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Chapter 1
Introduction

Abstract Data describing amounts of components of specimens are compositional
if the size of each specimen is constant or irrelevant. Ideally compositional data is
given by relative portions summing up to 1 or 100 %. But more often compositional
data appear disguised in several ways: different components might be reported
in different physical units, different cases might sum up to different totals, and
almost never all relevant components are reported. Nevertheless, the constraints
of constant sum and relative meaning of the portions have important implications
for their statistical analysis, contradicting the typical assumptions of usual uni- and
multivariate statistical methods and thus rendering their direct application spurious.
A comprehensive statistical methodology, based on a vector space structure of the
mathematical simplex, has only been developed very recently, and several software
packages are now available to treat compositional data within it. This book is at the
same time a textbook on compositional data analysis from a modern perspective and
a sort of manual on the R-package “compositions”: both R and “compositions” are
available for download as free software. This chapter discusses the need of an own
statistical methodology for compositions, the historic background of compositional
data analysis, and the software needs for compositional data analysis.

1.1 What Are Compositional Data?

1.1.1 Compositions Are Portions of a Total

Traditionally, a dataset has been called compositional if it provides portions of a
total: percentages of workers in different sectors, portions of the chemical elements
in a mineral, concentration of different cell types in a patient’s blood, portions
of species in an ecosystem or in a trap, concentration of nutrients in a beverage,
portions of working time spent on different tasks, portions of types of failures,
percentages of votes for political parties, etc.

K.G. van den Boogaart and R. Tolosana-Delgado, Analyzing Compositional Data with R,
Use R!, DOI 10.1007/978-3-642-36809-7 1, © Springer-Verlag Berlin Heidelberg 2013
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2 1 Introduction

The individual parts of the composition are called components. Each component
has an amount, representing its importance within the whole. Amounts can be
measured as absolute values, in amount-type physical values like money, time,
volume, mass, energy, molecules, individuals, and events. Or they can be also
measured as portions with respect to a total, simply reporting such a quantity divided
by a common total.

The sum over the amounts of all components is called the total amount or,
short, the total. Portions are the individual amounts divided by this total amount.
Depending on the unit chosen for the amounts, the actual portions of the parts in a
total can be different. For instance, different numbers for mass percentage, volume
percentage, and molar percentage will be obtained for the same physical system.

Most methods from multivariate statistics developed for real valued datasets are
misleading or inapplicable for compositional datasets, for various reasons:

• Independent components mixed together and closed exhibit negative correlations
(Chayes, 1960).
This negative bias contradicts the usual interpretations of correlation and covari-
ance, where independence is usually related to zero correlation.

• Covariance between two components depends on which other components are
reported in the dataset.
This disqualifies classical covariance-based tools as objective descriptions of the
dependence between just two variables. This is particularly important whenever
there is no single, unique, objective choice of the components to include in
the composition, because each analyst could reasonably take a different set
of components (including the two for which the covariance is computed) and
each would get a different covariance estimate, even with different signs. The
same comment applies to correlation: this is known as the spurious correlation
problem.

• Variance matrices are always singular due to the constant sum constraints.
Many multivariate statistical methods rely on a full-rank variance matrix, like
multivariate linear models, Mahalanobis distances, factor analysis, minimum
determinant variance estimators, multivariate Z-transforms, multivariate densi-
ties, linear and quadratic discriminant analysis, and Hotelling’s T 2 distribution.
None will be directly applicable.

• Components cannot be normally distributed, due to the bounded range of values.
Many multivariate methods are at least motivated by multivariate normal dis-
tributions: covariance matrices, confidence ellipsoids, and principal component
analysis are some examples. The normal model is a bad one for (untransformed)
compositions, because it is a model unable to describe bounded data.

Compositions thus need an own set of statistical methods and should not be
treated with statistical methods made for interval scale data. That early realization
motivated Aitchison (1986) to introduce the field of compositional data analysis.
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1.1.2 Compositions Are Multivariate by Nature

It is quite evident that our dataset can only be compositional if it has at least
two components. Otherwise, we cannot speak of a part in a total. Even in the
case that we only report one part, we are in fact implicitly relating it either to a
predefined total or to a complementary part. For instance, the votes obtained by the
democrats/labor/social party in a district are uninformative without knowing how
many got the republicans/tories/conservatives or how many votes were counted
altogether; the number of grains of feldspar counted on a sediment must be
interpreted relative to the grains of quartz or to the total number of grains in the
counting procedure; the investment of a state on Education is on itself meaningless
without knowing either how large was the total budget or how much does it spend
on defense.

That implies a substantial difference between compositional data and other
multivariate datasets. Most multivariate analysis begin with an univariate analysis
of the individual variables (the marginals), whereas each marginal variable of a
compositional dataset has no meaning on itself, isolated from the rest.

1.1.3 The Total Sum of a Composition Is Irrelevant

Classically, compositions were defined as vectors of positive components and con-
stant sum. However, in a more recent perspective (Aitchison, 1997; Barceló-Vidal,
2000; Barcelo-Vidal, 2003), a dataset of amounts of components of a common total
can (and should) be modeled as compositional if the total amount does not matter
for the problem under consideration. This may occur for several reasons:

• When compositional data are actually measured, we often have little control over
the total amount.
A probe of the patient’s blood, a sample of geological formation, a national
economy, or the workforce of a company: in any of these cases, the total size
of each individual sample is either irrelevant (the country population, the size of
the rock sample, or the enterprise) or predefined (the syringe volume).

• Often the amounts are incompletely given and do not sum up to the “real” total.
Some species of a biological system cannot be caught in traps; we never quantify
all possible chemical elements in a rock; we cannot analyze for all possible
ingredients of a beverage.

• Most typically, the totals are not comparable between the different statistical
individuals.
It is well known that different countries have different population, that rock
samples are parts of larger formation bodies, that smaller patients have less blood,
that the Amazonas carries more water than the Rhone, or that beverages might
be sold in different bottles. However, as the size of the bottle is irrelevant for
studying the recipe, the size of the country is irrelevant when characterizing its
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economy as rural or industrial. Whereas factors explaining the total might vary
(history, sample preparation, trapping efficiency, patient’s weight, or geography)
and are very relevant for many problems, the composition itself is typically only
indirectly related to the total size.

By taking compositions as vectors with irrelevant total sum, we get a more
inclusive definition, since it does not depend on the formal criterion of a constant
sum. It rather relies on a modeling choice based on the scientific question. Any
dataset that, if completed, may meaningfully fit into the total-sum definition can be
treated as compositional. Any set of amounts of components that constitute parts of
a total can thus be called a composition.

In this new approach the different components might be measured in different
units like �g, g, oz, or lbs for mass. Each component, i.e. each column of the dataset,
has to be measured in a single physical value and unit throughout the dataset. One
compositional dataset should only use proportional physical values; e.g., amounts
mol and g might freely be mixed as long as the molar masses of the material given
in mol are constant. It is not necessary to know the molar mass. Under these mild
conditions the principles of compositional analysis discussed in Sect. 2.2 will ensure
consistency of the results. However, for a meaningful interpretation of totals and
individual portions, all measurements need to be transformed into common units.

Note that, if the total amount varies and we have missing data, i.e., some
individual components could not be observed, it is even impossible to obtain
portions or percentages of the non-missing variables, because the total cannot be
computed. The data may nevertheless be still compositional, as long as the (non-
computable) total is irrelevant for our scientific problem.

1.1.4 Practically All Compositions Are Subcompositions

If a compositionA contains only parts of another compositionB , but not necessarily
all of them, A is called a subcomposition of B (Aitchison, 1986).

In fact, compositional data almost never contains all possible parts: many
employment studies forget about housewives, unemployed, students, retired, or ille-
gals; we do not measure water and “unimportant” trace elements in a hydrochemical
analysis; we might not consider plasma or platelets when analyzing components
in a blood probe; we neither catch mammals nor flies in traps; we never measure
cellulose in beverages; we ignore breaks and socialization when analyzing work
time patterns; we ignore the non-failure or “user-stopped-trying-failure” in failure
analysis; and we ignore nonvoters along with minor parties in election statistics.
Practically all compositions can thus be considered as a subcomposition of a larger
composition describing a more complete reality.

Therefore, Aitchison (1986) demands that any analysis of compositional data
should be executed in a way that the results on a subset of components do not
depend on the presence or absence of other irrelevant components in the dataset.
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This principle is called subcompositional coherence. Almost none of the classical
multivariate methods satisfies this condition when directly applied to compositions.

1.1.5 The Very Brief History of Compositional Data Analysis

Awareness on the fact that the singular variance matrices of proportions make
multivariate statistical analysis yield uninterpretable results arose in the field of
Geology in the second half of the twentieth century. Starting with the famous paper
of Chayes (1960) on spurious correlation, a series of papers bloomed, where the
pathology of spurious correlation was diagnosed in several classical multivariate
methods (e.g., Butler, 1978, 1979; Chayes and Trochimczyk, 1978; Pawlowsky-
Glahn, 1984). Surprisingly, such problems remained fairly unnoticed by scientists
from the many other fields of science where compositional data appear, even though
a much earlier warning to statisticians can be traced back to Pearson (1897).

In a seminal work Aitchison (1986) developed an axiomatic approach to
compositional data analysis with a variety of methods, operations, and tools, based
on a set of fundamental principles, like subcompositional coherence. Its grounding
idea was that compositions should be always treated in a log-ratio-transformed
scale. Unfortunately, the mathematical complexity, the fundamental difference to
well-known multivariate statistics, and especially some inertia of the analysts have
rendered the subject fairly unknown to many scientists for a long time.

Three milestones can be identified in the way to the present better general under-
standing of compositional data analysis. First, Aitchison (1997) and afterwards
Barceló-Vidal (2000) with much grounding presented compositions as equivalence
classes, suggesting that any analysis results should not change if we scale our
compositions by arbitrary positive numbers. Next, Pawlowsky-Glahn and Egozcue
(2001) and Billheimer et al. (2001) independently realized that the fundamental
compositional operations of Aitchison define a vector space on the simplex. Finally,
Pawlowsky-Glahn (2003) formulated the principle of working in coordinates, which
directly allows for a fast and transparent translation of most classical multivariate
methods to deal with compositional data.

The principle of working in coordinates states that classical multivariate methods
should be applied to (additive, centered or) isometric log-ratio-transformed versions
of the data and that the results can be meaningfully back-transformed into com-
positions when interpreting the results. Which transformation is best used depends
on the type of analysis. This understanding allows to handle compositional data in
analogy to classical multivariate real data. Compositional methods are now widely
available, easy to understand, and provide answers for a wide range of statistical
problems.

In the meantime, some abstract consequences of the Aitchison (1986) approach
to compositional data analysis were rediscussed in the light of some particular
applications. That sometimes yield compositional data analysis conflict with other
basic principles of the application, such as mass conservation (Shurtz, 2003), or
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confront classical interpretations (Cortes, 2009). We should thus conclude that the
Aitchison approach, although nowadays the most well-founded one, is not the only
way to look at compositional data.

1.1.6 Software for Compositional Data Analysis

Three comprehensive software packages for compositional data are available:

• CODA; A microcomputer package for the statistical analysis of composition data
by Aitchison (1986).
A collection of programs running under Microsoft-DOS, also ported to Matlab.

• CoDaPack3D Thió-Henestrosa et al. (2003).
An Excel and Visual Basic based software for compositional data analysis. An
Excel-free version has been recently made available.

• Compositions (van den Boogaart et al., 2009).
An R-package for compositional data analysis.

While the first package of Aitchison from 1986 can be fairly considered
as outdated, CoDaPack is a good platform for a basic compositional analysis
for Excel users who prefer a menu-based interface. This book is based on the
“compositions” package and general tools for multivariate analysis available in
R (R Development Core Team, 2004), which allow a more flexible analysis. The
book provides with the necessary theoretical background and the practical skills to
perform an elementary or advanced compositional data analysis within R.

1.2 Getting Started with R

1.2.1 Software Needed for the Examples in This Book

All examples in this book are computed with the statistical computing language R
(R Development Core Team, 2004) using several extension packages. The examples
are intended to allow the reader to apply similar methods to his own data. Obviously,
R itself and “compositions” (in its December 2010 version) must be installed
in the PC before you replay the examples. “compositions” depends on the
“rgl” package for 3D drawing in 3D quaternary diagrams and the “tensorA”
package (van den Boogaart, 2007) for tensorial computation in estimation under
the presence of missing values. Moreover, the following packages are needed in
some of the examples: “colorspace” (Ihaka et al., 2009) to get color ramps,
“robustbase” (Rousseeuw et al., 2007) for robust linear model fitting: “energy”
(Rizzo and Szekely, 2008) and “cramer” (Franz, 2006) for some non-parametric
tests, “combinat” (Chasalow, 2005) to work with the multinomial distribution, and
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either “MCMCpack” (Martin et al., 2008) or “gtools” (Warnes, 2008) to work with
the Dirichlet density. Eventually it might be necessary to download example datasets
and further hints from the home page of the book.1 This page also contains the R
code used in this book.

1.2.2 Installing R and the Extension Packages

To install R one typically downloads the “binary distribution” of the “R base” for the
operative system used from the comprehensive R archive network CRAN2. There
is a “Readme.html” file with installation instructions for each OS on the system-
specific download pages.

Users of Windows and Mac-OS can download and install the contributed
packages by a menu command, from within the R GUI, whenever the computer
is connected to the Internet.

Users of Unix/Linux download the source package of the necessary contributed
extension packages manually from CRAN and install them by executing the
command

R CMD INSTALL completenameofpackagefile

in a root shell, or by

sudo R CMD INSTALL completenameofpackagefile

Alternatively, packages can also be installed with the command install.packages
from an R session with administrator rights. Also, some Linux distributions include
many packages in their own repositories that should be preferentially used.

Unix/Linux users can start R with the simple command “R” on a console. Users
of Windows and Mac find the program RGui, where typical for their configurations,
in the start menu or the dock bar.

More detailed installation instructions and other manuals for R are available on
R home page http://cran.r-project.org/.

1.2.3 Basic R Usage

Although the book does not require any prior knowledge on R, it is best understood
with some knowledge on it, which, e.g., can be learned from Dalgaard (2008) or
from

http://www.cran.r-project.org/doc/manuals/R-intro.pdf.

1http://www.stat.boogaart.de/compositionsRBook.
2http://www.cran.r-project.org.

http://cran.r-project.org/
http://www.stat.boogaart.de/compositionsRBook
http://www.cran.r-project.org


8 1 Introduction

When R is started it displays—eventually in a new window or in the console—an
R-console displaying a startup message and a prompt typically looking like:

>

All R commands in this book should be typed after that prompt. If the command is
given on a separate line, it is typically displayed with the prompt. For example, we
can perform some simple calculation with R:

> 1+(1+2)*5

[1] 16

> sin(0.25*pi)^2

[1] 0.5

The lines with a prompt > show the commands the user needs to type. The results
show that R obeys the basic calculation precedence rules, knows basic functions like
sin and constants like � and has a powering operator, and calculates trigonometric
functions in radians, because sin..1=4/�/ D p

1=2. Results of calculation can be
assigned to new or existing variables by the = or the <- operator and reused in later
calculations:

> a = 1+1

> a+1

[1] 3

Variables in R can contain numbers, strings, vectors, matrices, datasets, and many
other types of objects. By default, a value assigned to a variable is not printed.
However, we can force printing of the value by enclosing the assignment in ( ):

> (a = 1+1)

[1] 2

We will use this forced printing extensively to follow the steps of calculations
closely. R can assign a vector of values (concatenated by the c command) to a
variable:

> (a = c(1,2,pi,exp(0)))

[1] 1.000 2.000 3.142 1.000

and often uses vectorized computation, in the sense that applying a function to the
variable will compute the result for each entry:

> log(a)

[1] 0.0000 0.6931 1.1447 0.0000
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> a+1

[1] 2.000 3.000 4.142 2.000

> a+a

[1] 2.000 4.000 6.283 2.000

One or more elements can be extracted from a vector by the [] index expression:

> a[3]

[1] 3.142

> a[c(2,4)]

[1] 2 1

The entries of the vectors can further be used as entries of a matrix:

> (A <- matrix(a,nrow=2))

[,1] [,2]

[1,] 1 3.142

[2,] 2 1.000

and then indexed by rows and columns, where a “,” is used to separate row and
column index:

> A[1,2]

[1] 3.142

> A[1,]

[1] 1.000 3.142

> A[,1]

[1] 1 2

> A[,c(2,1)]

[,1] [,2]

[1,] 3.142 1

[2,] 1.000 2

In R rows and columns can have names, vectors can contain character strings
as entries, and datasets (data.frame) might even contain different data types
for each column. All these concepts will naturally appear at some places in this
book: hopefully, the context will be clear enough to allow the reader to follow the
explanations.

The reader may notice that the code in this book is executed with a limitation in
the output length, for the sake of clarity and to save space. This was obtained with
the settings



10 1 Introduction

> options(width=65,digits=4)

ensuring that line breaks in the output correspond to the width of the book and
reduce the number of digits. We strongly encourage the readers to set the same
settings in their R sessions.

Having a contributed package installed does not make R directly aware of it:
we have to load it in the memory. This is done with the commands library or
require, giving the name of the desired package as argument. Windows and Mac
users also have a menu option to load packages.

> require(compositions)

Attaching package: 'compositions'

The following object(s) are masked from package:stats :

cor,

cov,

dist,

var

The following object(s) are masked from package:base :

%*%,

scale,

scale.default

The output tells us that the package loads a set of additional packages and modifies
some standard commands like correlations cor or inner products %*%. This is
done to augment the functionality of these commands for a specialized treatment
of compositional data, by turning them into generic commands (“compositions”
currently uses S3-generics).

1.2.4 Getting Help for Composition Specific Commands

Generic commands are able to execute different code when applied to different types
of objects. To find help for such specialized commands, one first needs to find out the
actual name of the command used for a given type of data, by finding the different
methods available, with methods. For instance, if we want to see what happens
when we compute the variance of a compositional dataset, we should first look for
the methods available for var,

> methods(var)

[1] var.acomp var.aplus var.default var.linear var.lm

[6] var.mlm var.rcomp var.rmult var.rplus var.tensor

[11] var.test
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and then request help for the class of data used; e.g., compositional data should be
stored as a acomp (for Aitchison COMPosition) object, and thus we would get the
explanation of the compositional variance with a help command like

> ? var.acomp

1.2.5 Troubleshooting

When a command or code chunk from this book does not work for you, check the
following things:

• Have earlier commands on the same dataset been executed for computing
intermediate results? Did you try something else between, eventually overwriting
them? Then, find out which variables did you forget or overwrite, and copy again
the code lines where they were defined.

• Is the “compositions” package installed and loaded? Are other accessory
contributed packages also loaded? Load the missing package again with
library(missing.package.name).

• Are the commands typed correctly, e.g., is that a 1 (“one”) or an l (“el”)?
• Are referenced files present and the corresponding file paths adapted, using the

path separator “/” rather than “\”? R uses the path notation conventions of Unix,
not those of Windows. To use “\” in strings, type “\\” instead.

• Are variable names adapted to your dataset?
• Maybe there are changes in the newer version of the software you are using.

Check the home page3 of the book for updated versions of the commands.
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Chapter 2
Fundamental Concepts of Compositional Data
Analysis

Abstract Compositional data is considered a statistical scale in its own right,
with its own natural geometry and its own vector space structure. Compositional
data analysis and this book cannot be understood without a basic knowledge of
these issues and how they are represented in R. Therefore, this chapter intro-
duces the basic geometric concepts of compositional data and of the R-package
“compositions”: the relative nature of compositional data; how to load, repre-
sent, and display compositional data in R; the various compositional scales and
geometries and how to select the right geometry for the problem at hand; and
how to specify the geometry in “compositions” using the basic classes “acomp”,
“rcomp”, “aplus”, “rplus”, “ccomp”, and “rplus”. A concise guide to the
most important geometry for compositional data, the Aitchison geometry, is also
included. The whole book relies on these basic principles, and the reader should
make him or herself familiar with them in Sects. 2.1–2.5 before going on.

2.1 A Practical View to Compositional Concepts

2.1.1 Definition of Compositional Data

A composition is often defined as a vector of D positive components x D
Œx1; : : : ; xD� summing up to a given constant �, set typically equal to 1 (portions),
100 (percentages), or 106 (ppm). We already mentioned that this definition is
misleading, because many compositional datasets do not apparently satisfy it. Let
us see how.

Consider, for instance, this simple example of compositional data collected from
typical nutrition tables of foodstuff in any kitchen cupboard:

Fat Sodium Carbonates Protein Total

soy 7 14 10 13 100

peas 3 12 61 22 100

K.G. van den Boogaart and R. Tolosana-Delgado, Analyzing Compositional Data with R,
Use R!, DOI 10.1007/978-3-642-36809-7 2, © Springer-Verlag Berlin Heidelberg 2013
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wheat 1 15 60 23 100

corn 1 180 15 2 82

beans 0.5 680 30 12 NA

This data can be loaded from a text file1 into R with the command read.table:

> library(compositions)

> kitchen <- read.table("SimpleData.txt",sep="")

All the amounts are given in grams g, except for sodium which is given in
milligrams mg. A naive interpretation of these raw numbers would tell us that
soy and corn are poor in protein and carbonates, whereas beans have seemingly
4 times more sodium and twice more carbonates than corn. However, this naive
(i.e., non-compositional) direct interpretation contradicts everything we know about
soy or corn. For a good compositional analysis, it is important to understand the
fundamental operations and laws governing compositional analysis to avoid these
pitfalls. This chapter introduces this methodological background step by step.

2.1.2 Subcompositions and the Closure Operation

A first inspection shows that the entries do not sum up to the total 100 %, since
these products do not exclusively contain the nutrients reported. We thus only get
some parts of a bigger composition, which would include water, vitamins, and
further minerals. For instance, these non-reported components represent 100� .7C
14=1000C 10C 13/ � 70 g out of 100 g of soy.

As people with a cholesterol problem and an office job, we may be interested in
getting the most protein for the least amount of fat while maintaining a reasonable
medium amount of carbohydrates. Our water and sodium intake is much more
influenced by drinking and salting than by a diet choice between beans and peas.
Thus, we are going to focus our attention to the composition of fat–protein–
carbohydrates. It is typical to close the amounts in the parts of interest to sum up
to 100 %. In “compositions,” this can be done with the command clo (for close
composition):

> (coi <- clo(kitchen,parts=

c("Fat","Carbonates","Protein"),total=100))

Fat Carbonates Protein

soy 23.333 33.33 43.33

peas 3.488 70.93 25.58

wheat 1.190 71.43 27.38

1The “SimpleData.txt” file can be downloaded from http://www.stat.boogaart.de/
compositionsRBook.

http://www.stat.boogaart.de/compositionsRBook
http://www.stat.boogaart.de/compositionsRBook
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corn 5.556 83.33 11.11

beans 1.176 70.59 28.24

These are now portions given in mass %. The command clo has an optional
parameter parts taking the names or the numbers of columns to be selected and
an optional argument total specifying the new reference total. If parts is not
specified, implicitly all columns are used. If total is not specified, a default of 1 is
assumed.

Note that a naive interpretation of these numbers would now tell us that soy is
the richest in protein (whereas before, it was rather in the middle of the ranking
for protein amount), and that corn is now richer in carbonates than beans. This
illustrates the main risk of interpreting raw portions: our conclusions can be
opposite, depending on which composition we are observing.

A composition only representing some of the possible components is called
a subcomposition. Most of real compositional data is actually representing a
subcomposition, as we never analyze each and every possible component of our
samples. Aitchison (1986) therefore introduced the principle of subcompositional
coherence: any compositional data analysis should be done in a way that we obtain
the same results in a subcomposition, regardless of whether we analyzed only that
subcomposition or a larger composition containing other parts. The interpretation
we have been doing of the kitchen example up to now was not coherent, as our
consideration of which food is richer in carbonates or protein changes between
the original composition and the subcomposition of interest. This concern affects
the whole direct application of all traditional multivariate statistics: none obey the
principle of subcompositional coherence.

Reclosure is often a controversial manipulation, as by closing a subcomposition,
it seems that we lose some information on the total mass present in the parts
considered, and apparently we replace some measured values by some computed
ones. However, we must consider that some of the cases in the kitchen dataset are
dry and other cooked conserves, some even pre-salted, such that I do not need to add
salt anymore. Some of the sodium (and of the other components, as well as water
content) are thus artifacts of the form of delivery: they are related neither to the crop
properties nor to the final cooked product we might eat. The only relevant quantities
unaltered throughout these manipulations are the ratios between nutrients, and they
are preserved by the closure operation.

2.1.3 Completion of a Composition

An alternative way to recast a vector of amounts to a composition is by adding
the complementary variable. We first select the compositional variables using usual
vectorized indexing2 with [] :

2Call help("[") in R for a detailed explanation.
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> amounts <- kitchen[,c("Fat","Carbonates","Protein")]

> amounts

Fat Carbonates Protein

soy 7.0 10 13

peas 3.0 61 22

wheat 1.0 60 23

corn 1.0 15 2

beans 0.5 30 12

and then compute the total grams of each column by

> (sumPresent <- totals(rplus(amounts)))

soy peas wheat corn beans

30.0 86.0 84.0 18.0 42.5

This last line marks the dataset as positive real numbers by applying the rplus

class3 and then computes the sum of the individual amounts, by rows with the
command totals.

We can now create a new dataset with an additional column Other giving the
remaining mass:

> Other <- kitchen[,"total"] - sumPresent

> Amounts <- cbind(amounts,Other=Other)

> clo(Amounts)

Fat Carbonates Protein Other

soy 0.07000 0.1000 0.13000 0.7000

peas 0.03000 0.6100 0.22000 0.1400

wheat 0.01000 0.6000 0.23000 0.1600

corn 0.01220 0.1829 0.02439 0.7805

beans 0.01176 0.7059 0.28235 NA

The cbind command (for column bind) binds the columns of its arguments to a
joint dataset containing all the columns.

Of course, this procedure is only applicable when we know how much sample
was analyzed in order to subtract from it the sum of the present components.
This completion procedure has an advantage over the reclosure of the observed
subcomposition: the reclosure loses all information about how much we had in total
of the observed components, whereas in the completion procedure this total present
is inherited by the “Other” part.

A look at the last line reveals a practical problem of both the closure and the
completion procedures in the presence of missing values. To close a composition
with missing elements, we need to guess a value for the missing elements. The
computer cannot add up unknown values and thus will close the rest of the

3The different compositional classes will be discussed in Sect. 2.4.
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composition to 1, such as if this last components would be absent. However, it is
very unlikely that the canned beans do not contain a considerable amount of water.

2.1.4 Compositions as Equivalence Classes

Either by reclosing a subcomposition or by completing the composition, the dataset
is now compositional in nature, since its columns sum up to a constant. In any way,
we homogenized the totals to the same quantity, that is to say: we removed the
information on the total amount of each sample. This is licit, because that total is in
our kitchen example not relevant to evaluate the nutritive character of the different
crops: it is an arbitrary choice of the producer or due to the local unit system. In fact,
we could rescale each row of the dataset by multiplying it with a positive value, and
the information they convey would not change. We can thus say that two vectors are
compositionally equivalent (Aitchison, 1997; Barceló-Vidal, 2000) if one is simply
some multiple of the other:

a DA b , exists s > 0 for all i W ai D sbi

In other words, all vectors with positive entries that are scaled versions of one
another represent the same composition. For instance, the following three vectors
are the same composition

> Amounts[4,]*100/82

Fat Carbonates Protein Other

corn 1.22 18.29 2.439 78.05

> Amounts[4,]

Fat Carbonates Protein Other

corn 1 15 2 64

> acomp(Amounts[4,])

Fat Carbonates Protein Other

corn 0.0122 0.1829 0.02439 0.7805

attr(,"class")

[1] acomp

first giving the composition of corn as portions of 100 g or mass %, then as portions
of 82 g, and finally, as relative portions of 1. Note that in the last case, we used the
command acomp, which tells the system to consider its argument as a compositional
dataset, implicitly forcing a closure to 1. The different compositional classes (like
acomp, or rplus before) are the grounding blocks of “compositions” and will be
discussed in detail in Sect. 2.4.
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2.1.5 Perturbation as a Change of Units

Indeed mass percentage is a quite irrelevant type of quantification for us: we are
more interested in the energy intake. But the different nutrients have a different
energy content (in kJ/g):

> (epm <- acomp(c(Fat=37,Protein=17,Carbonates=17)))

Fat Protein Carbonates

0.5211 0.2394 0.2394

attr(,"class")

[1] acomp

Since our dataset is not anymore in grams but scaled to unit sum, it is likewise
irrelevant in which units the energy contribution is given: the energy per mass can
actually be seen again as a composition.

We can now transform our mass percentage subcomposition coi of nutrients to
a energy composition ec by scaling each entry with the corresponding energy per
mass composition and reclosing. For example, for the first line of the dataset:

.ec1i /iD1;:::;n D C .coi1iepmi /iD1;:::;n

D .23:33 � 0:52; 33:33 � 0:24; 43:33 � 0:24/t
23:33 � 0:52C 33:33 � 0:24C 43:33 � 0:24

D .0:4; 0:26; 0:34/t

This operation is called perturbation. It is denoted by a ˚ sign:

ec D coi ˚ epm

In R, it is done simply by adding two acomp objects:

> (ec <- acomp(coi)+epm)

Fat Carbonates Protein

soy 0.39846 0.2615 0.3400

peas 0.07293 0.6813 0.2457

wheat 0.02555 0.7044 0.2700

corn 0.11350 0.7822 0.1043

beans 0.02526 0.6962 0.2785

attr(,"class")

[1] acomp

Now, ec contains the composition of my ingredients measured in terms of portion of
energy rather than in mass. Perturbation is considered as the fundamental operation
in compositional data analysis, equally important as the vector addition is in the
usual real vector space R

D . In an abstract mathematical view, perturbation is
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indeed the addition in a vector space structure. Section 2.5 formally introduces this
operation and the properties of this vector space structure.

2.1.6 Amalgamation

A typical operation when dealing with compositional data is to amalgamate some
of the variables into a single component. For instance, in the kitchen data reported
before, fat was given as a single component. Though the original information gave
the proportions of saturated and unsaturated fats,

> fatDataset

total.Fat sat.Fat unsat.Fat

soy 7 1.40 5.60

peas 3 0.60 2.40

wheat 1 0.25 0.75

corn 1 0.32 0.68

beans 0.5 0.10 0.10

we amalgamated them into the total fats. Amalgamation, though very commonly
done, is a quite dangerous manipulation: a fair amount of information is lost in a way
that we may find ourselves unable to further work with the amalgamated dataset.
For instance, if saturated and unsaturated fats have different energy content, we
cannot compute the total fat mass proportion from the total fat mass energy content,
or vice-versa. Amalgamation thus should only be applied in the “definition of the
problem” stage, when choosing which variables will be considered and in which
units. It should be meaningful in the units we are dealing with, because afterwards,
we will not be able to change them. And it should have a deep connection with our
questions: to amalgamate apples and pears may be meaningful when investigating
the nutrition habits of one population (where an apple may be equivalent to a pear)
and catastrophic when studying the importance of some fruits in several cultures
(where we just want to see different patterns of preference of fruits). Once the parts
are defined, the units chosen, and the questions posed, we should not amalgamate a
variable anymore.

The easiest way to amalgamate data in R is to explicitly compute the amalga-
mated components as totals of an unclosed amount dataset (of an amount class,
"rplus" or " aplus") containing only these components:

> fatDataset$total.Fat = totals(aplus(fatDataset,

c("sat.Fat","unsat.Fat")))#$

The aplus command works in the same way as acomp but explicitly states that
the total is still relevant and no reclosure should be performed. It is used to assign
the scale of a dataset of amounts in relative geometry. Amalgamation is further
explained in Sect. 3.3.1.
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2.1.7 Missing Values and Outliers

Note that the total amount for beans is missing (the nutrition table was reported for
a 250 mL can of this product). We could have more missing values in the dataset
by considering potassium, which is only given for some of the products, probably
those for which it is relevant. However, it would be naive to assume that there is no
potassium in any of these products.

Much more than in classical multivariate analysis, missing values in composi-
tional data need a careful treatment, especially because a missing value in a single
component makes it impossible to close or complete the data, such that finally, the
actual portion of no single component is known. It will be thus very important to
understand which procedures are still valid in the presence of missing values and
how others might be (partially) mended. The same applies to many other kinds of
irregularities in compositional data, like measurements with errors, atypical values,
or values below the detection limit: in all these cases, the total sum will either be
unknown or affected by an error, which will propagate to all the variables by the
closure. The solution comes by realizing that whichever this total value might be,
the (log)ratios between any regular components are unaffected.

The “compositions” package will thus close the non-missing parts as if the
missing parts are 0, knowing that this value will not affect any proper analysis.

2.2 Principles of Compositional Analysis

Any objective statistical methodology should give equivalent results, when applied
to two datasets which only differ by irrelevant details. The following four sections
present four manipulations that should be irrelevant for compositions and that
thus generate four invariance principles, with far-ranging consequences for the
mathematics underpinning compositional data analysis (Aitchison, 1986).

2.2.1 Scaling Invariance

For the theoretical approach taken in this book, we will consider a vector as a
composition whenever its components represent the relative weight or importance
of a set of parts forming a whole. In this case, the size or total weight of that whole is
irrelevant. One can then remove that apparent influence by forcing the data vectors
to share the same total sum � with the closure operation,

C .x/ D � � x
1t � x

: (2.1)

The components xi of a closed composition x D .x1; x2; : : : ; xD/ are values in the
interval .0; 1/ and will be referred to as portions throughout this book. The term
proportions will be reserved for ratios and relative sizes of components.
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By applying the closure, we can compare data from samples of different sizes,
e.g., the beans, corn, and wheat in our simple kitchen example (even though their
compositions were respectively reported for 100 g, 82 g, and 250 mL of product);
a sand/silt/clay composition of two sediment samples of 100 g and 500 g; and
the proportion of votes to three parties in two electoral districts of 106 and
107 inhabitants. For instance, the vectors a D Œ12; 3; 4�, b D Œ2400; 600; 800�,
c D Œ12=17; 3=17; 4=17�, and d D Œ12=13; 3=13; 4=13� represent all the same
composition, as the relative importance (the ratios) between their components is the
same. A sensible compositional analysis should therefore provide the same answer
independently of the value of � or even independently of whether the closure was
applied or else the data vectors sum up to different values. We say the analysis will
be then scaling invariant. Aitchison (1986) already showed that all scaling-invariant
functions of a composition can be expressed as functions of log ratios ln.xi=xj /.

2.2.2 Perturbation Invariance

Compositional data can be presented in many different units, and even when given
in portions, it is still relevant in which physical quantities the components were
originally measured: g, tons, mass %, cm3, vol. %, mols, molalities, ppm, ppb,
partial pressure, energy, electric loading, money, time, persons, events, cells, mineral
grains, etc. Even if it is clearly defined what substance we are measuring, how it
is quantified is still a choice of the experimenter. It is extremely rare to find a
composition where only one single type of quantification is meaningful: in most of
the cases, several units could be equally chosen. And since different components are
typically also qualitatively different, they might have different interesting properties.
For instance, to change a mass proportion to a volume percentage, we need the
densities of all components, which will be typically different. The same applies to
changing prices between different valuations (from market price to book value, or to
buying price, etc.), passing nutrition masses to energy intake, or cell type to energy
consumption or biomass production. Thus, different analysts would end up having
different values representing exactly the same compositions just due to a different
choice of units.

It is evident that the statistical analyses we can apply should thus give the same
qualitative results regardless of the units chosen, as long as they contain the same
information, i.e., as long as we can transform the units into each other, e.g., by
rescaling each component by its density. This operation is done by a perturbation
with a composition containing as entries the conversion factors (e.g., the densities)
for each component. We would thus require a meaningful compositional analysis to
give the same results (obviously, up to a change of units) when applied to a dataset
perturbed by this vector. But since we never know which type of quantifications
might else be considered, we should request invariance of the analysis with respect
to perturbation with all possible weighting factors.
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This principle has the same level as the principle of translation invariance for
real data. There, we would expect that, e.g., when we represent electric (or gravity)
potentials with respect to a different reference level, we would still get the same
results (up to that choice of reference level).

This principle is particularly critical when dealing with datasets of mixed units.
Often different components are measured in different units. For instance, trace
elements are often measured in ppm, while others are given in mg, or even kg, and
fluids might be quantified in volume proportions or fugacities. Unfortunately, any
method not honoring perturbation invariance would give completely arbitrary results
when the units do not match. On the other hand, when we demand perturbation
invariance, all such data could be meaningfully analyzed in a common framework,
as long as there exists a perturbation bringing them into the same system of units,
even if we do not know it.

2.2.3 Subcompositional Coherence

Sometimes, only a subset of the initial parts is useful for a particular application,
and one works with the corresponding subcomposition, by reclosing the vector
of the chosen components. Subcompositions play the same role with respect
to compositions as marginals do in conventional real multivariate analysis: they
represent subspaces of lower dimension where data can be projected for inspection.
This has several implications jointly referred to as subcompositional coherence
Aitchison (1986): three examples of these implications follow.

First, if we measure the distance between two D-part compositions, this must
be higher when measured with all D components than when measured in any
subcomposition.

Second, the total dispersion of a D-part compositional dataset must be higher
than the dispersion in any subcomposition.

Finally, if we fitted a meaningful model to a D-part compositional dataset,
the result should not change if we include a new non-informative (e.g., random)
component and work with the resulting .D C 1/-part composition.

Remark 2.1 (Incoherence of classical covariance). The classical definitions
of covariance and correlation coefficient are not subcompositionally coherent.
This is connected to two problems: the spurious correlation and the negative
bias, first identified by Pearson (1897) and later rediscovered by Chayes
(1960). The spurious correlation problems states that the correlation between
ratios with common denominators (e.g., two components of a closed compo-
sition) is arbitrary to an uncertain extent. The negative bias problem appears
because each row or column of the covariance matrix of a closed composition
sums up to zero: given that the variances are always positive, this implies that
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some covariances are forced towards negative values, not due to any incom-
patibility process but because of the closure itself. For instance, if we compute
the correlation coefficient between MnO and MgO content in a compositional
dataset of glacial sediment geochemistry,4 we may obtain 0.95 if we use the
whole 10-part composition or �0:726 if we use only the subcomposition of
elements not related to feldspar (P–Mn–Mg–Fe–Ti). Given the fundamental
role of covariance in statistics, it is not a surprise that there exists a full series
of papers on detecting, cataloging, and trying to circumvent the spurious
correlation. An account can be found in Aitchison and Egozcue (2005).

2.2.4 Permutation Invariance

Last but not least, results of any analysis should not depend on the sequence in
which the components are given in the dataset. This might seem self-evident, but it is
surprising how many methods happen to violate it. For instance, one of the apparent
bypasses of the constant sum of covariance matrices (Remark 2.1) was to remove
the last component of the dataset: in that way, the dataset was not summing up to
a constant anymore, and the covariance matrix was apparently free. That “solution”
was obviously not permutation invariant (and even more, it was not a solution, as
correlations had exactly the same values, being thus equally forced towards negative
spurious correlations).

For the log-ratio approach, it is also a very important principle, when, e.g., we ask
which methods can be meaningfully applied to coordinates of compositional data.
For instance, a naive Euclidean distance of alr transformed data5 is not permutation
invariant and should thus not be used, e.g., for cluster analysis. We would otherwise
risk to have different clusterings depending on which was the last variable in the
dataset. This will be further discussed in Remark 2.2.

2.3 Elementary Compositional Graphics

Compositional datasets are typically represented in four different ways: as Harker
diagrams (scatterplots of two components), as ternary diagrams (closed scatterplots
of three components), as scatterplots of log ratios of several parts, or as sequences
of bar plots or pie plots. By far, the most common ways are the first two.

4This dataset can be found on http://www.stat.boogaart.de/compositionsRBook.
5The alr (additive log ratio) transformation was the fundamental transformation in Aitchison (1986)
approach, and it is discussed in detail in Sect. 2.5.7.

http://www.stat.boogaart.de/compositionsRBook


24 2 Fundamental Concepts of Compositional Data Analysis

These compositional graphics will be illustrated with a dataset of geochemistry
of glacial sediments (Tolosana-Delgado and von Eynatten, 2010). The dataset is
available on the book home page6:

> GeoChemSed=read.csv("geochemsed.csv",

header=TRUE, skip=1)[,-c(3,14,31,32)]

> names(GeoChemSed)

[1] "Sample" "GS" "SiO2" "TiO2" "Al2O3" "MnO"

[7] "MgO" "CaO" "Na2O" "K2O" "P2O5" "Fe2O3t"

[13] "Ba" "Co" "Cr" "Cu" "Ga" "Nb"

[19] "Ni" "Pb" "Rb" "Sc" "Sr" "V"

[25] "Y" "Zn" "Zr" "Nd"

2.3.1 Sense and Nonsense of Scatterplots of Components

Harker diagram is the name given in geochemistry to a conventional scatterplot
of two components, without any transformation applied to them. For this reason,
they may highlight any additive relationship between the variables plotted: e.g.,
in the case of plotting two chemical components of a dataset evolving in several
stages, Harker diagrams visually represent mass balance computations between the
several stages (Cortes, 2009). Unfortunately, these diagrams are neither scaling nor
perturbation invariant and not subcompositionally coherent (Aitchison and Egozcue,
2005): there is no guarantee that the plot of a closed subcomposition exhibits similar
or even compatible patterns with the plot of the original dataset, even if the parts not
included in the subcomposition are irrelevant for the process being studied. This is
actually the spurious correlation problem; thus, a regression line drawn in such a plot
cannot be trusted, in general terms. Figure 2.1 shows two Harker diagrams of the
same components in the same dataset, exhibiting the subcompositional incoherence
of this representation. One can obtain a Harker diagram by using the standard
function plot(x,y).

> par(mfrow=c(1,2), mar=c(4,4,0.5,0.5))

> plot( clo(GeoChemSed[,3:12])[,c(4,5)])

> plot( clo(GeoChemSed[,c(4,6,7,11,12)])[,c(2,3)])

2.3.2 Ternary Diagrams

Ternary diagrams are similar to scatterplots but display a closed three-part sub-
compositions. If we would plot the three components of a closed composition in
a three-dimensional scatterplot, all points would lie in a planar triangle spanned

6http://www.stat.boogaart.de/compositionsRBook.

http://www.stat.boogaart.de/compositionsRBook
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Fig. 2.1 Examples of Harker diagrams on the sediment geochemistry dataset. (Left) Using the full
dataset of major oxides. (Right) Using the subcomposition P–Mn–Mg–Fe–Ti
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Fig. 2.2 Example of a ternary diagram embedded in its original three-dimensional space

by the three points .1; 0; 0/, .0; 1; 0/, and .0; 0; 1/ as corners. The ternary diagram
displays this triangle in the drawing plane with the corners annotated by the axis
on which this corner lies. This is possible since closed datasets of three parts have
only 2 degrees of freedom. Figure 2.2 illustrates this with the MgO,CaO, and Na2O
subcomposition of the example dataset.

For the interpretation of ternary diagrams, we can make use of the property
that the orthogonal segments joining a point with the three sides of an equilateral
triangle (the heights of that point) have always the same total length: the length of
each segment is taken as the proportion of a given part. Ternary diagrams have the
merit of actually representing the data as what they are: compositional and relative.
Geoscientists are particularly used to this kind of representation. Figures 2.3 and 2.4
show several ways in which the relative portions and proportions of the components
of a three-part composition can be read from a ternary diagram.

It is worth mentioning that when the three parts represented have too different
magnitudes, data tend to collapse on a border or a vertex, obscuring the structure:
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Fig. 2.3 In a ternary diagram, the portion of each part is represented by the portion of the height
of the point over the side of the triangle opposite to the part on the total height of the triangle.
However, it is difficult to judge height visually. If we assume the three sides of the triangle to
form a sequence of axes, we can make a projection of the point onto the axis pointing towards the
interesting part parallel to the previous axis. Consequently, a composition on an edge of the triangle
only contains the two parts connected by the side, and a composition in a vertex of the triangle will
only contain the part the vertex is linked to. Thus, all compositions along a line parallel to an axis
have the same portion of the part opposite to the axis

a typical practice here is to multiply each part by a constant and reclose the result.
One can obtain a ternary diagram in R by using plot(x), with x an object of any
compositional class (acomp or rcomp, see next section for details).

> xc = acomp(GeoChemSed, c("MgO","CaO","Na2O"))

> plot(xc)
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Fig. 2.4 The two part subcompositions can be read in two ways: (1) by projecting the composition
to an edge of the triangle along a ray coming from the vertex of the part that should be ignored.
Thus, all compositions along such rays have the same subcomposition, when the part where the
ray is coming from is removed. (2) By drawing a scale between 0 and 1 on a segment parallel to
the axis opposite to the part we want to remove, passing through our datum

2.3.3 Log-Ratio Scatterplots

Log-ratio scatterplots are just scatterplots of the log ratio of two parts against
that of two other parts, though sometimes the denominators are the same. This
representation is fully coherent with the description of compositions given in
Sect. 2.1 but on the other side, does not capture any mass balance between the
represented parts. In fact, it is “independent” of such mass balances: whenever we
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Fig. 2.5 Example of a log-ratio scatter plot obtained using the formula interface. This example
was obtained with plot(log(TiO2/K2O)� log(CaO/P2O5),GeoChemSed). Recall that the for-
mula syntax is y� x

cannot ensure that the studied system is not shrinking or growing, then log ratios of
scatterplots display almost all the information we really have. For instance, if we are
working with transported sediments, we do not know if any part can be dissolved by
water and removed from the system; or when dealing with party vote shares between
two different elections, we do not know if exactly the same people took part in the
election. In fact, most of the datasets obtained in natural systems (meaning, not in
the lab under strictly controlled situations) will be in such situations. Despite these
issues, scatterplots of log ratios are seldom encountered in applications. To generate
a log-ratio scatterplot, one can use the formula interface to plot(formula, data),
providing the data set where the variables involved will be extracted, and the
desired formula describing the log ratios:

> plot(log(var1/var2)~log(var3/var4), dataset)

> plot(I(var1/var2)~I(var3/var4), dataset, log="xy")

Figure 2.5 shows an example obtained with the first syntax. These two syntax
examples would only differ in the way axes are labeled, with the transformed values
in the first case, with the original values of the ratios in the second case (using the
command I is needed to tell R that the quotient inside it are not symbolic formulae,
but actual ratios).

2.3.4 Bar Plots and Pie Charts

A bar plot is a classical representation where all parts may be simultaneously
represented. In a bar plot, one represents the amount of each part in an individual as
a bar within a set. Ideally, the bars are stacked, with heights adding to the total of
the composition (1 or 100 %). Then, each individual is represented as one of such
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Fig. 2.6 Examples of bar plot (left) and pie plot (right). Note the presence of an extra segment on
top of the bars for beans, showing the presence of a missing value

stacked bars, possibly ordered if that is possible (e.g., in time series). Stacked bars
are provided in R by the command barplot(x), when x is a compositional dataset.
Individual compositions can also be displayed in the form of pie charts. Pie charts
are produced by the pie(x) command, but now x must be a single composition
(as only one pie diagram will be generated). Pie charts are not recommended
for compositions of more than two parts, because the human eye is weak in the
comparison of angles if they are not aligned (Bertin, 1967). Figure 2.6 is created by

> barplot( acomp(Amounts),xlim=c(0,11) )

> pie( acomp(Amounts["wheat",]), main="wheat")

2.4 Multivariate Scales

A fundamental property of each variable (or set of variables) in a dataset is its
scale. The scale of a measurement describes which values are possible outcomes
and which mathematical operations on these values are meaningful in the context of
the application. Classical statistical practice distinguishes several scales for single
variables, like (e.g., Stevens, 1946): categorical (several values are possible, but they
are not comparable), ordinal (several values are possible, and they can be compared
by ordering them), interval (any value in a subset of the real line is a possible
outcome, absolute differences between them are meaningful), and ratio (any value
in a subset of the positive real line is a possible outcome, relative differences
between them matter). Other authors have criticized this list for being too limited:
for instance, it does not include a separation between finite, infinite countable, and
infinite uncountable scales (in any case, with interval or ratio differences).

Although a scale is above all a set of possible values together with some
meaningful mathematical operations (and not a statistical model), each scale has
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typical statistical models associated to them: e.g., the multinomial distribution is the
most adequate and general model for categorical data, and the normal distribution
appears as a central distribution for the real interval scale.

Compositional data add a further complexity to the scale issues as they are
multivariate objects on themselves. In a composition, we cannot treat one isolated
variable because its values are only meaningful in relation to the amounts of the
other variables. The whole composition has thus to be considered as a unique object
with some scale with joint properties, such as summing to 1 or 100 %, being positive,
and obeying a ratio law of difference. A compositional scale is thus a new multivari-
ate scale, not just the concatenation of several separate scales for each variable.

Compositional data has historically been treated in several ways according to
different considerations on the underlying scale, and there was a lot of discussion
on which is the right way of doing so. The “compositions” package provides
several of these alternative approaches, with the aim of facilitating the comparison
of results obtained following each of them. However, from our experience and the
considerations presented in the first sections of this chapter, one of these scales
should be the preferred one, as it is the one grounded in the mildest hypotheses:
this is the Aitchison (1986) geometry for compositions, discussed in Sect. 2.5.
Therefore, this book focuses on this scale, and the next section will introduce it
in detail. But depending on our view of the problem, in some case, other scales
might be more appropriate. They are available in the package and thus all presented
and briefly discussed in this section for the sake of completeness. A comprehensive
treatment of the multiple scale mechanisms in the package can be found in van den
Boogaart and Tolosana-Delgado (2008).

To highlight the relevance of the choice of a scale, in “compositions”, you
assign it to the dataset before any analysis. This is done by a command like (e.g.,
acomp for Aitchison Composition):

DataWithScale <- acomp(DataWithoutScale)

The scale of each compositional dataset is stored as its S3-class.7 The package
“compositions” then automatically treats the dataset according to the scale
chosen. Each row of the dataset is considered as one observation in a compositional
scale. The following multivariate scales are available, for both vectors of amounts
and vectors of components (or actual compositions):

• “rmult”—real multivariate scale
• “rplus”—real interval restricted to the positive (plus) real orthant, RDC
• “aplus”—Aitchison (i.e., ratio) geometry in R

DC
• “rcomp”—real (i.e., interval) compositional scale
• “acomp”—Aitchison (i.e., ratio) compositional scale
• “ccomp”—count compositional scale

7An S3-class is a concept in the object model of R. The class of an object determines how it is
treated by generic functions, such as plot or summary. Use help(class) for further details on the
concept in R.
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Again, consider that the default choice of scale for compositional data should be the
“acomp” Aitchison compositional scale.

2.4.1 Classical Multivariate Vectorial Data (rmult)

The real multivariate scale associated to the class “rmult” is the Cartesian product
of D classical real scales, with values in a vector space R

D . This is neither a
compositional nor an amount scale, as here negative values are fully meaningful.
The multivariate normal distribution is its central statistical model. Most well-
known multivariate procedures were devised for this scale, such as cluster analysis,
mean vector and variance–covariance matrix, principal component analysis, factor
analysis, multivariate regression, and multivariate analysis of variance. Because it
is the “conventional” scale, the package “compositions” only provides a limited
functionality within it. It is mainly intended as a back-end for procedures based on
treating the other scales through transformations. An example dataset displaying
this scale might be the locations of earthquakes near Fiji Islands, data included in a
standard R distribution:

> data(quakes)

> MultivariateData <- rmult(quakes[,c("lat","long","depth")])

2.4.2 Positive Data with Absolute Geometry (rplus)

Historically, the oldest approach of working with vectors of amounts is to see them
as real multivariate data restricted to the positive orthant RDC. Methods based on this
approach are typically not scaling invariant, since each data is weighted proportional
to its total amount (if nothing nastier happens). An associated distribution could be
a truncated multivariate normal distribution. The way in which values of our sample
can be changed is by simple addition or subtraction of some components, as long as
the results remain positive. Analysis within the “rplus” framework is quite simple:
apply the standard procedures from a multivariate scale to a dataset of positive
values and hope for the best. It is thus easiest to analyze data in the “rplus” scale,
as all statistical packages may be used for that end. However, several problems
arise when interpreting results: for instance, in regression analysis, we will likely
obtain negative predictions for an amount; if any procedure is based on assuming
a normal distribution and our data have low means and high variances, truncation
will be a source of problems; and last, but not least, if we are working with a vector
of amounts with bounded sum (for instance, an incomplete composition), then
correlation coefficients cannot be interpreted in the way we are used to, as they are
spurious to an unknown extent (see Remark 2.1). In summary, the “rplus” scale is
probably the most dangerous of all, because it is easily accessible in a conventional
approach, but interpreting the results is a path full of pitfalls. An example from
R illustration datasets might be the phosphor contents separated according to the
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inorganic and organic part of the soil in an experiment analyzing the nutrient content
of the resulting crop:

> data(phosphor)

> x <- rplus(phosphor,c("inorg","organic"))

2.4.3 Positive Data with Relative Geometry (aplus)

Stevens (1946) introduced the ratio scale to capture the notion that for a positive
observational variable, only its relative variations might be meaningful. For several
reasons, it is common to analyze such data after a log transformation. In this
case, the reference distribution of statistical analysis becomes the lognormal
distribution, and the natural way of describing how a variable evolves is through
products/divisions. Later on, this idea has been extended to multivariate positive
datasets (e.g. Pawlowsky-Glahn et al., 2003), giving rise to the “aplus” scale.
The idea behind the approach is that the amount of each component can be
individually analyzed in a relative scale, in the sense of ratio scale (Stevens,
1946), i.e., with component-wise product/division and distances computed based
on the log-transformed data. Therefore, the natural central distribution in this case
should be the multivariate lognormal. Though this is a common alternative to a full
compositional approach, the analyst should be aware that most methods based on
this approach are not scaling invariant.

