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Preface

In Borchers et al. (2002), a unifying framework was given for the plethora of
methods for estimating the abundance of closed populations of animals. In Chap. 13
of that book, the bare bones of an approach to provide similar unification for open
populations were provided. Here, we seek to put flesh on those bones. Our aims
are to lay down an approach for defining and fitting a wide range of population
dynamics models for those new to the field and to provide some coherence to the
process of modelling population dynamics for more experienced practitioners.
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Chapter 1
Introduction

This book was conceived as a companion volume to Estimating Animal Abundance:
Closed Populations by Borchers et al. (2002), who gave a unifying framework
for estimating the abundance of closed populations. We seek to do the same for
estimating the abundance of open populations: populations subject to births, deaths
and movement in and out of the population. We focus primarily on populations of
large vertebrates, for which we will typically model dynamics within the framework
of an annual cycle, and for which stochastic variability in the demographic
processes is usually modest. We consider discrete time models in which animals
can be assigned to discrete states such as age class, gender, population (within a
metapopulation), or species (for multi-species models).

We go beyond estimation of abundance, however, as we are interested in under-
standing reasons for variation in abundance over time. Knowledge of abundances
alone will seldom be sufficient for the ecologist or wildlife manager. For example,
suppose one knew there were exactly 5,218, 6,319, and 7,438 individuals for
three consecutive years. A natural question would be “Why are the abundances
increasing?”. More generally, the question is “What is causing, or driving, the
population dynamics?”. The answer will depend in some way on the underlying
processes of birth or recruitment, survival and movement. These processes are
typically of greater interest to ecologists and managers than abundance itself.

To quantify these processes requires the formulation and fitting of population
dynamics models. The resulting fitted models will potentially yield both estimates
of abundance and estimates of parameters characterizing the underlying processes,
such as survival probabilities.

1.1 Background to the Book

Population dynamics models serve a wide variety of uses, including explaining
previous population fluctuations as well as projecting future population abundances
under hypothetical scenarios. We might for example wish to reintroduce an animal

K.B. Newman et al., Modelling Population Dynamics: Model Formulation,
Fitting and Assessment using State-Space Methods, Methods in Statistical Ecology,
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that has become extinct locally. We then need to be confident that the reintroduced
population is viable. Models are needed to make this assessment. Or perhaps we
need to manage an exploited fish stock, and assess whether the level of take is
sustainable. Another example is when we wish to manage a species of conservation
concern, and perhaps reverse a declining trend. We would like models of the species
and its environment to allow us to explore “what-if” scenarios on the computer
before we experiment with the real population. If we can build a model that relates
demographic processes to habitat, we can then explore options for modifying the
habitat to the species’ benefit. Perhaps we wish to assess the response of a species or
community to climate change. To do this, we must model the population processes,
and how these depend on climate. Yet another example is when a population is too
large for the environment to support, so that habitat degrades, to the detriment of
biodiversity in the region. We may then need models to indicate levels of culling
needed to sustain the environment and its diversity.

Population dynamics models play a central role in adaptive resource manage-
ment (Williams et al. 2007) where managers are experimenting with different
management actions to produce desired population responses. Models are used
to predict the consequences of management actions such as habitat modifications
or predator removal. After-the-fact comparisons of model predictions to observed
outcomes are also made. The strength of evidence for alternative models, i.e.
competing explanations for the effects of actions, can be assessed to determine
which explanations are more consistent with the data.

In all of the above examples, we need to address risk. This means that we
need to quantify uncertainty in our model predictions. It is not enough therefore
to develop mathematical models of animal dynamics. We also need to allow for
the main sources of uncertainty in these models: demographic and environmental
stochasticity; observation or sampling errors in our data; and model or structural
uncertainty (Williams et al. 2001). Without these elements, a mathematical model
of population dynamics is merely a tool of theoretical ecologists, with little to offer
wildlife managers. Similarly, purely empirical models for trend, fitted to time series
of data, have little predictive power, because they ignore the population processes
that drive change, so cannot predict change with any degree of confidence. In this
book, we develop an approach that allows models for population dynamics to be
embedded within a full inferential framework, giving the predictive and explanatory
power of mathematical process models, coupled with statistical tools for quantifying
uncertainty.

The main steps involved are as follows. First, we formulate a model of the
population dynamics. We provide a building block strategy for this, allowing quite
complex models to be assembled from simple components. For convenience of
model formulation, we use matrices to define these building blocks, which allows us
also to relate our approach to the well-developed field of matrix population models
(Caswell 2001). However, our fitting algorithms are not restricted to such models,
and we can readily extend our models in various ways. We develop the tools needed
for model formulation, and show how they provide a more general framework than
is possible with matrix models.
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Second, we formulate the population dynamics model as a hidden process model.
If the model is first-order Markov, it is termed a state-space model. The states might
reflect gender, age, geographic region, or other characteristics that define different
sub-populations that might be subject to different dynamics. The state equation
defines how the population updates stochastically through time. These processes
are generally hidden because we cannot observe the entire population—we typically
have counts or estimates of the population or of some component of the population
at certain points in time. Hidden process models give great flexibility in defining
both the systematic and the random components of the population dynamics model.

Third, we define how our observations relate to the states, through an observation
equation. The random component of this equation relates to observation error, while
the systematic component defines a “mapping” between the observations and the
states.

As an aside, we note that partitioning the population dynamics model into two
components, namely the underlying hidden state process and the observation model,
has practical advantages. One advantage is that theories about the dynamics can be
kept separate from the sampling and estimation issues; thus, for example, the subject
matter specialist can focus attention on the underlying dynamic processes of survival
and birth, postulating alternative theories largely independent of the data collection
procedures. Sample size determination can also be partitioned into problems to
determine the number of years to sample and problems to determine the sampling
intensity within a given year, and trade-offs between different combinations of
sample sizes can be more clearly determined.

Fourth, we address how the hidden process model may be fitted to time series
of observations. We consider three primary approaches. The Kalman filter allows
us to fit a model quickly, at the expense of assuming that the errors in both the
state equation and the observation equation are normally distributed, and that the
expectation of the state vector at one time point is a linear function of the state vector
at the previous time point. We also give two computer-intensive methods which can
be implemented within a Bayesian framework to give much greater flexibility. The
first of these is Markov chain Monte Carlo (MCMC), and the second is sequential
Monte Carlo methods.

Finally, we discuss model selection, goodness-of-fit, model averaging, parameter
redundancy, and other issues related to model assessment and uncertainty.

In subsequent chapters, we consider different methods of assessing wild animal
populations, and how these can be combined with hidden process modelling to allow
the dynamics of the populations to be modelled. We first address the case where
closed-population assessment methods are used at each of several time points, and
a population dynamics model fitted to the time series of abundance estimates. This
may be viewed as an extension of the robust design approach of Pollock (1982).
Next, we consider open population assessment methods, and how these may be
integrated with hidden process models. Finally, we look at the case when there are
multiple data sources. These methods are illustrated through examples, and R or
WinBUGS code is provided for most examples, allowing users to modify the code
for their own purposes.
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1.2 Book Website

Computer code for our examples is available at the book website, www.creem.st-
and.ac.uk/modpopdyn. The code can be used as a learning aid to re-run the analyses
of this book, and can also be used as a template for the user to generate code to
analyse his or her own data.

1.3 Related Books

As noted above, this book is a companion to Borchers et al. (2002). They give
a unifying framework for methodologies for estimating the abundance of closed
populations, and we seek to do the same for open populations. Population dynamics
play a crucial role in open population modelling, yet methods for assessing the
abundance of open populations have for the most part had no embedded model of
these dynamics. Such embedded models are central to the methods of this book.

This book also complements the book on Bayesian analysis for population
ecology by King et al. (2009). They focus on the underlying ideas associated
with Bayesian analyses of ecological data and the corresponding methods to fit
Bayesian models. There is an emphasis on mark-recapture-recovery data for open
populations. Case studies are used to illustrate the methods, including state-space
models, the use of covariate information (including dealing with missing data),
multi-state data, integrated data analyses, random effects models and closed capture-
recapture models. Computer codes are provided for examples, using both WinBUGS
and R.

Williams et al. (2001) offer near encyclopedic coverage of many of the better
known population dynamics models for animal populations as well as the wide
variety of statistical procedures used to estimate abundance (for closed and open
populations) and parameters of population dynamic processes. Integration of pop-
ulation process models with observation models is by and large not addressed,
however.

Caswell (2001) uses matrices to model population dynamics, e.g., Leslie matrices
to characterise survival and reproduction. Matrices, strictly speaking, imply linear
models, although Caswell formulates non-linear extensions to the basic matrix
model. We find matrix models to be useful for formulating state-space models and
present many examples in Chap. 2.

Royle and Dorazio (2008) cover hierarchical models for ecological systems.
In common with this book, they use both frequentist and Bayesian methods, and
show how to combine explicit models of ecological system structure or dynamics
with models of how ecological systems are observed. They apply the principles of
hierarchical modelling to problems in population, metapopulation, community and
metacommunity systems, whereas we focus on modelling population dynamics, and
estimating population abundance.

http://www.creem.stand.ac.uk/modpopdyn
http://www.creem.stand.ac.uk/modpopdyn
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Two classic fisheries science and management books, Hilborn and Walters (1992)
and Quinn and Deriso (1999), describe a wide variety of methods and models
for characterising fish population dynamics. These models and methods are often
used for non-fish species. Both books also discuss the distinction between process
variation and observation error, but at the time the books were written, the handling
of both types of error simultaneously was not common practice.

Written for researchers and graduate students in statistics, ecology, demography,
and the social sciences, McCrea and Morgan (2014) provide an up-to-date overview
of capture-recapture methods. It covers model development and diagnostics. The
authors use illustrative data sets drawn from a range of different areas and indicate
available software for classical and Bayesian inference.

We use Bayesian methods for fitting many of the models of this book. Books that
provide an introduction to Bayesian methods for ecologists are McCarthy (2007)
and Link and Barker (2009). Kéry and Schaub (2012) focus on using WinBUGS
to model population dynamics. They show how to fit Bayesian state-space models
using mark-recapture or mark-recovery data, and they also provide example code
for integrated population modelling, and for modelling counts.

1.4 Roadmap to the Book

After reading this chapter, we recommend that Chap. 2 be read next, which provides
a path for those familiar with classic Leslie and Lefkovitch matrix models to a
building-block approach to (a) constructing situation-specific matrix models and (b)
formulating the skeleton of state-space models. Chapters 3–5 are the methodological
core of the book giving general definitions of SSMs, methods for fitting SSMs,
and then suggestions for formulation, or re-formulation, and assessment of SSMs.
Chapters 6–9 are largely stand-alone chapters and can be read in any order, although
there is some cross-reference between these chapters. Chapter 10 summarizes the
book and can be read at any time.



Chapter 2
Matrix Models as Building Blocks
for Population Dynamics

In this chapter, we develop a “building block” approach to defining population
dynamics models, in which each building block corresponds to one biological
process, and is represented by one matrix (Lebreton 1973; Lebreton and Isenmann
1976; Buckland et al. 2004, 2007). Matrix models are usually defined within a
deterministic framework, but we will need stochastic models. Thus we will think
of the matrix as a mathematical tool for telling us how many animals of each type
we expect to have in our population once the process (e.g. survival, birth, movement)
has occurred, given the numbers present beforehand. We separately specify the
probability distribution associated with the process, which will determine the actual
numbers of each type. We refer to the types of animal as states.

We will introduce each process using a simple example to aid understanding,
then define it in more general terms. We will assume that the natural time unit is
one year, although a shorter unit will often be appropriate. We will also assume
that births are restricted to a short breeding season. The year is taken to run from
one breeding season to the next. If the breeding season is not short, then the birth
process operates alongside a death process, which would be better represented by
continuous-time models. We can approximate such models in our framework by
modelling births and deaths on say a daily basis through the breeding season.

Within a year, multiple biological processes typically occur, e.g. survival,
birth and movement. At times these individual processes will be labelled sub-
processes: the annual changes in numbers of animals are a reflection of an annual
process, which in turn is the consequence of multiple sub-processes. Further, in the
constructions that follow, sub-processes are treated as if they occur sequentially in
discrete, non-overlapping time intervals; e.g. mortality takes place, then births occur,
then movement, and so on. Temporal overlapping of sub-processes can in fact occur
so long as the overlapping sub-processes are affecting different categories or sub-
populations; otherwise, the following formulations are approximations.

K.B. Newman et al., Modelling Population Dynamics: Model Formulation,
Fitting and Assessment using State-Space Methods, Methods in Statistical Ecology,
DOI 10.1007/978-1-4939-0977-3__2, © Springer Science+Business Media New York 2014
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2.1 Using Matrices to Represent Processes
Within a Single Population

Caswell (2001) gives a comprehensive account of matrix population models, and
of properties of matrices relevant to modelling population dynamics. In this book,
we need to know remarkably little about matrices. The basic property of matrix
multiplication is needed to understand the expected effect on states of processes.
Suppose A is a 2 � 2 matrix comprising four values a11, a12, a21 and a22, and b is a
column vector of length two (i.e. it is a 2� 1 matrix) with elements b1 and b2. Then
the product Ab is given by

�
a11 a12
a21 a22

� �
b1
b2

�
D
�
a11b1 C a12b2
a21b1 C a22b2

�
:

For example
�
1 2

3 8

� �
3

5

�
D
�
13

49

�
:

Note that in any product of two matrices, the number of columns of the first matrix
must equal the number of rows of the second matrix. The number of rows of the
product is equal to the number of rows of the first matrix, and the number of
columns of the product is equal to the number of columns of the second matrix.
More generally, if A is a k � m matrix and B is an m � n matrix, then the k � n

matrix AB is given by:

2
64
a11 : : : a1m
:::
: : :

:::

ak1 : : : akm

3
75
2
64
b11 : : : b1n
:::
: : :

:::

bm1 : : : bmn

3
75

D

2
64
a11b11 C � � � C a1mbm1 : : : a11b1n C � � � C a1mbmn

:::
: : :

:::

ak1b11 C � � � C akmbm1 : : : ak1b1n C � � � C akmbmn

3
75 :

Throughout this book, we use matrices, called process matrices, to define the sub-
processes operating on our population of interest, and vectors, called state vectors,
to represent the various categories or states of animal in our population. The start
of the annual cycle will be defined for convenience, often immediately before or
after the breeding season. The numbers of animals in each state at the end of
year t � 1 will be represented by a vector nt�1, comprising elements nj;t�1, for
j D 1; : : : ; m, where m is the number of distinct states of interest. After each
sub-process, these numbers (or some of them) will change. We use the following
notation to indicate numbers of animals in each of the m states after sub-process k
has occurred in year t :



2.1 Using Matrices to Represent Processes Within a Single Population 9

u1(s),1,t

u1(s),2,t
n2,t−1

n1,t−1

Survival
f1

f2

Fig. 2.1 Starting with n1;t�1 young animals and n2;t�1 adults at the end of year t � 1, we expect
E.u1.s/;1;t / D n1;t�1�1 young and E.u1.s/;2;t / D n2;t�1�2 adults to survive through year t . The
arrows are dashed to indicate that the processes are stochastic, so that in general E.u1.s/;j;t / ¤
u1.s/;j;t for j D 1; 2. The rates associated with the processes are shown above the arrows

uk.x/;t D

2
64

uk.x/;1;t
:::

uk.x/;m;t

3
75

where x is a letter indicating the type of sub-process: s is used to indicate survival,
b for birth, a for age incrementation, r for growth, c for sex assignment, g for
genotype allocation, and v for movement.

We use the same letters, but capitalized, to label our models. For example a BAS
model is one with three sub-processes in a year, starting with survival, then age
incrementation, and finally birth. The reason for reversing the chronological order
of the sub-processes in these labels will become apparent.

2.1.1 Survival

Suppose we wish to model a single population of animals, divided into two states
representing age classes, with n1;t�1 newly born animals and n2;t�1 adults at the
end of year t � 1. Then the expected number of survivors through year t can be
expressed as

�
E.u1.s/;1;t /
E.u1.s/;2;t /

�
D
�
�1 0

0 �2

� �
n1;t�1
n2;t�1

�
; (2.1)

where u1.s/;j;t signifies the number of animals in state j after the first sub-process
(survival) of year t has occurred, E.u1.s/;j;t / denotes the corresponding expectation
conditional on n1;t�1 and n2;t�1, and �j is the survival probability of animals in
state j . The structure of Eq. (2.1) is shown diagrammatically in Fig. 2.1. We write

Eq. (2.1) equivalently as E.u1.s/;t jnt�1/ D Snt�1, where S D
�
�1 0

0 �2

�
is the

survival matrix.



10 2 Matrix Models as Building Blocks for Population Dynamics

We will also need to specify a probability distribution associated with the
process. For survival, an obvious choice is the binomial, so that

�
u1.s/;1;t � binomial.n1;t�1; �1/
u1.s/;2;t � binomial.n2;t�1; �2/

�
: (2.2)

We will develop this example in subsequent sections, where it will be referred to as
Example 1.

More generally, suppose we have m states (types of animal), with survival rates
�1; : : : ; �m. Then the expected numbers of survivors may be expressed

2
6664

E.u1.s/;1;t /
E.u1.s/;2;t /

:::

E.u1.s/;m;t /

3
7775 D

2
6664
�1 0 : : : 0

0 �2 : : : 0
:::
:::
: : :

:::

0 0 : : : �m

3
7775

2
6664
n1;t�1
n2;t�1
:::

nm;t�1

3
7775

with u1.s/;j;t � binomial.nj;t�1; �j / for j D 1; : : : ; m.
Available data may not supportm distinct survival parameters. A simple solution

is to explore models in which some of the survival parameters are set equal; for
example, a common adult survival rate is often assumed. We explore more flexible
solutions, in which survival is modelled as a function of covariates or as a random
effect, in Sect. 2.2.

In our matrix formulations, wherever we see E.�/ on the left-hand side, indicating
expectation of a random variable, we will need to specify a probability distribution
for the corresponding stochastic process. If there is no expectation, then the
corresponding process is deterministic. We now consider the deterministic process
of age incrementation.

2.1.2 Age Incrementation

In Example 1, there are just two age classes. Assuming young animals become
adults by the end of their first year, we can represent this as a deterministic matrix
model: all survivors are deemed to be adults by the time of the next breeding season.
The number of animals after age incrementation at the end of year t , given the
number of survivors, is known without error:

�
u2.a/;2;t

� D �
1 1

� � u1.s/;1;t
u1.s/;2;t

�
: (2.3)

Note that this can equivalently be written
�

0

u2.a/;2;t

�
D
�
0 0

1 1

� �
u1.s/;1;t
u1.s/;2;t

�
:
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u2(a),2,tu1(s),2,t

u1(s),1,t

Age incrementation

1
1

Fig. 2.2 Before age incrementation, we have u1.s/;1;t young animals and u1.s/;2;t adults in year t .
After age incrementation, we have u2.a/;2;t D u1.s/;1;t C u1.s/;2;t adults. The arrows are solid to
indicate that the processes are deterministic, with E.u2.a/;2;t / � u2.a/;2;t . The rates associated with
the processes are both unity because all animals follow the routes indicated by the arrows, and no
new animals are generated

We adopt the convention that the dimension of the state vector is reduced when one
or more states necessarily have no animals; the vector is then expanded again when
a subsequent sub-process potentially generates animals that belong to these deleted
states.

The effect of two ones in one row of a matrix is to combine two states; in this
case, young and old animals. Equation (2.3) may be expressed diagrammatically as
shown in Fig. 2.2. The model can equivalently be written u2.a/;t D Au1.s/;t , where
A is the age incrementation matrix. In fact, for this simple model and adopting the
formulation of Eq. (2.3), A is a row vector, and u2.a/;t is a scalar.

If we have m states corresponding to ages 0, 1, 2, . . . , then state m comprises
all animals aged m � 1 or older. The following (deterministic) model ensures that
each age class except the oldest moves up one year, and the two oldest age classes
merge, at the year end. (The first entry of the state vector becomes u2.a/;2;t because
conceptually there are no animals in their first year until births occur.)

2
666664

u2.a/;2;t
u2.a/;3;t
:::

u2.a/;m�1;t
u2.a/;m;t

3
777775

D

2
666664

1 0 : : : 0 0 0

0 1 : : : 0 0 0
:::
:::
: : :

:::
:::
:::

0 0 : : : 1 0 0

0 0 : : : 0 1 1

3
777775

2
666666664

u1.s/;1;t
u1.s/;2;t
:::

u1.s/;m�2;t
u1.s/;m�1;t
u1.s/;m;t

3
777777775
:

2.1.3 Growth

Suppose in Example 1, the two states are size classes rather than age classes, and
suppose that at the year end, animals in the smaller size class move to the larger
class with probability � . Animals in the larger class remain there. (The same model
applies if the two classes correspond to immature and mature animals.) The expected
numbers of animals in each state, conditional on the numbers before reallocation of
animals according to their size, are then
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u2(r),1,t

u2(r),2,t

u1(s),1,t

u1(s),2,t

Growth

p

1

1− p

Fig. 2.3 Before growth, we have u1.s/;1;t small animals and u1.s/;2;t large animals in year t .
After growth, we expect to have E.u2.r/;1;t / D .1 � �/u1.s/;1;t small animals and E.u2.r/;2;t / D
�u1.s/;1;t C u1.s/;2;t large animals. The solid arrow with an associated rate of unity indicates that
large animals remain large, while the dashed arrows indicate that the growth process for small
animals is stochastic

�
E.u2.r/;1;t /
E.u2.r/;2;t /

�
D
�
1 � � 0
� 1

� �
u1.s/;1;t
u1.s/;2;t

�
; (2.4)

which may also be expressed asE.u2.r/;t ju1.s/;t / D Ru1.s/;t , where R D
�
1 � � 0
� 1

�

is the growth matrix. This process is shown diagrammatically in Fig. 2.3.
As with survival, the binomial distribution is an appropriate model for stochas-

ticity in the growth process:
�

u2.r/;1;t � binomial.u1.s/;1;t ; 1 � �/
u2.r/;2;t D u1.s/;2;t C .u1.s/;1;t � u2.r/;1;t /

�
: (2.5)

If there are m size classes, and we allow animals in state j to remain the same
with probability 1 � �j or move up one size class with probability �j for states
1; 2; : : : ; m � 1, then2
666666664

E.u2.r/;1;t /
E.u2.r/;2;t /
E.u2.r/;3;t /

:::

E.u2.r/;m�1;t /
E.u2.r/;m;t /

3
777777775

D

2
666666664

1 � �1 0 : : : 0 0 0

�1 1 � �2 : : : 0 0 0

0 �2 : : : 0 0 0
:::

:::
: : :

:::
:::

:::

0 0 : : : �m�2 1 � �m�1 0
0 0 : : : 0 �m�1 1

3
777777775

2
666666664

u1.s/;1;t
u1.s/;2;t
u1.s/;3;t
:::

u1.s/;m�1;t
u1.s/;m;t

3
777777775
:

Note that, if we allow the possibility that an animal in the smallest size class remains
there (�1 < 1), then we do not lose state 1 at this stage, in contrast with the aging
model.

2.1.4 Birth

For Example 1, suppose births take place after age incrementation. Thus last year’s
young have been combined with adults, and births create the new cohort of young
animals. If the birth rate is denoted by �, then
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u3(b),1,t

u3(b),2,t
u2(a),2,t

Births

1 

r

Fig. 2.4 Before births but after age incrementation, we have no young animals and u2.a/;2;t adults
in year t . After births, we expect to have E.u3.b/;1;t / D �u2.a/;1;t young animals, shown by the
dashed arrow with associated rate �. The number of adults remains at u3.b/;2;t D u2.a/;2;t , indicated
by a solid arrow with an associated rate of unity. The rates emanating from u2.a/;2;t sum to 1C� >

1, indicating that new animals have been created

�
E.u3.b/;1;t /

u3.b/;2;t

�
D
�
�

1

� �
u2.a/;2;t

�
;

or equivalently, E.u3.b/;t ju2.a/;t / D Bu2.a/;t where B D
�
�

1

�
is the birth matrix.

(In this simple example, it is a column vector.) We illustrate this process in Fig. 2.4.
If each animal gives birth to at most one young per year, we might again invoke

the binomial distribution:

�
u3.b/;1;t � binomial.u2.a/;2;t ; �/
u3.b/;2;t D u2.a/;2;t

�
: (2.6)

Thus the newly-born animals are placed in the recreated state for young animals,
and the number of adults remains unchanged after the birth sub-process.

With m states, we have

2
666664

E.u3.b/;1;t /
u3.b/;2;t
u3.b/;3;t
:::

u3.b/;m;t

3
777775

D

2
666664

�2 �3 : : : �m
1 0 : : : 0

0 1 : : : 0
:::
:::
: : :

:::

0 0 : : : 1

3
777775

2
6664

u2.a/;2;t
u2.a/;3;t
:::

u2.a/;m;t

3
7775

where �i is set to zero for states i that correspond to immatures or males.
To generalize the birth model, we need distributions that allow multiple births

to a single mother. Possible distributions include the Poisson and negative binomial,
but a more flexible choice is the multinomial distribution, where the number of trials
is equal to the number of breeding females, and the probability that a female gives
birth to i young is pi for i D 0; 1; : : :, with

P
i pi D 1 and � D P

i ipi .
If the birth process completes the modelling of the annual cycle, then we have

u3.b/;j;t � nj;t for j D 1; : : : ; m.
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u3(b),1,t u4(c),1,t

u4(c),2,t

u4(c),3,t

u4(c),4,t
u3(b),3,t

u3(b),2,t

Sex assignment

1− a

1

1

α

Fig. 2.5 Before sex assignment but after births, there are u3.b/;1;t young animals in year t . We
expect E.u4.c/;1;t / D ˛u3.b/;1;t of these to be female, and the remainder male. For adult females,
we have u4.c/;3;t D u3.b/;2;t , while for adult males, u4.c/;4;t D u3.b/;3;t

2.1.5 Sex Assignment

Commonly, only the female component of a population is modelled. Suppose we
wish to add males to Example 1, and handle them as additional states. Thus we now
have four states, corresponding to adult and young of each sex. We specify our sex
assignment model conditional on number of births u3.b/;1;t . If u3.b/;2;t is number of
adult females, u3.b/;3;t is number of adult males, and the probability that a young
animal is female is ˛, then

2
664

E.u4.c/;1;t /
E.u4.c/;2;t /

u4.c/;3;t
u4.c/;4;t

3
775 D

2
664

˛ 0 0

1 � ˛ 0 0
0 1 0

0 0 1

3
775
2
4 u3.b/;1;t

u3.b/;2;t
u3.b/;3;t

3
5 (2.7)

where u4.c/;1;t , u4.c/;2;t , u4.c/;3;t and u4.c/;4;t are numbers of newborn females,
newborn males, adult females and adult males respectively. If this is the last process
of the year, then u4.c/;j;t � nj;t for j D 1; 2; 3; 4.

Equation (2.7) may be expressed as E.u4.c/;t ju3.b/;t / D Cu3.b/;t , where C is the
sex assignment matrix, and is represented by Fig. 2.5.

The binomial is the natural model for sex assignment:

0
BB@

u4.c/;1;t � binomial.u3.b/;1;t ; ˛/
u4.c/;2;t D u3.b/;1;t � u4.c/;1;t
u4.c/;3;t D u3.b/;2;t
u4.c/;4;t D u3.b/;3;t

1
CCA :

If there are m age classes for each sex, then this generalizes straightforwardly:
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2
666666664

E.u4.c/;1;t /
E.u4.c/;2;t /

u4.c/;3;t
u4.c/;4;t
:::

u4.c/;2m;t

3
777777775

D

2
666666664

˛ 0 0 : : : 0

1 � ˛ 0 0 : : : 0
0 1 0 : : : 0

0 0 1 : : : 0
:::

:::
:::
: : :

:::

0 0 0 : : : 1

3
777777775

2
666666664

u3.b/;1;t
u3.b/;2;t
u3.b/;3;t
u3.b/;4;t
:::

u3.b/;2m�1;t

3
777777775
:

2.2 Models Within Models

In the previous section, models were presented for which all animals in a given state
were subject to the same processes with the same parameter values, and those values
were treated as fixed over time. We require flexible models with more parameters,
yet we are unlikely to have adequate data to fit large numbers of parameters. We
consider two solutions to this dilemma, each of which appreciably enhances the
capabilities and realism of our models.

2.2.1 Modelling Processes Through Covariates

The first process model we considered was survival. We specified that animals in
state j all had the same survival rate �j . However, even for animals in the same
state, the survival rate may vary according to many different factors. Suppose we
wish to model first-year survival �1 as a function of winter rainfall rt and total
abundance Nt�1 D Pm

jD1 nj;t�1 at the end of year t � 1. We would like our model
to respect the constraint that �1 must lie between zero and one. A logistic model is
a natural choice:

�1;t�1 D 1

1C expfˇ0 C ˇ1rt C ˇ2Nt�1g : (2.8)

where �1;t�1 is the probability that animals recruited into the population at the end
of year t � 1 survive to the end of year t . This incorporates an environmental
effect, with ˇ1 > 0 if high winter rainfall increases first-year mortality, and
density dependence, with ˇ2 > 0 if high abundance increases mortality. The above
formulation corresponds to using a logit link function. Other link functions for
binary data could also be used: the probit and the complementary log–log links
(McCullagh and Nelder 1989:31).

This model allows �1 to be time-varying. We could also include covariates that
vary by space (e.g. habitat) or by individual animal (e.g. weight). Thus individual-
based models are feasible, without the necessity of more parameters than the data
can support.



16 2 Matrix Models as Building Blocks for Population Dynamics

The rate parameters associated with other processes could be modelled similarly.
For example the growth model parameter � of Sect. 2.1.3 might be modelled as a
function of time spent in that size class and of resources available, or the birth rate �
of Sect. 2.1.4 might be modelled as a function of the mother’s weight, or a measure
of her position in the social hierarchy, or of the habitat she occupies—or all three.

We note that some classic nonlinear, density-dependent population dynamic
models such as the Beverton-Holt and Ricker models, which typically simultane-
ously incorporate survival and reproduction, can be extended to include covariates
(Maunder and Deriso, 2011).

2.2.2 Processes as Random Effects

Often, we expect rates to vary but we do not have relevant covariates to model
that variation. In this case, an option is to specify the rate as a random effect. For
example, instead of specifying that the survival rate �j is the same for all animals
in state j , we can assign a random distribution to �j , allowing it to vary in time,
or by location, or by individual animal. A good candidate distribution is the beta
distribution, which is constrained to lie between zero and one. Thus if we wish �j
to vary by individual animal, instead of having to fit a different parameter for each
animal (impossible in practice), we simply have to fit the two parameters of the beta
distribution. For example, in the case of time-varying survival, for animals in state
j at time t , the survival rate is �j;t � beta(˛j ; ˇj ). More commonly, random effects
are assumed to be normal on some scale; in the case of modelling survival, the
natural scale would be logit, ensuring that survival is constrained between zero and
one. Such models as these where the parameters themselves are random variables
are sometimes called hierarchical or multi-level models; random observations are
at the lowest level and random parameters at higher levels. The parameters of the
distributions at the higher levels are called hyperparameters.

Random effects and covariates can be combined in various ways to yield even
more flexible models. For example, first-year survival in year t could be a function
of a covariate, such as rainfall, and a random effect. Instead of Eq. (2.8), we might
have

�1;t�1 D 1

1C exp.ˇ0;t C ˇ1rt /

where

ˇ0;t � normal
�
�0; �

2
	
:

This is an example of a nonlinear mixed effects model, where the effect of rainfall
is a fixed effect and the intercept ˇ0;t is a random effect.
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Alternatively, the hyperparameters of a hierarchical model can be modelled as
functions of covariates. Again referring to the example of first-year survival, one of
the hyperparameters of the beta distribution could be a function of rainfall:

�1;t � beta .˛.rt /; ˇ1/

where

˛.rt / D exp .�0 C �1rt / :

2.3 Leslie Matrices and Lefkovitch Matrices

We now return to Example 1 with just two states, corresponding to the two age
classes. We start the year just after the breeding season, so that the first process is
survival, followed by age incrementation, and then births. Taking these in order, we
have:

�
E.u1.s/;1;t /
E.u1.s/;2;t /

�
D
�
�1 0

0 �2

� �
n1;t�1
n2;t�1

�

�
u2.a/;2;t

� D �
1 1

� � u1.s/;1;t
u1.s/;2;t

�

�
E.n1;t /
n2;t

�
D
�

E.u3.b/;1;t /
u3.b/;2;t

�
D
�
�

1

� �
u2.a/;2;t

�
:

We may combine these into a single model simply by expressing the process
matrices as a product in reverse chronological order:

�
E.n1;t /
E.n2;t /

�
D
�
�

1

� �
1 1

� ��1 0
0 �2

� �
n1;t�1
n2;t�1

�
; (2.9)

or alternatively, E.nt jnt�1/ D BASnt�1. Evaluating the product, we obtain

�
E.n1;t /
E.n2;t /

�
D
�
��1 ��2
�1 �2

� �
n1;t�1
n2;t�1

�
: (2.10)

Provided that none of �1, �2 and � depend on numbers of animals present in
year t , the expectations in the above expression are exact. For example Eq. (2.10)
implies that E.n1;t / D � .�1n1;t�1 C �2n2;t�1/. As the expectations are conditional
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n1,t−1 n1,t

n2,tn2,t−1

u1(s),1,t

u1(s),2,t u2(a),2,t

1

1 1

Survival
Age incre-
mentation

Births

r

f1

f2

Fig. 2.6 In the BAS model, the sub-processes of Figs. 2.1, 2.2 and 2.4 are combined to create a
model for which the annual processes, in chronological order, are survival (S), age incrementation
(A) and births (B). Note that nj;t D u3.b/;j;t for j D 1; 2

on n1;t�1 and n2;t�1, then they hold if �1, �2 and � are either independent of
numbers of animals in each state or dependent only on the states at time t � 1

(or earlier). However, density-dependent effects in the birth rate might be more
plausibly modelled by expressing � as a function of n2;t , as this is the number of
breeding adults present at the end of year t when births occur. In this case, the
above expectation no longer holds.

The above matrix representations are useful for defining and understanding
models. As will be seen in Chap. 4, we can fit these models without having to assume
that expectations of the type shown in Eq. (2.10) hold. When such methods are used,
the approximation is of no consequence.

The significance of Eq. (2.10) is that the product of the process matrices is an
example of a Leslie matrix (Leslie 1945, 1948; Caswell 2001:8–11). (Note that
the standard Leslie matrix would have � where we have ��j ; in our formulation,
animals must survive to the year end to breed.) We call the above model a BAS
model, because the Leslie matrix is obtained by taking the product of the matrices
corresponding to the processes birth (B), age incrementation (A) and survival (S),
in that order. The model is shown diagrammatically in Fig. 2.6.

If we replace the deterministic age incrementation model of Eq. (2.3) by the
growth model of Eq. (2.4), and assume that only animals in the larger class
breed, then we obtain the following Lefkovitch matrix (Lefkovitch 1965; Caswell
2001:59):

�
E.n1;t /
E.n2;t /

�
D
�
1 �

0 1

� �
1 � � 0
� 1

� �
�1 0

0 �2

� �
n1;t�1
n2;t�1

�

D
�
.1 � � C ��/�1 ��2

��1 �2

� �
n1;t�1
n2;t�1

�
: (2.11)

Taking the three matrices in the first line of Eq. (2.11) in reverse order, the first
gives us the expected numbers of animals that survive the year, given the numbers
alive at the start of the year; the second gives the expected numbers of survivors
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1 1

Survival Growth Births 

1n1,t−1

n2,t−1

1−p
u1(s),1,t

u1(s),2,t
u2(r),2,t

u2(r),1,t n1,t

n2,t

f1

f2

rp

Fig. 2.7 In the BRS model, the sub-processes of Figs. 2.1, 2.3 and 2.4 are combined to create a
model for which the annual processes, in chronological order, are survival (S), growth (R) and
births (B). As in Fig. 2.6, nj;t D u3.b/;j;t for j D 1; 2

in the smaller size class that either remain in that size class or grow into the larger
size class; and the third gives the expected number of newly-born animals that join
the smaller size class. This is therefore a BRS model: the annual cycle starts with
survival (S), then growth (R), and finally births (B) (Fig. 2.7). The Lefkovitch matrix
of Eq. (2.11) is obtained as the matrix product BRS.

In general, if we take the product of the process matrices arranged in reverse
chronological order, we obtain the population projection matrix1. Our modular
approach allows for easy definition of more complex models. For example, if we
retain the same processes as for the Leslie matrix of Eq. (2.10), i.e. survival, aging
and births, but expand to include m states, then we obtain

2
6664

E.n1;t /
E.n2;t /
:::

E.nm;t /

3
7775 D

2
666664

�2 �3 : : : �m
1 0 : : : 0

0 1 : : : 0
:::
:::
: : :

:::

0 0 : : : 1

3
777775

2
666664

1 0 : : : 0 0 0

0 1 : : : 0 0 0
:::
:::
: : :

:::
:::
:::

0 0 : : : 1 0 0

0 0 : : : 0 1 1

3
777775

2
6664
�1 0 : : : 0

0 �2 : : : 0
:::
:::
: : :

:::

0 0 : : : �m

3
7775

2
6664
n1;t�1
n2;t�1
:::

nm;t�1

3
7775

D

2
666664

�2�1 �3�2 : : : �m�m�1 �m�m
�1 0 : : : 0 0

0 �2 : : : 0 0
:::

:::
: : :

:::

0 0 : : : �m�1 �m

3
777775

2
6664
n1;t�1
n2;t�1
:::

nm;t�1

3
7775 :

This model is shown diagrammatically in Fig. 2.8.
The sex assignment model of Sect. 2.1.5, with different survival rates for males

and females as well as for adults and young, yields

1Note that this matrix does not satisfy the definition of a projection matrix from linear algebra—the
term “projection” is used here to indicate projection of the population from one time point to the
next.
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Fig. 2.8 The BAS model with m age classes. Compare this with Fig. 2.6
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3
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3
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2
664
n1;t�1
n2;t�1
n3;t�1
n4;t�1

3
775 : (2.12)

The four matrices that combine to form the generalized Leslie matrix of Eq. (2.12)
correspond to the following sub-processes. First chronologically but last of the four
matrices in the first line of Eq. (2.12) is the matrix that handles the survival process
(S) of young and adult males and females. Next comes age incrementation (A),
where young females merge with the adults, and similarly for males, temporarily
resulting in just two states: adult females and adult males. The matrix for the
birth process (B) comes next, generating a single state for newly-born animals.
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Fig. 2.9 The CBAS model: Example 1 with the addition of male animals. The top row corresponds
to young females, then adult females, followed by young males and finally adult males. The extra
row in the middle in the column for the birth sub-process corresponds to young before assignment
of sex

Finally comes sex assignment (C), where this state is separated out into males and
females. The matrix product CBAS therefore yields the generalized Leslie matrix.
This CBAS model is illustrated in Fig. 2.9.

Even for such a simplistic model for population dynamics, it is starting to
become apparent how much easier it is to formulate the model using this modular
approach rather than direct specification of the population projection matrix.
Caswell (2001:60) provides an example of how easily an error can occur in model
formulation with the latter approach.

2.4 Using Matrices to Represent Processes of Multiple
Populations

Here we consider situations where there are either subpopulations within a given
species which are distinguished by criteria other than age or sex, or multiple
populations of different species. In the former case we give two examples: one
where the subpopulations are different genotypes of the same species and another
where the subpopulations occupy different distinct locations, with some degree
of movement between locations, and thus form a metapopulation. We could have
included two-sex models in this section, but we chose to cover sex assignment
within Sect. 2.1 because we consider that the state corresponding to the sex of
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an animal is one of the fundamental states in any population dynamics model,
even if for many purposes, it is sufficient to model the female component of the
population only.

We first consider how offspring may be assigned to genotype, so that the
population is split into genotypes. We then show how to model movement between
the components of a metapopulation. Next we develop multiple-species models,
first to show how inter-species competition might be addressed, then to illustrate
how predator-prey systems may be modelled using our framework.

2.4.1 Modelling Genotypes

Suppose animals are classified as to whether they are first-year or older (adult),
whether they are male or female, and whether they have two dominant genes at a
particular locus (DD), a dominant and recessive gene (Dd ), or two recessive genes
(dd ). Suppose further that age incrementation is sub-process k in the annual cycle,
so that just after age incrementation in year t , we have uk.a/;1;t adult females of type
DD, uk.a/;2;t adult males of type DD, uk.a/;3;t adult females of type Dd , uk.a/;4;t
adult males of type Dd , uk.a/;5;t adult females of type dd , and uk.a/;6;t adult males
of type dd . We first consider the expected number of young born to each female
genotype. For simplicity, we assume that all genotypes have the same birth rate.
Denoting number of births to females of type DD by ukC1.b/;1;t , number of births
to females of typeDd by ukC1.b/;2;t , and number of births to females of type dd by
ukC1.b/;3;t , we have

2
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3
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:

We now need to reallocate the births, not according to the genotype of the mother,
but according to the genotype of the young. Denote the probability that the father of
a young animal has genotypeDD, given that the mother is of typeDD, by  DDjDD ,
the probability that the father has genotype Dd , given that the mother has genotype
DD, by Dd jDD , and so on. Then we can express the probability that a young animal
is of a given genotype, given the genotype of the mother, as follows: �DDjDD D
 DDjDD C 1

2
 Dd jDD ; �DDjDd D 1

2
 DDjDd C 1

4
 Dd jDd ; �Dd jDD D 1

2
 Dd jDD C

 dd jDD ; �Dd jDd D 1
2
. DDjDd C Dd jDd C dd jDd /; �Dd jdd D 1

2
 Dd jdd C DDjdd ;

�dd jDd D 1
4
 Dd jDd C 1

2
 dd jDd ; �dd jdd D 1

2
 Dd jdd C  dd jdd . Let ukC2.g/;1;t be

the number of young of genotype DD, ukC2.g/;2;t the number of young of genotype
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Dd , ukC2.g/;3;t the number of young of genotype dd , ukC2.g/;4;t the number of adult
females of genotypeDD, and so on. Then conditional on the numbers of young born
to each female genotype, expected numbers are:
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Assuming sex is independent of genotype, we can now assign sex to the young by
extending the method of Sect. 2.1.5 appropriately.

Conditional on the ukC1.b/;j;t , we can specify the distributions of the ukC2.g/;j;t as:
0
BBBBBBBB@

ukC2.g/;1;t D rDD;DD C rDD;Dd
ukC2.g/;2;t D rDd;DD C rDd;Dd C rDd;dd
ukC2.g/;3;t D rDd;dd C rdd;dd
ukC2.g/;4;t D ukC1.b/;4;t

:::

ukC2.g/;9;t D ukC1.b/;9;t

1
CCCCCCCCA

with
0
BBBBB@

rDD;DD � binomial.ukC1.b/;1;t ; �DDjDD/
rDd;DD D ukC1.b/;1;t � rDD;DD

.rDD;Dd ; rDd;Dd ; rdd;Dd / � multinomial.ukC1.b/;2;t ; �DDjDd ; �Dd jDd ; �dd jDd /
rDd;dd � binomial.ukC1.b/;3;t ; �Dd jdd /
rdd;dd D ukC1.b/;3;t � rDd;dd

1
CCCCCA
:

Note that rDd;DD for example denotes the number of offspring from genotype DD
females that are of genotype Dd .

Under a random mating model, we have  DDjDD D  DDjDd D  DDjdd D
uk.a/;2;t =.uk.a/;2;t C uk.a/;4;t C uk.a/;6;t / and similarly for other probabilities.
More strictly, these proportions should relate to when the animals mate. For
example if they mate a year before births occur, then  DDjDD in year t should
be uk.a/;2;t�1=.uk.a/;2;t�1 C uk.a/;4;t�1 C uk.a/;6;t�1/.

This approach is readily extendible to more complex genetics models. However,
it would be advisable to develop computer algorithms for the tedious task of model
formulation! Even this simple model is too complex to illustrate diagrammatically,
due to the large number of arrows that would be required—especially if matings
were represented in the diagram.
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2.4.2 Modelling Metapopulations

Returning to Example 1 with just two age classes (see Sect. 2.1.1), suppose our
population occupies two distinct sites. Suppose further that movement occurs after
winter survival, but before the breeding season. Let u1.s/;1;t be the number of
surviving young and u1.s/;2;t number of surviving adults in site 1 in year t , and
let u1.s/;3;t and u1.s/;4;t be the young and adult survivors in site 2. Let �1!2 be the
probability that an animal in site 1 moves to site 2, assumed for simplicity to be the
same for young and adults, and similarly �2!1 is the probability of movement from
site 2 to site 1. If u2.m/;1;t represents number of young in site 1 after movement, with
corresponding definitions for adults in site 1 (u2.m/;2;t ), and young (u2.m/;3;t ) and
adults (u2.m/;4;t ) in site 2, then expected numbers after movement, given numbers
before movement, are

2
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E.u2.m/;1;t /
E.u2.m/;2;t /
E.u2.m/;3;t /
E.u2.m/;4;t /

3
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1 � �1!2 0 �2!1 0
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0 �1!2 0 1 � �2!1
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u1.s/;2;t
u1.s/;3;t
u1.s/;4;t

3
7775 : (2.13)

Assuming binomial distributions, we have

0
BB@

u2.m/;1;t D w3;t C .u1.s/;1;t � w1;t /
u2.m/;2;t D w4;t C .u1.s/;2;t � w2;t /
u2.m/;3;t D w1;t C .u1.s/;3;t � w3;t /
u2.m/;4;t D w2;t C .u1.s/;4;t � w4;t /

1
CCA

where

0
BB@

w1;t � binomial.u1.s/;1;t ; �1!2/

w2;t � binomial.u1.s/;2;t ; �1!2/

w3;t � binomial.u1.s/;3;t ; �2!1/

w4;t � binomial.u1.s/;4;t ; �2!1/

1
CCA

Putting all the sub-processes together, namely survival (S), movement (M), age
incrementation (A) and birth (B), we have a BAMS model:
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3
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Fig. 2.10 The BAMS model: Example 1 but with two sites, and movement between them. The
top row corresponds to young in site 1, then adults in site 1, followed by young in site 2 and finally
adults in site 2. In this formulation, a different survival rate is assumed for each of the four states,
but the birth rate � is assumed to be the same in each site. Within a site, young and adults have the
same movement rate, but this is allowed to differ between sites. Rates associated with movement
arrows are not plotted for clarity. The top two horizontal arrows have rate 1 � �1!2, the bottom
two horizontal arrows have rate 1 � �2!1, the arrows from site 1 (top) to site 2 have rate �1!2,
and the arrows from site 2 to site 1 have rate �2!1

Starting with the last of the projection matrices in Eq. (2.14), survival of the adults
and young in each site is the first process of the year. The next matrix handles
movement; diagonal terms correspond to animals that stay in their current site, while
off-diagonal terms correspond to those that move. Age incrementation follows, in
which the young animals at each site are merged with the adults, leaving just two
states. The birth matrix then recreates four states, by generating newly-born animals
in each site. The processes of this BAMS model are illustrated in Fig. 2.10.

Note that the movement sub-process matrix in Eq. (2.13) can be split into
submatrices:

2
664
1 � �1!2 0 �2!1 0

0 1 � �1!2 0 �2!1

�1!2 0 1 � �2!1 0

0 �1!2 0 1 � �2!1
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M1!2 M2!2
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where M1!1 D
�
1 � �1!2 0

0 1 � �1!2

�
corresponds to animals that stay in site 1,

M2!1 D
�
�2!1 0

0 �2!1

�
corresponds to animals that move from site 2 to site 1, and

so on. Thus a general movement model is given by

E.u2.m/;t / D

2
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M1!1 M2!1 : : : Ml!1

M1!2 M2!2 : : : Ml!2

:::
:::

: : :
:::

M1!l M2!l : : : Ml!l

3
7775u1.s/;t

where the vector u1.s/;t has elements equal to numbers of animals in each state before
movement, and u2.m/;t represents numbers of animals by state after movement. For
the case of just two states (age classes) per site, submatrix Mi!j is given by

Mi!j D
�
�i!j 0

0 �i!j

�

for i; j D 1; : : : ; l , where �i!i D 1�Pj¤i �i!j is the probability that an animal
in site i remains there. For more states per site, these submatrices expand in the
obvious way.

Given l sites, the numbers of animals at site i at time t that remain there or move
to one of the other sites can be modelled by a multinomial

.ui!1; : : : ; ui!l / � multinomial .�i!1; : : : ; �i!l /

where
Pl

jD1 �i!j=1. With the constraint on the sum of probabilities, there are l�1
movement parameters. Thus with l sites there are l � .l � 1/ parameters in total.
Unless large-scale mark and release studies are carried out across all sites, empirical
model-free estimates of �i!j will generally not be available.

