fact that they could (first) separate out those abstractions to the benefit
of the longevity of project and solution and (second) express their best practices in
terms of architectural design patterns and apply them in the transformation between
the PIM and PSM.

So, that was a key driver for them, and I believe they are realizing that benefit.
Certainly within the project team that is true.

When we asked Uta Terlinden about the more intangible benefits of MDA in
the context of this project, she said:

The first benefit was better communication between the architecture team and the
project team. Before, the project team was not really following the instructions about
the technical implementation. In some cases it was because they did not want to
follow such strict rules, and in other cases there were simply misunderstandings.

But this project demonstrated clearly how the technical architecture should be
used, as well as the mapping between PIM and PSM. That made the technical
architecture much more pure.

It also meant that people who were new to the project were able to use these
templates to gain a deeper understanding of the technical architecture, and that saved
a lot of time. They were able to take part in the project much sooner than originally
estimated.

Uta echoed other participants when she said that an important lesson was that
generating implementation artifacts from a more abstract business-centric model
made it easier to identify and consistently implement architectural patterns that
appear many times in the project.

But the successful application of MDA was due in large part to the forward
thinkers at Hauptverband. When we asked Uta whether there was an event or
episode that made her believe line developers had “gotten it” with respect to MDA
she said:

The fact that they were not in a rush to get to “cutting code” and that they realized
that investment in building the MDA templates up front would give them quality
and productivity benefits later.

CLIENT ASSESSMENT OF THE MDA
EXPERIENCE

As we mentioned previously, the Austrian Health Association’s Hauptverband
is very conservative in their evaluation of MDA because the project is not yet
finished. We also mentioned that Hauptverband, like Ohio’s Job and Family
Services organization, used what could be described as a “stealth” approach to
MDA introduction. Lorenz Lercher, Chief Technical Architect in the ZPV project,

78 SELECT BUSINESS SOLUTIONS

mentioned the reason for that stealthy approach in answer to our question about
whether there was any resistance to the introduction of MDA techniques.

No, but that was caused in part by the fact that we did not actively promulgate
MDA, at least not outside the project. The communications undertaken with people
outside the project didn’t change. The advantage of not promulgating is that people
did not say, “I don’t like these changes.”

We asked Lorenz whether there was any confusion or learning difficulty within
the project. He responded:

Let me think about this. I think it is important that the people who worked on
architecture, and were in control of the process, that they have a clear idea of what it
means. I did not see more difficulties with this project than with any similar project.

I think the relationship between the different artifacts, at different levels, is clearer
with MDA, and the clarity of these relationships may make it easier. So, while there
might be some difficulties in terms of where to put information (for example,
sometimes there might be too much technical detail at too high a level), this is a
problem that we've had in the past, so these are typical problems not MDA problems.

The relationship between the different levels is clearer now, because it is clearly
defined in terms of how to transform from one to another. If you do this by hand,
it is possible to violate those relationships and cause confusion. So, in this regard
it is easier for people to see what belongs in one model versus another, and how
these models relate to one another.

The SBS team noted some important points about Hauptverband’s adoption of
MDA: they used MDA to improve their existing development process rather than
replace it. And the fact that MDA made that existing process smoother and easier—
without introducing a steep learning curve or significant cultural change—simply
meant that MDA did not get in the way and that the organization did not need
to be overly aware that they were doing an MDA project. When we asked Uta
Terlinden, Technical Manager at SBS, about her impression of Hauptverband’s
awareness and acceptance of MDA she said:

The people who are in charge of standardization of processes are certainly aware of
MDA. The rest of the company is not really aware of it. They know that there is a
pilot project that uses this new process, and that it uses a component architecture
and UML tools, but they’re not really aware of MDA.

We then asked her whether MDA awareness had reached the programmer level,
and if so whether they had any concerns about it. She answered:

Yes, they are aware of it. At first they were a little bit concerned because they had
to follow strict rules that were not in place before. But that has changed as they
see their productivity and quality improve, and as they find they can spend more

MDA improved the process
without a steep learning
curve or significant cultural
change

“...within 15 minutes they
essentially understood
everything...”

79

1
4 ' Client Assessment of the MDA Experience
1

time implementing business rules and architecture. But at first they were not really
pleased about it, because of employment concerns.

But the people responsible for standardization of transformation rules and code
generation are really happy about MDA. The team leader, who was responsible for
architecture and process, is really happy with the MDA solution because he can
ensure that the rules are followed by these different teams.

The person I spoke with first was the team leader responsible for implementing
standards across the organization. He was searching for a way to develop standards
and to bring them into the company, and MDA fit perfectly.

When we introduced our MDA approach to the project team, they became
convinced that it would help. They had a very short amount of time to implement
this project. The project leader was easy to convince.

When I introduced MDA to them, within 15 minutes they essentially understood
everything, and were saying things like, “Okay, it looks like this will solve our
problems. Let’s try it!”

It was unbelievable. Normally, it takes time to convince someone that MDA will
help. We met in Vienna with three or four people, and after some conversation it
was clear to them within minutes that our solution was a perfect match for their
problems. And they had not even seen our tools yet! I have never before seen that
happen so fast.

We asked Lorenz Lercher to characterize any differences he saw between
their pre-MDA methodology and the current one, and whether he could think
of any “Aha!” moments the organization experienced during this project. He

replied:
“MDA... just summarizes At the moment, MDA is used in the project to make it successful. It was not the
the longtime experience first order of business to make MDA more useful in the agency. We just wanted a
that many of us have had.” successful project, and this is a big project for us.

The things we learn during the development of this project will be put into our
methodology, and incorporated into our best practices. But at the moment this has
not yet been done. So, if we are successful, and I think we will be though we’re not
yet finished, then MDA will be used to enhance our methodology.

But it was not a goal of the project to adopt MDA throughout the organization.
We simply wanted a methodology that would result in a successful project. After
that happens, it is almost certain that what we learn will be applied elsewhere.

I am personally very convinced that MDA is a good approach. It just summarizes
the longtime experience that many of us have had. It provides a language to express
what we have been trying to do all these years.

So, MDA is a very good methodology for projects, to separate business issues
from technical issues and to avoid redundancy of logic and associated problems.

I think that this is the way people ought to think about the processes associated
with a project. And when you have to produce software artifacts, code generation
is very important. Code generation changes how easy it is to make changes. You
can change something at a high level in requirements and it propagates down to the
code.

80 SELECT BUSINESS SOLUTIONS

The good thing about MDA is that this works very well, because many things “MDA makes you really
can be generated, and it is clear where the requirements came from for generated think about the process of
code. MDA makes you really think about the process of software development and software development and
I think that is a good thing. | think that is a good

thing”

We told Lorenz that we understood his unwillingness to predict future usage
of MDA until this project is complete. But we did ask him about his opinions on
these matters, based on what he had seen so far, and whether he was hopeful that
they would succeed and that they would be able to reuse what has been learned
on other projects. He replied:

Yes, surely. I'm sure that MDA was good for this project and that we will reuse what
we have done here with this methodology. I think we will try to integrate what
we have learned in our own in-house process, which we have been developing for
about 10 years now. We need to capture these things and write them down so that
everyone does things the same way. But I'm sure we will use these things in our
next project.

We asked Lorenz two final questions. The first was what his advice would be
to someone who said they were considering an MDA project. He said:

I would say to them that MDA is certainly a good idea. The thinking behind it is
very good. Because it is widely used in different projects, I would encourage them
to use MDA.
And I would always say that you have to pay attention to the tools. They will have
to use new tools. Whenever you change methodologies or technologies, you will
have to learn new details about using tools. I would congratulate them on deciding
to use MDA because I am really convinced that this is the way to do enterprise-level “I am really convinced that
development projects. this is the way to do
enterprise level

The second question was, if a nontechnical person asked you “What is MDA?”, development projects”

what would you tell them?

I haven’t thought about this much. But I would probably say it is something like
having a map of the world, or of a country, with multiple levels so you can zoom
in to see more details. And so you have two or three levels of maps, and MDA is
about the relationship between the overall map, and then painting in the details as
you move down the levels.

Client Assessment of the MDA Experience

81

TABLE 4.1 Project
Adminstration Project

Profile: Austrian Health Authority Central Partner

Company/Organization

QsP

Business Pain Points

Tools Used

Model-based Artifacts
Created

Name: Austrian Health Authority (Hauptverband).

Industry/function: Central organization of the public “social
security” (Soziale Sicherheit) suborganizations of Austria.
Size: Support for Austria’s “social security” agencies,
covering a population of more than 8 million people across
84,000 square kilometers.

Geographical reach/extent: Austria.

URL: n/a.

Name: Select Business Solutions.

Areas of experience/expertise: MDA Qualified Service Provider,
supplying comprehensive solutions for business-critical IT
software development, deployment, management,
information access, and enterprise reporting.

URL: www.selectbs.com

The need to move to Hauptverband’s central IT
infrastructure toward the Java/J2EE platform, and to
use a rigorous Java software development.

The desire to standardize on an architecture and a
development approach across the organization and its
suborganizations.

The need for an architecture that integrates legacy systems
in a flexible and agile way, allowing service-based access to
legacy functions.

The need for a scalable architecture that allows new
technologies to coexist with old, and that provides a clear
path upon which to move forward.

SBS Select Component Architect.

PIM.
PSM.

CHAPTER FIVE

INHERIT/HARRIS

CASE STUDY:
TELECOMMUNICATIONS
INDUSTRY

A telecom/IT company uses MDA to improve and speed up the process by which its product can be
tailored to the needs of individual customers. It plans to provide its downstream customers with both the
models and the know-how to tailor the application to fit their own requirements.

BACKGROUND

Harris Corporation is an international communications and IT company, serving
government and commercial markets in more than 150 countries. Headquartered
in Melbourne, Florida, Harris has annual sales of $3 billion and employs more
than 13,400 worldwide, including 5,500 engineers and scientists.

Harris provides “assured communications” and information technology to
government and commercial customers, with an emphasis on high levels of perfor-
mance and reliability. Harris views its ability to innovate, integrate, and manage
advanced communication technology on behalf of customers as a key competitive
advantage.

Inherit, LLC, is an IT consulting firm that concentrates on empowering orga-
nizations in the adoption of MDA. This focus makes use of their considerable
expertise in project management, development methodology, and software archi-
tecture. Inherit is an MDA Qualified Service Provider and offers a suite of consulting
services, including a rapid systems development approach for both custom-built
applications and the integration of existing systems, to create enterprise solutions.

83

84 INHERIT/HARRIS CASE STUDY

Harris wanted to change an existing telecommunications management appli-
cation into one that could be tailored easily to meet the specific needs of various
customers. This effort became known as the Managed Telecom Service Enterprise
(MTSE) project and was funded from the Research and Development budget.

Harris knew that they had a lot of work to do, and were facing schedule
pressures. They recognized that they needed external assistance and decided to
outsource part of the project to help them stay on track. They looked for a
company that could support their IT needs and help them create a high-quality
business solution efficiently—that is, in a way that maximized the productivity of
Harris IT staff.

Harris has a very sophisticated software development organization. Their soft-
ware process conforms to the concepts of CMMI (Capability Maturity Model
Integration), and they have the discipline to follow the process faithfully. The
Harris team contains very good architects, engineers, and developers and they
have a great deal of experience in doing large-scale projects.

This broad experience prepared Harris to engage in MDA-based software
development—although they were perhaps not considering it for this project. They
did not demand MDA expertise of the vendors who competed for the outsourcing
contract. And Inherit, which won the business, did not market itself as an MDA
shop. However, Inherit had been developing its own MDA-based approach for
some time.

During the course of the project, a joint team of Harris and Inherit personnel
captured requirements in the form of use case diagrams and detailed use cases.
These use case artifacts were then used to develop additional UML models: class
models, sequence diagrams, and state diagrams. The analysis of these requirements
drove the creation of a PIM (Platform-Independent Model), which was then used
in tandem with transformation rules to create the PSM (Platform-Specific Model).
The transformation rules enforced conformance to Harris coding standards and
guidelines, which ensured a smooth integration of the target architecture with
Harris’s existing system.

The PIM was modified over several iterations and was then used to drive the
development of the PSM, which was in turn utilized to generate the code/text
model. The working application generated from the code model allowed the
business community to determine whether the requirements were valid, and
whether they had in fact been met. After each review, the PIM was modified
accordingly and the process was repeated.

The result was the development of a successful application that was delivered
on time and under budget. This success is in turn encouraging the adoption of
MDA-based software development into other parts of Harris Corporation.

Note that the illustrations in this case study are general depictions of a PIM, a
PSM, and sample output of the transformation from a PSM to text. Because of the
sensitive nature of the Harris application and its use in classified environments,

Harris needed to make its
telecom management
application more easily
customizable, while
maximizing the
productivity of their IT staff

Harris and Inherit captured
requirements in UML
models, analyzed these
requirements to create a
PIM, and then created a
PSM customized to
support Harris’s
architecture and software
development guidelines

Inherit presented MDA
concepts and tooling,
winning the business from
much larger-and
incumbent-software
competitors

1
5 : Why Harris Chose an MDA Approach 85
1

Harris understandably declined to provide any specific descriptions of the appli-
cation or its architecture.

WHY HARRIS CHOSE AN MDA APPROACH
AND WHAT THEY HOPED TO ACHIEVE

Harris felt that the tailorable telecommunications management application they
wanted to create was more a business challenge than a technical or IT challenge.
Like many enterprises, Harris has its own guidelines for software development
and architecture. The architecture they had in place was based on core J2EE design
patterns that supported the use of EJBs for the application server, Struts for the
web presentation layer, and Oracle and Microsoft SQL for the persistence.

Harris required that the new application conform to this architecture, but they
also wanted to be able to support deployment of the application in different
ways. Target deployments included an application service provider (ASP) model
(whereby they would host the application for customers) as well as a “black box”
(or turnkey) model, whereby the entire solution would be delivered to a client.

Harris asked several software vendors to consider providing a solution. Each
vendor spent a day with Harris. In the morning, Harris described the problem they
wanted solved, and in the afternoon the vendor described what their approach
would be in creating a solution.

Inherit is a small company, and was competing with some very large vendors.
Some of these companies had already provided software to Harris, and so these
large vendors were the software “incumbents.”

When it was Inherit’s turn, in the second half of the day they presented the
MDA concepts of PIMs, PSMs, and so on and then used their MDA Express tool
to demonstrate the generation of code. At that point, Harris saw that the Inherit
approach could solve the immediate problem—that of very quickly creating a
tailorable telecommunications management application. Harris also noted that the
MDA approach could give them a strategic competitive advantage going forward,
by giving their downstream customers the ability to use MDA artifacts and tech-
niques to tailor the application themselves.

The ability to help and support downstream customers in this way was particu-
larly important, because the Harris business unit responsible for the MTSE applica-
tion views other Harris divisions as customers and as channels for this product. This
was the point at which Harris began to notice the broader business value of MDA.

Inherit was not competing against other MDA vendors, and MDA per se was
neither an issue for Harris nor part of their design for this system. Yet, when
Inherit showed MDA to Harris Inherit won the contract. Harris recognized the
potential benefits in applying MDA to their product stream, and that in order to
achieve the described MDA benefits they would have to become self-sufficient in

86 INHERIT/HARRIS CASE STUDY

this technology. In fact, part of the contract negotiation was an arrangement for
Harris to license Inherit’'s MDA Express tool, which is not generally available for
purchase.

But it bears repeating that Inherit was brought in on the basis of a pure business
decision: Harris decided that Inherit could save them money by helping them
develop their target system quickly. Harris was looking for a partner that had expe-
rience with requirements gathering, modeling, and telecommunications. Inherit
made it to the bidders list because of their experience with telecommunications
and UML.

Rob Mitchell, principal and cofounder of Inherit, believes that what ultimately
closed the deal for them was the demonstration of their internal MDA Express tool.
During their afternoon presentation they used the tool to build a UML model, and
from that model they built a PIM, generated a PSM from that PIM, and generated
code from that PSM. Their generated code could be deployed seamlessly into the
application server Harris had chosen. And this prototype code was based on Struts
and EJBs, which was the target application environment Harris had chosen.

David Almeida of Harris had the role of program manager of the MTSE project.
When Almeida saw the MDA capabilities, he quickly realized they would help
productivity for this particular solution. But he also saw that his team and his
organization could incorporate MDA into their software development process—and
that they could use that capability to do just what Inherit was doing, which is
winning business by differentiating themselves from their competition.

Harris knew that they were going to build a solution to be sold to various clients
and that each client would require some level of customization, which Harris had
expected to have to do by hand. David Almeida realized that Harris could build
a core application with MDA to show to customers. Harris could then tailor the
models to reflect each customer’s needs and then generate a substantial part of
the custom application. They saw that as a significant competitive advantage.

We asked David Almeida specifically whether he anticipated the benefit of
applying MDA techniques for future business opportunities, in addition to those
that were on the table at the time. He said:

For sure. As a program manager, one of the things I look for is risk mitigation.
I saw a “big picture” in which MDA, and in particular our experience with Inherit,
as being a great risk mitigator for programs that have large software content.

Our vision was based on the 80/20 “Pareto principle.” If I could get them
to produce 80 percent of the low-level code—kind of the horsepower under the
hood—while I spend my effort, time, and resources focused on the domain of the
application (that is, specifying the requirements the application must meet to satisfy
my customers) then so much the better.

And I think that any program manager in the world who has budget and time
constraints, and is looking for ways to mitigate risk, can use MDA as a method that
allows them to identify and stay focused on that 20 percent of capabilities that really
satisfy their customers’ requirements.

MDA brought mitigation of
project risk, and the ability
to focus

more on customer
requirements than on
technical requirements

87

1
5 ' Challenges
1

Harris’s choice of Inherit The themes of risk management and increased focus on end-user requirements
as a partner was a
business decision, driven
by the capabilities]
and expertise D€ put it:

Inherit demonstrated

came up repeatedly in our conversations with David, although risk management
was the concern that originally drove the choice of Inherit as a project partner. As

Our challenge was driven by schedule. There were some opportunities that we were
pursuing, so it was a time-to-market issue. From a program management perspective,
when you are looking at budget and schedule issues and so on, one of the key things
that we were constrained to do was to achieve a production-quality capability in a
very short period of time.

We held a bidder’s conference and brought several vendors in. Most of those
who came in and presented were traditional “body shop” types. The most innovative
thing we saw was the Inherit MDA Express solution, because they not only brought
some domain expertise in telecommunications but they also, and in my mind more
importantly, brought a toolset that would allow us to achieve a high quantity of
code and a repeatable method (which also speaks to some level of quality), and they
were able to do that in a short period of time.

So, we issued them a subcontract [...] and we issued a tightly defined scope of
task orders. Our challenge was to produce as much high-quality code in as short
amount of time as possible, while meeting our budget constraints. That pretty much
sums it up.

Rob Mitchell of Inherit described the winning of the contract in this way:

“...the conversation Harris was considering bringing in other solution providers, and each of them was
shifted from ‘Why should given a full day with Harris. Their intention was to keep their reactions to these
we think you guys are presentations close and guarded, so that they wouldn’t give away their thoughts on

qualified to solve this
problem for us?’ to... ‘How
can we incorporate this
capability into

our products?”

how different presenters were doing.

But when we showed them how a well-structured, well-formulated MDA tool
could satisfy their needs we saw that they were very impressed with the capability.
The tone of the conversation shifted from “Why should we think you guys are
qualified to solve this problem for us?” to “How could we use this tool on other
projects?,” “How can we incorporate this capability into our products?,” and “What
kind of business relationship would we have to have in order to use your MDA
approach and your suite of tools in other projects?”

Part of the contract that we ended up signing with them included their use and
acquisition of the tool, and how they can then go forward with this MDA capability
within their organization.

CHALLENGES

Harris knew from the beginning that the most significant challenge facing the
MTSE project was schedule, but the size of that challenge became more apparent
over time. As David Almeida said:

88 INHERIT/HARRIS CASE STUDY

I think that as we started really digging into the system engineering requirements
and fleshing out the software requirements that came out of that, and then analyzing
the derived requirements, we all realized that there were a lot more requirements
that had to be matched than there were hours available in our schedules to achieve
them.

We pointed out that although there are many program managers who face
schedule pressures relatively few have chosen MDA as a way of reducing devel-
opment time. And we asked David what predisposed him to address the schedule
challenge in this way. He said:

On this assignment, our biggest risk was schedule. I don’t want to seem arrogant,
but I am fairly progressive when it comes to introducing new technology to solve
hard problems. That is the intent of technology and the value that it brings.

So, as we asked questions of Inherit, and as we drilled down into how they go
about doing what they do, and how MDA helps (as well as their past performance in
several other projects in which their tool had been used), my analysis was this: We
have a huge risk on the schedule side. I see a tool that can really help me compress
that schedule, and I see mitigation points all along the schedule. One of the key
things we did to mitigate our risk was to incorporate Inherit into our team. So, we
actually had the Inherit people sitting in on our design reviews, our requirement
reviews, and in some cases leading portions of those reviews and discussions.

And having said all that, if a program manager can size up a budget/schedule
constraint in particular, and if they can get an understanding of how this technology
can serve them, it becomes a fairly easy or benign trade-off. And that is how I
approached it. When I talk to some of the program management people back in the
Harris Government Division, that is pretty much how I describe it to them.

We then asked David whether previous experience in the use of modeling
technology made him more inclined to accept MDA. His answer included an
interesting point—that the decision to use MDA could be validated quickly.

There was one particular program on which we did some modeling, but I think the
decision was mostly driven by their [Inherit’s] presentation. We were well prepared
in our bidder’s conference, asking certain questions and so on, but my thought was
“I will know within six or eight weeks what my results will be,” so it wasn’t the
kind of thing where you need two years to figure out whether it was the right
decision. So, the short answer is, yes, I have been exposed to modeling, but that
was certainly not the driving factor behind my choosing MDA as a solution.

EXPANDING GOALS

Harris’s initial expectations were heightened by the demonstration of Inherit’s
MDA tool, but at that time they had not been exposed to the MDA approach to

Inherit is invited to
attend-and in some cases
lead-design and
requirement reviews

Business requirements
were captured in UML
models, and technical
requirements were
captured in a
Struts/EJB “Archetype”

1 1
5 \ How MDA Was Used ! 89
1 1

building an application. After engaging Inherit, Harris’s initial expectation was that
Inherit would simply gather some requirements and then generate an application.
Inherit would deliver the generated code and work with Harris to extend that
code as necessary, and that would be the end of it.

But something different happened. First, there were two tracks of requirements
gathering. The first track was requirements that were specific to the business
and what the business wanted to implement. The second track was technical
requirements, which addressed the architecture of the software solution Harris
wanted to deliver. So, while one Inherit consultant was capturing requirements by
way of use cases and UML models a second was gathering technical requirements.

To address the technical requirements, Inherit modified the set of mappings,
tables, and rules within the MDA Express tool-which together drive the trans-
formation from PIM to the desired PSM and in turn from PSM to the target
code and supporting files. Inherit refers to this set of transformation mappings as
an “Archetype.” In this case, the starting point was the MDA Express Struts/EJB
Archetype, which was modified to make its output precisely fit Harris’s architec-
ture and coding guidelines.

Second, there was more than one iteration of the business requirements process.
Because of the MDA Express tool’s ability to capture requirements quickly, it
was possible to generate prototypes of increasing complexity that demonstrated
implementation of the requirements captured to that point.

Going through multiple iterations allowed Harris to inspect each iteration, make
comments, modify business requirements, include anything that had been over-
looked, and identify areas into which they wanted to extend the model. These things
resulted in modifications to the models and were expressed in subsequent iterations.

In the end, Inherit delivered significantly more than Harris expected, both on
the business requirements side and its associated models, as well as in the ability
to align the generated code with Harris’s method and style of building software.
Further, the code was in general bug free (at least, after unit testing, Harris did not
report any bugs to Inherit). This was accomplished by “meta-debugging”; that is,
the modification of the Struts/EJB Archetype in a way that ensured the generated
code conformed to Harris’s architectural/design patterns and coding guidelines.

In other words, all bugs of this kind had been cleaned up in the models
themselves, which resulted in delivery of code that was bug free. So, there was
no extra cost in delivering the software, and the project stayed within budget
constraints and came in ahead of schedule.

HOW MDA WAS USED

As a starting point, Inherit took Harris’s existing business requirements and
produced a PIM. The Harris PIM consisted of class models as well as activity,

920 INHERIT/HARRIS CASE STUDY

state, and sequence diagrams. In addition, Inherit iteratively extended the busi-
ness requirements with use cases that in turn drove the creation, updating, and
refinement of the PIM. When asked how Inherit applied MDA to Harris’s problem,
Robert Lario replied:

For us, MDA is about two concepts: models and transformations between models.
In the same manner that people build models of their requirements and translate
those models into design models and finally into text models, we use Inherit MDA
Express.

Together with Harris we built UML models and utilized Inherit MDA Express
to apply a library of transformations that we call an Archetype. We have an out-
of-the-box Archetype called Struts/EJB which captures all the transformations for
generating a PSM from a PIM and text models from the PSM to create a solution
based on Struts and J2EE.

Our existing Archetype served as the foundation for the transformations, but
as part of the engagement we had to modify some of the rules and templates in
order to align the generated code with Harris coding standards as well as their
existing code. What's interesting about this process is that in parallel the archetype
modifications had is own iterative software life cycle of gathering requirements,
design, implementation, and test. [See Figure 5.1.]

The project was not a pilot in the traditional sense, because the code and other
artifacts produced had to support a well-established product. The team was expected
to create production-quality code that was to be integrated with applications Harris
already had—and of course the project had to satisfy a direct business need.

But from the standpoint of adopting an MDA process and mind-set, this project
could be considered a pilot. It allowed Harris to understand the concepts of MDA,
to get some experience with MDA tools, and to see how to incorporate MDA into
their existing software development process.

We always ask case study participants whether the use of MDA improved
communication between the client’s business and IT communities. Robert Lario,
principal and cofounder of Inherit, answered that question this way:

Yes, definitely. The MDA approach we used helped improve communication and
understanding between the business and IT communities in several ways. We
captured requirements with use cases. We built a PIM that was separate from any
implementation details. And, we focused on business entities and their relationships
in the PIM which gave the team a good perspective of the business aspects of the
application.

But there was also the fact we were able to take use cases and using our MDA
Express tool quickly generate working software that they could use to validate the
accuracy of the requirements. So, they could see these models in what could be
described as executable form and very quickly correct them.

I think the combination of use cases, the UML models that were built from
them, and then the software that was quickly generated significantly increased the

The MTSE project was to
produce production-quality
code while “piloting” the
MDA process

Code generation results in
much faster validation of
requirements by the
business community

I6

FrontController

3

Struts

-

InvoiceAction.java
InvoiceForm.java
invoicesearch.jsp
invoiceCreate.jsp
invoiceDelete.jsp
invoiceList.tjsp
invoiceEdit.jsp
invoiceUpdate.jsp
Invoice-titles-def.xml

Web Container

3
3

Application

web.xml
struts-config.xml
validation.xml
ejb.xml

build.xml
error.jsp
template.jsp
login.jsp
loginError.jsp

4>
I
I
I
I
I
]

InvoiceTO.java
InvoiceLightTO.java

messageResource.properties

application.properties
Strings.java

ServiceLocator| & = = = = = = = ——

Business Delagate

<__ e

SessionFacade

InvoiceDelagate.java
InvoiceJNDI.java

InvoiceFacadeSession.java

InvoiceFacade.java

InvoiceFacadelocal.java
InvoiceFacadeHome.java
InvoiceFacadeHomeLocal.java

InvoiceBean.java
Invoice.java
InvoicelLocal.java
InvoiceHome.java
InvoiceHomeLocal.java
InvoicePK.java

ejb.xml

build.xml

InvoiceDao.java
InvoiceDaoSQL.java
InvoiceDaoOracle.java
InvoiceDaoLDAP.java
Invoice.sql

Invoice.dtd

I

I ejb.xml

L | build.xml

1 R et 1

1 | |

| !

™=)I ______________ 5 : DaoFactory

. T Gy

| — 1
[B BMP - _J/f_ DAO ;
= ean =5 | s 1

EJB Container

InvoiceException.java
InvoiceDAOException.java

FIGURE 5.1

Sample output of the application of the Struts/EJB Archetype to PSM.

92 INHERIT/HARRIS CASE STUDY

understanding of business requirements throughout the team and provided a way
to capture those requirements and increase the quality of the resulting code.

There is also an interesting effect, in that the business people were able to be part
of the process in a new way. They were used to gathering requirements, but in this
case they were also brought in and shown what those requirements, in tandem with
the Struts/EJB Archetype, produced. This helped garner support for the solution that
was finally delivered.

The business people were intimately involved and had a feedback mechanism as
we built the models during the various iterations. That improved communication
with the business community and it meant that they knew what they were getting
before it was delivered. They were ready for it and already happy with what they
were going to get.

There was another, and less expected, dividend from the MDA experience,
and that was improved communication between the Harris software engineers
and system engineers who participated. David Almeida emphasized that the new
process used to capture requirements, as well as the ability to generate low-level
code very quickly, raised the level of discussion such that more time and attention
was given to that of user/usability requirements and less time was spent on the
technical details of how the system was implemented. David said that as a result
the specification was much closer to what was actually desired, because it was
derived from a discussion of what users needed.

PROCESS AND TOOLS

There was little need for negotiation between Inherit and Harris on the topic
of software development methodology. Inherit strongly suggested use cases, and
defined for Harris the concept of developing a PIM, then the PSM, and using MDA
tooling to generate code—in what is essentially a use-case-centric approach.

Harris expected this approach and was happy with it. In addition, Harris viewed
the project as a mentoring activity in which Inherit personnel joined their team,
walked them through the steps, and developed the product in conjunction with
their own people.