An example might be the measures of morphology of iris flowers (length and
width of petal and sepal), which are positive quantities with a relative geometry but
where total size matters (since it discriminates between species):

> data(iris)

> x <- aplus(iris[,-1])

2.4.4 Compositional Data with Absolute Geometry (rcomp)

The most widely used way of treating compositional data is as if they were just
multivariate real datasets that incidentally happened to be positive and sum to 1
or 100 %, but where these circumstances were irrelevant. Methods based on this
approach are typically neither scaling nor perturbation invariant and definitively
not subcompositionally coherent. A useful reference distribution for a D-part
composition would be then a degenerate, .D � 1/-dimensional multivariate normal
distribution restricted to have all components positive and summing up to the
constant. In this context, all changes between samples must be characterized by
vectors of components summing up to zero, thus representing pure transference of
“mass” between the parts.

Even though this naive approach was dominant, some special procedures were
developed apart from the classical multivariate statistical toolbox, like the repre-
sentation in ternary diagrams, and it was long warned that classical methods gave
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meaningless results. Awareness of these problems stemmed from the Mathematical
Geosciences community: problems linked to the spurious correlation (as it appeared
already in the “rplus” scale) were reported for correlation and covariance (Butler,
1979; Chayes, 1960), principal components (Chayes and Trochimczyk, 1978), clus-
ter analysis (Butler, 1978), autocorrelation (Pawlowsky-Glahn, 1984), etc. In fact,
it was even shown that this kind of analysis does not obey the important principles
of a meaningful statistical analysis of Sect. 2.2 (Aitchison, 1986). Nevertheless, the
“rcomp” scale is still probably the most used of all scales, because of the same
reasons that make the “rplus” scale dominant: the availability of software doing
the job and the lack of awareness on the pitfalls of its interpretation.

But to be fair, we must also take into account that this scale honors a very impor-
tant law of natural sciences: mass balance (Cortes, 2009; Shurtz, 2003), i.e., the
fact that in a closed system (one where mass neither enters nor leaves the system),
the total mass amount we have before and after any process must be preserved.
This is most adequately captured by the vectors of zero sum describing change
in this scale. Note nevertheless that the hypothesis of system closeness is a very
strong one, that cannot come from the compositional datasets themselves, but from
external, complementary information (Aitchison, 1986; Cortes, 2009). Furthermore,
in the case that one wants to apply mass, matter, or volume preservation, the units of
the dataset should be consistently masses, moles, or volumes. In this context, most
changes of units would be nonsense.

2.4.5 Compositional Data with Aitchison Geometry (acomp)

In the early 1980s, Aitchison (1981, 1986) realized that in order to obtain mean-
ingful results in a general framework, some basic principles had to be honored by
any statistical analysis of compositional data. These principles have been stated in
Sect. 2.2: scaling invariance, perturbation invariance, permutation invariance, and
subcompositional coherence. He then showed that these principles imply a relative
geometry, in which only the ratios of different components actually matter. In
this context, a meaningful change between compositions has to be measured as a
perturbation (as introduced in page 18, and more formally defined in Sect. 2.5),
and the reference distribution becomes the additive-logistic-normal distribution, or
normal distribution on the simplex (Chap. 3).

It was not until some years later that it was realized that the mathematical
structure Aitchison had defined is indeed a vector space structure in its own right,
isometrically equivalent to R

D�1 (Barceló-Vidal, 2000; Billheimer et al., 2001;
Pawlowsky-Glahn and Egozcue, 2001). A logical consequence of this equivalence is
that we can convert any statistical problem involving compositions of D parts onto
a classical multivariate problem involving real vectors of .D � 1/ coordinates. This
is what Pawlowsky-Glahn (2003) called “the principle of working in coordinates”:
whenever your scale is described by an Euclidean space structure, you automatically
honor that scale if you statistically analyze the coordinates of the dataset with
respect to any orthonormal basis (instead of treating the raw data). Section 2.5
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presents in more detail this Euclidean space structure and the implications of the
principle of working on coordinates for compositions. Note that the same principle
of working on coordinates justifies analyzing log-transformed vectors of amounts if
their scale is “aplus” (Pawlowsky-Glahn et al., 2003).

2.4.6 Count Compositions (ccomp)

Sometimes it is not possible to directly observe the “true” composition of a system
but rather how many individuals belong to each of the groups in which this system
is divided. We assume that the counts are proportional to the sizes of the groups.
We call the result a count composition, because its elements are counts. A typical
example are species compositions, such as how many insects of each taxon are
found in an insect trap or how many people with blue, green, brown, and gray eyes
are found in a classroom. The most apparent difference between both “acomp” or
“rcomp” against “ccomp” scales is that the former are vectors of real numbers (thus
can be called real compositions), whereas the latter are vectors of integers.

A typical model for count compositions is that conditioned to a fix total
number of counts, the actual counts of each class are the outcomes of multinomial
distribution with probabilities equal to the unknown, “true” composition, which we
call the underlying composition (most probably, of “acomp” type).

Count compositions can be seen as an indirect observation of Aitchison
compositions. However, this scale has some particular properties unlike the
Aitchison compositional scale, as it has a dual nature. On one side, count
compositions follow a relative scale, given that the actual count total (the number of
insects in the trap, the number of people in the classroom) is irrelevant to understand
the underlying process or distribution. But on another side, the statistical sampling
error strongly depends on this total number of counts. Grossly simplifying, we can
say that the total is irrelevant for the mean behavior of our system, but it matters
when characterizing the variability of our observations and the uncertainty on our
estimations. For example, in count compositions, a value of zero is easily possible
as a random result if the corresponding component in the underlying composition
is small (but not necessarily zero).

There are some practical problems with count compositions. For instance,
plotting should take care to somehow represent how many times each of the possible
count compositions was observed. There exist some competing models for count
compositions (being log-linear models the most relevant). However, in our view,
count compositions can be better fundamentally understood based on the properties
of Aitchison compositions.

2.4.7 Practical Considerations on Scale Selection

This book is mainly devoted to the Aitchison composition scale (“acomp”).
The other scales in the package are only discussed for background information.
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However, the choice of a scale should not be driven by the goals of this book, but
for an assessment of which is the meaningful scale for a problem at hand. This is
necessarily a subjective decision that the analyst should thoroughly ground. Here
are some guidelines.

One can select the right scale for the analysis based on the answers to three
questions:

• Are the components counts?
Many compositions are physically measured as counts, integer values, even if
that is not relevant. For instance, many geochemical compositions are derived
from counting how many atoms of a given type hit the sensor: but there are so
many of them that we may safely consider that composition as a real composition.
The same happens to the number of votes given in large electoral districts to the
parties entering the parliament. On the other hand, when counting mineral or
insect species, or the votes of all parties in a small district, the total is typically
small, and we may be in a count composition case. Thus, the question must be
stated more precisely: if this composition is formed by counts, is their total so
small that the discrete random selection error in the counts is important? If the
answer is yes, we are within a count composition problem.

• Is the total mass in each observation an important aspect of the process under
investigation?
If the answer is yes, the dataset should be treated with an amount scale, i.e.,
“aplus”, “rplus” (if all variables are positive), or “rmult” (if they form a real
multivariate dataset). If the answer is no, the dataset should be considered of a
compositional scale, i.e., “acomp”, “rcomp”, or “ccomp”.

• Is the question of our focus only meaningful if the composition is expressed
in a specific, common set of units? Does the composition contain all possible,
potentially interesting components?
If the answer to both questions is yes, then the principles of scaling or pertur-
bation invariance and subcompositional coherence are not necessary, and scales
of an absolute type would be reasonable, e.g., “rplus” or “rcomp”. This would
imply that the structure under investigation is expected to be linear in real values
of the components (e.g., a law of mass conservation). If the answer is no to any
of these questions, then at least one of the principles is relevant, and we should
only use relative scales (“aplus”, “acomp”, or “ccomp”) to honor them.

Example 2.1 (Discussing the scale of a problem). The package
“compositions” contains several example datasets for illustration that
can be loaded with the command data. One of them contains chemical
analyses of samples of water from rivers and streams of a medium-sized
Mediterranean river basin from western Spain, including major (Na, Ca, Mg,
K, Cl, SO4, HCO3) and minor ions (Ba, Sr) coming from the geological
background, as well as other linked to urban sewage, industrial, or fertilizer
pollution (total organic Carbon, H, NO3, PO4). Note that the data do not sum
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up to a constant value. Now we can ask ourselves several questions about this
dataset, leading to different choices of scales.

• An obvious question is which water samples are cleaner, or in other words,
which carry a lower ionic concentration. It is obvious that in this case the
total mass in each observation matters. It is also important which units
do we choose to tackle with the problem, because we are going to obtain
different answers when expressing our components in mol/L or in g/L.
But, on the other hand, there are potentially thousands of pollutants that
this dataset did not report. Thus, we should work with a scale of amounts,
but the choice between “rplus” and “aplus” is open.

• A second question in this line would be which are the most important
pollutants. In this case, the total amount still matters, but the units in which
we are working (whether mol/L or g/L) do not: now it is more important
to know the enrichment of each component on each sample in relation to a
background value (for instance, the average); ammonia, for instance, being
always present in small proportions, would not qualify as important for the
first question but becomes a key element to answer the second question,
because in polluted samples, it can be up to 150 times larger than in the
background. Thus, we need a relative scale for amounts, the “aplus” one.

• Finally, we can also ask ourselves which are the geological factors
conditioning the water chemistry. In this case, the total amount does not
actually matter, as it is rather a function of dilution (how much water
circulates) instead of the geology of our basin. Moreover, it is not good
that our answer depends on the units we use. We should therefore treat the
samples with an “acomp” scale. In fact, this sort of questions is usually
answered by hydrogeochemists using the so-called Piper plot, a joint
representation of four ternary diagrams representing the subcomposition
of major ions in a “rcomp” scale.

In any case, once we have clear in mind our question and selected a scale,
e.g., that of an Aitchison composition (“acomp”), you have to assign it to the
dataset, as its S3-class:

> data(Hydrochem)

> dat <- acomp(Hydrochem[,6:19])

> class(dat)

[1] "acomp"

Further analysis of dat will then be automatically performed in a way
consistent with the chosen compositional scale.
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2.5 The Aitchison Simplex

2.5.1 The Simplex and the Closure Operation

A composition which elements sum up to a constant is called a closed composition,
e.g., resulting from applying the closure operation (2.1). With “compositions”,
you can close a vector or a dataset using the command clo. The set of possible
closed compositions

S
D W D

(

x D .xi /iD1;:::;D W xi � 0;

DX

iD1
xi D 1

)

D
(

x D .x1; : : : ; xD/ W xi � 0;

DX

iD1
xi D 1

)

is called the D-part simplex. Throughout the book, notations x, .xi /i , .x1; : : : ; xD/
and .xi /iD1;:::;D will equivalently be used to denote a vector, in the two last cases
showing how many components it has. The first two notations are reserved for cases
where the number of components is obvious from the context or not important.

There is some discussion on whether the parts should be allowed to have a zero
portion (xi D 0) or not. For the scope of this book, zero values will be considered
special cases, pretty similar to missing values (see Chap. 7).

The simplex of D D 3 parts is represented as a ternary diagram, where the
three components are projected in barycentric coordinates (Sect. 2.3.2). In the
same way, the simplex of D D 4 parts can be represented by a solid, regular
tetrahedron, where each possible 3-part composition is represented on one side of
the tetrahedron. To represent a given 3-part subcomposition of a 4-part dataset, we
can project every 4-part datum inside the tetrahedron onto the desired side with
projection lines passing through the opposite vertex, corresponding to the removed
part. This is exactly the same as closing the subcomposition of the three parts
kept. With help of that image, we can conceive higher-dimensional simplexes as
hyper-tetrahedrons which projections onto 3- or 4-part sub-simplexes give ternary
diagrams and tetrahedral diagrams.

2.5.2 Perturbation as Compositional Sum

The classical algebraic/geometric operations (addition/translation, product/scaling,
scalar product/orthogonal projection, Euclidean distance) used to deal with conven-
tional real vectors are neither subcompositionally coherent nor scaling invariant.
As an alternative, Aitchison (1986) introduced a set of operations to replace these
conventional ones in compositional geometry.

Perturbation plays the role of sum or translation and is a closed component-wise
product of the compositions involved:
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z D x˚y D C Œx1 � y1; : : : ; xD � yD�: (2.2)

With “compositions”, one can perturb a pair of compositions in two ways: by
using the command perturbe(x,y) or by adding or subtracting two vectors of
class acomp, i.e.,

> (x = acomp(c(1,2,3)))

[1] 0.1667 0.3333 0.5000

attr(,"class")

[1] acomp

> (y = acomp(c(1,2,1)))

[1] 0.25 0.50 0.25

attr(,"class")

[1] acomp

> (z = x+y)

[1] 0.125 0.500 0.375

attr(,"class")

[1] acomp

The neutral element of perturbation is the composition � D Œ1=D; : : : ; 1=D�. It
is an easy exercise to show that for any composition x, the neutral elements fulfill
x˚� D x. The neutral element is thus playing the role of the zero vector. Any com-
position x D Œx1; : : : ; xD� has its inverse composition: if one perturbs both, the result
is always the neutral element. The inverse is �x D C Œ1=x1; : : : ; 1=xD� and it holds
x ˚ �x D �. Perturbation by the opposite element plays the role of subtraction,
hence the notation with �. Perturbation with an inverse composition can as usually
also be denoted with a binary � operator: x � y WD x ˚ �y. In “compositions”,
inverse perturbation can be obtained subtracting two compositions, x-y or with
perturbe(x,-y).

Example 2.2 (How and why do we perturb a whole dataset?). To perturb
a whole compositional dataset by the same composition, we have to give
both objects an acomp class and just ask for the dataset plus (or minus) the
composition, for instance,

> data(Hydrochem)

> Xmas = Hydrochem[,c("Cl","HCO3","SO4")]

> Xmas = acomp(Xmas)

> mw = c(35.453, 61.017, 96.063)

> mw = acomp(mw)

> Xmol = Xmas-mw
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Xmas contains the subcomposition Cl�–HCO�3 –SOD4 in mass proportions, and
this is recasted to molar proportions in Xmol by dividing each component
(inverse perturbation) with its molar weight (in mw). Most changes of compo-
sitional units may be expressed as a perturbation (between molar proportions,
mass percentages, volumetric proportions, molality, ppm, etc.), as explained
in Sect. 2.2.2. This operation is also applicable in the centering procedure of
Sect. 4.1. Note that the two involved objects must have either the same number
of rows (resulting in the perturbation of the first row of each dataset, the
second of each dataset, etc.) or one of them must have only one row (resulting
in all rows of the other object perturbed by this one).

In statistical analysis, it is often necessary to perturb or “sum up” all the
compositions in the dataset. This is denoted by a big ˚:

nM

iD1
xi WD x1 ˚ x2 ˚ � � � ˚ xn

2.5.3 Powering as Compositional Scalar Multiplication

Powering or power transformation replaces the product of a vector by a scalar
(geometrically, this is equivalent to scaling) and is defined as the closed powering
of the components by a given scalar:

z D �ˇx D C Œx�1 ; : : : ; x
�
D�: (2.3)

Again, the package offers two ways to power a composition by a scalar: with the
generic function power(x,y) or by multiplying a scalar by a vector of class acomp.

> 2*y

[1] 0.1667 0.6667 0.1667

attr(,"class")

[1] acomp

2.5.4 Compositional Scalar Product, Norm, and Distance

The Aitchison scalar product for compositions

hx; yiA D 1

D

DX

i>j

ln
xi

xj
ln
yi

yj
(2.4)
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provides a replacement for the conventional scalar product. The generic function
scalar(x,y) has been added to “compositions” to compute scalar products: if x
and y are acomp compositions, the result will be that of (2.4). Recall that the scalar
product induces a series of secondary, useful operations and concepts.

• The norm of a vector, its length, is kxkA D phx; xiA. From an acomp vector x,
its norm can be obtained with norm(x). If x is a data matrix of class acomp, then
the result of norm(x) will be a vector giving the norm of each row.

• The normalized vector of x (or its direction, or a unit-norm vector) is v D
kxk�1A ˇx. The generic function normalize provides this normalization, either
for a single composition or for the rows of a data matrix.

• The angle between two compositions,

˛.x; y/ D cos�1 hx; yiA
kxkA � kykA D cos�1

˝kxk�1A ˇx; kyk�1A ˇy
˛
A
;

which allows to say that two compositions are orthogonal if their scalar product
is zero, or their angle is 90ı. This is not implemented in a single command, but
you get it with

> acos(scalar(normalize(x),normalize(y)))

• The (orthogonal) projection of a composition onto another is the composition

Px.y/ D hy; xiA
hx; xiA

ˇx;

or in case of projecting onto a unit-norm composition, Pv.y/ D hy; viA ˇv. This
last case appears next when discussing coordinates with respect to orthonormal
bases. A related concept is the (real) projection of a composition on a given
direction, hy; viA, which is a single real number.

• The Aitchison distance (Aitchison, 1986) between two compositions is

dA.x; y/ D kx � x; ykA D
vuu
t 1

D

DX

iD1

DX

j>i

�
ln
xi

xj
� ln

yi

yj

�2
: (2.5)

The distance between two compositions can be directly computed by
norm(x-y).

In “compositions”, the generic function dist automatically computes the
Aitchison distances between all rows of an acomp data matrix. The result
is an object of class dist, suitable for further treatment (e.g., as input to
hierarchical cluster analysis, see Sect. 6.2). Note that other compositional
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distances, like Manhattan or Minkowski distances, are also available through
the extra argument method:

> a = acomp(c(1,2,4))

> b = acomp(c(3,3,1))

> mycomp = rbind(a,b)

> mycomp = acomp(mycomp)

> dist(mycomp)

a

b 1.813

> norm(a-b)

[1] 1.813

> dist(mycomp,method="manhattan")

a

b 2.851

> sum(abs(clr(a-b)))

[1] 2.851

2.5.5 The Centered Log-Ratio Transformation (clr)

The set of compositions together with the operations perturbation ˚, powering ˇ
and Aitchison scalar product .�; �/A build a .D � 1/-dimensional Euclidean space
structure on the simplex. This means that we can translate virtually anything defined
for real vectors to compositions, as an Euclidean space is always equivalent to the
real space. This equivalence is achieved through an isometry, i.e., a transformation
from the simplex to the real space that keeps angles and distances. The first isometric
transformation we use is the centered log-ratio transformation (clr)

clr.x/ D
�

ln
xi

g.x/

�

iD1;:::;D
with g.x/ D D

p
x1 � x2 � � �xD; (2.6)

or in a compact way clr.x/ D ln.x=g.x//, where the log ratio of the vector is applied
component-wise. The inverse clr transformation is straightforward: if x� D clr.x/,
then x D C Œexp.x�/�, where the exponential is applied by components. By its
definition, the clr transformed components sum up to zero: in fact, the image of
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Fig. 2.7 Representation of a
3-part simplex (ABC, S3) and
its associated clr-plane (H),
with an orthogonal basis
fv�

1 ; v
�

2 ; v3g of R3. The reader
can find illustrative to play
with a 3-D representation of
the clr-transformed data of a
3-part composition, like
> data(Hydrochem)

> idx = c(14,17,18)

> x = Hydrochem[,idx]

> x = acomp(x)

> plot3D(x, log=TRUE)

the clr is a hyperplane (and a vector subspace, denoted with H, called the clr-plane)
of the real space H � R

D orthogonal to the vector 1 D Œ1; : : : ; 1�, i.e., the bisector of
the first orthant (Fig. 2.7). This may be a source of problems when doing statistical
analyses, as e.g., the variance matrix of a clr-transformed composition is singular.

The commands clr and clrInv compute these two transformations: they admit
either a vector (considered as a composition), or a matrix or data frame (where each
row is then taken as a composition).

2.5.6 The Isometric Log-Ratio Transformation (ilr)

It is well known that there is only one .D�1/-dimensional Euclidean space typically
called R

D�1, up to an isometric mapping. Therefore, there exist an isometric linear
mapping between the Aitchison simplex and R

D�1. This mapping is called the
isometric log-ratio transformation (ilr).

The isometry is constructed by representing the result in a basis of the .D � 1/-
dimensional image space H of the clr transformation. This is constructed by taking
an orthonormal basis of R

D including the vector vD D Œ1; : : : ; 1�, i.e., some
.D� 1/ linearly independent vectors fv�1 ; : : : ; v�D�1g 2 H (Fig. 2.7). Then the set of
compositions defined as vi D clr�1.v�i / form a basis of SD . In computational terms,
one can arrange the vectors fv�j g by columns in a D � .D � 1/-element matrix,
denoted by V, with the following properties:

• It is a quasi-orthonormal matrix, as

Vt � V D ID�1 and V � Vt D ID � 1

D
1D�D; (2.7)
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where ID is theD�D identity matrix, and 1D�D is aD�D matrix full of ones.
• Its columns sum up to zero, because they represent vectors of the clr-plane,

1 � V D 0: (2.8)

Thanks to these properties, we can find simple expressions to pass between
coordinates � and compositions x:

clr.x/ � Vt D ln.x/ � Vt DW ilr.x/ D � (2.9)

ilr.x/ � V D clr.x/ �! x D C Œexp .� � V/� : (2.10)

Through these expressions, we also defined implicitly the so-called isometric log-
ratio transformation (ilr): this is nothing else than a transformation that provides
the coordinates of any composition with respect to a given orthonormal basis. There
are as many ilr as orthonormal basis can be defined, thus as matrices V fulfilling
(2.7) and (2.8). The one originally defined by Egozcue et al. (2003) was based on
the (quite ugly) Helmert matrix

V D

0

BB
B
B
B
BB
B
B
B
B
B
@

D�1p
D.D�1/ 0 � � � 0 0
�1p

D.D�1/
D�2p

.D�1/.D�2/ � � � 0 0
�1p

D.D�1/
�1p

.D�1/.D�2/ � � � 0 0

:::
:::

: : :
:::

:::
�1p

D.D�1/
�1p

.D�1/.D�2/ � � � 2p
6
0

�1p
D.D�1/

�1p
.D�1/.D�2/ � � � �1p

6

1p
2�1p

D.D�1/
�1p

.D�1/.D�2/ � � � �1p
6

�1p
2

1

CC
C
C
C
CC
C
C
C
C
C
A

: (2.11)

The ilr transformation induces an isometric identification of RD�1 and S
D . For

measure and probability theory purposes, this induces an own measure for the
simplex, called the Aitchison measure on the simplex, denoted as �S, and completely
analogous to the Lebesgue-measure �. This Aitchison measure is given by

�S.A/ D �.filr.x/ W x 2 Ag/:

The ilr transformation is available through the command ilr(x). An optional
argument V can be used to specify a basis matrix different from the default
one. This is itself available through the function ilrBase(x,z,D), where the
arguments represent, respectively, the composition, its ilr transformation, and
its number of parts (only one of them can be passed!). An alternative interface
to some ilr transformations is provided by the functions balance(x) and
balanceBase(x), explained in Sect. 4.3. The commands ilrInv provide the
inverse transformation. Also, if we want to pass from ilr to clr or vice versa,
we can use functions ilr2clr and clr2ilr.
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> a = c(1,2,4)

> (ac = acomp(a))

[1] 0.1429 0.2857 0.5714

attr(,"class")

[1] acomp

> ilr(ac)

[,1] [,2]

[1,] 0.4901 0.8489

attr(,"class")

[1] "rmult"

> clr2ilr(clr(ac))

[1] 0.4901 0.8489

> (Vd = ilrBase(x=a))

[,1] [,2]

1 -0.7071 -0.4082

2 0.7071 -0.4082

3 0.0000 0.8165

> clr(ac) %*% Vd

[1] 0.4901 0.8489

attr(,"class")

[1] "rmult"

2.5.7 The Additive Log-Ratio Transformation (alr)

Finally, it is worth mentioning that compositional data analysis in the original
approach of Aitchison (1986) was based on the additive log-ratio transformation
(alr), alr.x/ D .ln.x1=xD/; : : : ; ln.xD�1=xD// D .ln.xi=xD//iD1;:::;D�1. Though
we will not use it in this book, the alr transformation is available with the command
alr(x).

Remark 2.2 (Why so many log-ratio transformations?). The answer is quite
easy: because none is perfect. All three of them recast perturbation and



2.5 The Aitchison Simplex 45

powering to classical sum and product,

clr.x˚y/ D clr.x/C clr.y/; ilr.x˚y/ D ilr.x/C ilr.y/; alr.x˚y/

D alr.x/C alr.y/

clr.�ˇx/ D � � clr.x/; ilr.�ˇx/ D � � ilr.x/; alr.�ˇx/ D � � alr.x/:

The first two, because they are isometric, also preserve the scalar product, but
this does not happen with the alr transformation,

hx; yiA D clr.x/ � clrt .y/ D ilr.x/ � ilrt .y/ ¤ alr.x/ � alrt .y/

Thus, alr should not be used in case that distances, angles, and shapes are
involved, as it deforms them.

On the other side, we already mentioned that the clr yields singular
covariance matrices, and this might be a source of problems if the statistical
method used needs inverting it. One would need to use Moore–Penrose
generalized inverses. As an advantage, the clr represents a one-by-one link
between the original and the transformed parts, which seems to be helpful in
interpretation.

This is exactly the strongest difficulty with the ilr-transformed values
or any orthonormal coordinates: each coordinate might involve many parts
(potentially all), which makes it virtually impossible to interpret them in
general. However, the ilr is an isometry and its transformed values yield
full-rank covariance matrices; thus, we can analyze ilr data without regard to
inversion or geometric problems. The generic ilr transformation is thus a per-
fect black box: compute ilr coordinates, apply your method to the coordinates,
and recast results to compositions with the inverse ilr. If interpretation of the
coordinates is needed, one should look for preselected bases and preselected
ilr transformations, as those presented in Sect. 4.3.

2.5.8 Geometric Representation of Statistical Results

The fact that the simplex is an Euclidean space has some implications on the way we
apply, interpret and represent most linear statistics. The basic idea is summarized in
the principle of working on coordinates (Pawlowsky-Glahn, 2003), stating that one
should:

1. Compute the coordinates of the data with respect to an orthonormal basis (2.9).
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2. Analyze these coordinates in a straightforward way with the desired method;
no special development is needed, because the coordinates are real unbounded
values.

3. Apply those results describing geometric objects to the orthonormal basis used,
recasting them to compositions (2.10). Final results will not depend on the basis
chosen.

Regarding the last step, most “geometric objects” obtained with linear statistics are
points or vectors, lines/hyperplanes, and ellipses/ellipsoids.

Points (like averages and modes or other central tendency indicators, outliers,
intersection points, etc.) are identified with their vectors of coordinates in the basis
used. Thus, to represent a point as a composition, it suffices to apply its coordinates
to the basis, i.e., compute the inverse ilr transformation (2.10). To draw points in a
ternary diagram (or a series of ternary diagrams), one can use the function plot(x)
where x is already a composition of class acomp (or a dataset of compositions). If
points have to be added to an existing plot, the optional argument add=TRUEwill do
the job. This function admits the typical R set of accessory plotting arguments (to
modify color, symbol, size, etc.).

Lines (like regression lines/surfaces, principal components, discriminant func-
tions, and linear discriminant borders) are completely identified with a point ˛ and a
vector ˇ in the clr-plane. The parametric equation �.t/ D ˛Ct �ˇ runs through every
possible point of the line taking different values of the real parameter t . Applying
this parametric equation to the basis in use, we obtain a compositional line,

x.t/ D a˚tˇb; (2.12)

with a D ilr�1.˛/ and b D ilr�1.ˇ/. A P -dimensional plane needs P compositions
of the second kind, i.e.,

x.t1; : : : ; tP / D a˚
MP

iD1tiˇbi : (2.13)

Note that a P -dimensional plane projected onto a subcomposition is still a
P -dimensional plane. In particular, a line projected on a 3-part subcomposition
is a line, obtained by selecting the involved parts in the vectors a and b. Straight
lines can be added to existing plots by the generic function straight(x,d),
which arguments are respectively the point a and the vector b (as compositions!).
Sometimes only a segment of the line is desired, and two functions might be
helpful for that. Function segments(x0,y) draws a compositional line from x0

to y, i.e., along y-x0; both can be compositional datasets, thus resulting in a set of
segments joining x0 and y row by row. Function lines(x) on the contrary needs
a compositional dataset and draws a piece-wise (compositional) line through all the
rows of x. Further graphical arguments typical of lines (width, color, style) can also
be given to all these functions.

Ellipses and hyper ellipsoids (like confidence or probability regions or quadratic
discriminant borders) are completely specified by giving a central point ˛ and a
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symmetric positive definite matrix T. An ellipse is the set of points � fulfilling

.� � ˛/ � T � .� � ˛/t D r2; (2.14)

namely, the set of points with norm r by the scalar product represented by the matrix
T. This can be extended to conics (and hyper quadrics) by dropping the condition
of positive definiteness. Any hyper quadric projected onto a subcomposition is
still a hyper quadric. In particular, in two dimensions (three parts), an ellipse is
obtained with a positive definite matrix, a parabola with a semi-definite matrix, and
an hyperbola with a non-definite matrix. All hyper quadrics show up as borders
between subpopulations in quadratic discriminant analysis. But by far, their most
typical use is to draw elliptic probability or confidence regions around the mean (see
Example 4.2). In this case, we can better characterize the ellipses with the original
variance matrix, i.e., T D S�1. This is the approach implemented in the generic
function ellipses(mean, var, r), which arguments are a central composition
(mean), a clr-variance matrix (var, described in Sect. 4.1), and the radius of the
ellipse (r). Further graphical arguments for lines are also admitted.

Summary of graphical functions:

• plot(x) to draw ternary diagrams of the acomp composition x

• plot(x, add=TRUE) to add compositions to existing ternary diagrams
• straight(x,d) to draw lines on ternary diagrams along d passing

through x, both acomp compositions

– segments(x0,y) to add compositional segments from the rows of x0
to the rows of y

– lines(x) to add piece-wise compositional lines through x rows

• ellipses(mean, var, r) to draw an ellipse around the acomp compo-
sition mean, defined by a radius r and a clr-variance var

2.5.9 Expectation and Variance in the Simplex

In an Euclidean space, like the simplex, expectation and variance can be defined with
regard to its geometry. Eaton (1983) presents the theory for any Euclidean space,
and we will here present without proof the most important results in the Aitchison
geometry of the simplex. The goal of this section is twofold. On the one hand, we
want to see that the actual basis used to compute coordinates and apply statistics is
absolutely irrelevant: back-transformed results are exactly the same whichever basis
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was used. On the other hand, we will also find that variance matrices may be seen
as representations of some objects on themselves, with a full meaning: this ensures
us that whichever log-ratio transformation we use (clr, ilr or alr), expressions like
(2.14) are fully correct as long as all vectors and matrices are obtained with regard
to the same log-ratio transformation.

Take the Euclidean space structure of the simplex .SD;˚;ˇ; h�; �iA/ and a
random composition X 2 S

D . Its expectation within the simplex is a fixed
composition m such that the expected projection of any composition v 2 S

D onto
X is perfectly captured by its projection onto m,

ESŒX� D m , for all v W E Œhv;XiA� D hv;miA : (2.15)

This says that knowing m, we know the average behavior of X projected onto any
direction of the simplex. This definition does not make use of any basis, so we can
be sure that the concept itself is basis-independent. To compute it, however, we may
take the vector v successively as each of the .D � 1/ vectors of any ilr basis, thus
obtaining the mean coordinates with respect to that basis,

ilr .ESŒX�/ D EŒilr.X/� 2 R
D�1

This is the result we would obtain by applying the principle of working on
coordinates. In other words, the definition given by (2.15) and the one implied by
the principle of working on coordinates are equivalent, and both are in fact basis-
independent.

For the variance, we may obtain equivalent results by defining it as an endomor-
phism. An endomorphism within the simplex is an application ˙ W S

D ! S
D

that preserves the linearity of perturbation and powering, e.g., ˙.x˚�ˇy/ D
˙.x/˚�ˇ˙.y/. The variance within the simplex of a random composition X 2 S

D

is an endomorphism˙ such that the expected product of the projections of any pair
of compositions u;w 2 S

D onto X (centered) is perfectly captured by their scalar
product through˙ :

varSŒX� D ˙ ) E Œhw;X � miA � hu;X � miA� D hw; ˙.u/iA D hu; ˙.w/iA :
(2.16)

In words, by knowing ˙ , we know the expected covariation of X projected onto
any pair of directions of the simplex. As with expectation, the ilr-coordinate
representation of ˙ is a .D � 1/ � .D � 1/ matrix ˙ v D .�v

ij / such that
�v
ij D covŒilri .X/; ilrj .X/�. And equivalently, its clr representation is a D � D

matrix ˙ D .�ij / such that �v
ij D covŒclri .X/; clrj .X/�. Note that, whichever

transformation we use,

hu; ˙.w/iA D .ilr.u/; ilr.˙.w/// D ilr.u/ � ˙ v � ilrt .w/ D clr.u/ � ˙ � clrt .w/:
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Thus, all these matrices and vectors, expressed as compositions, in clr coefficients
or in ilr coordinates, represent exactly the same objects. We can consistently change
between them with the following expressions:

ilr.m/ D clr.m/ � V D �v m D clr�1.�v � Vt / D ilr�1.�v/;

˙ v D Vt � ˙ � V ˙ D V � ˙ v � Vt : (2.17)

Functions clrvar2ilr(xvar) and ilrvar2clr(zvar) implement the variance
transformations of (2.17), where xvar is the clr variance ˙ and zvar is the
ilr variance ˙ v. To transform the mean vector, we may use the self-explaining
functions ilr, clr, ilrInv, clrInv, ilr2clr, and clr2ilr.
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Chapter 3
Distributions for Random Compositions

Abstract Distribution models are descriptions of the randomness or uncertainty
on a phenomenon. The most typical distribution models for compositions are the
Dirichlet and the additive logistic normal (or normal on the simplex). For count
compositions, the multinomial distribution and the double stochastic distribution are
the reference models. The first two sections of this chapter summarize the definitions
of these models, together with some other complementary probability models, as
well as the available functions to work with them. The last section summarizes some
properties and relations between the several distributions presented before. Tests for
the various distribution models are discussed after presenting each model.

3.1 Continuous Distribution Models

3.1.1 The Normal Distribution on the Simplex

The normal distribution plays a capital role in statistics. It appears as the limit
distribution of a phenomenon subject to additive “errors” or uncertainty sources, for
instance, when computing the arithmetic average of any random variable. In case
of a multidimensional phenomenon, one finds the multivariate normal distribution
as the limit distribution of random translations (in length and direction). In the
same way, the lognormal distribution appears when the “errors” are multiplicative.
Compositions are multivariate variables by nature. And as the counterpart of
translation in the simplex is perturbation, the normal distribution on the simplex
appears as the limit distribution of a compositional phenomenon subject to random
perturbations. In particular, it will appear as the limit distribution of the mean (4.1)
of compositional dataset with finite compositional variance (see the chapter on
descriptive statistics).

A random composition X has a normal distribution on the simplex (or additive
logistic normal) with mean vector m and variance matrix ˙ , denoted as NS.m;˙ /,
if projecting it onto any arbitrary direction of the simplex u with the Aitchison scalar

K.G. van den Boogaart and R. Tolosana-Delgado, Analyzing Compositional Data with R,
Use R!, DOI 10.1007/978-3-642-36809-7 3, © Springer-Verlag Berlin Heidelberg 2013
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var 1 var 2

var 3Fig. 3.1 Isodensity levels
(ellipses) of an example
normal distribution on the
simplex, compared with a
random sample (dots)

product (2.4) yields a random variable with a univariate normal distribution, of mean
vector hm;uiA and variance clr.u/ �˙ �clrt .u/. In particular, if we take a basis of the
simplex (denoted by matrix V, page 42), then the coordinates ilr.x/ of the random
composition have a multivariate normal distribution; i.e., their joint density with
respect to the Aitchison measure �S is

f .xI �v;˙ v/ D 1
p
.2�/.D�1/ � j˙ vj

exp

�
�1
2
.ilr.x/� �v/ � ˙�1v � .ilr.x/� �v/

t

�

(3.1)

with �v and ˙ v, respectively, their mean vector and variance matrix. The two
parameter sets are related through (2.17).

Function dnorm.acomp(x, mean, var) computes the density at a given point
x of a normal distribution on the simplex with mean composition mean and
clr-variance matrix var. An equivalent rnorm.acomp(n, mean, var) function
generates n random compositional variates from this distribution. Figure 3.1 shows
an example, obtained with

> opar <- par(mar=c(3,3,1,1))

> mymn = acomp( c(1,2,3) )

> myvr = ilrvar2clr( matrix(c(2,-1.5,-1.5,2),ncol=2) )

> plot(mymn,pch=".")

> for(p in c(0.5,1:9,9.5)/10){

+ r = sqrt(qchisq(p=p,df=2))

+ ellipses(mymn,myvr,r, col="grey")

+ }

> xr = rnorm.acomp(n=30, mean=mymn, var=myvr)

> plot(xr, add=TRUE, pch=19, cex=0.5)

> par(opar)

This chunk uses the property that the radius of a bivariate, independent, standard
normal vector follows a 	22 distribution. That is also true for the normal distribution
on the simplex, just that now this is with respect to the Aitchison geometry.



3.1 Continuous Distribution Models 53

The normal distribution on the simplex was defined in the present way by
Pawlowsky-Glahn (2003) and studied in detail by Mateu-Figueras (2003). As
probability distribution, it is equivalent to the additive-logistic-normal (ALN)
distribution of Aitchison (1986), and the only difference between them is that the
normal distribution in the simplex is expressed with respect to the Aitchison measure
in the simplex and the additive logistic normal with respect to the Haar measure
of the simplex as subset of RD . Thus, the ALN density is equal to (3.1) times
the Jacobian of the transformation of a composition to ilr coordinates. Note that
dnorm.acomp gives the normal density on the simplex and not the ALN density
which is provided by dlnorm:rcomp. In this book, we use both normal on the simplex
and additive logistic normal as synonyms.

Regarding other geometries (Sect. 2.4), functions dnorm.rmult and dnorm.

aplus, respectively, provide the densities of the conventional multivariate normal
and of the multivariate normal on the positive real line. This last one is given by

f .xI m;˙ / D 1
p
.2�/D � j˙ j

� exp
h

� 1

2
.log.x/ � log.m// � ˙�1 � .log.x/� log.m//t

i
;

where m is the geometric mean and ˙ the variance of the log-transformed
variable. Its only difference with respect to the classical lognormal distribution is
the absence of any Jacobian. The multivariate lognormal density can be obtained
with function dlnorm.rplus. There are equivalent rnorm.* functions to generate
random variates following all these distributions.

3.1.2 Testing for Compositional Normality

The test problem

H0: X follows a normal distribution on the simplex.
H1: X does not follow a normal distribution on the simplex

is very important, because the additive lognormal distribution is the typical reference
for all linear models, and often one has to check that it satisfactorily fits to some
data or some model residuals. Using the principle of working in coordinates, we
can transform this into a test problem on multivariate normality of the ilr, clr,
or alr transformed dataset. Unfortunately there are no well-established tests for
multivariate normality available. We will thus discuss some alternatives, with their
advantages and disadvantages.

3.1.2.1 Testing Marginals

It is well known that the projections of a normal dataset onto the directions of
the original reference axes (the marginals) must necessarily be also normally
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distributed. This is by no means a sufficient condition, but most practitioners do
not go further and accept joint normality if the marginals are normally distributed.
A sufficient condition would be to test that the projection onto all direction has a
normal distribution.

Recall that for a compositional dataset X, marginals have no meaning, because
we must work at least with two parts. In compositional data, we must always test
projections or, alternatively, subcompositions. Two strategies have been suggested
so far to test joint compositional normality.

The first option, implemented in the function qqnorm.acomp(y,alpha), checks
that all 2-part subcompositions have a normal distribution. Though (again) this is
not sufficient to ensure joint normality, it offers a good approximation: we indeed
test D.D � 1/=2 directions, the number of differences between two parts, quite
more than the naive .D � 1/ marginals. The function itself generates a matrix of
QQ plots: in each cell, the series of empirical quantiles of the log ratio of the two
parts given by row and column is plotted against the equivalent expected quantiles
for a standard normal distribution. A good approximation to normality is displayed
when the resulting points show a linear pattern. If we give a value between 0 and 1
for the accessory parameter alpha (NULL by default), then the function computes
a Shapiro–Wilk test of normality of each log ratio at a significance level alpha
divided byD.D�1/=2: log ratios displaying a significant departure from normality
at that corrected alpha level are marked by a red exclamation mark.

3.1.2.2 A Test Based on SVD

The second option, put forward by Aitchison et al. (2004), proposes to do three
kinds of tests on the scores of a singular value decomposition (SVD), thus to work
(at most) on a set of .D � 1/ orthogonal, representative directions. One first applies
the SVD to the centered, clr-transformed compositional dataset (see Sect. 6.1.1)
and chooses how many singular values will be considered different than zero. That
number is the rank R of the dataset and gives the maximum order at which the
following tests will be conducted:

1. Each column of the scores matrix U D Œuni� should show a standard normal
distribution:

funi; n D 1; : : : ; N g � N .0; 1/; i D 1; : : : ; RI

the test can be actually computed with the function shapiro.test for a
Shapiro–Wilk test of normality, or with the Kolmogorov–Smirnov test function
ks.test, describing the null-hypothesis distribution with the optional arguments
y="pnorm", mean=0, sd=1.

2. As the scores columns should be uncorrelated, the angle between each pair of
columns should show a uniform distribution on the circle:
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f
n;.ij/ D tan�1.uni=unj/; n D 1; : : : ; N g � U .�pi; �/;
i; j D 1; : : : ; R; i ¤ j I

the test is computed with the Kolmogorov–Smirnov test function ks.test,
giving the extra arguments y="punif", min=-pi, max=pi to describe the
distribution of the null hypothesis.

3. The squared norms of each row of the scores matrix follow a 	2 distribution:

fjunj2; n D 1; : : : ; N g D
RX

iD1
u2ni � 	2.R/I

the test will be provided by a call to ks.test, with null hypothesis specified via
the arguments y="pchisq" and df equal to the chosen rank, R.

The total number of tests to conduct is 1 C R.R C 1/=2. Thus, the desired global
significance should be divided by that number to get the significance level to use in
each test. This second testing option is not (yet) encapsulated in any R function, and
it should be computed “manually” step by step. Note that most of the procedure can
actually be applied to any multivariate dataset, as the compositional nature of the
data plays a role only when computing the SVD.

3.1.2.3 Complete Multivariate Test

The third option to test compositional normality is based on the energy test of
Rizzo and Szekely (2008), implemented in the package “energy”. This test must
be applied to an ilr transformation (any) of the data:

> mvnorm.etest(ilr(sa.lognormals5))

> mvnorm.etest(ilr(sa.dirichlet5))

The test is based on the test statistic (Szekely and Rizzo, 2005):

E D n

0

@2
n

nX

1

EŒkxi �Zk� � EŒkZ �Z0k� � 1

n2

nX

iD1

nX

jD1
kxi � xj k

1

A (3.2)

where y1; : : : ; yn is the standardized sample and Z;Z0 standard normal variates.
The test is thus not very sensitive to local deviations form normality. An interested
user can check the adequate coverage of the test by simulation, e.g.,

> hist(replicate(1000,

+ mvnorm.etest(cbind(rnorm(20),rnorm(20),rnorm(20)))$p.value))

will generate a quite uniform histogram of the p-values of 1,000 datasets of 20
simulated 3-variate normal vectors. A similar test with an adapted test statistic
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is built into “compositions” with command acompNormalGOF.test, as will be
illustrated in the following example.

Example 3.1 (Testing for compositional normality). The global test imple-
mented in “compositions” yields one single p-value that evaluates global
normality, but in case of deviations from additive logistic normality, it cannot
be used to explore where these deviations occur. In this case, QQ plots and
the set of SVD tests can help. Let us compare what happens between three
simulated datasets: one clearly ALN-distributed (a closed sa.lognormals5),
one clearly not ALN-distributed (a closed sa.dirichlet5), and one mixed,
formed taking the first three columns of sa.lognormals5 and the last two of
sa.dirichlet5:

> sa.mixed = cbind(sa.lognormals5[,1:3], sa.dirichlet5[,4:5])

> sa.mixed = acomp( sa.mixed )

Applying the global test we find:

> acompNormalGOF.test(sa.lognormals5)

Energy test of multivariate normality: estimated

parameters

data: x, sample size 60, dimension 4, replicates 999

E-statistic = 1.035, p-value = 0.2763

> acompNormalGOF.test(sa.dirichlet5)

Energy test of multivariate normality: estimated

parameters

data: x, sample size 60, dimension 4, replicates 999

E-statistic = 2.4, p-value < 2.2e-16

> acompNormalGOF.test(sa.mixed)

Energy test of multivariate normality: estimated

parameters

data: x, sample size 60, dimension 4, replicates 999

E-statistic = 1.941, p-value < 2.2e-16

which tells us that acomp(sa.lognormals5) is globally ALN-distributed,
while the other two are not. We want to explore why acomp(sa.mixed) is
not, thus proceeding to a singular value decomposition of the clr-transformed
data and the application of Shapiro–Wilk tests to each column of the scores
matrix. First, we center and clr-transform the data
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> u = svd( scale(clr(sa.mixed), center=TRUE, scale=FALSE) )$u

and then define and apply the test:

> mytest = function(...) shapiro.test(...)$p.value

> apply(u, 2, mytest)

[1] 1.274e-01 3.513e-04 5.425e-01 2.282e-02 8.207e-07

Results suggest that non-normality is concentrated in 2 dimensions of the four
of the problem. The complete set of tests would be obtained with the angle
tests,

> mytest = function(i,j){

+ ks.test(atan2(u[,i], u[,j]), y="punif", min=-pi,

max=pi)$p.value

+ }

> autoload("combn",package="combinat")

> (pairstocompare = combn(1:5,2))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 1 1 1 2 2 2 3 3 4

[2,] 2 3 4 5 3 4 5 4 5 5

> sapply(pairstocompare, mytest)

[1] 1.214e-01 9.522e-06 1.214e-01 5.997e-02 1.214e-01 1.055e-02

[7] 1.214e-01 0.000e+00 9.522e-06 5.997e-02 9.522e-06 1.055e-02

[13] 9.522e-06 0.000e+00 5.997e-02 1.055e-02 5.997e-02 0.000e+00

[19] 1.055e-02 0.000e+00

and the radius test,

> radius = sqrt(rowSums(u^2))

> ks.test(radius, y="pchisq", df=4)$p.value

[1] 3.331e-16

A QQ-ALN plot (Fig. 3.2) shows that non-normality is concentrated in
the ratios involving the last two components, as expected by the way we
constructed this simulated dataset:

> opar <- par(oma=c(1,1,1,1))

> qqnorm(sa.mixed, alpha=0.05)

> par(opar)

The reader is invited to compare this figure with the equivalent diagrams for
the other two datasets:

> qqnorm(acomp(sa.lognormals5), alpha=0.05)

> qqnorm(acomp(sa.dirichlet5), alpha=0.05)
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Fig. 3.2 QQ normality plots
of all pairwise log ratios. This
is the result of qqnorm(x)
with an acomp object. The
accessory argument
alpha=0.01 (or any other
significance level) marks
which log ratios deviate from
normality at that significance

3.1.3 The Dirichlet Distribution

The Dirichlet distribution is the distribution of a composition obtained as the closure
of a vector of D independent, equally scaled (i.e., with the same � parameter)
gamma-distributed variables. Thus, if xi � � .�; ˛i /, then z D C Œx� � D i.˛/,
where x D Œxi � and ˛ D Œ˛i � are vectors of D positive components. The Dirichlet
density is classically given as

f .zI ˛/ D � .˛0/

� .˛1/ � � �� .˛D/
z˛11 � � � z˛DD
z1 � � � zD

;

where ˛0 D ˛1 C � � � C ˛D and � .�/ is the gamma function. The package
“compositions” offers the possibility to generate variates from this distribution,
by means of the function rDirichlet.acomp(n, alpha), where n is the desired
number of random compositions and alpha is the vector ˛ of positive parameters.
The output of this function has an acomp class. To compute the Dirichlet density,
one can use the function ddirichlet(x, alpha), available in other packages like
“MCMCpack” and “gtools”.

Arithmetic mean and variance of the Dirichlet distribution are

EŒz� D C Œ˛� and varRD.z/ D 1

˛0 C 1
.diag.Nz/� Nzt � Nz/:
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Fig. 3.3 Isodensity levels of
an example Dirichlet
distribution

The compositional moments (geometric center and clr variance) are

EAŒz� D clr�1Œ .˛/� and varA.z/ D H � diag. 0.˛// � H;

being H D ID � 1
D

1D�D and the functions  .�/ and  0.�/ the digamma and
trigamma functions, respectively, applied to ˛ component-wise. Note also that
diag.�/ is meant to be a diagonal matrix which diagonal elements are provided by
the argument of the function. Proofs of these statements can be found in Aitchison
(1986) and Mateu-Figueras and Pawlowsky-Glahn (2005).

Note that both variance matrices (the raw and the clr-transformed) are singular
and derived from an “uncorrelated correlation” structure (a diagonal matrix). This is
inherited from the fact that the original gamma-distributed values were independent:
because of this parental independence, the Dirichlet distribution is extremely ill-
posed to model codependence between components.

Example 3.2 (Plotting a scalar function of a composition). Isodensity levels
(Fig. 3.3) of the Dirichlet distribution are not elliptic, either in the classical
geometry or in the Aitchison geometry of the simplex. This makes getting a
plot of its density quite tricky:

> library("gtools")

> opar <- par(mar=c(3,3,1,1))

> myalpha = c(1,2,3) + 1

> plot(acomp(myalpha),pch="")

> aux = seq(from=0, to=1, by=0.01)

> myx = expand.grid(x=aux,y=aux)

> c60 = cos(pi/3)

> s60 = sin(pi/3)
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> myfun = function(x){

+ y = c(x[1]-x[2]*c60/s60, x[2]/s60)

+ y = c(1-sum(y),y)

+ dd = ifelse(any(y<0),NA, ddirichlet(y, alpha=myalpha ) )

+ return(dd)

+ }

> dx = apply(myx,1,myfun)

> dim(dx) = c(101,101)

> contour(dx,asp=1,add=TRUE,col="grey")

> par(opar)

Here we generated a square grid of pairs of values between 0 and 1 (by 0.01),
stored in myx. Then, we took each of these values as the Cartesian coordinates
behind a ternary diagram, recasted those to barycentric coordinates (thus, to
compositions) and, then, for those points inside the ternary diagram computed
the Dirichlet density. The trick here is to build an ad hoc function (myfun)
doing the change of coordinates and density computation for one point and
then apply this function to each row of the grid (through the command
apply). Note that the package “gtools” (providing access to the Dirichlet
density) can be replaced by the package “MCMCpack”. Command contour is
a graphical function of R base distribution. This chunk can be recycled for
plotting other densities or scalar functions of a composition, by changing the
ddirichlet call to the desired function.