In the absence of individual site-to-site movement data, the use of covariates to
model the movement parameters, as described in Sect. 2.2.1, is a pragmatic alter-
native. Site-specific information such as distances to other sites, animal densities at
each site, and measures of site habitat quality are potential covariates. For example,
Thomas et al. (2005) modelled the probability of movement between British grey
seal colonies as a function of distance, animal density and site fidelity. Modelling
must be constrained to ensure that the probabilities are non-negative and sum to
one, but this can be easily handled by using exponential functions and then rescaling
appropriately. Suppose one covariate x1 is used. Then, for example,

pi!j D exp
�
ˇ0 C ˇ1x1i C ˇ2x1j

	

�i!j D pi!jP
l pi!l

:
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Hierarchical or random effects models can be used, in combination with any relevant
covariates. Now (see Sect. 2.2.2) the movement parameters �i!j are themselves
random variables. A natural distribution for proportions that must sum to one is the
Dirichlet distribution (a multivariate extension of the beta distribution). Similar to
an example given in Buckland et al. (2004), suppose that there are three colonies
in a metapopulation and that colony densities and distances between colonies affect
the probability of movement. Consider movement from colony 2, for example:

.�2!1; �2!2; �2!3/ � Dirichlet .	2!1; 	2!2; 	2!3/

with

	2!2 D exp.ˇ0/

	2!j D exp
�
ˇ0 C ˇ1N2t C ˇ2H2t C ˇ3Njt C ˇ4Hjt C ˇ5d2j

	
; j D 1; 3;

where ˇ1 > 0, ˇ2 < 0, ˇ3 < 0, ˇ4 > 0 and ˇ5 < 0; Nit is the abundance at site
i in year t , Hit is a measure of habitat quality with larger values indicating greater
suitability, and dij is the distance between sites i and j . Given the parameters �i!j ,
movement is then modelled by a multinomial distribution.

2.4.3 Multi-Species Models

We can readily extend our models to multi-species systems by modelling rates for
one species as functions of abundance of other species. For example, a competition
model for a two-species system might make the survival or birth rate of one species
a decreasing function of the abundance of the other. A predator-prey model might
make the survival rate of the prey a decreasing function of the abundance of the
predator, and the survival and birth rates of the predator an increasing function of
the abundance of the prey. A host-parasite model might be similarly formulated.
More complex interactions might be modelled for community models. For example,
a model for marine fish stocks might allow adults of one species to prey on first-year
fish of another, but to be prey for adults of the other species. It might also incorporate
competition effects between species with similar diets, and movement rates might
be modelled as functions of abundance of each species at different locations.

As an example of a multi-species model, we consider a system comprising one
predator and two prey, with competition between the two prey species. Suppose
we model the predator P in two age classes, first-year animals and adults. For
simplicity, we model the two prey species A and B each as a single state. First-
year survival of predators is assumed to depend on abundance of both prey species,
whereas adult survival depends on abundance of species B alone. Species A is
assumed to suffer a competition effect from speciesB , but not vice versa. All species
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show density dependence in their survival rates, but for the predators, this affects
first-year survival alone. Then a simple model to describe this system is as follows.

Denote number of first-year predators, adult predators, prey species A and prey
species B at the end of year t by n0;t , n1;t , nA;t and nB;t respectively. Assuming that
mortality (S) first occurs, followed by age incrementation (A), and then births (B),
we have a multi-species BAS model:

2
664

E.n0;t /
E.n1;t /
E.nA;t /
E.nB;t /

3
775 D

2
664
�P 0 0

1 0 0

0 1C �A 0

0 0 1C �B

3
775
2
41 1 0 00 0 1 0

0 0 0 1

3
5

�

2
664
�0;t�1 0 0 0

0 �1;t�1 0 0

0 0 �A;t�1 0

0 0 0 �B;t�1

3
775

2
664
n0;t�1
n1;t�1
nA;t�1
nB;t�1

3
775

where �P , �A and �B are the birth rates of predators, prey speciesA and prey species
B respectively, and the survival parameters � are defined as

�0;t�1 D 1

1C expf˛1 � ˇ1nA;t�1 � ˇ2nB;t�1 C ˇ3.n0;t�1 C n1;t�1/g

�1;t�1 D 1

1C exp.˛2 � ˇ4nB;t�1/

�A;t�1 D 1

1C expf˛3 C ˇ5nA;t�1 C ˇ6nB;t�1 C ˇ7.n0;t�1 C n1;t�1/g

�B;t�1 D 1

1C expf˛4 C ˇ8nB;t�1 C ˇ9.n0;t�1 C n1;t�1/g

where the ˛ and ˇ are parameters (which may be estimated using the methods of
Chap. 4), with each ˇ > 0, and where for example �A;t�1 is the probability that an
animal of species A that is alive at the end of year t �1 survives to the end of year t .
Note that the birth rates may similarly be modelled, for example to allow lower birth
rates at high densities of a given species.

2.5 Beyond Matrix Models

Matrices are linear operators. Consider the BAS model defined by Eq. (2.9). We may
rewrite this equation

nt D QLt�1.nt�1/
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where the process operator QLt�1.�/ is the composition QLt�1.�/ D QLb;t . QLa;t
. QLs;t�1.�///, and QLs;t�1.�/, QLa;t .�/ and QLb;t .�/ are the survival, aging and birth
operators respectively (Buckland et al. 2007). Note that, for consistency with
notation elsewhere in this book, we have adopted a different convention from
Buckland et al. (2007) in that we give the operator QLt�1 the same suffix as the
state vector nt�1 on the right-hand side of the above equation, as the operator acts
on nt�1, whereas Buckland et al. (2007) defined nt D QLt.nt�1/, giving the operator
the suffix corresponding to the state vector on the left-hand side. Similarly, we give
the survival operator QLs;t�1 suffix t � 1, but the aging and birth operators act on
animals that have survived to the end of year t , so have suffixes t .

If all sub-processes are deterministic, we obtain the classical matrix model

nt D Lt�1nt�1;

where Lt�1 D BAS is typically a generalized Leslie or Lefkovitch matrix. Note that
elements of Lt�1 can depend on nt�1, in which case the model is nonlinear in the
states. Thus for example density dependence can be modelled in this framework.

The special case of most interest here occurs when one or more of the sub-
processes is stochastic, but the expected values of the elements of nt may be
expressed as functions of the elements of nt�1. Then

E.nt jnt�1/ D Lt�1nt�1; (2.15)

where Lt�1 is a population projection matrix such that E. QLt�1.nt�1/jnt�1/ D
Lt�1nt�1. The BAS model of Eq. (2.9) is an example of this, in which Lt�1 is the
Leslie matrix of Eq. (2.10).

If we take the model of Sect. 2.4.3, but model the predator birth rate �P as a
function of prey and/or predator abundance immediately preceding the births, then
this yields a more general example, for which E. QLt�1.nt�1/jnt�1/ ¤ Lt�1nt�1,
although if the nonlinearity is not strong, we might expect the result to hold
approximately. The model fitting algorithms of Chap. 4 do not need Eq. (2.15) to
hold.

2.6 Observation Matrices

For practical wildlife management, the ability to fit a population matrix model to a
time series of data is important. To use the model fitting algorithms of Chap. 4, we
need to specify distributions for observations that respect their relationship with the
(usually unobserved) states in nt .

As in Sect. 2.5 for the process operator, we can define a general random operator
for the observation process:

yt D QOt .nt /
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where yt is a vector of observations for year t (Buckland et al. 2007). If the operator
is linear, then we obtain the following observation equation:

yt D Otnt C �t

for the appropriate matrix Ot . Assuming E.�t jnt / D 0, then

E.yt jnt / D Otnt : (2.16)

In this formulation, we assume that the observations are taken at the end of year
t . If this is not the case, then the state vector nt in the above equation would be
replaced by the appropriate intermediate state vector. For example, if population
size was estimated after winter mortality occurs but before breeding starts, then the
intermediate state vector would correspond to the survivors from the previous year.

As an example of an observation matrix, consider the BAMS model of
Sect. 2.4.2. Suppose we have estimates y1;t and y2;t of total population size in
site 1 and site 2 respectively at the end of year t (just after breeding). Suppose
further that we assume that these estimates are independently normally distributed
with variances �21 and �22 respectively. Then
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�
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�
1 1 0 0

0 0 1 1

�
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with �t D
�

1;t

2;t

�
� normal

��
0

0

�
;

�
�21 0

0 �22

��
.

If the estimates of abundance are of adults only, then the observation matrix

becomes Ot D
�
0 1 0 0

0 0 0 1

�
.

Usually, the observational study in year t would provide estimates of �21 and
�22 . Often those estimates are treated as known values when fitting a state-space
model to data as simultaneously estimating variances for the state process and for
the observation model is often difficult due to identifiability problems (Dennis et al.
2006). An alternative, when using the Bayesian methods of Chap. 4, is to use these
estimates to inform the prior distributions for �21 and �22 (although such double usage
of the data is not strictly Bayesian).

The observations in the above example are single point estimates of the individual
states along with estimates of the variances. Multiple point estimates of the
individual states are easily incorporated by inserting additional components in the
observation vector and duplicating rows in the observation matrix.

A less trivial variation in the observation model is to work with the raw sample
data, the measurements actually made in the field say, rather than summaries of
the sample data. Typically point estimates of state vector components will be
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summaries of the actual measurements taken. For example, mark-recapture studies
might be carried out over a sequence of years and estimates of population abundance
constructed from the data. Rather than treat the point estimates as observations, the
mark recoveries could be the observations. This is an intuitively attractive idea in
that all estimation is done in a single step and complete within-sample variation
is retained. A practical limitation, in some situations, is that the raw data may be
unavailable or difficult to access. A technical limitation is that, to use the raw data
in a matrix model, the observations must be written as linear functions of the states.
The ease with which such a linear mapping can be done will depend upon how
the data were collected, and may in some cases, e.g. distance sampling, be at best
cumbersome and at worst infeasible.

2.7 Defining a Population Dynamics Model

We consider two examples to illustrate the steps involved in formulating a matrix
model for population dynamics. In the first, we develop a model for coho salmon
and in the second a metapopulation of deer, comprising just two populations
with movement between them. We will describe the dynamics in deterministic or
expected value terms and in the next chapter we will develop a fully stochastic
formulation.

2.7.1 Coho Salmon

The following description of a matrix model for coho salmon Oncorhynchus kisutch
(Fig. 2.11) is based on a model described in Newman (1998). That model fitted
recoveries (in samples taken from ocean fishery catches) of marked coho salmon
released from a hatchery located on a river on the west coast of the Olympic Penin-
sula in Washington State USA. The population sub-processes included survival,
movement in the ocean, harvest, and migration back to the natal river.

Juvenile coho salmon are bred and reared in a hatchery for approximately 18
months. They are then released from the hatchery in May to enter the river where
they travel downstream to enter the Pacific Ocean. Shortly before release, the fish
are marked (with a batch-specific mark). Upon entry to the ocean they disperse up
and down the coast and experience natural mortality (from predators, disease, etc).
About 14 months after entry (roughly July of the following year), they begin to be
harvested by ocean fisheries in 12 different regions (management areas) along the
coast. The ocean fishery operates for up to 16 weeks and then the surviving, and
now mature adult fish, migrate back to the river where they are harvested in the
river, return to the hatchery, or spawn in the river and die.

The data include the number of marked fish released from the hatchery
(denoted R), the number of marked fish caught in the ocean fisheries, stratified
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Fig. 2.11 Leaping coho salmon. Photo: courtesy of Northwest Indian Fisheries Commission

by management area and week (ya;t for area a, a D 1; : : : ; 12 and week t ,
t D 1; : : : ; 16), and the number of fish returning to the river as mature adults (yT ).

The matrix model is initialized by calculating a vector of abundances in the
management areas prior to the fishing season, i.e. the initial state vector. First the
expected total number of survivors (summed over all regions) from the R released
fish to the beginning of the fishing season is determined, i.e. R�J , where �J is
the survival probability from time of release to beginning of fishing. The expected
numbers per area are allocated using the probabilities for a beta(˛i ; ˇi ) distribution,
its domain being a line segment beginning at the southern boundary of the most
southern fishing region to the northern boundary of the most northern fishing region,
i.e. the values from the beta distribution are essentially latitudinal coordinates. The
fishing regions are thus defined as a non-overlapping (and exhaustive) partitioning
of the line segment into 12 individual segments. The expected initial abundance in
area a is then na;0 D R�Jpa, where pa is the probability of being present in area a.

The heart of the matrix model is the projection of the abundances by fishing
management area on a week by week basis during the fishing season. The vector of
abundances is denoted n0

t D Œn1;t ; n2;t ; : : : ; n12;t �. At the beginning of each week,
mortality occurs, a combination of natural and harvest mortality, and movement
follows. The survival probability in a given area is �a;t D exp.�N � Fa;t /, where
N is the natural mortality rate parameter, assumed constant, and Fa;t is the fishing
mortality rate parameter (and is a function of the fishing effort in the area that week).
Movement from one area to another is a function of location and time (details in
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Newman 1998) and the probability of moving from area a to area b during week t
is denoted ma!b;t . The expected abundances in week t are written as:

EŒnt jnt�1� D MtSt�1nt�1 (2.18)

where

St�1 D

2
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�1;t�1 0 : : : 0

0 �2;t�1 : : : 0
:::

::: : : :
:::

0 0 : : : �12;t�1

3
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and

Mt D

2
6664
m1!1;t m2!1;t : : : m12!1;t

m1!2;t m2!2;t : : : m12!2;t

:::
::: : : :

:::

m1!12;t m2!12;t : : : m12!12;t

3
7775 : (2.20)

The catch data, yt , are linked to the state vector of abundances, nt , by a harvest
matrix, Ht . The elements ha;t of the harvest matrix are the fractions of mortality
attributed to fishing:

ha;t D Fa;t

M C Fa;t
.1 � exp.�M � Fa;t // : (2.21)

The expectation of the observations in matrix form is

EŒyt jnt � D Htnt (2.22)

where

Ht D

2
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h1;t 0 : : : 0

0 h2;t : : : 0
:::

::: : : :
:::

0 0 : : : h12;t

3
7775 : (2.23)

Let PI be a column vector of length 12 with elements representing probabilities of
the initial locations at the beginning of the fishing season. Then the matrix models
for the states and observations are summarized below.

EŒn0� D R�JPI (2.24)

EŒnt jnt�1� D MtSt�1nt�1; t D 1; : : : ; 16 (2.25)

EŒyt jnt � D Htnt ; t D 1; : : : ; 16: (2.26)
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Fig. 2.12 Red deer in Scotland provide an example of where state-space models have been used
to help wildlife managers set cull levels (Trenkel et al. 2000). Photo: Steve Buckland

2.7.2 A Deer Metapopulation

The following example of two deer populations, labeled A and B, is hypothetical
but it identifies some of the sub-processes, and their complexity, that underlie the
dynamics of real metapopulations. It is based loosely on red deer Cervus elaphus
dynamics (Fig. 2.12). As said previously, deterministic formulations are given here,
with stochasticity added in the next chapter.

We arbitrarily take the year to start just after breeding, assumed to be early
summer. Survival rate for calves is assumed to be density-dependent and a function
of day-degrees frost in winter (a measure of winter severity equal to number of
degrees of frost, summed over all days for which the daily low fell below zero),
while adult survival (age one or more) is assumed to differ by sex, but to be constant
otherwise. Movement between populations is assumed to occur just before breeding:
conceptually, it is the population to which animals belong at breeding that we are
primarily concerned with, rather than an accurate model of when animals switch
between populations. Movement rate is assumed to be a function of animal density
in the respective populations just before births occur. Age incrementation occurs
after movement. One-year-old animals are assumed to have a separate, low birth
rate, while older animals all have the same birth rate. Each female is assumed to
give birth to at most one young. New-born animals can of course be male or female.

We now know all the processes which we need to model, but we have not
fully specified the model for each process. To incorporate all the features of the
conceptual model, we need just two age classes for males and three for females
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(to allow one-year-old females to have a lower birth rate), giving five states for each
of two populations, and the state vector, nt , then has ten components. (If we wished
to model survival or birth rates as more complex functions of age, we would need
to retain more age classes.)

Consider first survival. We can express the expected number of survivors to year
t from just after breeding at the end of year t � 1 as E.u1.s/;t jnt�1/ D St�1nt�1 D�

SA;t�1 05�5
05�5 SB;t�1

�
nt�1, where 05�5 is a 5�5matrix of zeros, and the survival matrices

for populations A and B are

SA;t�1 D

2
666664

�1;A;t�1 0 0 0 0

0 �1;A;t�1 0 0 0

0 0 �f 0 0

0 0 0 �f 0

0 0 0 0 �m

3
777775

(2.27)

and

SB;t�1 D

2
666664

�1;B;t�1 0 0 0 0

0 �1;B;t�1 0 0 0

0 0 �f 0 0

0 0 0 �f 0

0 0 0 0 �m

3
777775

(2.28)

respectively. We have ordered the state vector so that the first element corresponds
to first-year females in population A, followed by first-year males, second-year
females, older females, and finally males in their second year or older. This is then
repeated for population B.

The probabilities of the survival matrix, St�1, vary by age class and sex. Survival
for first year animals is assumed to be affected by both the population abundance
(hence density dependent) as well as winter temperatures. We assume a logistic form
for this dependence:

�1;A;t�1 D 1

1C expfˇ0 C ˇ1fA;t C ˇ2NA;t�1g (2.29)

where fA;t is number of day-degrees frost experienced by population A in year t ,
and NA;t�1 D P

i ni;t�1 where summation is over the five states corresponding to
population A, and so represents size of population A just after breeding. A similar
model may be specified for �1;B;t�1. Adult survival differs between sexes, with �f
and �m the survival probabilities for females and males, respectively, but they are the
same for both populations and are assumed constant over time. Thus the components
of the survival matrix St�1 that are time-dependent relate to survival of male and
female first-year animals only.
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The next model component required relates to movement, which we wish to be
density-dependent. Denote the probability that an animal moves from population
A to population B in year t by �A!B;t , and the probability that an animal
moves from population B to population A by �B!A;t . The expected state vector
after movement has occurred is then given by E.u2.m/;t ju1.s/;t / D Mtu1.s/;t D�

MA;A;t MB;A;t

MA;B;t MB;B;t

�
u1.s/;t , where MA;A;t is a 5 � 5 diagonal matrix with diagonal

elements all equal to 1 � �A!B;t , MA;B;t is a 5 � 5 diagonal matrix with diagonal
elements all equal to �A!B;t , and similarly for MB;B;t and MB;A;t . The probability
of movement is assumed to be a function of the difference in densities for the two
populations,

�A!B;t D 1

1C expf�0 C �1.DA;t �DB;t /g (2.30)

where DA;t D P
i ui;1.s/;t =AA is the density of animals in population A just before

movement occurs, expressed as the total number of survivors,
P

i ui;1.s/;t , where
summation is over the five states for animals in population A, divided by the sizeAA
of the area occupied by population A. We defineDB;t similarly. A model for�B!A;t

may be defined in the same way.
The next process is age incrementation. Thus we have E.u3.a/;t ju2.m/;t / D

Au2.m/;t D
�

AA 03�5
03�5 AB

�
u2.m/;t where 03�5 is a 3 � 5 matrix of zeros, and

AA D AB D
2
41 0 0 0 00 0 1 1 0

0 1 0 0 1

3
5 : (2.31)

Thus, the state vector now has three elements for each population, corresponding to
second-year females, older females, and males in their second year or older.

We now define a model for generating new births. Only females can give
birth, and one-year-old females (just entering their second year) have a lower
birth rate than older females. Thus we have E.u4.b/;t ju3.a/;t / D Bu3.a/;t D�

BA 04�3
04�3 BB

�
u3.a/;t where 04�3 is a 4 � 3 matrix of zeros, and

BA D BB D

2
664
�1 �2 0

1 0 0

0 1 0

0 0 1

3
775 : (2.32)

Thus �1 is the probability that a one-year-old female gives birth, while �2 is the
probability that an older female gives birth.

Finally, we need a process model for assigning sex to the new-born animals.
Suppose the probability that a new-born animal is female is ˛. If we considered
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that it was reasonable to assume that ˛ D 0:5, we would just fix it at this value.
Otherwise, we can retain it as an unknown parameter to be estimated. In the latter
case, we would like to include some data in the likelihood on observed proportion
of females for a representative set of births. We can now write E.nt ju4.b/;t / �
E.u5.c/;t ju4.b/;t / D Cu4.b/;t D

�
CA 05�4
05�4 CB

�
u4.b/;t where 05�4 is a 5 � 4 matrix

of zeros, and

CA D CB D

2
666664

˛ 0 0 0

1 � ˛ 0 0 0
0 1 0 0

0 0 1 0

0 0 0 1

3
777775
: (2.33)

We now have a fully specified (deterministic) population dynamics model, but we
have not yet addressed how the states relate to our data. Suppose we have annual
estimates of number of adults (one-year-old or older) generated from aerial surveys
of each population at the time of breeding. There is no information on age or sex.
Then the expected observation equation for year t is

EŒyt jnt � D Ont (2.34)

where yt is a vector of length two, corresponding to an estimate of adult abundance
in population A and population B, and

O D
�
0 0 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1

�
: (2.35)

The complete (deterministic) model for the population dynamics and the observa-
tion process is summarized as follows.

EŒnt jnt�1� D Lt�1nt�1 D CBAMtSt�1nt�1 (2.36)

EŒyt jnt � D Ont : (2.37)

The expected abundance at time t was written as a Leslie matrix operation,
conditional on the previous abundance, i.e. Lt�1nt�1. A look at each of the five
component matrices indicates the complexity of the resulting matrix Lt�1, a matrix
that is relatively easily constructed by thinking in terms of sequential sub-processes,
but near impossible to construct otherwise.



Chapter 3
State-Space Models

In the previous chapter, a sequence of matrices was used to model the sequence
of subprocesses, birth, survival, movement, etc., which characterize population
dynamics. We find this building block perspective attractive for at least two reasons:
(1) it allows one to mentally “divide and conquer” sometimes complicated popula-
tion dynamics processes; (2) the resulting product of matrices is a generalization of
Leslie and Lefkovitch matrices, something familiar to many biologists.

While the building block matrix model is an aid to model formulation and
understanding, it may not be as useful for fitting models to data and making
population projections. Matrix representations of population dynamics describe
at best the expected changes in a population, for example, conditional expected
numbers at time t given numbers at time t � 1, and often, as noted in Sect. 2.5,
are just approximations of these expectations, as in the case of density-dependent
birth processes. Consequently, such matrix models fail to describe the variation and
uncertainty around these expected outcomes. There are various ways of extending
matrix models to incorporate both variability (Quinn and Deriso 1999: Sect. 7.3;
Caswell 2001: Chaps. 14 and 15) and nonlinearity (Quinn and Deriso 1999:
Sect. 7.4; Caswell 2001: Chap. 16). For example, variability around the expected
outcome can be described by randomly selecting elements of a matrix (Caswell
2001: Sect. 14.5.5) or randomly selecting a matrix from a set of matrices (Caswell
2001: Sect. 14.5.3).

However, limitations of stochastic and nonlinear matrix models become apparent
when one considers modelling population dynamics that involve a sequence of
random and nonlinear sub-processes. Example 1 from the previous chapter, the
BAS model, included binomial distributions for survival of two different age classes
and a third binomial distribution for births. A Leslie matrix was formulated that
accurately characterised the expected states at time t (conditional on nt�1). For
projecting the population forward in time, however, one cannot readily, if at all,
formulate a stochastic version of the matrix that accurately captures the variation
of these binomials. For example, simply adding a vector of random variables to the

K.B. Newman et al., Modelling Population Dynamics: Model Formulation,
Fitting and Assessment using State-Space Methods, Methods in Statistical Ecology,
DOI 10.1007/978-1-4939-0977-3__3, © Springer Science+Business Media New York 2014
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matrix model, i.e. nt = BASnt�1 + �t , is problematic at best. The distribution for �t
will be quite complex; e.g. its components cannot be so large that a corresponding
component of nt is less than 0.

State-space models (SSMs) are a more flexible approach for realistically mod-
elling population dynamics than matrix models. SSMs are the backbone of the
methods discussed in this book and this chapter is an introduction to their basic
structure. Similar to some of the matrix models discussed in the previous chapter,
SSMs have a state model and an observation model, but each is now a stochastic
time series. The state model is a first-order Markov process, i.e. the distribution for
state nt is defined conditional on the previous state nt�1, and the distribution for the
observation yt is defined conditional on the current state nt . The classic SSM is a
Normal Dynamic Linear Model (NDLM, West and Harrison 1997), which consists
of two normally distributed linear models conditioning on nt�1 and nt , respectively.
The two equations below are a simplistic example of an NDLM in the context of
animal abundance dynamics, where Nt is the true, but unknown, abundance of an
animal population at time t and yt is an index of Nt , i.e. yt D �Nt where � is a
constant of proportionality.

State process model Nt jNt�1 � normal
�
	Nt�1; �2N

	
: (3.1)

Observation model yt jNt � normal


�Nt ; �

2
y

�
: (3.2)

Here 	 is the population growth rate; in a deterministic setting, 	 > 1 leads to
exponential growth, and 	 < 1 is exponential decline. We use the terms state process
model and state model interchangeably. Variation around the expected value, in
this case 	Nt�1, is sometimes called process noise or variation. In this example,
the magnitude of the process variation depends on the size of �2N . An example of
simulated projections of states with 	 D 1:02 (2 % growth rate) and �2N D 4, and
unbiased observations (� D 1) with �2y D 16, is shown in Fig. 3.1.

Thus SSMs simultaneously account for two distinct sources of variation, natural
or process variation (e.g. environmental or demographic stochasticity) and observa-
tion error (e.g. sampling or measurement errors) within a single framework. SSMs
are much more general and flexible than matrix models, readily accommodating
multiple random nonlinear sub-processes. Given the conditionally-defined state
process model, forward stochastic population projection is relatively simple so
long as random samples can be generated from the distribution. When the state
process is a sequence of stochastic sub-processes, simulation is often easier than
evaluation of the pdf; i.e. it is easier to simulate nt given nt�1 than it is to
calculate Pr.nt jnt�1/. The inclusion of a stochastic observation process model for
the observations provides a framework for estimating parameters and accounting
for uncertainty in the data, in a way which is consistent with the underlying state
process model. This is in contrast to standard usage of matrix models where vital
rate parameters, or their estimates, are somehow supplied external to the model, and
error in such estimates is often not accounted for.
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Fig. 3.1 Simulation of NDLM for animal abundance and estimates, where the population dynam-
ics of the states are Nt � normal.1:02Nt�1; 4/ and estimates are unbiased, yt � normal.Nt ; 16/

In addition to the integrative nature of SSMs, there is also opportunity for a
convenient division of labour between the modelling of the population dynamics
and the modelling of the sampling and measurement of the population. Subject
matter specialists such as ecologists can focus their attention on the underlying
science through the state process model. The building block matrix models can
serve as useful first approximations to the formulation of state process models,
e.g. characterizing the deterministic portion of the state process model. Alternative
and competing hypotheses about the underlying dynamics can be formalized by
alternative state process models. Specialists in sampling, or mark-recapture, or
transect sampling, or however the population is monitored, can focus on the
formulation of one or more observation models. Different formulations of the
observation model might result by working with summarized or derived calculations
of sample data, e.g. mark-recapture-based point estimates of abundance, or the raw
sample data, e.g. recaptured marks. This potential division of labour, of course, does
not preclude a single individual, knowledgeable about the subject matter science and
quantification of the observation process, from doing both.

Applications of state-space models to ecological data sets have steadily increased
since the late 1980s. Early applications were largely restricted to the special case of
NDLMs, because such models could be readily fitted using the Kalman filter (West
and Harrison 1997). Several of the first applications were to fisheries data including
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Mendelssohn (1988) who fitted an NDLM to Pacific mackerel Scomber japonicus
catch data categorized by age class to estimate annual abundances and recruitment
to the population, and Sullivan (1992) who fitted an NDLM to fisheries catch
data categorized by length classes and then estimated parameters such as growth
and survival. Advancements in computing power combined with simulation-based
estimation procedures, such as Markov chain Monte Carlo (MCMC), extended
the class of SSMs that could be fitted to nonlinear and non-normal distributions.
Meyer and Millar (1999) gave one of the earliest demonstrations of such models for
ecological data, South Atlantic albacore Thunnus alalunga biomass, using MCMC
to fit an SSM where the state model was a univariate nonlinear, non-normal Schaefer
surplus production model and the observation model used catch-per-unit-effort
indices.

While many of the first applications of SSMs were to fisheries data, the diversity
of species modelled by SSMs has expanded considerably. Animal species modelled
by SSMs include red deer Cervus elaphus (Trenkel et al. 2000), grey herons
Ardea cinerea and northern lapwings Vanellus vanellus (Besbeas et al. 2002), grey
seals Halichoerus grypus (Thomas et al. 2005; Harrison et al. 2006), Chinook
salmon Oncorhynchus tshawytscha (Newman and Lindley 2006), leatherback turtles
Dermochelys coriacea (Jonsen et al. 2006), black bears Ursus americanus (Conn
et al. 2008), red grouse Lagopus lagopus scoticus (New et al. 2009), hen harriers
Circus cyaneus (New et al. 2011), desert bighorn sheep Ovis canadensis mexicana
(Colchero et al. 2009), skate Leucoraja ocellata (Swain et al. 2009), Weddell
seals Leptonychotes weddelli (Rotella et al. 2009), California sea lions Zalophus
californianus (Ward et al. 2010), octopus Octopus vulgaris (Robert et al. 2010) and
the Glanville fritillary butterfly Melitaea cinxia (Harrison et al. 2011).

State variables other than abundances have been considered as well. Royle and
Kéry (2007) let the true state be whether or not a particular site was occupied by
animals (and the observations were imperfect estimates of presence or absence).
Gimenez et al. (2007) and Royle (2008), considering marked and recaptured or
recovered animals, let the true state of marked animals (whether still alive or
not) be the state variable. Anderson-Sprecher and Ledolter (1991) modelled the
true location of radio-collared mule deer Odoccoileus hemionus, while Jonsen
et al. (2006) did the same for individual tagged leatherback turtles. King (2014)
describes how various types of ecological data can be modelled using a state-space
formulation.

The biological processes explicitly modelled by the state model include mortal-
ity, birth or recruitment, and movement. Models for mortality have distinguished
natural mortality for different life history stages (e.g. age 2, 3 and 4 Chinook
salmon, Newman and Lindley 2006) and harvest-related mortality (e.g. black bears,
Conn et al. 2008). Models for movement have included the movement of single
animals (e.g. turtles, Jonsen et al. 2006), movement between areas of members
of a single population (e.g. coho salmon, Newman 1998), and movement between
metapopulations (e.g. four sets of pupping colonies used by grey seals, Thomas et al.
2005).
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The remainder of this chapter includes a general statistical formulation of SSMs
and simple examples. General approaches to inference, i.e. the fitting of SSMs
to data, are discussed in Chap. 4, while Chap. 5 is a discussion of issues in SSM
formulation and diagnostics. The remaining chapters show how to put specific
problems, such as survival estimation (Chap. 7), into an SSM framework and include
more detailed examples.

3.1 State-Space Models

Here we give a more formal and mathematically general definition of state-space
models. State-space models are models for two discrete time processes running in
parallel, one called the state process and the other the observation process. The state
process is modelled by a conditional probability density function (pdf) or probability
mass function (pmf) that describes the change of the state vector from time t � 1 to
time t , and is denoted by gt . As will become clear in some of the later examples,
gt can be quite complicated and analytically intractable, reflecting a sequence of
stochastic sub-processes. With some abuse of terminology, we will refer to pdf’s
and pmf’s simply as pdf’s. Note that we allow only discrete time indices, and to
simplify notation, we assume that these are evenly spaced.

The value of the state vector at a given point in time is seldom known with
certainty. Additionally, the parameters, such as survival rates and birth rates, are
almost never known with certainty. If inferences about the state model are to
be possible and defensible, field data must be collected. For example, various
components of the state vector might be estimated from mark-recapture or line
transect surveys. This leads to the observation process, which is modelled by
another conditional pdf, denoted ft , that describes the relationship between the state
vector, nt , and a vector of observations, yt . As noted previously, point estimates
of state vector components are typically quantities derived from sample data. We
might instead use the raw sample data as observations. In contrast with the matrix
model formulation, the general formulation presented here, which does not require
a linear relationship between states and observations, can make modelling the raw
observations more feasible.

The combination of the state model and the observation model is a state-space
model and can be mathematically described as follows:

Initial state pdf W g0.n0j�/ (3.3)

State t pdf W gt .nt jnt�1;�/ (3.4)

Observation t pdf W ft .yt jnt ; /; (3.5)

where � is a vector of parameters corresponding to the state model,  is a vector of
parameters corresponding to the observation model, and t=1,: : :, T . A sequence of
state vectors, na, naC1, : : :, nb , will be denoted naWb; yaWb has a similar meaning.
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The state process model, Eq. (3.4), is first-order Markov, i.e. the present state
only depends on the previous state. Higher order Markov models can be re-written
as first order Markov models by extending the dimension of the state vector to
include previous states (see, for example, Schnute 1994). However, simply writing
a univariate pdf for nt as a function of previous states, e.g. gt .nt jnt�1;nt�2;�/,
does not pose any inference difficulties with modern approaches such as MCMC
and sequential Monte Carlo, e.g., sequential importance sampling (see Chap. 4).
The general class of such higher order Markov models was termed hidden process
models by Newman et al. (2006).

Environmental, or temporal, variation in the state process can be made explicit
by adding another level to the SSM for variability in survival, birth and other
parameters.

Parameter pdf W h.� t j� / (3.6)

Initial state pdf W g0.n0j� t / (3.7)

State t pdf W gt .nt jnt�1;� t / (3.8)

Observation t pdf W ft .yt jnt ; /: (3.9)

Such a model is an example of a random effects or hierarchical state-space model
(see Sect. 2.2.2). The pdf h.� t j� / describes environmental stochasticity in � t ,
where � is a hyperparameter. Time-varying covariates could be used to model � .

For Bayesian inference, another level is added to the state-space model formu-
lation, namely, the prior pdf for the fixed and unknown parameters. For example,
referring to the above hierarchical state-space model, Eqs. (3.6)–(3.9),

Prior pdf W �.� ; / (3.10)

Parameter pdf W h.� t j� / (3.11)

Initial state pdf W g0.n0j� t / (3.12)

State t pdf W gt .nt jnt�1;� t / (3.13)

Observation t pdf W ft .yt jnt ; /: (3.14)

As will be described in more detail in Chap. 4, the end result of Bayesian inference
for a state-space model is the joint posterior distribution for the parameters and the
unknown states, i.e. �.n0WT ;� ; jy1WT /.

Finally, yet another layer of uncertainty is model uncertainty, also known as
structural uncertainty (Williams et al. 2001). Alternative formulations for any of the
above pdf’s are often postulated. Competing theories about the science underlying
the population dynamics translate into different state pdf’s, gt , or parameter pdf’s, h.
Denoting a particular model by M , the Bayesian hierarchical model of Eqs. (3.10)–
(3.14) can be extended as follows.
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Model prior pdf W r.M / (3.15)

Parameter prior pdf W �.� ; jM / (3.16)

Parameter pdf W h.� t j� ;M / (3.17)

Initial state pdf W g0.n0j� t ;M / (3.18)

State t pdf W gt .nt jnt�1;� t ;M / (3.19)

Observation t pdf W ft .yt jnt ; ;M /: (3.20)

The pdf’s and associated parameters in Eqs. (3.16)–(3.20) are conditional on the
model M , where parameters and the pdf’s can vary between models. Chapter 5 will
discuss model selection and model averaging.

3.2 Examples of State-Space Models

Here we give four examples of SSMs with the state pdf gt and observation pdf
ft fully specified. The first is a nonlinear and non-normal coho salmon SSM with
a scalar state and a scalar observation variable. The other examples are stochastic
extensions of examples from Chap. 2.

3.2.1 Simplified Salmon Example

In this simplified SSM,1 the state variable is a scalar Nt , the number of juvenile
salmon alive in year t (at some point in time in that year) in a particular river. The
dynamics of Nt are modelled as a Poisson distribution version of a Ricker stock-
recruitment model (Quinn and Deriso 1999).

Nt jNt�1 � Poisson
�
˛Nt�1e�ˇNt�1	 ; ˛ > 0; ˇ > 0: (3.21)

Implicitly, the parameter ˛ includes survival between time t�1 and t , the proportion
that are female, fecundity (number of eggs produced), and survival between egg
deposition and juvenile life stage. For the deterministic version of the model at least,
to avoid chaotic behaviour, the value of ˛ needs to be less than 2.69, and to avoid
cycling, ˛ must be less than 2. The parameter ˇ is a measure of density dependence:
as ˇ increases, density dependence increases. The equilibrium value is ln.˛/=ˇ.

1The state process in this salmon SSM is a considerable oversimplification of the population
dynamics for most, maybe all, species of salmon. Typically juvenile salmon production in a given
year is the result of spawning from two or more age classes (different cohorts) and those age classes
were juveniles two or more years previously, so that Nt�2, Nt�3, : : : contribute to Nt .
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Fig. 3.2 Elementary salmon SSM with Ricker population dynamics with Poisson variation and
lognormal observations. Ricker parameters are ˛ D 1:5 and ˇ D 0:0003. Lognormal observations
are bias-corrected with a coefficient of variation of 30 %

The observations are estimates of juvenile abundance, e.g. based upon samples
take from in-river traps. A convenient probability distribution for non-negative
valued observations is the lognormal distribution, although for counts of animals,
continuous random variables are clearly an approximation:

yt jNt � lognormal



log.Nt / � �2y=2; �2y
�
: (3.22)

This model is a bias-corrected lognormal, i.e. EŒyt jNt � = Nt .
Forty years of simulated population dynamics and estimates are shown in

Fig. 3.2. The estimates have a coefficient of variation of 30 %. (The code that
generates this plot is given on the book website, see Sect. 1.2.)

3.2.2 BRS Model

For a more complex example, we return to the BRS formulation, an example
of two states (e.g. immature and mature animals), summarized in Sect. 2.3. The
sequence of sub-processes was survival (S ), growth (R) and birth (B). Now we
define stochastic processes for each of these sub-processes. The pdf gt is difficult to
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evaluate analytically because it is a function of three different pdf’s, but it is easy
to describe symbolically and easy to simulate from. Symbolically, we write gt as
the following composite function (with the parameter vector � omitted to reduce
notation):

gt .nt jnt�1/ D g3;t .g2;t .g1;t .nt�1/// : (3.23)

The three pdf’s, g1;t , g2;t , and g3;t , represent the processes of survival, growth
and birth. Statistically, this is a more useful formulation of the BRS model than
is Eq. (2.11), because the latter tells us only the expected values of the states in nt ,
conditional on nt�1, whereas Eq. (3.23) represents the full joint distribution of the
states in nt , conditional on nt�1.

The pdf g1;t .u1;t jnt�1/ corresponding to survival is the result of two binomial
processes [Eq. (2.2)]:

�
u1.s/;1;t � binomial .n1;t�1; �1/
u1.s/;2;t � binomial .n2;t�1; �2/

�
: (3.24)

Growth from immature to mature is another binomial process, so that g2;t .u2;t ju1;t /
is determined from Eq. (2.5):

�
u2.r/;1;t � binomial

�
u1.s/;1;t ; 1 � �	

u2.r/;2;t D u1.s/;2;t C .u1.s/;1;t � u2.r/;1;t /

�
: (3.25)

If each adult can have at most one young, birth can be modelled as a third binomial
process, so that g3;t .nt ju2;t / is determined from a slight reformulation of Eq. (2.6):

0
@ n1;t � u3.b/;1;t D u2.r/;1;t C bt

where bt � binomial.u2.r/;2;t ; �/
n2;t � u3.b/;2;t D u2.r/;2;t

1
A : (3.26)

In contrast to evaluation of the state pdf gt , simulation from the distribution is easy:
one simply simulates from g1, that output is then input to simulate from g2, and
that output is then input to simulate from g3. Suppose �1 D 0:50, �2 D 0:71, � D
0:60, and � D 0:80 and let the initial numbers, n0, be (50,70). A simulation of the
population dynamics for the two size classes for 30 years is shown in Fig. 3.3. The
eventual population growth in this example is exponential and density dependence
is needed in survival or birth processes to stabilize the population. The observations
yI;t (estimated number of immature animals) and yM;t (estimated number of mature
animals) were taken to be lognormally distributed, unbiased, with a coefficient of
variation of 30 %, i.e.

yI;t � lognormal



ln.n1;t / � �2y=2; �2y
�

yM;t � lognormal



ln.n2;t / � �2y=2; �2y
�

where �2y = ln.0:32 C 1/.
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Fig. 3.3 Simulation of state process with two states, immature (I) and mature (M) animals, for
T D 30 years, with three sub-processes, survival, growth and birth. Lognormally distributed
estimates (the observations), with a coefficient of variation of 30 %, are also plotted

3.2.3 Coho Salmon

The processes survival, movement and harvest, that characterize the spatially par-
titioned coho salmon recoveries model described in Sect. 2.7.1, could be modelled
using binomial (for survival and harvest) and multinomial (for movement) distribu-
tions. Here we describe a normal dynamic linear model (NDLM) approximation to
those processes (Newman 1998):

nt jnt�1 � multivariate normal .MtSt�1nt�1; ˙̇̇ nt / ; t D 1; : : : ; 16 (3.27)

yt jnt � multivariate normal
�
Htnt ; ˙̇̇ yt

	
; t D 1; : : : ; 16: (3.28)

The expected values are identical to the deterministic matrix models of Eqs. (2.18)
and (2.22). The covariance matrix for the observations, ˙̇̇ y;t , is a diagonal matrix
with components �2y;a;t , where

�2y;a;t D na;tha;t .1 � ha;t /; (3.29)

which is the variance for a binomial(na;t , ha;t ) random variable. The components
of the covariance matrix for the states, ˙̇̇ nt , can be constructed similarly using
the variances and covariances of binomial random variables (for survival) and
multinomial random variables (for movement); Newman (1998) gives a detailed
example of the construction. Sullivan (1992) used a similar approach to constructing
the covariance matrix in an NDLM approximation to binomial state processes.
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3.2.4 Deer Metapopulation

The deer metapopulation model (Sect. 2.7.2) had five sub-processes characterizing
the dynamics of the two deer population abundances. For convenience the expected
state vector model is shown again below.

EŒnt jnt�1� D CBAMtSt�1nt�1

Letting n0 denote the transpose of the column vector n,

n0
t D ŒnA;f;1;t ; nA;m;1;t ; nA;f;2;t ; nA;f;3C;t ; nA;m;2C;t ; nB;f;1;t ; nB;m;1;t ;

nB;f;2;t ; nB;f;t ; nB;m;t �;

abundances distinguished by population (A or B), sex (f or m), and age class
(1, 2 or 3C for females, and 1 or 2C for males). The matrices correspond to the
processes of survival (St�1), movement between populations A and B (Mt ), age
incrementation (A), births (B), and assignment of sex (C). Age incrementation is
treated as a deterministic process, but the remaining processes can be modelled
stochastically. Similar to the BRS model above, sub-process pdfs are specified, say
gS , gM , gA (a deterministic function), gB and gC . Consequently, the pdf gt .nt jnt�1/
is a composite function, analytically intractable, but potentially easy to simulate
from using the individual component pdf’s. Relatedly, and of relevance to issues of
model fitting addressed in Chap. 4, analytic evaluation of probabilities of states is
only tractable by separately evaluating the pdf’s for intermediate or “latent” states,
the “u’s”.

Here we describe one construction of gt .nt jnt�1/. Beginning with survival,
survivors for each of the ten components of nt are independent binomial random
variables with various survival probabilities [e.g. Eq. (2.29)]. Given the cth compo-
nent of nt�1, the survivors u1.s/;c;t have the following distribution:

u1.s/;c;t jnc;t�1 � binomial .nc;t�1; �c;t�1/ : (3.30)

The survivors in each component then move from their current population to the
other population with probabilities specified previously; e.g. �A!B;t specifies the
probability that an animal moves from population A to population B , Eq. (2.30).
The number moving is modelled as a binomial random variable; e.g. the movement
of first year females from A to B ,

u2.m/;A!B;f;1;t ju1.s/;A;f;1;t � binomial
�
u1.s/;A;f;1;t ; �A!B;t

	
: (3.31)

The new number in a given population (of sex s and age class a) is the sum of two
independent binomial random variables, the “stayers” and the “movers”, e.g. the
first year females in B are those staying in B and those moving from A to B ,

u2.m/;B;f;1;t D u2.m/;A!B;f;1;t C u2.m/;B!B;f;1;t : (3.32)



50 3 State-Space Models

As explained in Sect. 2.7.2, within each population, age incrementation shifts
surviving first-year females to the second-year females group, surviving second-
year and older females are combined (and labelled older females), and all surviving
first-year and older males are combined (as older males). The fourth sub-process,
birth, is modelled as a binomial process, with different success probabilities for
second-year females and for older females, Eq. (2.32); e.g. the total births, males
and females (total denoted �) in population A, are the sum of births from the two
sets of fecund females,

u4.b/;A;�;1;t D u4.b/;A;�;1.2/;t C u4.b/;A;�;1.3C/;t (3.33)

where

u4.b/;A;�;1.2/;t ju3.a/;A;f;2;t � binomial
�
u3.a/;A;f;2;t ; �1

	
(3.34)

u4.b/;A;�;1.3C/;t ju3.a/;A;f;3C;t � binomial
�
u3.a/;A;f;3C;t ; �2

	
: (3.35)

The final sub-process, sex assignment, is treated as another binary (Bernoulli)
process, where the number of females in the newly born animals is binomial; e.g.
the number of first-year females in population A,

nA;f;1;t ju4.b/;A;�;1;t � binomial
�
u4.b/;A;�;1;t ; ˛

	
: (3.36)

The observations were defined in Sect. 2.7.2 to be estimates of the total number of
deer in each of the two populations, with no distinction between sex and age. Again
lognormal distributions (with bias correction) are used; assuming independence
between the population estimates,

yA;t jnA;�;�;t � lognormal



ln.nA;�;�;t / � �2y=2; �2y
�

(3.37)

yB;t jnB;�;�;t � lognormal



ln.nB;�;�;t / � �2y=2; �2y
�

(3.38)

where nA;�;�;t = nA;f;1;t C nA;m;1;t C nA;f;2;t C nA;f;3C;t C nA;m;2C;t , and likewise for
nB;�;�;t .



Chapter 4
Fitting State-Space Models

4.1 Introduction

This chapter is an overview of methods for using available data to make inferences
about states and parameters of a state-space model. We call this “model fitting”, or
as Hilborn and Mangel (1997) say, “confronting models with data”. Given a general
SSM [Eqs. (3.3)–(3.5)],

Initial state pdf W g0.n0j�/
State t pdf W gt .nt jnt�1;�/

Observation t pdf W ft .yt jnt ; /;

model fitting is a matter of using the data, y1WT , to estimate the unknown parameters,
.�; /, or the unknown states, n0WT , or both—the dual estimation problem (Wan
and Nelson 2001). At this point, we assume that the model structure has been
specified; we later address model uncertainty. As noted previously, the definition of
data, y1WT , is broad enough to include functions of sample data, e.g. point estimates
of abundance and associated standard errors, as well as the raw data. The word
“prediction”, instead of estimation, is sometimes used when the unknown is a
random variable instead of a constant; e.g. we predict the states n0WT and estimate
the parameters .�; /.

The literature on fitting state-space models is extensive, from the foundational
work of Kalman (1960) and Kalman and Bucy (1961) to the present day, where
research activity remains high. Means of fitting SSMs have advanced considerably
in recent years, in particular using computer-intensive procedures. Taken together
with advances in collecting data, we can now fit increasingly complex and realistic
SSMs for population dynamics. This chapter aims to provide enough detail on these
recent developments to allow the statistical ecologist to understand the pros and
cons of the different fitting procedures. Additional details on specific SSM fitting
algorithms and on available software are available in Commandeur et al. (2011).

K.B. Newman et al., Modelling Population Dynamics: Model Formulation,
Fitting and Assessment using State-Space Methods, Methods in Statistical Ecology,
DOI 10.1007/978-1-4939-0977-3__4, © Springer Science+Business Media New York 2014
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As a guide to readers with different interests, the organisation of the remainder
of this chapter is as follows. Section 4.2 looks at the fitting, or more generally
the inference, objectives from the perspective of an ecologist or natural resource
manager, where we argue that attention needs to be focused on the state process
model in ways similar to those presented for matrix models by Caswell (2001) and
for population viability analysis by Morris and Doak (2002). Section 4.3 looks at
fitting from a more purely statistical perspective (as given above), namely estimation
of states and parameters conditional on the data. We discuss the central role of
mathematical integration in inference for SSMs and highlight Bayesian and classical
inference approaches to fitting SSMs. Section 4.4 describes “classical” statistical
procedures for fitting SSMs, in particular the Kalman algorithm as it is applied
to normal dynamic linear models, and the extended Kalman filter for nonlinear
and non-normal SSMs. Section 4.5 discusses more recent stochastic algorithms for
making inferences about SSMs, such as Markov chain Monte Carlo and Sequential
Monte Carlo. Such stochastic procedures are more commonly used in a Bayesian
framework but classical statistical inference can be carried out using these methods
as well (e.g. de Valpine 2004).

