
Jonathon D. Brown

Linear Models 
in Matrix Form
A Hands-On Approach for the Behavioral 
Sciences



Linear Models in Matrix Form





Jonathon D. Brown

Linear Models
in Matrix Form

A Hands-On Approach
for the Behavioral Sciences



Jonathon D. Brown
Department of Psychology
University of Washington
Seattle, WA, USA

ISBN 978-3-319-11733-1 ISBN 978-3-319-11734-8 (eBook)
DOI 10.1007/978-3-319-11734-8
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014949858

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication
of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.
Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



To Noah and Avi.
Two (very) special additions!





Linear Models in Matrix Form: A Hands-On
Approach for the Behavioral Sciences

Technological advances inevitably shape the teaching of statistics. For many years,

the matrix calculations required in order to do most statistical analyses were too

laborious to be performed by hand, so simple algebra was used. The formula for

computing an unstandardized regression coefficient in a two-variable, multiple

regression analysis provides one example of this “first generation” approach.

b1 ¼
s1y � s22
� �� s12 � s2y

� �
s21 � s22
� �� s12ð Þ2

The availability of handheld calculators in the 1970s made these calculations

less tedious, but the pedagogical approach to teaching statistics remained

unchanged until statistical packages designed to take advantage of high-speed

computers ushered in a new, “click and run” approach in the mid-1980s. Now, all

the calculations took place behind the scenes, and formulas were replaced by a

more practical method that emphasized the interpretation of output rather than its

production.

Unfortunately, the “click and run” approach has produced a new generation of

students who know how to use computer software to perform statistical analyses

without knowing much about the computations that produce the output they

instantly and (apparently) magically receive. I think this lack of understanding is

lamentable; I also think it is unnecessary. Instead of leading us to ignore the

calculations that comprise statistical analyses, the ready accessibility of high-

speed computers should have led us to reveal the matrix algebra that produces the

output:

b ¼ X
0
X

� ��1

X
0
y or b ¼ R�1Q0y

That way, students would gain valuable insight into the mathematics behind the

results.
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You Do the Math!

I wrote this book to provide that balance, creating an easy-to-understand, hands-on

approach to statistical analysis using matrix algebra. Although many of the topics

are advanced (e.g., maximum-likelihood estimation, matrix decompositions,

nonparametric smoothers, and penalized cubic splines), all the analyses were

performed on an open-source spreadsheet using a few built-in functions (e.g.,

transpose, inverse).1 Moreover, every statistical analysis is illustrated using a

(fictitious) data set comprised of only 12 observations. The sample size is kept

purposefully small so that readers will not be dissuaded from performing the

calculations themselves, and each data set tells a coherent story based on statistical

significance and confidence intervals. In my experience, statistical analyses come

alive when students know how the numbers were generated and how they can be

used to make cogent arguments about everyday matters.

Intended Audience

This book is intended for use in an upper-level undergraduate course or an entry-

level graduate course. I assume some knowledge of basic statistical principles

(e.g., measures of central tendencies, hypothesis testing), but familiarity with

matrix algebra is not needed. The first chapter introduces students to linear

equations, and then covers matrix algebra, focusing on three essential operations:

the sum of squares, the determinant, and the inverse. These operations are

explained in common everyday language, and their calculations are demonstrated

using concrete examples. The remaining chapters build on these operations,

progressing from simple linear regression to mediational models with bootstrapped

standard errors.

This book is also appropriate for intellectually curious researchers. I hope to

evoke an “aha” experience among those who learned only the “click and run”

approach and a “so that’s all there is to it?” reaction among those with only a limited

background in mathematics.

1 The spreadsheets accompanying each chapter are available as supplementary material with the

book on SpringerLink, and can be downloaded directly at http://www.springer.com/statistics/

social+sciences+%26+law/book/978-3-319-11733-1
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Using R

Although this book emphasizes performing calculations with a spreadsheet rather

than a statistical package, I do not expect readers to ordinarily use a spreadsheet to

analyze their data once they have learned the calculations.2 Toward that end, each

chapter includes code for running all analyses in R, a free software programming

language and software environment for statistical computing and graphics that can

be downloaded at http://www.r-project.org. Whenever possible, I have used func-

tions from the base suite of tools or have provided simple code for ones that are not

available elsewhere. Occasionally, I have relied on functions associated with

packages that must be installed and attached.

To the Reader

It has been said that there are three kinds of people—those who can do math and

those who cannot. If you get the joke, you should be able to solve all the problems in

this textbook. Stripped of the jargon and the arcane formulas, most statistical

analyses are not all that complicated. We have a variable we wish to predict and

a set of variables we use to fashion that prediction. There is really nothing more to it

than that. In the end, then, there really is only one kind of person: a person who can

do math provided it is explained clearly and illustrated with examples.

2 The results of a great many calculations are presented in the text to illustrate various operations.

Due to rounding error, the results obtained using the printed values do not always match the ones

obtained using a spreadsheet or statistical package. Rather than confuse readers with two different

values, I report the more accurate values one would get using computer software.

Linear Models in Matrix Form: A Hands-On Approach for the Behavioral Sciences ix

http://www.r-project.org/




Contents

1 Matrix Properties and Operations . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Linear Equations and Matrix Algebra . . . . . . . . . . . . . . . . . . . 1

1.1.1 What Is a Matrix? . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Matrix Rules of Multiplication . . . . . . . . . . . . . . . . . . 5

1.1.4 Using a Spreadsheet to Perform Matrix Operations . . . 7

1.2 Matrix Transpose and Sum of Squares . . . . . . . . . . . . . . . . . . . 9

1.2.1 Transposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.2 Premultiplying a Matrix by Its Transpose . . . . . . . . . . 10

1.2.3 Covariance Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.4 Correlation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.5 Diagonal Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.7 R Code: Matrix Multiplication . . . . . . . . . . . . . . . . . . 15

1.3 Matrix Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.1 Visualizing the Determinant . . . . . . . . . . . . . . . . . . . . 16

1.3.2 Using the Determinant to Solve Linear Equations . . . . 18

1.3.3 Linear Dependencies and Singular Matrices . . . . . . . . 21

1.3.4 Calculating the Determinant with Large Matrices . . . . 21

1.3.5 R Code: Determinants . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4 Matrix Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4.1 Matrix Multiplication and Matrix Inverse . . . . . . . . . . 25

1.4.2 Calculating the Matrix Inverse . . . . . . . . . . . . . . . . . . 27

1.4.3 Using the Inverse to Solve Linear Equations . . . . . . . . 30

1.4.4 R Code: Matrix Inverse . . . . . . . . . . . . . . . . . . . . . . . 34

1.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

xi



2 Simple Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.1 Mathematical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.1.1 What Is a Model? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.1.2 What Is a Regression Model? . . . . . . . . . . . . . . . . . . . 41

2.1.3 What Is a Linear Regression Model? . . . . . . . . . . . . . . 41

2.2 Simple Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.1 Preliminary Analysis Without an Intercept . . . . . . . . . 43

2.2.2 Complete Analysis: Adding an Intercept . . . . . . . . . . . 45

2.2.3 Understanding Linear Regression . . . . . . . . . . . . . . . . 49

2.2.4 Standardized Regression Coefficients . . . . . . . . . . . . . 51

2.2.5 Correlation Coefficient . . . . . . . . . . . . . . . . . . . . . . . . 53

2.2.6 R Code: Simple Linear Regression . . . . . . . . . . . . . . . 54

2.3 Population Estimation and Statistical Significance . . . . . . . . . . 55

2.3.1 The Logic Behind Null Hypothesis Testing . . . . . . . . . 55

2.3.2 Testing the Regression Model . . . . . . . . . . . . . . . . . . . 55

2.3.3 Testing the Regression Coefficients . . . . . . . . . . . . . . . 58

2.3.4 Parameter Covariance Matrix (C) . . . . . . . . . . . . . . . . 61

2.3.5 R Code: Hypothesis Testing . . . . . . . . . . . . . . . . . . . . 62

2.4 Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.4.1 Average Expected Values . . . . . . . . . . . . . . . . . . . . . . 63

2.4.2 Single Predicted Values . . . . . . . . . . . . . . . . . . . . . . . 65

2.4.3 Forecasting with Caution . . . . . . . . . . . . . . . . . . . . . . 66

2.4.4 R Code: Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3 Maximum-Likelihood Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.1 Probability and Likelihood in a Normal Distribution . . . . . . . . . 69

3.1.1 Likelihood Function . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.1.2 Log-Likelihood Function . . . . . . . . . . . . . . . . . . . . . . 72

3.1.3 Using the Grid-Search Method to Find

the Maximum-Likelihood Estimate . . . . . . . . . . . . . . . 73

3.1.4 R Code: Maximum-Likelihood Estimation

with Normal Distribution . . . . . . . . . . . . . . . . . . . . . . 75

3.2 Differential Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2.1 Differentiating a Function to Find Its Derivative . . . . . 76

3.2.2 Differentiation and Maximum-Likelihood

Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2.3 Computing the Standard Errors . . . . . . . . . . . . . . . . . . 87

3.2.4 R Code: Derivatives and Standard Errors . . . . . . . . . . 91

3.3 Maximum-Likelihood Estimation in Regression . . . . . . . . . . . . 92

3.3.1 Differentiating the Function . . . . . . . . . . . . . . . . . . . . 93

3.3.2 Standard Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.4 Maximum-Likelihood Estimation: Numerical Methods . . . . . . . 96

3.4.1 Newton–Raphson and Fisher’s Method of Scoring . . . . 96

3.4.2 Illustration Using Fisher’s Method of Scoring . . . . . . . 97

xii Contents



3.4.3 R Code: Maximum-Likelihood Estimation

with Fisher’s Method of Scoring . . . . . . . . . . . . . . . . . 99

3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4 Multiple Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.1 Multiple Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.1.1 Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.1.2 Unstandardized Regression Coefficients . . . . . . . . . . . 108

4.1.3 Fitted Values and Residuals . . . . . . . . . . . . . . . . . . . . 109

4.1.4 Testing the Regression Model . . . . . . . . . . . . . . . . . . . 110

4.1.5 R Code: Multiple Regression . . . . . . . . . . . . . . . . . . . 111

4.2 Interpreting and Testing Regression Coefficients . . . . . . . . . . . 112

4.2.1 Comparing Regression Coefficients

and Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.2.2 Interpreting the Numerical Value of a Regression

Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.2.3 Calculating Regression Coefficients . . . . . . . . . . . . . . 118

4.2.4 Testing the Significance of Regression Coefficients . . . 120

4.2.5 Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.2.6 Comparing the Predictors . . . . . . . . . . . . . . . . . . . . . . 124

4.2.7 R Code: Testing Regression Coefficients . . . . . . . . . . . 126

4.3 Partitioning the Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.3.1 Semipartial Correlation . . . . . . . . . . . . . . . . . . . . . . . 128

4.3.2 Partial Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.3.3 Are Regression Coefficients Semipartial Coefficients

or Partial Coefficients? . . . . . . . . . . . . . . . . . . . . . . . . 135

4.3.4 R Code: Partitioning the Variance . . . . . . . . . . . . . . . . 135

4.4 Calculating Regression Coefficients Using Cofactors . . . . . . . . 137

4.4.1 Complete Sum of Squares . . . . . . . . . . . . . . . . . . . . . 137

4.4.2 Residual Sum of Squares and Coefficient

of Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.4.3 Regression Coefficients . . . . . . . . . . . . . . . . . . . . . . . 141

4.4.4 Computing the Remaining Coefficients

and Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.4.6 R Code: Regression Coefficients as Cofactors . . . . . . . 143

4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5 Matrix Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.1 Eigen Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.1.1 Matrix Multiplication with an “Ordinary” Vector . . . . . 148

5.1.2 Matrix Multiplication with an Eigenvector . . . . . . . . . 149

5.1.3 Calculating Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . 150

Contents xiii



5.1.4 Calculating Eigenvectors . . . . . . . . . . . . . . . . . . . . . . 153

5.1.5 Eigenvalues and Variance Consolidation . . . . . . . . . . . 156

5.1.6 Eigen Decomposition and Matrix Recomposition . . . . . 158

5.1.7 R Code: Eigen Decomposition . . . . . . . . . . . . . . . . . . 160

5.2 QR Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.2.1 Computations with Householder Transformations . . . . 161

5.2.2 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.2.3 QR Algorithm for Finding the Eigenpairs . . . . . . . . . . 168

5.2.4 R Code: QR Decomposition . . . . . . . . . . . . . . . . . . . . 172

5.3 Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . . 173

5.3.1 Preliminary Calculations . . . . . . . . . . . . . . . . . . . . . . 173

5.3.2 Reconstructing X . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.3.3 Regression Coefficients . . . . . . . . . . . . . . . . . . . . . . . 175

5.3.4 Standard Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.3.5 R Code: Singular Value Decomposition . . . . . . . . . . . 176

5.4 Cholesky Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.4.1 Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.4.2 Calculating the Determinant and the Inverse . . . . . . . . 179

5.4.3 Least Squares Regression . . . . . . . . . . . . . . . . . . . . . . 179

5.4.4 Using the Cholesky Decomposition to Find

the Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.4.5 R Code: Cholesky Decomposition . . . . . . . . . . . . . . . . 180

5.5 Comparing the Decompositions . . . . . . . . . . . . . . . . . . . . . . . . 181

5.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6 Problematic Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.1 Influential Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.1.1 Discrepant Observations . . . . . . . . . . . . . . . . . . . . . . . 187

6.1.2 Illustrating Undue Influence . . . . . . . . . . . . . . . . . . . . 187

6.1.3 Leverage and the Hat Matrix . . . . . . . . . . . . . . . . . . . 190

6.1.4 Residuals and Outliers . . . . . . . . . . . . . . . . . . . . . . . . 193

6.1.5 Variance of Fitted Values and Residuals . . . . . . . . . . . 196

6.1.6 Quantifying Influence . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.1.7 Commentary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.1.8 R Code: Regression Diagnostics . . . . . . . . . . . . . . . . . 204

6.2 Departures from Normality . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

6.2.1 Reviewing the Normality Assumption . . . . . . . . . . . . . 204

6.2.2 Assessing Normality . . . . . . . . . . . . . . . . . . . . . . . . . 205

6.2.3 Correcting Violations of Normality . . . . . . . . . . . . . . . 209

6.2.4 R Code: Departures from Normality . . . . . . . . . . . . . . 212

6.3 Collinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

6.3.1 Problems with Overly Redundant Predictors . . . . . . . . 214

6.3.2 Matrices with a Near-Linear Dependence are Ill

Conditioned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

6.3.3 Demonstrating Collinearity . . . . . . . . . . . . . . . . . . . . . 216

xiv Contents



6.3.4 Quantifying Collinearity with the Variance

Inflation Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

6.3.5 Condition Index and Variance Proportion

Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

6.3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

6.3.7 R Code: Collinearity . . . . . . . . . . . . . . . . . . . . . . . . . 225

6.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

7 Errors and Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

7.1 Errors and Their Assumed Distribution . . . . . . . . . . . . . . . . . . 227

7.1.1 Why It Matters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

7.1.2 Errors and Residuals . . . . . . . . . . . . . . . . . . . . . . . . . 229

7.1.3 Generalized Least Squares Estimation . . . . . . . . . . . . . 231

7.2 Heteroscedasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

7.2.1 Small Sample Example . . . . . . . . . . . . . . . . . . . . . . . 232

7.2.2 Detecting Heteroscedasticity . . . . . . . . . . . . . . . . . . . . 235

7.2.3 Weighted Least Squares Estimation . . . . . . . . . . . . . . 237

7.2.4 Heteroscedasticity-Consistent Covariance Matrix . . . . . 241

7.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

7.2.6 R Code: Heteroscedasticity . . . . . . . . . . . . . . . . . . . . . 243

7.3 Autocorrelations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

7.3.1 Mathematical Representation . . . . . . . . . . . . . . . . . . . 244

7.3.2 Detecting Autocorrelations . . . . . . . . . . . . . . . . . . . . . 247

7.3.3 Generalized Least Squares Estimation

for Managing Autocorrelation . . . . . . . . . . . . . . . . . . . 250

7.3.4 Autocorrelation-Consistent Covariance Matrix . . . . . . . 254

7.3.5 R Code: Autocorrelations . . . . . . . . . . . . . . . . . . . . . . 258

7.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

8 Linearizing Transformations and Nonparametric Smoothers . . . . . 261

8.1 Understanding Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

8.1.1 Partial Derivatives and Linear Functions . . . . . . . . . . . 263

8.1.2 Assessing Linear Relations . . . . . . . . . . . . . . . . . . . . . 264

8.1.3 Options for Analyzing Nonlinear Relations . . . . . . . . . 267

8.1.4 R Code: Assessing Nonlinearity . . . . . . . . . . . . . . . . . 268

8.2 Transformations to Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . 269

8.2.1 Understanding Transformations . . . . . . . . . . . . . . . . . 269

8.2.2 Logarithmic Model . . . . . . . . . . . . . . . . . . . . . . . . . . 270

8.2.3 Exponential Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

8.2.4 Power Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

8.2.5 Box-Tidwell Transformation . . . . . . . . . . . . . . . . . . . 282

8.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

8.2.7 R Code: Linear Transformations . . . . . . . . . . . . . . . . . 285

8.3 Nonparametric Smoothers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

8.3.1 Understanding Nonparametric Regression . . . . . . . . . . 287

8.3.2 Running Average . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

Contents xv



8.3.3 Running Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

8.3.4 Kernel Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

8.3.5 Locally Weighted Regression . . . . . . . . . . . . . . . . . . . 298

8.3.6 Extensions and Applications . . . . . . . . . . . . . . . . . . . . 300

8.3.7 R Code: Nonparametric Smoothers . . . . . . . . . . . . . . . 300

8.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

9 Cross-Product Terms and Interactions . . . . . . . . . . . . . . . . . . . . . . 303

9.1 Understanding Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

9.1.1 Depicting an Interaction . . . . . . . . . . . . . . . . . . . . . . . 304

9.1.2 Modeling Interactions with Cross-Product Terms . . . . . 304

9.1.3 Testing Cross-Product Terms . . . . . . . . . . . . . . . . . . . 308

9.1.4 R Code: Testing a Cross-Product Term . . . . . . . . . . . . 311

9.2 Probing an Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

9.2.1 Calculating Predicted Values . . . . . . . . . . . . . . . . . . . 312

9.2.2 Plotting Predicted Values . . . . . . . . . . . . . . . . . . . . . . 313

9.2.3 Testing Simple Slopes . . . . . . . . . . . . . . . . . . . . . . . . 313

9.2.4 Characterizing an Interaction . . . . . . . . . . . . . . . . . . . 318

9.2.5 R Code: Predicted Values and Simple Slopes . . . . . . . 319

9.2.6 Johnson-Neyman Technique . . . . . . . . . . . . . . . . . . . . 320

9.2.7 R Code: Johnson-Neyman Regions of Significance . . . 322

9.3 Higher-Order Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

9.3.1 Testing the Regression Equation . . . . . . . . . . . . . . . . . 323

9.3.2 Probing a Three-Variable Interaction . . . . . . . . . . . . . 323

9.3.3 R Code: Three-Way Interaction . . . . . . . . . . . . . . . . . 330

9.3.4 Recentering Variables to Calculate Simple Slopes . . . . 332

9.3.5 R Code: Three-Way Interaction Using Recentering . . . 336

9.4 Effect Size and Statistical Power . . . . . . . . . . . . . . . . . . . . . . . 336

9.4.1 Effect Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

9.4.2 Statistical Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

9.4.3 R Code: Effect Size of Three-Way

Cross-Product Term . . . . . . . . . . . . . . . . . . . . . . . . . . 339

9.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

10 Polynomial Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

10.1 Simple Polynomial Regression . . . . . . . . . . . . . . . . . . . . . . . . 342

10.1.1 Testing the Linear Component . . . . . . . . . . . . . . . . . . 342

10.1.2 Adding a Quadratic Term . . . . . . . . . . . . . . . . . . . . . . 344

10.1.3 Testing Other Polynomials . . . . . . . . . . . . . . . . . . . . . 347

10.1.4 R Code: Cubic Polynomial . . . . . . . . . . . . . . . . . . . . . 348

10.2 Polynomial Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

10.2.1 Regression Equations . . . . . . . . . . . . . . . . . . . . . . . . . 349

10.2.2 Testing the Regression Coefficients . . . . . . . . . . . . . . . 351

10.2.3 Probing a Polynomial Interaction . . . . . . . . . . . . . . . . 351

10.2.4 R Code: Polynomial Interaction . . . . . . . . . . . . . . . . . 354

xvi Contents



10.3 Piecewise Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

10.3.1 Regression Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

10.3.2 Natural Cubic Splines . . . . . . . . . . . . . . . . . . . . . . . . 360

10.3.3 R Code: Unpenalized Regression Splines . . . . . . . . . . 363

10.3.4 Penalized Natural Cubic Spline . . . . . . . . . . . . . . . . . . 364

10.3.5 R Code: Penalized Natural Cubic Splines . . . . . . . . . . 374

10.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

11 Categorical Predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

11.1 Coding Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

11.1.1 Analysis of Variance . . . . . . . . . . . . . . . . . . . . . . . . . 378

11.1.2 Overview of Coding Schemes . . . . . . . . . . . . . . . . . . . 380

11.1.3 Orthogonal Contrast Codes . . . . . . . . . . . . . . . . . . . . . 381

11.1.4 Dummy Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

11.1.5 Effect Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

11.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

11.1.7 R Code: Coding Schemes . . . . . . . . . . . . . . . . . . . . . . 391

11.2 Creating Orthogonal Contrast Codes . . . . . . . . . . . . . . . . . . . . 392

11.2.1 Helmert Contrasts . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

11.2.2 Gram-Schmidt Orthogonalization . . . . . . . . . . . . . . . . 393

11.2.3 Polynomial Terms in a Trend Analysis . . . . . . . . . . . . 396

11.2.4 R Code: Creating Orthogonal Contrasts . . . . . . . . . . . . 399

11.3 Contrast Codes with Unbalanced Designs . . . . . . . . . . . . . . . . 399

11.3.1 Analysis with Unweighted Means . . . . . . . . . . . . . . . . 400

11.3.2 Weighted Means Analysis . . . . . . . . . . . . . . . . . . . . . 403

11.3.3 R Code: Unbalanced Designs . . . . . . . . . . . . . . . . . . . 407

11.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

12 Factorial Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

12.1 Basics of Factorial Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

12.1.1 Regression Analysis of a One-Way Design . . . . . . . . . 409

12.1.2 Recasting the Data as a Factorial Design . . . . . . . . . . . 410

12.1.3 Properties of a Factorial Design . . . . . . . . . . . . . . . . . 411

12.1.4 Sources of Variance in a Balanced Factorial

Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

12.1.5 Probing an Interaction . . . . . . . . . . . . . . . . . . . . . . . . 416

12.1.6 R Code: Factorial Design . . . . . . . . . . . . . . . . . . . . . . 418

12.2 Unbalanced Factorial Designs . . . . . . . . . . . . . . . . . . . . . . . . . 420

12.2.1 Unweighted Means . . . . . . . . . . . . . . . . . . . . . . . . . . 421

12.2.2 Weighted Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

12.2.3 R Code: Unbalanced Factorial Design . . . . . . . . . . . . . 424

12.3 Multilevel Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

12.3.1 Coding Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

12.3.2 Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 427

12.3.3 ANOVA Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

12.3.4 R Code: Multilevel Design . . . . . . . . . . . . . . . . . . . . . 430

Contents xvii



12.3.5 Probing the Interaction . . . . . . . . . . . . . . . . . . . . . . . . 431

12.3.6 Higher-Order Designs . . . . . . . . . . . . . . . . . . . . . . . . 439

12.3.7 R Code: Simple Effects in Multilevel Design . . . . . . . . 439

12.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

13 Analysis of Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

13.1 Introduction to ANCOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

13.1.1 Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

13.1.2 Preliminary Analyses . . . . . . . . . . . . . . . . . . . . . . . . . 446

13.1.3 Main Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

13.1.4 R Code: ANCOVA . . . . . . . . . . . . . . . . . . . . . . . . . . 451

13.1.5 Adjusted Means and Simple Effects . . . . . . . . . . . . . . 452

13.1.6 R Code: Adjusted Means and Simple Effects . . . . . . . . 456

13.2 Extensions to More Complex Designs . . . . . . . . . . . . . . . . . . . 457

13.2.1 Preliminary Analyses . . . . . . . . . . . . . . . . . . . . . . . . . 458

13.2.2 Main Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

13.2.3 Adjusted Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

13.2.4 Augmented Matrix and Multiple Comparisons . . . . . . . 462

13.2.5 R Code: ANCOVA with Multiple Covariates . . . . . . . 463

13.3 Uses (and Misuses) of ANCOVA . . . . . . . . . . . . . . . . . . . . . . 464

13.3.1 A Residualized Criterion . . . . . . . . . . . . . . . . . . . . . . 464

13.3.2 Association with the Predictor . . . . . . . . . . . . . . . . . . 465

13.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

14 Moderation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

14.1 Moderated Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

14.1.1 Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

14.1.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

14.1.3 Regression Coefficients . . . . . . . . . . . . . . . . . . . . . . . 473

14.1.4 Plotting Predicted Values . . . . . . . . . . . . . . . . . . . . . . 474

14.1.5 Crossing Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

14.1.6 Testing the Simple Slopes . . . . . . . . . . . . . . . . . . . . . 476

14.1.7 R Code: Moderation—Simple Slopes . . . . . . . . . . . . . 477

14.2 Simple Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

14.2.1 Augmented b Vector and C Matrix . . . . . . . . . . . . . . . 480

14.2.2 S Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

14.2.3 Specific Tests of Interest . . . . . . . . . . . . . . . . . . . . . . 482

14.2.4 R Code: Moderation—Simple Effects . . . . . . . . . . . . . 485

14.3 Regions of Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

14.3.1 Reviewing the Johnson-Neyman Method . . . . . . . . . . . 488

14.3.2 Extending the Johnson-Neyman Method . . . . . . . . . . . 488

14.3.3 Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

14.3.4 R Code: Regions of Significance . . . . . . . . . . . . . . . . . 490

14.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491

xviii Contents



15 Mediation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

15.1 Simple Mediation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494

15.1.1 Analytic Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

15.1.2 Assessing the Importance of the Mediated Effect . . . . . 499

15.1.3 Effect Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

15.1.4 Contrasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

15.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504

15.1.6 R Code: Simple Mediation . . . . . . . . . . . . . . . . . . . . . 505

15.2 Higher-Order Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506

15.2.1 Mediation with Three Groups . . . . . . . . . . . . . . . . . . . 507

15.2.2 R Code: Mediation with Three Groups . . . . . . . . . . . . 510

15.2.3 Multiple Mediators . . . . . . . . . . . . . . . . . . . . . . . . . . 511

15.2.4 R Code: Multiple Mediators . . . . . . . . . . . . . . . . . . . . 515

15.2.5 Mediation and Moderation . . . . . . . . . . . . . . . . . . . . . 516

15.2.6 R Code: Mediation and Moderation . . . . . . . . . . . . . . 522

15.3 Mediation and Causal Inference . . . . . . . . . . . . . . . . . . . . . . . . 525

15.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

Contents xix



Chapter 1

Matrix Properties and Operations

In this chapter you will learn about matrix algebra. Of all the chapters in the book,

this one has the most terms to memorize. Learning matrix algebra is a bit like

learning a new language, and the only way to understand the language is to immerse

yourself in the terminology until it becomes familiar. I promise that the time you

invest will be time well spent and that the remaining chapters won’t be as dense.

I also strongly encourage you to perform all of the analyses yourself using a

spreadsheet. The best way to understand anything is by doing it, and you will

walk away with a much deeper appreciation for the material if you take the time to

make the calculations come alive.

1.1 Linear Equations and Matrix Algebra

Most of the statistical analyses we will cover in this book were developed to solve a

series of linear equations, with each equation representing data from one subject.1

The solution to a series of linear equations is the sum of products formed by

weighting each known variable by a single, unknown variable. To clarify this

point, let’s consider a problem you might have encountered in middle school:

5x þ 7y ¼ �11

8xþ 4y ¼ 4

5xþ 5y ¼ �5

Electronic Supplementary Material: The online version of this chapter (doi: 10.1007/978-3-

319-11734-8_1) contains supplementary material, which is available to authorized users

1 In this context, the term “subject” refers to anything about which we make an observation. These

subjects could be living entities (people), objects (cars), or events (days).

© Springer International Publishing Switzerland 2014
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Even if you don’t yet know how to solve these equations, you can probably see that

x¼ 2 and y¼� 3 represent the solution:

5 2ð Þ þ 7 �3ð Þ ¼ �11

8 2ð Þ þ 4 �3ð Þ ¼ 4

5 2ð Þ þ 5 �3ð Þ ¼ �5

If you can understand the logic behind this solution, you will be able to

understand most of the statistical techniques we will cover. To see why, imagine

that these equations represent the answers three middle school students gave when

they were asked three questions: How many friends do you have in school; how

many hours of homework do you have each week; and howmuch do you like school

in general? Table 1.1 presents their (hypothetical) responses.

If we were to predict their final answers (How much do you like school?) from

their answers to the first two questions, we would conclude that the number of

friends is positively related to overall liking for school (+2) and the amount of

homework is negatively related to overall liking for school (�3). In other words,

these kids like school more when they have lots of friends and little homework! We

might also conclude that the negative value of homework (�3) is greater than the

positive value of friendship (+2), but this conclusion should be treated cautiously

because it is influenced by a variety of factors (e.g., can five hours of homework be

directly compared with having five friends?).

The most important difference between this example and the problems you will

encounter in this book is that the latter do not have an exact solution. So we will

have to settle for a “best solution” without being able to achieve an exact one, and

we will have to find some way of judging whether our “best solution” tells us

something about a larger population (e.g., middle school students in general).

Before we tackle these issues, we first need to learn a bit of matrix algebra.

1.1.1 What Is a Matrix?

Many students shudder when they are asked to learn matrix algebra, but the ideas

are not difficult to grasp. A matrix is a rectangular array of numbers or symbols

characterized by rows and columns (called vectors). They are not much different

than a table you have probably seen in a spreadsheet or word processing program.

Table 1.1 Hypothetical data from three middle school students

Student

How many friends do

you have in school?

How much homework do

you have (hours/week)?

How much do

you like school?

1 5 7 �11

2 8 4 4

3 5 5 �5

2 1 Matrix Properties and Operations



Consider the two matrices below: A is a 2� 3 (read “2 by 3”) matrix because it has

2 row vectors and 3 column vectors; B is a 4� 2 matrix because it has 4 row vectors

and 2 column vectors:

A ¼ 4 2 1

8 3 5

� �
B ¼

7 0

1 �1

11 �3

4 6

2664
3775

When referencing a matrix, we indicate the (I) number of rows before indicating

the (J) number of columns:

A ¼ a11 a12 a13
a21 a22 a23

� �
B ¼

b11 b12
b21 b22
b31 b32
b41 b42

2664
3775

Each entry can then be identified by its unique location. For example, aij¼ a23
references the entry in the second row, third column of A(a23¼ 5). Similarly,

bij¼ b31 references the entry in the third row, first column of B(b31¼ 11). We also

designate each matrix with capital letters in bold script and place brackets around

their elements to indicate that their entries are to be treated as a group or unit.

You might have noticed that I said the entries in a matrix are to be treated as a

group or unit. This interdependence distinguishes matrices from a mere collection

of numbers. Matrices have properties that go beyond the elements that comprise

them. We can begin to appreciate these emergent properties by considering the

square matrices below (designated C, D, and E). Square matrices have an equal

number of rows and columns, and the sum of the main diagonal (from top left to

bottom right) is known as the trace (denoted tr). Even though they have no elements

in common, notice that C and D have the same trace (tr ¼ 7). Notice also that

C and E contain identical elements but do not have the same trace (i.e., the trace of

E ¼ 6). In short, two matrices can have different elements but the same trace or the

same elements and a different trace. This is why we say matrices have properties

that go beyond their specific elements:

C ¼ 2 6

4 5

� �
D ¼ 18 3

9 �11

� �
E ¼ 4 5

6 2

� �

1.1.2 Matrix Operations

Somematrix operations are easy. For example, when adding or subtracting matrices,

we simply add or subtract the corresponding elements in the matrices:

2 6

4 5

� �
þ 4 5

6 2

� �
¼ 6 11

10 7

� �
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and

2 6

4 5

� �
� 4 5

6 2

� �
¼ �2 1

�2 3

� �
It is also easy to add, subtract, multiply, or divide a matrix with a single number

(called a scalar) by performing the operation on each element individually:

2 6

4 5

� �
� � 3 ¼ �6 �18

�12 �15

� �

1.1.2.1 Matrix Multiplication

Unfortunately, matrix multiplication is more complicated and much more impor-

tant in statistical analyses. Instead of simply multiplying two numbers, we multiply

the values in one row of a matrix by the values in the column of another matrix and

then sum the products. Let’s look at how this is done, using the following matrices,

designated A, B, and C, with C being the product matrix:

A B C
10 3

4 5

� �
� 1 2

6 7

� �
¼ 28 41

34 43

� �
In our example, the first value inCwas derived by multiplying the values of the first

row in A with the first column in B and then summing the products:

c11 ¼ 10 � 1ð Þ þ 3 � 6ð Þ ¼ 28

Similar methods were used to derive the remaining values:

c12 ¼ 10 � 2ð Þ þ 3 � 7ð Þ ¼ 41

c21 ¼ 4 � 1ð Þ þ 5 � 6ð Þ ¼ 34

c22 ¼ 4 � 2ð Þ þ 5 � 7ð Þ ¼ 43

1.1.2.2 Matrix Multiplication and Simultaneous Linear Equations

Although you will not be performing matrix multiplication by hand in this book, it is

important to understand how it works and how it can be used to solve simultaneous

linear equations of the type wewill be considering. To help you appreciate this point,

let’s go back to the sample equations we discussed earlier (reproduced below):
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5x þ 7y ¼ �11

8xþ 4y ¼ 4

5xþ 5y ¼ �5

If we put these equations into matrix form (again using designations of A, b,

and c),2

A b c
5 7

8 4

5 5

24 35 x
y

� �
¼

�11

4

�5

24 35
we can reconstruct our original equations through matrix multiplication:

5x þ 7y ¼ �11

8xþ 4y ¼ 4

5xþ 5y ¼ �5

If we then substitute the values we obtained earlier (x ¼ 2 and y ¼� 3),

5 7

8 4

5 5

24 35 2

�3

� �
¼

�11

4

�5

24 35
we verify that matrix multiplication solves the problem (i.e., Ab¼ c):3

5 2ð Þ þ 7 �3ð Þ ¼ �11

8 2ð Þ þ 4 �3ð Þ ¼ 4

5 2ð Þ þ 5 �3ð Þ ¼ �5

1.1.3 Matrix Rules of Multiplication

1.1.3.1 Matrix Multiplication Is Not Commutative

Ordinary multiplication is commutative [e.g., (7 * 6)¼ (6 * 7)]. Although there are

exceptions, matrix multiplication usually is not. Even when two matrices have the

2Matrices with a single row or column are referred to as row or column vectors, respectively, and

are denoted with lower case letters with bold script.
3When multiplying matrices, it is customary to omit the product sign and simply place the two

matrices side-by-side (e. g.,AB¼A * B). When matrices are added or subtracted, the plus or

minus sign is included to avoid confusion.
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same dimensions (e.g., both are 3� 3), AB will usually not ¼BA. Consequently, it

is important to pay attention to the order in which matrices are multiplied. We say

“B was premultiplied by A” or “A was postmultiplied by B,” to refer to AB.

1.1.3.2 Matrix Conformability

Matrices can be multiplied only if they are conformable. In this context, conform-

able means that the number of columns of the premultiplication matrix equals the

number of rows of the postmultiplication matrix. In the preceding example, we

could multiply Ab because the number of columns of A(2) equals the number of

rows of b(2); we could not have multiplied bA, because the number of columns of

b(1) does not equal the number of rows of A(3). When two matrices are conform-

able, the size of the product matrix will equal the rows of the premultiplication

matrix and the columns of the postmultiplication matrix (see below for example).

1.1.3.3 Matrix Multiplication Is Associative

Although matrix multiplication is ordinarily not commutative, it is associative

(i.e., {AB}C¼A{BC}). We can understand why by considering the conformability

of three matrices.
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Because they are conformable, we can multiply AB andBC. When we multiply

all three matrices, the product matrix will have as its dimensions the rows of the first

matrix and the columns of the third matrix.

1.1.4 Using a Spreadsheet to Perform Matrix Operations

Earlier you learned that you will not be multiplying matrices by hand in this book; nor

will you be asked to perform any other matrix operations without the aid of computer

software. The calculations are not difficult when matrix sizes are small, but they are

very difficult when matrix sizes are large (e.g., multiplying a 600� 500 matrix with a

500� 1, 000 matrix takes a lot of time and leaves plenty of room for error!).

Fortunately, all spreadsheets include commands for performing matrix opera-

tions (see Table 1.5 at the end of this chapter for a summary). As all of the

calculations in this book are available in the spreadsheet that accompanies the

text, you will want to familiarize yourself with the manner in which spreadsheets

handle matrix operations so that you can easily follow along and perform the

analyses yourself. I will most commonly describe the operations with reference to

Microsoft’s EXCEL®, but you don’t have to buy EXCEL in order to perform the

analyses in the book. All of the calculations can be done using open-source

spreadsheets that are available for free (e.g., Apache Calc; Google Sheets; Libre

Office).

1.1.4.1 Working with Arrays

Spreadsheets treat matrices as arrays. Instead of pressing Enter when you finish

your calculations (as you normally would do when performing simple arithmetic),

you will need to press Ctrl-Shift-Enter when performing operations on an array if

you are using Windows or Command-Return if you are using a Mac.4 When you do,

you will notice that your spreadsheet adds brackets around your formula in the

formula bar, indicating that you have performed an array function.

1.1.4.2 Matrix Multiplication

To illustrate this process, let’s multiply the two matrices we’ve been working with

in a spreadsheet, setting up the problem as follows. Be sure to highlight the product

matrix (F2:F4) as I have done below.

4 Since I use a Windows computer, I will specify only the functions for that operating system

hereafter.
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Next, we want to enter a formula. You can do this by using the formula bar, but I

think it’s easier to select the equal sign on your keyboard and type the following

formula into the window that opens: MMULT(a2:b4,d2:d3).5 The MMULT com-

mand performs matrix multiplication rather than simple multiplication, and the cell

specifications indicate where the two matrices are located (separated by a comma in

Excel and a semicolon in most open source spreadsheets). Finally, you need to press

Ctrl-Shift-Enter all at once.When you do, the product matrix should appear in F2:F4.

1.1.4.3 Naming Matrices

Spreadsheets allow you to name a range of continuous cells so that you can

reference them by name rather than by cell number. In our example, I named the

values in A2:B4 “A” and the values in D2:D3 “B.” Thereafter, I need only to

5You can also drag your mouse to highlight the area of each matrix. This is often the most

effective strategy as it allows you to see exactly which cells are involved in the multiplication.

8 1 Matrix Properties and Operations



type¼MMULT(A,B) to multiply them, which is simpler and gives a greater

understanding of the operations involved.

Naming the matrices is especially useful when performing a series of calcula-

tions. Although we can only multiply two matrices at a time, we can multiply many

matrices by nesting the matrices within a single formula. To illustrate, imagine we

want to multiply the three matrices below (which I have named D, E, and F).

We first need to determine whether they are conformable. Because the columns in

D¼ the rows in E, and the columns in E ¼ the rows in F, we conclude the matrices

are conformable. We then highlight a 3� 3 collection of cells (corresponding to D’s

rows and F’s columns) and type¼MMULT(D,MMULT(E,F)).

When you hit Ctrl-Shift-Enter, you should see the following values in the

product matrix:

857:5 4 1035:5
656:5 146 674:5
1230:5 254 1280:5

24 35
Take a few minutes to examine how the nested formula is constructed because we

will use similar syntax throughout the text.

1.2 Matrix Transpose and Sum of Squares

Many statistical analyses involve finding a sum of squared values. By using another

matrix function called the transpose, matrix multiplication offers a convenient way

of computing sum of squares. The data in Table 1.2 will help us appreciate this

point.
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To begin, we will turn the data (but not summary statistics) into matrix form to

produce a matrix we will designate A:

A ¼
1 2 6

4 8 �4

5 6 5

4 2 3

2664
3775

1.2.1 Transposition

When we transpose a matrix, we exchange the columns and rows (i.e., we turn the

columns into rows and the rows into columns). The new matrix is designated with a

prime (A0) to indicate it is a transposed matrix and is referred to as the “transpose of

A” or, more commonly, as “A transpose.” In the example below, notice that the

rows of A are the columns of A0 and that the columns of A are the rows of A0:

A ¼
1 2 6

4 8 �4

5 6 5

4 2 3

2664
3775 and A

0 ¼
1 4 5 4

2 8 6 2

6 �4 5 3

24 35

1.2.2 Premultiplying a Matrix by Its Transpose

Premultiplying a matrix by its transpose produces a square matrix with three very

useful features:

A
0

A ¼ B

1 4 5 4

2 8 6 2

6 �4 5 3

24 35 1 2 6

4 8 �4

5 6 5

4 2 3

2664
3775 ¼

58 72 27

72 108 16

27 16 86

24 35

Table 1.2 Data for

demonstrating a sum

of squares matrix

1 2 6

4 8 �4

5 6 5

4 2 3

Mean 3.5 4.5 2.5

Variance 3.00 9.00 20.33

Standard deviation 1.732 3.00 4.509
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1. First, the entries on the main diagonal of the product matrix (upper left to lower

right) represent the sum of the squared values of each of the three columns of A:

12 þ 42 þ 52 þ 42 ¼ 58

22 þ 82 þ 62 þ 22 ¼ 108

62 þ�42 þ 52 þ 32 ¼ 86

2. Second, the off-diagonal entries of the product matrix represent cross-product

sums, formed by multiplying each entry in one column ofA by its corresponding

entry in another column of A, and then summing the products:

b12 ¼ a1
�a2 ¼ 1�2ð Þ þ 4�8ð Þ þ 5�6ð Þ þ 4�2ð Þ½ � ¼ 72

b13 ¼ a1
�a3 ¼ 1�6ð Þ þ 4� � 4ð Þ þ 5�5ð Þ þ 4�3ð Þ½ � ¼ 27

b23 ¼ a2
�a3 ¼ 2�6ð Þ þ 8� � 4ð Þ þ 6�5ð Þ þ 2�3ð Þ½ � ¼ 16

3. Third, the product matrix B is symmetric (i.e., the lower-left half is the mirror

image of the upper-right half). Formally, we define a symmetric matrix as a

square matrix that is equal to its transpose:

B ¼
58 72 27

72 108 16

27 16 86

24 35 ¼ B
0 ¼

58 72 27

72 108 16

27 16 86

24 35
These properties hold true whenever we premultiply a matrix by its transpose

(i.e., A0A always produces a symmetric, square matrix with the sum of squared

values on the diagonal and the sum of cross-product values on the off-diagonals).

In the next section, you will learn why matrices of this form are especially

important in statistical analyses.

1.2.3 Covariance Matrix

Behavioral scientists study variability. For example, we might examine the vari-

ability of IQ scores among a sample of children or the variability of docility in a

sample of foxes. When we index variability, we first calculate a deviate score by

subtracting the group mean from each entry. We then square the difference and sum

the squared values. The average squared value is known as the variance, and the

square root of the average squared value is called the standard deviation.

We also frequently try to relate the variability in one variable to the variability in

other variables. For example, we might examine the associations among IQ, nutri-

tion, socioeconomic status, and family dynamics. Formally, we are studying the
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extent to which two or more variables go together or covary. We assign a numerical

value to the association between two variables by calculating the cross-product sum

of their respective deviate scores. The average value is known as the covariance.

The transposition method we just learned provides an easy way to generate a

covariance matrix. We begin by calculating a matrix of deviate scores, found by

subtracting the column mean from each corresponding column entry in the original

matrix. We will call this matrix D because the entries represent deviations from the

column’s mean. To illustrate, the mean of the first column in A is 3.5, and the

entries in the first column ofDwere found by subtracting this value from each value

in the first column of A:

A ¼
1 2 6

4 8 �4

5 6 5

4 2 3

2664
3775 ! D ¼

�2:5 �2:5 3:5
:5 3:5 �6:5
1:5 1:5 2:5
:5 �2:5 :5

2664
3775

If we premultiply D by its transpose and divide each term by its associated

degrees of freedom (N� 1), we produce a symmetric covariance matrix Swith each

variable’s variance on the diagonals and the covariances (average deviation cross-

product sum) on the off-diagonals:6

S ¼ D
0
D

1

N � 1
ð1:1Þ

Inserting our values produces the covariance matrix:

S ¼
3:00 3:00 �2:6667
3:00 9:00 �9:6667

�2:6667 �9:6667 20:3333

24 35
It is worth taking the time to confirm that the obtained values represent the

average squared deviate scores (in the case of the variances on the main diagonal)

and the average cross-product sum (in the case of the covariances on the

off-diagonals). Below I show the relevant calculations for the variance of the

middle variable (9.00) and the covariance of variables 2 and 3 (�9.6667). You

can perform the calculations for the other entries if you desire:

6 You might be wondering why we use N�1 for the denominator rather than N. The reason is that

we lose 1 degree of freedom when we use the mean to create the deviate score, leaving N�1

degrees of freedom for computing the variability.
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var2 ¼ �2:52 þ 3:52 þ 1:52 þ�2:52

4� 1ð Þ ¼ 9:00

cov23 ¼ �2:5 � 3:5ð Þ þ 3:5 � �6:5ð Þ þ 1:5 � 2:5ð Þ þ �2:5 � :5ð Þ
4� 1ð Þ ¼ �9:6667

1.2.4 Correlation Matrix

A correlation matrix is a covariance matrix of standard scores. Standard scores

(denoted z) are found by first subtracting the column mean from each individual

score and then dividing the difference by the standard deviation of the column

entries. Doing so creates a new variable with mean ¼ 0 and variance ¼ 1. Placing

these standard scores into a matrix produces a new matrix we’ll designate Z:

A ¼
1 2 6

4 8 �4

5 6 5

4 2 3

2664
3775 ! Z ¼

�1:4434 �:8333 :7762
:2887 1:1667 �1:4415
:8660 :50 :5544
:2887 �:8333 :1109

2664
3775

If we premultiply Z by its transpose and divide each term by its associated degrees

of freedom (N� 1), we produce a correlation matrix R:

R ¼ Z
0
Z

1

N � 1
ð1:2Þ

The standardized variances of each column are on the diagonals (and they are

always 1), and the off-diagonals show the covariances among the standardized

variables, which are their correlations. Plugging in our values produces the follow-

ing correlation matrix:

R ¼
1 :5774 �:3414

:5774 1 �:7146
�:3414 �:7146 1

24 35
As before, it’s useful to confirm that a correlation is simply the average cross-

product sum of two standard scores by performing the calculations using Z. I will

illustrate using columns 2 and 3:7

7We can also compute a correlation directly from the covariance matrix.

r ¼ cov12ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ21 � σ22

p
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r23 ¼ �:8333 � :7762ð Þ þ 1:1667 � �1:4415ð Þ þ :50 � :5544ð Þ þ �:8333 � :1109ð Þ
4� 1ð Þ ¼ �:7146

1.2.5 Diagonal Matrix

A matrix with 0 ’ s on the off-diagonals is called a diagonal matrix. Below is an

example of a 3� 3 diagonal matrix A, but they can be of any size:

A ¼
3 0 0

0 6 0

0 0 21

24 35
A diagonal sum of squares matrix is of especial interest. Because the off-diagonal

entries represent cross-product sums, a diagonal matrix formed by premultiplying a

matrix by its transpose indicates that the variables are independent (i. e., covari-

ance/correlation ¼ 0). On the other hand, if the off-diagonal entries of a sum of

squares matrix do not ¼ 0, the variables are associated, such that one predicts the

other.

1.2.6 Summary

In this section you learned that premultiplying a matrix by its transpose produces a

symmetric, square matrix with sums of squares on the main diagonals and cross-

product sums on the off-diagonals. When we begin with deviate scores and divide

by N� 1, we get a covariance matrix; when we begin with standard scores and

divide by N� 1, we get a correlation matrix. Both matrices play an important role in

statistical analyses, so it’s good to take the time now to have a solid understanding

of them. They are nothing but averaged squared sums on the diagonal and averaged

cross-product sums on the off-diagonals.
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1.2.7 R Code: Matrix Multiplication

#Matrix Multiplication

A <- matrix(c(10,3,4,5), nrow=2, ncol=2, byrow=TRUE)

A

B <- matrix(c(1,2,6,7), nrow=2, ncol=2, byrow=TRUE)

B

AB <-A%*%B # %*% indicates matrix multiplication

AB

#Matrix transpose and sum of squares

A <- matrix(c(1,2,6,4,8,-4,5,6,5,4,2,3), nrow=4, ncol=3, byrow=TRUE)

A

A.sq <-t(A)%*%A # t(A) indicates a transposed matrix

A.sq

#Create deviate scores and covariance matrix

N <-nrow(A)

D <-scale(A, center = TRUE, scale = FALSE)

covar <-(t(D)%*%D)/(N-1)

covar

#Create standardized scores and correlation matrix

Z <-scale(A, center = TRUE, scale = TRUE)

corr <-(t(Z)%*%Z)/(N-1)

corr

1.3 Matrix Determinants

When introducing matrices, we noted that they have emergent properties that go

beyond their specific elements. We used the trace of a matrix to illustrate this point.

The trace is not the only characteristic of a matrix that illustrates their emergent

properties, however. The determinant of a square matrix provides another example.8

The determinant quantifies the variability of a matrix. If we think of a matrix as a

box, the determinant is a measure of how much stuff it holds. To illustrate, consider

the following matrices with the same trace (tr¼ 9):

A ¼ 5 3

2 4

� �
B ¼ 5 6

6 4

� �

8 Only square matrices have determinants, but the matrices do not have to be symmetric.
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The determinant of a square matrix is a single value (called a scalar), denoted with

straight line brackets. We can easily calculate the determinant of a 2� 2 matrix by

subtracting the product of the off-diagonal entries from the product of the main

diagonal entries:

Aj j ¼ 5 � 4ð Þ � 3 � 2ð Þ ¼ 14

and

Bj j ¼ 5 � 4ð Þ � 6 � 6ð Þ ¼ � 16

The absolute value of the determinant provides an index of the variability in a

matrix. In our example, we would conclude that B has more variability than A, even

though the variability in the numbers themselves is greater in A than in B. But we

are not interested in the variability in the entries themselves; we are interested in the

variability of the matrix as a whole.

1.3.1 Visualizing the Determinant

Thinking about the determinant in geometric terms might help you better appreciate

the preceding point. Consider Fig. 1.1, which plots our A matrix.

The determinant equals the area inside the parallelogram formed by extending

the vectors (solid lines) to the farthest point in the rectangle formed from the sum of

the column vectors (dashed lines). To find this area, we first find the area of the

entire rectangle by multiplying the summed values of column 1 with the summed

values of column 2. In our case, both columns sum to 7, so the area of the rectangle

equals 49. We then calculate the determinant by subtracting from the total area the

area of the rectangle that does not lie within the parallelogram:

Determinant ¼ Total Areað Þ � A� B� C� D� E� F ð1:3Þ
A ¼ x2y1 B ¼ x2y2

2
C ¼ x1y1

2

D ¼ x2y2
2

E ¼ x2y1 F ¼ x1y1
2

Combining terms, we can state the formula more succinctly:

Determinant ¼ x1 þ x2ð Þ � y1 þ y2ð Þ½ � � 2 x2y1ð Þ � x1y1 � x2y2 ð1:4Þ

Plugging in the values from our example yields our determinant:

Aj j ¼ 5þ 2ð Þ � 3þ 4ð Þ½ � � 2 2 � 3ð Þ � 5 � 3ð Þ � 2 � 4ð Þ ¼ 14
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In sum, the determinant is a single value of a square matrix that quantifies the

matrix’s variability. With a 2� 2 matrix, the absolute value of the determinant

represents the area within a parallelogram enclosed by the column vectors; with

larger matrices, the absolute value of the determinant represents the volume of a

parallelepiped formed by the column vectors.

Thinking of the determinant in geometric terms might help you remember an

important property of the determinant. When we multiply two square matrices, the

area or volume increases multiplicatively. As a result, the determinant of the

product matrix is the product of their individual determinants:

ABj j ¼ Aj j Bj j ð1:5Þ
We will confirm this property by multiplying AB and showing that the determinant

of the product matrix equals the product of the determinants of A and B:

Aj j ¼ 5 3

2 4

				 				 ¼ 14 Bj j ¼ 5 6

3 4

				 				 ¼ 2 ABj j ¼ 34 42

22 28

				 				 ¼ 28

7

6

5

4

3

2

1

0 1 2 3 4 5 6 7

E

D

F

(5,3) =
x1,y1

(2,4) =
x2,y2

A

B

C

Fig. 1.1 Visual representation of a matrix determinant
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1.3.2 Using the Determinant to Solve Linear Equations

Using an approach known as Cramer’s rule (named after the eighteenth-century

mathematician, Gabriel Cramer), determinants can be used to solve simultaneous

linear equations. The rule applies only when the number of equations equals the

number of unknowns, so we will illustrate its use with the following two equations

with two unknowns:

5x þ 7y ¼ �11

8xþ 4y ¼ 4

Expressing the equations in matrix form yields the following:

5 7

8 4

� �
x
y

� �
¼ �11

4

� �

1.3.2.1 Calculations

To solve for the missing values, we first calculate the determinant of a matrix

formed using only the predictor variables (i.e., those to the left of the unknown

quantities), which we’ll designate P. As noted earlier, the calculations with a 2� 2

matrix involve subtracting the product of the off-diagonal entries (7 * 8) from the

product of the diagonal entries (5 * 4):

Pj j ¼ 5 7

8 4

				 				 ¼ �36

Now we need to find the determinants of two additional matrices, each formed by

replacing one column of P with the values that appear to the right of the equal sign:

• To find the value for x, we replace the first column in P with the values from our

final column vector, creating a new matrix Px:

Pxj j ¼ �11 7

4 4

				 				 ¼ �72

• To find the value for y, we replace the second column in P with the values from

our final column vector, creating a new matrix Py:

Py

		 		 ¼ 5 �11

8 4

				 				 ¼ 108

Finally, we solve for x and y by forming a ratio, with one determinant from the

replaced matrix in the numerator and the determinant of P in the denominator:
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x ¼ Pxj j
Pj j ¼ �72

�36
¼ 2

y ¼ Py

		 		
Pj j ¼ 108

�36
¼ �3

You can verify that these are the correct values for x and y by plugging them into

our original equation and doing the multiplication.

1.3.2.2 Proof

Matrix operations can seem mysterious, but they solve problems efficiently, not

magically. To better understand this point, we will spend a moment proving

Cramer’s rule. We begin by restating our equation more abstractly:

5x þ 7y ¼ �11

8xþ 4y ¼ 4

becomes

ax þ by ¼ c

dxþ ey ¼ f

which can be expressed in matrix form:

a b
d e

� �
x
y

� �
¼ c

f

� �
Now let’s return to the equations and solve for y.

• First equation:

axþ by ¼ c

by ¼ c� ax

y ¼ c� ax

b

• Second equation:

dxþ ey ¼ f

ey ¼ f � dx
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y ¼ f � dx

e

Because both equations solve for y, we can set them to be equal:

y ¼ c� ax

b
¼ f � dx

e

Having solved for y, we can solve for x by cross-multiplying:

ce� axe ¼ bf � bdx

rearranging terms:

ce� bf ¼ axe� bdx

and reducing:

x ¼ ce� bf

ae� bd
ð1:6Þ

Notice that the denominator in Eq. (1.6) equals the determinant of the matrix of

predictors:

a b
d e

				 				 ¼ ae� bd

This is why we divide by the determinant to solve for x using Cramer’s rule. Now

recall that using Cramer’s rule we find x by calculating the determinant of a new

matrix Px, formed by replacing the first column of predictors with the criterion

column vector:

c b
f e

				 				 ¼ ce� bf

As you can see, the determinant of this matrix is the same as the numerator of our

algebraic solution. So when we divide the determinant of Px by the determinant of

our original matrix of predictors P, we are using the same terms we use to solve the

equation algebraically:
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x ¼ Pxj j
Pj j ¼

c b
f e

				 				
a b
d e

				 				 ¼
ce� bf

ae� bd
ð1:7Þ

In short, Cramer’s rule is simply an efficient way of solving simultaneous linear

equations using the determinants of two matrices. Unsurprisingly, the approach also

yields y:

y ¼ Py

		 		
Pj j ¼

a c
d f

				 				
a b
d e

				 				 ¼
af � cd

ae� bd
ð1:8Þ

1.3.3 Linear Dependencies and Singular Matrices

Dividing by 0 is undefined, so Cramer’s rule cannot be used when the determinant

of a predictor matrix is 0. To illustrate, consider the following example:

5 10

2 4

				 				 ¼ 0

A determinant of zero reveals a linear dependence in the matrix. This term means

that one (or more) of the vectors is a linear combination of at least one other vector.

In our example, we can see that the second column vector is simply 2 * the first

column vector. We could also say that the first column vector is simply 5 * the

second or that the first row vector is 2.5 * the second row vector or that the second

row vector is 4 * the first row vector. All of these descriptions are true. Matrices

with a determinant of zero are called singular matrices, and we will find that we

need to avoid them in order to perform most of the statistical calculations that

comprise this book.

1.3.4 Calculating the Determinant with Large Matrices

With large matrices, calculating the determinant is tedious, and the operations are

better left to computer programs. In a spreadsheet, we use¼MDETERM. Still, it’s

not magic and it’s useful to take a small (3� 3) matrix and see the steps involved in

calculating the determinant. We will use the matrix A to illustrate these steps:
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A ¼
3 9 1

10 8 4

5 7 6

24 35
and

Aj j ¼ �270

1.3.4.1 Minors

The technique we will use is known as the Laplace (or cofactor) expansion. To use

the technique we need to find the determinant of a smaller matrix that results when

row and column elements are deleted. The determinant from this reduced matrix is

known as a minor, designated mij, with the first subscript denoting the row

we eliminated and the second subscript denoting the column we eliminated.