To understand the Dirichlet distribution, we can add to the plot a random
sample of the same Dirichlet

> xr = rDirichlet.acomp(n=30, alpha=myalpha)

> plot(xr,pch=19,cex=0.5,add=TRUE)

or its arithmetic and compositional means,

> Dstats = acomp(rbind(clo(myalpha), clrInv(digamma(myalpha))))

> plot(Dstats,pch=19,cex=0.5,add=TRUE)

This is left to the reader. Try also with different values for myalpha, in
particular removing the C1 of the third line of code.

3.1.3.1 Testing for Dirichlet Distributions

An experimental goodness of fit test for the Dirichlet distribution is available by the
acompDirichletGOF.test command:
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> acompDirichletGOF.test(acomp(sa.uniform5),R=10000)

Compositional test for Dirichlet distribution

data: acomp(sa.uniform5)

E-statistic = 0.2152, p-value = 0.9823

The compositional goodness of fit testing problem is essentially a multivariate
goodness of fit test. However, R does not provide such standardized multivariate
goodness of fit tests. Thus, “compositions” includes an omnibus multivari-
ate goodness of fit test, which is base on the two-sample test eqdist.test

for the same distributions from the energy package (Rizzo and Szekely, 2008).
acompDirichletGOF essentially fits a Dirichlet distribution, simulates a large
sample, and checks for equal distribution.

3.1.4 The Aitchison Distribution

Aitchison (1985) presented a family of distributions which generalize both the
Dirichlet distribution and the additive logistic normal (or the normal distribution
on the simplex). A random composition X has an Aitchison distribution with D
component location vector � and spread .D � 1/-quadratic matrix ˇv if its log-
density (with respect to the classical Lebesgue measure) can be expressed as

logf .xI � ;ˇv/ D ��.�;ˇv/C .� � 1/ � log.x/t C ilr.x/ � ˇv � ilr.x/t ; (3.3)

where �.�;ˇv/ is a constant (no analytical form) ensuring that the density will
integrate to one. This is only possible if:

1. ˇv is a symmetric negative definite quadratic form and
PD

iD1 
i � 0.
2. ˇv is symmetric but not positive definite, and 
i > 0 for all i D 1; : : : ;D.

In the present versions of “compositions”, functions dealing with the Aitchison
distribution work only with parameters satisfying the first condition. In this case, a
second more interpretable parameterization can be used. By taking ˙ v a positive
definite .D � 1/-quadratic matrix (a quasi-variance), m a D-part composition (a
quasi-mean), and ˛ a positive scalar, the density of the Aitchison distribution can
then be expressed as

f .xI˛;m;˙ v/ D exp Œ��.˛;m;˙ v/� � exp
�
.˛ � 1/ � log.x/ � 1t

�

� exp

�
�1
2

ilr .x � m/ � ˙�1v � ilrt .x � m/
�
; (3.4)

which is proportional to the product of a symmetric Dirichlet distribution density
(only depending on ˛) and a normal distribution density on the simplex (defined
by m and ˙ v). Due to this double parameterization, the Aitchison distribution
can be either denoted as A .ˇ;�/ or as A .˛;m;˙ /. “compositions” allows
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both sets of parameters to be given to the functions dAitchison(x,...) and
rAitchison(n,...), which respectively compute the density at x and generate
n random variates. Either beta or sigma must be given to indicate the spread of
the distribution; both can be specified as clr or ilr matrices, related through (2.17).
And for the location vector, one must either provide theta or else alpha and m (an
acomp composition).

The two sets of parameters are related through the following equations (where V
is the ilr matrix in use),

˙ v D �1
2

ˇ�1v ; ˇv D �1
2

˙�1v ;

˛ D
DX

iD1

i=D;

ilr.m/ D ˙ v � Vt � �; � D clr.m/ � V � ˙�1v C ˛1:

Note m and ˙ v are not the mean composition and variance matrix of the Aitchison
distribution, but just approximate values. The difference between these quasi-
moments and the actual moments depends on ˛: this parameter is interpreted
as a measure of departure of the Aitchison distribution from the normal on the
simplex. As no analytical expression of these moments exists for any ˛ 6D 0,
the package provides them in a numerically computed accessory function, called
AitchisonDistributionIntegrals, also admitting both sets of parameters. The
interested reader is advised to read the help page of this function and the original
definitions of the distribution (Aitchison, 1985, 1986).

3.2 Models for Count Compositions

3.2.1 The Multinomial Distribution

The conditional multinomial distribution is the most simple model for count
compositions. If a vector X of D natural numbers summing up to N has a
multinomial distribution of parameters p and N , then its density is

f .xI p; N / D NŠ

DY

iD1

p
xi
i

xi Š
:

This is the distribution of N trials of an experiment with D possible outcomes Ai ,
which probabilities are known pi . In this context, the components of x represent the
number of times the outcome Ai was observed, out of the total N . The key idea
of the multinomial distribution is that the vector of probabilities p D Œp1; : : : ; pD�
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x y

zFig. 3.4 An example of a
multinomial distribution: note
that the size of the triangle is
this time 10 units

(incidentally, a composition of total sum 1) is the same for all trials and the outcome
of each trial is independent of the outcome of the preceding ones.

The expectation vector and variance matrix of this distribution are, respectively,
N �p andN.diag.p/�pt �p/. Note that the rows and columns of the variance matrix
sum up to zero, because the vector x has a constant sum equal to N .

The multinomial distribution is available in the basic R distribution, with
functions rmultinom(n, size, prob) and dmultinom(x, size, prob). The
first function generates n samples of a multinomial distribution with parameters:
N given by size and probability vector p specified in prob. The second function
provides the elementary probability of this multinomial distribution for x.

Another useful function is included in package “combinat”, devoted to com-
binatorics: command xsimplex(p,n) computes the so-called .p; n/-simplex, i.e.,
all the ways in which a natural number n can be expressed as the sum of p natural
numbers. This is the set of support points of the multinomial density. Note that, in
this last function, the argument n corresponds to the number of trials N , given in
argument size in the first two functions. Also, p is the length of the probability
vector. Figure 3.4 shows an example, obtained with

> library("combinat")

> opar <- par(mar=c(3,3,1,1))

> mysx = t( xsimplex(p=3,n=10) )

> dx = apply(mysx, 1, function(x){

+ dmultinom(x, size=10, prob=clo(mymn))

+ })

> plot(rcomp(mysx), cex=0.25+dx/max(dx)*1.75)

> par(opar)

A common error when working with counts is to take p (the probabilities of
each outcome) for x (the number of times each outcome was observed) or vice
versa. These two vectors have completely different natures: the first is an acomp

composition from a real D-part simplex, and the second is a ccomp composition
from a discrete .D;N /-simplex. These two vectors are as different as Figs. 3.3
and 3.4 are.
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3.2.1.1 Simulation and Testing for Multinomial Distributions

Simulation of and testing for a multinomial distribution can be done with the
following commands:

> (x <- rmultinom.ccomp(n=10,p=acomp(c(1,2,3)),N=8))

[,1] [,2] [,3]

[1,] 1 3 4

[2,] 0 4 4

[3,] 0 2 6

[4,] 1 3 4

[5,] 0 1 7

[6,] 3 2 3

[7,] 1 3 4

[8,] 0 0 8

[9,] 1 2 5

[10,] 0 3 5

attr(,"class")

[1] "ccomp"

> ccompMultinomialGOF.test(x)

Pearson's Chi-squared test with simulated p-value (based

on 1999 replicates)

data: unclass(x)

X-squared = 21.23, df = NA, p-value = 0.2785

The multinomial goodness of fit test assumes the number of observations for each
observation to be a possible varying constant; i.e., it tests conditional to the observed
totals. The test is the 	2-test for independence in a contingency table applied to the
dataset.

3.2.2 The Multi-Poisson Distribution

The multi-Poisson distribution is the joint distribution of D-independent Poisson-
distributed discrete random variables. Its parameter set is a vector of D rates �.
If a vector X of D natural numbers has a multi-Poisson distribution, denoted as
X � PoD.�/, then its density is

f .xI �/ D exp

 

�
DX

iD1
�i

!
DY

iD1

�
xi
i

xi Š
:

In this distribution, the components of x give the number of times that each of
D possible outcomes Ai was observed in a given period, which expected rates of
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occurrence during that period are the several �i . The expectation vector is the vector
of expectations of the marginal Poisson distributions; i.e., EŒX� D �, whereas the
variance is a diagonal matrix with these very same elements, varŒX� D diag.�/.

A look at the densities of the multinomial and the multi-Poisson distributions
shows that they are pretty similar. There is only one difference between them,
namely, the total sum of trials in a multinomial distribution is fixed,

PD
iD1 xi D N ,

whereas it is Poisson distributed in the multi-Poisson case. This similarity provides
an interpretation of p D C Œ�� as the vector of relative probabilities of occurrence
of the D outcomes considered.

3.2.2.1 Simulation and Testing for a Multi-Poisson Distribution

Simulation of and testing for a multi-Poisson distribution can be done with the
following commands:

> (x <- rpois.ccomp(n = 10, p = acomp(c(1, 2, 3)), lambda = 8))

[,1] [,2] [,3]

[1,] 3 3 8

[2,] 1 3 4

[3,] 2 3 3

[4,] 1 1 0

[5,] 0 2 7

[6,] 1 1 4

[7,] 3 2 3

[8,] 0 3 4

[9,] 2 0 1

[10,] 1 3 1

attr(,"class")

[1] "ccomp"

> ccompPoissonGOF.test(x)

Count Composition Poisson Goodness of fit test

data: structure(c(3, 1, 2, 1, 0, 1, 3, 0, 2, 1, 3, 3, 3, 1, 2,

1, 2, 3, 0, 3, 8, 4, 3, 0, 7, 4, 3, 4, 1, 1),

.Dim = c(10L, 3L), class = "ccomp")

= 0.5165, shape1 = 1, shape2 = 2, p-value = 0.7662

alternative hypothesis: Count Composition is not a multi-Poisson

distribution with constant mean

The test for a multi-Poisson distribution reports the corrected p-value for
the minimum of two p-values: one is the multinomiality test, which tests that
conditional to the totals the individual count compositions follow a multinomial
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distribution. The second is a Kolmogorov–Smirnov-based test for the Poisson
distribution of the totals. Independence of the total and the conditional distribution
is not tested.

3.2.3 Double Stochastic Count Distributions

The preceding two models for count compositions assumed a constant probability or
intensity vector. That condition can be relaxed by assuming a hierarchical two-layer
model. In the deeper layer, one may have a random Aitchison-distributed continuous
composition p � A .�;ˇv/, including as special cases the ALN and the Dirichlet
distributions. In the second layer one has a random count composition X, which
conditional distribution is multinomial, for a known p. This second layer is the one
observed. The non-conditional density of X, integrating all the uncertainty of both
layers, is

f .xI �;ˇv; N / D NŠe��.�;ˇv/

QD
iD1 xi Š

�
Z

SD

exp
�
.� C x � 1/ log.p/t C ilr.p/ˇvilr.p/t

�
d�S.p/;

at the nodes of the .D; n/-simplex and zero everywhere else (as the multinomial).
Note that the term inside the integral is also an Aitchison density (3.3), except for
the lack of the closure constant. Then, by adding and subtracting �.� Cx;ˇv/ inside
that exponent and recalling that any density integrates to one, we find an alternative
expression for the non-conditional density:

f .xI �;ˇv; N / D NŠ
QD
iD1 xi Š

� e
�.�Cx;ˇv/

e�.�;ˇv/
;

as a function of the closing constants of the Aitchison distribution. Thus, proba-
bilities of the double stochastic count distribution can be quite easily computed by
calling twice the function AitchisonDistributionIntegrals.

A double stochastic count distribution can be generated by doing a Poisson or
multinomial simulation based on a random sample of compositions:

> vr = ilrvar2clr(diag(2))

> x1 <- rAitchison(10,theta=c(1,1,1),sigma=vr)

> rpois.ccomp(nrow(x1),x1,lambda=8)

[,1] [,2] [,3]

[1,] 0 5 2

[2,] 1 1 5

[3,] 4 0 2

[4,] 0 2 1

[5,] 0 0 4
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[6,] 1 0 11

[7,] 1 2 1

[8,] 4 0 0

[9,] 1 4 2

[10,] 2 0 1

attr(,"class")

[1] "ccomp"

> rmultinom.ccomp(nrow(x1),x1,N=8)

[,1] [,2] [,3]

[1,] 1 6 1

[2,] 1 2 5

[3,] 6 0 2

[4,] 0 6 2

[5,] 2 2 4

[6,] 2 1 5

[7,] 5 2 1

[8,] 4 1 3

[9,] 2 5 1

[10,] 6 0 2

attr(,"class")

[1] "ccomp"

There are no tests for goodness of fit for a double stochastic distribution in R or
“compositions”.

3.3 Relations Between Distributions

3.3.1 Marginalization Properties

3.3.1.1 Some Accessory Matrices

When the number of parts of a composition is higher than 3, we need a marginaliza-
tion process to plot any of the preceding models. Three options can be considered:
the construction of subcompositions, the amalgamation of some parts, and the
geometric averaging of some parts. Proofs of results regarding amalgamation and
subcomposition can be found in Aitchison (1986).

To characterize these properties, it is convenient to introduce two kinds of
matrices: subcomposition matrices and amalgamation matrices. Both contain only
zeroes and ones and explain in which way the parts of the original composition are
kept, removed, or pooled together in the marginalization process. An amalgamation
matrix A has D rows and some less columns, for instance A: in any row there must
be one single 1, and every column must have at least one 1. A subcomposition matrix
B has D rows and as many columns as parts in the subcomposition, say B: in any
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row, there can be at most one 1, and every column must have one single 1. A third
kind, the geometric averaging matrix G, is like an amalgamation matrix but where
each column is divided by its total sum: in this way, the A columns of G sum up
to one, and each row has one single nonzero value. Note that A and B denote two
matrices, and A and B denote their number of columns, respectively.

Amalgamation and geometric averaging are, respectively, provided by the func-
tions rcompmargin and acompmargin, where we specify the variables that should
be kept unchanged, and the remaining variables are pooled together.

Example 3.3 (Amalgamation and subcomposition matrices). Take the exam-
ple of nutrient composition of canned products introduced in Chap. 2, and
replace fat by saturated and unsaturated fats (thus having 6 parts). Assume we
want to either combine them back in a single variable or focus our attention
only on them. Define the following three matrices:

A D

0

BB
B
B
B
B
B
@

1 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1

CC
C
C
C
C
C
A

; B D

0

BB
B
B
B
B
B
@

1 0

0 1

0 0

0 0

0 0

0 0

1

CC
C
C
C
C
C
A

; and G D

0

BB
B
B
B
B
B
@

1=2 0 0 0 0

1=2 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1

CC
C
C
C
C
C
A

:

If the way fat is split in its different types is not relevant for our problem and
we want to replace them by the total fat, we can use the amalgamation matrix
A. When applied to the data X � A, this matrix replaces the first two columns
of the dataset by their sum and keeps the other four unchanged (thus, the final
number of columns A D 5). In the log-ratio perspective, amalgamation can
be replaced by geometric averaging, which is obtained by applying G to the
clr-transformed dataset: clr�1.clr.X/ � G/.

On the contrary, if the focus of our study is on fat components, we can
use the subcomposition matrix B. Note that this matrix is obtained just by
selecting some columns of an identity matrix, those linked to the parts that
we want to keep. When applied to the data X � B, this matrix selects B D 2

columns and removes the other from the dataset.
Another useful matrix is the matrix of projection onto the clr-plane of P

components, HP D IP � 1
P

1P�P . For instance, for P D 4

H4 D

0

B
B
@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1

C
C
A � 1

4

0

B
B
@

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1

C
C
A D 1

4

0

B
B
@

3 �1 �1 �1
�1 3 �1 �1
�1 �1 3 �1
�1 �1 �1 3

1

C
C
A :
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Table 3.1 Marginalization properties of the distribution of a composition

X follows X � A follows X � B follows clr�1.clr.X/ �G/ follows

NS.m;˙ / (Unknown) NS.m � B; NS.clr�1.clr.m/ �G/;
HB � .Bt �˙ � B/ �HB/ HA � .Gt �˙ �G/ �HA/

Di.˛/ Di.˛ � A/ Di.˛ � B/ (Unknown)
M u.p; N / M u.p � A; N / (Mixture Bi �M u) (Unknown)
PoD.�/ PoA.� � A/ PoB.� � B/ (Unknown)

3.3.1.2 Marginalization Properties of the Compositional Distributions

If X is aD-part random composition following a normal distribution on the simplex
with geometric center m and clr variance ˙ , then a B-part subcomposition has also
the same distribution model. The new geometric center is obtained by reclosing
the selected parts from the original one, C Œm � B�. The clr variance is obtained by
taking the rows and columns related to the selected parts from the original variance
matrix and forcing them to sum up to zero, i.e., with HB � .Bt � ˙ � B/ � HB . If
instead of removing the nonselected parts, we amalgamate them as a new part of
the composition, and then the resulting composition has no known distribution. But
if the nonselected parts are geometrically averaged, then we obtain again a normal
distribution on the simplex, with parameters equivalent to those obtained with the
subcomposition procedure: the mean is clr�1Œclr.m/ � G� and the variance matrix
HA � .Gt � ˙ � G/ � HA.

If X has a Dirichlet distribution with parameter vector ˛, then a subcomposition
has the same distribution with parameter vector ˛ � B. The same occurs with the
amalgamated marginal, which has a Dirichlet distribution of parameters ˛ � A.
Note that if the number of final parts is two, then the resulting composition has
a Beta distribution. The marginal obtained by geometric averaging has no known
distribution.

A count composition X with a multinomial distribution of parameters p and
N does not have simple subcompositional properties: the distribution of a subset
of parts (a non-reclosed subcomposition) can be obtained as a binomial mixture
of multinomials, but this expression is beyond the scope of this book. On the
contrary, an amalgamated count composition has also a multinomial distribution
with parameters p � A and N . Note that if the number of final parts is two, then
the resulting composition has a binomial distribution. The geometric averaging
marginal does not have a known distribution.

For a multi-Poisson distribution of parameter �, both the amalgamation and
extraction of (non-reclosed) subcompositions have nice properties, as the resulting
distributions are of the same type, with parameter vector � � A respectively � � B.

To our knowledge, the Aitchison distribution does not have any simple marginal-
ization property. After looking at the summary of Table 3.1, that should not be a
surprise: the properties of the Dirichlet and the normal distribution in the simplex
are too different to allow for a common, general ground. The same occurs to the
double stochastic count distribution, inheriting from the Aitchison distribution.
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3.3.2 Conjugated Priors

This section summarizes some properties and relations of the preceding distributions
that can be useful for Bayesian statisticians. As it is well known, the multinomial
and the Dirichlet models are conjugate distributions. Assume a prior Dirichlet
distribution with parameters ˛ for the vector p. Update it by the likelihood of
obtaining an outcome equal to the vector x from a multinomial distribution of
probabilities p. Then, the posterior distribution for p is also a Dirichlet distribution
with parameters .˛ C x/.

The same happens between the multi-Poisson and the Dirichlet distributions.
Take a prior model C Œ�� � PoD.˛/ and a scaling value a (fixed or random). If
we observed a multi-Poisson experiment PoD.a�/ and obtained a realization x,
then the posterior C Œ�� � PoD.˛ C x/.

The Aitchison distribution, being a generalization of the Dirichlet, has also
the two preceding properties. If we take a prior model of Aitchison type, with
parameters � and ˇ, for the parameter vector of the multinomial distribution,
then the posterior obtained after observing a multinomial realization x has also an
Aitchison-type distribution, with the same ˇ and an increased � C x. The same
posterior is obtained if x is a multi-Poisson realization. Finally, because the normal
distribution on the simplex is just a particular case of the Aitchison distribution,
we can also say that a prior NS.m;˙ / updated by a multinomial or multi-Poisson

observation x yields an Aitchison posterior A
�PD

iD1 xi ; m˚clr�1 Œ˙ � x� ; ˙
	

.

Note that this relation provides an interpretation of ˛ as a sort of total amount of
information provided by the observations.

Finally, the double stochastic count distribution is actually the predictive distri-
bution of a multinomial count composition with probability parameter following a
priori an Aitchison distribution.
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Chapter 4
Descriptive Analysis of Compositional Data

Abstract The descriptive analysis of multivariate data is, in classical applications,
mostly a univariate and bivariate description of the marginals. This is an inap-
propriate approach for compositional data, because the parts of a composition are
intrinsically linked to each other: the dataset is multivariate in nature, not by decision
of the analyst. Following the principle of working in coordinates and the golden rule
of working with log ratios, we can structure a meaningful descriptive analysis of a
compositional dataset in the following steps. In the first step, descriptive statistics
for central tendency, global spread, and codependence are computed. The second
step is a preliminary look at a set of predefined “marginals”, i.e., some ternary
diagrams, to uncover relations between more than two parts. The third step is
the exploration of the codependence structure through the biplot, a joint optimal
representation of the variables and of the observations of a composition. Biplots
are nevertheless explained in Chap. 6, because of their connection with principal
component analysis. One of the aims of all the preceding phases should be to select
a reasonable set of projections, or the selection of a basis: if this is achieved, the
fourth step should be a classical univariate analysis of each coordinate.

4.1 Descriptive Statistics

The descriptive statistics commands will be exemplified with a subcomposition from
a geochemical dataset:

> library(compositions)

> GeoChemSed=read.csv("geochemsed.csv",header=TRUE,skip=1)

> x = acomp(GeoChemSed, parts=c("Cr","Zn","Pb"))

K.G. van den Boogaart and R. Tolosana-Delgado, Analyzing Compositional Data with R,
Use R!, DOI 10.1007/978-3-642-36809-7 4, © Springer-Verlag Berlin Heidelberg 2013
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74 4 Descriptive Analysis of Compositional Data

4.1.1 Compositional Mean

Aitchison (1986) pointed out that meaningful statistics of central tendency, of
spread, and of codependence should have some invariance properties with respect
to the most reasonable manipulations of the dataset:

• Translating (perturbing with a constant composition) a dataset should not change
the spread or codependence structure in any sense, but just translate the center.

• Rescaling (e.g., changing units of) a dataset should simply rescale the center,
whereas having a quadratic influence on spread and codependence (because
variances have the units of the dataset but squared).

For compositions, translation and scaling are perturbation and powering (see
Sect. 2.5). One obtains then the following descriptive statistics, meaningful with
respect to these operations.

The center or compositional mean of a dataset X with N observations and D
parts is the composition

Nx D 1

N
ˇ
MN

nD1xn D clr�1
 
1

N

NX

nD1
clr.xn/

!

D C

"

exp

 
1

N

NX

nD1
ln.xn/

!#

;

(4.1)

where xn is the nth observation, in the nth row of X. Computing the mean(x) of
an acomp object directly yields this compositional average (this uses standard
S3-functionality of R).

> x = acomp(x)

> mean(x)

Cr Zn Pb

0.1508 0.5773 0.2719

attr(,"class")

[1] acomp

In real multivariate analysis it is typical to center the data by removing their mean:
in compositional data analysis, we can do the same by perturbing by the inverse of
the center, i.e., X� D X�Nx:

> mean(x-mean(x))

Cr Zn Pb

0.3333 0.3333 0.3333

attr(,"class")

[1] acomp

The average of the centered dataset is the neutral element of the simplex � which is
a vector with the same value in each component.
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Note that this estimator is not robust. A robust improvement of the compositional
mean can be computed using mean(x,robust=TRUE). Note also that, involving
logs or products, this average does not admit a single zero value: this inability
to manage zeros is one of the critical points usually raised against compositional
statistics. How to work with zero values and outliers, as well as robustness issues,
are discussed in Sect. 7.

4.1.2 Metric Variance and Standard Deviation

There are various measures of spread for compositional data. As a global measure
of spread, one can use the metric variance (Pawlowsky-Glahn and Egozcue, 2001),
also known as total variance or generalized variance,

mvar.X/ D 1

N � 1

NX

nD1
d 2A .xn; Nx/ ; (4.2)

i.e., the average squared distance from the center to the dataset, with corrected
degrees of freedom as happens with the conventional variance. This variance is
available through the generic command mvar(x), as soon as x has acomp class:

> mvar(x)

[1] 0.2883

In real data, it is difficult to interpret variances quantitatively, and one tends to work
with standard deviations. Unfortunately, there is no straightforward definition of
a compositional standard deviation. We decided thus to define a metric standard
deviation , to support quantitative interpretation, as

msd.X/ D
r

1

D � 1
mvar.X/

> msd(x)

[1] 0.3797

If the variation was the same in all directions, we could interpret this quantity as
the radial standard deviation on a log scale. When the variance is not the same in
all directions, we may still understand the metric standard deviation as some sort of
average spread.

As required by the principle of subcompositional coherence, the metric variance
of a subcomposition is never greater than the metric variance of the parent
composition.
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4.1.3 Variation Matrix and Its Relatives

The metric variance does not contain any information about the codependence of
components. According to the findings of Chayes (1975), we cannot describe these
by raw correlations or covariances, because they are spurious effects of the closure.
Instead Aitchison (1986) recommends the variation matrix. This matrix has D2

components, each defined as

�ij D var

�
ln
xi

xj

�
(4.3)

and estimated by

O�ij D 1

N � 1
NX

nD1
ln2

xni

xnj
� ln2

Nxi
Nxj

through the command

> variation(x)

Cr Zn Pb

Cr 0.0000 0.2611 0.3259

Zn 0.2611 0.0000 0.2781

Pb 0.3259 0.2781 0.0000

It is easy to show that this is a symmetric matrix, given that ln.a=b/ D � ln.b=a/
and var.�c/ D var.c/. A small �ij D �ji implies a small variance of the ln.xi=xj /,
thus a “good proportionality” xi / xj . The smaller a variation element is, the
better the proportionality between the two components. To help in its interpretation,
Aitchison (1997) suggests to consider the transformation ij D exp.��2ij=2/ and
interpret it as a correlation coefficient. Figures 4.1 and 4.2 visualize several densities
of an additive-logistic-normal distribution of two parts, with fixed center and
different variations.

The same idea of applying a measure of location or spread to ln.xi=xj / can be
used with any descriptive statistic. This is the result of the summary command for
“acomp”-compositions:

> summary(x)

$mean

Cr Zn Pb

0.1508 0.5773 0.2719

attr(,"class")

[1] acomp
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Fig. 4.1 Visualizing the meaning of the entries of the variation matrix. Each frame shows the
additive-logistic-normal distribution density of a two-part composition with the given variation
and mean. The vertical line marks the compositional mean, coinciding with the median. The mode
is distorted because the density is not compatible with a compositional geometry (see Sect. 3.1.1).
Symmetric 95 % probability intervals are shown in the X-axis

$mean.ratio

Cr Zn Pb

Cr 1.000 0.2613 0.5548

Zn 3.827 1.0000 2.1232

Pb 1.803 0.4710 1.0000

$variation

Cr Zn Pb

Cr 0.0000 0.2611 0.3259

Zn 0.2611 0.0000 0.2781

Pb 0.3259 0.2781 0.0000
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variation=0.01 variation=0.02 variation=0.05

variation=0.1 variation=0.2 variation=0.5

variation=1 variation=5 variation=10

Fig. 4.2 Visualizing the meaning of the entries of the variation matrix. Each frame shows
the density of the multiplicative factor expsd, by which the ratio of two components can be
multiplied/divided to build a 1� -interval. The pictures are based on a lognormal model. The vertical
line marks the median and geometric mean. The mode is distorted because the lognormal density
does not correctly capture the compositional geometry. Symmetric 95 % probability intervals are
shown in the upper part of the plot

$expsd

Cr Zn Pb

Cr 1.000 1.667 1.770

Zn 1.667 1.000 1.694

Pb 1.770 1.694 1.000

$min

Cr Zn Pb

Cr 1.000 0.03571 0.05556

Zn 1.484 1.00000 1.06667

Pb 0.541 0.12500 1.00000
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$q1

Cr Zn Pb

Cr 1.000 0.1917 0.4286

Zn 2.619 1.0000 1.4545

Pb 1.310 0.3515 1.0000

$med

Cr Zn Pb

Cr 1.000 0.2857 0.5455

Zn 3.500 1.0000 1.8125

Pb 1.833 0.5517 1.0000

$q3

Cr Zn Pb

Cr 1.000 0.3819 0.7639

Zn 5.215 1.0000 2.8454

Pb 2.333 0.6875 1.0000

$max

Cr Zn Pb

Cr 1 0.6739 1.848

Zn 28 1.0000 8.000

Pb 18 0.9375 1.000

$missingness

missingType

variable NMV BDT MAR MNAR SZ Err

Cr 87 0 0 0 0 0

Zn 87 0 0 0 0 0

Pb 87 0 0 0 0 0

attr(,"class")

[1] "summary.acomp"

• mean.ratio is the geometric mean of the ratios and can be interpreted as a
central value of each pairwise ratio.

• expsd is the exponential of the standard deviation of the log ratios, undercase,
to be taken as a factor to multiply/divide the mean.ratio of the components and
obtain a 1�-radius interval (Fig. 4.2 presents a visual evaluation of how large or
small these values might be).

• Finally, for each pairwise ratio, we obtain the minimum (min), the first quartile
(q1), the median (median), the third quartile (q3), and the maximum max.

With all these quantities we can get a good feeling of the relative variability of the
components. But an image is worth a thousand words, and all these statistics are
graphically displayed by the boxplot. The command boxplot(x) of an “acomp”
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Fig. 4.3 Boxplots of all pairwise log ratios. This is the result of boxplot(x) with an acomp object

compositional data generates a matrix of boxplots, where each cell displays the
boxplot of a pairwise log ratio (Fig. 4.3):

> opar <- par(mar=c(3,3,1,1))

> boxplot(x)

> par(opar)

4.1.4 Variance Matrices

Once the analyst is familiar with them, variation matrices are very practical for
interpretation, because they involve only pairs of variables. On the contrary, some
further computations will need a mathematical description of the codependence in
a more classical way, as a a matrix of covariances. For these uses, we have the the
clr-variance matrix (by the function var): it is just the variance-covariance matrix
of the clr-transformed dataset. Its elements Ȯ ij are thus the covariances

Ȯ ij D cov


clri .x/; clrj .x/

� D 1

N

NX

nD1
ln

xni

g.xn/
� ln

xni

g.xn/
� ln

Nxi
g.Nx/ � ln

Nxj
g.Nx/ ;

(4.4)
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where Nx D Œ Nx1; : : : ; NxD� is the center (4.1). Remember that the components of the
clr sum up to zero and so does the clr-variance matrix: each of its rows and of its
columns sums up to zero. Moreover, each of these covariances involve all parts in
its computation (through the factor g.x/). Furthermore, the clr-covariance matrix
has again forced negative covariances. It should thus not be interpreted directly and
never be converted to a correlation matrix. It is just a mathematical tool.

Some compositional procedures also use-at least internally-the ilr-variance
matrix, computed with clrvar2ilr(var(x)). The ilr-variance matrix is not
unique, since it depends on the selection of the basis. It should thus not be reported
without explicitly mentioning which basis was used. Working with bases will be
treated later in this chapter. The mathematical meaning of these variance matrices is
that of a bilinear form, as was mentioned in Sect. 2.5.9.

Example 4.1 (Standardization, centering, and scaling). In many multivariate
applications, it is typical to center and/or scale the several variables, in order
to have a dimensionless, comparable variability. This is typically done by the
standardization, i.e., centering by subtraction of the mean value and scaling
by division with the standard deviation. These operations are flawed in com-
positional data, for several reasons. First, compositional data already share a
common dimensionless scale; thus, scaling removes an important information
on which variables present more variability. Second, centering produces
negative values, which destroys the interpretation of results as compositions.

However, we can apply the equivalent operations of centering and scaling
(thus a standardization) to a compositional dataset, by using perturbation and
powering. A dataset can be centered by perturbation with the inverse of the
center (4.1) and scaled by powering with the inverse of the square root of the
metric variance (4.2):

Z D 1
p

mvar.X/
ˇ .X � Nx/ :

We can scale a compositional dataset, either by using this expression above
or the function scale:

> # get the statistics:

> mn = mean(x)

> mvr = mvar(x)

> # center the data:

> dat1 = scale(x,center=TRUE,scale=TRUE)

> dat2 = (x-mn)/sqrt(mvr)

If we only want to center the data, we can try either

> dat3 = scale(x,center=TRUE,scale=FALSE)

> dat4 = x-mn
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Cr Zn

Pb

Cr Zn

Pb

Fig. 4.4 Comparison of a ternary diagram of centered and non-centered data

It is left to the reader to check that these pairs of data are equal. Compositional
scaling does not standardize each variable independently, but “powers” all of
them by the same quantity. This preserves the different variances of each clr
variable and just makes their total sum constant. A transformation like this
is mostly useful to compare a subcomposition among several subsamples. On
the contrary, centering is quite often used in plotting data: if we have data
“squashed” on an edge or a vertex of the ternary diagram, we can enhance
the visual assessment of its structure by centering them before plotting. For
this reason, plot.acomp() can also be given logical arguments center and
scale. Figure 4.4 compares the non-centered and the centered versions of
this diagram.

4.1.5 Normal-Based Predictive and Confidence Regions

It is interesting to represent center and dispersion structure of the data graphically.
The center, being a point, can be plotted by the function plot(x,add=TRUE),
where x must be the acomp mean. The dispersion structure can be visualized with
ellipses(mean,var,r). This ellipse can actually correspond to a p-confidence
region on the mean, if we take the radius r according to a Fisher F distribution of
.D � 1/ and .N �D C 1/ degrees of freedom:

r D
r

D � 1

N �D C 1
� Fp.D � 1;N �D C 1/:

This is valid if the data follow a normal distribution for compositions (see Sect. 3.1),
or else if the number of observations N is large. In this last case, a compositional
central limit theorem applies (Aitchison, 1986).
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Cr Zn

PbFig. 4.5 Elliptic 95 %
confidence region around the
center (solid line) and 95 %
probability region of the
population (dashed line) in a
ternary diagram
(Example 4.2). The center is
also represented as a dot

Alternatively, we can build p-probability regions, if we assume that the data
follow a normal distribution for compositions of known variance matrix. Then,
the ellipses must have a radius given by the 	2 distribution of .D � 1/ degrees
of freedom:

r D
q
	2˛.D � 1/:

Example 4.2 (Confidence and probability regions). Figure 4.5 shows both
confidence and probability regions, for the dataset of Cr, Zn, and Pb of
the geochemical sediment composition. These regions are obtained with the
following steps. First, we compute the several statistics needed, including the
radii of the two regions:

> # get the mean:

> mn = mean(x)

> # compute variance and radii:

> vr = var(x)

> df1 = ncol(x)-1

> df2 = nrow(x)-ncol(x)+1

> rconf = sqrt( qf(p=0.95, df1, df2)*df1/df2 )

> rprob = sqrt( qchisq(p=0.95, df=df1) )

and then plot the data, the center, and the two ellipses:

> # plot the data:

> opar = par(mar=c(3,3,1,1))

> plot(x, cex=0.25)

> plot(mn, pch=19, cex=0.5, add=TRUE)

> # plot the ellipses:

> ellipses(mean=mn, var=vr, r=rconf, col="red")

> ellipses(mean=mn, var=vr, r=rprob, lty=2)

> par(opar)
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Example 4.3 (A complete descriptive analysis). The dataset Hydochem con-
tains several dissolved ions analyzed in some highly polluted rivers. For now,
we focus our attention on the main cations (NaC C KC, Ca2C, Mg2C) and
anions (Cl�, HCO�3 , SOD4 ):

> library("compositions")

> data("Hydrochem")

> subcomp = acomp( Hydrochem[,c(7:10,14,17,18)] )

> # average in mass proportions

> mean(subcomp)

Na K Mg Ca Cl SO4 HCO3

0.10686 0.01203 0.03800 0.14119 0.15875 0.22932 0.31385

attr(,"class")

[1] acomp

This mean shows us that the ion mass proportion is in average dominated by
the cations Na and Ca, whereas anions show a fair equilibrated contribution.
But in fact, molar proportions would be more informative; thus, we recast the
data by inverse-perturbing them with the molar weights of each ion:

> # weight of a mol of each species:

> mw = c(22.99, 39.098, 34.305, 40.078, 35.453, 96.063, 61.017)

> mw = acomp(mw)

> # recast mass proportions to molar proportions

> subcomp = subcomp-mw

> mean(subcomp)

Na K Mg Ca Cl SO4 HCO3

0.21525 0.01424 0.05130 0.16314 0.20735 0.11054 0.23818

attr(,"class")

[1] acomp

The numbers have not changed a lot, though now Na dominates the ions, and
we see a certain similarity between Na and Cl. A correct chemical analysis
should require that there are as much negatively charged ions (anions) as
positively charged ones (cations). By reweighting this average with the charge
of each species, we obtain

> # ionic charges of each species:

> charges = c(1,1,2,2,-1,-2,-1)

> unclass(mean(subcomp)) %*% charges

[,1]

[1,] -0.008248

which is a fairly low error, given that we are not considering the contribution
of many more ions. Note that the instruction unclass() strips the object of its
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class(acomp in this case) and allows us to treat it as a vector of real numbers,
not as a composition.

A look at the variation matrix,

> variation(subcomp)

Na K Mg Ca Cl SO4 HCO3

Na 0.00000 0.4539 0.7443 1.11177 0.08632 0.8396 1.25979

K 0.45387 0.0000 1.1885 1.69726 0.41132 1.6289 1.69015

Mg 0.74429 1.1885 0.0000 0.21956 0.95977 0.2191 0.28328

Ca 1.11177 1.6973 0.2196 0.00000 1.36408 0.2001 0.08803

Cl 0.08632 0.4113 0.9598 1.36408 0.00000 1.0970 1.52865

SO4 0.83958 1.6289 0.2191 0.20008 1.09697 0.0000 0.39657

HCO3 1.25979 1.6901 0.2833 0.08803 1.52865 0.3966 0.00000

highlights again the very good codependence between Cl and Na, a very low
0.0863, as well as between HCO3 and Ca, 0.088 (compare these values with
Figs. 4.1 and 4.2 as a reference). This is readily explained by the existence
of a very important common source for each one of these pairs, respectively
leaching from some potash mines in the basin and the calcareous-dominated
landscape. For the same reason, one should expect also a good codependence
between Mg and both Ca and HCO3 (provided by dolomite) and between Ca
and SO4 (constituents of gypsum), respectively, 0.2196, 0.2833, and 0.2001.
It is surprising to see that K has no codependence with Na or Cl (as they are
the main components of potash) but also not a good one with SO4 (both being
typical constituents of fertilizers).

4.2 Exploring Marginals

4.2.1 The Three Types of Compositional Marginals

Our inability to see in more than 3 dimensions (and to print in more than 2) has led
to the standard practice of preliminarily looking at the set of scatterplots of each
pair of available variables: thus, the standard outcome that one gets when doing
plot(x) (for x a data.frame) is a matrix of scatterplots, where one represents the
row variable in the Y -axis against the column variable in the X -axis (see Fig. 4.6).
These bivariate scatterplots are flawed for compositions, as mentioned in Sect. 2.3.1.

For compositional data, the typical 2-dimensional representations are ternary
diagrams, and this will be the result of function plot(x) for acomp objects with
3 parts. For compositions with more than 3 parts, the result is a matrix of ternary
diagrams, involving the two variables defined by row and column. But to plot a
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Fig. 4.6 Result of plotting a conventional data frame. Note that this is a matrix of the so-called
Harker diagrams, thus with the problems mentioned in Sect. 2.3.1

ternary diagram, we need three variables. Thus, we will need to take a decision
regarding the third component. Function plot(x, margin) generates a matrix of
ternary diagrams, which three parts are the two defined by the row and the column
and the third is controlled by the optional argument margin:

• margin="acomp" (or nothing, the default) computes the third part as the
geometric mean of all the components except those two from row and column
(symbolized with "*"; see Fig. 4.7).

• margin="rcomp" computes the third part as the amalgamation of all the
components except those two from row and column (symbolized with "+"; see
Fig. 4.8).

• Finally, margin equal to one of the parts of the dataset fixes it as the third part
of the whole matrix and generates thus a matrix with .D � 1/ rows and columns
(see Fig. 4.9).
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Fig. 4.7 Matrix plot of ternary diagrams with default third component (geometric average) and
ellipses showing the variance structure through 95 % probability regions

The default behavior is margin="acomp" because it is consistent with the whole
Aitchison geometry of the simplex explained in Sect. 2.5, allowing then to add
further information (center, variance ellipses, principal component lines, etc.). The
option margin="rcomp" is provided because amalgamation is a quite common
technique of reduction of dimensionality used by many analysts. One should
nevertheless be extremely careful when using amalgamation, as it is a nonlinear
operation in the Aitchison compositional geometry and does not honor the principles
of compositional analysis.

4.2.2 Ternary Diagram Matrices for Multidimensional
Compositions

One of the advantages of using margin="acomp" is that one can apply many
coherent manipulations to the dataset, like centering the dataset or graphically
representing its variance-covariance structure (numerically obtained in Sect. 4.1),
by adding ellipses to the plot:
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Fig. 4.8 Matrix plot of ternary diagrams with amalgamated third component

> cations = acomp( subcomp[,1:4] )

> plot(cations, cex=0.5)

> r = sqrt( qchisq(p=0.95,df=2) )

> mn = mean(cations)

> vr = var(cations)

> ellipses(mean=mn, var=vr, r=r, lwd=3 ,col="gray")#red?

The radius has been chosen to contain 95 % of probability assuming a normal model
for the composition (see Sect. 3.1) and a known variance. Figure 4.7 shows the
result. In contrast, if argument margin="rcomp" is given, one obtains Fig. 4.8.
The third alternative is generated following this code, resulting in a set of ternary
diagrams with third component fixed as Mg (Fig. 4.9, in this case, also centered
giving argument center=TRUE):

> plot(cations, cex=0.5, center=TRUE, margin="Mg")

> mn = mean(cations)

> ellipses(mean=mn, var=vr, r=r, lwd=3,col="gray")#red?

From these diagrams, those of Ca vs. Mg vs. K and/or Na are the most inter-
esting. First, they show a very narrow variance ellipse: the data seem to follow
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Fig. 4.9 Matrix plot of centered ternary diagrams with Mg fixed as third component and ellipses
showing the variance structure through 95 % probability regions

a one-dimensional pattern joining the vertices Ca and K–Na. This is in fact
a compositional linear pattern and can be estimated by a principal component
technique (see Sect. 6.1.2). In this particular case, such a narrow ellipse tells us
that the ratios involing Mg have almost a constant value, and most compositional
variance is due to the variatiability of Na/Ca and K/Ca. Second, one can also see a
differentiated subgroup, like a branch of data pointing towards Mg (see Sect. 6.2 for
more information on group detection).

4.3 Exploring Projections

4.3.1 Projections and Balances

The projection of a composition onto a given compositional direction is a real,
unbounded value (page 39). Therefore, such projections can be treated with any of
the conventional methods of descriptive analysis: descriptive statistics, histograms,
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boxplots, kernel density estimates, etc. The present subsection explains how to
encode and compute certain projections in “compositions”, in order to easily
feed them further to these descriptive methods. But these real projections are also
coordinates with respect to a basis. Thus, the following subsection introduces certain
kinds of bases of easier interpretation and some ways to compute them.

The grounding concept here is the balance (Egozcue and Pawlowsky-Glahn,
2005). A balance between two groups of parts A and B is a measure of the total
relative importance of one group against the other (as its name suggests). To be
consistent with the whole compositional geometry of Sect. 2.5, that total relative
importance must be a product, and the measure of contrast must be a log ratio:

�A=B DK ln


Q
a2A xa

�Nb

Q

b2B xb
�Na DK

X

a2A
NB ln xa �K

X

b2B
NA lnxb D 


x; clr�1


ˇA=B

��

(4.5)

with K�1 D p
NaNb.Na CNb/. Note that with the trick of powering each group

of parts by the number of elements of the other group (Na and Nb), we ensure
that the log-ratio coefficients sum up to zero. The constant K is a normalization
to allow mutual comparison between balances with different number of parts. But a
balance is also the projection of a composition onto a certain direction, the balancing
element, clr�1



ˇA=B

�
, where the components of ˇA=B are as follows: ˇi D CNb=K

if i 2 A, ˇi D �Na=K if i 2 B , and ˇi D 0 for those parts which are neither in A
nor in B .

Balance Computation. Balance scores are computed with the command
balance(X, expr), where X is the dataset and expr a formula with the
association of parts. For instance, the scores of the balance suggested in (6.2)
would be obtained with the command

> balance(X=x, expr=~CaO/(Na2O*P2O5))

Balance elements (clr-transformed) are provided by the command
balanceBase(X, expr), with the same arguments. For instance,

> x = acomp(GeoChemSed,4:13)

> balanceBase(X=x, expr=~CaO/(Na2O*P2O5))

CaO/Na2OP2O5

SiO2 0.0000

TiO2 0.0000

Al2O3 0.0000

MnO 0.0000

MgO 0.0000

CaO 0.8165

Na2O -0.4082
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K2O 0.0000

P2O5 -0.4082

Fe2O3t 0.0000

Note that in the formula expression, we do not include the numeric coeffi-
cients, but only the variables involved and their position (in the numerator,
group A, or in the denominator, group B).

4.3.2 Balance Bases

Why is selecting a basis so important? The principle of working in coordinates more
or less implies that we get the same result with any orthogonal basis. Being able to
define a proper orthonormal basis is something instrumental, to be able to pass from
the composition to its ilr coordinates and back. However, with a well-chosen basis, it
might be possible to interpret individual coefficients and parameters on the level of
coordinates. The black-box, default ilr coordinates (2.9)–(2.11) may be suitable for a
quick-and-dirty analysis, but the interpretation of results in terms of the coordinates
is mostly impossible. This is greatly eased if one uses a basis which has already a
connection with the physical reality being described. This is not always possible,
but when it is, it pays the effort of building ad hoc bases.

Note that by construction (4.5) a balance element has always a unit Aitchison
norm. If we are able to define .D� 1/ of them being additionally mutually orthogo-
nal, then we found an orthonormal basis (page 39). Such balance bases are straight-
forward to define with the help of a sequential binary partition. First, we consider
all available parts and split them in two groups. Then, we take one of these groups
and split it again in two. This is applied recursively until all groups have one single
part. The groups do not necessarily have similar number of parts: to actually get
an interpretable set of ilr coordinates, the splitting should be based on previously
known criteria of association or affinity. If such criteria are not clear, one can use
a hierarchical cluster analysis (Sect. 6.2) and define a balance basis with the output
(e.g., Fig. 6.7).

Encoding Balance Bases. There are several ways to describe a basis using
balances: a partition formula, a signed-binary matrix, and a merging tree
structure. Partition formulae are like the balance formulae of the preceding
box, but involving all parts in a nested structure. Sign-binary (signary)
matrices have the same shape than ilr basis matrices (D rows and D � 1

columns), but only with values of C1, �1, and 0: the element .i; j / is C1
if the i th part is in the first group of j th step partition, or �1 if it is in the
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second group, or it is 0 if it is not involved in that step. Finally, merging
tree structures is the way R uses to encode dendrograms and cluster analysis
results: these are matrices of .D � 1/ rows and 2 columns, where each
row represents an agglomeration step, and the two elements give the two
agglomerated individuals or previously formed groups (see Sect. 6.2 and ?

hclust for details).
These elements will be illustrated with the example of Fig. 6.7. The

partition formula is

( (Al2O3/K2O)/(SiO2/Na2O) ) /

( (CaO/P2O5) / (MgO/(TiO2/(MnO/Fe2O3t))) )

This can be passed in expr to balanceBase(X, expr), resulting in a
particular basis V. An equivalent basis will be obtained by processing the
signary matrix given in this table:

Part Step number

Number Name 1 2 3 4 5 6 7 8 9

1 SiO2 0 0 1 0 0 0 �1 0 1
2 TiO2 0 0 0 1 0 �1 0 �1 �1
3 Al2O3 0 1 0 0 0 0 1 0 1
4 MnO 1 0 0 �1 0 �1 0 �1 �1
5 MgO 0 0 0 0 0 1 0 �1 �1
6 CaO 0 0 0 0 1 0 0 1 �1
7 Na2O 0 0 �1 0 0 0 �1 0 1
8 K2O 0 �1 0 0 0 0 1 0 1
9 P2O5 0 0 0 0 �1 0 0 1 �1
10 Fe2Ot

3 �1 0 0 �1 0 �1 0 �1 �1

The actual basis matrix V is obtained with the function
gsi.buildilrBase(W), where W is a signary matrix.

Once obtained the ilr basis matrix, this can be passed in argument V to
the ilr-coordinate computation function ilr(x, V). Alternatively, for the
formula case we can also use the function balance(X, expr), without
explicitly computing the basis. Take into account that, though these three ways
encode the “same” basis in practical terms, the ordering of the columns might
be different between them. This may change the position of the coordinates
in the ilr-transformed vector!

4.3.3 The Coda-Dendrogram

The last issue of this section is the representation of the chosen basis with the
coda-dendrogram (Egozcue and Pawlowsky-Glahn, 2005). A coda-dendrogram
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Fig. 4.10 Coda-dendrogram of the ilr basis for the geochemical composition of glacial sediments,
generated by the clustering algorithm (Example 6.5). Each axis contains the interval (�4, 4), the
default, corresponding to proportions of 0.35 and 99.65 % respectively

graphically shows in a hierarchy how the several parts are grouped together; thus, it
displays the partition formula. Further, the segment joining two groups is taken as an
axis for the corresponding balance. That axis is then used to mark the position of the
balance mean, and a bar is drawn, with a length showing the balance variance. Even
more, the axis may then be used to place any desired one-dimensional graphical
summary of the dataset: the default is to represent box-plots, but one can also put
kernel density estimates, histograms, or a rug of data. This representation (Fig. 4.10)
is obtained with the command CoDaDendrogram, needing a compositional dataset
(X) and a descriptor of the ilr basis chosen, which is one of the following: the
basis matrix V itself, the mergetree structure, the signary matrix, or the partition
formula through argument expr.
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Chapter 5
Linear Models for Compositions

Abstract Compositions can play the role of dependent and independent variables
in linear models. In both cases, the parameters of the linear models are again com-
positions of the same simplex as the data. Most methods for classical linear models
have a close analog in these compositional linear models. This chapter addresses
several questions on this subject. What are compositional linear models? How
to visualize the dependence of compositions, already multivariable, with further
external covariables? How to model and check such dependence with compositional
linear models? What are the underlying assumptions? How can we check these
assumptions? What is the compositional interpretation of the results? How to use
linear models to provide statistical evidence with tests, confidence intervals, and
predictive regions? How to visualize model results and model parameters? How to
compare compositional linear models and how to find the most appropriate one?

5.1 Introduction

To explain compositional regression, it is very helpful to have a common under-
standing of classical regression, its R interface, and how it is used.

5.1.1 Classical Linear Regression (Continuous Covariables)

5.1.1.1 The Univariate Case

A (non-compositional) linear regression models the dependence of one observed
variable Y on another variable X by a simple equation:

Yi D a C bXi C "i ; "i � N.0; �2/:

K.G. van den Boogaart and R. Tolosana-Delgado, Analyzing Compositional Data with R,
Use R!, DOI 10.1007/978-3-642-36809-7 5, © Springer-Verlag Berlin Heidelberg 2013
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Y is called the dependent variable and X the independent variable. " is an error
term independent of X and independent between the different cases indexed by
i D 1; : : : ; n. These errors are typically modeled with a normal distribution "i �
N.0; �2/ with expectation 0 and an unknown but constant variance �2. We estimate
the parameters by

Ob D bcov.X; Y /

cvar.X/
; and Oa D NY � Ob NX:

We interpret a as the mean value of Y when x D 0, and it is called the intercept (with
the y-axis). The regression coefficient b specifies how much the expected value
for Y grows for each unit x has grown, and it is called the slope. The conditional
expectation for Yi is then predicted as

OYi D OaC ObXi :
OY is called the predicted value. The difference between observed value and the

predicted value
ri D OYi � Yi

is an estimate of the "i and called residuals. The variance �2 of "i can be estimated
by the mean-squared residuals

O�2 D 1

n � 2

nX

iD1
r2i

where the denominator is corrected for the two degrees of freedom lost in estimating
the two parameters a and b.