So, Inherit provided on-the-job training by jointly going through iterations of
the process with the Harris team. No specific training courses were given, but
Inherit would occasionally devote a few hours to training about specific concepts
so that the combined team could move forward with those ideas. On the topic
of software methodology in general, and the process chosen for this project in
particular, Robert Lario of Inherit said:

We were an integrated team. It was not as though we did some work and the
client’s personnel did other work, and certainly not that we did all the work. It

The fast feedback loop
improved communications
and meant “no surprises”
in the deliverables

MDA improved
communication among the
software engineering,
system engineering, and
business communities

Inherit and Harris become
an integrated team

The MTSE project
combined MDA with agile
software development

The difference between
software development
processes for commercial
versus
government-specified
systems

93

1
5 ' Process and Tools
1

was a collaborative effort and it definitely involved hands-on mentoring about the
process.

We support a variety of software development methodologies. We try to support
the needs of all our clients, and will work within their process whether it is a
waterfall process, the unified process, agile development, or some other iterative
process. We have skilled consultants who are familiar with all those processes.

When we have the opportunity to introduce our own process, or define a new
process for a client, we use a unified process—something that is use-case driven,
architecture centric, incremental, and iterative. We generally focus on the high-risk
stuff first, which falls in line with the unified process, but those are the aspects of
the iterative process that we like to emphasize.

More recently we have been working with some of our clients in the use of
an agile MDA approach, and we’'ve had some good success. We find that our tools
and experience fit well with such newer forms of the development process. So,
we would like to think that we have married the MDA process with agile software
development. In short, we empower our clients with MDA.

We asked David Almeida to compare Harris’s software development organiza-
tion and process approach to that of his experience in other software organiza-
tions. His answer reflected some of the basic differences in approach between the
creation of commercial software and that of government-specified systems.

I have worked mostly in commercial organizations, and the difference is that typically
government customers have a set of requirements that essentially demand a more
mature process. So, the thing that I appreciate about what we've done in the
government division is that we are still commercially viable (our stock has hit an
all-time high, with significant gains over the past four years), but having been
exposed to SEI and achieved CMM Level 3, and are currently going through CMMI
certification, which is integrated CMM. I think that the reviews, the documentation
requirements, the demands of our “command media” (that is, our policies and
procedures) really add rigor to our analysis in software development.

And look at what our software programs are doing! For the FAA, we are managing
their national network that runs the operational data for the national airspace. We
are working with other programs to do information retrieval and analysis. Harris has
a legacy of solving really hard problems, and this particular software organization
happens to follow a very mature process.

The process for this project first dealt with business requirements. Inherit began
by generating use case diagrams and developing a supporting use case survey,
which encompassed all of the different use cases and actors. Once those were
complete (and once the technical requirements had been addressed as described
previously), customer-specified modifications were made to the PIM and these
modifications were built into all of the artifacts created in the subsequent trans-
formations. These artifacts included deployment descriptors, Java code, XML files,

921 INHERIT/HARRIS CASE STUDY

Struts, EJBs, Struts descriptor and configuration files, tile files, database schemas,
and an Ant command file to build the JAR and EAR files.

Four tools were used in this software development process. Rational Rose
was used to capture the PIM, as illustrated in Figure 5.2. Inherit’'s MDA Express
tool was used to create the PSM as well as code/text files (by way of XMI
import/export, as described in material following), and Gentleware’s Poseidon for
UML was used to contain the imported PSM generated. The fourth tool was Harris's
chosen IDE.

Inherit MDA Express combines a web service interface and a variety of plug-ins
that enable third-party UML tools to communicate with this web service. The
plug-ins are customized to work with various UML tool vendors (e.g., System
Architect and Poseidon). As long as a third-party UML tool exposes an API and is
XMI compliant, the Inherit MDA express engine can work with it. The tool/process
works as follows.

1. Using a third-party UML tool, a PIM is built.

2. When the PIM is ready to be converted into the PSM, the Transform to
PSM menu item is selected as well as the desired transformation. Inherit
uses the term Archetype (which is a collection of patterns/templates and
transformation rules that govern the model-to-model transformation) to
categorize the offered transformations. In this case, Struts/EJB was chosen.

3. The PIM captured within the third-party UML tool is converted into XMI
and the MDA Express Web service is called. This invocation passes the
model document and the name of the selected Archetype to the web
service.

Platform Independent Model (PIM)

—
User
+getAccount +getUser Account e High Level of Abstraction
-lastName —openDiE
-firstName P
-dob 5 ’ -stalilg e Technology Neutral
+Balance()
¢ Can be reused
1 -getAccount
. i e Contains Business
-getlnvoices Requirements
Lineltem | Invoice

+getLineltems +getinvoice
1.7 1

FIGURE 5.2 Platform-Independent Model.

e Domain Business Model

A mixed bag of tools were
needed to address Harris’'s
chosen software
development approach

95

1
5 ' Process and Tools
1

4. The web service reconstructs the XMI representation of the UML model
into a metadata repository (MDR), which is an in-memory UML model.
The tool can support several methods of representing the rules for
transformation, including JESS (http:/herzberg.ca.sandia.gov/jess/) and iLog
jRules. For the Harris project, the iLog jRules engine was used.

5. The transformation rules are loaded and the expert system runs against
the in-memory UML PIM model. This model represents the patterns/
specifications of the PIM, and the transformation rules use these to assert
new facts about the UML model. These new facts are incorporated back
into the MDR, thereby extending the PIM and creating the PSM (as
shown in Figure 5.3). At the end of this process, the engine converts the
in-memory model back to XMI and returns the document to the plug-in.

6. The plug-in loads the XMI back into the third-party UML tool. The newly
generated PSM can now be displayed and modified as necessary within
the tool’s UML environment.

7. When the PSM is ready to be translated into the code/text model, the
Transform to Text menu item is selected. The model is converted into
XMI and the web service is called again.

8. The XMI representation of the PSM is loaded into the MDR and the rules
engine runs against the model to create the supporting text-based artifacts
(Java code, scripts, XML, JSP, C#, C, C++, deployment descriptors,
project files, and so on) for the selected Archetype. The Archetype
selected is the same transformation that was originally used to transform
the PIM to the PSM.

9. When the process is complete, all of the created artifacts are placed in a
Zip file (persevering directory structure) and the entire Zip file is
returned to the plug-in. The plug-in can be configured to unzip the file
into a project directory (Eclipse, NetBeans, Microsoft Visual Studio, and
so on), from which the project file can subsequently be opened by the
supporting IDE.

The reason for doing it in this way was that Inherit had built a new transfor-
mation engine for MDA Express, and this engine did not support the then-current
plug-in for Rational Rose. But the team wanted to take advantage of that new
engine because it had important new declarative capabilities that provided much
more flexibility in customizing transformations.

The code generation step created the project file. When the team opened the
project file in the NetBeans environment, all of the code and other artifacts were
integrated with the IDE. It looked as though the project had been built specifically
for NetBeans.

The target architecture was three-tiered, with JSPs deployed on the web server
and EJBs deployed to the application server. Although the production database

96

Platform-Specific Model (PSM)

Web Support

Design Model

Targets a Specific
Technology

PIM Used for
Transformation

Based on Selected
Archetype

Many PSM Types Can Be
Created From the Same
PIM

FIGURE 5.3 Platform-Specific Model.

A database access design
pattern supports testing in
both normal and secure
environments

97

1
5 \ Division of Labor
1

was in Oracle, Inherit generated Java code as well as both Oracle and Microsoft
SQL scripts.

The Java code and SQL scripts allowed the Inherit team to test on machines
in an unclassified environment, while the Oracle-specific Java code was used for
testing in the classified environment. This flexibility in the generated code was
made possible thanks to the use of the bridge design pattern, which allowed the
team to change the configuration files for the factory in which the database access
layer was specified. This design allowed Harris personnel (who had the required
security clearances) to easily take over the classified testing function.

DIVISION OF LABOR

The amount of effort contributed by Harris and Inherit over the course of the
project is described in the material following. But the real story here is not about
the division of labor at all but about the creation of an integrated team. However,
it is interesting to note that Inherit personnel provided only three labor-months
of effort during the course of the entire project.

Harris provided three senior systems engineers, who were focused on the
business layer, to determine how this technology should be applied across a
particular market space. Two of these systems engineers were responsible for
defining the systems engineering technical requirements. Inherit personnel trans-
lated some of these systems engineering requirements into software requirements,
which involved fleshing out the use case model and building the actual UML
model.

Finally, Harris provided one software/applications engineer who worked on
the user interface Inherit was developing. The applications engineer took the
application from Inherit, moved it to the application environment, ran tests, and
then migrated the application into Harris’s virtual production area. David Almeida
described the value of being able to consider the business aspects of making the
technology available to an entire market rather than focusing more narrowly on
the business aspects of a single system.

This particular R&D effort was not targeted at a specific program but rather at a
capability to address a broad market. Because of that, we ended up taking more than
the average amount of time in requirements gathering.

I believe we looked at a dozen different program specifications, in order to gain
a firm understanding of their respective business cases, so that we could define the
business layer and then translate those into generic requirements.

We probably spent even more time on this because it had sort of a “build it and
they will come” orientation to it, rather than that of a program specification that
is funded by a particular customer. So, we looked at the broader question of what

98 INHERIT/HARRIS CASE STUDY

we were trying to accomplish [moreso] than would have been the case in a more
narrowly focused effort.

Regardless of the size of the target market, the real importance of this approach
was a focus on the business functionality rather than on the technical aspects of
the system. As David Almeida put it:

The real value that I saw in this was the focus on the business layer. Our chief
systems architect, our chief systems engineer, and I focused on figuring out how
to translate these requirements into business needs. We spent a tremendous amount
of time and effort on that, in order to hand a “CONOPS” (concept of operations)
over to our two systems engineers, who were really translating that CONOPS into
the “shell” requirements at the systems level.

Obviously, we had an understanding of how an order entry system works, but
the question was how it works in a multi-domain telecommunications network that
might span from the FAA to the DoD to civil agencies like the VA or NASA.

And the more important question was how you extend the model to corporate
requirements that are beyond those of traditional telecommunications to include
enterprise-level services like voice mail or e-mail or cellphone-type services.

So, that was the focus at the business layer, and that translates to systems engineers
really taking those inputs and defining what the general system requirements were
to achieve the business capabilities we had characterized.

In order to accommodate our schedule we brought Inherit in a bit earlier than
we might have otherwise, knowing that they would help us flesh out the rest of
our requirements. So, we utilized their expertise in telecommunications, and in
requirements management, as an added-value benefit.

PROJECT EXPERIENCE

The first stage of the project was gathering and capturing the initial use cases to
determine the scope of what would be delivered. Based on the identified use cases,
the project was divided into three iterations. During the first iteration, a subset
of the PIM was developed, a PSM was generated from that PIM using the MDA
Express tool, and then the application was generated from the PSM. The results
were shown to the business user community to validate that the requirements had
been met. In addition, the PSM was reviewed to give Harris an understanding of
how the technical architecture would satisfy their technical requirements.

At times, the team would have to go back to the PIM, make some modifica-
tions to it, generate the PSM again, and then generate code. Those modifications
became input to the next iteration, and all three iterations followed the same
pattern.

Deployment started with the third iteration. In the deployment cycle, the
code was handed over to the end-user organization for testing in their labs, and

Deployment, user testing,
and system integration
began with the

third iteration

MDA helps avoid the
temptation of taking

shortcuts that reduce
code quality

“Meta-debugging” is just
one source of
high-quality code

929

1
5 X Project Experience
1

for integration with the application’s back end. These labs are in a classified
environment to which the Inherit people did not have access, so any issues that
were experienced by the testers had to be reported back.

For some issues (e.g., for integration problems), the model transformation
rules had to be tweaked. Harris would also provide feedback if there were any
issues with a pattern that did not align well with their architecture or coding
guidelines.

One other process within the project was working with the Harris technical
staff to understand their design patterns and how they wanted the code to look—in
terms of style and in the use of core J2EE design patterns as recommended by
Sun. This required some changes to the transformation rules as well, followed by
a demonstration that the changes met these technical requirements.

Several interesting things happened during the course of the MTSE project.
Upon learning about the successful employment of MDA, Harris asked Rob
Mitchell of Inherit to make a presentation about the MDA approach to directors
and other senior managers at Harris. These people had heard good things about
the MDA approach, and wanted to ask questions about the success of the current
project, specifically in the area of integration.

One of the directors seemed to be very close to the project, and was aware that
the code being generated was both well structured and conformant to the Harris
coding guidelines. He said they had had virtually no problems in integrating our
work with the back end. Rob Mitchell of Inherit gave us his reaction to this
feedback.

We think this is one of the prime advantages of MDA. When a project finds itself up
against a delivery deadline, the development team typically starts taking shortcuts.
These shortcuts will get you to delivery but at the cost of producing lower-quality
code that is much harder to integrate and maintain. And it is often the supplementary
requirements that are tossed overboard in such a situation.

But with MDA, where the supplementary requirements are captured in the trans-
formation rules, they are automatically included in the generated code, with little
or no schedule penalty. The same patterns, etc, are embedded in all generated code,
and the customer quickly learns the patterns and the structural philosophy they
entail.

And this brings up another advantage of the MDA approach: the notion of
“meta-level debugging.” In this case, we had already removed most of the bugs in
earlier versions of the Struts/EJB Archetype. As any new discrepancies are discovered
you go back and fix the Archetype’s transformation rules to address the problems.
But because the generated code is so consistently structured, and reuses patterns
repeatedly, when you fix such a problem that fix essentially ripples throughout all
the generated code.

We went through several-probably six or seven—code generation phases before
the final one, and in the end we delivered a significant number of lines of functional

100 INHERIT/HARRIS CASE STUDY

code, and they reported no problems with it. So, once you have your transformation
rules correct you no longer generate bugs.

Another interesting aspect of MDA in this context is not about bugs per se “Yes, that is what we
but what might be called “mis-features.” Most people who have been involved in asked for, but it is not
software development have heard something like, “Yes, that is what we asked for what we want”
but it is not what we want.”

In this project, the ability to generate new executables quickly made it possible
to get feedback from the business people while the requirements were still fresh
in their minds. And there were indeed cases where the business people looked at
a running prototype, checked the model from which it was generated, and then
said, “Oh, yeah, that is what we asked for, and it is in the model, but it isn’t
really what we meant or what we want.” As Rob Mitchell of Inherit put it:

In a sense, the quick generation of code that MDA enables is almost as good being
able to run a simulation directly from the model. This is a huge benefit for many
of our clients. And coupled with the ability to generate correct code because of the
ratcheting effect of ever-better archetype-driven transformations we find that we can
concentrate much more on figuring out whether the requirements were captured
correctly. And this benefit increases proportionally with the size of the project, so
the idea of using MDA to verify requirements has generated a lot of interest.

When I think about the impact that MDA has on this project, I think of three MDA benefits at three
different levels. First, there is the ability to use MDA to win the business. We different levels
competed against companies that were not pitching MDA, and we were able to show
productivity increases as well as stable architectures that can easily be integrated with
existing systems. Some people claim that MDA is only appropriate for “green field”
applications but this is not the case, as we demonstrated during the course of this
project.

The second level is that from the customer’s point of view there is a business
concern: they need to get a product out the door. We can generate software very
quickly using MDA, and we can improve the process of software development. Harris
had a very skilled and effective software development team. The quality of their
software was not an issue, because they had very effective processes and guidelines
in place. But in this case, we offered them a business alternative that would allow
the software to be developed more quickly.

The third level is that this approach is something we can show to our own
potential customers, and provide assurance that we can show them how to quickly
build—-and then further customize—the software that they produce. So, this is how
we build software and why we have an advantage over our competitors. We
explained our view of this to Harris, and they decided they want to do the same
thing.

We asked Rob Mitchell if there was much resistance to the adoption of MDA on “Selling MDA to the Harris
the part of the Harris IT community. His response should be of interest to business [T 0rganization”
people who might want to bring up the topic of MDA to their IT counterparts.

101

1
5 X Project Experience
1

It was very interesting. Dave Almeida, the program manager, is a very forward-
thinking person, and had the business benefits firmly in mind when the team chose
the MDA approach. And he explained that very well to the software people, saying
that MDA was an approach that the organization was going to try in order to see
whether it worked. And as far as I could tell, everyone in the organization was on
board.

We were brought in because Harris saw the business value of MDA, and in fact
this parallels our experience with many customers. When we originally started our
business and built our tool, we had an attitude of “if we build it, they will come.”

We thought that architects, developers, and all technical people would just love
it. But we found that wasn’t the case at all. There were many objections from the
technical people (for example, the “not invented here” syndrome or “your generated
code can’t possibly be as good as the code we write,” etc.). We found that trying
to sell MDA to technologists is an uphill battle.

But if you can show the business value of MDA to a business person in the
organization, and they sponsor MDA, the technology people will grudgingly get on
board. And once they get on board, the technologists often say, “This is great stuff!”

And you can see how their roles change. Instead of worrying about software
“plumbing” issues they can now focus on more value-added issues. They become
interested in things like “How do I write archetypes?” They find themselves at a
level of development, or meta-development, that they were unaware of before, and
they become very interested in it.

But what may happen instead is that the technology people see MDA and say
that they don’t need it, they can do all that on their own and can be just as
productive. The business people are at the mercy of the technologists in cases like
this, because the business people don’t understand the technical issues well enough
to say the technologists are wrong. Firing all the technology people is obviously a
nonstarter, so this basically becomes a political issue in which the technologists look
for reasons why it won’t work and search for areas in which it may have failed to

deliver.
“The key at Harris was The key at Harris was having a business-oriented champion, who saw the value
having a business-oriented of MDA in achieving his business vision for the company. This is a company
champion, who saw the whose products are heavily dependent on software, and MDA provided a way to
value of MDA in achieving improve their software process and thereby improve their ability to develop products
his business vision for quickly.

the company. One more point: Note that the archetypes we’ve talked about only work with

our MDA Express tool. So, if we leave and take our tool with us Harris would
have the archetypes we’ve developed but would not have any way to leverage these
archetypes. We had to solve that problem because they wanted the archetype so that
they could reuse the approach in this and other projects. And we did solve it, by
licensing MDA Express to Harris.

We asked Robert Lario of Inherit what he thought were the important
realizations that Harris reached about MDA during thecourse of the project.
He said:

102 INHERIT/HARRIS CASE STUDY

An important realization had to do with traceability, from the requirements specifi- Traceability of

cation, to the PIM, down to the PSM, and to the generated code. We're talking about requirements, consistency

the traceability of requirements through every phase of the development process, of pattern usage, and the

which becomes really important as requirements change. quick feedback enabled by

code generation all
support software
best practices

If you have that traceability, you can quickly assess the impact of a change because
you understand the scope of that requirement and therefore its effect throughout
the project. Also, they made specific comments about the quality and consistency
of the code. Even though this project had many and various different aspects, the
application of the Struts EJB Archetype allowed for uniform consistency and quality,
which would not be expected for projects built by several different developers, each
applying their own style and guidelines.

The benefit of this was that as soon as you understand how the software is to be
organized and structured in one part you know it will be organized and structured
in the same way in all parts. This meant that someone working on one part of the
project could quickly move to another part and be productive immediately.

Harris specifically said that this consistency helped them accomplish integration.
As they were taking our software and integrating it into their existing environment
they felt that this consistency made integration a lot easier. Of course, this also helped
reinforce the consistent application of design patterns and software best practices by
the team, and this consistency was also evident throughout the application.

Finally, the quick feedback loop in the process of turning requirements into
production software was also an important realization. Anyone involved in require-
ments specification could quickly see how well the implementation fulfilled that
specification.

In many cases with other approaches to requirements capture, it takes a long
time to see the impact of what you have done. In this case, we were able to shorten
that cycle to a degree that people came to understand how important it was to have
high-quality requirements. This was a real learning experience for the requirements
analysts, and its success encouraged business users to become much more involved
in the software development process.

There was one aspect that was as much of a surprise to us as it was to them. Could this be too much of
When they found out how quickly they could change something in the model and a good thing?
get running code, they began asking for more and more changes. It got to point
that in later iterations it was difficult to get them to freeze the specification because
they saw how quickly changes could be incorporated. And in the last week alone
we went through several generations of the system in accommodating changes and
new requirements.

We also asked Robert Lario what he found surprising about Harris’s MDA
adoption process. He said:

The biggest surprise for us was how open and accepting the customer was of the
process. Of course, we have had MDA engagements before this one and since this
one, but this project was unique in two ways. First, they had a real need—a real
business “pain point,” if you will-in that they had a large amount of work to do in
a very short amount of time.

103

1
5 X Project Experience
1

We cannot stress enough the importance of the project manager being willing
to take the risk to look beyond the current environment and not allow IT to control
the decision-making process. In the past we have had success in demonstrating the
concepts of MDA to a business community, and seeing that business community
want to adopt MDA, only to be stymied by IT people who pushed back very hard
when asked to use this process.

By approaching the use of This goes back to what we call the “Monet factor.” A lot of technologists that

MDA as a business we have talked to, particularly developers, think that MDA is like asking Monet to

decision, Harris overcomes paint by numbers and they just won’t adopt or use it. So, the surprise here was how

the “Monet factor” readily they adopted it, and how quickly the IT folks got on board. It was a great
project.

Finally, we asked Rob Mitchell whether there was an event or episode that
made it clear that Harris had “gotten it” with respect to MDA. His response:

I can think of three different episodes. The first one was on that very first day that
we spent with the client before we were awarded the contract. We’ve described that
day, but one detail we did not mention was that we generated 30,000-plus lines of
code to support a working application that we could launch and lead them through.

We ran it right there in that meeting, right from the model, without writing
a single line of augmenting code by hand. Their jaws visibly dropped. Until then,
they had been wearing their poker faces. To us, that was a significant event.

The second event occurred after we had built the initial models. The first time
that we did essentially the same activities that we did in the demo, but for their own
requirements, they were surprised at how quickly those real-world requirements
could be turned into a running application, and also surprised at the quality of the
generated code.

“... we could create code When you're trying to do things quickly, you often find yourself taking shortcuts.
of the same quality that But the archetypes that we built into our tool, and the MDA process itself, meant
would result if we had all that we could create code of the same quality that would result if we had all the

the time in the world” time in the world.

So, they were visibly excited by how quickly we were able to take their real-
world requirements and generate a prototype application. Here again, it may be
that we created extra work for ourselves because this initial success heightened their
level of enthusiasm. And when they saw how quickly we could do these things, I
think the project scope grew a little bit as a result. We were able to respond to that
successfully, but it was more than we had originally signed on for.

The third event was when they took the software we had produced and integrated
it with their back end. They had existing code that was built and structured as
Java/EJB.

They knew that we had tuned our archetype so that it would integrate well with
their existing application, but were still surprised when they saw how easily the
integration task went. So, while there were many realizations of the benefits of MDA
these three were the real eye-openers.

104 INHERIT/HARRIS CASE STUDY

RESULTS AND BENEFITS

The most obvious and important benefit of MDA in this project was that it came in
on time and under budget. There were no reports of code defects, and this code was
integrated with the application relatively seamlessly. The integration task took one
week of clock time but only three labor-days of effort, and that included the task of
bringing the generated code to the lab and compiling it and the integration itself.

The success of this particular task heightened the visibility of MDA throughout
the organization, as well as heightening the visibility of the project and the target
product. The MDA approach Harris adopted has become part of the sales pitch to
potential customers for that telecommunications management product, so the use
of MDA itself has become a competitive advantage.

Some of the benefits of this project were less tangible. The morale and moti-
vation of the team was enhanced because they felt they were working with
leading-edge technology. The project took what had been a traditional approach to
software development and made it very exciting. And it was a learning experience
throughout.

Although Harris had done some modeling before this project, those models
could be characterized as “two-dimensional” and had been used primarily as a
communication device. When Harris saw models actually being used to drive the
software development process, it gave them a new appreciation of the modeling
function.

The separation of their business concerns from their technical concerns allowed
them to see that they could take the intellectual property of the business and
potentially generate different types of solutions from it; for example, a Java
solution or a .NET solution. Thus, they saw how they could use MDA to bring
their solution to a wider market.

MDA also led Harris to think about how they could expand the scope of
their project beyond the telecommunications arena. They are now thinking
about how they might provide this type of managed service for many other
service-provisioning applications. In this way, it widened their view of how they
could apply the technology that already existed in their application in entirely
different ways.

And of course Harris now recognizes the fact that they can get more done with
less. Projects that would not have been viable due to budgetary constraints have
now become possible. And the business unit that created the MTSE application now
sees expanded use of MDA as an alternative to outsourcing software development.

ONGOING AND PLANNED USE OF MDA

We typically asked our case study participants about the ongoing and planned use
of MDA, including any MDA cross-pollinating that may have occurred into other

Harris’s MDA approach
becomes a competitive
advantage and
marketing advantage

MDA leads Harris to think
outside the box

for more general

service provisioning

MDA is applied to the
telecom application’s
back end

105

1
5 : Ongoing and Planned Use of MDA
1

projects or corporate divisions. In this case, the answer we got was much bigger
than we bargained for, and it is unfortunate that we do not have the space to do
full justice to the topic.

In our first interview with David Almeida of Harris, we asked about other MDA
efforts at Harris and touched on a number of related topics, including CORBA’s
widespread use in the telecommunications arena and the OMG's considerable
effort on MDA support for CORBA.

David suggested that we talk to Lew Pearson, Chief Architect, New Devel-
opment, for Harris’s NetBoss Business Unit, about their MDA-related work on
the back end of telecommunications applications (for Harris’s NetBoss Element
Manager product).

We took this suggestion and asked Lew Pearson how he was using MDA in his
work. His response was:

We are creating a model-driven network management platform [NetBoss]. Every
network element, every device, and every system that is monitored is modeled as
well. We use the OMG’s Distributed Management Task Force (DMTF) Common
Information Model as a modeling paradigm for modeling the devices to be managed.
Our primary focus right now is in element management, but we're looking into
doing network management and more enterprise management as well.

We view our system as a platform, with management agents to manage the
particular devices. At the time this “smart” management agent is created, each device
is modeled. We’re using UML to model certain aspects of these devices—or network
elements, or systems—whatever the agent happens to manage. There are not too
many UML tools out there that do what we need to do, so we decided to use IBM’s
Rational Software Architect for our UML modeling.

In our modeling, we have the library of classes that DMTF provides out of the
box. Using our UML modeling tool, we put them together. Eventually, we adopted
a UML model that covers different aspects of this managed system. In order to do
that, we had to extend the UML profile (we are using UML 2.0) and this gives us
enough flexibility and power to do the kind of modeling we want.

After ascertaining that this back-end product would be offered to communica-
tion partners (including other Harris business units), as well as external customers,
we asked whether this product was taking the same approach to downstream
tailorability as the MTSE project did, and if so how that was received by potential
customers. Lew’s response was:

Absolutely. That is one of our main reasons for using MDA-being able to deliver
easily customizable systems. You can do this several ways. Without modeling, you
can do your implementation dynamically. Or, you can present an understandable
model to the users, so they can modify them themselves or change them on the fly.
But this has absolutely been one of our goals.

106 INHERIT/HARRIS CASE STUDY

When we talk to some of our government customers, they are very much
interested in the Common Information Model. There is also interest in the shared
information model. But they like the whole modeling approach, especially modeling
of the business domain, as well as the ability to sort of “introspect” the model to
find out what is in there. They also like the fact that it has standard interfaces from a
programming point of view, so that you can use XML and web-based management
interfaces. They're very happy to see this.

The MTSE project used MDA to focus on the business requirements for the
front end of Harris’s telecommunications applications.Here, we see that Harris’s
NetBoss business unit is using MDA and modeling to address the required func-
tionality of the corresponding communication application back end. So, in essence
this business unit within Harris is working to formally model the entire telecom-
munications management network (TMN) “pyramid” (as shown in Figure 5.4).

When we suggested to Lew Pearson that his group and David Almeida’s group
seemed to be working on two ends of the same problem, his response was:

Right. He is looking at it from the top-down—what the customer requirements are.
And we are looking at it from the bottom-up, saying that you can model the top
layer but that top layer really has to talk with these bottom layers.

We are approaching this from the bottom mainly because this is our next-
generation product. The capabilities of the current product are mainly at the bottom
layer—device management, network management, et cetera.

His customers come from the service side. His customers want communication
service from point A to point B, they want a certain service level agreement in
place (quality of service), and they want to hide the devices they have to go
through.

But that top level has to communicate with those devices for provisioning and
setup, and for the monitoring needed to achieve those high-level goals. If you don’t
have that bottom layer in place you can’t do the top level. But you also want to hide
that bottom layer from the customer—except for the customers who have operators
down on the floor, who need that lower-level information. You have higher service-
level users who really don’t care. So, you need a multitiered model in which those
levels are integrated in order to support multiple perspectives.

For the authors of this book, this was an “Aha!” moment for us! We suggested
that this combined effort could serve as the poster child for the entire MDA
concept: providing various levels of abstraction and modeling different domains in
support of separation of concerns to address the particular tasks to be accomplished
by a variety of different customers.

In a second interview with David Almeida, we presented him with the
proposition that his business unit was really modeling the entire TMN stack. David
was careful to say that he could not speak for Harris as a whole but from the
standpoint of the business unit that contains both groups he agreed.

Modeling the entire
telecommunications
management network
pyramid

An “Aha!” moment for the
authors-discovering the
MDA poster child

Z01

CORBA Services

B2B/B2C Integration

omponents; =

Web, Servlets, JSP, XML/SOAP

Business Process Management/Workflow

EAI/A2A Integration

Network

Elements

Telecommunications Management Network (TMN) Model
Source: TeleManagement Forum TOM

Network Services

FIGURE 5.4 Telecommunications management network model.