I’ll illustrate by eliminating the first column of our matrix, then eliminating one

row at a time starting with the first:

( ) ( )

( ) ( )

( )( )

1.3.4.2 Cofactors

Our next step is to convert the minors into cofactors fij using

f ij ¼
mij . . . iþ jð Þ is even
�mij . . . iþ jð Þ is odd



ð1:9Þ

or, equivalently,

f ij ¼ �1ð Þ iþjð Þmij ð1:10Þ

Following these rules, the cofactors become
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f 11 ¼ 20

f 21 ¼ �47

f 31 ¼ 28

Finally, we calculate the determinant by multiplying each cofactor by its

corresponding column entry in our original matrix and then summing the products:

Aj j ¼ ΣAijf ij ð1:11Þ

Plugging in our values yields the determinant:

Aj j ¼ 3 � 20ð Þ þ 10 � � 47ð Þ þ 5 � 28ð Þ ¼ � 270

1.3.4.3 Creating a Cofactor Matrix

With a 3� 3 matrix, only three cofactors are needed to calculate the determinant.

However, later in this chapter, we will need to calculate all of the cofactors and

place them into a matrix known as the cofactor matrix F.9 Since we are discussing

the procedure now, let’s go ahead and calculate the remaining cofactors, beginning

with their minors:

m12 ¼ 10 4

5 6

				 				 10 � 6ð Þ � 4 � 5ð Þ ¼ 40

m22 ¼ 3 1

5 6

				 				 3 � 6ð Þ � 1 � 5ð Þ ¼ 13

m32 ¼ 3 1

10 4

				 				 3 � 4ð Þ � 1 � 10ð Þ ¼ 2

and

m13 ¼ 10 8

5 7

				 				 10 � 7ð Þ � 8 � 5ð Þ ¼ 30

m23 ¼ 3 9

5 7

				 				 3 � 7ð Þ � 9 � 5ð Þ ¼ �24

m33 ¼ 3 9

10 8

				 				 3 � 8ð Þ � 9 � 10ð Þ ¼ �66

9 The cofactor matrix is often designatedC rather than F. I have chosen F because I want to reserve

C for a covariance matrix of parameters to be described in Chap. 2.
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We then form a complete cofactor matrix using Eq. (1.10):

F ¼
20 �40 30

�47 13 24

28 �2 �66

24 35
Finally, we can find the determinant of our original matrix from any diagonal

element of AF0:

3 9 1

10 8 4

5 7 6

24 35 20 �47 28

�40 13 �2

30 24 �66

24 35 ¼
�270 0 0

0 �270 0

0 0 �270

24 35

1.3.5 R Code: Determinants

A <- matrix(c(5,3,2,4), nrow=2, ncol=2, byrow=TRUE)

det(A) #R function for calculating the determinant

#Using Cramer’s Rule to Solve Simultaneous Linear Equations

P <- matrix(c(5,7,8,4), nrow=2, ncol=2, byrow=TRUE)

det.P <-det(P)

Px <- matrix(c(-11,7,4,4), nrow=2, ncol=2, byrow=TRUE)

det.Px <-det(Px)

Py <- matrix(c(5,-11,8,4), nrow=2, ncol=2, byrow=TRUE)

det.Py <-det(Py)

x=det.Px/det.P

y=det.Py/det.P

xy=c(x,y)

xy

#Minor and Cofactors Function

cofactor <- function(A) {

n <- nrow(A)

F <- matrix(NA, n, n)

if(n>2){

cofactors <- function(A, i, j)

(-1)^(i+j) * det( A[-i,-j] )

for( i in 1:n )

for( j in 1:n )

F[i,j] <- cofactors(A, i, j)

F

}

else{F<-matrix(c(A[4],-A[2],-A[3],A[1]),2,byrow=TRUE)}

F

}

(continued)
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1.3.5 R Code: Determinants (continued)

A <- matrix(c(3,9,1,10,8,4,5,7,6), nrow=3, ncol=3, byrow=TRUE)

cofactor(A)

#Calculate Determinant from Cofactor Matrix

determ <-diag(A%*%t(cofactor(A)))

determ[1]

1.4 Matrix Inverse

The last topic we will consider in this chapter is the matrix inverse. In many

respects, it is the most important topic as it plays a role in almost all of the analyses

we will be performing. An inverse is a property of a square matrix, denoted with a

superscript of � 1, so that A� 1 represents “the inverse of A” or, equivalently,

“A inverse.” In the following sections, you will learn about the properties of an

inverse, how it is calculated, and how it can be used to solve linear equations.

1.4.1 Matrix Multiplication and Matrix Inverse

We begin by noting that although we can multiply two (or more) matrices, we

cannot divide them. Fortunately, we have another solution that will already be

familiar to you. Consider the following equality:

x

y
¼ 1

y
� x ð1:12Þ

Equation (1.12) calls attention to the fact that dividing x by y is equivalent to

multiplying x by the reciprocal of y. We might also remind ourselves that any

number multiplied by its reciprocal equals 1 e:g:, 1
y � y ¼ 1

� �
and that multiplying

any number by 1 leaves the number unchanged (e.g., x * 1¼ x). Let’s look at how

these mathematical verities apply to matrix algebra.

1.4.1.1 Identity Matrix

An identity matrix (denoted I) is a square, symmetric, diagonal matrix with 1 ’ s on

the diagonals and 0 ’ s elsewhere. The following 3� 3 matrix is an example, but an

identity matrix can be any size:
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I ¼
1 0 0

0 1 0

0 0 1

24 35
In matrix algebra, an identity matrix is the equivalent of the number 1. Just as any

number multiplied by 1 returns the original number, any matrix multiplied by a

conformable identity matrix returns the original matrix:

AI ¼ IA ¼ A ð1:13Þ

For example,

3 9 1

10 8 4

5 7 6

24 35 1 0 0

0 1 0

0 0 1

24 35 ¼
3 9 1

10 8 4

5 7 6

24 35
1.4.1.2 Inverse and the Multiplicative Reciprocal

The inverse of a matrix functions as a multiplicative reciprocal. Consequently, any

matrix multiplied by its inverse returns an identity matrix:

AA�1 ¼ A�1A ¼ I ð1:14Þ

In a moment, we will learn how to calculate the inverse for any square matrix. For

now, we will consider the inverse of a diagonal matrix, which is easy to find because

its elements are simply the inverse (i.e., reciprocal) of the original elements:

A ¼
3 0 0

0 8 0

0 0 6

24 35 and A�1 ¼
:3333 0 0

0 :1250 0

0 0 :1667

24 35
Now let’s go ahead and look at how matrix multiplication with an inverse functions

like a reciprocal:

if A ¼
3 0 0

0 8 0

0 0 6

24 35 and b ¼
12

24

36

24 35, then

A�1b ¼
:3333 0 0

0 :1250 0

0 0 :1667

264
375 12

24

36

264
375¼ 4

3

6

264
375

26 1 Matrix Properties and Operations



Notice that the entries of A� 1b represent b divided by the diagonal elements of A.

So when we premultiply a matrix by the inverse of a diagonal matrix, we are, in

effect, dividing the post multiplication matrix by the diagonal elements of the

premultiplication matrix. In a moment, we will see how these operations allow us

to solve linear equations.

1.4.2 Calculating the Matrix Inverse

Beforewe do,wewill learn how to calculate the inverse of a non-diagonalmatrix.As is

true with all of the topics we have covered thus far, the calculations are easywith small

matrices but arduous and error-prone with large ones. Fortunately, wewon’t ever have

to calculate the matrix of an inverse by hand in this book; we’ll just use a built-in

spreadsheet function: ¼MINVERSE. But in keeping with our attempt to understand

where the numbers come from, we will describe the operations that are involved.

1.4.2.1 Calculating the Adjugate

Earlier we saw that the determinant is calculated using the cofactor matrix F. The

transpose of the cofactor matrix, called the adjugate and denoted Adj(A), is used to

calculate the inverse:

Adj Að Þ ¼ F
0 ð1:15Þ

Returning to an earlier example, our original matrix was

A ¼
3 9 1

10 8 4

5 7 6

24 35
and the cofactor matrix was

F ¼
20 �40 30

�47 13 24

28 �2 �66

24 35
To find the adjugate, we transpose the cofactor matrix:

Adj Að Þ ¼ F
0 ¼

20 �47 28

�40 13 �2

30 24 �66

24 35
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1.4.2.2 Computing the Inverse

The inverse is found by dividing the adjugate by the determinant:10

A�1 ¼ Adj Að Þ
Aj j ð1:16Þ

In our example, |A|¼� 270, so the inverse is found using the following operations:

A�1 ¼
20 �47 28

�40 13 �2

30 24 �66

24 35 � 1

�270

8<:
9=; ¼

�:0741 :1741 �:1037
:1481 �:0481 :0074
�:1111 �:0889 :2444

24 35
We can verify that this is, indeed, the inverse of the original matrix by showing that

AA� 1¼ I:

3 9 1

10 8 4

5 7 6

24 35 �:0741 :1741 �:1037
:1481 �:0481 :0074
�:1111 �:0889 :2444

24 35 ¼
1 0 0

0 1 0

0 0 1

24 35
1.4.2.3 Inverse Entries are Fractions

Because an inverse is found by dividing the adjugate by the determinant, each entry

in an inverse matrix is a fraction; and because a determinant represents the volume

of a parallelepiped, the fraction’s denominator represents the total variability in a

matrix and the fraction’s numerator represents the variability in a subset of the

matrix (a cofactor). So the fraction is a relative measure of variability. You will

want to keep this point in mind when we start using inverse matrices to solve

statistical problems, because we often will be comparing the variability among one

set of variables with the variability among another set of variables.

1.4.2.4 Contrasting Matrix Multiplication and the Matrix Inverse

Earlier we noted that matrix multiplication is simply an efficient way of multiplying

and summing numbers. There is nothing mysterious about it (though it can take a

while to get the hang of how it is done). But an inverse is different. Because the

inverse is found by dividing the adjugate by the determinant, the entire variability

10 The inverse can also be found from the cofactor matrix,

A�1 ¼ F
0

AF
0
ii½ �

where the denominator indicates any diagonal element of AF' (which equals the determinant).
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of the matrix contributes to the value of each entry in an inverse matrix. Put more

broadly, when finding an inverse, we treat the matrix as a whole rather than

considering each entry in isolation from the others.

To better appreciate this point, consider the information presented in Table 1.3.

Focusing first on the two pre-matrices in Example 1, notice that the only difference

between Example 1a and Example 1b is that I have changed the last value from 6 in

Example 1a to 2 in Example 1b. Now notice that, except for the last row, the

product matrices are also the same. So the only consequence of changing a single

value in the premultiplication matrix is to change one row of the product matrix.

Now let’s look at Example 2. The first matrix in Example 2a is the inverse of

matrix 1a, and the second is the inverse of matrix 1b. Clearly these matrices are very

different, even though the original matrices differ by only one entry. And when we

then use each inverse to multiply a common matrix, their product matrices are also

very different. This is because the inverse represents the entire variability of a

matrix, and changing one value changes the matrix as a whole.

1.4.2.5 Singular Matrices Are Not Invertible

Because the inverse is calculated by dividing the adjugate by the determinant, we

cannot invert a matrix with a determinant of zero (because dividing by zero is

undefined). Earlier we noted that a matrix with a determinant of zero is known as a

Table 1.3 Understanding the matrix inverse

Example 1a

Pre matrix Post matrix Product matrix

3 9 1 3 4 7 28 60 102

10 8 4 2 5 8 50 92 170

5 7 6 1 3 9 35 73 145

Example 1b

Pre matrix Post matrix Product matrix

3 9 1 3 4 7 28 60 102

10 8 4 2 5 8 50 92 170

5 7 2 1 3 9 31 61 109
Example 2a: Inverse of matrix 1a

Pre matrix Post matrix Product matrix

�.0741 .1741 �.1037 3 4 7 .0222 .2630 �.0593

.1481 �.0481 .0074 2 5 8 .3556 .3741 .7185

�.1111 �.0889 .2444 1 3 9 �.2667 �.1556 .7111

Example 2b: Inverse of matrix 1b

Pre matrix Post matrix Product matrix

2.00 1.8333 �4.6667 3 4 7 5.00 3.1667 �13.3333

.00 �.1667 .3333 2 5 8 .00 .1667 1.6667

�5.00 �4.0000 11.00 1 3 9 �12.00 �7.00 32.00
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singular matrix because there exists at least one linear dependence among the

columns or rows. The reason we need to be on the lookout for singular matrices

is precisely because they cannot be inverted, and matrix inversion is a key compo-

nent of many statistical analyses.

1.4.3 Using the Inverse to Solve Linear Equations

To better appreciate the importance of the preceding point, let’s look at how an

inverse matrix can be used to solve a system of linear equations. The calculations

differ depending on whether the matrices are immediately conformable, so we will

examine the calculations in two steps, starting with the conformable case.

1.4.3.1 Solving Linear Equations When the Matrices Are Conformable

Consider the two equations below:

5x þ 7y ¼ �11

8xþ 4y ¼ 4

Earlier, we learned that we could solve these equations using Cramer’s rule. But

this approach will only work when the number of equations equals the number of

unknowns. Ultimately, we want a more general approach that can be used in all

cases. The matrix inverse offers such an approach.

We begin by putting the problem in matrix form, designating the first matrix X,

the second vector b, and the third vector y:11

X b y
5 7

8 4

� �
x
y

� �
¼ �11

4

� �
We then form our equation:

Xb ¼ y

If these terms weren’t matrices, simple algebra tells us we could solve for b by

dividing y by x (or multiplying y by the reciprocal of x). Matrix division isn’t

defined, so we can’t divide y by X, but we can premultiply y by the inverse of X:

11 I realize these designations are a bit confusing because the unknown quantities, x and y, are
elements of b, but these designations match ones we will use throughout the book, so we might as

well get used to them now.
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b ¼ X�1y ð1:17Þ

To do that, we need to calculate X� 1. Recall that the inverse of a matrix is found by

dividing the adjugate by the determinant. Earlier, we found the determinant when

using Cramer’s rule Xj j ¼ �36ð Þ, and the following formula can be used to quickly

find the adjugate of a 2� 2 matrix:

if A ¼ a b

c d

� �
then Adj Að Þ ¼ d �b

�c a

� �
ð1:18Þ

Plugging in our values produces the inverse:

X�1 ¼ 4 �7

�8 5

� �
� 1

�36
¼ �:1111 :1944

:2222 �:1389

� �

If we then carry out the multiplication X�1y ¼ b
� �

, we find our unknown values:

�:1111 :1944
:2222 �:1389

� � �11

4

� �
¼ 2

�3

� �
When we substitute the values we obtained for b into the original equation, we

verify that they are correct:

5 7

8 4

� �
2

�3

� �
¼ �11

4

� �
1.4.3.2 Solving Linear Equations When the Matrices

Are Not Conformable

In the preceding example, we didn’t need to modify X in any fashion becauseX and

y were conformable. This will not always be the case, however, so we want to have

a more general formula we can use when it is not. Consider the equations below,

which were introduced at the start of this chapter:

5x þ 7y ¼ �11

8xþ 4y ¼ 4

5xþ 5y ¼ �5

We can’t use Cramer’s rule to solve these equations, because the number of

equations (3) doesn’t equal the number of unknowns (2). And if we put the problem

into matrix form:
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X b y
5 7

8 4

5 5

24 35 x
y

� �
¼

�11

4

�5

24 35
we cannot use the inverse method we just discussed, because X and y are not

conformable [i.e., the columns ofX (2) do not match the rows of y (3)]. Fortunately,

we can solve our equation using the following formula, which is the only one you

need because it will work with conformable matrices and unconformable ones:12

X0Xð Þ�1
X0y ¼ b ð1:19Þ

Our first term, X0X, involves premultiplying a matrix by its transpose. Earlier,

we learned that doing so always produces a symmetric matrix with squared column

sums on the diagonals and cross-product sums on the off-diagonals. With two

columns, the general form of the product matrix is as follows:

X
0
X ¼ ΣX2

1 ΣX1X2

ΣX2X1 ΣX2
2

� �
In our case, the matrix becomes

X
0
X ¼ 114 92

92 90

� �
We can verify these values by performing the calculations below:

52 þ 82 þ 52 ¼ 114

72 þ 42 þ 52 ¼ 90

5 � 7ð Þ þ 8 � 4ð Þ þ 5 � 5ð Þ ¼ 92

To calculate the inverse, we first find the determinant, which provides a measure of

the variability of a matrix:

X
0
X

		 		 ¼ 114 � 90ð Þ � 92 � 92ð Þ ¼ 1796

We then find the inverse by dividing the adjugate by the determinant:

12 Equation (1.19) represents the solution to a set of equations known as the normal equations. In

matrix form, the normal equations are expressed as X0Xb¼X0y. In Chap. 3, we will discuss their

derivation and solution in more detail.
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X0Xð Þ�1 ¼ 90 �92

�92 114

� �
� 1

1796
¼ :0501 �:0512

�:0512 :0635

� �
We can verify that this matrix is the inverse of X0X by multiplying the two matrices

to produce an identity matrix I:

114 92

92 90

� �
:0501 �:0512
�:0512 :0635

� �
¼ 1 0

0 1

� �

Now let’s find X0y. This vector represents a cross-product term between X and y:

X
0
y ¼ ΣX1Y

ΣX2Y

� �
With our example, the values become

X
0
y ¼ 5 8 5

7 4 5

� � �11

4

�5

24 35 ¼ �48

�86

� �

Finally, we multiply the two product matrices to solve for b:

b ¼ X
0
X

� ��1

X
0
y ¼ :0501 �:0512

�:0512 :0635

� � �48

�86

� �
¼ 2

�3

� �
As always, we can substitute the obtained values into the original equation to verify

that we have found the correct solution:

5 7

8 4

5 5

24 35 2

�3

� �
¼

�11

4

�5

24 35

1.4.3.3 Summary

In this section you learned how to use the inverse of a matrix to solve a series of

linear equations. In the next chapter, we will learn how these operations are used in

statistical analyses. Before we do, let’s pause and think about the operations

themselves. Remembering that an inverse functions as a reciprocal, we are essen-

tially dividing a cross-product term by the sum of the squared predictors:
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b � X
0
y

X
0
X

The analysis is not performed in exactly this way, but thinking about the operations

in this way will help you understand many of the statistical analyses you will learn

in this book. Much of the time, we will be comparing the cross-product variability

of X0y to the variability of X0X.

1.4.4 R Code: Matrix Inverse

A <- matrix(c(10,3,4,5), nrow=2, ncol=2, byrow=TRUE);A

#Create function to calculate adjugate

adjugate <- function(A) {

n <- nrow(A)

F <- matrix(NA, n, n)

if(n>2){

cofactors <- function(A, i, j)

(-1)^(i+j) * det( A[-i,-j] )

for( i in 1:n )

for( j in 1:n )

F[i,j] <- cofactors(A, j, i)

F

}

else{ F <-matrix(c(A[4],-A[3],-A[2],A[1]),2,byrow=TRUE)}

F

}

adjugate(A)

A.inv <-adjugate(A)/det(A);A.inv

RA.inv <-solve(A);RA.inv #R’s solve command produces the inverse

#Use inverse to solve simultaneous equations with conformable matrices

X <- matrix(c(5,7,8,4), nrow=2, ncol=2, byrow=TRUE);X

Y <-matrix(c(-11,4),nrow=2,ncol=1,byrow=TRUE);Y

B <-solve(X)%*%Y;B

#Use inverse to solve simultaneous equations with nonconformable

matrices

X <- matrix(c(5,7,8,4,5,5), nrow=3, ncol=2, byrow=TRUE);X

Y <-matrix(c(-11,4,-5),nrow=3,ncol=1,byrow=TRUE);Y

B <-solve(t(X)%*%X)%*%t(X)%*%Y;B
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1.5 Chapter Summary

1. Many statistical analyses involve solving a series of simultaneous linear equa-

tions, with each equation representing one subject’s data. Matrix algebra can be

used to find this solution.

2. A matrix is a rectangular array of numbers or symbols, with rows and columns

called vectors. The size of a matrix is given by its number of rows and columns

(in that order).

3. Matrices possess numerical properties that go beyond the specific values that

comprise them. For example, the trace of a square matrix is found by summing

the diagonal elements. Two matrices can have the same trace, even though all

of their elements are different.

4. Matrices can easily be added or subtracted, but matrix multiplication is possible

only when the number of columns of Matrix 1 equals the number of rows of

Matrix 2. When this occurs, we say the matrices are conformable.

5. We transpose a matrix by exchanging its rows and columns. A matrix

premultiplied by its transpose produces a symmetric, square matrix with each

column’s squared sums on the main diagonal (upper left to lower right) and

cross-product sums on the off-diagonals.

6. A covariance matrix is found by first subtracting the column mean from each

column entry and then premultiplying the resultant deviate matrix by its

transpose. When we then divide the entries of the product matrix by N� 1,

we get variances on the diagonals and covariances on the off-diagonals.

7. A correlation matrix is found by first standardizing each matrix entry (subtract

its column mean and divide by its column standard deviation) and then

premultiplying the resultant matrix by its transpose. When we then divide the

entries of the product matrix by N� 1, we get a symmetric matrix with 1’s on

the diagonals and correlation coefficients on the off-diagonals.

8. The determinant of a square matrix provides an index of its variability. Geo-

metrically, the absolute value of the determinant is the area or volume of a

parallelepiped enclosed by the column vectors.

9. The determinant of a 2� 2 matrix is found by subtracting the product of the

off-diagonal entries from the product of the main diagonal entries. The determi-

nant of larger matrices can be found by constructing a cofactor matrix of minors.

10. Using Cramer’s rule, the determinant of a matrix can be used to solve simul-

taneous linear equations.

11. The inverse of a matrix is found by dividing the transpose of the cofactor matrix

(called the adjugate) by the determinant. Singular matrices (i.e., determinant

¼ 0) are not invertible.

12. The inverse of amatrix functions as a reciprocal. Amatrixmultiplied by its inverse

produces an identity matrix, with 1 ’ s on the main diagonal and 0’ s elsewhere.

13. The inverse of a nonsingular matrix can be used to solve simultaneous linear

equations of the form Xb¼ y. When X and y are immediately conformable,

X� 1y¼ b; when X and y are not immediately conformable, (X0X)� 1X0y¼ b.

The latter equation, which represents the solution to a series of equations

known as the normal equations, plays a role in a great many statistical analyses.
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Appendix

Table 1.4 Glossary of terms and operations

Term Description Use

Adjugate

matrix

Transpose of the cofactor matrix Returns the inverse when divided by

the determinant

Cofactor

matrix

A matrix of cofactors, found by multi-

plying minors using Eq. (1.10)

Yields the determinant when a row or

column is multiplied by a

corresponding row or column in the

original matrix and the products are

summed

Conformable Two matrices are said to be conform-

able when the columns of the first

matrix equal the rows of the second

Matrix multiplication can occur only

when two matrices are conformable

Correlation

matrix

A covariance matrix of standard

scores, with correlations on the

off-diagonals

Determinant A measure of the variance of a matrix,

consisting of the area (or volume) of a

parallelepiped enclosed by matrix

vectors

Used to identify linear dependencies,

solve linear equations, and compute

the inverse

Deviate

matrix

A matrix found by subtracting the col-

umn mean from each column element

Yields a covariance matrix when

premultiplied by its transpose and

divided by (N� 1)

Diagonal

matrix

A (usually) square matrix with 0 ’ s on

the off-diagonals

Identity

matrix

A diagonal matrix with 1 ’ s on the

diagonals and 0 ’ s on the off-diagonals

Inverse The matrix equivalent of a reciprocal,

found by dividing the adjugate by the

determinant

Used to solve for unknowns in linear

equations

Minors The determinant from a submatrix

formed from a larger matrix

Used to find the determinant of a large

matrix when arranged in a cofactor

matrix

Singular

matrix

Matrices with a linear dependence

(i.e., determinant¼ 0)

Square

matrix

A matrix with an equal number of rows

and columns

Symmetric

matrix

A square, diagonal matrix where

A ¼ A0

Trace Sum of the diagonal elements of a

square matrix

Transpose The exchange of a matrix’s rows and

columns

When postmultiplied by the original

matrix yields a square, symmetric

matrix
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Table 1.5 Useful spreadsheet operations

Term Description

AVERAGE Calculates the average or mean value

DEVSQ
Calculates the deviation sum of squares:

Pn
i¼1

yi�Y
� �2

SUMSQ Calculates the sum of squared values: ∑ y2

STDEV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DEVSQ= N � 1ð Þp

VARIANCE DEVSQ/(N� 1)

Array function for matrix operations

MMULT Multiplies two (conformable) matrices

MDETERM Calculates the determinant of a matrix

MINVERSE Calculates the inverse of a matrix

TRANSPOSE Transposes a matrix
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Chapter 2

Simple Linear Regression

Chapter 1 introduced you to a variety of matrix properties and operations. Among

other things, you learned how to use the determinant and inverse of a matrix to solve

equations with unknown quantities. In the remainder of this book, you will use these

operations to perform a wide variety of statistical analyses.

The first statistical procedure we will discuss is called “simple linear regres-

sion.” Here, the term “simple” refers to the fact that we are concerned with a single

predictor and a single criterion.1 This situation arises often in science. For example,

in the physical sciences, we might predict the rate of a chemical reaction from

temperature; in medicine, we might predict heart disease from cholesterol levels;

and in the social sciences, we might predict income from education. If we assume

that these variables are related in a linear fashion, we can use simple linear

regression to quantify the nature of their association.

The procedures we follow when conducting a regression analysis are similar to

the ones we used to solve simultaneous equations, with one important difference.

So far we have been dealing with equations that have an exact solution. In contrast,

regression analysis is used when an exact solution is not available.2 Consequently,

we will not be able to find a single value that completely accounts for the relation

between a predictor and a criterion. Instead, we will attempt to predict as much as

we can without predicting everything.

To achieve this goal, we analyze patterns of variability, asking whether the

variability in the criterion can be predicted from the variability in the predictor.

Electronic Supplementary Material: The online version of this chapter (doi: 10.1007/978-3-

319-11734-8_2) contains supplementary material, which is available to authorized users

1 Some textbooks refer to a criterion as a response variable or dependent variable and a predictor as

an explanatory variable, independent variable, or covariate. I prefer the terms “predictor” and

“criterion” because they imply only that the former predicts the latter.
2 An exact solution is guaranteed when the number of equations is equal to or less than the number

of unknowns. When the number of equations exceeds the number of unknowns, an exact solution

is possible but not guaranteed.
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If it can, we say that the two variables are associated or related. Sometimes we say

that “X explains Y,” but statements of this sort are valid under only a limited range

of conditions. In contrast, prediction is assured. By definition, if two variables

are associated, we learn something about one of them by knowing something about

the other.

2.1 Mathematical Models

Before delving into the specifics of a linear regression model, it is useful to consider

mathematical models more broadly.

2.1.1 What Is a Model?

Mathematical models describe physical, biological, or social processes in numer-

ical terms. They are simplified representations of reality that are analogical, not

literal. As George Box famously remarked, “All models are wrong but some are

useful” (1979, p. 202).

Broadly speaking, mathematical models describe relations among sets of vari-

ables. These relations can take one of two forms:

• With a functional relation, the variability in Y is entirely predictable from the

variability in X:

Y ¼ f Xð Þ ð2:1Þ

There is no allowance for errors of prediction with a functional relation. If we

know X, we can predict Y. The problems we solved in Chap. 1 described

functional relations.

• A statistical relation is one that is influenced by a stochastic process (i.e., chance)

and, therefore, is not entirely predictable. To model a statistical relation, we

include a term that represents errors in prediction.3 This term is typically denoted

e, although v and u are sometimes used instead:

Y ¼ f Xð Þ þ e ð2:2Þ

Building on these differences, we can distinguish two mathematical models.

A deterministic model is comprised entirely of functional relations. Thus, accurate

prediction is assured in a deterministic model. A statistical model includes at least

one statistical relation. Thus, accurate prediction is not assured in a statistical

model. Linear regression models are statistical models.

3 The error term is sometimes called the disturbance.
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2.1.2 What Is a Regression Model?

Regression is a technique for modeling the statistical relation between pairs of

variables. One member of the pair is designated as the predictor (X) and the other is

designated as the criterion (Y). These designations are not arbitrary or interchange-

able. The values of the predictors are presumed to be fixed (i.e., set by the

investigator) or measured with only negligible error, and each one is of particular

interest (i.e., if we repeated a study, we would use similar if not identical values of

x to predict y). In contrast, the criterion is treated as a random variable drawn

from a probability distribution that depends on the level of its associated predictor

[i. e., p(yjx)]. The means of these conditional probability distributions are presumed

to vary across levels of X.

Given this distinction between predictor and criterion, it is tempting to conclude

that X is being treated as a cause of Y. This conclusion is warranted only when the

investigator is able to randomly assign subjects to various levels of the predictor.

Absent this form of experimental control, no statistical technique can establish a

causal relation. Thus, although we always designate a predictor and a criterion

when conducting a regression analysis, this distinction does not necessarily carry

any causal assumptions.

2.1.3 What Is a Linear Regression Model?

A linear regression model specifies the form of the mathematical function that

relates Y to X. With linear regression, the criterion is modeled as an additive

function of weighted predictors (bX) and error (e):

Y ¼ b1X1 þ b2X2 þ �� � þbkXk þ e ð2:3Þ

Moreover, the weights associated with each predictor must be of the first order (i.e.,

no exponent other than 1), and they cannot be multiplied or divided by any other

weight. Expressed in matrix form, the linear regression model becomes:

y ¼ Xbþ e ð2:4Þ

where

y¼ a vector of known values for a given set of xy observations
X¼ a matrix of predictors for a given set of xy observations
b¼ a vector of regression weights used to predict y from X

e¼ a vector of errors expressing the portion of y that cannot be predicted from Xb.
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Notice that the linear model in Eq. (2.4) has two components, a functional

component (Xb) and a stochastic one (e). The combination makes the model a

statistical model. Relatedly, a linear model is not exact. We assume only that,

within the range of the variables being studied, the relation between the predictors

and the criterion can be well approximated by a linear function. We do not,

however, necessarily assume that the function is strictly linear.

Finally, Eq. (2.4) is expressed in terms of sample values, as it describes the

properties of a specific set of observations. In many cases, we are interested

in extrapolating beyond the specific sample we have observed to a broader popu-

lation from which the sample is drawn. Ordinarily, we do not know the true values

of the regression weights in the population, so we use our sample data to estimate

them. In this case, we replace Roman letters with Greek ones to indicate that we

are inferring unknown population parameters rather than describing observed

sample quantities:

y ¼ Xβþ ε ð2:5Þ

2.2 Simple Linear Regression

With this discussion as background, we are ready to tackle an example. Throughout

this text, we will analyze “small sample examples” to demonstrate various statis-

tical techniques. The sample sizes are purposely small (N¼ 12) to keep the com-

putations from being too laborious, and the data are hypothetical (which is a fancy

way of saying I made them up), so we will not take them seriously. The point is to

learn the analyses, and small sample examples suffice.

With that in mind, imagine I ask 12 students who are enrolled in a matrix algebra

class to indicate how competent they believe they are in math using a 9-point scale

(1¼ not at all competent, 9¼ very competent). These beliefs, which constitute our

predictor, are commonly called “self-efficacy beliefs.” At the end of the academic

term, I measure each student’s actual performance in terms of their class rank

(rounded to the nearest decile). Table 2.1 shows the (contrived) data, along with

several other variables of interest.
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2.2.1 Preliminary Analysis Without an Intercept

Earlier we noted that a linear regression model assumes that Y¼Xb + e. To solve

for the unknown quantity b, we place our data in matrix form, just as we did in

Chap. 1 when we solved simultaneous linear equations:

1

9

1

5

6

8

2

4

2

8

7

7

26666666666666666664

37777777777777777775

b½ � ¼

3

8

2

8

5

9

4

5

2

4

2

6

26666666666666666664

37777777777777777775
Because the columns of X do not equal the rows of y, the matrices are not

conformable. Consequently, we use Eq. (1.19) to solve for b:

Table 2.1 Small sample example for simple linear regression

Student Self-efficacy x Class rank y Deviate x Deviate y Standard x Standard y

1 1 3 �4.00 �1.8333 �1.3683 �.7392

2 9 8 4.00 3.1667 1.3683 1.2768

3 1 2 �4.00 �2.8333 �1.3683 �1.1424

4 5 8 0.00 3.1667 0.00 1.2768

5 6 5 1.00 .1667 .3421 .0672

6 8 9 3.00 4.1667 1.0263 1.6800

7 2 4 �3.00 �.8333 �1.0263 �.3360

8 4 5 �1.00 .1667 �.3421 .0672

9 2 2 �3.00 �2.8333 �1.0263 �1.1424

10 8 4 3.00 �.8333 1.0263 �.3360

11 7 2 2.00 �2.8333 .6842 �1.1424

12 7 6 2.00 1.1667 .6842 .4704

Mean 5.00 4.8333 0 0 0 0

Sum of
squares

394 348 94 67.6667

Standard
deviation

2.9233 2.4802 2.9233 2.4802 1.00 1.00

Variance 8.5455 6.1515 8.5455 6.1515 1.00 1.00

Covariance 4.4545 .6144
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b ¼ X
0
X

� ��1

X
0
y ¼ 394½ ��1

339½ � ¼ :8604

2.2.1.1 Fitted Values

Our next step is to compute fitted values of y (denoted ŷ and pronounced “y hat”):

ŷ ¼ Xb ð2:6Þ
1

9

1

5

6

8

2

4

2

8

7

7

26666666666666666664

37777777777777777775

:8604½ � ¼

:8604
7:7437
:8604
4:3020
5:1624
6:8832
1:7208
3:4416
1:7208
6:8832
6:0228
6:0228

26666666666666666664

37777777777777777775
Whenwe compare the fitted valueswith the actual values for y, we see that they are not
the same i:e:, ŷ 6¼ yð Þ. This is because the relation is a statistical one, not a

functional one.

2.2.1.2 Residuals

We can gauge the discrepancy between y and ŷ by computing a variable called the

residual, denoted e:

e ¼ y� ŷ ð2:7Þ

3

8

2

8

5

9

4

5

2

4

2

6

26666666666666666664

37777777777777777775

�

:8604
7:7437
:8604
4:3020
5:1624
6:8832
1:7208
3:4416
1:7208
6:8832
6:0228
6:0228

26666666666666666664

37777777777777777775

¼

2:1396
:2563
1:1396
3:6980
�:1624
2:1168
2:2792
1:5584
:2792

�2:8832
�4:0228
�:0228

26666666666666666664

37777777777777777775

44 2 Simple Linear Regression



The residuals represent errors of prediction.4 If we sum their squared values, we

derive an overall estimate of error known as the residual sum of squares, denoted

SSres:

SSres ¼ Σe2 ¼ Σ y� ŷð Þ2 ð2:8Þ

Plugging in our values yields the residual sum of squares for our data set:

SSres ¼
X

2:13962

:25632

1:13962

3:69802

�:16242

2:11682

2:27922

1:55842

:27922

�2:88322

�4:02282

�:02282

26666666666666666664

37777777777777777775

¼ 56:3223

As we will see later, large values of this term indicate a poor fit to the data, so we

would like this term to be as small as possible.

2.2.2 Complete Analysis: Adding an Intercept

There is a problem with the preceding analysis. In a regression model, we assume

that the errors cancel out, yielding a mean (and sum) of 0. Yet if we average the

unsquared residuals, we find that this is not true in our example e ¼ :5313ð Þ. We can

fix this problem by adding a column of 1 ’ s to X, as shown below. Because

everyone in the sample gets the same score on this vector, it yields a constant

known as the intercept, b0. The intercept represents the average expected value of

y when x¼ 0. Whether this term has any substantive meaning will depend on

whether our predictor can meaningfully assume this score. But even when it

doesn’t, including the intercept ensures that the mean of the residuals equals 0:

4 Strictly speaking, residuals are not the same as errors. Residuals are discrepancies between fitted

values and observed, sample values, whereas errors are discrepancies between observed, sample

values and their true population values. However, because the term residual is also used to refer to

“errors of prediction,” we will use the two terms more or less interchangeably throughout this text

unless indicated otherwise.
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Now when we perform our calculations, we derive two values for b instead of one:5

b ¼ 12 60

60 394

� ��1
58

339

� �
¼ 2:2270

:5213

� �
The first, b0¼ 2.2270, is the intercept. As just noted, it describes the average

expected value of y when x¼ 0. The second value is called the unstandardized

regression coefficient (b1¼.5213). It is the weight we give to x when using it to

calculate a fitted value of y.

2.2.2.1 Calculating Fitted Values and Residuals

As before, we use Eq. (2.6) to compute fitted values:

1 1

1 9

1 1

1 5

1 6

1 8

1 2

1 4

1 2

1 8

1 7

1 7

26666666666666666664

37777777777777777775

2:2270
:5213

� �
¼

2:7482
6:9184
2:7482
4:8333
5:3546
6:3972
3:2695
4:3121
3:2695
6:3972
5:8759
5:8759

26666666666666666664

37777777777777777775

5We will use matrix algebra to calculate the intercept, but with one predictor it can easily be found

as b0 ¼ y� bx.
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and Eq. (2.7) to compute the residuals:
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�

2:7482
6:9184
2:7482
4:8333
5:3546
6:3972
3:2695
4:3121
3:2695
6:3972
5:8759
5:8759

26666666666666666664

37777777777777777775

¼

:2518
1:0816
�:7482
3:1667
�:3546
2:6028
:7305
:6879

�1:2695
�2:3972
�3:8759
:1241

26666666666666666664

37777777777777777775
Now the mean (and sum) of the residuals does equal 0, and when we use Eq. (2.8) to

calculate the residual sum of squares, we find that its value is smaller than the one

we obtained before we modeled the intercept:6

SSres ¼ 42:1241

So not only does the intercept center our residuals; it also reduces the discrepancy

between the fitted values and the observed ones. For these reasons, we will add a

leading column of 1 ’ s to X throughout this text unless indicated otherwise.7

2.2.2.2 The Line of Best Fit

Figure 2.1 plots the observed and fitted values as a function of x. You will notice

that there is also a line running through the fitted values. This line is known as the

“line of best fit,” and its slope matches the value of our regression coefficient

(b1¼.5213). For every one unit increase in x, we expect a .5213 unit increase in the
average value of y. Notice also that the observed values of y are scattered around the
line of best fit. Because of this scatter, the plot is known as a scatterplot.

6 If you were to actually square each residual and sum the squares, the obtained valueP
e2 ¼ 42:1244ð Þ would differ slightly from the one reported in the text. The discrepancy is

due to rounding error and, as first indicated in the preface, I present the more accurate (computer-

generated) value whenever discrepancies like these arise. As a consequence, calculations by hand

will sometimes produce only approximate results.
7 An intercept produces these benefits by centering x and y around their respective means. You can

verify this is true by separately regressing each variable on a vector of 1 ’ s. The residuals will be
deviate scores. If you then regress deviatey on deviatex, you will find that the mean of the errors

¼ 0 and SSres¼ 42.1241.
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The line of best fit has an important property. More than any other line we could

have drawn through the data, this line minimizes the squared discrepancy between

our observed values and our fitted ones (i.e., it minimizes SSres). Consequently, it
represents the best solution to our set of simultaneous equations. This principle,

known as least squares estimation or ordinary least squares (OLS), underlies linear

regression analysis.8

2.2.2.3 Summary of Linear Regression with an Intercept

Table 2.2 summarizes some other properties of a simple linear regression model

with an intercept. These properties can easily be verified using our example, and I

encourage you to work through the math to confirm them.
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Table 2.2 Properties of linear regression with an intercept

The mean of the fitted values is equal to the mean of the criterion Ŷ ¼ Y

The sum and mean of the residuals equal zero Σei ¼ e ¼ 0

The residuals are uncorrelated with the predictors and the fitted values r e;Xð Þ ¼ r e; Ŷ
� � ¼ 0

The line of best fit passes through the means of both variables when x ¼ x, ŷ ¼ y

8 Formally, OLS estimates are unbiased (i.e., the estimated regression coefficient is an accurate

approximation of the population parameter) and efficient (i.e., the variance from the estimate is

smaller than all other unbiased estimators). Because of these properties, the regression coefficients

are termed BLUE: Best Linear Unbiased Estimators.
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2.2.3 Understanding Linear Regression

It is a relatively simple matter to perform a regression analysis using matrix algebra,

but understanding and interpreting the output requires careful thought. In this

section, we will closely examine the meaning of the fitted values and residuals.

2.2.3.1 Fitted Values as Conditional Averages

Earlier we noted that with a linear regression model, we assume that y is a random
variable with a probability distribution associated with each value of x. The fitted

value represents the expected average of the probability distribution at a given level

of x, and the scatter represents random variations around the mean. Figure 2.2

presents a schematic depiction of this assumption, using only three values of x for
clarity. The circles represent fitted values and the distributions surrounding them

represent observed values of y. As you can see, at each level of x, the fitted value

lies at the center (mean) of the distribution, with the observed values scattered

around it.9 Moreover, the distributions are normal and identical.

1

y x = 1

2

X

Y

3

y x = 2

y x = 3

Fig. 2.2 Schematic representation of observed and fitted values in a linear regression model

9 Fitted values are sometimes called point estimators of the mean response of the conditional

distribution.
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We can formally summarize these properties with respect to the mean and

variance of these probability distributions.

• y is a random variable drawn from a probability distribution whose expected

value (but not shape) depends on x:

E y
		X� � ¼ ŷ ¼ XB ð2:9Þ

• The conditional probability distributions from which y is drawn are normal and

identically distributed, with variance σ2:

Var y
		X� � ¼ σ2 ð2:10Þ

2.2.3.2 Assumptions Regarding the Errors

Because they are calculated from the fitted and observed values, the errors also

possess the distributional properties of y.10 For this reason, it is customary to state

the assumptions of a linear regression model with respect to the errors, substituting

ε (the representation of a population parameter) for e (an observed sample value).

• ε is a normally distributed random variable with mean 0:

E ε
		X� � ¼ 0 ð2:11Þ

and variance σ2:

Var ε
		X� � ¼ σ2 ð2:12Þ

• The distribution of errors is identical across levels of x:

σ2i ¼ σ2j ¼ ��� ¼ σ2k ð2:13Þ

and independent (i.e., their covariances ¼ 0):

Cov εi; εj
� �		X� � ¼ 0 ð2:14Þ

These assumptions are frequently combined to yield the following statement:

• In a linear regressionmodel, the errors are assumed to be independent and normally

and identically distributed random variables, with mean 0 and variance σ2:11

10 You might wish to verify that at each level of x, the variance of y equals the variance of e.
11 In subsequent chapters, we will see that it is possible to relax some of these assumptions and still

retain the central features of a linear regression model.
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ε � NID 0; σ2
� � ð2:15Þ

2.2.4 Standardized Regression Coefficients

The unstandardized regression coefficient indicates how much weight x is given in

the prediction of y. The weight is expressed in raw scores (i.e., for every one unit

increase in x, we predict a b unit increase in the average value of y). Sometimes it is

desirable to compute a standardized regression coefficient using standardized

scores rather than raw ones.

2.2.4.1 Calculating a Standardized Regression Coefficient

Although there are several ways to compute standardized regression coefficients,

we will continue to use our inverse matrix method, substituting standard scores for

raw scores. In Chap. 1 we learned that we standardize variables by subtracting the

column mean from each score and dividing the difference by the standard deviation.

Such scores, known as z scores, are shown in Table 2.1. Using our understanding of
the role of an inverse, we can predict zy from zx using the following formula:12

β ¼ Z
0
xZx

� ��1

Z
0
xZy ð2:16Þ

Because the mean of both distributions is 0, we dispense with adding a vector of 1’s

to our Zx matrix and solve the problem in now familiar fashion:

β ¼ 11½ ��1
6:7583½ � ¼ :6144

The obtained value indicates that a one standard deviation increase in x predicts a
.6144 standard deviation increase in y.

2.2.4.2 Verifying the Meaning of a Standardized Regression Coefficient

It is worth taking the time to verify the meaning of a standardized regression

coefficient. Table 2.1 shows that the standard deviation of y¼ 2.4802. Multiplying

the standard deviation by the standardized regression coefficient reveals the

expected change in y associated with a one standard deviation change in x:

2:4802 � :6144 ¼ 1:5238

12 Even though we use β rather than b to denote the standardized coefficient matrix, we are still

concerned with a sample value, not a population estimate.
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In words, the average expected value of y is predicted to increase by 1.5238 units

with every one standard deviation increase in x. To see whether this is true, let’s

compute fitted values for y when x increases by one standard deviation. Table 2.1

shows that the standard deviation of x¼ 2.9233. For our predicted values, we will

choose x¼ 3 and x¼ [3 + sx]¼ 5.9233:

ŷ ¼ 2:2270þ 3 :5213ð Þ ¼ 3:7908

ŷ ¼ 2:2270þ 5:9233 :5213ð Þ ¼ 5:3146

The difference between the two predicted scores is found using subtraction:

5:3146� 3:7908 ¼ 1:5238

As you can see, the obtained difference is identical to the one we calculated earlier,

confirming that a one standard deviation increase in x predicts a .6144 standard

deviation increase in y.

2.2.4.3 Comparing the Unstandardized and Standardized Coefficient

It is also informative to compare unstandardized and standardized regression

coefficients. Three pieces of information in Table 2.1 will help us do so: the

covariance between x and y (sxy¼ 4.4545) and the variance of each variable

(s2x ¼ 8.5455; s2y ¼ 6.1515).

With one only predictor, the following formulae can be used to calculate the

unstandardized regression coefficient:

b ¼ sxy
s2x

ð2:17Þ

and the standardized regression coefficient:

β ¼ sxyffiffiffiffiffi
s2x

p �
ffiffiffiffi
s2y

q ð2:18Þ

When we examine both equations, we see that they differ only with respect to their

denominator. Whereas the unstandardized coefficient is calculated using the vari-

ance of x in the denominator, the denominator for the standardized coefficient uses

the standard deviations of x and y. If we go ahead and plug in the relevant numbers,

we confirm that the formulae produce the correct values:

b ¼ 4:4545

8:5455
¼ :5213
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and

β ¼ 4:4545ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:5455

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6:1515

p ¼ :6144

2.2.4.4 Contrasting the Unstandardized and Standardized Coefficient

Because of their close connection, it is a relatively simple matter to compute one

regression coefficient from the other:

b ¼ β
sy
sx

and β ¼ b
sx
sy

ð2:19Þ

The connection between the two coefficients should not blind you to an important

difference. Ordinarily, we are concerned with the variance of a cross-product term

relative to the variance of a predictor. By including the standard deviations of both

variables in the denominator, standardized regression coefficients do not provide

this information. For this reason, we will devote little attention to the standardized

coefficient and focus, instead, on the unstandardized one.

2.2.5 Correlation Coefficient

Relatedly, we will spend comparatively little time discussing the correlation

between x and y. Unlike a regression model that treats x as a fixed factor and y as
a random variable, a correlational model makes no distinction between the predic-

tor and the criterion. Instead, a correlation is simply the average cross product

between pairs of standardized scores. Applying Eq. (1.2) to the standardized scores

reported in Table 2.1 yields the correlation matrix, with standardized variances

(1’s) on the diagonals and the correlation (standardized covariance) on the

off-diagonals:

R ¼ 1 :6144
:6144 1

� �
As you might have noticed, the correlation coefficient assumes the same value as

the standardized regression weight. With one predictor, this will always be true, but

it will ordinarily not be true when two or more variables are used to predict y.
We can understand why the two terms are equivalent by considering an alternative

formula for computing a correlation coefficient:

r ¼ sxyffiffiffiffiffi
s2x

p �
ffiffiffiffi
s2y

q ð2:20Þ
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Comparing Eq. (2.20) with Eq. (2.18) shows that the formula for computing the

correlation is the same as the formula for computing the standardized regression

coefficient. This convergence occurs only when there is one predictor. Whereas

Eq. (2.20) can always be used to compute the correlation between two variables,

Eq. (2.18) can only be used to calculate the standardized regression coefficient with

simple linear regression.

2.2.6 R Code: Simple Linear Regression

x <-c(1,9,1,5,6,8,2,4,2,8,7,7)

y <-c(3,8,2,8,5,9,4,5,2,4,2,6)

#Preliminary Model Without Intercept

model.1 <-lm(y~x-1)

summary(model.1)

fitted(model.1)

resid(model.1)

SSres.1 <-sum(resid(model.1)^2);SSres.1

#Complete Model With Intercept

model.2 <-lm(y~x)

summary(model.2)

fitted(model.2)

resid(model.2)

SSres.2 <-sum(resid(model.2)^2);SSres.2

#Scatterplot with line of best fit

plot(x, y, main="Scatterplot: Simple Linear Regression",

xlab="x ", ylab="y", pch=19)

abline(lm(y~x), col="red")

#Standardized coefficients (Beta)

zmodel <-lm(scale(y)~scale(x)-1)

summary(zmodel)

#Unstandardized and standardized coefficients using simple algebra

b.coef <- cov(x,y)/var(x);b.coef

beta.coef <-cov(x,y)/(sd(x)*sd(y));beta.coef

#Correlation coefficient

correl <-cor(x,y);correl
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2.3 Population Estimation and Statistical Significance

Earlier we noted that one function of linear regression is population estimation. We

observe and describe a sample, but we often wish to determine whether our sample

tells us something about the population from which it is drawn. In our case, it is

unlikely that I care only whether self-efficacy beliefs predict performance among

12 students. Instead, I wonder whether I can generalize my findings to students in

general.

2.3.1 The Logic Behind Null Hypothesis Testing

As you probably know from an introductory statistical course, one way to make

inferences about a population is to engage in null hypothesis testing. With this

procedure, we start by assuming that chance is the only factor influencing our data.

We then ask “How likely are our sample data given that chance is the only operating

factor?” By convention, we conclude that “not very likely” means we would

observe data at least as extreme as ours less than 5 % of the time ( p <.05) when

chance variations are the only factor of importance. When that occurs, we “tenta-

tively” conclude that factors other than chance are operating. Note that we never

accept or reject an alternative hypothesis because we are not testing it; we are

testing a null hypothesis and we only reject it or fail to reject it.

2.3.2 Testing the Regression Model

We can test the statistical significance of a simple linear regression model in two

ways. First, we can test the overall significance of the regression model; second, we

can test the significance of each regression coefficient. With a single predictor, the

two approaches are identical. But in subsequent chapters we will discuss designs

with multiple predictors. Consequently, we will learn both approaches now, begin-

ning with a test of our overall regression model.

2.3.2.1 Partitioning the Sum of Squares

The first step in testing our model’s significance is to partition the variability in our

criterion, known as the total sum of squares and designated SStot, into two parts: a

portion that can be predicted from our regression equation and a portion that cannot
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be predicted from our regression equation. We refer to the former as the regression

sum of squares (SSreg) and the latter as the residual sum of squares (SSres):

SStot ¼ SSreg þ SSres ð2:21Þ

In matrix notation, we calculate the terms as follows:

SStot ¼ y� yð Þ0 y� yð Þ ð2:22Þ
SSreg ¼ Xb� yð Þ0 Xb� yð Þ ð2:23Þ
SSres ¼ y� Xbð Þ0 y� Xbð Þ ð2:24Þ

Considering that we have already calculated and discussed the residual sum of

squares,

SSres ¼ 42:1241

we will direct our attention to the other two terms. The total sum of squares is the

deviate sum of squares of our criterion variable. To find it, we subtract the mean of y
(Mean ¼ 4.833) from every value and sum the squares [see Eq. (2.22)]. Table 2.1

shows that, in our example, SStot¼ 67.6667.

The regression sum of squares provides an index of how well our fitted values

reproduce the mean of y. To find the term, we subtract the mean of y from every

fitted value and sum the squares [see Eq. (2.23)]. Alternatively, we can use simple

arithmetic; once we know two of the three values, we can easily calculate the third

by subtraction:

SSreg ¼ 67:6667� 42:1241 ¼ 25:5426

2.3.2.2 Coefficient of Determination

One way to use these terms is to calculate a squared correlation coefficient, referred

to as the coefficient of determination:

R2 ¼ SSreg
SStot

ð2:25Þ

Remembering that the total variability of y has been partitioned into two parts, we

can see that the coefficient of determination represents the proportion of the total

variability in y that can be explained by our regression equation:

R2 ¼ 25:5426

67:6667
¼ :3775
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In our example, we say that approximately 38% of the variability in y can be

predicted from x.13

We can test the statistical significance of this value (i.e., determine whether it

differs from 0), by using the following formula, where k ¼ number of predictors

(in our case, 1) and N refers to the sample size (in our case, 12):

F ¼ R2=k

1� R2
� �

= N � k � 1ð Þ ð2:26Þ

Substituting our values

F ¼ :3775=1

1� :3775ð Þ= 12� 1� 1ð Þ ¼ 6:0643

Using a spreadsheet formula we can find the probability of obtaining an F value of

this size or more given that only chance factors are operating

[(¼FDIST, 6.0643, 1, 10)¼.0335]. Since this value is less than the conventional

.05 level, we reject the hypothesis that the only factors operating in the situation

were chance and conclude that self-efficacy beliefs (probably) predict test perfor-

mance in the population.

2.3.2.3 F Test of Significance

An equivalent approach to testing the model’s overall significance is to directly

calculate an F value from our partitioned sum of squares without first calculating R2:

F ¼ SSreg=k

SSres= N � k � 1ð Þ ð2:27Þ

Plugging our values into the equation yields an F value that matches (within

rounding error) the one we obtained earlier using R2:

F ¼ 25:5426=1

42:1241= 12� 1� 1ð Þ ¼ 25:5426

4:2124
¼ 6:0637

13 Because we have only one predictor, the square root of this value equals the correlation between

x and y (r¼ .6144), as well as the standardized regression coefficient. Interestingly, it also equals

the correlation between y and ŷ .
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The denominator in Eq. (2.27) is known as the Mean Square Residual (MSres):
14

MSres ¼ SSres
N � k � 1ð Þ ð2:28Þ

2.3.3 Testing the Regression Coefficients

As noted earlier, with only one predictor, testing the significance of the regression

coefficient is equivalent to testing the significance of the regression model. This

won’t be true when we have more than one predictor, however, so let’s examine the

formula for testing the coefficient itself.

2.3.3.1 Standard Error

Our first step is to find the standard error of the regression coefficient (SEb). To

understand this term, let’s imagine we repeat our study 10, 000 times (we won’t, of

course, but let’s imagine anyway). We expect that our regression coefficient

(b1¼.5213) will equal the average coefficient across the 10, 000 studies, but we

certainly don’t expect that every time we conduct the study we will find exactly the

same estimate. The standard error is the standard deviation of the sampling distri-

bution of regression coefficients. The smaller the value, the more we expect the

10, 000 coefficients to cluster tightly around the average; the larger the value, the

more we expect the 10, 000 coefficients to vary around the mean.

In a moment we will discuss ways of finding the standard error using a matrix

inverse. But with only one variable it’s useful to look at a simple formula:

seb ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSres
SSx

r
ð2:29Þ

Here we see that the standard error depends on two things: a term in the numerator

that indexes error (i.e., the average squared difference between each fitted value and

its corresponding observed value) and the variability in the predictor itself

(as indexed by SSx). From our earlier calculations, we know that MSres¼ 4.2124,

14 The Mean Square Residual is sometimes called the Mean Square Error. It is also known as the

variance of estimate, and its square root is called the standard error of estimate. I figure you already

have enough terms to learn so I won’t be using these terms in the book. If we ever need to take the

square root of the Mean Square Residual, we’ll just take the square root of the Mean Square

Residual without giving it another name!
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so the only term we need to calculate is the denominator, SSx. This value is shown

in Table 2.1 (SSx¼ 94). Plugging in our values yields the standard error:

seb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:2124

94

r
¼ :2117

2.3.3.2 Statistical Significance

We can use the standard error to test the statistical significance of the regression

coefficient by creating a fraction, with the regression coefficient in the numerator

and the standard error in the denominator. We then refer the fraction to a t-
distribution with N� k� 1 degrees of freedom:

t ¼ b

seb
ð2:30Þ

Plugging in our values yields the test statistic:

t ¼ :5213

:2117
¼ 2:4626

Looking up the value in a spreadsheet for a two-tailed test (¼TDIST,2.4626,10,2)

shows that the probability of getting a value of this size or more when only chance

factors are operating in the situation is .0335. Consequently, we reject the null

hypothesis. Notice also that the probability level here is identical to the one we

found when testing our overall regression model. As discussed earlier, with only

one predictor, this will always be true. If you square our t value, you will see that it
matches, within rounding error, the F value we found earlier:

2:46262 ¼ 6:0642

2.3.3.3 Confidence Interval

Having calculated the standard error, we can also compute a confidence interval

around our regression coefficient. A confidence interval represents the range of

values on either size of a point estimate given a specified probability level. It is

formed by finding the critical, two-tailed value of the t-distribution for a given level
of significance (termed alpha and designated α) and then using the following

equation:

b � t α=2, dfð Þ � sebf g ð2:31Þ

To illustrate, we will calculate the 95% confidence interval for the regression

coefficient. Using a spreadsheet function, we find the critical, two-tailed t-value
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at the .05 level of significance with 10 degrees of freedom [(¼TINV,.05, 10)¼
2.2281]. Plugging the value into our equation yields the confidence interval:

:5213 � 2:2281 � :2117f g ¼ :0496 and :9930

If we did repeat our study 10, 000 times, we would expect to find a b value within

this range 95 % of the time; the other 5 % of the time, we would expect to find

values of b that fall outside of this range. Notice that 0 is not included in this range,
constituting another way of rejecting the null hypothesis that the true population

parameter equals 0.

2.3.3.4 Testing the Significance of the Intercept

For completeness, we will also test whether the intercept is significantly different

from 0. Before we do, we should note that this test is often of little interest. The

intercept represents the average expected value of y when x¼ 0. If our x variable

does not have a true 0 point (e.g., if age is a predictor, a person cannot be 0 years

old) or our rating scale does not include 0, as was true in our example, it is of no

interest to know the predicted value of y when x¼ 0.

That being said, there may be times when this information is useful, so we will

spend a moment familiarizing ourselves with the formula. Moreover, the formula

we use to calculate the standard error of the intercept is a special case of a more

general formula we use to calculate the standard error of any average expected

value, so learning the procedures will be of general use.