5.1.1.2 The Multivariate Case

In the case that we want to use more variables, e.g., predict D D 3 variables, in a
row-vector Y, as linear functions of P D 2 explanatory variables, in a row-vector
X, the linear regression model becomes

Y D ŒY1; Y2; Y3� D Œa1; a2; a3�C ŒX1;X2� �
�
b11 b12 b13
b21 b22 b23

�
C Œ"1; "2; "3�

D a C X � B C " (5.1)

which can be seen at the same time as a linear combination of random coefficients
with the rows of B,

Y D a CX1 � b1� CX2 � b2� C "; (5.2)
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or as three separate scalar products of the columns of B with a random vector,

Yi D ai C ŒX1;X2� � Œb1i ; b2i �t C "i D ai C X � bt�i C "i ; (5.3)

one for each coordinate of Y. The coefficient estimators are essentially the same as
in the univariate case, namely,

OB D .cvarŒX�/�1 � bcovŒX;Y�; and Oa D NY � NX � OB;

and for the errors, we find a residual covariance matrix of

Ȯ D N � 1

N � P
.cvarŒY� � bcovŒY;X� � OB/;

where the fraction just corrects for the actual number of estimated parameters.

5.1.1.3 The R Interface

In R, using for illustration a built-in demo dataset about orange trees, the linear
model is accessed through the command lm:

> data(Orange)

> names(Orange)

[1] "Tree" "age" "circumference"

> model = lm(circumference~age,data=Orange)

> model

Call:

lm(formula = circumference ~ age, data = Orange)

Coefficients:

(Intercept) age

17.400 0.107

This command generates an object encapsulating the estimated model, on which
various further tasks can be performed with accessory commands. For instance, the
resulting line Oy.x/ D OaC Obx can be drawn into scatterplots (command abline) or
used to compute predicted values Oyi D Oa C Obxi (command predict) and residual
values computed as ri D yi � Oyi (command resid).

> plot(circumference~age,data=Orange)

> abline(model)

> points(predict(model)~age,data=Orange,pch=20)
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The following two commands each compute the estimated variance O�2:
> var(model)

[1] 563.5

> summary(model)$sigma^2

[1] 563.5

To judge the probable true range of the parameters, we would compute a confidence
limit based on t-distributions:

> confint(model)

2.5 % 97.5 %

(Intercept) -0.14328 34.9426

age 0.08993 0.1236

Likewise, we would be interested in confidence intervals for the predictor (for
the average of Y as a function of x) and prediction intervals (for the actual values
of Y as a function of x). That is again provided by the generic command predict

> mynew = seq(from=min(Orange$age),to=max(Orange$age),

length.out=100)

> mynew = data.frame(age=mynew)

> options(max.print=40)

> (CI = predict(model,newdata=mynew, interval="confidence"))

fit lwr upr

1 30.00 14.19 45.81

2 31.58 15.98 47.18

3 33.16 17.77 48.54

4 34.74 19.56 49.91

5 36.31 21.35 51.28

6 37.89 23.13 52.65

7 39.47 24.92 54.02

8 41.05 26.70 55.40

9 42.63 28.49 56.77

10 44.21 30.27 58.15

11 45.79 32.05 59.53

12 47.37 33.83 60.91

13 48.95 35.60 62.29

[ reached getOption("max.print") -- omitted 87 rows ]]

> (PI = predict(model,newdata=mynew, interval="prediction"))

fit lwr upr

1 30.00 -20.8185 80.82
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2 31.58 -19.1738 82.33

3 33.16 -17.5302 83.84

4 34.74 -15.8878 85.36

5 36.31 -14.2465 86.87

6 37.89 -12.6064 88.39

7 39.47 -10.9675 89.91

8 41.05 -9.3297 91.43

9 42.63 -7.6930 92.95

10 44.21 -6.0576 94.47

11 45.79 -4.4233 96.00

12 47.37 -2.7901 97.52

13 48.95 -1.1582 99.05

[ reached getOption("max.print") -- omitted 87 rows ]]

> options(max.print=99999)

The first two lines of this example build a dataset with the new values of the
explanatory variable for which we want the confidence or prediction intervals, in
fact a dense sequence between the maximum and the minimum observed values
of tree age in the dataset. The following two lines do the actual computations,
now returning data frames with three columns (the prediction, the lower interval
limit, and the upper interval limit). Adding them to the plot is quickly done by the
command

> matlines(mynew, CI, col="red", lty=2)

> matlines(mynew, PI, col="black", lty=3)

where the accessory parameters col and lty, respectively, control the color of lines
and the line style (in these two cases, dashed and dotted). The matlines(x,y)plots
the columns of y against those of x as lines.

5.1.1.4 Checking the Model Quality

We need to do a test checking whether there is enough evidence of dependence. This
is typically done through an ANOVA (analysis of variance) table:

> anova(model)

Analysis of Variance Table

Response: circumference

Df Sum Sq Mean Sq F value Pr(>F)

age 1 93772 93772 166 1.9e-14

Residuals 33 18595 563

In general multivariate regression, ANOVA tables have one line for every indepen-
dent variable in the model, plus one line for the residuals. Each of the lines for the
independent variables contains some information regarding a test of the form:
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• H0, null hypothesis: the slope coefficient bi linked to the variable of the i th
is zero; thus, that independent variable xi does not apport any significant
contribution to the prediction of Y .

• H1, alternative hypothesis: the independent variable of the line is additionally
needed, i.e., its coefficient bi ¤ 0.

In our univariate regression case, we only have one independent variable, and thus
the test reads

H0 W b D 0 vs. H1 W b 6D 0

where a model of the form Yi D a C 0Xi C "i would describe the fact that X does
not have a linear influence on Y .

The p-value of the corresponding test is found in the Pr(>F) column of the
analysis of variance table. In this case, a p-value of 1:9e�14 is considerably smaller
than the usual critical ˛-level, such as say ˛D 0:05. Thus, the null hypothesis
is rejected and—still subject to some check of assumptions—thus proven that
oranges of older trees tend to be larger in statistical population sampled. That they
are greater, and not smaller, can be seen from the positive sign of the estimated
parameter, Ob > 0.

We would also use a correlation coefficient orR2 as a measure of how important
the age is for determination of the circumference:

> summary(model)$r.squared

[1] 0.8345

> R <- with(Orange,cor(circumference,age))

> R^2

[1] 0.8345

A good regression analysis should further include a thorough analysis of the
residuals and be eventually based on a robust estimation procedure. These issues
will be directly treated in the next sections, devoted to regression with compositional
variables.

5.1.2 Classical Analysis of the Variance (Discrete Covariables)

5.1.2.1 The Simple ANOVA Model

To analyze the dependence of a real random variable Z on a categorical covariable
X (in R terminology, a factor), withm possible outcomes fg1; : : : ; gmg, we typically
use an analysis of variance (ANOVA) model of the form

Zi D aC bXi C "i
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where a and the bg; g 2 fg1; : : : ; gmg are real constants. The residual term "i is
again a zero-mean random variable with constant variance, modeled with a normal
distribution. Analysis of the variance is also used where the sample can be split in
several subsamples, and we want to check whether the several subsample means
differ significantly.

In an ANOVA model, each of the possible levels of the factor has a different
conditional expected value:

�g WD EŒZjX D g� D a C bg

Thus, each bg describes the expected value of X in a subsample or for each level of
the factor g 2 fg1; : : : ; gmg. However, this model specification has a flaw: it is not
unique. By changing the constant a to a constant a0, we can always replace bg by
b0g D bg � .a0 � a/ and get the same deterministic part in the model equation:

a0 C b0g D aC .a0 � a/C bg � .a0 � a/ D a C bg D �g

It is thus not possible to distinguish between the set of constants a, bg; g 2
fg1; : : : ; gmg and the modified set a0, b0g; g 2 fg1; : : : ; gmg. In this case, one
typically says that the parameters were non-identifiable. To avoid this problem, the
software modifies the specification into an equivalent model with identifiable param-
eters. These identifiable parameters are called contrasts and are linear combinations
of the �g .1

5.1.2.2 Working with Factors

R is often able to identify categorical variables and automatically gives them the
class “factor”. A factor is in fact just a vector of integer numbers, with some
complementary attributes: levels, ordered, and eventually contrasts.

The attribute levels is an ordered list of the possible outcomes of this factor,
also called categories. Because the factor only stores numbers, this list is necessary
to recode each number to its actual value. For instance, if a factor has levels “Africa,”
“America,” and “Asia,” a 1 in the factor list is taken as “Africa,” a 2 as America and
so on. If we need to change the whole set of levels (for instance, to abbreviate or
correct it), we can use the command levels

> levels(X) <- c("Afr","Ame","Asi")

We can also force a factor to forget its levels and work as an integer vector by the
command as.integer and, vice versa, force a vector of integers to a factor by

1In a strict sense of contrasts, the weights need to have sum 0. However, R does not always obey
to this restriction.
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as.factor. However, in that case the factor levels will be just numbers, and we
will need to use levels again to redefine the lost names.

An alternative way to define a factor is to use the command factor

> X = factor(datasource, levels=

c("never","often","always"), ordered=TRUE)

where datasource is the vector of observations, levels is the list of categories,
and ordered (default FALSE) tells R whether the ordering given to levels is
meaningful, or not. Note that this last argument becomes directly an extra attribute
called ordered.

The table command allows to count how often each of the categories shows up
in the dataset. The same result is obtained when applying summary to a factor

> table(X)

Finally, we can also store in the factor the contrast we want to use in the future.
The actual model contrasts used for parameter estimation can be controlled by
the commands contrasts or options(contrasts=). For unordered factors, the
default corresponds to the command contr.treatment and simply forces bg0 D 0

such that

a D EŒZjX D g0�

bg D EŒZjX D g� � EŒZjX D g0�

The code in this book will rely on that default. For ordered factors, the default cor-
responds to the command contr.poly and uses a more complicated description of
the same model. We will avoid that complication by explicitly setting the contrasts:

> contrasts(X)<-"contr.treatment"

5.1.3 The Different Types of Compositional Regression
and ANOVA

Compositional regression is quite analogous to multiple linear regression, although
more complex in the details. For each method, we need to

• Generalize the mathematical definitions
• Learn how to perform the analyses and tests in R
• Display the model (parameters, predictions, residuals, intervals, etc.) in a way

respecting the compositional nature of some of the involved variables
• Understand how to interpret our results (statistics and tests) as compositions

We can distinguish up to four types of compositional regression: Y could be a
compositional variable (with continuous ordiscrete covariables, i.e., with regression
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or ANOVA), or X could be a compositional variable, or both X and Y could be
compositional. Finally, special attention should also be paid to the situation where
X and Y are different aspects of the same composition.

5.2 Compositions as Independent Variables

5.2.1 Example

Let us consider a toy example. We are designing a new specialized potting substrate
for strawberries. Within certain limits, we can control the mineral composition of
the substrate. We would like to understand how the substrate influences the total
biomass of strawberry produced per season. We conduct an experiment where
we measure the biomass in kg of strawberries from a defined pot size filled with
different substrates of designed composition.

> Strawberries = read.csv("Strawberries.csv")

> Strawberries

C1 C2 C3 biomass

1 0.3333 0.3333 0.3333 12.406

2 0.1667 0.6667 0.1667 6.004

3 0.6667 0.1667 0.1667 4.389

4 0.1667 0.1667 0.6667 13.710

5 0.4444 0.4444 0.1111 4.939

6 0.1111 0.4444 0.4444 11.653

7 0.4444 0.1111 0.4444 11.267

> X = acomp( Strawberries[,1:3] )

> biomass = Strawberries$biomass

Since biomass has a ratio scale and can only be positive, we could consider a
log transformation. As a justification, note that with unlimited water and light,
plant biomass production might be considered as exponential. We will thus use
y D ln.biomass/ as the dependent variable.

> Y = log(biomass)

5.2.2 Direct Visualization of the Dependence

The most direct, intuitive visualizations of dependence plot the scatter of the
variable of interest in the Y -axis against another one deemed as explanatory, in
X -axis. That is in the case of compositional explanatory data not so easy, due to the
inherently multivariate nature of what we plan to plot in theX -axis. We would need
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several dimensions to represent the scatter of our explanatory variable, before being
able to show how it influences the scatter of the explained one. To overcome that
problem of dimensionality, we can use several tools:

• We can plot a compositional representation of X and use color or symbol size as
a scale to represent Y .

• We can represent Y against all pairwise log ratios of X, in the fashion of the
variation matrix (Sect. 4.1.3) or log-ratio boxplots (Fig. 4.3).

• We can represent Y against some balances or some coordinates of X, either
defined a priori or coming from some previous analyses.

The last option may be interesting when the basis used to represent X is somehow
interpretable. The other two options are more exploratory and are presented in detail
in the next subsections.

5.2.2.1 Using Symbol Size and Color

The idea behind this technique is to establish a (quasi-)continuous scale of size or a
color ramp, store this information in a vector of the same size as Y , and pass it as
an extra argument to a ternary diagram:

> rescale = function(xin,rout,rin=range(xin, na.rm=FALSE)){

+ xout = rout[1] + (xin-rin[1])*(rout[2]-rout[1])/(rin[2]-rin[1])

+ return(xout)

+ }

> Ycex = rescale(Y, c(0.5,2) )

> Ycol = grey( rescale(Y,c(0.1,0.8)) )

> plot(X,cex=Ycex)

> plot(X,pch=19,col=Ycol)

In this code chunk, we have defined a function that linearly rescales an input vector
xin so that the range rin becomes the range rout. That function is afterwards used
to get a scale of radius for the circles and of grey levels for the colors. The function
grey takes a vector of values between 0 and 1 and returns the corresponding grey
level (0 is black; 1 is white). There is no function in the R basic distribution
to obtain color ramps (e.g., gradually passing from red to white to blue or from
yellow to magenta to blue). That must be obtained using function mixcolor from
library “colorspace”. The following code, for instance, generates a ramp from red
to blue:

> require("colorspace")

> Ycol = hex( mixcolor( rescale(Y,c(0,1)), RGB(1,0,0),

RGB(0,0,1)) )
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Fig. 5.1 Direct visualization
of the influence of a
dependent variable
(log-transformed biomass) on
a composition (of the
substrate), captured as color
filling and size of the symbols

Plots with colored and increasing size symbols are meaningless without a legend.
The following code generates a plot with combined symbol size and gray-scale
colors and adds the adequate legend (Fig. 5.1). The function pretty generates a
vector of “nice” values to serve as scale for Y:

> opar <- par(mar=c(3,3,0,0))

> plot(X,pch=21,bg=Ycol,cex=Ycex)

> (Ylev <- pretty(Y))

[1] 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

> legend(x=0,y=0.97,pch=21,legend=Ylev,

+ pt.cex=rescale(Ylev, c(0.5,2),range(Y)),

+ pt.bg=grey(rescale(Ylev,c(0.1,0.8),range(Y)) )

+ )

> par(opar)

5.2.2.2 The Pairwise Log-Ratio Plot Matrix

The second option is to extensively explore how the target variable Y depends on
the simplest set of projections available, all possible pairwise log ratios (Fig. 5.2).
In the current version, there is no packed function doing this job, but the result can
be quickly obtained by nesting two loops:

> opar <- par(mfrow=c(3,3),mar=c(1,1,0.5,0.5), oma=c(3,3,0,0))

> for(i in 1:3){

+ for(j in 1:3){

+ plot(log(X[,i]/X[,j]),Y,pch=ifelse(i!=j,19,""))

+ if(i==j){text(x=0,y=mean(range(Y)),

+ labels=colnames(X)[i],cex=1.5)}

+ }

+ }
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Fig. 5.2 Dependent variable plotted against all possible pairwise log ratios of the explanatory
composition: the X-axis of each diagram represents the log ratio of the variable in the row against
the variable in the column

> mtext(text=c("pairwise log-ratio","dependent variable"),

side=c(1,2),at=0.5,line=2,outer=TRUE)

> par(opar)

Two tricks are used here to get appealing results. By giving to the plotting function
the accessory argument pch=ifelse(i!=j,19,""), we plot the data as dots
(pch=19) in the off-diagonal diagrams (i!=j, i ¤ j ) and invisible (pch="") in
the diagonal diagrams. The second trick is the automatic placement of the variable
names of X as labels in the diagonal elements in the middle of their boxes (because
the log ratio of a variable against itself is identically zero, and the middle of the
vertical axis is the center of the range of the Y variable). Function mtext just places
explanatory labels on the margins of the figure. From version 1.30 of the package,
the function pwlrPlot does this job automatically.

5.2.3 The Model

There are multiple ways to generalize a linear regression to a composition.
Compositions are per definition multivariate and thus must be mapped somehow,
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linearly or nonlinearly to a single number. In parallelism with (5.3), that mapping
would most conveniently be done for compositions by an Aitchison scalar product
(2.4), leading to a regression model of the form

Yi D a C hb;Xi iA C "i

with a real random variable Y and an independent compositional variable X and
where the parameters are a real-valued intercept a, a regression “slope” composition
b 2S

D , and a real-valued zero-mean error ", typically modeled as normally
distributed.

The composition b has a simple interpretation. It gives the direction along which
X must be perturbed to achieve the largest effects on Y . If two observations xi and
xj differ by a unit vector b

kbk in the direction of b, i.e., xj D xi ˚ b
kbk , then the

expected value of Yj differs from the expect value of Yi by an amount of kbk:

EŒYj jXj D xj � D a C ˝
b; xj

˛
A

C
0

‚…„ƒ
EŒ"� D aC

�
b; xi ˚ b

kbk


A

D a C hb; xi iA„ ƒ‚ …
EŒYi �

C 1

kbk hb;biA„ƒ‚…
kbk2

D EŒYi jXi D xi �C kbk

5.2.4 Estimation of Regression Parameters

To compute such a regression model in R, we would use the principle of working in
coordinates to transform the model into a multiple regression problem:

Yi D aC hb;Xi iA C "i

Yi D aC .ilr.b/; ilr.Xi //C "i

Yi D aC
D�1X

kD1
ilr.b/k ilrk.Xi /C "i

Yi D aC
D�1X

kD1
ˇk ilrk.Xi /C "i

with a vector of slope parameters ˇ D .ˇk/ that later might by mapped back to a
composition through the inverse ilr transformation ilr�1:

> (model = lm(Y~ilr(X)))

Call:

lm(formula = Y ~ ilr(X))
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Coefficients:

(Intercept) ilr(X)1 ilr(X)2

2.1261 0.0885 0.5371

> (a = coef(model)[1])

(Intercept)

2.126

> (b = ilrInv(coef(model)[-1],orig=X))

C1 C2 C3

0.2387 0.2706 0.4907

attr(,"class")

[1] acomp

Remark 5.1 (Linear models with other log-ratio transformations). For most of the
operations in the chapter, we could use the alr transformation with the same right
as the ilr transformation. The isometry of the operation is only relevant when
metric variances are compared. This happens, for instance, when measures of
determination like R2 are generalized: in these situation, only the ilr transformation
fulfills the requirement that the analysis is permutation invariant, because the
alr transformation changes the geometry. It is thus safest to always use the ilr
transformation in this chapter. It has been argued that results are more interpretable
in alr than in ilr: this is not so important in our approach, because we will interpret
the back-transformed results as compositions. The clr transformation is not easy
to use in the context of linear models with compositional explanatory variables,
because it introduces numerical problems with singular matrices in tests.

5.2.5 Displaying the Model

5.2.5.1 The Model as a Surface

The easiest representation of the model is to plot a line along the estimated slope
parameter Ob passing through the center of our dataset:

> plot(X)

> straight(mean(X), b, lwd = 2, col = "black",lty=2)

We can also place some dots as landmarks along this line, at regular intervals of the
predicted value:

> myY = pretty(Y)

> refX = mean(X) + ((myY - a)/norm(b)^2) * b

> plot(refX, add = TRUE, pch = 19)

The estimated regression model can be visualized as a surface on this ternary
diagram, i.e., Y Df .X/, a surface increasing only in the direction of Ob. In fact,
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C1 C2

C3Fig. 5.3 Surface of the fitted
model (in gray scale), with
maximum-gradient direction
and some fixed OY value
landmarks

in the orthogonal direction to Ob, the predictions OY happen to be constant. It is thus
easy to plot this surface by representing a family of lines (Fig. 5.3):

> orthoComp = function(x) { ilrInv(ilr(x) %*%

matrix(c(0, 1, -1, 0), ncol = 2)) }

> mygreyscale = grey((0:nrow(refX))/nrow(refX))

> for (i in 1:nrow(refX)) {

+ straight(acomp(refX[i, ]), orthoComp(b),

col = mygreyscale[i],lwd = 2)

+ }

The first line of this code defines an ad hoc function to compute the orthogonal com-
position of a 3-part composition, by the trick of permuting the two ilr coordinates
and changing the sign of one of them. The second command just defines a regular
color scale of grays, by giving a series of numbers between 0 and 1. This is a built-in
function. The loop is finally plotting a line for each row in refX, the reference points
computed before. It would still be necessary to add labels to each line, showing the
associated OY values. It would be also possible to get this figure adapting the code
chunk in Example 3.2.

5.2.5.2 Parameter Confidence Regions

The estimation variance of b as a composition is given by

> (varb=ilrvar2clr(vcov(model)[-1,-1]))

1 2 3

1 0.011389 -0.005694 -0.005694

2 -0.005694 0.011389 -0.005694

3 -0.005694 -0.005694 0.011389

which can be plotted as a confidence ellipsoid (Fig. 5.4). Assuming joint normality
of all our variables (the composition expressed in ilr), we can compute the size of
this ellipse with a Fisher F distribution by the following commands:
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C1 C2

C3Fig. 5.4 Confidence region
for a compositional
parameter. The circle plotted
represents the compositional
parameter estimate, and the
dot is the neutral element of
the simplex

> par(mar=c(3,3,0,1))

> names(b) = colnames(X)

> scaleB = 1

> plot(scaleB*b)

> plot(0*b,add=TRUE,pch=20)

> alpha = 0.05

> rF = sqrt(qf(1-alpha,nrow(varb)-1,model$df))

> ellipses(scaleB*b,scaleB^2*varb,rF)

The numerator degrees of freedom result from the number of dimensions along
which the parameter can vary. The denominator degrees of freedom results from the
residual degrees of freedom in the model, determining the precision of estimation
of the residual variance and thus of the estimator covariance provided by command
vcov. The parameter scaleB allows to report a rescaled version of the figure, when
the ellipse is too small (give a larger value) or when the dot is plotted too near to the
borders (give a smaller value).

This figure is quite easy to interpret. The central dot (the zero or neutral element
of the simplex) represents a vector which would induce no change in the response
Y . If the confidence ellipse comprises this dot, we should accept that the estimated
parameter is not significant enough to distinguish it from the zero, and thus there is
no dependence of the explained variable on the composition. On the contrary, if the
central dot falls outside the confidence ellipse like in this example, we can assume
with a .1�˛/ confidence that there is a significant dependence of log-biomass with
the substrate composition.

5.2.6 Prediction and Predictive Regions

To predict the value for another new composition X , we can simply write a
newdata= argument into the predict command enclosing the new value for X
in a named list:
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> newX <- acomp(c(1,2,3))

> (newPredicted <- predict(model,newdata=list(X=newX)))

1

2.499

We can also use the same predict command to generate confidence and probability
intervals, by giving the accessory argument interval="confidence", respec-
tively, interval="prediction", as well as the desired confidence level

> predict(model, newdata = list(X = newX),

interval = "confidence", level = 0.95)

fit lwr upr

1 2.499 2.107 2.891

It is far more difficult to get a proper predictive interval in that situation, which
accounts for all uncertainties, adding up variability from prediction and confidence:

> (newDesignmatrix = model.matrix(terms(model),

data=list(X=newX,Y=0)))

(Intercept) ilr(X)1 ilr(X)2

1 1 0.4901 0.614

attr(,"assign")

[1] 0 1 1

> (errVar = newDesignmatrix %*% vcov(model)%*% t(newDesignmatrix))

1

1 0.01992

> alpha=0.05

> (confidenceInterval = newPredicted +

qt(c(alpha/2,1-alpha/2),model$df.residual)*sqrt(errVar))

[1] 2.107 2.891

> (predictiveInterval = newPredicted + qt(c(alpha/2,1-alpha/2),

model$df)*sqrt(summary(model)$sigma^2+errVar))

[1] 1.687 3.312

Here confidenceInterval is again the 1�˛ confidence interval for the
conditional expectation of Y given X D newX assuming the model to be true. On
the contrary, predictiveInterval is the 1 � ˛ predictive interval for the random
Y observed for a X D newX, gathering the uncertainty on the estimation of all
parameters of the model.
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5.2.7 Model Checks

As a matter of fact, displaying and predicting with a regression model should only
be done after ensuring a minimal quality of the model. The next sections cover the
most typical graphical and numerical checks:

• Assessing the strength of the relationship (Sect. 5.2.8, page 112), comparing the
observed explained values against their predictions by the model or by a Fisher
F test checking that reduction of the uncertainty about the explained variable is
substantial enough.

• Checking that some coefficients cannot be removed (Sect. 5.2.9, page 114),
simplifying the model (i.e., that a given subcomposition plays no role in
predicting the explained variable).

• Checking the absence of leverage points and other similar bad-behaved data that
could influence too much the model (Sect. 5.2.10, page 115).

• Checking the assumption that residuals are normally distribution (Sect. 5.2.11,
page 117).

• Checking that their variance is constant (Sect. 5.2.12, page 118).

If some of these checks are not satisfactory and especially if there are influential or
leverage points, a robust regression procedure should be used instead (Sect. 5.2.13,
page 118).

5.2.8 The Strength of the Relationship

Unlike in univariate linear regression, it is not possible to display the strength of the
relationship between several compositional variables and a dependent variable in a
singleXY scatterplot, because X has several components potentially influential. We
can nevertheless replace the regressor X by the optimal predictor OY (see Fig. 5.5):

> opar <- par(mar=c(3,3,0,0))

> Predicted = predict(model)

> plot(Predicted,Y)

> abline(0,1)

> par(opar)

predict computes the predicted values OYi WD Oa C
D Ob;X

E

A
of the model.

abline(0,1) draws the bisecting line of the first quadrant, Y D 0 C 1 OY , repre-
senting a perfect agreement of predicted and observed values.

Two measures of determinationR2 and R2adj can be used to numerically evaluate

the strength of the relationship. The theoreticalR2theo is given by

R2theo D var. OY /
var.Y /

D 1 � var.residuals/

var.Y /



5.2 Compositions as Independent Variables 113

1.6 1.8 2.0 2.2 2.4 2.6

1.6

1.8

2.0

2.2

2.4

2.6Fig. 5.5 A scatterplot of
predicted vs. observed values
can replace some aspects of
the classical dependent vs.
independent scatterplot if
compositions are used as
independent variables in a
regression

and interpreted as the portion of the total variability var.Y / that is explained by the
model. As a portion, it is strictly between 0 and 1, zero meaning no dependence
and one corresponding to a perfect explanation of the behavior of Y through the
knowledge of X without any need of residual terms. The theoretical R2theo is often
estimated by the empirical R2:

R2 D .1=n/
Pn

iD1. OYi � NY /2
.1=n/

Pn
iD1.Yi � NY /2

However, the empirical R2 overestimatesR2theo, and the bias increases with increas-
ing number of parameters. This could lead to an unjustified preference of models
with more parameters. A bias-adjusted version

R2adj D 1 � .1=.n� df //
Pn

iD1. OYi � NY /2
.1=.n� 1//

Pn
iD1.Yi � NY /2

estimates these variances with corrected degrees of freedom and yields an unbiased
estimate, but it can lead to negative values and is therefore slightly more difficult to
interpret.

Another difference with linear regression: it is no longer possible to evaluate
the strength of the relationship with a true correlation coefficient, since there is no
clear “upward” direction in a composition that could help to discern negative and
positive correlation. For those more familiar with correlations than with R2, we can
identify

p
R2 with the absolute value of the Pearson correlation coefficient, because

it is mathematically equivalent in all cases where the Pearson correlation is defined.
As a reference, one might compute the corresponding Pearson correlation, which is
numerically the same as the square root of R2:

> cor(Y,Predicted,method="pearson")

[1] 0.9015
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A good way to display the relationship of variance originating from prediction and
residuals is also a centered parallel boxplot of all three variables (not shown):

> Residuals = model$residuals

> boxplot(list(Y-mean(Y),Predicted-mean(Y),Residuals))

5.2.9 Global and Individual Tests

The model summary and the table of analysis of variance are providing several tests,
as well as both measures of determination,R2 and R2adj:

> summary(model)

Call:

lm(formula = Y ~ ilr(X))

Residuals:

1 2 3 4 5 6 7

0.3921 -0.1165 -0.2563 -0.1159 0.0791 -0.0612 0.0786

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.1261 0.0969 21.95 2.5e-05

ilr(X)1 0.0885 0.1307 0.68 0.535

ilr(X)2 0.5371 0.1307 4.11 0.015

Residual standard error: 0.256 on 4 degrees of freedom

Multiple R-squared: 0.813, Adjusted R-squared: 0.719

F-statistic: 8.67 on 2 and 4 DF, p-value: 0.0351

> anova(model)

Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

ilr(X) 2 1.139 0.570 8.67 0.035

Residuals 4 0.263 0.066

The ANOVA table provides an overall test for the complete parameter set. In this
case, it suggests that the substrate composition somehow influences the biomass. On
the contrary, the summary provides an individual test for the different coordinates
of the ilr-transformed composition. In this example, the results suggest that only
one ilr coordinate might be relevant for biomass production. However, if we use the
standard ilr transformation, the individual ilr coordinates per se have seldom a direct
interpretation, and their associated tests should therefore be ignored.
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The case is different if we want to test the role of a particular subcomposition.
Take a composition and split it in two subcompositions, A and B . Assume we want
to test that the parts in the subcomposition A play no role. In this situation, the
ilr basis should be chosen accordingly, as a balance basis (Sect. 4.3) separating A
from B . We will have then some coordinates computed only with parts in A, some
coordinates involving parts in B , and a coordinate balancing the components in
subcompositionA against those components in the subcompositionB . If we accept
all tests of the coefficients in the first group, we accept that relative changes within
these parts play no role in the response, and we can remove that subcomposition
from the model.

5.2.10 Model Diagnostic Plots

A thorough analysis of the behavior of regression residuals is necessary to ensure
that the estimated model is credible and therefore interpretable and further useful
for prediction.

A standard tool to display the residuals of a multivariate regression model is the
predicted vs. residuals scatterplot. Since the model is not compositional in Y , the
basic functions predict and resid can be used as usual to compute predicted and
residual values:

> Predicted = predict(model)

> Residuals = resid(model)

> plot(Predicted,Residuals)

It shows in a single plot how the residuals depend on the predicted values. At least
the following three diagnostic aspects should be considered to decide that residuals
are well behaved:

• Is there an apparent structure in residuals, e.g., a curved dependency?
This would be a hint towards a nonlinear relationship.

• Does the variability of the residuals depend on the predicted value?
If that is the case, we might suspect heteroscedasticity, i.e., a different variance
for different "i , which violates the underlying hypotheses of regression.

• Are there noticeable gaps between different groups of predicted values?
If the answer is positive, this hints to the existence of groups in the regressor
values. It is then reasonable to suspect that the dependence of Y on X is just
apparent, a surrogate of the existence of several subgroups.

This diagram may also be directly obtained by plotting the model itself :

> par(mfrow=c(2,2))

> plot(model,add.smooth=FALSE)
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Fig. 5.6 Four standard diagnostic plots helping to detect outliers or violations of the hypothesis
underlying the regression procedure

which generates four diagnostic plots (Fig. 5.6):

1. The already-mentioned residuals vs. predicted (or fitted values) plot
2. A normal QQ plot (explained in Sect. 5.2.11)
3. A scale-location plot (explained in Sect. 5.2.12)
4. A leverage plot

Leverage values Belsley et al. (1980) and Cook’s distances (Cook and Weisberg,
1982) help in the identification of potential outliers in the model. These statistics
can be obtained with the following basic R commands:

> Leverages = hatvalues(model)

> boxplot(Leverages)

> CooksDistances = cooks.distance(model)

> plot(Predicted,CooksDistances)

The leverage measures the potential influence of a given observation on its own
predicted value. Its inverse, 1=leverages, can be interpreted as the equivalent number
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of data in our dataset that support that given observation, e.g., a leverage of 0.25
would mean that four observations (including itself) are consistent with a given
datum, i.e., that datum could be removed and quite well predicted from the other 3.
On the contrary, a datum with a leverage of 1 would not be reproducible if we
remove it from the dataset, i.e., there is no way to check the value of this observation.
To evaluate leverages, we may use the following rule of thumb. First, we should
ask ourselves which should be the minimum size of a dataset, so that a local
estimation of the mean is reliable enough. Then, any datum with a leverage larger
than the inverse of this minimal size should be considered suspicious, too influential.
Leverages are computed only with the values of the explanatory variable X; the
dependent variable Y plays no role. Thus, leverages only provide information on the
adequateness of the sampling design of X in the given dataset. Cook’s distances, on
the contrary, are measures of the actual influence of a given explained variable datum
Yi to its local prediction OYi . These two measures are therefore complementary:
in the ideal case, all leverages should be smaller than our chosen threshold (one
divided by the minimum trustable sample size), and the Cook’s distances of all
our observations should be within the envelope of 0.5 in the fourth diagnostic
diagram.

5.2.11 Checking the Normality Assumptions

In a standard regression model with normally distributed errors "i , the computed
residuals O"i D yi � Oyi are also normally distributed, but with different variances. We
must then rescale the residuals to a common variance, a process called studentiza-
tion. The studentized residuals can be reasonably assumed to be identically normally
distributed. Though from the strictest point of view the studentized residuals are
not independent (but typically slightly negatively correlated), we may still check
normality and homoscedasticity with classical tools, ignoring that fact:

> StudentizedResiduals = rstudent(model)

> qqnorm(StudentizedResiduals)

> qqline(StudentizedResiduals)

> shapiro.test(StudentizedResiduals)

Shapiro-Wilk normality test

data: StudentizedResiduals

W = 0.9027, p-value = 0.3478

> boxplot(StudentizedResiduals)

The normal Quantile–Quantile plot, generated by the qqnorm command, sug-
gests a normal distribution of the residuals if the points do not show a clear structure
departing from a straight line. The Shapiro–Wilk test shapiro.test suggests non-
normality if it shows a p-value below a critical level, e.g., ˛ D 0:05. The boxplot
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suggests problems with the normality assumption if it shows outliers. QQ plots (with
a normal reference QQ line) are generated also when plotting the model (Fig. 5.6).

5.2.12 Checking Constant Variance

Studentized residuals could also be used to detect departures from the assumption of
homoscedasticity, i.e., the assumption that the errors "i have all the same variance.
To check it, we need to use a variable potentially influencing the residual variance,
like the predicted value. Then, we can test homoscedasticity checking the rank
correlation of the absolute value of the studentized residuals against this suspected
influence:

> cor.test(Predicted,abs(StudentizedResiduals),method="spearman")

Spearman's rank correlation rho

data: Predicted and abs(StudentizedResiduals)

S = 76, p-value = 0.4444

alternative hypothesis: true rho is not equal to 0

sample estimates:

rho

-0.3571

The test would suggest heteroscedasticity (i.e., different error variances for different
values of the independent variable) if the resulting p-value is lower than the critical
level, e.g., ˛ D 0:05. For a visual inspection of that relation, it is a good idea to
transform the residuals in a way reducing its variance, e.g.:

> plot(Predicted, abs(StudentizedResiduals))

> plot(Predicted, sqrt(abs(StudentizedResiduals)))

> plot(Predicted, log(abs(StudentizedResiduals)))

The second option is the one chosen by the default diagnostic plots (Fig. 5.6).

5.2.13 Robust Regression

Another possibility to study the presence of outliers and minimize its influence is
to use robust estimation procedures, like those available from package “robustbase”
(Rousseeuw et al., 2007). That entails no further difficulty, since we used a standard
linear model for the actual computations.

> require(robustbase)

> (modelRob = lmrob(Y~ilr(X)))
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Call:

lmrob(formula = Y ~ ilr(X))

Coefficients:

(Intercept) ilr(X)1 ilr(X)2

2.1199 0.0848 0.5350

> (aRob = coef(modelRob)[1])

(Intercept)

2.12

> (bRob = ilrInv(coef(modelRob)[-1],orig=X))

C1 C2 C3

0.2397 0.2702 0.4901

attr(,"class")

[1] acomp

Especially for robustly estimated models, it is often useful to check for extreme
predicted values:

> ResidualsRob= resid(modelRob)

> PredictedRob= Y-resid(modelRob)

> plot(PredictedRob,Residuals)

Those might hint to extreme X values that might even not have been used to
estimate the regression coefficient and would correspond to a wrong prediction.

In order to find possibly faulty values, not fitting into the total model, we should
analyze the robust residuals for outlier, e.g., using a boxplot:

> bxpstats <- boxplot(ResidualsRob,plot=FALSE)

> plot(PredictedRob,Y,

pch=ifelse(ResidualsRob %in% bxpstats$out,33,20))

Outliers in this boxplot hint to observation not fitting an overall regression
model due to a robust estimation. The second plot (not shown) displays how these
observations can be identified.

To evaluate the strength of the relationship, it might be reasonable to compute
the analog of a rank correlation of the predicted values and the real values, instead
of the classical coefficient of determination:

> cor(Y,Predicted,method="spearman")

[1] 0.8571

This approach would still rely on the linear model to detect the direction of the
relationship and will therefore always result in a positive correlation coefficient. For
the rest of checks on the properties of residuals, we could follow the preceding
sections, as the hypotheses on the residuals are here, the same as in linear
regression with compositional independent variable (normality, independence from
predictions, homoscedasticity, absence of lever points, etc.).
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5.2.14 Quadratic Regression

The compositional linear regression of the preceding section was driven by analogy
to linear regression. However, a linear relationship might be too simple for our
problem. For example, it is difficult to image that there is a way to tune a substrate
composition towards an infinite yield. It seems more reasonable to assume the
existence of a sort of optimum.

Obviously, we could linearize the dependence locally. However, it is reasonable
to assume that when we are good at creating potting substrate, we will conduct
experiments around the optimum value, and thus the best approximation would be
a horizontal plane on that point. That is totally non-informative for our problem.
Summarizing, we would need at least a quadratic model to correctly describe
the local effect around the optimum, while a linear regression can be a good
approximation far from it.

The second argument would be true if a component of the substrate is helping
our plant but not essential. If it is an essential nutrient, it could well happen that the
dependence is dramatic, i.e., killing the plant if it is nearly missing. If we do not
believe in these extreme effects at the borders of the simplex, we might well use
classical Euclidean geometry.

If we are interested in a quadratic dependence, we need a model of the form

Yi D aC hb;Xi iA C hXi ; CXi iA C "i

with a symmetric bilinear form C (i.e., a square symmetric matrix). Using the
principle of working in coordinates, the model is translated to R as

Yi D aC
X

j

ilr.bj /ilrj .Xi /C
X

j;k

ilrj .Xi /j cjk ilrk.Xi /C "i

D aC
X

j

ilr.bj /ilrj .Xi /j C
X

j

cjj ilrj .Xi /j C
X

j<k

cjk2ilrj .Xi /ilrk.Xi /

> sq <- function(x) {

+ n <- if(length(dim(x))>1) ncol(x) else length(x)

+ j <- rep(1:n,n)

+ k <- rep(1:n,each=n)

+ s <- j<=k

+ f <- ifelse(j==k,1,2)[s]

+ if(length(dim(x))>1) f*x[,j[s]]*x[,k[s]] else x[j[s]]*x[k[s]]

+ }

> model2 = lm(Y~ilr(X)+sq(ilr(X)))

> model2

Call:

lm(formula = Y ~ ilr(X) + sq(ilr(X)))
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Coefficients:

(Intercept) ilr(X)1 ilr(X)2 sq(ilr(X))1 sq(ilr(X))2

2.536 0.184 0.482 -0.308 -0.145

sq(ilr(X))3

-0.327

> (a = coef(model2)[1])

(Intercept)

2.536

> (b = coef(model2)[2:ncol(X)])

ilr(X)1 ilr(X)2

0.1844 0.4817

> unsq <- function(x) {

+ n = (sqrt(8*length(x)+1)-1)/2

+ j <- rep(1:n,n)

+ k <- rep(1:n,each=n)

+ s <- j<=k

+ i <- j+(k-1)*n

+ C <- diag(n)

+ C[i[s]]<-x

+ C <- C+t(C)

+ diag(C) <- diag(C)/2

+ C

+ }

> (C = unsq(coef(model2)[-(1:ncol(X))]))

[,1] [,2]

[1,] -0.3080 -0.1445

[2,] -0.1445 -0.3272

Here b and C are expressed in ilr coordinates. We will denote this C expressed in ilr
coordinates as CV , because it is a square symmetric matrix which values depend on
the ilr matrix V. If CV is a definite matrix, we can then compute the ilr coordinates
of the optimum of the estimated dependence by

0 D r OY D r.a C hb;XiiA C hXi ; CXi iA/ D ilr.b/C 2CV � ilr.x/

ilr.xopt/ D 1

2
C�1V � ilr.b/

> (xOpt = ilrInv(solve(C,b)/2,orig=X))

C1 C2 C3

0.4008 0.4350 0.1643

attr(,"class")

[1] acomp
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Whether that optimum is a minimum, a maximum, or a saddle point depends on the
eigenvalues of CV :

> eigen(C)

$values

[1] -0.1728 -0.4624

$vectors

[,1] [,2]

[1,] -0.7302 0.6833

[2,] 0.6833 0.7302

The optimum xopt is a minimum if all eigenvalues are positive, it is a maximum
if the eigenvalues are negative, and it is a saddle point if the eigenvalues do not have
homogeneous signs. We are thus in this case finding a maximum.

However, as we can see from the analysis of variance table,

> anova(model2)

Analysis of Variance Table

Response: Y

Df Sum Sq Mean Sq F value Pr(>F)

ilr(X) 2 1.139 0.570 68.3 0.085

sq(ilr(X)) 3 0.254 0.085 10.2 0.226

Residuals 1 0.008 0.008

the quadratic part is not significantly different from zero. Thus, in this particular
case, we should conclude that the quadratic behavior and the existence of a
maximum is not sufficiently supported by the available data.

5.3 Compositions as Dependent Variables

5.3.1 Example

5.3.1.1 Continuous Covariables

The second type of compositional regression explains a composition from one
or more real-scaled covariables. To illustrate this case, we will use a dataset of
proportions of four petrographic types of sediment grains. These grain types are
as follows: fragments of polymineralic rock (Rf ), grains of one single quartz crystal
(Qm), grains containing several quartz crystals (but only quartz, Qp), and grains of
mica (M ). The dataset was compiled by Grantham and Velbel (1988), who wanted
to test how this composition depends on certain physiographic (relief ratio) and
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climatic characteristics (river discharge) of the drainage basin where this sediment
is generated.

> #require(compositions)

> GeoChemSed=read.csv("GraVel.csv",header=TRUE)

> Y=acomp(GeoChemSed[,7:10])

> names(GeoChemSed)

[1] "watershed" "position" "CCWI" "discharge" "relief"

[6] "grain" "Qm" "Qp" "Rf" "M"

> Covariables=GeoChemSed[,c("discharge","relief","grain",

"position")]

> X1 = Covariables$discharge

> X2 = Covariables$relief

River discharge is a continuous covariable with a ratio scale, describing the outflow-
ing annual volume of water per area of the drainage area above the measurement
location, expressed in cm. The relief is the slope of the river trace in percent.

5.3.1.2 Discrete Covariables

We also have two accessory variables which are not continuous. The variable
“grain” gives the size of the sediment grains, encoded as an ordered factor with three
levels (fine, medium, and coarse grains, the typical sizes in which a sand is divided).
Finally, “position” is a dichotomous variable describing whether the river belongs to
the northern or southern part of the drainage basin. Both areas have slightly different
geological characteristics, which influence the authors wanted to monitor.

> X4 = factor(Covariables$position)

> X3 = factor(Covariables$grain,c("f","m","c"),ordered=TRUE)

> class(X3)

[1] "ordered" "factor"

> X3

[1] c c c m m m f f f c c c m m m f f f c c c m m m f f f c c c

[31] m m m f f f c c c m m m f f f c c c m m m f f f c c c m m m

[61] f f f c c c m m m f f f

Levels: f < m < c

We suspect that we will have different expected compositions for different levels
of X3 or X4. We thus find ourselves in a similar situation to the ANOVA case
(Sect. 5.1.2), but now the response is a composition.
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X3 denotes an “ordered” covariable, coded as an ordered “factor” in R. Recall
that the command levels provides the possible values the variable can take:

> levels(X3)

[1] "f" "m" "c"

> levels(X3) <- c("fine","medium","coarse")

> X3

[1] coarse coarse coarse medium medium medium fine fine

(...)

[65] coarse coarse medium medium medium fine fine fine

Levels: fine < medium < coarse

As in the real case, ANOVA is not specified in a unique way, and we have to
choose the contrasts we want to use for estimation purposes. Given that X3 is
ordered, the default contrast is a polynomial one, but we want to use instead the
treatment contrast

> contrasts(X3)

.L .Q

[1,] -7.071e-01 0.4082

[2,] 4.351e-18 -0.8165

[3,] 7.071e-01 0.4082

> contrasts(X3)<-"contr.treatment"

> contrasts(X3)

medium coarse

fine 0 0

medium 1 0

coarse 0 1

for reasons that will become clear in Sect. 5.3.3.

5.3.1.3 Multiple and Multivariate Covariables

Thus, the dataset contains a mixture of continuous and categorical covariables. We
can thus study the dependence of composition on one or two continuous variables
with regression, or else we can study the influence of the factors with ANOVA
or finally get a complete model with both continuous and discrete covariables
integrated.
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In the next section, displaying the dependence, we will see that two different
covariables (relief and grain) have a significant influence. This will give rise to
several questions:

• How do we model the joint influence of all relevant covariables?
What composition would be predicted if both relief and grain are known?

• Is the joint influence an accumulation of independent linear effects, or do we
have some interaction between the explanatory variables?
For instance, we may devise a regression model of composition on relief where
the intercept is depending on grain size or where grain size modifies both slope
and intercept.

• Is one of the influences indirect?
For instance, maybe only the grain size has a direct influence to the composition,
and the dependence on relief is inherited from an influence of this covariable on
grain size.

• Which of these many possible models is the best one?
A criterion might be that the model should be as complicated as necessary yet
being as simple as possible (called the principle of parsimony, or Occam’s razor).
Another criterion might be that a model should predict future outcomes as precise
as possible.

Using a complete linear modeling approach, we can answer all these issues in quite
a straightforward fashion (Sects. 5.3.2–5.3.9). Choosing the best model among them
will need a little bit more of discussion (Sect. 5.5).

5.3.2 Direct Visualization of the Dependence

To visualize the dependence of a composition on continuous covariables, we can use
parallel plots, i.e., matrices of plots where the several explanatory variables occupy
the same column, and the several representations of the explained composition use
the same row. To display the role of a discrete covariable, we have two options: we
either use the same parallel plots or use colors and symbols to distinguish the several
levels.

5.3.2.1 Continuous Covariables

As happened with compositions as explanatory variables (Sect. 5.2.2), to visualize
the dependence of a composition on one or more continuous covariables, we will
need one dimension for the independent variable (to be plotted in the X -axis) and
thus need to reduce the composition to one-dimensional projections. A starting point
might be a clr, alr, or pairwise log-ratio transformation, but it is also possible to
tailor a specific ilr basis from well-chosen balances (Sects. 2.5.5–2.5.7 and 4.3.1).
The following code
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> opar <- par(mar=c(4,4,1,1))

> pairwisePlot(cbind(X1,X2,logX1=log(X1)),clr(Y))

> par(opar)

generates a diagram quite similar to Fig. 5.9, but black-and-white and simpler. To
obtain a plot of each possible pairwise log ratio against the explanatory variable, we
could use the code in page 105, which would generate a matrix plot like Fig. 5.2,
but with the log-ratio composition on the vertical axis.

5.3.2.2 Categorical Covariables Using Colors and Symbols

We can use symbols to represent the possible values of discrete covariable in some
suitable compositional graphic, such as ternary diagrams, scatterplots of projections,
and dot plots of projections (Fig. 5.7).

> opar = par(xpd=NA,no.readonly=TRUE)

> plot(Y,pch=c(3,20)[X4],col=c("red","green","blue")[X3])

> legend(x=0.5,y=0.45,abbreviate(levels(X4), minlength=1),

+ pch=c(3,20))

> legend(x=0.75,y=0.0,abbreviate(levels(X3), minlength=1),

+ pch=20,col=c("red","green","blue"),yjust=0)

> par(opar)

Symbols and color plots are meaningless without a legend. One can place the
legend at some fixed coordinates (giving x and y of the upper left corner of the
legend box) or else use the locator command to interactively locate the legend
with the mouse:

> legend(locator(1),levels(X3),

pch=20,col=c("red","green","blue"),xpd=NA,yjust=0)

Here c(3,20) encodes the plotting symbols to be used for each of the factors. Use
the command plot(1:40,1:40,pch=1:40) to find the numbers of the plotting
symbols. The c("red","green","blue") lists the colors to be used for each of
the plotting levels of X3. See ? colours for details. A shortcut with less control
over the actual symbols and colors would be

> plot(Y,pch=as.numeric(X4),col=X3)

5.3.2.3 Categorical Covariables Through Parallel Plots

As with continuous covariables, we can also use the principle of parallel plotting to
represent any one-dimensional projection of a composition, side by side in a panel
for the various levels of the discrete covariable. We can use the set of all pairwise log
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Fig. 5.7 Visualizing the dependence of a composition on discrete covariables with the help of
colors and symbols

ratios or any standard log-ratio transformation (clr, alr, ad hoc ilr). To get a pairwise
log-ratio representation, the compositional boxplot is the easiest tool (Fig. 5.8):

> boxplot(Y,X3,notch=TRUE)

The compositional boxplot as described in Sect. 4.1.3 is modified in two ways here.
First, for each of the log-ratio, several boxplots are given, one for each level of
the factor. This allows a qualitative and direct comparison of the distribution of all
log ratios. Second, boxplots are now notched thanks to the notch=TRUE optional
argument. These notches are constructed in a way that non-overlapping notches
within the same panel can be interpreted as a strong hint that the true medians of the
populations are different (Chambers et al., 1983). See the help ? boxplot.acomp
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Fig. 5.8 A compositional boxplot splitted by factors

of the compositional boxplot for possible modifications, such as removing boxes,
avoiding the logarithm, or displaying two-part subcompositions rather than (log)
ratios.

5.3.2.4 Multiple and Multivariate Covariables

When several covariables of mixed nature are suspected to have an influence on the
composition, we should try to visualize as much information as possible. We can
then combine the principles of parallel plotting (for continuous covariables) and
symbol/color (for discrete covariables):

> opar <- par(mar=c(4,4,0,0))

> pairwisePlot(cbind(X1,X2,logX2=log(X2)),clr(Y),

pch=c(3,20)[X4],col=c("red","green","blue")[X3])

> par(opar)

Figure 5.9 shows the result of this command.
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Fig. 5.9 A pairwise plot of the continuous covariables against the clr coefficients of the dataset.
The two discrete covariables are added as symbols and colors, following the legend of Fig. 5.7

5.3.3 The Model and Its R Interface

5.3.3.1 The Regression Model

Based on the interpretation of multiple regression as a linear combination (5.2),
we can build a regression model with compositional response and real independent
variable using the linear Aitchison structure of the simplex:

Yi D a ˚Xi ˇ b C "i

where a and b are unknown compositional constants, Yi is a random composition,
Xi is a real random variable or design constant, and finally "i is a compositional
random variable with null compositional expectation �D .1; : : : ; 1/=D and a
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constant variance. Typically, we assume a " to follow a normal distribution on the
simplex, N D

S
.�; ˙/, with clr-covariance matrix ˙ .