4.2 An Ecological Perspective on Inference for SSMs

The primary SSM inferential objectives from an ecologist’s or wildlife biologist’s
perspective are guided by the underlying scientific and management objectives.
Different objectives can lead to emphases on estimating past states, predicting future
states, estimating parameters related to vital rates such as survival, growth and
reproduction, or quantifying the effects of environmental conditions or management
actions on vital rates. Below we discuss a possible (and desirable) progression in
inferential goals.

4.2.1 Knowing the Past and Present States

Often for a particular species or population, emphasis begins with the states, i.e.
the initial questions about a population pertain to its abundance, its “status”, and
how those abundances have changed over time. As a Google search on the key
word phrase “Population status and trends” reveals, status and trend reports for a
large number of biological populations are ubiquitous products of natural resource
management agencies. Before anything can be done, or should be done, about
a population of interest, one needs to have some idea of the abundance of the
population. That abundance might be further partitioned into different biological
or geographical categories if the abundances of a structured population are of
interest; e.g. number of age 1 females in different regions. For apparently healthy
populations that are harvested for commercial, subsistence, or recreational purposes,
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estimates of current abundance, nT say, are used to set harvest limits, quotas or
regulations. For species that have been designated as threatened or endangered by
some organization or agency such as the International Union for Conservation of
Nature (IUCN) or the United States Fish and Wildlife Service, according to some
criterion or law such as the U.S. Endangered Species Act, estimates of current
and past abundances, n1WT , are used to determine if there are signs of population
recovery, e.g. positive trends or positive step-changes in abundance.

4.2.2 Explaining the Past and Present, and Predicting
the Future

Emphasis sometimes shifts, and we maintain that in many cases it should quickly do
so, from estimating the states, or “status and trends”, to estimating or quantitatively
characterizing the underlying processes that drive the population dynamics. Even
if one had perfect information about current and past states of the system, i.e.
n1; : : : ;nT were known without error, several questions would arise. Why did such a
history occur? Why is the population trending downward toward extinction or quasi-
extinction (Morris and Doak 2002)? Why did a positive step change occur? What
will future states be? For natural resource managers, the most pressing question may
be “What do I do now?”, or “Given two alternate management actions, which one
is better?”. Predictions of future states and how different management actions affect
those predictions can aid the decision-making process. The ideal model would take
proposed actions Aj , j D 1; : : : ; J , and current system state, nT , as inputs and
predict, without error, the next state nTC1jAj . The manager could then compare
nTC1jAj , j D 1; : : : ; J , and select an action that was closest to the management
objectives (with cost constraints also affecting the choice of action).

To understand the past and present and, similarly, to predict future system states,
we need to know more than the system states: we need to understand the underlying
dynamics that generated the states. Consider a simple univariate measure of the
system, nt , denoting the abundance of a single population. Given a sequence,
n1; : : : ; nT , we can coarsely characterize the dynamics by nt D 	t�1nt�1, where
	t�1 is the annual population growth rate. The sequence 	1; : : : ; 	T�1 can be
quite informative in terms of characterizing the historic population growth rates.
Estimates of such sequences are often the first step in carrying out a population
viability analysis (PVA), “the use of quantitative methods to predict the likely future
status of a population” (Morris and Doak 2002:1).

If we know the 	t s, we would still like to know why they take those values. This
requires knowing, or estimating, the underlying vital rates (survival probabilities
and reproductive success, and possibly others) which are the basis of the 	t s; e.g.
what were the probabilities of annual survival for age 3 black bears for the last
ten years? Thus estimation of underlying vital rates should be a next step; e.g. if
	t = .1 C ˇt /�t , where ˇt is the birth rate and �t is the survival probability, then
estimation of ˇt and �t is the next inferential objective.
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Given estimates of vital rates, we might want to burrow down deeper to try to
understand why the rates are what they are, to gain a more mechanistic under-
standing of the processes underlying the dynamics. In particular, we would like
to understand the effects of both environmental covariates outside the direct control
of humans, e.g. how winter temperatures affect bird survival (North and Morgan
1979), and deliberate management actions, e.g. crab fishery effects on Dungeness
crab (Higgins et al. 1997). The quest for understanding the dynamics of a population
is a continual one; the more information and understanding we gain, the more ideas
will arise for managing or manipulating the population dynamics. For endangered
populations in particular, there are always questions about what management actions
yield the greatest improvement in population growth rates; e.g. increasing available
habitat, improving the quality of current habitat, removing predators, increasing
prey? We need not strive for the perfect model—if the mechanisms underlying vital
rates can be explained to the degree that the effects of different management actions
can be reliably predicted, this gives sufficient depth.

4.2.3 Remarks

• As SSMs become more widely used for modelling population dynamics, they
will be used for similar purposes as are matrix population models (Chap. 2).
Caswell (2001) and Morris and Doak (2002) demonstrate the use of matrix
models to project population abundances into future years, to calculate proba-
bilities of extinction (or quasi-extinction), to carry out sensitivity or elasticity
type analyses for vital rates, and to assess the effects of environmental covariates
or management actions on such vital rates and overall population growth rates.

• For ecologists and resource managers, the primary emphasis should be on the
state process model, not on the observation model. While the type and quality
of data are crucial to the complexity of an SSM that can be fitted, and while the
observation model provides the essential link with the underlying state process
model, data collection and the observation model simply provide imperfect
snapshots of what the scientist and manager really need: the state vector. Even if
the components of the state vector were known without error, the scientist still has
substantial work to do to try to model the underlying dynamics. The science of
population dynamics modelling is so challenging due to these dual problems: (1)
collecting imperfect measurements on dynamic populations, e.g. using methods
like mark-recapture or distance sampling or standard survey sampling procedures
for fixed areas; and (2) trying to understand what causes the populations to vary
as they do, e.g. whether there are density-dependent or environmental effects on
survival probabilities or reproduction rates. It is important to keep a distinction
in mind between the two problems, as we sometimes see field ecologists and
biologists focused primarily on the data collection or population monitoring
programmes and only secondarily on using those data to draw inferences about
the underlying dynamics, and vice versa for theoretical ecologists.
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• Simply postulating and mathematically formulating a state-space model for
animal populations can be a useful exercise in its own right. That process alone
can yield insights and greater clarity about the dynamics, the factors potentially
affecting the dynamics, and which data are relevant. At the same time, it is
relatively easy to formulate state process models in an SSM that are overly
ambitious given the available data; e.g. a state process model for elk might
project abundances by age and sex, but the only available data might be on
total elk counts in September. In Chap. 5, we further discuss the merits of
SSM formulation as well as the problem of data inadequacy, i.e. model over-
specification. In this chapter, however, we assume that a “reasonable” SSM
has been formulated in the sense that the parameters and states of the model
are “estimable” given the available data, and we discuss different methods for
making inferences about the SSM.

4.3 A Statistical Perspective on Inference for SSMs

As described at the beginning of this chapter, the general inferential objective is to
characterize, or summarize, the unknown parameters of the SSM, .�; /, and the
unknown states of the state process, n0WT , given the observations, y1WT . Sometimes
the initial state, n0, is viewed as an unknown constant rather than the realisation of
a stochastic process.

4.3.1 Inference as Integration

Inference for SSMs, whether for parameters, states, or both, ultimately involves inte-
gration, typically over a high-dimensional space (e.g. T integrals). To demonstrate
this we begin with the joint distribution of states and observations of the most basic
SSM in a non-Bayesian setting, namely Eqs. (3.3)–(3.5), which can be written as
follows.

g0.n0j�/g1WT .n1WT ; y1WT jn0;�; / D g0.n0j�/
TY
tD1

gt .nt jnt�1;�/ft .yt jnt ; /: (4.1)

Inference about parameters via maximum likelihood methods is based on the
marginal distribution of the observations, equivalently the likelihood, thus integrat-
ing out the states in the joint distribution, i.e.

L.�; jy1WT / � f1WT .y1WT j�; /D
Z
g0.n0j�/

TY
tD1
gt .nt jnt�1;�/ft .yt jnt ; / dn0WT :

(4.2)
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Assuming the parameters are known constants, inferences about the states in the
most general sense are based on the conditional distribution of the states given the
observations, which also requires integration:

g0WT .n0WT jy1WT ;�; / D g0.n0j�/QT
tD1 gt .nt jnt�1;�/ft .yt jnt ; /
f1WT .y1WT j�; / : (4.3)

We address handling of unknown parameters in a non-Bayesian framework in
Sect. 4.3.2.4. A single summary measure of a particular state nt , such as the
expected value, involves integration of the above conditional distribution over the
remaining states, i.e.

EŒnt jy1WT ;�; � D
Z

nt g0WT .n0WT jy1WT ;�; / dn0WT :

Bayesian inference is based on a larger joint distribution, extending Eq. (4.1) by
adding a prior distribution for the parameters, which also requires integration; this
is further explained in Sect. 4.3.2.

The ease with which inference can be carried out is then a function of how
difficult it is to carry out the above integrations. In turn, the degree of difficulty
of integration is a function of the particular formulation of the state and observation
pdf’s. The generality of the SSM structure invites creativity in the formulation of
the pdf’s, including the choice of probability distributions (e.g. normal, lognormal,
Poisson), the nature of the parameterizations (e.g. linear, nonlinear), the dimension-
ality of the state and observation vectors, and the length of the time series, T .

Practical implementation of SSMs, however, only goes as far as the available
integration techniques. Several integration techniques are currently available and
have been applied to SSMs. These methods include exact analytical (e.g. Kalman
filter), approximate analytical (e.g. extended Kalman filter), numerical, and Monte
Carlo simulation methods. This listing is roughly a historical progression of
techniques and SSM complexity approximately parallels this progression, i.e. SSMs
for which inferences can be made using exact analytical methods are simpler
than SSMs which can be fitted with Monte Carlo simulation methods. Statistical
software developed for fitting SSMs of varying distributional structure and levels
of complexity has progressed considerably over the past decade. An entire issue
of the Journal of Statistical Software (May 2011, Volume 11) was devoted to the
topic of fitting SSMs and the introductory article by Commandeur et al. (2011)
is recommended reading. Here we discuss some of these methods in relatively
broad terms in Sects. 4.4.1 (exact and approximate analytical methods, particularly
the Kalman filter), 4.4.3 (numerical procedures), and 4.5 (Monte Carlo simulation
procedures). Before doing so, we discuss the distinction between Bayesian and
classical statistical approaches as applied to fitting SSMs.
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4.3.2 Bayesian Versus Classical Inference for SSMs

This is a brief overview of the distinction between Bayesian and classical statistical
procedures. We also look at how the approaches differ in the context of SSMs.
Additional details can be found in many excellent references (e.g. Gelman et al.
2003; Carlin and Louis 2009; King et al. 2009).

4.3.2.1 Bayes vs Classical

Underlying both Bayesian and classical statistical inference is the likelihood, i.e.,
the joint probability distribution for the observed data viewed as a function of the
unknown parameters. As a simple example of a likelihood, consider two passes
of removal sampling of trout in a small stream (see Chap. 5 of Borchers et al.
2002). A net is swept on two consecutive occasions through the stream section,
and each trout is caught with probability p; the captures are independent within
and between sweeps, and trout that are captured are not returned to the stream. The
observations are the numbers caught in the first and second pass, denoted y1 and
y2. The parameters are p and N , the total number of fish present. The probability
distribution for y1 is binomial(N;p) and the distribution for y2, conditional on the
number y1 removed previously, is binomial(N � y1; p). Thus the joint distribution
is the product of the two binomial distributions:

f .y1; y2jN;p/�f .yj�/ D
 
N

y1

!
py1.1�p/N�y1�

 
N � y1
y2

!
py2.1�p/N�y1�y2 :

(4.4)

Classical statistical inference for the unknown parameters is usually centred
on the likelihood. The expression in Eq. (4.4) is regarded as a function of the
parameters given the observations: f .yj�/ � L.�jy/, where � D .N; p/.
Conceptually, the parameters are considered to have fixed but unknown values. The
most common point estimate of a parameter is the maximum likelihood estimate
(mle); the likelihoodL.�jy/ has its maximum value when the mles of the parameters
� D .N; p/ are substituted in. Referring to the removal sampling example, given
particular values of y1 and y2, the mle’s forN and p are those values that maximize
Eq. (4.4). These values are

ON D y21
y1 � y2

Op D y1 � y2
y1

:
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Note that ON is only useful when y1 > y2; when y1 D y2, ON is undefined, and
when y1 < y2, the calculated values of ON and Op are negative.

Bayesian inference differs in a fundamental sense. Before collecting or analysing
data, we specify probability distributions that quantify our beliefs about the values
of unknown parameters. Namely, we specify a prior distribution, �.�/, where the
parameters � are now considered to be random variables rather than having fixed but
unknown values. Then given the data, we modify our beliefs to produce a posterior
distribution for the parameters, �.�jy/, where y represents the data. The posterior
distribution is simply a conditional probability distribution, and Bayes formula is
used to describe this distribution:

�.�jy/ D �.�; y/
f .y/

D f .yj�/�.�/R
f .yj�/�.�/d�

/ f .yj�/�.�/: (4.5)

Thus Bayesian inference is based on both the likelihood, f .yj�/� L.�jy/, and the
prior distribution for the parameters, �.�/.

Returning to the removal sampling example, we first specify a prior distribution
for the parameters N and p. For example,

N � discrete uniform.a; b/

p � uniform.0; 1/

where a and b are positive integers such that a < b. The discrete uniform .a; b/

distribution is such that for x D a; aC 1; : : : ; b, Pr.N D x/ D 1=.b � aC 1/. The
posterior distribution for N and p is then:

�.N; pjy1; y2/ / 1

b � aC 1

 
N

y1

!
py1.1 � p/N�y1

�
 
N � y1
y2

!
py2.1 � p/N�y1�y2

for N = a; aC 1; : : : ; b and 0 � p � 1.
Bayesian methods have some advantages over classical methods. One is that

previous knowledge, independent of the current data, can be explicitly combined
with the new data. One perspective on Bayes theorem is that, given the current
data, we update or revise our prior knowledge of a process or phenomenon. Further
by constraining the support (the set of allowable values) via a prior distribution,
we ensure that the corresponding posterior distribution does not have support
for nonsensical parameter values. As an example of the latter problem, for the
removal sample example, maximum likelihood estimates are inadmissible when
y1 � y2. Adopting a Bayesian approach, we can select a prior distribution for N
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that constrains it to lie in the interval .a; b/, thus ensuring that posterior estimates
(both point and interval) remain in the permissible range.

A further advantage of Bayesian methods is that the posterior distribution is
necessarily a more complete description of information about a specific parameter
than classical point estimates (e.g. maximum likelihood estimates) and confidence
intervals.

A potential disadvantage of Bayesian methods, particularly in the case of
relatively small samples, is that the influence of the prior distribution on the posterior
distribution can be sizable. As is sometimes said, “the prior is swamping the
data”. Individuals with vastly different prior distributions might end up with vastly
different posterior distributions and arrive at conclusions that differ in important
ways. Selection of non-informative or neutral priors has been a topic of considerable
discussion and research (Gelman et al. 2003).

4.3.2.2 Hierarchical Models

The terminology used to describe both hierarchical models and Bayesian and
classical inference for such models can be confusing. We devote time to this issue
because SSMs are a special case of hierarchical models and classical and Bayesian
inference procedures for SSMs are discussed next. To try to clear up potential
confusion, we consider the following simple model.

˛i � normal
�
 ; �2

	
; i D 1; : : : ; p (4.6)

yi;j j˛i � normal
�
˛i ; �

2
	
; j D 1; : : : ; qi : (4.7)

To make the example more concrete, suppose there are p lakes which were sampled
for a species of fish one summer, and in lake i , qi fish were caught and measured
for lengths. The observation, yi;j , is the length of the j th fish caught in the i th lake.
The average lengths are allowed to differ between lakes.

Such models have been given several different names, including hierarchical,
multi-level, random effects, and variance components models. The equivalence
between hierarchical and multi-level is likely apparent. The model for the obser-
vations, yi;j , can be viewed as a lower level model, while the model for the
lake-specific means, ˛i , is a higher level model. The random effects label refers
to the random variable ˛i which then becomes a parameter in the model for the
observations, yi;j . The label variance components refers to the terms �2 and �2.

Inference objectives include estimation of the fixed parameters,  , �2, and �2,
and the random variables, ˛i , i=1, : : : , n. A common classical inference approach to
estimating the fixed parameters is maximum likelihood. The likelihood is evaluated
by integrating over the unobserved ˛i ,

L. ; �2; �2/ D
pY
iD1

Z
˛i

2
4 qiY
jD1

˚

yi;j � ˛i

�

�35˚
�
˛i �  
�

�
d˛i
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where ˚./ denotes the standard normal density function. We note that maximum
likelihood estimates of the variance components, �2 and �2, are typically biased, and
REML (restricted maximum likelihood) (Harville 1977) is an alternative procedure
which yields less biased or unbiased estimates.

Classical inference estimates of the random variable, ˛i , can be made conditional
on the estimated parameters and the observations, namely,

Ǫ i D E
h
˛i jy; O ; O�2; O�2

i
D
� O�2=qi

O�2=qi C O�2
�

O C
� O�2

O�2=qi C O�2
�
yi : (4.8)

Such estimates are called Empirical Bayes estimates (Casella 1985). This terminol-
ogy, Empirical Bayes, may seem somewhat confusing in that a prior distribution was
not explicitly defined in the original hierarchical model formulation. However, an
alternative perspective on the formulation is that the model of Eq. (4.6) is a Bayesian
prior distribution for the ˛i (Casella 1985), where the values  and �2 were fixed
in advance, arbitrarily. Purely Bayesian point estimates for ˛i are the means of
the posterior distribution, which equal Eq. (4.8) with the fixed values substituted
(assuming for simplicity here that �2 was known).

We note that an alternative Bayesian inference procedure is to not assume known
values for  and �2 and to specify a prior distribution, say �. ; �2/ (again assume
�2 is known, though a prior distribution could be chosen for it). Then the posterior
distribution for  and �2 would be calculated,

�. ; �2jy/ / �. ; �2/

pY
iD1

Z
˛i

2
4 qiY
jD1

˚

yi;j � ˛i

�

�35˚
�
˛i �  
�

�
d˛i :

All information about the ˛i would then be found in the conditional distribution for
˛i given y and the prior distribution �. ; �2/. Such inferences are called, somewhat
confusingly again, Bayes empirical Bayes (Carlin and Louis 2009).

Finally, Clark (2005) makes a distinction between the meaning of randomness
as it applies to the ˛i and to  and �2. The ˛i are inherently random variables, the
values are varying in some temporal or spatial sense, e.g., the average lengths are
varying between lakes. The probability distribution for ˛i quantifies that inherent
randomness. Conversely  and �2 are fixed constants but their values are unknown.
A prior distribution for these fixed constants is a reflection of uncertainty, ignorance,
say, not a reflection of temporal or spatial variability in their values. Bayesian
statisticians may or may not make such a distinction and simply refer to the ˛i
and  and �2 as random variables.

4.3.2.3 Bayesian Inference for SSMs

In the case of state-space models and the dual estimation objective, Bayesian infer-
ence involves calculating, or generating a sample from, the posterior distribution
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for the parameters and the states. Prior distributions are needed for the parameters,
say �.�; /. Unless the initial state value, n0, is assumed known, then a prior
distribution (the initial state distribution) must also be specified. Priors for the
unknown, random states, n1WT , need not be specified because the state process model
itself implicitly defines their prior distribution. The Bayes formula for a state-space
model can be written as follows.

�.n0WT ;�; jy1WT / / �.n0WT ;�; ; y1WT /

D �.�; /g0.n0j�/
TY
tD1

gt .nt jnt�1;�/ft .yt jnt ; /; (4.9)

where the SSM is assumed first-order Markov.
Analytic calculation of the posterior distribution �.n0WT ;�; jy1WT / is pro-

hibitively difficult, usually impossible, for most SSMs. The difficulty lies in the
denominator of Bayes formula [Eq. (4.5)], f .y/, which is typically an intractable
integral. Numerical integration methods can be used for small (say two or three)
dimensional problems, but most of these methods fail in higher dimensions.

Bayesian inference has been made feasible for high-dimensional models, includ-
ing SSMs, through the combination of Monte Carlo or simulation-based algorithms
and high-speed computing. These computer-intensive Monte Carlo procedures can
be used to produce samples from the posterior distribution. The best known and
most widely used Monte Carlo sampling procedure is Markov chain Monte Carlo
(MCMC). WinBUGS is a freely available software implementation of MCMC and
is the tool we have chosen for demonstrating Bayesian inferences in this book.
The open-source version of WinBUGS is OpenBUGS, and another free option is
the JAGS software. Alternative Monte Carlo procedures designed primarily for
dynamic stochastic models, including SSMs, are Sequential Monte Carlo methods
with a specific approach being Sequential Importance Sampling (SIS).

4.3.2.4 Classical Inference for SSMs

In Sect. 4.4, we provide specifics on various classical statistical inference proce-
dures for SSMs, in particular the highly influential Kalman filter algorithm. Here
discussion is limited to brief general principles.

The classical approach differs from the Bayesian approach in that there are no
prior distributions for the unknown parameters. Consider the following simple SSM
where nt and yt are scalars, and where parameters from the observation model are
removed to reduce notation,

gt .nt jnt�1;�/
ft .yt jnt / :
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Inference often proceeds in two stages: first, the unknown fixed parameters
(�) are estimated, then estimates (sometimes called predictions) of the unknown
states are made conditional on the fixed parameter estimates (implicitly, on the
observations). Assuming that estimation of the parameters is via maximum like-
lihood, calculation of the marginal distribution for the observations is required,
i.e. integration over the unknown states is carried out [Eq. (4.2)]. Treating these
parameter estimates as constants (i.e. ignoring parameter uncertainty), the condi-
tional distribution for the states [Eq. (4.3)] is a complete summary of information
about the unknown states.

g0WT .n0WT jy1WT ;b�/ D g0.n0jb�/QT
tD1 gt .nt jnt�1;b�/

f1WT .y1WT jb�/ : (4.10)

Estimated expected values for individual states can be used as point estimates and
interval estimates can be based on percentiles of Eq. (4.10).

We note that this two-stage procedure is a special case of what is sometimes
called parametric empirical Bayes (PEB) methods (Morris 1983). The label “Bayes”
is potentially confusing as the procedure is not Bayesian. PEB methods are
commonly used for random effects models. For example, consider the following
simple random effects model where we retain some of the SSM notation (removing
additional parameters from the observation model for simplicity):

n � g .nj�/
y � f .yjn/ :

Both n and y are random vectors (or scalars), where y are observed and n
are unknown and the random effects. Again the parameters are estimated first.
Second, the conditional distribution for the random effects given the observations
is calculated by substituting the mle’s, say O� , for the parameters:

g



njy; O�
�
:

This conditional distribution is also known as the estimated posterior distribution
(Carlin and Louis 1996).

One key detail glossed over here is the degree of difficulty in carrying out
the integrations, to yield the likelihood, the estimated posterior distribution, and
parametric Empirical Bayes estimates. Skaug (2002), for example, uses the Laplace
approximation to carry out some of the integration. A second key detail is the
initial state, n0, whether it is viewed as a random effect (as shown here) or as a
parameter (a constant), and in either case whether or not it is in fact estimable.
Some discussion of how to handle n0 in the special case of normal dynamic linear
SSMs is given in Sect. 9.5.1. Here we note that, given a long enough time series, the
initial observation y1 can be used to estimate n1 in a somewhat ad hoc manner by
inverting the observation model and solving for n1, and no inferences about n0 are
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made. A simple example of such an inversion would be an observation model where
a scalar y1 is proportional to n1 (also scalar), say y1 � normal.�n1; �2y/ for some
unknown �. Given an initial value for �, n1 is estimated by y1=� (Thomas et al.
2005, used this approach in a Bayesian setting to formulate a prior for the initial
state value).

4.4 Classical Statistical Procedures for Fitting SSMs

The original discrete time SSM formulated by Kalman (1960) uses normal distri-
butions of states and observations and the conditional expected values for states
and for observations are linear combinations of previous states and current states,
respectively, i.e. a normal dynamic linear model (NDLM). He developed a closed-
form analytic algorithm, the Kalman filter, for doing the integration to calculate
both the likelihood and the conditional distributions of the states, which has led to
extremely widespread use for a broad range of problems. Additional explanations
of the Kalman algorithms can be found in Meinhold and Singpurwalla (1983) and
Harvey (1989).

4.4.1 The Kalman Filter

The Kalman filter is designed for fitting NDLMs. Even though stochastic integration
techniques are more flexible because they allow fitting nonlinear, non-normal
models, an overview of Kalman’s algorithms is important on several counts,
including their continued popular usage, relative simplicity and speed.

In a NDLM, the state and observation processes are normal random variables and
the expected values are linear combinations of the conditioning variable, either nt�1
or nt . More concisely,

n0 � normal.�0;Q0/ (4.11)

nt jnt�1 � normal.At�1nt�1;Qt / (4.12)

yt jnt � normal.Btnt ;Rt /; (4.13)

where At�1 is anm�mmatrix of constants, Bt is a k�mmatrix of constants with k
the number of observations in year t , and Qt and Rt are covariance matrices for nt
and yt , respectively. Often the initial state vector, n0, is assumed to be a fixed value.

NDLMs may be viewed as approximations to more realistic nonlinear, non-
normal SSMs for the dynamics underlying animal populations and the type of data
collected from such populations. The existence of the Kalman filter (KF) makes
NDLMs attractive. The KF is a recursive analytic procedure for estimating the states
nt , given the observations up to and including time t , y1Wt . In particular, the KF yields
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T probability distributions for the unobserved states, nt , t D 1; : : : ; T , conditional
on the observations y1Wt , i.e. f .nt jy1Wt /, the so-called filtered distribution. A related
algorithm, the Kalman smoother, calculates T probability distributions for the states
conditional on all the observations, i.e. f .nt jy1WT /. The resulting distributions
in both cases are normal, thus the algorithms only need to calculate the mean
vector and variance-covariance matrices. The KF can also be used to calculate the
likelihood (the marginal distribution for the observations), which is necessary for
calculation of maximum likelihood estimates. In comparison to computer-intensive
procedures like MCMC and SIS, the Kalman filter can be very fast.

The Kalman filter is explained assuming that parameters of the pdf are known,
i.e. the matrices At , Bt , Qt , Rt in Eqs. (4.11)–(4.13) are known. A web page devoted
to Kalman algorithms which includes links to expository articles is http://www.cs.
unc.edu/~welch/kalman/. The filter is a recursive algorithm in that values calculated
for time t � 1 are used to calculate values for time t . At each step of the recursion,
there are two sub-steps: (a) predicting nt using an estimate of nt�1; (b) “updating”
nt using a weighted combination of the prediction and the observation for time t , yt .
Both the predicting and the updating steps have corresponding calculations for the
variance-covariance matrices of the predictions and updated estimates.

Notation for the predicted state and its covariance matrix is nt�1t and Pt�1t , while
that for the updated (or “filtered”) state and its covariance matrix is ntt and Ptt .

Begin at t D 0 with fixed values for n0 and P00; often P00 is set equal to zero.
Then predict the state at t D 1 using the state pdf, Eq. (4.12), and calculate the
corresponding covariance matrix:

Prediction of nt : nt�1t D At�1nt�1t�1 (4.14)

Covariance matrix of nt�1t : Pt�1t D At�1Pt�1t�1A0
t�1 C Qt : (4.15)

Next update the state and calculate the corresponding covariance matrix:

Update of nt : ntt D nt�1t C Kt .yt � Btnt�1t / (4.16)

Covariance matrix of ntt : Ptt D .I � KtBt /Pt�1t ; (4.17)

where Kt is referred to as the Kalman gain and is defined by

Kt D Pt�1t B0
t .BtP

t�1
t B0

t C Rt /
�1:

Increment t by 1, repeat the calculations in Eqs. (4.14)–(4.17), and stop after
finishing the updating for time T .

4.4.1.1 Numerical Demonstration of the Kalman Filter

The following simple NDLM is used to demonstrate the KF. The state vector has just
two components. The matrix At is constant over time, as is the covariance matrix Qt .

http://www.cs.unc.edu/~welch/kalman/
http://www.cs.unc.edu/~welch/kalman/
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Table 4.1 Observations (yt ), true unobserved states (nt ), and filtered
states (ntt ) from a simulated NDLM with T D 10 observations

Juveniles

t 0 1 2 3 4 5 6 7 8 9 10

yt 0 62 45 51 48 53 50 52 53 49 49
nt 30 75 57 66 62 64 64 64 65 64 64
ntt 30 75 55 64 60 63 62 63 63 62 62
Adults

t 0 1 2 3 4 5 6 7 8 9 10

yt 0 42 48 46 45 44 45 46 44 45 47
nt 50 38 44 41 43 43 43 43 42 43 43
ntt 50 37 43 40 41 41 41 41 42 42 42

Suppose that the nt;1 are juveniles and nt;2 are adults and the matrix At is a Leslie
matrix. Let the state process equation be

�
nt;1
nt;2

�
D
�
0:0 1:5

0:3 0:55

� �
nt�1;1
nt�1;2

�
C
�
qt;1
qt;2

�
;

where qt;1 and qt;2 are assumed to be identically and independently distributed
(iid) normal.0; 0:52/. We note that for this example we chose the values of the
Leslie matrix carefully so that the deterministic rate of growth is exactly 1,
i.e. deterministic projections of the population neither exponentially decline to
extinction nor grow exponentially. This does not affect the main points we wish
to demonstrate here, however.

Suppose that the observation vector has the same dimension as nt and contains
biased estimates of each component of nt , where the bias is assumed known.

�
yt;1
yt;2

�
D
�
0:8 0:0

0:0 1:1

� �
nt;1
nt;2

�
C
�
rt;1
rt;2

�
;

where rt;1 and rt;2 are iid normal.0; 22/.
Using R, the NDLM was simulated setting n0 D .30; 50/ and P00 D 0. The R code

for simulation and using the Kalman filter is given on the book website (Sect. 1.2).
Table 4.1 shows the simulated observations and states and the Kalman “filtered”
estimates of the states. As is the case with Leslie matrix projection models (Caswell
2001), the abundances of juveniles and adults have, with the exception of relatively
minor process variation, reached equilibrium values after four or five generations.

More commonly, the parameters are not known. The predicted state, nt�1t , and
corresponding covariance matrix, Pt�1t , can be used to construct the likelihood
function (the marginal distribution for the observations). The likelihood can be
written as follows (with conditioning on the initial state n0 made explicit).
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L.�; jy1WT ;n0/ D f .y1jn0/
TY
tD2

f .yt jy1Wt�1;n0/: (4.18)

It can be shown that the conditional density for each yt is normal:

yt jy1Wt�1;n0 � multivariate normal
�
Btnt�1t ;BtPt�1t B0

t C Rt

	
: (4.19)

Note that the mean is the expected value of yt based on the observation equation,
with the predicted value of nt substituted for its true, but unknown value. Example
R code is given on the book website (Sect. 1.2) for calculating the likelihood for the
values in the matrix A alone and for calculating the maximum likelihood estimates
of the parameters. Shumway and Stoffer (1982) show how to use the EM algorithm
with the KF for simultaneous inference of states and parameters.

4.4.2 Extensions to NDLMs and the Kalman Filter

By 1961 the Kalman filter had been extended to the case of nonlinear, but normal,
SSMs (Grewal and Andrews 2010):

n0 � normal.�0;Q0/ (4.20)

nt jnt�1 � normal .g.nt�1/;Qt / (4.21)

yt jnt � normal .f.nt /;Rt / ; (4.22)

where g and f are vectors of differentiable functions. The Extended Kalman Filter
(EKF) substitutes linear (first order) Taylor series approximations for nonlinear state
and/or observation equations in prediction and update steps (Eqs. (4.14)–(4.17)). For
the prediction step, prediction of the nt simply involves plugging the current updated
value, nt�1t�1, into g, while calculation of the corresponding covariance matrix, P t�1

t ,
includes linearization of g:

nt�1t D g
�
nt�1t�1

	
Pt�1t D Gt�1Pt�1t�1G0

t�1 C Qt ;

where

Gt�1 D @g
@n

ˇ̌̌
ˇ
nt�1t�1

:

For the update step, the updated estimate is calculated as for the regular Kalman
filter, but the updated estimated covariance involves a linearization of f :

ntt D nt�1t C Kt .yt � Btnt�1t /

Ptt D .I � KtFt /Pt�1t ;
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where

Ft D @f
@n

ˇ̌
ˇ̌
ntt�1

:

The realizable minimum variance (RMV) filter (due to Liang and Christensen
1978, but see the concise description in Quinn and Deriso 1999:236–237) is another
procedure for handling nonlinear but normal SSMs. Julier et al. (1995) proposed the
Unscented Kalman Filter (UKF) as a more accurate alternative to the EKF (see the
review article by Wan and van der Merwe 2001).

The EKF and RMV filters also allow calculation of the likelihood of the
parameters. Wan and van der Merwe (2001) describe two dual estimation procedures
using the UKF, the dual UKF and the joint extended UKF.

A variation on NDLMs, conditionally Gaussian models, which can be analysed
using the standard Kalman filter, are discussed in Sect. 9.7.1.

4.4.3 Numerical Procedures

When the SSM is nonlinear and/or non-normal, numerical procedures are some-
times used. We begin with a method developed by Kitagawa (1987). Kitagawa noted
that prior to his work, the typical approach to handling nonlinear and non-normal
SSMs was “to approximate the non-normal distribution by one or several normal
distributions or by some parametric function”; e.g. the extended Kalman filter, the
Gaussian (i.e. normal) sum filter (Alspach and Sorenson 1972). Kitagawa, however,
worked directly with non-normal distributions of the following form:

nt D Fnt�1 CGvt

yt D Hnt C wt ;

where for his numerical solution nt and yt were scalars, and vt and wt were
non-normal random variables. He formulated iterative algorithms for evaluating
one-step-ahead predictive density of the state (i.e. g.nt jy1Wt�1/), filtered state density
(i.e. g.nt jy1Wt /), and “fixed” interval smoothed state density (i.e. g.nt ; ntC1jy1WT /).
Given those algorithms, he numerically carried out evaluations of various condi-
tional densities and convolutions of densities using piecewise linear (first-order
spline) functions. Extensions to higher dimension state and observation vectors were
discussed but not demonstrated.

A computationally efficient method for calculating maximum likelihood esti-
mates of SSM parameters and then making inferences about unobserved states in
high-dimensional nonlinear and/or non-normal SSMs, or more generally hierar-
chical models, has been developed by Skaug and Fournier (2006; see also Skaug
2002). They have developed freely-distributed companion software, ADMB-RE
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(Automatic Differentiation Model Builder—Random Effects, Skaug and Fournier
2011), for fitting SSMs. Their approach has several features.

1. The SSM is viewed as a special case of a random effects model, i.e. a hierarchical
model, where the unobserved states are the random effects.

2. The marginal likelihood for the observations [Eq. (4.2)] is calculated approxi-
mately (typically with high accuracy) and quickly using automatic differentiation
(Skaug and Fournier 2006) and the Laplace method (Tierney and Kadane 1986)
to carry out the high-dimensional integration over the state vector.

3. Given the marginal likelihood, maximum likelihood estimates of the fixed SSM
parameters are calculated (although Bayesian inference is an option).

4. Parametric empirical Bayes (Morris 1983) estimates of the random effects, i.e.
the unobserved states, are calculated conditional on the maximum likelihood
estimates, i.e. given the mle’s for the parameters, ADMB-RE “automatically
calculates ‘maximum posterior’ estimates of the random effects” (Skaug and
Fournier 2011).

4.5 Monte Carlo Simulation Procedures

Computer-intensive Monte Carlo procedures such as Markov chain Monte Carlo
(MCMC) and sequential importance sampling (SIS) are more commonly used
within a Bayesian framework, but they can also be used for classical analyses (Geyer
1996; de Valpine 2002, 2003, 2004; de Valpine and Hilborn 2005; Ionides et al.
2006). Below we discuss MCMC and SIS as distinct approaches but note that the
methods can be used in combination, as in Partical MCMC (Andrieu et al. 2010).

4.5.1 Markov Chain Monte Carlo

The general idea of Markov chain Monte Carlo (MCMC) is to generate samples
from a Markov chain which has a limiting distribution equal to the desired distribu-
tion (Metropolis et al. 1953; Hastings 1970; Gilks et al. 1996; Brooks et al. 2011).
The iterative procedure known as the Metropolis–Hastings algorithm is a means
of constructing the appropriate Markov chain. Before describing the algorithm for
the case of an SSM with unknown parameters, we begin with a simpler case of a
sample of n independent identically distributed random variables, y1; : : : ; yn with
pdf f .yj/, where  is an unknown scalar and y D fy1; : : : ; yng. Let �./ be
the prior for an unknown parameter and let f .yj/ denote the likelihood. The
Metropolis–Hastings procedure generates a sample from the posterior distribution
for  , i.e. a sample from �. jy/, in the following manner. At each iteration i of the
algorithm, let the current state of the chain be denoted by i . A candidate value,



4.5 Monte Carlo Simulation Procedures 69

denoted  0, is generated from some proposal distribution with pdf q. 0ji /. The
proposed parameter is accepted with probability ˛.i ;  0/ D min.1; p /, where

p D �. 0/f .yj 0/
�.i /f .yji /

q. i j 0/
q. 0ji / : (4.23)

If the move is accepted, iC1 is set equal to  0; else iC1 is set equal to i .
Beginning with i D 0, and an initial arbitrarily chosen value for  , denoted 0,

a sequence of  ’s is generated for i D 1; : : : ; B C N . The first B iterations are the
so-called burn-in period which is the period prior to convergence of the sample to
the desired limiting distribution, and the next N iterations are the inference sample.

In the more general case, where  is a vector, the above Metropolis–Hastings
algorithm generalises immediately, where the proposal density q is a multivariate
pdf. An alternative approach (and probably the most common approach in general)
is the single-update Metropolis–Hastings algorithm. In this algorithm, each iteration
of the Metropolis–Hastings step involves cycling through each parameter in turn
and proposing a new candidate value for the given parameter being updated. This
value is accepted with the probability given above (though algebraic simplifications
can often be made). A single iteration is completed after each parameter has been
updated. An example of the single-update algorithm is described mathematically in
Sect. 4.5.1.2.

4.5.1.1 Implementation Issues

There are several decisions that must be made when carrying out MCMC sim-
ulations using the Metropolis–Hastings algorithm. Here we just list some of the
issues; Gilks et al. (1996) and Brooks et al. (2011) are excellent guides to practical
implementation.

1. Burn-in length, B . There are various ways to identify a suitable value for B .
Usually, time series plots of the iterated values, also known as trace plots, are
visually examined to see whether or not the simulated values are changing
relatively rapidly as i increases. This is visual evidence for what is termed “good
mixing”, i.e. relatively rapid sampling of the posterior distribution with little
“sticking” at particular values. For example, the simulated values of  may be
generally increasing from 0.1 to 0.4 for i D 1; : : : ; 100, and then for i > 100, the
values are on average 0.4 but vary from 0.2 to 0.6 with no recognisable pattern.
In that case, B might be set at 100.

A less subjective approach is to start the simulation several times, i.e. to run
multiple chains, each time using a different initial value, and then to examine the
point at which the chains overlap consistently. A formal measure of convergence
is the Brooks-Gelman-Rubin (B-G-R) statistic (Brooks and Gelman 1998), which
is essentially an F -ratio statistic that compares the variation between chains with
variation within chains. Values of the B-G-R statistic near 1.0 are considered
indicative of convergence.
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2. Chain length, N . The sample size can be chosen pragmatically on the basis of
the Monte Carlo error of statistics of the posterior sampling distribution. For
example, multiple chains are run and the 0.05 percentiles for  are compared
between chains, and if the between-chain variation, i.e. Monte Carlo variation, is
considered low enough, then N is sufficient.

3. Choice of proposal distribution, q. 0ji /. The proposal distribution affects the
mixing of the chain and time needed until convergence. There are various
somewhat mechanical choices for proposals. In some cases, the full conditional
distributions, e.g. �.1jy; 2; : : : ; q/, are known and these conditionals then
serve as proposals. In this case the acceptance probabilities of Equation (4.23) are
100 %, i.e. every candidate value is kept, and the Metropolis–Hastings sampler
becomes what is known as the Gibbs sampler. For other alternatives including
random walk proposals and independence proposals, see Gilks et al. (1996).

4. Blocking. With multiple parameters, e.g.  D .ˇ0; ˇ1; �
2/0 as in a simple

linear regression, we can choose to implement a single-update Metropolis–
Hastings algorithm or simultaneously generate candidate values for two or more
parameters at one time. Simultaneously updating two or more parameters is
known as blocking and is most commonly used when the parameters within a
block are highly correlated as it can improve mixing (allowing a smaller value of
N and reducing the number of iterations B until convergence).

4.5.1.2 MCMC for SSMs

Here we describe one way that the Metropolis–Hastings algorithm can be used to
generate a sample from the joint posterior distribution of states and parameters,
�.n0WT ;�; jy1WT /. For an early application of MCMC methods, in particular the
Gibbs Sampler, for a non-normal, nonlinear SSM see Carlin et al. (1992).

To begin, prior distributions �.�; / and g0.n0j�/ for the parameters and the
initial state vector are specified. Here we assume that a full iteration of the sampler
produces a complete vector of all the state values and parameters; i.e. at the end of
iteration i , all the states and parameters are “updated”. Furthermore, at each iteration
assume that the chain first produces individual components of the parameter vector
one at a time, then the state vectors, n0, n1, : : : , nT are generated in sequence, and
assume that all components of the state vector at time t are produced simultaneously.

For convenience, we denote the combined vector of state and observation
parameters by � D f�; g with elements �r , r D 1; : : : ; R. At iteration i , we
cycle through each element of � in turn, propose a candidate value for the given
parameter, and accept/reject this candidate value with the given specified acceptance
probability. Mathematically, suppose that we propose to update parameter �r , such
that (for r > 1) we have already updated parameters �1; : : : ; �r�1. We denote the set
of current parameters by �iŒr� D f�iC11 ; : : : ; �iC1r�1; �ir ; �irC1; : : : ; �iRg and current state

vectors, ni0WT . Simulate a candidate value, denoted �0
r from the proposal distribution

with pdf q.�0
r j�ir /, and set �0

Œr� D f�iC11 ; : : : ; �iC1r�1; �0
r ; �

i
rC1; : : : ; �iRg. The candidate
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value, �0
r is accepted with probability ˛�r D min

�
1; p�r

	
, where

p�r D �.�0
Œr�/g0.nnn

i
0j�0

Œr�/
QT
tD1 ft .yt jnit ;�0

Œr�/gt .n
i
t jnit�1;�0

Œr�/

�.�iŒr�/g0.n
i
0j�iŒr�/

QT
tD1 ft .yt jnit ;�iŒr�/gt .nit jnit�1;�iŒr�/

q.�ir j�0
Œr�/

q.�0
Œr�j�iŒr�/

:

If the move is accepted, set �iC1r D �0
r ; otherwise, set �iC1r D �ir . Following com-

pletion of each parameter update, we denote the set of updated parameters by �iC1.
Similarly for the (block) updating of the states, we cycle through each state vector

in turn (nt for t D 0; : : : ; T ), simulate a candidate state vector, and accept or reject
the proposed values. Consider time t D 1; : : : ; T � 1, with current set of all state
vectors, niC10 ; : : : ;niC1t�1 ;nit ;nitC1; : : : ;niT . Propose a candidate state vector for time
t , denoted n0

t , from some proposal density qnt .n
0
t jnit /. The proposed state vector is

accepted with probability ˛nt .n
i
t ;n

0
t / D min.1; pnt /, where

pnt D ft .yt jn0
t ;�

iC1/gt .n0
t jniC1t�1 ; 

iC1/gtC1.nitC1jn0
t ; 

iC1/
ft .yt jnit ;� iC1/gt .nit jniC1t�1 ; 

iC1/gtC1.nitC1jnit ; iC1/
qnt .n

i
t jn0

t /

qnt .n
0
t jnit /

(explicitly using the terms � and  instead of the � terminology above). If the
move is accepted, set niC1t D n0

t ; else set niC1t D nit . We note that for the cases
t D 0 and t D T , the acceptance probability simplifies further. For t D 0, the term
gt .nt jnt�1; / D g0.n0j /; for t D T , the term gtC1.ntC1jnt ; / � 1.

In practice, efficient implementation of an MCMC sampler for a SSM can be
very difficult (Newman et al. 2009; Fearnhead 2011; King 2011). For example,
correlation between states and parameters can be very high which means that very
long simulations of the Markov chain may be necessary before the chain converges
to the posterior distribution.

The resulting posterior sample of states is a sample from the smoothed distribu-
tion, i.e. all observations, y1WT , are used to make inferences about states at all time
periods. This is in contrast to some inference procedures for states which produce
samples from the filtered distribution, i.e. only observations up to and including time
t , y1Wt , are used to make inferences about nt .

4.5.2 BUGS Project Software

The BUGS (Bayesian inference Using Gibbs Sampling) project (www.mrc-
bsu.cam.ac.uk/bugs/) has led to the freely available software WinBUGS and
OpenBUGS for model fitting using MCMC (Lunn et al. 2000, 2013). WinBUGS is a
stable version of BUGS (the final version of this software is 1.4.3) while OpenBUGS
is an open-source version “on which all future development work will be focused”.
As suggested by the name, WinBUGS is restricted to Windows operating systems
(or Windows emulators), while OpenBUGS is available for Windows and Linux

http://www.mrc-bsu.cam.ac.uk/bugs/
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(using a command line interface). These packages have a graphical user interface
(GUI) but can also be run from within R using the associated packages R2WinBUGS
(for interacting with WinBUGS) and R2OpenBUGS or BRugs (for interacting with
OpenBUGS). The BUGS language is also used in the software JAGS (Plummer
2003), freely available from http://mcmc-jags.sourceforge.net with versions for
Windows, Linux and Mac OS X operating systems. JAGS has a command line
based interface, but with an associated R package rjags for calling the program
from R. For in-depth discussion of the BUGS language, numerous examples and
further description of the different packages, including differences between them,
see Lunn et al. (2013).

We will demonstrate the use of WinBUGS to fit a SSM but before doing so, we
give a simpler example of Bayesian inference for a linear regression.

4.5.2.1 Set-Up

There are three sets of program code for most WinBUGS programs: (i) the model
statement, (ii) the data statement, and (iii) the initial values.

The model statement consists of pieces of code that define the priors and the
likelihood. For example, for a simple linear regression, where y � normal.ˇ0 C
ˇ1x; �

2/:

#(i) Model Statement
model {
#Prior distribution for parameters
beta1 ~ dnorm(0,0.01)
beta0 ~ dnorm(0,0.01)
sigma ~ dunif(0.01,10)
tau <- 1/(sigma*sigma) #the precision

#Likelihood defined
for(i in 1:n) {
mu[i] <- beta0+beta1*x[i]
y[i] ~ dnorm(mu[i],tau)

}
}

Note that the priors for the coefficients, ˇ0 and ˇ1, are normal.� D 0; �2 D
1=0:01 D 100/, as the WinBUGS syntax for normal random variables specifies the
precision, or inverse of the variance. The symbol # denotes a comment in WinBUGS.

The data statement specifies the values corresponding to the observations,
relevant covariates, and sample size that have been used in the model statement.
Again referring to the simple linear regression example:

http://mcmc-jags.sourceforge.net
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#(ii) Data Statement

list(n=15,
y=c( 29.4, 33.8, 24.8, 26.1, 31.6, 29.4, 14.6,
12.6, 29.3, 27.5,28.9, 28.3 ,24.7, 28.5,
14.9),

x=c(8, 10, 7, 7, 9, 9, 3, 3, 8, 7, 8,
8, 7, 8, 3))

The initial values are the �0s used to begin the chain. e.g.

#(iii) Initial Values Statement

list(beta0=0.5, beta1=1.0, sigma=3.0)

Note that, in general, it is possible to generate all (or some of) the initial values
in WinBUGS. In this case the starting values are generated from the corresponding
prior distribution specified for the parameters. However, not all prior distributions
can be simulated from, in which case an error message is displayed stating that
an initial value cannot be generated for the given distribution. To run the MCMC
simulations, initial starting values do need to be specified for (at least) these
parameters. For example, WinBUGS cannot simulate from a � .0:001; 0:001/ prior.