As with our regression coefficient, we calculate a t-statistic using the coefficient
in the numerator and a standard error in the denominator. With only one predictor,

the formula for the standard error of an average expected value is

seŷ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSres � 1

n
þ x� xð Þ2

SSx

( )vuut ð2:32Þ

where x refers to the value of x for which prediction is being sought. For the

intercept, we are interested in the average expected value of y when x¼ 0, in

which case Eq. (2.32) reduces to

seb0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSres � 1

n
þ x2

SSx

 �s
ð2:33Þ

Plugging in the relevant values from our data yields the standard error:

seb0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:2124 � 1

12
þ 5:002

94

 �s
¼ 1:2130
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and the t-statistic:

t ¼ 2:2270

1:2130
¼ 1:8359

With N� k� 1 degrees of freedom, this value is not significant. Consequently, we

are unable to reject the null hypothesis that the true intercept ¼ 0. Calculating a

confidence interval around our attained value reveals a similar story, since it

includes 0:

2:2270 � 2:2281 � 1:2130f g ¼ �:4757 and 4:9297

2.3.4 Parameter Covariance Matrix (C)

With a single predictor, the algebraic calculations for finding our standard errors are

manageable. But whenwe havemultiple predictors, aswewill in subsequent chapters,

wewill findmatrix algebra to bemore expedient than ordinary algebra. In this section,

we will learn how to calculate a covariance matrix of parameter estimates, C:

C ¼ X
0
X

� ��1

�MSres ð2:34Þ

Several things about this formula merit attention. First, bear in mind that this is a

covariance matrix of parameter estimates, not a covariance matrix of deviate scores

derived from raw scores. In otherwords, don’t confuseC and S. Second notice that one

term represents the variability of our predictors (X0X), and the other provides an index
of how well our regression model reproduces our original values (MSres). Because we
are multiplying the latter term by the inverse of the former, we are essentially dividing

MSres by SSx. This calculation matches our algebraic formula for finding the standard

error with one predictor [see Eq. (2.29)]. Finally, the standard errors are found by

taking the square root of the diagonal elements of the covariance matrix (denoted cii):

seb ¼ ffiffiffiffiffi
cii

p ð2:35Þ

To demonstrate these points, let’s plug in our numbers.

• First, we calculate C:

C ¼ 12 60

60 394

� ��1

� 4:2124

¼ :3493 �:0532
�:0532 :0106

� �
� 4:2124 ¼ 1:4714 �:2241

�:2241 :0448

� �
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• Then, we take the square root of the diagonal elements of C to find our standard

errors:

seb0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4714

p
¼ 1:2130

seb1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
:0448

p
¼ :2117

These values match the ones we found earlier using our algebraic formulae.

So this matrix gives us a very convenient way of finding our standard errors, and we

will use it extensively throughout this text.

2.3.5 R Code: Hypothesis Testing

x <-c(1,9,1,5,6,8,2,4,2,8,7,7)

y <-c(3,8,2,8,5,9,4,5,2,4,2,6)

model <-lm(y~x)

summary(model)

#Sum of Squares

ssreg <-sum((model$fitted-mean(y))^2);ssreg

ssres <-sum((y-model$fitted)^2);ssres

sstot <-ssreg+ssres;sstot

#Coefficient of determination

r.squared <-ssreg/sstot

r.squared

F.test <-r.squared/1/((1-r.squared)/(12-1-1))

F.test

1 - pf(F.test,1,10)

#F test using Sum of Squares

msreg =ssreg/1

msres = ssres/10

ftest = msreg/msres

ftest

#Covariance Matrix, Standard Errors and Test Coefficients

X <-cbind(1,x)

covariance <-(solve(t(X)%*%X)*msres)

covariance

std.err <-sqrt(diag(covariance))

std.err

t.intercept <-model$coef[1]/std.err[1]

t.intercept

t.slope <-model$coef[2]/std.err[2]

t.slope

(continued)
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2.3.5 R Code: Hypothesis Testing (continued)

#Confidence Intervals for Regression Coefficient

t.crit <-abs(qt(.025,length(x)-2))

slopeCI.low <-model$coef[2]-((t.crit)*std.err[2])

slopeCI.high <-model$coef[2]+((t.crit)*std.err[2])

slope.CI <-c(slopeCI.low,slopeCI.high)

slope.CI

#R Functions for Covariance Matrix and Confidence Intervals

cov <-vcov(model);cov

confint(model)

2.4 Forecasting

Linear regression is often used for purposes of forecasting. For example, insurance

companies predict how long you are likely to live based on your health habits, and

admission officers use your SAT scores to predict your likely success in college. In

our example, we might want to predict a student’s performance in a matrix algebra

class based on knowledge of the student’s self-efficacy beliefs.

The name we use to describe these estimates and the standard error we use to test

them differ depending on whether we are forecasting an average value or an

individual one. We will use the term “expected value” when we are forecasting an

average expected value of y and the term “predicted value” when we are forecasting

an individual value of y. In this section, we will discuss both approaches.

2.4.1 Average Expected Values

As it turns out, we have already covered the procedures involved in testing an average

expected value when we tested the statistical significance of the intercept. The

intercept, you will recall, represents the average expected value of y when x¼ 0.

The procedures we used to test its significance extend to any value of x, not just x¼ 0.

To illustrate, suppose we wish to predict the average class rank of students

whose self-efficacy beliefs ¼ 3. Using matrix algebra, we begin by creating a

column vector we will designate p. The first value in the column vector will always

be 1 (to model the intercept), and the other value will reflect the score we have

chosen for x. With our example, p assumes the following form:

p ¼ 1

3

� �
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We then use matrix multiplication to compute our predicted value:

ŷ ¼ p
0
b ð2:36Þ

and its standard error:

seŷ ¼
ffiffiffiffiffiffiffiffiffiffi
p

0
Cp

p
ð2:37Þ

Notice that I have placed a “hat” and a “bar” over y in the standard error formula to

indicate that we are looking for the standard error of an average expected value.

Performing the operations, we find our expected value:

1 3½ � 2:2270
:5213

� �
¼ 3:7908

and its standard error:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 3½ � 1:4714 �:2241

�:2241 :0448

� �
1

3

� �s
¼ :7282

We can then form a 95 %, two-tailed confidence interval around the expected value

in the usual manner:

CIŷ ¼ 3:7908� 2:2281 � :7282f g ¼ 2:1682and5:4133

These values tell us what to expect if we conducted our study a great many times.

For example, if we conducted our 12-subject study 10, 000 times, we would expect

that the average class rank of students with a score of 3 on the self-efficacy scale

would fall between 2.1682 and 5.4133 in 9, 500 of them; the other 500 samples

would produce average values outside of this range.

Finally, we can test the expected average value for its statistical significance:

t ¼ 3:7908

:7282
¼ 5:2057

With N� k� 1 degrees of freedom, the probability of getting a value at least

this large given that only chance is operating is .0004, indicating a statistically

significant result. Whether this test is meaningful depends on whether 0 is a

meaningful score on the criterion. In our example, a person can’t be in the 0th

percentile, so knowing that the fitted value is significantly different from 0 is of

limited value.
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2.4.2 Single Predicted Values

The preceding calculations tell us about an average predicted score, but suppose we

would also like to know the likely score of a single student with our particular

predictor profile (i. e., x¼ 3). In this case, we use the term “predicted value,” rather

than “expected value”. Because the best estimate of an individual value is always

the average value, the calculations we use to find the predicted value are the same as

the ones we used to find the average expected value [see Eq. (2.36)]. But the

standard errors are not calculated using the same formula. Instead of using

Eq. (2.37), we use the equation shown below:

seŷ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p

0
X

0
X

� ��1
p

n oh i
�MSres

r
ð2:38Þ

As you can see, rather than using the covariance matrix, we use the inverse of the sum

of squares matrix fromwhich it is derived, adding 1 to our product before multiplying

byMSres. This modification ensures that the standard error of an individual predicted

value will always be greater than the standard error of an average expected value.

The formula looks imposing, but it’s not all that complicated, so let’s work

through the math using values reported earlier in this chapter:

seŷ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1 3½ � :3493 �:0532

�:0532 :0106

� �
1

3

� �
 �� �
� 4:2124

s
¼ 2:1778

If we compare the two standard errors, we can see that the standard error of the

individual case is much larger than the standard error of the average case. This

makes sense because our ability to predict a single value will always be more

subject to error than our ability to predict an average value across many instances.

We can see this most clearly by using this standard error to construct a prediction

interval around our predicted value15:

PIŷ ¼ 3:7908� 2:2281 � 2:1778f g ¼ �1:0616 and 8:6432

This range is much greater than the confidence interval we calculated for our

average expected value. If desired, we can also assess the statistical significance

of an individual predicted value:

t ¼ 3:7908

2:1778
¼ 1:7407, p ¼ :1124

15 It is customary to use the term “prediction interval” when considering the individual case and

“confidence interval” when considering the average.
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2.4.3 Forecasting with Caution

Before concluding this section, let’s consider two more issues. Because the size of a

standard error increases with distance from the mean of the predictor, forecasting is

more certain the closer x is to x. To illustrate, we will calculate the standard error of
an average expected value when x is equal to the mean of all x values

i:e:, x ¼ x ¼ 5ð Þ: ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 5½ � 1:4714 �:2241

�:2241 :0448

� �
1

5

� �s
¼ :5925

Notice that this standard error is smaller than the one we calculated using x¼ 3.

In fact, no value of x will produce a smaller standard error for a forecasted value

than the mean. This point is best appreciated by studying the algebraic formula for

finding the standard error of an average value given in Eq. (2.32). Looking the

equation over, we can see that the final term will be smallest when x ¼ x. This same

is true for the standard error of a single predicted value [see Eq. (2.38)].

Second, both types of forecasts are appropriate only for values of x that fall

within the range of data we have collected. In our example it is appropriate to

forecast a score for x¼ 3, because even though this particular value was not

observed in our sample, it lies within the range of values we did observe. It

would not be appropriate, however, to predict values of y for values of x that lie

outside the range of data we observed. This is because a regression equation is

descriptive—it describes the association among the variables we observed in our

sample. Within that range, we can use it to make inferences about the population

and to forecast expected and predicted scores, but we should not make forecasts for

values of x that lie outside our observed range.

2.4.4 R Code: Forecasting

x <-c(1,9,1,5,6,8,2,4,2,8,7,7)

y <-c(3,8,2,8,5,9,4,5,2,4,2,6)

model <-lm(y~x)

p <-c(1,3)

yhat <-t(p)%*%coef(model)

df <-length(x)-2

#Forecasting Average Values

std.error.ave <-sqrt(t(p)%*%vcov(model)%*%p);std.error.ave

t.crit <-abs(qt(.025,df))

CI.lo.ave <-yhat-(t.crit*std.error.ave )

CI.hi.ave <-yhat+(t.crit*std.error.ave )

CI.ave <-cbind(CI.lo.ave,CI.hi.ave );CI.ave

(continued)
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2.4.4 R Code: Forecasting (continued)

#Forecasting Individual Values

msres <-(sum((y-model$fitted)^2)/df)

X <-cbind(1,x)

std.error.ind <- sqrt(msres*(1+t(p)%*%solve(t(X)%*%X)%*%p));

std.error.ind

CI.lo.ind <-yhat-(t.crit*std.error.ind)

CI.hi.ind <-yhat+(t.crit*std.error.ind)

CI.ind <-cbind(CI.lo.ind,CI.hi.ind);CI.ind

2.5 Chapter Summary

1. In a linear regression model, a criterion is modeled as an additive function of a

set of predictors, plus a term that represents errors of prediction. The criterion

and errors are treated as random variables, drawn from a conditional probability

distribution at each level of the predictor. The errors surrounding each value of

x are assumed to be independent and normally and identically distributed with

mean 0 and variance σ2.
2. Linear regression is performed by solving a series of simultaneous linear equa-

tions using b¼ (X0X)� 1X0y. A column of leading 1 ’ s is added toX to model the

intercept.

3. Fitted values of y represent the average expected value of y at a particular level
of x. For this reason, they are considered average conditional values.

4. Residuals are found by subtracting the fitted values from the observed values.

When we square each residual, and sum the squares, we derive an index known

as the residual sum of squares.

5. A line of best fit confirms that b¼ (X0X)� 1X0y minimizes the residual sum of

squares. Consequently, the procedure is known as ordinary least squares estimation.

6. The total variability of y can be partitioned into two parts: a portion that can be

explained by the weighted predictors and a portion that cannot be explained by

the weighted predictors.

7. A coefficient of determination (R2) represents the percentage of the variability in

y that can be explained by the weighted predictors. It can be tested for its

statistical significance.

8. The statistical significance of a regression coefficient can be tested by dividing the

coefficient by its standard error. The standard errors can be found by taking the

square root of the diagonal elements of a covariancematrix of parameter estimates.

9. Predicted values can be calculated for the average case and for the individual

case. Their point estimates are identical, but the standard errors used to construct

confidence intervals around them differ, with the standard error of the individual

case being larger.
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Chapter 3

Maximum-Likelihood Estimation

In Chap. 2 you learned that ordinary least squares (OLS) estimation minimizes the

squared discrepancy between observed values and fitted ones. This procedure is

primarily a descriptive tool, as it identifies the weights we use in our sample to best

predict y from x. Sample description is not the only function that regression

analyses serve, however; they can also be used to identify population parameters.

As it happens, the least squares solution coincides with a more general method for

estimating population parameters known as maximum-likelihood estimation

(MLE). With MLE, we ask, “What population parameters are most likely to have

produced our sample data?” In this chapter, you will learn about MLE and its

application to linear regression.

3.1 Probability and Likelihood in a Normal Distribution

Our first step in understanding MLE is to understand probability more generally.

We will begin by finding the probability of a single outcome in a normal distribu-

tion using a formula developed by the German mathematician, Carl Friedrich

Gauss:

f xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p � e� x� μð Þ2
2σ2

ð3:1Þ
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Equation (3.1) describes the probability density function of a normally distributed

random variable.1 To illustrate its use, suppose we wish to calculate the probability

of selecting a score of 75 from a normal distribution with μ¼ 100 and σ¼ 15.

We can solve the problem using a spreadsheet function [¼NORMDIST(75,100,15)]

or by using Eq. (3.1) (where e¼ natural log ~ 2.71828):

f xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π 152
� �q � e� 75� 100ð Þ2

2 152
� � ¼ :0066

If we wanted, we could select more scores, calculate their probabilities, and create a

table or figure of the various probabilities. If we continued to select and plot the

probabilities of a great many values, we would eventually have a smooth, normal

curve (see Fig. 3.1).

probability

75 .0066

87 .0183

89 .0203

90 .0213

93 .0239

99 .0265

100 .0266

101 .0265

103 .0261

112 .0193

116 .0151

135 .0017

.0000
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.0100

.0150

.0200

.0250

.0300

65 85 105 125 145

pr
ob

ab
ili

ty

X

Fig. 3.1 Density curve heights for 12 values chosen from a random distribution with known

population parameters: μ¼ 100; σ¼ 15

1 The first term in Eq. (3.1) is sometimes written as

1

σ
ffiffiffiffiffi
2π

p

and the final term can be written in three, mathematically equivalent ways:

x� μð Þ2
2σ2

¼ :5 x� μð Þ2
σ2

¼ 1

2σ2
x� μð Þ2
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3.1.1 Likelihood Function

So far you have learned how to calculate the probability of an observed outcome

given a known set of population parameters. A likelihood function calculates the

inverse. Instead of asking “what is the probability of a sample value given a set of

known population parameters?” we ask “what population parameters are most

likely to have produced the sample data we observed?” The latter approach

involves maximum-likelihood estimation, as now we are using sample data to

estimate the most probable population mean and standard deviation.

To answer our likelihood question, we select hypothesized values for the mean

μ̂ð Þ and standard deviation σ̂ð Þ and compute a likelihood function:

L ¼
YN
i¼1

1ffiffiffiffiffiffiffiffiffiffiffi
2πσ̂ 2

p � e� x� μ̂ð Þ2
2σ̂ 2

( )
ð3:2Þ

The portion of the equation in brackets repeats the formula used to find the

probability of an observed score given a known mean and standard deviation,

except here we are using hypothesized values rather than known ones. The operator

preceding the formula indicates that we are to calculate the product of the likeli-

hood scores (i.e., multiply them). An equivalent formula appears below.

L ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2πσ̂ 2

p
 �N

� e�
Xn

i¼1
x� μ̂ð Þ2

2σ̂ 2

 !
ð3:3Þ

Table 3.1 displays the likelihoods for the 12 values shown in Fig. 3.1 across five

hypothesized means.2 The first likelihood value was found for a score of 75 in a

distribution with û ¼ 98:

L ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π 152
� �q � e� 75� 98ð Þ2

2 � 152 ¼ :0082

The other column values were found in a similar fashion. Notice that the values

when the hypothesized mean equals 100 are the same as the ones shown in Fig. 3.1.

Finally, the values in the final row can be derived by computing the product of the

12 values in each column or by applying Eq. (3.3). To illustrate, the final row value

in column 1 was found by first calculating the sum of all squared deviations around

the hypothesized mean of 98 (¼ 2,748) and then using Eq. (3.3):

2 For purposes of illustration, I have kept the standard deviation at 15 for all five possibilities.
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L ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π 152
� �q

264
375
12

� e� 2748

2 152
� �" #

¼ 2:7908E� 22

The likelihood is expressed in scientific notion, indicating that we are to move

the decimal to the left 22 places. In our case, the likelihood of the sample

given a population mean of 98 and a standard deviation of

15¼ .00000000000000000000027908!

3.1.2 Log-Likelihood Function

We could continue using this likelihood function, but you have probably realized

that likelihood estimates this small are difficult to work with and are prone to error.

For this, and other reasons, it is customary to use a (natural) log transformation of

each value and then sum (not multiply) the obtained values. Alternatively, we can

use the following formula, known as the log-likelihood function:3

lnL ¼ �N

2
ln 2πð Þ � N

2
ln σ̂ 2
� ��Xn

i¼1

x� μ̂ð Þ2
2σ̂ 2

ð3:4Þ

Table 3.1 Likelihood function for five hypothesized means with a standard deviation of 15

x μ̂ ¼ 98 μ̂ ¼ 99 μ̂ ¼ 100 μ̂ ¼ 101 μ̂ ¼ 102

75 .0082 .0074 .0066 .0059 .0053

87 .0203 .0193 .0183 .0172 .0161

89 .0222 .0213 .0203 .0193 .0183

90 .0231 .0222 .0213 .0203 .0193

93 .0252 .0246 .0239 .0231 .0222

99 .0265 .0266 .0265 .0264 .0261

100 .0264 .0265 .0266 .0265 .0264

101 .0261 .0264 .0265 .0266 .0265

103 .0252 .0257 .0261 .0264 .0265

112 .0172 .0183 .0193 .0203 .0213

116 .0129 .0140 .0151 .0161 .0172

135 .0013 .0015 .0017 .0020 .0024

Π 2.7908E-22 3.0233E-22 3.1050E-22 3.0233E-22 2.7908E-22

3 The log-likelihood function represents a monotonic transformation of the original likelihood

function. Because a monotonic transformation preserves the original order, the maximum values

of the two functions coincide.
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Table 3.2 compares the two likelihoods for μ̂ ¼ 98 and σ¼ 15, and the following

calculations show that Eq. (3.4) produces the same value we get from summing the

log likelihoods:

lnL ¼ �12

2
ln 2πð Þ � 12

2
ln 152
� �� 2748

2 152
� � ¼ �49:6305

3.1.3 Using the Grid-Search Method to Find
the Maximum-Likelihood Estimate

At this point we know how to calculate the likelihood function, but we still don’t

know how to find its maximum value (which, after all, is the whole point of

maximum-likelihood estimation). We have three possibilities: (1) the grid search

method, (2) differential calculus, and (3) a hybrid approach that combines the first

two methods.

The grid search method involves trying out different values of μ̂ and σ̂ until we

identify the combination that produces the largest maximum-likelihood estimate.

Table 3.3 shows the log-likelihood estimates for our five hypothesized means

(keeping σ̂ ¼ 15), and Fig. 3.2 plots them. Looking at the figure, it appears that the

curve is at its maximum when our hypothesized value of μ equals our sample mean.

There is nothing wrong with using this “guess and guess again” approach to find

the maximum-likelihood estimate, but it isn’t very efficient. After all, we have only

considered five possible values for the mean, but there are many other values we

could test. We have also kept our estimate of the variance constant, but allowing this

value to change along with the mean would create even more combinations to test.

In short, although it is a useful way of showing what it is we are looking for, the grid

search method is an inefficient way of finding the maximum-likelihood estimate.

Table 3.2 Likelihood

and log-likelihood estimates

for a hypothesized μ¼ 98 and

σ¼ 15

x Likelihood ln likelihood

75 .0082 �4.8025

87 .0203 �3.8959

89 .0222 �3.8070

90 .0231 �3.7692

93 .0252 �3.6825

99 .0265 �3.6292

100 .0264 �3.6359

101 .0261 �3.6470

103 .0252 �3.6825

112 .0172 �4.0625

116 .0129 �4.3470

135 .0013 �6.6692

Π¼ 2.7908E� 22 Σ¼� 49.6305
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Table 3.3 Log-likelihood estimates for five hypothesized means with standard deviation¼ 15

x μ̂ ¼ 98 μ̂ ¼ 99 μ̂ ¼ 100 μ̂ ¼ 101 μ̂ ¼ 102

75 �4.8025 �4.9070 �5.0159 �5.1292 �5.2470

87 �3.8959 �3.9470 �4.0025 �4.0625 �4.1270

89 �3.8070 �3.8492 �3.8959 �3.9470 �4.0025

90 �3.7692 �3.8070 �3.8492 �3.8959 �3.9470

93 �3.6825 �3.7070 �3.7359 �3.7692 �3.8070

99 �3.6292 �3.6270 �3.6292 �3.6359 �3.6470

100 �3.6359 �3.6292 �3.6270 �3.6292 �3.6359

101 �3.6470 �3.6359 �3.6292 �3.6270 �3.6292

103 �3.6825 �3.6625 �3.6470 �3.6359 �3.6292

112 �4.0625 �4.0025 �3.9470 �3.8959 �3.8492

116 �4.3470 �4.2692 �4.1959 �4.1270 �4.0625

135 �6.6692 �6.5070 �6.3492 �6.1959 �6.0470

lnL �49.6305 �49.5505 �49.5239 �49.5505 �49.6305

-49.6305

-49.5505

-49.5239

-49.5505
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-49.640
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Fig. 3.2 Log-likelihood estimates for five hypothesized means with standard deviation¼ 15
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3.1.4 R Code: Maximum-Likelihood Estimation
with Normal Distribution

#Normal probabilities

mu=98

sigma=15

x=75

dnorm(x, mu, sigma)

#Log probabilities

dnorm(x,mu,sigma,log=T)

#Log likelihood functions given specific values for mu and sigma

x=c(75,87,89,90,93,99,100,101,103,112,116,135)

mu=98

sigma=15

like <-prod(dnorm(x, mu, sigma))

like

loglike <-sum(dnorm(x, mu, sigma,log=T))

loglike

#GRID SEARCH METHOD USING LOG LIKELIHOOD

normprob = function (x,mu,sigma) {

sum(-0.5*(log(2*pi))-0.5*log(sigma^2)-((x-mu)^2)/(2*sigma^2))

}

X=c(75,87,89,90,93,99,100,101,103,112,116,135)

means = seq(95,105,by=.1)

vars = seq(10,20,by=.5)

mean.times=length(means)

mean.likes=sapply(means,function(y)prod(normprob(x=X,mu=y,

sigma=10)))

var.likes=sapply(vars,function(y)prod(normprob(x=X,mu=95,

sigma=y)))

plot(means,mean.likes,type="b")

windows()

plot(vars,var.likes,type="b")

means=rep(means,each=length(vars))

vars=rep(vars,mean.times)

mv.mat=cbind(means,vars)

mv.likes = apply(mv.mat,1,function(y)prod(normprob(x=X,mu=y[1],

sigma=y[2])))

mv.mat[mv.likes==max(mv.likes)]

best.combo<-(1:length(mv.likes))[mv.likes==max(mv.likes)]

best.combo

max.log <-mv.likes[mv.likes==max(mv.likes)]

max.log

(continued)
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3.1.4 R Code: Maximum-Likelihood Estimation
with Normal Distribution (continued)

#MLE in R

norm.fit<-function(mu,sigma){

-sum(dnorm(x,mu,sigma,log=T))

}

library(bbmle) #attach bbmle package

x=c(75,87,89,90,93,99,100,101,103,112,116,135)

mle.results<-mle2(norm.fit,start=list(mu=95,sigma=10),data=list(x))

mle.results

3.2 Differential Calculus

Fortunately, there is another method for finding a maximum-likelihood estimate that

is faster and more precise than the grid search method. Instead of trying out lots of

different values, we can use calculus to differentiate the maximum-likelihood func-

tion. Don’t let the language scare you; it’s not as difficult as it sounds. Just take a deep

breath and remember that the whole point of this book is to show you that statistical

analyses are not nearly as complicated as they are often made to seem.

3.2.1 Differentiating a Function to Find Its Derivative

With that in mind, let’s start by defining some terms.

1. The derivative of a function represents its instantaneous rate of change. For

example, if you throw a ball into the air, the derivative represents its velocity at a

given instant.

2. The process of calculating a derivative is called differentiation (i.e., to differen-

tiate a function is to find its instantaneous rate of change).

3. We can consider the derivative in two ways:

3a. First, we can treat the derivative as the instantaneous rate of change at

specific input values (e.g., how fast is the ball falling 2 s after it reaches its

maximum height?). The following notation represents the instantaneous rate

of change at “a” (with “a” being a specific value):

dy

dx
að Þ ð3:5Þ

3b. Second, we can treat the derivative as a function that describes the instan-

taneous rate of change across a range of input values (i.e., what is the
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formula for calculating the ball’s speed at any given instant?). We use the

following notation when we are calculating the derivative function across a

range of values:4

df

dx
ð3:6Þ

3.2.1.1 Finding the Instantaneous Rate of Change

at Specific Input Values

To help you better understand the processes involved in finding both types of

derivatives, we’ll examine a squaring function of the following form:

y ¼ x2

Figure 3.3 shows the solution across a range of values for x. As you can see, when

x¼� 5, y¼ 25, when x¼� 4, y¼ 16, and so on. The figure also shows a line

tangent to the curve that we will discuss momentarily.

Now suppose we want to calculate the instantaneous rate of change (i.e., the

derivative) at a particular value of x. Let’s try x¼ 3. There are several ways to do
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-2 4

-1 1

0 0

1 1

2 4
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5 25
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Fig. 3.3 Squaring function for various values of x

4 To confuse matters even more, the derivative can be written in different ways. For example, the

formula f0(a) is also used to express the derivative at a specific value.
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this, but we will use a formula for finding the slope of a line, formally termed the

delta method and colloquially referred to as “rise over run”:

Slope ¼ y2 � y1
x2 � x1

ð3:7Þ

Why can we use this formula to find a derivative? The answer is that geometrically,

the derivative represents the slope of a line tangent to a point on a curve. A tangent

line touches the curve at a single point without crossing it, so it, too, represents the

(near) instantaneous rate of change at a single point. Mathematically, we can never

calculate the exact instantaneous rate of change at a single point, so we approximate

it as the slope found when the change in x approaches 0:

dy

dx
¼ lim

Δx!0

Δy
Δx

ð3:8Þ

Figure 3.3 displays the tangent line when x¼ 3. Now we will use Eq. (3.7) to

approximate its slope. The only problem is that in order to use the equation, we need

to designate two values of x, not just one. The solution, known as the limit method

of differentiation, is to choose two values that lie very close to x, one on either side,
allowing us to approximate the slope. We will use x1¼ 2.9999 and x2¼ 3.0001.

First, we compute the predicted values from our squaring function:

x1 ¼ 2:9999, y1 ¼ 8:99994

x2 ¼ 3:0001, y2 ¼ 9:00006

Then we plug the values into our slope formula:

Slope ¼ 9:0006� 8:9994

3:0001� 2:9999
¼ 6:0000

So the (near) instantaneous rate of change when x¼ 3 is 6. We could also say that

the derivative of ywith respect to x¼ 3 is 6 or that the slope of the tangent line when

x¼ 3 is 6. All of these terms and phrases refer to the same thing. Finally, we can

express the derivative symbolically:

dy

dx
a ¼ 3ð Þ ¼ 6

Now let’s use the limit method to find the derivative when x¼ 5:

x1 ¼ 4:9999, y1 ¼ 24:9990

x2 ¼ 5:0001, y2 ¼ 25:0010

and

Slope ¼ 25:0010� 24:9990

5:0001� 4:9999
¼ 10
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Here we see that the (near) instantaneous rate of change when x¼ 5 is 10, or that the

derivative of y with respect to x¼ 5 is 10, or that the slope of the tangent line when

x¼ 5 is 10:

dy

dx
a ¼ 5ð Þ ¼ 10

3.2.1.2 Derivative Function: Instantaneous Rate

of Change Across a Range of Values

Having calculated the instantaneous rate of change at two specific values, we are

ready to find a more general rule that describes the derivative function. Perhaps you

can already see what it is. The derivative function of a squaring function is a

doubling function. When x¼ 3, the derivative is 6 (2x); when x¼ 5, the derivative

is 10 (2x). Formally, we write

df

dx
¼ 2x

“the derivative function with respect to x¼ 2x.”
Applying the derivative function, we can calculate the instantaneous rate of

change without using the slope formula. For example, the instantaneous rate of

change when x¼ 4 is 8, and the instantaneous rate of change when x¼ 8 is 16, and

so on for as many values as we care to compute.

3.2.1.3 Analytic Solutions to Differentiating the Derivative Function

If you are familiar with calculus, you are probably aware that we could have saved

ourselves some time by using the power rule to differentiate the function:

df

dx
xn ¼ nxn�1 for n 6¼ 0ð Þ ð3:9Þ

In words, “for every exponent other than zero, the derivative of a power function

can be found by placing the exponent in front of the differentiated term and

reducing the exponent by 1.” So if

y ¼ x2,

df

dx
¼ 2ð Þx 2�1ð Þ;

which equals

df

dx
¼ 2x:
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Several more rules for differentiating functions, such as the quotient rule, log

rule, product rule, and chain rule, can be found in all elementary calculus textbooks.

These rules, which provide an analytic solution to finding the derivative function,

are more precise and are quicker to use than is the method of limits. But you don’t

need to learn these rules to work through the material in this book, because I will

provide them when they are needed.5 Instead, all you need to know is that the

derivative function quantifies the instantaneous rate of change in a function across a

range of input values.

3.2.1.4 Derivative Orders

To this point we have considered only first-order derivatives (aka first derivatives),

but a derivative function has its own derivative, which is called the second-order

derivative (or the second derivative). Whereas the first derivative function

quantifies the instantaneous rate of change, the second derivative function quan-

tifies the change in the first derivative function. In terms of our earlier example,

the velocity of a falling object is its first derivative and its acceleration is its

second derivative. In statistics, the first derivative is used to estimate a population

parameter (called a point estimate) and the second derivative is used to find

its standard error. Symbolically, we express the second derivative by adding a

superscript:

d2f

d2x
ð3:10Þ

3.2.1.5 Mixed Derivatives and Partial Derivatives

When a function contains more than one parameter, we say we have a mixed

derivative and calculate a partial derivative. A partial derivative approximates the

instantaneous rate of change in a function as one input value changes and the rest

remain constant. The first-order partial derivative function is denoted:

∂f
∂x

ð3:11Þ

and the second-order partial derivative function is designated.

∂2
f

∂2
x

ð3:12Þ

As we will see, the partial derivative is most relevant to linear regression analysis.

5 As of this writing, an online derivative calculator can also be found at http://www.derivative-

calculator.net/
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3.2.1.6 Complete Example

To help solidify your understanding of derivatives, Table 3.4 works through an

example by differentiating the following function:

z ¼ 3x3 � 4x2 þ 5y2 � 6y

Only three rules are needed to calculate two first partial derivatives and two second

partial derivatives:6

1. Ignore all terms that do not involve the differentiated term (because the deriv-

ative of a constant¼ 0).

2. When a differentiated term appears in an equation without an exponent, change

the term to “1” (because the derivative of a derivative¼ 1).

3. Apply the power rule (discussed earlier) when a differentiated term appears with

an exponent.

Table 3.4 Steps for computing partial derivatives of a function

First partial derivative of the function with respect to x

Disregard all terms in which x does not appear 3x3� 4x2

Applying power rule, move exponents to front

and subtract 1 from each exponent

(3)3x(3� 1)� (2)4x(2� 1)

Reduce to find first partial derivative of the function

with respect to x
∂f
∂x

¼ 9x2 � 8x

Second partial derivative of the function with respect to x

Starting with the first partial derivative with respect to x,
apply power rule to first term, and replace x with 1

in the second term (because the derivative of a variable

with respect to itself equals 1)

(2)9x(2� 1)� 8(1)

Reduce to find second partial derivative of the function

with respect to x
∂2

f

∂2
x
¼ 18x� 8

First partial derivative of the function with respect to y

Disregard all terms in which y does not appear 5y2� 6y

Apply power rule to first term, and substitute 1 for y
in the second term

(2)5y(2� 1)� 6(1)

Reduce ∂f
∂y

¼ 10y� 6

Second partial derivative of the function with respect to y

Starting with the first partial derivative with respect to y,
replace y with 1 and disregard constant

∂2
f

∂2
y
¼ 10

6 These rules are a subset of calculus differentiation rules and are expressed in language that I

believe will best convey their implementation. Please consult a calculus textbook for more

information or when differentiating functions other than the ones used in this book.
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3.2.1.7 Limit Method Revisited

These rules are handy and we will use them throughout the remainder of this text,

but it’s also good to remember that we could have used the limit method to get

(almost) the same results. To prove it, let’s calculate the partial derivative of the

function with respect to x¼ 8. Using the equations above, we find our first partial

derivative:

∂f
∂x

¼ 9x2 � 8x ¼ 512

and our second partial derivative:

∂2
f

∂2
x
¼ 18x� 8 ¼ 136

Now let’s use the limit method to find the first and second partial derivatives when

x¼ 8. Table 3.5 uses the limit method to calculate the derivatives with three input

values: 7, 8, and 9. All I am doing is using values that lie very close to those whole

numbers as input values for our function. If you then look at the middle values, you

will see that the first partial derivative when x¼ 8 is found by calculating:

1, 280:0512� 1, 279:9488

8:0001� 7:9999
¼ 512:00000003070

Obviously, this value is very close to the value we found using our formula for the

first partial derivative. Now let’s do the same thing with the second partial

derivative:

657:00000002988� 385:00000003045

9:0001� 7:0001
¼ 135:99999999972

This value, too, is a very close approximation to the one we found using our formula

for the second partial derivative. The analytic solutions are quicker and more

precise, but both methods yield the partial derivatives: a measure of how much a

function changes with a change in one of its input values.
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3.2.1.8 Summary

• To differentiate a function is to find its derivative.

• A derivative represents the instantaneous rate of change of a function as its input

values change.

• We can find the derivative at a particular input value by using the limit method or

by using a derivative function.

• A derivative function provides a general formula for calculating a derivative at

any input value and is found using various rules of differentiation.

• A derivative function can itself be differentiated, yielding a second-order

derivative.

• When a function has multiple input values, we can calculate a partial derivative

function by holding some input values constant and differentiating the function

with respect to the input values that are free to vary.

3.2.2 Differentiation and Maximum-Likelihood Estimation

Having taken the time to learn about differentiation, we are ready to see how it can

be applied to maximum-likelihood estimation. To begin, the log-likelihood esti-

mates first shown in Fig. 3.2 are shown again in Fig. 3.4. Here I have modified our

earlier figure by adding three tangent lines, each one representing a derivative of the

log-likelihood function. Notice that the curve is at its maximum when the tangent

line is horizontal, indicating that the slope (and derivative) equals 0 (see solid black

line in Fig. 3.4). So maximizing the likelihood function entails finding the point on

the curve where the tangent line is horizontal or, equivalently, finding the input

values of the log-likelihood function for which the derivative equals 0. This math-

ematical principle holds the key to using calculus to find maximum-likelihood

-49.64

-49.62

-49.60

-49.58

-49.56

-49.54

-49.52

-49.50

98 99 100 101 102

Lo
g 

Li
ke

lih
oo

d

Hypothesized Mean

Log Likelihood Estimates With  Three 
Tangent Lines
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estimates. We create a likelihood function and then identify our most likely

population values by setting the first derivative equal to zero.

3.2.2.1 Maximum-Likelihood Estimate of μ

To find the maximum-likelihood estimate for the mean, we begin by finding the first

partial derivative of the log-likelihood function with respect to the mean. Table 3.9

in the Appendix shows the steps we use to differentiate the log-likelihood equation,

and Eq. (3.13) shows the first partial derivative:

∂lnL
∂μ

¼ 1

σ2

Xn
i¼1

xi � μð Þ ð3:13Þ

Now we need to find the value of μ that makes the equation equal 0. We do so using

the following steps:

• Multiply terms in parentheses by Σ:

∂lnL
∂μ

¼ 1

σ2
Σx� Σμð Þ

• Substitute Nμ for Σμ (because μ is a constant, its sum¼Nμ):

∂lnL
∂μ

¼ 1

σ2
Σx� Nμð Þ

• Disregard the denominator (because the fraction equals 0 when the numerator

equals 0), and set the numerator to equal 0:

Σx� Nμ ¼ 0

• Rearrange terms:

�Nμ ¼ �Σx

• Solve for μ:

μmle ¼
Σx
N

ð3:14Þ

Notice that this equation is identical to the one used to compute a sample mean.

Formally, we have used calculus to prove that the sample mean provides the best

estimate of the population mean.
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3.2.2.2 Maximum-Likelihood Estimate of σ2

We can repeat the process to find the maximum-likelihood estimate for the vari-

ance. Table 3.9 in the Appendix describes the steps needed to differentiate the

equation, and Eq. (3.15) shows the first partial derivative:

∂lnL
∂σ2

¼ � N

2σ2
þ 1

2σ4

Xn
i¼1

xi � μð Þ2 ð3:15Þ

To find the maximum-likelihood estimate of the variance, we

• Set the equation to 0:

� N

2σ2
þ 1

2σ4

Xn
i¼1

xi � μð Þ2 ¼ 0

• Rearrange terms:

� N

2σ2
¼ � 1

2σ4

Xn
i¼1

xi � μð Þ2

• Cross-multiply:

N2σ4 ¼ 1

2σ2

Xn
i¼1

xi � μð Þ2

• Divide both sides by N2σ2:

σ2mle ¼
Σ x� μð Þ2

N
ð3:16Þ

Notice that the maximum-likelihood estimate for the variance closely resembles

but is not identical to the formula for finding the sample variance. Whereas the

sample variance uses N� 1 in the denominator, our estimate of the population

variance is made usingN in the denominator. Formally, we say that the two estimates

are “asymptotically equivalent;” informally, this means that the estimates converge

as the sample size approaches infinity. With small sample sizes, the sample variance

provides a larger (more conservative) estimate of the population variance.
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3.2.3 Computing the Standard Errors

Earlier I noted that first derivatives are used to find point estimates for population

parameters and that second derivatives are used to compute their standard errors.

Before discussing the procedures we use to calculate the standard error, let’s review

its meaning. As first discussed in Chap. 2, every estimated population parameter has

a sampling distribution, with an average value and a standard deviation. The

standard error of the mean is the standard deviation of the sampling distribution

of the mean. If we repeated our study many times, the standard deviation would

quantify the variability of our estimated means.

Perhaps you were introduced to the standard error of the mean in an introductory

statistics course. If so, you were probably taught to find its value using the following

formula:

seμ ¼
ffiffiffiffiffi
σ2

N

r
ð3:17Þ

In this section, you will learn how this formula is derived from the second partial

derivative of the likelihood function with respect to the mean. There are quite a few

steps involved, but the process is worth learning because all standard errors are

calculated using second partial derivatives.

3.2.3.1 Second Derivatives and the Slope of a Curve

Recall that the second derivative provides an index of how fast the first derivative

function changes. The easiest way to understand this point is to look at a curve.

Figure 3.5 plots two log-likelihood functions. The function labeled “low variance”

comes from the data first shown in Table 3.1, with a mean of 100 and a standard

deviation of 15; the function labeled “high variance” comes from a data set with the

same mean (100) but a standard deviation of 30.7

Both curves reach their maximum at μ̂ ¼ 100, but they have different shapes.

When the variance is low, the curve is steep and changes quickly near its maximum

height; when the variance is high, the curve is flat and changes slowly near its

maximum height. Because the second partial derivative quantifies the curvature of

the graph of the log-likelihood function, the second partial derivative of each curve

assumes a different value.

The top portion of Table 3.10 in the Appendix shows how we differentiate the

log-likelihood function to find the second partial derivative with respect to the mean,

and Eq. (3.18) shows the second partial derivative that differentiation produces:

7 Because we are trying to identify the population values that are most likely to have produced our

sample data, the standard deviations for these samples are calculated using N in the denominator

rather than N� 1.
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∂2
lnL

∂2μ
¼ �N

σ2
ð3:18Þ

Plugging in numbers from the two distributions shown in Fig. 3.5 yields the

following values:

Low Variance ¼ � 12

152
¼ �:0533

High Variance ¼ � 12

302
¼ �:0133

3.2.3.2 Information

The second partial derivative indicates how much information our sample data

provides about our population parameters. Referring back to Fig. 3.5, notice that the

values surrounding the maximum are more distinct when the variance is low than

when the variance is high. Consequently, the low variance curve provides more

information about the population parameter than does the high variance curve, and

we are more confident we have found the best estimate in the former case than in

the latter.
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Fig. 3.5 Two log-likelihood functions with identical means but different variances
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The size of the second partial derivative reflects these informational differences.

When the variance is low and the curve is steep, the second partial derivative is

relatively large and the information it provides about the population parameter is

substantial. Conversely, when the variance is high and the curve is flat, the second

partial derivative is relatively small and the information it provides about the

population parameter is comparatively slight.

3.2.3.3 Hessian Matrix

The next step in calculating the standard errors involves creating a matrix of the

second partial derivatives known as a Hessian matrix (or sometimes, “the Hessian”)

(H). The left-hand side of Table 3.6 shows the matrix in its general form. Notice it is

a symmetric matrix: the diagonal entries represent the second partial derivatives of

the mean and variance (respectively), and the off-diagonal entries represent the

cross-derivatives. Table 3.10 in the Appendix describes the steps we use to calculate

the derivatives, and the differentiated terms appear in the right-hand side of

Table 3.6.

3.2.3.4 Fisher Information Matrix

We use the Hessian matrix to create another matrix called the Fisher information

matrix (named after the statistician, Sir Ronald Fisher). The Fisher information

matrix (I) is the negative of the expected value of the Hessian matrix:

I ¼ �E Hð Þ ð3:19Þ

The expected values, shown in Table 3.7, are calculated using our maximum-

likelihood estimates.

Table 3.6 General form and derivatives for Hessian matrix (H)

H ¼
∂2

lnL

∂2μ

∂2
lnL

∂μ∂σ2

∂2
lnL

∂σ2∂μ
∂2

lnL

∂2σ2

266664
377775 ¼

�N

σ2
� 1

σ4

Xn
i¼1

xi � μð Þ

� 1

σ4

Xn
i¼1

xi � μð Þ N

2σ4
� 1

σ6

Xn
i¼1

xi � μð Þ2

266664
377775

Table 3.7 Fisher information matrix

I ¼ �
�N

σ2
0

0 � N

2σ4

264
375 ¼

N

σ2
0

0
N

2σ4

264
375
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The information matrix is easier to work with than the Hessian. Because the

expected value of (x� μ)¼ 0, the cross-derivatives in the information matrix ¼ 0,

and because the expected value of ∑ n
i¼ 1(xi� μ)2¼Nσ2, the final term can be

greatly simplified:

E σ2
� � ¼ N

2σ4
� Nσ2

σ6


 �
¼ N

2σ4
� 2N

2σ4


 �
¼ � N

2σ4

Inserting numbers from our two sample distributions yields the information matrix

for the low variance distribution and high variance distribution:

Ilow variance ¼ :05333333 0

0 :00011852

� �
Ihigh variance ¼ :01333333 0

0 :00000741

� �

3.2.3.5 Standard Errors

The standard errors of the maximum-likelihood estimators are found from the Fisher

informationmatrix. First, we take the inverse of the Fisher informationmatrix to find

the variance/covariance of our parameter estimates. The standard errors are then

found by taking the square root of the diagonal entries of the inverse matrix:

seii ¼
ffiffiffiffiffiffiffiffiffiffi
Iii

�1

q
ð3:20Þ

Performing the calculations, we find our inverse matrices:

Ilow variance ¼ 18:75 0

0 8437:50

� �
Ihigh variance ¼ 75 0

0 135000

� �
and our standard errors:

selow ¼ ffiffiffiffiffiffiffiffiffiffiffi
18:75

p ¼ 4:3301 and sehigh ¼
ffiffiffiffiffi
75

p ¼ 8:6603

It is informative to compare these values with ones we found using the usual

formula for computing the standard error of the mean [see Eq. (3.17)]. Plugging

in our values, we see that the two formulae produce identical results:

selow ¼
ffiffiffiffiffiffiffiffi
225

12

r
¼ 4:3301 and sehigh ¼

ffiffiffiffiffiffiffiffi
900

12

r
¼ 8:6603

That’s because the standard error is the square root of the inverse of the Fisher

information matrix.
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3.2.3.6 Using the Standard Error to Calculate Confidence Limits

We can further appreciate the informational value of the second partial derivative

by remembering that standard errors are used to compute confidence intervals

around our mean. A confidence interval is another measure of information. The

smaller the standard error, the narrower is our confidence interval and the more

certain we are that our estimated value represents the true population parameter.

Using a two-tailed, .05 level of significance, we compute the confidence interval

after finding the critical t value for N¼ 12 (t¼ 2.1788):

Small variance : CL ¼ 100� 2:1788�4:3301ð Þ ¼ 90:5656� 109:4344
Large variance : CL ¼ 100� 2:1788�8:6603ð Þ ¼ 81:1309� 118:8691

Notice that the confidence interval is relatively narrow when the variance is small

but comparatively broad when the variance is large. In short,

• Low variance¼ steep maximum-likelihood curve¼ large second derivative¼
high information¼ small standard error¼ narrow confidence interval.

• High variance¼ flat maximum-likelihood curve¼ small second derivative¼
low information¼ large standard error¼ broad confidence interval.

3.2.4 R Code: Derivatives and Standard Errors

#Define function

funct = expression(3*x^3-4*x^2+5*y^2-6*y, ’x,y’)

derivx1 <-D(funct,“x”)

derivx1

derivx2 <-D(derivx1,“x”)

derivx2

derivy1 <-D(funct,“y”)

derivy1

derivy2 <-D(derivy1,“y”)

derivy2

#Standard Errors for High and Low Variance Distributions

#Log likelihood function for normal distribution

loglike <- function(theta) {

sum ( 0.5*(x - theta[1])^2/theta[2] + 0.5* log(theta[2]) )

}

#Standard errors for Low Variance distribution

x =c(75,87,89,90,93,99,100,101,103,112,116,135)

lik.est <-nlm(loglike, theta <- c(100,15),hessian=TRUE)

std.err.low <-sqrt(solve(lik.est$hessian[1]))

(continued)
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3.2.4 R Code: Derivatives and Standard Errors (continued)

std.err.low

t.crit <-abs(qt(.025,12))

CI.low <-theta[1]-(t.crit*std.err.low[1])

CI.high <-theta[1]+(t.crit*std.err.low[1])

both.low <-cbind(CI.low,CI.high)

both.low

#Standard errors for High Variance distribution

x =c(65,66,70,71,75,79,120,119,125,131,131,148)

lik.est <-nlm(loglike, theta <- c(100,15),hessian=TRUE)

std.err.high <-sqrt(solve(lik.est$hessian[1]))

std.err.high

CI.low <-theta[1]-(t.crit*std.err.high[1])

CI.high <-theta[1]+(t.crit*std.err.high[1])

both.high <-cbind(CI.low,CI.high)

both.high

3.3 Maximum-Likelihood Estimation in Regression

Applying the procedures we have just learned to linear regression is a relatively

simple matter. Equation (3.21) presents the log-likelihood formula we use. As you

can see, it closely resembles the log-likelihood function for a normal distribution.

The only difference is that the numerator in the final term represents the squared

deviation of our observed y values from our estimated ones (Xb), rather than the

squared deviation of all x values from a hypothesized population mean (μ̂ ):

lnL ¼ � N

2
ln 2πð Þ � N

2
ln σ2
� �� y� Xbð Þ2

2σ2

" #
ð3:21Þ

To illustrate the processes involved, we will revisit the data first shown in

Table 2.1, now displayed in Table 3.8. Here we are predicting test performance

(y) from self-efficacy beliefs (x).
OLS estimation produces the regression coefficients:

b ¼ X
0
X

� ��1

X
0
y ¼ 12 60

60 394

� ��1
58

339

� �
¼ 2:2270

:5213

� �
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After calculating the residuals:

SSres ¼ Σ y� Xbð Þ2 ¼ 42:1241

and estimating the (population) variance:

σ2 ¼ 42:1241

12
¼ 3:5103

we compute our log-likelihood estimate:

�12

2
ln 2πð Þ � 12

2
ln 3:5103ð Þ � 42:1241

2 3:5103ð Þ
� �

¼ �24:5615

3.3.1 Differentiating the Function

Now we want to use differential calculus to prove that OLS estimation maximizes

the likelihood function. Table 3.11 in the Appendix describes the steps involved in

finding the first partial derivatives of the log-likelihood function. If you compare the

operations with the ones shown in Table 3.9, you will see that they are nearly

identical. Our first partial derivative with respect to β is shown below:

∂lnL
∂β

¼ 1

σ2
X

0
y� X

0
Xb

h i
ð3:22Þ

To find our maximum-likelihood estimate, we need to set the equation to zero and

solve. Only the numerator of the term matters, so we proceed as follows:

Table 3.8 Small sample

example predicting test

performance from self-

efficacy beliefs (reproduced

from Table 2.1)

Student Self-efficacy (x) Performance ( y)

1 1 3

2 9 8

3 1 2

4 5 8

5 6 5

6 8 9

7 2 4

8 4 5

9 2 2

10 8 4

11 7 2

12 7 6

Mean 5.00 4.83

Standard Deviation 2.9233 2.4802
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• Set the equation to 0:

X
0
y� X

0
Xb ¼ 0 ð3:23Þ

• Rearrange the terms to produce the matrix form of the normal equations (see

Chap. 1):

X
0
y ¼ X

0
Xb ð3:24Þ

• Solve the normal equations for b, producing the OLS solution:

X
0
X

� ��1

X
0
y ¼ b ð3:25Þ

As you can see, the matrix inverse method that yields the smallest residual sum

of squares also yields the most likely estimate of the population parameters that

produced our sample data.

We use a similar process to find the maximum-likelihood estimate of the

variance. The bottom portion of Table 3.11 in the Appendix shows the steps we

use to differentiate the function, and the resultant partial derivative is shown in

Eq. (3.26):

∂lnL
∂σ2

¼ � N

2σ2
þ 1

2σ4
y� Xbð Þ0 y� Xbð Þ

h i
ð3:26Þ

To find the maximum-likelihood estimate, we

• Set the derivative to 0:

� N

2σ2
þ 1

2σ4
y� Xbð Þ0 y� Xbð Þ

h i
¼ 0

• Rearrange terms:

� N

2σ2
¼ � 1

2σ4
y� Xbð Þ0 y� Xbð Þ

h i
• Cross-multiply and divide both sides by N2σ2:

σ2 ¼ 1

N

�
y� Xbð Þ0 y� Xbð Þ ¼ SSres

N

Once again, the variance estimate is asymptotically equivalent to the one found

using OLS estimation.
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3.3.2 Standard Errors

The procedures used to find the standard errors of the regression coefficients mirror

the ones we used to find the standard error of the mean in a normal distribution.

Table 3.12 in the Appendix shows the steps needed to compute the second partial

derivatives, and the Hessian matrix is shown below:

H ¼

∂2
lnL

∂2β

∂2
lnL

∂β∂σ2

∂2
lnL

∂σ2∂β
∂2

lnL

∂2σ2

266664
377775 ¼

� X
0
X

� �
σ2

� 1

σ4
X

0
y� X0Xb

h i
� 1

σ4
X

0
y� X0Xb

h i
� N

2σ4

2664
3775
ð3:27Þ

• Plugging in our values produces the Hessian:

H ¼
�3:4185 �17:0923 0

�17:0923 �112:2398 0

0 0 �:4869

24 35
• Taking the negative expected value of each term yields the information matrix:

I ¼
3:4185 17:0923 0

17:0923 112:2398 0

0 0 :4869

24 35
• Finding the inverse of this matrix creates a variance/covariance matrix:

I�1 ¼
1:2261 �:1867 0

�:1867 :0373 0

0 0 2:0538

24 35
• The square root of the first two diagonal entries yields the standard errors:

seb0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:2261

p ¼ 1:1073

seb1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
:0373

p ¼ :1932

If you look back to Chap. 2, you will see that these standard errors are close to,

but not identical with, the ones found using OLS estimation. As previously noted,

the discrepancy arises because OLS estimation computes the sample variance as the

deviation sum of squares divided by N� k� 1, whereas MLE computes the popu-

lation variance as the deviation sum of squares divided by N. With large samples,

the two estimates converge.
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3.4 Maximum-Likelihood Estimation: Numerical Methods

So far, we have discussed two methods of finding a maximum-likelihood estimate.

The first approach, known as the grid search method, involves trying out lots of

parameter values and then finding the one that produces the maximum-likelihood

estimate. This method is time-intensive and is impractical if there are many

parameters to estimate. The second technique, known as the analytic method,
uses differential calculus to set the first partial derivatives equal to zero and then

finds the standard errors using the second partial derivatives. This procedure works

only when there is an analytical (aka closed-form) solution, which is not the case in

all instances in which maximum-likelihood estimation is applicable.

There is a third approach, known as the numerical method, that we have yet to

learn. Here, we start with an approximate value and find the most likely estimate

through an iterative (repetitive) process involving differentiation. So this approach

is sort of a hybrid of the other two, combining guessing and calculus. Computer

programs that solve MLE problems generally use a numerical method.

3.4.1 Newton–Raphson and Fisher’s Method of Scoring

There are several iterative techniques available, but we are going to learn two: the

Newton–Raphson method and a closely related technique known as Fisher’s

method of scoring. Both approaches follow a similar logic and use terms we have

just learned:

• We begin with an initial guess regarding our population parameters, placed in a

vector we call k.

• Using the methods described earlier, we calculate the first and second partial

derivatives from the initial estimates.

• We place the first partial derivatives in a vector known as the gradient (and

sometimes called the score) (g) and the second partial derivatives in a Hessian

matrix (H) if we are using the Newton–Raphson method, or the Fisher informa-

tion matrix (I) if we are using Fisher’s method of scoring.

• Finally, we use the following formula to derive a new approximation for our

population parameters and continue doing so until the difference between the old

and new estimates becomes smaller than a designated level (e. g.,< .00000001):

Newton� Raphson : kþn ¼ k� H�1g
� �

or

Fisher’sMethod of Scoring : kþn ¼ kþ I�1g
� �
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3.4.2 Illustration Using Fisher’s Method of Scoring

As always, it’s less complicated than it seems. To show you how it’s done, I will

demonstrate the process using Fisher’s method of scoring for our regression data.

1. We begin with an initial estimate of three parameters (intercept, regression

coefficient, and variance), placed in a vector k. For purposes of illustration,

I will guess the values shown below. Notice that the first two values in

k estimate the regression coefficients (b) and the third value estimates the

variance (σ2):

k ¼
b0 ¼ 2

b1 ¼ 3

σ2 ¼ 4

24 35
2. We then use these guesses to calculate:

2a. The first partial derivative with respect to β using Eq. (3.22):

∂lnL
∂β

¼ 1

σ2
X

0
y� X

0
Xb

h i
¼ �36:50

�240:75

� �
2b. The first partial derivative with respect to σ2 using Eq. (3.26):

∂lnL
∂σ2

¼ � N

2σ2
þ 1

2σ4
y� Xbð Þ0 y� Xbð Þ

h i
¼ 73:3750

2c. Finally, we merge these values to form a gradient matrix of first partial

derivatives:

g ¼
�36:50
�240:75
73:3750

24 35
3. Next, we need to find Fisher’s information matrix I.

3a. We start by computing the second partial derivative of the log-likelihood

function with respect to β using our guesses as input values:

∂2
lnL

∂2β
¼ � X

0
X

� �
σ2

¼ �3 �15

�15 �98:50

� �
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3b. Next, we find the second partial derivative with respect to the variance using

our guesses as input values:

∂2
lnL

∂2σ2
¼ � N

2σ4
¼ �:3750

3c. Finally, we combine these values to form the information matrix:

I ¼
3 15 0

15 98:50 0

0 0 :3750

24 35
4. If we then compute k + {I� 1g}, we get a new k matrix we will call k1:

k1 ¼ kþ I�1g
� �

b0 ¼ 2

b1 ¼ 3

σ2 ¼ 4

264
375þ

1:3972 �:2128 0

�:2128 :0426 0

0 0 2:6667

264
375 �36:50

�240:75

73:3750

264
375

8><>:
9>=>; ¼

b0 ¼ 2:2270

b1 ¼ :5213

σ2 ¼ 199:6667

264
375

Notice that the procedure has already identified the maximum-likelihood esti-

mates for the regression coefficients, although the variance estimate is still

incorrect.

5. We then repeat this process using k1 as a starting point for calculating g and I:

k1 I�1g
� �

b0 ¼ 2:2270
b1 ¼ :5213

σ2 ¼ 199:6667

24 35 þ
69:7417 �10:6206 0

�10:6206 2:1241 0

0 0 6, 644:4630

24 35 0

0

�:0295

24 358<:
9=;

¼
k1

b0 ¼ 2:2270
b1 ¼ :5213
σ2 ¼ 3:5103

24 35
After three iterations, the estimates converge on the OLS regression coefficients

and variance.8

8As noted throughout this chapter, although the estimate of the population variance (3.5103)

differs from the sample variance (3.2124), the two values are asymptotically equivalent.
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3.4.3 R Code: Maximum-Likelihood Estimation
with Fisher’s Method of Scoring

x=c(1,9,1,5,6,8,2,4,2,8,7,7)

y=c(3,8,2,8,5,9,4,5,2,4,2,6)

N=length(y)

X=cbind(1,x)

#Initialize

theta <-c(2,3,4)

res0<-1

tol<-1e-8

norm<-10

iter<-0

change<-1

#Iterate

while (change>tol) {

grad.1=(t(X)%*%y-t(X)%*%X%*%theta[1:2])/theta[3]

grad.2=-N/(2*theta[3])+1/(2*theta[3]^2)*(t(y-X%*%theta[1:2])%*%(y-

X%*%theta[1:2]))

g=rbind(grad.1,grad.2)

hess.1 = -(t(X)%*%X)/theta[3]

hess.2 = -N/(2*theta[3]^2)

#Create Information Matrix

p=ncol(X)

n=p+1

I = matrix(0,n,n)

I[1:p,1:p]=hess.1

I[n*n]=hess.2

I=-I

theta =theta+solve(I)%*%g

norm.1=norm(theta, type = "F") #F=Frobenius; can also use type ="2"

change <-abs(norm-norm.1)

norm=norm.1

iter<-iter+1

}

theta; iter; change;I

#Same Result Using R’s Optimization Function

loglike<-function(theta){-sum(dnorm(y,mean=theta[1]+theta[2]*x,

sd=sqrt(theta[3]),log=T))

}

maxmod <-optim( theta <- c(2,3,4), loglike, hessian=T, method = "BFGS")

maxmod
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3.5 Chapter Summary

1. Maximum-likelihood estimation identifies the population parameters that are

most likely to have produced our sample data. In most cases, we work with a

log-likelihood function.