To work with this model in R, we need to rewrite the model into a multivariate
regression problem based on the principle of working in coordinates:

Yi D a ˚Xi ˇ b C "i

ilr.Yi / D ilr.a/CXi ilr.b/C ilr."i /„ƒ‚…
"i

with a "i � N.0D�1;˙ilr/. This model is equal to (5.2) and can be estimated in R
by the command

> (model = lm(ilr(Y)~log(X1) ))

Call:

lm(formula = ilr(Y) ~ log(X1))

Coefficients:

[,1] [,2] [,3]

(Intercept) 2.543 1.108 -5.176

log(X1) -0.696 -0.230 0.971

Note that X1 was applied a log transformation (to honor its ratio scale). The output
contains the estimated parameters Oa (intercept) and Ob (slope) in ilr coordinates. They
can be displayed as compositions by

> ilrInv(coef(model),orig=Y)

Qm Qp Rf M

(Intercept) 0.01641 0.5984 0.3848 0.0003952

log(X1) 0.28218 0.1055 0.1302 0.4821039

attr(,"class")

[1] acomp

We would interpret the intercept a as the expected composition forX D 0. The slope
b may be interpreted as the perturbation applied to the composition if X increases
one unit. The output of the summary command for a truly multivariate model in ilr
coordinates does not make much sense, as it tests each coordinate separately and not
as a whole. However, we can use the anova.mlm to check for the joint significance
of the influence of X :

> anova(model)

Analysis of Variance Table

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.811 97.4 3 68 <2e-16

log(X1) 1 0.062 1.5 3 68 0.22

Residuals 70
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In this example, the influence of X has a p-value larger than a typical ˛ of, e.g.,
˛ D 0:05. There is thus no evidence in the dataset that the discharge influences the
composition of our sediments. On the contrary, if we try with relief,

> model=lm(ilr(Y)~log(X2))

> anova(model)

Analysis of Variance Table

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.813 98.5 3 68 < 2e-16

log(X2) 1 0.497 22.4 3 68 3.4e-10

Residuals 70

we find a significance below the critical level, and we can thus deduce that the
composition notably depends on the relief of the basin.

5.3.3.2 The Compositional Analysis of Variance Model

Formally, the compositional analysis of variance model uses the same equation as
in regression,

Yi D a ˚ bXi ˚ "i ;

with a and bg; g 2 fg1; : : : ; gmg compositional constants in SD , and "i as usual
a compositional random variable with neutral expected value sorigin, typically
modeled as a normal distribution on the simplex N D

S
.�; ˙/.

Recall that ANOVA models (Sect. 5.1.2) have an identifiability problem and that
we must fix the contrasts we want to use for our factors. In general, we will prefer
the treatment contrast. In that way, we will be able to interpret the intercept a as the
expected response for the first level and the remaining constants bg2;bg3; : : : as the
increments on average response from the first to the second level, from the first to
the third, etc.

Thus, we have several compositional constants a; bg2 ; bg3 : : :, a different one for
each group gi ; i D 1; : : : ; m. The different constants are distinguished by their
lower index. Analogously to the regression model, we apply the ilr transformation
to map the model to a multivariate linear model:

ilrYi D ilr.a ˚ bXi ˚ "i / D ilr.a/C ilr.bXi /C ilr."i /„ƒ‚…
"i

with parameters:

> contrasts(X3) <- "contr.treatment"

> (model = lm(ilr(Y)~X3))

Call:

lm(formula = ilr(Y) ~ X3)
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Coefficients:

[,1] [,2] [,3]

(Intercept) -1.8491 -0.2262 0.3383

X3medium 1.0044 0.0808 -0.6808

X3coarse 2.1000 0.5925 -1.8004

> (a = ilrInv(coef(model)[1,],orig=Y))

Qm Qp Rf M

0.60876 0.04454 0.12481 0.22189

attr(,"class")

[1] acomp

> (b = ilrInv(rbind(0,coef(model)[-1,]),orig=Y))

Qm Qp Rf M

0.25000 0.2500 0.2500 0.2500

X3medium 0.11986 0.4961 0.2692 0.1148

X3coarse 0.03299 0.6429 0.3009 0.0232

attr(,"class")

[1] acomp

> (mu = a+b)

Qm Qp Rf M

0.6088 0.04454 0.1248 0.2219

X3medium 0.4734 0.14335 0.2180 0.1653

X3coarse 0.2197 0.31323 0.4108 0.0563

attr(,"class")

[1] acomp

> (Sigma = ilrvar2clr(var(model)) )

1 2 3 4

1 0.10751 -0.02454 -0.01613 -0.06684

2 -0.02454 0.07962 0.00914 -0.06422

3 -0.01613 0.00914 0.09206 -0.08507

4 -0.06684 -0.06422 -0.08507 0.21613

Here ˙ is given in terms of a clr variance. We can then visualize the results as
ellipses of the same shape and size centered around each of the expected values (see
Sect. 5.3.4 for a more general case):

> plot(mu,pch=20)

> plot(Y,pch=".",add=TRUE)

> ellipses(mu,Sigma,2)

A test of the form

H0 W fbg1 D � � � D bgm D 0g vs: H1 W fat least one bg ¤ 0g
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is provided in the row linked to X3 of the ANOVA table:

> anova(model)

Analysis of Variance Table

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.873 153.3 3 67 <2e-16

X3 2 1.002 22.7 6 136 <2e-16

Residuals 69

5.3.3.3 Linear Models with Several Main Effects

Multiple covariables can be added into a linear model simply by adding several of
the influence terms into the modeling equation

Yi D a ˚ log.X1i/ˇ b1 CX2i ˇ b2 ˚ b3.X3/˚ b4.X4/˚ "i (5.4)

for continuous covariables X1 (in this case, a ratio scale) and X2 (real scale) and
discrete covariables X3 (ordinal) and X4 (categorical/dichotomous). If influence
terms of different variables are added, we speak about main effects. Correspond-
ingly, the model would be expressed in R by adding the terms into the formula of
the model. The system recognizes the factors automatically from their class:

> (model = lm(ilr(Y)~log(X1)+X2+X3+X4 ))

Call:

lm(formula = ilr(Y) ~ log(X1) + X2 + X3 + X4)

Coefficients:

[,1] [,2] [,3]

(Intercept) -0.1471 2.1508 -7.9290

log(X1) -0.3903 -0.7144 1.8125

X2 0.4939 1.4462 -0.2496

X3medium 1.0044 0.0808 -0.6808

X3coarse 2.1000 0.5925 -1.8004

X4south -0.3438 0.0711 -0.6047

The output now contains the estimated parameters in ilr coordinates: the intercept
Oa, the slopes Ob1, Ob2 for each continuous covariable, and the ANOVA effects Ob3.X3/
and Ob4.X4/, with one row for each level beyond the first. The first level of the
factor is assumed to have an effect of zero due to the implicit usage of the
contr.treatment contrasts.
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5.3.4 Estimation and Representation of the Model Parameters

5.3.4.1 Separate Representation of Each Coefficient

The estimated parameters of a compositional linear model can be extracted with the
coef command

> coef(model)

[,1] [,2] [,3]

(Intercept) -0.1471 2.15081 -7.9290

log(X1) -0.3903 -0.71445 1.8125

X2 0.4939 1.44616 -0.2496

X3medium 1.0044 0.08075 -0.6808

X3coarse 2.1000 0.59254 -1.8004

X4south -0.3438 0.07105 -0.6047

Here each line corresponds to the ilr transformation of the compositional parameter.
The corresponding compositions can be reconstructed by

> (coefs <- ilrInv(coef(model),orig=Y))

Qm Qp Rf M

(Intercept) 0.06960 0.05653 0.87386 1.594e-05

log(X1) 0.15412 0.08874 0.04875 7.084e-01

X2 0.07540 0.15159 0.62839 1.446e-01

X3medium 0.11986 0.49610 0.26920 1.148e-01

X3coarse 0.03299 0.64291 0.30090 2.320e-02

X4south 0.34818 0.21412 0.29787 1.398e-01

attr(,"class")

[1] acomp

where the orig parameter is used to recover the variable names, which are lost in the
ilr transformation. The parameters can be represented as compositions by (Fig. 5.10)

> barplot(coefs,las=2,xlim=c(0,11))

If we want to display the uncertainty of these parameters, we need their estimation
variance. The estimated estimation variance is given by the vcov command

> vcov(model)

This ignores the matrix structure of the coefficients and treats them as a vector.
However, we can extract the compositional variances of individual parameters by
reshaping this variance matrix, with an ad hoc function vcovAcomp, and plot them
as confidence regions for each of parameters into ternary diagrams (Fig. 5.11):

> vars <- vcovAcomp(model)

> dim(vars)
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[1] 3 3 6 6

> alpha=0.05

> plot(coefs,pch=as.character(1:nrow(coefs)))

> plot(coefs-coefs,pch=20,add=TRUE)

> for(i in 1:nrow(coefs)){

+ ellipses(acomp(coefs[i,,drop=FALSE]),

+ ilrvar2clr(vars[,,i,i]),

+ r=ConfRadius(model,1-alpha),

+ col="gray")

+ }

> par(xpd=FALSE)

The vcovAcomp command reorganizes the coefficient matrix in such a
way that vcovAcomp[ , ,i,j] is the ilr covariance of the i th and the j th
parameter. Thus, vcovAcomp[ , ,i,i] is the estimation variance cvarest. Obi /
of the i th parameter expressed in ilr. The ConfRadius command allows to
compute the radius of the confidence regions of the model parameters, such
that under the assumptions of normality on the simplex for the residuals,
the true value of the parameter bi is within the ellipse around Obi with a
prob probability. This is based on the fact that the estimated Mahalanobis
distance follows a Hotelling’s T 2 distribution, with dimension D � 1 and
degrees of freedom given by the residuals of the linear model (Fahrmeir et al.,
1996):

ilr. Obi � bi / � bvar�1est .bi / � ilrt . Obi � bi / � T 2.D � 1; df.residual/:
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Fig. 5.11 Parameter estimates and 95 % confidence ellipsoids of a linear model with several
main effects. Legend: 1D (Intercept); 2D log(X1); 3DX2; 4DX3medium; 5DX3coarse;
6DX4south. A variable may be removed from the model if the confidence ellipse around its
parameter always contains the barycenter

5.3.4.2 Joint Representation of the Whole Model Coefficients

An alternative way to see a model with several main effects, like the one in (5.4), is
as a linear mapping

ilr.Y/ D ilr.a/C X � B C "i

where now B is a square matrix space representing a linear transformation from
the space of explanatory variables to the simplex (and expressed in ilr for the
compositional side). X contains all the explanatory variables, and the rows of B
are the ilr coordinates of the several vectors bi .
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With this interpretation, we can apply a singular value decomposition (SVD)
to understand the structure of B. A SVD decomposes a P � C matrix into three
matrices:

B D U � D � Vt (5.5)

where U D .u1 � � � uR / and V D .u1 � � � uR / are matrices with orthogonal columns
ui 2R

P and vi 2R
C and D D .di ıij/ij D diag.d/ is a R�R diagonal matrix, with

RD min.P; C /. Note that in the present case, P D 5 the number of estimated
vectors, and C D D � 1 D 3 the number of ilr coordinates of our composition (and
in this case, R D 3). These elements are, respectively, called left and right singular
vectors and singular values. If we multiply B with the i th left singular vector ui ,
we get

ui � B D ui � U � D � Vt D ei � D � Vt D .diei / � Vt D di .ei � Vt / D divti :

Thus, if we change the explanatory variables one unit along the direction of ui , then
we move the explained composition a distance of di along the direction of vi .

The SVD is also the underlying technique behind the biplot (Sects. 6.1.1
and 6.1.2). We can thus take profit of this decomposition to graphically represent the
whole linear mapping obtained with regression (Fig. 5.12). If the sum of the first two
squared singular values is large enough (compared with the sum of all of them), then
the following biplot will be a good representation of the global regression model:

> B = clr(coefs[-1,])

> svdlm = svd(B)

> opar <- par(xpd=NA,mar=c(2,2,0,0))

> coloredBiplot(svdlm, scale =0, xarrows=TRUE, ypch=4,

ynames=colnames(B), xnames=rownames(B))

> sum(svdlm$d[1:2]^2)/sum(svdlm$d^2)

[1] 0.9095

> par(opar)
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Note that this biplot summarizes a very high proportion of the variability described
by the model; thus we can trust the following interpretations.

In general terms, an arrow represents a one-unit change in the direction of
an explanatory variable: for instance, the arrow X2 represents a change from a
relief of 1 to a relief of 2, and the arrow X3medium the change from fine sand
to medium sand. On the other hand, a link between two compositional variables
(e.g., the segment joining M and Qm) represents a one-unit change in the log
ratio of the two parts: in this case, adding C1 to .1=

p
2/ ln.Qm=M/, for instance,

passing from a ratio Qm=M of 1:1 to a ratio of 	4:1. Projecting the arrow of an
explanatory variable onto the direction of each of the compositional links, we find
(an approximation of) the expected change in the composition caused by a one-
unit increment of the explanatory variable. Thus, passing from basin north to basin
south (a one-unit change alongX4south) increases the ratio Qm=M by a factor of 4.
Another example is: if we project X3medium onto the link M � Qp, the resulting
arrow is approximately one half of the link; thus, passing from fine to medium sand,
we should expect the ratio Qp=M to increase by a factor of two:
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D 1p
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M
) Qp

M
D exp
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5.3.5 Testing the Influence of Each Variable

The anova command is used to test that the role of each variable is significant:

> anova(model)

Analysis of Variance Table

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.932 292.1 3 64 < 2e-16

log(X1) 1 0.511 22.3 3 64 5.2e-10

X2 1 0.723 55.7 3 64 < 2e-16

X3 2 1.151 29.4 6 130 < 2e-16

X4 1 0.382 13.2 3 64 8.4e-07

Residuals 66

However, when several covariables are involved, we must keep in mind that each
line of the table corresponds to a test of the form:

• H0, null hypothesis: given the preceding .i � 1/ variables, the i th covariable
has no influence. If this is a continuous covariable, we can say that the slope
coefficient bi D �. If this is a factor, we can say that the composition has the
same expectation for all levels.
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• H1, alternative hypothesis: the independent variable of the line is needed,
additionally to all preceding variables, i.e., its coefficients bi ¤ �.

The p-value of the test can be found in the last column of the table. According
to the principle that the model should be as simple as possible, a variable should
be removed if its influence is not significant. To understand why a nonsignificant
parameter should be removed, we can consider the following: for a nonsignificant
test, we did not prove the parameter to be different from zero. In particular we do
not know in which direction it influences the compositions. Used in prediction, that
might well increase the prediction error. Therefore, it is safer to remove it.

A variable is only needed in the model if it is necessary given that the information
from all the other covariables is already used. It is thus necessary to check each
covariable as last term in the model.

Currently, there is no way to automatize this, since the built-in R command
drop1 is not functional for the "mlm" model. We need to manually enumerate each
covariable in the last position and extract the test of the fifth row of the ANOVA
table:

> anova(lm(ilr(Y)~X2 + X3 + X4 + log(X1))) [5,]

Analysis of Variance Table

Df Pillai approx F num Df den Df Pr(>F)

log(X1) 1 0.563 27.5 3 64 1.5e-11

> anova(lm(ilr(Y) ~ log(X1) + X3 + X4 + X2)) [5,]

Analysis of Variance Table

Df Pillai approx F num Df den Df Pr(>F)

X2 1 0.704 50.7 3 64 <2e-16

> anova(lm(ilr(Y) ~ log(X1) + X2 + X4 + X3)) [5,]

Analysis of Variance Table

Df Pillai approx F num Df den Df Pr(>F)

X3 2 1.15 29.4 6 130 <2e-16

> anova(lm(ilr(Y) ~ log(X1) + X2 + X3 + X4)) [5,]

Analysis of Variance Table

Df Pillai approx F num Df den Df Pr(>F)

X4 1 0.382 13.2 3 64 8.4e-07



140 5 Linear Models for Compositions

In this case, all covariables are significant at a 5 % level, when added last. A
different approach to covariable selection and elimination will be discussed in the
section about model selection (Sect. 5.5.3).

5.3.6 Comparing Predicted and Observed Values

When the parameters are estimated, we can try to find a “noise-free” version of Y, by
evaluating the model equation without the error term plugging the given values for
the independent variables and the estimated parameters as coefficients. For instance,
in a model with log(X1) and X3 as covariables, we would have

OYi D a ˚ log.X1i/ Ob1 ˚ ObX3

OYi is called the predicted value. The predicted values can be computed by the
predict command and need to be ilr-back-transformed into compositions:

> Pred = ilrInv(predict(model),orig=Y)

The predicted values are again compositions and may be visualized together with
the original data, either as families of points or with segments joining predictions
and observations:

> plot(Y,pch=".")

> plot(Predicted,add=TRUE,pch=20)

> segments(x0=Predicted,y=Y)

Note that these plots can be very noisy if the dataset is of medium size. A better
representation may be obtained plotting the actually observed values against the
predicted values in a family of one-dimensional projections. We could use any
coordinate log-ratio transformation (alr,clr,ilr) or else the set of all pairwise log
ratios (Fig. 5.13):

> opar <- par(mfrow=c(4,4), mar=c(2,2,1,1), oma=c(4,4,0,0))

> Ypred = ilrInv(predict(model),orig=Y)

> for(i in 1:4){

+ for(j in 1:4){

+ plot(log(Y[,i]/Y[,j]),

+ log(Ypred[,i]/Ypred[,j]),

+ pch=ifelse(i!=j,1,""))

+ if(i==j){text(x=0,y=0,

+ labels=colnames(Y)[i],cex=1.5)

+ }else{
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Fig. 5.13 Observed against predicted values of the composition, as obtained with the estimated
model. Each diagram represents the pairwise log ratios of observed against predicted values, of the
variable in the row divided by the variable in the column

+ abline(a=0,b=1,col="gray",lwd=3)

+ }

+ }

+ }

> mtext(text=c("observed log-ratio","predicted log-ratio"),

side=c(1,2),at=0.5,line=2,outer=TRUE)

> par(opar)

Again the trick of giving pch=ifelse(i!=j,1,"") allows us to comfortably get
empty diagonal panels. In this plot we expect to see a clear concentration of dots
around the reference line, the identity. The main use of these plots is to visualize the
dependence and its strength. In our case, all plots show a more or less simple linear
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dependence. Only those ratios involving low values of M represent an exception,
because they are badly predicted by the model.

5.3.7 Prediction of New Values

To predict unobserved values of the dependent variable from observations of the
independent variables, we also use the predict command in R, but giving as
newdata argument the new values of the covariables. This function evaluates
the model equation with the given values for the independent variables and the
estimated parameters as coefficients and without error term. The term prediction
denotes the results of predict for the given newdata values, to distinguish them
from the predicted values (the results obtained with predict when no newdata

is given). The new values for the independent variables can be provided in the
argument newdata as a list or if they do not contain multivariate objects as a
data.frame.

> newdata=list(X1=geometricmean(X1),

+ X2=mean(X2),

+ X3=factor("coarse"),

+ X4=factor("north"))

This would predict the expected composition (in ilr) for coarse sediments from a
hypothetical basin placed in the northern part of the study area, which discharge
would be equal to the geometric average of the data and its relief would be the
average relief. Since for R the model is stated in ilr coordinates, we need to back-
transform the predictions into compositions with the ilrInv function

> prediction <- ilrInv(predict(model,newdata=newdata),orig=Y)

There are three types of errors associated to a prediction:

• Estimation error
The random difference to the optimal prediction due to the estimation errors in
the estimated coefficients.

• Prediction error
The random difference to the true unobserved values due to estimation errors in
the estimated coefficients and due to the variability of the true value around its
conditionally expected value.

• Model error
Our models, the good and the bad ones, cannot be as complex as the reality they
try to “model.” This systematic inability of the model to fit the unknown reality
induces an equally systematic difference of prediction with optimal parameters
to the true conditional expectation.

The first two errors are typically quantified by variances (estimation variance,
prediction variance), squared error (mean-squared estimation error or mean-squared
prediction error), and regions (confidence intervals/regions, predictive regions).
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Though both fundamental from philosophical and practical points of view, the
model error is (strangely) mostly ignored in statistical practice.

For predictions, we distinguish two types of regions. The predicted value itself
is uncertain only due to the fact that regression parameters are not known but
estimated. The region built in this case is typically called a confidence region. If
we consider the regression parameters as fixed, then we can also build what is
called a prediction region, which uncertainty comes from the variance ˙" of the
residuals of the model. In the case of a one-dimensional response, confidence and
prediction intervals are provided by the standard R command predict (page 98).
For multivariate response, e.g., compositions of more than one ilr coordinate, that
function is useless, because the actual uncertainty regions are ellipses.

Moreover, we should accumulate both uncertainty sources, one coming from
parameter estimation and the other coming from the residual variance. This provides
the predictive regions. These two variance sources are, respectively, provided (in the
ilr coordinates used) by the vcov command and the var.mlm method of the var

command.
The residual variance is available in “compositions” in a form directly usable

for our computations:

> (varEpsilon = var(model))

[,1] [,2] [,3]

[1,] 0.06101 -0.010549 0.005610

[2,] -0.01055 0.030774 -0.003159

[3,] 0.00561 -0.003159 0.184500

On the contrary, we saw in Sect. 5.3.4 that the parameter estimation variance matrix
is provided in quite a complex form. We must first then “propagate” that variance
on the regression parameters as uncertainty on the predicted values themselves. For
this goal, it is convenient to take all variables, variances, and parameters expressed in
ilr coordinates, which transforms the regression equation in a matrix-multiplication
form like (5.1). The prediction is thus an affine linear mapping of the matrix B. Then
to propagate its variance, it is sufficient to apply the same linear mapping on both
sides of this variance. This is done by the following code:

> getModelMatrix <- function(object,

newdata=NULL,na.action=na.pass) {

+ if( is.null(newdata) )

+ return(model.matrix(object))

+ Terms <- delete.response(terms(object))

+ mf <- model.frame(Terms,newdata,na.action=na.action,

xlev = object$xlevels)

+ if (!is.null(cl <- attr(Terms, "dataClasses")))

+ .checkMFClasses(cl, mf)

+ model.matrix(Terms, mf, contrasts.arg = object$contrasts)

+ }

> (X <- getModelMatrix(model,newdata))
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(Intercept) log(X1) X2 X3medium X3coarse X4south

1 1 4.827 0.7163 0 1 0

attr(,"assign")

[1] 0 1 2 3 3 4

attr(,"contrasts")

attr(,"contrasts")$X3

[1] "contr.treatment"

attr(,"contrasts")$X4

[1] "contr.treatment"

> XX <- kronecker(diag(ncol(predict(model))),X)

> (estVar = XX %*% vcov(model) %*% t(XX))

[,1] [,2] [,3]

[1,] 0.0039348 -0.0006803 0.0003618

[2,] -0.0006803 0.0019847 -0.0002037

[3,] 0.0003618 -0.0002037 0.0118991

> (predVar = estVar+varEpsilon)

[,1] [,2] [,3]

[1,] 0.064946 -0.011229 0.005972

[2,] -0.011229 0.032759 -0.003363

[3,] 0.005972 -0.003363 0.196399

The first lines define a function that organizes the new values of the explanatory
variables in a matrix with the adequate dimensions, the so-called model matrix.
Then we apply the model matrix by both left and right multiplication to the
estimation covariance matrix. The result is the sought estimation variance of the
predicted values. Finally, we add both uncertainty components together. It is now
possible to draw the predictions together with their predictive regions into ternary
diagrams (Fig. 5.14):

> alpha=0.05

> plot(Y,pch=".")

> plot(prediction,pch=20,add=TRUE)

> ellipses(prediction,ilrvar2clr(estVar),

+ r=ConfRadius(model,1-alpha))

> ellipses(prediction,ilrvar2clr(predVar),

+ r=ConfRadius(model,1-alpha))
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Fig. 5.14 Ternary diagrams showing the confidence and predictive regions around the predicted
composition, marked with a circle, for some fixed values of the explanatory variable (coarse
sand, northern subbasin, average discharge, and relief). The smaller ellipsoid corresponds to the
estimation error variance of the predicted values. The larger ellipse corresponds to the predictive
area, in which a new prediction with this combination of covariable values would fall with a
probability of 1� ˛ D 0:95. The dots show the dataset, for reference purposes

5.3.8 Residuals

5.3.8.1 Definition and Computation

Let us go back to the predicted values, where the dependent variable Yi has actually
been observed. The predicted values are the compositions that the model would
suggest as expected for the given set of parameters. The difference between these
predicted values OYi and the values actually observed Yi are called residuals
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O"i D Yi � OYi D ilr�1.ilr.Yi /� dilr.Yi //

and can thus be obtained with

> Resid = ilrInv(resid(model),orig=Y)

The residuals are not exactly equal to the errors "i of the model, but their best
approximation we have available. We should then check the modeling hypotheses
about the regression error on these estimated residuals. Recall that we assumed them
to be approximately normally distributed and mutually independent and show a
constant variance (homoscedastic). The next subsections cover a descriptive analysis
of the residuals to visually check these issues. Note that it is also possible to apply
the methods for outlier classification provided in Sect. 7.4, though we will not repeat
that here.

5.3.8.2 Visual Inspection of Residuals

Since residuals are also compositions, they can again be plotted in ternary diagrams
(Fig. 5.15):

> plot(Resid, cex=0.5)

> #title("Ternary Diagrams of Residuals",outer=TRUE,line=-1)

This representation is particularly suited to visually compare the residual spread of
different models or along different directions, because residuals are always centered
and because ternary diagrams keep their scale. In the example of Fig. 5.15, we see
fairly comparable spreads, between any pair of components or along the balance
in the upper corner of each ternary diagram (the geometric mean of the remaining
parts). The ternary diagram of the residuals can also reveal some structures in the
residuals, e.g., when an important categorical covariable had not been considered.
In the example, we can observe a clear group of three observations with a very
small amount proportion of M that was also singularized in the pairwise log ratios
of predicted against observed values (Fig. 5.13). If the variance of the residuals is
small, one should consider to plot a scaled version of the residuals:

> plot(4*Resid)

5.3.8.3 Checking Symmetry and Normality

The test theory behind linear models is based on the assumption that residuals
have a normal distribution on the simplex (Sect. 3.1.1). As explained there, a
vectorial variable is normally distributed if all its univariate projections are normally
distributed. We cannot check all univariate projections, but the set of all pairwise
log ratios provides a canonical set of D.D � 1/=2 directions, which allows to get a
good global impression. The assumption of normality can thus be visually checked
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Fig. 5.15 Ternary diagrams of residuals of the linear model. Recall that residuals are always
centered. It is thus easy to visually compare the variability among different models and different
subcompositions

on each of these possible log ratios, for instance, with boxplots for compositions
(Fig. 5.16):

> boxplot(Resid)

Recall that this command was presented in Sect. 4.1.3. The strength of boxplots
is to reveal asymmetry (when the box itself is not symmetric) and the existence
of outliers (since they are plotted as dots quite beyond the whiskers end). In the
example (Fig. 5.16), we again see several outliers in ratios involving a low value of
the M component.
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Fig. 5.16 Boxplot of the residuals of the linear model. Each frame shows a boxplot of the log ratio
of the component in the row against the component in the column. This diagram helps in assessing
symmetry of the residuals and detecting outliers. In this application, the outliers in the components
involving M show up clearly

To compare the shape of the distribution to the theoretical normal distribution on
the simplex, we could use a Quantile–Quantile plot, applying the qqnorm command
(Fig. 5.17):

> qqnorm(Resid)

In a QQ plot, a dataset is considered to follow a normal distribution if it plots in a
straight line against the quantiles of a standard normal distribution. The intercept of
the line is the mean and the value at abscissa one would correspond to the standard
deviation. In this case, we need to compare several lines, for each log ratio. Again
the diagrams involving component M show a clear deviation from a straight line,
though in this case they involve some more points apart of those already identified
as outliers. This might be a hint towards a heavy-tailed distribution.

Both figures show some deviations from normality. It would be thus interesting
to proceed to an actual numeric test of normality, as is treated in Chap. 3. Accepting
or rejecting these tests might have several consequences for the analysis.
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Fig. 5.17 Quantile–Quantile plots comparing the distribution of residuals against a normal
distribution on the simplex, for each possible pairwise log ratio. The lines are robustly fitted
references. Note that only the log ratio of Qm and M shows a clear deviation from normality,
in the direction of a heavy-tailed distribution

• If all deviations come from the presence of outliers and they can be considered as
wrong observations, we should reduce their influence on the parameter estimates,
as outliers usually have large levering effects on the fitting of linear models. A
robust fitting would be necessary. Unfortunately, a robust fitting of multivariate
linear models is not available in R at the time of writing of this book.

• If the outliers are considered as genuine values that should be included in the
linear model, we may be confident that our parameter estimates and further
predictions are still unbiased, as long as we assume the existence and relevance of
compositional means and metric variances, i.e., correct as a least-squares solution
(Daunis-i Estadella et al., 2002).

• Note however that most inferential procedures, such as tests and confidence
intervals, are based on normality assumptions. In the context of simple univariate
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linear models, we could now try rank-based tests. Unfortunately, ranks are
meaningless in multivariate data due to the lack of a natural order. We may thus
need to understand the consequences of assuming non-normal distributions for
the residuals. This is discussed in Sect. 5.5.4.

5.3.8.4 Checking Homoscedasticity

The theory of linear models is further based on the assumption that the residuals "i
have constant variance for any combination of values of the explanatory variables.
The estimation through unweighted least squares is optimal if the variances are
equal. Tests can get more aggressive (i.e., reject with a higher probability than ˛)
if the variance varies substantially between different values of the independent
variables. In all exploratory comparison of variability, we should however keep in
mind that variances behave quite like a ratio scale (i.e., only orders of magnitude
matter) that the human eye cannot easily judge.

A standard tool in linear models is to plot residuals against predicted values in
a scatterplot. This reduces the multiple covariables to one optimal regressor. In the
compositional case, we have a multidimensional prediction and multidimensional
residuals. We must thus first project them to a family of log ratios, for instance, the
clr (Fig. 5.18)

> opar <- par(oma=c(3,3,0,0),mar=c(4,4,1,0))

> pairwisePlot(clr(Pred),clr(Resid))

> mtext(text=c("predicted values (clr)","residuals (clr)"),

side=c(1,2),at=0.5,line=2,outer=TRUE)

> par(opar)

or else in the set of all pairwise log ratios (Fig. 5.19)

> opar <- par(mfrow=c(4,4),mar=c(2,2,1,1), oma=c(4,4,0,0))

> for(i in 1:4){

+ for(j in 1:4){

+ plot(log(Pred[,i]/Pred[,j]),log(Resid[,i]/Resid[,j]) ,

pch=ifelse(i!=j,19,""))

+ if(i==j){text(x=0,y=0,labels=colnames(Resid)[i],cex=1.5)}

+ else{abline(h=0)}

+ }

+ }

> mtext(text=c("predicted values","residuals"),

side=c(1,2),at=0.5,line=2,outer=TRUE)

> par(opar)

In all these scatterplots, we will never see a linear dependence, because it was
removed by the linear model. However, we can see nonlinear structures in the
residuals, e.g., U-shaped residual clouds (positive residuals for small prediction,
negative for medium, and positive again for high prediction), which would suggest
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Fig. 5.18 Residuals vs. predicted values of the linear model, expressed in clr coefficients. This
diagram helps assessing homoscedastic residuals, i.e., that the spread of all components in the
ordinate axis is reasonably homogeneous along each abscissa axis

a nonlinear dependence. We could further observe a different variability of different
predicted values (e.g., the diagram involvingQm andRf in Fig. 5.19). In this figure,
we might observe a structure of the prediction into three groups, probably due to the
three different levels of one of the factors (grain size). We could check this by adding
color to the plot (not shown here):

> opar <- par(oma=c(0,0,2,0),mar=c(4,4,1,0))

> pairwisePlot(clr(Pred),clr(Resid),col=as.numeric(X3))

> legend(locator(1),levels(X3),col=as.numeric(1:3),pch=1,xpd=NA)

> par(opar)

According to that plot, the group with the highest variability is the coarse-grain
group. This is not surprising, since in a set of coarse grains, we would expect a
higher variability for the same volume of sand due to a lower mixing effect. It is left
to the reader to obtain the figure.
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Fig. 5.19 Residuals vs. predicted values of the linear model, in a pairwise log-ratio representation:
each diagram represents the ratio of the variable in the row divided by the variable in the column.
This diagram helps assessing homoscedastic residuals, i.e., that the spread of all components in the
ordinate axis is reasonably homogeneous along each abscissa axis

5.3.9 Measures of Compositional Determination

In classical regression analysis, we use the correlation between explanatory and
dependent variables (cor.Y;X/ or its square R2 D cor.Y;X/2) to describe
the strength of the dependence or how well the regression model describes the
observations:

R2 D var. OYi /
var.Yi /

D 1 � var. OYi � Yi /
var.Yi /

The advantage ofR2 over the correlation is that it can be computed independently of
the form of the model. However, in this equation, we still rely on Y to be univariate.
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R2 can be interpreted as the portion of variance that is removed in the conditional
distribution of Y givenX by using the linear model rather than an overall mean. We
can generalize this further for multivariate linear models by replacing the variance
by the metric variance:

R2 D mvar. OYi /

mvar.Yi /
D 1 � mvar. OYi � Yi /

mvar.Yi /

Although the metric variance might be meaningless for ordinary multivariate linear
models, where the variances of different variables may not be comparable, a
common variance is a meaningful and sensible concept for compositions (Sect. 4.1),
and we can thus safely use it here.

However, there is an additional problem. If R2 is estimated from data

bmvar. OYi � Yi / D 1

n � 1
nX

iD1
d 2A.

OYi ;Yi /;

with the Aitchison distance (2.5), then we get a biased estimator of the residual
variance, because we had to estimate all model parameters (not only the mean, for
which the �1 usually stands for). We should then adjust the denominator according
to the degrees of freedom to get an unbiased estimator:

R2adj D 1 � ..n � 1/=df :residuals/ � bmvar. OYi � Yi /

Omvar.Yi /
:

Without this correction term, models with more parameters would systematically
yield larger R2, but now Radj can be smaller than 0, which might hinder the
interpretation. Function R2 computes the adjusted coefficient of determination using
the metric variance.

When comparing two models, we can interpret that the one with a higher R2adj
value is better in the sense that it provides a more precise conditional expectation.
However, this is only an exploratory tool: to check that a parameter really influences
the outcome, one should always use a test.

Let us compute R2adj for some models:

> R2(lm(ilr(Y)~log(X1)+X2))

[1] 0.05371

> R2(lm(ilr(Y)~log(X1)+X3))

[1] 0.7749

> R2(lm(ilr(Y)~log(X1)+X2+X4))

[1] 0.08222
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> R2(lm(ilr(Y)~log(X1)+X2+X3))

[1] 0.8103

> R2(lm(ilr(Y)~X2+X3+X4))

[1] 0.7876

> R2(lm(ilr(Y)~log(X1)+X2+X3+X4))

[1] 0.8511

These values show a higher degree of determination for the largest model, the one
with all variables. But we also get very good models just with grain size (X3) and
one of the two continuous variables, log(X1) or X2.

5.4 Compositions as Both Dependent and Independent
Variables

Up to here, we have introduced compositions either as the explanatory vector or
as the explained one. It is not difficult to have different compositions playing both
roles. We may even devise a situation where several compositions are used to predict
another composition. For these cases, we just take each composition expressed in
their ilr coordinates and treat them as usual, within the framework of a model with
several main effects (page 137). We must just take care to back-transform the right
things with the right ilrInv. Always giving the accessory argument orig might
help a lot in keeping order in the coefficients or in the predictions.

5.4.1 Example

To demonstrate the use of a second composition as a regressor, we will use the same
petrographic composition data, but in a slightly different way. In fact, Grantham
and Velbel (1988) took sediment samples from the chosen locations; split them in
coarse, medium, and fine sand sediment fractions; and analyzed each fraction for
the four components presented in Sect. 5.3.1. Thus, for each observation on coarse
grains, there are corresponding observations on medium and fine grains on the same
measurement locations and in the same sequence in the dataset.

> compY <- acomp(Y[GeoChemSed$grain=="c",])

> compX <- acomp(Y[GeoChemSed$grain=="m",])

> dim(compY)

[1] 24 4

> dim(compX)

[1] 24 4
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5.4.2 Visualization

Our goal will be now to predict the composition Y of the coarse-grain fraction from
the petrographic composition of the medium-grain fraction X. The rationale behind
the model is that the composition of measurements at the same location should be
similar. To visualize the relationship, we might plot each of the coordinates or log
ratios (clr, alr, ilr, or the set of pairwise log ratios) of X in the abscissa axis against Y
transformed in the same way. That can be done with the pairwisePlot command
(Fig. 5.20):

> opar<-par(mar=c(4,4,0,0),oma=c(3,3,0.1,0.1))

> pairwisePlot(clr(compX),clr(compY))

> mtext(text=c("medium-sized","coarse"),side=c(1,2),

at=0.5,line=2,outer=TRUE)

A sort of dependence is visible, especially in the plots on the diagonal.

5.4.3 The Composition-to-Composition Regression Model

In this case, our linear model would be a full-rank transformation of the sediment
composition when “passing” from medium to coarse size:

ilr.Y/ D a C ilr.X/ � B C "i

where now B is a square matrix representing a linear transformation between
compositions in ilr space, like usual matrices represent linear mappings of vectors.
The model can thus be directly computed and tested in R:

> (modelCC <- lm(ilr(compY)~ilr(compX)))

Call:

lm(formula = ilr(compY) ~ ilr(compX))

Coefficients:

[,1] [,2] [,3]

(Intercept) 1.1408 0.8130 0.4424

ilr(compX)1 0.8577 0.3372 1.3938

ilr(compX)2 0.4850 0.9173 0.6260

ilr(compX)3 0.2768 0.0829 1.8573

> anova(modelCC)

Analysis of Variance Table
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Fig. 5.20 Scatterplots of the coarse sediment composition against the medium-sized sediment
composition, both represented in the same set of clr coefficients

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.898 52.8 3 18 4.1e-09

ilr(compX) 3 1.450 6.2 9 60 3.6e-06

Residuals 20

Thus, because the p-value is under the critical level of 0:05, we can take the
dependence of the Y on X as credible. The intercept a can be interpreted as the
ilr transformation of the mean composition of Y that would correspond to X D �:

> ilrInv(coef(modelCC)[1,],orig=compY)

Qm Qp Rf M

0.05785 0.29035 0.35078 0.30103

attr(,"class")

[1] acomp
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5.4.4 Representation and Visualization of Coefficients

On the other hand, the rest of coefficients form the entries of matrix B, originally
represented in a “double” ilr space. We can apply to this matrix a SVD to understand
its structure, like in page 137.

> (Bsvd <- svd( ilrvar2clr(coef(modelCC)[-1,]) ))

$d

[1] 2.617e+00 8.967e-01 3.722e-01 1.244e-16

$u

[,1] [,2] [,3] [,4]

[1,] -0.79044 0.27036 -0.2283 0.5

[2,] 0.09674 0.08148 0.8567 0.5

[3,] 0.09662 -0.83104 -0.2237 0.5

[4,] 0.59708 0.47920 -0.4048 0.5

$v

[,1] [,2] [,3] [,4]

[1,] -0.60073 0.5217 -0.3419 0.5

[2,] -0.11202 -0.0462 0.8575 0.5

[3,] -0.07523 -0.7912 -0.3440 0.5

[4,] 0.78798 0.3157 -0.1716 0.5

> opar <- par(xpd=NA,mar=c(2,2,0,1))

> coloredBiplot(Bsvd,xarrows=TRUE,xnames=colnames(Y),

ynames=colnames(Y))

> par(opar)

This time, the particularity is that both left and right singular vectors can be
interpreted as a basis of the same simplex, one (the left) when this space is the
origin of the linear application and the other (the right) when the space is the image
of the application. Recall that the function ilrvar2clr transforms a square matrix
expressed in ilr form to its equivalent expressed in clr, more practical to represent
results in plots. We can obtain the vectors of these two bases with

> u = clrInv(t(Bsvd$u))

> v = clrInv(t(Bsvd$v))

> colnames(u) <- colnames(v) <- colnames(Y)

> print(u)

Qm Qp Rf M

[1,] 0.1014 0.2462 0.24622 0.4061

[2,] 0.2948 0.2440 0.09798 0.3632

[3,] 0.1723 0.5101 0.17314 0.1445
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[4,] 0.2500 0.2500 0.25000 0.2500

attr(,"class")

[1] acomp

> print(v)

Qm Qp Rf M

[1,] 0.1200 0.1957 0.2030 0.4813

[2,] 0.3774 0.2139 0.1015 0.3071

[3,] 0.1538 0.5104 0.1535 0.1824

[4,] 0.2500 0.2500 0.2500 0.2500

attr(,"class")

[1] acomp

Note that in both cases, the last row-vector will always be the neutral element of
the simplex, because we did the computations with the clr vectors: this last vector
should thus be ignored.

Regarding this particular illustration case, image and origin directions are quite
similar. This leads to the interpretation that any variation of the X composition
induces a similar change for Y. That coincidence can also be seen in the biplot
(Fig. 5.21). As will be explained in Sect. 6.1.2, in a compositional biplot, no ray of
a component should be interpreted: our attention should be focused on the links
between components (of the same composition, in this case). On the other hand,
because this is the biplot of a linear model, an origin link projected onto an image
link gives the expected change in the explained composition by a one-unit change
in the explanatory composition. For instance, if we take the origin link QpRf and
project it onto its equivalent image link, we see that the origin is approximately twice
as large as the image: thus, a one-unit increment in the ln.Qp=Rf / of a medium sand
composition generates a two-unit increment in the same log ratio in the coarse sand.
Since the configurations of all variables in both compositions are quite similar, we
can deduce that this is going to be the general rule: changes in the composition of
the medium sand are amplified by a factor of two in the coarse sand:
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This is telling us that under the same environmental conditions, coarse-grained
sands have more variability than medium-grained sands. This difference on vari-
ances has already been observed discussing homoscedasticity in Sect. 5.3.8.4. That
is barely a surprise, as medium sands are actually obtained by comminuting,
triturating coarser sands, and mixing the results. They are thus a sort of “average”
and should have less variance.
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Fig. 5.21 Biplot
representation of the linear
model of regression of the
coarse sand composition
(circles) as a function of the
medium sand composition
(arrows). Recall that only
links between variables
should be interpreted

5.4.4.1 Scalar Composition-to-Composition Model

It is generally not recommended to work with the standard summary of linear
models involving compositions, because it gives an excessive importance to the ilr
basis used in the computations, being an arbitrary choice. However, in the case of an
auto-regression within the same composition, like in this example, we can interpret
the tests for individual variables:

> summary(modelCC)

Response Y1 :

Call:

lm(formula = Y1 ~ ilr(compX))

Residuals:

Min 1Q Median 3Q Max

-0.5513 -0.0923 -0.0095 0.0995 0.4607

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.141 0.155 7.35 4.2e-07

ilr(compX)1 0.858 0.127 6.75 1.4e-06

ilr(compX)2 0.485 0.183 2.65 0.015

ilr(compX)3 0.277 0.164 1.68 0.108

Residual standard error: 0.207 on 20 degrees of freedom

Multiple R-squared: 0.701, Adjusted R-squared: 0.656

F-statistic: 15.6 on 3 and 20 DF, p-value: 1.81e-05
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Response Y2 :

Call:

lm(formula = Y2 ~ ilr(compX))

Residuals:

Min 1Q Median 3Q Max

-0.3848 -0.1437 -0.0281 0.1571 0.4380

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.8130 0.1687 4.82 0.00010

ilr(compX)1 0.3372 0.1381 2.44 0.02406

ilr(compX)2 0.9173 0.1988 4.61 0.00017

ilr(compX)3 0.0829 0.1789 0.46 0.64817

Residual standard error: 0.225 on 20 degrees of freedom

Multiple R-squared: 0.551, Adjusted R-squared: 0.484

F-statistic: 8.18 on 3 and 20 DF, p-value: 0.000949

Response Y3 :

Call:

lm(formula = Y3 ~ ilr(compX))

Residuals:

Min 1Q Median 3Q Max

-1.0927 -0.3735 -0.0354 0.4059 1.2518

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.442 0.476 0.93 0.3637

ilr(compX)1 1.394 0.390 3.58 0.0019

ilr(compX)2 0.626 0.561 1.12 0.2775

ilr(compX)3 1.857 0.504 3.68 0.0015

Residual standard error: 0.635 on 20 degrees of freedom

Multiple R-squared: 0.498, Adjusted R-squared: 0.423

F-statistic: 6.62 on 3 and 20 DF, p-value: 0.00277

This tells us that, for each ilr coordinate of the coarse sand, we can simplify the
model and use the same ilr coordinate for medium sand as the only significant
explanatory variable of the model. This reinforces our interpretation that each
change in the medium sand composition has an effect on the same direction for
the coarse sand composition. That would lead to a much simpler regression model
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of the form

Y D a ˚ b ˇ Xi C "i

where we use a scalar b instead of a full matrix. If we want to obtain this model, we
should take coordinates

ilr.Y/ D ilr.a/C bilr.Xi /C ilr."i /:

That says that each ilr coordinate may have an own intercept ilr.a/, but they must all
have the same slope b. We can then add a fake factor giving the coordinate of each
value, destroy the vector structure of the data (with the vectorizer command c),
and produce a univariate linear model with a continuous and discrete explanatory
variables:

> (coorindex = factor(rep(1:ncol(ilr(compX)),each=nrow(compX))))

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2

[31] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3

[61] 3 3 3 3 3 3 3 3 3 3 3 3

Levels: 1 2 3

> (simplemodel = lm( c(ilr(compY)) ~ c(ilr(compX)) + coorindex ) )

Call:

lm(formula = c(ilr(compY)) ~ c(ilr(compX)) + coorindex)

Coefficients:

(Intercept) c(ilr(compX)) coorindex2 coorindex3

0.998 0.884 -0.503 -2.157

which would translate to

ilr. OY/ D 

0:998; 0:998� 0:503; 0:998� 2:157 �C 0:884 � ilr.X/

Note that this model implies that the factor of change b is independent of the
direction of change and that the error structure, i.e., the compositional variance of "i ,
is rotation invariant, a sphere on the simplex. In summary, though being apparently
very simple, this kind of models is mathematically complex, difficult to handle in
R, and of very limited flexibility when modeling.

5.5 Advanced Considerations

5.5.1 Interaction Models

In a next step, we could ask whether the influences of different covariables are
influenced by each other. The most complex model we have up to now would contain
a main effect for each covariable:
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Yi D X1i ˇ b1˚X2i ˇ b2˚ b3X3i ˚ b4X4i ˚ : : :

D X1i ˇ b1˚X2i ˇ b2˚
˚ıX3i ”medium” ˇ b3”medium”

˚ıX3i ”coarse” ˇ b3”coarse”

˚ıX4i ”south” ˇ b4”south”

where ıxy is the Kronecker delta function. But each of the covariables can change
the influence of another covariable. This can happen in the form of a linear
regression or as an analysis of variance and produces additional additive terms to
the model equation, which are called interactions:

• For two real covariablesX1 and X2 that would be

Yi D X1i ˇ .b1˚X2i ˇ b120/˚X2i ˇ .b2˚X1i ˇ b210/˚ : : :

which can be reformulated to

Yi D X1i ˇ b1˚X1i ˇX2i ˇ b120 ˚X2i ˇ b2CX2i ˇX1i ˇ b210 ˚ : : :

D X1i ˇ b1˚X2i ˇ b2˚ .X1i X2i / .b120˚ b210/
„ ƒ‚ …

b12

˚ : : :

where b12 is another compositional parameter and X1 X2 is just the product
of the two explanatory variables. The model becomes then pretty similar to the
quadratic regression model (Sect. 5.2.14).

• For two discrete covariables X3 and X4, we may have one influence parameter
for each combination of their levels. Take for illustration the variables grain and
position: we would have then a table of interactions like

fine:north medium:north coarse:north
fine:south medium:south coarse:south

But, as happens with the main effects in ANOVA models, the table is not
unique, and we must choose a contrast transformation of the table to ensure
uniqueness. The R-default is to define each of the terms as identically zero for
the first combination of categories: e.g., the coefficients in the first row and the
first column of the table would be considered zero, and we would estimate only
interactions for medium:south and coarse:south. In the illustration example,
the model would finally read
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Yi D : : : ıX3i ”medium” ˇ b3”medium”

˚ıX3i ”coarse” 
 b3”coarse”

˚ıX4i ”south” ˇ b4”south”

˚ıX3i ”medium”ıX4i ”south” ˇ b34”medium”;”south”

˚ıX3i ”coarse”ıX4i ”south” ˇ b34”coarse”;”south” ˚ : : :

• If a categorical covariable modifies the influence of a continuous one, we get
different intercepts and slopes of the continuous covariable for each level of the
categorical one. In the illustration case, for instance,

Yi D a.X3i /˚ X1i ˇ b1X3i ˚ � � �
D .a ˚ ıX3i”medium” ˇ a3”medium” ˚ ıX3i ”coarse” ˇ a3”coarse”/˚

˚X1ˇ .b1˚ ıX3i”medium” ˇ b13”medium” ˚ ıX3i”coarse” ˇ b13”coarse”/˚ � � � ;

which again uses the treatment contrasts, taking zero interactions with the first
category. Thus, the model would be equivalent to three regression lines, one for
each grain size, with intercepts and slopes: a resp. b for fine sand; a ˚ b3”medium”

resp. b ˚ b13”medium” for medium sand; and a ˚ b3”coarse” resp. b ˚ b13”coarse” for
coarse sand.

In all three cases, we get additional compositional parameters following the same
structure as the usual main effect terms of linear models. An ilr or alr transformation
of the whole model yields a full, classical multivariate linear model with interaction
terms.

Classical linear models in R admit interactions, marked with the symbols *

and : in the model formula:

> GeoChemSed=read.csv("GraVel.csv",header=TRUE)

> Y=acomp(GeoChemSed[,7:10])

> names(GeoChemSed)

[1] "watershed" "position" "CCWI" "discharge" "relief"

[6] "grain" "Qm" "Qp" "Rf" "M"

> Covariables=GeoChemSed[,c("discharge","relief","grain","position")]

> X1 = Covariables$discharge

> X2 = Covariables$relief

> X4 = factor(Covariables$position)

> X3 = factor(Covariables$grain,c("f","m","c"),ordered=TRUE)

> levels(X3) <- c("fine","medium","coarse")

> contrasts(X3)<-"contr.treatment"

> anova(lm(ilr(Y)~log(X1)+ X2 + X3 + X4 + log(X1)*X2+X2*X3+X3*X4))
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Analysis of Variance Table

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.944 330 3 59 < 2e-16

log(X1) 1 0.667 39 3 59 4.1e-14

X2 1 0.795 76 3 59 < 2e-16

X3 2 1.196 30 6 120 < 2e-16

X4 1 0.486 19 3 59 1.3e-08

log(X1):X2 1 0.253 7 3 59 0.00059

X2:X3 2 0.175 2 6 120 0.08294

X3:X4 2 0.604 9 6 120 7.8e-08

Residuals 61

In general, X1:X2 represents the interaction of the two variables, whereas X1*X2

represents the interaction and the main effects, X1*X2=X1+X2+X1:X2. Thus, it is
also possible to omit the terms for the main effects, since they are always implicitly
present, when the interaction terms are specified as products. The following shorter
description would give the same result:

> anova(lm(ilr(Y)~log(X1)*X2+X2*X3+X3*X4))

If we decide that the interaction term X2:X3 of X2 and X3 is no longer significant
at the 5 % level, we can omit it:

> anova(lm(ilr(Y)~log(X1)*X2+X3*X4))

Further higher-order terms can be added by longer products, like in

> anova(lm(ilr(Y)~log(X1)*X2+X2*X4+log(X1)*X3*X4))

Analysis of Variance Table

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.976 759 3 55 < 2e-16

log(X1) 1 0.714 46 3 55 5.6e-15

X2 1 0.807 77 3 55 < 2e-16

X4 1 0.739 52 3 55 4.9e-16

X3 2 1.324 37 6 112 < 2e-16

log(X1):X2 1 0.273 7 3 55 0.0005

X2:X4 1 0.491 18 3 55 3.7e-08

log(X1):X3 2 0.252 3 6 112 0.0177

log(X1):X4 1 0.102 2 3 55 0.1124

X4:X3 2 0.814 13 6 112 5.7e-11

log(X1):X4:X3 2 0.462 6 6 112 4.0e-05

Residuals 57

In this case, a three-order term is significant, whereas one of its nested second-order
terms is no longer so. To ensure that the term as a whole is necessary, we would need
to check what happens with the significance of the coefficients, if the third-order
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interaction is added together with or without its enclosed second-order interactions,
by explicitly adding/removing the specific terms:

> anova(lm(ilr(Y)~log(X1)*X2+X2*X4+log(X1):X3:X4))

Analysis of Variance Table

Df Pillai approx F num Df den Df Pr(>F)

(Intercept) 1 0.958 451 3 59 < 2e-16

log(X1) 1 0.629 33 3 59 1.0e-12

X2 1 0.798 77 3 59 < 2e-16

X4 1 0.527 22 3 59 1.2e-09

log(X1):X2 1 0.245 6 3 59 0.00079

X2:X4 1 0.339 10 3 59 1.8e-05

log(X1):X4:X3 5 1.625 14 15 183 < 2e-16

Residuals 61

All terms in this model are now highly significant.