For SSMs, initial values need to be specified (or generated) for all the parameters
and unknown states. However, care typically needs to be taken in specifying the
initial values for the unknown states so that impossible state transitions (given the
initial parameter values) are not specified. In practice, the observation vector y1WT is
often used for the observed parts of the state vector (although this can still lead to
impossible state transitions). More generally, given the specified model parameters
and initial value for n0, the remaining initial state vectors n1WT can be obtained by
simulating forward from the given model (see Sect. 4.5.3 for an example).

4.5.2.2 Program Execution

The sequence of steps to run WinBUGS and produce a sample is:

1. Check model statement for syntax errors.
2. Load data.
3. Compile model to check for compilation errors.
4. Set initial values for �0.
5. Specify model outputs, i.e. the parameters for which MCMC output is to be

shown.
6. Specify number of iterations.

More than one chain can be generated, which then allows the B-G-R statistic to
be calculated. Note that it is up to the user to specify the burn-in, B , to be used in
any posterior summary estimates.
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Fig. 4.1 WinBUGS output from fitting a simple linear regression. The trace plot shown is for
the slope coefficient ˇ1, based on three chains with differing starting values, B D 10;000 and
N D 30;000

4.5.2.3 Program Output

The output from WinBUGS includes trace plots of the simulated parameter values,
the B-G-R statistic if multiple chains are run, and summary statistics from the pos-
terior distribution (including the mean, standard deviation, and various quantiles).
Recall that the burn-in, B , should be initially determined (for example using the
B-G-R statistic) and then discarded before calculating these summary statistics.
Example output from fitting the simple linear regression model is shown in Fig. 4.1.
Three chains were run with different starting values, each with a burn-in of 10,000
iterations followed by 30,000 iterations for inference. The posterior mean values
for ˇ0, ˇ1 and � shown in the figure are quite similar to least squares estimates of
5.69, 2.85 and 1.04. The MC error, Monte Carlo error, is computational error in the
calculation of the mean value and can be made arbitrarily small by increasing the
number of simulations.

4.5.3 Fitting the Simplified Coho Salmon SSM with WinBUGS

For the univariate coho salmon SSM defined previously (Sect. 3.2.1), a Ricker
population dynamics model with Poisson variation and bias-corrected lognormal
observations, was fitted using WinBUGS. Twenty years of observations were used
(the first 20 shown in Fig. 3.2; see the R code on the book website (Sect. 1.2)
for Chap. 3). These had a coefficient of variation of 30 % (CV.obs). The model
definition code, available on the book website, estimates three parameters, ˛, ˇ and
n0, assigned uniform prior distributions, while the observation CV was treated as a
known constant.
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Fig. 4.2 Fitted states, true
states and estimates for
univariate coho salmon SSM
with Ricker population
dynamics (Poisson variation)
and lognormal observations

Table 4.2 Posterior means for parameters of state process of the univariate coho
salmon model based on MCMC sampling procedure

Parameters True SSM Non-SSM

˛ 1.50 1.73 1.91
ˇ 3.00e-4 3.90e-4 4.40e-4
n0 135 76.4 75.1

Means based on the correctly specified SSM are in the column SSM while means
based on fitting a non-SSM Ricker model are in the column non-SSM

Rather than inputting the model statement, data and initial values directly within
WinBUGS, the values were passed from R using the function bugs from the R
package R2WinBUGS. The relevant R code is also available on the book website.
This is particularly convenient for generating multiple sets of initial values �0
(˛, ˇ and n0W20) for running multiple MCMC chains. A case-specific function
init.value.generator was written in this case to provide initial values for
the entire state variable sequence.

The posterior means of the state variables are plotted along with the true state
values and observations in Fig. 4.2. The posterior means for the parameters ˛, ˇ and
n0 are shown along with the true values in Table 4.2. For comparison, a non-SSM
model was fitted, where the estimated abundances were modelled according to the
Ricker model with lognormal errors, i.e.

Ont j Ont�1 � lognormal
�
log .˛ Ont�1 exp.�ˇ Ont�1// � �2=2; �2	 :

Both models overestimated the productivity parameter ˛ and the density dependence
parameter ˇ, but the SSM estimates were closer to the true values.
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Fig. 4.3 Plot of B-G-R statistic versus iteration based on 3 independent MCMC chains for the
parameters � , �, n1;0, n2;0, �1 and �2. The green line is the width of the central 80 % interval for
all three runs pooled and based on bins of length 50, while the blue line gives the average width
of the 80 % intervals within all three runs individually, and the red line is the ratio R of pooled to
averaged within credible interval widths. Ideally R converges to 1 and the pooled and within lines
converge

4.5.4 Fitting the BRS SSM with WinBUGS

For a somewhat more complex SSM, the BRS model (Sect. 3.2.2) was fitted using
WinBUGS. The WinBUGS code is available on the book website (Sect. 1.2) as is the
generating R code. As mentioned previously, with a sequence of three sub-processes,
the pdf for nt jnt�1 is intractable. The WinBUGS code deals with this by explicitly
defining the intermediate or “latent” states, the u’s, and their corresponding pdf’s.
Three different chains were run; each had a different set of initial values for the
parameters as well as for the latent states, all of which were generated within R.

The B-G-R statistic (Fig. 4.3) indicated that the chain was not converging for the
initial population size n1;0, which is possibly indicative of non-identifiability or
weak identifiability problems. However, the posterior mean (smoothed) values for
the states matched well with the true states (Fig. 4.4).
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Fig. 4.4 Fitted states, true states and estimates for BRS SSM with lognormal observations

Table 4.3 Parameters and
posterior means for the BRS
model based on 30 years of
simulated data

True Posterior distribution

Parameter value 2.5 % Mean 97.5 %

�1 0.60 0.13 0.50 0.92
�2 0.70 0.37 0.76 0.94
� 0.70 0.37 0.72 0.93
n1;0 50 13 89 318
n2;0 70 13 54 122

The true parameter values along with posterior distribution summaries, based on
the combined output of three MCMC chains of length 50,000 following a burn-in of
50,000, are shown in Table 4.3.

4.5.5 Sequential Importance Sampling

We discuss sequential importance sampling (SIS) in the context of Bayesian
inference for a SSM. Once again the objective is to produce a sample from the
posterior distribution for the parameters and states. The collection of papers edited
by Doucet et al. (2001) is a good reference for details of sequential importance
sampling in its various forms.

4.5.5.1 Importance Sampling

Before discussing SIS, we describe “ordinary” importance sampling. Suppose we
want a sample of values of a random variable X from a distribution with pdf f .x/.
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Further suppose that generating samples directly from f .x/ is difficult, but given a
particular value x, f .x/ can be evaluated. Let g.x/ be the pdf for a random variable
with support including the support of f .x/, i.e. if f .x/ > 0, g.x/ > 0. This simply
means that if f .x/ can produce values between 0 and 20, say, then g.x/ needs to be
able to produce values between 0 and 20, too. The distribution of interest, f .x/, is
referred to as the target distribution and the generating distribution, g.x/, is the trial
distribution (Liu 2001).

The following importance sampling algorithm yields an independent sample
from f .x/:

1. Generate a sample of N values from g.x/, x�
1 ; : : : ; x

�
N .

2. For each generated value, calculate the ratio, w0.x�
i /=f .x

�
i /=g.x

�
i /.

3. Scale the ratios, w0.x�
i /, so that they sum to 1:

w.x�
i / D w0.x�

i /PN
iD1 w0.x�

i /
:

4. Resample the x� by sampling values x�
i with replacement and with probability

w.x�
i /.

We note that, with this particular implementation of an importance algorithm,
f .x/ need only be evaluated up to an unknown constant of proportionality. The
rescaling has the effect of cancelling out the unknown proportionality constant.
Thus, as with MCMC, this is particularly relevant for Bayesian inference in that
the normalizing constant (the denominator in the posterior pdf, Eq. (4.5)) need not
be calculated.

4.5.5.2 Sequential Importance Sampling for SSMs

To use ordinary importance sampling to generate the posterior sample for the
states and parameters of an SSM, we need to specify a relatively high-dimensional
pdf g.n0; : : : ;nT ;�/. This has sometimes been done using distributions such as
a multivariate t -distribution (e.g. Cunningham 2002). An alternative, “divide and
conquer” approach is sequential importance sampling (Liu and Chen 1998), which
is, as the name suggests, a sequential implementation of importance sampling.
Doucet et al. (2001) give a nice description of the method and our explanation below
largely follows theirs.

We will just explain how SIS proceeds for an SSM where the parameters and
initial state n0 are known. Dual inference, about the unknown parameters as well as
the states, can be done using a method developed by Liu and West (2001).

At time t D 1, generate n�
1 from a trial distribution pdf h1.n1/ where h1 can

depend upon n0 and � . Evaluate the following weight:

w1 D g1.n�
1 jn0;�/f1.y1jn�

1 ; /

h1.n�
1 /

:
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Next, generate n�
2 from a pdf h2.n2/ where h2 can depend upon parameters,

previous states, and previous and current observations. Evaluate a new weight

w2 D w1 � g2.n�
2 jn�

1 ;�/f2.y2jn�
2 ; /

h2.n�
2 /

:

Proceed in a similar manner for the remaining time periods. After the last time
period,

wT D
T�1Y
tD1

wt � gT .n�
T jn�

T�1;�/fT .yT jn�
T ; /

hT .n�
T /

D
TY
tD1

gt .n�
t jn�

t�1;�/ft .yt jn�
t ; /

ht .n�
t /

:

Note that a special case of a trial distribution is where ht is gt , the state process
pdf. In this case, the weights are proportional to the observation process pdf,
ft .yt jn�

t /.
The weights are subsequently scaled to cancel out the proportionality constant

1=f .y1; : : : ; yT /, and the generated sequences can be re-sampled according to these
scaled weights to yield a sample from the posterior distribution. An alternative
to accumulating the weights in this manner is to re-sample at various points in
time, with probabilities proportional to the current weights, according to some re-
sampling schedule. One extreme schedule is to re-sample every time period and
eliminate the need to store weights. Such re-sampling schedules can affect the
degree of Monte Carlo variation in the posterior samples.

In the case of unknown parameters and initial state n0, we generate a sample of
parameters and initial states from a sampler with joint pdf h�; �h0, say. The weight
at time T is then

wT D �.�; /g0.n0j�/
h�; .�; /h0.n0j�/

TY
tD1

gt .n�
t jn�

t�1;�/ft .yt jn�
t ; /

ht .n�
t /

:

As for MCMC, efficient implementation of SIS is not necessarily simple. One
of the problems is that the distribution of weights can be quite asymmetric with
relatively few sample vectors having most of the weight, a problem known as
particle depletion. This can be problematic even with very large initial sample
size. There are numerous techniques aimed at reducing particle depletion, such as
the auxiliary particle filter (Pitt and Shephard 1999; Liu and West 2001), residual
resampling (Liu and Chen 1998), and partial rejection control (Liu 2001).

The algorithm of Liu and West (2001) adds the step of kernel smoothing the
selected parameter values, after an importance sampling step, to lessen the degree
of particle depletion. R code implementing this algorithm for the univariate coho
salmon SSM is available on the book website (Sect. 1.2). The program was run
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Table 4.4 Posterior means for parameters
of state process of the univariate coho
salmon model based on both MCMC and
SIS sampling procedures

Parameters True MCMC SIS

˛ 1.50 1.73 1.64
ˇ 3.00e-4 3.90e-4 3.54e-4
n0 135 76.4 104.6

with 200,000 particles, where the initial parameter values were drawn from the
same prior distributions used in the MCMC implementation. The degree of kernel
smoothing was set at 5 %, i.e. 95 % of the weighting in the smooth came from
the original, unsmoothed value. Particle depletion was 99.6 %; i.e. of the 200,000
original particles, only 850 of the original simulated values (ignoring effects of
kernel smoothing on parameters which perturbs all parameters) were left by the
20th year of simulations. In this particular instance, the SIS posterior means for ˛,
ˇ and n0 (Table 4.4) were closer to the true values than the MCMC values, but
this should not be overstated due to Monte Carlo variation and perhaps due to the
bias introduced by kernel smoothing (Newman et al. 2009). The prior and posterior
densities for the parameters are shown in Fig. 4.5.

4.6 Selecting a Fitting Procedure

We have discussed several approaches for fitting state-space models, distinguishing
classical and Bayesian frameworks as well as analytical and simulation-based
solutions. How does one determine which fitting procedure to use? No single
procedure is consistently the best choice; e.g. Monte Carlo solutions are not
necessarily better than analytic solutions. To make a decision, consideration of the
following criteria may be useful.

1. Code development time or ease of implementation.
2. Computational efficiency, namely the computing time to produce parameter and

state estimates.
3. Accuracy of estimated parameters and states.
4. Degree of fidelity to reality.
5. Risk associated with decisions made using the SSM.

Newman et al. (2009) compared MCMC and SIS using the first three criteria and
concluded that there was no clearcut choice between the two approaches as these
criteria are affected by the SSM formulation and the available data. They noted
that MCMC and SIS are similar in that one must choose a “sample generating”
distribution (a proposal distribution for MCMC and an importance distribution
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Fig. 4.5 Results from the SIS fit to the univariate coho salmon SSM with Ricker population
dynamics (Poisson variation) and lognormal observations. Prior (solid) and posterior (dashed) for
the parameters ˛, ˇ and n0 are shown along with marks “T” at the true values (1.50, 3.0e-4, 135)
and “P” at the posterior mean values (1.64, 3.5e-4, 105). The lower right plot shows the fitted
states, true states and estimates

for SIS), and those choices can affect accuracy of estimates as well as ease of
implementation.

The fourth criterion, fidelity to reality, refers to how similar the postulated SSM
is thought to be to reality. There is an interplay between selecting a model-fitting
procedure and model formulation. If time to develop and execute computer code
is quite limited and if one is willing to approximate a nonlinear, non-normal SSM,
considered relatively realistic, with a normal dynamic linear model, considered less
realistic, then maximum likelihood estimation using the Kalman filter to calculate
the likelihood may be a good choice.
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If there is model uncertainty and the set of models to fit is relatively large, then
run execution time can be a deciding criterion and analytic fitting procedures may
be preferable.

The fifth criterion, risk associated with use of the SSM, can be related to accuracy
and model fidelity. If the consequences of poor decisions resulting from using a
less-than-adequate SSM are high, then model fidelity and accuracy of estimates
can be extremely important. Devoting considerable financial resources to code
development and computational time may be preferable to the potential risk of
poor management decisions. If a relatively complex realistic SSM is considered
necessary, then Monte Carlo techniques may be the only choice.

The length of the time series, the length of the state vector, and the length
of the observation vector, as well as the nature of the relationship between
observation vector components and state vector components, can all affect accuracy
of inferences about parameters and states. As time series length increases, particle
depletion in some sequential Monte Carlo procedures in particular can reduce
accuracy.

Issues pertinent to model formulation are discussed further in Sect. 5.1.



Chapter 5
Model Formulation and Evaluation

The previous two chapters have presented the state-space model as a general
framework for modelling population dynamics and discussed alternative ways of
fitting SSMs to data. In this chapter, we address model formulation and model
evaluation.

How does one formulate a model, or models, for an animal population in the
first place? Model construction was considered from the perspective of using matrix
models as building blocks in Chap. 2. In Sect. 5.1 we take a more general look at
the issue. The initial formulation of a model may be one that cannot be practically
fit to data, in the sense that model parameters and state vector values cannot be
estimated. Even if the model is biologically sensible, the available data might be
inadequate, e.g. the state vector consists of age classes 0; 1; : : : ; 9; 10C, but data
are only available for age 0 and ages 1C. Or there are too many intermediate sub-
processes given the temporal resolution of the state vector. In Sect. 5.2, a general
approach to the issue of determining model “over-parameterization”, which we label
parameter redundancy, is described. In Sect. 5.3, we demonstrate how parameter
redundancy can be determined in state-space models.

Once one or more models have been formulated and fitted to the data, how
do we determine if a model is adequate, or if one model is better than another?
We consider several facets of model evaluation including model comparison and
selection (Sect. 5.4), model averaging (Sect. 5.5), and individual model diagnostics
(Sect. 5.6).

5.1 Model Formulation

Before formulating a model, and attempting to fit it, the purpose of modelling
needs to be clearly articulated. Starfield and Bleloch (1991) generally advise that
a model should be formulated to answer one or more specific questions, and to
make the model no more complex than necessary. Questions thus motivate and guide

K.B. Newman et al., Modelling Population Dynamics: Model Formulation,
Fitting and Assessment using State-Space Methods, Methods in Statistical Ecology,
DOI 10.1007/978-1-4939-0977-3__5, © Springer Science+Business Media New York 2014
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the modelling effort, and these questions typically involve estimation of states or
parameters. A progression of questions parallels progression in the understanding
of the biology of the animal population. The specificity of the questions provides
guidance about the required level of detail and complexity of models. To begin, we
might simply ask

• For years t D 1; : : : ; T , what were the total abundances Nt?

A follow-up question might focus on a partitioning or categorization of
abundances:

• For each year t , what were the abundances for age class a and sex s in location
r , na;s;r;t?

At a slightly deeper level, we might want to know the vital rates that led to these
abundances:

• For each year, what were the survival, birth, immigration and emigration rates?

Digging deeper, we might ask what factors led to, or influenced, the particular values
of the vital rates:

• Did environmental covariates or resource management actions, quantified by
variates xj;t , affect any or all of the survival, birth, immigration and emigration
rates for years 1; 2; : : : ; T ? For example, in the following model for survival,

�j;t D 1

1C exp
�
ˇ0 C ˇ1xj;t

	 ;

what is the value of ˇ1?

Modelling objectives will often also include prediction, and with questions
paralleling many of the above; e.g. “What will the population abundances be over
the next five years?”, or “If this management action is taken, how will birth rates be
affected?”.

Clarity about modelling objectives assists model formulation. We advocate
beginning with the state process model, aiming to align its structure to meet the
modelling objectives, deferring consideration of the observation model and the
available data. Think about what is wanted first, worry about whether it is actually
achievable second. The modelling objectives can provide guidance in formulation
of the state process model in the following respects:

1. spatial and temporal scope (e.g. geographic extent and number of years of
interest);

2. temporal resolution (e.g. abundances on a monthly basis);
3. spatial resolution (e.g. abundances distinguished by habitat type);
4. biological “resolution” of the population (e.g. categorization by age, sex,

maturity);
5. specification of the processes which need explicit inclusion (e.g. for fish, separate

the survival by life stage: egg, fry, juveniles, etc.).
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The building block matrix model formulations, as discussed in Chap. 2, are a useful
initial approximation to formulating the state process model. The temporal, spatial
and biological resolution desired or needed will be reflected by the definition of the
components of the state vector, e.g.

nt or

�
n0;t
n1C;t

�
or

2
664

n0;male;t
n0;female;t
n1C;male;t
n1C;female;t

3
775 or

2
666666666664

n0;male;south;t

n0;female;south;t

n0;male;north;t
n0;female;north;t
n1C;male;south;t

n1C;female;south;t

n1C;male;north;t
n1C;female;north;t

3
777777777775

:

Specification of the processes driving the dynamics will be approximated by the
projection matrices, with multiple sub-processes translating into multiple matrices.
In many cases, the general sub-processes will include survival, birth, growth and
movement, where survival sub-processes might be further partitioned by natural
and anthropogenic sources of mortality.

Using the matrices only as an approximate model blueprint, more realistic state
process models, namely the state pdf’s for a state-space model (Chap. 3), are next
specified. Probabilistic formulations of the sub-processes represented by different
matrices composing the projection matrices are translated into multiple pdf’s for
each sub-process; e.g. binomial distributions for survival, Poisson distributions for
births, multinomial distributions for movement.

The imaginative, and often idealized, state process model formulation is brought
back to reality at this point by asking:

If we had perfect information about every component in the state vectors over T time
periods, could the parameters of the state process be estimated?

In the next two sections, we discuss approaches for trying to answer this question,
but for now assume that the answer is “No”. Given this answer, we might either
reformulate (simplify) the state processes, or we might change the resolution of the
state vector, e.g. adding state vectors for time periods immediately following a given
sub-process might lead to estimability in terms of known state vectors.

Once we have a state process model with state vectors adequate for estimating the
unknown process parameters, additional reality is imposed by considering the avail-
able data and corresponding observation models, i.e. by formulating observation
process pdf’s. Often a decision must be made between letting the observations be
the data at their most raw level, completely unsummarized, versus using quantities
derived from the sample data, e.g. mark-recapture point estimates and associated
standard errors. Incorporating raw data into the observation model can be somewhat
technically difficult or cumbersome. For example occupancy data, mark-recapture
data or distance sampling data are often analysed with sophisticated specialized
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software, rather than simply using summarized estimates. Recent work by Knape
et al. (2013) shows that in some cases inferences for SSMs using the raw data and
the summarized data are quite similar. Whether working with raw or summarized
data, however, a key question is “given the available data (and observation pdf’s),
can the state process model parameters and states be estimated?”.

Estimability problems will often become obvious during model fitting. Using
frequentist methods to fit a SSM, estimability problems may be detected when
the optimization program fails to converge. For Bayesian inference, such problems
might be detected because posterior distributions are essentially the same as prior
distributions, or because of strong dependencies in the posterior distribution, e.g.
the joint posterior distribution for two parameters is tightly concentrated along a
line or curve. Other differences between frequentist and Bayesian approaches with
regard to estimability are noted in Sect. 5.2, which presents general procedures for
determining estimability issues in advance of model fitting.

Once an estimability problem has been detected, there are several alternatives.
One is to formulate a new SSM; this could be a shortened state vector, with
dimension and components more closely matching that of the observation vector,
or it could be a simpler state process, with fewer sub-processes and corresponding
parameters. Alternatively, we might keep the model as is, but then “arbitrarily”
specify fixed values for some of the unknown parameters. In the case of Bayesian
inference, we might specify relatively informative prior distributions for some
parameters. If relevant data inform the priors, then the use of such priors will be
less questionable than when relevant data are lacking and expert knowledge is used
instead to specify the priors. In the longer term, estimation problems due to data
deficiencies or inadequacies could lead to new types of data being collected, e.g.
recording age or sex of animals during surveys, or it could lead to changes in the
frequency of sampling, e.g. increasing data collection from once a year to twice a
year, once following an annual birth period and once following an annual migration
period.

5.2 Model Formulation: Parameter Redundancy

In this section, we discuss a general approach to the problem of detecting, and
possibly rectifying, estimability problems with statistical models. The approach
is an area of active research,1 and the underlying principles are useful for model
builders to understand. The perspective taken is that of estimation using frequentist
or “classical” methodology, although for a Bayesian approach, problems with the
likelihood often translate directly into problems with the posterior distribution,
depending upon the nature of the prior distribution.

1See, for example, http://www.kent.ac.uk/ims/personal/djc24/parameterredundancy.htm.

http://www.kent.ac.uk/ims/personal/djc24/parameterredundancy.htm
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We begin with a description of the basic ideas of parameter redundancy, starting
with historical background. We then explain how computational symbolic algebra
methods can be used to determine whether a model is parameter-redundant or not,
and if it is, what can be estimated. We introduce the idea of model extensions, in
which parameter redundancy results may be extended to cover models that have
a fixed structure but are applied to studies of different sizes. An example of such
models is the Cormack-Jolly-Seber model (Cormack 1964; Jolly 1965; Seber 1965),
where the structure (multinomial models with outcome probabilities being products
of time-specific survival and capture probabilities) is the same for T years of capture
and recapture, whether T D 4 or T D 7. We explain how reparameterisation can
be used to try to overcome complexity issues. We also consider near-redundant
models and connections with Bayesian methods. Then in Sect. 5.3 we show how
the approach can be applied for state-space models.

5.2.1 Concepts

A model is parameter-redundant if it is not possible to estimate all of its parameters
using classical inference, irrespective of how many data are collected. This may
sound peculiar, but a simple illustration is provided in Example 2 below, in
which the Cormack-Jolly-Seber model is used to estimate survival from capture-
recapture models, in which there is time-dependence of both survival and capture
probabilities, as mentioned above. In this example, the last (in time) survival
probability and the corresponding last capture probability are confounded; they
only appear in the likelihood as a product, and while it is possible to estimate the
product (and all the other model parameters) by the method of maximum likelihood,
it is not possible to estimate the individual components of the product. Users of
the model recognise this deficiency and can live with it. However this example is
deceptively simple. Consider a model for recovery data on dead animals. If there is
full age-dependence of survival probability and constant probability of recovery and
reporting of dead animals (a model called the Seber model, Seber 1971), then once
again the model is parameter-redundant. The reason in this case is not self-evident,
and indeed it is not possible to estimate any of the original model parameters.
Furthermore, intuition is not a reliable guide to parameter redundancy; for instance,
if the first-year survival probability in the Seber model is made time-dependent,
then the resulting model is no longer parameter-redundant. In this case adding
parameters to a redundant model removes the redundancy. Thus we can appreciate
that parameter redundancy is all about model structure: how parameters enter into a
model, rather than just how many parameters there are.

Adding covariates to a redundant model is another way in which redundancy can
be avoided. For example in the Cormack-Jolly-Seber model, one might allow the
time-dependent survival probabilities to depend, through logistic regression, on a
time-varying covariate; it might describe winter weather, or food availability, for
example. The last survival probability then has the logistic regression parameters
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in common with the other survival probabilities, which potentially allows all
parameters in the model to be estimated; see Cole and Morgan (2010b) for more
discussion.

Generally, simple models with few parameters are not usually parameter-
redundant. Typically, the problems arise when realism and complexity are added.
This has been known for many years, in several different areas, such as latent
modelling of contingency tables, compartment models, models in econometrics,
as well as in models for ecology. A detailed review is provided by Cole et al.
(2010), who also describe concepts of parameter identifiability, and how this
relates to parameter redundancy. In particular, a parameter-redundant model is non-
identifiable and when a model is parameter-redundant, and a likelihood is formed,
then the likelihood will not have a unique optimum. For example, Catchpole and
Morgan (1991) showed that the Seber model likelihood is maximized along a ridge,
and they determined the locus of the ridge in parameter space.

5.2.2 Derivative Matrix and Symbolic Rank

Consider a log-likelihood which is a function of a single parameter, and which is
flat for some of the parameter range. Where the log-likelihood is flat, the derivative
of the log-likelihood is zero, and the rate of change of the derivative is also zero.
This suggests that in general one might detect parameter redundancy by considering
the aspects of the Hessian matrix, which is the matrix of second-order derivatives
of a log-likelihood surface. Catchpole and Morgan (1997) show that the expected
information matrix will be non-singular if and only if a particular derivative matrix
D has a symbolic rank equal to the number of parameters in the model. This was
presented for models that are members of the exponential family, and provides a
formal way of testing for parameter redundancy. This result extends the well-known
expression of the expected information matrix for the multinomial distribution in
terms of a derivative matrix; see Morgan (2009:110). The derivative matrix D has
rows that correspond to the model parameters, and columns that correspond to the
mean values of the observations; the entries of the matrix are the corresponding
partial derivatives of means with respect to parameters. The derivative matrix is
a function of the model parameters, and so model parameter redundancy can be
determined by considering the symbolic rank of the matrix, so that computer
packages such as Maple or Mathematica can in theory produce such a symbolic
rank. A model is parameter-redundant if its symbolic rank is less than the number
of parameters in the model. Two examples are shown below. The first example is a
simple closed population, which has a derivative matrix with the same rank as the
number of parameters, so that the model is not parameter-redundant. The second
example is the time-dependent Cormack-Jolly-Seber model, which is well known to
be parameter-redundant, as discussed earlier. Maple code for both these examples is
available on the book website (Sect. 1.2).
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5.2.2.1 Example 1

A group of n animals is marked and released into a closed population. The
population is sampled twice over a relatively short period of time where it is
assumed that survival is 100 %. The capture probability at the first time of sampling
is p1 for all animals. Animals not caught the first time are caught the second time
with probability p2. Animals caught the first time, however, experience trap-shyness
and they are caught a second time with probability  p2, where 0 �  � 1. Let y1
be the number of animals caught in the first sampling period but not the second,
y2 the number caught only in the second sampling period, y3 the number caught in
both sampling periods, and y4 D n � y1 � y2 � y3 the number never caught. Then
their joint distribution is multinomial:

y1; y2; y3; y4 � multinomial.n;q/;

where q D fq1; q2; q3; q4g D fp1.1� p2/; .1�p1/p2;  p1p2; 1�p1.1� p2/�
.1 � p1/p2 �  p1p2g. The expected values of y1, y2, y3 and y4 form the vector

ııı D Œnq1; nq2; nq3; nq4�
0

D Œnp1.1�  p2/; n.1� p1/p2; n p1p2; n.1� p1.1�  p2/� .1� p1/p2 �  p1p2/�
0;

(5.1)

and the parameters form the vector  D Œ ; p1; p2�. The derivative matrix D is
shown below. Columns correspond to the expected values of y1, y2, y3 and y4;
rows correspond to parameters  , p1 and p2, in that order. Each entry is the partial
derivative of the mean with respect to the parameter.

D D
2
4 �np1p2 0 np1p2 0

n.1 �  p2/ �np2 n p2 n.p2 � 1/
�np1 n.1 � p1/ n p1 n.p1 � 1/

3
5 : (5.2)

The rank of D is 3. Therefore there is no parameter redundancy and the parameters
p1, p2 and  can be estimated. The maximum likelihood estimates are

Op1 D y1 C y3

n
Op2 D y2

y2 C y4
O D y3.y2 C y4/

y2.y1 C y3/
: (5.3)

5.2.2.2 Example 2

Consider the Cormack-Jolly-Seber model used to describe a three-year capture-
recapture study. Suppose the data are collated in the form of an m-array with mi;j

representing the number of animals released in year i and next captured in year
j C 1 for 1 � i � 3 and i � j � 3, and let Ni represent the number of animals
released in year i . The corresponding probability that an animal released in year i
is first seen in year j is
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pi;j D
 

jY
kDi

�k

!(
jY

kDiC1
.1 � pk/

)
pjC1 for 1 � i � 3; i � j � 3; (5.4)

where 0 � �k � 1 is the probability an individual alive at time k survives until year
k C 1, for k D 1; 2; 3, and 0 � pk � 1 is the probability of recapture in year k
for k D 2; 3; 4. Rather than forming a derivative matrix with respect to the mean,
Catchpole and Morgan (1997) show that it is sufficient to differentiate the vector
consisting of the probabilities pi;j ,

ııı D

2
66666664

�1p2
�1�2.1 � p2/p3

�1�2�3.1 � p2/.1 � p3/p4
�2p3

�2�3.1 � p3/p4
�3p4

3
77777775
; (5.5)

with respect to the parameters  D Œ�1; �2; �3; p2; p3; p4�. The resulting derivative
matrix,

D D

2
66666664

p2 �2.1 � p2/p3 �2�3.1 � p2/.1 � p3/p4 0 0 0

0 �1.1 � p2/p3 �1�3.1 � p2/.1 � p3/p4 p3 �3.1 � p3/p4 0
0 0 �1�2.1 � p2/.1 � p3/p4 0 �2.1 � p3/p4 p4
�1 ��1�2p3 ��1�2�3.1 � p3/p4 0 0 0

0 �1�2.1 � p2/ ��1�2�3.1 � p2/p4 �2 ��2�3p4 0

0 0 �1�2�3.1 � p2/.1 � p3/ 0 �2�3.1 � p3/ �3

3
77777775
; (5.6)

has rank 5. Cole et al. (2010) show that if the derivative matrix is formed from a
vector of means then the rank is again 5, and this is also shown in the Maple code
for this example. The reason that the ranks are the same is explained in Sect. 5.2.4
below. As this model has six parameters but is of rank of 5, it is parameter-
redundant.

The derivative matrix provides more information than whether a model is
parameter-redundant or not. In parameter-redundant models, symbolic algebra can
also be used to find a set of parameter combinations which can be estimated.
In Example 2 there is one non-zero solution to ˛̨̨ 0D D 0, which is ˛̨̨ 0 D
Œ0; 0;��3=p4; 0; 0; 1�. The position of the zeros indicates that the parameters �1,
�2, p2 and p3 can still be estimated. In general there will be d non-zero solutions
to ˛̨̨ 0D D 0, where d is the deficiency of the model. The deficiency is calculated
as the number of parameters minus the rank of the derivative matrix. If there are
zeros in position i of ˛̨̨ for all d solutions to ˛̨̨ 0D D 0, then it is still possible to
estimate the i th parameter in  even though the model is parameter-redundant. Other
combinations of parameters that can be estimated can be found by solving partial
differential equations (Catchpole et al. 1998b; Cole et al. 2010). In Example 2, there
is one partial differential equation
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� @f

@�3

�3

p4
C @f

@p4
D 0; (5.7)

the solution to which tells us that the additional parameter that can be estimated
is the product, �3p4. This solution is well-known and obvious, but in less obvious
examples Maple code can be used to obtain the estimable parameter combinations.

A model which is not parameter-redundant is said to be full rank, but it may
not be full rank for the entire parameter space. This can be investigated through
a particular matrix decomposition called the PLUR decomposition or Turing
factorization, which can also be produced by Maple; see Cole et al. (2010). It is
explained in Cole and Morgan (2010b) and Choquet and Cole (2012) that the PLUR
decomposition should be examined when full-rank models contain covariates or
non-rational functions of the parameters, to check results and confirm that the model
is always full rank. We show in the Maple code for Example 1 that this model is
parameter-redundant at boundary values of p1 D 0, p1 D 1 and p2 D 0, and in the
unrealistic case of n D 0.

5.2.3 General Results

Consider when parameter redundancy is established for a particular size of study, as
with a three-year capture-recapture study and a Cormack-Jolly-Seber model. If there
were an extra year of recapture, or an extra year of recapture and release, would that
change the results? It would be tedious to have to apply the same symbolic algebra
calculations each time one has a different length of study for the same structural
model. One way to deal with this feature is through the extension theorem of Catch-
pole and Morgan (1997), which is generalised in Cole et al. (2010). The extension
theorem establishes conditions under which parameter redundancy results for a
given size of study and for a particular model can be generalized to studies of any
size for that type of model, rather like a mathematical proof by induction. In Cole
et al. (2010), Example 2 is shown to have rank 2T�3 for a capture-recapture study of
T years with T�1 years of capture and T�1 subsequent years of recapture. As there
are 2T � 2 parameters, this model is always parameter-redundant with deficiency
1 and estimable parameter combinations �1; : : : ; �T�2; p2; : : : ; pT�1; �T�1pT . For
additional results, see Catchpole and Morgan (2001) and Catchpole et al. (1998a).
The papers by Cole et al. (2012) and Hubbard et al. (2014) provide a taxonomy
of models for ring-recovery data, capture-recapture data and capture-recapture-
recovery data, so that we can check the parameter redundancy status of all the
common models, irrespective of study length, without having to do any symbolic
algebra. An alternative way to obtain general results is through mathematical
theorems for particular models, and examples of these are given by Catchpole et al.
(1996), with a focus on age-dependence in models for ring-recovery data, of which
the Seber model is just one example.
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5.2.4 Missing Data, Exhaustive Summaries
and Reparameterization

The investigations outlined above are for models, irrespective of the quality of data
available. In particular it is assumed that there is no missing information, in that
every combination of capture and recapture has occurred. When data points are
missing, which is not uncommon in ecological studies, then this has the effect of
removing rows from the derivative matrix, as particular means do not enter the
likelihood. With fewer rows, the derivative matrix might have smaller rank than
previously; although we might know the parameter redundancy status of a model
without regard to missing data, any real data set might throw up particular features
due to missing data which would mean that we would have to perform the symbolic
calculations for that dataset and model combination. An interesting question for
any model is how much data can be removed from any study before the parameter
redundancy changes; see Cole et al. (2012) for more discussion of this.

A potential problem with using symbolic algebra is that model complexity might
mean that computers have insufficient memory to compute symbolic rank. One
example of this is described in Cole and Morgan (2010a), for a model for fish
survival. They show how appropriate reparameterization simplifies the model, and
allows the symbolic algebra to take place. Another example is given in Cole (2012)
for multi-state mark-recapture models, in particular those with unobservable states.

The paper by Cole et al. (2010) extends the framework of Catchpole and
Morgan (1997), so that more general models than those of the exponential family
can be considered. Models are described by exhaustive summaries, which are
particular collections of parameters that fully specify models. Several different
exhaustive summaries are available for any model. The means for a model form
an exhaustive summary and the natural logarithms of the means form an alternative
exhaustive summary. The derivative matrices will be different for each different
exhaustive summary; however the ranks of each derivative matrix will be the
same. In parameter-redundant models, the same solutions will exist to the equation
˛̨̨TD D 0 and the same set of partial differential equations will result, regardless of
the exhaustive summary used.

5.2.4.1 Example 1 Revisited

In Example 1 the multinomial expected values are the exhaustive summary, given
by Eq. (5.1). As the last element of ııı, ı4, is a function of ı1, ı2 and ı3 with ı4 D
1� ı1 � ı2 � ı3 and because multiplying by the constant n does not change results,
a simpler exhaustive summary is

ııısimp D Œp1.1 �  p2/; .1 � p1/p2; p1 p2�0: (5.8)
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The derivative matrix D is then

D D
2
41 �  p2 �p1 �p1p2

�p2 1 � p1 0

 p2 p1 p1p2

3
5 ; (5.9)

which also has rank 3.
It can be advantageous using an exhaustive summary which is the natural

logarithms of another exhaustive summary if the resulting derivative matrix is
simpler. Simpler exhaustive summaries can also be obtained by reparameterizations,
and may avoid issues of symbolic algebra packages running out of memory (Cole
et al. 2010). Cole (2012) develops a simple exhaustive summary for use with multi-
state mark-recapture models and Hubbard et al. (2014) develop a simple exhaustive
summary for capture-recapture-recovery models.

5.2.4.2 Example 2 Revisited

For Example 2, rather than use the means, we use the alternative simpler exhaustive
summary based on the probabilities given in Eq. (5.5). An even simpler exhaustive
summary is given in Cole et al. (2010) as

ııı D Œ�1p2; �1.1 � p2/; �2p3; �2.1 � p3/; �3p4�0: (5.10)

The derivative matrix when this exhaustive summary is used is

D D

2
66666664

p2 1 � p2 0 0 0

0 0 p3 1 � p3 0
0 0 0 0 p4
�1 ��1 0 0 0

0 0 �2 ��2 0

0 0 0 0 �3

3
77777775
: (5.11)

The rank is again 5 and the solution to ˛̨̨ 0D D 0 is also ˛̨̨ 0 D Œ0; 0;��3=p4; 0; 0; 1�.
Therefore the same set of PDEs results to show again that the parameters that can
be estimated are �1, �2, p2, p3, �3p4.

5.2.5 Numerical Methods and Near-Redundancy

Alternatives to the symbolic approach have been described by Gimenez et al. (2004).
We can, for instance, compute an observed information matrix at various points in
the parameter space, and each time examine its numerical rank. Various authors have
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taken this route when straightforward application of symbolic algebra failed due to
lack of computer memory; see for example Hunter and Caswell (2009) and Jiang
et al. (2007). A hybrid, numerical/symbolic approach is examined by Choquet and
Cole (2012). This involves calculation of the derivative matrix symbolically and then
evaluating the rank numerically at about five random points in the parameter space.
This method is used in the Maple code for Examples 1 and 2 to also obtain ranks of
3 and 5 respectively. Whilst the ranks of the derivative matrix can be obtained in this
way as well as by finding solutions to ˛̨̨TD D 0, it is not possible to find estimable
parameter combinations for parameter-redundant models and it is not possible to
make use of extension theorems to obtain general results.

Near-redundancy is discussed by Catchpole et al. (2001). It arises when a model
is full rank, but as a consequence of particular data, it produces some estimators
with low precision, effectively because the model is similar to a sub-model which is
parameter-redundant. For example, we might fit a Seber model to ring-recovery data
with the addition of time-dependent first-year survival. If the data do not support
variation in first-year survival, then the fitted model will be similar to a Seber model,
which is parameter-redundant. Near-redundancy might be anticipated from detailed
knowledge of the parameter redundancy structure of relevant models, and it can be
investigated by the use of numerical methods.

5.2.6 Bayesian Methods

Parameter redundancy is a feature of maximum likelihood. Parameter-redundant
models may be fitted using Bayesian inference, with additional information pro-
vided by prior distributions. A striking example of this is provided by Brooks et al.
(2000) for the Seber model. In this application, where the model is parameter-
redundant, marginal parameter precision was high, with narrow credible intervals,
even when the prior distributions were flat. This arose due to the orientation of the
ridge in the likelihood surface. In general, simply switching methods of inference
does not avoid problems with parameter redundancy, as flat likelihood surfaces
can result in posterior distributions that cause MCMC samplers to be slow to
converge. Uncritical use of Bayesian methods can also result in estimates that
are very dependent on prior distributions; see for example Brooks et al. (2000).
An analogue of near-redundancy in the Bayesian context arises when there is
substantial overlap between a prior distribution and the corresponding posterior. The
relevant parameters are said to be weakly identifiable, and illustrations are provided
by Gimenez et al. (2009b). One of their examples is the Cormack-Jolly-Seber model.
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5.3 Parameter Redundancy in State-Space Models

Before the derivative matrix method can be used to examine parameter redundancy
in state-space models, we need a suitable exhaustive summary. Suppose we have a
linear state-space model with respective observation and state equations

yt D Otnt C 


t

and nt D Ltnt�1 C ıııt :

Cole and McCrea (2012) show that an exhaustive summary is

ııı D

2
6664

E.y1/
E.y2/
E.y3/
:::

3
7775 D

2
6664

O1L1n0
O2L2L1n0

O3L3L2L1n0
:::

3
7775 ; (5.12)

where n0 are the initial values of the state equations, which can be known constants,
parameters to be estimated or any function of the parameters.

5.3.1 Example 3: BRS Matrix Model Example

The BRS matrix model of Eq. (2.11) in Sect. 2.3 has state equation

E.nt jnt�1/ D
�

E.n1;t /
E.n2;t /

�
D
�
.1 � � C ��/�1 ��2

��1 �2

� �
n1;t�1
n2;t�1

�
:

We assume that both n1;t and n2;t are observed with error so that the observation
process is

E.yt / D
�

E.y1;t /
E.y2;t /

�
D
�
1 0

0 1

�
nt ; (5.13)

and also assume the starting values are known constants n0;1 and n0;2.
The exhaustive summary for this model is

ııı D

2
6666666664

"
E.y1;1/
E.y2;1/

#

"
E.y1;2/
E.y2;2/

#

:::

3
7777777775

D

2
66666664

"
1 0

0 1

#"
.1 � � C ��/�1 ��2

��1 �2

#"
n0;1

n0;2

#

"
1 0

0 1

#"
.1 � � C ��/�1 ��2

��1 �2

#2 "
n0;1

n0;2

#

:::

3
77777775



96 5 Model Formulation and Evaluation

D

2
6666664

.1 � � C ��/�1n0;1 C ��2n0;2

��1n0;1 C �2n0;2

.1 � � C ��/�1f.1 � � C ��/�1n0;1 C ��2n0;2g C ��2.��1n0;1 C �2n0;2/

��1f.1 � � C ��/�1n0;1 C ��2n0;2g C �2.��1n0;1 C �2n0;2/
:::

3
7777775
:

5.3.2 Using the Exhaustive Summary

There are two things to note about the exhaustive summary in Example 3 above
which apply in general to all exhaustive summaries derived using Eq. (5.12).
The first is that exhaustive summary terms get increasingly complex for each
successive E.yt /. The second is that this exhaustive summary is infinite. To use
the derivative method in Maple we need a finite exhaustive summary, so that
the exhaustive summary is stopped at E.y� /, for some � . There are three possible
options:

1. If there were T years of data, stop the exhaustive summary at E.yT /.
2. If the state-space model is linear with m states and Lt D L is not dependent on

time, then we only need to consider expansion terms up to E.y2m/.
3. Use the extension theorem of Catchpole and Morgan (1997) and Cole et al.

(2010).

Option 1 is only recommended if T is small, because terms get increasingly
complex for each successive E.yt /. The second option is based on a rule adapted
from the Taylor-series method for compartment models (Pohjanpalo 1978; Evans
and Chappell 2000) and a proof is given in Cole and McCrea (2012). This rule is
demonstrated in Example 3 below. The third option is demonstrated in Example 4
below.

5.3.3 Example 3 Revisited

As there are m D 2 states, we can use option 2 and include exhaustive summary
terms up to and including E.y4/. (Note that we could also use option 3, or option 1
if we had a specific number of years of data.) The exhaustive summary is then
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ııı D

2
666666666664

.1 � � C ��/�1n0;1 C ��2n0;2

��1n0;1 C �2n0;2

.1 � � C ��/�1f.1 � � C ��/�1n0;1 C ��2n0;2g C ��2.��1n0;1 C �2n0;2/

��1f.1 � � C ��/�1n0;1 C ��2n0;2g C �2.��1n0;1 C �2n0;2/

.1 � � C ��/�1E.y1;2/C ��2E.y2;2/
��1E.y1;2/C �2E.y2;2/

.1 � � C 	�/�1E.y1;3/C 	�2E.y2;3/
��1E.y1;3/C �2E.y2;3/

3
777777777775

:

(5.14)

The vector of parameters is  D Œ�; �; �1; �2�. The derivative matrix,

D D @ııı

@
D

2
664

�.1 � �/�1n0;1 �1n0;1 : : :

��1n0;1 C �2n0;2 0 : : :

.1 � � C ��/n0;1 �n0;1 : : :

�n0;2 n0;2 : : :

3
775 ; (5.15)

has full rank 4. Therefore it is theoretically possible to estimate all four parameters.

5.3.4 Example 4: BAMS Matrix Model Example

Another example with more states is the BAMS (survival, movement, age incremen-
tation, then births) model (Sect. 2.4.2). The state equations are

EŒnt jnt�1� D

2
6664
�.1 � �1!2/�1 �.1 � �1!2/�2 ��2!1�3 ��2!1�4

.1 � �1!2/�1 .1 � �1!2/�2 �2!1�3 �2!1�4

��1!2�1 ��1!2�2 �.1 � �2!1/�3 �.1 � �2!1/�4

�1!2�1 �1!2�2 .1 � �2!1/�3 .1 � �2!1/�4

3
7775nt�1:

(5.16)

We again assume that all states are observed, so that the observation process is

E.yt / D

2
664
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3
775nt :

As this model has m D 4 states, if we use option 2, we would need the exhaustive
summary terms ııı D Œy0

1; : : : ; y
0
7�

0. However it is not possible to calculate the
rank of the derivative matrix symbolically for this exhaustive summary. Instead
consider the exhaustive summary ııı D Œy0

1; y
0
2�

0. The vector of parameters is
 D Œ�; �1!2; �2!1; �1; �2; �3; �4�. The derivative matrix @ııı=@ has full rank 7.
Adding an extra exhaustive summary term y3 adds no extra parameters, therefore
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the derivative matrix will still be full rank. This result is a trivial application of the
extension theorem (Remark 7 of Catchpole and Morgan 1997). Therefore this model
is not parameter-redundant for any T � 2 years of study.

5.3.5 Variance Components, Non-linear Terms
and Reparameterization

The error processes 


t and ıııt are typically assumed to have mean zero with specific
variances. If these variances are not fixed known constants then the variance of
yt needs also to be expanded, adding extra terms to the exhaustive summary.
The exhaustive summary is then

ııı D ŒE.y0/;Var.y0/;E.y1/;Var.y1/;E.y2/;Var.y2/; : : :�
0 : (5.17)

We can also extend the method to non-linear state-space models. Suppose that
yt D h.xt /C ���t with xt D g.xt�1/C 


t�1, for suitably defined functions f and g
and error processes ���t and 


t . Then an exhaustive summary is

ııı D

2
64

E.y1/
E.y2/
:::

3
75 D

2
64

hfg.n0/g
hŒgfg.n0/g�

:::

3
75 : (5.18)

The algebra of the exhaustive summary term E.yt / becomes increasingly complex as
t increases. As mentioned previously, if exhaustive summary terms are too complex,
Maple can run out of memory trying to calculate the rank of the derivative matrix.
In such cases the hybrid-symbolic method of Choquet and Cole (2012) or the
reparameterization method of Cole et al. (2010) could be used.

Examples of non-linear models, parameters in variance components and use of
the reparameterization method are given in Cole and McCrea (2012).