2. Three strategies can be used to find the maximum value of the likelihood

function:

2a. The grid-search method involves auditioning numerous parameters until we

find ones that maximize the likelihood function. This approach is not very

efficient.

2b. Differential calculus can also be used to find the maximum-likelihood

estimates. We differentiate the log-likelihood function to find its first partial

derivatives and then set the derivatives to zero to find the maximum-

likelihood estimates.

2c. Numerical methods can also be used to identify population parameters that

maximize the log-likelihood function. These methods combine the grid-

search method with differential calculus to produce an iterative technique.

With each successive iteration, the parameter values are estimated more

accurately until further attempts produce only trivial improvements.

3. The second partial derivatives of the likelihood function are used to find the

standard errors of the population parameters. The following steps are involved:

3a. Calculate the second partial derivatives.

3b. Combine the second partial derivatives into a matrix called the Hessian

matrix.

3c. Take the negative expected value of the Hessian matrix to form an infor-

mation matrix.

3d. Invert the information matrix and take the square root of the diagonal entries

to find the standard errors.

4. The procedures used to find the maximum likelihood of the mean and variance in

a univariate distribution are easily extended to find the regression coefficients

and variance of a bivariate distribution.
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Appendix

First Partial Derivatives of the Log-Likelihood Function
for a Normal Distribution

Table 3.9 Steps for calculating the first partial derivatives of the log-likelihood function for a

normal distribution

Log-likelihood function
lnL ¼ �N

2
ln 2πð Þ � N

2
ln σ2
� �� 1

2σ2

Xn
i¼1

xi � μð Þ2

First partial derivative with respect to μ

Disregard first two terms because they do

not involve μ � 1

2σ2

Xn
i¼1

xi � μð Þ2

Using the chain rule, apply the power rule

to outer layer and differentiate inner layer � 1

2σ2
� 2

Xn
i¼1

xi � μð Þ 2�1ð Þ
" #

� ∂lnL
∂μ

Xn
i¼1

xi � μð Þ
" #

Subtract exponents in outer layer and dif-

ferentiate inner layer by replacing x with
0 (because the derivative of a constant¼ 0)

and μ with 1 (because the derivative of a

variable with respect to itself¼ 1)

� 1

2σ2
� 2

Xn
i¼1

xi � μð Þ
" #

� 0� 1½ �

Multiply and reduce ∂lnL
∂μ

¼ 1

σ2

Xn
i¼1

xi � μð Þ

First partial derivative with respect to σ2

Disregard first term because it does not

involve σ2, use log rule to move σ2 to
denominator of second term, and move

exponent in the denominator of the third

term to the numerator

� N

2σ2
� 1 σ2ð Þ�1

2

Xn
i¼1

xi � μð Þ2

Use power rule to rewrite second term
� N

2σ2
� �1ð Þ1 σ2ð Þ�2

2

Xn
i¼1

xi � μð Þ2

Return exponent to the denominator and

multiply
∂lnL
∂σ2

¼ � N

2σ2
þ 1

2σ4

Xn
i¼1

xi � μð Þ2
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Second Partial Derivatives of the Log-Likelihood Function
for a Normal Distribution

Table 3.10 Steps for calculating the second partial derivatives of the log-likelihood function for a

normal distribution

Second partial derivative with respect to μ

Rewrite first partial derivative with respect to μ by
multiplying by Σ and substituting Nμ for Σμ

∂lnL
∂μ

¼ 1

σ2
Σx� Nμð Þ

Set Σx¼ 0 (since it doesn’t involve μ) and set

μ¼ 1 (since a derivative of a derivative¼ 1)

1

σ2
�N1þ 0ð Þ

Solve ∂2
lnL

∂μ∂μ
¼ �N

σ2

Second partial derivative with respect to σ2

Starting with first partial derivative with respect to

σ2, move exponents to the numerator �N σ2ð Þ�1

2
þ σ2ð Þ�2

2

Xn
i¼1

xi � μð Þ2

Apply power rule to both equations
� �1ð ÞN σ2ð Þ�2

2
þ �2ð Þ σ2ð Þ�3

2

Xn
i¼1

xi � μð Þ2

Return exponents to denominator ∂2
lnL

∂σ2∂σ2
¼ N

2σ4
� 1

σ6

Xn
i¼1

xi � μð Þ2

Cross-derivatives for Hessian matrix

Starting with first partial derivative with respect to

μ, move exponent to the numerator σ2ð Þ�1
Xn
i¼1

xi � μð Þ

Apply power rule �1ð Þ σ2ð Þ �1�1ð ÞXn
i¼1

xi � μð Þ

Return exponent to denominator ∂2
lnL

∂μ∂σ2
¼ � 1

σ4

Xn
i¼1

xi � μð Þ
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First Partial Derivatives of the Log-Likelihood Function
for Linear Regression

Table 3.11 Steps for calculating the first partial derivatives of the log-likelihood function for a

linear regression model

Log-likelihood function

lnL ¼ �N

2
ln 2πð Þ � N

2
ln σ2
� �� y� Xbð Þ2

2σ2

" #
First partial derivative with respect to β

Disregard first two terms because they do not

involve B
� 1

2σ2
y� Xbð Þ0 y� Xbð Þ

h i
Multiply matrix terms � 1

2σ2
y

0
y� 2X

0
b

0
yþ b

0
bX

0
X

h i
Disregard terms that do not involve B, change
B¼ 1, when it is by itself, and apply power rule

to B0B

� 1

2σ2
�2X

0
yþ X

0
X2b

h i
Factor � 2 and cancel terms ∂lnL

∂β
¼ 1

σ2
X

0
y� X

0
Xb

h i
First partial derivative with respect to σ2

Disregard first term because it does not involve

σ2, use log rule to move σ2 to denominator of

second term, and move exponent to the numera-

tor of the third term

� N

2σ2
� 1 σ2ð Þ�1

2
y� Xbð Þ0 y� Xbð Þ

h i

Use power rule to rewrite last term
� N

2σ2
� �1ð Þ1 σ2ð Þ�2

2
y� Xbð Þ0 y� Xbð Þ

h i
Return exponent to the denominator ∂lnL

∂σ2
¼ � N

2σ2
þ 1

2σ4
y� Xbð Þ0 y� Xbð Þ

h i
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Second Partial Derivatives of the Log-Likelihood Function
for Linear Regression

Table 3.12 Steps for calculating the second partial derivatives of the log-likelihood function for a

linear regression model

Second partial derivative with respect to β

Starting with first partial derivative with

respect to β, disregard terms that do not

involve B and change B to 1 when it is by

itself

∂2
lnL

∂2β
¼ � X

0
X

� �
σ2

Second partial derivative with respect to σ2

Starting with first partial derivative with

respect to σ2, move exponents to the

numerator

�N σ2ð Þ�1

2
þ σ2ð Þ�2

2
y� Xbð Þ0 y� Xbð Þ� �

Apply power rule to both equations
� �1ð ÞN σ2ð Þ�2

2
þ �2ð Þ σ2ð Þ�3

2
y� Xbð Þ0 y� Xbð Þ

Return exponents to denominator ∂2
lnL

∂σ2∂σ2
¼ N

2σ4
� 1

σ6
y� Xbð Þ0 y� Xbð Þ

h i
To simplify, substitute [(y�Xb)0

(y�Xb)]¼ nσ2 and reduce
∂2

lnL

∂σ2∂σ2
¼ � N

2σ4

Cross-derivatives for Hessian matrix

Starting with first partial derivative with

respect to β, move exponent to the

numerator

σ2� 1[X0y�X0Xb]

Apply power rule (�1)σ2� 2[X0y�X0Xb]
Return exponent to denominator ∂2

lnL

∂β∂σ2
¼ � 1

σ4
X

0
y� X

0
Xb

h i
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Chapter 4

Multiple Regression

In previous chapters, you have learned how to calculate regression coefficients and

related terms using a single predictor. Yet most phenomena of interest to scientists

involve many variables, not just one. Heart disease, for example, is associated with

diet, stress, genetics, and exercise, and school performance is associated with

aptitude, motivation, family environment, and a host of sociocultural factors. To

better capture the complexity of the phenomena they study, scientists use multiple

regression to examine the association among several predictors and a criterion. In

this chapter, you will learn how to perform multiple regression analysis using tools

you mastered in previous chapters.

Before presenting the technique, it’s informative to consider why we just don’t

perform several simple linear regression analyses. There are two reasons. First,

predictor variables are often correlated. For example, people who frequently exer-

cise are also likely to maintain a healthy diet. By taking this overlap into account,

multiple regression allows us to assess the unique contribution each variable makes

to the prediction of a criterion. Second, multiple regression allows us to determine

whether the effect of one variable changes at different levels of another variable.

For example, diet might be a more important predictor of heart disease among

people who don’t exercise often than among people who do. The present chapter

considers the first of these issues, and Chap. 9 discusses the second.

As we did in Chap. 2, we can learn about multiple regression by first solving a

series of simultaneous linear equations. Imagine we are asked to find b1 in the

following equations.

�6b1 ¼ �3

4b1 ¼ 8

2b1 ¼ 2
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These equations do not have an exact solution, but if you were to solve them using

the matrix inverse method we learned in Chap. 2, you would find that b1¼.9643.

Now imagine we insert a second set of unknown quantities into our original

equation.

�6b1 � 8b2 ¼ �3

4b1 þ 3b2 ¼ 8

2b1 þ 5b2 ¼ 2

If you are thinking that adding these terms will change the weight we give to b1, you
have identified the essence of multiple regression. Unless the two sets of equations

are uncorrelated (in statistical jargon, we say “orthogonal”), adding a variable to a

series of linear equations will always alter the weight of other variables. In our case,

b1 now equals 2.0952 and b2¼�.9048.

4.1 Multiple Regression

With this discussion as background, we will return to the fictitious example we used

in Chap. 2. There, we used students’ self-efficacy beliefs to predict their class rank

in a matrix algebra course. We are going to keep using these data, but now we are

going to add a second predictor: how well students scored on a nine-item practice

test given at the start of the academic term. We will refer to this predictor as “math

aptitude” and designate it x2 to distinguish it from self-efficacy beliefs (which we

will now designate x1). Table 4.1 presents the (invented) findings. If you compare

the values with the ones reported in Table 2.1, you will see that self-efficacy beliefs

and class performance have not changed.

4.1.1 Correlations

Let’s begin by examining the correlations among the three variables. From previous

chapters, we know that a correlation is the average cross product of standardized

variables, computed using the following formula.

R ¼ Z
0
Z

1

N � 1
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After standardizing our predictors, we perform the calculations and obtain the

correlation matrix.

R ¼
r11 r12 r1y
r21 r22 r2y
ry1 ry2 ryy

24 35 ¼
1 :5889 :6144

:5889 1 :8877
:6144 :8877 1

24 35
Equation (4.1) can be used to test the statistical significance of a correlation,

F ¼ r2 N � k � 1ð Þ
1� r2

ð4:1Þ

where k¼ 1 because we are examining the association between one predictor and

one criterion.

r12 ¼ :5889, F 1; 10ð Þ ¼ 5:3084, p ¼ :0440

ry1 ¼ :6144, F 1; 10ð Þ ¼ 6:0636, p ¼ :0335

ry2 ¼ :8877, F 1; 10ð Þ ¼ 37:1657, p ¼ :0001

Here, we see that all three correlations are statistically significant, indicating that

self-efficacy and aptitude independently predict math performance and that the

predictors themselves are significantly associated. This is precisely the situation

multiple regression was designed to handle. As noted earlier, if the two predictors

were uncorrelated (i.e., orthogonal), multiple regression wouldn’t be needed

because simple regression would suffice.

Table 4.1 Small sample example of multiple regression. In this hypothetical example, 12 students

indicate how proficient they think they are at math (x1) and take a test that measures their actual

math aptitude (x2). We then use these measures to predict performance in a matrix algebra class (y)

Student Self-efficacy x1 Aptitude x2 Performance y

1 1 2 3

2 9 7 8

3 1 1 2

4 5 8 8

5 6 5 5

6 8 7 9

7 2 4 4

8 4 7 5

9 2 1 2

10 8 4 4

11 7 3 2

12 7 4 6

Mean 5.00 4.42 4.83

Standard deviation 2.9233 2.4293 2.4802

Deviation sum of squares 94.00 64.9167 67.6667
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4.1.2 Unstandardized Regression Coefficients

Having calculated the correlations among the variables, we will now calculate the

unstandardized regression coefficients using the procedures we learned in Chap. 2.

Because the procedures are extensions of ones we learned earlier, we will move

rapidly through the calculations.

• We first calculate X0X, adding a column of leading 1’s to model the intercept.

1 1 1 1 1 1 1 1 1 1 1 1

1 9 1 5 6 8 2 4 2 8 7 7

2 7 1 8 5 7 4 7 1 4 3 4

24 35

1 1 2

1 9 7

1 1 1

1 5 8

1 6 5

1 8 7

1 2 4

1 4 7

1 2 1

1 8 4

1 7 3

1 7 4

26666666666666666664

37777777777777777775
¼

12 60 53

60 394 311

53 311 299

24 35
• Next, we calculate X0y.

1 1 1 1 1 1 1 1 1 1 1 1

1 9 1 5 6 8 2 4 2 8 7 7

2 7 1 8 5 7 4 7 1 4 3 4

24 35

3

8

2

8

5

9

4

5

2

4

2

6

26666666666666666664

37777777777777777775

¼
58

339

315

24 35
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• Finally, we solve for b,

b ¼ X
0
X

� ��1

X
0
y ¼

12 60 53

60 394 311

53 311 299

24 35�1
58

339

315

24 35 ¼
:6079
:1191
:8219

24 35
and form our sample regression equation.

ŷ ¼ :6079þ :1191x1 þ :8219x2

4.1.3 Fitted Values and Residuals

Before considering each regression coefficient separately, we will consider the

regression equation as a whole. As with simple linear regression, these coefficients

minimize the squared discrepancy between the observed values and the fitted

values. To better appreciate this fact, we will use them to calculate fitted values,

ŷ ¼ Xb ¼

1 1 2

1 9 7

1 1 1

1 5 8

1 6 5

1 8 7

1 2 4

1 4 7

1 2 1

1 8 4

1 7 3

1 7 4

26666666666666666664

37777777777777777775

:6079
:1191
:8219

24 35 ¼

2:3708
7:4329
1:5489
7:7786
5:4318
7:3138
4:1337
6:8376
1:6679
4:8480
3:9071
4:7290

26666666666666666664

37777777777777777775
and residuals.

e ¼ y� ŷ ¼

3

8

2

8

5

9

4

5

2

4

2

6

26666666666666666664

37777777777777777775

�

2:3708
7:4329
1:5489
7:7786
5:4318
7:3138
4:1337
6:8376
1:6679
4:8480
3:9071
4:7290

26666666666666666664

37777777777777777775

¼

:6292
:5671
:4511
:2214
�:4318
1:6862
�:1337
�1:8376
:3321
�:8480
�1:9071
1:2710

26666666666666666664

37777777777777777775
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If we square each residual, we can sum the squares to derive our residual sum of

squares. This value quantifies the discrepancy between our fitted values and our

observed ones; it also represents the part of y that our two predictors fail to predict.

SSres ¼ Σe2 ¼ y� ŷð Þ0 y� ŷð Þ ¼ 13:4762

Because we have used ordinary least squares estimation to find our coefficients, we

know that no other set of coefficients would produce a smaller residual sum of

squares.

4.1.4 Testing the Regression Model

Our next step is to test the statistical significance of our regression model. The last

entry in Table 4.1 shows that the deviation sum of squares for y¼ 67.6667. With

this value in hand, we can

• Use the subtraction method [see Eq. (2.21)] to calculate the regression sum of

squares

SSreg ¼ 67:6667� 13:4762 ¼ 54:1905

• Find the coefficient of determination using Eq. (2.25)

R2 ¼ 54:1905

67:6667
¼ :8008

and test the significance of the regression model using Eq. (2.26)

F ¼ :8008=2

1� :8008ð Þ= 12� 2� 1ð Þ ¼ 18:0954

Referring this value to an F distribution with 2 and 9 degrees of freedom shows a

significant result ( p¼.0007). Consequently, we reject the null hypothesis that the

only factors operating in the situation are chance.

110 4 Multiple Regression

http://dx.doi.org/10.1007/978-3-319-11734-8_2
http://dx.doi.org/10.1007/978-3-319-11734-8_2
http://dx.doi.org/10.1007/978-3-319-11734-8_2


4.1.5 R Code: Multiple Regression

x1 <-c(1,9,1,5,6,8,2,4,2,8,7,7)

x2 <-c(2,7,1,8,5,7,4,7,1,4,3,4)

y <-c(3,8,2,8,5,9,4,5,2,4,2,6)

X <-cbind(1,x1,x2)

#Create standardized variables

z1 <-scale(x1, center = T, scale = T)

z2 <-scale(x2, center = T, scale = T)

zy <-scale(y,center=T,scale=T)

Z <-cbind(z1,z2,zy)

#Correlation matrix

corr <-(t(Z)%*%Z)/(length(y)-1)

corr

#Function for finding Correlation Probabilities

cor.prob <- function(X, dfr = nrow(X) - 2) {

R <- cor(X)

above <- row(R) < col(R)

r2 <- R[above]^2

Fstat <- r2 * dfr / (1 - r2)

R[above] <- 1 - pf(Fstat, 1, dfr)

R

}

cor.prob(cbind(x1,x2,y))

#Multiple Regression

mod <-lm(y~x1+x2)

summary(mod)

fitted(mod)

resid(mod)

#Sum of Squares

SS.res <-sum(mod$resid^2)

SS.tot <-(var(y)*(length(y)-1))

SS.reg <-SS.tot-SS.res

df=length(y)-ncol(X)

MS.res <-SS.res/df

F.test <-(SS.reg/2)/MS.res; F.test

1-pf(F.test,2,df)
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4.2 Interpreting and Testing Regression Coefficients

Knowing that an overall regression model is significant does not tell us anything

about the statistical significance of each predictor. Instead, we know only that,

taken together, the variables allow us to predict the variance in a criterion beyond

what would be expected by chance alone. In this section, you will learn how to test

the significance of each regression coefficient using procedures first introduced in

Chap. 2. Before we do, however, we are going to spend some time learning how to

interpret regression coefficients from a multiple regression analysis.

4.2.1 Comparing Regression Coefficients and Correlations

We can begin to understand the meaning of a regression coefficient by contrasting it

with a correlation coefficient. In Chap. 2, we learned that, with a single predictor, the

correlation coefficient and standardized regression coefficient are identical. So there

is a close correspondence between a correlation and a regression coefficient with

simple linear regression. This is not so with multiple regression. With multiple

regression, correlations and regression coefficients (standardized or unstandardized)

ordinarily have different values and a different interpretation. The reason is that

correlations treat each x variable as an independent predictor of y, but regression
coefficients treat the x variables as a system of predictors. Consequently, the weight

of each regression coefficient depends on the weight of the other predictors.

The following demonstration will help clarify the preceding point. Imagine that

we have gathered data from three students.

Student Self-efficacy (x1) Aptitude (x2) Performance ( y)

1 5 2 6

2 1 3 5

3 3 1 3

If we then calculate the regression coefficients and correlations, we get the

following values.

b1 ¼ :6667
b2 ¼ 1:6667

and
ry1 ¼ :3273
ry2 ¼ :6547

Now imagine we change only one number, switching the first student’s aptitude

score from “ 2 ” to “ 6. ”

Student Self-efficacy (x1) Aptitude (x2) Performance ( y)

1 5 6 6

2 1 3 5

3 3 1 3
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If we then recalculate the regression coefficients and correlations, we discover

something interesting.

b1 ¼ �:2857
b2 ¼ :7143

and
ry1 ¼ :3273
ry2 ¼ :9538

Notice that both of the regression coefficients have changed, but the correlation

between x1 and y remains unchanged (i.e., ry1¼.3273 in both cases). The reason is

that a correlation is simply the average standardized cross product between two

variables, with the variables treated in isolation from all others. Since I didn’t

change x1 or y, the correlation between x1 and y didn’t change either.
In contrast, a regression coefficient is the weight that each variable is given to

predict our criterion, and the weight of one variable is affected by the weight of

other variables. Formally, we can say that whereas correlations are characterized by

independence, regression coefficients are characterized by interdependence. This

interdependence is especially apparent in this demonstration, as the b1 coefficient
changes from a positive value in Example 1 (b1¼.6667) to a negative value in

Example 2 (b1¼�.2857), even though I didn’t change the value of x1 or y!

4.2.2 Interpreting the Numerical Value of a Regression
Coefficient

Now that we know that a regression coefficient must be considered in the context of

other predictors, we are ready to interpret its numerical value. There are at least

three ways to think about this issue, and we will discuss them all, beginning with the

one that I think is most informative.

4.2.2.1 The Unique Weight of Each Predictor

One way to define a regression coefficient is as the unique weight given to a predictor

in the prediction of a criterion. This interpretation is best understood by creating

residualized predictors. Recall that a residualized variable represents the part of a

criterion that a predictor cannot predict (i.e., e ¼ y� ŷ ).When we create residualized

predictors, we create predictors that are uncorrelated. As a result, we are able to

identify the unique contribution each predictor makes to the prediction of a criterion.

To illustrate, we will regress x2 on x1 (i.e., we will designate x2 as the criterion
and x1 as the predictor) and then use the residual to predict y.

• We first calculateX0X, adding a column of leading 1’s to model the intercept and

including only the values for x1.

4.2 Interpreting and Testing Regression Coefficients 113



1 1 1 1 1 1 1 1 1 1 1 1

1 9 1 5 6 8 2 4 2 8 7 7

� �

1 1

1 9

1 1

1 5

1 6

1 8

1 2

1 4

1 2

1 8

1 7

1 7

26666666666666666664

37777777777777777775

¼ 12 60

60 394

� �

• Next we calculate X0y, using x1 as the predictor and x2 as the criterion.

1 1 1 1 1 1 1 1 1 1 1 1

1 9 1 5 6 8 2 4 2 8 7 7

� �

2

7

1

8

5

7

4

7

1

4

3

4

26666666666666666664

37777777777777777775

¼ 53

311

� �

• We then solve for b,

b ¼ 12 60

60 394

� ��1
53

311

� �
¼ 1:9699

:4894

� �
compute fitted values,

ŷ ¼ Xb ¼

1 1

1 9

1 1

1 5

1 6

1 8

1 2

1 4

1 2

1 8

1 7

1 7

26666666666666666664

37777777777777777775

1:9699
:4894

� �
¼

2:4592
6:3741
2:4592
4:4167
4:9060
5:8848
2:9486
3:9273
2:9486
5:8848
5:3954
5:3954

26666666666666666664

37777777777777777775
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and calculate the residuals.

e ¼ y� ŷ ¼

2

7

1

8

5

7

4

7

1

4

3

4

26666666666666666664

37777777777777777775

�

2:4592
6:3741
2:4592
4:4167
4:9060
5:8848
2:9486
3:9273
2:9486
5:8848
5:3954
5:3954

26666666666666666664

37777777777777777775

¼

�:4592
:6259

�1:4592
3:5833
:0940
1:1152
1:0514
3:0727
�1:9486
�1:8848
�2:3954
�1:3954

26666666666666666664

37777777777777777775
These residuals are uncorrelated with x1. So when we use them to predict

y (as we are about to do), we are identifying the unique weight given to x2 in the

prediction of y. We find the weight using the usual calculations:

• Calculate X0X,

1 1 1 1 1 1 1 1 1 1 1 1

�:4592 :6259 �1:4592 3:5833 :0940 1:1152 1:0514 3:0727 �1:9486 �1:8848 �2:3954 �1:3954

� �

�

1 �:4592

1 :6259

1 �1:4592

1 3:5833

1 :0940

1 1:1152

1 1:0514

1 3:0727

1 �1:9486

1 �1:8848

1 �2:3954

1 �1:3954

2666666666666666666666664

3777777777777777777777775

¼ 12 0

0 42:4060

� �

calculate X0y,

1 1 1 1 1 1 1 1 1 1 1 1

�:4592 :6259 �1:4592 3:5833 :0940 1:1152 1:0514 3:0727 �1:9486 �1:8848 �2:3954 �1:3954

� �

�

3

8

2

8

5

9

4

5

2

4

2

6

2666666666666666666666664

3777777777777777777777775

¼ 58

34:8546

� �
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and solve for b.

b ¼ 12 0

0 42:4060

� ��1
58

34:8546

� �
¼ 4:8333

:8219

� �
Our second b value represents the regression coefficient associated with the

residualized predictor. Notice that the value of the coefficient matches the value of

b2 in our main analysis (b¼.8219). This is no coincidence. Each regression coef-

ficient in the original analysis represents the unique weight of a variable in the

prediction of the criterion. You can verify this is so by performing the comparable

analyses for x1.

4.2.2.2 A Predictor’s Weight After Controlling for All Other Variables

A regression coefficient also represents the weight given to a predictor after all

other predictors have been taken into account. In essence, each predictor is treated

as if it were considered last, and we ask “what does this predictor add that other

predictors fail to predict?”

To clarify, recall that, in Chap. 2, we originally used self-efficacy beliefs to

predict performance without considering aptitude. Our regression coefficient was

b¼.5213. But if we enter self-efficacy beliefs into a predictive equation after first

entering aptitude, its associated regression coefficient ¼.1191. This latter value

matches the one reported earlier in this chapter when the two variables were entered

together. Because each coefficient in a multiple regression analysis is adjusted for

all of the other predictors, “entered together” is the same as “entered after,” which is

the same as “entered last.”

Finally, let’s consider why this regression coefficient changed from .5213 to

.1191. Because self-efficacy beliefs and aptitude are correlated, much of the

variance we initially attributed to self-efficacy beliefs is attributable to the overlap

between the two predictors. In multiple regression, the regression coefficients

represent only the unique contribution a variable makes to the prediction of a

criterion, not its total contribution.

4.2.2.3 The Effect of One Variable Holding Other Variables Constant

A final way to define a regression coefficient is as follows: With all other predictors

held constant, a regression coefficient specifies the expected one unit increase in

y with every one unit increase in the predictor with which it is associated. Using our
data, we would say “with aptitude held constant, a one unit increase in self-efficacy

beliefs predicts a .1191 unit increase in expected class performance,” and “with

self-efficacy beliefs held constant, a one unit increase in aptitude predicts a .8219

unit increase in expected class performance.”
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Plugging some numbers into our regression equation and examining our fitted

values will illustrate this interpretation. The top half of Table 4.2 shows what

happens when we hold x2 constant (first at 2, then at 3) and vary our values for x1
(from 1 to 3).

The final column in the table shows the change from one fitted value to the next.

Notice that, independent of the values we select for x2, a one unit increase in x1
produces a .1191 increase in the fitted value of y. Notice also that b1¼.1191. This is

no coincidence. A regression coefficient represents the expected change in

y associated with a one unit change in a predictor holding all other predictors

constant. So no matter what value we choose for x2, the expected difference in

y associated with a one unit change in x1 will always equal b1. The bottom half of

Table 4.2 shows that a comparable pattern occurs when we hold x1 constant and
vary x2.

Viewing a regression coefficient from this perspective leads to the following

conclusion: if everyone had the same aptitude, a one unit increase in self-efficacy

beliefs would predict a .1191 unit increase in performance, or, if everyone had the

same self-efficacy beliefs, a one unit increase in aptitude would predict a .8219

increase in performance. This is what it means to say we are holding a variable

constant.

Finally, notice the parallels between this description of a regression coefficient

and a first-order partial derivative. In Chap. 3, we computed first-order partial

derivatives by calculating the instantaneous rate of change in a variable as one

input value changes and the remaining values stay constant. We do the same thing

when calculating regression coefficients, so there is a close connection between the

two terms.

Table 4.2 Fitted values of y holding one predictor constant

Holding x2 constant and changing x1

x1 x2 Fitted value Change (within rounding error)

1 2 2.3708

2 2 2.4898 .1191

3 2 2.6089 .1191

1 3 3.1927

2 3 3.3118 .1191

3 3 3.4308 .1191

Holding x1 constant and changing x2

x1 x2 Fitted value Change

2 1 1.6679

2 2 2.4898 .8219

2 3 3.3118 .8219

3 1 1.7870

3 2 2.6089 .8219

3 3 3.4308 .8219
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4.2.3 Calculating Regression Coefficients

A final way to learn about a regression coefficient is to consider how it is calculated.

4.2.3.1 Algebraic Formula for Computing Multiple Regression

Coefficients

In Chap. 2, we learned that with one predictor, we find a regression coefficient by

creating a fraction with a covariance term in the numerator and the variance of the

predictor in the denominator [see Eq. (2.17), repeated below].

b ¼ sxy
s2x

ð4:2Þ

We use a similar approach with multiple regression, except now we take the

variance of all predictors into account. Equation (4.3) shows the formula for finding

b1 with two predictors.

b1 ¼
s1y � s22
� �� s12 � s2y

� �
s21 � s22
� �� s12ð Þ2 ð4:3Þ

Applying Eq. (1.1), we can quickly compute the variances and covariances of our

variables by creating a covariance matrix from their deviate scores.

S ¼
8:5455 4:1818 4:4545
4:1818 5:9015 5:3485
4:4545 5:3485 6:1515

24 35 ¼
s21 s12 s1y
s21 s22 s2y
sy1 sy2 s2y

24 35
Inserting the relevant values into Eq. (4.3) produces the same solution we found

using the matrix inverse method.

b1 ¼ 4:4545 � 5:9015ð Þ � 4:1818 � 5:3485ð Þ
8:5455 � 5:9015ð Þ � 4:1818ð Þ2 ¼ 3:9220

32:9438
¼ :1191

4.2.3.2 Regression Coefficients and Determinants

It might not be obvious, but Eq. (4.3) represents a fraction of two determinants from

S.1 The denominator is the determinant of the predictors.

1 As discussed in Chap. 1, these determinants are known as “minors.”
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s21 s12
s21 s22

				 				 ¼ 8:5455 4:1818
4:1818 5:9015

				 				 ¼ 32:9438

The numerator in Eq. (4.3) is also a determinant if we follow Cramer’s Rule. Recall

from Chap. 1 that Cramer’s Rule uses determinants to solve simultaneous linear

equations by replacing a predictor column with a criterion column. In our case, we

find the numerator of b1 by replacing the first two rows of column 1 with the first

two rows of column 3.

s1y s12
s2y s22

				 				 ¼ 4:4545 4:1818
5:3485 5:9015

				 				 ¼ 3:9220

Then we find our regression coefficient by dividing one determinant by another, just

as we did using Cramer’s Rule.

b1 ¼
s1y s12
s2y s22

				 				
s21 s12
s21 s22

				 				 ¼
3:9220

32:9438
¼ :1191

The formula for finding b2 is similar.

b2 ¼
s2y � s21
� �� s12 � s1y

� �
s21 � s22
� �� s12ð Þ2 ð4:4Þ

Here, we find our numerator by replacing the first two rows of column 2 with the

first two rows of column 3.

b2 ¼
s21 s1y
s21 s2y

				 				
s21 s12
s21 s22

				 				 ¼
8:5455 4:4545
4:1818 5:3485

				 				
8:5455 4:1818
4:1818 5:9015

				 				 ¼
27:0778

32:9438
¼ :8219

In sum, if we remember that a determinant is a measure of variability (i.e., the

volume of a parallelepiped), we can see that, just as we did with a single predictor,

we find a regression coefficient by creating a fraction with a cross-product term in

the numerator and an index of the variability of the predictors in the denominator.
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4.2.4 Testing the Significance of Regression Coefficients

Now that we understand how to interpret and compute regression coefficients we

will learn how to test their statistical significance.

4.2.4.1 Computing the Standard Errors

Testing the significance of a regression coefficient involves creating a fraction with

the coefficient in the numerator and its standard error in the denominator. With only

one predictor, we used the following formula to compute the standard error [see

Eq. (2.29), repeated below].

seb ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSres
ssx

r
ð4:5Þ

With multiple predictors, we modify the formula by including a term in the

denominator that represents the multiple correlation among all of the predictors,

with the particular coefficient being tested designated as the criterion.

seb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSres

ssxi � 1� R2
xi

� �vuut ð4:6Þ

Looking over the formula, we see that the size of a standard error is inversely

related to the variability of the predictor, but positively related to the overlap among

the predictors. Consequently, a standard error will be relatively small when the

variability of its associated predictor is high and its covariance with the other

predictors is low. In fact, if our predictors are entirely uncorrelated, then the

denominator in Eq. (4.6) reduces to ssx, which is the same term we use in

Eq. (4.5) with a single predictor.

Returning now to our data, earlier we found that the correlation between the two

predictors was r¼ .5889. Each variable’s deviation sum of squares is given in

Table 4.1 (ssx1¼ 94.00 and ssx2¼ 64.9167), so we can easily calculate our standard

errors,

seb1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:4974

94:00 � 1� :58892
� �s

¼ :1562

and

seb2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1:4974

64:9167 � 1� :58892
� �s

¼ :1879
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and t values.

tb1 ¼
:1191

:1562
¼ :7624

and

tb2 ¼
:8219

:1879
¼ 4:3741

After referring these values to a t-distribution with (N� k� 1)¼ 9 degrees of

freedom, we find that the latter is significant but the former is not. Notice what has

happened here. Independently, each predictor was significantly associated with the

criterion. But because the two predictors are correlated, the regression weights are

not the same as the correlations. In this case, math aptitude is a unique predictor of

class performance, but self-efficacy beliefs are not.

4.2.4.2 Parameter Covariance Matrix (C)

As first discussed in Chap. 2, rather than computing standard errors one by one

using ordinary algebra, it is faster to find them all at once using matrix algebra. The

formula we use to find the parameter covariance matrix C is repeated below.

C ¼ X
0
X

� ��1

�MSres ð4:7Þ

The diagonal entries of this matrix represent the variances of the bs, and the

off-diagonals represent covariances among the bs. The standard errors are found

by taking the square root of the diagonal elements (denoted cii).

seb ¼ ffiffiffiffiffi
cii

p ð4:8Þ

We already calculated X0X when we first found our regression coefficients, so

now we need to find its inverse,

X
0
X

� ��1

¼
:4408 �:0305 �:0465
�:0304 :0163 �:1015
�:0465 �:01115 :0236

24 35
and perform the relevant calculations.

C ¼
:4408 �:0305 �:0465
�:0304 :0163 �:1015
�:0465 �:01115 :0236

24 35 � 1:4974 ¼
:6600 �:0456 �:0696
�:0456 :0244 �:0173
�:0696 �:0173 :0353

24 35
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We can then find our standard errors, including the standard error of the intercept,

by taking the square root of the diagonal entries.

seb0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
:6600

p
¼ :8124

sebi ¼
ffiffiffiffiffiffiffiffiffiffiffi
:0244

p
¼ :1562

seb2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
:0353

p
¼ :1879

The values of the last two terms match the ones we found with our earlier

calculations, and the first term gives us the denominator we need to test the

statistical significance of our intercept.

tb0 ¼
:6079

:8124
¼ :7482

With 9 df, this term is not significant, so we cannot reject the null hypothesis that the

true intercept ¼ 0 in the population.

4.2.4.3 Confidence Intervals

We now have all the information we need to construct confidence intervals around

all three coefficients using procedures first described in Chap. 2 [see Eq. (2.31)].

Using a spreadsheet function (¼TINV), we find that the critical t-value for 9 df at
.05, two-tailed level of significance ¼ 2.2622. Plugging the value into our equation

yields the confidence intervals for the intercept and our two regression coefficients.

CIb0 ¼ :6079� 2:2622 � :8124f g ¼ �1:2299 and 2:4457

CIb1 ¼ :1191� 2:2622 � :1562f g ¼ �:2344 and :4725

CIb2 ¼ :8219� 2:2622 � :1879f g ¼ :3968 and 1:2470

Only the final value doesn’t include 0, providing another indication that we cannot

reject the null hypothesis for the intercept and first regression coefficient, but we

can reject the null hypothesis for the second regression coefficient.

4.2.5 Forecasting

As with simple linear regression, multiple regression is often used for prediction. In

our example, we can predict performance in a matrix algebra class based on a

student’s self-efficacy beliefs and aptitude. The steps we use to make this prediction

are similar to the ones described in Chap. 2, so we will move quickly through the

procedures.
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4.2.5.1 Expected Average Scores

Suppose we wish to calculate the average expected score of students with a self-

efficacy value ¼ 3 and an aptitude value ¼ 4. We first create a column vector we

will designate p. The first value in the column vector will always equal 1 (to model

the intercept), and the other two values will reflect the scores we have chosen for x1
and x2, respectively.

p ¼
1

3

4

24 35
We then compute our fitted value using p0b,

ŷ ¼ 1 3 4½ �
:6079
:1191
:8219

24 35 ¼ 4:2527

and its standard error by taking the square root of p0Cp.

seŷ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 3 4½ �

:6600 �:0456 �:0696
�:0456 :0244 �:0173
�:0696 �:0173 :0353

24 35 1

3

4

24 35
vuuut ¼ :4468

We can then form a 95 %, two-tailed confidence interval around the predicted value

in the usual manner.

CIŷ ¼ 4:2527� 2:2622 � :4468f g ¼ 3:2420 and 5:2635

These values tell us what to expect if we reran our study many times. To illustrate, if

we conducted our 12-subject study 10,000 times, we expect that the average class

rank of students with a score of 3 on the self-efficacy scale and a score of 4 on the

aptitude scale would fall between 3.2420 and 5.2635 in 9,500 of them; the other

500 samples would (probably) produce average values outside this range.

4.2.5.2 Predicted Single Scores

If we want to predict a single score, rather than an average one, we change our

formula for finding its standard error, using (X0X)� 1 rather than the covariance

matrix [see Eq. (2.38), repeated below].

seŷ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p

0
X

0
X

� ��1
p

n oh i
�MSres

r
ð4:9Þ
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Plugging in our values produces the standard error for an individual score.

seŷ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1 3 4½ �

:4408 �:0305 �:0465
�:0304 :0163 �:1015
�:0465 �:01115 :0236

24 35 1

3

4

24 358<:
9=;

24 35 � 1:4974

vuuut ¼ 1:3027

If we compare the two standard errors, we can see that the standard error of the

individual case is much larger than the standard error of the average case. As noted

in Chap. 2, this makes sense because our ability to predict a single value is always

more subject to error than is our ability to predict an average value across many

instances. We can see this most graphically by using the standard error to construct

a prediction interval around our predicted value.

PIŷ ¼ 4:2527� 2:2622 � 1:3027ð Þ ¼ 1:3059 and 7:1996

Here, we see that the width of the prediction interval far exceeds the width of the

confidence interval.

4.2.6 Comparing the Predictors

Earlier we found that x2 is a unique predictor of math performance but x1 is not.
Given these findings, it is tempting to conclude that x2 is important but x1 isn’t, but
this conclusion is not warranted. The fact that one coefficient is significant and the

other is not provides scant evidence that one is more important than the other. After

all, if one coefficient was significant at the .0499 level and the other was not

significant at the .0501 level, it is unlikely that the difference between them

would be due to anything other than chance variation.

Even when two unstandardized coefficients are of very different magnitudes,

assessing their importance is fraught with interpretive difficulty. Because they are

interdependent, we can’t interpret one regression coefficient in isolation from the

others. Self-efficacy might turn out to be a weak predictor of performance when

paired with math aptitude, but a very strong predictor of performance when paired

with some other variable or when considered alone.

The interdependence that characterizes regression coefficients has an important

consequence. By choosing particular predictors, we can alter the magnitude of the

other regression coefficients in our predictive equation. In our example, I added a

variable that was correlated with self-efficacy beliefs and performance. As a result,

self-efficacy beliefs became less important. Had I added a different variable, I could

have magnified the importance of self-efficacy beliefs. So researchers have a lot of

power in determining the magnitude of their coefficients, and we should only
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characterize the importance of a variable with reference to the particular set of

variables with which it is embedded.

4.2.6.1 Standardized Coefficients

Keeping these cautions in mind, we will discuss two additional ways to compare the

relative importance of our predictors. The first is to use standardized coefficients. In

Chap. 2, we learned that we can calculate standardized coefficients using Eq. (2.16)

(reproduced below).

β ¼ ZX
0
ZX

� ��1

ZX
0
Zy

Applying the formula to our data yields our standardized coefficients.

β ¼ :1403
:8051

� �
Because all variables have been standardized, the comparative size of these coef-

ficients is informative. With aptitude held constant, a standard deviation increase in

self-efficacy beliefs predicts a .1403 standard deviation increase in performance;

with self-efficacy beliefs held constant, a standard deviation increase in aptitude

predicts a .8051 standard deviation increase in performance. From this perspective,

aptitude is a better predictor of performance than is self-efficacy.

4.2.6.2 Directly Comparing Regression Coefficients

We can use the following formulae to directly test the difference between two

unstandardized regression coefficients.

t ¼ b1 � b2
se b1�b2ð Þ

ð4:10Þ

and

se b1�b2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c11 þ c22 � 2c12

p
ð4:11Þ

Remembering that the first column and row in C represent the intercept, we insert

the values from the second and third diagonal elements and their cross product to

derive our standard error.
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se b1�b2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:0244þ :0353� 2 � �:0173ð Þ

p
¼ :3070

and

t ¼ :1191� :8219

:3070
¼ �2:2894, p < :05

With N� k� 1 degrees of freedom, the obtained value exceeds the significance

threshold, indicating that the difference between the two coefficients is unlikely to

be due to chance alone.

4.2.7 R Code: Testing Regression Coefficients

x1 <-c(1,9,1,5,6,8,2,4,2,8,7,7)

x2 <-c(2,7,1,8,5,7,4,7,1,4,3,4)

y <-c(3,8,2,8,5,9,4,5,2,4,2,6)

X <-cbind(1,x1,x2)

mod <-lm(y~x1+x2)

#Regress x1 on x2 and save residual

reg.1 <-lm(x2~x1); res2=(resid(reg.1))

unique2 <-lm(y~res2);summary(unique2)

#Regress x2 on x1 and save residual

reg.2 <-lm(x1~x2); res1=(resid(reg.2))

unique1 <-lm(y~res1);summary(unique1)

#Covariance Matrix and Standard Errors

SS_res <-sum(mod$resid^2)

df <-length(y)-ncol(X)

MS_res <-SS_res/df

C <-solve(t(X)%*%X)*MS_res

std.err <-cbind(sqrt(C[1,1]), sqrt(C[2,2]), sqrt(C[3,3]))

std.err

#Confidence Intervals

confint(mod)

#Forecasting with x1=3 and x2=4

p <-c(1,3,4)

yhat <-t(p)%*% coef(mod)

(continued)
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4.2.7 R Code: Testing Regression Coefficients (continued)

#Forecasting Average Values

std.error.ave <-sqrt(t(p)%*%vcov(mod)%*%p);std.error.ave

t.crit <-abs(qt(.025,df))

CI.lo.ave <-yhat-(t.crit*std.error.ave )

CI.hi.ave <-yhat+(t.crit*std.error.ave )

CI.ave <-cbind(CI.lo.ave,CI.hi.ave );CI.ave

#Forecasting Individual Values

msres <-(sum((y-mod$fitted)^2)/df)

std.error.ind <- sqrt((1+t(p)%*%solve(t(X)%*%X)%*%p)*msres);

std.error.ind

CI.lo.ind <-yhat-(t.crit*std.error.ind)

CI.hi.ind <-yhat+(t.crit*std.error.ind)

CI.ind <-cbind(CI.lo.ind,CI.hi.ind);CI.ind

#Standardized Regression Coefficients

z1 <-scale(x1, center = T, scale = T)

z2 <-scale(x2, center = T, scale = T)

zy <-scale(y,center=T,scale=T)

Z <-cbind(z1,z2,zy)

summary(zmod <-lm(zy~z1+z2-1))

#Test difference between two coefficients

b.dif <-(mod$coef[2]-mod$coef[3])/(sqrt(vcov(mod)[2,2]+vcov(mod)

[3,3]-2*(vcov(mod)[2,3])))

b.dif

pt(b.dif,df)*2

4.3 Partitioning the Variance

Directly comparing regression coefficients provides one way of gauging their

relative importance; another way is to partition the variance in y among them.

Earlier we saw that R2
Y:12¼.8008, indicating that, in combination, self-efficacy and

math aptitude predict ~ 80% of the variance in math performance. In this section,

we will learn how to partition (divide) the amount of explained variance into three

parts: (1) the variance uniquely predicted by x1, (2) the variance uniquely predicted
by x2, and (3) the variance attributable to the combination of the two predictors.

Figure 4.1, known as a Ballentine Venn diagram, presents a way to visualize our

task. The figure shows overlapping circles representing the variability of three

variables: x1 (self-efficacy), x2 (math aptitude), and y (class performance). For

illustrative purposes, we will assume that these are standardized variables, so the

area of each circle¼ 1, and the overlapping areas represent their squared correlation.
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The lowercase letters identify four sections of interest. The section labeled “e”

represents the portion of y that is not predicted by either variable. In our example,

this area is quite small (1�.8008¼.1992). The section labeled “a” shows the portion

of y that uniquely overlaps with x1; the section labeled “b” shows the portion of

y that uniquely overlaps with x2; and the section labeled “c” shows the portion of

y that overlaps with both predictors. If we add up sections a, b, and c, we get our

value for R2
Y:12, and if we then add section e, we get the total variance of 1.

In the following section, you will learn to quantify the area of these partitions by

calculating two terms—a semipartial correlation and a partial correlation. Each

term can also be squared, so you will want to be pay attention to when we are

squaring each value.

4.3.1 Semipartial Correlation

A squared semipartial correlation provides an index of the unique contribution a

variable makes to the prediction of y. In terms of our Ballentine diagram, areas “a”

and “b” represent the squared semipartial correlations of x1 and x2, respectively.

4.3.1.1 Correlation Between a Residualized Predictor and a Raw
Criterion

Although there are easier ways to calculate the term, I believe it is best to think of

the squared semipartial correlation as a squared correlation between a residualized

predictor and a raw criterion. This definition parallels one of the ways we defined a

regression coefficient. Just as a regression coefficient represents the unique weight a

e

b
c

a
y

x1x2

Fig. 4.1 Ballentine Venn

diagram for partitioning the

variance in y
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variable is given in the prediction of a criterion, a squared semipartial correlation

represents the unique variance in a criterion that is attributable to a predictor.

To better understand these parallels, consider the information shown in the left-

hand side of Table 4.3. Here, we have the residualized variable we calculated earlier

when we regressed x2 on x1. The values in the column labeled x2.1 represent the

portion of x2 that x1 cannot predict. Now let’s calculate the correlation between this

residual variable and our criterion by adapting Eq. (2.20).2

ry i:kð Þ ¼
sxi:k y

sxi:k � sy
ð4:12Þ

Plugging in our values yields the (unsquared) semipartial correlation.

ry 2:1ð Þ ¼ 3:1686ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:8551ð Þp � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6:1515ð Þp ¼ :6507

If we square the semipartial correlation, we find the proportion of variance in y that
can be uniquely attributed to x2 (sr

2¼.4234). Section “b” in the Ballentine diagram

represents this value. In our example, ~ 42% of the variance in performance can be

uniquely predicted by aptitude.

4.3.1.2 ΔR2 and the Squared Semipartial Correlation

An equivalent way to view a squared semipartial correlation is to think of it as the

change in R2 that results from adding or eliminating one variable from the overall

regression equation (denoted ΔR2). Since we earlier found the semipartial correla-

tion for x2, we will illustrate this approach by finding the squared semipartial

correlation for x1 (see right-hand side of Table 4.3). The formula appears below,

and the notation, r2yð1:2Þ, indicates that y is the criterion and we are partialing

x2 from x1.

r2y 1:2ð Þ ¼ R2
y:12 � R2

y:2 ð4:13Þ

Looking over the formula, we see that we first calculate the multiple R2 that

results when y is regressed on both predictors R2(R2
Y:12¼.8008). We then eliminate

x1 and calculate R2 when we regress y on x2 only. Because we know the zero-order

correlation between y and x2¼.8877, we can square the value to calculate the term:

R2
Y:2¼.7880. Now we subtract the second term from the first one to derive the

squared semipartial correlation for x1.

2 The notation ry(i. k) indicates that we are calculating the correlation between y and xi with the

variance of xk removed from xi.
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r2y 1:2ð Þ ¼ :8008� :7880 ¼ :0129

The size of the section labeled “a” in Fig. 4.1 represents this value, indicating that

less than 2 % of the variance in performance can be uniquely predicted by self-

efficacy beliefs. If we take the square root of this value, we find the (unsquared)

semipartial correlation.

ry 1:2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
:0129

p
¼ :1134

We can then repeat these steps to calculate r2yð2:1Þ, except this time we eliminate

x2 from the regression equation. Since the zero-order correlation between x1 and

y ¼ .6144, we can square the value to determine that R2
Y:1¼.3775 and find our

squared semipartial correlation by subtraction.

r2y 2:1ð Þ ¼ :8008� :3775 ¼ :4234

This value matches the value we found earlier using the residuals. That’s because a

squared semipartial correlation can be conceptualized in two, equivalent ways: as

the squared correlation between a residualized predictor and a criterion, and as the

change in R2 that results from adding or subtracting a predictor from an overall

regression equation.

Finally, because areas a, b, and c in Fig. 4.1 sum to R2
Y:12, we can compute the

size of “c” by subtraction.

c ¼ :8008� :0129� :4234 ¼ :3646

This value indicates that ~ 36% of the variance in performance is predictable from

the overlap between our two predictors.

4.3.1.3 Tests of Statistical Significance

The easiest way to test the statistical significance of a squared semipartial correla-

tion is to test the significance of the change in R2 that arises when a variable is added

or subtracted from the overall regression equation. Since we used the exclusion

method earlier, we will use it to test the significance of our squared semipartial

correlations.

Fy i:kð Þ ¼
R2
y:ik � R2

y:k

� �
= ky:ik � ky:k
� �

1� R2
y:ik

� �
= N � ky:ik � 1
� � ð4:14Þ
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Substituting our values, we obtain the following values for our two semipartial

correlations.

Fy 1:2ð Þ ¼ :8008� :7880ð Þ= 2� 1ð Þ
1� :8008ð Þ= 12� 2� 1ð Þ ¼ :5813

and

Fy 2:1ð Þ ¼
:8008� :3775ð Þ= 2� 1ð Þ
1� :8008ð Þ= 12� 2� 1ð Þ ¼ 19:1323

With 1 and 9 df, the former value is not significant, but the latter value is. If you take

the square root of these F values, you will find that the result matches the t values
we found when we tested the b coefficients using their standard errors. This will

always be true: the test of a semipartial correlation (squared or not) is identical to

the test of the b coefficient with which it is associated; both tests assess the unique

contribution of a variable to the overall prediction of y.

4.3.1.4 Using Zero-Order Correlations to Calculate Semipartial

Correlations

There are other ways to think about and compute a semipartial correlation and its

square. Later we are going to learn how to calculate these terms and several others

using matrix algebra; but for now, we’ll note that we can also compute the

semipartial correlation using zero-order correlations.

ry i:kð Þ ¼
ryi � rik � rykffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� rik2
p ð4:15Þ

These calculations are straightforward, but you might want to perform them to

verify that they also produce the semipartial correlation.

4.3.2 Partial Correlation

So far, you have learned that a squared semipartial correlation quantifies the unique

association between a predictor and a criterion. In terms of our example, the value

we obtain for r2yð1:2Þ answers the question: apart from the variance it shares with self-

efficacy beliefs, does aptitude predict math performance? A slightly different

method of partitioning the variance is to calculate a squared partial correlation.

Instead of finding the variance in y that is uniquely predicted by xi, a squared partial
correlation finds the unique variance in y that is uniquely predicted by xi. In other
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words, the question becomes “Does xi predict y once xk is statistically removed from

both variables?” To denote the squared partial correlation, we remove the paren-

theses in the subscript, indicating that the control variable is partialed from the

criterion and the predictor (e.g., r2y1:2 represents the squared partial correlation

between x1 and y, controlling for x2).

4.3.2.1 Correlation Between a Residualized Predictor

and a Residualized Criterion

As before, there are several ways to calculate a partial correlation and its square.

Although not the easiest, the most clarifying approach is to revisit the role of

residuals. Whereas a semipartial correlation represents the correlation between a

residualized predictor and a raw criterion, the partial correlation represents the

correlation between a residualized predictor and a residualized criterion. To illus-

trate, if we wanted to calculate the partial correlation between x2 and y after

controlling for x1, we would first regress x2 on x1 (and save the residuals) and

then regress y on x1 (and save the residuals). Finally, we correlate the two residuals
to calculate our partial correlation. If we square this value, we get the squared

partial correlation.

The left-hand side of Table 4.3 provides the relevant values. Using our variance/

covariance method, we find the partial correlation for x2.

ry2:1 ¼ sx2:1 y:1

sx2:1 � sy:1
¼ 3:1686ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3:8551ð Þp � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:8295ð Þp ¼ :8247

If we then square this value, we find the squared partial correlation.

r2y2:1 ¼ :82472 ¼ :6801

4.3.2.2 ΔR2 and the Squared Partial Correlation

We can also find a squared partial correlation by using changes in R2.

r2yi:k ¼
R2
y:ik � R2

y:k

1� R2
y:k

ð4:16Þ

Here, we see that the numerator is the same term we used when calculating the

squared semipartial correlation, but we have now added a denominator. The

denominator is a residual, representing the portion of y that cannot be explained

by the predictor we are controlling. As long as our control variable is at least

somewhat correlated with our criterion, the denominator will be less than 1, and the

value of a partial correlation will be larger than the value of a semipartial correla-

tion. Inserting our values yields the squared partial correlations.
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r2y1:2 ¼
:8008� :7880

1� :7880
¼ :0607

and

r2y2:1 ¼
:8008� :3775

1� :3775
¼ :6801

4.3.2.3 Using Zero-Order Correlations to Calculate Partial

Correlations

Finally, we can calculate the partial correlations by taking the square root of the

values we just calculated or by using the zero-order correlations.

ryi:k ¼ ryi � rik � rykffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2ik

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2yk

q ð4:17Þ

4.3.2.4 Tests of Significance

Now that you have learned so many ways to calculate a partial correlation, you are

probably wondering how you test its significance. Curiously, you don’t need to. The

test of a partial correlation yields the same value as the test of a semipartial

correlation, and this value is the same as a test of an unstandardized regression

coefficient, a standardized regression coefficient, and the change in R2. Yes, you

read correctly. All of the coefficients we have calculated—unstandardized and

standardized regression coefficients, semipartial and partial correlations and their

squares, and changes in R2—have exactly the same statistical significance.

Given these equivalences, you might be wondering why we need all of these

terms (or at least why you are being asked to learn them all!). The reason is that they

illuminate different issues.

• A regression coefficient represents the unique weight of each predictor in the

prediction of a criterion. With unstandardized regression coefficients, the weight

is described in raw units, and with standardized regression coefficients, the

weight is described in standardized units.

• The change in R2 and squared semipartial correlation shows the proportion of

variance in a raw criterion that is uniquely predicted by each variable.

• The squared partial correlation describes the proportion of variance in a

residualized criterion that is uniquely predicted by each variable.

In short, the different terms provide overlapping, but not entirely redundant,

information regarding the association between the predictors and a criterion.
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4.3.3 Are Regression Coefficients Semipartial Coefficients
or Partial Coefficients?

Finally, let’s return to a consideration of a regression coefficient. In one interpre-

tation, we noted that a regression coefficient represents the weight given to a

residualized predictor in the prediction of a raw criterion. This sounds like a

semipartial coefficient, as here we have a residualized predictor and a raw criterion.

But we also noted that a regression coefficient represents the weight given to a

predictor after all other predictors have been taken into account. This sounds like a

partial coefficient, as here we have a residualized predictor and a residualized

criterion. So which is the right way to think about a regression coefficient—as a

semipartial coefficient or as a partial coefficient?

Interestingly, both descriptions are accurate because they yield the same value.

To see why, return to the information presented at the bottom of Table 4.3. Here, we

see that the covariance between x2.1 and y equals the covariance between x2.1 and y.1
(both values ¼ 3.1686). Now remember that a regression coefficient is calculated

using the covariance in the numerator and the variance of the predictor in the

denominator. Since a semipartial and partial regression coefficient use the same

(residualized) predictor, they yield the same value.

b ¼ sxy
s2x

¼ 3:1686

3:8551
¼ :8219

For this reason, we can refer to a regression coefficient as a semipartial coefficient

or as a partial coefficient. My preference is to think of it as a semipartial coefficient.

My reasoning is this: If you get the same value using a raw criterion as a

residualized one, then you don’t need to residualize the criterion to understand

the effect. So I refer to these coefficients as semipartial coefficients rather than

partial ones.

4.3.4 R Code: Partitioning the Variance

x1 <-c(1,9,1,5,6,8,2,4,2,8,7,7)

x2 <-c(2,7,1,8,5,7,4,7,1,4,3,4)

y <-c(3,8,2,8,5,9,4,5,2,4,2,6)

X <-cbind(1,x1,x2)

mod <-lm(y~x1+x2)

rsqr.mod <-summary(mod)$r.squared

#Regress x1 on x2 and save residual

reg.1 <-lm(x2~x1)

summary(x1only <-lm(y~ resid(reg.1)))

(continued)
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4.3.4 R Code: Partitioning the Variance (continued)

#Regress x2 on x1 and save residual

reg.2 <-lm(x1~x2)

summary(x2only <-lm(y~ resid(reg.2)))

#Semi-partial correlations

semi.1 <-cor (resid(reg.1),y)

semi.2 <-cor (resid(reg.2),y)

#Squared semi-partial correlations

semi.1.sqr <-semi.1^2

semi.2.sqr <-semi.2^2

#Squared semi-partials as changes in R^2

just1 <-lm(y~x1)

just2 <-lm(y~x2)

anova(mod,just1,test="F")

anova(mod,just2,test="F")

rsqr.just1 <-summary(just1)$r.squared

rsqr.just2 <-summary(just2)$r.squared

x1.adds <-rsqr.mod-rsqr.just1

x2.adds <-rsqr.mod-rsqr.just2

allsemi <-cbind(semi.1, semi.1.sqr, x1.adds,semi.2,semi.2.sqr,x2.adds)

allsemi

#Partial Correlations

#regress y on x1 and save residual

reg.y1 <-lm(y~x1)

#regress y on x2 and save residual

reg.y2 <-lm(y~x2)

partial.1 <-cor (resid(reg.1),resid(reg.y1))

partial.2 <-cor (resid(reg.2), resid(reg.y2))

partial.1.sqr <-partial.1^2

partial.2.sqr <-partial.2^2

allpartial <-cbind(partial.1, partial.1.sqr, partial.2,partial.2.sqr)

allpartial

136 4 Multiple Regression



4.4 Calculating Regression Coefficients Using Cofactors

In this chapter, we have discussed numerous ways of calculating and testing the

distribution of variance among our variables. Many of the calculations help us

understand the logic of the operations we are performing, but remembering all of

the formulae is difficult. Fortunately, all of these calculations can be made using a

few simple matrix operations. Moreover, the matrix method can handle any number

of predictors, so it provides a more efficient way to calculate the various terms.