5.5.2 Akaike Information Criterion

Another general criterion often proposed for model selection is the Akaike informa-
tion criterion (AIC) (Sakamoto et al., 1986), given by

AIC.model/ D 2 
 p �
nX

iD1
2 ln.f O
 .yi jXi D xi //

where 
 is the ML estimate of the parameter yi , f O
 .yjX Dx/ the conditional
density of the dependent variable given the covariables, and p is the dimension
of the parameter. Here entropy is defined with respect to the Aitchison measure
of the simplex. The AIC can have different values with different definitions of
whether or not the variance parameter needs to be counted in p and what reference
measure is used for the density functions. However, for fixed choices and a
single dataset, the values are always comparable. It is thus possible to use p D
length(coef(model)), which is what we get if we compute the criterion with the
AIC command from R. However, at the time of writing this book, the command
gives “inadequate” results for multivariate linear models, because it implicitly uses
a logLik.lm which is unaware of the subtle differences between simple linear
regression and multivariate linear models.

> AIC(model)

[1] 93.04

> AIC(lm(ilr(Y)~log(X1)+X3))
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[1] 184.7

> AIC(lm(ilr(Y)~log(X1)+X2+X3+X4))

[1] 93.04

> AIC(lm(ilr(Y)~log(X1)*X3))

[1] 185.7

> AIC(lm(ilr(Y)~log(X1)*X2*X3*X4))

[1] -201.3

> AIC(lm(ilr(Y)~log(X1)*X2*X3+X1*X3*X4))

[1] -181.7

Smaller AIC correspond to the worse models, either because their likelihood is
too small or because they use too many parameters. The correction term 2p thus
plays the same role as the adjustment in R2: a larger model always has a larger
likelihood, thus they have to be penalized somehow. Alternative corrections have
been proposed (e.g., the Schwarz Bayesian Information Criterion, BIC) and are also
available through AIC. However, the generalization to the compositional situation
has not been fully explored.

5.5.3 Model Selection

5.5.3.1 Some General Thoughts on Model Selection

The general strategies for selecting the right one from a set of linear models are
unaffected by the compositional nature of the problem. Several techniques like the
lattice of hypothesis, forward selection, backward selection, combined forward and
backward selection, and the use of AIC, BIC, or R2 have been proposed in the
literature. It is not our aim to choose the best of these strategies. We will just show
how to use each of them in R. It is however useful to gather some basic ideas on the
general aim and scope of all selection criteria.

• Models should be as simple as possible and as complicated as necessary.
Significant tests or logic evidence prove necessity. The number of parameters
and scientific interpretability measure simplicity.

• No statistical procedure can identify the one true model. Rigorous testing
approaches can at most just prove that a good model does (at least) contain the
proven terms.

• No model is true; some are useful. What is useful depends on the question at
hand.

• There are very many models, too many to look at them, and probably many of
them will provide a similar degree of determination.
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• If a model does not consider known relevant covariables, the residuals will not
be independent for variables with similar covariables. Covariables known to be
relevant should thus be included, even if not significant.

• Nonsignificant parameters do not improve prediction, even if they are known to
be relevant.

• The theory as presented is not robust, because we are not aware of a robust
estimation theory for multivariate linear models at a workable and implemented
level in R.

• The whole theory of linear models is based on the assumptions of homoscedas-
ticity and normality, which is here transformed to additive logistic normality
(normality in the simplex). Due to the Aitchison geometry of the simplex, both
assumptions are possible and reasonable, although (just like in usual regression)
probably never exactly fulfilled.

• This book provides a frequentist’s view of the theory, which is only for reasons
of availability in the basic R. A proper Bayesian approach will always be
superior, when realistic prior information is available. There are several packages
implementing Bayesian methods that can be just plugged into a compositional
analysis following the lines shown here with linear models.

5.5.3.2 Obtaining All Possible Models

We have clearly seen in the last section that the number of alternative models quickly
becomes too large for a manual exploration, when we consider interactions between
covariables. The same happens if we suspect that only a subcomposition of our
compositional variables does actually show a dependence, and we want to extract it
by exploring all possible subcompositions. If just with P D 4 covariables we found
an impractical 32,768 of alternative models, when exploring subcompositions,
things are not that terrible. With D parts, we can build:

• Subcompositions of two parts, of three parts, etc.
• Up to one “subcomposition” of D parts (having all elements)

These are the elements of the Dth row of Tartaglia’s triangle, except the first two
because a subcomposition of zero elements is nothing and a subcomposition of one
element has no sense. For instance, with D D 4, we would get 6 C 4 C 1 D 11

subcompositions to explore. In any case, to select covariables and/or subcomposi-
tions to explore, we can intensively use the lapply and sapply functions, devised
to “apply” a given function to the elements of a vector or a list.

Take, for instance, the exploration of all second-order interactions, with and with-
out their main effects, in the Grantham and Velbel (1988) dataset (for illustration,
we consider now relief as not significant). We must first take the global model and
extract all the possible terms:

> maxmodel = lm(ilr(Y)~log(X1)*X3+log(X1)*X4+X3*X4 )

> (terms = rownames(coef(maxmodel))[-1])
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[1] "log(X1)" "X3medium" "X3coarse"

[4] "X4south" "log(X1):X3medium" "log(X1):X3coarse"

[7] "log(X1):X4south" "X3medium:X4south" "X3coarse:X4south"

Before continuing, we must create some new variables, with the names of the terms
of the categorical variables (except the first category):

> X3medium = X3=="medium"

> X3coarse = X3=="coarse"

> X4south = X4=="south"

The second step is to get all possible subsets of one, two, three, etc. elements, up to
the subset of all terms. These are all combinations with any number of terms among
those 9, obtained with

> idx = sapply(1:length(terms), function(i){combn(terms,i) } )

This computes the combinations of the elements in terms taken in groups of
i elements (resulting in a matrix of i rows and as many columns as different
combinations exist), with i looping from 0 to the total number of terms (all stored
in a single list of 10 elements).

We must then loop through all elements of this list, and take each column once,
to select the terms we want to include in the model. These will be then combined in
a formula and fed to a linear model. All these steps must be enclosed in a couple of
ad hoc functions inside sapply calls:

> res = lapply(idx, function(termstaken){

+ tt = termstaken

+ if(is.null(dim(tt)))dim(tt)=c(length(tt),1)

+ lapply(1:ncol(tt), function(icol){

+ frm = paste( tt[,icol], collapse="+")

+ frm = paste("ilr(Y)~", frm, sep="")

+ mylm = lm(as.formula(frm))

+ return(mylm)

+ })

+ })

This results in a two-level nested list, containing the results of all linear models,
grouped by the length of the subcomposition analyzed. Now we should destroy the
first nesting, in order to have all models in the same level, independently of the
number of terms included:

> length(res)

[1] 9

> length(res[[1]])

[1] 9
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> res = unlist(res, recursive=FALSE)

> length(res)

[1] 511

> names(res) = 1:length(res)

It is convenient to give names to the several models, in order to be able to identify
them afterwards (this is done in the last line).

5.5.3.3 Choosing the Best Models

At this point, we can apply any model selection criterion to the elements of object
res. But as was said in Sect. 5.5.2, the current R implementation is not good for
multivariate linear models. Thus, we may have to build the criterion ourselves:

> mylogLik.mlm = function(mylm){

+ x = mylm$residuals

+ detvarx = ifelse(length(dim(x))>1,

+ determinant(var(x))$modulus,

+ log(var(x)))

+ ncolx = ifelse(length(dim(x))>1,ncol(x),1)

+ -0.5*(sum(mahalanobis(x,0*mean(x),var(x)))+detvarx +

ncolx * log(2*pi))

+ }

> lL = sapply(res,mylogLik.mlm)

> lc = sapply(res,function(mylm){length( coef(mylm)) })

> rvc = sapply(res,function(mylm){

+ d = max(ncol(mylm$residuals),1) #$

+ return(d*(d+1)/2)

+ })

> np = lc + rvc

> sort(myAIC <- -2*lL + 2*np)[1:10]

3 4 2 1 18 25 11 6 14 12

237.6 238.7 238.8 238.9 242.6 243.3 243.4 243.4 243.4 244.4

> sort(myBIC <- -2*lL + log(nrow(Y)) * np)[1:10]

3 4 2 1 18 25 11 6 14 12

264.9 266.0 266.1 266.2 276.7 277.5 277.5 277.5 277.5 278.5

Thus, the best models are the first four, as a difference of up to three units
in the information criteria is generally (Simonoff, 2003, e.g.) considered as not
informative:

> lapply(res[c(3,4,2,1)], coef)
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$`3`
[,1] [,2] [,3]

(Intercept) -1.347 -0.1859 -0.002099

X3coarseTRUE 1.598 0.5522 -1.459986

$`4`
[,1] [,2] [,3]

(Intercept) -0.5914 0.05274 -0.4363

X4southTRUE -0.4459 -0.10910 -0.1049

$`2`
[,1] [,2] [,3]

(Intercept) -0.79910 0.07003 -0.5619

X3mediumTRUE -0.04562 -0.21551 0.2194

$`1`
[,1] [,2] [,3]

(Intercept) 2.5431 1.1077 -5.1759

log(X1) -0.6956 -0.2299 0.9711

All these four models should be considered equally valid. In them, we either
consider one grain size, the position, or the discharge (in log scale) as informative
enough to explain the observed variability given the scarcity of data available.

5.5.3.4 Selecting the Dependent Subcomposition

With the Grantham and Velbel (1988) dataset, we may also explore all possible
subcompositions, with the aim of removing a component or two from the global
model response:

> maxmodel = lm( ilr(Y)~log(X1)+X2+X3+X4)

We have to obtain the 11 possible subcompositions (in this case, we will not take
the complete composition):

> (idx = lapply(2:(ncol(Y)-1), function(i){combn(ncol(Y),i)}))

[[1]]

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 1 1 2 2 3

[2,] 2 3 4 3 4 4

[[2]]

[,1] [,2] [,3] [,4]

[1,] 1 1 1 2

[2,] 2 2 3 3

[3,] 3 4 4 4
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The second step is to loop through all elements of this list and take each column
once to select the variables from the compositional response. These will define a
special ilr basis of SD , where the first coordinates are dependent on our explanatory
variables, and the remaining are independent, i.e., a constant linear model. All these
steps must be enclosed in a couple of ad hoc functions inside sapply calls:

> res = lapply(idx, function(subcomps){

+ lapply(1:ncol(subcomps), function(icol){

+ idparts = unique(c(subcomps[,icol],1:ncol(Y)))

+ sY = acomp(Y,idparts)

+ Y = ilr(sY)

+ Y1 = Y[,1:(nrow(subcomps)-1)]

+ Y2 = Y[,-(1:(nrow(subcomps)-1))]

+ lm1 = lm( Y1~log(X1)+X2+X3+X4)

+ lm2 = lm( Y2~1 )

+ return( list(lm=lm1,nolm=lm2) )

+ })

+ })

This results again in a multiple-level nested list, containing the results of all linear
models, grouped by the length of the subcomposition analyzed. The next step is
then to destroy the first nesting, in order to have the ten models in the same level,
independently of the number of parts of their subcompositions:

> length(res)

[1] 2

> length(res[[1]])

[1] 6

> res = unlist(res, recursive=FALSE)

> length(res)

[1] 10

> names(res) = unlist( lapply(idx,function(subcomps){

+ lapply(1:ncol(subcomps),

+ function(icol){

+ paste(colnames(Y)[subcomps[,icol]],collapse="-")

+ }

+ ) } ) )

Note that the last line just creates some nice names for the ten simplified models
considered.

This time it is quite tricky to apply the model selection criteria, because the model
itself has always two parts: some coordinates follow a linear model; some other
are constant. We must thus adequately define the functions of computation of log-
likelihood and estimated parameters:
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> mylogLik = function(mylm){

+ x = cbind(mylm$lm$residuals,mylm$nolm$residuals)

+ detvarx = ifelse(length(dim(x))>1,

+ determinant(var(x))$modulus,

+ log(var(x)))

+ ncolx = ifelse(length(dim(x))>1,ncol(x),1)

+ -0.5*(sum(mahalanobis(x,0*mean(x),var(x)))+detvarx +

ncolx * log(2*pi))

+ }

> myPars = function(mylm){

+ x = cbind(mylm$lm$residuals,mylm$nolm$residuals)

+ d = ncol(x)

+ return(d*(d+1)/2 + length( coef(mylm$lm)) +

length( coef(mylm$nolm) ))

+ }

> ( lL = sapply(res,mylogLik) )

Qm-Qp Qm-Rf Qm-M Qp-Rf Qp-M Rf-M Qm-Qp-Rf

-106.6 -106.6 -107.2 -107.1 -107.0 -107.1 -105.9

Qm-Qp-M Qm-Rf-M Qp-Rf-M

-106.4 -106.4 -106.4

> ( np = sapply(res,myPars) )

Qm-Qp Qm-Rf Qm-M Qp-Rf Qp-M Rf-M Qm-Qp-Rf

14 14 14 14 14 14 19

Qm-Qp-M Qm-Rf-M Qp-Rf-M

19 19 19

> sort(myAIC <- -2*lL + 2*np)

Qm-Qp Qm-Rf Qp-M Rf-M Qp-Rf Qm-M Qm-Qp-Rf

241.2 241.3 241.9 242.1 242.2 242.4 249.9

Qm-Qp-M Qp-Rf-M Qm-Rf-M

250.7 250.7 250.9

> sort(myBIC <- -2*lL + log(nrow(Y)) * np)

Qm-Qp Qm-Rf Qp-M Rf-M Qp-Rf Qm-M Qm-Qp-Rf

273.1 273.2 273.8 274.0 274.1 274.3 293.1

Qm-Qp-M Qp-Rf-M Qm-Rf-M

294.0 294.0 294.1

We can also work with the generalized likelihood ratio tests. In this case, it is well
known that the log ratio of the likelihoods of the maximal model against each of the
simplified models (times �2) is approximately distributed as a 	2 with degrees of
freedom equal to twice the number of removed parameters when passing from the
maximal to the simplified model:
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> incrlL = mylogLik.mlm(maxmodel) - lL

> incrnp = ( length(coef(maxmodel)) + 3*4/2 ) - np

> (alpha.levels <- pchisq(-2*incrlL,df=incrnp*2,lower.tail=FALSE))

Qm-Qp Qm-Rf Qm-M Qp-Rf Qp-M Rf-M Qm-Qp-Rf

1 1 1 1 1 1 1

Qm-Qp-M Qm-Rf-M Qp-Rf-M

1 1 1

Result show that the generalized likelihood ratio test has no power in this illustration
case, probably due to the small sample size. That is also quite true for the Akaike’s
and Schwarz’ criteria: in all cases, the models built on subcompositions of two parts
are as good as the global model.

5.5.4 Outliers and Heavy-Tailed Distributions

5.5.4.1 The Lack of Robust Linear Models

It would be highly desirable to have a good robust theory, where heavy-tailed
distributions of errors or the presence of extremes and outliers were taken into
account, but prevented of spoiling the efficiency properties of estimators and the
correctness of ˛-levels of tests. However, such methodology is not yet available
for multivariate models: in R, the standard package for robust linear models
roblm package (Salibian-Barrera, 2006) does not yet (i.e., March 2013) support
multivariate linear models. We thus have no choice, but to work with the linear
models we have now. This makes it necessary to understand the effects of deviations
from the standard assumptions of linear models. The next subsections explore some
of these deviations.

5.5.4.2 Validity of Classical Estimators

The regression parameter estimation (i.e., the coefficients) can be legitimated
as unbiased estimators, without any reference to the normality assumption or
homoscedasticity. The classical parameter estimators are unbiased, if the expecta-
tion of the residuals is zero. Furthermore, if the variance of the error terms exists,
then the coefficient estimators have a bounded variance, even if these variance vary.
However, variance estimates rely on homoscedasticity and test distributions further
on the normality assumptions. Parameter estimation is thus always legitimitate,
though we should not trust their uncertainty regions if residual normality or
homoscedasticity (i.e., same error variances for all cases) is not credible.

However, we will seldom find clear heteroscedasticity in practical situations,
because the empirical variance of a random sample is already a highly variable
statistic: variances should be compared with quotients, as they honor a ratio scale.
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Thus, significant changes must change the order of magnitude of the variance! In
other words, a little bit of variation in the spread should not change the validity of
our methods.

Beyond these “small heteroscedasticity” situations, the effect of clearer inhomo-
geneous variances is quite complex. It is clear that wherever the variation of error
variance is large, some of the variance estimators are grossly underestimating their
true values. That is particularly true for the prediction variance and the prediction
error variance for cases of high error variance.

5.5.4.3 Pondering Multivariate Outliers

It is well known that outliers are particularly harder to find when the models
are estimated with non-robust methods. That will be mentioned when discussing
outliers in a descriptive analysis (Sect. 7.4), where non-robust means and variances
where particularly bad if used to detect outliers.

Outliers can have virtually any distorting effect in linear models. They can
artificially increase the variance estimates, making tests too conservative. But they
can also strongly modify the local mean of a specific parameter combination,
thus shifting the parameter estimate substantially towards the outliers, quite like
the classical lever effect (Sect. 5.2.10), which would eventually make the tests too
restrictive.

Thus, if we find a parameter which is significant in the presence of an outlier and
loses its significance when the outlier is removed, we might claim that the outlier is
the only responsible of the significance of this parameter, not the randomness of the
model.

On the other hand, if a parameter becomes significant after removing an outlier,
then we might be inclined to argue that the outlier artificially increased the residual
variance and thus masked the otherwise significant parameter. However, we should
also consider the alternative that the suspected outlier is a real observation, carrying
counterevidence against the parameter. That might be eventually the case if residuals
have a skewed distribution, rendering all large values as outliers. In many cases,
classical diagnostic plots (Sect. 5.2.10) should help to understand the effect of the
outlier, though they are not (strictly speaking) as useful as in the univariate case.

5.5.4.4 Heavy-Tailed Error Distributions

In the presence of heavy-tailed distributions, the quantiles of the relevant distri-
butions of the test statistics can be substantially changed. It is like having a large
portion of a dataset that does not contribute much to the variability, together with
some values in the tails, which dominate the distribution, as if we would have
less observations. This effect is probably stronger for extreme quantiles. The test
distributions will thus get heavy tails too. The significance level of tests and all sort
of confidence regions would thus become more unreliable for more extreme ˛. In
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this case, we should only use reasonable ˛-levels in the interpretation and not trust
p-values beyond that level. A simulations study can eventually help to quantify this
resulting impression. Bootstrap methods might be another tool to compute correct
confidence limits and p-values in the presence of heavy-tailed distribution, though
a detailed discussion of this subject is beyond the scope of this book.
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Chapter 6
Multivariate Statistics

Abstract Compositions are multivariate by nature. Several multivariate techniques
like principal component analysis, cluster analysis, or discriminant analysis have
their compositional counterparts. These are mostly applications of the principle
of working in coordinates, though not always in a straightforward fashion. The
definition, the corresponding tools, and the compositional interpretation of these
exploratory techniques are discussed here.

6.1 Principal Component Analysis: Exploring Codependence

6.1.1 The Singular Value Decomposition

Principal component analysis (PCA) is an interpretation of the singular value
decomposition (SVD) of a data matrix. For compositional data, the SVD of a
centered, clr-transformed dataset X� is a product of three matrices:

clr.X�/ D U � D � Vt ;

where

• V rows identify the variables; its columns are orthonormal vectors of D
components, called right singular vectors, loadings, or principal components;
they define an orthonormal basis of the simplex.

• D is a diagonal matrix, with D positive values in decreasing order called the
singular values; they are interpreted as the standard deviations of the coordinates
of the dataset on the new basis.

• U rows identify the observations, and its columns are orthonormal vectors of N
components, called left singular vectors or scores; the rows of U are interpreted
as the standardized coordinates of the dataset on the new basis.

K.G. van den Boogaart and R. Tolosana-Delgado, Analyzing Compositional Data with R,
Use R!, DOI 10.1007/978-3-642-36809-7 6, © Springer-Verlag Berlin Heidelberg 2013

177



178 6 Multivariate Statistics

Now select the first r singular values and its associated first r left and right singular
vectors, and compute with them Xr D Ur � Dr � Vt

r . This happens to be the best
rank r approximation to the actual X� (in a least-squares sense, Eckart and Young,
1936). The overall quality of this approximation can be measured by the proportion
of preserved variance:

�r D
rX

iD1
d 2ii=

DX

jD1
d 2jj : (6.1)

The importance of this decomposition lies thus in the fact that it allows an optimal
representation of a multidimensional dataset in a lower dimension. In particular,
it will be useful to optimally represent a D-part compositional dataset in a 2D
plot, the biplot. The clr transformation must be applied so that the left and right
singular vectors reproduce the relative scale of compositional data. PCA is available
in R with the command princomp, with a method for “acomp” datasets. This
function returns a princomp object, containing the full result of a PCA on the
covariance matrix of the clr-transformed dataset. The SVD matrices can be found in
the following elements of this object:

• “loadings” contains the matrix V.
• “sdev” contains a vector with the diagonal elements of D in decreasing order of

magnitude.
• “scores” contains the matrix U.

6.1.2 Covariance Biplot as Exploratory Tool

One of the most common uses of SVD/PCA is in exploratory analysis. After looking
at the predefined projections of ternary diagrams and ad hoc balance scatterplots in
Chap. 4, we can “let the data speak” and try to find some other projections better
describing the particular structure of the dataset at hand. A powerful tool to select
which projections deserve exploration is the biplot (Gabriel, 1971). A biplot is a
graphical representation of the case r D 2 (or in 3D, one can try an r D 3 biplot),
where variables and observations are displayed, a sort of simultaneous projection of
the data cloud and the variable axes onto a two-dimensional plot (or 3D).

To construct a biplot, we must first choose a suitable value for a shape parameter
˛, in the interval between 0 and 1 (this last one is the default of R). Then, the
observations are typically represented as dots, in the positions given by the rows of
Ur � D.1�˛/

r . On the other side, the variables are commonly plotted as arrows from
the center of the plot to the rows of Vr �D˛

r . Biplots for ˛ D 0 are called form biplot,
whereas those for ˛ D 1 are covariance biplot .

In a non-compositional, covariance biplot, the arrow lengths are proportional to
the variances of each variable, and the cosine of the angle between any two arrows is



6.1 Principal Component Analysis: Exploring Codependence 179

the correlation coefficient between those two variables. For compositional data, one
must remember that the SVD was applied to the clr-transformed data. This implies
that we cannot directly interpret the rays of a compositional biplot: each represents
the clr variance of a part and has a quite complex relationship with all the original
parts. Instead, we can look at the links between arrow heads, which represent the log
ratios between the two involved parts and are intimately connected with the variation
matrix (4.3) of Chap. 4. The following rules may be taken into account when using
a covariance biplot to explore the compositional structure of dependence:

1. Two proportional variables have a quasi-constant log ratio (a small entry in the
variation array); thus their link should be very short, and the arrow heads lie
together.

2. Inversely, if a link is very long, the log ratio of the two parts involved is highly
variant (a large entry in the variation array). If we see three very long rays
pointing towards different directions (at 120 ı approximately), a ternary diagram
of these three parts will have a high spread, because their mutual links are also
very long.

3. The angle between two links should approximate the correlation coefficient
between the two log ratios:

• Two uncorrelated log ratios provide orthogonal rays.
• Three or more parts lying on a common line have links forming either 0 ı or

180 ı, thus being perfectly correlated (directly or inversely); in this case the
subcomposition formed by these parts should show a one-dimensional pattern
of variation; i.e., this subcomposition is probably collinear.

• Two sets of collinear subcompositions which rays form 90 ı are (possibly)
uncorrelated.

It is of extreme importance to keep in mind that the biplot is as good as the
proportion of the total variance actually displayed by the biplot (Example 6.1 shows
how to compute that variance proportion). Any conclusion drawn should be further
contrasted by plotting the suggested ternary diagrams and log-ratio scatterplots. In
the end, the biplot is just an exploratory tool, yet a powerful one to uncover relations
between many variables.

Example 6.1 (Obtaining and interpreting a compositional biplot). The first
step to obtain a biplot is to produce and store a PCA, available through the
generic function princomp(x), with an acomp method. This function returns
a princomp object, containing the full result of a PCA on the covariance
matrix of the clr-transformed dataset:

> GeoChemSed=read.csv("geochemsed.csv",header=TRUE,skip=1)

> x = acomp(GeoChemSed,4:13)

> pcx = princomp(x)
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SiO2
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MgO

CaO

Na2O

K2O

P2O5

Fe2O3t

Fig. 6.1 Example of a
compositional biplot

The first thing we should do is to obtain the proportion of explained variance
that the biplot will capture. This is obtained as

> sum(pcx$sdev[1:2]^2)/mvar(x)

[1] 0.9026

quite a good value. The biplot of the data is obtained with

> opar <- par(mar=c(1,1,1,1))

> dots = rep(".",times=nrow(x))

> biplot(pcx, xlabs=dots)

> par(opar)

or plot(pcx, xlabs, type="biplot"). Here, the optional argument
xlabs is used to get biplots where the data are just represented by a dot,
instead of labeled with a number (the default, quite noisy for large datasets).
What can be seen in such a biplot?

First, some short links are easy to spot, leading to quite low-variance
subcompositions: Al–Na–Si from one side (main constituents of the so-called
felsic minerals, quartz and feldspar) and Fe–Mg–Mn on the other (from the
mafic minerals, like biotite and garnet). If we compare the metric variances of
these subcompositions with the total metric variance

> mvar( acomp(x[,c("Al2O3","Na2O","SiO2")] ) )

[1] 0.08767

> mvar( acomp(x[,c("Fe2O3t","MgO","MnO")] ) )

[1] 0.06577
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> mvar(x)

[1] 1.541

it is evident that the parts in each one of these groups have very low variances
(respectively, 5.7 % and 4.3 % of the total variance); thus they are quite
proportional.

But the biplot is also a powerful tool to identify possible one-dimensional
patterns, on those subcompositions lying on a common link: for instance, Mn–
Fe–K, P–Ca–Na, or P–Ti–Mn may satisfy this condition, as can be checked
in Fig. 6.2. This means that we can find a projection of the selected variables
onto a particular direction that is quasi-constant. This direction is provided
by the V columns of the SVD: the first column gives the main direction of
variation, and the second column the direction of almost constant value. For
instance, with the second subcomposition we find

> s1 = clr(x[,c("CaO","P2O5","Na2O")])

> s1c = s1 - mean(s1)

> v = svd(s1c)$v[,2]

> var( scalar(s1, v) )

[1] 0.009853

which represents a tiny 0.6 % of the total variation. Such projections may
uncover interesting relationships in the form of equilibrium equations. Fol-
lowing with this example, we have to look for a rescaling of the vector v that
provides nice, round coefficients:

> names(v)=names(s1)

> v/min(abs(v))

CaO P2O5 Na2O

2.269 -1.269 -1.000

> 4*v/min(abs(v))

CaO P2O5 Na2O

9.076 -5.076 -4.000

The procedure applied is to divide the vector by the smallest (in absolute
value) of its components and then look for a nice rounding, a quite tricky
procedure. In this case, we may finally write that

C t ' .CaO/9

.P2O5/5 � .Na2O/4
	
�

.CaO/2

P2O5 � Na2O

�4:5
(6.2)
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MnO Fe2O3t

K2O

CaO P2O5

Na2O

P2O5 TiO2

MnO

Fig. 6.2 Three ternary diagrams where the biplot (Fig. 6.1) suggested a possible one-dimensional
pattern. This pattern is shown as a line.

is almost constant. Note that the second expression, the most simplified one, is
just balancing Ca against P and Na. Similar relationships for the other selected
subcompositions may be derived following the same procedure. This is left as
exercise for the reader.

Finally, the links associated to the first and the last of these subcomposi-
tions are quite orthogonal; thus we can expect a certain independence of these
two patterns. To check it, let us compute the first U singular vector on each of
the selected subcompositions, with the centered, clr-transformed data:

> s1 = clr(x[,c("MnO","Fe2O3t","K2O")])

> s1 = s1 - mean(s1)

> s2 = clr(x[,c("P2O5","TiO2","MnO")])

> s2 = s2 - mean(s2)

> u1 = svd(s1)$u[,1]

> u2 = svd(s2)$u[,1]

> cor(u1,u2)

[1] -0.04206

The resulting correlation is a very small value, clearly almost zero.
In summary, with a proper exploration of the biplot, we uncovered several

relations of low variance (proportional components, or quasi-constants of
equilibrium) in several subcompositions. Note that if we hope to find these
relations by looking at all possible ternary diagrams, we would have to explore
720 plots (the different combinations of 10 elements taken 3 at a time), which
is quite a boring task. Thus, the biplot is a very useful tool in the exploration
of the codependence structure of a compositional dataset.
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Fig. 6.3 Biplot variants (left, covariance biplot; right, form biplot) of a principal component
analysis of the glacial sediment dataset. The right-hand biplot shows a graphical representation
of the communalities

6.1.3 The Scree Plot and the Form Biplot

When interpreting a biplot, either compositional or classical, it is very important to
remember that the quality of the representation is controlled by the proportion of
preserved variability (6.1). Two graphical results allow to visualize this proportion
and which variables are better captured. These are the scree plot and the so-called
form biplot, obtained for ˛ D 0. The scree plot is a bar plot (or a line plot) of
the variance of the principal components, i.e., of the numbers d2ii : a good biplot is
associated with a scree plot where the first two heights are very large when compared
with the remaining bars.

In a form biplot, the proportion of variability of a variable is given by the length
of its ray: thus a perfectly represented variable has a length of one unit, and a badly
represented variable has a very short ray. Figures 6.3 and 6.4 show examples of
covariance and form biplots and a scree plot. This proportion of explained variability
for each component is called communality.

Example 6.2 (Plotting a compositional PCA). Calling princomp, giving as
argument an “acomp” dataset, produces a compositional PCA, stored in an
“princom.acomp” object. This is a fork of the R basic “princomp” object. Several
plotting functions are available for these two object classes. A direct plot, like

> plot(pcx)

generates the scree plot (Fig. 6.4), a representation of the squared diagonal elements
of D. Similar representations are provided by

> plot(pcx, type="screeplot")

> plot(pcx, type="variance")
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The first option generates a line plot, and the second one a bar plot. The sum of the
first two variances against the total variance is the proportion of preserved variation:

> sum(pcx$sdev[1:2]^2)/sum(pcx$sdev^2)

[1] 0.9026

in this case quite a good value. The covariance biplot of the data is obtained with
either

> biplot(pcx)

> plot(pcx, type="biplot")

> plot(pcx, type="biplot", scale=1)

The optional argument scale controls whether we get a covariance biplot (˛ D 1),
useful to assess the codependence between variables, or else a form biplot (˛ D 0)
where the ray length of each variable represents its communality:

> dots = rep(".",times=nrow(x))

> biplot(pcx, xlabs=dots, scale=0)

These biplots are displayed in Fig. 6.3. Note how Na2O and CaO have the same
length in the form biplot (thus, we can equally trust or distrust any conclusions
involving one or the other), while in the covariance biplot, the ray of Na2O is around
twice as long as the one of CaO (thus, the clr variance of the former is around 2 times
the clr variance of the latter).

6.1.4 Loadings and Evolution Plots

A PCA generates more results than those represented on a biplot or a scree plot.
But to understand and interpret them, it is good to recast the SVD in terms of the
internal operations of the simplex, perturbation, and powering. In this way, the i th
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composition (the i th row of our compositional dataset) can be written as the center
plus some deviations along the directions of the principal components:

xi D m ˚
MD�1

jD1 .uij � dj /ˇ wj ;

where now each vector wj D clr�1.vj / is the inverse clr of the j th column of
V, the matrix of principal component loadings. Thus, the vectors of loadings can
(and should) be interpreted as compositions, so conveying only information about
increments or decrements of a part with respect to another. This means that we
cannot interpret the loadings isolated, but at least in pairs, as illustrated in the
following example.

The clr loadings (the matrix V) may be accessed by using the function loadings
on a “princomp” object, whereas their compositional counterparts (the vectors wj )
are stored in its “Loadings” element. But as the signs of the principal components
are arbitrary, we can also access the inverse composition w�1j D clr�1.�vj / in
the “DownLoadings” element. Both “Loadings” and “DownLoadings” are only
available in “princomp.acomp” objects, not in the basic R “princomp” results.

Three different plots can be obtained with PC loadings:

• Barplots of wj : these are stacked bar chart representations of each PC loadings
expressed as compositions, i.e., as positive sectors summing up to one. These
must be compared with the neutral composition �, having all components equal
to 1=D. Thus, the larger the contrast between the i th components of wj and
1=D is, the stronger influence the j th PC exerts over the i th variable relative to
the remaining variables. This may be quite difficult to interpret; therefore, we
introduce the following alternative representation.

• Barplots of ratio loadings: these are sideways bar charts of each pairwise
ratio of two components, where each PC is represented as a bar, showing its
multiplicative contribution onto that particular ratio. If the i th bar for the ratio
A=B is larger (smaller) than one, we may say that the ratio A=B increases
(decreases) along the i th PC, and the larger (smaller) this bar is, the faster this
increase (decrease) is.

• Evolution plots are scatterplots of the scores .ui1 � d1/ of the first PC (on the
X -axis) against the observed compositions xi and/or the predicted composition
m˚.ui1 �d1/ˇw1 (on the Y -axis), each component with a different color/symbol.
Further PCs can be also represented, but then one must use the order k residual
and predicted compositions, respectively:

ei D xi�m�
Mk�1

jD1.uij � dj /ˇwj

Oxk D m˚.ui1 � d1/ˇwk

against the scores of the kth PC. Note that, as usual, these quantities can
be computed with classical sum and products on the clr- or ilr-transformed
dataset. Evolution diagrams typically show exponential decay/growth patterns.
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For a correct interpretation of these patterns, the compositions must be presented
as relative to a reference: e.g., assuming that a given component will not change.
Then, we can say that growing curves correspond to components that increase
faster (or decrease slower) than the reference component.

Example 6.3 (Visualizing and interpreting compositional PCA loadings). Follow-
ing with the preceding example, let us interpret the first two principal components
(PCs). The first following line returns their clr coefficients (which sum is checked
to be zero in the second line):

> loadings(pcx)[,1:2]

Comp.1 Comp.2

SiO2 0.42551 -0.10401

TiO2 -0.19735 0.21449

Al2O3 0.23464 -0.12300

MnO -0.25085 -0.21190

MgO -0.49627 -0.32678

CaO 0.08298 0.39815

Na2O 0.47260 0.02635

K2O 0.23196 -0.32847

P2O5 -0.20126 0.67795

Fe2O3t -0.30196 -0.22278

> colSums( loadings(pcx) )

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

-5.135e-16 7.876e-16 -4.365e-15 3.421e-15 3.809e-15

Comp.6 Comp.7 Comp.8 Comp.9

6.696e-15 3.192e-16 -8.056e-14 -7.511e-14

These coefficients are not free to vary in a ten-dimensional space, but linked to each
other through this null sum. We cannot thus interpret a low value as an absence
of dependence! For instance, in this example, we should not think that the first PC
is not affecting or depending on CaO, in spite of having a very low loading: we
can nevertheless say that the Na2O vs. CaO log ratio increases along the first PC
with a slope of 0.473 � 0.083 D 0.39. Or we may also say that this first PC is
almost unable to change the ratio P2O5/TiO2 (because their loadings difference is
almost zero), whereas along the second PC, this log ratio increases with a slope of
0.463. A graphical representation of these slopes can be obtained with plot(...,

type="relative") and plot(..., type="loadings") (Fig. 6.5): here the first
line just leaves more space for the axis labels. The remaining lines generate the four
diagrams.

These are not available as a command, but can be quickly constructed with
matplot and abline. The following code generates one of these figures, for the
first PC:
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Fig. 6.5 Bar plots of loadings of a compositional principal component analysis: (left) without any
scaling (sdev.scaling=NA) and (right) with one-unit scaling (sdev.scaling=1). Only the last third
part of the actual plot is displayed. For an object pc containing the results of a PCA, the upper
row uses side bars generated with the code plot(pc, type="relative"), and the lower row
contains stacked bars generated with plot(pc, type="loadings"). The left-hand side panels
show the loadings scaled by the corresponding singular value, showing that the bars of higher-
order PCs tend to be more similar to 1; i.e., the last PCs are less able to modify the composition
than the first PCs. The right-hand side panels show all loadings as unit compositional vectors,
which allows to see the structure even for the principal components with smaller variation. Upper
plots (type="relative" option) represent the multiplicative factor that each PC exerts over each
pairwise ratio of the composition. If a bar has a unitary height for a given PC, that PC is unable to
modify the ratio of the two parts involved; otherwise, if the bar is significantly lower (higher) than
1, that PC reduces (increases) the ratio. Lower plots (option type="loadings") show the loadings
as compositional vectors

> comprel2d = function(data, fixedvar){

+ diag(1/data[,fixedvar]) %*% unclass(data)

+ }

> comprel1d = function(data, fixedvar){

+ unclass(data)/data[fixedvar]
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+ }

> fk = pcx$scores[,1]

> vd = pcx$Loadings[1,]*pcx$sdev[1]

> vd = comprel1d(vd, "Al2O3")

> mn = pcx$Center

> mn = comprel1d(mn, "Al2O3")

> matplot(fk, log(comprel2d(x, "Al2O3")), pch=19, col=rainbow(10))

> for(i in 1:10){

+ abline(a=log(mn[i]), b=log(vd[i]), col=rainbow(10)[i], lwd=2)

+ }

First, we define two convenience functions to recompute a composition relative
to one part. Then, we extract the first PC scores and loadings (scaled by its singular
value). Finally, we represent all the variables in the same plot, the observations as
dots and the evolution model as lines. Alternatively, we may want the diagrams in
raw scale, which does not allow us to display the model as a family of lines:

> fkdens = seq(from=min(fk)*1.1, to=max(fk)*1.1, length.out=200)

> compdens = clrInv(outer(fkdens, clr(vd))) + pcx$Center

> compdens = comprel2d(compdens,"Al2O3")

> etqy = compdens[length(fkdens),]

> par(mfrow=c(1,2), mar=c(3,3,1,1))

> for(logscale in c("","y")){

+ matplot(fk, comprel2d(x,"Al2O3"),

pch=19, col=rainbow(10), log=logscale, cex=0.75)

+ matlines(fkdens, compdens, lty=1, col=rainbow(10))

+ }

> text(x=fkdens[length(fkdens)], y=etqy,

labels=colnames(x), pos=2)

In this chunk, we define an equally spaced sequence within the observed score
range of the first PC, estimate the expected composition for each of these scores,
and recast it relative to Al2O3. Then, we plot the observed data and the expected
compositions computed before, in both cases relative to alumina. Finally, we use
text to place a label at the right end of the plot to identify each curve with its
variable. The plot (Fig. 6.6) is once produced in raw scale and once in log scale,
which would be equivalent to the result of the preceding chunk.

The visual fit of this line to the data will mostly depend on the proportion of
variability captured by the principal component chosen: in this case the first PC
captures a 71.2 % of the total variance (Fig. 6.4); thus, the diagram shows a very
reasonable fit, and the model can be trusted to understand what is happening within
the data. So, keeping Al2O3 stable in the direction of increase (reduction) of SiO2,
we must also increase (reduce) Na2O while keeping Na2O almost constant and
reducing (increasing) all other components that mostly discards that weathering
exerts a significant control over these sediments geochemistry (at least related to the
first PC), as such a process would yield a faster decrease of CaO than the decrease
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nent, assuming a conservative Al2O3: (left) in raw scale, (right) in log scale

of K2O in the direction that SiO2 decreases. This is due to the faster alteration of
plagioclase with respect to K-feldspar.

6.2 Cluster Analysis: Detecting Natural Groups

Most techniques described in this book should be applied to homogeneous, single-
population datasets (or multiple-population data already splitted in subpopulations).
Unfortunately, natural datasets are seldom homogeneous: often there are several
subgroups, corresponding to different, unknown subpopulations with a distinct
behavior. The existence of such groups may be hinted in several descriptive plots
(Figs. 4.9 and 6.1 are clear examples). Cluster analysis (Fahrmeir and Hamerle,
1984; Krzanowski, 1988; Mardia et al., 1979) is a technique devised to uncover them
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and to classify the data in the several groups found. In this book we will present only
hierarchical cluster analysis.

Two steps are needed to generate a cluster analysis, and each one has several
variants; thus we must choose a “method” of computation for each step:

1. Obtain a distance matrix between the individuals to compare using function
dist(X, method), where X is the matrix containing (by rows) the individuals
to compare and method is a string with the name of the desired distance to use.

2. Apply an agglomeration technique, a hierarchical algorithm which first consid-
ers all samples as isolated groups, then it mixes the two nearest groups in a joint
group, and the process is repeated upwards until all observations are pooled into
one single group. Here the useful command is hclust(d, method), where d

is the output of the preceding step (a distance matrix between individuals), and
method is a string with the name of the desired method of computation of the
distance between groups.

Details on these steps and their methods are given in the next two subsections.

6.2.1 Compositional Distances

Most distance measures for multivariate datasets can be meaningfully generalized
to compositions if they are applied to the clr-transformed dataset. This is automati-
cally done, when the function is applied to an “acomp” object. The following values
can be thus given as method argument and obtain a sensible distance:

“euclidean” (the default) the classical distance measured as the square root of
the sum of the squared differences between the coordinates of the two individuals
being compared. With compositional data, this happens to be equivalent to the
Aitchison (1986) distance (2.5), as mentioned in Note 2.2).

“minkowski” a generalization of the Euclidean distance:

d.x; y/ D p

vu
u
t

DX

iD1
jclri .x/� clri .y/jp;

where the root/power is not necessarily p D 2. Unlike the Euclidean distance,
the Minkowski distance depends on the chosen basis of the vector space. Thus,
generally speaking it is only meaningful in compositions when based on the
clr-transformed dataset, as this log-ratio transformation is the only one which is
permutation invariant (Sect. 2.2). For the same reasons, the next two distances
should only be applied in general terms to the clr transformation.

“manhattan” obtained as the Minkowski distance with p D 1: this is just the
sum of the projections along the axes, following the trajectory needed while
driving along a city block grid (other names of this distance are taxicab and city
block, all very visual).
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“maximum” obtained as the Minkowski distance with p ! C1: it amounts to
taking only the largest of the projections along the axis.

These last distances may also be applied to ilr-transformed data in the case that
the ilr transformation used has a clear interpretation. Another important distance
is the Mahalanobis distance; this is the Euclidean distance in a dataset linearly
transformed to having uncorrelated, unit-variance variables. This distance is not
implemented as a method of dist, but it can be obtained for compositions with
the composed command dist(svd(ilr(x))$u), computing the Mahalanobis
distance of the ilr transformation. Theoretically, the Mahalanobis distance of any ilr
and alr transforms is equivalent. A Mahalanobis distance of the clr transformation
is not defined due to the singularity of the covariance matrix, and computing it is
numerically unstable. However, it must be equivalent to the preceding ones and may
be computed with a black-box ilr.

6.2.2 Agglomeration Techniques

As agglomeration methods of hclust, we might select one of the following (among
other):

“complete” (“average” or “single”): the distance between two groups is the
maximum (average or minimum) distance between the individuals of the two
groups.

“ward” : the distance between two groups is the distance between the averages of
each group, weighted by the harmonic average of the number of points in each
group.

As the compositional nature of the dataset has been already taken into account,
the agglomeration criteria work exactly as with conventional data. The reader is
thus referred to the help obtained with ? hclust to decide which method is more
adequate for its problem.

Example 6.4 (Visualizing clusters). The whole sequence of a cluster analysis may
be, for instance,

> xc = acomp(x)

> dd = dist(xc)

> hc = hclust(dd, method="ward")

> plot(hc)

where the last step generates a graphical output (a dendrogram) showing the
hierarchical agglomeration structure. The decision on which is the level to cut a
dendrogram (and thus define the number of existing groups) is quite subjective,
though a good idea is to look for long height intervals without agglomeration and
cut the tree inside them. An interactive cut can be obtained with the code
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> h = locator(1)$y

> rect.hclust(hc, h=h)

> gr = cutree(hc, h=h)

> plot(x,col=gr)

The first line waits until the user clicks somewhere in the graphic and reads the
height coordinate there. Then the two following lines draw rectangles around the
groups and generate the grouping variable (gr), for further use. The last line would
display the grouping in a ternary diagram.

6.2.3 Compositional Q-Mode Cluster Analysis

Cluster analysis can also be used to cluster variables instead of individuals. In
this case we must pass to hclust(...) a “distance” or measure of association
between variables, such that perfect association is represented as zero and perfect
independence as C1. For compositional data, such a measure has already been
introduced: the variation matrix (4.3). The only preliminary step to be taken
is the internal conversion of the variation matrix into a proper distance matrix
recognizable by R, with the command as.dist. Classical approaches to Q-mode
clustering straightforwardly applied to compositions, like using the arc-cosine
of the correlation matrix of the clr-transformed data, should be avoided, as the
obtained distance between any two variables would not be subcompositionally
coherent.

Example 6.5 (Clustering compositional variables). Following with Example 6.2,
we want to cluster the variables, to detect similar patterns of variation between
them. As distance we use the variation array, and as clustering criterion the Ward
method:

> dd = as.dist(variation(x))

> hc = hclust(dd, method="ward")

> plot(hc)

The result (Fig. 6.7) suggests to consider three groups of parts:

• The felsic-mineral components (Na, K, Al, Si), already identified as a quasi-
constant subcomposition

• The mafic-mineral components (Mg, Mn, Fe) plus Ti, also seen quite
proportional in the biplot analysis

• Ca and P, main constituents of apatite, an accessory but relatively typical mineral
of granites

Note that in Example 6.3, the first principal component is roughly speaking a
balance between the first two groups of parts here defined, while the last group
identifies the second principal component. It seems thus that the geochemical
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variability of these sediments is strongly controlled by the abundance of several
minerals. This hypothesis cannot be further checked, because we do not have the
available mineralogical composition of these sediments.

6.3 Discriminant Analysis

Let us assume that our dataset is split in known subpopulations; i.e., that comple-
mentarily to the (compositional) data, we have a grouping variable. Discriminant
techniques aim at finding the best way of separating the groups using functions
of the available variables. Like regression (Chap. 5), linear discriminant analysis
(LDA) uses only linear functions of the data (i.e., projections), whereas quadratic
discriminant analysis (QDA) can also use pairwise products of all available
variables (i.e., quadratic forms). Multinomial logistic regression, though being also
a discriminant technique, will be briefly treated in the next section.

The principle of working on coordinates allows us to apply any existing statistical
method to the dataset of orthonormal coordinates of our observations and back-
transform the results accordingly. Discriminant analysis is not an exception; thus we
will easily obtain an LDA or QDA giving an ilr-transformed dataset to the functions
computing these discriminant analyses, provided by the package “MASS”.

Example 6.6 (A linear discrimination of river waters). We consider for this exam-
ple the dataset about the hydrochemical composition of some water samples from
the Llobregat river basin (NE Spain Otero et al., 2005), included in the package
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“compositions”. Due to the variability of its landscape and land uses, this basin
was split in four subbasins: the upper Llobregat course (dominated by Mesozoic
calcareous landscape), the Cardener river (as the preceding one but also influenced
by intensive potash mining leachings), the Anoia river (dominated by detrital and
gypsum-rich tertiary sediments), and the lower Llobregat course (a mixture of all
the other). For these characteristics, every hydrochemist would expect the Piper plot
to offer a satisfactory separation of the four basins. This is a joint representation of
the main cations (NaC+KC, Ca2C, Mg2C) and anions (Cl�, HCO�3 , SOD4 ):

> data(Hydrochem)

> xc = acomp(Hydrochem, c(7:10,14,17,18))

> river = Hydrochem$River

> mean(xc)

Na K Mg Ca Cl SO4 HCO3

0.10686 0.01203 0.03800 0.14119 0.15875 0.22932 0.31385

attr(,"class")

[1] acomp

> table(river)

river

Anoia Cardener LowerLLobregat UpperLLobregat

143 95 135 112

The preceding lines first load the dataset from the package, then extract the
compositional information and the classification factor, and show us a minimal
summary of each. Let us now try how well the four basins can be separated with
an LDA, from package “MASS”:

> library(MASS)

> res = lda( x=data.frame(ilr(xc)), grouping=river )

> res

Call:

lda(data.frame(ilr(xc)), grouping = river)

Prior probabilities of groups:

Anoia Cardener LowerLLobregat UpperLLobregat

0.2948 0.1959 0.2784 0.2309

Group means:

V1 V2 V3 V4 V5 V6

Anoia -1.865 0.3002 1.1991 1.023 1.5805 1.077

Cardener -1.319 -0.1931 0.9341 1.120 0.7930 1.124

LowerLLobregat -1.201 -0.4504 0.6791 1.209 0.6661 1.030

UpperLLobregat -1.742 0.5297 1.9259 0.666 1.5362 1.939
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Coefficients of linear discriminants:

LD1 LD2 LD3

V1 -1.2979 0.9541 0.1805

V2 0.3070 1.1034 -1.6925

V3 -1.6289 -2.1734 -3.2735

V4 -0.4393 0.2806 0.9020

V5 2.6479 1.0893 3.1112

V6 -0.3161 -0.7964 3.7893

Proportion of trace:

LD1 LD2 LD3

0.6329 0.3449 0.0222

Function lda only requires data given in a data frame, so the ilr-transformed
composition must be converted accordingly with command data.frame. The result
of this chunk, res, is an “lda” object with several interesting elements. By default,
in the lda summary, some of these results (group means and the coefficients of the
discriminant functions) are reported with respect to the six black-box ilr coordinates
used in the computation. That pretty much obscures the interpretation of results. We
need a recasting of the ilr numbers into compositions or equivalent clr coefficients:

> ilrInv(res$means, orig=xc)

Na K Mg Ca Cl SO4

Anoia 0.10709 0.007665 0.04138 0.1293 0.14366 0.3250

Cardener 0.12437 0.019267 0.03864 0.1330 0.20722 0.1814

LowerLLobregat 0.14269 0.026102 0.03515 0.1112 0.23873 0.1679

UpperLLobregat 0.05512 0.004694 0.03077 0.1845 0.07331 0.2174

HCO3

Anoia 0.2459

Cardener 0.2961

LowerLLobregat 0.2782

UpperLLobregat 0.4341

attr(,"class")

[1] acomp

> V = ilrBase(xc)

> rownames(V)= colnames(xc)

> t(ilr2clr(t(res$scaling), V=V))

LD1 LD2 LD3

Na 0.9262 -0.6365 0.1538

K -0.9093 0.7129 0.4092

Mg 0.3844 1.3896 -1.7914

Ca -1.7471 -2.0210 -4.1893

Cl -0.8276 0.1750 -0.3459

SO4 2.4660 1.1173 2.2554

HCO3 -0.2926 -0.7373 3.5082
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Fig. 6.8 Scatterplot of the linear discriminant functions for the hydrochemical dataset. Each LD
function is computed as a projection onto one direction of the simplex. See text for details

In this way we see that, on average, the upper Llobregat river is much richer in
HCO�3 or Ca2C than the other, as high SOD4 percentages characterize the Anoia
river and high Cl� or KC indicate a Cardener or lower Llobregat sample, where
“high/low” is always relative to this 7-part subcomposition. To complement the
interpretation of the coefficients, we can also plot the lda object, with a little bit
of preprocessing and formatting to get a clearer plot:

> grint = as.integer(river)

> pairs(res, abbr=1, col=(1:4)[grint], cex=1.2)

Figure 6.8 tells us that the first LDfunction reasonably splits the Anoia river from the
remaining subbasins, and we see that this first function is strongly determined by the



6.3 Discriminant Analysis 197

SOD4 to Ca2C relation, the main components of gypsum. In the same way, the second
LDfunction, mostly a Mg2C�KC to Ca2C ratio, characterizes the upper Llobregat
basin waters (as being relatively Ca-rich). It is also easy to see that the lower
Llobregat course is placed in the middle of the plot, as expected for something which
is a mixture of the remaining data. Finally, it is worth noting that the Cardener basin
is not homogeneous, as one can clearly identify two subgroups: one quite similar to
upper Llobregat or Anoia samples and another extremely rich in those elements with
negative coefficient in the first LDfunction and positive in the second LDfunction
(as this group occupies the upper left part of the diagram). These elements are KC
and Cl�, especially in contrast against NaC (which presents the opposite pattern
of signs). One can also notice that the boundaries between groups would be more
adequately described as curves, thus we should think on using QDA.