5.4 Model Evaluation: Model Selection

In the analysis of complex data, there may be many competing models that can
be fitted. Typically, these models represent competing biological hypotheses. For
example, demographic rates are often expressed as a function of different possible
covariates. We often use a logit link function for expressing the demographic rates
(such as survival rates) that lie in the interval [0,1] as a function of the covariates.
Often there may be a large number of possible covariates (such as environmental
conditions or individual attributes) that may influence the given demographic rate.
Thus, identifying the important covariates that are related to the demographic rate
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often provides information on the underlying dynamics of the population under
study. This can be very important in determining, for example, conservation policies
for managing populations and/or future prediction of the system. Alternatively, the
underlying age or time dependence of the demographic parameters may be unknown
and of interest. For example, we may be interested in investigating whether first-year
animals have different survival rates from older animals, or whether the productivity
rate declines with age. Such hypotheses can all be represented as different models,
or competing hypotheses. Consider the case where we are interested in whether the
survival rate is different (and lower) for individuals in their first year compared with
older individuals. Then we wish to compare the two models given by:

Model 1: �a D � for all ages a;
Model 2: �1 < �a D � for a D 2; : : : ,

where the subscript denotes the age dependence. In this case we can express the
above model selection problem as a hypothesis test:

H0 W �a D � for all ages a vs H1 W �1 < �a D � for a D 2; : : : (5.19)

where H0 is the null hypothesis and H1 the alternative hypothesis.
We discuss in turn the most common model discrimination techniques within

both classical and Bayesian frameworks.

5.4.1 Classical Methods

Within classical data analyses, the estimation of parameters of interest is generally
a two-step process in the presence of model uncertainty. The first step involves
choosing a model and then, given this model, the second step involves estimating the
parameters, calculating their corresponding maximum likelihood estimates using a
numerical optimization algorithm. Thus, the first step involves selecting the model
that is judged to be “optimal”. Typically, several different models are fitted to the
data, and compared using some criterion—most commonly a likelihood ratio test or
information criterion. We introduce these, together with score tests and the Lasso
(least absolute shrinkage and selection operator). All of these methods are based
on the concept of parsimony: choosing the least complex model for which the fit is
“adequate”. We discuss each of these model selection techniques in turn.

5.4.1.1 Likelihood Ratio Tests

The likelihood ratio test allows hypothesis testing between two competing nested
models. The idea is to compare the fit of the model to the data under the null and
alternative hypotheses, where the model in the null hypothesis is nested in the model
specified by the alternative hypothesis. We then assess whether the improved fit of
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the model under the alternative hypothesis justifies the additional parameters in this
model. Formally, we calculate the statistic:

� D �2 log

�
L.O���0jy1WT /
L.O���1jy1WT /

�
; (5.20)

where L denotes the likelihood function evaluated at the maximum likelihood
estimates O���0 and O���1 of the parameters, estimated under the null and alternative
hypotheses respectively, and y1WT denote the observed data. The statistic � has
an asymptotic chi-squared distribution with degrees of freedom equal to the
difference in the number of independent parameters between the null and alternative
hypotheses. For example, suppose that we consider the hypotheses in Eq. (5.19), for
which the difference in the number of independent parameters is simply equal to
one. Thus, we fit the two models (where we include the additional restriction that �1
is less than � in the alternative hypothesis) and calculate�. We compare this statistic
with a �21 distribution. Assuming a 5 % significance level, the corresponding �21
value is equal to 3.84. Thus if� � 3:84, the data are considered to be consistent with
the null hypothesis, but if � > 3:84, we have evidence against the null hypothesis.

Note that the likelihood ratio test can only be used to compare nested models.
In practice, when using a likelihood ratio test where there are many possible models,
a search algorithm implemented. This typically involves adding (or deleting) terms
in a model to see whether the fit is significantly improved (or decreased) at some
given level. However, different algorithms used to add/remove parameters can lead
to the identification of different models. In this case, it can be difficult to compare
the different models obtained, as they will typically be non-nested. In addition, when
there are many models, this approach can be time-consuming and/or impractical. In
such instances, we might focus on only a small subset of models and/or search
algorithms (Edwards and Havránek 1985). Finally, we note that the likelihood ratio
test relies upon asymptotic results.

5.4.1.2 Score Tests

Score tests (Rao 1948) can be used to perform hypothesis testing between two com-
peting nested models. We adopt the same notation as above, where the parameters in
the null hypothesis are denoted by ���0 and in the alternative hypothesis by ���1. Note
that these two vectors can be of different length. For notational convenience, we set

l.���/ D logL.���jy1WT /; (5.21)

so that l.���/ denotes the log-likelihood function evaluated at ���. We then define the
score vector,

u D
�
@l.���/

@�i

�
; (5.22)
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where �i denotes the i th component of ���1. In other words we calculate the vector of
derivatives of the log-likelihood with respect to the parameters in the model given
in the alternative hypothesis. We also derive the Fisher information matrix,

I D �E

�
@2l.���/

@�i@�j

�
: (5.23)

Thus the Fisher information matrix is the negative of the expectation of the Hessian
(i.e. matrix of second derivatives) of the log-likelihood function.

The score statistic is given by (differentiating with respect to the parameters in
the alternative model)

S D Ou0
0
OI�1
0 Ou0; (5.24)

where Ou0 and OI0 denote the score vector and Fisher information matrix respectively,
evaluated at the maximum likelihood estimates of the parameters under the null
hypothesis, O���0. When there are nuisance parameters, the only optimization takes
place with respect to them. To obtain the score statistic we only need to calculate
the maximum likelihood estimates of the parameters in the null model, since these
are used in the score statistic. The alternative model is only used in the calculation
of the derivatives for u and I.

Under certain regularity conditions, the score statistic has an asymptotic �2�
distribution, where the degrees of freedom � are equal to the difference in the
number of parameters under the alternative and null hypotheses. See Catchpole
and Morgan (1996) and McCrea and Morgan (2011) for further discussion and
applications to ecological models.

The appeal of score tests is that we can compare competing nested models by
fitting only the simpler model to the data. Thus, the more complex model of the
alternative hypothesis need only be fitted when the null hypothesis is rejected.
Note that using the observed Hessian rather than the expected Hessian can result
in negative test statistics (Morgan et al. 2007).

5.4.1.3 Information Criteria

A more general approach that allows the comparison of non-nested models and does
not rely on asymptotic results is the use of an information criterion. The most widely
used criteria are the AIC (Akaike Information Criterion) suggested by Akaike
(1973) and the BIC (Bayesian Information Criterion) of Schwarz (1978). Both these
criteria consider a trade-off between the complexity and the corresponding fit of
the model. Let O��� denote the maximum likelihood estimates of the parameters. The
information criteria are of the general form

� 2 logLm.O���jy1WT /C p�; (5.25)
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where Lm.�/ denotes the likelihood function evaluated at the maximum
likelihood estimates of the parameters corresponding to model m (and hence
�2 logLm.O���jy1WT / is the corresponding deviance), and p� denotes a penalty term
involving the number of parameters in the model. Let jmj denote the number of
parameters in model m. For the AIC statistic, the penalty term, p� D 2jmj; for the
BIC statistic, p� D jmj logn, where n is the number of data points. See Burnham
and Anderson (2002) for further information criteria, including the (adapted) AIC:
(quasi-likelihood) QAIC for over-dispersed data and (corrected) AICc for small
sample sizes. For the given information criterion, the model deemed optimal is the
one with smallest criterion value corresponding to an adequate fit of the model to
the data (and hence a relatively large likelihood value), penalized for the number of
parameters used. Different criteria may lead to different conclusions and it may be
difficult to decide which is the most appropriate.

In general, the absolute value of the criterion is not important; it is intended to
be used as a relative measure of fit. In the case of AIC, it is standard to give the
difference in AIC values between each model and the model deemed optimal by
this criterion. This is typically denoted by MAIC, so that the model deemed optimal
has a value of MAIC = 0. Models with values of MAIC � 2 are generally regarded
as supported by the data (Burnham and Anderson 2002).

Typically when using an information criterion as a model selection technique,
each individual model must be fitted to the data and the corresponding information
criterion values calculated. However, it is possible to automate this method using
trans-dimensional simulated annealing (Brooks et al. 2003). This approach extends
the standard simulated annealing optimisation algorithm (Kirkpatrick 1984). The
underlying idea of standard simulated annealing (i.e. for fixed-dimension problem)
is to construct an algorithm that searches over some parameter space, ��� and
“freezes” at the minimum value of a given function f ./ for  2 ���. Thus, to
find the maximum likelihood estimates of the parameters, simply set f � �L (i.e.
the minus of the likelihood function). The trans-dimensional simulated annealing
algorithm extends this standard algorithm by specifying the associated function
f � �2 logLm C p� and searching over both model and parameter space in
order to find the model with the lowest information criterion (and the associated
parameter values). Thus, instead of fitting each possible model, a search algorithm is
constructed over the model space itself. We note that this algorithm can be difficult
to implement and typically involves substantial pilot-tuning. However, it is very
powerful, permitting a much more extensive set of models to be considered than is
possible when fitting each model individually (King and Brooks 2004).

5.4.1.4 Lasso

The Lasso (least absolute shrinkage and selection operator) is a shrinkage and
selection method for linear regression models, proposed by Tibshirani (1996).
In linear regression, estimates of the parameters for a given model are typically
obtained by minimizing the error sum of squares. For example, suppose that we
have responses yt regressed on covariates r1;t ; : : : ; rn;t , such that
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yt D ˇ0 C
nX
iD1

ˇi ri;t C 
t : (5.26)

Parameter estimates for ˇ0; : : : ; ˇn are taken to be the values that minimize the sum
of squares of errors:

nX
iD1


2t D
nX
iD1

 
yt � ˇ0 �

nX
iD1

ˇi ri;t

!2
: (5.27)

To perform model selection using the Lasso, we ensure that covariates ri;t are
normalized to each have mean zero and variance one, i D 1; : : : ; n. Then the above
sum of squares is again minimized, but with the constraint that jPn

iD1 ˇi j � s,
where s � 0 is a tuning parameter. For large enough values of s, the constraint has
no effect on the parameter estimates; however, for smaller values of s, the parameter
estimates are reduced, and some of the regression coefficients will typically equal
zero, thus reducing the size of the model.

In ecological applications, we typically do not have responses directly regressed
on covariates, but unknown demographic parameters that are regressed on covari-
ates. Thus, Brown (2010) has proposed a two-step process. Initially, the model
is fitted assuming an arbitrary time dependence for the demographic parameters
(if the covariates are time-varying), and their maximum likelihood estimates are
calculated. The second step involves taking the estimated demographic parameters
to be response variables (i.e. the y). The standard application of the Lasso is then
applied, and the regression coefficients ˇ0; : : : ; ˇn estimated as described above.

5.4.2 Bayesian Methods

The same underlying problem of model discrimination arises within the Bayesian
framework. There have been a number of different approaches suggested for
discriminating between competing models and algorithms proposed to implement
the approaches. We discuss the two most prominent approaches. The first is an
information criterion approach while the second is perhaps a more intuitive idea
and a simple extension of Bayes’ Theorem.

5.4.2.1 Deviance Information Criterion

Spiegelhalter et al. (2002) proposed the Deviance Information Criterion (DIC) for
model selection. Its form is similar to that for other information criteria:

DIC = goodness of fit + penalty term for complexity.
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To assess the goodness of fit of the model to the data, y, the deviance is typically
used. However, within the Bayesian framework, the parameters, ���, have a posterior
distribution, which implies a distribution on the deviance. Thus, the goodness of fit
is taken to be the posterior mean of the deviance, and often denoted Dbar, i.e. Dbar
= E� Œ�2 logL.���jy/�. The complexity of the model is represented by the effective
number of parameters and denoted by pD , given by

pD D Dbar - Dhat;

where Dhat = �2 logL.Q���jy/, for Q��� a posterior point estimate of the parameters ���
(i.e. Dhat is the deviance evaluated at a posterior estimate of ���). The most common
choice of point estimate is the posterior mean, so that Q��� D E�.���/. We now take

DIC D Dbar C pD D Dhat C 2pD:

Although the DIC is appealing in its apparent simplicity, it is not without contro-
versy. For example, the effective number of parameters is based on a single posterior
point estimate of each parameter; different results can be obtained, depending on the
point estimate used; and it is possible to obtain a negative value of pD . See Celeux
et al. (2006) for further discussion of the DIC, with particular reference to mixture
models and models with missing data. Millar (2009) addresses the use of DIC for
comparing hierarchical Bayesian models for overdispersed count data.

5.4.2.2 Posterior Model Probabilities and Bayes Factors

In the Bayesian framework, there is a natural way to deal with model uncertainty
using a simple extension of Bayes’ Theorem. The model can be treated as a discrete
parameter and the joint posterior distribution derived over the parameters, states and
model space. Letting ��� D . 0;   0/0 denote the vector of parameters in the state and
observation processes collectively, we note that these are now typically dependent
on the model itself. Thus, we let ���m D . 0

m;   
0
m/

0 denote the parameters in modelm.
Treating the model as a discrete parameter and using Bayes’ Theorem, the joint
posterior distribution over parameters, states and model space can be expressed as:

�.n0WT ;���m;mjy1WT / / p.m/p.���mjm/g0.n0jm/
TY
tD1

gt .nt jnt�1; m/ft .yt jnt ;   m/:

This can be compared with the standard expression for the posterior distribution
given in Eq. (4.9). The simple difference is that we now have the additional model
uncertainty incorporated, considering the model as a discrete-valued parameter.
Note that the priors for the parameter ��� are now conditional on the model, and we
need an additional prior specified on the model component, denoted by p.m/.
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Competing models (or hypotheses) can be quantitatively discriminated between
via posterior model probabilities. Suppose that there areK possible models denoted
by m1; : : : ; mK . The corresponding posterior model probability for model i is
simply given by:

�.mi jy1WT / /
Z
�.n0WT ;���mi ;mi jy1WT /dn0WT d���mi : (5.28)

In other words, the posterior model probabilities are calculated as the marginal
posterior distribution over the model space. The constant of proportionality ensures
that the sum over all possible models of the posterior model probabilities is equal to
unity [and so is equal to the reciprocal of the sum over models of the right hand side
of Eq. (5.28)].

A related discrimination measure between competing models is the Bayes factor.
The Bayes factor of competing models, m1 and m2 say, is defined to be

B12 D �.m1jy1WT /p.m2/

�.m2jy1WT /p.m1/
:

Thus, the Bayes factor is simply the ratio of posterior odds to prior odds for model
m1 compared to model m2. In the case of equal prior model probabilities (i.e. no
prior preference for either model), the Bayes factor reduces to the ratio of posterior
model probabilities. Kass and Raftery (1995) discuss Bayes factors, and suggest that
a Bayes factor of at least three is needed to provide positive posterior evidence of
one model over the other.

Note that in the absence of strong prior information, a common prior to specify
on the model is an equal prior probability on each model. However, this may not
be the most sensible prior, depending on the model space. For example, consider
the models defined by the hypotheses in Eq. (5.19), where the null model has a
common survival rate over all ages, while the alternative model is that there is a
distinct (lower) first-year survival rate. Suppose further that there is uncertainty
as to whether the survival rates are dependent on a single covariate. Under the
null model, there are two possible models (constant survival rate and covariate-
dependent survival rate). However, for the alternative model, there are four possible
models, depending on whether each survival rate (first-year and adult) is constant or
depends on the covariate. Thus, if we place a flat prior over all models, we have an
induced prior such that the alternative model is twice as likely a priori than the null
model. See King and Brooks (2002) and King et al. (2006) for further discussion of
similar prior specification issues.

Finally we note that posterior model probabilities (and Bayes factors) are
generally sensitive to the priors specified on the parameters in the models. This
is due to the integration over the parameter space in order to obtain the posterior
model probabilities. As a consequence, typically models with larger numbers of
parameters are automatically penalized by having a larger parameter space that is
integrated over to calculate the corresponding posterior model probability. Due to
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the potential prior sensitivity of the posterior distribution, we would recommend that
a prior sensitivity analysis is always performed when considering model uncertainty
within a Bayesian framework.

5.4.2.3 Obtaining Posterior Model Probabilities: MCMC Approach

The integration needed to obtain the posterior model probabilities (and hence
Bayes factors) is typically analytically intractable in most real applications.
Several approaches have been developed to estimate posterior model probabilities
using Monte Carlo integration. We discuss the most commonly used algorithm—
reversible jump (RJ) MCMC (Green 1995), which can be seen as an extension of
the Metropolis Hastings (MH) algorithm. The underlying principle of RJMCMC is
identical to the standard MCMC approach: construct a Markov chain with stationary
distribution equal to the posterior distribution of interest, then once the chain has
converged to this distribution, take realisations of the Markov chain to be a sample
from the posterior distribution. Posterior model probabilities can be estimated as
the proportion of time that the constructed Markov chain is in each model.

In the presence of model uncertainty, the constructed Markov chain needs to
be able to move between competing models. However, in general, the competing
models will typically differ in the number of parameters and hence are of different
dimensions. The MH algorithm described in Sect. 4.5.1 is only defined for moves
between equal dimensions, so that it cannot be used for model moves. Thus, we use
the RJ algorithm which allows us to move between the different models (of different
dimensions).

Within the reversible jump algorithm, we typically divide the updating algorithm
into two components. At each iteration of the Markov chain this involves:

Step 1: Updating each parameter in the current model using the MH algorithm;

and

Step 2: Updating the model using the reversible jump algorithm.

We have already seen how to update the parameters, conditional on the model, in
Sect. 4.5.1. Thus, we focus on Step 2—the reversible jump step.

Suppose that at iteration i of the Markov chain (after completing step 1 above—
updating each parameter in the current model), the state of the chain is .���i ;mi /.
Given the current model, mi , we propose a candidate model m0, with probability
r.mi ;m0/ (recall that we treat the model as a discrete parameter). The associated
proposed parameter values for model m0 are denoted by ���0. Note that, in general,
���0 and ���i will contain different parameters and be of different dimension, i.e.
j���0j ¤ j���i j, where j � j denotes the number of parameters. Thus we need to
introduce additional parameters in order to “dimension match”. In particular we
introduce random variables (or auxiliary variables) ui and u0, with some proposal
densities q.ui / and q0.u0/, respectively, such that jui [ ���i j D ju0 [ ���0j. We define
a bijective function g, such that g.���i ;ui / D .���0;u0/. Thus g corresponds to the
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function relating how the current parameters (and auxiliary variables ui ) map to the
proposed parameters (and auxiliary variables u0). The proposed move is accepted
with probability ˛m D min.1; pm/, where

pm D �.n0WT ;���0; m0jy1WT /r.m0; mi /q0.u0/
�.n0WT ;���i ;mi jy1WT /r.mi ;m0/q.ui /

ˇ̌̌
ˇ@g.���

i ;ui /
@.���i ;ui /

ˇ̌̌
ˇ :

The final term corresponds to the Jacobian (as a result of a change of variable
argument relating to the bijective function g). If the move is accepted, we set
.���iC1;miC1/ D .���0; m0/; otherwise the move is rejected and we set .���iC1;miC1/ D
.���i ;mi /. The RJ algorithm reduces to the MH algorithm when j���i j D j���0j. We
emphasise that this method uses only a single Markov chain irrespective of the
number of possible models. The chain explores only models that are supported
by the data, and so in general will not necessarily explore all possible models,
particularly for large model spaces. With larger model spaces, longer simulations
are typically needed to explore both the parameter and model space.

We note that, as for the MH algorithm, the proposal densities q, the model
move probabilities r.m;m0/ and the bijective function g are chosen arbitrarily.
However, the choice will influence the performance of the RJMCMC algorithm.
Typically, the algorithm requires some pilot tuning to ensure that the posterior
distribution is properly explored. See King et al. (2009) for further discussion of
implementational issues, including improving the performance of the RJ updates,
examples of RJMCMC in practice for ecological examples, and other Bayesian
approaches; and Fan and Sisson (2011) for a review of RJMCMC.

5.4.2.4 Obtaining Posterior Model Probabilities: SIS Approach

Posterior model probabilities can also be calculated using SIS, but using a different
type of approach. Particles are simulated, not simply over the parameter range,
but also from the different possible models. Recall that the model is treated as a
discrete parameter. The proportion of particles that is initially simulated from each
model is simply equal to the corresponding prior model probability. The standard
SIS approach is then followed for all particles simulated from all models (see
Sect. 4.5.5). We estimate the corresponding posterior model probabilities as the
proportion of particles remaining at the end of the SIS algorithm in each given
model.

We note that although the underlying idea appears to be simple, the imple-
mentation of this approach can be problematic. This is largely as a result of
particle depletion, which is typically more extreme over the models compared to
the parameter values. In addition, only a small number of models can be feasibly
considered due to the computational expense of simulating a large number of
particles from all of the possible models.
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Fig. 5.1 We use data on UK lapwings to illustrate sequential importance sampling. The same data
are also used in Chap. 7 to illustrate estimation of survival from mark-recovery data, and in Chap. 9
to illustrate integrated population modelling. Photo: Steve Buckland

5.4.2.5 Example

To illustrate the ideas associated with the above model discrimination techniques,
we consider analyses of UK lapwing Vanellus vanellus (Fig. 5.1) data. These data
were collected by the British Trust for Ornithology (BTO) and are described in
detail by Besbeas et al. (2002) and King et al. (2008), along with the specified
models for the classical and Bayesian analyses, respectively (including prior
specification). The data relate to count data (modelled via a state-space model) and
ring-recovery data (see Chap. 7) and an integrated modelling approach was used
(see Chap. 9). We note that different state-space models (in terms of both the system
process and the observation process) are used between the classical and Bayesian
analyses performed, so that the results are not directly comparable. There are four
demographic parameters (first-year survival probability, adult survival probability,
productivity rate and recovery probability of rings from dead birds), each possibly
dependent on two covariates: year and fdays. The covariate fdays corresponds to
the number of days in a year with a mean Central England temperature below
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Table 5.1 The MAIC values for the lapwing dataset for competing
biological models in terms of the dependence of the recovery
probability (�), survival probabilities (�) and productivity rate (�)
on covariates year and fdays

Model MAIC

�1.fdays; year/; �a.fdays; year/=�.year/=� 0.00
�1.fdays; year/; �a.fdays; year/=�.year/=�.year/ 0.00
�1.fdays/; �a.fdays; year/=�.year/=�.year/ 0.54
�1.fdays/; �a.fdays; year/=�.year/=� 0.92
�1.fdays; year/; �a.fdays/=�.year/=�.year/ 1.91
�1.fdays/; �a.fdays/=�.year/=�.year/ 1.93

Table 5.2 The models with a posterior model probability
of at least 4 % for competing biological models in terms
of the dependence of the recovery probability (�), survival
probabilities (�) and productivity rate (�) on covariates
year and fdays

Posterior
Model probability

�1.fdays/; �a.fdays; year/=�.year/=� 0.312
�1.fdays/; �a.fdays/=�.year/=�.year/ 0.254
�1; �a.fdays; year/=�.fdays; year/=� 0.076
�1; �a.fdays/=�.fdays; year/=�.year/ 0.066
�1; �a.fdays; year/=�.year/=� 0.046
�1; �a.fdays/=�.year/=�.year/ 0.042

freezing, with the year starting in April (to correspond to the start of the breeding
season as opposed to calendar year); and year is treated as a continuous covariate
corresponding to a temporal trend. Note that within the Bayesian framework, we
normalize the values of both of these covariates.

For the classical analyses, the models with MAIC< 2 are given in Table 5.1. Each
model is fitted to the data in turn. Allowing for each demographic parameter to be
possibly dependent on each of the two covariates, there are 44 D 256 possible
models. Biologically implausible models are excluded, reducing the number of
models to be considered.

We see that the selected models are generally all close neighbours of each other.
This is often the case in such analyses.

Table 5.2 provides the posterior model probabilities obtained from the Bayesian
analysis for the models with largest posterior support (see King et al. 2008). Once
more we can see that the models identified are close neighbours of each other.
There seems little evidence to distinguish between the two models with largest
support (a Bayes factor of 1.23); however, there is posterior evidence of support
for either of these models compared to all other models (Bayes factors � 3:34).
In addition, it is straightforward in the Bayesian approach to calculate marginal
posterior probabilities of a covariate dependence, say, for each of the demographic
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parameters. For example, the marginal posterior probability that the first-year
survival probability varies by year (irrespective of whether it also depends on
fdays or whether other parameters in the model depend on covariates) is simply
obtained by summing the posterior probabilities of the different models that have a
year-dependent first-year survival probability.

We again note that these models are not directly comparable to those obtained in
the classical analysis and given in Table 5.1 due to the different modelling assump-
tions that are made. However, we can see that many of the dependence structures
identified in the models from both analyses are common (unsurprising in that we are
largely using the same data). Interestingly, the Bayesian analysis identifies a number
of models with a constant first-year survival probability. The overall (marginal)
posterior probability of a constant first-year survival probability is 0.323. As a result,
we also calculated the AIC of the model �1; �a.fdays; year/=�.fdays; year/=�
within the classical framework, giving a MAIC of �0:08 compared to the model
deemed optimal in Table 5.1 (i.e. a marginally lower AIC than the models previously
fitted). However, this model was not fitted initially due to the apparent lack
of biological justification—a constant first-year survival probability. Thus, this
demonstrates the trade-off between fitting a number of models to the data to identify
the optimal model(s) and the biological plausibility of the models. This is present in
both Bayesian and classical analyses. In classical analyses, only a limited number
of models is typically fitted, so that the most biologically plausible models are fitted
and/or a search algorithm implemented. Using a Bayesian analysis, we can explore
many more models by allowing the Markov chain to explore the set of possible
models, but these should be over the set of biologically plausible models. (Models
deemed not to be biologically plausible essentially have a prior model probability
of 0.)

There are clearly similarities between the models identified using the classical
and Bayesian analyses (even allowing for the slight differences in state-space
models). However, there are also differences. This is not surprising since the AIC
statistic has no direct comparison with posterior model probabilities; and the models
fitted are not identical (albeit very similar).

5.5 Model Evaluation: Model Averaging

In the presence of model uncertainty, we are able to obtain parameter estimates
conditional on each model. However, basing inference on only a single model
deemed optimal (in some way) ignores this additional model uncertainty issue. One
approach to dealing with this problem is “model-averaging”, in which a parameter
is estimated by taking a weighted average of the parameter estimates over all
plausible models, where the weights are obtained from the model discrimination
tool implemented. In particular, future predictions can be obtained that are not
reliant on a single model, but are averaged over the competing models in a way that
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reflects the support for each of the models, and incorporates the additional model
uncertainty. We discuss the different approaches for the classical and Bayesian
approaches in turn.

5.5.1 Classical Approach

Within the classical framework, it is possible to obtain model weights when
considering information criteria to discriminate between competing models. For
simplicity, we focus on the AIC statistic here. Let wi denote the weight associated
with model i D 1; : : : ; K. Buckland et al. (1997) suggested weights of the form

wi D exp.� 1
2
M AICi /PK

kD1 exp.� 1
2
M AICk/

; (5.29)

where AICi denotes the corresponding AIC statistic for model i . The weights are
typically referred to as Akaike weights (for the AIC). These weights sum to unity,
a necessary condition for associated weights. Now suppose that we are interested
in obtaining an estimate of the parameter  , which is common to all models. Let Oi
denote the maximum likelihood estimate of the parameter in model i D 1; : : : ; K.
The model-averaged estimate of  , denoted by O , is given by

O D
KX
iD1

wi Oi : (5.30)

In other words O is a weighted average of the maximum likelihood estimates of the
parameter for each model, where the weights are the associated Akaike weights.
Note that BIC weights can be defined in the same way. See Buckland et al. (1997)
for further discussion of model averaging using information criteria.

5.5.2 Bayesian Approach

Recall that the parameters have a posterior distribution within the Bayesian
approach. In addition, we have the corresponding posterior model probabilities
for each plausible model, mi for i D 1; : : : ; K. We combine these to form the
marginal posterior distribution of the parameter,  , say, that is common to all
models, using

�. jy1WT / D
KX
iD1

�.mi jy1WT /�. jy1WT ;mi /:
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The term �. jy1WT ;mi / is simply the (marginal) posterior distribution of  under
model mi , and �.mi jy1WT / is the posterior probability for model mi . These model-
averaged distributions are easily estimated when using a RJMCMC algorithm:
obtain a sample from the marginal distribution by taking each realisation of the
parameter  in the constructed Markov chain (following burn-in) irrespective of the
other parameters or model state. These samples are then typically used to obtain
model-averaged posterior summary statistics, such as the posterior mean and/or
standard deviation.

We note that model-averaging should not be performed on any parameter without
due care and attention, particularly when using posterior summary statistics to
summarize the model-averaged distribution. The reasons for this are discussed next.

5.5.3 Important Comments

We emphasise that care needs to be taken when implementing a model-averaging
approach. In particular, a parameter should only be model-averaged if it retains the
same interpretation in all possible models. For example, suppose that we consider a
covariate analysis for the first-year survival probability, where there is uncertainty
in whether the survival probability is a function of winter rainfall, denoted by rt .
We propose two competing models:

Model 1: �1;t D 1
1Cexp.ˇ0/

;

Model 2: �1;t D 1
1Cexp.ˇ0Cˇ1rt / .

These are nested models, where model 1 is a special case of model 2, with ˇ1 D 0.
It is clear that it does not make sense to obtain a model-averaged estimate of
ˇ1 across both models. Additionally, it may not make sense to obtain a model-
averaged estimate of ˇ0, even though this parameter is common to both models.
If we normalize the covariate values for rt , then the interpretation of ˇ0 can be
regarded as the same in both models, in terms of the underlying (logistic) mean
of the survival probability in an “average” year (i.e. when rt D 0 in model 2).
However, if the covariate rt is not normalized, then the ˇ0 parameter in model 2
can be interpreted as a linear combination of the underlying (logistic) mean and
the intercept parameter for the covariate regressor. Thus, the interpretation of the
parameter is not the same across models. By contrast, obtaining a model-averaged
estimate of the first-year survival probability leads to no such problems of parameter
interpretation across models—the interpretation of the survival probability remains
the same.

Further, we note that it will typically not be sensible to model-average parameter
estimates if these are conflicting for different competing models. Consider the
following (simple) illustrative example, where we have two possible models and
we estimate the first-year survival probability in each. Assuming a classical analysis,
we fit each model to the data and obtain their corresponding MAIC values. These are
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Table 5.3 An illustrative example
with the maximum likelihood esti-
mate (mle) of �1 and corresponding
95 % confidence interval (CI) for two
different models and corresponding
MAIC values

mle of �1
Model (95 % CI) MAIC

1 0.45 (0.42,0.48) 0
2 0.56 (0.54, 0.58) 1

given in Table 5.3, along with the corresponding maximum likelihood estimates and
95 % confidence intervals for the first-year survival probability.

Using the standard rule of thumb regarding MAIC values, there is support for
both models 1 and 2. However, the estimates of the survival probability are clearly
very different, with non-overlapping 95 % confidence intervals. Thus, if we calculate
the AIC weights, we obtain w1 D 0:622 and w2 D 0:378. This provides a weighted
model-averaged estimate of 0.49 for the first-year survival probability, which is not
supported by either model.

A similar issue arises in a Bayesian approach, where we would naturally take the
posterior model-averaged mean of the given parameter. It is not the model-averaging
idea that is at fault here, but the posterior point estimate that is used to summarize
the posterior distribution, when the posterior distribution is bimodal (or multimodal
in the more general case). See King et al. (2009) for further discussion.

5.6 Model Evaluation: Diagnostics

Using methods of Sect. 5.4, we can identify a model that is optimal according to
our favoured selection technique (for example, information criterion, Lasso or score
tests), or a ranking of models fitted to the data (using for example information
criterion, posterior model probabilities), or a directly quantitative comparison of
models (such as posterior model probabilities or weighted AIC statistic). However,
these model selection techniques provide no evaluation as to whether any of
the fitted models, including a model deemed optimal, actually provide a good
representation of the underlying processes that generate the data—they will simply
select the best model, or rank them given the defined set of possible models. All
these possible models could fit the data poorly and hence be a poor representation
of the underlying processes, yet we would still select a model or models and base
our interpretation of the underlying processes on the corresponding results. Thus the
model selection techniques of Sect. 5.4 only provide information on the relative fit
of the model to the data. To assess whether a model describes the data well, we need
an absolute measure of goodness of fit.
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In this section we look at various absolute measures of goodness of fit. More
generally, we consider various diagnostics for statistical models, where we define
diagnostics as procedures for assessing the degree of consonance between what
a model is assuming and inferring about the nature of reality and the available
evidence from nature, e.g. measurements and observations. Hierarchical models,
and state-space models in particular, present some unique issues in diagnostics
when compared with simpler models such as normal linear regression models, and
diagnostics in general are less well developed for hierarchical models. We begin
with a brief overview of diagnostic procedures and concepts for simpler models,
which will be a review for many readers, but can serve as a basis for comparing and
contrasting diagnostics for state-space models in later sections.

5.6.1 Diagnostics in a Simple Linear Model Setting

Consider a simple linear model relating aerial photo estimates y of total tree
volumes of Douglas fir over 1/8 hectare plots in a particular western United States
forest to physical measurements of volume x (the “ground truth”), of the following
form:

yi jxi � normal
�
ˇxi ; �

2
	
;

where observations yi are assumed independent, and i denotes a randomly chosen
plot in the forest. Thus the model assumes (1) the photo-based estimates are on
average proportional to the true volumes, (2) variations around that average are
normally distributed with mean 0 and variance �2, and (3) conditional on the true
volumes, there is no between-plot correlation in the photo estimates.

Diagnostics for this model involve assessing the three assumptions:

1. Aerial estimates are proportional to true volumes on average.
2. Departures from that proportional relationship, i.e. the errors 
i = yi � ˇxi , are

normally distributed with mean 0 and variance �2.
3. The errors 
i are independent, EŒ
i j
j � D EŒ
i � D 0 for i ¤ j .

Typically the parameters ˇ and �2 are unknown and must be estimated. For
example, given a random sample of n plots, maximum likelihood estimates Ǒ and
O�2 may be calculated. This is a further complication in that the errors 
i are now
estimated by ei = yi � Ǒxi , called residuals. Graphical and analytical diagnostic
procedures for such “linear normal models” are well established (Neter et al. 1996),
and to a large degree based on examination of the residuals. For example, a plot of ei
versus xi should be an oval-shaped cloud of points with the horizontal line at e D 0

being the longitudinal axis of the oval, consistent with a linear relationship between
y and x and a constant variance �2. If the normal distribution assumption holds,
ei should be approximately normal.0; O�2/, which may be assessed with graphical
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(e.g. q � q normal plots) and analytical (e.g. Kolmogorov-Smirnov goodness-of-fit
test) procedures. Residuals that are large in absolute value compared with most other
residuals are labelled outliers and can indicate violations of the assumptions. Outlier
detection in the state-space model case is discussed in the sections on recursive
residuals (Sect. 5.6.3) and Bayesian p-values (Sect. 5.6.4).

Diagnostics also include procedures that are not as obviously directed at deter-
mining whether or not model assumptions hold. Two such procedures are detection
of influential observations and assessment of predictive ability. The influence of a
single observation on parameter estimates, i.e. the fitted model, is also of interest.
For example, if one observation in the above linear model is removed, does the
estimate Ǒ change considerably? Cook’s distance measure (Neter et al. 1996)
quantifies the relative influence of individual observations.

Diagnosis of predictive ability essentially involves quantification of the degree
of similarity between model-based predictions and observations. For example, in
the forest volume model and writing Oyi = Ǒxi , then jyi � Oyi j is a measure of
prediction quality for one sampling unit. An alternative measure is to compare yi
with a prediction based on a model fit without that observation, i.e. a leave-one-
out prediction; this notion is discussed further in Sect. 5.6.5. Summary, or omnibus,
measures of prediction quality for an entire data set can be calculated, e.g. the sum
of absolute errors or sum of squared errors. Summary measures are often calculated
for a given model relative to a benchmark model, which is a special case of the
given model. For example, a simple linear regression model is compared with a
simple mean model:

y � normal
�
ˇ0 C ˇ1x; �

2
	

y � normal
�
ˇ0; �

2
	
:

The well-known R2 statistic is one such measure where the sum of squared errors
of the linear regression model is compared with the sum of squared errors of the
constant mean model:

R2 D 1 �
Pn

iD1


yi �


 Ǒ
0 C Ǒ

1xi

��2
Pn

iD1 .yi � y/2 :

The R2 value is bounded with 0 � R2 � 1. If the regression model fits the data
perfectly, R2 = 1, while if the fitted regression model has zero slope ( Ǒ

1 D 0) and
so is identical to the constant mean model, R2 D 0.

In addition to R2, the model selection procedures discussed previously in
Sect. 5.5 are to some degree procedures for assessing the relative predictive quality
of different models. The limitations of such relative comparisons can be seen quite
simply by examining four data sets constructed by Anscombe (1973). Scatterplots
of the four data sets are shown in Fig. 5.2 along with the linear regression of y on x.
Each data set consists of 11 (x; y) pairs and R2 equals 0.67 in each case. Using R2
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Fig. 5.2 Scatterplots of the four data sets along with the linear regression lines where in each case
the R2 value is 0.67. Taken from Anscombe (1973)

alone as a criterion would indicate that all four models are equally good. However,
the plots indicate that the linear regression model is only appropriate for data set 1
and the predictive performance would be relatively low for the other three cases.

In contrast with such relative measures of goodness of fit, Sects. 5.6.3 and 5.6.4
discuss procedures for detecting individual outliers, i.e. cases where the discrepancy
between a single observation and its predicted value (or predicted distribution)
is large in some absolute sense. Section 5.6.5 discusses summary measures of
goodness of fit that are functions of the entire data set, in a sense similar to an R2

measure, but not constrained to Œ0; 1�. Before discussing such measures, we mention
some unique aspects of diagnostics for SSMs.
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5.6.2 Unique Aspects of SSMs

In contrast with standard linear models, state-space models pose two unique chal-
lenges for diagnostics. One challenge is that the latent or hidden variables cannot
be compared to model predictions of those variables. Instead, only comparisons of
the observations with their corresponding predictions can be made. Consider the
following SSM with scalar-valued state and observation variables.

nt jnt�1 � Poisson .	nt�1/

yt jnt � binomial .nt ; p/ ;

for t D 1; : : : ; T , where n0 is viewed as an unknown constant. The state process
is then a stochastic exponential growth or decline model, depending on the value
of 	, and p can be viewed as a detection probability. Given estimates of .	; p; n0/,
stochastic predictions of both state and observation variables can be made in a recur-
sive manner by forward simulation: Ont � Poisson( O	 Ont�1) and Oyt � binomial. Ont ; Op).
Suppose that to assess absolute goodness of fit, the absolute difference between the
predicted and observed values was used, et = jyt � Oyt j. Large et could arise for
several reasons: the parameter estimates ( O	; Op; On0) might be imprecise; the state
process model structure might be flawed (e.g. the population multiplier should
be time varying, represented by 	t ), or the observation model might be incorrect
(e.g. a zero-inflated binomial distribution might be more appropriate). The inability
to measure discrepancies between predicted state values and the true state values
thus makes it more difficult to determine reasons for large et .

A second challenge, common to time series models in general, is that prediction
errors propagate with time. That propagation is perhaps more easily seen by
assuming a deterministic model

nt D 	nt�1
yt D pnt :

Suppose that the values of n0 and p are known but that the estimated value of 	
is biased low, O	 D 0:8	. Then Oyt D p 0:8t 	t n0 D 0:8t yt . The absolute error,
j Oyt � yt j grows geometrically; e.g., the error for t D 1 is 0:2jyt j and for t D 10

is 0:9jyt j. Recognition of this problem leads to the notion of making predictions of
observations at time t conditional on the data available up to, but not including, time
t , y1Wt�1. Such predictions can still suffer from imprecise parameter estimates and
model mis-specification, but error propagation is reduced. The distinction can be
seen as the difference between using the conditional distribution yt j	; p; n0 and the
conditional distribution yt j	; p; n0; y1Wt�1. Section 5.6.3 discusses measures which
use previous observations to advantage.
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5.6.3 Innovations and P Scores

An innovation is a residual measure for SSMs that measures the discrepancy
between the observation yt and a prediction of yt based on observations up to time
t � 1, Oyt jy1Wt�1, i.e. a filtered estimate (Engle and Watson 1981; Harvey 1989):

�t D yt � Oyt jy1Wt�1;
The innovation is sometimes called a one-step ahead forecast error (Durbin and
Koopman 2012). If the observations are vectors instead of scalars, an innovation
vector can be calculated.

A standardization of a scalar innovation yields a measure similar to a z-statistic
in traditional statistics:

zt D �tp
Var. Oyt jy1Wt�1/

;

which is sometimes called a recursive residual (Frühwirth-Schnatter 1996). For a
NDLM, zt follows a normal.0; 1/ distribution if the model is correct. For non-normal
SSMs, however, the probability distribution of zt will not be standard normal.

An alternative measure of discrepancy between an observation yt and the model-
based predictive distribution is the P-score (Frühwirth-Schnatter 1996):

ut D Pr.Yt � yt jy1Wt�1/:
A subsequent calculation is the transformed P-score:

vt D ˚�1 .ut / ;

where ˚ is the cdf of the standard normal distribution. Extreme or outlying values
are those with P -scores near 0 (unexpectedly small) or 1 (unexpectedly large). If the
model is correct, and if Yt is a continuous random variable, then ut � uniform(0,1)
and vt � normal.0; 1/ (Frühwirth-Schnatter 1996). The technical challenge is to
determine the distribution of ut for arbitrary SSMs. Frühwirth-Schnatter (1996)
presented an approximate solution to that problem for the special case of a univariate
dynamic generalized linear model (DGLM), which is a SSM with a linear normal
state process model and a relatively general observation model (here the observation
is a scalar):

nt � normal .Atnt�1;Qt /

yt � P .Btnt / ;

where P denotes some distribution, and the observation is linearly related to the
state vector. Frühwirth-Schnatter (1996) proposed standard diagnostic tools based
on the P -scores and transformed P -scores, some of which we list below.
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• Plot vt against t . Outliers, autocorrelation or heterogeneity might be detected.
• Make a normal plot of vt , i.e. plot ordered vt against normal order statistics.

Departures from a straight line might identify the same problems as the vt versus
t plot.

• Calculate a bias index, Bn D p
nm1, where m1 D 1

n

Pn
tD1 vt , which is standard

normal if the model is correct.
• Calculate a dispersion index, Dn D nm2�nC1p

2.n�1/ , where m2 D 1
n

Pn
tD1.vt � m1/

2,
which is asymptotically normal if the model is correct.

The sample size n and starting point in the time series in the first and second
moment calculations can vary in certain situations; see Frühwirth-Schnatter (1996)
for details. When the bias and dispersion indices are outside [�2, 2], that might be
considered evidence for model misfit.

5.6.4 Bayesian p-Values

Some of the diagnostics in Sect. 5.6.3 are helpful for identifying outliers as well
as violations of distributional assumptions such as constant variance or lack of
correlation between error terms. In this section and Sect. 5.6.5 we consider what
could be viewed as somewhat more global measures of model misfit, i.e. measures
which are functions of the entire observation time series or at least subsequences of
the time series.

Bayesian p-values were proposed by Gelman and Meng (1996) for assess-
ing goodness of fit of models within the Bayesian framework. The approach
involves simulating a series of datasets from the underlying model (and posterior
distribution of the parameters) and comparing these simulated datasets with the
observed dataset. Thus, this measure relies on the (posterior) predictive power
of the fitted model. Let y1WT denote the observed time series data and assume
(using for example MCMC or SIS) that we can simulate from the joint pos-
terior distribution �.n0WT ;;   jy1WT / to obtain a set of M samples denoted by
.n10WT ;

1
;   1/ : : : .nM0WT ;

M
;   M/. For sample i D 1; : : : ;M , we simulate a dataset

from the given model, denoted by xi1WT such that

f .xi1WT jni0WT ;   i/ D
TY
tD1

ft .xit jnit ;   i/ ;

dropping the dependence on the state parameters, since the observed data depend
only on the underlying states and observation process parameters. If the model
adequately describes the underlying processes, we would expect these simulated
datasets to resemble the observed dataset. However, we need to define what is meant
by “resemble” in a statistical sense, as the data are generally high-dimensional.
In order to do this, we define a univariate discrepancy statistic D.�ji ;   i ;ni0WT /
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which is a function of the data. Note that we drop the conditioning on the state
parameters  , and write D.�j   i ;ni0WT / since the data are conditionally independent
of  given the state vector n0WT . This discrepancy statistic is evaluated at both the
observed and simulated data for a given set of sampled parameter values from
the posterior distribution. The discrepancy function is defined such that smaller
values indicate a level of consistency between the model and the data, and larger
values indicate some discrepancy between model and data. We then calculate
D.xi1WT j   i ;ni0WT / � D.y1WT j   i ;ni0WT / for i D 1; : : : ;M , i.e. the difference of the
discrepancy functions evaluated at the simulated and observed data, for the given
parameter values from the posterior distribution. Finally, the Bayesian p-value is
given by

1

M

MX
iD1

I.ŒD.xi1WT j   i ;ni0WT / �D.y1WT j   i ;ni0WT /� > 0/;

where I denotes the indicator function. In other words, the Bayesian p-value is the
proportion of times that the discrepancy function for the simulated data is greater
than the discrepancy function for the observed data, evaluated at the parameter
values simulated from the posterior distribution; that is, the proportion of times that
the simulated data are more “extreme” than the observed data, with respect to the
discrepancy functionD. A Bayesian p-value in the tails of the distribution (typically
in the lower or upper 5 % of the distribution) suggests that the model is not a good
fit to the data and the observed data are not consistent with the underlying model.
Gelman et al. (2003: Chap. 6) give further discussion of Bayesian p-values.

Given a discrepancy function D, Bayesian p-values are easily calculated. Two
obvious choices of discrepancy function when using state-space models are:

1. D.xj   ;n0WT / D f .xj   ;n0WT /—i.e. the observation process likelihood (note that
the state process likelihood is identical for the observed and simulated data, as
the data are not contained within the state-process).

2. D.xj   ;n0WT / D PT
tD1 f .xt � Et / where Et denotes the expected value of

the observed data given the parameter values and f denotes some function.
For example (assuming that the observed data are univariate over time for
notational simplicity) common functions of f include the chi-squared statistic

f .xt ; Et / D .xt�Et /2

Et

�
or Freeman-Tukey statistic

�
f .xt ; Et /D.pxt�

p
Et/

2
	
.

The expected value Et is a function of the sampled posterior parameter values.
Note that if we assume a normal observation error model (i.e. yt jnt ;   �
normal.nt ; �2y/), then Et D nt .

It can be useful to use a range of discrepancy functions in order to assess the
sensitivity of the Bayesian p-value to the discrepancy function itself.
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5.6.5 Cross-Validation

There are numerous forms of cross-validation (Hastie et al. 2009) but the common
principle is to quantify how well a model can predict observations that were not
used to fit the model. The general idea is that, given a sample of n observations, we
use a subset of nT < n observations to fit the model, where those nT observations
are called the training dataset. The fitted model is then used to make predictions
of the remaining n � nT = nV observations, the validation dataset. One version
of cross-validation, called leave-one-out (LOO), uses all but one observation as
the training set, nT = n � 1, and the validation set consists of the single omitted
observation. The process is repeated, one at a time for all n observations. Given
a set of predictions, some measure of the discrepancy between predicted and true
values is then calculated, such as square root of mean squared error (RMSE) or mean
absolute prediction error (MAPE). If the discrepancy measure is considered small,
the model is predicting well; conversely large discrepancy measures indicate poor
predictive ability. Cross-validation applied to several models can also be used as a
method for model selection (Sect. 5.4; Arlot and Celisse 2010). Here we consider
cross-validation in the context of diagnosing potential problems for a single model,
in particular a time series or state-space model.

de Jong (1988) developed an efficient procedure for LOO cross-validation for a
linear SSM with additive mean zero errors. Due to temporal dependency, however,
LOO cross-validation procedures for time series data in general will not remove the
influence of the single omitted observation, say yt , as, for example, ytC1 contains
information about yt . A simple solution is to remove both yt and ytC1 from the
training dataset and just predict yt alone in the validation dataset. Another way to
control for the temporal dependency is to use the first nT observations as the training
dataset, y1WnT , and the subsequent n � nT observations, ynT C1Wn, as the validation
dataset. This approach, however, will lead to propagation of errors (see Sect. 5.6.2).
Hart (1994) proposed a method called Time Series Cross Validation (TSCV)
which both avoids propagation of errors and removes the dependency of future
observations, and the method is, in essence, the calculation of the best one-step-
ahead predictor based on the previous data, Oyt jy1Wt�1. Cross-validation measures of
discrepancy could then be the RMSE or MAPE of recursive residuals (Sect. 5.6.3).
Arlot and Celisse (2010) refer to a method of cross-validation where two blocks of
the time series are selected as training and validation subsets such that the degree
of temporal dependence between the blocks is considered sufficiently weak. For
example, let the training subset be observations ymWn and the validation subset be yrWs
wherem W n and r W s are disjoint sets and correlation.yi ; yj / < 
, for any i 2 m W n
and j 2 r W s. This method is called modified cross-validation. Hyndman (http://
robjhyndman.com/researchtips/tscvexample/, accessed 31 January 2012) provides
R code implementing some of the above forms of time series cross-validation.

http://robjhyndman.com/researchtips/tscvexample/
http://robjhyndman.com/researchtips/tscvexample/


Chapter 6
Modelling Population Dynamics Using
Closed-Population Abundance Estimates

6.1 Introduction

Borchers et al. (2002) explored methods for estimating the abundance of closed
populations. When that book was being written, a biologist’s puzzled reaction was
“What is a closed population?”. In reality, there is no such thing—populations only
appear closed if you look at them for a short enough time period. Look at them for
longer and they will change: animals will be born, age, grow, die and move. Despite
this, there are many publications devoted to closed population abundance estimation
methods. This is partly because some questions of interest concern the state of a
population at a single point in time, but also because it is often easier to deal with
open populations by thinking of them as a series of closed populations (closed while
you survey them) linked together over time by some dynamic processes. With this
approach, inference about the open population proceeds in two distinct steps:

Step 1 Estimate abundance at each of a number of points in time.
Step 2 Use the series of abundance estimates to draw inferences about the popula-

tion trajectory through time, and/or about the dynamic processes governing this
trajectory.