4.4.1 Complete Sum of Squares

We begin by creating a matrix we will designate V because it is comprised of all of

our raw variables (including the leading 1’s). For clarity, Table 4.4 reproduces the

data from Table 4.1, with the leading 1’s included.

4.4.1.1 Compute V0V

When we compute V0V, we get a symmetric matrix, with squared sums on the

diagonals and cross-product sums on the off-diagonals. Because we have used a

column of leading 1’s, the cross-product sums for the first row and column represent

the sum of each variable.

Table 4.4 Raw variables

including leading 1’s
Self-efficacy x1 Aptitude x2 Performance y

1 1 2 3

1 9 7 8

1 1 1 2

1 5 8 8

1 6 5 5

1 8 7 9

1 2 4 4

1 4 7 5

1 2 1 2

1 8 4 4

1 7 3 2

1 7 4 6
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V
0
V ¼

12 60 53 58

60 394 311 339

53 311 299 315

58 339 315 348

2664
3775 ¼

N ΣX1 ΣX2 ΣY
ΣX1 ΣX2

1 ΣX1X2 ΣX1Y
ΣX2 ΣX2X1 ΣX2

2 ΣX2Y
ΣY ΣYX1 ΣYX2 ΣY2

2664
3775

We will use the following formulae to extract each variable’s deviation sum of

squares.3

ss ¼ ΣX2 � ΣXð Þ2
N

ð4:18Þ

Plugging in the data from our example yields the following values.

ssx1 ¼ 394� 602

12
¼ 94:00

ssx2 ¼ 299� 532

12
¼ 64:9168

and

ssy ¼ 348� 582

12
¼ 67:6667

4.4.1.2 Calculate the Determinant of V0V

Our next step is to calculate the determinant of V0V, which we can easily do using a
spreadsheet function (¼MDETERM).

V
0
V

		 		 ¼ 12 60 53 58

60 394 311 339

53 311 299 315

58 339 315 348

								
								 ¼ 644621

4.4.1.3 Calculate Cofactors

Finally, we need to find nine cofactors from two adjugate matrices. Six of the

cofactors come from the adjugate of V0V, and the other three come from the

adjugate of X0X. Most spreadsheets don’t come with a function for calculating

the adjugate, but since an inverse is found by dividing the adjugate by the deter-

minant, we can find the adjugate by multiplying the inverse by the determinant

3 The spreadsheet function (¼DEVSQ) also produces the deviation sum of squares.
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(adjugate¼MINVERSE*MDETERM). Table 4.5 presents the adjugate matrices

we need, and the nine cofactors of interest are shaded to help you identify them.

Before we learn how to use these cofactors to find our regression coefficients,

let’s review how they are calculated. In Chap. 1, we learned that a cofactor is found

by computing the determinant of a submatrix formed from a larger matrix (called a

minor) and then calculating the sign of the cofactor using Eq. (1.9) (reproduced

below).

f ij ¼
mij . . . iþ jð Þ is even
�mij . . . iþ jð Þ is odd



ð4:19Þ

To illustrate, the minor, v14, represents the determinant of a matrix formed by

eliminating the first row and fourth column of V0V.

When we apply the rule above, we see that (1 + 4) is an odd number, so we change

the sign.

v14 ¼ �29077

We use a similar logic to calculate the other values in the final column of our

adjugate matrix.

Table 4.5 Matrices needed for a complete regression analysis

V0V X0X

12 60 53 58 12 60 53

60 394 311 339 60 394 311

53 311 299 315 53 311 299

58 339 315 348 Determinant = 47834

ss 94 64.9167 67.6667

Determinant = 644621

v =Adjugate (V0V) x =Adjugate (X0X)
301821 �16173 �6045 �29077 21085 �1457 �2222

�16173 11176 �2758 �5695 �1457 779 �552

�6045 �2758 47516 �39316 �2222 �552 1128

�29077 �5695 �39316 47834

v11 v12 v13 v14 x11 x12 x13
v21 v22 v23 v24 x21 x22 x23
v31 v32 v33 v34 x31 x32 x33
v41 v42 v43 v44
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We do not change the sign here, because (2 + 4) is an even number.

v24 ¼ �5695

Continuing on, we will compute the other two cofactors.

v34 ¼ �39316

v44 ¼ 47834

Notice that this last cofactor represents the determinant of the predictors. Conse-

quently, we can designate this value as v44 or |X
0X|. As you will see, this value plays

a role in all of the calculations you are going to learn.

4.4.2 Residual Sum of Squares and Coefficient
of Determination

We will begin by calculating the residual sum of squares—the portion of the

variance in y that our predictors cannot explain.

SSres ¼
V

0
V

		 		
X

0
X

		 		 ð4:20Þ

Plugging in our values, we find.

SSres ¼ 644621

47834
¼ 13:4762
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If you look back, you will see that this is the same value we found earlier by

summing the squared residuals.

It’s instructive to think about the operations here. Determinants are measures of

variability (i.e., the volume of a parallelepiped). The V0V determinant will always

be greater than the X0X determinant, but if the two are similar then the residual sum

of squares will be small and the regression sum of squares will be correspondingly

large. So we can gauge how well our predictors perform by forming a fraction with

the overall determinant in the numerator and the determinant of the predictors in the

denominator.

We can also find our coefficient of determination by using a slightly modified

version of Eq. (4.20).

R2 ¼ 1� V
0
V

		 		
X

0
X

		 		�ssy ð4:21Þ

Inserting our values, we find our multiple squared correlation.

R2 ¼ 1� 644621

47834 � 67:6667 ¼ :8008

We can then easily compute our F value.

F ¼ :8008=2

1� :8008ð Þ= 12� 2� 1ð Þ ¼ 18:0954

In short, we extract a great deal of information by dividing the determinant of all

variables by the determinant of the predictors.

4.4.3 Regression Coefficients

Table 4.6 shows that we can also use the cofactors and sum of squares to compute

all of the regression coefficients and correlations we have covered in this chapter.

Table 4.6 Using cofactors and sum of squares to find regression coefficients and correlations

Formula x1 x2

bi ¼ �vij
vjj

b1 ¼ 5695
47834

¼ :1191 b2 ¼ 39316
47834

¼ :8219

βi ¼ �vij� ffiffiffiffiffissxi
p

vjj� ffiffiffiffissyp β1 ¼ 5695� ffiffiffiffi94p
47834� ffiffiffiffiffiffiffiffiffiffiffi67:6667

p ¼ :1403 β2 ¼ 39316� ffiffiffiffiffiffiffiffiffiffiffi64:9167
p

47834� ffiffiffiffiffiffiffiffiffiffiffi67:6667
p ¼ :8051

sri ¼ �vijffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vjj�xii�ssyp sr1 ¼ 5695ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

47834�779�67:6667p ¼ :1134 sr2 ¼ 39316ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
47834�1128�67:6667p ¼ :6507

pri ¼ �vijffiffiffiffiffiffiffiffi
vjj�viip pr1 ¼ 5695ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

47834�11176p ¼ :2463 pr2 ¼ 39316ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
47834�47516p ¼ :8247

sebi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSe � xii

vjj

q
seb1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4974 � 779

47834

q
¼ :1562 seb2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4974 � 1128

47834

q
¼ :1879
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4.4.3.1 Unstandardized Regression Coefficients

The steps used to calculate the various terms in Table 4.6 are similar, so I will use

the unstandardized regression coefficient to illustrate them,

b ¼ �vij
vjj

ð4:22Þ

with vjj denoting the final column entry. As you can see, our formula involves taking

one entry from the last column of the adjugate matrix, changing its sign, and dividing

it by the final entry in our adjugate matrix (which represents the determinant of the

predictors). Performing the calculations produces our regression coefficients.4

b1 ¼ �v24
v44

¼ � �5695ð Þ
47834

¼ :1191

and

b2 ¼ �v34
v44

¼ � �39316ð Þ
47834

¼ :8219

If you look back to the beginning of the chapter, you will see that these values

match the ones we found earlier.

4.4.3.2 Cramer’s Rule and the Cofactor Matrix

Unsurprisingly, the preceding calculations represent another illustration of

Cramer’s Rule. Recall that Cramer’s Rule uses the determinant of the predictors

as a denominator. This term (v44) appears in the denominator of Eq. (4.22). We find

the numerator using Cramer’s Rule by replacing one of the columns in the original

matrix with the values in the criterion column. This is what we have done for each

of our regression coefficients, changing the sign when needed according to

Eq. (4.19).

b1 ¼
12 58 53

60 339 311

53 315 299

						
						 ¼ 5695

and

4Because the first row in the adjugate matrix represents the intercept, we use the second row for

the b1 coefficients and the third row for the b2 coefficients.
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b2 ¼
12 60 58

60 394 339

53 311 315

						
						 ¼ 39316

All we need to do to find our regression coefficients, then, is change the sign of each

cofactor before dividing it by the determinant of the predictors. So it’s not magical.

The cofactor matrix simply provides an efficient way of using Cramer’s Rule to

perform the necessary calculations.

4.4.4 Computing the Remaining Coefficients
and Correlations

Computing the standardized regression coefficients and partial and semipartial

correlations is a straightforward extension of the procedures we used to find our

unstandardized regression coefficients. Table 4.6 provides the necessary formulae

and calculations, and you should take the time to verify that they produce the same

values we found earlier in this chapter.

4.4.5 Summary

Using a few cofactors and the deviation sum of squares, we were able to test our

overall regression model and calculate all of the coefficient terms we have covered

in this chapter. I don’t expect you to memorize all of the formulae, but you should

take a close look at how they are constructed. They all involve creating a fraction of

determinants, with a cross-product term in the numerator and the determinant of the

predictors in the denominator. Since the determinant is an index of variability, we

are always comparing the variability of a cross-product term with the variability of

our predictors.

4.4.6 R Code: Regression Coefficients as Cofactors

x1 <-c(1,9,1,5,6,8,2,4,2,8,7,7)

x2 <-c(2,7,1,8,5,7,4,7,1,4,3,4)

y <-c(3,8,2,8,5,9,4,5,2,4,2,6)

V <-cbind(1,x1,x2,y)

VV <-t(V)%*%V

X =cbind(1,x1,x2)

XX =t(X)%*%X

(continued)
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4.4.6 R Code: Regression Coefficients as Cofactors
(continued)

Vadj <-solve(VV)*det(VV); Vadj

Xadj <-solve(XX)*det(XX); Xadj

df = length(y)-1

#Compute Sum of Squares and Coefficient of Determination

SS.res <-det(VV)/det(XX); SS.res

SS.tot <-var(y)*df

SS.reg <-SS.tot-SS.res

R2 <-1-(det(VV)/(det(XX)*SS.tot)); R2

#Coefficients for x1

b.1 <- -Vadj[2,4]/det(XX)

beta.1 <- -Vadj[2,4]*sqrt(var(x1)*df)/(det(XX)*sqrt(SS.tot))

semi.1 <- -Vadj[2,4]/sqrt(det(XX)*(SS.tot)*Xadj[2,2])

partial.1 <- -Vadj[2,4]/sqrt(det(XX)*Vadj[2,2])

stderr.1 <- sqrt(SS.res/9*(Xadj[2,2]/Vadj[4,4]))

all.1 <-cbind(b.1,beta.1,semi.1,partial.1,stderr.1)

all.1

#Coefficients for x2

b.2 <- -Vadj[3,4]/det(XX)

beta.2 <- -Vadj[3,4]*sqrt(var(x2)*df)/(det(XX)*sqrt(SS.tot))

semi.2 <- -Vadj[3,4]/sqrt(det(XX)*(SS.tot)*Xadj[3,3])

partial.2 <- -Vadj[3,4]/sqrt(det(XX)*Vadj[3,3])

stderr.2 <- sqrt(SS.res/9*(Xadj[3,3]/Vadj[4,4]))

all.2 <-cbind(b.2,beta.2,semi.2,partial.2,stderr.2)

all.2

4.5 Chapter Summary

1. Multiple regression involves solving a series of linear equations with multiple

unknown quantities. As with simple linear regression, solving the normal equa-

tions using ordinary least squares estimation yields the best estimate of our

population parameters.

2. Regression coefficients are characterized by interdependence. Consequently, a

change in any of the variables used to predict a criterion will ordinarily produce

changes in the value of all of the coefficients in the equation.

3. There are three ways to conceptualize a regression coefficient:

3a. It represents the unique contribution of each predictor to the prediction of a

criterion.
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3b. It represents the contribution of a predictor to a criterion after all other

predictors have been taken into account.

3c. Holding all other predictors constant, it represents the one unit change in a

criterion with a one unit change in a predictor.

4. The size of a standard error is inversely related to the variance of the predictor

and positively related to the overlap among the predictors. It can be found using

ordinary algebra or by taking the square root of the diagonal entries of the

parameter covariance matrix.

5. The regression equation can be used to predict future values. The standard error

we use to construct confidence intervals around those values depends on whether

we are predicting an average fitted value or an individual one.

6. With two predictors, the variance in a criterion can be partitioned into three

parts: the part uniquely due to variable 1, the part uniquely due to variable 2, and

the part that is due to the overlap between the two predictors.

7. A semipartial correlation represents the correlation between a residualized

predictor and a raw criterion. A squared semipartial correlation represents the

proportion of the variance in a raw criterion that is uniquely due to a residualized

predictor. A squared semipartial correlation also represents the change in R2 that

is produced when a variable is added or eliminated from a regression analysis.

8. A partial correlation represents the correlation between a residualized predictor

and a residualized criterion. A squared partial correlation represents the propor-

tion of the variance in a residualized criterion that is uniquely due to a

residualized predictor.

9. All of the regression coefficients and correlations can be found from two

adjugate matrices and each variable’s deviation sum of squares. There are

many formulae to learn, but they are all fractions, with the determinant of a

cross-product term in the numerator and the determinant of the predictors in the

denominator. In short, all terms assess the variability between a predictor and a

criterion, relative to the variability among the predictor themselves.
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Chapter 5

Matrix Decompositions

Multiple regression finds a fitted value for a criterion from a linear combination of

the predictors. But suppose we have a collection of variables without a criterion.

This state of affairs characterizes our design matrix, X, as none of the predictors is a

criterion. Is there a way to create a linear combination of these variables? There is,

but it’s not as simple as predicting to a criterion. To understand how it’s done, we

take up the study of matrix decompositions. There are many varieties, but all

decompose a matrix into two or more smaller matrices. Their value is twofold:

they highlight variables that share common variance, and they offer computation-

ally efficient ways of solving linear equations and performing least squares

estimation.

5.1 Eigen Decomposition

The first decomposition method we will consider is the eigen decomposition.1 Here,

a square matrix A is decomposed into a set of eigenvalues (λ) and eigenvectors (v).
When the eigenvalues are stored in a diagonal matrix Λ and the eigenvectors are

consolidated into a matrix V, the eigenpairs (as they are collectively known)

reproduce the original matrix.

A ¼ VΛV�1 ð5:1Þ

Eigen decomposition is used extensively in many areas of science, technology,

engineering, and mathematics. In this text, we focus on their use in statistical

Electronic Supplementary Material: The online version of this chapter (doi: 10.1007/978-3-

319-11734-8_5) contains supplementary material, which is available to authorized users

1 Eigen decomposition is sometimes referred to as spectral decomposition.
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analyses, omitting many important topics and glossing over some important details.

Readers interested in a more thorough treatment should consult additional sources

(e.g., Stewart 2001; Strang 2009).

5.1.1 Matrix Multiplication with an “Ordinary” Vector

We begin our discussion of eigen decomposition by reviewing some basic proper-

ties of matrix multiplication. Consider the following equation.

7 � 2

6

� �
¼ 14

42

� �
In this equation, we multiply a vector by a scalar. Notice that the product vector

represents a linear transformation of the original vector (i.e., each value in the

product vector is 7* the value in the first vector). We can see this linearity clearly in

Panel A of Fig. 5.1. Notice that the product vector simply extends the original

vector. Formally, we say that scalar multiplication produces a linear transformation

of our original vector.

Now let’s consider matrix multiplication. Below, we premultiply the same

column vector by a matrix.

5 6

1 4

� �
2

6

� �
¼ 46

26

� �
In this case, the product vector does not constitute a linear transformation of the

original column vector (see Panel B of Fig. 5.1). Instead, the product vector changes

length and direction.

0
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35

40

45

0 5 10 15

Scalar Multiplication: No
Eigenvector

Original Vector Product Vector

0

5

10

15

20

25

30

0 10 20 30 40 50

Matrix Multiplication: No
Eigenvector

Original Vector Product Vector

Fig. 5.1 Scalar and matrix multiplication using an “ordinary” vector
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5.1.2 Matrix Multiplication with an Eigenvector

So far, we have seen that only a scalar multiplication produces a linear transfor-

mation of a vector. There is an exception, however. When a vector is an eigenvector
of a matrix, matrix multiplication also produces a linear transformation of the

vector.2 To demonstrate, let’s redo our calculations with a different vector.

6

2

� �
First, we will perform our scalar multiplication and confirm that our new product

vector still produces a linear transformation of the original vector (see Panel A in

Fig. 5.2).

7 � 6

2

� �
¼ 42

14

� �
This is not surprising because scalar multiplication always produces a linear

transformation. Now let’s perform our matrix multiplication with this new vector.

5 6

1 4

� �
6

2

� �
¼ 42

14

� �
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Fig. 5.2 Scalar and matrix multiplication using an eigenvector

2 The German word eigen is loosely translated to mean “of one’s own.”
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Here, we do find something surprising, as the product vector is also a linear

transformation of the original vector (see Panel B in Fig. 5.2). Moreover, the

product vector is again 7* the original vector.

To summarize:

• Scalar multiplication of a vector always produces a linear transformation, but

matrix multiplication of a vector does so only when a specific vector, called an

eigenvector, is used.

• The values of the eigenvector vary with the composition of the premultiplication

matrix. Consequently,
6

2

� �
is not always an eigenvector; it’s an eigenvector only

when used with matrices that have properties similar to our premultiplication

matrix
5 6

1 4

� �
.

• Note, however, that any scalar multiple of an eigenvector is also an eigenvector.

So we could divide each element of our eigenvector by 3
2

:6667

� �
or multiply

each entry by 2, 000
12, 000

4, 000

� �
and still observe a linear transformation.

• Finally, in our example, the linear transformation we observe will always be 7*

the eigenvector. This is because 7 is an eigenvalue for this premultiplication

matrix and eigenvector. We denote the eigenvalue with the Greek letter lambda

(λ) and define an eigenvector as any vector that satisfies the following equality,

where A designates the premultiplication matrix, v designates the eigenvector,

and λ designates the eigenvalue.3

Av ¼ λv ð5:2Þ

5.1.3 Calculating Eigenvalues

To calculate an eigenvector, we first need to find its corresponding eigenvalue.

Eigenvalues are single values (i.e., scalars) that transform a nonsingular matrix into

a singular one by introducing a linear dependence. As first discussed in Chap. 1, a

singular matrix has a determinant of 0 and, consequently, cannot be inverted. Below

is an example of a singular matrix. As you can see, the second column is simply 2*

the first.

3 Even though it will satisfy Eq. (5.1), a vector of 0’s is not considered an eigenvector.
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5 10

1 2

� �
You can easily verify that the determinant of the matrix is 0 by subtracting the

product of the off-diagonal entries from the product of the main diagonal entries.

5 10

1 2

				 				 ¼ 5 � 2ð Þ � 10 � 1ð Þ ¼ 0

5.1.3.1 Characteristic Equation

Eigenvalues are found by solving an equation known as the characteristic equation,

A� λIj j ¼ 0 ð5:3Þ

where A is our original matrix, and I is an identity matrix with the same dimensions

as A. What we are looking for, then, is a value that produces a singular matrix when

it is subtracted from the diagonal entries of a matrix. This value is known as an

eigenvalue.

With a 2� 2 matrix, we can solve the equation using simple algebra without too

much difficulty. With larger matrices, we will need to learn an iterative technique

that will be more complicated. We will start with the simple case, as it provides the

most insight into the underlying logic, and learn the more difficult technique later in

this chapter.

5.1.3.2 Solving the Characteristic Equation

Returning to our earlier matrix, we first note that A is not singular.

5 6

1 4

				 				 ¼ 14

Now we solve the characteristic equation.

5 6

1 4

� �
� λ 1 0

0 1

� �				 				 ¼ 0

After some simple multiplication, we get

5� λ 6

1 4� λ

				 				 ¼ 0
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Because we know the determinant of a 2� 2 matrix can be found from the products

of the two diagonals, we can set up the following equation to find our eigenvalues.

5� λð Þ � 4� λð Þf g � 6 � 1ð Þ ¼ 0

Working through the multiplication gives us the following polynomial (quadratic)

equation.

λ2 � 5þ 4ð Þλþ 5 � 4ð Þ � 6 � 1ð Þ ¼ 0

After collecting terms,

λ2 � 9λþ 14 ¼ 0

we solve the equation using the quadratic function

λ ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
ð5:4Þ

with a¼ 1, b¼� 9, and c¼ 14.

� �9ð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�9ð Þ2 � 4 � 14ð Þ

q
2

¼ 7

and

� �9ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�9ð Þ2 � 4 � 14ð Þ

q
2

¼ 2

We now have the two eigenvalues for this 2� 2 matrix.4 This will always be the

case (i.e., there will always be as many eigenvalues as there are columns in A). In a

moment, we will see that a unique set of eigenvectors is associated with each

eigenvalue, but first let’s confirm that each eigenvalue turns our nonsingular

A matrix into a singular one.

5� 7 6

1 4� 7

				 				 ¼ �2 6

1 �3

				 				 ¼ 0

4By convention, the largest eigenvalue is designated first, with the size of each successive

eigenvalue decreasing in magnitude.
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and

5� 2 6

1 4� 2

				 				 ¼ 3 6

1 2

				 				 ¼ 0

5.1.4 Calculating Eigenvectors

Having calculated the eigenvalues, we can find the eigenvectors associated with

each one by solving the equality shown in Eq. (5.2). Rearranging terms yields the

following.

A� λð Þv ¼ 0 ð5:5Þ

Notice that A� λ is a subtraction matrix, so we are looking for a vector that, when

premultiplied by a subtraction matrix, returns a product vector of 0’s.

5.1.4.1 Calculating the Eigenvectors Associated with the First

Eigenvalue

We will use Eq. (5.5) along with our first subtraction matrix to find our first set of

eigenvectors.

�2 6

1 �3

� �
v1:1
v2:1

� �
¼ 0

0

� �
After multiplying, we produce two equations with two unknowns.

�2v1:1 þ 6v2:1 ¼ 0

and

1v1:1 þ�3v2:1 ¼ 0

The easiest way to solve these equations is to set one of the unknown terms equal to

1 and then solve for the other unknown. To illustrate, we will use the top equation

and determine the value of v1.1 after setting v2.1¼ 1.

�2v1:1 þ 6 ¼ 0

�2v1:1 ¼ �6

and

v1:1 ¼ �6

�2
¼ 3
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Since we have designated v2.1¼ 1, we have found the eigenvector associated with

our first eigenvalue (λ1¼ 7).

v1:1
v2:1

� �
¼ 3

1

� �

5.1.4.2 Converting Eigenvectors to Unit Length

Earlier, we noted that any scalar multiple of an eigenvector is also an eigenvector.

Consequently, this particular eigenvector is only one of an infinite number associ-

ated with our first eigenvalue. To avoid confusion, it is customary to express

eigenvectors in unit length, such that the sum of their squared values¼ 1. To effect

this conversion, we divide each eigenvector by the square root of the sum of the

squared values. This conversion creates a vector known as the Euclidean norm of

the eigenvector.

viffiffiffiffiffiffiffiffiffiffi
Σvi2

p ð5:6Þ

Applying this rule produces unit length eigenvectors associated with our first

eigenvalue.

3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32 þ 12

p ¼ :9487

and

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32 þ 12

p ¼ :3162

v1:1
v2:1

� �
¼ :9487

:3162

� �

5.1.4.3 Calculating the Eigenvectors Associated with the Second

Eigenvalue

Now we will find the eigenvectors associated with λ2¼ 2. Using our second

subtraction matrix produces

3 6

1 2

� �
v1:2
v2:2

� �
¼ 0

0

� �
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yielding two simultaneous equations.

3v1:2 þ 6v2:2 ¼ 0

1v1:2 þ 2v2:2 ¼ 0

This time we will set v1.2¼ 1 and solve for v2.2.

3þ 6v2:2 ¼ 0

6v2:2 ¼ �3

and

v2:2 ¼ �3

6
¼ �:5

v1:2
v2:2

� �
¼ 1

�:5

� �
If we use the second equation, we get the same result.5

Finally, we can create unit vectors following the procedures described earlier.

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ�:52

p ¼ :8944

and

�:5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ�:52

p ¼ �:4472

producing

v1:2
v2:2

� �
¼ :8944

�:4472

� �
Just to be thorough, let’s prove that premultiplying this eigenvector by our original

matrix satisfies the conditions of an eigenvector, such that the product vector is λv
(which in our case ¼ 2v).

5 Because any scalar multiple of an eigenvector is an eigenvector, we could flip the signs of these

eigenvectors by multiplying both values by�1. For this reason, which of the two values receives a

negative sign is arbitrary.
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5 6

1 4

� �
:8944
�:4472

� �
¼ 1:7888

�:8944

� �
Finally, we will combine our eigenvalues and eigenvectors to produce our

eigenpairs.

λ ¼ 7 2

V ¼ :9487
:3162

� �
:8944
�:4472

� �
5.1.4.4 Summary

• A 2� 2 matrix has two eigenvalues.

• When subtracted from the diagonal elements of the original matrix, each eigen-

value produces a matrix with a linear dependence (i.e., not invertible with a

determinant¼ 0).

• Associated with each eigenvalue is an eigenvector that, when premultiplied by

the original matrix, returns a vector that changes length but not direction. The

change in length ¼ λv.6

5.1.5 Eigenvalues and Variance Consolidation

At the outset of this chapter, we asked whether there was a way to create a linear

combination among a set of variables for which no variable is a criterion. Having

taken the time to learn how to calculate eigenpairs, we will now see how they

provide a solution to our question.

5.1.5.1 Eigenvalues and Other Properties of a Square Matrix

We will begin by examining the association between eigenvalues and three other

properties of a matrix: its trace, its determinant, and its rank. To help us see these

connections, let’s look again at our original matrix, remembering that our eigen-

values were 7 and 2.

6 The absolute value of an eigenvalue quantifies how much the eigenvector is stretched (|λ|> 1) or

shrunk (|λ|< 1) when it is premultiplied by A; the sign of an eigenvalue indicates whether the

eigenvector points in the same direction (λ> 0) or the opposite direction (λ< 0) when it is

premultiplied by A. When λ¼ 0, the eigenvector is unchanged when premultiplied by A.
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A ¼ 5 6

1 4

� �
Notice that the trace of the matrix (found by summing the elements on the main

diagonal) equals 9 and that this value matches the sum of the two eigenvalues

(7 + 2¼ 9). This is no coincidence, as the sum of the eigenvalues always equals the

trace.

Now let’s reconsider the determinant of the matrix.

Aj j ¼ 5 6

1 4

				 				 ¼ 5 � 4ð Þ � 6 � 1ð Þ ¼ 14

This value matches the product of the eigenvalues (7 * 2¼ 14), and this, too, will

always be true (i.e., the product of the eigenvalues equals the determinant of the

original matrix). Because the trace and the determinant of a matrix are measures of

its variability, these associations reveal that eigenpairs redistribute (but preserve)

the variability in a matrix.

Finally, we define the rank of a matrix [rank(A)] as the number of eigenvalues

that are >0. An λ¼ 0 signifies the presence of a linear dependence. There are no

linear dependencies in our example, and the rank ofA¼ 2.When the rank of a square

matrix equals its number of columns (or rows), the matrix is said to be of full rank
and the matrix is invertible; when the rank of a square matrix is less than its number

of columns (or rows), the matrix is termed rank deficient and cannot be inverted.

5.1.5.2 Eigenvalues of Correlation Matrices

Correlation matrices provide further evidence that eigenvalues apportion the vari-

ability in a matrix. Recall that correlations are covariances among standardized

variables. The diagonals of a correlation matrix represent each variable’s variance

(which is always 1), and the off-diagonals show the standardized covariances.

Keeping those points in mind, let’s examine the (pretend) correlation matrices in

Table 5.1.

Table 5.1 Eigenvalues for six correlation matrices with varying degrees of linear dependence

A B C

1 0 1 .25 1 .75

0 1 .25 1 .75 1

λ 1 1 1.25 .75 1.75 .25

D E F

1 .25 0 1 .25 .25 1 .25 .25

.25 1 0 .25 1 0 .25 1 .25

0 0 1 .25 0 1 .25 .25 1

λ 1.25 1 .75 1.3535 1 .6465 1.5 .75 .75
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• Our first matrix is an identity matrix. Because the variables are independent,

there is no variance to consolidate and both eigenvalues¼ 1.

• The variables in our second matrix are correlated (r¼.25), and the eigenvalues

reflect this covariation, as the first eigenvalue is now > 1 and the second is < 1.

They still sum to 2, of course, because the sum of the eigenvalues equals the

trace of a matrix.

• Example C includes a stronger linear relation, and the eigenvalues change again

to reflect this greater overlap.

• The examples in the bottom portion of Table 5.1 have three variables.7 Notice

that Example D is similar to Example B except that I have added a third variable

that is uncorrelated with the other two. Notice that two eigenvalues remain

unchanged, but now there is a third that equals 1. Thus, the variance of two

variables can be consolidated, but the third remains independent.

• In Example E, Variable 3 is correlated with Variable 1 but uncorrelated with

Variable 2. The size of the dominant eigenvalue increases, but one of the

eigenvalues still remains 1, because Variables 2 and 3 are uncorrelated.

• Our final matrix shows the case where all three variables are correlated. The

dominant eigenvalue grows to reflect this overlap, and no eigenvalue ¼1

because no variables are completely independent.

5.1.6 Eigen Decomposition and Matrix Recomposition

We can further appreciate the manner in which an eigen decomposition redistrib-

utes the variance in a matrix by using the eigenpairs to reconstruct our original

matrix

A ¼ VΛV�1 ð5:7Þ

where V refers to a matrix of eigenvectors, and the Greek capital letter lambda (Λ)
refers to a diagonal matrix of eigenvalues with the same dimensions as A.

Λ ¼
λ1 � � � 0

⋮ ⋱ ⋮
0 � � � λp

24 35
Returning to our earlier example,

A ¼ :9487 :8944
:3162 �:4472

� �
7 0

0 2

� �
:9487 :8944
:3162 �:4472

� ��1

¼ 5 6

2 4

� �

7 The next section of this chapter will teach you how to calculate eigenvalues with larger matrices.
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5.1.6.1 Algebraic Formula

Using matrix algebra, it is easy to lose sight of the fact that all we are doing is

expressing each of the values in the original matrix as a linear combination of the

eigenvalues and eigenvectors. To make this equivalence more apparent, here is

the algebraic formula for computing the first term in our original matrix, where

|V|¼ �.70711.

a11 ¼ v11 � λ1 � v22
Vj j


 �
þ v12 � λ2 � �v21

Vj j

 �

Plugging in our values produces the expected result.

:9487 � 7 � �:4472

�:70711


 �
þ :8944 � 2 � �:3162

�:70711


 �
¼ 5

The remaining values can be calculated using similar equations, underscoring that

an eigen decomposition redistributes the variance in a matrix.

a21 ¼ v21 � λ1 � v22
Vj j


 �
þ v22 � λ2 � �v21

Vj j

 �

a12 ¼ v11 � λ1 � �v12
Vj j


 �
þ v12 � λ2 � v11

Vj j

 �

a22 ¼ v21 � λ1 � �v12
Vj j


 �
þ v22 � λ2 � v11

Vj j

 �

5.1.6.2 Matrix Powers

Calculating the power series of a matrix provides another way to appreciate the

variance consolidation properties of an eigen decomposition. Imagine that we wish

to raise a matrix to the fifth power. We could multiply the matrix five times, but this

is inefficient. Instead, we can use the following formula to find any matrix power by

raising the eigenvalues to the desired power.

An ¼ VΛnV�1 ð5:8Þ

Plugging in our values, we easily raise the matrix to the desired power.

A5 ¼ :9487 :8944
:3162 �:4472

� �
75 0

0 25

� �
:9487 :8944
:3162 �:4472

� ��1

¼ 10097 20130

3355 6742

� �
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5.1.7 R Code: Eigen Decomposition

#Matrix multiplication with an ordinary vector (“b”)

A <- matrix(c(5,6,1,4), nrow=2, ncol=2, byrow=TRUE)

b <- matrix(c(2,6), nrow=2, ncol=1, byrow=TRUE)

scalar=7

mult.1 <-b*scalar; mult.1

mult.2 <-A%*%b; mult.2

#Matrix multiplication with an eigenvector (“c”)

c <- matrix(c(6,2), nrow=2, ncol=1, byrow=TRUE)

mult.3 <-c*scalar; mult.3

mult.4 <-A%*%c; mult.4

#Algebraic function for finding eigenpairs from a 2X2 matrix

eigs <-function(A){

a <-1

b <– �(A[1,1]+A[2,2])

c <-(A[1,1]*A[2,2])-(A[1,2]*A[2,1])

lambda1 <-(-b+sqrt(b^2-4*c))/(2*a)

lambda2 <-(-b-sqrt(b^2-4*c))/(2*a)

v1 <-(-A[1,2])/(A[1,1]-lambda1)

vec1 <-matrix(cbind(v1,1)/(sqrt(sum(v1^2+1^2))),nrow=2)

v2 <-(-(A[1,1]-lambda2))/(A[1,2])

vec2 <-matrix(cbind(1,v2)/(sqrt(sum(1^2+v2^2))),nrow=2)

out <-matrix(c(lambda1,vec1,lambda2,vec2),nrow=3,ncol=2)

}

A <-matrix(c(5,6,1,4),nrow=2,ncol=2,byrow=T);A

eigpairs <-eigs(A)

dimnames(eigpairs)=list(c("lambda","v1","v2"),c("pair1","pair2"))

eigpairs

#Reconstruct A

lambda <-diag(c(eigpairs[1],eigpairs[4]))

V<-matrix(c(eigpairs[2],eigpairs[3],eigpairs[5],eigpairs[6]),nrow=2,

ncol=2)

reconstruct <-V%*%lambda%*%solve(V)

reconstruct

5.2 QR Decomposition

An eigen decomposition can only be performed with a square matrix, but other

decompositions can be used with rectangular matrices. One widely used method is

the QR decomposition. This method decomposes a rectangular matrix into an

orthonormal matrix Q and an upper triangular matrix R.
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A ¼ QR ð5:9Þ

An orthonormal matrix returns an identity matrix when it is premultiplied by its

transpose (Q0Q¼ I), and an upper triangular matrix has 0’s below the main

diagonal. These features make the QR decomposition a highly efficient and accu-

rate method for solving a variety of statistical problems.

5.2.1 Computations with Householder Transformations

There are several ways to perform a QR decomposition, but we will use a method

known as a Householder transformation. The calculations aren’t difficult, but many

steps are involved, so we will first describe them and then work through an

example.

5.2.1.1 Steps of a Householder Transformation

1. Create an N�N identity matrix and designate each of the p columns with a

subscript (e.g., p1 � � � pp), where the subscript refers to the number of vectors

being transformed. When using theQR decomposition for a regression analysis,

it is customary to perform the transformation using only the predictors (and

vector of leading 1’s). So if we have two predictors, we will be transforming

three column vectors (p1, p2, and p3).
2. Use the following rule to transform each column vector of the original rectan-

gular matrix.

u ¼ vþ 				v				pi
vþ 				v				pi� �		 				 		 if first nonzero element of vi > 0

u ¼ v� 				v				pi
v� 				v				pi� �		 				 		 if first nonzero element of vi < 0

8>>>>><>>>>>:
ð5:10Þ

The value in double brackets is the Euclidean norm (i.e., it creates an

N-dimensional unit vector). 				v				 ¼ ffiffiffiffiffiffi
v

0
v

p
¼ 1 ð5:11Þ

It looks complicated, but remember it is simply the square root of the sum of

squares. Notice that we calculate two such norms in Eq. 5.10, as the denominator

is the Euclidean norm of the numerator.
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3. Calculate a Householder matrix.

H ¼ I� 2uu
0 ð5:12Þ

4. Calculate Rk,

Rk ¼ HRk�1 ð5:13Þ

where Rk� 1 initially refers to our original matrix A.

5. Repeat for the remaining column vectors, substituting the next column of R for

A, and setting the value of rows already calculated to zero.

5.2.1.2 Example

Let’s work through an example using the data originally reported in Table 4.1,

reproduced in Table 5.2. As you may recall, in this (phony) investigation, we used

two variables, self-efficacy and math aptitude, to predict performance in a matrix

algebra course.

1. Our first step is to create an N�N identity matrix, designating the first three

columns p1, p2, and p3. You should be familiar with the form of a 12� 12

identity matrix, so I will forgo displaying it.

2. Next we transform our vector of leading 10s to find u1. The first entry in v1 is> 0,

so we use the top portion of Eq. 5.10, along with the first column of our identity

matrix. To help you with the calculations, I will break them into parts.

Table 5.2 Small sample example of multiple regression using the QR decomposition

x1 x2 y v1 u1 v2 u2 v3 u3

1 1 2 3 1 .802706 0 0 0 0

1 9 7 8 1 .179814 4.89604 .86746 0 0

1 1 1 2 1 .179814 �3.10396 �.18453 �1.20133 �.76957

1 5 8 8 1 .179814 .89604 .05327 3.64145 .36331

1 6 5 5 1 .179814 1.89604 .11272 .10215 .01019

1 8 7 9 1 .179814 3.89604 .23162 1.02353 .10212

1 2 4 4 1 .179814 �2.10396 �.12508 1.25937 .12565

1 4 7 5 1 .179814 �.10396 �.00618 3.18076 .31735

1 2 1 2 1 .179814 �2.10396 �.12508 �1.74063 �.17367

1 8 4 4 1 .179814 3.89604 .23162 �1.97647 �.19720

1 7 3 2 1 .179814 2.89604 .17217 �2.43716 �.24316

1 7 4 6 1 .179814 2.89604 .17217 �1.43716 �.14339

Data reproduced from Table 4.1
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2a. Calculate ||v|| ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

12

12

12

12

12

12

12

12

12

12

12

12

26666666666666666664

37777777777777777775

vuuuuuuuuuuuuuuuuuuuuut

¼ 3:4641

2b. Calculate v+ ||v||pi

1

1

1

1

1

1

1

1

1

1

1

1

26666666666666666664

37777777777777777775

þ 3:4641 �

1

0

0

0

0

0

0

0

0

0

0

0

26666666666666666664

37777777777777777775

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;

¼

4:464102
1

1

1

1

1

1

1

1

1

1

1

26666666666666666664

37777777777777777775
2c. Calculate ||(v+ ||v||pi)||ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

4:4641022

12

12

12

12

12

12

12

12

12

12

12

26666666666666666664

37777777777777777775

vuuuuuuuuuuuuuuuuuuuuut

¼ 5:56131
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2d. Divide {v+ ||v||pi} by {||(v+ ||v||pi)||} to produce the values for u1 shown in

Table 5.2.

u1 ¼

4:464102
1

1

1

1

1

1

1

1

1

1

1

26666666666666666664

37777777777777777775

	 5:56131 ¼

:802706
:179814
:179814
:179814
:179814
:179814
:179814
:179814
:179814
:179814
:179814
:179814

26666666666666666664

37777777777777777775
3. Next, we calculate H1 = I� 2u1u1

0.

H1 ¼

�:28868 �:28868 �:28868 �:28868 �:28868 �:28868 �:28868 �:28868 �:28868 �:28868 �:28868 �:28868
�:28868 :93533 �:06467 �:06467 �:06467 �:06467 �:06467 �:06467 �:06467 �:06467 �:06467 �:06467
�:28868 �:06467 :93533 �:06467 �:06467 �:06467 �:06467 �:06467 �:06467 �:06467 �:06467 �:06467
�:28868 �:06467 �:06467 :93533 �:06467 �:06467 �:06467 �:06467 �:06467 �:06467 �:06467 �:06467
�:28868 �:06467 �:06467 �:06467 :93533 �:06467 �:06467 �:06467 �:06467 �:06467 �:06467 �:06467
�:28868 �:06467 �:06467 �:06467 �:06467 :93533 �:06467 �:06467 �:06467 �:06467 �:06467 �:06467
�:28868 �:06467 �:06467 �:06467 �:06467 �:06467 :93533 �:06467 �:06467 �:06467 �:06467 �:06467
�:28868 �:06467 �:06467 �:06467 �:06467 �:06467 �:06467 :93533 �:06467 �:06467 �:06467 �:06467
�:28868 �:06467 �:06467 �:06467 �:06467 �:06467 �:06467 �:06467 :93533 �:06467 �:06467 �:06467
�:28868 �:06467 �:06467 �:06467 �:06467 �:06467 �:06467 �:06467 �:06467 :93533 �:06467 �:06467
�:28868 �:06467 �:06467 �:06467 �:06467 �:06467 �:06467 �:06467 �:06467 �:06467 :93533 �:06467
�:28868 �:06467 �:06467 �:06467 �:06467 �:06467 �:06467 �:06467 �:06467 �:06467 �:06467 :93533

26666666666666666664

37777777777777777775

4. Finally, we calculate R1 =H1A.

R1 ¼

�3:46410 �17:32051 �15:29978
0 4:89604 3:12469
0 �3:10396 �2:87531
0 :89604 4:12469
0 1:89604 1:12469
0 3:89604 3:12469
0 �2:10396 :12469
0 �:10396 3:12469
0 �2:10396 �2:87531
0 3:89604 :12469
0 2:89604 �:87531
0 2:89604 :12469

26666666666666666664

37777777777777777775
Our interest lies only in the first row, as this will be the first row of R. Notice that

all of the values below the first value in column 1 equal 0, which is the property we

desire in an upper triangular matrix.
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Now we repeat the steps, designating the second column vector in R1 as v2.

Referring back to the column labeled v2 in Table 5.2, notice that we have replaced

the first entry with a zero. This is because we have already found our first row of

values, so we begin using the second row, not the first. Because the first nonzero

value in the second column (4.8960) is> 0, we again use the top portion of (5.10) to

calculate u2, this time using the second column of our identity matrix (i. e., p2).

Table 5.2 shows the resultant vector. We then calculate another Householder

matrix, H2 = I� 2u2u2
0,

H2 ¼

1 0 0 0 0 0 0 0 0 0 0 0

0 �:50499 :32015 �:09242 �:19556 �:40185 :21701 :01072 :21701 �:40185 �:29870 �:29870
0 :32015 :93190 :01966 :04160 :08548 �:04616 �:00228 �:04616 :08548 :06354 :06354
0 �:09242 :01966 :99432 �:01201 �:02468 :01333 :00066 :01333 �:02468 �:01834 �:01834
0 �:19556 :04160 �:01201 :97459 �:05222 :02820 :00139 :02820 �:05222 �:03881 �:03881
0 �:40185 :08548 �:02468 �:05222 :89270 :05794 :00286 :05794 �:10730 �:07976 �:07976
0 :21701 �:04616 :01333 :02820 :05794 :96871 �:00155 �:03129 :05794 :04307 :04307
0 :01072 �:00228 :00066 :00139 :00286 �:00155 :99992 �:00155 :00286 :00213 :00213
0 :21701 �:04616 :01333 :02820 :05794 �:03129 �:00155 :96871 :05794 :04307 :04307
0 �:40185 :08548 �:02468 �:05222 �:10730 :05794 :00286 :05794 :89270 �:07976 �:07976
0 �:29870 :06354 �:01834 �:03881 �:07976 :04307 :00213 :04307 �:07976 :94071 �:05929
0 �:29870 :06354 �:01834 �:03881 �:07976 :04307 :00213 :04307 �:07976 �:05929 :94071

26666666666666666664

37777777777777777775

and use it to find an updated R2 matrix, substituting R1 for A.

R2 ¼ H2R1

R2 ¼

�3:46410 �17:32051 �15:2998
0 �9:69536 �4:74454
0 0 �1:20133
0 0 3:64145
0 0 :10215
0 0 1:02353
0 0 1:25937
0 0 3:18076
0 0 �1:74063
0 0 �1:97647
0 0 �2:43716
0 0 �1:43716

26666666666666666664

37777777777777777775
The first two rows of this matrix constitute the first two rows of R.

We repeat the process one more time, starting with the third column vector inR2,

placing 00s for the first two rows (see column labeled v3) in Table 5.2. The first

nonzero entry is now < 0, so we use the bottom portion of (5.10), along with the

third column vector from our identity matrix (p3) to find u3. We then find our third

Householder matrix,
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H3¼

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 �:18448 :55919 :01569 :15718 :19339 :48845 �:26730 �:30351 �:37426 �:22069
0 0 :55919 :73601 �:00741 �:07420 �:09130 �:23060 :12619 :14329 :17669 :10419
0 0 :01569 �:00741 :99979 �:00208 �:00256 �:00647 :00354 :00402 :00496 :00292
0 0 :15718 �:07420 �:00208 :97914 �:02566 �:06482 :03547 :04028 :04966 :02929
0 0 :19339 �:09130 �:00256 �:02566 :96842 �:07975 :04364 :04956 :06111 :03603
0 0 :48845 �:23060 �:00647 �:06482 �:07975 :79858 :11023 :12516 :15433 :09101
0 0 �:26730 :12619 :00354 :03547 :04364 :11023 :93968 �:06849 �:08446 �:04980
0 0 �:30351 :14329 :00402 :04028 :04956 :12516 �:06849 :92223 �:09590 �:05655
0 0 �:37426 :17669 :00496 :04966 :06111 :15433 �:08446 �:09590 :88175 �:06973
0 0 �:22069 :10419 :00292 :02929 :03603 :09101 �:04980 �:05655 �:06973 :95888

26666666666666666664

37777777777777777775

and calculate R3=H3R2 to complete our upper triangular matrix R.

R3 ¼ R ¼

�3:46410 �17:32051 �15:29978
0 �9:69536 �4:74454
0 0 6:51199
0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

26666666666666666664

37777777777777777775
Finally, we compute Q by multiplying the Hp matrices.

Q ¼
Y

Hp ð5:14Þ

With three matrices, Q¼H1H2H3.

Q ¼

Q1 Q2 Q3

:28868 �:41257 �:07052
:28868 :41257 :09611
:28868 �:41257 �:22408
:28868 :00000 :55027
:28868 :10314 :01443
:28868 :30943 :17126
:28868 �:30943 :16146
:28868 �:10314 :47185
:28868 �:30943 �:29923
:28868 :30943 �:28943
:28868 :20628 �:36784
:28868 :20628 �:21428

2666666666666666666664

3777777777777777777775
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As noted earlier, Q is an orthonormal matrix. Each column is normalizedffiffiffiffiffiffiffi
qq

0p
¼ 1

� �
, and the columns are pairwise orthogonal (i.e., their inner

products¼ 0). With these properties, Q0Q¼ I. Because this is a reconstruction,

you can verify that A¼QR.

5.2.2 Linear Regression

Using the QR decomposition, it is a relatively simple matter to compute the

regression coefficients and standard errors of a linear regression analysis.

• Regression coefficients

b ¼ R�1Q
0
y ð5:15Þ

• Fitted values

ŷ ¼ QQ
0
y ð5:16Þ

• Parameter covariance matrix (for standard errors)

C ¼ R�1 R�1
� �0 �MSres ð5:17Þ

If you perform these calculations, you will find that the output matches the

values we obtained in Chap. 4 using the matrix inverse method. To understand why,

let’s compare Eq. (5.17) with Eq. (2.34), repeated below.

C ¼ X
0
X

� ��1

�MSres

Looking over the two equations, we see that R� 1(R� 1)0 ¼ (X0X)� 1. So there is

nothing magical about the QR method of solving the normal equations. Like all

decompositions, it simply redistributes the variance in a matrix. The advantage of

using this method is efficiency and accuracy. Inverting an upper triangular matrix is

easier and less prone to error than is inverting a sum of squares matrix. At the end of

this chapter, we will discuss some additional advantages/disadvantages of using

various methods to perform linear regression analyses. First, we will learn how the

QR decomposition can be modified to find the eigenpairs of a large matrix.
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5.2.3 QR Algorithm for Finding the Eigenpairs

Simple algebra can be used to calculate the eigenpairs when a square matrix is

small, but eigenpairs can only be approximated when the size of a matrix is greater

than 3� 3. Consequently, iterative techniques are needed. As first discussed in

Chap. 3, an iterative technique begins with an initial guess and then finds closer and

closer approximations to a solution until the difference between approximations

becomes less than some designated value (e.g., quit when change in approximations

becomes less than (1.00E� 8).

A modification of the QR decomposition, known as the QR algorithm, can be

used to find the eigenpairs of a square matrix. There are several ways to perform the

algorithm, but we are going to focus on a basic implementation before turning to a

more advanced technique.8

5.2.3.1 Basic (Unshifted) QR Algorithm to Find Eigenvalue

• Perform a QR decomposition on A using the procedures described earlier.

• Compute A1¼RQ. Notice the order of the multiplication, as here we are

reversing the order in which we multiply our two derived matrices.

• Perform a QR decomposition on A1 and compute A2¼RQ.

• Continue the iterations until the eigenvalues appear on the diagonals of RQ.

Λ ¼ RQii ð5:18Þ

We will illustrate the algorithm using the X0X matrix from Table 5.2.

A ¼ X
0
X ¼

12 60 53

60 394 311

53 311 299

24 35
The eigenvalues of the matrix, reported to 10 decimals, are as follows.

λ1 ¼ 670:8324605415; λ2 ¼ 31:9346873364; λ3 ¼ 2:2328521221

Table 5.3 shows how these values can be found using the QR algorithm. To help

orient you, the table also displays theQR decomposition of the matrix, although our

interest lies in RQ not QR. As you can see, the eigenvalues begin appearing on the

diagonals of RQ after only a few iterations. Convergence will not always be this

rapid, but it usually doesn’t take long for the eigenvalues to emerge. Ten iterations

produce the values displayed above.

8 The procedures presented here represent a simplified version of the one statistical packages use.

Detailed descriptions of the complete algorithm can be found in Golub and van Loan (2013) and

Watkins (2010).
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5.2.3.2 Explicitly Shifted QR Algorithm for Finding Eigenvalues

Convergence can be speeded up by applying a shift s to the diagonal values of A.
The following steps are involved.

• Subtract s from the diagonal elements of A.

As ¼ A� sI ð5:19Þ

• Perform a QR decomposition on As and calculate RQ.

RQs ¼ QR As½ � ð5:20Þ

• Create a new matrix for the next iteration by adding the subtracted diagonal

elements to RQs, and continue iterating until convergence is reached.

Asþ1 ¼ RQs þ sI ð5:21Þ

Several rules exist for finding a suitable shift value, but the most effective

strategy is to use a value that lies close to one of the eigenvalues. Because the

eigenvalues begin to emerge after only a few iterations, one approach is to forgo

shifting for the first few iterations and then use an approximate eigenvalue for a

shift once it appears.

The benefits of shifting are most apparent when the eigenvalues of a matrix

are close together. Consider the following matrix with eigenvalues

(λ1¼ 3.90, λ2¼ 2.85, λ3¼ 1.80).

Table 5.3 Four iterations of the QR algorithm

A¼X0X¼ 12 60 53

60 394 311

53 311 299

QR decomposition

Q R

.148239 �.469168 �.870578 80.950602 504.542263 434.128951

.741193 .635499 �.216273 0 31.529435 �10.574342

.654720 �.613206 .441950 0 0 18.741331

First four iterations of QR algorithm

RQ1 RQ2

670.19609 16.44615 �12.27033 670.83215 .44544 .04556

16.44615 26.52118 11.49230 .44544 31.89955 �1.02541

�12.27033 11.49230 8.28273 .04556 �1.02541 2.26830

RQ3 RQ4

670.83246 .02112 �.00015 670.83246 .00101 .00000

.02112 31.93451 .07178 .00101 31.93469 �.00502

�.00015 .07178 2.23303 .00000 �.00502 2.23285
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A ¼
3:025 �:35 �:875
�:35 2:50 �:35
�:875 �:35 3:025

24 35
If you were to perform theQR algorithm on this matrix without shifting, you would

need 50 iterations to identify the eigenvalues within the level of round-off error

(10� 16). Shifting greatly accelerates the algorithm’s convergence. Table 5.4 shows

how. We deploy no shift to start, but then use the value in the lower right-hand

corner of the RQ+ sI matrix as our shift value for our second iteration

(s¼ 2.379618). This entry provides a suitable approximation of our smallest

eigenvalue. We continue to use the shift from the final entry of the preceding

matrix for the next five iterations and then shift to the middle value for

iterations 8 and 9, at which point the eigenvalues have been identified. Thus,

shifting produces a ~6-fold increase in the algorithm’s efficiency.

Table 5.4 Explicitly shifted QR algorithm

Iteration Shift (s) RQ� sI RQ + sI

1 0 3.025 �.350 �.875 3.532480 �.002941 .698596

�.350 2.500 �.350 �.002941 2.637901 .498440

�.875 �.350 3.025 .698596 .498440 2.379618

2 2.379618 1.152862 �.002941 .698596 3.840989 �.027552 .318713

�.002941 .258283 .498440 �.027552 2.601067 .450361

.698596 .498440 .000000 .318713 .450361 2.107944

3 2.107944 1.733046 �.027552 .318713 3.895668 .043554 .063025

�.027552 .493123 .450361 .043554 2.799620 .230980

.318713 .450361 .000000 .063025 .230980 1.854712

4 1.854712 2.040956 .043554 .063025 3.899273 .027579 .001733

.043554 .944909 .230980 .027579 2.850559 .013229

.063025 .230980 .000000 .001733 .013229 1.800168

5 1.800168 2.099106 .027579 .001733 3.899818 .013805 .000000

.027579 1.050392 .013229 .013805 2.850182 .000002

.001733 .013229 .000000 .000000 .000002 1.800000

6 1.800000 2.099818 .013805 .000000 3.899955 .006904 .000000

.013805 1.050182 .000002 .006904 2.850045 .000000

.000000 .000002 .000000 .000000 .000000 1.800000

7 1.800000 2.099955 .006904 .000000 3.899989 .003452 .000000

.006904 1.050045 .000000 .003452 2.850011 .000000

.000000 .000000 .000000 .000000 .000000 1.800000

8 2.850011 1.049977 .003452 .000000 3.90000 �3.73084E-08 3.73012E-16

.003452 .000000 .000000 �3.73084E-08 2.850000 3.63751E-16

.000000 .000000 1.800000 1.19881E-35 7.29288E-33 1.800000

9 2.850000 1.050000 .000000 .000000 3.900000 .000000 .000000

.000000 .000000 .000000 .000000 2.850000 .000000

.000000 .000000 1.800000 .000000 .000000 1.800000
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5.2.3.3 Calculating Eigenvectors

Equation (5.22) can be used to find the eigenvectors of a symmetric matrix.

V ¼
Y

Qp ð5:22Þ

The formula works, but it is not very efficient; the more iterations it require to obtain

the eigenvalues, the more matrices we need to multiply to find the eigenvectors.

Moreover, Eq. (5.22) won’t work with nonsymmetric matrices. Because most statis-

tical analyses are done with a symmetric sum of squares matrix, this limitation won’t

matter much for the problems we will be solving. Still, there might be times you need

to find the eigenvectors of a nonsymmetric matrix, so we will learn another technique

known as the inverse shift method that is more efficient than Eq. (5.22) and works

regardless of whether the matrix is symmetric. The following steps are involved:

• Perform the QR algorithm of A until the eigenvalues converge.

• Perform one or two additional iterations of the QR algorithm on the inverse of a

shifted matrix, formed by subtracting one of the eigenvalues from the diagonal

elements of A.9 The eigenvectors associated with each eigenvalue appear as

the first column in Q. For example, to find the eigenvectors associated with the

second eigenvalue, we perform the QR algorithm on [(A� λ2I)� 1] and use the

first column of Q.

We will illustrate the process with the following nonsymmetric matrix:

A ¼
10:70 �10:00 2:575
16:40 �15:75 4:275
24:80 �25:00 7:30

24 35
Using an explicit shift, 11 iterations were needed to calculate the eigenvalues

(see diagonal elements of Λ in Table 5.5). Each of their corresponding eigenvectors

was found with one additional iteration using the inverse shift method.

Table 5.5 QR Algorithm for finding eigenpairs of a nonsymmetric matrix using inverse shift

method

Eigenvalues (diagonal elements) Eigenvectors

(A� λ1I)� 1 (A� λ2I)� 1 (A� λ3I)� 1

Λ
1.00 �.31334 �44.7153

V

.21821789 .59702231 .37713259

0 .75 �6.9557 .43643578 .69652603 .57220116

0 0 .50 .87287156 .39801488 .72825603

9 Sometimes it is necessary to perturb the eigenvalue slightly to avoid singularity. In this case,

multiplying the eigenvalue by a number very close to 1 should solve the problem.

5.2 QR Decomposition 171



5.2.3.4 Summary

In this section, you have learned how to calculate eigenpairs for large matrices.

I don’t expect you to routinely perform these calculations by hand (or even spread-

sheet), but I do hope you will appreciate that they are not all that complicated and

are certainly not magical. Almost all statistical packages offer built-in commands

for computing eigenpairs when you need them, but now you know how it’s done in

case your license expires!