108 INHERIT/HARRIS CASE STUDY

I would most assuredly say that our direction in this particular business area [NetBoss]
is very much in line with modeling the TMN stack—specifically in the development
of what we call our “smart agents,” which are the interface tools that actually talk to
end devices on the network itself. From a technology direction perspective, I believe
that we as a business area within Harris are very much moving in the direction of
modeling the TMN stack such that we can get our customers to use modeling in
order to manage their networks.

How does that fit into Harris Corporation’s overall perspective? We are within
Harris corporate architectures, so I think that to the degree that we are successful at
penetrating the rest of the corporation—as being their network management tool for
programs that they deploy to government customers, or on an element management
capability for equipment delivered to end customers (our microwave division, or
broadcast communication division)—the more successful we are at penetrating those
businesses the more prolific the use of MDA will be at Harris.

Ongoing and Planned Use of MDA 109

TABLE 5.1 Project Profile: Managed Telecom Service Enterprise Project

Company/Organization

QsP

Business Pain Points

Tools Used

Model-based Artifacts
Created

Name: Harris Corporation.

Industry/function: An international communications and IT
company, serving government and commercial markets to
provide “assured communications” and information
technology.

Size: Annual sales of $3 billion, and employing more than
13,400 worldwide, including 5,500 engineers and scientists.

Geographical reach/extent: Headquartered in Melbourne, Florida,
Harris operates in more than 150 countries.

URL: www.harris.com
Name: Inherit, LLC.

Areas of experience/ expertise: MDA Qualified Service Provider,
concentrating on empowering organizations in the adoption
of MDA. Expertise in project management, development
methodology, and software architecture.

URL: www.inherit.com

The need to change an existing telecommunications
management application into one that could be tailored
easily to meet the specific needs of various customers.

Schedule pressure demanded maximization of IT staff
productivity.

The need for the new functionality to integrate smoothly
with existing architecture and application.

Inherit MDA Express.
PIM.
PSM.

GSA wants to create a
single, executable
enterprise architecture for
dynamic simulation and
interoperability

CHAPTER SIX

DATA ACCESS
TECHNOLOGIES/GSA:
EXECUTABLE
ENTERPRISE
ARCHITECTURE

A large U.S. Federal Government organization creates an “executable architecture” that allows models to
interoperate with existing systems. MDA’s separation of concerns is a perfect fit for the federal approach
to software development, and there is a plan to combine the disruptive nature of MDA with the disruptive
nature of Open Source.

BACKGROUND

The U.S. Government’s General Services Administration (GSA) “helps federal
agencies better serve the public by offering, at best value, superior workplaces,
expert solutions, acquisition services and management policies.” GSA employs
approximately 13,000 people and is the premiere federal acquisition and procure-
ment agency, offering equipment, supplies, telecommunications, and information
technology (IT) solutions to its customer agencies. GSA also plays a key role
in developing policies used by other government agencies, and offers effective
citizen-response tools and services.

GSA’s vision for meeting these responsibilities is OneGSA—a single executable
GSA Enterprise Architecture to serve all of its customers. GSA chose MDA as
the mechanism for creating this architecture, which consists of models that can
dynamically simulate and facilitate interoperability between GSA Services and
Staff Offices (SSOs) and external agencies. The goal is the dissolution of GSA

111

112 DATA ACCESS TECHNOLOGIES/GSA

“stovepipes” by essentially making the Federal Enterprise Architecture (FEA) oper-
ational within GSA.

This case study covers three related GSA projects: a proof-of-concept (POC),
a pilot project, and the creation of the OneGSA Enterprise Architecture. The
Daston Corporation, a prime contractor for GSA, ran the POC. Two MDA Qual-
ified Service Providers, Data Access Technologies (DAT) and the LMI Research
Institute (LMI), assisted GSA in the pilot project and the creation of the OneGSA
architecture.

The goal of the POC was to demonstrate the ability to create FEA-compliant
outputs with DAT’s Component-X tool, which is an MDA-based tool that
implements the OMG’s Enterprise Distributed Object Computing (EDOC) and
Component Collaboration Architecture (CCA) standards. The POC and OneGSA
enterprise architecture projects in turn led to an MDA-based pilot project for the
Federal Supply Service (FSS).

The FSS pilot was narrowly focused on modifications to an existing application
in support of the acquisition function. These modifications were developed using
the “MDA stack,” and resulted in a simulation that could be run against and
compared to a development version of the application. The preliminary OneGSA
Enterprise Architecture was based on a high-level Computation-Independent Model
(CIM) that cuts across all of GSA and describes the entire organization, primarily
from a business perspective.

WHY GSA CHOSE AN MDA APPROACH
AND WHAT THEY HOPED TO ACHIEVE

George Thomas is Chief Architect in GSA’s OCIO Enterprise Architecture Group
(OCIO stands for Office of the Chief Information Officer). Although his
background is technical, he addressed the challenges he faced from a business
perspective. George credits Chris Fornecker, his boss and GSA’s Chief Technical
Officer, for having the vision to support him in his efforts.

George’s previous experience at various system integration shops included the
use of UML to express system design (in the “UML as pictures” style, as he
called it), but using UML models as documentation in this way resulted in the
classic problem of having the system specification become out of synch with the
code base.

About five years ago, when MDA was being developed, George and his SI
colleagues became interested in how to do a better job of closing the specifica-
tion/implementation loop. So, George came to the GSA—not with the responsibility
to design, develop, or deploy code (as had been his past experience) but to take
an architectural view in the pursuit of business goals. As he put it:

An architectural approach
to closing

the specification/
implementation loop

GSA engages Data
Access Technologies and
LMI Research Institute

MDA projects in an
environment of mandated
change

113

1
6 ' Challenges
1

Our objective was to take the ideas of MDA, with its capability to link all the various
domain and physical and logical types of architectural asset abstractions, and use
that to collapse the software development life cycle and make it more efficient.

GSA outsources much of its IT work (like many U.S. federal agencies, GSA does
not allow the vendor/contractor that gathers requirements or specifies a system
to bid on that system’s implementation). Ed Harrington, Executive Vice President
of DAT, described how GSA came to engage DAT in support of this effort.

DAT was fortunate enough to meet George Thomas at an OMG technical conference.
We had the opportunity to talk with him about what DAT in particular was doing
with MDA. His interest, which was from a top-down business approach, became
much more focused on EDOC and its approach to the development of enterprise
architecture based on roles and collaboration.

He saw that it would be a very good fit for at least an OCIO view of the orga-
nization. More importantly, this is a fit that has been successfully communicated
to the business people. The role/collaboration view has been instrumental in vali-
dating the top-level OneGSA work done so far, and in continuing the validation of
requirements in the follow-on work for their financial management line of business.

GSA also engaged the LMI Research Institute. LMI is a consultant to the govern-
ment and has significant expertise in the functional domain of GSA operations.
LMI did much of the data collection for the domain analysis, and helped GSA
validate the formal models. In all three projects, DAT was responsible for creating
the formal models and LMI acted as the prime contractor.

CHALLENGES

GSA had three concrete goals at the start. The first was a POC project in which
MDA principles were applied to relatively simple tasks for the Office of the CIO,
demonstrating Component-X and the power of the EDOC standards to develop
enterprise architecture.

The second was a pilot project in support of the FSS that was to modify
an existing acquisition application. The third was the creation of the OneGSA
enterprise architecture (described as “a mile wide and an inch deep”) that aligns
with the FEA.

These goals were chosen and set in an environment of significant change at
GSA. The mandate for these changes included the following initiatives.

» “Get-it-right” (initiative for better acquisition)

e Merger of two internal GSA organizations, Federal Technology Services and
Federal Sales and Services, into a single Federal Acquisition Services
organization

114 DATA ACCESS TECHNOLOGIES/GSA

e Restructuring to provide a unified face to the customer

« Office of Management and Budget (OMB) and Congressional mandates and
changes of mission

« Integrating and modernizing financial management

e Reduction of redundant processes and systems

It was clear from the outset that accommodating these initiatives would entail
huge changes to the organization, to supporting systems, and to the skill sets of
the GSA staff. And although GSA management realized that these changes would
be risky, costly, and difficult, they also realized that it was simply not practical to
attempt this change without addressing the costs and inefficiencies of their current
redundant stovepipe systems.

Therefore, GSA also wanted to use MDA to address a number of higher-
level goals, including the creation of model to integrate and architectural rapid application
development (ARAD) environments. To achieve these goals, GSA embraced the notion
of an executable enterprise architecture that would combine MDA design-time
and SOA (service-oriented architecture) runtime toolsets.

The executable enterprise architecture consists of models that dynamically simu-
late and facilitate interoperability between GSA SSOs and external agencies. In other
words, models are executed to simulate the evolution and optimization of business
process collaborations and are tested prior to procurement or development.

“Procurement or development” is the operative phrase here, because the GSA’s
goals embraced not only the “collapsing” of the software development life cycle
(SDLC) but of the capital planning and investment control (CPIC) process as well.
As George Thomas said:

We try to communicate in ways that make sense to our EA constituents: CPIC
and system or software development life cycles. These are things that people in
our environment understand, so trying to collapse the time and resource burden
associated with those life cycles for capital planning and software development have
been key “better, faster, cheaper” messages for us.

This is all part of the story of collapsing the system development life cycle,
and part of a larger initiative where the people in the federal government and GSA
are talking about model-based acquisition. What we’re trying to express is that
the architecture process, using MDA techniques, is in fact the inception and the
elaboration part of a typical SDLC.

When you're doing capital planning, and you want to make an investment, the
first question we want asked is, “Do you have a CIM? Is there a business model that
expresses the functional responsibilities of the system or the software that you are
trying to get a budget for?” If not, you develop one in the inception phase. This
business model talks about collaborative role interaction, and the opportunity is to
see how that fits in across the enterprise as a whole.

MDA addresses
“model to integrate”
and “architectural
rapid application
development”
environments

Collapsing both the
software development life
cycle and the capital
planning and investment
control process

By deriving technical
requirements from
business requirements,
rather than vice versa,
GSA is regaining control of
its destiny

Executable role interaction
models improve
communication with
business experts about
information flow within a
business process

Traceability: business
requirements to
implementation
technology-and

performance metrics to
business outcomes

115

1
6 X Expanding Goals
1

Finally, GSA faced a challenge common to federal agencies. GSA has few
in-house technical resources, so many of their technical capabilities are outsourced.
While GSA establishes the ground rules, policies, and environment in which the
technology operates (and although they may own a lot of technology), for the
most part this technology has been developed by commercial vendors. Recently,
the goal has been to use commercial off-the-shelf (COTS) products as much as
possible.

This has caused some difficulties, because it requires GSA to force-fit its business
requirements into what is available from vendors. What they are trying to do
now with MDA, value chain analysis (VCA), and SOA is to regain control of their
own destiny. The OneGSA effort is an example of this in its goal of deriving the
technology requirements from the business requirements and not the other way
around.

EXPANDING GOALS

When we asked George Thomas whether the goals of a project changed as his
organization became more familiar with MDA and what it could achieve, his first
response was to say that it is not uncommon for the goals of a project to expand.
We laughed, and we agreed, but when we pressed for the MDA-related aspects of
this phenomenon he said:

We were initially interested in the capability for subject matter experts to be able
to look at the executable artifacts, which is why we were very interested in the
implementation DAT had done of EDOC standard [a forerunner of, and now part
of, OMG’s MDA] with their Component-X tool. The opportunity to execute and
then step through, step into, and step over a collaborative role interaction model
was something we found very useful for communicating with business subject
matter experts about what information is flowing—in what context, and with what
constraints—at any point in a process.

Because of the formalism of the modeling technology used—the implementation
of EDOC in Component-X—that simulation allows us to refer to this as an executable
artifact. So, we started to explore what an executable architecture could do for
us. That allowed us to expand the goal of what we had been calling “executable
EA” to “executable FEA.” This is where we took the Federal Enterprise Architecture
reference models and treated them as an aspect of the collaborative role interaction
models we were using in the Component-X EDOC tool. So, that was one of our first
goal expansions: from simulations to executable FEA.

That was important because it gave us an opportunity to understand how to
depict and demonstrate this notion of “line of sight” in the performance reference
model, which is the umbrella reference model from the FEA. Line of sight refers to
the ability to trace metrics from the business requirements all the way through to
their implementation in technology.

116 DATA ACCESS TECHNOLOGIES/GSA

This meant that an executable target model could interact with an existing system
in our IT infrastructure. We could annotate those interactions with performance
reference model metrics, which are time and cost reduction metrics that roll up into
business outcomes.

We were able to show that if there was a system in our existing portfolio that
was enacting a role in a target model that the metrics for cycle time—for example,
in looking at this target business process scenario—could actually be captured, and
reports generated from a baseline “planned/actual/achieved” perspective.

In other words, we could run an executable FEA simulation and then post-process
that trace through the steps of the application, and see whether the metrics that we
had annotated showed whether we were actually able to achieve such reductions.
This was another goal extension, as we realized the capabilities of this notion of
executable EA using the collaborative role interaction modeling formalism.

We were then able to expand this to talking about executable EA, executable FEA, and
showing the explicit traceability of how a particular system is involved in performing
the service, as part of the functional responsibility of a role that is interoper-
ating/interacting with other roles in a collaboration. The traceability of the system
that is associated with a collaboration, and is performing a service in support of a
business outcome, was a powerful extension of the line-of-sight idea from OMB.

Ed Harrington of DAT also believes that the phenomenon of expanding goals
significantly affected the course of the project.

All along, GSA had the vision and the desire to use MDA to separate concerns, to allow
the business to drive the technology, and to allow the business to take advantage
of technology changes when they happen. So, the whole concept of separation of
concerns was a driving force. We are starting to get to the realization of this vision
in the finance drill-down project.

This project is about the retirement of a 30-year-old system running on a main-
frame. That system supports all of GSA's receivables and billings, and fixed-asset
accounting. In the finance drill-down project, we are developing the specifications
needed to replace that system. The decision to undertake this project came about
because of their increased understanding of MDA, and the ability of MDA-based
approaches to communicate value.

In the development of the OneGSA project, we spent a lot of time with the
finance group doing preliminary work at the business level. They began to see MDA’s
capabilities, and they ended up funding this finance project (jointly with the OCIO).

HOW MDA WAS USED

To recap, immediately after the POC project, GSA wanted to create the OneGSA
Enterprise Architecture as well as a pilot project for the FSS in which an
existing acquisition application was modified to conform to the OneGSA and FEA

Separation of concerns is
a driving force

EDOC provides the
framework for visual
representation of
business processes

How MDA Was Used 117

MDA: The Source for OMB Compliant EA and eGov

CIM

Computationally-
Independent
Model

Platform-
Independent

‘Domain’ Model,

created by Bus'ln'ess Model PSM
Analysts describing
Lo ; W Platform-

things in relation to Logical’ Model, Specific

Business Drivers created by Solution Mpodel Impl

and Strategy Architects specifying

s . Platform-
structure and Physical’ Model, Depl ¢
i i ted by product eploymen

behavior required crea Technology

and platform
specialists to
accommodate

to achieve
Business Strategy
desired in Domain

‘Runtime’ code
implementing the

network, software design,
and harglware generated from
topologies for MDA models for

Logical integrity chosen topology

and technologies

FIGURE 6.1 GSA mapping to MDA artifacts.

architectures. The OneGSA effort and the pilot project overlapped in duration, with
the pilot beginning in the spring of 2004 and the first iteration of the OneGSA
effort running from the summer of 2004 through the spring of 2005. So, how
do these efforts map to MDA artifacts and processes?

As Figure 6.1 illustrates, the starting point for the GSA’s MDA usage was the
CIM. The standards MDA is based on, including EDOC, provide a framework
for modeling the business. Those MDA standards also provide the means for
transforming the models into actual working systems.

This means that you can focus on the business modeling with full confidence
that having produced those models (and having gained all of the associated benefits
from them) you also have the artifacts that allow you to move forward with
building the system. Prior to this project, any GSA business modeling had been
done separately, and (at best) then passed to IT for them to figure out what ought
to be done with them. Ed Harrington characterized the new approach this way:

It is an iterative and continuous process, and we are doing this with finance now.
We take the CIM down through the PIM, and specify detailed system characteristics
using both EDOC and other UML models. The data representation in finance is
primarily in unconstrained UML, but the process representation is done in EDOC.

118 DATA ACCESS TECHNOLOGIES/GSA

The CIM work was essentially a matter of creating a visual representation of
business processes. In this CIM, Community Processes organize Roles in the context
of shared objectives, and Roles are choreographed activities undertaken to achieve
Community Process goals.

Roles initiate or respond to a collaboration Protocol, which describes a two-way
conversation between roles. Protocols in turn choreograph Ports, and can contain
nested subprotocols. Finally, Data-typed Messages flow over Ports.

Nouns are used to name Community Processes and Roles, and verbs
(or “actionObject” phrases) are used to name Protocols. Names are chosen
to describe action context and data content. These concepts are illustrated in
Figure 6.2.

The use of a CIM was extremely valuable because it facilitated the involvement
of the GSA business community. When we asked Ed Harrington specifically about
the oft-touted MDA benefit of improving business/IT communication, he said:

If by MDA you mean the EDOC approach we took to the business process, then
MDA certainly facilitated this. Roles, collaborations, and activities made things pretty
clear. By developing models focused on business roles and role collaborations, it was
very easy for the users and business people to see, visually, where they fit within

the models.
r’ '
Community Process 1
J A
ROLE 1

G = == -

ROLE 3

Color Legend:

- Community Process
- Role

- Protocol

- Port

FIGURE 6.2 Process components.

CIM encourages
involvement of the
business community and
improves communication
with the IT community

The Big Three: separation
of concerns, traceability,
and the ability to simulate
at the business level

119

1
6 ' How MDA Was Used
1

By modeling the processes at the level of roles, collaborations, activities, and
subactivities, you reach a level where you can very precisely describe what is going
on in the business environment. People can see the roles they’ll be playing as well
as the relationship between systems and people. For example, at the CIM level we
modeled the value chain processes irrespective of whether they are implemented in
systems or by people.

While GSA could have done the “to be” modeling in other ways, the value here
is that it could immediately be used to drive the next step of defining the system.
MDA allowed us to reach the level of precision needed to take the models to the
next step, down to the PIM, and enabled the development of specifications for the
next level of system detail.

The point of all this is that with the MDA paradigm you must express the very
detailed level of precision needed to take it to the next level of detail. For example,
as we develop the PIM we may find that we have to go back and revise the CIM
because we have not been precise enough.

And a very important point here is that the traceability inherent in the MDA
approach is a big advantage. When you are working with the PIM, the trace
between function and implementation is much clearer than was the case with
traditional analysis methods. MDA gives you the ability—it almost forces you—
to provide the FEA-mandated “line-of-sight” visibility between requirements and
implementation.

The theme here is that we have the ability to remodel a very large enterprise, in a
way that lets you achieve these downstream results with traceability. This is perhaps
the most valuable and the most extraordinary result of these projects.

But there are other things as valuable; for example, the separation of design
from implementation in support of federal regulations about awarding contracts to
vendors for various aspects of a project. What MDA gives you that other approaches
cannot is this: Anyone can say they will do an EA or separate the implementation
concerns from design concerns. But MDA is unique in that it addresses all those
requirements.

The three biggest MDA advantages are separation of concerns, traceability, and
the ability to simulate—at the business level-and get agreement on the desired results
before you write a line of code. And the third of these may be the most important,
because not only can you get agreement on the correctness of the process, you also
have the wherewithal to push this validated process down to the implementation
level.

In theory, any simulation can be mapped to a real implementation. But if
that mapping is not completely specified, or if it is not controlled by a stan-
dard, then you lose the traceability between the business-level agreement on the
correctness of the process and the correctness of the implementation. In other
words, you don’t have a guarantee about the computability of the validated business
process.

MDA provides the structure that allows the enforcement of things that facilitate
the mapping to the downstream requirements. While these things could be done
in other ways, it requires a great deal more focus and discipline because of the
enforcement aspect that MDA can provide.

120 DATA ACCESS TECHNOLOGIES/GSA

FEA Aspects of
PRM Metrics,
BRM/SRM /

=aCP1 PIM l
classifications, and &
DR_IVI_ §chema BRM @ ::}E
definitions are :
()

associated with and SRM

applied directly to
PIM elements

PRM

PSM elements
inherit these
annotations, TR
adding further
PRM and TRM
annotations -e.g.
CP1 is executed
on a .NET Server \

Legend:
- BRM = Federal Business Reference Model
- SRM = Service Reference Model
- TRM =Technical Reference Model
- DRM =Data Reference Model
- PRM = Performance Reference Model

FIGURE 6.3 Transformation from CIM to PIM to PSM.

Figure 6.3 illustrates the process of transforming the CIM to a PIM and then
to a PSM. PIM-specific characteristics such as performance metrics and schema
definitions are associated with CIM model elements, and then applied to PIM
elements in the CIM-to-PIM transformation. Model elements in the PIM are
assigned platform-specific characteristics, and these are carried forward in the
PIM-to-PSM transformation.

PROCESS AND TOOLS

Because GSA outsources much of its software development, and because the
companies that did the analysis/design for GSA cannot bid on the implementation
work, there have as yet been no discussions about a specific software methodology
for the eventual implementation of the system. But this is a bit misleading, because
GSA has adopted a strong MDA-based approach to architecture, analysis, and design
and because DAT’s Component-X tool has been used heavily to generate code.
Component-X implements the OMG’s EDOC/ECA-standard Component
Collaboration Architecture. It is based on open standards, and supports a variety
of technologies, including WSDL, ebXML, and JMS. Two other characteristics

The Component-X tool is
the enabling technology
for GSA’s Executable
Enterprise Architecture

Models interact and
interoperate directly with
existing infrastructure

121

1
6 ' Process and Tools
1

were even more important from the GSA’s viewpoint: the tool’s “tracing compo-
nent” architecture (which supports explicit ties between design and implemen-
tation; i.e., line of sight) and its process simulation and dynamic modeling
capabilities.

Component-X is thus the enabling technology for Executable EA, and has been
instrumental in helping GSA achieve its goals. Component-X provided the ability
to simulate processes within the GSA’s actual IT environment—showing not just
“box-and-line” diagrams but true simulation of process activities. George Thomas
spoke highly of this tool’s capabilities.

It was a good match for the architecture work we needed to do, and it was a good
example of the kind of ideas we were trying to express about the central themes of
MDA. We talk about “model-to-integrate,” and we try to explain to people that these
Component-X executable models are in fact Java programs. DAT has a framework
and a library of code that takes these EDOC depictions and provisions them to
Tomcat, a reference implementation of J2SE.

That capability—case tools on the Java standard, and the notion of model-to-
integrate (which is a key idea behind MDA)—was another reason we really like the
Component-X tool. Since these models were executed as Java programs, we could
demonstrate interactions with existing service components.

The notion we're trying to put forth with this capability is that if we maintain
the test domains of all the various IT initiatives across GSA then when the business
architecture needs to show how a process interoperates with what exists a busi-
ness model can go directly to, and interact with, the existing infrastructure. The
executable model is a Java program and we can use the Java web services developer
pack, and all the normal Java standards, for doing messaging. This was another
powerful idea.

So, Component-X helped us to talk about Executable EA, which is a
top-down, forward-engineering, push-it-from-the-model-to-the-runtime-platform
approach (in the case of Component-X from an EDOC model to a J2SE platform).
This let us show how we can collapse the CPIC cycle, with the relationship to the
FEA as an aspect of the EDOC models.

And it also gave us the opportunity to interact with test domains to see how
the existing infrastructure pieces play a part in target business processes. These
were the reasons why we originally went with Component-X. Another reason was
the expressivity of EDOC itself, and some of the other strengths of EDOC and the
Component-X implementation in terms of composition.

So, if there are a set of roles, and business conversations or protocols that
have been defined for those roles, the protocols and the roles themselves—seen as
service components—are easily recomposed (or composed differently) for a new
collaboration. This made it easy to talk about service component reuse using this
tool and this style of modeling. This is why we started our business modeling effort
using EDOC and Component-X.

122 DATA ACCESS TECHNOLOGIES/GSA

DIVISION OF LABOR AND TRAINING

DAT participated in each of the three projects (POC, OneGSA, and FSS pilot).
Daston Corporation was prime contractor on the POC, while DAT and LMI worked
jointly on the OneGSA and FSS pilot efforts. LMI business analysts provided the
value chain analysis, documentation of the as-is architecture (which was largely
paper-based analysis; they did not model the as-is architecture in the same way
they modeled the to-be architecture).

GSA personnel with direct involvement include three employees and five
contractors from the OCIO. These people have provided project oversight from
an earned-value analysis standpoint, and have implemented program reporting to
ensure that the project remains on track.

The projects have relied on a mix of subject matter experts (SMEs), including
both LMI and GSA personnel. Building the OneGSA Enterprise Architecture
required interaction with many GSA SMEs to validate the OneGSA high-
level architecture (there were multiple sessions with as many as 30 people
involved).

Because of the GSA’s reliance on contractors, much of the involvement by GSA
personnel was part-time and intermittent—by SMEs who validated the modeling
and analysis work of various contractors. George Thomas dedicated part of his
time to the project, and one person from Finance dedicated 20% to 25% of
her time.

Some of this interaction was led by the Project Management Office, which
set up the meetings and provided facilitation support. At other times, DAT relied
on LMI and their extensive business contacts within GSA to get things done. Ed
Harrington gave credit to the MDA approach for the success of this work.

As for the help MDA provided in this communication, once we got people into
the room together the models themselves readily facilitated communication and
discussion. We had a number of lengthy intense sessions about the validity of the
models. So, the models provided the key tool to describe the desired to-be state of
the business, and for enabling the business people to understand this state.

DAT provided training and mentoring to GSA in a continuing education process.
They conducted workshops and presentations, but the real education occurred
during the process of validating models with SMEs. This entailed an initial hour
or so of introducing the modeling process and defining the meanings of the
various graphical modeling elements and associated notation. DAT has trained
several GSA people in the use of the Component-X tools so that they can create
models and modify those that DAT created. Thus, rather than formal classes the
training/mentoring effort so far has been a learn-by-doing exercise in on-the-job
training, with GSA providing supervision over the process.

MDA as communication
facilitator-this time
between design/analysis
and implementation teams

MDA tools capture and
enforce GSA’s software
development guidelines

123

1
6 X MDA and the Federal Government’s Software
1

MDA AND THE FEDERAL GOVERNMENT’S
SOFTWARE DEVELOPMENT APPROACH

The fit between MDA and the federal government’s approach to software
development is an interesting story, and one that illustrates the power and utility
of “the separation of concerns” inherent in an MDA approach.

As mentioned previously, government rules preclude analysis/design vendors
from bidding on the implementation work. MDA's separation of concerns fits this
approach well because it allows a much more efficient handoff of information
from the design/analysis team to the implementation team. As Ed Harrington
put it:

This is why MDA'’s separation of concerns is of such great value when working with
the federal government. If you want to do such work, and you must separate the
implementation details from the specification (and you usually do), this is a fine
way to go about it.

The reason for these rules is to prevent a large system integrator from creating
a specification that only they can implement. So, in a very real sense MDA is an
enabler for companies that want to participate in this business. And it illustrates the
fact that separation of concerns is not simply something of abstract interest in the
IT organization.

Here, it is a necessity from the business viewpoint. So, MDA is a powerful enabler
in a very large business segment—the federal government. And as GSA goes, so will
go much of the national government, and many local governments and quasi-public
organizations as well.

System specification in the form of MDA models provides a very efficient
way of handing off analysis/design work to an implementation team, because
when separation of concerns is maintained no platform-specific details are there
to confound the creation of the executable system.

But the Component-X tool’s ability to generate executable models (in the form
of Java programs) presents an interesting wrinkle to this approach. Even though
none of the code generated by Component-X is likely to appear in the as-built
system, that code provides a great deal of value downstream.

First, the executable models have been validated by business SMEs as correctly
implementing the requirements, and have been proven to interoperate with the
existing infrastructure. So, they serve as “reference implementations” of system
components for the implementation team.

Second, because the generated code is produced by a customizable “transfor-
mation engine” (which is true of almost all generative/transformative MDA tools,
not just Component-X) the constraints embedded in the engine embody a great
deal of knowledge about GSA’s standards and guidelines for implementation code.
Typically, this knowledge is lost when analysis/design artifacts are transferred to

124 DATA ACCESS TECHNOLOGIES/GSA

the implementation team, and it must all be relearned during implementation. But
in this case, those coding constraints and guidelines are available to the implemen-
tation team, at least to the extent that they have been captured in the customized
Component-X transformation template. George Thomas described the fit between
MDA's support of traceability and GSA’s goals for “model-based acquisition.”

In the circles of those who understand the value proposition of MDA, this is referred
to as model-based acquisition: how we conceive of, procure, develop, deploy, and
manage IT to support citizen-centric e-Gov. And it is one of our key business goals
to do a better job here.

We have experienced the classic gap, where the business people come in and say
that there is something you need to do that doesn’t map to your organization. Then
architects come in and design a system and hand it over to coders. Basically, everyone
ignores what the guy further up the chain has said. So, the explicit traceability that
is part of the central MDA message, as you walk from one abstraction to another, or
to some concrete artifact, is very attractive to us.

PROJECT EXPERIENCE

Again, this case study covers three different MDA projects undertaken by GSA.
The first was the POC, the second was the FSS pilot, and the third was creation
of the OneGSA Enterprise Architecture (the OneGSA Enterprise Architecture is
described in the “How MDA Was Used” section). The OneGSA Enterprise Archi-
tecture project started in July of 2004 and ended—to the extent that any enterprise
architecture effort can end—in March of 2005.

For the POC, Value Chain Analysis (VCA) was performed on the order-to-
payment process and was undertaken in the fall of 2003. Again, the purpose of the
POC was to ensure alignment of the OneGSA Enterprise Architecture and the FEA.