Apart of using the principle of working on coordinates, we can also derive the
LDA and QDA fundamental equations directly for compositions, using the concepts
of projection and quadratic form within the simplex and the normal distribution on
the simplex introduced in Chap. 3. Assume a partition of a compositional dataset Z
on K groups. For each group, Zi represents the subset of data within group i , with
a size of Ni ; also, mi and ˙ i are the true mean and covariance structure of each
group, and Nzi and Si denote their empirical counterparts, computed from Zi .

For LDA, we assume that each group has normal distribution on the simplex,
with a different mean, but all groups share the same pooled variance, estimated as

SP D
PK

kD1 NkSk
PK

kD1 Nk
:

For QDA, each group has its own mean and variance. In both cases, we may write
the likelihood that a new composition z� belongs to each group as

L.z� 2 i/ / PrŒz�jmi ;˙ i � / 1
pj˙ i j

exp

�
�1
2

ilr.z��mi / � ˙�1i � ilrt .z��mi /

�
;

where the ˙ i is expressed in the same orthonormal basis used in the ilr trans-
formation. In LDA, these variance matrices are all equal and estimated with
SP , whereas in QDA each one is estimated with the empirical variance within
the group Si . Computing each of the K likelihoods, we obtain a vector, which
thanks to Bayes’ theorem can be perturbed by some prior probabilities of group
membership, p0i . This provides the final posterior probabilities that z� belongs to
each group:

PrŒz� 2 i � D .p0i =
pj˙ i j/ exp

��.1=2/ilr.z��mi / � ˙�1i � ilrt .z��mi /
�
;

PK
jD1.p0j =

pj˙ j j/ exp
��.1=2/ilr.z��mi / � ˙�1i � ilrt .z��mi /

� ;
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In other words, considering that probability vectors are themselves compositions
and obey the same rules described in Chap. 2, we may see the log-posterior prior
probabilities as a sort of clr coefficients:

li .z�/ D ln.p0i /� 1

2
ln j˙ i j � 1

2
ilr.z��mi / � ˙�1i � ilrt .z��mi /:

Again, the only things that matter in the resulting vector l D Œli � are the differences
between two components i and j , i.e., the log-odds of classification of a sample z�
between groups i and j :

F.i;j /.z�/ D li .z�/ � lj .z�/ D ln
p0i

p0j
� 1

2
ln

j˙ i j
j˙ j j

� 1

2

h
ilr.z��mi / � ˙ �1

i � ilrt .z��mi / � ilr.z��mj / � ˙ �1
j � ilrt .z��mj /

i

D aij C bij � ilrt .z��mij/C ilr.z��mij/ � Cij � ilrt .z��mij/ (6.3)

mij D 1

2
ˇ .mi ˚ mj /

aij D ln
p0i

p0j
� 1

2
ln

j˙ i j
j˙ j j � 1

8
ilr.mj�mi / � .˙ �1

i � ˙ �1
j / � ilrt .mj�mi /

bij D �1
2

ilr.mj�mi / � .˙ �1
i C ˙ �1

j / (6.4)

Cij D �1
2
.˙ �1

i � ˙ �1
j / (6.5)

Function F.i;j /.z�/ is called the discriminant function of i against j . By taking
F.i;j /.z�/ D 0, we can find the set of points defining the boundary between groups
i and j . Several cases can be distinguished, according to the properties of matrix
Cij:

• If ˙ i D ˙ j D Sp , the quadratic form Cij D 0 becomes zero and aij D
ln.p0i =p

0
j /. In this case, the boundary is just a line orthogonal to the vector joining

the centers of both groups, bij. This is the LDA case.
• If the eigenvalues of Cij have all the same sign, then the border is an ellipsoid.

The internal group to the ellipsoid is controlled by this sign: if it is negative, then
group i is the inner group, and vice versa, if the eigenvalues are positive, the
inner group is j . In the case of three parts (two dimensions), this ellipsoid can be
drawn as an ellipse inside the ternary diagrams.

• If the eigenvalues of Cij have different signs, then the border is an hyperboloid
or a paraboloid if one of the eigenvalues is zero. Again, for three parts we could
draw these borders as hyperbolas and parabolas within the simplex.
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6.4 Other Multivariate Techniques

There is no place in a book such as this one to treat in detail the myriad of existing
statistical and data mining techniques. The examples of adaptation of the most used
multivariate techniques to compositional data explained in this chapter and Chap. 5
may guide in other applications. What follows is a brief guide to adapting some of
these other methods for compositions, intended for those readers who are already
familiar with these techniques.

6.4.1 Canonical Correlation

If one has two sets of variables observed on the same individuals, this technique may
be used to explore which correlations exist between the two families of variables.
Roughly speaking, it is an interpretation of the SVD of the correlation matrix
between the two random vectors associated to each variable set. If one of these
two sets is compositional, we should apply the same principles as in PCA and work
thus with a clr-/ilr-transformed set. Computationally, one may be forced to use ilr to
avoid the singularity problems of clr, but for interpretation and display (e.g., in the
form of a biplot), results should be reexpressed in clr or as compositions. Note that
both sets may be compositional, which calls for using two clr/ilr transformations. In
R, canonical correlation is available in cancor . This illustration example explores
the relationship between major oxide composition and trace element composition of
the glacial sediments:

> xmaj = acomp( GeoChemSed[,4:13] )

> itr = c("Ba","Cr","Ga","Nb","Nd","Pb","Rb","Sr","Y","Zn","Zr")

> xtr = acomp( GeoChemSed[,itr] )

> Xmaj = ilr(xmaj)

> Xtr = ilr(xtr)

> res = cancor(data.frame(Xmaj),data.frame(Xtr))

> res$xcoef = t(ilr2clr(t(res$xcoef), x=xmaj))

> res$ycoef = t(ilr2clr(t(res$ycoef), x=xtr))

> res$xcenter = ilrInv(res$xcenter, orig=xmaj)

> res$ycenter = ilrInv(res$ycenter, orig=xtr)

> biplot(x=res$xcoef, y=res$ycoef)

The last four lines would recast the canonical variables from ilr to clr coefficients
and the variable means to compositional means. We could finally use a biplot to
graphically represent both sets of coefficients.

6.4.2 Logistic Regression

As an alternative to LDA/QDA, one may consider that an individual D-part
composition x may be classified in a K-class problem according to a multinomial
realization with probability vector p D f .x/. Being a vector of relative positive
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quantities adding up to one, p is also a composition from the K-part simplex. This
prediction function f .�/ is chosen as an affine linear function from S

D onto S
K ,

which coefficients may be estimated by maximum likelihood. Logistic regression
implementations already acknowledge the compositional nature of p by predicting
the log-odds of the several classes against a reference one (in R, the first class), i.e.,
by predicting alr.p/. Thus, we just add another log-ratio transformation on the side
of the predictor, ilr.x/, and use the classical machinery between these two sets of
log-ratio-transformed quantities. In R, logistic regression is available in multinom

from package “nnet”. The next chunk builds upon Example 6.6:

> library("nnet")

> auxcomp = scale(ilr(xc), center=TRUE, scale=FALSE)

> dat = data.frame(river, auxcomp)

> frm = river~ V1+V2+V3+V4+V5+V6

> res = multinom(formula=frm, data=dat)

> coef(res)

> ilr2clr(coef(res)[,-1], x=xc)

We have centered (but not scaled) the data first, for an easier interpretation of the
coefficients. Note that Anoia row is missing: that river is used as the reference
category. We may thus see that the log-odds of having a Cardener sample against
an Anoia sample increase with higher Ca or Cl proportions, or lower Na and SO4
proportions (and vice versa). The intercept may be interpreted as the log-odds of
each river against Anoia at the center of the dataset: these are giving the highest
positive value to Cardener; thus, this is the most likely river at the center of the
dataset.

6.4.3 Geostatistics

Geostatistics is a family of techniques devised to treat data with spatial dependence.
The observations are modeled as regionalized variablesZ.x/, where an observation
could in principle be taken at any location x. However, this regionalized variable
is typically only observed at a finite number of locations x1; : : : ; xn. A typical final
aim is to interpolate the data to unobserved locations x and to provide a measure
of uncertainty for this interpolation Matheron (1965). The spatial dependence is
first analyzed and modeled by second-order moment descriptions, like covariance
functions or variograms. The variogram 2�.h/ is the variance of the difference of
the values Z.x/ and Z.y/ at two locations x; y separated by a distance h; i.e., for
h D kx � yk, we have

2�.h/ D var.Z.x/ �Z.y//
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It is typically assumed that:

• The expected value is constant and does not depend on the location.
• The variance of the difference only depends on the distance h and not on the

actual locations.

This concept is called intrinsic stationarity and ensures that the variogram
is well defined. For a more detailed treatment of geostatistics, see, e.g., Bivand
et al. (2008) (a book from this UseR series), Cressie (1991) and Chilès and
Delfiner (1999) (for the mathematical background), or Wackernagel (1998) (about
multivariate geostatistics). Tolosana-Delgado et al. (2011) present an adaptation of
these principles, concepts, and tools to work with compositional data. This section
is but a summary of that work. The variogram can be estimated from the data
by averaging the squared differences of pairs of observations in different distance
classes:

O�.h/ D 1

N.h/

X

.i;j /2N.h/
.Z.xi /�Z.xj //

2

where N.h/ denotes the set of pairs of observations with distance approximately h:

N.h/ D f.i; j / W kxi � xj k 	 hg

The precise definition of “being approximately h” is implementation dependent.
Then a model for valid variograms has to be fitted to that empirical variogram

function O�.h/. Since variogram fitting is difficult to automatize, the fit must be
typically inspected visually afterwards. Once a satisfactory variogram model is
obtained, it can be used for interpolation and interpolation error computation by
ordinary kriging. Ordinary kriging is a method obtaining the best linear unbiased
interpolation for an unsampled location based on a known variogram. Results are
displayed in maps and can be used for further decisions. Here “best linear unbiased”
means smallest mean square error among all those unbiased estimators built as
linear combinations of the available data. Nonlinear kriging techniques exist but
are typically considered very advanced methodology and are outside the scope of
this section.

How do we apply this concept to compositions? Several strategies of variogram
modeling have been proposed:

• A simple strategy could be to take coordinates of the composition and to apply
classical geostatistical techniques to each coordinate separately. This is a simple
but suboptimal approach. The results are, e.g., dependent on the chosen basis and
cannot exploit codependence in the composition.

• Use an alr (or ilr) transform and model the multivariate variograms by spectral
techniques (Pawlowsky-Glahn and Olea, 2004). Spectral multivariate variogram
fitting however is a quite complicated methodology. Alternatively if we do not
want to use spectral techniques, we may try multivariate modeling techniques
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on any set of coordinates. That could, e.g., be achieved with standard non-
compositional tools from the “gstat” package (Pebesma, 2004) in R. See
Bivand et al. (2008) for details.

• Finding inspiration on the variation matrix, the approach implemented in
“compositions” is to model the set of variograms for all possible pairwise
balances by a joint model (Tolosana-Delgado et al., 2009). The advantage of this
technique is its simple interpretation and usage. The disadvantage is that there is
only a limited implementation in “compositions” and nowhere else.

To illustrate this approach we use the jura dataset from the “gstat” package
Pebesma (2004), which has been extensively studied in a non-compositional
(“rplus”) way by Goovaerts (1997):

> require(gstat)

> data(jura)

> colnames(prediction.dat)

[1] "Xloc" "Yloc" "Landuse" "Rock" "Cd" "Co"

[7] "Cr" "Cu" "Ni" "Pb" "Zn"

> colnames(validation.dat)

[1] "Xloc" "Yloc" "Landuse" "Rock" "Cd" "Co"

[7] "Cr" "Cu" "Ni" "Pb" "Zn"

> colnames(juragrid.dat)

[1] "Xloc" "Yloc" "Landuse" "Rock"

The jura dataset consists of three datasets: prediction and validation subsets,
together with a dense grid, where the geology is given. For simplicity we will not
use the geological information, use both datasets together, and restrict ourselves to
a ternary subcomposition:

> X <- cbind(c(prediction.dat$Xloc,validation.dat$Xloc),

+ c(prediction.dat$Yloc,validation.dat$Yloc))

> Z <- acomp(rbind(prediction.dat,validation.dat)

[,c("Cd","Cu","Ni")])

The set of the variograms of pairwise balances can be generated through the
logratioVariogram command:

> lrv <- logratioVariogram(Z,X,maxdist=1.0,nbins=12)

The maxdist argument controls the largest distance in which the variogram will
be estimated. The nbins argument controls the number of distance classes. These
arguments have reasonable defaults, but are chosen here to highlight the structure
in these variograms. To display the variograms one can use an appropriate plot

method:
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Fig. 6.9 Pairwise balance variograms of the jura dataset. The zigzag lines are the estimated
empirical variograms. The smooth lines are the fitted model

> opar <- par(cex=1.25)

> plot(lrv)

> par(opar)

This results in a diagram similar to Fig. 6.9 but without the fitted model: The
following step is to define a model to fit this variogram. The compositions
package implements a quite flexible model of linear coregionalization, which is
parameterized through a formula:

> lrvModel <- CompLinModCoReg(~nugget()

+R1*sph(0.15)+R1*exp(0.1),Z)

The composition Z must be given, in order to extract from it its dimension and
column labels. Possible formula terms are:

• nugget(): introducing a general nugget effect. A nugget effect models a
discontinuity at very short distances.

• exp(r): models an exponential decay of dependence (an exponential variogram).
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• sph(r): models a dependence with limited range (a spherical variogram).
• gauss(r): models a very continuous dependence structure with a sigmoidal

decay (a Gaussian variogram).
• lin(r): models a Brownian motion type of decay of dependence (a linear

variogram). The range is an estimate of the distance to reach a variance of 1.
• pow(r): models are of the form hr , generalizing the Brownian motion type of

dependence. Here 0 < r < 2 (generalized linear variogram or power variogram).

In any case r has to be replaced by an initial guess of a range of influence for this
substructure of the variogram. The precise formulas can be found in the package
help for the functions (vgram.nugget, vgram.exp,. . . ). Each of the components is
implicitly multiplied with an arbitrary variance matrix of the appropriate size. This
variance matrix can be restricted to a rank 1 matrix by multiplying the variogram
component with the symbol R1 (for “rank 1”) in the formula.

In our case a look at the empirical variogram shows two different ranges, but no
multiple structures in the individual variograms. The space of a 3-part composition
is two dimensional. These facts suggest introducing two components with different
ranges, but limiting each one to rank 1. The shape of the longer range seems
an exponential variogram. The shorter range structure suggests rather a limited-
influence (spherical) structure. We thus choose a model consisting of these two
different structures. Obviously other models could fit similarly well.

Function vgmFit2lrv provides an automatic fitting procedure for variogram
model based on the nlm nonlinear minimization routine in basic R. It tries to
minimize a squared logarithmic discrepancy between the model and the empirical
variogram:

> vgmModel <- vgmFit2lrv(lrv, lrvModel, print.level=0)

> vgmModel

$nlm

$nlm$minimum

[1] 0.2324

$nlm$estimate

[1] 0.1605 -0.2503 -0.1169 0.1086 -0.5248 -0.2420 0.3302

[8] -0.6560 0.3932

$nlm$gradient

[1] 4.544e-07 2.474e-07 -1.465e-07 1.267e-07 -1.308e-07

[6] 8.153e-07 -2.814e-07 -2.433e-07 -4.627e-07

$nlm$code

[1] 1

$nlm$iterations

[1] 89
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$vg

function (h, sPSD1 = c(0.160454927040757, -0.250288321003883,

-0.116891404703496), rsph2 = 0.10857277169615,

sR2 = c(-0.524764507705152, -0.241960364506509),

rexp3 = 0.33023788094404, sR3 = c(-0.655960605455565,

0.393177110888582))

vgram.nugget(h = h) %o% parametricPosdefClrMat(sPSD1) +

vgram.sph(h = h,

range = rsph2) %o% parametricRank1ClrMat(sR2) +

vgram.exp(h = h,

range = rexp3) %o% parametricRank1ClrMat(sR3)

The result combines the output of the nlm fitting procedure (for control purposes,
it is better to leave print.level=1) with a function in the vg element, which
is the actual fitted variogram model. The default arguments of this latter function
provide the fitted model parameters. To compute the actual meaning of the param-
eters, one must use the transformation functions parametricPosdefClrMat or
parametricRank1ClrMat, respectively. These functions allow to encode matrices
in unbounded vector arguments through their Cholesky decomposition. Note that
the result is specified in the set of default ilr coordinates.

The model can be plotted along with the empirical variogram by adding it as an
extra argument to the plot method for “logratioVariogram” objects:

> plot(lrv,lrvg=vgram2lrvgram(vgmModel$vg)) #$

The vgram2lrvgram translates a multivariate variogram model into a model for
the variograms of pairwise balances. Having a look at the result of this command
(Fig. 6.9), we see that the model provides a reasonable fit. Thus, we will use it in
subsequent kriging steps.

Finally, an interpolation will be computed for every point of the juragrid dataset.
We thus store the grid coordinates into a matrix:

> Xnew <- cbind(juragrid.dat$Xloc,juragrid.dat$Yloc)

The actual interpolation is performed by multivariate ordinary kriging through the
compOKriging command taking as arguments:

• The observed compositions (Z)
• The observation locations (X)
• The interpolations location (Xnew)
• The chosen variogram model vg

> KP <- compOKriging(Z,X,Xnew,vg=vgmModel$vg) #$

> names(KP)

[1] "X" "Z" "err"
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Fig. 6.10 Map of
interpolated composition
represented by the
.N i Cd/=Pb balance

In the result, X contains the new observation locations given as Xnew. Z provides the
actual interpolations. The kriging variance, i.e., the expected squared difference of
interpolation and true value, can be additionally obtained by giving the argument
err=TRUE to compOKriging. It is then given in the err part of the output.

These results can, e.g., be presented in maps for individual balances. In this case
the nicest map is given by the .N i Cd/=Pb balance (Fig. 6.10):

> require(lattice)

> print(levelplot(balance(Z,~(Ni*Cd)/Pb)~X[,1]+X[,2],

+ KP,col.regions=bpy.colors(20)))

The function print is used here only to force the graphic to appear. Graphics
from the “lattice” package are not stored in a file otherwise. Apart of displaying
balances, individual components could be plotted if needed, with

> levelplot(Z[,"Ni"]~X[,1]+X[,2],KP,col.regions=bpy.colors(20))

However, be aware that, according to the compositional principles, this does not
make much sense. In particular the results are closed to 1, while the original data
were in ppm.
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Chapter 7
Zeroes, Missings, and Outliers

Abstract The presence of irregular data, i.e., zeroes, missings, and outliers, has
consequences for plotting, descriptive statistics, estimation of parameters, and
statistical tests. Since all of these methods depend on every value of the dataset, we
cannot ignore them in any task. Some ad hoc procedures are needed, with the same
aims as the classical methods, but which can still be computed despite the existence
of irregular data. It is necessary to augment the basic concepts (e.g., the concept of
expected value) to give them a meaning when there are irregular values. The current
state of the art of the treatment of irregularities in compositional data analysis is far
from being a closed subject and can improve a lot in the near future. The package
only provides a set of tools limited to detect, represent, and briefly analyze such
irregular values, either missing values, zeroes, or outliers. This chapter provides
nevertheless additional background material to enable the reader to carefully treat
datasets with irregular data.

7.1 Descriptive Analysis with and of Missings

7.1.1 Types of Zeroes and Missing Values

Missing values are appearing quite often in compositional data and are often (and
erroneously) coded with a zero value. Most commonly, missings occur when one of
the variables could not be observed, e.g., because the actual amount was below the
detection limit of the measurement procedure. However, there are many other kinds
of reasons why a datum can be missing, and their treatment largely depends on these
reasons. Thus, several types of missing values must be defined, all with their own
inner logic and corresponding statistical consequences. The following classification
is implemented in the package:

K.G. van den Boogaart and R. Tolosana-Delgado, Analyzing Compositional Data with R,
Use R!, DOI 10.1007/978-3-642-36809-7 7, © Springer-Verlag Berlin Heidelberg 2013
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• Missing (completely) at random (MAR)
A missing at random occurs when the value was not observed for reasons
(stochastically) independent of its actual value and genetic process. This is
the least problematic form of missing values, although it still implies certain
challenges for estimation and graphical representation. A subclass of MAR is
the missing completely at random (MCAR), which is further assuming that the
missingness is also independent of other variables that might be simultaneously
observed. “compositions” codes a MAR as the constant MARvalue=NaN. There
is no particular MCAR encoding in the package.

• Structural zero (SZ)
We say that a given variable has a structural zero in a given observation when
that part is not properly defined or simply cannot exist due to some deterministic
reason. For instance, this may happen due to chemical incompatibility with other
present components or because that component was artificially removed during
the sampling. From a practical point of view, a structural zero can often be treated
in a similar way to a MAR, though the interpretation will be totally different.
“compositions” codes a SZ as SZvalue=-Inf.

• Below detection limit (BDL)
For small amounts, the measurement method might not be precise enough to
actually distinguish the true value from zero. In this case, most labs report the
value as below detection limit. In the presence of values below the detection limit,
serious problems arise in compositional data analysis. The current methodology
is to replace the lost value by some fraction of the detection limit itself. This
is far from providing convincing results, because of the arbitrariness of the
replacement and because reclosure with replaced values may change all portions
of the composition.
A below-detection-limit value can be coded in two ways in “compositions”.
If the detection limit (i.e., the lowest value that actually would be reported) is
known, a BDL value is coded as the negative of the detection limit value. In
this way, the values can be afterwards adjusted if the composition is rescaled or
reclosed into a subcomposition. If the detection limit is unknown, the BDL is
encoded by a 0.

• True zero
A true zero occurs when a given part is not present, even though it was considered
in the measurement. It typically only shows up in count compositions, when the
affected variable has a low probability of occurrence and the total number of
counts is also relatively low. In this sense, true zeroes resemble BDLs, because
we can expect that the lost part could be finally observed by increasing the total
number of counts. True zeros are extremely rare in other compositions and cannot
be treated in the standard framework of “acomp” compositions. They can be
handled in the framework of “rcomp” and “ccomp” and are then coded with
0, just like a BDL with unknown detection limit.

• Missing not at random (MNAR)
A missing value is a missing not at random (MNAR) if the chances to have missed
it depend (stochastically or deterministically) on the actual value missed. For
instance, if the measurement procedure can break down when subject to too high
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stimuli, it will tend to fail more often when measuring high values; thus a missing
will more easily occur when the true value is high. In a given sense, BDLs can
also be taken as MNAR cases: the values are deterministically non-reported if
they are below a threshold. General MNAR is the most difficult type of missings
to model, because we need to know why and how they occur, i.e., to know
the probability law of missing a value given that value. In “compositions”,
a missing not at random is encoded as MNARvalue=NA.

Missing values can be stored encoded in datasets of types acomp, rcomp, ccomp,
aplus, and rplus. Encoded missings in the datasets are displayed using the
acronyms (MAR, SZ, BDL, MNAR) or by <DetectionLimit:

> data(SimulatedAmounts)

> x <- acomp(sa.missings)

> acomp(x[1:10,])

Cu Zn Pb

[1,] MAR 0.43383 0.5662

[2,] MNAR 0.05261 0.9474

[3,] 0.02365 0.22930 0.7471

[4,] 0.15712 0.33356 0.5093

[5,] 0.07898 BDL 0.9210

[6,] 0.15533 0.47056 0.3741

[7,] 0.10273 0.08076 0.8165

[8,] MNAR 0.05342 0.9466

[9,] 0.19485 0.36820 0.4369

[10,] MNAR MNAR MAR

attr(,"class")

[1] acomp

> acomp(c(-0.001,-Inf,Inf,0.5,0,NA,NaN))

[1] <0.002 SZ ERR 1.000 BDL MNAR MAR

attr(,"class")

[1] acomp

7.1.2 Ternary Diagrams with Missing Values

Plotting a dataset with missings tries to encode the missing information as informa-
tive as possible. This is illustrated in Fig. 7.1 , displaying a simulated dataset with
all types of missing values presented in Sect. 7.1.1:

> opar<-par(mar=c(3,3,0,0))

> data(SimulatedAmounts)

> x <- acomp(sa.missings)

> plot(x)

> par(opar)
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Cu Zn

Pb
NM TM Cu ZnPbFig. 7.1 Example of a

ternary diagram with missing
values

The resulting ternary diagram uses two mechanisms to display missing values.
In an upper subpanel, called the missings plot, it displays how many observations
present missing values in all combinations of variables possible, by a horizontal bar
plot: NM stands for “No Missings” (i.e., how many observations do we have where
all variables were available); TM for Totally Missing, which means that at least
two of the three values are missing such that no subcompositional information can
be computed; and the names of the variables stand for those cases, where only that
component is missing.

If only one of the three components is missing, we still know the ratio of the
other two, which corresponds with a straight line passing through the vertex of the
lost variable: the true value of that observation is an unknown point on that line.
To avoid overplotting, this line is replaced by a tick mark at the axis joining the
two observed variables. This is called a missings tick mark and is controlled by the
missingTck= parameter.

The missing bar plot and the missings tick marks can be suppressed by giving
the optional parameter plotMissings=FALSE.

7.1.3 Representing Missing Values Themselves

The missingSummary command summarizes the number of missings in the various
variables into a table:

> missingSummary(x)

missingType

variable NMV BDT MAR MNAR SZ Err

Cu 44 0 6 7 3 0

Zn 53 1 4 1 1 0

Pb 54 0 5 0 1 0
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Plotting a missingSummary object shows a bar plot displaying the relative
amount of missings in each of the variables:

> plot(missingSummary(x), xlim=c(0,ncol(x)+2))

From a more exploratory perspective, a compositional dataset can be converted
to a dataset of factors classifying the type of missingness on each variable and for
each case, by using the command missingType:

> xMissType = missingType(x)

> data.frame(x, xMissType)[1:5,]

Cu Zn Pb Cu.1 Zn.1 Pb.1

1 NaN 0.43383 0.5662 MAR NMV NMV

2 NA 0.05261 0.9474 MNAR NMV NMV

3 0.02365 0.22930 0.7471 NMV NMV NMV

4 0.15712 0.33356 0.5093 NMV NMV NMV

5 0.07898 0.00000 0.9210 NMV BDT NMV

This may help in getting a clearer idea of which variables concentrate the
irregularities and which should be a reasonable treatment of them.

It could happen that some missing values occur simultaneously in two or more
variables, or somehow associated in a complex way (e.g., a Cu under the detection
limit could be preferentially associated with missing Zn at random or any other
combination we might think of). To visually display these patterns of association of
missing type across variables, we can first apply the missing type classifier to the
dataset, then extract the joint probability table of missings:

> missingCombinations <- table(as.data.frame(xMissType))

and finally display it with any graphical tool for categorical variables, like a
mosaicplot:

> mosaicplot(missingCombinations +0.01, shade=TRUE)

Note that the extra argument shade=TRUE produces the coloring of boxes according
to positive association of the combination of missings (blue colors, solid borders)
against negative associations (red colors, dashed borders). The addition of 0.01 to
the whole table is an esthetic trick to get clearer mosaic tiles; the reader should
remove it, once the plot is understood.

7.1.4 Programming with Missings

On a more advanced level, the package also includes a set of functions to
allow experienced R users to program their own irregular data-handling routines.
Command hasMissings checks whether there are any missing values in a dataset.
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The vectorized predicates is.BDL, is.MAR, is.MNAR, is.SZ, is.NMV (standing for
non-missing values), is.WZERO (wider zero, including BDL, SZ, and true zeroes),
and is.WMNAR (wider MNAR, including both BDL and MNAR values) can be
used to identify the different types of missing in programming. To create and
manipulate the observed subcomposition projectors, one can use the commands
missingProjectorand sumMissingProjector. Finally, if one needs an artificial
dataset with missing values for testing purposes, the command simulateMissings
returns the dataset given as argument, but with some missings of the specified
types.

7.2 Working with Missing Values

7.2.1 Imputation

Since many methods do not work with missings, the first approach to missings is
to remove the problem by replacing them with informed guesses. This approach is
called imputation. A good guess has to be based on a model of why the values are
missing and what the conditional distribution of these values given the observation
might be. All these are dependent on the type of missingness. Also imputations
typically fall in a circular reasoning: the imputation depends on some parameters
(e.g., mean and variance of the theoretical distribution), but in order to estimate
them, we should have already the imputed values.

Several methods for imputation are available. These methods range from simple
imputation rules, like replacing the missing component with the arithmetic or geo-
metric mean of its non-missing observations (Aitchison, 1986; Martı́n-Fernández
et al., 2003) or by a given fraction (e.g., 2/3) of the detection limit, to more elab-
orated computations of conditional expectations (Palarea-Albaladejo and Martı̀n-
Fernández, 2008), like realizations of conditional distributions according to linear
models extracted from the non-missing components and additional covariables.

We may distinguish at least four different levels of imputations:

1. Imputation doing not too much harm, e.g., replacing zeros with a fixed fraction
of the detection limit or MAR values by the average of the observed values.
Replacements for BDL and SZ in this line were already proposed by Aitchison
(1986) and further studied by Martı́n-Fernández et al. (2000) and Fry et al.
(2000).

2. Imputation keeping expectation, e.g., replacing a zero with a fraction of the
detection limit computed from a model of the underlying distribution. For
instance, if one assumes that the tail of the distribution between the detection
limit and zero resembles a triangular distribution, then values below the detection
limit should be replaced by 2/3 of this detection limit.

3. Imputations keeping expectations and variances, e.g., replacing a zero with
a random outcome of a conditional distribution of the unobserved value
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computed from an estimated model of the underlying distribution. This has
been proposed using an estimation-maximization algorithm (Palarea-Albaladejo
and Martı̀n-Fernández, 2008).

4. Imputation keeping conditional expectations and variances, e.g., by includ-
ing regressors into the conditional distribution model of the preceding case.
Tjelmeland and Lund (2003) presented one of these cases, where BDLs were
treated with Markov-Chain-Monte-Carlo (MCMC) methods within a geostatisti-
cal model of spatial dependence.

In any case, it is important to accurately estimate the parameters of interest
from the incomplete dataset, before any imputation can be done. Imputation is thus
more a way of hiding missings in the interpretation than really a way to solve their
problems.

In all cases, the missing part is replaced by a new nonzero number, breaking
the closure relationship of all components adding to 1 or 100 %. The dataset is
subsequently reclosed by dividing every component by the new joint sum. This is
called multiplicative imputation, because every observed component is multiplied
with a reclosing factor. In this way, the ratios of the unaffected components are
retained. The additive alternative method of subtracting something from the non-
missing components would destroy the ratio relationship, which was the only
real information in a composition with missing components. If there are further
observations below detection limit, the detection limits of those have to be scaled
accordingly (Martı́n-Fernández et al., 2003).

The components are thus not simply concentrations with a given detection limit.
The numerical value of the detection limit depends on the closing constant for the
given composition. The detection limit is thus typically different for each value in
a compositional dataset and changes for each reclosing of the composition, when
another value is imputed or a subcomposition is taken. Detection limits are not
meaningful as portions but are meant on actually observed concentrations in the
original measurement. In each rescaling or closure operation, the detection limits of
each of the components thus have to be scaled along with the data. If compositions
are perturbed, the detection limits and standard errors have to be perturbed with
them. This implies that a component may have different detection limit at each
different row, which must be recomputed in every simplicial operation.

An example might illustrate how natural are indeed these considerations. Take
the composition ŒA;B; C;D� D Œ0:85; 0:1; 0:05;�0:05�, where part D was below
the detection limit of 0.05, and the subcomposition fA;B;C g has been reclosed
accordingly. If we remove the first part, this datum must become ŒB; C;D� D
Œ0:5; 0:25;�0:25�; thus the detection limit apparently changed. This is actually just
an effect of the relative nature of compositions, as the ratio of the detection limit
to any of the observed parts remains unchanged. Have a look at the last line in
Sect. 7.1.1 to see another example.

In a real geometry, the effect of imputation or the choice of the imputation of a
missing value seems negligible, since the value is anyway bounded between 0 and
the almost zero detection limit. From the Aitchison geometry perspective, however,
every imputed value will afterwards be used to compute ratios between an observed
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value and the unobserved components. And this ratio can vary up to infinity. Even
worse, ratios between two components below their detection limits can take any
value, as we do not actually know which is larger, and in which proportion. A
seemingly harmless imputed value can thus easily turn into a gross outlier.

7.2.1.1 Random Imputation

Theoretically, the perfect imputation is easy to achieve. One simply calculates the
conditional distribution of the missing values given: (1) the observed values and
(2) their status of missingness. Then, one obtains a random realization of this
conditional distribution and replaces the missing values with it. This can be done
when one single variable is missing or also with a vector of missing variables.
However, imputation has several theoretical difficulties that need our consideration
prior to its application in a specific situation.

The first problem is a mere modeling challenge: obviously, different types of
missing data, e.g., values not observed and values below detection limit, have
different conditional distributions. Likewise, values below different detection limits
have different conditional distributions. It is thus important to identify the correct
type of missingness.

A more serious problem corresponds to the fact that computing conditional
distributions always depends on knowing the joint distribution. But this conditional
distribution is never available: having it (including its true parameters) is actually the
ultimate goal of any statistical analysis. Typically, we will use a statistical model for
the observations, estimate the parameters, and compute the conditional distribution
based on the estimated parameters. But again, if we could know the model and
estimate its parameters without using the missing data, we would not need to impute
them. And if we use a simpler model, we will get imputation which do not represent
the original data.

Consider for instance a situation where virtually no gold is in the samples of one
region and substantial gold is present in most samples of a different region. Imputa-
tions ignoring the dependence would come up with relatively high imputed values
not far from the detection limit as they infer the global conditional distribution of
gold mostly from the gold-rich area. On the other hand, a more specific model would
have almost no chance to correctly estimate as zero the mean gold in the no gold
area and would yield some positive number below the detection limit. Imputation is
thus almost always a guess, hopefully not too bad.

The most important effect of imputation is its artificial reduction of uncertainty.
Let us imagine a complete dataset (with no missings) and its version with some
missing values. Obviously, in the first case, we have more information than in the
second case. But imagine we apply regression to the first one and obtain a given
measure of global residual uncertainty. Then we impute the missing values in the
second dataset and compute the same residual uncertainty measure of regression.
We will obtain a similar value in the imputed case than in the complete case, or
even a smaller one (as we may be replacing a variable missing value by a constant
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replacement), while the complete case carries more information and should thus
clearly have the minimal uncertainty. Imputation enhances the information coming
from the data and model with fake information coming from our guesses. The user
should thus use imputation with great care. Any subsequent analysis unaware of
imputation will yield results apparently less uncertain than they should be.

Imputation is nevertheless the best choice in many situations, where it does
a great job: just adding a little bit of junk information, we may be able to fit a
reasonable model to an otherwise unmanageable dataset. This is typically the case
when we have only a small number of missing values. But still then the user has the
responsibility to understand the method and decide what might have been the effect
of the imputation, of the model used in the imputation, and of the measurement
errors behind the imputation.

A formally correct use of imputation would be a complete Bayesian approach.
We would specify a prior for the parameters of the model and would compute the full
posterior distribution of these parameters, together with the predictive distribution
of those values missing. However, in this case, the model and parameter inference
would not actually need the imputation. They would actually be a (rather immediate)
consequence of the model. That is, the Bayesian approach with this model would
solve the estimation problem correctly without the imputation.

The special case of this problem is that any imputation is based on parametric
distribution models, typically based on an additive-log-ratio-normality assumption.
This often makes imputation sensitive to outliers and will always generate distribu-
tional tails according to that model. This means that the tail needed for imputation is
inferred from the observations in the center of the data. Imputation is thus a special
case of a model-based extrapolation. Being model-based, this extrapolation might
be quite stable, but it is still not based on the reality of these tails.

A practical problem for imputation is that, even in cases of simple models with
additive-logistic-normal distribution, it is not possible to give analytical solutions
for the conditional densities of values below the detection limit. Imputation is thus
often done in iterative procedures approximating the reality.

Things become really awkward if we take into account the analytical error
(Sect. 7.2.8) in the imputation procedure of an additive-logistic-normal model. We
must thus ask ourselves whether we are estimating the true values (e.g., with an
ALN model, cut above the detection limit) or the observed ones (e.g., a mixture of
ALN and censored normal models, also cut above the detection limit). The presence
of an additive error implies that values observed above the detection limit may be
actually below it. And indeed, they are going to occur more frequently than its
opposite (actual value BDL, observed value above the detection limit), as ALN
models will typically have more probability slightly above the detection limit than
slightly below it! This means that imputing with the conditional distribution of the
true value would not be in accord with the definition of random imputation: the true
values have statistical properties different from that of the actually observed data.
But the distribution of the observed data might even be non-compositional, giving
some probability to negative values (possible effect of a large additive error). Simple
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ALN or normal imputation models do not fully capture this complexity. One must in
this case resort to extensive simulation techniques of Bayesian hierarchical models.

7.2.1.2 Deterministic Imputation

A special case of imputation is the deterministic imputation: one replaces missing
values with a deterministic value, typically based on the detection limit or the global
data average. This deterministic value can either be computed by a statistic model
(e.g., by something like the conditional expectation of the inferred distribution) or
by some rule of thumb, like taking, e.g., 2=3 of the detection limit. Using this second
sort of deterministic imputation will introduce some arbitrariness into the data. The
challenge is to predict the implications, keeping in mind that we work in a relative
geometry, where multiplicative factors matter. It is not possible to define a general
behavior of these deterministic imputation rules: there are examples where such
a rule serves the case very well, while it is also easy to construct counterexamples,
where the rule introduces severe outliers badly determining the result of the analysis.

The advantage of using the conditional expectation rather than a random
imputation is that the result of the analysis is no longer random. If the conditional
distribution models were correct, linear statistical methods relying on the expected
value would still yield unbiased results with this expected value imputation. This
would be the common case of estimating regression coefficients. However, methods
relying on variances will find too small results:

var.X/ D P.A/var.X jA/C P.Ac/var.X jAc/C var.EŒX j�.A/�/
< P.A/var.X jA/C P.Ac/ var.EŒX jAc�jAc/

„ ƒ‚ …
0

Cvar.EŒX j�.A/�/

Such underestimation of the variance due to the deterministic imputation may be
critical for subsequent statistical tests (e.g., regression coefficient significance test),
as they may become too aggressive.

In conclusion, imputation should not be perceived as a simple tool to get rid of
the problem of missing data, but rather as a patch covering a major injury. We should
actually resort to critical thinking before taking anything for granted.

7.2.1.3 Current Implementation

Currently, “compositions” only supports deterministic imputation (type 1) for
BDLs using the function zeroreplace:

> (x <- acomp(c(-0.1,1,1)))

[1] <0.05 0.50 0.50

attr(,"class")

[1] acomp
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> (xZeroReplaced <- zeroreplace(x))

[,1] [,2] [,3]

[1,] 0.03333 0.5 0.5

attr(,"Losts")

...

Containing 1 lost and replaced values!

attr(,"class")

[1] acomp

> attr(xZeroReplaced,"Losts")

[,1] [,2] [,3]

[1,] TRUE FALSE FALSE

This function replaces the BDLs by a fraction (parameter a, defaults to a constant
2/3) of the detection limits, either explicitly given by a vector d or extracted from
the dataset if BDLs are encoded as negative values.

7.2.2 Missingness at Random as Projected Information

For MAR missings, van den Boogaart et al. (2006) developed a geometric strategy to
deal with missing values, based on projecting each datum to a particular subspace of
the simplex, using the Euclidean space structure of Sect. 2.5. Here we consider that
each observation without missing values defines a point on S

D . On the contrary, data
with missing components define lines, planes, hyperplanes, etc., with dimension
equal to the number of missing values in that datum, i.e., contributing to our
knowledge of the population properties with less information than a fully observed
point. Then, estimation of parameters like the mean vector or the variance matrix
can be built taking that deficit of information into account.

This approach is very useful to represent missings in plots: in a ternary diagram
or scatterplot of components, we will be able to plot missings according to their
nature. A MAR or MNAR will appear as a line passing through all points compatible
with the values actually observed for the remaining variables. A BDL will be
represented as a segment of this line. Structural and true zeroes are left as zeroes,
represented along the axes of the ternary diagram.

To estimate the mean, we can associate to each observation a projector matrix
from the whole simplex to a subspace without the missing variable. Each projector
ensures that its datum does not contribute in any sense to the determination of the
mean of the missing variable but still brings information to the mean of the other
variables. To estimate the variance, we proceed in a similar way, but associating
a projector to each pair of observations. These projectors ensure that each pair of
data do contribute only to the determination of the covariances of those variables
observed in both data.
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The following example shows this strategy implemented automatically in esti-
mation of the mean by using a simulated example:

> (mn = acomp(c(1,2,3)))

[1] 0.1667 0.3333 0.5000

attr(,"class")

[1] acomp

> vr = ilrvar2clr( diag(2) )

> x = rnorm.acomp(50, mn, vr)/2

> xm = simulateMissings(x, MARprob=0.10)

> xb = simulateMissings(x, detectionlimit=0.15)

> mean(xm)

[1] 0.2385 0.3516 0.4099

attr(,"class")

[1] acomp

> mean(xb)

[1] 0.2775 0.3239 0.3986

attr(,"class")

[1] acomp

Compare the true mean composition with its estimates. Note that the dataset
with MAR values is well behaved, while in the dataset with BDLs, this strategy
overestimates the mean of the smallest part. Section 7.1.2 applies the ideas of this
section to plotting.

7.2.3 Treating Missing at Random

Missing at random (MAR) means that the missingness (the fact of observing
or missing a value) is independent of the affected variable, but not necessarily
independent of the remaining variables. It is then possible to estimate the probability
of missingness and therefore to find a way to correct the problem. However, because
of the closure, a given component cannot be independent of the other components in
the classical sense. We thus need to redefine the concept of MAR for compositional
data analysis. We may realize that the actual information available is the observed
subcompositions. Thus, a compositional MAR is a value which is lost depending
only on the value of the observed subcomposition. A possible situation leading to
MAR values would be when the actual decision of measuring a further component
is based on the observations of a prior set of variables. For instance, we might devise
a situation where a primary ore metal is very cheap to measure, while a secondary
one is very expensive: in this situation, it would be worth measuring the secondary
one only when the content of the primary one was high enough.
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It is thus necessary to introduce (and estimate) a model for the missingness
probability. A logistic regression might be a sensible model, eventually including
further covariables. This logistic regression could then predict the missingness
probability for each of the observations. The following example shows such a fit
with simulated data.

First, we simulate a compositional dataset of four parts (with fixed seed for
reproducibility) and generate some MAR. Then we fit the logistic regression, with
help of the generalized linear model command glm:

> require(lmtest)

> datset = data.frame(ilr(simMAR[,-4]),

y = factor(is.MAR(simMAR[,4])))

> colnames(datset)

[1] "V1" "V2" "y"

> lrmMAR = glm(y ~ V1 + V2 , family=binomial, data=datset)

> waldtest(lrmMAR)

Wald test

Model 1: y ~ V1 + V2

Model 2: y ~ 1

Res.Df Df F Pr(>F)

1 97

2 99 -2 11.8 2.5e-05

> ilr2clr(coef(lrmMAR)[-1])

1 2 3

-0.9265 -2.7526 3.6791

A Wald test (in package “lmtest”) tells us that the regression coefficients are
significant. The reader should also try to plot the diagram of the “observed”
subcomposition using colors with the MAR status of the 4th part:

> # represent the MAR missings as color in the 3-diagram

> aux = ilrInv(datset[,-3])

> colnames(aux) = c("A","B","C")

> plot(aux, pch=as.integer(datset$y) ) #$

> straight(mean(ilrInv(datset[,-3])), ilrInv(coef(lrmMAR)[-1]))

This last line adds the model regression gradient (Sect. 5.2), showing the direction
where the probability of having a MAR increases.

To estimate the mean, we would split the coordinates into balances of the obser-
ved parts and a balance of the potentially missing vs. the observed parts. The mean
balances of the observed parts can be estimated in the classical way. The estimation
of the balance of the potentially unobserved parts would be obtained as weighted
averages, by using the inverse of the (inferred) probability of obtaining a missing
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value for each row. A similar approach would be possible in regression models with
the incomplete composition as dependent variable. First, we extract the missing
probability and construct the weights:

> ## extract the MAR prob:

> mp = inv.logit(predict(lrmMAR))

> w = 1/(1-mp)

Next, we build a balance basis isolating the missing part, the D:

> V = balanceBase(simMAR, ~D/(A/(B/C)))

and finally, we compute a weighted mean for the first balance:

> tkObs = is.NMV(simMAR[,4])

> ILR = ilr(simMAR,V)

> colnames(ILR)=c("V1","V2","V3")

> meanV1 = weighted.mean(ILR[tkObs,"V1"], w=w[tkObs] )

The object tkObs is used to filter out the data with missings in the mean
computation. That mean could be introduced in the balance mean and then the ilr
inverted to obtain an estimate of the compositional mean:

> bmean = mean(ILR)

> bmean[1] = meanV1

> ilrInv(bmean,V)

A B C D

0.08422 0.16914 0.25667 0.48996

attr(,"class")

[1] acomp

Compare that with the value of mn, the true mean.
The logistic regression model could also be used in a deterministic or a random

imputation. We may then infer the conditional distribution of the balance of the
unobserved part vs. the observed parts by a weighted linear regression model with
the observed subcomposition as independent variable (see Chap. 5). But now the
weights should be taken as the odds of missing the values, as provided by the logistic
regression model:

> ## extract the MAR prob:

> w = mp/(1-mp)

> wrm = lm(V1~V2+V3, ILR, w=w, subset = tkObs )

A deterministic imputation value could take the regression prediction:

> ILR[!tkObs,1] = predict(wrm,

newdata = as.data.frame(ILR[!tkObs,]) )

> impMAR = ilrInv(ILR, V=V)
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Again the object tkObs is used to filter out the data with missings in the regression
and to select which rows of the first balance must be replaced by their prediction.
The final line would invert the balances to obtain an imputed dataset. The following
plot would compare the true simulated values of this balance with their predictions:

> plot(ILR[,1], ilr(simDAT,V)[,1], col=is.MAR(simMAR[,4])+1)

If we would like a random imputation instead of a deterministic one, we could
complement the replacement using the linear model prediction with the variability
of the residuals:

> ILR[!tkObs,1] = predict(wrm,

newdata = as.data.frame(ILR[!tkObs,]) ) +

+ rnorm(sum(!tkObs), mean=0, sd = sqrt(var(wrm)) )

> impMARrandom = ilrInv(ILR, V=V)

Note that all these procedures will be independent of the ilr basis used because of
the affine equivariance of linear models.

A Bayesian approach able to deal with MAR values needs an explicit model
for the functional form of the dependence of the probability of missing a value
given the observed subcomposition. This missingness sub-model might contain
further parameters, eventually needing the specification of hyper-prior distributions.
A typical sub-model of this kind could be taken from a logistic regression. If the
parameters of the sub-model are assumed a priori independent of the parameters
of the global model, we can estimate them independently prior to the rest of the
model. The estimate of the global model parameters of the composition itself
will then depend on this sub-model. The likelihood for a fully observed datum in
such a situation would be the product of the probability of not missing it times
the full compositional distribution density. For a partly MAR-missing observation,
the likelihood would be the product of the observed marginal density times the
probability of missing those parts which are not available. Note that all methods
explained in the preceding section about MCAR can be applied to MAR once we
know the model of missingness.

The practical difficulty arises if several components might be missing at random
depending on the observed subcomposition, because several different subsets of
variables could be observed. However, it does not really seem reasonable that
the probability of the observation of a component should depend on some other
component if it is observed and does not depend on it if it is not observed. Thus, in
the presence of MAR values in several variables, it might be better to use simpler
models with a missing not at random situation.

To graphically represent an observation with a MAR value, we can find inspi-
ration on the projection approach and represent it with a line, either in scatterplots
of log ratios or in ternary diagrams. In this last case, such lines join the vertex of
the missing variable with the point on the opposite side given by replacing the lost
value with a zero and reclosing the observation. Exceptionally, these lines are always
straight from both the “acomp” and “rcomp” perspectives. This is further explained
in Sect. 7.1.2.
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7.2.4 Treating Missings Completely at Random

The idea behind MCAR (missing completely at random) is that each amount is
missed or observed with a given probability, independently of anything else. This
implies that the distribution of observed subcomposition, conditioned to what is
observed, is the same as the marginal distribution of the subcomposition. We can
thus understand a MCAR simply as less information. Every situation with this
conditioning property can be modeled as a MAR, when it comes to inferring
something about the underlying distribution. However, in compositional data, this
becomes more complicated than the usual MAR concept in multivariate analysis.
Assume a composition .0:1; 0:4; 0:5/ to be observed without the last value. We
would get .0:2; 0:8;MAR/, which looks quite different due to reclosing. On one
hand, this is another hint that individual amounts cannot be analyzed without the rest
of the composition. On the other hand, this implies that working with missing values
in compositional data is much more complex than in classical data. While it is prac-
tically impossible to deal with these kind of missings in “rcomp” scale, for “acomp”
scale, we have the projection approach briefly described in the preceding section.

The logistic regression approach of the preceding section could be used to
distinguish MCAR from MAR. If we accept the Wald test there, we may say that the
probability of missing is independent of the observed part, as an MCAR requires.
Building on the example of the preceding section, these lines simulate a dataset with
MCAR values on the fourth column:

> lostMCAR = runif(nsim)<0.3

> simMCAR = simDAT

> simMCAR[lostMCAR,4] = MARvalue

Now we can compare the logistic regression results in this case with those obtained
with MAR:

> datset = data.frame(ilr(simMCAR[,-4]),

y = factor(is.MAR(simMCAR[,4])))

> lrmMCAR = glm(y ~ V1 + V2 , family=binomial, data=datset)

> waldtest(lrmMCAR)

Wald test

Model 1: y ~ V1 + V2

Model 2: y ~ 1

Res.Df Df F Pr(>F)

1 97

2 99 -2 1.51 0.23

Thus, we can estimate the mean with the implemented projection approach:
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> mean(simMCAR)

A B C D

0.1045 0.2099 0.3186 0.3670

attr(,"class")

[1] acomp

When imputing values, we could use the same approach as with MAR, using a
regression, but no weighting is required.

7.2.5 Treating True and Structural Zeros

True zeroes in “ccomp” objects do not imply any special problem, as they have
a fully meaningful quantitative value (0), resulting from a well-known stochastic
model (the multinomial distribution, Sect. 3.1). On the other hand, the statistical
model for a structural zero is much less clear. Strictly speaking, observations with
and without the structural zero are qualitatively different; they belong to different
subpopulations. Thus, it could be interesting to model the conditional distribution of
the observed subcomposition depending on the presence/absence of structural zeros.
However, if SZ appear in several variables or both the number of observations with
and without SZ are not large enough, our estimations will not be reliable. It might
be thus interesting to analyze the dataset in an integrated way, somehow filtering out
the structural zeroes.

In general, imputation does not make much sense for structural zeroes, because
a true value would be 0 or not existing, and thus a guessed positive value does not
honor the truth. However, if we relax our aim and say that we would like to infer
a value that would be observed if it could be defined, we implicitly assume the
observations with SZ are similar to those fully observed, and thus the imputed value
would follow the assumptions of MCAR.

For the “rcomp” scale, a structural zero should be understood as true zero and
can be replaced by that value. For “acomp” and “ccomp” scales, the structural
zero is rather an undefined value. However, in “ccomp” scale, one typically has
true zeroes rather than structural ones. Graphical representation of zeroes does
not entail any problem in ternary diagrams: they are points placed exactly on a
border. In scatterplots of log ratios, however, zeroes fall at the infinity and cannot be
represented as they are: one has to represent them like MAR values, as lines.

7.2.6 Treating Not Random Missings

Missing not at random (MNAR) does often not really mean that the missingness is
not random. It rather means that the probability of being missed depends on the com-
plete value, including the actual true value of the value reported as MNAR. It is also
often suggested that MNAR components are not tractable at all. This is not strictly
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true. The main difference to MAR values is that there is no possibility to infer from
the data how the probability of missingness depends on the actual missing value.