5.2.4 R Code: QR Decomposition

x1 <-c(1,9,1,5,6,8,2,4,2,8,7,7)

x2 <-c(2,7,1,8,5,7,4,7,1,4,3,4)

X <-cbind(1,x1,x2)

y <-c(3,8,2,8,5,9,4,5,2,4,2,6)

qr.house=function(A){

m=nrow(A)

n=ncol(A)

B=A

I=diag(1,m)

Q=diag(1,m)

R=diag(0,n)

for (k in 1:n){

v=matrix(c(rep(0,m)),byrow=T)

v[k:m]=B[k:m,k]

i=matrix(c(rep(0,m)),byrow=T)

i[k]=1

u = sign(v[k])*norm(v,type="2")*i + v

u = u/norm(u,type="2")

Hk = I - 2*u%*%t(u)

R=Hk%*%B

Q=Q%*%Hk

B=R

}

RQ <- list("R" = round(R[1:k,1:k],15), "Q" = Q[1:m,1:k]);RQ

}

qr.house(X)

A= qr.house(X)$Q%*%qr.house(X)$R;A

#QR Regression using R’s QR function

R.QR <-qr(X)

R <-qr.R(R.QR)

Q <-qr.Q(R.QR)

QR.beta <-solve(R)%*%t(Q)%*%y;QR.beta

QR.fit <-Q%*%t(Q)%*%y;QR.fit

(continued)
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5.2.4 R Code: QR Decomposition (continued)

df <-length(y)-ncol(X)

MSe <-(sum((y-QR.fit)^2)/df)

covar <-MSe*solve(R)%*%t(solve(R));covar

#QR Algorithm for Finding Eigen pairs (default method in R)

XX <-t(X)%*%X

eigs <-eigen(XX);eigs

5.3 Singular Value Decomposition

Eigen decomposition is a special case of a more general decomposition technique

called singular value decomposition (SVD) that can be used to reconstruct any

rectangular matrix A into three matrices,

A ¼ UDV
0 ð5:23Þ

where V ¼ eigenvectors of A0A, D ¼ diagonal matrix of the square root of the

eigenvalues of A0A (called singular values), and U¼AVD� 1. As with the QR

decomposition, these matrices possess desirable properties that make them well

suited for performing least squares estimation (e.g., U0U¼ I). We will illustrate the

computations using the data from Table 5.2, substituting X for A.

5.3.1 Preliminary Calculations

We calculate our matrices in the usual manner.

1. Compute X0X.

X
0
X ¼

12 60 53

60 394 311

53 311 299

24 35
2. Use the QR algorithm to find the eigenvalues of X0X, and create a diagonal

matrix, D, with their square root.

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
670:8325

p
0 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
31:9347

p
0

0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:2329

p

264
375 ¼

25:90043 0 0

0 5:65108 0

0 0 1:49427

264
375
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3. Compute V, the eigenvectors of X0X, using the QR algorithm.

V ¼
:12061 :03695 :99201
:75294 �:65466 �:06716
:64695 :75502 �:10678

24 35
4. Calculate U(U¼XVD� 1).

U¼

1 1 2

1 9 7

1 1 1

1 5 8

1 6 5

1 8 7

1 2 4

1 4 7

1 2 1

1 8 4

1 7 3

1 7 4

2666666666666666666666664

3777777777777777777777775

:12061 :03695 :99201

:75294 �:65466 �:06716

:64695 :75502 �:10678

264
375 25:90043 0 0

0 5:65108 0

0 0 1:49427

264
375
�1

¼

:08368 :15791 :47601

:44114 �:10083 �:24086

:05871 :02430 :54747

:34983 :49616 �:13255

:30397 �:02051 :03690

:41207 :01501 �:19592

:16271 :30927 :28814

:29579 :47840 �:01614

:08778 �:09155 :50252

:33713 �:38581 :01847

:28308 �:40357 :13488

:30806 �:26996 :06342

2666666666666666666666664

3777777777777777777777775

5.3.2 Reconstructing X

Before turning to the calculation of the regression coefficients and their standard

errors, we will confirm that our three matrices reconstruct our original, rectangular

matrix, X.

X ¼ UDV
0

X¼

:08368 :15791 :47601

:44114 �:10083 �:24086

:05871 :02430 :54747

:34983 :49616 �:13255

:30397 �:02051 :03690

:41207 :01501 �:19592

:16271 :30927 :28814

:29579 :47840 �:01614

:08778 �:09155 :50252

:33713 �:38581 :01847

:28308 �:40357 :13488

:30806 �:26996 :06342

2666666666666666666666664

3777777777777777777777775

25:90043 0 0

0 5:65108 0

0 0 1:49427

264
375 :12061 :03695 :99201

:75294 �:65466 �:06716

:64695 :75502 �:10678

264
375

0

¼

1 1 2

1 9 7

1 1 1

1 5 8

1 6 5

1 8 7

1 2 4

1 4 7

1 2 1

1 8 4

1 7 3

1 7 4

2666666666666666666666664

3777777777777777777777775
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5.3.3 Regression Coefficients

We use the following formula to calculate the regression coefficients.

b ¼ VD�1U
0
y ð5:24Þ

Notice that here we are inverting our diagonal matrix of singular values instead of

the matrix of predictors. This is advantageous because, as with the upper triangular

matrix R, inverting a diagonal matrix is more economical and less prone to error

than is inverting a sum of squares matrix.

5.3.4 Standard Errors

We can also compute our standard errors using the eigenpairs. First, we must

calculate MSres. Since we have our matrix of regression coefficients, we can

calculate the residuals in the usual manner (e¼ y�Xb) and then divide the sum

of their squared values by our degrees of freedom (df¼ 9). Doing so yields the

MSres¼ 1.4974. The following formula is then used to find the standard errors.

sebj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSres �

Xp
k¼1

v2jk
λk

vuut ð5:25Þ

Looking over the formula, we see that, within each eigenvector row, we square

each value, divide each squared value by its corresponding eigenvalue, and then

sum the quotients. To illustrate, the standard error of b1 is found as follows.

seb1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4974 � :752942

670:8325
þ�:654662

31:9347
þ�:067162

2:2329

� �s
¼ :15616

If you look back to Chap. 4, you will find that this value matches the one we found

using Eq. (4.6) (reproduced below).

sebj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSres � X

0
X

� ��1

ii

q
ð5:26Þ

The equivalence between the two methods reveals an important similarity.

Comparing Eq. (5.25) with Eq. (5.26), we see that the diagonal elements of

(X0X)� 1 equal
Xp

k¼1

v2jk
λk

. To prove this is so, we will perform the calculations.

First, we will find the inverse of X0X.
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X
0
X ¼

12 60 53

60 394 311

53 311 299

24 35 and X
0
X�1 ¼

:44080 �:03046 �:04645
�:03046 :01629 �:01154
�:04645 �:01154 :02358

24 35
Then we will derive the diagonal entries using the eigenpairs of X0X.

X
0
X

� ��1

11
¼ :120612

670:8325
þ :036952

31:9347
þ :992012

2:2329
¼ :44080

X
0
X

� ��1

22
¼ :752942

670:8325
þ�:654662

31:9347
þ�:067162

2:2329
¼ :01629

X
0
X

� ��1

33
¼ :646952

670:8325
þ :755022

31:9347
þ�:106782

2:2329
¼ :02358

Remembering that the diagonal entries of X0X� 1 represent a ratio, with a

cofactor in the numerator and the variability of the entire matrix in the denominator

(i.e., the determinant), we see again that eigenpairs simply redistribute the

variance in a matrix, such that the variance of each regression coefficient can be

found by summing the ratio of squared eigenvectors to their corresponding

eigenvalues.

5.3.5 R Code: Singular Value Decomposition

#SVD for Regression

x0 <-rep(1,12)

x1 <-c(1,9,1,5,6,8,2,4,2,8,7,7)

x2 <-c(2,7,1,8,5,7,4,7,1,4,3,4)

y <-c(3,8,2,8,5,9,4,5,2,4,2,6)

X <-cbind(x0,x1,x2)

svd.reg <-svd(X)

svd.reg

D <-diag(svd.reg$d)

V <-svd.reg$v

U <-svd.reg$u

#Reconstruct X

X_rc<-U%*%D%*%solve(V)

X_rc

#Regression Coefficients

svd.beta <-V%*%solve(D)%*%t(U)%*%y

svd.beta

#Standard Errors Using Eigen Pairs

V1 <-V[1, ]

c1 <-sum(V1^2/svd.reg$d^2)

(continued)
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5.3.5 R Code: Singular Value Decomposition (continued)

V2 <-V[2, ]

c2 <-sum(V2^2/svd.reg$d^2)

V3 <-V[3, ]

c3 <-sum(V3^2/svd.reg$d^2)

C <-cbind(c1,c2,c3)

reg <-lm(y~x1+x2)

mse <-summary(reg)$sigma^2

std.errors <- sqrt(mse*C)

std.errors

5.4 Cholesky Decomposition

The final decomposition we will learn is the Cholesky decomposition. Unlike the

two previous methods, which can be performed with any rectangular matrix, the

Cholesky decomposition can be performed only on a symmetric matrix with all

eigenvalues greater than 0 (termed symmetric, positive definite). Although this

might seem limiting, a sum of squares matrix is symmetric, positive definite, so the

Cholesky decomposition is applicable to linear regression.

The Cholesky decomposition proceeds by noting that every symmetric, positive

definite matrix A can be decomposed into the product of two lower triangular

matrices.

A ¼ LL
0 ð5:27Þ

A lower triangular matrix has 0’s above the main diagonal, and L is known as the

Cholesky factor of A. It can be thought of as a square root matrix, a term that will

become clearer after we learn how the matrix is created.10

5.4.1 Calculations

Imagine we wish to perform a Cholesky decomposition on a 3� 3 matrix.

10 The Cholesky decomposition can be modified to yield an upper triangular matrix,R. This matrix

is identical to the R matrix generated by a QR decomposition of a symmetric, positive definite

matrix, and the reconstruction becomes A¼R0R.
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A ¼
a11 a12 a13
a21 a22 a23
a31 a32 a33

24 35 ¼
l11 0 0

l21 l22 0

l31 l32 l33

24 35 l11 0 0

l21 l22 0

l31 l32 l33

24 350

We perform the following calculations to form the decomposition.

L ¼

l11 ¼ ffiffiffiffiffiffi
a11

p
0 0

l21 ¼ a21=l11 l22 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 � l221

q
0

l31 ¼ a31=l11 l32 ¼ a32 � l21 � l31ð Þ
l22

l33 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a33 � l231 � l232

q
2666664

3777775
Expressed in more formal terms, the following formulae describe the computations

for the diagonal elements

lkk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
akk �

Xk�1

j¼1

l2kj

vuut ð5:28Þ

and the elements below the diagonal.

lik ¼ 1

lkk
aik �

Xk�1

j¼1

lijlkj

 !
ð5:29Þ

To make things less abstract, let’s perform a Cholesky decomposition on our

sum of squares matrix.

X
0
X ¼

12 60 53

60 394 311

53 311 299

24 35

L ¼

ffiffiffiffiffi
12

p ¼ 3:4641 0 0

60

3:4641
¼ 17:3205

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
394� 17:32052

p
¼ 9:6954 0

53

3:4641
¼ 15:2998

311� 17:3205 � 15:2998ð Þ
9:6954

¼ 4:7445
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
299� 15:29982 � 4:74452

p
¼ 6:5120

26666664

37777775

L ¼
3:4641 0 0

17:3205 9:6954 0

15:2998 4:7445 6:5120

24 35
You can go ahead and verify that LL0 ¼A.
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5.4.2 Calculating the Determinant and the Inverse

The Cholesky factor can be used to efficiently compute the determinant of a matrix.

With a square matrix, we would normally need to compute many cofactors in order

to find the determinant, but with a lower triangular matrix we need only square the

product of the diagonal values.

Aj j ¼
Y

lkk

� �2
ð5:30Þ

Using the formula, we can quickly find the determinant of our sum of squares

matrix.

X
0
X

		 		 ¼ 3:4641 � 9:6954 � 6:5120ð Þ2 ¼ 47834

Similarly, the Cholesky factor can be used to efficiently find the inverse of a

matrix.

A�1 ¼ L�1
� �0

L�1 ð5:31Þ

5.4.3 Least Squares Regression

There are several ways to use the Cholesky factor for linear regression analyses,

including techniques involving forward and backward substitution. In my opinion,

the easiest method is to use the following formulae to find the regression coeffi-

cients, fitted values, and covariance matrix.

b ¼ L
0

� ��1

X L
0

� ��1
� �0

y ð5:32Þ

ŷ ¼ X L0ð Þ�1
X L0ð Þ�1
h i0

y ð5:33Þ

C ¼ L�1
� �0

L�1�MSe ð5:34Þ

Using our sample data, you can readily verify that these equations produce their

intended values.
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5.4.4 Using the Cholesky Decomposition to Find
the Eigenvalues

Using an iterative technique, the Cholesky decomposition can be used to find the

eigenvalues of a symmetric matrix. We will use X0X to illustrate the steps.

• Form a Cholesky decomposition of X0X.
• Calculate a sum of squares matrix from the Cholesky factor (L0L).
• Form the Cholesky decomposition of L0L and continue iterating until the change

in eigenvalues falls below a designated level.

Table 5.6 shows the first three iterations for our data set.

If you continue performing the iterations, you will find that the eigenvalues

appear on the diagonals of the sum of squares (L
0
nLn) matrix. For our example,

sufficient precision is reached in 10 iterations.

L
0
10L10 ¼

670:8325 0 0

0 31:9347 0

0 0 2:2328

24 35

5.4.5 R Code: Cholesky Decomposition

#Cholesky Decomposition

x0 <-rep(1,12)

x1 <-c(1,9,1,5,6,8,2,4,2,8,7,7)

x2 <-c(2,7,1,8,5,7,4,7,1,4,3,4)

y <-c(3,8,2,8,5,9,4,5,2,4,2,6)

X <-cbind(x0,x1,x2)

XX <-t(X)%*%X

(continued)

Table 5.6 First three iterations of a Cholesky decomposition algorithm for finding eigenvalues

of X0X

Iteration Matrix to be decomposed Cholesky factor

1

X
0
X ¼

12 60 53

60 394 311

53 311 299

24 35 L1 ¼
3:4641 0 0

17:3205 9:6954 0

15:2998 4:7445 6:5120

24 35
2

L
0
1L1 ¼

546:0833 240:5189 99:6321
240:5189 116:5106 30:8964
99:6321 30:8964 42:4060

24 35 L2 ¼
23:3684 0 0

10:2925 3:2520 0

4:2635 �3:9932 2:8780

24 35
3

L
0
2L2 ¼

670:1961 16:4462 12:2703
16:4462 26:5212 �11:4923
12:2703 �11:4923 8:2827

24 35 L3 ¼
25:8882 0 0

:6353 5:1105 0

:4740 �2:3077 1:6531

24 35
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5.4.5 R Code: Cholesky Decomposition (continued)

M=XX

n = max(dim(M))

L = matrix(0, nrow=n, ncol=n)

for (i in 1:n) {

L[i,i] = sqrt(M[i,i] - L[i,,drop=FALSE] %*% t(L[i,,drop=FALSE]))

if (i < n) {

for (j in (i+1):n) {

L[j,i] = (M[j,i] - L[i,,drop=FALSE] %*% t(L[j,,drop=FALSE]))/L[i,i]

}

}

}

L

#Calculate Determinant

determ <-prod(diag(L)^2)

determ

#Calculate Inverse

XXinv <-t(solve(L))%*%solve(L)

XXinv

#Cholesky Regression

chol.beta <-solve(t(L))%*%t(X%*%solve(t(L)))%*%y

chol.beta

chol.fitted <-X%*%solve(t(L))%*%t(X%*%solve(t(L)))%*%y

chol.fitted

covar <- t(solve(L))%*%solve(L)*sum((y-chol.fitted)^2)/9

covar

#Cholesky Eigenvalues (10 iterations)

CC <- t(X)%*%X;

for(i in 1:10)

{

CC <- chol(CC);

CC <-CC%*%t(CC);

}

lambda <-diag(diag(CC))

lambda

5.5 Comparing the Decompositions

In this chapter, you have learned several procedures that can be used to decom-

pose a matrix, solve linear regression analyses, find the eigenvalues, and, in some

cases, find the eigenvectors of a square matrix. Table 5.7 summarizes the
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calculations for each method, along with the sum of squares inverse method we

used in earlier chapters.

It is natural at this point to wonder which method is best for least squares

estimation. Seber and Lee (2003) considered this question and concluded that the

Cholesky decomposition is the most efficient, the SVD is the most accurate, and

the QR decomposition best balances efficiency and accuracy. When we include its

ability to find the eigenvalues and eigenvectors of a matrix, it is easy to see why

most statistical packages use the QR decomposition for least squares estimation

and eigen decomposition.

Does the superiority of the QR decomposition mean that we wasted our time

learning the matrix inverse, sum of squares method? Not at all. First, the sum of

squares method provides more insight into the processes involved in computing a

regression coefficient (i.e., divide a cross-product term by a sum of squares) than

does the QR decomposition, so it’s better from a pedagogical standpoint. More-

over, the other decompositions outperform the sum of squares method only when

X0X is nearly singular. There may be times when you encounter such a matrix, but

they will be rare, and the examples you will find in this book will not be among

them (see Trefethen and Schreiber 1990, for a related argument). Consequently,

I will continue illustrating various techniques using the sum of squares matrix and

rely on more sophisticated decomposition techniques only when they are needed.

5.6 Chapter Summary

1. Matrix decompositions factor a matrix into two or more smaller matrices that

can be combined to reproduce the original matrix. Their values lie in identify-

ing underlying patterns of variability and offering computationally efficient

methods of performing statistical analyses, such as linear regression.

2. An eigen decomposition redistributes the variance of a square matrix A into a

set of eigenvalues (λ) and their associated eigenvectors (v).

Av ¼ λv

Table 5.7 Comparing four methods for performing linear regression

Method b ŷ C

Sum of squares (X0X)� 1X0y X(X0X)� 1X0y MSres * (X
0X)� 1

QR R� 1Q0y QQ0y MSres *R
� 1(R� 1)0

SVD VD
� 1

U0y UU0y MSres �
Xp
k¼1

v2jk
λk

Cholesky (L0)� 1[X(L0)� 1]0y X(L0)� 1[X(L0)� 1]0y MSres * (L
� 1)0L� 1
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3. When the eigenvalues are stored in a diagonal matrix Λ and the eigenvectors

are consolidated into a matrix V, they reproduce the original matrix.

A ¼ VΛV�1

4. When subtracted from the diagonal elements of a matrix, eigenvalues create a

singular matrix with a linear dependence. The eigenvalues are found by solving

a polynomial equation known as the “characteristic equation.”

A� λIj j ¼ 0

5. Associated with each eigenvalue is an eigenvector v. When premultiplied by

the original matrix, an eigenvector changes length but not direction. The

magnitude of the change is determined by the eigenvalue. Eigenvectors are

found from the eigenvalues.

A� λð Þv ¼ 0

6. The sum of the eigenvalues equals the trace of the matrix, and the product of the

eigenvalues equals the determinant of the matrix. A matrix in which all

eigenvalues are greater than zero is invertible and of full rank.

7. The eigenvalues of a correlation matrix reflect the linear dependencies among

the variables. The more highly correlated the variables are, the larger is the

dominant eigenvalue and the smaller are successive eigenvalues.

8. TheQR decomposition factors a rectangular matrix into an orthonormal matrix

Q and an upper triangular matrix R.

A ¼ QR

9. The QR decomposition can be used to perform least squares estimation.

b ¼ R�1Q
0
y

10. A modification of the QR decomposition, the QR algorithm, uses an iterative

technique to find the eigenpairs of a large, square matrix. The algorithm can be

speeded up by performing an explicit shift and modified for use with

nonsymmetric matrices.

11. Using the eigenpairs from a sum of squares matrix, singular value decomposi-

tion reconstructs a rectangular matrix into three matrices.

A ¼ UDV
0

12. Singular value decomposition can be used to perform least squares estimation.

b ¼ VD�1U
0
y

5.6 Chapter Summary 183



21. The Cholesky decomposition factors a matrix into two, lower triangular

matrices.

A ¼ LL
0

22. The Cholesky decomposition provides an economical way to find the determi-

nant and inverse of a matrix and can perform least squares estimation. An

iterative modification of the decomposition yields the eigenvalues of a matrix.

23. The QR decomposition offers the best balance between efficiency and preci-

sion, and most statistical packages use it to perform problems involving least

squares estimation and eigen decomposition.
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Chapter 6

Problematic Observations

The suitability of a linear regression model depends on several factors. We briefly

covered some of these factors in Chap. 2, and we are now ready for a more detailed

discussion. Table 6.1 organizes them into three categories of increasing importance.

The first category refers to properties that are desirable but not required; the second

refers to properties that are required when ordinary least squares (OLS) estimation

is used to find a least squares solution; and the final category refers to properties that

are required for all methods of linear estimation.

Checking our data against these assumptions is an important part of conducting a

linear regression analysis, and the term “regression diagnostics” is often applied

to this process. Many researchers approach this endeavor with trepidation, but

assumption violations rarely constitute an insurmountable problem. Most can be

accommodated by gathering more data, transforming our variables, or modifying

our regression model. So discovering that an assumption has been violated is not a

death sentence; rather, it represents an opportunity to improve your model and

strengthen your confidence in your findings. Moreover, you will learn a lot about

regression analysis by carefully considering the assumptions that a linear model

makes, the problems that arise when these assumptions are violated, and the

remedial measures we can take to minimize problems when they occur.

The next five chapters concern issues of this nature. The current chapter dis-

cusses the first category in Table 6.1—problematic observations. We begin here

because problems often arise from discrepant values that are disproportionately

influential. Chapter 7 considers the distribution of the errors, and Chaps. 8, 9, and 10

take up specification errors. Because our coverage of these issues is spread out over

several chapters, we defer a detailed consideration of each one until we come to the

chapter in which it is most prominently discussed.
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6.1 Influential Observations

When we conduct a linear regression analysis, we assume that the regression

coefficient expresses a uniform relation between a set of predictors and a criterion,

with each pair of observations (i. e., x and y) contributing equally to its value.

In fact, this ideal does not always hold. To illustrate, consider the data shown in

Table 6.1 Assumptions underlying simple linear regression (SLR) and multiple regression (MR)

Category

Assumed

property Description

Applies

to SLR

Applies

to MR

Affects

meaning

of the

regression

coefficients

Affects

size

of the

standard

errors

Desiderata

Problematic

observations

Equal

influence

Predictor values

are not too dis-

crepant from

each other, and

each criterion

lies near its

fitted value

✓ ✓ ✓

No

collinearity

Predictors are

not too highly

correlated

✓ ✓

Requirements for using ordinary least squares estimation

Errors and

their

distribution

Normally

distributed

Error terms are

normally dis-

tributed with

mean 0

✓ ✓ ✓

Constant

variance

Error terms

have common

variance

✓ ✓ ✓

Independent Error terms are

uncorrelated

✓ ✓ ✓

Requirements of linear estimation

Model

specification

errors

Additivity The criterion is

an additive

function of the

weighted pre-

dictors and the

disturbance

term

✓ ✓ ✓

Linearity With all other

variables held

constant, a one

unit change in xi
always predicts

a bi change in y

✓ ✓ ✓
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Table 6.2 [adapted from Anscombe (1973)]. Notice that all but one of the predictor

values ¼ 8, yet a line of best fit shows a steep slope relating x to y (b1¼.4999).

Clearly, this slope does not characterize the sample as whole; rather it is unduly

influenced by one observation. This is the problem with a least squares analysis.

Even with a large sample, discrepant values can be disproportionately influential.

6.1.1 Discrepant Observations

Discrepant observations come in two varieties.

• First, the value of a predictor can be unusually large or small in comparison with

the other predictors; when this occurs, the observation is said to have high

leverage.

• Second, a criterion can be unusually discrepant from its fitted value; in this case,

the observation is said to be an outlier.

An observation that is characterized by only one of these qualities is unlikely to

be problematic, but an observation that possesses both of them exerts undue

influence on the regression coefficients and distorts their standard errors.

6.1.2 Illustrating Undue Influence

Identifying values of undue influence proceeds through a process of elimination.

From a complete set of observations, we eliminate one observation at a time,

reestimating our model using N� 1 observations. If the recalculated model differs

substantially from the full one, we conclude that the eliminated observation is

disproportionately influential.

Table 6.2 Illustration of an overly influential data point

Observation # x y
y = 0.4999x + 3.0017

2

4

6

8

10

12

14

5 10 15 20

Y

X

1 8 6.58

2 8 5.76

3 8 7.71

4 8 8.84

5 8 8.47

6 8 7.04

7 8 5.25

8 19 12.50

9 8 5.56

10 8 7.91

11 8 6.89
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6.1.2.1 Analysis Using All Observations

To illustrate this process, consider the data shown in Table 6.3. Here we have

recruited five students for a (hypothetical) study between a predictor (how many

hours/week do you study matrix algebra) and a criterion (how well did you perform

on a final exam).1 Notice that the line of best fit is positive in sign but not

significantly different from 0 (b1¼.1667, p¼.7177).

6.1.2.2 Deleting Observations

One way to gauge an observation’s influence is to perform a regression analysis

with the observation excluded. Figure 6.1 plots the regression lines for the entire

sample and then successively with one observation removed. Looking over the

scatterplots, we see a clear linear pattern when Observation #5 is excluded, such

that performance improves as study time increases. As this pattern emerges only

after this observation is eliminated, the observation seems unduly influential.

Table 6.3 Hypothetical data illustrating regression diagnostics

Observation x y b1 p

1 2 3 Excluding

Observation 1

–.1538 .7519

2 4 4 Excluding

Observation 2

.1667 .7610

3 5 5 Excluding

Observation 3

.1791 .7682

4 7 6 Excluding

Observation 4

–.1111 .9024

5 2 7 Excluding

Observation 5

.6154 .0077

Mean 4 5

Deviation Sum

of Squares

18 10

Significance test of regression model

SS df MS R2 F p

Regression .50 1 .50 .05 .1579 .7177

Residual 9.50 3 3.1667

Total 10.00

Regression coefficients

b seb t p (X0X)� 1 C

b0 4.3333 1.8569 2.3336 .1018 1.0889 –.2222 3.4481 –.7037

b1 .1667 .4194 .3974 .7177 –.2222 .0556 –.7037 .1759

1 Because we are interested in individual cases, the sample size is purposely small to highlight each

observation’s influence.
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6.1.2.3 Impracticality of the Deletion Method

Inspecting each regression line is informative, but it suffers from some limitations.

First, it is tedious with large sample sizes. Second, we often have more than one

predictor, making it even more impractical to create multiple graphs. Finally,

saying that the regression lines “look a lot different” is too impressionistic for

science. Instead, we need some way of quantifying the discrepancies. Fortunately,

we can solve all of these problems by calculating a few preliminary statistics and

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

Y

X

Complete Data

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

Y

X

Minus Observation 1

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

Y

X

Minus Observation 2

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

Y

X

Minus Observation 3

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

Y

X

Minus Observation 4

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

Y

X

Minus Observation 5

Fig. 6.1 Regression lines of best fit for a complete sample and with one observation eliminated
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combining them to form some summary values. That being said, you should also be

aware that there are no hard-and-fast rules for gauging undue influence. We will

discuss some guidelines, but ultimately researchers are free to decide whether an

observation is so extreme that it needs to be removed.

6.1.3 Leverage and the Hat Matrix

We begin by examining the property of a predictor known as its leverage. As noted

earlier, predictor values that lie far from the mean of the predictor (in the case of

simple linear regression) or far from the center of the vector space of all predictors

(in the case of multiple regression) possess high leverage and are potentially

problematic.

6.1.3.1 Calculating the Hat Matrix

Quantifying an observation’s leverage involves examining the diagonal entries of a

matrix known as the hat matrix H.

H ¼ X X
0
X

� ��1

X
0 ð6:1Þ

The formula looks imposing, but it’s really quite simple.2 Throughout the text, we

have used the following formula to calculate fitted values,

ŷ ¼ Xb

and regression coefficients.

b ¼ X
0
X

� ��1

X
0
y

Substituting terms yields an equivalent formula for finding the fitted values.

ŷ ¼ X X
0
X

� ��1

X
0
y

2 The hat matrix can also be calculated using the QR decomposition presented in Chap. 5:

H¼QQ0.
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Now notice that the X terms in this equation constitute the hat matrix, which is why

it is called the hat matrix: it puts the hat (fitted values) on y.3 Inserting values from

Table 6.3 produces the hat matrix for our data set.

X
0
X ¼ 1 1 1 1 1

2 4 5 7 2

� � 1 2

1 4

1 5

1 7

1 2

266664
377775 ¼ 5 20

20 98

� �

and

H ¼

1 2

1 4

1 5

1 7

1 2

266664
377775 5 20

20 98

� ��1
1 1 1 1 1

2 4 5 7 2

� �

¼

:4222 :2000 :0889 �:1333 :4222
:2000 :2000 :2000 :2000 :2000
:0889 :2000 :2556 :3667 :0889
�:1333 :2000 :3667 :7000 �:1333
:4222 :2000 :0889 �:1333 :4222

266664
377775

6.1.3.2 Hat Matrix and Fitted Values

Having computed the hat matrix, we can use it find the fitted values.

ŷ ¼ Hy ð6:2Þ

ŷ ¼

:4222 :2000 :0889 �:1333 :4222
:2000 :2000 :2000 :2000 :2000
:0889 :2000 :2556 :3667 :0889
�:1333 :2000 :3667 :7000 �:1333
:4222 :2000 :0889 �:1333 :4222

266664
377775

3

4

5

6

7

266664
377775 ¼

4:6667
5:0000
5:1667
5:5000
4:6667

266664
377775

It is informative to work through the multiplication underlying each fitted value.

Using our first row of data, we derive our first fitted value.

:4222 � 3ð Þ þ :2000 � 4ð Þ þ :0889 � 5ð Þ þ �:1333 � 6ð Þ þ :4222 � 7ð Þ ¼ 4:6667

3 The hat matrix is idempotent,Hn¼H. The term, idempotent, means “of the same power,” and no

matter how many times you multiply an idempotent matrix by itself, the product matrix is always

the same as the original matrix. This peculiar result occurs because all of the eigenvalues of an

idempotent matrix are 1 or 0.
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As you can see, each fitted value is a linear combination of an observed value

weighted by a corresponding entry in the hat matrix. Thus, each entry in the hat

matrix (hij) indicates how much weight an observed value (yj) receives in the

calculation of a fitted value ŷ ið Þ. When hij is large, yj has a large effect on ŷ i ;

when hij is small, yj has a small effect on ŷ i. In terms of our example, notice that h34
is the largest entry in the third row of the hat matrix (h34¼.3667). Consequently, y4
exerts the strongest influence on ŷ 3.

:0889 � 3ð Þ þ :2000 � 4ð Þ þ :2556 � 5ð Þ þ :3667 � 6ð Þ þ :0889 � 7ð Þ ¼ 5:1667

6.1.3.3 Calculating Hat Values

The diagonal elements in the hat matrix, called hat values, indicate how much

weight each observed value is given in the calculation of its own fitted value

(e. g., if h44 is large, the fourth observation has a large effect on the fourth fitted

value). Often our interest centers on the hat values, allowing us to use a somewhat

easier formula than Eq. (6.1). First, let’s consider the situation when we have a

single predictor, in which case the hat values can easily be found using ordinary

algebra.

hi ¼ 1

N
þ xi � X
� �2P

x2
ð6:3Þ

Notice that the hat value is the sum of two fractions. The first is the inverse of the

sample size, and the second represents the squared deviation of a single value

from the mean of all predictors xi � X
� �2h i

, divided by the sum of all squared

deviations from the mean (Σx2). So a hat value is really a weighted index that

quantifies how much of the total variability in the predictors is attributable to the

specific observation of interest. The following calculations produce the first hat

value for our data set.

1

5
þ 2� 4ð Þ2

18
¼ :4222

The remaining hat values are found in a similar fashion. Notice that the first and last

observations have identical hat values (h¼.4222). This is because they have the

same value for the predictor (i.e., 2 h/week of studying). We see, then, that the hat

value depends only on the predictors and does not take the criterion into account.

With multiple predictors, we use matrix algebra to find our hat values.

hi ¼ xi
0 X

0
X

� ��1

xi ð6:4Þ
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Notice that the first and last terms in this equation are vectors, not matrices.

To illustrate, we will recalculate our first diagonal hat value using the matrix

formula.

1 2½ � 5 20

20 98

� ��1
1

2

� �
¼ :4222

6.1.3.4 Using the Hat Values to Quantify Leverage

The size of a hat value constitutes its leverage, with large values potentially exerting

more influence than small values. Since large values are ones that make a large

contribution to the overall variability of the predictors, it follows that extreme values

possess high leverage. The smallest hat value occurs when a predictor equals the

average predictor value (i.e., the mean of the predictors). In this case, its value will

always equal 1/n. In our sample, the predictor for the second observation lies at the

mean of all predictors (4), and its hat value ¼ 1/5¼.20.4

Although there are no strict standards as to what constitutes a large hat value, the

sum of the hat values equals the number of parameters in our model (including the

intercept). Consequently, the average hat value ¼ p/n. Belsley, Kuh, and Welsch

(1980) recommend that values twice that size should be characterized as having

high leverage when sample sizes are relatively large (> 30) and that values three

times the average should be characterized as large when sample sizes are relatively

small (
30). Our sample size is small, so the application of this rule would lead us

to characterize hat values greater than 1.20 as having high leverage. Although none

of our hat values exceeds this standard, bear in mind that leverage is just one

component of influence.

6.1.4 Residuals and Outliers

The need to consider factors other than an observation’s leverage when determining

its influence is particularly apparent in our data set. Notice that the suspicious case

in our data set (i.e., Observation #5) is not very discrepant from the others on either

the predictor or the criterion. Instead, it is the discrepant combination of low study

time and a high test score that makes it so influential.

4 Some statistical packages report scaled hat values, such that the sum of all values equals

1 (hscaled¼ h� 1/N ). In this case, each term can be treated as a percentage of the whole. In our

example, the first scaled hat value ¼ .2222 and the second ¼ 0.
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The residuals reflect this combination. Large residuals, known as outliers,

indicate that a fitted value lies far from its corresponding observation. The residuals

can be easily calculated from the hat matrix:

e ¼ I�Hð Þy ð6:5Þ
and plugging in our values produces our residuals. Looking them over, the residual

associated with Observation #5 seems unduly large.

e ¼

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

266664
377775�

:4222 :2000 :0889 �:1333 :4222
:2000 :2000 :2000 :2000 :2000
:0889 :2000 :2556 :3667 :0889
�:1333 :2000 :3667 :7000 �:1333
:4222 :2000 :0889 �:1333 :4222

266664
377775

8>>>><>>>>:

9>>>>=>>>>;
3

4

5

6

7

266664
377775 ¼

�1:6667
�1:0000
�:1667
:5000
2:3333

266664
377775

6.1.4.1 Scaling the Residuals

Because residuals are expressed in raw units, it is often difficult to determine what

constitutes an outlier simply by surveying their absolute size. To manage this

problem, we customarily scale them by dividing them by a variance estimate.

Three different scaling procedures are available (see Table 6.4).5

1. First, we can create a standardized residual by dividing each residual by the

square root of MSres:

estandardized ¼ eiffiffiffiffiffiffiffiffiffiffiffi
MSres

p ð6:6Þ

Table 6.3 shows the mean square residual for our data set (MSres¼ 3.1667), and

the first standardized residual shown in Table 6.4 was calculated as follows:

e1:standardized ¼ �1:6667ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:1667

p ¼ �:9366

The obtained value shows the distance between the residual and the line of best

fit, expressed in residual standard deviations. In our case, our first residual is

nearly one standard deviation below the regression line.

5 Unfortunately, terminology isn’t standard and these residuals go by different names in different

statistical packages.
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2. Standardized residuals assume that all residuals have the same variance. When

this is not the case, we can use a different denominator with each observation to

form a studentized residual.

estudentized ¼ eiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSres � 1� hið Þp ð6:7Þ

With our first observation, the studentized residual assumes the following value.

e1:studentized ¼ �1:6667ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:1667 � 1� :4222ð Þp ¼ �1:2322

3. A third scaled residual is known as the deleted studentized residual.

edeleted ¼ eiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2i � 1� hið Þ

p ð6:8Þ

Here, we replace the estimate of the overall variance (MSres) in Eq. (6.7) with

one that excludes the observation of interest.

s2i ¼
N � pð Þ �MSe½ � � e2i = 1� hið Þ

N � p� 1ð Þ ð6:9Þ

Using our data, we compute the deleted residual variance for our first

observation,

s21 ¼
5� 2ð Þ � 3:1667½ � � �1:66672= 1� :4222ð Þ� �

5� 2� 1ð Þ ¼ 2:3462

and then calculate its deleted studentized residual.

e1:deleted ¼ �1:6667ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:3462 � 1� :4222ð Þp ¼ �1:4315

Table 6.4 Leverage and residual values for hypothetical data

x y ŷ e h s2
Standardized

residual

Studentized

residual

Deleted

studentized

residual

2 3 4.6667 –1.6667 .4222 2.3462 –.9366 –1.2322 –1.4315

4 4 5.0000 –1.0000 .2000 4.1250 –.5620 –.6283 –.5505

5 5 5.1667 –.1667 .2556 4.7313 –.0937 –.1086 –.0888

7 6 5.5000 .5000 .7000 4.3333 .2810 .5130 .4385

2 7 4.6667 2.3333 .4222 .0385 1.3112 1.7250 15.6525
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The statistical significance of a deleted studentized residual can be found by

referring it to a t -distribution with N� p� 1 degrees of freedom. Values that are

statistically different from 0 are considered outliers. Clearly, Observation #5

exceeds this threshold (see last entry in Table 6.4).

6.1.4.2 Plotting the Residuals

After calculating the residuals, it is useful to plot them to examine their distribution.

Themost common approach is to create a scatterplotwith standardized fitted values on

the x axis and one of the three residuals on the y axis. Figure 6.2 shows such a

scatterplot using deleted studentized residuals. Ideally, across all levels of the stan-

dardized fitted value, the residuals should fall in a random pattern around 0. We can’t

expect to find this pattern with a sample size as small as ours but deleted studentized

residuals with absolute values of 3 or more deserve scrutiny. In our sample, it is

evident that the value for Observation #5 is very discrepant from the others.

6.1.5 Variance of Fitted Values and Residuals

As first discussed in Chap. 2, fitted values in a linear regression model represent

means from a conditional probability distribution [i. e., E(y|x¼ i)]. Thus, each fitted
value (and, therefore, its corresponding residual) has its own variance. The hat

matrix yields the variance/covariance matrix of the fitted values
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Var ŷð Þ ¼ H �MSres ð6:10Þ

and residuals.

Var eð Þ ¼ I�Hð Þ �MSres ð6:11Þ

The diagonal elements of each matrix display the variances, and the off-diagonal

elements represent the covariances.

Remembering from Chap. 3 that the variance of an estimate represents its

information value, we can see that the fitted value of y from an x with high leverage
is imprecise (i.e., high variance), whereas the fitted value of y from an x with low

leverage is precise (i.e., low variance). This is hardly surprising, as we ordinarily

expect extreme values to be less informative than moderate ones. But now consider

the variances of the residuals. Here, large hat values are associated with small

residual estimates, and small hat values are associated with large residual estimates.

The inverse relation between the size of a hat value and its residual is the reason

why the hat value is given the name “leverage.” As h approaches its maximum

value of 1, the discrepancy between its observed value and fitted value approaches

0. So high values of h pull the regression line towards them, virtually demanding

that their fitted values match their observed value.

6.1.6 Quantifying Influence

So far we have learned how to quantify the leverage of a predictor and the extremity

of a criterion. Observations with extreme values on both of these dimensions are

likely to be unduly influential, and several statistics are available to quantify this

influence. Table 6.5 shows these statistics, using nicknames that have become

standard in the field.

6.1.6.1 DFFIT (Difference in Fitted Values with One

Observation Excluded)

Our first summary statistic compares the fitted values using all observations vs. the

fitted values with one observation omitted. For example, if before deletion, ŷ
		x ¼ 3

is 6 but after an observation is omitted, ŷ
		x ¼ 3 is 2, the DFFIT value would be

(6� 2)¼ 4. Thus, DFFIT values provide an indication of how influential each

observation is in determining its own fitted value. Fortunately, we don’t have to

perform many regression analyses to find these values; instead, they can be found

algebraically.
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DFFIT ¼ hiei
1� hið Þ ð6:12Þ

Plugging in our values, we find the DFFIT value for our first observation.

DFFIT1 ¼ :4222 � �1:6667

1� :4222ð Þ ¼ �1:2179

As with the residuals, DFFIT values are expressed in raw units, making it desirable

to scale them. The following formula finds the scaled DFFIT values (known as

DFFIT_S).

DFFIT Si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hi
1� hið Þ

s
� eiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2i � 1� hið Þ
p ð6:13Þ

Applying Eq. (6.13) produces the scaled DFFIT value for our first observation.

DFFIT S1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

:4222

1� :4222ð Þ

s
� �1:6667ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2:3462 � 1� :4222ð Þp ¼ �1:2237

Absolute scaled DFFIT values greater than 2
ffiffiffiffiffiffiffiffiffi
p=N

p
deserve scrutiny. Using our

sample values, we are wary of DFFIT_S values that exceed |1.2649|. Table 6.5

shows that Observation #5 greatly surpasses this threshold.

6.1.6.2 DFBETA (Difference in Regression Coefficients with One

Observation Excluded)

Out next summary value, DFBETA, quantifies how much the regression coeffi-

cients change when an observation is eliminated. If, for example, b1¼ .75 when all

observations are included, but b1¼ .50, when Observation #1 is excluded, the

DFBETA value for Observation #1 would be (.75�.50)¼.25. As before, we don’t

need to run separate regression models to find these values; instead, we use the

following formula (remembering that xi references a vector not a matrix).

DFBETAi ¼
X

0
X

� ��1
xiei

1� hið Þ ð6:14Þ

Plugging in the values produces the DFBETA for Observation #1.

DFBETAi ¼
5 20

20 98

� ��1
1

2

� �
� 1:6667

1� :4222ð Þ ¼ �1:8590
:3205

� �
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The top entry in the product vector shows the change in the intercept, and the

bottom entry shows the change in the slope of the regression line. We can verify that

the bottom value is correct by revisiting Table 6.3. The penultimate column shows

the regression coefficients with each observation deleted.6 For Observation #1, the

value was b1¼�.1538. Remembering now that b1¼.1667 from the complete data

set, we find that the difference between the two regression coefficients matches the

value for DBETA using Eq. (6.14).

:1667� �:1538ð Þ ¼ :3205

As with all unstandardized regression coefficients, DFBETA values are expressed

in raw units rather than standardized ones. To scale them, we find the standard error

for each coefficient using the following formula, where the final term refers to the

diagonal entry of (X0X)� 1.

sbi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2i X

0
X

� ��1

ii

q
ð6:15Þ

Notice that this formula matches the one we have used throughout the book to find

our parameter standard errors, except instead of using MSres to represent our

residual variance, we substitute the variance estimate for each deleted observation.

For Observation #1, our standard errors becomeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:3462 � 1:0889

p
¼ 1:5983

and ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:3462 � :0556

p
¼ :3610

for the intercept and slope, respectively.

We then divide DFBETA by the standard errors to compute scaled DFBETA

values.

DFBETA S ¼ DFBETA

sbi
ð6:16Þ

Plugging in values for Observation #1 in our example produces the scaled intercept:

DFBETA Sb0:1 ¼ �1:8590

1:5983
¼ �1:1631

and slope.

6 Penultimate means “next to the last.”
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DFBETA Sb1:1 ¼ :3205

:3610
¼ :8878

Scaled DFBETA values greater than 2=
ffiffiffiffi
N

p
are considered extreme. With our

sample size, values greater than .8944 deserve attention. Table 6.5 shows that the

values for DFBETA _ S Observation #5 exceed this standard.

6.1.6.3 Cook’s D

Calculating scaled DFBETA values is useful when we have a small number of

predictors, but suppose we have many predictors. Ideally, we would like to have a

way of integrating the scaled discrepancies across all of them to create an overall

discrepancy index. Cook’s D provides such a measure (Cook 1977). It quantifies

how much the vector of scaled regression coefficients changes with the deletion of a

single observation. The formula appears below. As you can see, it uses components

of leverage, outliers, and the residual sum of squares. For this reason, it provides the

most comprehensive indication of how much each observation affects the least

squares solution.7

Di ¼ e2i hi

p �MSresð Þ � 1� hið Þ2 ð6:17Þ

Plugging in values for Observation #1 produces its D value.

D1 ¼ �1:66672 � :4222
2 � 3:1667 � 1� :4222ð Þ2 ¼ :5547

Opinions vary regarding the critical value for Cook’s D. Some statisticians recom-

mend referring the obtained value to an F distribution with p and N� p degrees of

freedom and then judging all values that approach or exceed the 50th percentile

value as problematic. Other analysts believe that all values greater than 4/(N� p)
merit scrutiny. In our small data set, Observation #5 would be considered prob-

lematic by the former criterion, but not by the latter.

7 The “D” in Cook’s D stands, for distance, and the statistic can also be calculated with a formula

that measures how far the vector of fitted values moves when a case is deleted:

D ¼ Σ Xb� Xb1ð Þ2
MSres�p

(where b1 refers to the coefficients with the ith values excluded, and p refers to the number of

predictors).
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6.1.6.4 COVRATIO (Changes in Standard Errors)

Cook’s D quantifies how much the regression coefficients change when an obser-

vation is eliminated, but we might also want to know how much the standard errors

change when an observation is excluded. This information is provided by the

diagonal elements of the parameter covariance matrix, so it’s informative to

compare the covariance matrix when all of the observations are used with the

covariance matrix when one observation is omitted. One way to do this is to

calculate a fraction, with the determinant from the complete covariance matrix in

the denominator and the determinant from the covariance matrix with one obser-

vation excluded in the numerator. This statistic is called COVRATIO.

COVRATIO ¼
X

0
X

� �
i

�1 � s2i
			 			
X

0
X

� ��1 �MSres

			 			 ð6:18Þ

Unsurprisingly, we do not have to directly calculate the determinants for each term.

Instead, we can use the following formula to calculate the COVRATIO for each

observation in our sample.8

COVRATIO ¼ s2i
MSres

 �p

� 1

1� hið Þ ð6:19Þ

Plugging in values from our first observation produces its COVRATIO.

COVRATIO1 ¼ 2:3462

3:1667

 �2

� 1

1� :4222ð Þ ¼ :9501

Belsley et al. (1980) suggest using the following formula to identify COVRATIO

values that deserve scrutiny.

COVRATIO� 1j j � 3p

N
ð6:20Þ

Applying the formula, the cutoff value with our example is 1.2.

Table 6.5 shows the COVRATIO value for all five observations. When

COVRATIO is < 1, the deleted observation inflates the variance estimates (i.e.,

makes them less precise); when COVRATIO is> 1, the deleted observation shrinks

the variance estimates (i.e., makes them more precise). Using these guidelines,

Table 6.5 shows that the first and last observations inflate the standard errors, and

the middle three observations reduce them.

8 The COVRATIO can also be used to find each observation’s leverage:

hi ¼ 1� 1
COVRATIOi

� s2i
MSe

� �pn o
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6.1.6.5 R2 Following Omitted Values

In some situations, it might be desirable to calculate the coefficient of determination

for a regression model with a particular observation excluded. We can readily

compute SSresi from si
2:

SSresi ¼ si
2 � N � p� 1ð Þ ð6:21Þ

so we need to only find SSyi .

SSyi ¼ SSy � yi � Y
� �2 � N

N � 1


 �
ð6:22Þ

With those values in hand, it’s easy to calculate Ri
2 for a subset of observations.

Ri
2 ¼ SSyi � SSresi

SSyi
ð6:23Þ

Using Eq. (6.23) with our first observation produces its Ri
2 value.

R2
1 ¼

10� 3� 5ð Þ2 � 5
4

n oh i
� 2:3462 � 2½ �

10� 3� 5ð Þ2 � 5
4

n oh i ¼ :3076

5
¼ :0615

The coefficient’s significance can be calculated using Eq. (2.26), with

k and N� k� 1 degrees of freedom. If desired, subtraction can be used to calculate

changes in R2 from the full model.

6.1.7 Commentary

Using the formulae presented above, we can calculate a variety of regression

diagnostics with relative ease using a handheld calculator or, in a few cases, a

spreadsheet with the capability of performing matrix algebra. The decision about

how to handle influential observations, however, cannot be made as easily. As

tempting as it is to eliminate observations that run counter to our hypotheses or keep

an effect from reaching statistical significance, the decision to do so is warranted

only if the source of the influence can be shown to be the result of an identifiable

error (e.g., mistakes in data entry or a failure on the part of the participant to follow

experimental procedures). More generally, regression diagnostics identify observa-

tions of undue influence, but they do not provide any information regarding the

source of that influence. Excluding observations based on diagnostic information

should be made rarely and only with full justification.
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6.1.8 R Code: Regression Diagnostics

#Regression Diagnostics

x=c(2,4,5,7,2)

y=c(3,4,5,6,7)

model=lm(y~x)

summary(model)

#Returns: DFBETA DFFIT COV.R COOK.D HAT INFLUENCE

influence.measures(model)

#Compute Hat Matrix

X <-cbind(1,x)

hat <- X%*%(solve(t(X)%*%X))%*%t(X)

hat

#Calculate Residuals

resid <-resid(model)

standardized <-resid(model)/sqrt(sum(resid(model)^2)/3)

studentized <-rstandard(model)

deleted <-rstudent(model)

all.resids <-cbind(resid, standardized, studentized, deleted)

all.resids

6.2 Departures from Normality

Influential data points can produce residuals that are not normally distributed.

Because OLS estimation assumes that the errors are normally distributed (see

Table 6.1), this state of affairs is potentially problematic. Fortunately, this violation

rarely poses a serious problem when sample sizes are large (~30 observations/

predictor). Still, we don’t always have access to large sample sizes, and even when

we do, there will be times when it will be important to identify and rectify this

violation, so we will learn methods for doing so.

6.2.1 Reviewing the Normality Assumption

Let’s begin by reviewing the normality assumption, first discussed in Chap. 2. In a

linear regression model, each fitted value represents the mean of a conditional

probability distribution (i. e., E(y|x¼ i), with the observed values of y normally

distributed around its fitted value. Because the errors are computed from the

observed and fitted values, the normality assumption also applies to the errors
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(i.e., we assume that the errors are normally distributed with mean 0 and

variance σ2).9

6.2.2 Assessing Normality

In practice, we don’t have access to an entire population, so we use our residuals to

estimate the distribution of the errors. To learn how this is done, we will consider a

data set in which the normality assumption is met. I created the data in Table 6.6

by first generating two sets of random numbers between 0 and 1—one for the

predictor and one for the error term (which I then centered around its mean). I then

created the following regression equation:

y ¼ 4þ :7xþ e

and analyzed the data using simple linear regression. The fitted values and residuals

appear in Table 6.6, along with the hat values and Cook’s D. As one would expect

considering how they were generated, all of the observations are of (approximately)

equal influence.

Table 6.6 Small sample example of “perfect” data

x y ŷ e h Cook’s D e2 e3 e4

.5161 3.7293 4.3762 –.6469 .0834 .0233 .4185 –.2708 .1752

.4688 3.3527 4.2784 –.9257 .0845 .0484 .8569 –.7932 .7343

.0237 3.0408 3.3575 –.3167 .2921 .0328 .1004 –.0318 .0101

.2626 4.2383 3.8519 .3864 .1363 .0153 .1493 .0577 .0223

.5866 4.1130 4.5220 –.4091 .0893 .0101 .1673 –.0685 .0280

.2475 4.9917 3.8205 1.1712 .1431 .1498 1.3714 1.6060 1.8808

.9705 6.4193 5.3163 1.1030 .2784 .3645 1.2168 1.3423 1.4807

.4377 3.4769 4.2141 –.7372 .0874 .0320 .5434 –.4006 .2953

.7817 3.4688 4.9256 –1.4568 .1522 .2519 2.1224 –3.0920 4.5046

.7573 6.1731 4.8753 1.2978 .1406 .1797 1.6846 2.1865 2.8379

.0665 3.9843 3.4462 .5381 .2566 .0754 .2895 .1558 .0838

.9430 5.2553 5.2594 –.0041 .2560 .0000 .0000 .0000 .0000

Mean .7434 .0576 1.0044

9 In a linear regression model, the errors are also assumed to be independent and identically

distributed (see Table 6.1). Violations of these assumptions are discussed in Chap. 7.
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6.2.2.1 Normal Probability (QQ) Plot

One way to determine whether the residuals are normally distributed is to create a

histogram or stem-and-leaf display and compare the distribution to a normal

distribution. These graphical displays are useful when sample sizes are large, but

a smooth bell curve is not going to appear when the sample size is small.

A better alternative is to create a normal probability plot (aka QQ plot). Such a

plot directly compares the observed distribution of residuals to a normal one. To

create the plot, we first order our residuals from smallest to largest, as shown in

Table 6.7, and then compare the order statistics (aka sample quantiles) to the

quantiles from a normal distribution. Doing so involves first computing the percen-

tile rank of each sample quantile, qi, where ri represents each residual’s rank order.

qi ¼
ri � :5

N
ð6:24Þ

To illustrate, we’ll compute the percentile rank of our smallest residual (�1.4568),

whose rank order equals 1:

q1 ¼
1� :5

12
¼ :0417

The calculated values represent areas under a standardized normal curve, so we can

use a spreadsheet function to find standardized scores corresponding to each value.

For example, the first value in the final column of Table 6.7 was found by entering

¼ NORMINV :0417; 0; 1ð Þ ¼ �1:7317,

indicating that in a standardized normal distribution, ~4.2 % of scores fall below a

Z score of � 1.7317. For the 6th variable in the ordered sequence, we find that

~46 % of all scores fall below a Z score of �.1046.

¼ NORMINV :4583; 0; 1ð Þ ¼ �:1046

Finally, we plot the observed residuals against their corresponding standardized

scores, and compare the fit of the two lines. The more similar the residuals are to the

theoretical scores, the more normally distributed are the residuals. The left-hand

graph in Fig. 6.3 presents the normal probability plot for our data, and it’s clear that

the two lines are quite similar, suggesting that our residuals are distributed normally.
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6.2.2.2 Jarque-Bera Test

Visual impressions of normality are informative, but it is also good to have a more

objective test. There are several, but the one we will learn is known as the Jarque-

Bera test,

χ2JB ¼ N
S2

6
þ K � 3ð Þ2

24

" #
ð6:25Þ

where S refers to the skew of the distribution (is it symmetric around its mean?),
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Fig. 6.3 QQ plots for normally distributed residuals and residuals that are not normally

distributed

Table 6.7 Normal probability (aka QQ) plot

Rank Ordered residuals

r � :5

N Theoretical standardized score

1 –1.4568 .0417 –1.7317

2 –.9257 .1250 –1.1503

3 –.7372 .2083 –.8122

4 –.6469 .2917 –.5485

5 –.4091 .3750 –.3186

6 –.3167 .4583 –.1046

7 –.0041 .5417 .1046

8 .3864 .6250 .3186

9 .5381 .7083 .5485

10 1.1030 .7917 .8122

11 1.1712 .8750 1.1503

12 1.2978 .9583 1.7317
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S ¼ d3

d1:52

ð6:26Þ

K refers to the kurtosis of the distribution (is it rounded or peaked?),

K ¼ d4

d22
ð6:27Þ

and the various terms with d and a subscript refer to the average of deviate scores

raised to the subscript’s power. To illustrate, we calculate d3 by subtracting the

mean from every score, raising each deviate score to the 3rd power, and then finding

the average of the cubed deviate scores. Fortunately, the mean of the residuals is

always zero in an OLS regression when an intercept is included, so we can dispense

with subtracting the mean from each residual. Using the averages displayed in the

final three columns of Table 6.7 produces

S ¼ :0576

:74341:5
¼ :0899;

K ¼ 1:0044

:74342
¼ 1:8174;

and the Jarque-Bera test.

χ2JB ¼ 12 � :08992

6
þ 1:8174� 3ð Þ2

24

" #
¼ :7154

The test statistic is distributed as χ2 with 2 degrees of freedom. The critical value at

the .05 level of significance is 5.9915. Our value falls far below this threshold,

providing further evidence that our residuals are normally distributed.10

6.2.2.3 Detecting Violations of Normality in a Second Data Set

Now that we know what normally distributed residuals look like, let’s consider a

data set in which the normality assumption is violated. Table 6.8 displays the raw

data. A regression analysis (see Table 6.9) shows a slope that falls just short of

significance, and a probability plot using the calculations just described yields the

figure in the right-hand column of Fig. 6.3. As you can see, the observed quantiles

do not match the theoretical ones, and a Jarque-Bera test is significant at the .05

level of significance.

10 Skew, kurtosis, and the Jarque-Bera test can be calculated in slightly different ways. The

formulae presented here are the ones R uses. Other tests of normality are available in R, including
the Shapiro-Wilk test and the Kolmogorov–Smirnov test.
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χ2JB ¼ 12 � 1:54482

6
þ 5:0881� 3ð Þ2

24

" #
¼ 6:9529

Thus, we conclude that the residuals are not normally distributed.