EDOC-based collaborative role interaction modeling was undertaken to accom-
plish this project, and this interaction model was annotated with aspects of FEA
reference models. FEA reference models describe or represent the way in which
federal agencies report their budget requests. So, in many ways the FEA is a
taxonomy the OMB uses to understand budget requests for IT development,
modernization, and enhancement.

This was the GSA’s first business use case, and once it was possible to apply the
FEA reference models directly to the target business interaction models the goal of
“collapsing the capital planning and investment control cycle” became a reality, at
least in this process. Instead of a manual word-processing-intensive process, OMB
submissions could be expressed as an XML schema—taxonomy—applied directly to
GSA models. As George Thomas put it:

We had the capability to automatically report, from the models, the relationship to
the FEA. And so we applied that in what is the principal role of enterprise architecture

Model-based acquisition is
a key GSA business goal

GSA’s first business use
case: automatically
reporting the relationship
of @ model to the FEA

125

1
6 : Organizational Development
1

in federal agencies, which is to help do capital planning and investment control. We
have a requirement to talk to OMB in a certain way, and we needed to make that
useful and correct as we move toward service orientation and all those wonderful
things.

The submission process itself is not yet completely automated because the
systems that capture and contain that information are not yet capable of automat-
ically inserting submissions. But GSA has automated its end of the process, and
in any case end-to-end automation of this process was not the primary goal. As
George Thomas put it:

The point is not so much that we can generate an automated report. It is that we are
making a better link between the actual target knowledge base and the FEA directly,
rather than having a manual process where people just get out the OMB-300 form
and start typing.

We wanted to be able to supply them with the relationship between what the
architecture says about the requirements for this initiative and its relationship to the
FEA taxonomy. That was one of the first things that we automated.

VCA proved to be an effective way of engaging business organizations, and of
specifying business processes formally. Use of DAT’s Component-X tool demon-
strated the ability of MDA and EDOC to produce FEA-compliant output, and was
instrumental in defining GSA’s third MDA project, the FSS pilot project.

The goals of the pilot project were to achieve a cohesive approach to business
planning via targeted enterprise architecture analysis/development and integrated
business/IT planning. It provided for seamless collaboration and integration with
the FSS’s business partners, and it demonstrated the usefulness of dynamic models
in a shortened design and development life cycle.

Specifically, the pilot enhanced the GSA’s “eBuy” capability to include
purchase order and task order management. By addressing a real-world problem—
implementing the FSS order-to-payment capability in a way that accommodated
both current and future states of the system—the project allowed eBuy to transition
smoothly to support the target enterprise architecture and to be integrated with
other functions in an SOA.

ORGANIZATIONAL DEVELOPMENT

We asked all of our case study participants whether, and how, the adoption and
use of MDA had affected their organization. The answers we got in this case study
were indicative of the vast difference between GSA (and government organizations
in general) and the typical business enterprise. Nevertheless, George Thomas gave
us some very interesting responses to questions in this vein.

126 DATA ACCESS TECHNOLOGIES/GSA

For example, we noted in the “Challenges” section that the goals for GSA’s
MDA projects were chosen and set in an environment of significant change at
GSA. We asked about the organizational transition implied by those goals and
requirements, and how it would affect the communities attached to previous
approaches: How is that transition going? How does it impact those cultures? How
do people react? How do you deal with the inevitable pushback? George Thomas
replied:

Those are really tough questions. Clearly it is disruptive, and some of the capabilities
espoused by our use of MDA and by MDA in general may force some well-established
support companies to think about their business model a bit more.

We've heard things like, “As if global outsourcing wasn’t bad enough, you guys
are now trying to commoditize the creation of code!” So, it certainly is disruptive,
and I don’t think that we as an organization have any magic pixie dust that makes
this any easier.

It sometimes happens that you get mixed up in the technical issues of doing
model-driven architecture at some of the most mundane levels. For example, “Well,
UML2 can do this, but none of the UML tools currently implement that capability,
or if they do the way that they serialize it for import and export requires some sort
of intervention to deal with idiosyncrasies.”

Unless you adopt a particular pragmatic set of conventions about the precise
syntax and semantics of what architectural view is used and where, and develop your
tool chain around that, then there are many, many different ways to skin the cat,
with many tools, meta-models, and approaches. And that amount of choice begins
to be a difficult technical problem.

I think that the OMG is aware that the set of meta-model standards they present
is both a blessing and curse. It is a blessing in that there are standards that are well
conceived by very smart people, and it is a curse in that they are often overlapping
and redundant. And in some cases, their semantics are not clear.

So, a turf war may happen, say over a particular methodology that is lucrative
to a given support vendor. When such a vendor becomes aware of someone else’s
approach to, say, model-to-integrate, it’s easy for them to confuse things with
technical idiosyncrasies and the very nature of all this meta-model stuff.

That is not the kind of happy talk you usually see in a case study but it is reality.
If I, or anyone within any single agency, were in a position to say, “This is how
we're going to do everything (from inception, to elaboration, to construction, to
transition within IT) in order to align it with the business and achieve better agility,”
then we would have none of these issues.

But instead, all of our environments, and all of our constituents, are ... well, we
say “federated” on a good day and “decentralized” on a normal day. So, the amount
of work in dealing with conventions of syntax and semantics—in order to maintain
the desired amount of tool and platform agnosticism that MDA espouses—is very
resource intensive. That is a kind of counterbalance and reflects that we are in the
early stages of MDA adoption.

MDA can be disruptive,
especially in a
decentralized organization

“The set of OMG’s
meta-model standards is
both a blessing and a
curse”

“So, having drunk a lot of
the Kool-Aid, | can’t really
think of anything to which
the principles of MDA
could not be applied.”

But there is an MDA
“sweet spot” at GSA:
Business Process
Management

127

1
6 : Organizational Development
1

We suggested that whenever a new technology is adopted it is disruptive, and
that its ability to be fully successful is in large part based on its maturity. George
Thomas agreed.

Yes, and in our case that maturity, as well as the understanding of that maturity,
is spread across an extremely decentralized organization. Every GSA line of business
has its own CIO. Every CIO has an organization that does things, with greater or
lesser success, or maturity, or advanced techniques.

There isn’t anyone who can just say “This is how we’re going to do it” and just
streamline all of that. We can do that individually, but across the organization at
large you can’t.

We then asked whether there were any likely “sweet spots” for MDA adoption.
He replied:

What we’ve been saying about MDA is basically the same as what I heard Gartner say
at a recent SOA/BPM conference: MDA represents a kind of umbrella management
context for everything from the entire software life cycle to the implementation of
a system of initiatives in support of a business initiative. So, having drunk a lot of
the Kool-Aid, I can’t really think of anything to which the principles of MDA could
not be applied.

But we took the opportunity to ask this question in a different way, because
even though GSA does not have formal authority over other government agencies,
it is doing its best to encourage the use of MDA. We were given a copy of GSA’s
“One GSA Enterprise Architecture Blanket Purchase Agreement and Statement of
Work” (Solicitation No. GSA/TFL06-2064, Amendment No. 1 Correction) and an
associated Q&A document as background material. The latter document contains
a very interesting question and answer.

QUESTION 16: Are all GSA systems development initiatives using the Architecture
Driven Modernization / Model Driven Architecture?

RESPONSE: All GSA system development initiatives are not currently using the
MDA/ADM methodology. However, it is anticipated that all future Enterprise
Architecture Program Management Office and Blanket Purchase Agreement task
initiatives will use the methodology and tools.

After getting permission to cite this, and noting that the statement of work
itself described VCA of business processes as “the primary discovery mechanism
for developing the OneGSA Enterprise Architecture,” we asked George Thomas
whether all of this implied that business process management was such a “sweet
spot” for MDA adoption in GSA and associated organizations. He replied:

128 DATA ACCESS TECHNOLOGIES/GSA

First of all, with respect to that statement that is indicative of the decentralization
we were just talking about. In other words, anything that comes from my shop
goes down in this way. But that is not to say that everything that goes down goes
through my shop.

That’s the reality. What we are able to do as we show more value—for example, in
the provision of a service component for the financial management LOB that is not
available via COTS/GOTS~if they want to procure that capability and we say, “We
already have the ability to generate the code and deploy it in a J2EE environment,
so what is there to procure?”, well, that will be disruptive moment.

But in terms of the sweet spot question, I think that business process manage-
ment and MDA illustrates the point of recent Gartner statements about all these
management ideas coalescing into Model-Driven Architecture. From our perspective—
and what we focused on initially, and what is typically the most broken and least
understood area, and certainly is very much in vogue—is a discussion of business
processes.

So, our application of EDOC and its Component Collaboration Architecture
focused on exactly that: what is the choreography, and what are the collaborative
role interactions, in a business process that is one of many in the entire value
chain. So, that was a functional sweet spot immediately, with this particular style of
modeling.

That is more a reflection of EDOC and CCA and DAT’s implementation of that
than of MDA per se. For example, although there are a lot of executable UML
tools and other wonderful tools, you don’t typically see people simulating activity
diagrams.

But to be able to describe the business process and the functional requirements
of activities within that process, and then to see that activity as a service component
and then provision that to a web-service/J2EE implementation, is definitely a sweet
spot in terms of how you realize target business processes.

We suggested that the sweet spot exists because people are already interested
in modeling business processes, and people are also interested in providing an
SOA of some kind. What they don’t typically have are a way of tying the two
together clearly to specify how a process model maps to a set of services, and a
way of simulating processes as a set of services. George Thomas replied:

Right. When you can do that you have a better requirements specification, and a
better alignment of what you are trying to procure with your actual capability. And
the simulation part is what we refer to as the executable model.

The opportunity to realize that service better, faster, cheaper (thus collapsing the
SDLC) is disruptive. And it’s sort of where MDA came from. If you design a good
model, you can generate a lot of the code. But we’ve used MDA as a sort of language
for depicting business processes and the relationship to service orientation.

We also asked a follow-up question about the reaction of software development
vendors to the GSA’s intended use of MDA. The reply was:

Mapping process models
to SOA, and then
simulating processes as
sets of services: MDA as a
language for depicting
business processes and
their relationship to
services

1
6 : Organizational Development
1

129
MDA’s role is not to The biggest result of that was to make our independent support vendors stand
generate code but to help up and take notice: for us to say, “We think that this SOA depiction, which
get better results is explicitly linked to this model, and which we can generate and deploy

as a service on this open-source J2EE container, can be done better, faster,
cheaper than the two years and $800,000 you guys would spend writing
some JSP.”

That was probably the biggest impact. And again, this was not necessarily seen
as a positive thing because the message that was received there was “this code
generation thing is going to put me out of a job.”

And of course it isn’t our role as the Architecture group to generate code per
se, but it is our role to show how advanced technology and techniques (such as
those in MDA) help us get better results, either faster or cheaper and maybe even
both. Another aspect of that was having the technology leaders (CIOs in other GSA
organizations) themselves start to understand what it was, and start to commission
their own studies of what was happening with MDA and how it might help their
organizations.

For example, the work [. . .] done in the Finance LOB has been done mostly with
us. And we have other business lines within the GSA that have commissioned their
own MDA pilots because they are interested in different toolsets and meta-models.
The value proposition that we were able to show encouraged them to do that.

And that’s a good thing; it just takes a while. As I said, in a different organization
(like a company), where the CEO says, “I believe what the CTO is saying and this is
how we’re going to do things,” then the path to using MDA might be a lot shorter
and results might be generated faster and more cheaply.

I don’t have total control, and in some cases no control whatsoever, over how
people actually do things and what they do with their money. GSA business lines act
as fee-for-service organizations, and in fact they’re paying my bills. So, it’s a case of
the golden rule, where he who has the gold makes the rules.

What I have been able to do is demonstrate the value proposition of these

Demonstrating MDA’s ideas and that has led to further investigation on their parts. And it has led to the
value proposition has led requirement for their support folk to say, “We understand, and this is what we can
to further investigation do for you along those lines, etc.”

elsewhere within GSA

We then asked about the vendors who complained that code generation would
put them out of business. The reply was:

It’s gone from that initial reaction to: “Absolutely; we are expert MDA practitioners.”
That’s probably the most positive effect, but at the sales pitch level we've at least
gotten that into the lexicon. When it comes to the “simple matter of implementation
details,” the creativity inherent in the freedom of our approaches manifests itself,
and that is not a bad thing.

We're not trying to be prescriptive, or to say there is just one way to do this right.
There are many ways to do this right, and there are different things for different
people to focus on.

We are focused on understanding an enterprise-wide business process, in a
service-oriented depiction, and the use of that for capital planning. We'd like to

130 DATA ACCESS TECHNOLOGIES/GSA

make an explicit link to the people who realize, develop, run, and manage those
services in the IT infrastructure, and there are many different ways to attack that
problem.

We find that most often people want to start talking at the Platform-Specific
Model level, and they want to start modeling at that level. They want to work on
generating code for their favorite target platform.

But we are really starting at the highest level. We're trying to find the business
abstraction that helps our executives understand the universe of buyer-agent-seller
interactions.

But we want that to be done with a formalism that can be traced all the way
down to running code. And we would love to think that configuration management
becomes less about a code base and more about a model base, where we have a
generation and provisioning capability from the model.

So, it generally has been a positive affect on the vendors. I think all the people GSA started at the highest
now talking to the GSA at this point about what they do at least acknowledge an level of modeling, to
awareness of the MDA value proposition. But just because you do UML modeling provide a formal
doesn’t mean you're doing MDA. understanding of

buyer-agent-seller
interactions

We asked George Thomas, “Do you have any plans to assist other organizations
in their understanding of or uptake of MDA?” He responded:

That is the focus and objective of the Open Source E-Gov Reference Architecture The Open Source E-Gov
(OsEra) project. The OsEra project is an open-source environment for design and Reference Architecture

runtime tools, to realize the service specifications that have been modeled in the FEA combines the disruptive
and the financial management line of business efforts. business model of Open

Source with the disruptive

OsEra is not particularly relevant to this case study perhaps, but it is about the -
capabilities of MDA

capabilities we’ve been discussing: the business model defines the collaborative role
interactions, the logical model “componentizes” that across an n-tier environment,
and the ability to generate executable specifications of that from the models—this is
basically the core MDA story.

So, with OsEra we are trying to combine the disruptive business model of Open
Source with the disruptive capabilities of MDA, and the end result harkens back to
what I was saying about the FEA modeling work.

If we are able to design and elaborate a service that fulfills a business activity and
process, and if we are able to provision that and deploy it to a mature enterprise-level
standards-based middleware platform, we absolutely want to make the “best value”
point, which is that we must understand what it is that we need to procure. That
has been our focus—to get to the point where we can prove that we are not crazy to
say that. And once we can do that, we simply want them to take these capabilities
into consideration before they say, “We need ERP” or “We need CRM” or “We
need SCO” or whatever large monolithic architecture COTS tool they would have
gone off to buy.

So, we're really trying to get that into the thought process—what it means to
be agile, what it means to get best value—with the capabilities of this MDA stuff,
and with the availability of this open-source stuff. So, those are the ideas we are
combining with the OsEra project, and we are using the work that we are doing

The OneGSA Enterprise
Architecture earns GSA a
“green” rating from the
Office of Management and
Budget

131

1
6 \ Results and Benefits
1

in enterprise architecture projects (such as finance management LOB services) to
demonstrate that point.

So, we can say, “Here’s the financial management line of business specification
and you can use that in an RFP to procure things. And by the way, that specification
identifies sixty work roles, which may have a number of components that are helper
roles to fulfill that in a three-tier environment.” And we can generate the BPEL
choreography for each of these business processes and show you that they are in
fact interacting with each other.

At some point, someone will ask what this is running on. And we will say, “Web
services and J2EE.” And they will say, “Okay, let me go buy something that gives
me a web service and J2EE implementation of this model.” And we say, “We already
have that.”

So, we are not able to say, “This is the way we’ll do things,” but we can say,
“Doesn’t this make a big difference in whether or not you want that $100 million
solicitation?” And that’s an important idea.

RESULTS AND BENEFITS

Although it is difficult to quantify the benefits GSA has obtained through the use
of MDA thus far, it is very clear that as a result of MDA enormous change is on
the horizon, even if it is just beginning to ripple through the organization. As for
the specific results of the projects undertaken thus far, the creation of the OneGSA
Enterprise Architecture was extremely significant. The OneGSA EA has become a
business enabler because MDA and VCA can together map value-focused business
processes with IT execution mechanisms and strategies. It is a simple case of better
system definition leading to better systems. Because users can change or expand
the definitions of processes, roles, and connections, there are fewer false starts,
better communication, and increased interoperability and reusability.

In addition, OneGSA was an administrative and political win for the organi-
zation.“According to the White House website,! “The President’s Management
Agenda, announced in the summer of 2001, is an aggressive strategy for improving
the management of the Federal government. It focuses on five areas of manage-
ment weakness across the government where improvements and the most progress
can be made.”

This executive initiative calls for a results-oriented expansion of E-Government,
and the Office of Management and Budget rates federal organizations annually on
their implementation of the FEA. It assigns red to agencies that are failing, yellow
to those that are making progress, and green to agencies that are where they should
be at this point in time. GSA earned the green rating on September 30, 2005.

I http/www.whitehouse.gov/omb/budintegration/pma_index.html

132 DATA ACCESS TECHNOLOGIES/GSA

The purpose of the POC project was to ensure and demonstrate the alignment of
the OneGSA EA with the FEA. EDOC-based collaborative role interaction modeling
was undertaken to accomplish this. This interaction model was annotated, in the
form of an XML schema, with aspects of FEA reference models. So, the proof
in this POC was the demonstrated capability to report—automatically from the
models—the relationship of the interaction model to the FEA.

In other words, the requirement was to be able to communicate with the OMB
in a certain way. Not only was that specific requirement fulfilled, it was done
in a way that provided line-of-sight visibility from requirements to implementa-
tion that demonstrated the ability to work with existing infrastructure and that
supported reuse in an SOA.

Finally, the FSS pilot project created a set of roles and collaborations that
modeled the execution of purchasing services, assigned business rules for these
functions, and diagrammed choreographies that model information exchanges.
The resulting system modifications allow FSS business analysts and IT personnel to
interactively view data flows as well as processes, business rules, and interactions
among roles. Thus, enterprise architecture and IT components have become a
communication vehicle between the business and IT communities, and have clar-
ified communication among the Office of Management and Budget, the General
Accounting Office, and GSA. In the GSA, models have become the development
and documentation tool of choice throughout the software development life cycle
because they support GSA’s moves toward SOA and allow rapid response to
changing business environments.

ONGOING AND PLANNED USE OF MDA

When we originally researched this case study, we were told that GSA, DAT,
and IMI were undertaking an additional MDA project in the finance area to
address replacement of receivables/billing and asset management functions on
a legacy mainframe system. Because this project had not been completed at the
time, DAT and GSA were unable to provide details. They said only that this
project was employing MDA tools and standards to extend the OneGSA Enterprise
Architecture and was applying Architecture Driven Modernization tools for legacy
analysis.

We have now been informed that this project was completed successfully in
December of 2005. Unfortunately, our schedule did not allow us to interview the
principals involved or to write a complete description of the project.

However, DAT and GSA provided some information about this Financial
Management Enterprise Architecture (FMEA) project, which was sponsored
by Offices of the Chief Information Officer and Chief Financial Officer at

Models are GSA’s tool of
choice for the software
development life cycle
because they allow
business stakeholders to
interactively view
processes, roles, and
interactions

1
6 \ Ongoing and Planned Use of MDA 133
1

GSA and carried out under the umbrella of the OneGSA Enterprise Architec-
ture program. In this project, GSA has developed the specifications needed to
replace the legacy mainframe system mentioned. Project deliverables included the
following.

« A target business architecture for consistent and comprehensive financial
management, supporting all GSA services and staff offices

* A logical system architecture for a cohesive financial management suite
supporting the business architecture, particularly where functions had to be
transferred from existing legacy systems

A set of interface definitions to act as the basis for a standard GSA financial
management SOA

The benefits delivered by this project include the following.

e A set of system and technology specifications that match their associated
business requirements

e Traceability up and down the MDA “stack”

* Specifications for services acquisition (buy or build)

e The adoption of models as the primary architectural artifacts

e A modernized—, non-stovepiped—, service-oriented basis for moving
forward

e The ability to implement these specifications over time (thus avoiding any
“Big Bang” events)

« Assurance that these FMEA functions can be integrated with other GSA and
non-GSA services

e Prevention of lock-in to proprietary vendor architectures

e Providing a self-documented system

A framework that allows for strategic evolution of business processes and
information systems, rather than the usual piecemeal growth of patchwork
solutions

As might be guessed, there is another ongoing MDA project at GSA: that of
writing a more detailed version of the OneGSA Enterprise Architecture. DAT is
the prime contractor for this project and is currently working with a number of
subcontractors.

134

DATA ACCESS TECHNOLOGIES/GSA

TABLE 6.1 Project Profile: Executable Enterprise Architecture

Company/Organization Name: U.S. General Services Administration.

QSP/Consultants

Business Pain Points

Industry/function: GSA is the premiere federal acquisition and

procurement agency, and helps federal agencies better serve
the public by offering expert solutions, acquisition services,
and management policies.

Size: GSA employs approximately 13,000 people.
Geographical reach/extent: USA.

URL: www.gsa.gov

Name: Data Access Technologies, Inc.

Areas of experience/expertise: A MDA Qualified Service Provider,
DAT architects and implements products and technologies that
enable global Internet computing for the enterprise. DAT is a
leader in the efforts to make the standards required for
enterprise components open and interoperable. Much of the
technology offered by DAT is a direct result of a grant from
the Advanced Technology Program of the U.S. National
Institute of Standards and Technology.

DAT helped create the OneGSA Enterprise Architecture and
provided the Component-X tool for the creation of executable
models that dynamically simulate and facilitate interoperability
with existing systems.

URL: http:/ /www.enterprisecomponent.com/
Name: LMI Research Institute.

Areas of experience/expertise: An MDA Qualified Service Provider,
LMI is a not-for-profit strategic consultancy committed to
helping government leaders and managers reach decisions that
make a difference. LMI assisted GSA in the pilot project and the
creation of the OneGSA architecture.

URL: http:/ /www.Imi.org/
Name: The Daston Corporation.

Areas of experience/ expertise: The Daston Corporation provides
customized information technology, financial management,
and management consulting solutions. Daston is a prime
contractor for GSA, and ran the first proof-of-concept project.

OneGSA architecture was undertaken in an environment of
significant change, including the merging of two internal
organizations, and various mandates from the U.S. Congress
and the Federal Office of Management and Budget.

(Continued)

Ongoing and Planned Use of MDA 135

TABLE 6.1 Project Profile: Executable Enterprise Architecture—Cont’d

Tools Used

Model-based Artifacts
Created

The need to restructure systems to provide a unified face to the
customer.

The need for the new functionality to integrate smoothly with
existing architecture and application.

The need to integrate and modernize financial management.

The need to reduce redundant processes and systems.
DAT’s Component-X.

CIM.
PIM.

PSM (in the form of executable models).

CHAPTER SEVEN

INTERACTIVE
OBJECTS/DAIMLER CASE
STUDY: AUTOMOTIVE
INDUSTRY

A major player in the auto industry uses MDA to build a support system for all processes within production
plants, replacing 10 legacy systems and leveraging existing architecture and infrastructure. “Model-driven
offshoring” produces organizational integration with remote development partners.

BACKGROUND

DaimlerChrysler is a powerhouse in the automotive industry, with products that
range from small cars to sports cars to luxury sedans, and from vans to heavy trucks
to coaches. With more than 38,000 employees worldwide, DaimlerChrysler sold
more than 4 million passenger cars and more than 700,000 commercial vehicles
in 2004, with revenues of €142.1 billion ($192.3 billion).

This project was undertaken with DaimlerChrysler TSS GmbH (TSS), which is a
wholly owned subsidiary of DaimlerChrysler AG, founded in 1998. TSS specializes
in J2EE- and .NET-based applications, Lotus Notes, and data warehousing solutions,
as well as consulting and test services—all done exclusively for DaimlerChrysler AG
worldwide.

Interactive Objects Software GmbH, founded in 1990, is an IT solutions
company that has made the application of Model Driven Architecture (MDA) its
specialty. Its customers include many Fortune 500 companies in various industries,
including finance and insurance, transportation, government, software, telecom-
munications, and automotive. Interactive Objects is an MDA Qualified Service
Provider and has been an OMG member since 1990. The company has won

137

138 INTERACTIVE OBJECTS/DAIMLER CASE STUDY

numerous awards for its ArcStyler architectural platform and for the applications
that have been built upon it.

The project undertaken by TSS and Interactive Objects was called Electronic
Production Planning (ePEP) and its purpose was to provide support for all processes
within production plants, from construction clearance to production clearance.
The ePEP modules include the following.

* Global Parts/Schedule Alignment (GTTA) to ensure timely availability across
different production sites of new or changed parts

» Construction Plan Change Management (KOAEND), which uses a
customizable rules engine to distribute incoming construction plan change
information to all stakeholders

* Production Coordination (ESKOORD), which supports the entire production
process chain, including work order management, master data management,
automatic distribution of supplier queries, quotation management, purchase
order management, and delivery schedule management

WHY DAIMLER CHOSE AN MDA APPROACH
AND WHAT THEY HOPED TO ACHIEVE

Daimler TSS began investigating MDA approximately 14 months before the start
of the ePEP project, by creating a small team to investigate the various MDA
options available in the market. They were unsure whether they needed an MDA
or Model Driven Development (MDD) approach, but they had the clear goal of
using models.

They were looking for several advantages. First was the ability to leverage
their existing architecture and IT expertise. Second, they wanted to bridge the
communication gap between their business and IT communities. And third, after
a suggestion by the Interactive Objects team they began to see the potential of
applying a model-driven approach to their practice of “offshoring” some software
development work to their software development partner’s site in Kuala Lumpur,
Malaysia. The process of choosing a consulting partner involved an examination
of tools (TSS tried several), as well as an evaluation of a potential partner’s overall
technical strategy and its ability to provide supporting professional services.

TSS had no interest in a tool or IT infrastructure that would replace or disturb
their existing sophisticated J2EE-based Application Framework and Infrastructure
(known as PAI) or their current software development processes, which are CMMI
certified. They needed a tool that would fit their current architecture and process
such that both would be able to accommodate future changes and architectural
requirements.

The Electronic Production
Planning (ePEP) project
provides support for all
production processes in all
plants

ePEP addressed the “how”
of implementation as well

as “what” was actually to

be implemented

139

1
7 X Expanding Goals
1

In other words, it was not simply a matter of what would be implemented in
ePEP but of how it would be implemented and how it would fit into the existing
IT landscape. And finally, TSS did not want to become dependent on any external
organization.

TSS came to the conclusion that Interactive Objects offered the best value. One
reason was the capability and flexibility of Interactive Objects’ ArcStyler tools.
Other factors were Interactive Objects’ extensive experience with large enterprises,
as well as their ability to support TSS and react very quickly to their needs (which
they demonstrated immediately by supporting a small pilot project).

Interactive Objects also helped TSS achieve their objective of maintaining self-
sufficiency. For example, as a result of the Interactive Objects partnership TSS now
has a staff of experts capable of introducing the MDA approach elsewhere in the
organization. That process is under way and going very well.

The challenges that faced the ePEP project were clear. The application itself had
to implement very complex business and process logic, and it had to be distributed
both geographically and organizationally. It had to replace the functions of more
than 10 different legacy systems while being integrated within a complex IT
landscape. And TSS set a goal of a 10% improvement in development productivity
for the MDA process itself.

EXPANDING GOALS

TSS’s goals expanded throughout this project, and they are still evolving. Essen-
tially, they want to “tighten the screw one more turn” in order to be able
to generate more code, to automate as much as possible, and to introduce
improvements to the modeling style so that they can reduce the risk of potential
misunderstandings—both between the IT and business communities and between
the local and offshore software development organizations.

We asked Wolfgang Kifer, Senior Manager and Chief Technology Officer of
DaimlerChrysler TSS, whether the goals for MDA expanded as the organization
became more familiar with it. His response was:

Yes. When we started with MDA we had in mind improving efficiency and consis-
tency, and improving our abilities in offshore development with particular emphasis
on IT infrastructure as defined by J2EE. We are now looking to expand MDA’s use
both in terms of the presentation layer and in the ability to generate more code.

Beyond that, we know that we want to get more out of MDA, and we are
convinced that we can do that, but we are not yet sure exactly how we will go
about it. But we are confident that we can expand the use of MDA to include other
architectural layers, and that we can get more benefit from MDA in the layers we
are working with today.

140 INTERACTIVE OBJECTS/DAIMLER CASE STUDY

TSS also believes that it can reduce costs by enforcing corporate governance
over software architecture. The goal here is to achieve architectural consistency
and stability across the entire organization, and the success of the ePEP project is
helping TSS realize that goal.

In addition, TSS wanted to improve the processes that control what happens
when an application is turned over from the IT department to another organi-
zation. TSS does not believe that an organization should take responsibility for
an application unless it is well documented and maintainable. Here again, the
application of MDA has resulted in changes beyond the originally intended scope,
and in benefits to the entire organization rather than just to architects, designers,
and developers. Alberto Perandones, Director of Professional Services at Interactive
Objects, characterized the MDA-related maintenance advantages as a particularly
important driver of the expansion of goals.

While you can suggest to the customer that MDA benefits productivity in software
development, some studies suggest that 80% of the IT budget typically goes toward
maintenance of existing systems. Note that maintenance is part of the “strategic”
budget because it governs the operation of systems in support of business, whereas
the development budget is not strategic. If you can demonstrate that MDA can
influence this strategic maintenance budget, then you have access to the people who
control that budget—and this can result in many new project opportunities.

HOW MDA WAS USED

The ePEP project used MDA in three main ways. First, they used Interactive
Objects’ ArcStyler software to create customized “cartridges” that together provide
a custom MDA architecture blueprint for their existing PAI framework, as shown
in Figure 7.1.