Metaphors for these steps are that of taking single photographs, “snapshots”, of
the population abundance over time (Step 1), and then linking these separate
photographs to make a movie (Step 2).

Step 2 might be purely empirical; that is, it might not involve a model of the
dynamic process with any pretensions of biological relevance. Linear or log-linear
regression methods are among the simplest of such models. By contrast, it could
involve a model for the biological processes governing how the population changes
over time; this biological processes model could include explicit sub-models for
each sub-process (birth, survival, aging, etc.) or could model the net effect of
these processes—as is the case with an exponential population growth model,
for example. It might also be deterministic (not modelling the randomness in the
population dynamics process) or stochastic.

K.B. Newman et al., Modelling Population Dynamics: Model Formulation,
Fitting and Assessment using State-Space Methods, Methods in Statistical Ecology,
DOI 10.1007/978-1-4939-0977-3__6, © Springer Science+Business Media New York 2014
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6.1.1 Linking Closed-Population Methods in a State-Space
Model Framework

In this chapter, we consider open population estimation in two steps, as outlined
above, and we consider inferences about the population based on empirical models,
deterministic population dynamics models and stochastic population dynamics
models (state-space models). Here we link these two steps to our general state-
space model framework and give examples of all three types of Step 2 inferential
approach.

We reproduce Eqs. (3.3)–(3.5) for convenience, but with Oyt in place of yt , for
reasons that will become apparent:

Initial state pdf W g0.n0j/
State t pdf W gt .nt jnt�1; /

Observation t pdf W ft .Oyt jnt ;  / (6.1)

Step 1 corresponds to the observation pdf, e.g. in a scalar setting where nt is the
true population abundance and Oyt is a point estimate of nt . Section 6.1.2 provides
an overview of general methods for estimating the pdf of Oyt and Sect. 6.2 provides
more detailed examples, including specific probability distributions.

Step 2 corresponds to the state pdf (and often the initial state pdf). A commonly-
used empirical model, for a scalar state, is one where nt is purely a function of time,
i.e. gt .nt jt; /. An example is a linear trend model:

nt D ˇ0 C ˇ1t C 
t

where 
t is a mean zero random variable; e.g. normal.0; �2
 /. Simple extensions are
polynomial functions of time, e.g. quadratic. Alternatively, a lognormal pdf avoids
the possibility of negative predicted values:

nt D exp.ˇ0 C ˇ1t C 
t /

where 
t � normal.0; �2
 /. This is a specific example of a log-linear model.
In general, modelling abundances as a function of time is uninformative about
population processes as abundances typically are not a simple function of time. One
exception is a deterministic exponential growth model nt D 	nt�1, which can be
rewritten as nt D 	tn0.

A slightly more informative empirical model includes environmental covariates:

nt D ˇ0 C ˇ1xt C 
t

where xt might for example be a measure of precipitation or temperature. Including
such covariates, however, still fails to provide biological realism, as abundances
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yesterday clearly influence abundances today through the processes of mortality and
reproduction: inherently nt is a function of nt�1, and the two models above, which
we will call gt .nt jt; / and gt .nt jxt ; /, are not true population dynamics models.

True population dynamics models explicitly state that nt is a function of nt�1.
As shown above, exponential growth models are perhaps the simplest. A stochastic
version of a scalar case is:

nt D 	nt�1 exp.
t /;

which can be conveniently transformed into a linear model by a natural log
transformation:

ln.nt / D ln.	/C ln.nt�1/C 
t :

Least squares (conditioning on nt�1) can easily be used to estimate ln.	/. A popular
and simple extension is the Gompertz model, which allows for density dependence
(Knape et al. 2013):

nt D nt�1 exp .aC b ln.nt�1/C 
t / :

This simplifies by natural log transformation:

ln.nt / D aC .1C b/ ln.nt�1/C 
t � ˇ0 C ˇ1 ln.nt�1/C 
t ;

where ˇ0 D a and ˇ1 D 1 C b. When b D 0, the simple exponential
model results. Additional realism is added by including covariates and explicitly
including survival and birth processes (and other sub-processes, see Chap. 2). For
example, in the simple exponential growth model, we might allow the population
growth parameter 	 to vary with time, nt D 	tnt�1 exp.
t /, where 	t might be a
function of environmental covariates, and/or 	t might be written as a product of a
survival probability and a birth rate, each of which is year-specific. Many of the
matrix models of Chap. 2 are essentially multivariate extensions of this approach.
Sections 6.3.1 and 6.3.2 include further discussion of these “Step 2” procedures.

6.1.2 A Brief Overview of Closed-Population Methods

Closed-population methods are covered in detail by Borchers et al. (2002). There are
really only four kinds of closed-population abundance estimation methods that are
widely used, although each has many variants. These four methods are as follows:

Plot sampling methods. These come in various guises, including quadrat sam-
pling, circular plot sampling and strip sampling. Their essential feature is that
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Primary Periods 1

111 2 2 2

2

K1 K2 KT

T

Secondary Periods

Fig. 6.1 Pollock’s robust design. The population is assumed closed within primary periods but
open between them. Secondary periods correspond to closed-population surveys—with multiple
occasions (Kt > 1) for removal or mark-recapture surveys and a single occasion (Kt D 1) for plot
sampling and distance sampling surveys

all animals within the “covered region” (that part of the survey region that is
searched) are detected and counted (by assumption). All other methods involve
uncertain detection within the covered region.

Distance sampling methods. Again there are various kinds, including line transect
sampling, point transect sampling and cue-counting methods. Their essential
feature is that, although not all animals within the covered region are detected,
detection probability depends on distance of the animals from a line or point and
this can be estimated from the distribution of observed distances.

Removal or harvest methods. The essential feature of these methods is that some
animals are captured and removed from the population. The rate at which the
number of captures declines after known numbers of removals allows estimation
of the number of animals initially there. Removal methods include simple
removal methods, catch-effort methods and change-in-ratio methods.

Mark-recapture methods. These methods use the recapture rate of marked indi-
viduals on subsequent survey occasions to draw inferences about the fraction of
the population caught on any one occasion, and hence about the population size.
There is a large literature on mark-recapture methods and an enormous variety
of mark-recapture models and estimators.

Plot sampling methods and distance sampling methods allow abundance estima-
tion from a single survey occasion. Removal and mark-recapture methods require
at least two capture opportunities. To use closed-population removal and mark-
recapture methods in Step 1 of the above two-step process, the time between
occasions within each removal or mark-recapture survey must be sufficiently small
that the population can be considered closed for this period and the sample can be
considered to have come from a single point in time. Conceptually, this is similar
to Pollock’s (1982) “robust design” approach involving primary (e.g. years) and
secondary (e.g. days) sampling periods (illustrated in Fig. 6.1) except that in our
case, there are no observations that link individuals across primary periods, whereas
in the open-population robust design case, animals marked during one primary
period can be identified as such if they are detected during a later primary period.

We consider a population with state vector nt comprising the number of
individuals in each of m classes at time periods t , for t D 1; : : : ; T . Each of the
above closed-population methods defines an observation model that can be used
to obtain an estimate of abundance nt or Nt D Pm

jD1 nj;t which can then be
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used to fit a population trajectory. We illustrate with simple examples for each
closed-population method before considering how these can be used to estimate
population trajectories.

6.2 Observation Models

6.2.1 Plot Sampling

Consider a series of T plot samples of a population inhabiting both grassland
(state 1) and woodland (state 2). We represent the population at time t using a
state vector nt D .n1;t ; n2;t /

0 (t D 1 : : : ; T ). Suppose that for every plot sample in
grassland, randomly-placed plots cover 5 % of the area and in woodland they cover
2 % of the area, so that the probability of detecting a population member in grassland
is p1 D 0:05 and the probability of detecting a population member in woodland is
p2 D 0:02. The expected counts in grassland and woodland (y1;t and y2;t ) are n1;tp1
and n2;tp2, and if the nj;t are sufficiently large, then the yj;t are approximately
normally distributed and we can write the (approximate) observation model as

yt D Otnt C �t or more explicitly;�
y1;t
y2;t

�
D
�
p1 0

0 p2

� �
n1;t
n2;t

�
C �t (6.2)

with �t D
�

1;t

2;t

�
� multivariate normal

 �
0

0

�
;

"
�2y1;t 0

0 �2y2;t

#!
.

For this survey design, the population size, Nt D n1;t C n2;t , can be unbiasedly
estimated by ONt D y1;t

p1
C y2;t

p2
.t D 1; : : : ; T /. With sufficiently large Nt , the

sampling distribution of ONt is well approximated by a normal distribution with
mean Nt and variance �2Nt D �2y1;t =p

2
1 C �2y2;t =p

2
2 . This leads us to the following

model, which we could also think of as a kind of observation model even though the
left-hand side is not really what was observed (it is a derived quantity, not the raw
data—see Sect. 5.1):

ONt D Nt C 
 ONt t D 1; : : : ; T (6.3)

where 
 ONt � normal.0; �2ONt /. If Nt is not large, the (bias-corrected) lognormal

distribution will be a better approximation to the sampling distribution of ONt , and in
this case

ONt jNt � lognormal.log.Nt / � O�2ONt =2; O�2ONt /: (6.4)
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Compare this to the observation model in Eq. (3.22). It is identical in form, except
that (a) here we use our estimator ONt as the “observation” and (b) the variance
�2ONt has already been estimated in the process of obtaining the closed-population
abundance estimate. We also allow the variance to be different at each time period,
whereas in Eq. (3.22) it was assumed to be constant, but we could also consider a
model in which the variance is constant across time; the key difference is that we
use a closed-population abundance estimator as the “observation”.

Note that there is a slight inconsistency in our notation in this chapter: we use
yt for observations throughout the book, but we use Oyt in Eq. (6.1) to represent a
generic closed-population abundance estimator, emphasising the fact that this plays
the role of the observation yt in a state-space model. However, when referring to
specific closed-population abundance estimators we use ONt or ONt , while retaining
yt for actual observations.

6.2.2 Distance Sampling

The two main methods of distance sampling are line transect sampling and point
transect sampling. Line transect methods are slightly simpler conceptually so we
will use a line transect survey for illustration. Key aspects of line transect methods
are that detection probability is assumed to be one at zero distance and to decrease
with distance from the line traversed by the observer, and animals are assumed to
be distributed uniformly in the plane in the vicinity of lines. This latter assumption
means that they are uniformly distributed with respect to distance from the line.
Although it is not always the case, distances are often recorded only to within
distance bands, which is the case we consider here, with each distance band
constituting a “state”.

Under the assumption that animals are uniformly distributed in the survey area,
the state (distance band) that an animal finds itself in on survey occasion t is a
random variable with known pdf (corresponding to the proportion of the survey area
falling within each distance band). We then obtain a more parsimonious model if
we treat the numbers of animals by state as hidden random variables than if we treat
them as parameters to be estimated. This is what is done in line transect analysis,
which involves a state model for animal locations (distance bands in our case). Line
transect models typically separate the probability of being within some maximum
distance w of the line within which animals can be detected from the line, and the
probability of being beyond this distance. This is done to avoid making assumptions
about the distribution of animals beyond w (see Borchers et al. 2002, for details). For
our purposes, it is convenient not to make this distinction, and to this end we define
the most distant distance band (statem) to be all the survey area farther than w from
the line. If the m distance bands cover areas a1; : : : ; am and the survey region has
area A, then the state model is
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E.nt j Nt/ D

2
64

a1
A
:::
am
A

3
75Nt (6.5)

with .n1;t ; : : : ; nm;t / � multinomial
�
Nt ; .

a1
A
; : : : ; am

A
/
	
. By definition, the probabil-

ity of detecting an animal in band m is zero. The probability of detecting an animal
that is in band j , for j < m, is parameterised as a function of the distances spanned
by band j and an unknown parameter vector  . Writing this probability as pj . /,
the expected counts on occasion t , conditional on nt , are

E.yt j nt / D

2
666664

p1. / 0 � � � 0 0

0 p2. / � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � pm�1. / 0
0 0 � � � 0 0

3
777775

2
64
n1;t
:::

nm;t

3
75 (6.6)

where yt D .y1;t ; : : : ; ym;t /
0 is a vector of observed counts by distance band

and yj;t � binomial.nj;t ; pj . // for j D 1; : : : ; .m � 1/ and t D 1; : : : ; T .
By definition, ym;t D 0. This is a random-effects model in which the states
.n1;t ; : : : ; nm;t / are the random effects. Denoting the pdf of nt as fnt .nt j
Nt/ D multinomial

�
Nt ; .

a1
A
; : : : ; am

A
/
	
, and the pdf of yt as fyt .yt j nt ; / DQ

j<m binomial.nj;t ; p.xj I //, we can write the joint distribution of states and
observations concisely as fnt .nt j Nt/fyt .yt j nt ; /. Inference about parameters
via maximum likelihood methods is based on the marginal distribution of the
observations, equivalently the likelihood, thus summing out the states in the joint
distribution, i.e.

L.Nt ; j yt / � fyt jNt .yt j Nt ; / D
X

P
nj;tDNt

ft .nt j Nt/ft .yt j nt ; /: (6.7)

where the subscript
P
nj;t D Nt indicates the sum over all .n1;t ; : : : ; nm;t / that sum

to Nt , subject to all nj;t � yj;t . This formulation for line transect data is similar to
the formulation of Royle et al. (2004) for point transect data, the main difference
being that they model density as the rate parameter of a nonhomogeneous Poisson
process, whereas we model abundance rather than density and assume uniform
spatial distribution for simplicity.

Mean detection probability can be estimated as Op D Pm
jD1

aj
A
pj . O /, where O 

is the estimate of  obtained by maximising the likelihood, and Nt is estimated by
ONt D yt

Op , with yt D Pm�1
jD1 yt;j being the total number of animals detected. It is

common to assume that ONt is lognormally distributed with estimated variance O�2ONt :

ONt jNt � lognormal.log.Nt / � O�2ONt =2; O�2ONt /: (6.8)
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There is a variety of methods for estimating the variance �2ONt—see Borchers et al.
(2002) for some details.

Equation (6.8) has identical form to Eq. (6.4), and again for the purposes of
modelling dynamics across occasions, we can think of this as an observation model
in which the “observation” is actually an estimate.

6.2.3 Removal Method

Because of their multi-occasion nature, the state models for even the simplest
closed-population removal and mark-recapture methods involve states that change
over the course of the survey within primary periods, but unlike open-population
methods, the changes arise only as a consequence of the observation process. They
happen because the survey itself changes the state of detected animals. In the case
of removal methods, each occasion moves detected animals from being available on
the next occasion to being unavailable, while in the case of mark-recapture methods,
it moves them from an unmarked to a marked state.

In the simplest two-sample removal survey (Kt D 2), the state on occasion k (i.e.
secondary period k—see Fig. 6.1) is the number of animals in the population at the
start of the occasion (a scalar, not a vector) and y1;t and y2;t animals are detected
and removed on the two occasions. In this case, the states for the two secondary
periods in primary period t (see Fig. 6.1) are Nt and Nt � y1;t . Assuming constant
capture probability p on the two occasions, and defining y0;t � 0 for notational
convenience, .yk;t j Nt ; yk�1;t / � binomial.Nt � yk�1;t ; p/ for k D 1; 2. The
likelihood function for Nt and p is just the product of these two binomials, and

it yields the maximum likelihood estimate ONt D y21;t
y1;t�y2;t (see Sect. 4.3.2.1, and

Chap. 5 of Borchers et al. 2002).
There is a variety of ways to estimate the variance O�2ONt of ONt (Chap. 5 of Borchers

et al. 2002) and again it is common to assume that ONt is normally or lognormally
distributed.

6.2.4 Mark-Recapture Method

Unlike removal methods, mark-recapture methods involve at least two states on each
sampling occasion (secondary period) and hence a state vector on secondary period
k of primary period t of nt D .n1;k;t ; n2;k;t /

0, where n1;k;t is the number of unmarked
animals in the population (� Nt for k D 1, t D 1) and n2;k;t is the number of
marked animals in the population at the start of the secondary period (� 0 for k D 1,
t D 1). The simplest model involves just two occasions Kt D 2 and assumes that
capture probability p is constant throughout. The number of unmarked and marked
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animals detected on occasion k of primary period t is y1;k;t and y2;k;t , respectively.
For notational convenience we define rk;t D P

s<t y1;k;t (the total number of animals
marked by the start of occasion k of primary period t ), and y1;0;t � 0 (no marked
animals at the start of each primary occasion).

In this case, .y1;k;t jNt ; rk;t / � binomial.Nt � rk;t ; p/, and y2;k;t jrk;t �
binomial.rk;t ; p/ and the likelihood function forNt and p is just the product of these
two binomials. It yields the maximum likelihood estimator ONt D y1;1;t .y1;2;tCy2;2;t /

y2;2;t
.

There is again a variety of ways to estimate the variance O�2Nt of ONt (see Chap. 6

of Borchers et al. 2002), and again it is common to assume that ONt is normally or
lognormally distributed.

Open population mark-recapture methods are covered in Chaps. 7 and 8.

6.2.5 Summary

We have illustrated above how simple versions of each closed-population survey
method leads to observation models in which the “observations” are a series of
T closed-population estimates of abundance. These observation models expand
in dimension when the abundance of animals in a variety of states is of interest,
e.g. when abundance of different age groups or sexes, and the complexity of the
closed-population methods increases when less simple versions of the methods
are used. However for the purposes of fitting population dynamics models using
closed-population methods applied at a series of times, the key outputs are a series
of observation models in which the “observations” are (possibly vector-valued)
estimates of abundances at the survey times, with all observation model parameters
already estimated.

The fact that the parameters of the observation model have been estimated
differentiates it from the observation models introduced in Chap. 3 where the
parameters of the observation model are unknown model parameters, some of
which appear in the population dynamics model and all of which are estimated
concurrently with the population dynamics model parameters.

In the development of observation models for the closed-population surveys
above, we implicitly assumed that estimates of the parameters of the observation
models for each primary period are independent. However, it is not uncommon to
allow some closed-population model parameters to be shared across primary periods
and this induces dependence between the abundance estimates across these periods.
The observation model for all periods is multivariate. In the case in which the closed-
population abundance estimates are assumed to be normal and we denote the kth

estimate ONt;k , it is
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2
64

ONt;1
:::

ONt;K

3
75 � multivariate normal

0
B@
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:::
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3
75 ; ˙ ON

1
CA (6.9)

where ˙ ON is the variance-covariance matrix of the closed-population abundance
estimates (estimated by Ȯ ON in the process of obtaining these estimates). A
multivariate lognormal distribution applies in the case in which the ONt;k are assumed
to be lognormally distributed.

We dealt only with maximum-likelihood inference for closed-population meth-
ods above. Closed-population inference using Bayesian methods is an alternative
and it has some advantages over maximum-likelihood inference. These were
discussed briefly in Sect. 4.3.2.1. If Bayesian closed-population methods are used,
the observation models that result are posterior distributions for the (possibly vector-
valued) estimates of abundances at the survey times. These can be treated as
prior distributions for the abundances when drawing inferences about population
trajectories and dynamics.

6.3 State Process Models

There are two distinct ways of estimating population trajectories from closed-
population survey estimates: by empirical smoothing, in which the population
trajectory is obtained by fitting some sufficiently flexible regression model without
explicitly modelling population dynamics, and by fitting population dynamics
models, which involve parameters that have biological interpretation. We start by
outlining empirical smoothing methods in very broad-brush strokes and then move
on to consider population dynamics models in a bit more detail.

6.3.1 Empirical Smoothing

Empirical models for population dynamics make little or no attempt to model
the biological drivers of dynamics, they just provide easy means of smoothing
through a series of abundance estimates. That said, the distinction between empirical
models and those that do attempt to reflect biological process is not quite black and
white. Linear and log-linear regression models are probably the simplest parametric
models used to smooth through point estimates of abundance or density, and there
is some biological basis for log-linear models, for example: the slope parameter is
the per capita growth rate of a population with density-independent growth.

More flexible nonparametric models, of which generalized additive models
(GAMs) are a common example, have much less biological interpretability.
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Their slope at a point can be interpreted as growth in population size at that point
but they contain no structure that explains how the slope arises from biological con-
siderations and their interpretation in terms of biological processes is thus opaque.

Because of their flexibility, a key part of fitting nonparametric models is deciding
how smooth to make them and this involves a trade-off (purely on the basis of the
observed estimates) between what is considered underlying “trend” and short-term
noise about the trend, and they do not come with a mechanism for ensuring that the
degree of smoothness is consistent with what is biologically plausible (insufficient
smoothing might result in biologically impossible growth rates, for example). While
they can give us a reasonable picture of the population trajectory, it is difficult to
draw inferences from empirically-smoothed population trajectories about biological
parameters of interest such as survival or birth rates. Further, there is no basis for
predicting the effect of management actions from such trajectories, because the
processes affected by those actions are not modelled.

Fitting either parametric or nonparametric empirical models to time series of
abundance estimates can be done treating the underlying abundances as fixed
(not varying about some true but unknown trend curve) or as random (varying
randomly about the true but unknown curve). For a much more full discussion of
empirical smoothing methods for series of abundance estimates, see Thomas et al.
(2004). See also Fewster et al. (2000) and Clarke et al. (2003) for examples of the
use of empirical smoothing of closed-population abundance estimates to estimate
population trends.

For the remainder of this chapter, we focus on models that arise from consid-
erations of the biological drivers of changes in population abundance. We do this
through two case studies.

6.3.2 Population Dynamics Models

It is useful to distinguish between two kinds of population dynamics model. There
are those that model overall change in abundance using parameters that have
biological interpretation but which do not model the sub-processes leading to the
change and there are those that explicitly model the sub-processes. The particular
form of the first kind of model that we focus on here is what is often called a “surplus
production model” or “biomass dynamic model” (see Hilborn and Walters 1992,
Chap. 8, for example). This pools birth or recruitment, survival and growth into
a single function. These models can be constrained by biological considerations
(population growth can be bounded, for example) and they do provide a basis
for predicting the effect of management actions, but they are blunt instruments—
because the sub-processes leading to changes in abundance are not modelled
separately. Following Hilborn and Mangel (1997), we illustrate this kind of model
using a logistic form:

Nt D Nt�1 C rNt�1
�
1 � Nt�1

K

�
(6.10)
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where r is the “intrinsic growth rate” (per capita rate of increase) and K is the
carrying capacity. If there are removals from the population via a “catch” (ct�1 in
year t�1), this is subtracted from the right-hand side of Eq. (6.10) if the catch occurs
after population growth at time t � 1, or from Nt�1 if it occurs before population
growth.

The second kind of population dynamics model we consider is that in which
current abundances are functions of past abundances and the processes (or sub-
processes) that cause the dynamics, the evolution in time of the population
characteristics, are made explicit. In other words, the dynamics are explicit func-
tions of processes such as survival, reproduction, maturation, or movement, and
those sub-processes can be further modelled as functions of covariates, including
environmental measures or management actions.

With both kinds of model, we can allow stochasticity in the population
dynamics—by adding some random “process error” in the case of the first kind, or
by explicitly modelling the stochasticity inherent in each of the sub-processes in the
case of the second kind of model.

To illustrate the use of closed-population abundance estimates to estimate
population trajectories and dynamics, we look at two case studies below, one
modelling the population trajectory of wildebeest abundance in the Serengeti, the
other the trajectory of an exploited gray whale population in the Pacific Ocean. In
each case we consider modelling dynamics using both logistic growth models and
matrix models.

6.4 Population Dynamics Model Examples

6.4.1 Wildebeest

This example and its associated data are taken from Chap. 8 of Hilborn and Mangel
(1997). It concerns the Serengeti wildebeest population (Fig. 6.2), which grew
substantially from the early 1960s. The growth is believed to be due to elimination
of rinderpest, a disease introduced by domestic cattle, and to increasing dry season
rainfall. Higher dry season rainfall provides more food at a time when animals are
vulnerable to starvation, which enhances survival, particularly of calves.

The population suffered illegal hunting from 1977. The size of the resulting
“catch” is not known but was estimated to be about 40,000 animals per year by
Hilborn and Mangel (1997), so we assume that ct�1 D 40; 000 from t D 1978

when we fit models to the abundance estimates.

6.4.1.1 Population Dynamics Models with Observation Error Only

In addition to the logistic growth model of Eq. (6.10), Hilborn and Mangel (1997)
proposed the following population dynamics model for this population, in which n2;t
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Fig. 6.2 Spotted hyaenas hunting wildebeest in the Ngorongoro crater, near Serengeti National
Park. Photo: Len Thomas

is adult abundance at time t . (The reason for the 2 subscript will become clear when
we formulate a matrix model for the population dynamics below.) They specified
the model as follows:

Deterministic population dynamics model W n2;t D �1;t �n2;t�1 C �2;tn2;t�1 (6.11)

Observation model W ONt D n2;t C 
: (6.12)

Here �1;t and �2;t are survival probabilities of calves and adults at time t , � is
per-capita birth rate, ONt is the estimate of combined adult and calf abundance
obtained from an aerial survey (using essentially plot sampling methods), and

 � normal.0; O�2ONt /, where O�2ONt is the estimated standard error of ONt obtained from

the survey. The ONt are independent across primary periods. Survival probability is
density-dependent, and a function of the previous year’s dry season rainfall (Rt�1).
It is parameterized as follows: �j;t D 1:25ˇj;1Rt�1=.1:25Rt�1Cˇj;2n2;t =A/, where
A is the area occupied by the wildebeest and ˇj;1 and ˇj;2 are unknown parameters
(see Hilborn and Mangel 1997, p189, for the rationale for this parameterization).
Dry season rainfall is shown in Fig. 6.3.

Noting that the state vector nt is simply the scalar Nt here, the deterministic
population dynamics model of Eq. (6.11) can be written in matrix form as follows:

Nt jNt�1 D AStBNt�1

D �
1 1

� ��1;t 0

0 �2;t

� �
�

1

�
Nt�1 (6.13)
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Fig. 6.3 Annual dry season rainfall in the Serengeti (100 mm)

We fitted by maximum likelihood the deterministic logistic model of Eq. (6.10),
which we call Model ML, and the deterministic matrix model above (Model
MM ) with � fixed equal to 0.4 (following Hilborn and Mangel 1997). Because
the previous year’s rainfall is known to affect population growth (via survival
probability), we fitted variants of the logistic model of Eq. (6.10) in which either
r depends on previous year’s rainfall, with rt D exp.ˇr;0 C ˇr;1Rt�1/ (model MLr ),
or both r andK depend on previous year’s rainfall, withKt D exp.ˇK;0CˇK;1Rt�1/
(model MLrK). We also fitted a matrix model in which only calf survival (�1;t ) or
only adult survival (�2;t ) depend on the previous year’s dry season rainfall (models
MMc and MMa).

Among the matrix models, model Model MMc (with four estimated parameters:
N0, ˇ1;1,ˇ1;2 and ˇ2;1) is preferred on the basis of AIC, although Model ML is
preferred overall (�AICLr D 1:9, �AICMc D 2:3, and all other �AICs> 2:7).
Despite its higher AIC, Model MMc may be substantially more useful than either
of the (logistic) models with lower AIC for conservation and management purposes
because it models key demographic parameters explicitly—namely per-capita birth
rate (�), adult survival probability (�2;t ) and the dependence of calf survival
probability (�1;t ) on previous year’s rainfall. Because it models these parameters
explicitly, it is easily extended to incorporate independent estimates of adult and
calf survival probabilities that are available for some years (see Hilborn and Mangel
1997, for details); this is not the case for the logistic models.

To investigate the effect of incorporating independent survival estimates, we
refitted all matrix models assuming that the survival probability estimates are
lognormally distributed about the true survival probabilities. The best model among
those using the survival estimates is that with only calf survival (�1;t ) depending
on rainfall (Model MMcC). To assess the uncertainty about the estimated trajectory
from this model, we resampled the model parameter values assuming normality of
estimates and using the inverse Hessian matrix to estimate their variance-covariance
matrix. Fits of Models MLr , MMc and MMcC are shown in Fig. 6.4. The estimated
trajectory from Model MMc is more sensitive than Model MLr to the sharp changes
in rainfall (shown in Fig. 6.3) from the late 1970s, although they both have the
same number of parameters. It is clear from the plot that incorporating independent
estimates of survival probability has a big effect on the estimated trajectory.
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Fig. 6.4 Estimates of wildebeest abundance (circles) together with normal 95 % confidence
intervals (vertical lines) and the fitted logistic growth model ML (dotted line), matrix model MMc

(with calf survival depending on rainfall—dashed line), and matrix model MMC

(incorporating
independent estimates of survival—solid line). Grey lines are trajectories from 1,000 parametric
bootstrap resamples of the parameters of model MMC

To investigate the effect of incorporating independent survival estimates, we
refitted all matrix models assuming that the survival probability estimates are
lognormally distributed about the true survival probabilities. The only such model
that did not display some problems with convergence with numerical maximization
of the likelihood was a model in which neither calf nor adult survival probability
depends on previous year’s rainfall (Model MMC). To assess the uncertainty about
the estimated trajectory from this model, we resampled the model parameter values
assuming normality of estimates, using the inverse Hessian matrix to estimate their
variance-covariance matrix. Fits of Models ML, MMc and MMC are shown in
Fig. 6.4. The estimated trajectory from Model MMc is more sensitive than that from
Model ML to the sharp changes in rainfall (shown in Fig. 6.3) from the late 1970s,
although they both have the same number of parameters. It is clear from the plot
that incorporating independent estimates of survival probability has a big effect on
the estimated trajectory.

6.4.1.2 State-Space Model

The deterministic matrix model of Eq. (6.13) can be made into a stochastic
population dynamics model by adding distributional assumptions for the birth and
survival process. In the case of birth we have
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�
E.u1.b/1;t /

u1.b/2;t

�
D
�
�

1

�
Nt�1 (6.14)

and �
u1.b/1;t � binomial.n1;t�1; �/

u1.b/2;t D n2;t�1

�
(6.15)

which together define the pdf g1;t .u1;t jnt�1/. In the case of survival, we have

�
E.u2.s/1;t /
E.u2.s/2;t /

�
D
�
�1;t 0

0 �2;t

� �
u1.b/1;t
u1.b/2;t

�
(6.16)

and �
u2.s/1;t � binomial.u1.b/1;t ; �1;t /
u2.s/2;t � binomial.u1.b/2;t ; �2;t /

�
(6.17)

which together define the pdf g2;t .u2;t ju1;t�1/. The final process, aging, is
deterministic:

Nt D �
1 1

� � u2.s/1;t
u2.s/2;t

�
(6.18)

and we denote this g3;t .nt ju2;t /. The stochastic population dynamics model can
be written symbolically as gt .nt jnt�1/ D g3;t .g2;t .g1;t .nt�1///. Together with the
observation model ONt jn2;t � normal.n2;t ; O�2ONt /, for t D 1; : : : ; T and independence

between the ONt , this specifies a state-space model that can be fitted using the
methods described in Chap. 4.

6.4.2 Gray Whales

The National Marine Fisheries Service has conducted shore-based surveys of the
stock of Eastern North Pacific gray whales (Fig. 6.5) in 23 of the 40 years between
1967/1968 and 2006/2007, from which 23 abundance estimates have been obtained.
Whales are surveyed from a cliff overlooking the ocean and past which the gray
whales migrate no further than about 6km offshore, making them susceptible to
visual survey. This kind of survey can be viewed as a variety of line transect survey
in which the animals move past the observer rather than the observer moving past
the animals, and in which there is non-uniform distribution of animals with respect
to distance from the observer. See Borchers et al. (2002:184–188; 240–243) for a
general overview of this kind of method and Laake et al. (2013) and references
therein for details of this particular survey method and analysis.
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Fig. 6.5 Gray whale in Icy Bay, Alaska. Photo: NPS Photo; Scott Gende

A catch of whales is taken each year (before breeding and mortality occurs in
the year, so we take catch ct to apply to the start of year t ) and we use these catch
data from the 1966/1967 season onwards. To keep our model relatively simple, we
consider only surveys up to and including 1997/1998, because between this and the
next survey (2000/2001) there was a “catastrophic mortality event” (Punt and Wade
2010) and including this adds more complexity to the model than we would like for
illustrative purposes.

6.4.2.1 Population Dynamics Models with Observation Error Only

All data used in our analysis were obtained from Punt and Wade (2010). We fitted
by maximum likelihood the deterministic logistic model of Eq. (6.10) (subtracting
a catch ct at the start of year t , which is assumed to be of adults only), which we
call model ML, and an age-structured deterministic matrix model which we describe
below (model MM ). It is a simplified version of the density-dependent Leslie matrix
model described in Wade (2002).

We assume that sexual maturity is reached at age 6 and separately model age
classes 1 through 5 and 6+ (for animals aged 6 and above). We have separate survival
probabilities for ages 1 through 5 (“juveniles”: �j ) and 6+ (“adults”: �a) and use a
density-dependent birth rate, �t :

�t D ˇ0 C .ˇ1 � ˇ0/
�
1 � Nt

K

�
(6.19)
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where Nt D P5
iD1 ni;t�1 C .n6;t�1 � ct /, K is the carrying capacity, ˇ0 is the

birth rate at carrying capacity, and ˇ1 is the maximum birth rate. We use the model
of Brandon and Wade (2006) to parameterize ˇ0 as a function of the survival
parameters: ˇ0 D .1 � �a/=.�j Œ1 � �amax�5�1

a �/ with amax D 200.
This population dynamics model is a version of the BAS model introduced in

Chap. 2 (with catch incorporated) and can be written in matrix form as follows.

nt jnt�1 D BtAS.nt�1 � ct /

D

2
66666664

0 0 0 0 �t
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

3
77777775

2
666664

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 1

3
777775

2
66666664

�j 0 0 0 0 0

0 �j 0 0 0 0

0 0 �j 0 0 0

0 0 0 �j 0 0

0 0 0 0 �j 0

0 0 0 0 0 �a

3
77777775

2
66666664

n1;t�1
n2;t�1
n3;t�1
n4;t�1
n5;t�1

n6;t�1 � ct�1

3
77777775

(6.20)

The matrix model parameters are ˇ0, ˇ1,K, �j , �a andN0 (the population size in
1967). We assume that the population starts in a stable age structure state (obtained
from the eigenvalues of B0AS; see also Sect. 9.5.1.1) in order to distribute the initial
N0 animals across ages at the time of the first survey.

The abundance estimates are assumed to be normally distributed, initially as:

ONt jNt � normal.Nt ; O�2ONt / (6.21)

However, it is clear from the number of estimated 95 % confidence intervals for Nt
from the surveys that do not intersect the fitted population trajectory, and how far
these are from the line, that there is more variation in the ONt about the fitted line
than can be explained by the model (see Fig. 6.6). Following Wade (2002), we add
an “additional variance” parameter (�2add ) to the observation model, as follows:

ONt jNt � normal.Nt ; Œ O�2ONt C �2add �/: (6.22)

This parameter is estimated when fitting the matrix model. (Fig. 6.6 shows fitted
population trajectories when �add is estimated; the trajectories when it was not in
the observation model were similar.) The uncertainty associated with the estimated
population trajectory was assessed by means of a parametric bootstrap of the matrix
model parameters, assuming normality and using the inverse Hessian to estimate the
parameter variance-covariance matrix. Trajectories from 1,000 resamples are shown
as grey lines in Fig. 6.6.

Punt and Wade (2010) explain �2add as “sources of uncertainty not captured
elsewhere”. It is not known whether this is a component of variance of the
abundance estimates ONt that is not captured in O�2ONt (i.e. O�2ONt is a negatively biased
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Fig. 6.6 Estimates of Eastern Pacific gray whale abundance (circles) together with normal 95 %
confidence intervals (vertical lines), the fitted deterministic logistic growth model (dashed line),
the age-structured deterministic matrix model (solid line), and population trajectories from 1,000
parametric bootstrap resamples of the matrix model parameters

estimator of �2ONt ) or a failure to capture the stochasticity present in the population
dynamics. The latter problem can be addressed by building a stochastic population
dynamics model.

6.4.2.2 State-Space Model

A normal dynamic linear state-space model (NDLM) was fitted to the gray whale
data using expected value vectors and covariance matrices for the state process
that were calculated assuming binomial survival processes for each age class and
a binomial birth process. A model of the form shown in Eqs. (4.11)–(4.13), which
we reproduce here,

n0 � normal .�0;Q0/

nt � normal .Atnt�1;Qt /

yt � normal .Btnt ;Rt /

was fitted using the following expected value vector:
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EŒnt jnt�1� D At Œnt�1 � ct � D

2
66666664

0 0 0 0 �t�j �t�a
�j 0 0 0 0 0

0 �j 0 0 0 0

0 0 �j 0 0 0

0 0 0 �j 0 0

0 0 0 0 �j �a

3
77777775

2
66666664

n1;t�1
n2;t�1
n3;t�1
n4;t�1
n5;t�1

n6;t�1 � ct

3
77777775

and covariance matrix, Qt ,

2
666666666666666666666666664

�t �j .1� �t �j /n5;t�1C 0 0 0 0 �t .Var.n6;t /CEŒn6;t �
2/

�t �a.1� �t �a/n6;t�1 �EŒn1;t �EŒn6;t �

0 �j .1� �j /n1;t�1 0 0 0 0

0 0 �j .1� �j /n2;t�1 0 0 0

0 0 0 �j .1� �j /n3;t�1 0 0

0 0 0 0 �j .1� �j /n4;t�1 0

�t .Var.n6;t /CEŒn6;t �
2/ 0 0 0 0 �j .1� �j /n5;t�1C

�EŒn1;t �EŒn6;t � �a.1� �a/.n6;t�1 � ct /

3
777777777777777777777777775

where EŒn1;t � = �t .�j n5;t�1 C �a.n6;t�1 � ct // and EŒn6;t � = �j n5;t�1C
�a.n6;t�1 � ct /. Details of these derivations can be found on the book website
(Sect. 1.2).

The observation model is identical to the model used in Sect. 6.4.2.1 (the
observation error only model), namely,

ONt jnt � normal

�
1 1 1 1 1 1

�
nt ; �2ONt C �2add

�
:

We note that the birth rate parameter �t is a function of nt�1, i.e. the birth process
is density-dependent, and the distribution of nt is conditionally multivariate normal.
This NDLM is an example of a conditionally Gaussian SSM, which is discussed
further in Sect. 9.7.1.

The Kalman filter was used to calculate the negative log likelihood function (as
shown in Eqs. (4.18) and (4.19)) with the initial variance matrix, Q0, set equal to 0,
and the initial population abundance vector, �0 � n0, calculated as in Sect. 6.4.2.1.
Gaps in the estimates of the population abundances for several years (i.e. missing
observations) were handled using the method of Harvey and Pierse (1984). Max-
imum likelihood estimates of the six parameters, (�j ; �a; ˇ1;K;N0; �add ), were
calculated using R and the code is available on the book website (Sect. 1.2). When
fitting the NDLM, an estimate of �t less than 0 occurred for the year 1989 when the
fitted total exceeded the carrying capacity, K, and this possibility is a limitation of
this particular NDLM approximation. However, optimization runs which enforced
�t � ˇ0 (see Eq. (6.19)), namely
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Table 6.1 Maximum
likelihood estimates of
parameters for the
observation error-only and
NDLM models for the gray
whale population (for the
period 1968–1998)

Observation
Parameters error-only NDLM

�j 0.9999 0.8281
�a 0.9400 0.9582
ˇ1 0.3418 0.9369
K 21.6391 22.2234
N0 11.6036 13.0971
�add 2.4018 0.0360

The values for K and N0 are in 1000s of whales

�t D max

�
ˇ0; ˇ0 C .ˇ1 � ˇ0/

�
1 � Nt

K

��

yielded quite similar maximum likelihood estimates, but that constraint causes a
discontinuity in the likelihood function which makes calculation of the Hessian
matrix impossible.

Table 6.1 compares parameter estimates for the observation error-only model
and the NDLM. Figure 6.7 plots the NDLM filtered estimates of total abundance
along with the observations. Estimates of carrying capacity (K) and the initial total
population abundance (N0) are relatively similar for the two approaches, while
estimates of the maximum fecundity parameter (ˇ1) and the additional observation
noise term (�add ) are quite dissimilar. That the NDLM estimate of �add is two orders
of magnitude smaller than for the observation error-only model can be attributed
to the explicit accounting for environmental variation in the population dynamics,
which has thus been separated from sampling error in the abundance estimates.

Difference in estimates of �j and ˇ1 may be partly due to negative correlation
(in the NDLM the Pearson correlation coefficient between �j and ˇ1 was -0.77),
indicative of some degree of parameter indeterminacy. Such indeterminacy is not
surprising given that the observations are estimates of the total population, not
estimates of age-specific abundances. Different combinations of survival probabil-
ities and fecundity rates, e.g. increases in �j offset by decreases in ˇ1, can yield
quite similar total population numbers. Quantification of such relationships between
parameter estimates is useful for identifying data needs and stimulating future data
collection. For example, natural markings might be exploited to conduct a mark-
recapture study to estimate annual survival probabilities, �j and �a. The newly
acquired data could then be combined with existing data to fit state-space models
where the correlation between parameter estimates is lessened. Chapter 9 discusses
such integrated analyses.
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Fig. 6.7 Kalman filter estimates of annual Eastern Pacific gray whale abundances (hollow circles)
based on an NDLM for the years 1968 through 1998, with year-specific field-based estimates
(triangles). Projected abundances based on estimates of the initial population total N0 and
parameter estimates are contrasted for the NDLM (C’s) and the observation error-only model
(x’s)

6.5 Discussion

It is often convenient to draw inferences about population dynamics using closed-
population abundance estimation methods, particularly when individuals cannot
be linked across (primary) sampling occasions. While a single model that relates
observations (rather than abundance estimates) to population dynamics parameters
is intellectually appealing, breaking the inference problem into two stages and
then using the “observation” model that arises from closed-population estimation
can make inference substantially easier, and this is often the main motivation for
adopting this strategy.

State-space modelling is slightly different when using closed-population estima-
tors because the “observations” are really estimates in this case and all parameters
of the observation model will have been estimated prior to fitting the state-space
model. As Knape et al. (2013) have noted, the information loss from using estimates
(derived quantities) instead of the observations (the raw data) is often minor. Fitting
the population dynamics model can still be informative about parameters of the
observation model. In the case of the gray whales, for example, fitting the dynamics
model suggests that the variance of the closed population abundance estimates
might have been underestimated. The SSM framework is potentially superior to
an observation error-only model in that it allows variation in population dynamics,
namely environmental and demographic stochasticity or so-called process error,
to be modelled distinct from observation error. The observation error-only model
necessarily combines process error and observation error. In the whale data set it
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was useful to have year-specific estimates of observation error (i.e. estimation error).
The addition of a separate variance term (�2add ) to the observation model error was
an attempt to accommodate variance over and above that estimated from surveys,
although it was not clear whether this additional variance is due to underestimation
of the observation error or due to neglected process error. However, the use of a con-
stant variance term for process variation is necessarily inadequate considering that
such variation in this case reflected demographic variation (in numbers surviving
and numbers born), which varies as a function of abundance. A more realistic SSM
for the whale data would allow for environmental variation in survival probabilities
and birth rates, i.e. a hierarchical SSM might be preferable [Eq. (3.6)].

In both the examples considered here, the simpler model that does not model sub-
processes (Model ML) had lower AIC than the matrix population model (Model
MM ; �AICD5.5 in the case of the gray whales). Nevertheless, the latter models,
which do model population sub-processes, have substantial advantages over the
former. They can enhance understanding of population dynamics processes, they
provide a tool for answering ecological questions about the nature of the dynamics,
and can hence inform management and conservation decisions in a way that the
simpler models cannot. For example management actions can be translated into
effects on parameters of various sub-processes, e.g. survival probabilities and birth
rates, by modelling such parameters as functions of management-related covariates.
They also readily allow additional data on sub-processes to be incorporated in
inference—independent estimates of survival probabilities that are available in the
case of the wildebeest example.



Chapter 7
Estimating Survival Probabilities
from Mark-Re-Encounter Data

There are many reasons why we are interested in how long wild animals survive.
A particularly pressing one is so that we can evaluate the effects of climate
and anthropomorphic changes. In an early example, North and Morgan (1979)
demonstrated a link between winter temperature and the survival of grey herons,
Ardea cinerea, using point-process models as well as logistic regression, as in
Sect. 5.1. As a further example, one might be interested in calibrating the effect of a
change in hunting regulations on survival probability of wild fowl. In order to study
the survival of wild animals, we normally need to be able to identify individuals
uniquely. This may be done by means of recognising the patterns of spots on a
cheetah, the belly patterns of newts, or the DNA left in the field, for example. In
many cases, animals do not exhibit recognisable individual characteristics, and so
are given identifying marks. This can be done in many different ways, for instance
by attaching a ring to the leg of a bird, a collar to a deer or goose, or an ear tag to
a sheep. Marked in this way, individual animals may be identified and recorded
when re-encountered again, alive or dead. In contrast with human demography,
typically we do not know the fate of most wild animals in a population of interest, or
even most of the marked or identified animals, because there may be few or no re-
encounters with such animals. Marking with radio tags, combined with subsequent
radio tracking, is an exception.

We describe mark re-encounter methods that are used for estimating the survival
of wild animals. Probability models are formed for data obtained from observations
made of uniquely identified animals, and are fitted to the data using either maximum
likelihood or modern Bayesian methods. It is shown how models may be expressed
in state-space form.

K.B. Newman et al., Modelling Population Dynamics: Model Formulation,
Fitting and Assessment using State-Space Methods, Methods in Statistical Ecology,
DOI 10.1007/978-1-4939-0977-3__7, © Springer Science+Business Media New York 2014
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7.1 Modelling Survival

Many wild animal populations experience a natural yearly life-cycle, and their
survival is often reported as annual survival, corresponding to whether or not an
animal survived a particular year of life.

7.1.1 Ring-Recovery Data

The ring-recovery data of Table 7.1 are taken from Catchpole et al. (1999). Here
marked animals are only ever re-encountered dead. Thus for example, in 1964,
the second year of this study, 1285 lapwings were ringed in Britain and released.
Of those that died in their first year of life, the deaths of 20 were reported to
the British Trust for Ornithology; of those that survived their first year of life but
died in their second year, three were reported, and so on. If we assume that birds
die independently of one another, then the appropriate probability distribution to
describe how deaths are distributed over the years, from any one cohort of ringed
birds, is the multinomial distribution. We wish to estimate probabilities of annual
survival from ring-recovery data, and this involves writing the multinomial cell
probabilities in terms of appropriate annual survival probabilities and recovery
probabilities. A striking feature of Table 7.1 is the relatively large numbers along the
leading diagonal of the table. It is often the case that there is appreciable mortality
of wild animals in the first year of life. In such cases, we would want to include
some form of age-dependence in the survival probabilities. For example we might
have a survival probability �1 for animals in their first year of life, and an annual
survival probability �a for all older animals. If we also assume a constant recovery

Table 7.1 Ring-recovery data for British lapwings Vanellus vanellus, uniquely ringed
in the nest during the years 1963–1973

Year of Number (Year of recovery)

ringing ringed 64 65 66 67 68 69 70 71 72 73 74

1963 1147 14 4 1 2 1 0 1 1 0 0 0
1964 1285 20 3 4 0 1 1 0 0 0 0
1965 1106 10 1 2 2 0 2 2 1 1
1966 1615 9 7 4 2 1 1 0 0
1967 1618 12 1 6 2 0 0 1
1968 2120 9 6 4 0 2 2
1969 2003 10 8 5 3 1
1970 1963 8 3 2 0
1971 2463 4 1 1
1972 3092 7 2
1973 3442 15

Data provided by the British Trust for Ornithology
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Table 7.2 Multinomial reporting probabilities for a model in which there is probability �1 that an
animal survives its first year of life and probability �a that an animal survives any further year of
life, illustrated for just one cohort of released animals and 4 years of recovery

Year 1 2 3 4

History D-R L-D-R L-L-D-R L-L-L-D-R Other
Probabilities .1� �1/� �1.1� �a/� �1�a.1� �a/� �1�

2
a.1� �a/� 1� .1� �1�

3
a/�

The parameter � denotes the probability that a dead animal has its death recorded. The alphabetic
labels for the history are D for Die, L for Live, and R for Recorded

probability �, the multinomial probabilities are illustrated in Table 7.2, for the case
of a single cohort of released animals and 4 years of recovery. The expression
� D 1 � .1 � �1�

3
a/� is the probability that an animal is not reported dead during

the study, either because it was still alive at the end of the study or because it died
but was not reported.