6.2.3 Correcting Violations of Normality

A glance back at Table 6.8 reveals the likely problem. Our 11th observation has an

extremely large value for Cook’s D (D¼.7706), indicating undue influence. One

way to handle this observation is to delete it. But with a sample size this small, we

Table 6.9 Regression analysis from “imperfect” data set

Significance test of regression model

SS df MS R2 F p

Regression 6.1079 1 6.1079 .2840 3.9657 .0744

Residual 15.4018 10 1.5402

Total 21.5097

Regression coefficients

b seb t p (X0X)� 1 C

b0 2.3081 .8764 2.6336 .0250 .4987 –.0869 .7681 –.1338

b1 .3332 .1673 1.9914 .0744 –.0869 .0182 –.1338 .0280

Table 6.8 Small sample example of data with residuals that violate the normality assumption

Obs. x y ŷ e h Cook’s D e2 e3 e4

1 1.11 3.15 2.6779 .4721 .3282 .0526 .22290 .10524 .04968

2 1.25 2.72 2.7245 –.0045 .3099 .0000 .00002 .00000 .00000

3 3.25 4.42 3.3908 1.0292 .1259 .0567 1.05919 1.09009 1.12189

4 3.26 3.60 3.3942 .2058 .1254 .0023 .04237 .00872 .00180

5 4.40 2.42 3.7740 –1.3540 .0860 .0612 1.83320 �2.48207 3.36062

6 4.47 3.02 3.7973 –.7773 .0851 .0199 .60416 –.46960 .36501

7 5.52 3.34 4.1471 –.8071 .0933 .0240 .65140 –.52573 .42432

8 5.59 3.66 4.1704 –.5104 .0952 .0098 .26052 –.13297 .06787

9 6.76 3.60 4.5602 –.9602 .1545 .0647 .92199 –.88530 .85006

10 6.86 4.32 4.5935 –.2735 .1619 .0056 .07481 –.02046 .00560

11 6.95 7.74 4.6235 3.1165 .1688 .7706 9.71256 30.26916 94.33377

12 7.95 4.82 4.9567 –.1367 .2658 .0030 .01868 –.00255 .00035

Mean 1.28348 2.24621 8.38175
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might prefer to lessen its influence by transforming our criterion. A transformation

isn’t guaranteed to produce normally distributed residuals, but it often does.11

6.2.3.1 Box-Cox Transformation

Numerous transformations are available. For example, we could take the square

root of the criterion (y.5), calculate its reciprocal (y� 1), or try squaring it (y2).
A more systematic approach is to utilize a Box-Cox transformation (Box and Cox

1964). The Box-Cox procedure finds the power function of y (yλ) that produces
the smallest standardized residuals and, equivalently, the maximum likelihood

estimate. Equation (6.28) presents the formula.

y λð Þ ¼
yλ � 1

λ _Y
λ�1

. . . λ 6¼ 0ð Þ

_Y ln yð Þ . . . λ ¼ 0ð Þ

8><>: ð6:28Þ

The quantity _Y refers to the geometric mean of the criterion, which can be found

using a spreadsheet function (¼GEOMEAN) or calculated directly by first multi-

plying all the criterion values and then raising the product to 1/n.

_Y ¼
Yn
i¼1

Yi

( )1 n=

ð6:29Þ

After the transformed variables have been created, we regress them on our pre-

dictors in the usual fashion. The residual sum of squares from the analysis repre-

sents the likelihood estimate for the selected value of λ. We then repeat this process,

using different values of λ until we identify the value that produces the smallest

residual sum of squares. Finally, notice that we substitute a natural logarithmic

transformation when λ¼ 0.12

It is customary when conducting the analysis to begin by using values of λ
between � 2 and 2. If greater precision is required, one can then narrow the search

within a smaller window. Table 6.10 illustrates the process using some selected

values, with the first row of values in the middle three columns calculated as

follows:

11 In linear regression, the normality assumption refers to the residuals, not the criterion. It is

possible, for example, that the criterion is normally distributed but the residuals are not (or vice

versa). This is because the residuals are calculated from a conditional distribution (i.e., y|x). So
although we correct the violation by transforming the criterion, we do so only as a vehicle for

correcting the distribution of the residuals.
12 Use of the Box-Cox procedure requires that all values of y are � 0.
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λ ¼ �:5, y λ1 ¼ 3:15�:5 � 1
� �

�:5 � 3:7219�1:5
� � ¼ 6:2695

λ ¼ 0, y λ1 ¼ 3:7219 � ln 3:15ð Þ ¼ 4:2706

and

λ ¼ :5, y λ1 ¼ 3:15:5 � 1
� �

:5 � 3:7219�:5
� � ¼ 2:9896

Looking over the values in Table 6.10, we see that the smallest residual is found

when λ¼� 1.5. If we then narrow our search, we would find that λ¼� 1.0707

produces the smallest residual sum of squares and thus maximizes the likelihood

function [SSres¼ 8.0283]. But we don’t use this value to transform our criterion

because it’s too difficult to interpret. Instead, we use a reciprocal transformation

y� 1 that is easier to understand. Similarly, had we found that λ¼ 1.8 maximizes the

function, would we use a squaring transformation (λ¼ 2), and if we had found that

λ¼.7 maximizes the function, we would use a square root transformation (λ¼.5).

In short, we use the Box-Cox transformation to help us find the most interpretable

transformation.

Table 6.10 Illustrative calculations for Box-Cox transformation

Observation y λ¼� 2 λ¼� 1.5 λ¼�.5 λ¼ 0 λ¼.5 λ¼ 1.5 λ¼ 2

1 3.15 23.1816 14.6300 6.2695 4.2706 2.9896 1.5864 1.1986

2 2.72 22.2952 13.8452 5.6533 3.7243 2.5051 1.2046 .8596

3 4.42 24.4601 15.8995 7.5301 5.5313 4.2535 2.8656 2.4902

4 3.60 23.7905 15.2084 6.7921 4.7676 3.4625 2.0148 1.6067

5 2.42 21.3777 13.0842 5.1294 3.2893 2.1439 .9553 .6524

6 3.02 22.9531 14.4220 6.0972 4.1137 2.8468 1.4680 1.0909

7 3.34 23.4687 14.8980 6.5030 4.4885 3.1931 1.7638 1.3643

8 3.66 23.8552 15.2723 6.8544 4.8291 3.5232 2.0741 1.6652

9 3.60 23.7905 15.2084 6.7921 4.7676 3.4625 2.0148 1.6067

10 4.32 24.3983 15.8326 7.4515 5.4461 4.1612 2.7572 2.3727

11 7.74 25.3493 16.9895 9.1990 7.6166 6.8761 7.0955 7.9136

12 4.82 24.6700 16.1332 7.8197 5.8538 4.6126 3.3112 2.9867

Geometric
mean

3.7219

SSres 8.9161 8.2167 8.4267 9.5444 11.6894 21.6247 31.9967

6.2 Departures from Normality 211



The results using a reciprocal transformation of y are shown in Table 6.11.

As you can see, the slope of the regression line relating x to y is now significant.

Moreover, the final column in Table 6.11 shows that all values for Cook’s D fall

within an acceptable range, and a Jarque-Bera test confirms that the distribution

of errors is now normalized (X2
JB¼.0367, p¼.9819). In this instance, then, a reci-

procal transformation of our criterion normalized the residuals and improved our

prediction.

6.2.4 R Code: Departures from Normality

x=c(1.11,1.25,3.25,3.26,4.40,4.47,5.52,5.59,6.76,6.86,6.95,7.95)

y=c(3.15,2.72,4.42,3.60,2.42,3.02,3.34,3.66,3.60,4.32,7.74,4.82)

model=lm(y~x)

summary(model)

influence.measures(model)

(continued)

Table 6.11 Regression analysis from Box-Cox transformed data

Original data After reciprocal transformation

x y y� 1 ŷ e h Cook’s D

1.11 3.15 .3175 .3515 –.0340 .3282 .1000

1.25 2.72 .3676 .3487 .0189 .3099 .0311

3.25 4.42 .2262 .3094 –.0832 .1259 .1333

3.26 3.60 .2778 .3092 –.0314 .1254 .0188

4.40 2.42 .4132 .2868 .1264 .0860 .1922

4.47 3.02 .3311 .2854 .0457 .0851 .0243

5.52 3.34 .2994 .2648 .0346 .0933 .0171

5.59 3.66 .2732 .2634 .0098 .0952 .0005

6.76 3.60 .2778 .2404 .0373 .1545 .0420

6.86 4.32 .2315 .2385 –.0070 .1619 .0021

6.95 7.74 .1292 .2367 –.1075 .1688 .3471

7.95 4.82 .2075 .2171 –.0096 .2658 .0028

Significance test of regression model

SS df MS R2 F p

Regression .0212 1 .0212 .3366 5.0745 .0480

Residual .0419 10 .0042

Total .0631

Regression coefficients

b seb t p (X0X)� 1 C

b0 .3733 .0457 8.1689 .0000 .4987 –.0869 .0021 –.0004

b1 –.0196 .0087 –2.2527 .0480 –.0869 .0182 –.0004 .0001
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6.2.4 R Code: Departures from Normality (continued)

#Studentized (called standard) and Deleted (called student) Residuals

model.student <-rstandard(model)

model.student

model.deleted <-rstudent(model)

model.deleted

#QQ Plot Using Residuals

qqnorm(model$resid);qqline(model$resid)

#Function to calculate skew, kurtosis, and Jarque-Bera test

jarque.bera <-function(model){

e <-model$resid

n <- length(e)

skew <-(sum((e - mean(e))^3)/n/(sum((e - mean(e))^2)/n)^(3/2))

kurtosis <-n* sum((e - mean(e))^4)/(sum((e - mean(e))^2)^2)

jb.test <- n*((skew^2/6)+((kurtosis-3)^2)/24)

p <- 1 - pchisq(jb.test, df = 2)

jb.table<-round(matrix(c(skew,kurtosis,jb.test,p),nrow=1,ncol=4),

digits=5)

dimnames(jb.table)=list(c(),c("skew","kurtosis","jarque-

bera","p"))

return(list(jb.table))

}

jarque.bera(model)

#Box-Cox Test

library(MASS) #attach MASS package

dev.new()

bc <-boxcox(y~x)

bc$x[which.max(bc$y)]

#Transform y using reciprocal and rerun regression and jarque-bera

y.1=y^-1

reg.recip <-lm(y.1~x)

summary(reg.recip)

dev.new()

qqnorm(reg.recip$resid);qqline(reg.recip$resid)

jarque.bera(reg.recip)

6.3 Collinearity

To this point we have considered only a simple linear regression model, but the pro-

cedures we have learned extend tomultiple regression aswell. In the final section of this

chapter, we will take up an issue that arises only in the context of multiple regression.
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As you know, multiple regression identifies the unique contribution each pre-

dictor makes to a criterion holding all other predictors constant. In the typical

regression analysis, the predictors are correlated. This is entirely appropriate.

In fact, if the predictors were uncorrelated (i.e., orthogonal), we wouldn’t need

multiple regression; we’d just conduct a series of simple linear regression analyses

using one predictor at a time. So overlap among our predictors is expected in a

multiple regression analysis.

6.3.1 Problems with Overly Redundant Predictors

Problems can arise, however, if the predictors are too closely associated with one

another. In such cases, the predictors are said to be collinear.13

6.3.1.1 Singular Matrices Are Not Invertible

To appreciate the potential problems, let’s start with an extreme case in which one

of the predictors is perfectly correlated with another predictor. In the example

below, it is obvious that x2 is simply 3 * x1.

x1 x2
2 6

4 12

6 18

2664
3775

When we compute X0X matrix, we get the following sum of squares matrix.

56 168

168 504

� �
To find our regression coefficients, we need to invert this matrix, and to invert this

matrix, we need to divide the adjugate by the determinant. The problem is that the

determinant of this matrix ¼ 0, so the matrix is not invertible.

56 168

168 504

				 				 ¼ 56 � 504ð Þ � 168 � 168ð Þ ¼ 0

Formally, a matrix with at least one linear dependence is termed singular (or rank

deficient) and is not invertible, precluding the use of multiple regression analysis.

13 Some textbooks use the term “multicollinearity” to refer to the situation we are calling

“collinearity.” The two terms refer to the same phenomenon, so I have opted for the shorter one.

214 6 Problematic Observations



6.3.2 Matrices with a Near-Linear Dependence are Ill
Conditioned

Unless we have made a mistake in coding or have inadvertently included a predictor

that is a linear combination of other predictors, we are unlikely to find complete

linear dependencies among our predictors. But problems can arise even when

two (or more) variables are not perfectly correlated. Consider the following

example:

x1 x2
2 6

4 12

6 18:001

2664
3775

Here I have changed the last value slightly so that the two predictors are no longer

perfectly correlated. Now when we compute our X0X matrix, we get

56 168:006
168:006 504:036

� �
and find that the determinant is no longer zero.

56 168:006
168:006 504:036

				 				 ¼ 56 � 504:036ð Þ � 168:006 � 168:006ð Þ ¼ :00002

Consequently, the matrix is invertible.

X
0
X�1 ¼ 25201795 �8400298

�8400298 2799999

				 				
Such a matrix is termed, “ill conditioned”; however, because the regression esti-

mates it yields are prone to error (e.g., small variations, such as the number of

decimal points to which a value is reported, produce large differences in the

estimates). So even though a perfect linear dependency no longer exists, the

regression output is unstable.

6.3.2.1 Ill-Conditioned Matrices Inflate Standard Errors

The effect of an ill-conditioned matrix is most apparent when we consider the

calculation of standard errors. Recall that, with multiple predictors, Eq. (4.6)

(repeated below) can be used to compute the standard errors.
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seb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MSres

ssx � 1� R2
xx

� �s
ð6:30Þ

Looking at the denominator, we see that when the predictors are highly correlated,

the term (1�R2
xx) becomes increasingly small, thereby inflating the standard errors.

This is the problem with collinear predictors—they create large, imprecise standard

errors. Consequently, our regression coefficients are less likely to attain statistical

significance and our findings are less likely to replicate in a different sample.

6.3.3 Demonstrating Collinearity

Keeping these points in mind, we will learn some tools for quantifying the degree of

collinearity and the effect it has on the standard errors. As always, we start with an

example (Table 6.12).

6.3.3.1 Correlations

Before we find our regression coefficients, let’s examine the bivariate correlations.

With 12 observations, correlations greater than .50 are statistically significant.

Table 6.13 shows that none of the predictors is significantly correlated with another

but that x3 and x5 are significantly correlated with the criterion.

Table 6.12 Hypothetical data set for collinearity diagnostics

x1 x2 x3 x4 x5 y

.52 .86 .14 .51 .33 .08

.19 .39 .78 .65 .48 .60

.81 .94 .35 .47 .52 .47

.80 .22 .53 .44 .39 .39

.62 .05 .65 .67 .31 .58

.46 .62 .28 .01 .32 .11

.42 .70 .61 .47 .45 .42

.26 .88 .76 .28 .47 .37

.70 .41 .38 .07 .37 .11

.64 .60 .69 .23 .48 .38

.17 .72 .22 .79 .28 .09

.08 .28 .71 .26 .27 .20

Deviation sum of squares .6984 .8925 .5542 .6347 .0849 .4025

Sum of squares 3.3775 4.5999 3.6550 2.5949 1.9023 1.6058
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6.3.3.2 Regression Analyses

Our next step is to conduct a regression analysis. Using procedures described

throughout the book, we obtain the values shown in Table 6.14. Notice that

although the overall model is significant, only one of the regression coefficients

attains significance. This pattern signals that collinearity might be inflating the

standard errors. Looking more closely at the regression coefficients, we find further

evidence that this is so. Notice that the only significant predictor is x4, even though

its zero-order correlation with the criterion is much smaller than the ones associated

with x3 and x5. The final column in Table 6.14 shows why this occurs. The R2 values

were found by regressing each predictor on the others. Notice that only one

predictor, x4, is independent of the others. As a consequence, the variance it

explains is unique and, in this case, significant.14

6.3.4 Quantifying Collinearity with the Variance
Inflation Factor

As we have noted, collinearity inflates the standard errors. The diagonal entries of

the inverted correlation matrix, known as the variance inflation factor (VIF),

quantify this inflation.

VIFk ¼ Rii ð6:31Þ
The square root of this statistic indicates how much the standard error of a

regression coefficient is affected by the overlap among the predictors. We will

illustrate the statistic using the standard error for our b1 coefficient.

VIFx1 ¼ 3:45667

Table 6.13 Correlations for hypothetical data set for collinearity diagnostics

x1 x2 x3 x4 x5 y

x1 1 –.0482 –.2674 –.1933 .3098 .1643

x2 –.0482 1 –.4145 –.0554 .3969 –.2854

x3 –.2674 –.4145 1 –.0132 .3840 .6982

x4 –.1933 –.0554 –.0132 1 –.0407 .3885

x5 .3098 .3969 .3840 –.0407 1 .6074

y .1643 –.2854 .6982 .3885 .6074 1

14 The penultimate column in Table 6.14 (labeled Tolerance) is found as 1�R2 (or, equivalently,

as the inverse of the diagonal entry of the inverted correlation matrix). It indicates how indepen-

dent each predictor is from all of the others.
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1
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5
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9

3
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8
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5
1
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4
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3
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–
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1
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1

.7
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7
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If the predictors were orthogonal, then the standard error would involve only the

deviation sum of squares (ssx¼.698425 from Table 6.12) and the mean square error

(MSres¼.006836 from Table 6.14).

seb1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

:006836

:698425 � 1� 0ð Þ

s
¼ :098933

To derive the true standard error shown in Table 6.14, we can multiply this value by

the square root of the VIF.

seb1 ¼ :098933 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:456667

p
¼ :183937

Similar calculations yield the other standard errors shown in Table 6.14. In this

manner, the diagonal entries of the inverted correlation matrix of predictors quan-

tify how much collinearity inflates the standard error of each regression coefficient.

Looking over our VIF entries, we see that the standard error associated with x4
is hardly affected at all but that the standard errors associated with x3 and x5 aree ffiffiffi

6
p ¼ 2:5 times greater than they would be if collinearity did not exist. This

inflation explains why b4 is significant but b3 and b5 are not.

6.3.5 Condition Index and Variance Proportion
Decomposition

The VIF is not the only way to quantify collinearity. Another approach is to apply

one of the decomposition techniques we learned in Chap. 5 to the matrix of

predictors. A singular value decomposition (SVD) is a good choice (Belsley

et al. 1980). As you learned in Chap. 5, SVD uses the eigenvalues and eigenvectors

of a sum of squares matrix to decompose a rectangular matrix into three matrices

[see Eq. (5.23) repeated below]:

A ¼ UDV
0 ð6:32Þ

where V ¼ eigenvectors of A0A, D ¼ diagonal matrix of the square root of the

eigenvalues of A0A (called singular values), and U¼AVD� 1. In this section, you

will learn how SVD can be used to quantify collinearity.

6.3.5.1 Normalizing the Predictors

We begin by normalizing our predictors so that their variances can be more easily

compared. To do so, we divide each column value by the square root of the sum of

all squared column values.
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n ¼ xffiffiffiffiffiffiffiffi
Σx2

p ð6:33Þ

Following this transformation, each column vector has unit length (i.e., the sum of

squares ¼ 1 for each normalized variable). Table 6.12 shows the sum of squares for

our hypothetical data, and Table 6.15 shows the predictors after they have been

normalized.15 The first entry for n1 was found as follows:

n1 ¼ :52ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:3775

p ¼ :282947

After normalizing all of the predictors (including the intercept), we create a sum of

squares matrix. We will call this matrix N0N to remind ourselves that we are using

normalized predictors, not raw ones. Although the diagonal elements of the sum of

squares matrix all equal 1, this is not a correlation matrix and the off-diagonal

elements are not standardized covariances.

N
0
N ¼

1 :89063 :89776 :92108 :86914 :97743
:89063 1 :78991 :77299 :73060 :90028
:89776 :78991 1 :75582 :76822 :91444
:92108 :77299 :75582 1 :79801 :93187
:86914 :73060 :76822 :79801 1 :84527
:97743 :90028 :91444 :93187 :84527 1

26666664

37777775

Table 6.15 Normalized predictors (including intercept) for hypothetical data set for collinearity

diagnostics

n0 n1 n2 n3 n4 n5

.288675 .282947 .400981 .073229 .316599 .239262

.288675 .103385 .181840 .407991 .403509 .348018

.288675 .440745 .438282 .183073 .291768 .377020

.288675 .435304 .102577 .277225 .273144 .282765

.288675 .337360 .023313 .339993 .415924 .224762

.288675 .250300 .289080 .146458 .006208 .232012

.288675 .228534 .326380 .319070 .291768 .326267

.288675 .141474 .410307 .397530 .173819 .340768

.288675 .380891 .191166 .198765 .043455 .268264

.288675 .348243 .279754 .360915 .142780 .348018

.288675 .092502 .335705 .115074 .490418 .203011

.288675 .043530 .130552 .371377 .161404 .195760

15 The normalization can also be performed using N ¼ X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I � X0

X
� �qh i�1


 �
, where I is an

X�X identity matrix.
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Applying procedures we learned in Chap. 5, we then use the QR algorithm to

compute the eigenvalues and eigenvectors of N0N. These values, along with the

inverse sum of squares matrix (to be discussed momentarily), are displayed in

Table 6.16.

6.3.5.2 Condition Number

In Chap. 5, you learned that the sum of the eigenvalues equals the trace of the

matrix. After normalizing our variables, the diagonal entries of N0N¼ 1, so

the trace of the matrix is equal to p (the number of predictors, including the

intercept). If the predictors were orthogonal, there would be no variance to consol-

idate and each eigenvalue would ¼ 1. Clearly this is not the case with our normal-

ized matrix. Instead, the first eigenvalue is very large (λ1¼ 5.2641), indicating

collinearity.

The condition number of a matrix quantifies the collinearity among the pre-

dictors. It is found by taking the square root of a ratio, with the largest eigenvalue in

the numerator and the smallest eigenvalue in the denominator. If the predictors

were independent, this ratio would ¼ 1, so values > 1 signal collinearity.

Condition # ¼
ffiffiffiffiffiffiffiffi
λmax
λmin

r
ð6:34Þ

Plugging in our values yields the condition number for our matrix of predictors.16

.
Table 6.16 Eigen pairs and (N0N)� 1 from normalized predictors for collinearity diagnostics

λ 5:264097 :286055 :233641 :187205 :024251 :004751

V

:431421 � :001896 � :050544 � :056529 � :882530 � :171064
:394624 � :567833 � :284809 :604406 :124259 :244891
:397967 � :329746 :659866 � :417167 :120188 :330155
:402447 :336759 � :583259 � :425613 :176235 :415013
:388292 :668772 :365898 :499534 :124901 :054295
:432475 � :090365 � :082667 � :163673 :380259 � :791568

26666664

37777775

N
0
N

� ��1

38:340089 �13:425077 �16:244331 �21:072212 �6:703106 14:768506
�13:425077 16:716046 16:168317 20:995319 3:307154 �39:072382
�16:244331 16:168317 26:743949 28:659217 3:571122 �52:859300
�21:072212 20:995319 28:659217 40:387237 4:418747 �65:882938
� 6:703106 3:307154 3:571122 4:418747 4:762052 � 7:834040
14:768506 �39:072382 �52:859300 �65:882938 �7:834040 138:093908

26666664

37777775

16 Due to rounding error, the value calculated here differs from the true value (displayed in

Table 6.17). This is because the matrix is ill conditioned, and small differences in decimal values

produce large differences in calculated values.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:2641

:00475

r
ffi 33:29011

Belsley et al. (1980) regard condition numbers greater than 30 to be a cause of

concern (indicating that the largest eigenvalue is 900 times greater than the smallest

eigenvalue), and our value exceeds this threshold. Table 6.17 shows that we can

also compute a condition index for other eigenpairs by taking the square root of the

largest eigenvalue divided by the next largest eigenvalue. For example, the second

condition index value is found as follows:ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:2641

:28606

r
¼ 4:2898

6.3.5.3 Variance Proportion Decomposition

So far we have seen that the eigenvalues from a normalized matrix can be used to

quantify the collinearity of a predictor matrix. We can also use the eigen pairs to

pinpoint which variables contribute to collinearity. To begin, recall from earlier

chapters that the diagonal elements of (X0X)� 1 are used to compute the standard

errors and that these values can be reproduced from the eigenpairs of X0X.

X
0
X

� �
ii

�1

¼
Xp
k¼1

v2jk
λk

ð6:35Þ

The same principle applies to (N0N)� 1. The bottom portion of Table 6.16 shows the

inverse matrix, and the last diagonal entry representing x5 can be found using

the eigenpairs of N0N.

:432482

5:2641
þ�:090362

:28606
þ�:082672

:23364
þ�:163672

:18721
þ�:380262

:02425
þ�:791572

:00475
¼ 138:09391

If we then divide each eigenpair quotient by the sum of all terms [i.e., the diagonal

value of (N0N)� 1], we find the proportion of a coefficient’s variance that is

Table 6.17 Condition index and variance proportion values for hypothetical data set for collin-

earity diagnostics

Variance proportions

λ Condition index Intercept x1 x2 x3 x4 x5
1 5.26410 1 .00092 .00177 .00112 .00076 .00601 .00026

2 .28606 4.28980 .00000 .06743 .01421 .00982 .32834 .00021

3 .23364 4.74666 .00029 .02077 .06968 .03605 .12033 .00021

4 .18721 5.30277 .00045 .11674 .03476 .02396 .27991 .00104

5 .02425 14.73328 .83768 .03809 .02227 .03171 .13509 .04318

6 .00475 33.28801 .16066 .75520 .85795 .89770 .13031 .95511
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associated with each singular value. This measure is known as the variance pro-

portion score, and high scores indicate that the variance of the coefficient is strongly

associated with a particular singular value.

VP ¼ v2jk =λkXp

k¼1
v2jk =λk

ð6:36Þ

Table 6.17 displays the values. To help you with the calculations, the three values

shown in bold font were calculated as follows:

:432482=5:2641

138:09391
¼ :00026

:668772=:28606

4:76205
¼ :32834

�:583262=:23364

40:38724
¼ :03605

Because small singular values represent near dependencies, two (or more) pre-

dictors are said to be collinear when a high proportion of their variances is

associated with a small singular value. As a guideline, Belsley et al. (1980) suggest

that collinearity exits when a singular value with a condition index > 10 accounts

for more than 50 % of the variance in at least two predictors. Using these criteria,

our predictors suffer from collinearity. The bottom row of Table 6.17 shows that the

final singular value has a condition index > 30 and accounts for more than 75 % of

the variance in x1, x2, x3, and x5.

6.3.6 Summary

Multiple regression is designed to identify the unique contribution a variable makes

to the prediction of a criterion holding all other predictors constant. But if the

predictors are too closely associated, the standard errors become inflated and

imprecise. The question arises then, as to how much overlap is too much overlap.

Unfortunately, the only standard for deciding whether collinearity is too excessive

is whether there is a complete linear dependency. As long as the predictor matrix is

invertible, a regression analysis can be performed.

At the same time, it is often desirable to minimize collinearity when it does arise.

The first thing to do is check for a coding error. Perhaps a scale was inadvertently

entered under two different names, or subscales were combined, and both variables

(i.e., subscales and combined scales) were entered into the predictive equation.

Barring errors like these, one can reconsider whether all overlapping variables are

needed, increase sample size, or attempt to create combinations of variables using
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various techniques. Generally, one of these remedies will reduce collinearity to a

manageable degree.17

Ultimately, the biggest problem collinearity creates is apt to be conceptual rather

than statistical. To appreciate the issues here, consider the data presented in

Table 6.18. Looking only at the first three columns, we see that we are using

hours spent studying and performance on a pretest to predict students’ grades in a

matrix algebra class. When we conduct a regression analysis using these variables,

we find that each one uniquely explains variability in test performance, leading us

to conclude that effort (study time) and ability (aptitude) predict success in math.

Now suppose that, for whatever reason, I want to show that study time is more

important to success than is aptitude. The middle portion of Table 6.18 shows that

all I have to do is add another predictor to the equation that is highly correlated

(r¼.6924) with aptitude (e.g., scores on the quantitative section of the SAT).

When I do, I find that only time spent studying significantly predicts class perfor-

mance. Of course, another investigator might wish to show that only aptitude

matters. The final portion of Table 6.18 shows that this, too, can easily be accom-

plished by adding a predictor that is highly correlated (r¼.7986) with hours spent

studying (e.g., attendance at various study sessions).

Table 6.18 Hypothetical data set for collinearity diagnostics

Two predictors only

Add predictor correlated

with aptitude

Add predictor correlated with hours

spent studying

Study

time Pretest Grade

Study

time Pretest SAT-Q Grade

Study

time Pretest

Review

session

attendance Grade

1 1 1 1 1 1 1 1 1 1 1

3 9 4 3 9 8 4 3 9 4 4

5 6 5 5 6 5 5 5 6 5 5

7 3 3 7 3 4 3 7 3 5 3

1 5 3 1 5 7 3 1 5 2 3

3 2 1 3 2 3 1 3 2 5 1

5 5 5 5 5 6 5 5 5 6 5

7 8 9 7 8 8 9 7 8 7 9

1 3 2 1 3 4 2 1 3 3 2

3 3 4 3 3 5 4 3 3 5 4

5 3 3 5 3 5 3 5 3 3 3

7 2 5 7 2 8 5 7 2 9 5

Regression coefficients Regression coefficients Regression coefficients

b p b p b p

b0 –.3725 .6857 b0 –.8819 .4049 b0 –.9024 .3746

b1 .5183 .0108 b1 .4389 .0379 b1 .2612 .3393

b2 .4918 .0104 b2 .3376 .1442 b2 .4874 .0108

b3 .2755 .3145 b3 .3440 .2423

17 Ridge regression can also be used to mitigate the effects of collinearity. A discussion of this

procedure can be found in Draper and Smith (1998, pp. 387–400).
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Admittedly, this is an extreme example, but the larger point is valid. Unless the

predictors are orthogonal, the contribution of a correlated predictor will reduce the

impact of the variable with which it is correlated. More generally, we must

remember that each predictor in a multiple regression analysis can only be under-

stood in the context of the other predictors and that the more correlated the pre-

dictors are, the more we need to remind ourselves that this is true. So, ultimately,

the biggest problem collinearity poses is that it might lead us to believe a particular

variable is of little importance when its predictive utility is generally high.

6.3.7 R Code: Collinearity

x1=c(.52,.19,.81,.80,.62,.46,.42,.26,.70,.64,.17,.08)

x2=c(.86,.39,.94,.22,.05,.62,.70,.88,.41,.60,.72,.28)

x3=c(.14,.78,.35,.53,.65,.28,.61,.76,.38,.69,.22,.71)

x4=c(.51,.65,.47,.44,.67,.01,.47,.28,.07,.23,.79,.26)

x5=c(.33,.48,.52,.39,.31,.32,.45,.47,.37,.48,.28,.27)

y=c(.08,.60,.47,.39,.58,.11,.42,.37,.11,.38,.09,.20)

#Complete correlation matrix

V <-cbind(x1,x2,x3,x4,x5,y)

cor(V)

#Regression

model<-lm(y~x1+x2+x3+x4+x5)

summary(model)

#Variance Inflation Factor

library(car) #attach car package

vif(model)

#Condition Index and Variance Decomposition

X <-cbind(1,x1,x2,x3,x4,x5)

N <-X%*%(solve(sqrt(diag(1,ncol(X))*(t(X)%*%X))))

eigs <-eigen(t(N)%*%N);eigs

library(perturb) #attach perturb package

colldiag(model)

6.4 Chapter Summary

1. Least squares estimation assumes that each set of observations (i.e., predictors

and criterion) contributes equally to the value of the regression coefficients and

standard errors. Yet some observations exert an undue influence, creating

interpretive problems.

2. A predictor that is discrepant from other predictors is said to possess high

leverage; a criterion that is discrepant from its fitted value is called an outlier.
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Observations that possess high leverage and are outliers tend to be unduly

influential.

3. Influential observations are identified by noting how various indices (e.g., fitted

values, regression coefficients, standard errors) change when the observation is

eliminated from the analysis. If the statistics change a great deal when an

observation is excluded, the observation possesses high influence.

4. Various methods exist to efficiently calculate each observation’s influence.

Most of them use values from the hat matrix, an idempotent matrix that is

used to compute the fitted values.

5. The most comprehensive assessment of an observation’s influence is Cook’s D,

which measures how much the vector of regression coefficients changes when

an observation is eliminated.

6. Influential observations often produce errors that are not normally distributed.

A QQ probability plot can be used to visually inspect the normality of the

residuals, and the Jarque-Bera test can be used to determine whether departures

from normality are more severe than would be expected by chance.

7. Residuals that do not follow a normal distribution can sometimes be normal-

ized by transforming the criterion. The Box-Cox procedure offers an efficient

way to find the transformation that best achieves this goal.

8. It is normal for the predictors to be correlated in a multiple regression analysis,

but if the correlations are too large, the predictors are termed “collinear,” the

design matrix become ill conditioned, and the standard errors become inflated.

A statistic known as the variance inflation factor quantifies the magnitude of the

inflation.

9. A singular value decomposition of a normalized design matrix can be used to

judge the collinearity of the predictors.

10. Collinearity can be managed, but the biggest problem it creates is conceptual

rather than statistical. Because each regression coefficient depends on the prop-

erties of the other predictors in the equation, the relative importance of a

predictor can be minimized by including other variables with which it correlates.
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Chapter 7

Errors and Residuals

In previous chapters, you learned that the errors in a linear regression model are

assumed to be independent, and normally and identically distributed random

variables with mean 0 and variance σ2:

ε � NID 0; σ2
� � ð7:1Þ

We discussed the normality assumption in Chap. 6, learning ways to determine

whether the errors are normally distributed (e.g., QQ plot, Jarque-Bera test) and the

steps we can take to normalize them if they are not (e.g., Box-Cox transformation).

In this chapter, we will consider whether the errors are independent and identically

distributed, learning ways to assess these assumptions and correct violations of

them when they arise.

7.1 Errors and Their Assumed Distribution

A careful examination of the covariance matrix of errors Σ will clarify our task. For

purposes of illustration, imagine that we conduct a study with only three values for

x. The left-hand side of Table 7.1 presents the structure of the covariance matrix,

and the right-hand side shows the expected values if we assume that the errors are

independent and identically distributed. As you can see, the off-diagonal elements

of the expected matrix are zero (because we assume that the errors derived from one

fitted value are uncorrelated with the errors derived from all other fitted values), and

the diagonal values of the expected matrix are identical (because we assume that the

distribution of errors around each fitted value has the same variance). This is what it

means to say that the errors are independent and identically distributed.
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Keeping these points in mind, let’s consider ways in which data can violate these

assumptions. The first matrix in Table 7.2 shows the case where the errors

are independent but not identically distributed. The matrix is still diagonal

(i.e., with 0 ’ s on the off-diagonals), indicating that the errors are independently

distributed, but the diagonal entries are no longer identical. Instead, the distribu-

tions around each error have their own variance. The next section of this chapter

discusses this violation. The second matrix in Table 7.2 violates the independently

distributed assumption. Here, the variances are identical (i.e., all diagonal entries

are the same), but the off-diagonal entries are no longer 0. The final section of this

chapter discusses this violation.

7.1.1 Why It Matters

The violations depicted in Table 7.2 do not influence the regression coefficients, but

they do affect the precision of the standard errors (and, therefore, our confidence

intervals and tests of statistical significance). Formally, we say that the regression

estimates remain unbiased but become inefficient. To understand why the standard

errors are affected, let’s reexamine the formula we use to calculate the parameter

covariance matrix, first discussed in Chap. 2:

C ¼ σ2 X
0
X

� ��1

ð7:2Þ

As it turns out, Eq. (7.2) is a shortcut that works only when we assume that the

errors are independent and identically distributed. The complete formula is as

follows:

C ¼ X
0
X

� ��1

X
0Σ X X

0
X

� ��1

ð7:3Þ

Table 7.1 Covariance matrix of independent and identically distributed errors

Covariance matrix Expected values

Var εð Þ ¼ Σ ¼
ε21 ε1ε2 ε1ε3
ε2ε1 ε22 ε2ε3
ε3ε1 ε3ε2 ε23

24 35 E Σf g ¼
σ2ε 0 0

0 σ2ε 0

0 0 σ2ε

24 35 ¼ σ2εI

Table 7.2 Two covariance matrices of errors that violate the assumptions of a linear model

Independent but not identically distributed Identical but not independently distributed

Σ ¼
σ21 0 � � � 0

0 σ22 � � � 0

⋮ ⋮ ⋱ ⋮
0 0 � � � σ2n

2664
3775 Σ ¼

σ2ε ε1ε2 � � � ε1εn
ε2ε1 σ2ε � � � ε2εn
⋮ ⋮ ⋱ ⋮
εnε1 εnε2 � � � σ2ε

2664
3775
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or, equivalently,

C ¼ σ2ε X
0Ψ�1X

� ��1

ð7:4Þ

whereΨ is a symmetric, N�Nmatrix of normalized residuals, with the normalized

variances on the diagonals and their normalized covariances on the off-diagonals.

As Table 7.3 shows, the normalization involves dividing each variance/covariance

estimate by the overall variance estimate.

If you look carefully at the normalized matrix, you will notice something

interesting. When the errors are independent and identically distributed, the nor-

malized matrix becomes an identity matrix, allowing us to shorten the formula

shown in Eq. (7.4) to the one shown in Eq. (7.2). But when the errors are not

independent or identically distributed, the shortcut does not accurately produce the

parameter covariance matrix, rendering our standard errors inefficient.

7.1.2 Errors and Residuals

The violations we are discussing pertain to the population errors ε, not the sample

residuals e. To review, an error is a discrepancy between an observed value and its

true population value, whereas a residual is the discrepancy between an observed

value and its fitted value e ¼ y� ŷð Þ: Because population errors are never known,

we use the residuals to estimate them. But this estimation is just that—an estima-

tion—and a covariance matrix of residuals is never as “perfect” as the covariance

matrix of errors displayed in Table 7.1. In short, ε 6¼ e.
To reinforce your understanding of this point, let’s reconsider an example we

first encountered in Chap. 6. To demonstrate normally distributed residuals, I

generated data using random values for x and e, and then set y¼ 4+.7x+ e. The
data, originally shown in Table 6.6, are reproduced in Table 7.4, and an ordinary

least squares (OLS) regression yields the values shown in Table 7.5. For present

purposes, the critical value is the mean square error, MSres¼ .8921.

Table 7.3 Normalized

covariance matrix

of errors (Ψ)

Normalized covariance matrix of errors (Ψ)

Ψ ¼

varε1
σ2ε

covε1,ε2
σ2ε

� � � covε1, εn
σ2ε

covε2,ε1
σ2ε

varε2
σ2ε

� � � covε2,εn
σ2ε

⋮ ⋮ ⋱ ⋮
covεn,ε1

σ2ε

covεn,ε2
σ2ε

� � � varεn
σ2ε

266666666664
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The covariance matrix of residuals, calculated using Eq. (6.11) (reproduced

below), yields the values shown in Table 7.6:

Var eð Þ ¼ I�Hð Þ �MSres ð7:5Þ
Looking at the diagonal entries in Table 7.6, we can see that they all are close to

the value for MSres, though none match it exactly. We can also see that the

off-diagonal entries are generally close to 0, though none is exactly 0. The I�H

matrix guarantees that these discrepancies will occur, even when the population

errors are independent and identically distributed. Because the matrix is not diag-

onal, the residuals will never be completely independent; and because the hat values

are not identical, the variances of the residuals won’t be identical either.

In sum, actual residuals are never entirely independent and identically distrib-

uted. Nevertheless, when we calculate the parameter covariance matrix for this data

set, we use the assumed matrix shown in Table 7.7, not the observed matrix shown

in Table 7.6.

C ¼ X
0
X

� ��1

�MSres ¼ :27936 �:40585
�:40585 :80341

� �

Table 7.4 Illustration of

independent and normally

and identically distributed

errors

x y ŷ e h

.5161 3.7293 4.3762 �.6469 .0834

.4688 3.3527 4.2784 �.9257 .0845

.0237 3.0408 3.3575 �.3167 .2921

.2626 4.2383 3.8519 .3864 .1363

.5866 4.1130 4.5220 �.4091 .0893

.2475 4.9917 3.8205 1.1712 .1431

.9705 6.4193 5.3163 1.1030 .2784

.4377 3.4769 4.2141 �.7372 .0874

.7817 3.4688 4.9256 �1.4568 .1522

.7573 6.1731 4.8753 1.2978 .1406

.0665 3.9843 3.4462 .5381 .2566

.9430 5.2553 5.2594 �.0041 .2560

Table 7.5 Regression output from data in Table 7.4

Significance test of regression model

SS df MS R2 F p

Regression 4.7512 1 4.7512 .3475 5.3260 .0437

Residual 8.9208 10 .8921

Total 13.6720

Regression coefficients

b seb t p (X0X)� 1 C

b0 3.3087 .5285 6.2599 .0001 .31316 �.45495 .27936 �.40585

b1 2.0686 .8963 2.3078 .0437 �.45495 .90060 �.40585 .80341
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7.1.3 Generalized Least Squares Estimation

A more formal way of integrating the points we’ve been making is to note that OLS

estimation is a special case of a broader method known as generalized least squares

(GLS) estimation. GLS estimation uses the following formulae to find the regres-

sion coefficients,

bgls ¼ X
0Ψ�1X

� ��1

X
0Ψ�1y ð7:6Þ

and covariance matrix,

Cgls ¼ ŝ 2ε X
0Ψ�1X

� ��1

ð7:7Þ

When the errors are independent and identically distributed, Ψ¼ I and Eqs. (7.6)

and (7.7) reduce to the normal equations used by OLS estimation. This is why we

Table 7.6 Covariance matrix of residuals from data in Table 7.4

.8176 �.0740 �.0701 �.0722 �.0750 �.0721 �.0784 �.0737 �.0768 �.0765 �.0705 �.0782

�.0740 .8166 �.0884 �.0814 �.0720 �.0819 �.0607 �.0763 �.0663 �.0670 �.0871 �.0615

�.0701 �.0884 .6314 �.1681 �.0428 �.1740 .1057 �.1004 .0326 .0232 �.2440 .0950

�.0722 �.0814 �.1681 .7704 �.0585 �.1245 .0163 �.0875 �.0205 �.0252 �.1598 .0110

�.0750 �.0720 �.0428 �.0585 .8123 �.0575 �.1048 �.0699 �.0924 �.0908 �.0456 �.1030

�.0721 �.0819 �.1740 �.1245 �.0575 .7643 .0220 �.0883 �.0171 �.0221 �.1651 .0163

�.0784 �.0607 .1057 .0163 �.1048 .0220 .6437 �.0491 �.1777 �.1686 .0896 �.2380

�.0737 �.0763 �.1004 �.0875 �.0699 �.0883 �.0491 .8140 �.0594 �.0607 �.0981 �.0506

�.0768 �.0663 .0326 �.0205 �.0924 �.0171 �.1777 �.0594 .7562 �.1303 .0231 �.1716

�.0765 �.0670 .0232 �.0252 �.0908 �.0221 �.1686 �.0607 �.1303 .7666 .0145 �.1630

�.0705 �.0871 �.2440 �.1598 �.0456 �.1651 .0896 �.0981 .0231 .0145 .6631 .0799

�.0782 �.0615 .0950 .0110 �.1030 .0163 �.2380 �.0506 �.1716 �.1630 .0799 .6637

Table 7.7 Assumed matrix used to calculate parameter covariance matrix for the data in Table 7.4

Σ ¼

:8921 0 0 0 0 0 0 0 0 0 0 0

0 :8921 0 0 0 0 0 0 0 0 0 0

0 0 :8921 0 0 0 0 0 0 0 0 0

0 0 0 :8921 0 0 0 0 0 0 0 0

0 0 0 0 :8921 0 0 0 0 0 0 0

0 0 0 0 0 :8921 0 0 0 0 0 0

0 0 0 0 0 0 :8921 0 0 0 0 0

0 0 0 0 0 0 0 :8921 0 0 0 0

0 0 0 0 0 0 0 0 :8921 0 0 0

0 0 0 0 0 0 0 0 0 :8921 0 0

0 0 0 0 0 0 0 0 0 0 :8921 0

0 0 0 0 0 0 0 0 0 0 0 :8921

26666666666666666664

37777777777777777775
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say that OLS estimation is a special case of GLS estimation. In contrast, when the

errors are not independent or identically distributed, we must estimate Ψ before we

can use Eqs. (7.6) and (7.7). The remainder of this chapter examines this estimation

process and discusses corrections that can be taken when the errors are not inde-

pendent or identically distributed.

7.2 Heteroscedasticity

As you know, linear regression models assume that the errors are identically

distributed across values of x (i.e., the diagonal elements of Σ are identical):

V ε
		xi� � ¼ σ2ε ð7:8Þ

When this assumption of constant error variance is upheld, we characterize the

data as “homoscedastic” (roughly translated, “of equal variance”); when

the assumption is violated, we describe the data as “heteroscedastic” (i.e., of

unequal variance).1

Predicting some behavior from annual income often produces heterosce-

dasticity. Imagine we wish to predict how much money families set aside for

college each year from their annual income. It seems likely that there will be little

variability when annual income is low (if you don’t have a lot of annual income,

you can’t save a lot of money for college), but a good deal of variability when

annual income is high (wealthy families might decide to put aside a lot of money

for college or figure they will come up with the money when the time comes, so

they might not save anything). Figure 7.1 shows that these (hypothetical) differ-

ences reveal themselves in the distribution of residuals. Notice that the residuals

are tightly clustered around the mean at low income levels, but not at high income

levels. A funnel-shaped pattern like this is often a clue that heteroscedasticity

exists.2

7.2.1 Small Sample Example

Analyzing a small sample example will help us learn more about heteroscedasticity.

Consider the data in Table 7.8. Our predictor is age and our criterion is number of

hours/night of sleep. The scatterplot shown in the left-hand side of Fig. 7.2 suggests

1 In some textbooks, heteroscedasticity is spelled heteroskedasticity.
2 The raw residuals are plotted against raw income levels in Fig. 7.1 for illustrative purposes.

Ordinarily, we would plot a scaled residual against the standardized fitted values, as we learned to

do in Chap. 6.
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two tendencies: teenagers generally sleep fewer hours than younger children and

their sleep is characterized by greater variability (i.e., some teenagers sleep a lot and

some hardly sleep at all). I’ve raised both kinds, so I’m pretty sure I know what I’m

talking about!
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Fig. 7.1 Heteroscedasticity. In this hypothetical example, annual saving for college becomes

more variable as income levels rise

Table 7.8 Small sample example of heteroscedasticity

x (age)
y (nightly

hours of sleep) ŷ e h e2
e2

1� hð Þ2 |e|

8 11 10.8064 .1936 .2949 .0375 .0754 .1936

9 10.5 10.5249 �.0249 .2249 .0006 .0010 .0249

10 11.2 10.2435 .9565 .1690 .9149 1.3249 .9565

11 9.8 9.9620 �.1620 .1270 .0262 .0344 .1620

12 9.2 9.6805 �.4805 .0991 .2309 .2845 .4805

13 9.0 9.3991 �.3991 .0851 .1593 .1903 .3991

14 8.6 9.1176 �.5176 .0851 .2679 .3201 .5176

15 8.3 8.8361 �.5361 .0991 .2874 .3541 .5361

16 7.0 8.5547 �1.5547 .1270 2.4170 3.1716 1.5547

17 10.0 8.2732 1.7268 .1690 2.9819 4.3180 1.7268

18 10.5 7.9917 2.5083 .2249 6.2914 10.4733 2.5083

19 6.0 7.7103 �1.7103 .2949 2.9250 5.8828 1.7103
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7.2.1.1 Ordinary Regression Analysis

Our first step is to conduct an OLS regression. The results are shown in Table 7.9,

and the slope of the regression line is significant, indicating that increases in age

predict decreases in nightly hours of sleep.

7.2.1.2 Scatterplot of the Residuals

Plotting the studentized residuals against the standardized fitted values is a good way

to assess heteroscedasticity. Following procedures described in Chap. 6, we calculate

the relevant variables and construct the plot that appears in the right-hand side of

Fig. 7.2. Looking the figure over, we see evidence of heteroscedasticity. The

studentized residuals cluster tightly around the mean when the standardized fitted

value of y is high, but become increasingly variable as the standardized fitted value of

y decreases.Notice that these differences are not due to one or two unusual data points;
rather, many of the residuals at the low end of the scale lie far from the regression line.
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Fig. 7.2 Small sample example illustrating heteroscedasticity

Table 7.9 Regression analysis for hypothetical data set for heteroscedasticity

Significance test of regression model

SS df MS R2 F p

Regression 11.32911 1 11.32911 .4065 6.8495 .0257

Residual 16.54006 10 1.65401

Total 27.86917

Regression coefficients

b seb t p (X0X)� 1 C

b0 13.05816 1.49861 8.7135 .0000 1.35781 �.09441 2.24582 �.15615

b1 �.28147 .10755 �2.6172 .0257 �.09441 .00699 �.15615 .01157
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7.2.2 Detecting Heteroscedasticity

Visual inspection often reveals evidence of heteroscedasticity, but it is also desir-

able to have a less impressionist test of this violation. Several tests are available,

and in this section you will learn two of them.

7.2.2.1 White’s Test of Heteroscedasticity

To performWhite’s (1980) test, we take the squared residuals from our OLS analysis

and regress them on our predictors, their squares, and all pairwise cross product

terms. We then multiply the resultant coefficient of determination (i. e., R2) by our

sample size to form a value we refer to a χ2 distribution with k degrees of freedom:

χ2W ¼ R2 � N� �
; df ¼ k½ � ð7:9Þ

We have only one predictor in our example, so k¼ 2 (because we are predicting the

squared residuals from the raw predictor and its square). The relevant calculations

appear in Table 7.10, and the significant χ2 value means we should reject the null

hypothesis that the residuals have constant variance.

7.2.2.2 Breusch-Pagan Test of Heteroscedasticity

White’s test is easy to conduct when we have only a few predictors, but the

calculations become laborious when we have several predictors that need to be

Table 7.10 White’s test

of heteroscedasticity
x x2 e2

1 8 64 .0375

1 9 81 .0006

1 10 100 .9149

1 11 121 .0262

1 12 144 .2309

1 13 169 .1593

1 14 196 .2679

1 15 225 .2874

1 16 256 2.4170

1 17 289 2.9819

1 18 324 6.2914

1 19 361 2.9250

SS R2 χ 2 p

Regression 28.4655 .6918 8.3019 .0157

Residual 12.6801

Total 41.1455
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squared and multiplied to create cross product terms.3 The Breusch-Pagan test

overcomes these limitations, although it performs best with a large sample size

(Breusch and Pagan 1979).

As with White’s test, we begin by saving the residuals from an OLS regression.

We then regress the squared residuals on our predictors and compute SS�reg, with the
asterisk indicating that the term comes from the auxiliary analysis, not the original

one. Finally, we use this value along with the residual sum of squares from our

original analysis to compute the test statistic which, with large samples, is distrib-

uted as χ2 with 1 degree of freedom:

χ2BP ¼ SS�reg
2

	 SSres
N

 �2

ð7:10Þ

Table 7.9 provides the residuals from our original analysis, and Table 7.11 reports

the remaining value needed to perform the Breusch-Pagan test with our data.

Table 7.11 Preliminary

calculations for Breusch-

Pagan test of

heteroscedasticity

x e2

1 8 .0375

1 9 .0006

1 10 .9149

1 11 .0262

1 12 .2309

1 13 .1593

1 14 .2679

1 15 .2874

1 16 2.4170

1 17 2.9819

1 18 6.2914

1 19 2.9250

SS

Regression 23.1529

3 To illustrate, if we had three original predictors, we would have nine predictors for White’s test

(i.e., three original predictors, three squared predictors, and three pairwise cross product terms).

Note that we do not compute higher-order cross product terms, only pairwise ones, and we do not

square dummy-coded variables (see Chap. 11). Finally, the general rule is that there will be 2k

þ kð Þ k�1ð Þ
2

predictors in the equation.
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Plugging the relevant values into Eq. (7.10) confirms the presence of

heteroscedasticity:

χ2BP ¼ 23:1529

2
	 16:5401

12

 �2

¼ 6:0934, p ¼ :0136

7.2.2.3 Managing Heteroscedasticity

Having detected the presence of noncommon variance, our next step is to

diminish its effect. Statistically, we have two approaches.4 First, we can transform

the data and use weighted least squares (WLS) estimation to find our regression

coefficients and their standard errors. Doing so requires specifying the form of

heteroscedasticity, estimating the variance of each residual, and recalculating

a regression model with the transformed data. Alternatively, we can calculate a

new covariance matrix to correct our standard errors without specifying the form

of the heteroscedasticity or conducting a new regression analysis. The latter alter-

native is becoming increasingly popular and it is probably the one you will want

to use, but it is instructive to work through the first alternative, so we will learn

both methods.

7.2.3 Weighted Least Squares Estimation

WLS estimation is a special case of GLS estimation, used when the diagonal

elements of the covariance matrix of residuals are unequal but the off-diagonal

elements ¼ 0. In other words, it is used when the errors are independently distrib-

uted but not identical.

The use of the term “weighted” calls attention to an important fact. As with all

measures of variability, the variance of a residual represents its information value.

The smaller the variance, the more precise is the estimate and the more informative

is the observation about the population parameter. When we conduct an OLS

regression, we assume that each observation is equally informative, so we give

them equal weight. But when the variances of the residuals are heteroscedastic,

observations with small residual variances provide more information than do

observations with large residual variances.

4 A third approach, which should always be considered before a statistical one, is to rethink our

regression model to be sure we have included all relevant variables.
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To take these informational differences into account, we weight each observation

by the inverse of its corresponding residual variance estimate:

w ¼ 1

ŝ 2i
ð7:11Þ

In this manner, residuals with low variance receive more weight than residuals with

high variance, and our regression analysis uses weighted least squares estimation

rather than ordinary (equally weighted) least squares estimation.

7.2.3.1 Estimating the Variance of the Residuals

The trick is to derive the variance of each residual. Sometimes these values are

known, but most of the time they need to be estimated from the data. The estimation

technique we use depends on our intuitions about the form heteroscedasticity takes

in our sample. If we are right, we improve the precision of our estimates; if we are

wrong, we can wind up with an estimate that is less precise than our original,

OLS one.

In many cases, the variances of the residuals are proportional to the size of a

predictor variable, with large residuals associated with large predictors. When this

occurs, we say that the errors enter the regression equation as a multiplicative

function of the predictors rather than an additive one. To the extent that this is so,

we can estimate the variance of the residuals using the following procedure:

1. Run an OLS regression and save the residuals.

2. Regress the absolute value of the residuals on X and calculate the fitted values

from the regression coefficients. These fitted values estimate the standard devi-

ation of the residuals i:e:, ŷ i ¼ ŝ ið Þ.
3. Divide each observation (including the vector of leading 1’s), by the absolute

value of the estimated standard deviation of the residuals.

4. Perform an OLS regression on the transformed data, without including a term for

the intercept (i.e., perform a regression through the origin).

Table 7.12 presents the values we need to illustrate the process. Before we

perform the calculations, let’s consider why we are regressing the absolute value

of the residuals on our predictor. The residuals from the original analysis represent

the portion of the variance in y that X cannot explain. When we regress these values

on our predictors and examine the predicted values, we are asking “what portion of

this unexplained variance can each observation explain?” Ideally, we would like to

learn that each value explains (roughly) the same amount of this unexplained

variance. We understand that this will not exactly be true, but that’s the ideal

given the assumption of identically distributed errors.
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With that in mind, let’s return to our estimation procedure. When we regress the

absolute value of the residuals on our predictors, we obtain the following regression

coefficients we need to calculate fitted values ŷð Þ:

b0 ¼ � 1:5416

and

b1 ¼ :1807

As noted earlier, these fitted values estimate the standard deviation of each residual.

We then divide our intercept vector of 1 ’ s, our predictor x̂ð Þ, and our original

criterion (y) by the absolute value of each observation’s residual standard deviation.
These values are shown in Table 7.12.

7.2.3.2 Perform an OLS Regression on the Transformed Variables

If we then perform an OLS regression through the origin on the transformed data,

we get the results shown in Table 7.13.5 These values represent a weighted least

squares solution, with the weight of each observation inversely proportional to its

Table 7.12 Weighted least squares estimation using the absolute value of the residuals

x |e| ŷ ¼ ŝ
1
ŝj j

x
ŝj j

y
ŝj j: ŷ w ew

1 8 .1936 �.0962 10.3955 83.1638 114.3502 113.6977 .6525

1 9 .0249 .0845 11.8368 106.5312 124.2864 125.7015 �1.4150

1 10 .9565 .2652 3.7713 37.7130 42.2386 38.8515 3.3871

1 11 .1620 .4458 2.2430 24.6726 21.9811 22.3942 �.4131

1 12 .4805 .6265 1.5961 19.1535 14.6844 15.4290 �.7446

1 13 .3991 .8072 1.2389 16.1052 11.1497 11.5819 �.4321

1 14 .5176 .9879 1.0123 14.1719 8.7056 9.1420 �.4364

1 15 .5361 1.1685 .8558 12.8364 7.1028 7.4566 �.3538

1 16 1.5547 1.3492 .7412 11.8586 5.1882 6.2226 �1.0345

1 17 1.7268 1.5299 .6536 11.1118 6.5363 5.2801 1.2562

1 18 2.5083 1.7106 .5846 10.5227 6.1383 4.5367 1.6016

1 19 1.7103 1.8913 .5287 10.0462 3.1725 3.9353 �.7628

Table 7.13 Weighted least squares regression analysis for data in Table 7.8

b seb t p (X0X)� 1 C

b0 13.47870 .69436 19.4118 .0000 .23043 �.02569 .48213 �.05375

b1 �.31768 .07803 �4.0712 .0022 �.02569 .00291 �.05375 .00609

5 Because we have not included a true intercept, we do not interpret the R2 value from the

transformed data.
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estimated variance. With our data set, age remains a significant predictor of sleep

after making this adjustment.

Finally, we can test the transformed residuals for heteroscedasticity to be

certain we have eliminated it. The last column of Table 7.12 shows the relevant

values and White’s test confirms that heteroscedasticity has been reduced,

χ2¼ .8179, p¼ .6643.

7.2.3.3 Matrix Calculations for WLS Estimation

The calculations we have performed represent the easiest way to understand WLS

estimation, but the analysis can also be performed usingmatrix formulae. Table 7.14

shows several, equivalent approaches. For all analyses,

MS�res ¼
e�

0
X e�

N � k � 1ð Þ ð7:12Þ

where e*¼ y� b*X (i.e., the fitted values and residuals are found from the

weighted regression coefficients).

I encourage you to work through the calculations to confirm their equivalence, as

each offers a unique way of understanding WLS estimation. The final matrix Γ is of

particular interest, as it is a transformationmatrix createdwith the followingproperties:

Γ0Γ ¼ Ψ�1 and ΓΨΓ0 ¼ I ð7:13Þ

Using Eq. (7.14), the transformation matrix can also be used to transform our

original variables so that they can be analyzed using OLS estimation,

Table 7.14 Matrix formulae for weighted least squares estimation

Matrix

Regression coefficients

b*
Parameter

covariance matrix

Σ ¼
ŝ 1

2 0 � � � 0

0 ŝ 2
2 � � � 0

⋮ ⋮ ⋱ ⋮
0 0 � � � ŝ N

2

2664
3775

(X0Σ� 1 X)� 1X0 Σ� 1 y MS�res *
(X0Σ� 1 X)� 1

Ψ ¼
ŝ 1

2=σ2 0 � � � 0

0 ŝ 2
2=σ2 � � � 0

⋮ ⋮ ⋱ ⋮
0 0 � � � ŝ N

2=σ2

2664
3775

(X0Ψ� 1 X)� 1X0 Ψ� 1 y MS�res *
{σ2(X0Ψ� 1 X)� 1}

Γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2=ŝ 1

2
q

0 � � � 0

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2=ŝ 2

2
q

� � � 0

⋮ ⋮ ⋱ ⋮
0 0 � � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2=ŝ N

2
q

2666664

3777775
(X0Γ0Γ X)� 1X0 Γ0Γ y MS�res *

{σ2(X0 Γ0ΓX)� 1}
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V� ¼ ΓV ð7:14Þ

where V refers to our original data matrix that includes a vector of leading 1’s,

X and y.