Business
Components GTTA ESKOORD KOAEND

UML-Tool —l
PAI

MDA
ArcStyler | Cartridges
MDA-Engine |

FIGURE 7.1 MDA architecture blueprints.

Corporate governance over
software architecture
benefits many
stakeholders

141

1
7 ' Process and Tools
1

Second, TSS created a platform-independent system model, which was
enhanced with MDA “marks” to capture the technology characteristics and require-
ments of the DaimlerChrysler PAI target platform. These models were invaluable
for coordination between TSS’s local and remote development teams, as discussed
in material following. But TSS continues to maintain these models and keep them
synchronized with the code because they are valued strategic assets.

UML is used largely by the We asked Wolfgang Kifer how requirements were captured. His answer
technical team touched on the use of UML among various communities, as well as the specifics
of requirements gathering.

In this project, we follow the general DaimlerChrysler guidelines (known as HBSG)
as well as TSS-specific guidelines on how to develop systems. UML plays a role in
these guidelines but not a central role. Along with UML, a requirements list (for
example, maintained in Requisite Pro) is used by the technical team in order to have
traceability from the requirements in the database to the UML models and the code.
So, the end users and SMEs do not see much of UML, and they are usually not asked
to be able to read UML.

There are other projects where UML is starting to be the language spoken by
both parties. The tool DaimlerChrysler is using in these cases is Innovator from MID,
and it has allowed end users and SMEs to learn and use UML on the requirements
level. However, sometimes this is just too much technical detail and the SMEs prefer
to use natural speech or to draw simple pictures on a whiteboard, just not being
very formal.

I think that we get the most out of MDA in the technical departments. They know
about UML. The people in the IT departments are at least able to understand UML,
and some of them prefer UML to informal specifications. But it really hasn’t made
its way down to the SMEs and end users, who talk about business processes, parts,
and that kind of thing. They are not really at the level of using UML right now, and
I don’t think most of them will be in the near future.

On the other hand, SMEs do play a role in system design, usually not at the
detailed technical level but at the system level, data flow process, data interfaces, etc.
UML could be a good way to bridge these requirements with the MDA models, but
very often you end up using natural speech and staying away from UML diagrams.

Summarizing, we see that UML works its way up from the detailed technical
design to system landscape level, which is about how this project fits into the

SMEs still prefer natural production environment, or how a business process interacts with other systems,
speech to UML diagrams et cetera. UML has not yet fully reached the specification level of SMEs.

PROCESS AND TOOLS

TSS had a sophisticated software development organization in place before they
undertook the ePEP project and its model-driven approach. While they were
somewhat familiar with UML and modeling, they invested in a training program

142 INTERACTIVE OBJECTS/DAIMLER CASE STUDY

in order to improve the ability of developers to work at the higher level of
abstraction required by MDA.

TSS also developed their own modeling guidelines in support of their goal
of achieving enterprise-wide architectural consistency. These guidelines captured
their “best practice” approach to modeling a specific design pattern and its appli-
cation within the system. As Thomas Maurer of Interactive Objects put it:

Daimler was also trying to introduce company-wide architecture, including imple-
mentation guidelines, to address a problem common to many customers. They
were able to extend, on their own, the patterns and “cartridges” available with our
tools. This helped them to maintain their architectural standards and enforce their
implementation guidelines.

Thus, for the design and implementation of the system TSS relied heavily on the
ArcStyler tool and exploited its ability to customize code-generation templates. As
mentioned previously, TSS was interested in improving communication between
its business and IT communities. They accomplished this by modeling at a very
high level of abstraction, a level at which it was possible for IT and their business
counterparts to reach agreement.

We asked Wolfgang Kifer of TSS whether they found that MDA’s separation of
concerns made it easier or more efficient to work with the business community,
and to describe the process. He said:

We often rely on use cases to provide a better understanding of how processes
interact with the system, and we use this information as a basis for talking with
SMEs. So, this is more or less part of the knowledge base needed by IT to talk with
SMEs, rather than documentation for the SMEs themselves. I would say that MDA
improves the process, but perhaps not in a direct way.

The process most often works this way: The SMEs talk to IT staff, and the result
is usually a list of requirements. We formalize this list, but not always in the form
of UML diagrams. There is some preliminary design in there; for example, “You
should have three modules, one addressing problem area A, one area B, and so on.”

Validation of the requirements with the SME is done using different methods.
It might be a prototype with less than full functionality. Or we might provide a
presentation prototype that shows the flow of functions to the SMEs. We might talk
them through use cases, and in some cases they might see UML use case diagrams,
but mostly we talk them through it.

In this particular case, TSS then used a manual process to derive model elements
at a lower level of abstraction for the PSM. This intermediate transformation was
done manually because TSS felt that automated model-to-model transformation
was not an important goal for them at this time.

TSS’s reasoning about their use of model-to-model transformation bears exam-
ination. One factor was that they do not expect any near-term change to their PAI

SMEs validate
requirements against
running prototypes, rather
than against models

Model-to-model
transformation was not
required because of the
stability of the PAI
framework...

...and because ArcStyler
provides an alternate
OMG-supported
mechanism for adding
platform-specific info

143

1
7 ' Process and Tools
1

framework, so the architectural flexibility provided by a separate PSM was not
really necessary. As Wolfgang Kifer put it:

We have the PAI framework, which is a J2EE framework that includes security,
user management, and a number of other infrastructure pieces that are geared
to operational scenarios at DaimlerChrysler. We do not anticipate changing this
platform in the future, and it now has about 100+ applications based on it. J2EE is
the strategic direction of DaimlerChrysler, so we were most concerned in aligning
with PAI in this project, because it is geared toward enterprise-size projects and a
complex operational environment.

Given that we do not expect the platform to change, the Platform-Independent
Model is not as important for us, and so we focused on other things. It might be that
in another environment the PIM [Platform-Independent Model] would gain more
importance but we did not see this as a risk for our project.

A second important factor was that the ArcStyler tool supports the OMG’s
notion of MDA notion of MDA “marks,” which are lightweight platform-specific
annotations to model elements. Because separate sets of marks can coexist simul-
taneously for a single model, and marks can easily be added or removed from a
model, they do not “pollute” a PIM with platform-dependent information.

We asked for clarification about how the ArcStyler tool supported the appli-
cation of DaimlerChrysler’s and TSS’s guidelines and patterns, if that is not done
in model-to-model transformations. Wolfgang Kifer said that these things were
covered in the guidelines for creating models with the tool, and that the design
patterns are implemented in the ArcStyler cartridges that generate code. Thomas
Maurer of Interactive Objects expanded on this.

Let me mention that our tool is unlike some others, in that we do not generate real
Platform-Specific Models—because we have a highly structured Platform-Independent
Model, which can be enriched with technology attributes. And so for each model
element—classes, associations, methods, etc.—you assign a set of technology attributes.
This set of attributes guarantees that the code generator generates the right infras-
tructure, and the right code in the right place.

Therefore, if you start from the UML model and generate code from this for the
infrastructure you do not need a real intermediate Platform-Specific Model. OMG
supports both approaches: you can generate code from a true PSM or you can use
what they call MDA marks to accomplish the same thing.

TSS chose Interactive Objects’ ArcStyler because it provides a visual modeling
environment, comprehensive code generation, and the capacity to enforce the use
of architectural/design patterns as well as coding guidelines. From TSS’s viewpoint,
one of ArcStyler’s most important features is its cartridge development environ-
ment, which supports the creation of cartridges tailored to custom architectures
and custom platforms.

1144 INTERACTIVE OBJECTS/DAIMLER CASE STUDY

It should also be noted that TSS has a very process-oriented approach to
developing software, and that this process mind-set aligned very well with MDA.
Wolfgang Kifer said:

DaimlerChrysler has guidelines about how to develop a software system, and it Software development

is very strict about gathering requirements before you start creating development guidelines focused heavily
artifacts. This has been in place for some years, and it emphasizes that you need to on requirements, even
understand functional and nonfunctional requirements and scope before you start before MDA

design and development. In our experience, this is the best way to avoid problems
in the project later on.

We focus on getting the requirements right, and having a good representation
of the customer’s requirements. Requirements management isn’t just writing the
requirements down and being happy when they are signed off. You really have to
go back and investigate the requirements multiple times in order to make sure that
we, and also the customer, have understood what the requirements mean.

Going through this process costs us some time at the beginning of the project
but saves a lot of time at the end. But of course this helps whether you are using
MDA or a waterfall model or anything else. You can do it iteratively, as in RUP,
but for each phase you need to have requirements and scope defined before you
start creating things. In our case, this did not change much with the MDA approach,
because we've always had the goal of getting the requirements right and then getting
it into the code.

We then asked about the length of the initial requirements gathering phase,
and the number of people involved. Wolfgang answered:

In our environment, the general rule is that we spend one-third of the project time The rule of thumb is that
on requirements gathering, and two-thirds in creation and testing. The second two- projects spend 1/3 of
thirds might involve the iterative process of going back to the SMEs and validating time and budget in
requirements against delivery, as well as incorporating any changes that might have requirements gathering

happened in the meantime.

It is a rule of thumb that if you start with a development team of eight people,
say, for three months, three of those people will spend those three months gathering
requirements. The team is usually smaller for requirements gathering because you
need to talk to SMEs in order to understand what is going on, and the number of
SMEs and the time they can spend in specification is limited.

It doesn’t make sense to send ten people if there are only three SMEs to answer
questions. But this one-third/two-thirds rule of thumb for time and budget works
well for us.

DIVISION OF LABOR

One of the most surprising aspects of this case study was the ratio of TSS personnel
to Interactive Objects personnel on the ePEP project. Interactive Objects did not

DaimlerChrysler TSS
personnel did the vast
majority of the work

Model-Driven Offshoring
works where previous
offshoring attempts did not

1
7 X Model Driven Offshoring (MDO) 145
1

participate in the gathering of the original ePEP requirements, but they did take
part in the requirements definition and evaluation of MDA for use by TSS. For this
effort, Interactive Objects and TSS each provided four or five business analysts.
The DaimlerChrysler participants included not only end users of the system but
customers who have had problems with the system, and those involved in use
case analysis as well.

But the ratio for the development phase was much different. It involved a
team of three TSS architects and three or four TSS developers at the Ulm site in
Germany, and the team at the Kuala Lumpur site changed accordingly. The Kuala
Lumpur team provides two architects and a team of about 14 developers who
were never completely dedicated to this project.

Only one and a half Interactive Objects personnel were involved during devel-
opment, and they spent most of their time at the Ulm site. The Interactive Objects
consultants were more active at the beginning of the development phase, and they
continue to help TSS define program checkpoints and to perform specific tasks
at their request. But at no time was Interactive Objects running the project or
providing a majority the human resources. As Alberto Perandones of Interactive
Objects put it:

It’s sort of like teaching a kid to ride a bike—at some point you have to let them do
it on their own, and that’s what we have done.

MODEL DRIVEN OFFSHORING (MDO)

Another interesting aspect of this case study is the use of MDA in support of
“offshoring” (or outsourcing) part of the software development effort. We saw in
the DAT/GSA case study that MDA’s underlying notion of “separation of concerns”
fits particularly well with the federal government’s development approach of using
different vendors for analysis/design and implementation phases of a project. This
MDA characteristic is a great advantage in offshoring as well.

Senior managers at TSS are convinced of the advantages of offshoring. However,
they had previously undertaken a project to take advantage of this approach, but
it did not result in the benefits they expected. When they originally envisioned
the ePEP project, the Interactive Objects team suggested that a model-driven
approach might be the key to offshoring success, and indeed this has proven to be
the case.

TSS’s main IT center is in Ulm, Germany, where they employ architects and
developers, and TSS runs an offshore site in Kuala Lumpur that provides archi-
tects as well as development staff. The cooperative development process works
as follows. The TSS customer site (usually Ulm) performs high-level modeling
and core design. The company uses “teamwork servers” to give their people in
Germany, as well as in Kuala Lumpur, access to these models.

146 INTERACTIVE OBJECTS/DAIMLER CASE STUDY

The Kuala Lumpur team can check out those models, work on them, and
then use the ArcStyler platform to generate code (some code is hand written
or generated in Ulm, but most of this work is done by Kuala Lumpur). When
the Kuala Lumpur staff is finished with their work, they check the models back
in and the Ulm staff goes through established procedures to ensure that the
implementation is correct.

Thus, the MDA approach supports a clean handoff of specification, in the form
of models, to the implementation team. In addition, the fact that TSS developed
custom ArcStyler cartridges allowed them to maintain their architectural standards
and enforce their implementation guidelines across both development sites.

Because Interactive Objects has extensive experience in helping their customers
succeed with MDO, we asked Alberto Perandones how the process of training and
transition affects the offshore organizations in the use of this approach. He said:

The typical path is to prepare the people at the remote site; then we work together
to develop a program. If they feel they have the necessary preparation and skills,
they may want to do it on their own. Or they may want to make use of Interactive
Objects’ experience in training or project leading.

If they want our help in training, we typically go there with someone from the
customer’s local development organization, and the training materials needed for
this particular remote organization. For example, the remote site might need training
in UML or in object-oriented development, or any of a number of areas needed
to work in a modern development environment. So, we would tailor the training
program, which might run from one to four weeks, to the needs of the remote site.

Our experience is that even organizations without previous experience in UML
or OO techniques can be up and running after two or three weeks. And after four
to five weeks, they become productive.

We then asked about the minimum or prerequisite skill sets needed for an
organization to become productive in dealing with model-based specifications.
He responded:

The minimum level is the ability to read models, to deal with information at
that abstract level, and to understand the kind of information that is captured and
expressed in models. Normally, in our approach there are discussions about the
modeling style, the transformation logic, and the architectural blueprints.

These concepts come together for the remote organization in a week, or two or
three, and we ensure that they truly understand the modeling style and the trans-
formation process. They may try to reproduce the target architecture to demonstrate
their understanding to the onshore partner.

There are also different kinds of offshoring partners. One kind may implement
only what they get in specifications; others may verify the partner’s business rules.
There are now organizations in India who want to “climb up the ladder.” They
want to become an architecture partner as well as a development partner. We have
engaged in training at various Indian companies to show them how this might work.

MDA’s separation of
concerns supports clean
hand-offs, while tooling
enforces architectural
standards and coding
guidelines

MDA productivity in four to
five weeks

Prerequisites are the
ability to read and
understand models, and
mastery of the target
platform

The pilot project was a
business investment rather
than a throw-away training

exercise

147

1
7 X Project Experience
1

But the minimum requirement is that they be able to read and understand models.
And of course they need to master the target technology platform, whatever that
might be.

We usually ask QSP case study participants about “Aha!” moments their clients
experience during their adoption of MDA. Alberto described one such moment in
the context of TSS’s MDO effort.

Another Aha! moment for TSS was when they realized that the MDA approach
really was going to let them work much more productively with offshore sites.
The technical project leader flew down to Kuala Lumpur, and spent a week or
two setting up the infrastructure for their “teamwork server” communications. The
project leader sent an e-mail to the site in Germany, asking for some changes to the
model.

The people in Germany did the requested work, and the Kuala Lumpur guys (led
by the project leader) came to work the next morning to find the updated models.
They checked out those models, saw the differences, generated the new code, and
within hours they were able to test the new functionality. All they said was, “This
really works!”

PROJECT EXPERIENCE

An organization that adopts MDA typically begins with a proof-of-concept project
that demonstrates the approach, followed by a pilot project that provides real (and
reusable) business value, followed by a full production project. In this case, TSS
skipped the POC and went directly to a pilot.

The main purpose of the six-month pilot project was to build up TSS’s MDA
skills so that they could stand on their own feet. At the end of that pilot, the
combined team stepped back and analyzed the results, benefits, and problems from
both the Interactive Objects and TSS viewpoints. This resulted in modification of
some processes, which were then monitored to ensure that the problems were
solved. At that point, the program was expanded to include offshore sites.

TSS viewed the pilot as a business investment and one of their requirements
was that this investment not be thrown away. Interestingly, when we asked the
Interactive Objects team about the functionality of this project they could not tell
us. What they said was:

We were not really involved with the definition or development of the pilot appli-
cation itself, so it’s hard for us to say. Instead, we were there to help them develop
the processes and transfer the knowledge needed for them to operate on their own.

We organized a team of TSS personnel such that they could modify and extend
our code generators to target their own environment (the J2EE platform, in this
case). But we were not involved at any point in developing the system.

148 INTERACTIVE OBJECTS/DAIMLER CASE STUDY

ORGANIZATIONAL DEVELOPMENT

We asked Wolfgang Kifer of DaimlerChrysler TSS whether MDA is driving any
changes in the organizational structure. He responded:

Yes, we are looking at the possibility that our organization may change as a result Development team is split
of our MDA approach. Right now, our thinking is to have the project team work as into business logic and

a “silo.” They will begin looking at the function that the end user wants to have, technical infrastructure
map it to the appropriate architectural level, and then start implementing it by using teams

MDA to generate the application.

Right now, each engineer on the project is aware of all the layers and has at least
some basic understanding of them, and has a deeper understanding of his particular
area of knowledge; for example, business logic, presentation, etc. It seems to us that
we should now split the team into two groups. One team would concentrate on
business logic, with a separate team (which would be shared among projects) to do
technical work, concentrating on things like the persistence layer, security, etc. And
of course these efforts can be cleanly separated because of the MDA approach.

RESULTS AND BENEFITS

Several case study participants mentioned that the requirements feedback loop
is improved when code generation makes the feedback loop shorter. We asked
Wolfgan Kifer whether his organization’s experience matched this. He responded:

From the end user’s point of view, it’s just a black box. They put something in, and
they are happy if they get it back eight weeks later. They don’t care if it is done by
magic or by the addition of more software engineers. And of course in real project
management you don’t reduce the time by half if you double the number of people.
The SMEs simply want it two months from now, and they don’t care how you do it.
I think that what they are seeing is that we keep the cost down, and we produce
high-quality code. So, the problems that they find, and the amount of feedback they
need to give to us, are less than it was before MDA.
So, in general I think that is what they are seeing and how they feel about it.
It is difficult to come up with numbers to describe this because it may depend on
the size of the project and many other factors. But the perception is that if they get Results are difficult to
some code from us it is of high quality. quantify, but code is of
high quality

We asked for a comparison of results between the old process and the MDA
approach. Wolfgang answered:

It is a tough question, and one that we have asked ourselves. The problem is that no
project is the same as any other project. And if we use MDA in a project, it is very
tough to try to factor out MDA.

“modeling first, and then
doing coding, is a much
better approach”

149

1
7 \ Results and Benefits
1

What we can say about this MDA project is that it was done within a very
complex infrastructure, and that there were many changes that had to be accom-
modated during the course of the project. When you take this into account, we
have the feeling that we may have gained about 30% in speed of development
with MDA.

We think we have improved the bug rate by 50% or perhaps 60%, as compared
with the previous methodology, which involved RUP and paper specifications; that is,
capturing requirements in RequisitePro repository, then giving it to the development
team to implement, then giving it to the testing team for tests, and then showing it
to the customers to see what they think about it.

This creates documentation as text instead of diagrams, but it is a disadvantage—if
you find yourself dealing with the twentieth change request the paper specs no
longer reflect the code. With the MDA approach, in this same situation our UML
documentation (which is the basis of what the software engineer is doing) does
match the code. So, it’s a matter of speed and quality.

Also, the thinking of the development team has changed because they are forced
to do the diagrams or models before they write the code. Before, they would say,
“I have the diagram in my mind” when they started writing the code.

But they didn’t have that diagram as documentation. If they later provided that
documentation, they might notice that some of the requirements were not addressed,
and to implement those requirements at that point they had to re-factor the code.
So, we think that doing the modeling first, and then doing coding, is a much better
approach.

We then asked Wolfgang to describe the cultural change the team went through
in adopting the new approach. He said:

It was a step-by-step process. For some of our developers this was an easy step, but
for quite a number of them it was something that required a change in thinking,
and that takes a while. They needed time to learn to do that smoothly, but then the
benefits become apparent. I think most of our developers believe today that this is
a better way to code software.

The most tangible bottom-line benefit of the Daimler TSS ePEP project was the
15% increase in development productivity they achieved, easily beating the 10%
improvement they originally hoped for. They achieved their expected return on
investment in less than 12 months, and they expect a total productivity increase
of 30% over the course of the next year (as compared to their previous non-MDA
approach).

There are intangible benefits for the development organization as well. The
higher level of automation (e.g., code generation and models-as-documentation)
means that local and remote developers can focus on more interesting and higher-
value tasks. And the improvement in code quality—due to automation and archi-
tectural governance—mitigates project risks.

150 INTERACTIVE OBJECTS/DAIMLER CASE STUDY

Other benefits are more difficult to measure but equally important. These
include the MDA-driven optimization of a multisite development process,
increased architectural and implementation consistency, better project communi-
cation/coordination, and tighter alignment of specification and code. And MDA'’s
characteristic separation of concerns supports an efficient division of labor, which
allows further optimizations.

The architectural governance enabled by customized ArcStyler cartridges means
consistent use of design patterns throughout the entire system. This in turn
improves long-term maintainability of systems and applications. And the fact that
Daimler TSS has chosen to maintain their models as strategic assets allows them to
face the potential challenges of changing staff and changing technology platforms.

ONGOING AND PLANNED USE OF MDA

Most of DaimlerChrysler TSS’s plans for MDA have to do with wringing out even
more benefits from the work they have done so far. Figure 7.2 shows the current
and planned levels of automation. Their MDA roadmap calls for standardization
on MDA-based architecture and development, as well as quality and productivity
improvements in those processes.

They also want to extend the functionality of their MDA Architecture Blueprints,
and to optimize the custom ArcStyler cartridges they've developed in support of
the PAI framework. Finally, they want to exploit the combination of MDA and
their CMMI process framework.

But the most interesting plan for TSS’s application of MDA has to do with GUIs
(graphical users interfaces). In our research on various MDA projects, we found
that most do not have solutions to the challenges of creating a GUI, typically
because end users want their GUI to be highly customized. It may be a stylistic
issue, in that they want their GUI to look a certain way, or they may have a
particular concept about GUI flow or navigation. Because most MDA tools do not
address these issues, an MDA project will often postpone the creation of the GUI
until later in the development process.

But we discovered that Interactive Objects has a way of applying MDA to the
GUI development process. Their approach is to implement the very common
model-view-controller paradigm, in which each activity-diagram state is associated
with a UML class. Within or associated with this UML class is a description of
the GUL The description specifies only the content of the GUI, rather than the
positions of buttons, fields, or lists.

The ArcStyler tool can generate code from the models, the activity diagrams,
and UML classes to create JSPs, ASP.Net artifacts, and so on. So, the same models
and modeling style can be used for all supported target environments.

Multisite coordination,
increased consistency,
and tighter alignment of
specification and
code...and further
optimizations are in store

DaimlerChrysler TSS wants
to use MDA to tackle GUI
development

1
1
7 \ Ongoing and Planned Use of MDA
1
1

151
JDK 1.4.2 % Automation UML Model
— PAI 2.5 Client Container ~ Partitions
[
20%
Client
o /
o
E 100%
I
WebSphere Application Server 5.0.2 L ‘i‘ _:I Business
~—PAI 2.5 J2EE Platform) y : Logic (SOA)
100%
Date
Transfer &
_ Persistence
Communication
PAI PAI
" q Backend Kernel Process
g; %Lg;t% Ig':t?;?rrny Systems /RFTS Server
MQS Server

FIGURE 7.2 Current and planned levels of automation.

ArcStyler supports GUI
development, and allows a
generated GUI to be
enhanced by other tools

One of the advantages is that you can define types of GUIs. For example, you
might define a GUI type that contains a list of all possible tasks on the upper
half of the screen. When a user chooses a task from that list (for example, View
Customer), the lower half of the screen displays the relevant information (for
example, customer attributes). By defining this as a GUI type, you can reuse it.
And you can specialize a GUI type with inheritance, so that it works with any
kind of list (e.g., suppliers).

ArcStyler generates the positions of the buttons and tables, and ArcStyler (like
many code generation tools) supports the notion of “protected areas,” which
are regions that are not overwritten when code is regenerated. So, the first step
captures all necessary GUI content. But at that point you can modify or redesign the
layout of the GUI with another web tool, and you can preserve those modifications
across new ArcStyler-driven generations of the code.

152 INTERACTIVE OBJECTS/DAIMLER CASE STUDY

TSS has also put GUI generation on their MDA roadmap for the first half of
2006. Their first priorities were establishing the methodology for supporting their
middleware and back-end frameworks, and making more profitable use of their
offshore development facilities. These have been achieved.

But part of that achievement was the development of the necessary offshore
skills to facilitate the next step of generating GUIs. TSS is now focusing more
narrowly on this, by creating a stable and common modeling style that allows
them to move to the next front-end technology with a minimum of effort.

ASSESSMENT OF THE MDA EXPERIENCE

We asked Wolfgang Kifer of DaimlerChrysler TSS about their overall assessment
of the MDA experience, and whether there were any interesting “Aha!” moments
he could tell us about.

I don’t think we really had an “Aha!” moment. We spent 14 months investigating
MDA, and saw things that worked well and things that worked not so well. But it
was more of a continuous process. From the management viewpoint, after fourteen
months we had a clear understanding of how MDA works, and we worked to impart
that information to the team.

After that, it was a matter of continuous improvement. As you learn to use a tool,
it clearly is about some particular task. Right now we have learned that re-factoring
seems to be not so easy using MDA. The feeling on the team is that there must be a
way to do it better. But it can be done, and we do use it that way. And in another
month or two, there will be a different topic on the top of the list.

I think the next one will be the presentation layer. Right now we don’t know
enough about generating the presentation layer. We think it should be possible to
do more, and right now the team is thinking about how to do that efficiently.

So, that is the way we approach these questions. It is not a matter of deciding at
a single point in time. Dealing with MDA is a continuous process.

We then asked, “If someone—not a competitor—came up to you and said they
were interested in MDA and asked what you would advise them to do in order to
get started, what would your advice be?” Wolfgang responded:

I would start by telling them to avoid looking at MDA in terms of tools. They
should concentrate more on the skill level of their requirements engineers, software
engineers, etc., with regard to UML, models and modeling tools, etc., and about
their maturity with regard to processes.

If you develop software by putting the engineers and SMEs in the same room,
then I would suggest considering organizing them in an agile way. Given that all
people involved are fluent with UML, I think MDA can be a big help. I think, in
such an environment I would concentrate on the tool and use this as a basis for
introduction and improvement of processes. However, this is not the environment
that existed for this project.

Developing MDA expertise
is @ matter of continuous
improvement

153

1
7 | Assessment of the MDA Experience
1

We at TSS have a strong grounding in processes, as is demonstrated by our
CMMI certification. The MDA approach as provided by ArcStyler is flexible enough
to conform to our processes.

TSS is focused on the development of individual software pieces in different
application domains. So far, we do not see that an application-domain-specific
language will help us. Consequently, we focus on the modeling- and process-related
benefits of MDA.

TABLE 7.1 Project Profile: Electronic Production Planning (ePEP)

Company/Organization Name: DaimlerChrysler TSS, a wholly owned subsidiary
of DaimlerChrysler AG, specializing in J2EE- and .NET-
based applications, Lotus Notes, and data warehousing
solutions, as well as consulting and test services, all done
exclusively for DaimlerChrysler AG worldwide.

Industry/function: DaimlerChrysler AG creates products that
range from small cars to sports cars to luxury sedans,
and from vans to heavy trucks to coaches.

Size: DaimlerChrysler AG has more than 38,000
employees worldwide, and revenues of more than
€142.1 billion ($192.3 billion).

Geographical reach/extent: DaimlerChrysler AG sells products
in more than 200 countries.

URL: www.daimlerchrysler.com

QSP Name: Interactive Objects Software GmbH.

Areas of experience/expertise: MDA Qualified Service Provider
whose customers include many Fortune 500 companies
in industries that include finance and insurance, trans-
portation, government, software, telecommunications,
and automotive.

URL: http:/ /www.interactive-objects.com/
Business Pain Points The need to achieve enterprise-wide architectural
consistency.

The desire for a more successful working relationship
with “offshore” (outsoure) development partners.

The need for improved efficiency and productivity in
software development.

Tools Used Interactive Objects ArcStyler.
Model-based Artifacts PIM (which was extended via ArcStyler’s support for
Created “marks,” which are lightweight platform-specific anno-

tations to model elements).

MDA is more than the sum
of its parts

CHAPTER EIGHT
SUMMING UP THE PARTS

It’s not obvious how to sum up the six case studies in this book. We have seen
MDA used by six very different organizations, in six very different ways, to achieve
six very different ends. As we mentioned in our introduction, this book is like the
famous story of the blind men and the elephant: each “sees” the elephant in terms
of what part he is holding. So, probably the most important point demonstrated
by the six case studies in this book is that MDA, like the elephant, is far more
than the simple sum of its parts.

An obvious corollary to this point is that MDA is also quite a bit more than
any one of its parts. Unfortunately, we sometimes see articles and whitepapers
that describe MDA in very one-dimensional ways, with an apparent lack of under-
standing of its true scope. To one “blind man” MDA is primarily about code
generation; to another it means modeling everything in UML. The best way to
combeat this type of mischaracterization is to present real case studies, like the ones
in this book, that show the many different ways in which MDA is already being
profitably applied.

Because these case studies are so different from one another, we have tried to
let each speak for itself as far as possible, rather than trying to shoehorn them into
a single common structure. But while these case studies speak for themselves we
expect that what they convey will be filtered through the individual experiences
of the reader. Therefore, we will be happy if after reading this book people say,
“I'm still not sure exactly what MDA is, but I find it very interesting, it seems to
be applicable to some of my problems, and I want to explore it further.” As in
the story of the blind men, even if your perception of the MDA elephant isn’t the
entire picture it is still as valid as anyone else’s.