If there are T years of recovery, and mt animals reported dead in the t th year of
the study, then the likelihood corresponding to a single cohort of marked animals is
given by

L.�1; �a; �jm1; : : : ; mT / / f�.1 � �1/gm1
TY
tD2

f��1�t�1a .1 � �a/gmt �c�m: ; (7.1)

where m: D PT
tD1 mt , and c is the cohort size. The missing constant of proportion-

ality is the multinomial coefficient which does not involve the model parameters.
For each cohort we form a separate multinomial likelihood, of the form of Eq. (7.1),
and then following the additional assumption of independence between cohorts,
the likelihood corresponding to the entire recovery table is given by the product
of the multinomial likelihoods for each of the cohorts. This product-multinomial
likelihood may then be maximized numerically to produce the maximum-likelihood
estimates of the three model parameters. Alternatively it can be combined with prior
distributions on the model parameters in order to form a posterior distribution in
Bayesian analysis.

7.1.2 Capture-Recapture Data

The data of Table 7.3 are taken from Lebreton et al. (1992) and describe the
recaptures of European dippers Cinclus cinclus (Fig. 7.1). These data result from
a study of adult birds of unknown age which have been previously marked uniquely
with rings. Here marked birds are only re-encountered alive, and after recapture they
become part of the next cohort of released birds.
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Table 7.3 Capture-recapture
data for dippers for years
1981–1987

Year of Number Year of recapture

release released 82 83 84 85 86 87

1981 22 11 2 0 0 0 0
1982 60 24 1 0 0 0
1983 78 34 2 0 0
1984 80 45 1 2
1985 88 51 0
1986 98 52

Fig. 7.1 Dippers are associated with clear, usually fast-flowing water, and walk underwater to
catch their prey. Photo: Steve Buckland

The data may be modelled similarly to the ring-recovery data. In both cases,
the model involves probabilities of annual survival, but in this case, recovery
probabilities are replaced appropriately by recapture probabilities.

A display of data in this form is often called anm-array. The form of Table 7.3 is
essentially the same as that of Table 7.1, and the modelling is structurally the same,
involving a likelihood which is a product of multinomial likelihoods, one from each
cohort. The dipper data are of adults only. Suppose we assume that they share a
common annual survival probability �a, and that all birds have the same probability
of recapture p in each year. Then under this simple model, and for a single cohort
with 4 years of recapture data, the multinomial probabilities corresponding to first
recapture in years 1; 2; 3; 4 are respectively �ap, �2a.1�p/p, �3a.1�p/2p and �4a.1�
p/3p, while those not recaptured have probability � D 1 �P4

tD1 �tap.1 � p/t�1.
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(Note that, once recaptured, a bird is released as a member of a new cohort under
this model, hence it cannot be recaptured more than once in a given cohort.)

The likelihood L.�a; pjdata/ can then be formed. It may be maximized numeri-
cally, to give the maximum-likelihood estimates, or be used in a Bayesian analysis
in the usual way. For illustration, if we have just one cohort of size c of marked
animals and there are mt recaptures at time t D 1; : : : ; T , then the likelihood is
given by

L.�a; pjdata/ /
TY
tD1

f�tap.1 � p/t�1gmt �c�m: ; (7.2)

where m: D PT
tD1 mt , and � D 1 �PT

tD1 �tap.1 � p/t�1.
As in the last section, the likelihood corresponding to the entire table is the

product of the multinomial likelihoods that result from each cohort. When animals
of unknown age are marked, then the Cormack-Jolly-Seber (CJS) model results if
all of the model parameters are time-dependent (Cormack 1964; Jolly 1965; Seber
1965). A strong assumption of capture-recapture models is that animals remain
faithful to the study area. If that assumption is violated, survival estimates are biased
low, because we are in reality estimating the probability that an animal both survives
and remains in the study area.

7.1.3 Models for Life-History Data

Re-encounters may include recapture, recovery and resighting of the same individ-
uals. An example in which recoveries and recaptures occur together is provided in
Table 7.4 which shows data on shags Phalacrocorax aristotelis (Fig. 7.2), arising
from the Isle of May Long-Term Study of the Centre for Ecology and Hydrology in
Scotland. The data take the form of individual life histories. A “1” indicates capture
or recapture, a “2” indicates recovery, and a “0” indicates that the bird was not
recorded in that year. This notation may be extended to include resightings, and
also to cover re-encounters at more than one location. We assume here that there is
no emigration of animals; for models that include migration, see e.g. Barker (1997),
Burnham (1993) and Kendall et al. (1997). Suppression of 1’s (2’s) in the life-history
data of Table 7.4 results in recovery (recapture) data alone.

We suppose that there are T sampling times, t1; : : : ; tT , with recovery information
now possibly extending further to K. We define cohort c as the set of animals
first marked at time tc; c D 1; : : : ; C: Then for an animal from cohort c, and
j D c; : : : ; K � 1,

�c;j D Pr(an animal alive at tj survives until tjC1),
�c;j D Pr(an animal which dies in .tj ; tjC1/ has its death reported),
while for j D c C 1; : : : ; K,
pc;j D Pr(an animal alive at tj is captured at tj ), and qc;j D 1 � pc;j .
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Table 7.4 Illustrations of life
histories for five different
shags

Capture occasions
Cohort t1 t2 t3 t4 t5 t6

1 1 0 1 0 2 0
1 1 0 0 1 1

2 0 1 2 0 0 0
0 1 0 0 1 0
0 1 0 0 0 0

In the first cohort, both birds are marked at time t1, while
in the second cohort, the three birds are all marked at
time t2. A “1” indicates capture, a “2” indicates recovery
and a “0” indicates that the bird was not recorded in that
year

Fig. 7.2 Shags are one of the species recorded in the Isle of May Long-Term Study, allowing
accurate estimation of annual survival rates. Photo: Steve Buckland

Catchpole et al. (1998a) show that we can specify the likelihood as

L.ppp;���;���jdata/ /
CY
cD1

2
4K�1Y
jDc

f˛c;j .1� �c;j /�c;j gdc;j
TY

jDc

f˛c;j �c;j gvc;j
T�1Y
jDc

p
wc;j
c;jC1q

zc;j
c;jC1

3
5 ;

(7.3)
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where ppp represents the matrix of capture probabilities, ��� the matrix of survival
probabilities, ��� the matrix of recovery probabilities and ˛c;j D 1;when j D
c; and ˛c;j D Qj�1

iDc �c;i when c C 1 � j � K. The term �j;c is the probability
that an animal from cohort c alive at tj is not observed after time tj , either alive or
dead, and it is given by the recursion

1 � �c;j D .1 � �c;j /�c;j C �c;j .1 � qc;jC1�c;jC1/;

with

�c;K D 1; for c D 1; : : : ; C .

The likelihood is determined by four matrices constructed from the raw data,
whose elements are defined below, all relating to animals from cohort c, for 1 �
c � C .

wc;j D the number of animals that are recaptured at time tjC1; c � j � T � 1;
zc;j D the number of animals that are not recaptured at time tjC1 but are
encountered later in the study, either alive or dead, c � j � T � 1;
dc;j D the number of animals that are observed dead in the interval .tj ; tjC1/,
c � j � K � 1.
vc;j D number of animals that are last observed at time tj ; c � j � T .

These matrices form a set of sufficient statistics, since they are all that we need
to retain from the data in order to evaluate the likelihood—it is not necessary to
retain all the individual life histories, and this results in a computational saving
when the likelihood is formed. It is also attractive to see how simple multinomial
likelihood expressions which arise when there are only recovery or only recapture
data, generalize to the case of integrated data. The formulation given here is
completely general, and allows a wide range of complex models to be specified,
making different assumptions about how various model parameters may vary with
time as well as age. Formulation of a likelihood in terms of sufficient matrices
extends to the case of multi-site models; see King and Brooks (2003), McCrea et al.
(2012a) and King and McCrea (2014).

7.2 Formulation as State-Space Models

Capture re-encounter data arise as a consequence of two separate processes, of
survival and capture/recovery. This is formalised by Gimenez et al. (2007) and Royle
(2008), who show independently that probability models such as those presented
above (Eqs. (7.1), (7.1) and (7.3)) may be written as SSMs. This is structurally
pleasing, providing a natural link with the use of SSMs in ecology (Buckland et al.
2004; Thomas et al. 2005). It may also simplify complex methods, such as when
capture-re-encounter data are analysed simultaneously with census data, described
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by SSMs (see Chap. 9). As we discuss below, the Bayesian approach using SSM
formulations is easily extended to include random effects at the individual level.
The general Bayesian state-space modelling of capture-recapture-recovery data is
reviewed by King (2012).

In our discussion of SSMs in this section, instead of using nt or Nt for the state
vector we use z.i; t/ or Z.i; t/ where i refers to individual animal i . This new
notation emphasizes that the use of animal-specific identifiers (marks) allows one
to monitor and model the condition of individuals from one time period to the
next, which is in contrast to cases discussed previously where the condition and
abundance of groups of animals are being modelled. We note, however, the vector nt
is still present in this section as it is the vector of the individual animal variables, e.g.

nt D

2
6664

z.1; t/
z.2; t/
:::

z.n; t/

3
7775 (7.4)

For the cases considered in Sects. 7.2.1, 7.2.2 and 7.2.3, the state pdf gt .nt jnt�1/
is a product of n pdfs, either binomial or multinomial, due to assumptions of
independence between animals. One can imagine situations, however, where
dependence between individual animals occurs, e.g. survival is density dependent,
and the pdf gt would no longer be a simple product of n pdfs.

7.2.1 Capture-Recapture Data

For illustration we just consider the case of time-dependent parameters. For the CJS
model, the state process is given solely in terms of survival, as follows:

z.i; t/jz.i; t � 1/ � Bernoulli.z.i; t � 1/�t�1/ for t D fi C 1; : : : ; T; (7.5)

and the observation equation is given by

y.i; t/jz.i; t/ � Bernoulli.pt z.i; t// (7.6)

where z.i; t/; i D 1; : : : ; n; t D 1; : : : ; T are Bernoulli indicator random variables
for life histories as in Table 7.4, describing whether or not an individual is alive
(z.i; t/ D 1) or dead (z.i; t/ D 0). We have z.i; fi / D 1, where fi is the time of first
capture of the i th individual. The time-dependent capture probability is denoted by
pt , and the capture history for the i th individual is given by fy.i; t/gTtDfi .

To perform Bayesian inference, the state-space formulation of the CJS model
allows a straightforward implementation in WinBUGS (Gimenez et al. 2007; Royle
2008), provided on the book website (Sect. 1.2).
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Table 7.5 Posterior
summary statistics for the
CJS model fitted to the
European dipper data

Bayesian Classical
analysis analysis

Parameters Mean (SD) MLE (SE)

�1 0.73 (0.13) 0.72 (0.16)
�2 0.45 (0.07) 0.44 (0.07)
�3 0.48 (0.06) 0.48 (0.06)
�4 0.63 (0.06) 0.63 (0.06)
�5 0.60 (0.06) 0.60 (0.06)
�6 0.72 (0.14) NA (NA)

p2 0.66 (0.13) 0.70 (0.17)
p3 0.88 (0.08) 0.92 (0.07)
p4 0.89 (0.06) 0.91 (0.06)
p5 0.88 (0.05) 0.90 (0.05)
p6 0.91 (0.05) 0.93 (0.05)
p7 0.74 (0.14) NA (NA)

Posterior means and standard deviations (SD)
are displayed. For comparison, we also provide
maximum-likelihood estimates (MLE) and cor-
responding standard errors (SE). NAs are for
redundant parameters, which cannot be estimated

To run the code, the array of capture histories y, the vector f of dates of first
capture for all individuals, and the constants n and T for the number of individuals
and of capture occasions respectively must be input. As usual in WinBUGS, the code
is split into two main components, the likelihood and the priors. For the likelihood,
the first two lines specify that the initial state of each individual is fixed and alive (at
first capture). The conditional distributions of z (state equations) and y (observation
equations) are those specified in Eqs. (7.5) and (7.6) respectively. We assume U(0,1)
priors for both time-dependent survival phi and detection probabilities p.

After discarding a burn-in of 5,000 samples, 50,000 Monte Carlo draws were
generated from the posterior distribution. The resulting posterior summary statistics
for the European dipper data of Table 7.3 are shown in Table 7.5. For comparison,
we also provide the parameter estimates for the CJS model obtained by maximizing
the likelihood in Eq. (7.2). Both methods of inference gave essentially the same
estimates and measures of precision, with the exception that separate maximum-
likelihood estimates of �6 and p7 do not exist (see Sects. 5.2.1 and 5.2.6). The
Bayesian analysis gives separate estimates of �6 and p7 as a consequence of the
prior information.

7.2.2 Multi-State Capture-Recapture Models

An important application of capture-recapture models arises when individuals may
live in different states or sites (Arnason 1973; Schwarz et al. 1993), and the
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state-space formulation of the last section extends simply to this case (Dupuis 1995).
For illustration, we follow Gimenez et al. (2007) and consider the case of two states.
Note that in the standard (non-SSM), description of multi-state capture-recapture
models, the state “dead” is never considered, but it does have to be present in the
state-space formulation. Let Z.i; t/ denote the state vector, which now takes the
values .1; 0; 0/, .0; 1; 0/ and .0; 0; 1/ if, at time t , individual i is alive in state 1, 2 or
dead respectively. Let Y.i; t/ be the corresponding observation vector, taking values
.1; 0; 0/, .0; 1; 0/ and .0; 0; 1/ if, at time t , individual i is encountered in state 1, 2 or
not encountered, respectively. The model parameters are now �

.rs/
i;t , the probability

that an animal i survives to time t C 1 given that it is alive at time t and makes the
transition between states r and s over the same interval (r; s D 1; 2), as well as p.r/i;t
the probability of detecting individual i at time t in state r (r D 1; 2). A state-space
formulation for the multistate model is then given below, in terms of vector and
matrix multiplication:

Z.i; t/jZ.i; t � 1/ � multinomial

0
B@1;Z.i; t � 1/

2
64
�
.11/
i;t�1 �

.12/
i;t�1 1 � �.11/i;t�1 � �.12/i;t�1

�
.21/
i;t�1 �

.22/
i;t�1 1 � �.21/i;t�1 � �.22/i;t�1

0 0 1

3
75
1
CA

(7.7)

Y.i; t/jZ.i; t/ � multinomial

0
B@1;Z.i; t/

2
64
p
.1/
i;t 0 1 � p.1/i;t
0 p

.2/
i;t 1 � p.2/i;t

0 0 1

3
75
1
CA

(7.8)

where Eqs. (7.7) and (7.8) are the state and observation equations respectively,
generalizing Eqs. (7.5) and (7.6).

This formulation can be extended to produce a state-space formulation for
integrated recovery and recapture data (Servanty et al. 2010; King 2012) and can
also incorporate age effects (Dupuis et al. 2002; King and Brooks 2003; Zheng
et al. 2007).

7.2.3 Ring-Recovery Data

In the case of recovery data alone, for the same hidden process that produces the
Z.i; t/, we can define new Bernoulli random variables X.i; t/, taking the value 1 if
the i th individual is recovered dead at time t and 0 otherwise. Thus the pattern of
2’s and 0’s in the life history is readily obtained by adding 1 to the 1’s in X.i; t/. We
can then write the observation equation as

Y.i; t/jZ.i; t/; Z.i; t � 1/ � Bernoulli ..Z.i; t � 1/ �Z.i; t//�t / ; (7.9)

where �t is a time-varying recovery probability.
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7.2.4 Extensions

The multi-state formulation has similarities with the multi-event modelling of Pradel
(2005), who used hidden-Markov models to extend multi-state models to cope with
uncertainty in state assignment, which is a defining characteristic of multi-event
models; see also King and McCrea (2014). The SSM formulation of this chapter is
well-suited to a Bayesian analysis, and both Gimenez et al. (2007) and Royle (2008)
give WinBUGS programs for Bayesian inference via Markov chain Monte Carlo (see
the dipper code on the book website for an example); see also King et al. (2009)
and Schofield et al. (2009). An attraction of the Bayesian approach is that random
effects can be easily included in the models, to account for individual variation in
parameters such as survival (Royle 2008; see however Gimenez and Choquet 2010
for a classical approach) as well as correlations among parameters at the individual
level (Buoro et al. 2010). A comprehensive review is given by King (2012), who also
explains how data augmentation may be used for analysis. A characteristic of the
CJS model is that it conditions on the first capture of animals. If the model includes
age-dependence, and a random effect is also included to account for heterogeneity of
survival, then any variation identified in survival might relate to the fact that animals
with higher survival probability will be more likely to be sampled than animals with
lower survival probability. See Royle (2008) for discussion of this. He analysed the
dipper data and identified evidence for heterogeneity of recapture.

If independent census data are also being described by a SSM, as was the case
in Besbeas et al. (2002), see Chap. 9, then a combined likelihood can be formed,
both components of which are SSMs, which may in some cases be advantageous
(Gimenez et al. 2007).

7.3 Discussion and Additional Work

The statistical analysis of mark-re-encounter data has a history stretching back over
the past 100 years. The area remains a vibrant one, as new methodology is being
developed to cope with developments such as the demands of long-term data sets
and the requirements of new marking technologies. For more detail, see McCrea
and Morgan (2014) and King (2014). In this short review, we have only described
the basic models and procedures, and we list below a number of recent advances.

The use of appropriate covariates to simplify time-dependency in model param-
eters dates from North and Morgan (1979). Gimenez et al. (2006a) introduce
splines for the flexible incorporation of covariates into models. These methods
have been adapted to deal with individual covariates (Gimenez et al. 2006b,
2009a). Procedures for dealing with time-varying covariates with missing values
are described in Catchpole et al. (2008) and comparisons are provided in Bonner
et al. (2010). A hidden-Markov approach is described in Langrock and King (2013).
Complex models including age-classes for survival, covariates, including effects of
senescence, are described in Catchpole et al. (2000, 2004) and King et al. (2006).
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New goodness-of-fit procedures are being developed by McCrea et al. (2014) and
McCrea et al. (2012a). Model-selection using score tests is the subject of McCrea
and Morgan (2011); see Sect. 5.4.1.2. This is an alternative to methods based on
information criteria; see for example Lebreton et al. (1992). Buckland et al. (1997)
propose a non-Bayesian method for model-averaging; see Sect. 5.5.1.

Bayesian developments are comprehensively described in King et al. (2009).
Grosbois et al. (2009) provide an extension to deal with spatial correlation in
capture-recapture, and Lahoz-Monfort et al. (2011) use this methodology for multi-
species systems. Both papers incorporate random effects and use a Bayesian
formulation and analysis.

Cole et al. (2010) present new ways of determining the parametric structure of
complex probability models, which is particularly relevant to mark-re-encounter
models, when it may not be possible to estimate all of the model parameters.
A simple case of this arises in the CJS model, as can be seen in Table 7.5;
see Chap. 5. These methods are applied to ring-recovery models in Cole et al.
(2012), multi-state models in Cole (2012), and capture-recapture-recovery models
in Hubbard et al. (2014).



Chapter 8
Estimating Abundance from Mark-Recapture
Data

In terms of modelling population dynamics, the mark-recapture literature has in
recent years been dominated by methods for estimating survival, as described in
Chap. 7. In this chapter, we consider open-population mark-recapture methods
for estimating abundance, survival and births. We first summarise conventional
methods (Seber 1973, 1982). In these, abundance is estimated largely as for closed-
population mark-recapture methods (Borchers et al. 2002:104–130), except that the
number of marked animals surviving to the next capture occasion must be estimated.
Survival is estimated as in Chap. 7. Finally, number of births is usually estimated
by subtracting the estimated number of surviving animals from the previous time
period from the estimated population size in the current time period.

The shortcoming of the conventional approach is that there is no embedded pop-
ulation dynamics model. Thus estimated birth rates can be biologically impossible;
for example, estimated number of births may exceed the number of breeding females
for species that give birth to at most one young per year. In fact, the above process
of estimating numbers of births by subtraction often leads to negative estimates
of numbers of births. In Sect. 8.2, we provide state-space formulations of mark-
recapture models that ensure that estimated numbers of births and estimated changes
in the population are consistent with biological reality.

In common with other chapters, we assume that the basic unit of time is one year,
so that there is one capture session per year. The methods are readily generalizable
to different time units.

K.B. Newman et al., Modelling Population Dynamics: Model Formulation,
Fitting and Assessment using State-Space Methods, Methods in Statistical Ecology,
DOI 10.1007/978-1-4939-0977-3__8, © Springer Science+Business Media New York 2014
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8.1 Conventional Mark-Recapture Models for Open
Populations

8.1.1 A Likelihood Formulation

In the following, we assume that year t ends with a sampling occasion, and we
assume that all animals caught are released alive with permanent marks.

Let

Nt D number of animals in the population just before the sampling occasion in
year t , t D 1; : : : ; T ;
Mt D number of marked animals in the population just before the sampling
occasion in year t ;
Vt D Nt �Mt D number of unmarked animals in the population just before the
sampling occasion in year t ;
st D number of animals caught during the sampling occasion in year t ;
mt D number of marked animals caught during the sampling occasion in year t ;
vt D st � mt D number of unmarked animals caught during the sampling
occasion in year t , and marked before release;
rt D number of marked animals released in year t and subsequently recaptured;
zt D number of animals caught before year t that are not recaptured in year t ,
but are subsequently;
�t D probability that an animal released in year t is not recaptured.

Note that we use st rather than the more standard nt for sample size in year t , to
avoid confusion with the state vector nt . Similarly, we use Vt and vt to indicate
unmarked animals in the population and sample respectively in year t rather than
the more standard Ut and ut to avoid confusion with intermediate state vectors ut .

If we assume that every animal in the population has the same probability of
capture pt in year t , and the same probability of survival �t from the end of year
t to the end of year t C 1, then we might assume a multinomial model, giving the
following likelihood apart from constants (Seber 1965):

TY
tD1

Vt Š

.Vt � vt /Š
p
st
t .1 � pt /ztCVt�vt

T�1Y
tD1

�
rtCzt
t �

st�rt
t : (8.1)

If for the above model, �t and pt are allowed to vary by year only, we obtain
the Jolly-Seber model (Jolly 1965; Seber 1965). The likelihood can be extended to
allow deaths on capture (Jolly 1965) or known deaths between capture occasions
(Buckland 1980). If either survival probabilities or capture probabilities or both are
assumed to be constant over years, we have the reduced-parameter models of Jolly
(1982).

By modelling �t and/or pt as functions of covariates, more biologically relevant
models may be obtained (Pollock 2002). Thus for example, adopting a similar model
to that proposed in Sect. 2.2.1, we might model �t as
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�t D 1

1C expfˇ0 C ˇ1rtC1 C ˇ2Ntg (8.2)

where rtC1 is an environmental covariate and Nt is abundance at the end of year t .
If covariates are measured on individual animals, the likelihood may be readily

extended to provide individual-based models, similar to the closed-population
methods of Huggins (1989) and Alho (1990), and to the methods of Morgan et al.
(2004) (see Chap. 7) for estimating survival rates from mark-recapture data. Of
course, such covariates can usually only be recorded for captured animals.

The model parameters may also be modelled as random effects, as was done for
closed populations by Coull and Agresti (1999), offering even greater flexibility. For
example, we might model �t as:

�t D 1

1C expfˇ0 C ˇ1rtC1 C 
tC1g (8.3)

where 
tC1 � normal.0; �2/.
These strategies allow heterogeneity amongst animals in the probability of

capture or survival to be modelled. Time-varying covariates are problematic because
typically, these can only be recorded when animals are caught. Methods for handling
the missing values have been developed by Catchpole et al. (2008), Bonner et al.
(2010) and Langrock and King (2013).

Pollock (1982) proposed a different strategy for modelling heterogeneity in
capture probabilities. At that time, methods were available for modelling such
heterogeneity for closed populations, but not for open populations. He therefore
suggested a design in which a closed-population mark-recapture study is conducted
over a short period each year, to allow robust estimation of population size. The
Jolly-Seber survival estimators, treating each year as a single sample (i.e. pooling
data within a year), are still adopted. A slight modification of the Jolly-Seber birth
estimators is now used, in which the annual abundance estimates are obtained from
the within-year closed-population studies using a model that allows heterogeneity
in the capture probabilities.

8.1.2 Modelling Births

Note that Eq. (8.1) is deterministic with respect to births, in that the number of births
Bt in year t is taken to be the population size at the end of year t C 1, NtC1, less the
number of survivors Nt�t from the end of year t , so that:

OBt D ONtC1 � ONt O�t : (8.4)

Crosbie and Manly (1985) explicitly included the birth process in the likelihood,
overcoming one of the limitations in the Jolly-Seber formulation. They achieved
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this by defining N to be the total number of unique animals that existed in the
population in the period Œ1; T �. A multinomial distribution is assumed to model how
these animals split into the possible capture histories, and for each capture history,
a component of the likelihood is defined for each time interval that an animal could
have entered the population (i.e. birth), and for each time interval that an animal
could have died. For example, if there were T D 6 sampling occasions, and a
particular animal was recorded in years 2, 3 and 5, then the non-zero contributions
to the likelihood correspond to birth before t D 1 or birth in the interval .1; 2/,
followed by death in the interval .5; 6/, or death after t D 6. Schwarz and Arnason
(1996) developed this approach further.

Link and Barker (2005) adopted a similar strategy, but introduced birth rate
parameters into their formulation, to replace the less biologically relevant multi-
nomial probabilities of the above approach. They also used a hierarchical modelling
approach to model birth and survival rates, and used Markov chain Monte Carlo
methods to fit their models.

However, the above approaches still fail to respect biological reality. For
example, if adults can have no more than a single young in a year, the above methods
do not ensure that this constraint is respected; there is no embedded population
dynamics model. We now consider state-space models that remove this limitation.

8.2 State-Space Formulations

Equations (3.3)–(3.5) gave the state and observation pdf’s for a state-space model:

Initial state pdf W g0.n0j�/ (8.5)

State t pdf W gt .nt jnt�1;�/ (8.6)

Observation t pdf W ft .yt jnt ; /: (8.7)

The demographic processes such as birth and death determine the numbers of
animals in each state. The state pdf gt .nt jnt�1;�/ represents the variability arising
from these demographic processes in updating from year t � 1 to year t . In mark-
recapture, there is also the stochastic process that determines which animals are
caught each year. We can represent this process in the observation pdf. However,
at a minimum, we must define different states corresponding to whether animals
are marked or not. Thus unusually, the processes that generate the states are not
independent of the observation process (but see conditionally Gaussian modelling
in Sect. 9.7.1). If we adopt this approach, then for t � 2, we should replace Eq. (8.6)
by

gt .nt jnt�1; yt�1;�/: (8.8)
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A second option is to define the capture process to be another component of the state
process. In this case, we assign animals with different capture histories to different
states. That is, an animal’s capture history determines its state (along with other
relevant variables such as sex and age or size class). In this case, as the stochastic
capture process is also incorporated into the state pdf, the observation pdf becomes
degenerate (unless there are additional data on the population over and above the
mark-recapture data). We consider both options below. We term the first option
“unconditional” and the second option “conditional”.

In the conditional approach, parameters relating to probability of capture appear
in the vector of state parameters, � . In the unconditional approach, the capture histo-
ries are the observations, and do not influence the state of an animal. Consequently,
parameters related to capture probability appear as observation model parameters,
 . We term the first approach a conditional approach because for a given year,
we condition on the known numbers of animals with capture histories that include
capture in that year. Thus there is no observation error, and stochasticity enters
through the uncertainty in the numbers of animals by state with capture histories
that do not involve capture in the current year. With the unconditional approach, we
treat capture as a stochastic observation process, and model the capture histories as
if they are just one random realisation of that process. The unconditional approach
is more consistent with the traditional mark-recapture methods summarized above.
It should be noted that the two approaches lead to different fitting algorithms, but
the model being fitted is the same either way.

Jolly (1965) termed quantities such as Nt “conditional parameters”. In the
following formulations, whether conditional or unconditional, we adopt a Bayesian
approach, for which the posterior distribution for Nt obtained reflects uncertainty
arising from the observation process only. If we wish to draw inference on
EŒNt � where expectation is across all possible realisations from an underlying
superpopulation, we need to simulate a sample of these realisations, having obtained
samples from the posterior distributions of the demographic parameters such as
survival and birth rates.

8.2.1 The Unconditional Approach

To fit a state-space model, we must specify models for the initial state, state t and
observation t pdfs of Eqs. (8.5), (8.8) and (8.7). For a Bayesian approach, we must
also specify the prior distribution �.�; /. For the unconditional approach, the state
pdfs are specified in the standard way; the dependence of the state pdf in year t on
the observations in year t � 1 is not problematic. Because the state model handles
numbers of animals by state in the population, the observation pdf is simpler than
the likelihood for conventional mark-recapture methods. For example, if animals are
grouped into just two states corresponding to marked and unmarked, the likelihood
given by Eq. (8.1) can be replaced by the observation pdf:
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f .m1; � � � ; mT ; v1; � � � ; vT jM1; � � � ;MT ; V1; � � � ; VT ; / D
TY
tD1

 
Mt

mt

!
p
mt
t .1�pt /Mt�mt �

 
Vt

vt

!
p

vt
t .1�pt /Vt�vt

(8.9)

where pt � pt . / and M1 D m1 D 0. We do not need a pdf for survival, or indeed
for births, since these appear in the state model.

We note that this observation pdf is a product of components, each representing
one year; these components are the observation t pdfs of Eq. (8.7). Thus

ft .yt jnt ;  / D ft .mt ; vt jMt ; Vt ; / D
�
Mt

mt

�
p
mt
t .1� pt /

Mt�mt �
�
Vt
vt

�
p

vt
t .1� pt /

Vt�vt .

Fitting now proceeds using any of the algorithms of Chap. 4.
This separation of the capture process from demographic processes both simpli-

fies the observation pdf, which now reflects the capture process only, and allows us
to specify biologically realistic models for the demographic processes via the state
process pdf. Schofield and Barker (2008) adopted this strategy to assess evidence for
density dependence in birth and survival rates, and Schofield et al. (2009) showed
how WinBUGS may be used to fit such models. Bishop (2009) compared this
approach with the conditional approach (below).

In the above formulation, the observation vector yt has just two elements,
corresponding to the number of marked animals mt and unmarked animals vt
caught in year t . Similarly, the state vector nt has two elements, corresponding
to the number of marked animals Mt and unmarked animals Vt in the population
just before the sampling occasion in year t . Now suppose we have K states,
with nt D .n1;t ; � � � ; nK;t /0 and yt D .m1;t ; � � � ; mK;t ; v1;t ; � � � ; vK;t /0. Then the
observation pdf is given by

TY
tD1

ft .yt jnt ; / (8.10)

where

ft .yt jnt ; / D
KY
kD1

�
Mk;t

mk;t

�
p
mk;t
k;t .1�pk;t /Mk;t�mk;t �

�
Vk;t
vk;t

�
p

vk;t
k;t .1�pk;t /Vk;t�vk;t

(8.11)

and pk;t is the probability of capture in year t of an animal in state k. Various models
can be considered for this probability. For example, it could be assumed independent
of state k or of year t , or both. It could also be modelled as a function of covariates
(which could include previous capture history), or using a random effects model
(similar to Eq. (8.3) for modelling survival).
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8.2.2 The Conditional Approach

In the conditional approach, there are no observation parameters  , and the
observation pdf is degenerate; for year t , we observe the number of animals in
states corresponding to capture in that year without error. The uncertainty in year t
now relates to states corresponding to animals that are not caught in that year, and
this is modelled through the state t pdf, gt .nt jnt�1;�/. The state vector nt expands
each year, as the number of possible capture histories increases. The requirement to
condition on numbers of animals with capture histories corresponding to capture in
year t complicates model fitting.

Suppose initially an animal’s state is determined solely by its capture history. Let

st D vector of numbers of animals for each capture history in 1; : : : ; t that
includes capture in year t ;
vt D vector of numbers of animals for each capture history in 1; : : : ; t that
excludes capture in year t .

nt D
�

st
vt

�
D vector of numbers of animals with each possible capture history

up to and including captures in year t ;

Thus st is observed, whereas vt is not. The state t pdf is still written gt .nt jnt�1;�/,
where � now contains capture probability parameters in addition to population
parameters. The (degenerate) observation t pdf is now ft .yt jnt / � ft .st jst / D 1

if st D yt and is zero otherwise. Stochastic variation in nt is now restricted
to those elements that are also in vt . Fitting algorithms thus need to handle the
conditioning on the entire time series represented by st , t D 1; : : : ; T . Bishop
(2009) considers this method, outlines an approach for simulating populations that
respect the constraints imposed by the observed capture histories, and discusses the
problems associated with this approach.

If for each capture history, an animal can belong to one of K states, then in year
t , each state can separately be modelled in the above way.

To fit a model in this framework, we need to specify a model for capture. If this
model is the same as for the unconditional method, then this is just a different way
to fit the same model. For example the model underlying the likelihood of Eq. (8.9)
is one that assigns the same probability of capture to every animal and assumes
independence across years. We can use the same model to define the state pdf for
the conditional approach.

8.3 A Simple Example

We use an example of a mark-recapture survey of a population of animals with two
age classes, from Buckland et al. (2004). We model the female population only.
Animals have a constant survival rate �j in their first year and an annual survival
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rate �a subsequently. Mortality occurs primarily in the winter and spring. Breeding
first occurs at age 1 and the number of births per adult is distributed as a Bernoulli
random variable with probability of success �.

Births occur in summer and are followed by a single sample of a mark-
recapture experiment in the autumn. It is assumed that there is no mortality in the
period between births and the mark-recapture sample, although the model could
be extended (by adding another sub-process) to include such mortality. Juvenile
animals can be distinguished from adults on capture. In year t , juveniles are caught
with probability pjt and adults with probability pat , t D 1; : : : ; T . (Age-dependent
probabilities of capture commonly arise in practice, for example because young
animals are inexperienced and more prone to capture.)

The state vector nt contains the abundances of animals, with separate enumer-
ation of marked and unmarked animals, immediately before the mark-recapture
experiment in year t . Although conventional mark-recapture formulations tally
capture histories of marked animals, both alive and dead, we only record a capture
history for an animal while it is alive. This is because the state vector at time t only
includes animals alive at time t . A capture history of “110” therefore indicates an
animal that was caught in its first year of life and again in its second year of life,
survived into its third year, but was not caught in that year.

Given the difficulties in implementing the conditional approach (Bishop 2009),
we consider here only the unconditional approach. The length of nt for t > 1 is
three, corresponding to marked (Ma;t ) and unmarked (Va;t ) adults and unmarked
juveniles (Vj;t ), while n1 is of length two, as there are no marked animals before the
first capture session (Ma;1 D 0); note that Mj;t D 0 also, as no juveniles can have
been marked ahead of the capture session in year t . The state vector for time period
t is thus

n1 D
�
Vj;1
Va;1

�
nt D

2
4 Vj;t
Ma;t

Va;t

3
5 :

The observation vector yt may be reduced to two elements for t D 1 and three
elements for t � 2 (no juveniles can be already marked, so mj;t D 0):

y1 D
�

vj;1
va;1

�
yt D

2
4 vj;t
ma;t

va;t

3
5 :

Three sub-processes, two stochastic and one deterministic (advancement of
juveniles to either the young or the adult stage and advancement of young to adult),
generate nt from nt�1. The sequencing is winter/spring survival (following mark and
recapture), advancement, and births. The initial state vector consists of juveniles and
adults in the autumn, before the first marking.
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For time period t , the processes are modelled as follows. We must first allow for
the newly-marked animals, which reflects the dependence of the state pdf on the
observations of the previous year. Thus the marked population is supplemented by
the number of animals newly-marked, while the same number is subtracted from the
unmarked population. Then comes winter/spring survival u1;t � H1;t .nt�1/:

2
664

u1;j;m;t � Binomial.vj;t�1; �j /
u1;j;v;t � Binomial.Vj;t�1 � vj;t�1; �j /
u1;a;m;t � Binomial.Ma;t�1 C va;t�1; �a/
u1;a;v;t � Binomial.Va;t�1 � va;t�1; �a/

3
775 :

Then age incrementation of juveniles, u2;t � H2;t .u1;t / :

�
u2;a;m;t D u1;j;m;t C u1;a;m;t
u2;a;v;t D u1;j;v;t C u1;a;v;t

�
:

Then births, nt � u3;t � H3;t .u2;t /:

2
4 u3;j;t � Binomial.u2;a;m;t C u2;a;v;t ; �/

u3;a;m;t D u2;a;m;t
u3;a;v;t D u2;a;v;t

3
5 :

The conditional expectation for nt can be expressed as products of matrices:

Ent jn�

t�1
Œnt � D BtAtStn�

t�1

where

n�
t�1 D

2
664

vj;t�1
Vj;t�1 � vj;t�1
Ma;t�1 C va;t�1
Va;t�1 � va;t�1

3
775 St D

2
664
�j 0 0 0

0 �j 0 0

0 0 �a 0

0 0 0 �a

3
775

At D
�
1 0 1 0

0 1 0 1

�
B2 D

2
4� �1 0
0 1

3
5 :

Note that n�
t�1 incorporates dependence of the expectation on both nt�1 and yt�1.

The component of the likelihood corresponding to year 1 is

f1.y1jn1; / D
�
Vj;1
vj;1

�
p

vj;1
j;1 .1 � pj;1/Vj;1�vj;1 �

�
Va;1
va;1

�
p

va;1
a;1 .1 � pa;1/Va;1�va;1

(8.12)
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and for year t � 2, given that no juveniles can have been marked previously (i.e.
Mj;t D mj;t D 0) we have

ft .yt jnt ; / D
 
Vj;t

vj;t

!
p

vj;t
j;t .1� pj;t /

Vj;t�vj;t

�
 
Ma;t

ma;t

!
p
ma;t
a;t .1� pa;t /

Ma;t�ma;t �
 
Va;t

va;t

!
p

va;t
a;t .1� pa;t /

Va;t�va;t

D
 
Vj;t
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Ma;t

ma;t

! 
Va;t

va;t

!
p

vj;t
j;t .1� pj;t /

Vj;t�vj;t p
ma;tCva;t
a;t .1� pa;t /

Ma;tCVa;t�.ma;tCva;t /:

(8.13)

8.4 Discussion

The advantages of a state-space approach to modelling open-population mark-
recapture data are clear. The underlying processes of survival and birth are an
integral part of the model, and are not simply estimated empirically. This ensures
that estimated birth rates are biologically plausible, and that estimated abundances
do not fluctuate unrealistically. There is potential for extending the models, for
example to include movement rates between populations in a metapopulation, or
to incorporate species interactions in a predator-prey system or in a community of
competing species. Further, specification of the observation likelihood is simplified,
because the population processes are removed to the state pdf’s. It is also straight-
forward to incorporate other components in the observation likelihood, if other types
of data are recorded in addition to the mark-recapture data. However, this is a field
in need of further research.

The methods presented here are also useful for assessing the effects of a
management intervention. For example, if a scheme is introduced, compensating
farmers for implementing conservation measures expected to favour the species of
interest, an indicator variable can be introduced, taking the value zero for animals
captured outside of areas operating the scheme, and one for those captured inside.
This indicator variable can then be included as a covariate in the survival and/or
birth models.

Open-population mark-recapture studies for estimating abundance of vertebrate
populations are much less common than ones for estimating survival. In part, this is
due to the difficulty of modelling heterogeneity in the capture probabilities. There
are now better tools available for modelling the heterogeneity, and the difficulty can
be reduced further or eliminated if there are supplementary studies for estimating
abundance. Pollock (1982) used closed-population mark-recapture studies within
each time period, and modelled heterogeneity in the corresponding capture proba-
bilities. Another possibility is to conduct independent distance sampling surveys in
each time period.



Chapter 9
Integrated Population Modelling

9.1 Introduction

In Chap. 5, we recommended that formulation of population dynamics models
should be guided by aims to answer specific scientific questions or assess or predict
the effects of management actions. Management actions might target a specific life
stage. For example, we might ask “How does removing wetland plants (such as
bulrush or cattail) that have started to cover ponds and reduce the amount of open
water in a waterfowl breeding area affect reproductive success?” The consequences
of actions, however, typically ripple throughout the entire population life history and
effective management requires more detailed ecological study. This in turn requires
information about demographic processes and abundances for multiple life stages to
characterize the population dynamics.

Information at the population and individual levels is often simultaneously
available in monitoring programmes of wildlife populations. For example one
survey might be designed to provide information about survival for a specific life
stage, another for reproductive success, and a third for total population abundance.
Often the information from each survey is analysed in isolation, and the separate
results are used to fill the elements of a Leslie or Lefkovitch population projection
matrix (Chap. 2). However, the surveys may provide overlapping information about
demographic processes or abundances for multiple life stages and analyses that
utilize that overlap are likely to be more powerful and provide more information
than multiple piecemeal analyses.

In this chapter, we discuss approaches that do utilize the overlapping information,
namely integrated population modelling (IPM). We define IPM to be the fitting of
a population dynamics model to two or more sources of data where (i) the fitting
is done in a single or simultaneous stage, and (ii) each source provides information
at either the population or individual level. A third common feature of IPM, but
not necessary to our definition, is (iii) at least two sources provide overlapping
information about one or more population processes. A review of applications of
integrated population modelling is provided by Schaub and Abadi (2011).

K.B. Newman et al., Modelling Population Dynamics: Model Formulation,
Fitting and Assessment using State-Space Methods, Methods in Statistical Ecology,
DOI 10.1007/978-1-4939-0977-3__9, © Springer Science+Business Media New York 2014
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We emphasise single or simultaneous to distinguish IPM from multi-stage or
sequential fitting procedures. An example of a multi-stage fitting procedure is to
use one data set to estimate survival probabilities for a sequence of years, another
to estimate reproductive success, and then a third to estimate annual abundance
estimates, where the three sets of estimates are calculated independently of one
another, and the three sets of estimates are then used to fit a population dynamics
model. In contrast, an IPM analysis uses all three data sets in a single combined
analysis to fit the population dynamics model with simultaneous estimation of
survival, reproduction and abundance. Maunder (1998) discusses several advantages
of IPMs over multi-stage (non-simultaneous) analyses and we highlight some of
these advantages and others below.

An IPM analysis can account for correlations between survival, reproduction
and abundances. For example, years of higher survival are often years of higher
reproductive success. Parameters shared by multiple data sets can be estimated with
greater precision, or at least the uncertainty in an estimate based on combined data
sets can be more coherently estimated, and the sharing of parameters can overcome
parameter redundancy problems (Sect. 5.2). The gray whale analysis in Sect. 6.4.2
is an example of an IPM where non-identifiability problems were mitigated to a
degree; abundance estimates alone make separation of survival and reproduction
rates difficult at best, but the addition of harvest data provided additional information
about both sets of parameters and improved estimability.

The availability of multiple surveys can also influence model formulation
(Sect. 5.1), allowing for finer temporal and spatial modelling of population dynam-
ics when for example different surveys are taken at different times of the year.

In keeping with the theme of the book, we first show how state-space models can
provide a unifying framework for readily integrating data from multiple sources.
However, such a completely unified SSM approach to analysing multiple data
sources can be technically intricate and daunting. Most of this chapter focuses on
an alternative IPM approach, an approach we call a connected likelihood approach.
This latter approach can be less technically demanding, where a SSM is combined
with other non SSM models for different data sets. The connected likelihood
approach builds naturally on methods for estimating survival probabilities (Chap. 7)
and abundances (Chap. 8) over time. In Chap. 8, we focussed on methods for
estimating animal abundance from mark-recapture data. However, population abun-
dance measures or estimates can be provided by other kinds of data and surveys,
such as line transect surveys or aerial counts for randomly selected plots. Such
surveys in general are aimed at detecting trends, such as growth or decline, in total
population numbers, often at large scale, e.g. abundances at a national level. We
shall use the term census in a generic sense in this chapter for any procedure used
for estimating the size of a population or of a predefined part of it from field data.
General procedures for estimating the size of a population are discussed in Chap. 6.

The structure of this chapter is as follows. Sect. 9.2 discusses the single
SSM approach to IPM mentioned previously. Section 9.3 describes the connected
likelihood approach and includes a worked example. An approximation that greatly
assists the connected likelihood model is given and illustrated in Sect. 9.4 and
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technical issues that arise in forming the Kalman filter likelihood are considered
in Sect. 9.5. Extending the connected likelihood approach to multi-site and multi-
state models is the topic of Sect. 9.6. The chapter ends (Sect. 9.7) with a variety
of extensions and issues particular to IPMs, including conditional Gaussian (i.e.
normal) modelling (Sect. 9.7.1), Bayesian methods (Sect. 9.7.3), and goodness-of-
fit (Sect. 9.7.2).

9.2 Integrated Modelling within an SSM Framework

As discussed in Chap. 5, the temporal, spatial and biological resolution of the
available data constrains formulation of the state process model in terms of what
state vector components and parameters can be estimated. When more than one
survey or data set is available, flexibility in the formulation of the SSM may
be greater than what is feasible with a single data set. Multiple surveys can
provide information on population abundances distinguished by age, sex, maturity
or life history stage. Multiple surveys can also provide information about different
population dynamic processes such as survival and reproduction. Data from multiple
surveys can be incorporated in the SSM framework in two different ways: either
expand the number of components of the observation vector or increase the number
of observation vectors.

When multiple surveys make measurements on the population at the same point
in time, the observation vector is enlarged to include data from each survey. If the
different surveys are measuring the same components of the state vector, the data are
simply replicate measurements that may or may not be independent of each other
(conditional on the state component) and in general have different variances. For
example, a mark-recapture survey and a line transect survey might be carried out
within a week of each other and the population is assumed to be relatively static
during that week. Estimates of abundance for week t from the two surveys are
calculated (ymr;t and ylt;t for mark-recapture and line transect respectively) with
corresponding standard errors (smr;t and slt;t ). Assuming that both are unbiased
estimates of total abundance Nt , and are independent of each other, a general
expression for the observation model is the following.

�
ymr;t
ylt;t

�
� D

 
�t D

�
Nt
Nt

�
; ˙ D

"
s2mr;t 0

0 s2lt;t

#!

where D is an arbitrary bivariate distribution with expected value vector �t , and
variance-covariance matrix ˙ . In this example, the observations are taken to be
derived quantities rather than the raw data (e.g. numbers marked and recaptured in
the mark-recapture survey, numbers counted and distances to animals in the line
transect survey). The raw data could be the observations, but this often requires
considerably more complex distributional structures; e.g. the likelihood models
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underlying distance sampling (Buckland et al. 2001). Knape et al. (2013) examined
the impact of using derived quantities instead of raw data and found that the loss of
information was slight in the cases considered (also see Sect. 5.1). Another scenario
is that different management agencies carry out separate surveys for distinct, non-
overlapping land units. For example, duck surveys are made at three different
wildlife refuges at nearly the same point in time. The population total might be
spatially partitioned by each refuge, where NA;t , NB;t and NC;t are the abundances
for refuges A, B and C , respectively. The state vector is expanded accordingly and
the components of the observation vector are independent abundance estimates,
denoted yA;t , yB;t , and yC;t , which are matched with each refuge’s population
abundance. For example:

2
4yA;tyB;t
yC;t

3
5 � D

0
B@�t D

2
4nA;tnB;t
nC;t

3
5 ; ˙ D

2
64
s2A;t 0 0

0 s2B;t 0

0 0 s2C;t

3
75
1
CA

In the case of multiple surveys making measurements at different points in time
and perhaps focussing on different population sub-processes, additional observation
vectors could be inserted and paired with different state vectors. For a concrete
example, we revisit the BRS model of Sects. 2.3 and 3.2.2. The BRS model had
two states (immature and mature animals) and three sub-processes, survival (S),
growth (i.e. maturation, R) and birth (B), occurring in that sequence. We assume
that three separate surveys were carried out independently to estimate the parameters
corresponding to these processes, namely �1, �2, � and � (see Eqs. (2.2), (2.5) and
(2.6)). We also assume that a fourth survey was carried out just after the breeding
season, giving an estimate of total abundance (n1;t , n2;t ); thus these are census data
as defined previously. For simplicity, assume that the animals sampled to estimate
the survival probabilities are then followed throughout the subsequent growth and
reproduction processes with perfect detectability, i.e. their growth and reproduction
numbers are known without error. The observation sub-processes are modelled as
follows.