A possible scenario for a missing not at random value is that a measurement
procedure fails more likely for extremely high or low values. BDLs may be seen as
special cases of MNAR values. That would lead to an underrepresentation of high
or low value and thus a bias in the analysis. However, when we assume a (a priori
stochastic or statistically inferred) law for the value to be missing, we could exploit
that in Bayesian modeling.

Let p
.x/ denote the probability of observing the critical component i in a
composition and 
 the unknown parameter with a prior P
 : Further, let f .xj
/
denote the conditional distribution of the composition given the parameter and
x� denote a projection of the composition with a missing on the non-missing
subspace. Then, the complete likelihood of the an observation without a missing
component would be Lx.
/ D p
.x/f .xj
/ and the likelihood of an observation
with a missing Lx.x�/ D R1

�1 p
.x�˚˛ei /f .x�˚˛ei ; 
/d˛. This is computable
if the conditional expectation of the missingness probability given all observed
components is computable (analytically or numerically). Depending on the model,
the missingness parameters may or may not be identifiable. Actually, p
 as a
function is identifiable if it is nonzero and it is allowed to do replicate measurements
of the potentially missing component on the same sample.

If we assume 
 is known (or previously estimated), an imputation could be done
using the conditional density of the unobserved balances which is proportional to

f .˛jx�; 
/ / .1 � p
.p
 .x� ˚ ˛ei ///f .x� ˚ ˛ei ; 
/

resulting in a imputation x� ˚ ˛ei for an ˛ simulated according to that density.
In an approximate frequentistic approach, we could, e.g., start from an external
dataset observing the missingness probability as a function of the true value (with
the variable settings of Sect. 7.2.3):

> simDAT2 = rnorm.acomp(nsim, mn, vr)

> obsProb <- function(X) exp(-0.8*X[,4]^2)

> Missing = obsProb(simDAT2) < runif(nrow(simDAT2))

> ExternalReferenceData <- data.frame(Missing=Missing,

ilr(simDAT2))

> lrmMNAR<-glm(Missing~V1+V2+V3,

family=binomial,data=ExternalReferenceData)

> waldtest(lrmMNAR)

Wald test

Model 1: Missing ~ V1 + V2 + V3

Model 2: Missing ~ 1

Res.Df Df F Pr(>F)

1 96

2 99 -3 1.76 0.16
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We simulate a dataset with MNARs following the same probability law:

> simMNAR = simDAT

> simMNAR[obsProb(simMNAR)<runif(nrow(simMNAR)),4] = MNARvalue

We can now predict the missingness probability for each of the actually completely
observed cases:

> tkObs <- is.NMV(simMNAR[,4])

> mp <- inv.logit(predict(lrmMNAR,

newdata=data.frame(ilr(simMNAR[tkObs,]))))

Analogously to the MAR case, we can now obtain an estimate for the mean with
nearly the same commands:

> w = 1/(1-mp)

> V = balanceBase(simMNAR, ~D/(A/(B/C)))

> ILR = ilr(simMNAR,V)

> colnames(ILR)=c("V1","V2","V3")

> meanV1 = weighted.mean(ILR[tkObs,"V1"], w=w )

> bmean = mean(ILR)

> bmean[1] = meanV1

> ilrInv(bmean,V)

A B C D

0.1022 0.2053 0.3115 0.3810

attr(,"class")

[1] acomp

So the trick is just that we need to estimate probability of missing from a reference
dataset, where the actual values of those parts that would be missing with our
measurement procedure are not missing, e.g., because the corresponding samples
are generated from standards or are remeasured with a better technology. The
conditional distribution and conditional expectation could in principle be computed
via Bayes’ theorem from the probability of missingness and a known for the dataset.
The analog for the imputation given for MAR values could be seen as a first
approximation to that:

> w = mp/(1-mp)

> wrm = lm(V1~V2+V3, data.frame(ILR[tkObs,]), w=w )

> ILR[!tkObs,1] = predict

(wrm, newdata = as.data.frame(ILR[!tkObs,]) )

> impMNAR = ilrInv(ILR, V=V)

> plot(ILR[,1], ilr(simDAT,V)[,1], col=is.MNAR(simMNAR[,4])+1)

which delivers a deterministic type 2, and

> ILR[!tkObs,1] = predict

(wrm, newdata = as.data.frame(ILR[!tkObs,]) ) +

+ rnorm(sum(!tkObs), mean=0, sd = sqrt(var(wrm)) )
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> impMNARrandom = ilrInv(ILR, V=V)

> plot(impMNARrandom,col=is.MNAR(simMNAR[,4])+1)

which delivers a random imputation which approximates type 3 imputation. Be,
however, aware that all is based on the assumption that the probability of observing
a datum is never 0.

A component is “missing not at random” in the best sense of the word, if the
mechanism of missingness is not random, but something else like deterministic, or
according to some plan. For instance, if the owner of a mine dropped all observation
he did not want the buyer to see, because he wants to sell the mine. In this case, it
is not possible to estimate the model or estimate an observation probability. To the
authors’ knowledge, there is no methodology to correctly regain the removed data.

7.2.7 Treating Values Below the Detection Limit

The most common version of missing values in compositional data is observations
below the detection limit. This type of missing actually contains a quantitative
information on the values: they are small and almost surely smaller than about
2 times the reported detection limit. The reader might still wonder: was not the
meaning of below the detection limit, that the value is below the detection limit?
Actually, it means that the obtained measure was not distinguishable from zero for
the particular analytical technique used. If now the measured value is slightly below
the detection limit, we may consider that the true value is certainly between zero and
up to around 2 times the detection limit itself, as will be explained in Sect. 7.2.8.

However, all currently available approaches work with the hypothesis that “below
detection limit” readings imply true values which are positive and below the known
detection limit. Seen in this way, the actually observed vector has two parts: (1) a
quantitative information on the observed subcomposition and (2) an upper bound on
the ratios of the missing vs. the observed components.

Current approaches take an additive lognormal model. Based on such a model, it
should be possible to compute a likelihood for either regular and “below detection
limit” (BDL) observations. For a single BDL component, we can efficiently
compute the probability of being BDL conditional to the observed subcomposition
of the others Palarea-Albaladejo and Martı̀n-Fernández (2008). For multiple BDL
components, a numerical computation is still possible. Having these probabilities
available, a numerical maximum likelihood (ML) method or a MCMC Bayesian
approach could be used to estimate the parameters of the model. Tjelmeland and
Lund (2003) tried such an approach using a simple additive-logistic-normal model
in a Bayesian framework including spatial dependence.

Expectation-maximization (EM) could be used here in the following way
(Palarea-Albaladejo and Martı̀n-Fernández, 2008):

1. Start the algorithm by providing guesses for the BDL values, e.g., by some very
simple deterministic imputation
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2. Estimate the parameters of the additive-lognormal-based model (e.g., a compo-
sitional linear model) in the usual way by maximum likelihood

3. Impute the values as the conditional expectations of the values given being below
the detection limit

4. Repeat from step 2 until convergence or iteration limit is reached

Since in every step there is a deterministic imputation, variances will be underes-
timated as discussed in Sect. 7.2.1.2. If the leverages of the imputed values in the
linear model estimation step are all below 1, we would assume the algorithm to
converge to unique optimum determined by the data, so that we can assume to have
a stable model estimation, tending to overfit the data.

We again simulate a dataset with a detection limit of 0:05 in the first component.
Recall that a BDL is encoded as the negative of its detection limit. The simDAT is
defined above.

> simBDL = simDAT

> simBDL[simBDL[,1]<0.05,1] = -0.05

> simBDL = acomp(simBDL)

We now define a function which does a simple EM-algorithm iteration following
the ideas of Palarea-Albaladejo and Martı̀n-Fernández (2008), but using an ilr-
rather than an alr basis. The function is a substantial simplification because it does
not treat missings in multiple variables. This function needs a balance base V having
the first coordinate representing the balance of the missing component against all
the others. iter gives the number of EM iterations.

> simpleEMBDLreplace <-function(data,V,iter=10) {

+ "Which rows have a BDL?"

+ tkBDL = is.BDL(data[,which(V[,1]>0)])

+ "Function to compute the conditional expectation in step 3"

+ CondExpectation = function(limit,cmean,sigma) {

+ x <- (limit-cmean)/sigma

+ cmean-sigma*dnorm(x)/pnorm(x)

+ }

+ "Initialising the iteration"

+ X <- ilr(zeroreplace(simBDL,a=1),V)

+ "Computing the detection limit in ilr"

+ dlVal <- X[tkBDL,1]

+ "EM-loop"

+ for(i in 1:iter) {

+ "Maximisation Step:"

+ Mean = mean(X)

+ Var = var(X)

+ "Expectation step"

+ "1. Build conditional distribution"

+ beta = solve(Var[-1,-1],Var[-1,1])

+ cmean = c(beta) %*% t((X-Mean)[tkBDL,-1])+Mean[1]
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+ SD = c(sqrt(Var[1,1]-c(Var[1,-1])%*%c(beta)))

+ "2. Compute conditional expectation"

+ CE = CondExpectation(dlVal,cmean,SD)

+ "3. Show covergence"

+ cat("Iteration ",i," step=",norm(X[tkBDL,1]-CE),

" mean=",ilrInv(Mean,V),"\n")

+ "4. Do the actual imputation"

+ X[tkBDL,1]=CE

+ X <- rmult(X)

+ impBDL = ilrInv(X,V,orig=data)

+ }

+ "Store estimated Mean and Variance"

+ attr(impBDL,"mean")<-ilrInv(Mean,V,orig=data)

+ attr(impBDL,"var")<-ilrvar2clr(Var,V,data)

+ "Return results"

+ return(impBDL)

+ }

The reader can omit the lines with only strings, which are for documentation.
Finally, we compute the basis isolating the first component and call this ad hoc
function:

> V <- balanceBase(simBDL,~A/(B/(C/D)))

> erg <-simpleEMBDLreplace(simBDL,V)

Iteration 1 step= 2.11 mean= 0.1196 0.1931 0.2931 0.3942

Iteration 2 step= 0.6658 mean= 0.1061 0.1961 0.2975 0.4003

(...)

Iteration 9 step= 0.0006238 mean= 0.1 0.1974 0.2996 0.403

Iteration 10 step= 0.0002328 mean= 0.1 0.1974 0.2996 0.403

The iteration fast approaches a stable estimate.
A deterministic imputation without previously estimated parameters, e.g., by

replacing each BDL value by 2=3L can produce outliers (see Sect. 7.3) in different
directions. The actual ratios can be underestimated or overestimated. It might thus
seem a good idea to use robust estimation in the subsequent analysis. However,
robust methods do not present a consistently better performance. Figure 7.2 shows a
simulated example situation. We have three components fA;B;C g where the A=B
ratio is practically fixed to 99:1, A and C are always observed, while B is often
below the detection limit of L D 0:005. The generating code follows:

> set.seed(27)

> logit <- function(x) log(x/(1-x))

> logitI<- function(x) exp(x)/(1+exp(x))

> observe <- function(x,L=0.005,I=L*2/3) {

+ x<-x+rnorm(length(x),0,L/3);

+ ifelse(x>L,x,I)
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+ }

> x <- logitI(seq(logit(0.1),logit(0.9),by=0.1))

> x <- logitI(rnorm(100,0,1))

> A <- 0.99*x

> Aobs <- observe(A)

> B <- 0.01*x

> Bobs <- observe(B)

> C <- 1-x

> Cobs <- observe(C)

> Total <- Aobs+Bobs+Cobs

> Aobs = Aobs/Total

> Bobs = Bobs/Total

> Cobs = Cobs/Total

> plot(log(A/C),log(B/C))

> points(log(Aobs/Cobs),log(Bobs/Cobs),

pch="+", cex=ifelse(Bobs<0.005,1,0.5))

> abline(lm(log(Bobs/Cobs)~log(Aobs/Cobs)))

> require(robustbase)

> abline(lmrob(log(Bobs/Cobs)~log(Aobs/Cobs)),lty=2)

> abline(lm(log(Bobs/Cobs)[Bobs>0.005]~log(Aobs/Cobs)

[Bobs>0.005]),lty=3)

Figure 7.2 shows a deterministic imputation on a simulated data set, where a clear
regression A D 0:99 
 .1 � C/, B D 0:01 
 .1 � C/, logit.C / � N.0; 1/ is found,
and all components are observed with a detection limit of L D 0:005 (i.e., with
an additive standard error of 0.005/3) and are imputed at .2=3/L. Circles show the
balances computed from the true values. Crosses show the balances computed from
the observed and imputed values. Small crosses are completely observed, while
large crosses are those data points involving imputations. The true regression would
correspond to a straight line following the circles.



232 7 Zeroes, Missings, and Outliers

As a rule of thumb, one might say: if the number of BDLs is low, any of the
methods will work considerably well. If the number of BDL is substantial, nothing
is safe.

7.2.8 The Physical Meaning of a Detection Limit

Geochemical analysis and analytical chemistry traditionally work with an additive
error assumption, rather incompatible with the Aitchison geometry. It is important to
understand the reasons of this choice and the actual meaning of a detection limit to
adequately handle it in a compositional analysis. This section is a brief introduction
to these issues.

In a geochemical analysis, a sample of more or less fixed size is taken, crunched,
and mixed. Afterwards, smaller subsamples of fixed, but not exactly controlled size
are taken, further processed, and finally subject to some procedure. Each subsample
provides a reading which is proportional to the actual content of one or the other
component. Typical readings might be ion or isotope counts hitting a sensor.

The errors in the readings come from various sources:

• A multiplicative error from selective loss of mass during crunching and mixing
• A multiplicative error from the size of the subsample taken
• A multiplicative error from loss of mass or solution during processing the

subsample
• An error nonlinearly depending on some other components, e.g., interactions in

the effect of the laser ablation in chromatography
• An additive error in the reading, e.g., due to random background noise and

Poisson counting errors. Near zero, the additive error dominates the other error
sources

While the multiplicative errors nicely fit into the “acomp” and “aplus” approaches
of compositional data analysis, the additive error has always caught the main atten-
tion of the analysts: e.g., measuring an amount in a machine like gas chromatograph
has a characterized measurement error induced by additive noise added to the
readings. This error has not a zero mean, which would thus always lead to an
overestimation of the actual amount. Thus, its expectation, typically estimated from
the background readings before and after the sample is processed, is subtracted from
the actual intensity reading values. The difference is afterwards multiplied with a
proportionality constant, which rescales intensities or counts to desired amounts or
portions.

If the error is small with respect to the actual value, this results in a small relative
error. However, when we measure a small amount, possibly zero or near to zero,
the variability of the additive noise dominates the measurement. It is quite likely
(about half of the cases) that the subtraction leads to a negative value, and obviously,
we cannot provide a numerical value for those amounts. Also if the true amount is
exactly zero, then with probability 1=2, the difference is a positive value somewhere
between zero and two standard deviations of the additive noise. This is conveyed by
Figs. 7.3 and 7.4.
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In geochemical analytical techniques, one traditionally does not think in terms
of compositional data, but rather in terms of proving the presence of a given
component. Then, it would not make sense to give any value if the measurement is
so low that it could well be compatible with the background. Thus, we can assume
that nothing of this component is actually there. It will thus be reported as below
detection limit and meant to be (almost) indistinguishable from zero.

On the other hand, from the perspective of a compositional geometry things look
a little worse. For a reading below the detection limit, an actual concentration of
zero is an explanation as reasonable as something two standard deviations above the
detection limit. This uncertainty corresponds to an infinite relative error. But even
worse, the same conclusion is valid for observations slightly above the detection
limit. Let L denote the detection limit. Then, by a reading of X D LC "; " > 0, we
only show that the value is with high probability in the interval

ŒX �L;X CL� D Œ"; 2LC "�;

which corresponds to a relative error up to

X

X � L
D LC "

"
D L

"
C 1:

This can take any value between 1 and 1. The relative error is thus uncontrolled for
values slightly above the detection limit. Furthermore, if the true concentration is
actually between L and 2L, there is a fair chance that the value is actually reported
as below detection limit.

Looking more closely from the point of view of a Poisson counting process,
counting errors increase with increasing concentrations. Using the notation of x
for the true value and assuming that the background variability is also a Poisson
counting error with standard error L=3, then x D L would have the same standard
deviation from the counting error and thus

 �������������������������������������������������������������������
Fig. 7.3 Interplay of additive error, detection limit, conditional distribution, and lognormal
imputation in a well-behaved case. The variable x denotes the true amount value distributed
according to a lognormal LN.ln.6/; 1/ distribution (i.e., corresponding to an “aplus” object, while
xObs is a measured reading scaled to the corresponding x values (i.e., X C ", " � N.0; 0:5/.
The figures on the left show the histograms of x, xObs and a dataset of reported and imputed
values. The vertical thick line shows the detection limit. The lines show a lognormal distribution
fitted to the xObs values above detection limit by maximum likelihood (ML, solid line) and by
the EM-algorithm (dashed line; see Sect. 7.2.7 for details). Surprisingly, both fit well to the x
values and not to the xObs values below the detection limit. However, a random imputation using
this model creates a strange misfit in the produced densities. This happens because the portion of
values actually below the detection limit is higher than the lognormal model predicts. The figures
on the right show conditional distributions of (a) x given observations of values below the detection
limit, (b) slightly above detection limit, and (c) above 3 times the detection limit. The distributions
show clearly different variabilities on “aplus” scale, demonstrating the high relative error of values
observed near the detection limit
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var.X/ D L2

9

x

L
C L2

9
D 1

9
.Lx C L2/;

or also

3sd.X/ D
p
Lx C L2:

This corresponds to a relative error of

r D 3sd.X/

x
D
r
L

x
C L2

x2
;

which is a decreasing function of x, infinite for x tending to 0, and still
p
2 	 1:41

for x D L i.e., 140 % of error on top of the multiplicative error, decreasing to,
e.g.,

p
1=10C 1=100 	 0:33 for x D 10L. Clearly if the background has more

variability than the mere counting error, we would get smaller errors. If no additional
counting error is generated, the relative error function would be

r D 3sd.X/

x
D L

x
:

In all cases, the relative measurement error is due to not constant additive error
component.

In a Bayesian approach, a BDL with additive error needs a two-step modeling
approach, where each observation is a hidden true value according to the modeled
distribution plus an additive normal error with mean zero and standard deviation
according to the precision of the measurement procedure. The likelihoods of both
observed data and BDL values according to this mixture model has no closed
analytical form and must be approximated with MCMC methods.

 �������������������������������������������������������������������
Fig. 7.4 Interplay of additive error, detection limit, conditional distribution, and lognormal
imputation in an example where imputation based on a lognormal model is very problematic.
The variable x denotes the true concentration value distributed according to a lognormal
LN.ln.1:1/; 0:4/ distribution, e.g., in an “aplus” geometry. In contrast with Fig. 7.3, here the
behavior of the observed values xObs D X C ", " � N.0; 0:5/ above the detection limit is
qualitatively different from that of the true values, and the portion of values below detection limit is
very poorly explained by the lognormal distribution model. The lines show a lognormal distribution
fitted to the xObs values above detection limit by ML (solid line) and by the EM-algorithm (dashed
line). Consequently, the values imputed following the conditional distribution in the fitted model
will exhibit a strange behavior. The reason for such bad performance of the imputation can be seen
on the right-hand side, showing conditional distributions of x values in three cases: (a) observations
below detection limit, (b) slightly above the detection limit, and (c) above 3 times the detection
limit
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7.3 Outliers

7.3.1 Background on Outliers

There is no absolute mathematical definition of an outlier. Loosely speaking, an
outlier is an atypical observation outside the main mass of the dataset. Most
compositional models are formulated in terms of additive lognormal models or their
multivariate normal counterparts in coordinates. Outliers can thus be detected with
the classical affine equivariant methods for multivariate outlier detection, applied to
the alr or ilr transformation of the dataset (Filzmoser and Hron, 2008).

It is well known (Rousseeuw and Leroy, 2003, e.g.) that outliers do not easily
show up in the direct residuals of non-robust linear models. It is thus of the utmost
importance to use robust estimation techniques to detect outliers.

It might be difficult to decide which is the most adequate estimator when outliers
are present. A robust estimator would fit the model to the “non-outlying” part of the
data. This may be what we want, when the outliers are deemed as observational
errors or otherwise unrelated to the process of interest. For instance, one may
be interested in a natural process of enrichment, while the outlying compositions
have been generated by sampling or lab treatment. In this case, our main aim is
to make the analysis independent of these “wrong” observations. However, this is
not always the case. Extremal observations might be important parts of the natural
process. The most typical example of this second situation is in mining, where
areas of extremal enrichment are in fact those of interest, maybe even representing
the difference between having just an anomaly or a deposit worth being mined.
An illustration of this problem can be found in Fig. 7.5. It shows a comparison
of classical and robust estimation methods of the mean. Both histograms show of
10,000 means of 30 standard normal variables mixed with a 1/15 probability with
a normal variable with mean and standard deviation of 20. The first histogram uses
classical means and the second trimmed means for a robust estimate. Neither the
robust nor the classical gives a useful estimate of the overall expectation, marked
by the vertical line. In such a case, leaving out the “outliers” would lead us to
a flawed conclusion. Obviously a simple model, e.g., an additive logistic normal,
would not model these outliers, and the meaning and sense of the associated
estimators would thus be questionable. A parameter is defined with respect to a
model. Thus, if the model is known to be wrong, how can we meaningfully estimate
the parameter?

One way to look at the problem would be to consider parameters valid for
large classes of models, e.g., moments (expectation and variances). But in the
mining example above, the Aitchison expectation of a composition is not the
essential parameter. The economically essential parameter is the mean grade of
the deposit. Likewise for studies of pollutants, it is often not important to model
the distribution of the compositions of the main part of the data. Much more
relevant is the distribution and portion of compositions with pollutants over legal
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Fig. 7.6 Effect of outliers on dispersion of arithmetic average estimates of a normal population.
The first histogram shows 10,000 means of 30 standard normal variables each. The second
histogram shows the 10,000 means of the same situation where each observation is a wrong
measurement with a probability of 1/30. These wrong measurements are again modeled by a zero-
mean normal random variable, but now with a standard deviation of 30

limits. This portion might be well described by quantiles if the compositions have a
lognormal distribution, but this will not be the case if a relevant portion of outliers
with respect to that model is present.

Even if Aitchison expectation and variance are the variables of interest, outliers
make the situation problematic. If we use classical unbiased estimators (i.e., log-
ratio-based mean and variance), these estimators are strongly influenced by the
extreme observations. That is not unexpected in the first place, because a heavy
tail in the theoretical distribution also has a strong influence on the theoretical
expectation. However, precision and reliability of these estimates decrease under the
presence of such extreme observations, even when showing up with low probability.
Figures 7.6 and 7.7 show such an effect on raw and log scale. Note that estimates
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Fig. 7.7 Effect of outliers on dispersion of arithmetic average estimates (in log scale) of a
lognormal population. The diagram shows 10,000 arithmetic means of 30 standard lognormal
variables each, where each observation is a wrong measurement with a probability of 1/30. These
wrong measurements are again modeled by the same lognormal random variable, but now with
a standard deviation of 3. Upper histogram and horizontal axis show the estimate obtained using
the lognormal expectation formula exp. O�C .1=2/O�2/. Right histogram and vertical axis show the
raw arithmetic estimate. Note the heavy tail towards the right produced by the presence of large
outliers, especially for the classical arithmetic mean

computed with lognormal theory appear slightly more robust than classical raw
arithmetic means, though this comes with the price of having to estimate a variance
and may utterly fail if the assumption of lognormality does not hold. With an
additive-logistic-normal model, the effect would be comparable to this lognormal
case. Note that geometric mean and compositional center would actually behave
rather like the arithmetic mean under normality assumption.

Thus, there is no direct, easy, and general way to work with outliers. Outliers
are defined with respect to models. Outliers have different interpretations and
implications depending on their origin and the question. Outliers suggest errors
in the measurement process, but do not offer conclusive evidence on that. They
may also suggest that our model assumptions are utterly wrong: we may assume a
homogeneous sample and find many clustering outliers, thus hinting to the presence
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of special subgroups; or we may assume additive logistic normality when our tails
are heavier than that, just producing huge amounts of nominal outliers on these tails.

7.3.2 Types of Outliers

From a phenomenological point of view we can distinguish the following types of
outliers:

• Extreme observations
Extreme observations might happen just by chance in random observations. As
an intuitive illustration, recall that we do not expect a value of �7 as outcome of
a univariate, standard normal distribution: however, this occurs—seldom indeed,
with a very low probability, but it is not impossible. Thus, extreme observations
are characterized by being scarce and become even rarer the farther we depart
from the main part of the dataset.

• Plain errors
Errors may occur for a variety of reasons, most typically in the measurement
process or in the transmission/copy. For instance, a change of units may be
forgotten or the decimal point misplaced. The characteristic of this type of errors
is that they typically affect one single variable, the other variables should be
“correct,” falling within the main body of the data set in the subcomposition
without the error-affected variable.

• Individual atypical samples
Some individuals, though being “correct” (without errors) might be too atypical
with respect to the main body of the dataset, e.g., coming from very rare subpop-
ulations with contrasted properties. The presence of many atypical outliers is a
sign that the sampling did not cover just one homogeneous population.

• Polluted samples
Compositional data, in particular geochemical data, may suffer pollution, mostly
due to an inadequate treatment during sampling or in the lab. These kind of
irregularities may affect a significant portion of the dataset. Characteristically,
the polluted samples should roughly follow a segment from the typical portion
of the data to the pollutant composition and be bounded between these two end-
members.

• Heavy-tailed distributions
Actual data rarely exhibit a nice, normal distribution. In practice, one often
encounters heavy-tailed distributions, even in log scale. In these cases, when
assessing atypical values with a normal model in mind, we will necessarily detect
several atypical observations with no clear structure.

• Multimodality
Finally, a different form of non-normality is detected by the presence of several
modes, representing several subpopulations. In this case also fall some special
artifacts typical of compositions, like apparent subgroups produced by replacing
many BDL values by a fixed value.



7.3 Outliers 241

This is not a complete list of possible causes for atypicality. Nevertheless, since
some visualization tools of this classification are provided (see Sect. 7.4.4), the
analyst can see if a given sample or group of samples does not satisfy any of these
patterns and look then for possible alternative causes. Most of these types of outliers
can also be found in conventional multivariate datasets.

7.3.3 Robust Estimation

Under the presence of outliers, one has to use robust estimation procedures. An
estimator is considered non-robust if its value can arbitrarily change by simply
perturbing one single datum (i.e., an outlier). On the contrary, an estimator is called
robust with breakpoint b 2 Œ0; 1=2� if the estimated value does not arbitrarily change
if the portion of outliers in the dataset is below b. The “compositions” package
allows to use different robust estimators to estimate mean and variance. They can
be selected by the robust option or the robust= parameter of the var command.
Computation in the preceding examples of the book are done with

> options(robust=FALSE)

using the usual non-robust estimators for mean and variance. A simple robust
estimator is the minimum covariance determinant estimator, or MCD (Rousseeuw
and Leroy, 2003), typically used in multivariate data analysis. This algorithm finds
the mean vector and variance matrix of the typical subgroup of the data by finding an
ellipsoid with minimum volume covering a 1 � b portion of the dataset. The center
of the ellipsoid is used as an estimate for the mean vector. The variance matrix is
estimated as the symmetric positive definite matrix describing the algebraic equation
of this ellipse, scaled in such a way that the ellipse would contain a probability
of 1 � b of a multivariate normal distribution. The fast minimum covariance
determinant estimator for real multivariate data is available in R in the robustbase
package by the covMcd command.

7.3.4 Detection and Classification of Outliers

Before outliers can be treated in any way, they need to be identified and classified.
Different types of outliers have different implications for the further statistical analy-
sis. Wrong data values can be corrected or removed from the analysis. For individual
atypical values and polluted samples, we might want to understand their cause.
In case of outliers originating from heavy-tailed distributions, multiple modes, or
other kinds of multiple subpopulations, we need to perform any subsequent analysis
aware of that more complicated structure: for instance, we might use a non-normal
distribution to describe the dataset. The key problem of outliers is thus identification
and classification.
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Identification of outliers is not an easy task. Outliers do not come self-identified
like missing values, and we have to find a criterion to highlight their presence.
A typical one is to compare the spread of the data with the one expected for a normal
distribution. The usual way to detect outliers is to compute the Mahalanobis distance
of each observation, better if it is based on robust estimates of center and spread.
Rousseeuw and Leroy (2003, pp. 266–270) propose to compare this Mahalanobis
distance to the 1�˛ quantile of the appropriate	2-distribution and take as outliers all
samples above the corresponding quantile level. In the simplex, aD�1 dimensional
space, the appropriate degrees of freedom areD�1. Alternatively, we later propose
to use as testing distribution the maximum of the Mahalanobis distance, which can
be obtained via Monte Carlo simulations. This option is available in the package
and will be discussed in Sect. 7.4.3.

Classification of outliers is a vital point to decide what to do with them, because
removing an error outlier or an atypical single observation may be sensible, but
directly removing data affected by any of the other four cases of atypicality
(extreme observation, contaminated samples, heavy tails, and subpopulations) is
an oversimplification. Extreme observations should be kept, as there is “nothing
wrong” with them. Subpopulations and contaminated samples should be studied
separately from the main population, but not discarded as errors: they might be as
interesting as the main part, if not even more. Finally, outliers generated by heavy
tails rather point out to the fact that the underlying distribution is not a normal one,
also for the main part of the data. Although we may not remove these “not wrong”
outlier, such deviations from normality will increase estimation errors and challenge
optimality and correctness of all normal-based methods.

Some of these atypicality types can be detected with the help of a series of
criteria based on the geometric structure of the simplex. For instance, an error outlier
should look completely normal in the subcomposition without the erroneous part.
Subpopulations should be identified with a cluster analysis based on the Aitchison
distance (2.5). Finally, if we express each datum as its direction from the mean (as
a unitary vector in the Aitchison geometry of the simplex or in the classical real
geometry, compatible with an “rcomp” scale), then polluted samples should show
up as distinct angular clusters.

7.4 Descriptive Analysis of Outliers

7.4.1 Robust Estimation of Mean and Variance

Mean and variance of the typical group are estimated using a robust estimator.
With robust=TRUE, the “compositions” package uses the covMcd estimator on
the cdt-transformed dataset to estimate the variance. The corresponding estimated
center is stored as attribute center of the resulting variance estimate. There are
other robust estimators available. They can be selected by the robust option or the
robust= parameter of the mean and var commands.
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> GeoChemSed=read.csv("geochemsed.csv",header=TRUE,skip=1)

> x = acomp(GeoChemSed,c("Cr","Zn","Pb"))

> mean(x)

Cr Zn Pb

0.1508 0.5773 0.2719

attr(,"class")

[1] acomp

> mean(x,robust=TRUE)

Cr Zn Pb

0.1647 0.5243 0.3110

attr(,"class")

[1] acomp

> var(x)

Cr Zn Pb

Cr 0.09954 -0.03896 -0.06058

Zn -0.03896 0.08360 -0.04464

Pb -0.06058 -0.04464 0.10522

> var(x,robust=TRUE)

Cr Zn Pb

Cr 0.09733 -0.03884 -0.05849

Zn -0.03884 0.06427 -0.02543

Pb -0.05849 -0.02543 0.08392

> variation(x)

Cr Zn Pb

Cr 0.0000 0.2611 0.3259

Zn 0.2611 0.0000 0.2781

Pb 0.3259 0.2781 0.0000

> variation(x,robust=TRUE)

Cr Zn Pb

Cr 0.0000 0.2393 0.2982

Zn 0.2393 0.0000 0.1991

Pb 0.2982 0.1991 0.0000

> options(robust=TRUE)

> var(x)

Cr Zn Pb

Cr 0.09733 -0.03884 -0.05849

Zn -0.03884 0.06427 -0.02543

Pb -0.05849 -0.02543 0.08392

> options(robust=FALSE)

7.4.2 Detecting Outliers

Being an outlier is a soft concept. To get the concept operative, we need to give a
strict mathematical definition. Unfortunately, whatever definition we choose, it will
not be the same as the intuitive concept of an outlier as an observation somehow
out of the main part of the dataset. The “compositions” package considers two
of these definitions. Both definitions are based on the robust Mahalanobis distance
of the composition to the robust center of the dataset. Mean and variance of the ilr-
transformed dataset are robustly estimated with fast implementation of the minimum
covariance determinant estimator in the robustbase package (Rousseeuw et al.,
2007). Call these estimates Omr for the robust mean estimate and Ȯ

R for the variance
estimate. Then, the robust Mahalanobis distance Mr.xi / of a composition xi from
the robust mean is given by

Mr.xi / WD .ilr.xi / �mr/
t Ȯ �1

R .ilr.xi /�mr/
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The two definitions are:

1. A value xi is classified as a suspected outlier at significance level ˛ if Mr.xi / �
	2D�1;1�˛ , where 	2D�1;1�˛ denotes the 1 � ˛ quantile of the 	2-distribution
with D � 1 degrees of freedom. This distribution is the distribution of the
true (i.e., using true mean and true variance) of an additive-logistic-normally
distributed data. This approach is the direct generalization of the outlier detection
procedure proposed by Rousseeuw and Leroy (2003) to compositional data done
by Filzmoser and Hron (2008).

2. A value xi is classified as proven outlier at significance level ˛ if we reject the
hypothesis that xi belongs to a normal sample. That is, it classifies as outlier
if Mr.xi / � kD;n, where kD;n is the critical value chosen in a way that the
probability of classification of any of the observations as an outlier in a additive-
logistic-normal random sample is ˛. The critical value kD;n is computed by a
simulation algorithm.

Both approaches try to classify a composition as an outlier if it is too far from the
center to be one of a sample of additive-logistic-normally distributed observations.
However, the first approach does neither consider that the Mahalanobis distance
is estimated nor the fact that each observation is tested, and thus, multiple
(stochastically dependent) tests are performed.

Figure 7.8 shows examples of these classifications for six example datasets
generated with the commands:

> data(SimulatedAmounts)

> par(mfrow=c(2,3),mar=c(1,1,1,1))

> outlierplot(acomp(sa.outliers1),type="scatter",

class.type="outlier")

:::

> outlierplot(acomp(sa.outliers6),type="scatter",

class.type="outlier")

The types of outliers exemplified are:

1. sa.outliers1: No outliers. Data generated according to a normal distribution
in the simplex.

2. sa.outliers2: About 10 % of the data has large errors in the first component.
3. sa.outliers3: One single outlier.
4. sa.outliers4: Data is generated with a heavy-tailed Cauchy-type distribution.
5. sa.outliers5: About 10 % of the data is polluted with a uniform random

portion of material with a different composition.
6. sa.outliers6: 20 points of a second subpopulation with a different mean are

added.
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Fig. 7.8 Ternary diagrams of proven outliers according to a second outlier criterion. Points
corresponds to observation not classified as outliers, crosses to proven outliers

The observations are classified with a command like

> OutlierClassifier1(x,type="outlier")

[1] ok ok ok ok ok ok ok

(...)

[43] ok ok ok ok ok ok ok

[50] ok outlier ok ok ok ok ok

[57] (...)

[85] ok ok ok

Levels: ok outlier

The command returns a factor showing the classification of each composition. If
the type of the classification is set to "outlier" it only reports proven outliers.
If the command is set to "grade" for grade of “outlyingness,” the factors gets the
additional level “extreme” for extreme observations or suspect outliers according to
the first criterion:

> OutlierClassifier1(x,type="grade")

[1] ok ok extreme ok ok ok extreme

[8] ok ok extreme ok ok ok ok

(...)

[78] ok extreme extreme extreme ok ok extreme

[85] ok extreme ok

Levels: ok extreme outlier
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Here “extreme” describes compositions outlying according to criterion 1 only,
while “outlier” describes composition which are outliers with respect to crite-
rion 2. “extreme” observations are only reported with the “grade” type of outlier
classification.

7.4.3 Counting Outliers

It is difficult to prove that an individual observation is an outlier. Only observations
quite far from the center are classified as proven outliers. On the other hand, in
all large datasets, we will find extreme observations classified as suspected outliers
according to the first criterion. However, for the sake of reporting outlier problems
or exploring the reasons for outliers, it might often be an important step to find
out how many outliers are in the dataset. For this, we can compare the empirical
distribution function of the Mahalanobis distances with its distribution under the
hypothesis that the dataset additive logistic normally distributed. If the empirical
distribution function is below a lower predictive limit of that distribution, we are
sure that there are too many values above that limit. And knowing how much below
that limit the data fall, we can also find a lower bound for the number of data above
that limit, i.e., a minimum number of expected outliers. This result is plotted in a
specific type of outlier plot (Fig. 7.9). This figure is produced by the commands:

> opar<-par(mfrow=c(2,3), mar=c(3,3,1,1), oma=c(3,3,0,0))

> data(SimulatedAmounts)

> outlierplot(acomp(sa.outliers1),type="nout")

> outlierplot(acomp(sa.outliers2),type="nout")

> outlierplot(acomp(sa.outliers3),type="nout")

> outlierplot(acomp(sa.outliers4),type="nout")

> outlierplot(acomp(sa.outliers5),type="nout")

> outlierplot(acomp(sa.outliers6),type="nout")

> mtext(side=1, outer=TRUE, text="Mahalanobis distance")

> mtext(side=2, outer=TRUE, text="number of outliers")

For each plot, we can take the maximum of the curve, which provides us with a
minimum for the number of outliers in the dataset. In these illustration datasets, we
have therefore at least 0, 8, 1, 9, 17, and 63 outliers, showing that the method should
not be trusted for substantial portions of outliers, while it works fine for datasets 1–4.

We apply now this methodology to a real dataset (see Fig. 7.10):

> par(mfrow=c(1,2), mar=c(4,4,1,1))

> x = acomp(GeoChemSed,c("Cr","Zn","Pb"))

> outlierplot(x,type="scatter",class.type="outlier")

> outlierplot(x,type="nout")
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Fig. 7.9 Histograms of expected outliers above a given Mahalanobis distance threshold.
A rug (red) represent the robust Mahalanobis distances of the data points. The black line shows
how many outliers should be present (i.e., significantly proven) above that Mahalanobis distance
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Fig. 7.10 Outlier detection in the geochemical dataset. Plots show type and number of outliers

These figures show that we can prove the presence of two outliers, but only one
of them can be identified as a proven outlier. Thus, even if we remove that outlier,
we still need to work with robust methods. On the other hand, there is no hint for
multiple wrong values.

7.4.4 Classifying Outliers

If outliers are detected, we might want to investigate their genesis. There is no
statistical procedure that positively identifies the reason of an outlier. However, we
can exclude or guess reasons by identifying or disproving possible explanations
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for an outlier. An important mechanism of creating outliers is a measurement
error in a single component. Thus, an important tool is to check whether or not
an outlier can be explained by a single component error. To this aim, we check
whether the observation is still extreme, if that single component is removed from
the composition. The following command does that for every subcomposition and
returns a factor classifying the observations:

> OutlierClassifier1(x,type="type")

[1] ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

[21] ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

[41] ok ok ok ok ok ok ok ok ok ok 1 ok ok ok ok ok ok ok ok ok

[61] ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

[81] ok ok ok ok ok ok ok

Levels: ok ? 1

Compositions marked with ok have not been classified as outliers. Proven outliers
are marked with 1 if there exists one component, such that the datum is not any more
extreme in the subcomposition without that component. Finally, data are marked
with ? if no such component exists. Our single outlier can evidently be explained by
an error in a single component. It is also possible that a datum becomes regular after
removal of several parts: in this case, we may rank the parts by computing which
component makes the composition “most” normal (i.e., smallest robust Mahalanobis
distance in the subcompositions) after removing it:

> OutlierClassifier1(x,type="best")

[1] ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

[21] ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

[41] ok ok ok ok ok ok ok ok ok ok Cr ok ok ok ok ok ok ok ok ok

[61] ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

[81] ok ok ok ok ok ok ok

Levels: ok ? Cr Zn Pb

Our single detected outlier can thus be explained best by an error in the Cr value.
Though maybe, other components could be removed instead of Cr and make the
observations regular. If we want a report of all possible components that can be
removed to make the data regular, the following command may be useful. It encodes
in a binary number all components that can be removed to explain the outlier:

> OutlierClassifier1(x,type="all")

[1] ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

[16] ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

[31] ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

[46] ok ok ok ok ok 100 ok ok ok ok ok ok ok ok ok

[61] ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

[76] ok ok ok ok ok ok ok ok ok ok ok ok

Levels: ok 100
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Each datum gets a binary digit of length D (the number of parts), where the i th
digit is 1 if removing component i makes the datum regular. Of course, if this does
not happen, the i th digit is 0. These tests are based on the 	2 outlier criterion. For
instance, in a fA;B;C;D;Eg-composition, a datum with classifier 00000 may be
considered regular (or not explained by any single part), whereas a classifier 01001
means that we may either remove B or E and convert that outlier into a regular
observation.

In the example above, only one component can explain the outlier. We can thus
say that the outlier could be a single component outlier, and in this case, Cr is the
source of the problem.

7.5 Working with Outliers

7.5.1 Random Outliers

Even if the basic distributional assumption (e.g., additive logistic normality) is
adequate, it is possible that a value falls pretty far away from the main body of the
dataset. In particular, ALN-distributed data spread on the whole simplex; thus, any
automatic or semiautomatic outlier detection technique will sooner or later identify
a “good” value as an outlier. With a high probability, random outliers should show
up phenomenologically as near outliers.

Regarding estimation (e.g., of compositional center or variation matrix), one may
be tempted to believe that removing such outliers or using robust statistical methods
increases the performance of statistical estimators. However, from mathematical
statistics, we know that the classical estimators of mean and variance in an
additive lognormal model are the best unbiased estimators. From the perspective
of estimation, we would thus use all data, regular and random outliers alike.

This does not imply that the extremal observation still carries contextual infor-
mation worth being explored: is anything else special on that individual that might
suggest further attention? where does the sample come from? On the other hand, we
should keep in mind that such “anything special” might be the effect of pure chance.
Without further evidence, it will be safer to consider the value as an outlier.

In likelihood-based modeling (ML and Bayesian statistics), random outliers do
not need special treatment. They are strange but possible occurrences of the model,
and their likelihood is computed in a standard way.

7.5.2 Failed Measurement or Transmission in Individual
Components

A technical problem during measurement, a confusion of results, or a transcription
error can lead to a wrong value in a single component. Such a problem should show
up as a single component error. The typical case is the accidental pollution of a
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sample by a pure component in the lab or the confusion of dot and colon as symbols
for thousands or floating point when passing files between computers.

In all these cases, the value reported is not informing of the true value, and the
error is independent of this actual value. The value can thus be treated like a missing
completely at random, if measuring it again or tracing back the error is not possible.

A special case is outliers that are generated by the high relative error near the
detection limit. This situation is analog to a MNAR missing value, but (unlike for
missing values) here the essential source of problem is known. Even with a constant
detection limit, such problem could arise, for instance, (a) for samples substantially
smaller than the usual samples or (b) for sample in which one portion is expected to
be extremely small according to what the other components tell.

In the first situation (a), all components might have a higher measurement error
and even several components might be affected by the problem, in such a way
that the observations might not be identified as single component outliers. The
information actually important is given by the absolute values or the detection
limits scaled to the composition, not by the composition itself. In this case, a simple
downweighting of this sample according to its higher measurement variance might
be a good solution.

In the second case (b), we could expect the whole sample to be extreme and
thus have a strong leverage, i.e., well dominate the parameter estimation. So, on one
hand, keeping the sample might distort the estimated parameters, but leaving out the
sample could eliminate an important extremal information. If nonstatistical infor-
mation allows us to conclude that this extremal case can be ignored for the question
under consideration, we would leave out the sample or the value by declaring it BDL
with a higher detection limit and would try to guess a non-influential replacement
value in an EM-algorithm. But if we conclude that the quantitative information is
relevant, there is no more work-around than to measure that component again with
a method with higher precision and/or lower detection limit.

A Bayesian modeling of wrong observation would need a model for their
distribution. Such models can, e.g., be found in Fung and Bacon-Shone (1993) or
Madigan et al. (1996). We would need to apply such model for each component
individually and integrate over the possible values of the closing constant.

7.5.3 Subpopulations

If the sampled population consists of two or more different subpopulations with
different means or variance structures, a single additive lognormal model will fail
to capture the distributional shape. If we are lucky and the subpopulations are
sufficiently different, they might generate observable secondary modes and thus be
detectable as separate groups of outliers. The origin of such problems could be the
presence of qualitatively different subpopulations or a systematic grouping in the
measurement process, by, e.g., making the same error repeatedly.
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While the second problem corresponds to major issues of the processing, the first
is an imperfection of the model itself. It might hint to a missing categorical regressor,
indexing the several subpopulations. If this categorical variable is observed, a better
model might remove the problem. If no explanation for the grouping is observed,
nonparametric clustering models or mixing models might be a better choice for the
situation. In any case, this type of outliers calls for a scientific understanding of its
origin rather than for a straightforward solution.

7.5.4 Polluted Samples

Another origin of special observations is polluted samples. In this case, one may
see a mixing effect in some of the actually observed components. If only a single
component is affected, we probably see this problem as a single component outlier.
If multiple components are affected, the problem is more complicated.

The reported composition of a polluted sample is a mixing of the original
composition with a pollutant composition. Mixing is a nonlinear operation in the
simplex with respect to the Aitchison geometry. Pollution might affect several
samples. If this is the case, it is still improbable that different samples are polluted
with the same relative amount of the pollutant. It is thus easy to see a fan of
polluted samples along a curve in the Aitchison space that would look like a band
around a straight segment in the classical geometry. If the effect of the pollution is
strong enough, it could show up as a directional cluster of outliers pointing into the
direction of the composition of the pollutant.

For the treatment of polluted samples, we have to take an essential modeling deci-
sion. Are we interested in describing the distribution of the unpolluted population,
or do we consider the pollution itself also?

In the first case, we want to remove the pollution influence. We may thus assume
a dataset with errors, which might be detectable in some samples, but probably not
in all of them (since some might be less polluted). Robust statistics might be the
best solution to deal with that problem, because they are stable in the presence of
errors. However, we should remember that the actual portion of wrong observations
is probably larger than the portion of outliers reported by the methods.

In the second situation, a simple (e.g., additive logistic normal) model is
insufficient to describe the reality we are interested in. A robust estimation would
ignore a major aspect of reality: pollution. However, since the distribution may
still be unimodal, maybe skew distributions become useful. Thus, in a first step,
a classical lognormal modeling using non-robust estimators might answer rough
questions on the dataset reasonably well. The approximate distribution of the
pollutant might be guessed from the direction of the effect, and we could try to
find the locations of the polluted samples in the field to track down the origin and
type of the pollution. However, a better approach should include mixture models.
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If this situation corresponds to a single component outlier, it should not be treated
as a missing like in the situation of a measurement error.

In a Bayesian approach, pollution could be modeled as convex combinations
of random members of a base population and a pollutant population, where the
convex coordinate is (with high probability) exactly 1 for the base population and
somehow distributed on Œ0; 1� for the polluted samples. Hyper-parameters for all the
distribution of the coordinate and the pollutant population seem necessary, which
makes the model quite complicated and not very practical.

7.5.5 Heavy-Tailed Compositional Distributions

The distribution of a compositional population is not necessarily well described
by an additive lognormal distribution, like not all univariate values are normal or
lognormal. Much of usual “non-normality” can be explained by (approximate) “log-
normality” of positive data or “log-ratio-normality” of proportions, but still not
everything is well described by additive-logistic-normal distributions. Normal mod-
els (including lognormal and additive logistic normal) obviously play a reference
role due to the central limit theorem, but not every process fits in the hypotheses of
this theorem.

As the name says, the central limit theorem (for compositions) ensures that
the distribution of a consecutive random perturbation asymptotically approaches
additive logistic normality, especially around the center of the distribution. That
means that “interesting” departures from (transformed) normality occur particularly
on the tails of the distribution.

Phenomenologically, heavier tails than those corresponding to an additive-
logistic-normal model show up as wildly distributed outliers, of which some might
be explainable as single component outliers and others not.

Obviously these outliers are not “wrong” or “errors”: using the normal model is
the wrong thing. Thus, these “outliers” should not be omitted, as it would happen
by marking them as missings or treating the dataset with a robust estimator. Instead,
the distributional model must be changed.

Some modeling has been tried with skew-normal distributions (Mateu-Figueras
and Pawlowsky-Glahn, 2007). Other options could be based on any multivariate
heavy-tailed distribution on the ilr plane (e.g., a generalization of the Cauchy
distribution, or a multivariate Student-Siegel) or by the non-normally dominated
branch of the Aitchison distribution.

In likelihood-based approaches (maximum likelihood or Bayesian), detecting a
heavy tail simply means that the distributional model must be one with heavy tails.
The problem may be to find a good and flexible model, suitable for (quasi-)analytical
treatment.
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AIC. See Akaike information criterion (AIC)
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Amount, 2
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apply (command), 60
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as.factor (command), 102
as.integer (command), 101
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balance (command), 90

balanceBase (command), 90
Balancing element, 90
Bayesian Information Criterion (BIC), 166
Below detection limit (BDL), 210, 228
BIC. See Bayesian Information Criterion (BIC)
Biplot, 178

covariance, 178
form, 183

boxplot (command), 127
Breakpoint, 241
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clr (command), 41
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Clr-variance matrix, 80
clrvar2ilr (command), 49
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Confidence region, 82, 143
ConfRadius (command), 135
contour (command), 60
Contrasts, 101
contrasts (command), 102
contr.poly (command), 102
contr.treatment (command), 102, 133
Coordinates, 43
cor (command), 100
Count composition, 34

dAitchison (command), 62
ddirichlet (command), 58
Dirichlet distribution, 58
dist (command), 190, 191
Distance, Aitchison, 40
dlnorm.rplus (command), 53
dmultinom (command), 63
dnorm.acomp (command), 52
dnorm.aplus (command), 53
dnorm.rmult (command), 53

ellipses.acomp (command), 82
eqdist.test (command), 61
Estimation error, 142

Factor (class), 124
factor (command), 102

Generalized variance, 75
Geometric averaging matrix, 68
glm (command), 221
gsi.buildilrBase (command), 92

hclust (command), 190, 191
help (command), 11
Heteroscedasticity, 118
Homoscedasticity, 118

ilr (command), 43
ilrBase (command), 43
ilr2clr (command), 43
ilrInv (command), 43, 107
ilrvar2clr (command), 49, 157
Ilr-variance-matrix, 81
Imputation, 214
install.packages (command), 7
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Intercept, 96
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is.MAR (command), 214
is.MNAR (command), 214
is.NMV (command), 214
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is.SZ (command), 214
is.WMNAR (command), 214
is.WZERO (command), 214

Kriging
ordinary, 205
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lda (command), 195
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library (command), 10
lm (command), 97
loadings (command), 185
locator (command), 126
Logistic regression, 200, 221
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Main effects, 133
MAR. See Missing at random (MAR)
MARvalue (command), 210
matplot (command), 186
MCAR. See Missing completely at random

(MCAR)
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(MCD)
Mean

compositional, 74
mean (command), 74
methods (command), 10
Metric standard deviation, 75
Metric variance, 75
Minimum covariance determinant (MCD), 241
Missing at random (MAR), 210, 220
Missing completely at random (MCAR), 210,

224
Missing not at random (MNAR), 210, 225
Missings plot, 212
missingProjector (command), 214
Missings tick mark, 212
missingSummary (command), 212
MissingTck (parameter), 212
missingType (command), 213
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mixcolor (command), 104
MNAR. See Missing not at random (MNAR)
MNARvalue (command), 211
Model error, 142
mosaicplot (command), 213
msd (command), 75
multinom (command), 200
Multinomial distribution, 62
Multi-Poisson distribution, 64
mvar (command), 75

Negative bias, 2, 22
nlm (command), 204
Normal distribution on the simplex, 51
Normality test, 53

Option
robust, 241, 242

options(contrasts=) (command), 102
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pairwisePlot (command), 155
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plot (command), 211
plot.acomp (command), 85
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pretty (command), 105
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R2 (command), 153
rAitchison (command), 62
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resid (command), 97, 115
rmultinom (command), 63
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rplus (command), 19

sapply (command), 167
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scale (command), 81
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Scaling, 81
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shapiro.test (command), 117
Signary matrix, 92
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Singular value decomposition, 177
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Subcomposition, 4, 15, 22
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sumMissingProjector (command), 214
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SZvalue (command), 210

table (command), 102
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Total variance, 75
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var (command), 80, 143
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