MAKING THE BUSINESS CASE FOR MDA

But besides painting a broad and impressionistic picture of MDA, our purpose in
writing this book is to provide some guidance to those of you who have heard

155

156 SUMMING UP THE PARTS

of MDA, want to know more, and might be thinking of trying it out in your
own organization. After all, even if we are correct in saying that MDA can be
profitably applied to almost any endeavor, that doesn’t by itself provide much
guidance.

First of all, unless your goals are very tactical you probably hope that MDA can
make some fundamental and positive changes in the way your IT organization
does business, and even how your business does business. That is, there must be a
business case for major transformational change. Otherwise, why bother to make
the substantial investment necessary to bring in a significantly different approach?
As one case study participant noted:

The key at Harris was having a business-oriented champion who saw the value
of MDA in achieving his business vision for the company. This is a company
whose products are heavily dependent on software, and MDA provided a way to
improve their software process and thereby improve their ability to develop products
quickly.

We thought that architects, developers, and all technical people would just love
it. But we found that wasn’t the case at all. There were many objections from
the technical people; for example, the “not invented here” syndrome, or “your
generated code can’t possibly be as good as the code we write,” etc. We found that
trying to sell MDA to technologists is an uphill battle.

But if you can show the business value of MDA to a businessperson in the
organization, and they sponsor MDA, the technology people will grudgingly get
on board. And once they get on board, the technologists often say, “This is great
stuff!”

At GSA, the approach was similar.

In the development of the OneGSA project, we spent a lot of time with the
finance group doing preliminary work at the business level. They began to see
MDA'’s capabilities, and they ended up funding this finance project (jointly with
the OCIO).

Today, it is an emerging consensus that every business needs to continuously
adapt to changing conditions merely to survive, and certainly to gain competitive
advantage. Further, IT can be viewed as a special case in that it has to both help
its business clients adapt to change and simultaneously adapt itself to the rapid
change inherent in the IT industry itself.

Certainly the participants in each of our case studies have understood the need
for this type of change in both the business and IT. However, as those case studies
also make clear, an organization’s basic characteristics—strengths, weaknesses,
expertise, and culture—can significantly affect how MDA is used and adopted by
an enterprise. Often this can make it difficult to predict a priori exactly how MDA

If there is no business
case for MDA, don’t bother

IT is a special case when
it comes to adapting to
change

Business “pain points”
that are amenable to an
MDA approach

157

1
1
8 \ Separation of Concerns
1
1

will end up working in your organization. In many ways, the journey to MDA
may well end up changing the goals as much as the goals end up guiding the
journey.

But as we just noted, nobody is going to make a major investment in any new
and transformational approach unless they can first make a decent business case for
trying it out. The usual approach to establishing a business case for a new approach
is to try to show how it can make development—and maintenance—"better, faster,
cheaper.” For the most part, however, this just begs the issue, because you can
only achieve “better, faster, cheaper” with any new approach by identifying the
various ways in which you intend to apply that approach to specific projects in
your particular organization.

That is, as our case studies very clearly indicate, there is no “one size fits all”
business case to be made for MDA. In addition, it is well beyond the scope of
this book to provide a “how-to” methodology for building a detailed business
case for MDA. That said, in the interest of helping our readers find a starting
point for developing their own business case, we have identified the following
(nonexhaustive) list of common high-level problem areas (or “pain points”) MDA
can very effectively be used to address, and which have been reasonably well
illustrated in our six case studies. Some of these areas may overlap, but each
emphasizes a distinct focus for making a business case, and may provide some
food for further thought.

Separation of concerns: Projects that need to enforce a clear “separation of
concerns” among the various types of participants

Traceability: Projects where traceability of requirements to implementation
and deployment is absolutely necessary, or is mandated by corporate or
regulatory imperatives

Stakeholder communication: Projects that typically involve many large and/or
varied stakeholder communities who must communicate effectively

Agile and iterative development: Projects that want, need, or are mandated to
introduce a more agile and iterative development process

Each of these topics could probably justify at least a chapter of explanation by
itself. However, let’s now take a very brief look at each of them.

SEPARATION OF CONCERNS

Many organizations require a software development process in which there is
a very clear separation of concerns between different participants, while still
maintaining overall coordination. This may be due to a variety of factors, including
the need to hide certain information from some participants (for example, in the

158 SUMMING UP THE PARTS

military) or the need to cleanly divide up work among different teams in different
locales, as in offshoring (outsourcing). In this case, each team needs to see only
the information they require, but in a form most conducive to their assigned task.

Using MDA, it is possible to create distinct “viewpoints” that provide each
group of participants with only the information they need, while keeping all of
the information across a project in synch. For example, business people typi-
cally need to see one viewpoint (for example, computation-independent business
process models, or CIMs), analysts another viewpoint (for example, platform-
independent analysis models, PIMs), and developers need to see yet another (for
example, platform-specific design models, PSMs). Using MDA, it is also possible to
create more fine-grained viewpoints, similar to the blueprints used to construct a
building. At the GSA, separation of concerns and division of labor were paramount.

All along, GSA had the vision and the desire to use MDA to separate concerns, to allow
the business to drive the technology, and to allow the business to take advantage
of technology changes when they happen. So, the whole concept of separation of
concerns was a driving force. We are starting to get to the realization of this vision
in the finance drill-down project.

This is why MDA’s separation of concerns is of such great value when working
with the federal government. If you want to do such work, and you must separate
the implementation details from the specification (and you usually do), this is a fine
way to go about it.

The reason for these rules is to prevent a large system integrator from creating
a specification that only they can implement. So, in a very real sense MDA is an
enabler for companies that want to participate in this business. And it illustrates the
fact that separation of concerns is not simply something of abstract interest in the
IT organization.

Here, it is a necessity from the business viewpoint. So, MDA is a powerful
enabler in a very large business segment—the federal government. And as GSA goes
so will go much of the national government, and many local governments and
quasi-public organizations as well.

In this case, a specific form of “separation of concerns” is required by policies
that mandate that different organizations be responsible for the different stages of
any given project. For example, according to GSA regulations the contractor who
specifies a solution can’t be the same one who implements it.

Therefore, GSA is using MDA to precisely define what must be modeled in each
viewpoint, so that it can properly control the flow of information to and from the
different participants throughout the solution creation process. GSA also hopes to
gain many other advantages from MDA, but this is probably the most obvious
and compelling business driver for justifying their investment in a new approach.

By modeling the processes at the level of roles, collaborations, activities, and subac-
tivities you reach a level where you can very precisely describe what is going on in
the business environment. People can see the roles they’ll be playing as well as the

Viewpoints filter
information as appropriate
for stakeholders, and allow
information to remain in
synch across the project

By precisely modeling the
content of each viewpoint,
the flow of information
among participants can be
controlled

Viewpoints clarify the
relationships between
development artifacts

MDA helps control the
division of labor and
enforces architectural
constraints

159

1
1
8 \ Separation of Concerns
1
1

relationship between systems and people. For example, at the CIM level we modeled
the value chain processes irrespective of whether they are implemented in systems
or by people.

While GSA could have done the “to be” modeling in other ways, the value here
is that it could immediately be used to drive the next step of defining the system.
MDA allowed us to reach the level of precision needed to take the models to the
next step, down to the PIM, and enabled the development of specifications for the
next level of system detail.

The point of all this is that with the MDA paradigm you must express the very
detailed level of precision needed to take it to the next level of detail. For example,
as we develop the PIM we may find that we have to go back and revise the CIM
because we have not been precise enough.

At the Austrian Health Service, the separation of concerns that MDA enforces
has had the following impact.

I think the relationship between the different artifacts, at different levels, is clearer
with MDA, and the clarity of these relationships may make it easier. So, while there
might be some difficulties in terms of where to put information (for example,
sometimes there might be too much technical detail at too high a level) this is a
problem that we've had in the past, so these are typical problems not MDA problems.

The relationship between the different levels is clearer now because it is clearly
defined in terms of how to transform from one to another. If you do this by hand,
it is possible to violate those relationships and cause confusion. So, in this regard
it is easier for people to see what belongs in one model versus another, and how
these models relate to one another.

At DaimlerChrysler, there is a similar need to clearly enforce separation of
concerns, in this case to enable reliable offshoring. It was already obvious to
Daimler that offshoring had the potential to significantly reduce development
costs, and equally obvious that earlier attempts to get a successful result from
offshoring had largely failed.

Another “Aha!” moment for Daimler was when they realized that the MDA approach
really was going to let them work much more productively with offshore sites.
The technical project leader flew down to Kuala Lumpur and spent a week or two
there setting up the infrastructure for their “teamwork server” communications. The
project leader sent an e-mail to the site in Germany, asking for some changes to
the model. The people in Germany did the requested work, and the Kuala Lumpur
guys (led by the project leader) came to work the next morning to find the updated
models. They checked out those models, saw the differences, generated the new
code, and within hours they were able to test the new functionality. All they said
was, “This really works!”

So, MDA has provided a way for Daimler to clearly delineate what informa-
tion had to be collected by analysts at the front end of a project in order to

160 SUMMING UP THE PARTS

provide a complete and precise set of specifications sufficient to guide an offshore
software implementation team on the other side of globe. It also provided a
way to ensure that the results of the offshore team would meet the architectural
constraints of Daimler’s target environment. Once again, Daimler expects to get
other advantages from MDA, but supporting a clear division of labor between
their different teams was by itself more than enough to justify investing in a new
approach.

Right now, each engineer on the project is aware of all the layers and has at least
some basic understanding of them, and has a deeper understanding of his particular
area of knowledge; for example, business logic, presentation, etc. It seems to us
that we should now split the team into two groups. One team would concentrate
on business logic, with a separate team (which would be shared among projects)
to do technical work (concentrating on things like the persistence layer, security,
etc.). And of course these efforts can be cleanly separated because of the MDA
approach.

At Coopservice, the need for clear separation of concerns may be an even more
compelling business requirement. For each contract, Coopservice must orchestrate
the various IT systems of its participating members. It must therefore maintain
a clear distinction between its core business model, which is a kind of B2B
backbone, and the various member-owned systems that plug into it.

The main reason we chose an MDA approach for Coopservice was the ability to
model the business—for example, business processes—in a way that did not depend
on the technology platform or computing techniques. We pursue service contracts
with enterprises on a competitive basis. But we offer services from a network of
companies, and these companies collaborate to fulfill those service contracts. The
B2B capability makes it easier for us to define and deliver that solution because
it works with all the IT systems that individual cooperating companies use. These
cooperating partners find it easier to work with us than with competing prime
contractors, and that is a business advantage for us.

TRACEABILITY AND GOVERNANCE

Many organizations have bemoaned the difficulties of maintaining a clear link
between the business requirements specified for a given system and the resulting
implementation. This most common problem is to figure out some way to make
sure that the stated requirements are actually realized in the application. This is a
big issue not only for development per se but for governance. At GSA:

We have experienced the classic gap, where the business people come in and say
that there is something you need to do that doesn’t map to your organization. Then
architects come in and design a system and hand it over to coders. Basically, everyone

Traceability can tell you
the business impact of a
component failure

161

1
8 : Traceability and Governance
1

ignores what the guy further up the chain has said. So, the explicit traceability that
is part of the central MDA message, as you walk from one abstraction to another, or
to some concrete artifact, is very attractive to us.

Just as importantly, if a requirement changes (either during development or
later on to support maintenance or enhancements) it can be quite useful to know
exactly what parts of the implementation will have to be altered. A related issue,
often overlooked, is that in the event of a failure of an implementation component
subsequent to its deployment it may be valuable to be able to trace back to
requirements in order to figure out which critical functions of the business may
be impacted. In other words, if server X or module Y fails you need to know
exactly what part of the business may go down with it. At the Austrian Health
Service:

With respect to maintenance, I think that that is a function of the specific changes
that are required over the course of the application’s lifetime. MDA is a methodology
very well suited to this, because the changes can be specified at a high level, and it
is clear how the change will manifest itself in the code.

Most of the coding details are fixed as a result of the business logic being
specified. So, for maintenance MDA is a very good thing because the patterns in use
are always the same and are used in the same way. So, if you see a pattern in one
place you can be sure the pattern is used the same way throughout the application.

Of course, developers have always tried to encourage this kind of uniformity in
usage, but in practice there were always slight differences. And this often caused
problems, because the people who make the changes usually know only one way in
which a pattern is used, and are not familiar with all the variants. I think this is the
greatest MDA advantage in terms of maintenance.

These thoughts were basically echoed (by Alberto Perandones of Interactive
Objects) in the context of the DaimlerChrysler TSS project.

While you can suggest to the customer that MDA benefits productivity in software
development, some studies suggest that eighty percent of the IT budget typically
goes toward maintenance of existing systems. Note that maintenance is part of the
“strategic” budget because it governs the operation of systems in support of business,
whereas the development budget is not strategic. If you can demonstrate that MDA
can influence this strategic maintenance budget, then you have access to the people
who control that budget—and this can result in many new project opportunities.

Although maintaining some level of traceability has always been deemed “best
practice” for software development, only recently has it become a compelling busi-
ness need and only in a few highly regulated industries (such as the military and
aerospace) where system failures may have obvious life-and-death consequences.

162 SUMMING UP THE PARTS

However, with the coming of broader regulatory laws (such as Sarbanes-
Oxley) traceability and governance are becoming increasingly hot issues every-
where. Sarbanes-Oxley and Gramm-Leach-Bliley in the United States, and The
Corporations Law Economic Reform Policy in Australia, now actually impose
serious penalties for executives whose companies fail to demonstrate that they are
complying with certain government regulations.

In general, MDA addresses the problem of traceability by formally specifying
the transformations between different steps in the development process, from
requirements gathering to deployment. Depending on how rigorously this notion
is applied throughout the development process, it should then be possible to
examine any artifact generated during that process and trace backward to the
originating requirements, or forward to the resulting deployed components. For
more examples from our case studies, we can again look to GSA and their “line
of sight” requirement, as well as their stated desire to trace performance metrics
to actual business outcomes.

And a very important point here is that the traceability inherent in the MDA approach
is a big advantage. When you are working with the PIM, the trace between function
and implementation is much clearer than was the case with traditional analysis
methods. MDA gives you the ability—it almost forces you—to provide the FEA-
mandated “line of sight” visibility between requirements and implementation.

The theme here is that we have the ability to remodel a very large enterprise in a
way that lets you achieve these downstream results with traceability. This is perhaps
the most valuable and the most extraordinary result of these projects.

The Harris and DaimlerChrysler studies also noted the importance of traceability
as a way of controlling the change management process during development, and
in subsequent maintenance and upgrades. At Harris:

The benefit of this was that as soon as you understand how the software is to be
organized and structured in one part, you know it will be organized and structured
in the same way in all parts. This meant that someone working on one part of the
project could quickly move to another part and be productive immedjiately.

Harris specifically said that this consistency helped them accomplish integration.
As they were taking our software and integrating it into their existing environment,
they felt that this consistency made integration a lot easier. Of course, this also helps
reinforce the consistent application of design patterns and software best practices by
the team, and this consistency was also evident throughout the application.

Finally, the quick feedback loop in the process of turning requirements into
production software was also an important realization. Anyone involved in require-
ments specification could quickly see how well the implementation fulfilled that
specification.

In many cases with other approaches to requirements capture, it takes a long
time to see the impact of what you have done. In this case, we were able to shorten
that cycle to a degree that people came to understand how important it was to have

Today’s regulatory
environment makes
traceability essential

Ensuring consistency via
tools is better than relying
on the self-discipline of
developers...

...and a short feedback
cycle for requirement
validation is much better
than a long one

OMG is developing
standards for regulatory
compliance models

Good communication
means keeping
stakeholders in the loop
without wasting their time

163

1
8 \ Stakeholder Communication
1

high-quality requirements. This was a real learning experience for the requirements
analysts, and its success encouraged business users to become much more involved
in the software development process.

At Coopservice, using MDA to enforce governance was actually a stated goal.

The implementation of a governance layer was always a main goal of the project.
However, there were many other challenges we had to face before addressing that
one, and we thought that we would not be able implement a governance layer
until late in 2006. But after four or five months of experience with MDA tools and
associated processes we found that it was much easier to do the governance layer
than we thought it would be.

A part of this governance layer is already in place. We have implemented a
“governance cockpit” that allows real-time monitoring of business processes, and
also provides controls for modifying these processes, even if they span business units
within Coopservice. These process modifications do not require coding, deploy-
ment, or system updates. Thus, at Coopservice governance is not simply portfolio
management; it is business process management.

It is also interesting to note that as a further extension of its MDA activities
the OMG itself has recently launched some new initiatives to address traceability
and governance issues related to government regulation. The OMG Regulatory
Compliance SIG is in the process of developing standards for models that support
regulatory compliance in business processes, and the OMG plans to develop a
global repository (available exclusively to OMG members) of regulations that have
a significant impact on IT.

STAKEHOLDER COMMUNICATION

Most organizations would agree that, during a software development project,
maintaining good communication among the various stakeholders is a key success
factor. Poor communications can plague different groups that need to collaborate
even within a single IT department. However, it is typically even worse when we
are considering the relationship between groups that have significantly different
frames of reference, such as between the IT and its business clients. It is no secret
that dysfunctional IT/business communication is one of the most common and
vexing problem areas in a wide range of enterprises.

But what do we really mean by “good communications”? On the one hand,
key business decision makers not only need to be constructively engaged during
requirements gathering, but they also need to be kept in the loop during
development—especially in that requirements may change or the proper interpre-
tation of the requirements may not be clear. At the same time, such communi-
cation must be efficient, as it is counterproductive to monopolize stakeholders’

164 SUMMING UP THE PARTS

time. Obviously, sending the business reams of artifacts full of IT jargon at
each stage of development is hardly the proper approach. At the Austrian Health
Service:

As is the case for many of our clients, some of the straight UML models became
too abstract and “too logical” for the designers to find much value in them, or
they became “too physical” in nature and therefore became incomprehensible to the
analysts. So, there was a semantic mismatch between these two teams, and that is
certainly one of the reasons why Hauptverband felt that MDA was the right approach
for them: the fact that they could, first, separate out those abstractions to the benefit
of the longevity of project and solution, and second, express their best practices in
terms of architectural design patterns and apply them in the transformation between
the PIM and PSM.

So, that was a key driver for them, and I believe they are realizing that benefit.
Certainly within the project team that is true.

The same project also used MDA as a communication enabler between the
architects and developers.

The first benefit was better communication between the architecture team and the Structured communication

project team. Before, the project team was not really following the instructions about improves architectural

the technical implementation. In some cases, it was because they did not want to compliance and

follow such strict rules, and in other cases there were simply misunderstandings. time'-tg—pr oductivity for
But this project demonstrated clearly how the technical architecture should be participants

used, as well as the mapping between PIM and PSM. That made the technical
architecture much more pure.

It also meant that people who were new to the project were able to use these
templates to gain a deeper understanding of the technical architecture, and that saved
a lot of time. They were able to take part in the project much sooner than originally
estimated.

In every one of our case studies, the participants reported that the introduc-
tion of MDA resulted in some form of significant improvement in stakeholder
communications, particularly between the business and IT. According to one of
the participants at Ohio JFS:

So, there was a constant, and short, feedback loop between the developers and the
business stakeholders. It was not at all like the old approach where you develop
for eighteen months behind closed doors and roll out the result only then for user
approval. There was constant checking with the business.

Obviously, we can’t claim that MDA by itself is wholly responsible for this
improvement, since there are many organizational and cultural factors that deter-
mine how well different groups in a given organization or cross-organizational

“Culture-specific”
viewpoints make it easier
to determine the impact of
change

Letting business people
clearly see where
requirements lead results
in more support for the
delivered solution

165

1
8 \ Stakeholder Communication
1

project communicate. It may even be argued that organizations likely to be recep-
tive to MDA are exactly those already taking other steps to improve communication
among stakeholders. However, it should also be clear that the MDA approach
allows each type of stakeholder to maintain his own culture-specific “viewpoint”
while remaining in good coordination and communication with other types of
stakeholders.

For example, should a business requirement change subsequent to system
design or even implementation, MDA should make it much easier to figure out
which system components are likely to be impacted as compared with using
traditional development methods. Similarly, it should be much easier to figure
out how a given set of implementation options ties back to the original business
requirements, and to communicate the likely impact of these options to the
business in their own vernacular. Coopservice describes exactly how it was able
to manage its communication with the business on such matters.

We talked with the business community about dependencies between components,
use cases, business object models, business processes, business events, and so on.
But we did not discuss computation-specific issues such as interfaces or exceptions.

At Harris:

The MDA approach we used helped improve communication and understanding
between the business and IT communities in several ways. We captured requirements
with use cases. We built a PIM that was separate from any implementation details.
We focused on business entities and their relationships in the PIM and through those
models, which gave the team a good perspective of the business aspects.

But there was also the fact we were able to take use cases and using our MDA
Express tool quickly generate working software that they could use to validate the
accuracy of the requirements. So, they could see these models in what could be
described as executable form and very quickly correct them.

There is also an interesting effect, in that the business people were able to be
part of the process in a new way. They were used to gathering requirements, but in
this case they were also brought in and shown what those requirements led to. This
helped garner support for the solution that was finally delivered.

The business people were intimately involved and had a feedback mechanism as
we built the models during the various iterations. That improved communication
with the business community and it meant that they knew what they were getting
before it was delivered. They were ready for it and already happy with what they
were going to get.

As we just noted, all of the case studies demonstrate the ability of MDA to
improve communication among stakeholder communities, and especially between
business and IT. But this capability was particularly evident in the Ohio JES and
U.S. GSA case studies, in which the inclusion of many communities is mandated

166 SUMMING UP THE PARTS

and in which the set of stakeholders and other interested parties is large. To put
it another way, the more ducks you have to line up the more you need MDA.

More specifically, the GSA case study identified business process modeling/
management as a potential MDA “sweet spot,” and demonstrated the importance
of MDA as a way of structuring business processes defined in terms of roles,
conversations, and so on.

As for the help MDA provided in this communication, once we got people into
the room together the models themselves readily facilitated communication and
discussion. We had a number of lengthy intense sessions about the validity of the
models. So, the models provided the key tool to describe the desired to-be state of
the business, and for enabling the business people to understand this state.

AGILE AND ITERATIVE DEVELOPMENT

For some time, a movement has been afoot to liberate IT from what are perceived
to be rigid and cumbersome “waterfall” development methodologies, and to adopt
approaches that are more agile and iterative. Although these terms are relative
and clearly open to wide interpretation, it is interesting that nearly all case study
participants agreed with these goals and felt that MDA has in this respect been a
major enabler in achieving them.

What makes MDA agile, or at least an enabler of “agile”? According to our
case study participants at the Ohio JFS and Harris, automatic code generation
shortened the time required to complete development iterations, thereby enabling
more iterations and a more active feedback loop by which business SMEs could
validate that requirements had been met. In both cases, the use of MDA-style code
generation also ensured architectural conformance, which greatly simplified and
accelerated testing and integration.

The consensus from our case studies is that approximately 15 to 40% of system
code—largely business logic and algorithms—is really interesting to developers,
while the rest is error-prone drudgery. Using MDA to automate the drudgery
allowed developers to concentrate on the interesting parts, which also corre-
sponded to those areas of prime interest to the business. In the eyes of the business,
this made the developers more agile. According to Ohio JFS:

But note that the agile development took place in the business logic implemented by
individual developers. As you build out the business logic, and do the development
work that cannot be automated, that is where you employ agile process at the
development level. But at the architectural level you have the rigor and control, as
well as the metrics needed by management.

This project almost looks like the old waterfall methodology, but when you get
down to the implementation of a business use case by a programmer you see the agile
development processes: working in small teams, paired programming, collaboration,

In contrast to conventional
wisdom, MDA practitioners
think that MDA is an
enabler for agile software
development

More interesting
development work, less
error-prone drudgery

“Agile MDA” lets you pick
your development battles

In the final analysis,
“agile” means responding
more quickly to customer

demand

167

1
8 : Agile and Iterative Development
1

quick iterations, face-to-face meetings, and all the tenets of agile programming. But
this is part of the larger framework that offers management what they need as well.

And

In a sense, this eight-five/fifteen split actually allows agile programming to be used
for large projects—but where it is appropriate rather than everywhere. I think the
agile methodologies are very good for small teams and small projects (five to eight
people). In that situation, you might not need the rigor that MDA brings. But if you
want to build an enterprise system that involves the interrelations and complexities
of a statewide child welfare system this is the way to enable agile methods to work
on a large project.

At Harris, MDA was used to focus scarce resources on the most important areas.

Our vision was based on the 80/20 “Pareto principle.” If I could get them to produce
80% of the low-level code—kind of the horsepower under the hood—while I spend
my effort, time, and resources focused on the domain of the application (that is,
specifying the requirements the application must meet to satisfy my customers) then
so much the better.

And I think that any program manager in the world who has budget and time
constraints, and is looking for ways to mitigate risk, can use MDA as a method that
allows them to identify and stay focused on that twenty percent of capabilities that
really satisfy their customers’ requirements.

For Coopservice, the agile nature of MDA has been manifested in a completely
different and rather novel way: MDA allows Coopservice to more rapidly configure
an accurate bid in response to customer requests. This really goes to the heart
of “agile”—the ability to respond quickly to customer requests. Coopservice sees
MDA as an enabler to landing more business.

As a company, we offer service solutions in the areas of cleaning, security, and
industrial processes. The delivery of these solutions requires the cooperation of other
companies. MDA allowed us to change our approach to the realization and delivery
of the solution, to the economic benefit of our customers.

We need to be able to dynamically change the process by which we connect
with our partners, and in order to do that we need a software development and
deployment approach that allows us to respond much more quickly. We pursue
service contracts with enterprises on a competitive basis. But we offer services from
a network of companies, and these companies collaborate to fulfill those service
contracts. The B2B capability makes it easier for us to define and deliver that solution
because it works with all the IT systems that individual cooperating companies use.
These cooperating partners find it easier to work with us than with competing
“prime contractors,” and that is a business advantage for us.

168 SUMMING UP THE PARTS

And finally, at the Austrian Health Service:

This customer is working with large teams, and with external contractors. So,
although they want to be agile they also want to be in control of things. I think the
MDA approach satisfies both those objectives. With automated code generation they
can get the right level of control over productivity and best practices—by exploiting
MDA'’s separation of concerns and by applying patterns, which takes them right
down to the code level.

That gives them a quick approach to their code base, and of course it can
quickly change things in them. The ability to control the transformation of models
means that they can control their implementation artifacts. This fits with the level
of rigor they want, as well as the agility and productivity they want from an agile
approach. So, I think MDA and agile development are complementary rather than in
opposition.

THE OMG’S FASTSTART PROGRAM

The MDA FastStart program is managed by the OMG! to help IT organizations learn
about MDA and to apply MDA to their systems architecture, systems integration,
and software development activities. MDA FastStart is the quickest way to learn
how to use MDA, and you don’t have to be an OMG member to take advantage
of this program.

As its name implies, MDA FastStart is designed to familiarize information tech-
nology organizations with MDA concepts and to start integrating MDA into their
mission-critical software development activities. During a FastStart engagement,
highly qualified OMG-endorsed consultants and trainers provide an integrated
set of assessment, planning, executive seminar, and technical practicum activities
targeted to both top executives and technical staff. FastStart deliverables allow key
decision makers to:

¢ Clearly analyze and plan how MDA can best be introduced and applied to
most benefit their organization and its key business drivers

* Decisively demonstrate how MDA can provide clear-cut business value
sufficient to justify further investment in MDA-related activities

» Attain sufficient knowledge of MDA to confidently initiate further
MDA-related activities, with or without the further assistance of external
service providers

I More specifically, it is managed by Michael K. Guttman, one of the authors of this book.

169

1
8 X MDA FastStart Activities and Deliverables
1

MDA FastStart includes assessment, planning, executive seminar, and technical
practicum activities that can be delivered in a relatively short period (typically 5
to 10 weeks, depending on the specific organization). If required, additional units
of customized consulting and mentoring services are available.

MDA FASTSTART ACTIVITIES AND
DELIVERABLES

MDA FastStart includes the following categories of activities.

MDA Readiness Assessment

* MDA Enterprise Architecture Review
e MDA Transition Plan

¢ MDA Executive Seminars

e MDA Practicum

MDA FASTSTART ASSESSMENT

The FastStart assessment is used to determine the best overall approach to intro-
ducing MDA into the organization. It includes the following activities.

« A high-level review of the business drivers relevant to introducing MDA, and
identification of target technical activities best suited to those business drivers
« A high-level review of the various technological drivers and tools
in the organization that would influence MDA transition, including current
software development processes and related computing infrastructure
* A high-level review by FastStart consultants
of the organizational scope, size, and structure of the target MDA
users, as well as the human resources available to support MDA activities

The primary assessment deliverable is a brief report with recommendations for
presentation to customer management. In addition, information gathered during
the period of the assessment is used to scope and customize the subsequent
FastStart activities.

MDA ENTERPRISE ARCHITECTURE REVIEW

The architecture review is used to determine in more detail the technical specifics
of the organization’s current architectural foundation, including the following.

170 SUMMING UP THE PARTS

e The level of maturity associated with current enterprise/application
architecture efforts

o What parts of the enterprise architecture and computing infrastructure
offer the most beneficial and cost-effective focal points for future
MDA-related efforts

» How MDA can best be adapted to the architectural paradigms
currently in use

These and related matters are summarized in a brief report (with recommen-
dations) to be presented to technical management. In addition, this information
is used to better focus subsequent FastStart activities.

MDA TRANSITION PLAN

The transition plan is a set of recommendations and a high-level plan for intro-
ducing and incorporating MDA into the customer’s organization. It is based on
MDA best practices and the results of the assessment and architecture review. It
includes the selection of a set of specific technical activities for the MDA Practicum
activity and an evaluation of the various modeling and MDA tools appropriate to
the customer’s organization and technical requirements.