.y1;t�1; y2;t�1/ � D ..n1;t�1; n2;t�1/; /

y1.s/;1;t � binomial .n1;t�1; p�1/

y1.s/;2;t � binomial .n2;t�1; p�2/

y2.r/;2;t � binomial
�
y1.s/;1;t ; �

	C y1.s/;2;t

y3.b/;1;t � binomial
�
y2.r/;2;t ; �

	

The terms y1;t�1 and y2;t�1 are the census data with D an arbitrary distribution
reflecting the uncertainty in the census data with corresponding parameter  , while
p is the probability of capture for the survival study. If different animals were used
for sampling the three sub-processes, then the population abundances at each point
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in time would be substituted for y1.s/;1;t and y2.r/;2;t and two additional capture
probabilities are added. For example, using the notation from Eqs. (3.25) and (3.26):

.y1;t�1; y2;t�1/ � D ..n1;t�1; n2;t�1/; /

y1.s/;1;t � binomial .n1;t�1; ps�1/

y1.s/;2;t � binomial .n2;t�1; ps�2/

y20.r/;2;t � binomial
�
u1.s/;1;t ; pr�

	
y3.b/;1;t � binomial

�
u2.r/;2;t ; pb�

	

where ps , pr , and pb denote the probability of sampling animals for the three sub-
processes and y20.r/;2;t denotes the immature animals that just matured.

Section 9.3 presents an alternative approach to using data from multiple surveys
in which the state-space model formulation is just used for a subset of one or
more surveys and alternative formulations characterize data from other surveys.
In particular Sect. 9.3 constructs different likelihoods for different surveys but two
or more likelihoods have one or more parameters in common.

9.3 Integrated Modelling with Connected Likelihoods

Census data are naturally dependent upon animal survival and fecundity, and this
observation motivates this section and much of the remainder of this chapter. When
information from several sources is available for a particular species, it is natural
to consider the extent to which the available types of survey data are compatible
and how they can complement each other. In early work, the emphasis was on the
former, and matching the different types of analyses was done in an ad hoc way,
by comparing model-based and census-based population growth rates (Coulson
et al. 2001) or by checking visually the similarity of model-based and census-
based population trajectories (Kanyamibwa and Lebreton 1992). In this section,
we provide a formal methodology for the simultaneous analysis of mark-recapture-
recovery data and population information such as census data.

9.3.1 Data, Models and Integrated Modelling

We introduce integrated population modelling through an extensive example in
which ring-recovery data from marked birds are combined with abundance data
on the same species. However, the approach is quite general, as we shall see. Our
example is described in Besbeas et al. (2002) and involves observations on lapwings
Vanellus vanellus breeding in Britain. This is a species of conservation concern
in the UK due to its dramatic decline in recent years and it has been placed onto
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Fig. 9.1 The lapwing CBC index. The CBC index is sometimes given relative to a baseline year.
As shown here, it is an estimate of the total population of lapwing territories for the set of sites
included in the analysis

the Red List of species of highest conservation concern (Eaton et al. 2009). The
census data we use are an index, derived from the common birds census (CBC)
(Marchant et al. 1990). The CBC data are collected from specific survey sites by
volunteers, and contain a large number of missing values. An index is constructed
using a generalized linear model (ter Braak et al. 1994) which estimates site effects
si (for site i D 1; : : : ; S ) and year effects ut (for year t D 1; : : : ; T ) subject to an
arbitrary constraint, e.g. sS D 0. Annual index values yt are then calculated as

yt D
SX
iD1

exp.si C ut /; t D 1; : : : ; T: (9.1)

The resulting index estimates the relative abundance of the national breeding
population from 1965 to 1998 inclusive, and it is plotted in Fig. 9.1.

The corresponding ring-recovery data provide the numbers of birds recovered
dead in successive years after being ringed as chicks from 1963 to 1997. Note that
these are national figures and are unlikely to share common individuals with the
CBC data. The raw data are given in Besbeas et al. (2002), and as an illustration a
subset of the recovery data is presented in Table 9.1.

We model the ring-recovery data using annual survival probabilities �, with
components which describe age-dependence, and a recovery probability �, which
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Table 9.2 Cell probabilities fpij g for a simple model for ring-recovery data,
with no over-dispersion or time-variation.

Year of
ringing

Year of recovery

1 2 3 4

1 .1� �1/� �1.1� �a/� �1�a.1� �a/� �1�
2
a.1� �a/�

2 .1� �1/� �1.1� �a/� �1�a.1� �a/�

3 .1� �1/� �1.1� �a/�

In this illustrative example, there are 3 years of ringing, 4 years of recovery, and
three model parameters

is the probability of recovery and reporting of marked dead birds, and which varies
over time. For the lapwings, there are two age classes of survival, corresponding
to birds in their first year of life and older birds. Both of the annual survival
probabilities are regressed on a single measure of winter severity w, using logistic
regression. Thus we have logit.�1/ D ˇ0 C ˇw, for birds in their first year of
life, with first-year annual survival probability of �1, and logit.�a/ D ı0 C ıw,
which applies to birds aged � 1, with annual survival probability �a. In addition,
the reporting probabilities for dead wild birds in Britain are generally found to be
declining over time (Baillie and Green 1987), and so we set logit.�/ D �0 C �t ,
where t measures year. See also McCrea et al. (2012b). We do not here consider
over-dispersion, but if necessary that may be easily incorporated, for example by
means of suitable additive random effects, as described by Barry et al. (2003), or
through the use of beta distributions.

Morgan and Freeman (1989) and Freeman and Morgan (1992) describe more
general models for ring-recovery data, involving additional age-dependence in
survival, and/or time dependence in all parameters. See also Chap. 7. In order to
write down the likelihood function, we introduce additional notation as follows. Let
the number of birds ringed in year i be Ri , let the number recovered in year j ,
having been ringed in year i , be mij , and let the number which are not recovered
from the year i cohort be ui D Ri � Pc

jDi mij . Let the probability of recovery
in year j given a bird was ringed in year i , corresponding to mij , be pij and let
qi D 1 � Pc

jDi pij be the probability of non-recovery from the i th cohort. The
recovery probability pij is a product of annual survival probabilities (from year i to
year j � 1, mortality in year j , and recovery in year j (e.g. Table 9.2). A particular
model for the data consists of a specification of the probabilities pij � pij .�; �/

in terms of the model parameters. In order to display appropriate multinomial cell
probabilities, we shall take a ring-recovery study with birds ringed as nestlings for
r D 3 successive years, and recoveries recorded for the c D 4 years following
the initial ringing. In the simplest case, these parameters are constant, and the
recovery probabilities are given in Table 9.2. For each cohort, the probabilities
of non-recovery are (1� the corresponding row totals). Then, provided the birds
suffer independent fates, both within and between cohorts, the likelihood for the
ring-recovery data is product-multinomial in form, with log-likelihood given below.
Here and later in this chapter we shall for convenience suppress the dependence of
likelihoods on data.



9.3 Integrated Modelling with Connected Likelihoods 177

logLr.�; �/ D
rX
iD1

cX
jDi

mij logpij C
rX
iD1

ui log qi ; (9.2)

where terms not depending on the parameters have been omitted. We shall refer to
Eq. (9.2) as the ring-recovery log-likelihood below.

The census data are described by means of a state-space model involving a
productivity measure p and measurement error variance �2, in addition to the
survival probabilities. For the lapwings we set log.p/ D �0 C � t , to allow for a
decline in productivity; Besbeas et al. (2005) consider instead a change-point in
productivity, corresponding to the start of the decline in numbers. The elements
involved in forming the census likelihood are as follows.

Let N1t and Nat denote, respectively, the underlying numbers of one-year-old
female birds and female birds aged � 2 years at time t , and define Nt D .N1t ; Nat /

0
and Nt D N1t CNat . If we assume no sex effect on survival and that breeding starts
at age 2, then a natural process model for the underlying population sizes would be

N1;tC1 j Nt � Poisson.Natp�1/

and

Na;tC1 j Nt � binomial.Nt ; �a/

where the parameter p now denotes the annual productivity of females per female.
The random variablesN1t andNat can be approximated by appropriate independent
normal variables, resulting in the following model

�
N1;tC1
Na;tC1

�
D
�
0 p�1
�a �a

� �
N1t
Nat

�
C
�
ı1t
ıat

�
; (9.3)

where the ı terms have zero means, and variances which are given by suitable
Poisson and binomial expressions:

Var.ı1t / D E.Na;t /p�1

Var.ıat / D E.Nt/�a.1 � �a/:

If one is using classical inference, then it is necessary to use expectations in the
variance expressions in order to comply with the assumptions of the Kalman filter;
see Sullivan (1992) as well as the gray whale example in Sect. 6.4.2. The matrix
above is a familiar Leslie matrix. Buckland et al. (2004, 2007) provide a general
framework for deriving population projection matrices by considering intermediate
sub-processes (Chap. 2). If we assume that only breeding birds are censused, then
what we observe, yt , which we take here as the CBC index, is given by the
measurement equation,
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Fig. 9.2 Profile log-likelihood contours for  D p�1 and �a from the lapwing census data,
obtained by maximizing logLc.p; �1; �a; �/ with respect to � . The location of the maximum is
shown by �

yt D .0 1/

 
N1t

Nat

!
C 
t : (9.4)

We assume that 
t is normally distributed with constant variance �2, so that

t � normal.0; �2/. (In some cases it may be sensible for �2 to vary with time.)

Equations (9.3) and (9.4) collectively form a normal dynamic linear model (see
Sect. 4.4). Thus the likelihood for the census data, Lc.p; �1; �a; �/, can be derived
using the Kalman filter. However, the parameters p and �1 in this likelihood only
appear as a product. Furthermore likelihood functions for census data generally
provide limited information on the underlying demographic mechanisms individ-
ually. Figure 9.2 plots the two-dimensional profile log-likelihood contours of Lc for
parameters  D p�1 and �a for the lapwing data and illustrates how  and �a are
negatively correlated.

However �1 also occurs in Lr , and so we may obtain a full-rank model (see
Sect. 5.2.2), in which all parameters may in principle be estimated, by maximizing
the joint likelihood,

Lj .�1; �a; �; p; �/ D Lr.�1; �a; �/ � Lc.p; �1; �a; �/: (9.5)
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Fig. 9.3 Flow chart summarising the steps in fitting an integrated population model using classical
inference incorporating the Kalman filter

(To reflect the various logistic/logarithmic regressions in the model, we can also
write the joint likelihood as Lj .ˇ0; ˇ; ı0; ı; �0; �; �0; �; �/, but we use the notation
in Eq. (9.5) in a generic fashion, for brevity.) This is very useful, as the productivity
of a species in decline is a parameter that we particularly want to investigate. The
assumption of independence made in multiplying the two likelihoods together in
Eq. (9.5) is not likely to be violated. The approach extends flexibly to include
additional likelihood components, corresponding to data on say productivity or
movement. This methodology has been termed integrated population modelling
in the literature. The flow chart in Fig. 9.3 summarizes the steps of integrated
population modelling, when classical inference is being used incorporating the
Kalman filter. We shall now illustrate the performance of the integrated approach
by application to the lapwing data before discussing a number of technical issues
and extensions.
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Table 9.3 Maximum likelihood parameter estimates from fitting
the model �1.w/; �a.w/=�.year/=p.year/ to the lapwing data, (i)
using ring-recovery data alone, and (ii) using integrated population
modelling, incorporating both the ring-recovery data and the census
data

Estimated
Parameter estimates standard errors

(i) (ii) (i) (ii)

�1
Intercept .ˇ0/ 0.5158 0.5231 0.0675 0.0672
Slope .ˇ/ �0:0241 �0:0228 0.0072 0.0070

�a
Intercept .ı0/ 1.5011 1.5210 0.0683 0.0690
Slope .ı/ �0:0360 �0:0279 0.0051 0.0045

�
Intercept .�0/ �4:5668 �4:5632 0.0350 0.0350
Slope .�/ �0:5729 �0:5841 0.0641 0.0636

p
Intercept .�0/ �1.1513 0.0880
Slope .�/ �0.4323 0.0743

� 159.4691 21.8712

The estimated standard errors result from inverting a numerical
approximation to the Hessian matrix at the maximum likelihood
estimate. Reprinted with permission from Biometrics

9.3.2 Results for Lapwing Example

The decline of lapwings may be described through inclusion of time in survival
and/or productivity parameters. Here we follow Besbeas et al. (2002) and allow the
productivity parameter p to be a function of time: p.year/. Thus we have fitted to
the lapwing data the model,

�1.w/; �a.w/=�.year/=p.year/;

which indicates that both �1 and �a are logistic functions of the single covariate, w,
which measures the number of days in the year when the temperature at a location
in central England was below freezing. We concentrate on logistic regressions,
as described in the last section, but alternative link functions might also be used.
Additionally, we let �.year/, p.year/ denote respectively logistic and logarithmic
regressions of � and p on year. Note that p is not a probability, and so is not bounded
above by unity. The maximum likelihood point estimates from the joint data, and
also from the recovery data only, are given in Table 9.3.

We can see that the joint analysis changes slightly the maximum likelihood
estimates from the ring-recovery data, as now the estimates describe both the
data sets. There is little difference between the standard errors of the common
parameters in the two analyses, due to the dominance of the ring-recovery data in
this illustration. The same conclusion arises from a Bayesian analysis; see Brooks
et al. (2004). When we repeated the analysis with a subset of the recovery data,
then we found that the joint analysis produced substantially reduced estimates of
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Fig. 9.4 The result of fitting model �1.w/; �a.w/=�.year/=p.year/ to the lapwing data. (a)
Observed census data (dotted line); fitted curve (solid line). (b) O�a (solid line); O�1 (dotted line).
(c) O�.year/, with estimated 95 % confidence bands. (d) Op.year/, with estimated 95 % confidence
bands. (e) Graph of ON1t ; (f) Graph of ONat , equivalent to the fitted curve in (a). Reprinted with
permission from Biometrics

standard error compared with the ring-recovery ones; see Besbeas et al. (2002). For
the ring-recovery data alone, due to the length of the study, correlations between
parameter estimators are typically quite small, ranging in magnitude from �0:20 to
0.29. The addition of the census data has little effect on those correlations. However
there are now correlations of �0:49 between O�0 and Ǒ

0, and �0:91 between O�0 and
Oı0, where �0, ˇ0 and ı0 are defined in Table 9.3. These are sensible findings, since
increasing the productivity p requires a decrease in survival in order to match the
data. We would also expect a stronger correlation with the intercept estimate of
the adult survival, Oı0, as is seen above.

We show in Fig. 9.4 the results from maximizing the combined likelihood Lj .
The confidence bands shown result from applying the ı-method. The decline of �
with time agrees with Catchpole et al. (1999). However of greater interest to us
here is the time-varying behaviour of the parameters �1, �a and p. We can see
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Table 9.4 The results from fitting by maximum likelihood a range of models to the lapwing data

(i)
No. of

Model �` parameters AIC

�1.w/; �a.w/=�.year/ 7156.33 6 14325
�1.w; year/; �a.w; year/=�.year/ 7155.16 8 14326
(ii)

No. of
Model �` parameters AIC MAIC

�1.year/; �a.year/=�.year/=p 7409.54 8 14835 52
�1.w/; �a.w/=�.year/=p 7398.40 8 14813 30
�1.w/; �a.w; year/=�.year/=p 7382.37 9 14783 0
�1.w; year/; �a.year/=�.year/=p 7401.14 9 14820 37
�1.w; year/; �a.w; year/=�.year/=p 7381.45 10 14783 0
�1.year/; �a.year/=�.year/=p.year/ 7409.29 9 14837 54
�1.w/; �a.w/=�.year/=p.year/ 7383.38 9 14785 2
�1.w/; �a.w; year/=�.year/=p.year/ 7381.99 10 14784 1
�1.w; year/; �a.w/=�.year/=p.year/ 7383.36 10 14787 3
�1.w; year/; �a.w; year/=�.year/=p.year/ 7381.45 11 14786 3

In (i) we fit only the ring-recovery data; in (ii) we use integrated population modelling to fit a
range of alternative models to both ring-recovery and census data. Here ` denotes the value of the
log-likelihood evaluated at the maximum likelihood estimates of the parameters. AIC denotes the
Akaike Information Criterion, and MAIC indicates the difference between the model AIC value
and the smallest AIC value for the set of models considered. In (ii) we show in bold type the AIC
values corresponding to alternative acceptable models for the combined data set, with MAIC � 2.
Reprinted with permission from Biometrics

that the decline in lapwing numbers since 1980 is compatible with a major drop
in the productivity parameter p. An alternative explanation of the recent decline in
lapwing numbers is that there is a decline in survival probability over time. There
was no evidence for this in Catchpole et al. (1999), or for the more extensive ring-
recovery data set analysed here (see Table 9.4(i)).

However we can see from Table 9.4(ii) that when we analyse the combined
data using integrated population modelling, then in terms of AIC, several models
provide comparable best fit to the data, in particular with constant p and declining
probabilities of survival over time. Detailed studies of breeding lapwings have
shown a decrease in chicks produced over the period. This is usually attributed
to the switch from spring to autumn sowing of cereals and intensification of
pasture management (see Wilson et al. 2001 and references therein). Thus in
order to demonstrate model performance, we shall here only consider the model
�1.w/; �a.w/=�.year/=p.year/, as in Besbeas et al. (2002). For further discus-
sion, see King et al. (2008).

We show in Fig. 9.5 the regressions of O�1 and O�a on w, combined with plots of O�1;t
and O�a;t resulting from a model with separate �1 and �a parameters for each year,
and denoted by f�1;tg and f�a;tg respectively. These regressions are seen to provide
a fair description of the relationship between annual survival and w. Note that the
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Fig. 9.5 A graphical demonstration of the logistic regressions of �1 and �a in the model,
�1.w/; �a.w/=�.year/=p.year/, for the lapwing data. Here the covariate w denotes the number
of days in a year when the temperature in central England was below freezing. In (a) we graph O�1
against w and in (b) we graph O�a against w. Also plotted are the values f O�1tg and f O�atg respectively,
corresponding to having a separate value for �1 and �a for each year. Reprinted with permission
from Biometrics

estimates of ˇ and ı in Table 9.3 are approximately equal, and a model in which
�1 and �a share a common slope parameter produces virtually no change to the
likelihood.

Shown in Fig. 9.4e is the smoothed estimate of N1t . The figure demonstrates the
large decline in N1t in recent years, in line with the predicted decline in p over time
in this model.

We do not provide a formal test of goodness-of-fit of the selected model, but in
Fig. 9.6 we plot the observed numbers of recoveries against the fitted numbers, and
also provide a Q-Q plot of the prediction errors from the Kalman filter, which are
expected to have a normal distribution. In the latter case, the single large prediction
error is due to the initial census value, and is to be expected because of the way in
which the Kalman filter analysis is initiated. Overall there is no serious indication of
systematic lack of fit.
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Fig. 9.6 Graphical checks of goodness-of-fit of the model �1.w/; �a.w/=�.year/=p.year/, for
the lapwing data: (a) observed numbers plotted vs expected numbers for the recovery data; (b) a Q-
Q plot of the prediction errors from the Kalman filter. Reprinted with permission from Biometrics

9.4 Facilitating Connected Likelihood Modelling

9.4.1 Normal Approximation

The integrated approach described above requires specialized computer code,
not only for the Kalman filter component, but also for the additional likelihood
components, some of which may be complex, and may even have been derived
using specialist computer packages. Quite often, for example, survival data would be
analysed by Program MARK (White and Burnham 1999). This then poses obvious
difficulties for combined analysis and is likely to preclude the use of the integrated
approach in practice. A solution to this problem is provided by an approximation,
suggested and evaluated by Besbeas et al. (2003). Here, a multivariate normal
approximation is adopted for the form of the likelihood of the ring-recovery
data, making use of the parameter estimates, and their corresponding estimates of
dispersion obtained from analysing the ring-recovery data alone. In particular, we
make a multivariate normal approximation to Lr.�; �/:

logLr.�; �/ 	 constant � 1

2
. O� � �/0 Ȯ̇̇ �1

. O� � �/

� log OLr.�; �/
(9.6)
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where we write � to denote the model parameters on the logistic scale, and where
O� and Ȯ̇̇ are respectively the maximum likelihood estimates of � and the dispersion
matrix of O� , both obtained from a separate model-fitting exercise for the ring-
recovery data alone. The approximation is motivated naturally by the asymptotically
multivariate normal distribution of maximum likelihood estimators, and has been
used to good effect in Lebreton et al. (1992). The integrated population modelling
then proceeds by replacing the exact likelihood Lr.�; �/ in (9.5) with expression
(9.6):

Lj .�1; �a; �; p; �/ D OLr.�1; �a; �/ � Lc.p; �1; �a; �/:

The approach has great potential to approximate likelihood components for abun-
dance data obtained from complex sampling schemes (Knape et al. 2013). This
means that particular programs or packages for survival and also for fecundity or
other data, if appropriate, need only be run once, to obtain the relevant maximum
likelihood estimates of relevant parameters and their estimates of standard error and
correlation. This clearly greatly simplifies both the resulting form for Lj and its
maximization.

9.4.2 Results

For the example of the last section, we evaluate the approximation in Table 9.5; the
standard errors are obtained from the observed information matrices as in Table 9.3.
The agreement between exact and approximate results is seen to be very good.
An additional benefit from using the approximate approach is that in comparison
with the exact analysis, it is far less sensitive to starting values for the maximum
likelihood iteration. Additionally the approximate analysis was found to be about
2.5 times faster than the exact method.

We can see from Table 9.5 that the change in the value of O� from the recovery
analysis alone to the joint analysis is not large. It is both the overall magnitude
of this change and the size of the data sets which determine the effectiveness of the
multivariate normal approximation made in the paper, as we require the multivariate
normal approximation to Lr to be good for the value of � which maximizes Lj , and
not just for the value that maximizes Lr . We show in Fig. 9.7 the good agreement
between exact and approximate logLr.�; �/ for the small illustrative data set of
Table 7.1, by means of profile log-likelihoods, for the parameter ˇ0. We have found
the good agreement observed in Fig. 9.7 also for profiles with respect to other
parameters. Besbeas et al. (2003) provide further details. The good performance
of the approximation extends to the case of multi-site data (McCrea et al. 2010).
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Table 9.5 An evaluation of the multivariate normal approximation for the ring-recovery
likelihood for the lapwing data

Parameter Ring-recovery alone Exact combination Approximate combination

ˇ0 0.5158 (0.0679) 0.5231 (0.0679) 0.5226 (0.0678)
ˇ �0:0241 (0.0072) �0:0228 (0.0070) �0:0227 (0.0070)
ı0 1.5011 (0.0685) 1.5210 (0.0693) 1.5191 (0.0686)
ı �0:0360 (0.0051) �0:0279 (0.0045) �0:0280 (0.0045)
�0 �4:5668 (0.0351) �4:5632 (0.0352) �4:5634 (0.0351)
� �0:5729 (0.0640) �0:5841 (0.0637) �0:5837 (0.0638)
�0 �1:1513 (0.0886) �1:1489 (0.0876)
� �0:4323 (0.0743) �0:4314 (0.0740)
� 159.469 (22.062) 159.613 (21.875)

In each case we show the maximum likelihood parameter estimate and the corresponding
standard error. The estimates of error are obtained as in Table 9.3. Reproduced with
permission from Applied Statistics
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Fig. 9.7 Agreement between logLr.�; �/ and the multivariate normal approximation for the data
of Table 7.1. The two curves are profile log-likelihoods taken with respect to the parameter ˇ0. The
solid curve is the exact likelihood, and the dotted curve approximate. Also shown is the location of
Ǒ
0 D 0:1786, the value which maximizes the combined exact likelihood, making use of the entire

run of the census data for lapwings. Reprinted with permission from Applied Statistics
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9.5 Technical Issues for Classical Analysis

The connected likelihood approach depends on making a number of assumptions
and adopting certain procedures. For example, we assume that we can approximate
discrete distributions by normal distributions; that we can suitably start the Kalman
filter iterations; that the different surveys are independent; and that the state-space
model adopted correctly partitions variation between its transition and measurement
processes. Brooks et al. (2004) demonstrated the robustness of the normality
assumptions. In this section, we explore the other issues listed above, starting with
the problem of initializing the Kalman filter.

9.5.1 Kalman Filter Initialization

Computational algorithms in state space analyses are mainly based on recursions
in which we calculate values at time t from earlier values for t � 1; : : : ; 1. The
question of how these recursions are started up at the beginning of the series is
called initialization. The initialization problem of the Kalman filter when���0 and Q0

are unknown is an issue requiring attention in general, in areas such as economics
and engineering, but the problem may be more important in population ecology,
where there are often small samples, models may involve a large number of states
and unknown parameters, and models are usually non-stationary. We shall now
describe an approach to initialize the Kalman filter which is designed for integrated
population modelling in ecology.

9.5.1.1 Stable-Age Initialization

In population ecology, the state vector nt is typically a vector denoting the numbers
of individuals in the population in a number of classes at time t . Typical elements
of At include age- or stage-specific survival and productivity parameters and rates
at which individuals in one state make the transition to another state, for example
through immigration or emigration. The matrix At is referred to as a Leslie or
Lefkovitch matrix, depending on whether the population is age- or stage-classified,
respectively (Chap. 2). We encountered a Leslie matrix in Sect. 9.3.1.

The Perron-Frobenius theorem states that, for appropriate constant transition
matrices A, there exists a real positive eigenvalue � that is greater in absolute
value (or in modulus, if some of the other eigenvalues are complex) than all of the
other eigenvalues. The implications are that the dominant eigenvalue � represents
the asymptotic growth rate of the population, and the normalized right eigenvector
associated with � represents the asymptotic proportion of every age or stage class
in the total population. We call the eigenvalue � the asymptotic growth rate and
its corresponding right eigenvector, v, is called the stable age (or stable stage)
distribution.
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We propose starting the Kalman filter by taking the initial mean vector ���0 to be
proportional to the stable age (stage) distribution of a Leslie (Lefkovitch) matrix A,
with the proportions scaled by the total size of the first observation, n0. To choose
Q0, we adopt the conservative approach of requiring the lower end of an appropriate
confidence interval for each element of n0 to be non-negative, and that elements
are independent. Thus for example for univariate observations and 95 % confidence
intervals we take

���0 D vy1=.Z1v/; P1 D diag..���0=1:96/
2/

where y1 and Z1 are the first observation and measurement vector respectively.
In practice, in order to derive the stable age distribution, we need to know A,
which may contain unknown parameters. We select the values for the parameters
in A that are in common with the demographic analyses by using their maximum
likelihood estimates obtained from analysing the demographic data alone. Any
remaining parameter(s) can then be obtained by iteration; for details see Besbeas
and Morgan (2012b). For instance if productivity p is unknown, then we take
an arbitrary value for p, and obtain a maximum likelihood fit, which provides
an estimate, Op.1/. We then use this value to start the Kalman filter, resulting in an
estimate Op.2/, and so on. When the matrix At is time-dependent, then we obtain A
by an appropriate time-average of the At . The good performance of this approach
compared with alternatives in which the elements of the initial state vector are
diffuse, that is, treated as random variables with infinite variance, or are treated as
unknown constants to be estimated by maximum likelihood, is shown in simulation
studies presented by Besbeas and Morgan (2012b).

9.5.2 Lack of Independence

It may be that census data and demographic data are not completely independent.
Besbeas et al. (2009) consider the effect of dependence between a ring-recovery data
set and census data. This was done for a model with two age-classes for survival, as
in Sect. 9.3.1, and with constant parameters, �1, �a and �. Life histories spanning
eight years were constructed for a 20-year period, with �1 D 0:5, �a D 0:7, for a
range of values of �, and probability of recapture of a live animal. Observation error
was added to the life histories, resulting in census data. It was shown that, in some
circumstances, combining dependent data sets but treating them as independent can
actually reduce estimator precision. While this was only a single study, the message
is that one should take care conducting combined analyses for dependent data sets.
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9.5.3 Heterogeneity in the State-Space Model

In Sect. 9.3.1, we used binomial error variances for when a number n of individuals
survive or die in any particular year, and Poisson error variances for recruitment
arising from reproduction. In both of these cases, we can allow for heterogeneity.
A study with an application to data on grey herons Ardea cinerea is provided by
Besbeas et al. (2009) in which census data are combined with ring-recovery data.
It was found that when overdispersion is included in the integrated modelling, it is
possible to obtain O� D 0. We return to this finding in the next section. Thus while it
is in principle straightforward to include overdispersion in integrated population
modelling, there may be an interaction between the roles of the overdispersion
parameter and the parameter denoting measurement error.

9.6 From Modelling an Index to Multi-Sites: Additional
Complexity

In this section we consider how the connected likelihood approach can be extended
to multi-site and multi-state models.

9.6.1 Accounting for Different Habitats

The CBC sites on which the index yt was based in Sect. 9.3.1 may be classified as
arable, grazing, mixed (i.e. arable and grazing) or “other” (which are not farmland
and could include estuaries, for example). The study by Besbeas et al. (2002) did not
make use of this information but it is interesting to consider how it might be used to
give a breakdown with respect to habitat. For illustration, we outline the integrated
analysis of the grazing and arable sites, which account for 31 % of the sites; Besbeas
et al. (2005) give detailed results and also discuss the complete set of results from
all four habitats.

The ring-recovery component estimates overall survival, and does not produce
a breakdown with respect to habitat. However we use the state-space model given
below, using superscripts A and G to indicate arable and grazing, respectively. Let
nt D .nA1t ; n

A
at ; n

G
1t ; n

G
at /

0 and yt D .yAt ; y
G
t /

0. Then, with a general notation for
respective error terms ıııt and 


t ,

nt D Ant�1 C ıııt ; yt D Bnt C 


t ;
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where

A D

2
664
0 pA�1 0 0

�a �a 0 0

0 0 0 pG�1
0 0 �a �a

3
775 and B D

�
0 1 0 0

0 0 0 1

�
:

Thus nA1t , for example, is the number of one-year-old female lapwings fledged,
and assumed subsequently to live, on arable land at time t , and yAt denotes the
CBC index value at time t , derived from the arable sites only. Thus the model now
assumes different productivities for arable sites, pA, and grazing sites, pG , and we
also assume that there are different observation error standard deviations, �A and
�G for arable and grazing respectively. Note that the model analyses the arable and
grazing populations separately and assumes no movement of individuals between
the two habitats. We discuss extensions to multi-site modelling incorporating
movement probabilities in Sect. 9.6.3. The likelihood function from this multivariate
model is equivalent to the product of likelihood functions for univariate data

Lc.�; p
A; �AI yA/ � Lc.�; pG; �G I yG/

where � D .�1; �a/, and yA .yG/ denote all the observations on arable (grazing)
sites over time. These likelihood functions are constructed for the relevant index
alone, as in Sect. 9.3.1. The likelihood can readily be extended to deal with more
than two indices as well as individual site data. The analysis then follows the same
lines as above, based on the model

�1.w/; �a.w/; �.year/; p
A.year/; pG.year/:

The results indicate that productivity varies with habitat; see Besbeas et al. (2005)
for details.

9.6.2 Modelling Individual Site Data

Besbeas and Freeman (2006) provide an alternative approach to dealing with
individual site data which sidesteps the intermediate process of deriving an index of
abundance. The approach is single-stage and has several advantages, including no
loss of information in summarizing the raw data using an index. This approach fits
the survey data directly by incorporating the population model into the generalized
linear model used to derive the index in the existing approach. For example, from
Eq. (9.1) and the structural part of the state-space model of Eqs. (9.3) and (9.4), we
obtain the recursive relationship for the year effects

ut D �aut�1 C p�1�aut�2; t > 2; (9.7)
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which gives rise to the likelihood function, Lglm.�1; �a; p; u1W2; s/. The form of
Lglm depends on the distributional assumptions made for the individual site data, cit .
For example, when the cit are assumed to follow independent Poisson distributions,
then the log-likelihood function is given by

logLglm.�1; �a; p; u1W2; s/ D constant C
SX
iD1

TX
tD1

cit .si C ut /C esiCut

where u1W2 D .u1; u2/ and ut is given by Eq. (9.7) for t > 2. The integrated
population modelling procedure then replaces the component corresponding to the
abundance index, Lc.�1; �a; p; �/, in Eq. (9.5), by Lglm.�1; �a; p; u1W2; s/. The
procedure is shown to perform well relative to analysing an index; see also Maunder
(2001) for related work. Freeman and Besbeas (2012) provide further development
with respect to analysing presence-absence survey data. The ease with which
the connected likelihood approach can integrate different types of information,
assuming independence between the sources, makes it very appealing in practice.

9.6.3 Multi-Site and Multi-State Modelling

The work described so far assumes no movement of individuals. How the general
theory of integrated population modelling extends to the multi-site case is described
by McCrea et al. (2010). The illustrative example of that paper involved great
cormorants Phalacrocorax carbo sinensis, moving between three sites in Denmark,
with the additional complication that birds could move between breeding and non-
breeding states, as well as between sites. Model selection was based on a step-up
procedure applied to the recapture data alone, in order to avoid possible problems
with overfitting the census data, as discussed in Sect. 9.5.3. The final integrated
population model included complex state- and site-dependent transitions. There was
a pronounced improvement in the precision of estimators from combining the two
data sets in a single analysis.

9.7 Additional Aspects of IPM

9.7.1 Conditional Gaussian Modelling

The main advantage of analysing census data using normal dynamic linear models
lies in the use of the Kalman filter, which greatly facilitates the estimation process.
Despite the conceptual simplicity of this model, it is both flexible and general, and
extends to a range of other models, such as linear matrix population models which
have wide application in ecology and demography (Caswell 2001). The non-linear
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case however is important in ecological settings, for example in accommodating
density dependence in the population model or allowing observation variance to
depend on population size; see Sect. 4.4.2. In certain important cases, non-linear
models are still amenable to analysis by the Kalman filter. These models are
known as conditional Gaussian models and are described in detail in Harvey (1989,
Sect. 3.7.1). Here system matrices At , Bt , Qt and Rt may depend upon previous
observations, up to and including nt in the notation of Eq. (4.9). The essence of
these models is that even though the matrices may depend on observations up to
time t , they may be regarded as fixed once time t has been reached, and thus the
derivation of the Kalman filter still applies.

Besbeas et al. (2009), Tavecchia et al. (2009) and Besbeas and Morgan (2012a)
provide illustrations of this approach on three different species. The illustration
below is taken from this last paper, based on the grey heron. This example also
involves ring-recovery and census data but uses a more elaborate survival age
structure than the lapwing illustration, involving four age classes. The heron census
data have been published widely and a notable characteristic of this species, other
than its marked population crashes, is that the population rebounds quickly after a
crash.

Besbeas and Morgan (2012a) considered several models for heron productivity
pt in year t , including a direct density-dependent model

logpt D �0 C �yt ;

and a threshold model, where for a suitable threshold, � ,

logpt D
(
�0 C �1 if yt < � ,

�0 if yt � � .

The motivating assumption of this model is that as the birds nest in heronries, then
when numbers are low, there might be less competition for space and resources,
resulting in higher productivity than when the numbers are high. We would thus
expect v1 > 0. The threshold model is found to perform well relative to alternative
models; see Besbeas and Morgan (2012a) for details, including extensions to more
than one threshold. This paper also compares the results of a conditional Gaussian
model with those from a Bayesian approach.

9.7.2 Goodness of Fit

A global goodness-of-fit test does not exist for integrated population models.
For IPMs using a single SSM, the methods discussed in Sect. 5.6, e.g. recursive
residuals, are a possibility.
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For connected likelihood models, it seems intuitively reasonable to examine
goodness of fit for each component of the model separately, which enables us to
use off-the-shelf goodness-of-fit techniques in each of MRR modelling and time-
series modelling, for example. Thus, in the case of mark-recovery and census data,
as in Sect. 9.3.1, it is possible to examine plots of observed versus fitted numbers
of recoveries which will indicate the fit of the mark-recovery component of the
model, whilst for the census component, the prediction errors vt are expected to
be normally distributed and thus it might be appropriate to examine a Q-Q plot of
these errors. Figure 9.6 provides an example of this approach for the lapwing data.
The per-component goodness of fit can also be examined using standard tests, such
as chi-square tests or numerical tests for normality. The extension to other types
of mark-recapture-recovery data is obvious. However in all cases, it is important to
note that integrated population modelling estimates are joint estimates, describing
several components simultaneously, and may thus inherently manifest some lack-
of-fit to each component individually.

The time-series plot of the observed and corresponding smoothed population
estimates is an additional, natural diagnostic tool for the census component to
examine whether the fitted model exhibits the stylised characteristics concerning
the series. This plot is illustrated in Fig. 9.4a for the lapwing data. The time-
series plot of the smoothed states against time is also a valuable diagnostic tool
to check if the components extracted provide a suitable representation of these
characteristics, and these are illustrated in Fig. 9.4e and f. The estimated observation
variance provides a quantitative indication of the overall fit, with smaller values
indicating a better model fit. However as discussed in the last section, it is important
to consider this approach in parallel with model selection and heterogeneity in
the state-space model, and the approach may need to be informed by additional
considerations, which might for instance provide guidance on the appropriate
magnitude of observation error. The potential to over-fit census data exists as shown
in Besbeas et al. (2009), and any integrated population modelling should conclude
with a particular assessment of the estimated measurement error, and consideration
of whether or not it is appropriate.

In recent work, Besbeas and Morgan (2014) illustrate how Monte Carlo simula-
tion can be used in the evaluation of goodness of fit of integrated models. We expect
goodness-of-fit Monte Carlo simulation techniques to be become increasingly
adopted both in integrated modelling and in capture-recapture in the future.

9.7.3 Bayesian Methods

The emphasis in this chapter has been on the connected likelihood approach using
methods of classical analysis. Bayesian methods for state-space modelling have
been described in Sect. 4.3. See also, for example, Meyer and Millar (1999) and
Millar and Meyer (2000a,b). These papers involve fisheries applications, where
there have been numerous other applications— see for example Rivot et al. (2001,
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2004), Rivot and Prévost (2002) and Rifflart et al. (2006). The Bayesian approach
to integrated population modelling was initially described by Brooks et al. (2004)
and for more information, as well as simple WinBUGS programs to perform the
necessary Markov chain Monte Carlo iterations, see Schaub et al. (2007), Gimenez
et al. (2009b) and King et al. (2009). A clear advantage of the Bayesian approach
is that it removes the need to use the Kalman filter, and hence the need to make
normal approximations, as well as to specify the variances of the ı terms of Eq. (9.3)
in terms of expectations. However the work of Brooks et al. (2004) showed that
classical methods are robust to the normal approximation. We can also model
density dependence directly with a Bayesian approach, and avoid the conditionally
Gaussian modelling of the last section. In addition, goodness of fit can be assessed
using Bayesian p-values; see Sect. 5.6.4. However King (2011) discusses how
MCMC can be slow for fitting SSMs. The interplay between integrated modelling
and Bayesian analysis is discussed in Maunder (2003).

9.7.4 Model Selection

The general procedures discussed in Sect. 5.6 still apply but some specifics to the
connected likelihood method are worth noting. Besbeas et al. (2002) combined ring-
recovery data with census data. The number of age classes, and other model aspects,
were those obtained from analysing the ring-recovery data alone. An alternative
approach would be to base model selection on the connected likelihood. However
for that kind of data combination, when selecting the number of age classes using
AIC, Besbeas et al. (2014) found that it can be better to use recovery data alone.

9.7.5 Integrated Modelling in Fisheries Research

In this chapter, we have seen how state-space models and integrated population
modelling allow the inclusion of information at the population and individual levels
in a single framework. The state-space model for the population survey data opens
the way to integrating different types of information and we have shown how data
from multiple surveys can be simultaneously analysed in two different ways: by
adding additional model structure in the model, as in Sect. 9.2, or by combining
different likelihoods for different surveys with shared parameters for common
processes, as in Sect. 9.3. The focus in the chapter has been on the latter and
its application in population ecology, but integrated analysis has a long history in
fisheries, dating back to Fournier and Archibald (1982), with developments in e.g.
Maunder (1998, 2001, 2003). A recent review of integrated analysis in fisheries
research is provided by Maunder and Punt (2013). Hoyle and Maunder (2004)
provide a non-fisheries example, northeastern offshore spotted dolphin Stenella
attenuata. Maunder (2004) uses IPM to carry out Population Viability Analysis (see
Sect. 4.2).
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One of the highly generalized integrated analysis models in fisheries is termed
stock synthesis (Methot and Wetzel 2013), in which different data sets often contain
contradictory information, and one of the main difficulties is determining the appro-
priate weighting factor between the different data types. In such cases, sensitivity
analyses that investigate the influence of the weighting factors are an important part
of the assessment. There are thus interesting analogies but also differences between
integrated analysis in population ecology in general and particular applications in
fisheries research and management. These differences stem from the different types
of data, processes such as catchability, selectivity and aging imprecision, but also
modelling purpose and complexity. However the underlying logic is the same, and
research in both areas would benefit from better connection.



Chapter 10
Concluding Remarks

Modelling population dynamics is challenging because of multiple sources of
uncertainty and variation. With rare exceptions, the number of individuals in a pop-
ulation cannot be completely censused. Instead one typically has incomplete counts,
samples, or imperfect measurements of the population. These raw data may be
mathematically summarized to provide estimates or indices of abundance, survival,
reproduction, movement, growth. In either case, inferences about the population
based on the raw data and the mathematical summaries will contain sampling error,
i.e. uncertainty about the true state of the population (partial observability, Williams
et al. 2001). However, even if the population were completely and perfectly known
over a sequence of points in time, any mathematical model for the dynamics and
subsequent predictions made by the model will be imperfect and contain structural
uncertainty, parameter uncertainty, and process variation (Williams et al. 2001).
Structural uncertainty is uncertainty about the underlying average or expected
dynamics. For example the deterministic structure might be modelled by a simple
Beverton–Holt model, but the real average is more complex. Even if the general
form of the deterministic structure is correctly specified by a Beverton–Holt model,
model parameters still need to be estimated, i.e. there will be parameter uncertainty.
Finally even given the correct deterministic structure and perfectly known parameter
values, there is inherent random or natural variation, such as environmental variation
(e.g. between-year variation in reproductive rates) and demographic stochasticity
(e.g. if expected reproductive rate was 2 progeny per female per year, there is
between-female variation in the number of progeny, say 0, 1, 2, or 3 progeny).

State-space models provide a powerful, unifying framework for modelling
population dynamics, giving a structure for explicitly accounting for each of
the above sources of uncertainty. The observation model defines the relationship
between the sample data and the true, but unknown state of the system and quantifies
the degree of uncertainty in the relationship. Multiple state process models can be
postulated and thereby one can make explicit the structural uncertainty, allowing for
the likelihood that the truth is not in that set. The degree of structural uncertainty can
be quantified by various measures of relative predictive performance or goodness

K.B. Newman et al., Modelling Population Dynamics: Model Formulation,
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of fit. Environmental stochasticity can be described via hierarchical state-space
models, allowing vital rates, for example, to vary between years and/or to be
modelled as a function of environmental conditions. Demographic stochasticity is
characterized by the variation in the state process model. Parameter uncertainty can
be quantified by standard errors or posterior distributions for parameter estimates.

Translating this general framework into one or more concrete SSMs for a specific
case begins by clearly articulating the purpose of the model. Model purpose will
guide the steps of formulation, fitting and assessment of SSMs. The model should
be designed to fulfill that purpose, but should be no more complex than necessary
(Starfield and Bleloch 1991). For example, if the purpose is to predict the effect
of a change in hunting regulations for female red deer on population growth rates,
one might model reproduction rates as a function of some measure of hunting as
a covariate. The above three steps do not necessarily proceed in this sequence;
e.g. after formulating a model, one might learn that it cannot be fitted to the
available data and a new formulation is required. Nor is a single iteration necessarily
adequate; for example, assessment might indicate that none of the models are
adequate for the desired purpose and new models must be formulated. In all cases,
model formulation requires, at a minimum, that decisions be made about (a) spatial-
temporal scope, e.g. geographic region and years; (b) temporal resolution, e.g. how
finely time is partitioned, annually, seasonally, or daily; (c) spatial resolution, e.g.
the geographic region might be split into three sub-regions; (d) biological resolution,
e.g. the population is subdivided into subpopulations by sex, age, sexual maturity.
Model purpose and the available data will guide decisions about each of these.

A key aspect of the state process model portion of the SSM is specification of the
processes that drive population dynamics. In many applications, a simple model may
suffice. For example, net rate of change in population abundance might be modelled
as a function of one or more covariates, such as year, rainfall, temperature, etc.
In this case, separate models for survival and birth are not defined. However, if
we wish to understand how survival and birth rates are influenced by for example
environmental variables, we need to model those processes separately. We may also
wish to include further processes, such as movement, growth and sex assignment.

Formulation of the observation model portion of the SSM may also be guided
by model purpose and will certainly be constrained by the available data; e.g. if
gender information was not collected, then observations must be related to quantities
formed by merging female and male components of the state vector. The degree to
which the original field data are to be aggregated (if at all) prior to fitting a SSM
is another model formulation decision. See Dennis et al. (2010) and Knape et al.
(2013) for discussion of the handling of replicate data in the observation model.

Matrix models are a convenient and compact way of characterizing both the state
process and the observation portions of a SSM. Directly writing down the state
process model as a generalized Leslie or Lefkovitch matrix becomes increasingly
infeasible as the complexity of the population dynamics increases. In Chap. 2,
we show how each separate process can be expressed in matrix form, and in a
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building block fashion, one can obtain the generalized Leslie or Lefkovitch matrix
simply through matrix multiplication. This makes the task of defining and building
the dynamic processes of a complex population model much simpler, and less
error-prone.

Matrix models themselves, however, are often just convenient approximations
to more realistic process-specific distributional models. For example, if density
dependence is included in survival or birth rates, the linearity assumed in matrix
models may be violated. Thus we use the matrix models primarily as a tool for
helping to define the model, and to relate the model to classical matrix population
models; we use the specified distributions for the individual processes for model-
fitting, and the approximation involved in specifying matrix models is therefore
of no consequence. In Chap. 3, we show how these more realistic and flexible
population models may be translated into state-space models.

Methods for fitting SSMs to time series of data are provided in Chap. 4, including
both classical frequentist methods and Bayesian approaches. The methods vary
considerably in terms of the degree of difficulty and technical expertise required.
Software for the fitting is rapidly maturing but the task remains more technically
demanding than fitting linear or generalized linear models.

While the tools provided in Chaps. 2–4 allow great flexibility in building models
of population dynamics, there is no value in developing a complex model when
the available data are very limiting. In Chap. 5, we address in more detail how to
formulate an appropriate model, and we show how to assess the adequacy of the
model. Methods are given for checking for parameter redundancy in state-space
models. We also address model selection, model averaging and model diagnostics.

In Chap. 6, we show how to model population dynamics when closed-population
assessment methods are used at each of several time points, yielding a time series
of abundance estimates. In Chap. 7, we consider methods when the primary interest
is in modelling survival rates from mark-recapture data. Chapter 8 also considers
mark-recapture data, but the emphasis is now on abundance estimation, with an
embedded population dynamics model. This has the advantage for example of
ensuring that modelled birth rates are biologically plausible. Integrated population
modelling, for which there are multiple data sources, is addressed in Chap. 9.

Advances in both technology and statistical methodology are opening up many
options for modelling the dynamics of wild animal populations. Tags can provide
detailed information on movement, on different activity types, and even on animal
condition, generating large datasets to complement data from mark-recapture
studies, sightings surveys, etc. Hidden Markov models offer sophisticated methods
of modelling such data (King 2014). Population processes can be modelled flexibly
as a function of covariates and/or random effects. The possibility of incorporating
genetic modelling into the population dynamics models is intriguing, potentially
allowing exploration of how a population adapts to changes in the environment.
We believe that models will become increasingly more reliable for predicting
the dynamics of populations subject to change, whether it is climate change,
changes in land use, changes in harvesting or control strategies, introduction
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of habitat management for conservation, controlled reintroductions, etc. A key
aspect of reliability is that the modelling methods should allow quantification of
uncertainty, and hence of risk. Methods should routinely incorporate demographic
stochasticity, measurement error and model uncertainty, which is possible adopting
the approaches described in this book.
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