MDA EXECUTIVE SEMINARS

The seminars provide a variety of options customized as appropriate to each
organization. Typically, this includes the following.

* A half-day Executive Seminar aimed at business and IT management. This
seminar describes the overall ideas around MDA and explains the benefits,
requirements, and timeframe of implementing an MDA transition program
in the specific organization. The Executive Seminar also includes the
presentation of the Assessment and Architecture Review reports and
recommendations, as well as the proposed Transition Plan.

A one-day Technical Seminar aimed at architects, designers, modelers, and
engineering managers to discuss the principles, techniques, tools, and so on
involved in implementing MDA.

MDA PRACTICUM

The practicum is a highly interactive two-week activity aimed at senior technical
staff, such as enterprise and system architects, designers, and project managers.
It includes formal detailed presentations on MDA technology topics and a set

171

1
8 X MDA FastStart Activities and Deliverables
1

of workshop periods that allow the participants to apply what they learn in a
pragmatic fashion. The practicum is typically scheduled to minimize any disruption
of daily activities.

The practicum includes a client-specific project that has been selected through
the Assessment and Architecture Review activities and that allows participants
to apply MDA skills to actual development efforts for their company. Practicum
participants are typically limited to ensure maximum interaction between the
practicum leader and the participants. Participants work as individuals and as a
team at various points during the workshop.

This page intentionally left blank

APPENDIX

A (VERY) BRIEF MDA
PRIMER

This primer is intended to provide the readers of the book with a short and
very basic understanding of the fundamentals of MDA, for the purpose of better
appreciating the book’s six case studies. It is not intended to substitute for the
many excellent books and articles that cover MDA and related topics much more
exhaustively. For those who may wish to read further on this subject, we've
included a few of these publications in a short “Further Reading” section at the
end of this primer.

WHAT IS MDA?

MDA-Model Driven Architecture—is trademark of the Object Management Group
(OMG), a 500+ member international software industry consortium, which also
owns and controls related modeling standards such as the Unified Modeling
Language (UML), and, more recently, the Business Process Modeling Notation
(BPMN). At the OMG, MDA is used as umbrella acronym for a broad set of
modeling-related concepts, standards and practices that include UML and BPMN,
but goes well beyond them.

Besides the acronym MDA, you have probably heard a lot recently about
“model-driven development” (sometimes abbreviated as MDD), model-driven
software development (MDSD), agile model driven development (AMDD), “soft-
ware factory,” and many other variants, with even more on the way. Strictly
speaking, these somewhat related non-OMG terms are not necessarily MDA,
although some may be specialized applications of MDA. In any case, they do
indicate that the model-driven approach to software engineering that MDA has
pioneered is gaining considerable market momentum and legitimacy—after all,
imitation is the sincerest form of flattery!

173

174 APPENDIX

On the other hand, all the market-babble about “model-driven” can become
confusing, and, without some foundational concepts, ultimately the term may
start to seem meaningless. So, let’s take a step back and discuss what the real
(OMG) MDA is, where it came from, and where it is going. Once we do, it should
become a bit clearer where some of the variants fit in, and also how MDA fits
with other approaches to software architecture.

IN THE BEGINNING...

MDA emerged initially because of the growing popularity of OMG’s Unified
Modeling Language (UML). In 1997, the OMG issued UML as a general-
purpose modeling standard to replace a plethora of different, but function-
ally similar, object-oriented modeling languages—Booch, Rumbaugh, Jacobsen,
Schlerer-Meilor, etc. The result was a huge success, and today UML is the clear
market leader in this space.

Subsequently, the commercial use of UML-and formal modeling in general—
broadened and deepened considerably. Originally, UML was focused primarily on
modeling the object-oriented structure of a single application—a kind of specialized
data modeling language. But over time UML has increasingly come to be used
to model many more aspects of the software environment—business use cases,
activity flows, logical constraints, state machines, patterns, deployment packaging,
component architectures, etc.

Of course, that was great news to UML vendors and their loyal customers.
However, as is usually the case, the success of UML brought up a whole new
set of issues. Perhaps the most vexing ones were: (1) how to organize all those
models into a coherent overall architecture, and (2) how to use that architec-
ture to control the overall modeling process. And that’s exactly where MDA
comes in.

When MDA was introduced in 2002, it was primarily intended to help organize
the otherwise infinite number of possible modeling approaches into a coherent
framework. Using MDA, formal models could be used not only to help describe
individual systems, but even complex webs of related applications and supporting
services. To the modeling mavens at OMG, the end result would be a formally
specified “model-driven architecture,” an approach that could be applied to almost
any software engineering domain.

By the way, you may have noticed that, in the last paragraph, I stopped referring
to UML specifically, and shifted to discussing modeling in general. That’s because,
as it has evolved, MDA is no longer ‘dependent’ specifically on UML. Yes, MDA
may have ‘born’ out of UML, but it didn’t take long before it branched out to
be modeling-language-agnostic. We'll discuss this key point in more detail a little
later on.

175

1
1
A X APPENDIX
1
1

A SEPARATION OF CONCERNS

In any case, MDA was initially intended to help modeling practitioners get a better
grip on how to use formal modeling in a much broader context. To do so, MDA
leveraged a well-known architectural approach commonly called ‘separation of
concerns.’

In terms of MDA, this essentially means structuring models so that, for example,
the elements used to model business entities like ‘customer’ or ‘account’ are
clearly separated from the elements used to describe implementation details, such
as ‘database’ or ‘message protocol.” This allows business analysts to focus on
modeling business logic, without having to be ‘concerned’ with system-level
details, which can be dealt with ‘separately’ by system analysts and developers.

To achieve this separation of concerns, MDA defines different ‘viewpoints,’
each of which shows only the model elements associated with a given ‘area of
concern.” The OMG’s MDA Guide specifically defines three high-level viewpoints—
the Computation-Independent Model (CIM), the Platform-Independent Model
(PIM), and the Platform-Specific Model (PSM). In this context the use of the term
‘model’ (instead of ‘viewpoint’) can be confusing, since there is really just one
integrated model, which is then selectively presented to different audiences, each
with its own viewpoint.

In any case, the CIM viewpoint is supposed to include only the model elements
necessary to describe the functional problem domain from a business viewpoint,
and is therefore developed primarily by business analysts. The PIM viewpoint,
developed by system analysts, then includes additional model elements to describe
the computational logic necessary to realize the CIM functionality, but without
implementation platform specifics.

Finally, the PSM viewpoint, developed by system designers, provides addi-
tional model elements that describe exactly how to realize the CIM and PIM
elements in a specific target environment (‘platform’)—for example, Java with EJB,
or C# with .NET, or even COBOL with DB2. A very common application of the
PSM is to use it to automatically generate code and other implementation and
deployment artifacts for the target platforms.

It's important to remember that there is nothing sacred to MDA about the
CIM-PIM-PSM pattern—it’s just one convenient way of dividing up all the possible
viewpoints at a very high level. Using MDA, even the CIM, PIM, and PSM can
be broken down into sub-viewpoints, all of which conceptually still embody one
unified (or federated) model. The important point of the CIM-PIM-PSM pattern is
that provides a way of conceptualizing the main areas of ‘separation of concerns.’

We should note that you can also use MDA to create other viewpoints, some
of which may cross the CIM-PIM-PSM viewpoint boundaries. For example, we
can create a set of viewpoints based on various functional roles, such as business
analysts, system analysts, architects, project manager, etc. Many of these role-based

176 APPENDIX

viewpoints might cross several or all the standard CIM-PIM-PSM viewpoints. The
good news is that MDA doesn'’t really care—it is happy to support any number of
viewpoints and viewpoint patterns, even if they overlap.

Of course it is very often quite convenient to standardize on at least some of
these viewpoints. But, as we shall shortly see, the real value in MDA is that it
allows us to define—and refine—those viewpoints, and all the associated modeling
languages, notations and artifacts, in a standard way. The net result is that the
different viewpoints integrate with each other, and can readily exchange common
model information as needed.

By the way, many books and articles about MDA make a big deal about how
MDA tools can be used to generate code automatically from a properly constructed
PSM, and sometimes even to generate a PSM automatically from a PIM. There’s no
doubt that using MDA in this way can save lots of time and effort otherwise spent
in hand coding and associated debugging. But it should already be clear from our
description that this is only one possible use of MDA, and not nearly the whole
picture. We'll make this even clearer in a moment.

THE BACKBONE OF MDA

As the early proponents of MDA went down the original CIM-PIM-PSM route, it
soon became clear that it was not going to be enough to describe all possible
viewpoints in UML, or any other single specific modeling language, for that
matter. Sure, maybe the UML standard could eventually be extended to cover the
whole waterfront of software development, but that was probably not a realistic
approach for at least a decade or two, and maybe never.

The problem with focusing exclusively on UML, or any one notation/language
is that there are already any number of other popular notations, standards with
supporting products for modeling data structures, message protocols, business
processes, and so on, with more coming out all the time. That also means there
are a lot of vendors, consultants and end-users using those non-UML notations
and associated tools, most of whom have no obvious incentive to switch to a
different modeling language just to become ‘UML-compliant.” It’s pretty obvious
that UML would be very unlikely to supplant all of them any time soon, no matter
how much it was extended.

So, it soon became clear to MDA advocates that MDA would have to find a way
to integrate languages and tools other than those based on UML into the MDA
vision, even where OMG had no direct control over that integration. Therefore,
the OMG adapted another of its existing standards, the Meta Object Facility (MOF),
to serve this purpose for MDA. In so doing, MOF essentially became the real
backbone of MDA.

So, what is the MOF? The MOF is itself a modeling language, but one used
specifically to formally model other modeling languages, for example, the OMG’s

177

1
1
A X APPENDIX
1
1

own UML and BPMN. The idea of MOF is to capture the underlying elements of
each modeling language using the same basic constructs. (For those who like to
think this way, MOF is a meta-meta language used to model the meta-models of
other languages.)

The beauty of MOF is that it makes it much easier for different tools to exchange
and coordinate modeling information across different models, different kinds of
models, and different modeling tools. The only really critical requirement is that
the modeling languages involved are themselves modeled in MOF.

Now, it’s easy to see how two different tools both supporting say, UML, can
exchange models through MOF. But what about, say, a BPMN tool exchanging
information with a UML tool? This is clearly a more difficult problem. To address
this problem, the modeling mavens at the OMG invented the formal concept of a
‘transformation.’

A transformation is a set of rules that explains how elements in one model map
to elements in model. This is not a new concept per se—after all, a GUI wizard
that allows you to draw a GUI screen and then ‘transforms’ that ‘model’ into
code essentially does the same thing. However, there is a big difference between
a proprietary wizard that works in only one tool, and a formally specified MDA
transformation, which can be read (and, as applicable, interpreted) by any other
MOF-compliant tool.

So, for example, MOF can help make it possible for a group of business
analysts to use a MOF-based BPMN tool to model a CIM, and then pass that
information along to a MOF-based UML tool used by different group of system
analysts to create a PIM. In this case, we just need a formally specified BPMN-
to-UML transformation, which, conveniently, is itself also described in a special
MOF-based model transformation language called Query/View/Transformation
QVT).

By the way, MOF itself defines a dynamic programmatic interface (i.e., an API)
for tools to query each other and exchange model information. However, in order
to better facilitate certain kinds of tool integration, MOF-based information can
also be exchanged in document format via a special XML-based version of MOF
called XML Metadata Interchange (XMI). This fits nicely in with environments
that are already exchanging information using XML.

So, now we can imagine a brave new world of MDA in which software
engineers can select tools and languages of their choice to model different view-
points (“best in breed”), but keep all the resulting model artifacts in synch using
MOE/XMI. No longer will they have to depend on a single vendor to cover all
the bases, or spend countless hours configuring complicated tool-chains, just to
exchange information.

But the really good news is—you don’t have to wait! There is already a free,
open-source XMI-based tool integration platform you can download today: Eclipse.
Yes, that’s right, XMI is the format used to exchange information in Eclipse, the

178 APPENDIX

increasingly popular open-source software development platform. So, if two or
more tools can exchange information in Eclipse, they are already de facto based
on MDA, whether they explicitly say so or not.

WHITHER MDA?

Not surprisingly, over the last couple of years, the OMG and MDA have become
a lot more MOF- and XMI-centric, and a lot less UML-centric. UML is still very
important, and a lot of vendors and end-users support it enthusiastically, but
modeling in UML per se is now just one of many ways to apply MDA.

In fact, one important ‘growth area’ in the MDA world is mapping many
different notational systems and architectural approaches into MOF/XMI and
defining standard transformations, so that they can be integrated to work in tool
chains such as those supported by the Eclipse platform. Finally getting all the
modeling tools on the ‘shop floor’ to be able to talk to each other is a key step
towards developing the kind of real ‘software factory’ that we discussed at the
beginning of this book.

Another hot area deals with how best to apply MDA to different vertical
markets. As we noted in our first chapter, as of this writing, there are already
nine different MDA-related Task Forces (TFs) and Special Interest Groups (SIGs)
tormally operating within the OMG, including Real Time and Embedded Systems,
C41, Finance, Healthcare, Life Science Research, Manufacturing Technology and
Industrial Systems, Software-Based Communications, Space, and Transportation.
But these represent just the tip of a rapidly growing iceberg, as vendors and end
users find new applications for MDA in every area of software engineering.

Yet another up-and-coming area of MDA has to do with what's now being
called ‘software process engineering.” Clearly, to use MDA, you not only need
tools, but also a supporting process, which can be very useful to formalize. To this
end, the OMG has developed a MDA standard called Software Process Engineering
Metamodel (SPEM). At this writing, SPEM is relatively new, but it has the potential
of allowing users to formally model and configure the processes by which they
invoke tools and tooling chains.

DIFFERENT STROKES

So how does all this relate to our six MDA case studies? The most important point
to remember as you read through these case studies is this: there is no one single
way to do MDA, and there never will be. There will always be any number of valid
approaches to applying MDA, depending on what you want to achieve. Just how
broadly this maxim applies is amply illustrated by the case studies themselves.

179

1
1
A X APPENDIX
1
1

But if this is so, then what makes something MDA, and what makes MDA a
‘standard?” As you read our case studies, the common thread throughout all of
them is that, for each step in the software lifecycle-requirements gathering, busi-
ness modeling, systems architecture, application design, software development,
testing, deployment, integration—there are formally defined modeling artifacts,
expressed in (or mapped to) an industry standard notation/language or some
close variant or extension.

Furthermore, in each case there are also well-articulated ways of moving and/or
transforming the associated model elements created at each step so they can be
carried forward (or in some cases backward) throughout the rest of the lifecycle
process. That is, in each case, someone asked beforehand, “How can we make
sure that the information we gather and the analysis we perform at each step flows
properly to subsequent steps?” and “To what extent can we leverage industry
modeling standards to automate this process to save time and money, reduce
errors, and improve quality.”

If this sounds to you remarkably like the vision of a ‘software factory,” then you
are definitely on the right track. But, you might ask, couldn’t this be accomplished
without a universal standard like MDA? In one sense, the answer is ‘yes’—it is
certainly possible for one vendor, or one end-user, or one project to create their
own proprietary model-driven software lifecycle process and supporting tool-chain
without the aid of a universal standard.

However, MDA exists today because the members of OMG—vendors, end-users,
and consultants, many of whom had already tried ‘rolling their own’ model-driven
approaches—got tired of trying to constantly reinvent the model-driven wheel. Just
as in other fields, they would prefer that their tools and artifacts ‘plug-and-play’
with a minimum of time, cost, and effort.

Now, by following a set of standards like MDA, software organizations can
design and implement their desired model-driven processes and tool-chains far
faster and more efficiently than from scratch. And the really good news is that they
can use MDA to achieve those results without getting boxed into a corner with a
single language, product or vendor. In a nutshell, that’s what MDA is all about.

FURTHER READING

The following books provide a good introduction to MDA.

Model Driven Architecture: Applying MDA to Enterprise Computing, by David S. Frankel,
Wiley, 2003, ISBN: 0471319201.

MDA Distilled, by Stephen J. Mellor, Kendall Scott, Axel Uhl, and Dirk
Weise, Addison-Wesley Object Technology Series (Paperback), 2004, ISBN:
0201788918.

180

APPENDIX

MDA Explained: The Model Driven Architecture—Practice and Promise, by Anneke Kleppe,

Jos Warmer, and Wim Bast, Addison-Wesley Professional, 2003, ISBN:
032119442X.

We also recommend the OMG’s MDA Guide Version 1.0.1, available at

http:/ /www.omg.org/docs/omg/03-06-01.pdf. And for a much more extensive
reading list, visit the OMG’s Reading Room at http://www.omg.org/mda/
reading-room.htm.

GLOSSARY

BPMN Business Process Modeling Notation.
BPEL Business Process Execution Language.
CASE Computer-Assisted Software Engineering.
CEO Chief Executive Officer.

CIM See Computation-Independent Model.

CIO Chief Information Officer.

CMM The Capability Maturity Model for software, which was developed by the
Software Engineering Institute at Carnegie-Mellon University.

CMMI Capability Maturity Model Integration, which was developed by the Soft-
ware Engineering Institute at Carnegie-Mellon University.

Common Information Model An implementation-independent, object-
oriented schema for describing network management information, developed and
maintained by the Distributed Management Task Force (www.dmtf.org).

Common Warehouse Metamodel (CWM) The Common Warehouse Meta-
model is an OMG standard that describes metadata interchange among data ware-
housing, business intelligence, knowledge management, and portal technologies.

Computation-Independent Model (CIM) A Computation-Independent Model
expresses the workings of a system without showing any detail of its structure
or operation. A CIM is sometimes called a domain model (more specifically, a
“business model”) and it uses a “modeling vocabulary” that is familiar to subject
matter experts in that domain.

CORBA Common Object Request Broker Architecture, an OMG standard for
distributed object systems.

COTS Commercial Off-The-Shelf system.

181

182 GLOSSARY

CPIC Capital Planning and Investment Control.

CRUD Create, Read, Update, Delete (all of which are fundamental data storage
operations).

CWM See Common Warehouse Metamodel.
DoD U.S. Department of Defense.
DSL Domain Specific Language.

ebXML Electronic Business XML, a standard for exchanging XML business
messages over the Internet.

EDOC The OMG's UML Profile for Enterprise Distributed Object Computing
(available at http:/ /www.omg.org/ technology / documents/formal / edoc.htm).

EJB Enterprise Java Beans.
FEA Federal enterprise architecture.

General Relationship Model ISO standard 10165-7 (available at www.iso.org),
a standard that provides a model for reasoning about, representing, managing,
and developing specifications about relationships in a way that is independent of
representation mechanisms.

GOTS Government Off-The-Shelf system.
GRM See General Relationship Model.

IS Information systems.

JMS Java Messaging Service

LOB Line of business.

Mark A mark specifies a particular mapping in a model (e.g., from a model
element to some aspect of its implementation on a specific technology platform).

MDA See model-driven architecture.

Meta Object Facility (MOF) The Meta Object Facility is an OMG standard that
provides a common facility for managing metamodels. If two different metamodels
are both MOF-conformant, models based on them can reside in the same repository
and can be manipulated by MOF-conformant tools.

metamodel A model of a model; metadata that represents the concepts within
an information domain.

model A formal specification of the structure and/or function of a system.

183

1
1
G X GLOSSARY
1
1

Model Driven Architecture An approach to software engineering and system
definition based on the creation of precise and formal models of the problem
domain, the supporting computer system, and the technology implementation.

MOF See Meta Object Facility.
NASA U.S. National Aeronautics and Space Administration.

Object Management Group (OMG) The Object Management Group is an open
membership not-for-profit consortium that produces and maintains computer
industry specifications for interoperable enterprise applications (see www.omg.org).

OMG See Object Management Group.
PIM See Platform-Independent Model.

Platform-Independent Model (PIM) A Platform-Independent Model expresses
the workings of a computer system to support the requirements specified in a
Computation-Independent Model (CIM), but in a way that does not depend on
any specific technology platform.

Platform-Specific Model (PSM) A Platform-Specific Model combines the spec-
ifications in a Platform-Independent Model (PIM) with the details of how that
system is implemented on a particular technology platform.

POC Proof of concept.
PSM See Platform-Specific Model.

Reference Model for Open Distributed Computing ISO/IEC 10746 (available
at www.iso.org), one of the foundational standards on which MDA is based.

RM-ODP See Reference Model for Open Distributed Computing.
SDLC Software Development Life Cycle.

SEI The Software Engineering Institute, which is sponsored by the U.S. Depart-
ment of Defense and operated by Carnegie-Mellon University.

SME Subject matter expert.
SOA Service-oriented architecture.

Stereotype A UML stereotype is user-specified modeling element defined in
terms of existing modeling elements.

UDDI Universal Description Discover and Integration, a directory model for
web services.

UML See Unified Modeling Language.

184 GLOSSARY

Unified Modeling Language (UML) An Object Management Group (OMG)
standard for modeling software artifacts.

VA U.S. Veterans Administration.

VCA Value chain analysis.

WS Web services.

WSDL Web Services Definition Language.
XMI See XML Metadata Interchange.

XML Metadata Interchange XML Metadata Interchange format is an OMG stan-
dard that specifies an XML-based information interchange model, which allows
the exchange of metadata in a standardized way.

XPDL XML Process Definition Language.

XP Microsoft’s Windows XP operating system.

INDEX

Note: Page numbers followed by f indicate figures and t, tables.

A

Abstract process definitions,
formalizing, 56
Actuarial model for risk/safety
assessment, 19
Agile development, 157, 166—-168
at Austrian Health Authority,
70-71, 168
at Coopservice, 41, 43, 167
at Harris, 86, 93, 167
at Ohio JFS, 19-25, 31, 33-34,
166—-167
Agile model-driven development
(AMDD), 173
“Aha!” moments
for Austrian Health Authority, 79-80
for Coopservice, 56—57
for DaimlerChrysler, 147, 152, 159
for Harris, 106
AIM Consulting, 42, 46
Almeida, David (Harris), interview with,
86-88, 92, 93, 97-98, 105, 106,
108-109
Analysts, MDA training for, 57

Application Model, Optimal], 26, 27f, 36t

Archetype, Struts/EJB (Inherit)
coding quality and, 102
“meta-debugging” for, 89, 99-100

sample output of, 91f
transformation by, 90, 94-95
Architectural artifact for Austrian Health
Authority, 71, 72f
Architectural rapid application
development (ARAD), 114
Architectural standards, enforcement of
at Austrian Health Authority, 66, 71
at DaimlerChrysler, 146, 159-160
ArcStyler (Interactive Objects),
137-138, 153t
features of, 139, 142, 143
GUI development using, 150-151
model development using, 140-141
offshoring support by, 146
Assembly line, invention of, 6
Assessment
of MDA by client, 60—-62, 77-81,
152—-153
MDA FastStart, 169
“Associates,” Coopservice, 39
Austrian Health Authority, Central Partner
Administration project of, 65-81
agile development of, 168
architectural artifact for, 72f
background on, 65-66
client assessment of, 77—81
division of labor for, 72-73
experience during, 73-76

185

186

Austrian Health Authority, Central Partner
Administration project of (Continued)
how MDA was used for, 68—69
model transformation and artifact
generation for, 68f
process and tools for, 69-72
profile of, 81t
reasons for choosing MDA for, 66—67
results and benefits of, 7677
separation of concerns for, 159
stakeholder communication for, 164
traceability for, 161
Automation
of Coopservice’s business processes, 46,
47, 59-60
DaimlerChrysler’s current and planned
levels of, 150, 151f
factory model of, 6-9
Automotive industry case study. See
DaimlerChrysler TSS.

Batch data access, 74

Bottom-up approach
at Austrian Health Authority, 70
for Coopservice training, 57
at Harris, 106

BPEL (Business Process Execution
Language), 181

BPMN. See Business Process Modeling
Notation (BPMN).

B2B portal, Coopservice. See
Business-to-business (B2B) portal,
Coopservice.

Budget, DaimlerChrysler, 140, 144

Business analysts, tool usage by, 51

Business case for MDA, making, 155—-157

“champion” for, 4-5
at Harris, 101, 156

Business goals, focus on, 67. See also
Expanding goals.

Business-IT communication. See
Communication, stakeholder.

Business logic, migrating and
unifying, 73-75

INDEX

Business models. See also
Computation-Independent
Model (CIM).
Coopservice, controlling, 42
Ohio JFS high-level, 21, 26, 27f, 36t
Open Source, 130
Business “pain points”
for Austrian Health Authority, 66, 67, 81t
for Coopservice, 42, 61t
for DaimlerChrysler, 138, 153t
for GSA, 113—-115, 134t
for Harris, 85, 87—88, 102—103, 109t
MDA-amenable, 157
for Ohio JFS, 16—18, 36t
Business Process Execution Language
(BPEL), 181
Business Process Modeling Notation
(BPMN), 173, 181
for Coopservice project, 46, 47
Meta Object Facility and, 176177
Business processes
at Coopservice
capturing and defining, 56
goals for, 42—44, 47
governance of, 42, 44, 45,
59-60, 163
modeling of, 4546, 47, 51, 55f
at GSA
communication of, 115
management of, 127-128, 166
modeling as set of services, 128
simulation of, 115-116, 121
visual representation of, 117-119
Business requirements. See also
Requirements.
for Austrian Health Authority, 69
for GSA, traceability of, 115-116, 118,
119, 124
for Harris
capture of, 84, 89
communication of, 90, 92
division of labor for, 97-98
model for, 89-90, 94f
review of, 88
traceability of, 102
use case diagrams and survey of, 93

for Ohio JES
approval and feedback process
for, 22-24
back-to-front approach to, 24-25
definition of, 17, 20-21
modification of, 18—19
traceability of, 160-163
Business solutions, applying MDA
for, 5, 10
Business-to-business (B2B) portal,
Coopservice
division of labor for, 46, 47
goals of, 40, 42—43

C

Capability Maturity Model (CMM), 181
Capability Maturity Model Integration
(CMMI), 84, 181
Capital planning and investment
control (CPIC)
defined, 182
for GSA, 114, 124-125
Cartridges, ArcStyler, 140, 143
CASE (computer-assisted software
engineering), 5, 181
Case studies, 3. See also specific case study.
approaches to applying MDA in,
178-179
purpose and rationale for, 4-5,
10, 155
summary of, 155-171
CEO (Chief Executive Officer), 181
Champion, MDA, 4-5, 101, 156
Change
adapting to, 156—157
mandated, GSA’s initiatives
for, 113-114
Change management
at DaimlerChrysler, 149
at Ohio JFS, 15, 16, 17-18, 29-32
traceability for, 162—-163
Chief Executive Officer (CEO), 181
Chief Information Officer (CIO), 181

INDEX

187

CIM. See Computation-Independent
Model (CIM).
Classified environment, development in,
84-85, 97
Client assessment of MDA experience
at Austrian Health Authority, 77-81
at Coopservice, 60—62
at DaimlerChrysler, 152—-153
Clinical model for risk/safety
assessment, 19
CMM (Capability Maturity Model), 181
CMMI (Capability Maturity Model
Integration), 84, 181
Code generation
at Austrian Health Authority, 68,
70-71, 72, 74-75, 79-80
automatic, agile development and,
166, 168
at DaimlerChrysler, 142, 143, 146,
148-149
at GSA, 120-121, 123, 129-130
at Harris
“meta-debugging” process for, 89,
99-100
quality of, 90, 92, 102, 103
tool/process for, 86, 95, 97
MDA use for, 5, 176
at Ohio JFS, 20, 21, 24, 26
Code/text model for Harris, 84, 94, 95
Collaborative role interaction model for
GSA, 115116, 124-125
Commercial off-the-shelf system (COTS),
115, 181
Commercial products,
MDA-based, 3—4
Commercial software development,
government vs., 93
Common Information Model, 105,
106, 181
Common Object Request Broker
Architecture (CORBA), 105, 181
Common reference model for facilities
management, 43, 47
Common Warehouse Metamodel
(CWM), 181

188

Communication, stakeholder, 157,
163-166
at Austrian Health Authority, 69, 75,
7677, 164
at Coopservice, 48—49, 51, 53, 165
at DaimlerChrysler, 138, 142
at GSA, 115, 118-119, 123-124, 132,
165-166
at Harris, 90, 92, 165
at Ohio JFS, 21, 164, 165—-166
Community Processes, modeling,
118-119
Competitive advantages
for Coopservice, 42
for Harris, 86, 104
Compliance
MDA, 3—4
regulatory, standards for, 163
Component Collaboration Architecture,
112, 128
Components
development of standardized,
interchangeable, 69
traceability for failure of, 161
Component-X (Data Access Technology),
112, 134t
capabilities of, 115, 120-121
separation of concerns by, 123-124
training for, 122
Computation-Independent Model
(CIM), 181
for Austrian Health Authority, 68
for Coopservice, 61t
analysis of, 47, 56
content of, 53f
creation of, 49
sample from, 50f
teams for, 47, 57-58
transformation of, 51, 53-54, 56
for GSA, 112, 117-120, 134t
separation of concerns by, 175-176
Computer-assisted software engineering
(CASE), 5, 181
Compuware, 13-14, 36t
challenges for, 17
organizational development by, 34

INDEX

process and tools of, 25-26
project experience for, 29-33
reasons for choosing, 15
use of MDA by, 20, 21-22
Concept of operations (CONOPS) at
Harris, 98
Consultants, 10—11
for Coopservice, 46
for GSA, 112, 134t
for Ohio JFS, 13, 14-15, 36t
Contractors
Coopservice, 40, 43
government requirements for, 113,
123, 158
Cooperative, defined, 39
“Coopetition,” 43
Coopservice, 39-62
background on, 39—40
Pant@ project of, 40—41
agile development of, 167
challenges for, 42
client assessment of, 60—62
division of labor for, 46—48
expanding goals of, 42—44
experience during, 48—49, 51-57
governance for, 163
how MDA was used for, 44—45
models for, 48f, 50f, 52f, 53f, 55f
organizational development during,
57-58
process and tools for, 45—46
profile of, 61t
reasons for choosing MDA for, 41
results and benefits of, 59—60
separation of concerns for, 160
software factory process after, 58f
stakeholder communication for, 165
state diagram for, 54f
team organization for, 58f
technical architecture for, 49f
yearly revenue of, 40f
CORBA (Common Object Request Broker
Architecture), 105, 181
COTS (commercial off-the-shelf system),
115, 181

CPIC. See Capital planning and investment
control (CPIC).
Craft-based production model, 6, 7
“Create, read, update, delete” (CRUD),
31, 182
Critical success factors, 15
Cultural change
at Austrian Health Authority, 78
at DaimlerChrysler, 149
“Culture-specific” viewpoints, 165
Customer demand, “agile” response to,
41, 167
Customer requirements, focus on, 86
CWM (Common Warehouse
Metamodel), 181

D

DaimlerChrysler AG, 137, 153t
DaimlerChrysler TSS, 137-153
automation levels at, 151f
Electronic Production Planning
project of
background on, 137-138
client assessment of, 152—153
division of labor for, 144—145
expanding goals for, 139-140
experience during, 147
how MDA was used for, 140-141
MDA architecture blueprint
for, 140f
offshoring support by, 145-147
organizational development
during, 148
process and tools for, 141-144
profile of, 153t
reasons for choosing MDA
for, 138-139
results and benefits of, 148—150
separation of concerns for, 159-160
traceability for, 161, 162
ongoing and planned use of MDA at,
150-152
DalleMura, Roberto (AIM Consulting),
42, 46

INDEX

189

The Daston Corporation, 112,
122, 134t
Data access modes for Austrian Health
Authority, 74
Data Access Technologies (DAT), 134t
expanding goals for, 116
MDA use by, 117-119
ongoing projects involving, 132,
134-135
process and tool of, 115, 120-121
reasons for choosing, 113
role of, 112, 122
Database access design pattern for Harris, 97
Debugging of Harris project code, 89,
99-100
Decentralized organization, disruption in,
126-127
Department of Defense (DoD), U.S., 182
Developers, MDA training for, 57
Development teams
at DaimlerChrysler, 145, 148
at Ohio JFS, 25-26, 28, 32-33, 34
Disruptive nature of MDA, 126-127, 130
Distributed Management Task Force
(DMTF) Common Information
Model, 105, 106, 181
Division of labor
at Austrian Health Authority, 72-73
at Coopservice, 46—48
at DaimlerChrysler, 144—145, 148,
159-160
at GSA, 122, 158
at Harris, 97-98
at Ohio JFS, 27-28, 29f
Documentation, models vs. text as, 149
DoD (U.S. Department of Defense), 182
Domain Model, Optimal], 26, 27f, 36t. See
dso Computation-Independent
Model (CIM).
Domain Specific Language (DSL), 46,
51,182
Dykstra, Gary (Compuware), interview
with, 15-16, 21
Dynamics Research Corporation, 13, 36t
process and tools of, 25-26
reasons for choosing, 14—15

190

E

“EBuy” capability, enhancement of
GSA’s, 125
Eclipse, 45, 177-178
Eclipse Modeling Framework (EMF), 49
EDOC. See Enterprise Distributed Object
Computing (EDOC).
80/20 “Pareto principle,” 86, 167
EJBs. See Enterprise Java Beans (EJBs).
Electronic Business XML (ebXML), 182
Electronic Production Planning project. See
under DaimlerChrysler TSS.
End users
Coopservice, “Aha!” moments
for, 5657
DaimlerChrysler
feedback loop for, 148
UML use by, 141
Harris, capturing requirements for, 92
MDA, satisfaction of, 10—11
Ohio JFS, acceptance testing for, 23-24
Enterprise architecture review, MDA,
169-170
Enterprise Distributed Object
Computing (EDOC)
defined, 182
for GSA projects
Component-X implementation
of, 112, 115, 120, 121
interest in, 113
process representation by,
117-118, 128
Enterprise Java Beans (EJBs). See also
Struts/EJB Archetype (Inherit).
for Austrian Health Authority models,
67, 68f
for Harris application server, 85, 86, 95
Enterprise-level development, MDA use
for, 81
Enterprise resource planning (ERP)
application for Coopservice, 40, 42
ePEP project. See DaimlerChrysler TSS,
Electronic Production Planning
project of.

INDEX

Executable enterprise architecture.
See under General Services
Administration (GSA).

Executable role interaction models,
115-116

Expanding goals

for Austrian Health Authority, 67
for Coopservice, 42—44

for DaimlerChrysler, 139-140
for GSA, 115-116

for Harris, 88—89

for Ohio JFS, 18-19

Extended Metadata Interchange (XMI),
177-178

defined, 184
for Harris models, 94, 95

F

Facilities management industry. See also
Coopservice.
“coopetition” in, 43
structure and services of, 39—40
Facility Management Reference
model, 43, 47
Factory model
emergence of, 6—7
for software development, 7—9
FastStart program, MDA, 11, 168171
Federal enterprise architecture
(FEA), 182
alignment of GSA with, 111-112, 113
executable, goal for, 115-116
ratings for implementation of, 131
Value Chain Analysis for, 124-125
Federal government. See also General
Services Administration (GSA).
contractor/vendor rules of, 113,
123, 158
management agenda for, 131
software development approach
of, 123-124
state child welfare systems mandated
by, 13, 17
traceability and governance regulations
of, 162, 163

Federal Supply Service (FSS) pilot project
division of labor for, 122
goals of, 112, 113
MDA use for, 116—-117
results and benefits of, 125, 132
Feedback process
at DaimlerChrysler, 148
at Harris, 92, 100, 101, 102, 162-163
at Ohio JFS, 21, 23-24
Ferronato, Pierfranco (Soluta.net),
interview with, 42, 44, 48—49,
51, 53, 56
Financial Management Enterprise
Architecture (FMEA) project,
GSA’s, 132, 134-135
Finantix Studio, 4546, 61t
business process model by, 55f
Platform-Independent Model by, 49,
51, 52f
state diagram by, 54f
Ford, Henry, 9
Fornecker, Chris (GSA), 112
ESS pilot project. See Federal Supply Service
(FSS) pilot project.

G

General Accounting Office, 132
General Relationship Model (GRM), 182
General Services Administration (GSA),
111-135
business case for MDA at, 156
executable enterprise architecture of
background on, 111-112
challenges for, 113-115
community process for, 118f
division of labor and training
for, 122
expanding goals for, 115-116
how MDA was used for, 116—120
mapping to artifacts for, 117f
model transformation for, 120f
ongoing projects based on, 132, 135
organizational development and,
125-131

INDEX

191

process and tools for, 120-121
profile of, 134t
project experience for, 124—125
reasons for choosing MDA
for, 112-113
results and benefits of, 131-132
separation of concerns for, 158—159
software development approach for,
123-124
stakeholder communication
for, 165-166
traceability for, 160-161, 162
ongoing and planned use of MDA at,
132, 134-135
Gentleware’s Poseidon, 94
Glossary, 181-184
Glue code, separating business logic
from, 74-75
Goals, expanding. See Expanding goals.
GOTS (government off-the-shelf
system), 182
Governance, 160—163. See also Traceability.
at Coopservice, 42, 44, 45,
59-60, 163
at DaimlerChrysler, 140, 150
Government. See also Federal government;
General Services Administration
(GSA); State of Ohio Job and
Family Services.
models of interest to, 106
software development for, 93
Government off-the-shelf system
(GOTS), 182
Gramm-Leach-Bliley Act, 162
Graphical user interface (GUI)
development at DaimlerChrysler,
150-152
GRM (General Relationship Model), 182
GSA. See General Services
Administration (GSA).

H

Harrington, Ed (Data Access
Technologies), interview with,
113, 116, 117-119, 122, 123

192

Harris Corporation, 83—-109
business case for MDA at, 156
Managed Telecom Service Enterprise
project of
agile development of, 166, 167
background on, 83-85
challenges for, 87-88
division of labor for, 97-98
expanding goals for, 88—89
experience during, 98—103
how MDA was used for, 89-92
models for, 94f, 96f
process and tools for, 92-97
profile of, 109t
reasons for choosing MDA for, 85-87
results and benefits of, 104
stakeholder communication for, 165
Struts/EJB archetype-to-model output
for, 91f
traceability for, 162—-163
ongoing and planned use of MDA at,
104-109
telecommunications management
network model for, 107f
Hauptverband project. See Austrian Health
Authority, Central Partner
Administration project of.
Hibernate, 67, 68f, 74
Hlinka, Vasil (Compuware), interview
with, 20, 22, 29-31, 32, 33
Hybrid model for Ohio JFS, 15, 19

IBM’s Rational Software Architect, 105
Implementation
addressing “how” and “what”
of, 138-139
defining requirements during, 22-25
MDA’s effect on, 75-76, 119
platform deployment technology
for, 117f
Incremental/iterative development at
Austrian Health Authority,
68-69, 70

INDEX

Information Systems (IS), 182
Information technology (IT)
adapting to change in, 156
communication of business with. See
Communication, stakeholder.
improving life cycle of, 3, 5
selling MDA to people in, 100-101
Inherit, LLC, 83, 109t
design and requirement reviews by, 88
MDA use by, 84, 89-92
process and tool of, 88—89, 92-97
project experience for, 99-103
reasons for choosing, 85-87
role of, 97
Innovator (MID), 141
Integrated project teams
at Coopservice, 46—48
at Harris, 92-93, 97
at Ohio JFS, 27-28, 32
Interactive Objects Software GmbH,
137-138, 153t
GUI development by, 150-151
MDA use by, 140-141
offshoring support from, 145-147
project experience for, 147
reasons for choosing, 139
role of, 144—145
tools and process of, 142—-143
Interchangeable parts, development
of, 6, 7-8
Interface definition languages (IDLs), 8, 9
International Facility Management
Association, 43
IS (Information Systems), 182
IT. See Information technology (IT).
Iterative development, 157, 166—168. See
also Agile development.
at Austrian Health Authority, 68—69, 70
at GSA, 117
at Harris, 84, 89, 98-99
at Ohio JFS, 20-22, 23f, 26, 31

Java architecture for Austrian Health
Authority project, 66, 68f, 73

Java code for Harris project, 95, 97
Java Messaging Service (JMS), 182
Java programs, Component-X models

as, 121
JBuilder, 25, 36t
JESS, 95

Job and Family Services, Ohio. See State of
Ohio Job and Family Services.
Joint Application Design & Development
(JAD) of Ohio JFS project, 20-22
mid-course corrections for, 31
team for, 28, 34
J2EE platform
for Austrian Health Authority, 66,
67, 68
for DaimlerChrysler
goal for, 138-139
MDA architecture blueprint for, 140f
MDA use for, 140-141
transformation process for, 142—143
for Harris, 85
for Ohio JFS, 26, 32
JunoMDA (Soluta.net), 41, 44, 61t

K

Kifer, Wolfgang (DaimlerChrysler),
interview with, 139, 141, 142,
143, 144, 148-149, 152-153

L

Lario, Robert (Inherit), interview with,
90, 92-93, 101-103
Learning curve for MDA, 78
Legacy systems, integration or
replacement of
at Austrian Health Authority, 66
at Coopservice, 42, 46—47, 62
at DaimlerChrysler, 139
at GSA, 132, 134-135
at Ohio JFS, 16-17
Lercher, Lorenz (Austrian Health
Authority), interview with, 73-76,
77-78, 79-81

INDEX

193

Line of business (LOB), 182
“Line of sight” requirement at GSA,
115-116, 119, 162

LMI Research Institute, 113, 134t
ongoing projects involving, 132
role of, 112, 122

Logical models
for Coopservice, 48f
for GSA, 1171, 130

M

Machine tools
invention of, 6
for software, 7-8, 10

Maintenance, application
expansion of goals and, 140
MDA’s effect on, 75—-76
traceability for, 161

Managed Telecom Service Enterprise

project. See under Harris Corporation.

Manufacturing, models for, 6-9

Mapping, GSA model, 117f, 128. See also

Transformation, model.

Marketing advantage for Harris, 104

Marks
defined, 182
for Platform-Independent Model, 141,

143, 153t

Mass production, 6, 9

Maurer, Thomas (Interactive Objects),
interview with, 142, 143

Maybank, Barry (Select Business
Solutions), interview with, 68,
70-71, 74, 76-77

MDA. See Model Driven
Architecture (MDA).

MDA Express (Inherit), 109t
demonstration of, 85, 86, 88—89
Harris’s licensing of, 86, 101
reasons for choosing, 87
transformation process using, 90,

94-95
MDA FastStart, 11, 168—171

194

“MDA stack” for Federal Supply Service
pilot project, 112
Medicaid project, Ohio JES, 35
“Meta-debugging” of Harris project code,
89, 99-100
Meta Object Facility (MOF), 176177,
178, 182
Metamodel, 182
Common Warehouse, 181
modeling language for, 177
Software Process Engineering, 178
standards for, 126
Microsoft SQL, 85, 97
Microsoft’s Windows XP operating
system, 184
“Mis-features,” handling, 100
Mitchell, Rob (Inherit), interview with,
86, 87, 99-101, 103
Model-based acquisition, GSA’s goals
for, 124
Model-based artifacts
for Austrian Health Authority, 68—69,
72f, 81t
for Coopservice, 4956, 61t
for DaimlerChrysler, 141, 153t
for GSA, 117-120, 134t
for Harris, 84, 93-97, 109t
for Ohio JFS, 26, 27f, 36t
Model Driven Architecture
(MDA), 182
analogy for conceptualizing, 5-9
approaches to applying, 178—179
backbone of, 176—178
branching of, 9-10
client definition of, 62, 81
concept of, 3, 173-174
emergence of, 174
FastStart program for, 11, 168-171
further reading on, 179-180
growth areas for, 178
making business case for, 155-157
perceptions of, 5, 16, 155
poster child for, 106
separation of concerns by, 175-176
Model-driven development
(MDD), 3, 173

INDEX

Model-driven offshoring (MDO),
145-147
Model-driven software development
(MDSD), 173
“Model to integrate”
creating environment for, 114
tools for, 121
Modeling
coding and, 149
at highest level, 130
MDA approach to, 3, 10, 174, 175
Modeling languages. See also Unified
Modeling Language (UML).
integration of, 176-178
object-oriented, replacement
of, 174
Models, 182
manufacturing, 6-9
two-dimensional vs. MDA, 104
MOF. See Meta Object Facility (MOF).
“Monet factor,” 102, 103
Morale at Harris, 104
Motivation
at Harris, 104
at Ohio JFS, 17-18
MTSE project. See Harris Corporation,
Managed Telecom Service
Enterprise project of.
Multisite development, optimization
of, 150

N

Nano—manufacturing, 9

National Aeronautics and Space
Administration (NASA), 183

Network management platform (NetBoss),
105-108

o

Object Management Group (OMG), 183
CORBA support by, 105
FastStart program of, 11, 168—171
objectives of, 179

Special Interest Groups and Task Forces
in, 9-10, 178
standards of, 3, 173
development of, 178
Meta Object Facility, 176-177
metamodel set of, 126
for regulatory compliance, 163
Universal Modeling Language, 174
Object-oriented modeling languages, 174
Office of Management and Budget, 131,
132
Offshoring by DaimlerChrysler. See also
Outsourcing.
goals for, 138
model-driven, 145—146
ongoing use of MDA for, 152
separation of concerns for, 159-160
Ohio, MDA application in, 37. See also State
of Ohio Job and Family Services.
OMG. See Object Management Group
(OMG).
“One GSA Enterprise Architecture Blanket
Purchase Agreement and Statement
of Work” (GSA), 127
OneGSA Enterprise Architecture. See
General Services Administration
(GSA), executable enterprise
architecture of.
Online data access, 74
Open Source E-Gov Reference Architecture
(OsEra) project, 130—-131
Optimal] (Compuware), 13, 36t
agile development using, 20
concerns about, 25
models provided by, 26, 27f
Oracle, 85, 97
Organizational development
at Coopservice, 57—58
at DaimlerChrysler, 148
defined, 34
at GSA, 125-131
at Ohio JFS, 33-35
Outsourcing. See also Offshoring by
DaimlerChrysler.
by Coopservice, 40
by GSA, 113, 115

INDEX

195

P

PAI framework, DaimlerChrysler
goal for, 138-139
MDA architecture blueprint for, 140f
MDA use for, 140-141
transformation process for, 142—143
Pair programming, 32
Pant@ project. See under Coopservice.
Paradigm shift, MDA as, 5, 15-16
Patterns
architectural, 69, 71, 73
data access design, 97
Pearson, Lew (Harris), interview with,
105-106
Perandones, Alberto (Interactive Objects),
interview with, 140, 145,
146—147
Performance metrics, traceability
of, 115-116
Pilot project
for Austrian Health Authority, 73
for Coopservice, 44—45
for DaimlerChrysler, 147
for Federal Supply Service
division of labor for, 122
goals of, 112, 113
MDA use for, 116—-117
results and benefits of, 125, 132
for Harris, 90
Platform-Independent Model (PIM), 183
for Austrian Health Authority, 68, 70,
76, 81t
for Coopservice, 52f, 61t
content of, 53f
development of, 49, 51
reusability of, 59
teams for, 47—48, 57-58
transformation of, 46, 51, 53—54, 56
for DaimlerChrysler, 141,
142—-143, 153t
for GSA, 117f, 119, 120f, 134t
for Harris, 94f, 109t
creation of, 84, 89-90
modifications to, 93, 98

196

Platform-Independent Model
(PIM) (Continued)
tools for capturing, 94
transformation of, 89, 94, 95
for Ohio JES, 26, 27f, 36t
separation of concerns by, 175-176
Platform-Specific Model (PSM), 183
for Austrian Health Authority, 68, 70,
76, 81t
for Coopservice, 46, 53f, 54, 61t
for DaimlerChrysler, 142—-143
for GSA, 117f, 120f, 134t
for Harris, 96f, 109t
creation of, 84, 94, 95
modifications to, 98
Struts/EJB Archetype output
to, 91f
transformation of, 89, 90, 94, 95
for Ohio JFS, 26, 27f, 36t
separation of concerns by, 175176
Plug-ins, MDA Express, 94, 95
POC. See Proof of concept (POC).
Poseidon (Gentleware), 94
Practicum, MDA, 170-171
Prerequisite skills for DaimlerChrysler
offshore partners, 146—147, 152
President’s Management Agenda, 131
Primer, MDA, 173-180
Process-oriented development at
DaimlerChrysler, 144, 153
Production process, standardization
of, 6-9
Productivity, increasing
at DaimlerChrysler, 146, 149
at Harris, 84, 100
Programmers, MDA awareness
of, 78-79
Proof of concept (POC), 183
Proof-of-concept (POC) project
for Coopservice, 44
for DaimlerChrysler, 147
for GSA
division of labor for, 122
goal of, 112, 113
results and benefits of, 132
Value Chain Analysis for, 124-125

INDEX

PSM. See Platform-Specific Model (PSM).

Q

Qualified Service Providers (QSPs), 11
for Austrian Health Authority, 65,
66—67, 81t
for Coopservice, 41, 45, 61t
for DaimlerChrysler, 137138,
139, 153t
for GSA, 113, 134t
for Harris, 83, 109t
for Ohio JFS, 13—14, 15, 36t
Query/View/Transformation
(QVT), 177

R

Rapid Requirements Definition (RRD) for
Ohio JFS project, 20-22, 28
Rational Rose
for Harris models, 94, 95
for Ohio JES models, 25, 26, 27f, 36t
Rational Software Architect (IBM), 105
Rational Unified Process (RUP), 14,
15, 25
Readiness assessment, MDA
FastStart, 169
Real-time data access, 74
Reference Model for Open Distributed
Computing (RM-ODP), 183
Regulatory laws for traceability and
governance, 162, 163
Request for proposal (RFP) for Ohio JFS
project, 14, 18-19
Requirements
for Austrian Health Authority, 69
customer, focus on, 86
for DaimlerChrysler
capture of, 141, 144
definition of, 145
feedback loop for, 148
validation of, 142
for GSA, traceability of, 115-116, 118,
119, 124

for Harris
capture of, 84, 89
communication of, 90, 92
division of labor for, 97-98
model for, 89-90, 94f
review of, 88
traceability of, 102
use case diagrams and survey of, 93
for Ohio JFS
approval and feedback process
for, 2224
back-to-front approach to, 24-25
definition of, 17, 20-21
modification of, 18—19
traceability of, 160—163
Risk, mitigation of
at Harris, 86—87, 88
at Ohio JFS, 24, 25
Risk assessment models, 19
RM-ODP (Reference Model for Open
Distributed Computing), 183
Roles, Community Process, 118-119

S

SACWIS project. See State of Ohio Job and
Family Services, Statewide
Automated Child Welfare
Information System of.

Safety assessment models, 19

Sarbanes-Oxley Act, 162

Schedule issues at Harris, 87—88, 99,
102-103

SDLC. See Software Development Life
Cycle (SDLC).

Security for Ohio JFS project, 29-31

SEI (Software Engineering Institute), 183

Select Business Solutions, 65, 81t

MDA use by, 68—69

process and tools of, 69—72
project experience for, 74
reasons for choosing, 66—67
role of, 73

Select Component Architect (Select
Business Solutions), 67, 68,
72, 81t

1
1
| X INDEX
1
1

197

Seminars, MDA, 170
Separation of concerns, 157-160
for Austrian Health Authority, 78, 159
for Coopservice, 41, 43, 60, 160
for DaimlerChrysler, 142, 145-146,
148, 150, 159-160
government requirements for, 123
for GSA, 116, 118, 119, 123-124,
158-159
viewpoints for, 175176
Serra, Angelo (Ohio JFS), interview with,
14, 16, 17-19, 22-25, 28, 32,
34-35, 37
Service-Oriented Architecture (SOA)
defined, 183
for GSA, 114, 115, 128
Shortcuts, coding quality and, 99
Simulations, business process
Component-X tool for, 121
goals for, 115-116
MDA benefits of, 118, 119
as sets of services, 128
Siri, Walter (Coopservice), interview with,
41, 43, 56, 59-62
Skill sets for DaimlerChrysler offshore
partners, 146—147, 152
SMEs. See Subject Matter Experts (SMEs).
SOA. See Service-Oriented
Architecture (SOA).
Software development
at Austrian Health Authority
goals for, 66, 67
MDA advantages for, 78, 80, 81
for commercial systems, 93
at Coopservice, 57—-58
current practices in, 7
at DaimlerChrysler
offshoring of, 138, 145-147,
159-160
process-oriented approach to,
144, 153
factory model for, 5-9, 58f
government’s approach to, 93,
123-124
growth areas for MDA in, 178

198

Software development (Continued)
at Harris, 84, 93, 94
model-driven, 3, 173—-174
at Ohio JFS, 25
Software development life cycle
(SDLC), 183
GSA’s goals for, 114, 132
MDA approach to improving, 3, 5, 179
Software Engineering Institute (SEI), 183
Software factory, 173
analogy for conceptualizing, 5-7
at Coopservice, 57—-58
MDA-based, 8, 9
modern vision of, 7-8, 179
Software Process Engineering Metamodel
(SPEM), 178
Soluta.net, 41, 61t
challenges facing, 42
process and tool of, 44, 45
project experience for, 48—49, 51, 53, 56
role of, 46
Special Interest Groups (SIGs), MDA,
9-10, 178
Specification/implementation loop,
closing, 112-113
Staff turnover at Ohio JFS, 33
Stakeholder communication. See
Communication, stakeholder.
Standardization of manufacturing
process, 6—9
Standards, MDA, 3, 173
applicability of, 8, 179
development of, 178
Meta Object Facility, 176-177
metamodel set of, 126
Universal Modeling Language, 174
State diagram, Finantix Studio, 51, 54f
State employees, perception of, 17-18
State of Ohio Job and Family Services,
13-37
ongoing and planned use of MDA at,
35, 37
Statewide Automated Child Welfare
Information System of
agile development of, 19-25,
166—167

INDEX

approach and development
philosophy for, 30f
background on, 13-14
challenges for, 16—18
division of labor for, 27-28, 29f
expanding goals for, 18—19
how MDA was used for, 19-25
iterative development of, 23f
model evolution for, 27f
ongoing development of, 37
organizational development and,
33-35
process and tools for, 25-26
profile of, 36t
project experience for, 28-33
reasons for choosing MDA for, 14-16
stakeholder communication for, 164,
165-166
timeline for, 29f
Statewide Automated Child Welfare
Information System. See under State
of Ohio Job and Family Services.
“Stealth” approach to MDA adoption
by Austrian Health Authority, 67, 77-78
by Ohio JFS, 13
Stereotype, 183
Strategic assets
for Coopservice, 42
for DaimlerChrysler, 150
Struts
for Austrian Health Authority models,
67, 68f, 70
Harris’s use of, 85
Struts/EJB Archetype (Inherit), 86
coding quality and, 102
“meta-debugging” for, 89, 99-100
sample output of, 91f
transformation by, 90, 94-95
Subject Matter Experts (SMEs), 183
at DaimlerChrysler
project benefits for, 148
separation of concerns for, 142
UML use by, 141
at GSA
communication with, 115
role of, 122

Success, critical factors for, 15
Systems Requirements Document (SRD)
for Ohio JFS project, 20-21

T

Task Forces, MDA, 9-10, 178
Teams, project
for Austrian Health Authority, 72, 76-77
for Coopservice, 46—48, 57—-58
for DaimlerChrysler, 145, 148
for GSA, 123-124
for Harris, 92-93, 97, 104
for Ohio JFS
coordination of, 31-33
development, 25-26
functional areas for, 33—-34
integrated, 27-28, 32
JAD iteration, 21-22
Technical architecture
for Austrian Health Authority
revamping of, 66, 69, 71
sample artifact for, 72f
templates for, 77
for Coopservice, 49f
Technical requirements. See also
Requirements.
for GSA, 115
for Harris, 89
Technology Patterns, Optimal], 26, 36t
Telecommunications industry case study.
See Harris Corporation.
Telecommunications management
network (TMN) model, 106-109
Templates
for Austrian Health Authority project,
70, 73,77
for DaimlerChrysler project, 142
Tender management at Coopservice, 45,
59-60
Terlinden, Uta (Select Business Solutions),
interview with, 68—69, 70, 77,
78-79
Testing phase
at Coopservice, 57

INDEX

199

at Harris, 98—-99
at Ohio JFS, 23-24, 31
Thomas, George (GSA), interview with,
112-113, 114, 115-116, 121,
124-131
Throughput, increasing project, 31
Timeline, project
for Coopservice, 60
for DaimlerChrysler, 144
for Harris, 87—88, 99, 102—-103
for Ohio JFS, 17, 29f
Tools
for Austrian Health Authority, 66—67,
68, 69—-72, 81t
for Coopservice, 4546, 61t
for DaimlerChrysler, 141-144, 153t
ensuring consistency via, 162
for GSA, 120-121, 134t
for Harris, 92—-97, 109t
integration of, 176—178
machine, invention of, 6
MDA-based, 4, 10
for Ohio JFS, 25-26, 27f, 36t
software development, 7—8
Top-down approach
at Austrian Health Authority, 70
for Coopservice training, 57
at Harris, 106
Traceability, 157, 160—163. See also
Governance.
for Austrian Health Authority,
75-76, 161
for DaimlerChrysler, 141, 161, 162
for GSA, 115-116, 118, 119, 124,
160-161, 162
for Harris, 102, 162—163
Training, MDA
at Austrian Health Authority, 69-70,
72-73
at Coopservice, 57
at DaimlerChrysler, 141-142, 146
FastStart program for, 11, 168—171
at GSA, 122
at Harris, 92
at Ohio JES, 37
Transformation, model, 177

200

for Austrian Health Authority, 68, 70,
73,76
for Coopservice, 45, 46, 51, 53-54, 56
for DaimlerChrysler, 142—-143
defining standard, 178
for GSA, 120f
for Harris, 84, 89, 90, 94-95, 99-100
traceability of, 162
Transition plan, MDA, 170
Tweaking functions, 24

0]

UDDI (Universal Description Discover and
Integration), 183
Unified Modeling Language (UML), 5, 183
commercial success of, 174
Coopservice’s need for learning, 51
DaimlerChrysler’s use of, 141
MDA and, 5
Meta Object Facility and, 176-177
support for, 178
Unified Modeling Language (UML)
models
for Austrian Health Authority, 67, 68
for Coopservice, 4748, 54, 56
for Harris projects
Managed Telecom Service Enterprise,
84, 86, 89, 90, 94-95
NetBoss, 105
Universal Description Discover and
Integration (UDDI), 183
U.S. Department of Defense, 182
U.S. National Aeronautics and Space
Administration, 183
U.S. Veterans Administration, 183
Use-case-centric approach at Harris, 92,
93, 98

v

Value chain analysis (VCA)
defined, 184
at GSA, 115, 124125

INDEX

Vendors
government requirements for, 113,
123, 158
GSA, reaction of, 128—130
Ohio JFS, client interchangeability
with, 32
Veterans Administration (VA), 183
Viewpoints
“culture-specific,” 165
for separation of concerns, 158—159,
175-176

w

Web services (WS)
defined, 184
MDA Express interface for, 94-95
Web Services Definition Language
(WSDL), 184
Whitney, Eli, 6, 8
Workshops at Austrian Health Authority,
70, 72-73

X

XML Metadata Interchange (XMI),
177-178
defined, 184
for Harris models, 94, 95
XML Process Definition Language (XPDL),
46, 184
XP (Microsoft’s Windows XP operating
system), 184

4

Zentrale Partner Verwaltung project. See
Austrian Health Authority, Central
Partner Administration project of.