7.2.4 Heteroscedasticity-Consistent Covariance Matrix

Because heteroscedasticity affects the standard errors but not the regression

coefficients, we can address this violation by replacing our original covariance

matrix with a heteroscedasticity-consistent covariance matrix (HCCM; White

1980). Earlier, we saw that Eq. (7.3) (reproduced below) can be used to find the

parameter covariance matrix, where Σ is a diagonal matrix with σ2 on the diagonals:

C ¼ X
0
X

� ��1

X
0Σ X X

0
X

� ��1

Because Σ is a diagonal matrix, we can rewrite the equation as follows:

C ¼ X0Xð Þ�1
X0diag

σ2

1

� �
X

 �
X0Xð Þ�1 ð7:15Þ

Building on this formula, the following equation can be used to find an HCCM

developed by White and designated HC1 by Long and Ervin (2000):

HC1 ¼ X
0
X

� ��1

X
0
diag

e2i
1

� �
X

 �
X

0
X

� ��1

ð7:16Þ

Notice that the middle term is still a diagonal matrix, but the diagonal values now

represent the square of each observation’s residual rather than a common estimate

of the variance.

The HCCM presented in Eq. (7.16) is accurate with large samples, but Long and

Ervin recommend a slightly modified equation, designatedHC3, when sample sizes

are small:

HC3 ¼ X
0
X

� ��1

X
0
diag

e2i
1� hið Þ2

" #
X

 !
X

0
X

� ��1

ð7:17Þ

The middle term is still a diagonal matrix, but the diagonal values now represent a

unique estimate of the residual variance of each observation, computed by dividing

its squared residual by (1� hi)
2, where hi is the hat value discussed in Chap. 6

[Eq. (6.4) repeated below]:

hi ¼ xi
0 X

0
X

� ��1

xi
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If you look back to the penultimate column in Table 7.8, you will find the diagonal

values needed to populate the matrix:

HC3 ¼

:0754 0 0 0 0 0 0 0 0 0 0 0

0 :0010 0 0 0 0 0 0 0 0 0 0

0 0 1:3249 0 0 0 0 0 0 0 0 0

0 0 0 :0344 0 0 0 0 0 0 0 0

0 0 0 0 :2845 0 0 0 0 0 0 0

0 0 0 0 0 :1903 0 0 0 0 0 0

0 0 0 0 0 0 :3201 0 0 0 0 0

0 0 0 0 0 0 0 :3541 0 0 0 0

0 0 0 0 0 0 0 0 3:1716 0 0 0

0 0 0 0 0 0 0 0 0 4:3180 0 0

0 0 0 0 0 0 0 0 0 0 10:4733 0

0 0 0 0 0 0 0 0 0 0 0 5:8828

26666666666666666664

37777777777777777775

If you then use this matrix in Eq. (7.17), you will derive a new covariance matrix

that takes the heteroscedasticity of the errors into account:

HC3 ¼ 2:95391 �:26206
�:26206 :02362

� �
Taking the square root of the diagonal entries as our standard errors, we find that the

regression slope, which was significant when homoscedasticity was assumed, is no

longer significant when the correction is applied (see Table 7.15). Although this won’t

always occur, correcting our standard errors for heteroscedasticity usually produces

larger standard errors and, therefore,more conservative tests of statistical significance.

7.2.5 Summary

Table 7.16 summarizes some of the results from the analyses we have been

conducting. As you can see, the HC3 analysis presents the most conservative test

and the WLS analysis provides the most liberal. This will not always be the case but

is true here because the method we used to estimate heteroscedasticity was very

accurate. When we are less sure of the form that heteroscedasticity takes, the HC3

correction is recommended.

Table 7.15 HC3 corrected

standard errors and tests

of significance

b seb t p

b0 13.05816 1.71869 7.5977 .0000

b1 �.28147 .15370 �1.8313 .0970

Table 7.16 Three ways

of testing data with

heteroscedasticity

b1 seb t p

OLS �.28147 .10755 �2.6172 .0257

WLS �.31768 .07803 �4.0712 .0022

HC3 �.28147 .15370 �1.8313 .0970
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Regardless of which test we use, the question arises as to how serious a

problem heteroscedasticity poses. Fox (2008) suggests that it will only be a

problem when the largest residual is four times larger than the smallest residual.

Our example far exceeded this threshold, but that’s because I purposefully

created a data set that presented a clear violation. Most violations will not be

so extreme, so heteroscedasticity will rarely threaten the conclusions we draw

from our data. That being said, statisticians are increasingly urging researchers to

routinely use the HC3 correction whenever heteroscedasticity is suspected

(Hayes and Li 2007).

7.2.6 R Code: Heteroscedasticity

x=c(8,9,10,11,12,13,14,15,16,17,18,19)

y=c(11,10.5,11.2,9.8,9.2,9,8.6,8.3,7,10,10.5,6)

hetero=lm(y~x)

summary(hetero)

ms.res <-sum(resid(hetero)^2)/((length(x)-2))

#White’s Test of Heteroscedasticity

res.sqr <-resid(hetero)^2

white.test <-lm(res.sqr~x+I(x^2))

white.chi <-summary(white.test)$r.squared*length(x)

white.prob <- 1 - pchisq(white.chi, 2)

white <-cbind(white.chi, white.prob)

white

#Breusch Pagan Test of Heteroscedasticity

library(car) #attach car package

BP <-ncvTest(hetero)

BP

#Weighted Least Squares

abs_e=abs(hetero$residuals) #Calculate absolute value of residuals

weights <-lm(abs_e~x) #Regress absolute value of residuals on x

w.int =1/abs(fitted(weights)) #Create weighted variables

w.x =x/abs(fitted(weights))

w.y =y/abs(fitted(weights))

WLS <-lm(w.y~w.int+w.x-1) #regress weighted variables (no intercept)

summary(WLS)

#Shorter way to perform WLS using Weights commands

weight1=1/(weights$fitted^2)

WLS.1=lm(y~x,weights=weight1)

summary(WLS.1)

#Using Gamma as a Transformation Matrix for WLS

(continued)

7.2 Heteroscedasticity 243



7.2.6 R Code: Heteroscedasticity (continued)

V <-cbind(1,x,y)

gamma <-diag(sqrt((ms.res/fitted(weights)^2)))

vv <-gamma%*%V

vv.reg <-lm(vv[,3]~vv[,1:2]-1)

summary(vv.reg)

#HC_3 Heteroscedasticity Consistent Covariance Matrix

library(lmSupport) #attach lmSupport package

lm.correctSE(hetero, digits=6)

7.3 Autocorrelations

Linear regression models not only assume that the errors are identically distributed

but also that they are independent. In terms of the covariance matrix of residuals, this

assumption pertains to the off-diagonal entries, not the diagonal ones. Many circum-

stances can produce correlated errors. Suppose we measure task performance across

several days of practice. If, as seems likely, performance on one day is associated

with performance on the next, the residuals would no longer be independent. Simi-

larly, crime statistics, weather patterns, and economic indicators are often measured

at regular intervals, and observations at adjacent time periods tend to be more similar

than observations with greater temporal distance. Spatial autocorrelation can also

occur. As Tobler’s first law of geography states, “Everything is related to everything

else, but near things are more related than distant things.”

As with heteroscedasticity, autocorrelations (as they are called) do not bias the

regression coefficients, but they do affect the standard errors, thereby affecting tests

of statistical significance and confidence intervals.6 For this reason, it is just as

important to detect and correct autocorrelations as it is to detect and correct

noncommon variance estimates.

7.3.1 Mathematical Representation

Before proceeding to an analysis of data with autocorrelated errors, let’s spend a

moment looking at their mathematical representation.

6 In some textbooks, autocorrelations are referred to as “serial correlations.” There is no substan-

tive difference between the terms, but I prefer “autocorrelation” because it underscores that the

residuals are correlated with themselves.
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7.3.1.1 Modeling Autocorrelated Errors

Equation (7.18) shows a simple model that we will examine throughout this section.

The subscript t identifies a specific observation, and the subscript t� 1 identifies its

preceding observation. Thus, Eq. (7.18) indicates that the value of each error is

determined by two factors: the size of the preceding error (εt� 1) and a normally

distributed random disturbance, designated ut:

εt ¼ εt�1 þ ut ð7:18Þ

Because the value of each error is influenced by the value of the previous error, the

errors are no longer independent.

The model shown in Eq. (7.18) can be expanded in two ways. First, we can

include a value that represents the weight of the preceding error. Equation (7.19)

shows that we refer to the weight as ρ (rho). To illustrate, if ρ¼.50, then each error

would be found by first multiplying the preceding error by .50 and then adding a

random disturbance term. The weight, which is known as the autoregressive

parameter, represents the correlation between adjacent error terms. Like all corre-

lations, it can assume values from � 1 to + 1:

εt ¼ ρεt�1 þ ut ð7:19Þ

Because it only considers the correlation between adjacent errors, the model

depicted in Eq. (7.19) is known as a first-order autoregression or AR(1) process.

This is not the only way to model autoregression, however. Equation (7.20) depicts

an AR(2) process in which each error is influenced by the weighted values of the

preceding error, the weighted error two observations back, and a random

disturbance:

εt ¼ ρ1εt�1 þ ρ2εt�2 þ ut ð7:20Þ
In this chapter, we will concern ourselves only with first-order lags, but the material

we cover can readily be applied to longer lags

7.3.1.2 Building a Covariance Matrix of Errors in an AR(1) Model

Returning to an AR(1) model, recall that only adjacent errors directly influence

subsequent errors. More distant errors do have an indirect effect, however. To better

understand this point, let’s imagine we have only four observations, shown in

Table 7.17, with ρ¼.50.
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Using our AR(1) formula [εt¼ ρεt� 1 + ut], we can see how the last three error

terms were computed:

ε2 ¼ ρε1 þ u2 ¼ :5 � 5ð Þ þ 10 ¼ 12:50

ε3 ¼ ρε2 þ u3 ¼ :5 � 12:50ð Þ þ 15 ¼ 21:25

ε4 ¼ ρε3 þ u4 ¼ :5 � 21:25ð Þ þ 20 ¼ 30:6250

If we then take advantage of the fact that each successive term depends, in part, on

the value of the preceding terms, we can derive the last two values using an

expanded form:

ε3 ¼ ρ2 � ε1
� �þ ρ � ε2ð Þ þ u3

ε4 ¼ ρ3 � ε1
� �þ ρ2 � ε2

� �þ ρ � ε3ð Þ þ u4

Here we see that each error term is a linear combination of current disturbance and

previous errors and that the weights diminish in magnitude as the absolute

distance between a focal observation (t) and a preceding observation (s)
increases (t):

εt ¼
X1
s¼0

psut�s ð7:21Þ

Exploiting this relation, we can construct a covariance matrix with the variances on

the diagonals and the covariances on the off-diagonals, where T refers to the total

number of observations rather than a particular observation:

Σ ¼

1 ρ ρ2 ρ3 � � � ρT�1

ρ 1 ρ ρ2 � � � ρT�2

ρ2 ρ 1 ρ � � � ρT�3

ρ3 ρ2 ρ 1 � � � ρT�4

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
ρT�1 ρT�2 ρT�3 ρT�4 � � � 1

26666664

37777775 ð7:22Þ

Table 7.17 Expanding a

first-order autoregressive

model

Observation # u ε

1 5 5

2 10 12.50

3 15 21.25

4 20 30.6250
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7.3.2 Detecting Autocorrelations

Having discussed autocorrelations in abstract terms, we are ready for an example.

Imagine a basketball fan wants to knowwhether crowd noise predicts a home team’s

performance. For 12 games, the fan records the median decibel level of crowd noise

and the home team’s field goal shooting percentage. Table 7.18 presents the (fabri-

cated) data and a few summary statistics, and Table 7.19 presents the results from an

OLS regression. Contrary to our fan’s expectations, the coefficient relating

crowd noise to performance is not significant in this analysis (b¼ .0085, p¼ .0903).

A look at the scatterplot (see left-hand side of Fig. 7.3) confirms the lack of a

consistent relation between crowd noise and shooting efficiency.

Table 7.18 Fictitious data demonstrating autocorrelation

Time

x (median

decibels)

y (field goal

percentage) ŷ e h
Lagged

residual differences

1 84 .5384 .56297 �.02457 .08537

2 83 .5471 .55447 �.00737 .11585 .01721

3 81 .5663 .53745 .02885 .28659 .03621

4 83 .5677 .55447 .01323 .11585 �.01561

5 87 .6187 .58849 .03021 .21341 .01697

6 83 .6059 .55447 .05143 .11585 .02123

7 87 .6131 .58849 .02461 .21341 �.02683

8 87 .5944 .58849 .00591 .21341 �.01870

9 84 .5492 .56297 �.01377 .08537 �.01968

10 86 .5183 .57999 �.06169 .13415 �.04791

11 81 .5017 .53745 �.03575 .28659 .02594

12 86 .5689 .57999 �.01109 .13415 .02466

Table 7.19 Regression analysis for hypothetical data set for autocorrelation

Significance test of regression model

SS df MS R2 F p

Regression .00396 1 .00396 .2600 3.5138 .0903

Residual .01126 10 .00113

Total .01522

Regression coefficients

b seb t p (X0X)� 1 C

b0 �.1516 .3829 �.3961 .7004 130.1829 �1.5427 .146583 �.001737

b1 .0085 .0045 1.8745 .0903 �1.5427 .0183 �.001737 .000021
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7.3.2.1 Inspecting the Residuals

Many basketball aficionados believe in a phenomenon known as the “hot hand,” in

which a player or team “gets hot” and “goes on a roll.” To the extent that this is so,

performance on one occasion would predict performance on the next, and the

residuals would be correlated. To examine whether the hot hand effect is operating

in this situation, the fan decides to plot the residuals against the day the observations

were made. The right-hand panel in Fig. 7.3 presents the data. Notice the undulating

pattern of the residuals. If a residual at t is positive, we can predict with some

certainty that the t+ 1 residual will also be positive; and if the residual at t is
negative, we can predict with some certainty that the t+ 1 residual will be negative,
too. We won’t always be right, but it’s apparent that knowledge of one residual

does, in fact, provide knowledge of another. This fact violates the assumption that

the residuals are independent.

7.3.2.2 Durbin-Watson Test

Autocorrelations won’t always be as obvious as the pattern depicted in Fig. 7.3, so

we will want to test for the pattern when we suspect its presence. The most common

test is known as the Durbin-Watson test:

d ¼
X t

t¼2
et � et�1ð Þ2X t

t¼1
e2t

ð7:23Þ

To perform the test, we first conduct an OLS regression and save the residuals. We

then find the numerator in Eq. (7.23) by subtracting from each residual the
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Fig. 7.3 Small sample example illustrating autocorrelation
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preceding residual in the sequence.7 To illustrate, the first two difference scores

shown in the last column of Table 7.18 were computed as follows:

�:00737 ��:02457ð Þ ¼ :01721

:02885� � :00737ð Þ ¼ :03621

After finding all of the N� 1 difference scores, we sum their squared values and

divide this sum by the sum of the squared residuals (i. e., SSres) to find the Durbin-

Watson statistic8:

d ¼ :007624

:011260
¼ :67707

7.3.2.3 Breusch-Godfrey (aka Lagrange Multiplier) Test

of Autocorrelation

The expected value of the Durbin-Watson statistic equals 2 when the residuals are

uncorrelated. The exact statistical significance of the Durbin-Watson test is deter-

mined by consulting tabled values that are presented in many statistical textbooks.

As these tables are not always handy, it is useful to learn a self-contained test that

can be performed with an ordinary spreadsheet. The Breusch-Godfrey test provides

just such a test. Moreover, it can assess autocorrelations of various sizes [e.g., AR

(2)], so it is more flexible than the Durbin-Watson test.

As was true with the Durbin-Watson test, the Breusch-Godfrey test begins by

conducting a regression analysis and saving the residuals. We then conduct an

auxiliary regression analysis using the residuals as our criterion. Our predictors are

the original predictors (including the vector of leading 1’s) and a lagged vector of

residuals. Table 7.20 shows the data using our example. Looking over the last two

columns, you can see that the values in the penultimate column lag one value

behind the values in the final column of residuals.

Performing a regression analysis with these data yields an R2¼.4931. We

then multiply this value by our sample size (12) and refer the product (5.9173)

to a χ2 distribution with df¼ to the number of lagged variables (in this case, 1).

7 Notice that we cannot find the difference score for the first observation because there is no

preceding error to subtract. Consequently, we will have N� 1 observations when performing

this test.
8 Spreadsheet functions can be used to perform these operations. To illustrate, if the vector of

residuals lies in “e3:e14,” the following command produces the Durbin-Watson statistic:

SUMXMY2(e3:e13,e4:e14)/SUMSQ(e3:e14).
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The probability level of our value given that no autocorrelation exists is small

( p¼.0150), so we reject the null hypothesis of independent residuals.9

7.3.2.4 Managing Autocorrelations

As with heteroscedasticity, two statistical procedures can be used to mitigate the

impact of correlated error terms. The first involves GLS estimation and the second

involves creating an autocorrelation-consistent covariance matrix. As before, we

will learn each method, as each provides unique insights into the remediation of

correlated error terms.

7.3.3 Generalized Least Squares Estimation for Managing
Autocorrelation

Similar to WLS estimation, GLS begins by specifying a parameter, in this case, the

autocorrelation parameter. Although there may be times when the parameter is

known, it usually must be estimated from the data.

Table 7.20 Breusch-

Godfrey test of

autocorrelation

Observation # elagged e

1 1 84 0 �.02457

2 1 83 �.02457 �.00737

3 1 81 �.00737 .02885

4 1 83 .02885 .01323

5 1 87 .01323 .03021

6 1 83 .03021 .05143

7 1 87 .05143 .02461

8 1 87 .02461 .00591

9 1 84 .00591 �.01377

10 1 86 �.01377 �.06169

11 1 81 �.06169 �.03575

12 1 86 �.03575 �.01109

9Notice that we have entered a 0 for our first lagged residual. Alternatively, we can omit the

observation entirely, performing the analysis on t� 1 observations. In this case, we multiply R2 by

t� 1. Using this method with our data, we find that χ2¼ 5.8925, p¼ .0152.
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7.3.3.1 Estimating the Autocorrelation Parameter

Estimation involves an iterative process that begins with an initial approximation.

There are several ways to proceed, but the simplest is to regress et� 1 on et. Applied
to our data set, our criterion consists of the residuals e2 . . . e12 and our predictor

consists of the residuals e1 . . . e11 (along with a vector of leading 1 ’ s). The

regression coefficient represents the estimate of the autocorrelation parameter.

Performing the analysis with our data set yields an initial estimate:

ρ̂ ¼ :63455

We then use this value as a starting point in a grid search method (see Chap. 3),

seeking to maximize the log likelihood function of the AR(1) process. To refresh

your memory, Eq. (7.24) reviews the log likelihood function for OLS regression

[repeated from Eq. (3.21)]:

lnL ¼ �N

2
ln 2πð Þ � N

2
ln σ2
� �� y� Xbð Þ2

2σ2

" #
ð7:24Þ

When dealing with an AR(1) process, we simply add the estimated autocorrelation

parameter to the log likelihood function:

lnL ¼ �N

2
ln 2πð Þ � N

2
ln σ2
� �� y� Xbð Þ2

2σ2

" #
þ :5ln 1� ρ2

� �� � ð7:25Þ

What we are looking for, then, is the value of ρ that will maximize the function.

However, unlike OLS estimation, this function does not have a unique solution.

So we set some standard, known as a stop value, to end our search. For example, we

might decide to stop when the change in the likelihood function is < .00000001.

To begin our search, we transform our variables using a technique known as the

Prais-Winsten transformation:10

v�i ¼ v1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ̂ 2

p
for vi ¼ 1

v�i ¼ vt � ρ̂ � vt�1ð Þ for vi > 1

(
ð7:26Þ

Notice that this technique uses a different transformation for the first set of

observations than for all of the other observations. This is because the first set of

observations has no preceding term with which to create a lag, so we estimate it

instead. Table 7.21 presents the transformed values, and the first two rows were

created as follows.

10 The procedure goes by a variety of other names, including estimated generalized least squares,
the Cochrane-Orcutt method, and the Yule-Walker method. There are slight differences among

these procedures, but they all estimate the magnitude of the autocorrelation parameter.
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Intercept x* y*

1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� :634552

p
¼ :7729 84 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� :634552

p
¼ 64:9221 :5384 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� :634552

p
¼ :4161

1� (.63455 * 1)¼.3655 83� (.63455 * 84)¼ 29.6978 .5471� (.63455 *.5384)¼.2055

After transforming our variables, we perform an OLS regression through the

origin using 1* and x* as predictors and y* as the criterion. The bottom portion of

Table 7.21 shows that the residual sum of squares ¼ .006073. Inserting this value

into Eq. (7.25) yields the log likelihood function:

lnL¼�12

2
ln 2πð Þ�12

2
ln

:006073

12

 �
�

:006073

2� :006073=12
 !

þ :5ln 1� :634552
� �� �¼ 28:2475

If we continue trying out different values for ρ, we will find a value that maximizes

the likelihood function. Table 7.22 shows the log likelihood function around a range

of values for the autocorrelation parameter. As you can see, the largest likelihood

function is found when ρ¼.66035.

7.3.3.2 Transformation Method

Having found our estimate of ρ, we use it to transform our variables using Eq. (7.26)

and perform another OLS regression through the origin. Table 7.23 presents the

results. Notice that the regression coefficient is now significant, suggesting that, in

Table 7.21 Prais-Winsten transformation for GLS estimation and regression output

1* x* y*

.7729 64.9221 .4161

.3655 29.6978 .2055

.3655 28.3324 .2191

.3655 31.6015 .2084

.3655 34.3324 .2585

.3655 27.7942 .2133

.3655 34.3324 .2286

.3655 31.7942 .2054

.3655 28.7942 .1720

.3655 32.6978 .1698

.3655 26.4287 .1728

.3655 34.6015 .2505

Significance test of regression model

SS df MS F p

Regression .041998 1 .041998 69.15 .0000

Residual .006073 10 .000607

Total .048071
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Table 7.22 Log likelihood

functions using Prais-Winsten

transformation and various

estimates of the

autocorrelation parameter

ρ Log likelihood function

.65945 28.25593102

.65955 28.25593315

.65965 28.25593502

.65975 28.25593664

.65985 28.25593800

.65995 28.25593910

.66005 28.25593995

.66015 28.25594053

.66025 28.25594086

.66035 28.25594094

.66045 28.25594075

.66055 28.25594031

.66065 28.25593961

.66075 28.25593865

.66085 28.25593743

.66095 28.25593596

.66105 28.25593422

.66115 28.25593223

.66125 28.25592998

.66135 28.25592748

Table 7.23 GLS estimates following Prais-Winsten transformation using ρ ¼.66035

1* x* y*

.7382 62.0112 .3975

.3255 26.3378 .1839

.3255 25.0124 .1973

.3255 28.3615 .1857

.3255 31.0124 .2358

.3255 24.3142 .1886

.3255 31.0124 .2044

.3255 28.3142 .1808

.3255 25.3142 .1482

.3255 29.3378 .1478

.3255 22.9887 .1521

.3255 31.3615 .2305

Significance test of regression model

SS df MS F p

Regression .04363 1 .04363 72.4608 .0000

Residual .00602 10 .00060

Total .04965

Regression coefficients

b seb t p (X0X)� 1 C

b0 .03292 .2227 .1478 .8854 82.36430 �.96775 .049595 �.000583

b1 .00627 .0026 2.3873 .0381 �.96775 .01145 �.000583 .000007
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this fanciful example, crowd noise does predict the home team’s performance once

the correlated error terms are taken into account.

7.3.3.3 Matrix Method

As with WLS estimation, several matrix formulae produce identical results to the

transformation method. The formulae appear in Table 7.14, and Table 7.24 shows

the matrices needed to perform the analyses. As before, you should work through

the calculations to solidify your understanding of GLS estimation.

7.3.4 Autocorrelation-Consistent Covariance Matrix

GLS estimation is one way to accommodate the effects of autocorrelation, but just

as we did with heteroscedastic errors, we can also handle autocorrelation by

creating an autocorrelation-consistent covariance matrix (ACCM). Like an

HCCM, an ACCM does not require us to estimate a parameter value (in this case,

Table 7.24 Matrices for generalized least squares estimation

Matrix

Σ ¼

1 ρ ρ2 ρ3 � � � ρT�1

ρ 1 ρ ρ2 � � � ρT�2

ρ2 ρ 1 ρ � � � ρT�3

ρ3 ρ2 ρ 1 � � � ρT�4

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
ρT�1 ρT�2 ρT�3 ρT�4 � � � 1

26666664

37777775

Ψ ¼

1= 1� ρ2ð Þ ρ= 1� ρ2ð Þ ρ2= 1� ρ2ð Þ ρ3= 1� ρ2ð Þ � � � ρT�1= 1� ρ2ð Þ
ρ= 1� ρ2ð Þ 1= 1� ρ2ð Þ ρ= 1� ρ2ð Þ ρ2= 1� ρ2ð Þ � � � ρT�2= 1� ρ2ð Þ
ρ2= 1� ρ2ð Þ ρ= 1� ρ2ð Þ 1= 1� ρ2ð Þ ρρ= 1� ρ2ð Þ � � � ρT�3= 1� ρ2ð Þ
ρ3= 1� ρ2ð Þ ρ2= 1� ρ2ð Þ ρ= 1� ρ2ð Þ 1= 1� ρ2ð Þ � � � ρT�4= 1� ρ2ð Þ
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
ρT�1= 1� ρ2ð Þ ρT�2= 1� ρ2ð Þ ρT�3= 1� ρ2ð Þ ρT�4= 1� ρ2ð Þ � � � 1= 1� ρ2ð Þ

26666666664

37777777775

Γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ρ2ð Þp

0 0 0 � � � 0

�ρ 1 0 0 � � � 0

0 �ρ 1 0 � � � 0

0 0 �ρ 1 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 �ρ 1

26666666664

37777777775
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the autocorrelation parameter). In this sense, it is easier to conduct than GLS

estimation.

The Newey-West (1987) method provides one approach to creating an ACCM.

It begins by noting that since the influence of each observation weakens as the

absolute distance between observations increases [see Eq. (7.21)], we can safely

ignore the influence of observations that lie far from a focal observation. Imagine,

for example, that we had a sample size of 250 observations. Although it is true that

error 250 is influenced by error 2, the influence 248 observations away is so

negligible that it can effectively be ignored.

7.3.4.1 Newey-West Procedure

Building on this fact, the Newey-West method constructs a covariance estimator Ŝ

using two matrices: a diagonal matrix E with the error terms on the diagonal and a

matrix of lagged weights L:

Ŝ ¼ E
0
LE ð7:27Þ

• The weights for L are determined using Equation (7.28),

1� l

Lþ 1ð Þ ð7:28Þ

where l refers to the weight of a particular observation and L refers to the total

number of lags being estimated; and

• the covariance estimator is then used to find a corrected covariance matrix:

C ¼ X
0
X

� ��1

X
0
Ŝ X X

0
X

� ��1

ð7:29Þ

Fortunately, it’s not as complicated as it seems, so let’s look at three examples

using a 6-observation data set (see Table 7.25).11 For our first example, we will

assume a lag of four observations (L¼ 4). With a lag of this size, observation

6, for example, is assumed to be affected by observations 2–5, but not observation

1. Using Eq. (7.28) yields the weights shown in the first lag matrix:

1� 1

4þ 1

 �
¼ :80; 1� 2

4þ 1

 �
¼ :60; 1� 3

4þ 1

 �
¼ :40; 1� 4

4þ 1

 �
¼ :20

11 I have left the top half of each matrix empty to make it easier to see how the weights are

constructed, but each matrix is symmetrical, so the top half is the transpose of the bottom half.
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The middle matrix shows the weights when L¼ 3,

1� 1

3þ 1

 �
¼ :75; 1� 2

3þ 1

 �
¼ :50; 1� 3

3þ 1

 �
¼ :25

and the final matrix shows the weights when L¼ 2:

1� 1

2þ 1

 �
¼ :6667; 1� 2

2þ 1

 �
¼ :3333

The trick, then, is figure how long the lags should be. There is no hard and fast rule,

but the following rule of thumb is useful:

L � N1=4 ð7:30Þ

With only six observations, the minimum lag would be 1.56, which we would round

to 2. Generally, we will be dealing with much larger sample sizes so the lags will be

greater.

Returning to our (fictitious) basketball example with N¼ 12, we’ll assume that

L¼ 3 to be conservative. We then have the following matrices (with E populated

from the values in Table 7.18):

Table 7.25 Three lag

matrices for a 6� 6 matrix

L ¼ 4 ¼

1 □ □ □ □ □
:80 1 □ □ □ □
:60 :80 1 □ □ □
:40 :60 :80 1 □ □
:20 :40 :60 :80 1 □
0 :20 :40 :60 :80 1

26666664

37777775

L ¼ 3 ¼

1 □ □ □ □ □
:75 1 □ □ □ □
:50 :75 1 □ □ □
:25 :50 :75 1 □ □
0 :25 :50 :75 1 □
0 0 :25 :50 :75 1

26666664

37777775

L ¼ 2 ¼

1 □ □ □ □ □
:6667 1 □ □ □ □
:3333 :6667 1 □ □ □
0 :3333 :6667 1 □ □
0 0 :3333 :6667 1 □
0 0 0 :3333 :6667 1

26666664

37777775
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E ¼

�:02457 0 0 0 0 0 0 0 0 0 0 0

0 �:00737 0 0 0 0 0 0 0 0 0 0

0 0 :02885 0 0 0 0 0 0 0 0 0

0 0 0 :01323 0 0 0 0 0 0 0 0

0 0 0 0 :03021 0 0 0 0 0 0 0

0 0 0 0 0 :05143 0 0 0 0 0 0

0 0 0 0 0 0 :02461 0 0 0 0 0

0 0 0 0 0 0 0 :00591 0 0 0 0

0 0 0 0 0 0 0 0 �:01377 0 0 0

0 0 0 0 0 0 0 0 0 �:06169 0 0

0 0 0 0 0 0 0 0 0 0 �:03575 0

0 0 0 0 0 0 0 0 0 0 0 �:01109

26666666666666666664

37777777777777777775

and

L ¼

1 :75 :50 :25 0 0 0 0 0 0 0 0

:75 1 :75 :50 :25 0 0 0 0 0 0 0

:50 :75 1 :75 :50 :25 0 0 0 0 0 0

:25 :50 :75 1 :75 :50 :25 0 0 0 0 0

0 :25 :50 :75 1 :75 :50 :25 0 0 0 0

0 0 :25 :50 :75 1 :75 :50 :25 0 0 0

0 0 0 :25 :50 :75 1 :75 :50 :25 0 0

0 0 0 0 :25 :50 :75 1 :75 :50 :25 0

0 0 0 0 0 :25 :50 :75 1 :75 :50 :25
0 0 0 0 0 0 :25 :50 :75 1 :75 :50
0 0 0 0 0 0 0 :25 :50 :75 1 :75
0 0 0 0 0 0 0 0 :25 :50 :75 1

26666666666666666664

37777777777777777775
Performing the multiplication in Eqs. (7.27) and (7.29) gives us the corrected

covariance matrix:

C ¼ :030991 �:000364
�:000364 :000004

� �
Taking the square root of the diagonal entries, we find our standard errors and use

them to test the statistical significance of our regression coefficients (obtained from

our initial analysis). Notice that the standard errors are quite a bit smaller than in the

original analysis and that the regression coefficient relating crowd noise to perfor-

mance is now statistically significant.

b seb t p

b0 �.151642 .176043 �.8614 .4092

b1 .008507 .002072 4.1056 .0021
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7.3.4.2 Autocorrelation- and Heteroscedasticity-Consistent Matrix

If you compare the Newey-West procedure with White’s HC1 matrix [Eq. (7.16)],

you will see that, when L ¼ 0, the HC1 matrix is a special case of the Newey-West

matrix. In this sense, the Newey-West procedure is able to accommodate both

violations we have discussed in this chapter: heteroscedasticity and autocorrelation.

7.3.4.3 Summary

In this section, we have learned how to handle situations when our residuals are not

independently distributed. Although statistical remedies are available, the most

likely cause of this violation is a missing variable. Suppose, for example, that we

find that sweater sales in Baltimore predict pneumonia deaths in Cleveland. More

than likely, such an association would show evidence of autocorrelation, with

seasonal or monthly variations influencing both variables. More generally, when-

ever temporal or spatial variations are present, we should first be certain we have

specified our model correctly before seeking a statistical remedy.

7.3.5 R Code: Autocorrelations

x=c(84,83,81,83,87,83,87,87,84,86,81,86)

y=c(.5384,.5471,.5663,.5677,.6187,.6059,.6131,.5944,.5492,.5183,.5017,

.5689)

autoreg=lm(y~x)

summary(autoreg)

#Durbin Watson and Breusch Godfrey

library(lmtest) #attach lmtest package

dwtest(autoreg)

bgtest(autoreg)

#Estimate Rho 1 iteration

e=autoreg$residuals

n <- length(e)

rho.1 <-lm(e[2:n]~e[1:(n-1)]); rho.1$coef[2]

#Generalized Least Squares using Maximum Likelihood Estimation

library(nlme) #attach nlme package

gls1 <- gls(y~x, correlation = corAR1(), method = "ML")

summary(gls1)

gls1$fitted

gls1$residuals

vcov(gls1)

#Newey-West to Match Lag=3 Example Output is Corrected Covariance Matrix

library(sandwich) #attach sandwich package

NeweyWest(autoreg, lag = 3, prewhite = FALSE)
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7.4 Chapter Summary

1. Linear regression models assume that the errors are independent and identically

distributed. In terms of a covariance matrix of errors, these assumptions

maintain that the off-diagonal elements are zero and that the diagonal elements

are identical. These assumptions pertain to the errors, not the residuals, as the

covariance matrix of residuals never fully satisfies this ideal.

2. The regression coefficients are not impacted when the errors are not independent

and identically distributed, but the standard errors are affected. Consequently,

tests of statistical significance and confidence intervals are compromised.

3. Heteroscedasticity occurs when the errors are not identically distributed. Visu-

ally, the residuals show a greater scatter around some variables than around

others. Often, heteroscedasticity takes the form of a funnel shape, in which the

variability of the residuals becomes increasingly (or decreasingly) variable.

4. Heteroscedasticity can be tested using White’s test or the Breusch-Pagan

procedure. Both tests involve regressing the squared residuals from an ordinary

least squares (OLS) regression on a set of predictors.

5. Heteroscedasticity can be managed using weighted least squares estimation, in

which all variables (including the intercept) are divided by the estimated

variance of each observation’s residual. The transformed variables are then

analyzed using OLS estimation.

6. Sometimes the variances of the residuals are known, but more commonly they

need to be estimated from the data. Often this is accomplished by assuming that

the variance of a residual is proportional to the magnitude of the predictor (i.e.,

that the variance of a residual is greater for large predictor values than for small

predictor values).

7. Heteroscedasticity can also be managed by creating a heteroscedasticity-

consistent covariance matrix. Several varieties are available, but one (termed

HC3) involves replacing the diagonal entries of the covariance matrix of

residuals with a term that includes the squared residual in the numerator and

(1� hi)
2 in the denominator.

8. Autocorrelations occur when the residuals are correlated rather than indepen-

dent. Autocorrelation often arises when the predictors are associated in time or

space.

9. In a first-order autoregression process, each error (εt) is influenced by a random
disturbance (ut), and the preceding error (εt� 1), weighted by the autocorrela-

tion parameter (ρ). Thus, εt¼ ρεt� 1 + ut.
10. The Durbin-Watson test and the Breusch-Godfrey test are used to identify the

presence of autocorrelated errors.

11. Autocorrelations can be managed using generalized least squares estimation.

After using an iterative technique to estimate the autocorrelation parameter, we

use it to transform all of the variables (including the intercept). The

transformed variables are then analyzed using OLS estimation.

7.4 Chapter Summary 259



12. Autocorrelations can also be managed by creating an autocorrelation-

consistent covariance matrix. Using the Newey-West procedure, we first

decide how many previous observations should be weighted in the prediction

of a residual and then form a new covariance matrix to calculate our standard

errors.
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Chapter 8

Linearizing Transformations
and Nonparametric Smoothers

In a linear regression model, the criterion is modeled as a linear combination of the

weighted predictors and a disturbance term.

y ¼ β0 þ β1x1 þ β2x2 þ . . .þ βkxk þ ε ð8:1Þ

The model gives rise to two, related properties: linearity and additivity.

• The linearity property stipulates that the weight of each coefficient is constant

across all levels of the variable with which it combines. If, for example, b1¼.5,

then holding all other predictors constant, we expect a .5 unit change in y with
every 1 unit change in x1, regardless of whether x1 changes from 3 to 4, or from

16 to 17, or from 528 to 529.

• The additivity property stipulates that the total change in y is equal to the sum of

the weighted changes in all of the predictors. If b1¼.5 and b2¼.3, then the fitted

value of y will change by .8 units for every one unit change in x1 and x2.

In sum, a linear model describes an invariant rate of change in the fitted value of

y for every one unit change in x. Given this property, you might assume that linear

models can only accommodate linear relations. This is not so. Consider the relations

depicted in Fig. 8.1. None of them is linear, yet all can be analyzed using a linear

regression model. In the next three chapters, you will learn how to analyze

nonlinear relations using various modifications of linear regression.
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8.1 Understanding Linearity

Let’s begin by distinguishing two terms—linear relation and linear model (aka
linear function). The first term describes the association between two (or more)

variables, indicating that they form a straight line (or plane) when plotted on a

graph; the second term specifies the mathematical operations that govern the

prediction of a criterion. As first discussed in Chap. 2, a model is linear when

(1) the criterion is the sum of the weighted coefficients and disturbance term and

(2) each coefficient is of the first order and is not multiplied or divided by any other

coefficient.1

These forms of linearity are conceptually independent. Consider the functions

described in Table 8.1. Both functions in Column 1 produce a straight line when

plotted on a graph (see left-hand side of Fig. 8.2), but only the first represents a

linear model. The second is a nonlinear model because b1 is multiplied by b0.
Conversely, both functions in Column 2 produce nonlinear relations (see right-

hand side of Fig. 8.2), yet the first is linear and the second is not. Thus,

knowing that a relation is linear does not guarantee it was produced by a linear

function (and vice versa).

Fig. 8.1 Four nonlinear relations

1 Hereafter, the phrase “linear in the variables” will be used to describe a linear relation and the

phrase “linear in the parameters” will be used to describe a linear model or function.
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8.1.1 Partial Derivatives and Linear Functions

Partial derivatives distinguish linear functions from nonlinear ones. Recall from

Chap. 3 that a partial derivative describes the instantaneous rate of change in a

function when one of its input values change and all other values are held constant.

When a function is linear, the partial derivatives are independent and have a unique,

closed-form solution. When a function is nonlinear, one or more of the partial

derivatives depends on the value of its own parameter or another parameter.

Consequently, a unique, closed-form solution does not exist and iterative numerical

techniques must be used to estimate the parameters.
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Fig. 8.2 Four plotted relations produced by the functions in Table 8.1

Table 8.1 Functions that

vary along two dimensions

of linearity

Linear relation

Linear function Yes No

Yes ŷ ¼ b0 þ b1x ŷ ¼ b0 þ b1ln xð Þ
No ŷ ¼ b0 þ b0b1x ŷ ¼ b0 � xb1
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To make this distinction less abstract, consider the functions shown in Table 8.2.

The first function is linear, and the partial derivatives reflect this independence. The

partial derivative with respect to α doesn’t depend on β and the partial derivative

with respect to β doesn’t depend on α. The second function is nonlinear. Here, the

parameters combine multiplicatively, and the partial derivative with respect to α
depends on β and the partial derivative with respect to β depends on α. Because of
these differences, the partial derivatives of the first equation have an analytical

solution, but the partial derivatives of the second equation do not.

8.1.2 Assessing Linear Relations

Calculating the partial derivatives allows us to assess the linearity of a function

when the data generating process is known. Unfortunately, this information is not

always available. In many (perhaps most) situations, neither prior research nor

theory describes a precise data generating process. Even more unfortunately, there

is no surefire way to extract this information from the data. Consider again the

scatterplots displayed in the first column of Fig. 8.2. Both figures show straight

lines, but only the first was generated by a linear function. No statistical test would

be able to divine this fact.

8.1.2.1 Using Scatterplots to Assess the Linearity of the Variables

Although scatterplots cannot be used to determine the linearity of the parameters,

they can be used to assess the linearity of the variables. A scatterplot of the residuals

from an ordinary least squares (OLS) regression is especially informative. Because

OLS regression forces a linear relation on the data, the residuals represent the

portion of y that cannot be explained by a linear function. Residuals that form a

nonlinear pattern therefore suggest that the data are nonlinear in the variables.

To provide a context for this discussion, consider the data shown in Table 8.3.

An OLS regression shows a very strong fit to the data (R2>.97), and the left-hand

graph in Fig. 8.3 reveals a sharp linear trend.

By itself, the presence of a linear trend does not preclude the possibility of a

nonlinear relation, however. In the present case, an examination of the residual plot

in Fig. 8.3 shows strong evidence of curvature, suggesting the presence of a

nonlinear component.

Table 8.2 Partial derivatives

of linear and nonlinear

functions

Equation Partial derivatives

Linear function y¼ α+ βx ∂f
∂α ¼ 1 ∂f

∂β ¼ x

Nonlinear function y¼ αβx ∂f
∂α ¼ βx ∂f

∂β ¼ αx
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8.1.2.2 Lack of Fit Test

Visual inspection of the residuals is one way to gauge nonlinearity. Another, less

subjective approach is to conduct a lack of fit test. Use of the test requires that our

predictor has at least one set of duplicate values. Such repetitions are termed

Table 8.3 Hypothetical data illustrating nonlinear relation

x y ŷ e h zŷ Studentized residual

2 2.05 2.27765 �.22765 .29704 �1.53321 �1.46885

2 2.08 2.27765 �.19765 .29704 �1.53321 �1.27528

4 3.10 2.93562 .16438 .16196 �.92998 .97137

5 3.30 3.26461 .03539 .11923 �.62837 .20399

6 3.70 3.59360 .10640 .09304 �.32675 .60441

7 4.15 3.92258 .22742 .08339 �.02513 1.28501

8 4.50 4.25157 .24843 .09028 .27648 1.40905

9 4.60 4.58056 .01944 .11371 .57810 .11172

9 4.70 4.58056 .11944 .11371 .57810 .68635

11 5.05 5.23853 �.18853 .21020 1.18133 �1.14763

11 5.07 5.23853 �.16853 .21020 1.18133 �1.02589

11 5.10 5.23853 �.13853 .21020 1.18133 �.84327

Significance test of regression model

SS df MS R2 F p

Regression 13.0871 1 13.0871 .9746 382.9987 .0000

Residual .341701 10 .0342

Total 13.4288

Regression coefficients

b seb t p (X0X)� 1 C

b0 1.61968 .13048 12.4128 .0000 .49828 �.05858 .017026 �.002002

b1 .32899 .01681 19.5704 .0000 �.05858 .00827 �.002002 .000283
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Fig. 8.3 Scatterplot and residual plot for hypothetical data from Table 8.3
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“replicates,” and looking over the data in Table 8.3, we see that we have three

replicates (i.e., we have two values ¼ 2, two values ¼ 9, and three values ¼ 11).

To perform the lack of fit test, we need to perform a second analysis that treats

these replicates as categorical predictors rather than continuous ones. This approach

is known as an analysis of variance, and we will discuss it in detail in Chaps. 11 and

12. Unlike a regression analysis, an analysis of variance does not assume that the

predictors are related in a linear fashion. To illustrate, imagine we ask children to

eat one of three desserts—cake, pie, or ice cream—and then indicate how much

they enjoyed the treat. Obviously, cake, pie, and ice cream are not related in a linear

way, but for statistical purposes, we could designate cake ¼ 1, pie ¼ 2, and ice

cream ¼ 3. The ordering of the groups is arbitrary (e.g., we could just have easily

designated pie as the third group and cake as the second), so whatever variance is

due to differences in the dessert is nonlinear in form.

Capitalizing on this fact, we form a test statistic comparing the unexplained

variance from a linear regression analysis with the unexplained variance from a

categorical analysis.

F ¼
SSreslinear � SSrescategorical
� �

= df linear � df categorical

� �
SSres categorical=df categorical

ð8:2Þ

The degrees of freedom for the categorical term is found by summing (n� 1) for

each group of replicates. With our data set, df¼ (2� 1) + (2� 1) + (3� 1)¼ 4.

Before we perform the calculations, let’s look more closely at the formula itself.

Because a linear model makes more assumptions than a categorical one, the

unexplained variance from the linear analysis will always be greater than the

unexplained variance from the categorical analysis. But if the difference between

the two is small, then the fraction comprising the test statistic will be small and we

will feel comfortable concluding that a linear model adequately fits the data.

Conversely, if the unexplained variance from the linear model is much greater

than the unexplained variance from the categorical one, our test statistic fraction

will be large and we would conclude that a linear model does not adequately fit

our data.

Keeping these points in mind, let’s now consider how the test statistic is

calculated. In Chap. 11 we will learn a more formal way to conduct an analysis

of variance, but for the present purposes, we can take a shortcut by first computing

the mean for each replicate. We then subtract the mean from the corresponding raw

scores from which it is derived and square the differences. Finally, we sum the

squares to get a measure of the squared deviations from each replicate’s mean. This

value is our residual sum of squares.

Table 8.4 presents the calculations. To illustrate, 11 has three replicates, and

when we average the y scores for the three observations, we find that their average

¼ 5.0733. We then subtract this value from each of the three scores and square the

differences. When we do this for all three replicate groups and then sum the squares,

we derive our residual sum of squares for the categorical predictors
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(SSres _ categorical¼.006717). Table 8.3 provides the rest of the values needed to

compute the test statistic.

F ¼ :341701 � :006717ð Þ= 10 � 4ð Þ
:006717=4

¼ 33:2491

The F statistic is evaluated with the difference between the two degrees of freedom

in the numerator (10� 4) and the degrees of freedom for the categorical term in the

denominator (4). In our data, we see a significant effect ( p¼.0023). Consequently,

we fail to reject the null hypothesis of linearity and conclude that the data (prob-

ably) contain a nonlinear component.

8.1.3 Options for Analyzing Nonlinear Relations

Once we conclude that our data are nonlinear in the variables, we must decide how

to proceed. Figure 8.4 presents our options. As you can see, one option is to use

nonlinear regression methods, a topic not covered in this text. Another possibility is

to add predictors, a topic we will consider in Chaps. 9 and 10. The other two

possibilities—transform the variables and use nonparametric methods—comprise

the remainder of this chapter.

Table 8.4 Calculations for a lack of fit test for data shown in Table 8.3

x y y e e2

Linear

2 2.05 2.065 �.0150 .00023

2 2.08 2.065 .0150 .00023

9 4.60 4.65 �.0500 .0025

9 4.70 4.65 .0500 .0025

11 5.05 5.0733 �.02333 .00054

11 5.07 5.0733 �.00333 .00001

11 5.10 5.0733 .02667 .00071

Σ .006717

SSres df MSres F (6,4) p

.341701 10 .03417 33.2491 .00226

Categorical .006717 4 .001679
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8.1.4 R Code: Assessing Nonlinearity

#Differentiation

#Linear Function

funct = expression(a+b*x, “a,b”)

deriva1 <-D(funct,“a”)

deriva1

derivb1 <-D(funct,“b”)

derivb1

#Nonlinear Function

funct = expression(a*b*x, “a,b”)

deriva1 <-D(funct,“a”)

deriva1

derivb1 <-D(funct,“b”)

derivb1

#Lack of Fit Test

x=c(2,2,4,5,6,7,8,9,9,11,11,11)

y=c(2.05,2.08,3.1,3.3,3.7,4.15,4.5,4.6,4.7,5.05,5.07,5.1)

pre.reduced <- lm(y ~ x)

anova(pre.reduced)

pre.full <- lm(y ~ factor(x))

anova(pre.full)

anova(pre.reduced, pre.full)

Fig. 8.4 Options for analyzing nonlinear relations
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8.2 Transformations to Linearity

Many nonlinear relations can be transformed into ones that are at least approxi-

mately linear. In some cases these transformations involve altering the variables

without changing the parameters; in other cases, the parameters are transformed.

Before discussing these procedures, let’s spend a moment discussing transforma-

tions more broadly.

8.2.1 Understanding Transformations

8.2.1.1 Linear Transformations and Nonlinear Transformations

Data transformations are of two varieties. Linear transformations extend or shrink

the variables in a constant, uniform degree. If, for example, we add or subtract a

constant from the scores in our data set, only the intercept in a regression equation

will change. The same will be true if we multiply or divide the scores by a constant.

For these reasons, a linear transformation will not linearize a nonlinear relation.

In contrast, nonlinear transformations are monotonic (i.e., the rank ordering of

the values is preserved) but not uniform. For example, if we square our predictors,

then the distance between large values will increase more than will the distance

between smaller ones. Consequently, nonlinear transformations can linearize a

nonlinear relation.

8.2.1.2 To Linearize or Not to Linearize?

Linear regression is less computationally intensive than is nonlinear regression, so

transforming a nonlinear relation into a linear one was the usual approach to

analyzing nonlinear relations before powerful computers became widely accessi-

ble. Many statisticians believe the transformation approach is no longer needed and

recommend using nonlinear regression to model nonlinear relations; others dis-

agree, noting that transformational methods are still preferred under some circum-

stances, in part because linear models are better developed and easier to interpret

than are nonlinear models (Manning and Mullahy 2001; Xiao et al. 2011). Because

there is disagreement on the matter, we will learn the transformational technique.

Bear in mind, however, that not all nonlinear relations can be linearized, so

nonlinear regression is always needed under some circumstances.2

2 In some textbooks, nonlinear functions that can be linearized are called “intrinsically linear

functions.”
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8.2.1.3 Selecting Variables to Transform

Having decided to transform our variables, we must decide which variables to

transform. Transforming the criterion alters the distribution of the residuals. If the

residuals are already normal, independent, and identically distributed (NID), it is
better to achieve linearity by transforming the predictor than the criterion. Other-

wise, the transformation could create problems in the residuals. On the other hand,

if the residuals from an OLS regression are not NID, transforming the criterion

might improve matters. In fact, we have already discussed such a transformation in

Chap. 6 when we noted that the Box-Cox procedure can be used to find a transfor-

mation of y that will normalize the residuals.

8.2.1.4 Selecting a Linearizing Transformation

After deciding which variables to transform, we must pick a linearizing transfor-

mation. We have four options.

• Sometimes theory or previous research has identified a lawful, nonlinear relation

between two or more variables. For example, the Michaelis-Menten equations

describe the nonlinear rate of enzymatic reactions, and numerous linearizations

of the model have been developed.

• When an established mathematical model is unavailable to guide us, we can

use a rule of thumb known as the bulging rule (Mosteller and Tukey 1977).

Table 8.5 presents the rules with λ indicating the power to which we raise x or y.
For example, we might be able to linearize a negatively accelerated curve such

as the one shown in the first panel by contracting values of x (λx< 1) or

stretching values of y (λy> 1). Typically, λ is restricted to values that lend

themselves to easy interpretation (e. g., � 1, .5, 0, 2) with λ¼ 0 indicating a

logarithmic transformation and λ¼ 1 indicating no transformation. The farther

the transformation is from λ¼ 1, the stronger will be the contraction or

stretching. To illustrate, a square root transformation (λ¼.5) is less extreme

than a logarithmic one (λ¼ 0).

• A third approach is to mathematically identify a transformation that best linear-

izes our data. The Box-Tidwell approach represents such a technique, and we

will demonstrate its use later in this chapter.

• Finally, we can use trial and error until we stumble on an appropriate transfor-

mation. Clearly, this is an inefficient method, best used only as a last resort.

8.2.2 Logarithmic Model

We will begin our discussion of linearizing transformations by considering a

logarithmic transformation that turns unit differences into ratios. To understand
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their value, imagine we study the rate at which people master various tasks

(commonly known as a learning curve). For our first investigation, we use an

easy task—arithmetic—and measure how many problems high school students

can solve in 10 min (y) as a function of the number of hours/week they study (x).
The first two columns in Table 8.6 present the (fabricated) findings, and an OLS

regression shows a strong linear trend (b¼.4858, p<.0001). At the same time, the

scatterplot displayed in Fig. 8.5 shows that performance tends to rise rapidly at first

and then slow down, forming a nonlinear pattern similar to the negatively acceler-

ated curve depicted in the first panel of Table 8.5. The residuals shown in the right-

hand side of Fig. 8.5 provide further evidence for curvature, as does a significant

lack of fit test, F(7, 3)¼ 12.37, p¼.0317. So even though the linear term in an OLS

regression is significant, the data pattern is not entirely linear.

Table 8.5 Power transformations for four nonlinear patterns

Description Pattern

Suitable

transformation

of x

Suitable

transformation

of y

Large growth of y at low levels of

x small growth of y at high levels of x
xλ<1 yλ>1

Steep decline of y at low levels of

x small decline of y at high levels of x
xλ<1 yλ<1

Small decline of y at low levels of

x large decline of y at high levels of x
xλ>1 yλ>1

Small growth of y at low levels of

x large growth of y at high levels of x
xλ>1 yλ<1

After Mosteller and Tukey (1977)
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8.2.2.1 Log Transformation of x

Looking over the rules in Table 8.5, we see that a logarithmic transformation of

x might linearize the data. Pursuing this approach yields the following regression

equation, which is linear in the parameters but nonlinear in the variables.3

ŷ ¼ aþ b�ln xð Þ þ v ð8:3Þ

After applying the transformation, we conduct an OLS regression on the

transformed data.4 The results are shown in Table 8.6, and the scatterplot and

residuals are shown in the bottom portion of Fig. 8.5. As expected, a log transfor-

mation of x linearizes the relation between study time and task performance, and a

lack of fit test now produces a nonsignificant effect, F(7, 3)¼.6983, p¼ .6878.

Table 8.6 Hypothetical data illustrating the linearization of a logarithmic function

Raw scores After log transformation of x

x y In(x) ŷ Residuals h

2 2.99 .6931 2.91368 .07632 .25347

2 2.70 .6931 2.91368 �.21368 .25347

2 3.00 .6931 2.91368 .08632 .25347

3 4.02 1.0986 3.96194 .05806 .13887

4 4.71 1.3863 4.70568 .00432 .09548

6 5.83 1.7918 5.75393 .07607 .08777

7 6.28 1.9459 6.15246 .12754 .10124

8 6.27 2.0794 6.49768 �.22768 .12021

9 6.76 2.1972 6.80218 �.04218 .14257

10 7.04 2.3026 7.07457 �.03457 .16705

10 7.05 2.3026 7.07457 �.02457 .16705

12 7.66 2.4849 7.54593 .11407 .21937

Significance test after log transformation of x

SS df MS R2 F p

Regression 35.1513 1 35.1513 .9957 2,300.3764 .0000

Residual .1528 10 .0153

Total 35.3041

Regression coefficients after log transformation of x

b seb t p (X0X)� 1 C

b0 1.12169 .09528 11.7720 .0000 .59416 �.31166 .009079 �.004762

b1 2.58531 .05390 47.9622 .0000 �.31166 .19014 �.004762 .002906

3 I am using v to denote the error term because later we are going to use e to denote exponential

functions.
4 Log transformations cannot be made on negative numbers or zero. To accommodate this issue,

some authors suggest adding a constant to all scores before using a log transformation. This

practice is not easy to justify and should be avoided in favor of nonlinear regression models.
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8.2.2.2 Interpreting the Regression Coefficients and Fitted Values

Following a logarithmic transformation of a predictor, ratio changes in x predict

unit changes in y. To illustrate this point, let’s look at the mean expected difference

in y when x doubles from 2 to 4 using the regression coefficients from the log

transformed analysis.

ŷ
		 x ¼ 2ð Þ ¼ 1:12169þ ln 2ð Þ�2:58531 ¼ 2:91368

ŷ
		 x ¼ 4ð Þ ¼ 1:12169þ ln 4ð Þ�2:58531 ¼ 4:70568

Using simple subtraction, we can see that when x doubles, the expected increase in

y¼ 1.7920. Equation (8.4) shows that we can also derive this value using the

regression coefficient reported in Table 8.6.
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Fig. 8.5 Scatterplot and residual plot illustrating the linearization of a logarithmic function
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Δŷ ¼ ln
x2
x1

 �
b ð8:4Þ

Plugging in our values,

Δŷ ¼ ln 2ð Þ�2:58531 ¼ 1:7920

Notably, this expected change in y occurs regardless of whether x doubles from 2 to

4, from 4 to 8, or from 6 to 12. In short, no matter where we start, a doubling in

study time predicts a 1.7920 unit improvement in test performance. In a similar

manner, we can predict the likely expected change in y for other ratio changes in x.
For example, the expected difference in y when x triples

ln 3ð Þ�2:58531 ¼ 2:8403

or quadruples.

ln 4ð Þ�2:58531 ¼ 3:5840

You can verify these values by subtracting the relevant numbers shown in

Table 8.6.

8.2.2.3 Summary

A log transformation of the predictor is appropriate when ratio changes in x predict
unit changes in y. If you believe you will earn ~ 1.8 more points on your next math

test if you double your study time, regardless of whether you double your study time

from 2 to 4 h or from 6 to 12 h, you are assuming that a logarithmic function

describes the association between study time and test performance.5 Such a relation

is commonly known as one of diminishing returns.

8.2.3 Exponential Model

The previous example dealt with a model that was nonlinear in the variables but

linear in the parameters. Our next two examples involve models that possess both

forms of nonlinearity. Our first example is an exponential function. Such functions

are common in the behavioral and physical sciences. For example, compound

interest follows an exponential growth function and radioactive isotopes decay

according to an exponential decay function. With an exponential growth function,

5With a logged predictor, the intercept represents the fitted value of y when x¼ 1. Whether this

value is meaningful will depend on the sample.
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change is slow at first but then accelerates rapidly; with an exponential decay

function, change is rapid at first and then levels off.

The following equation describes an exponential growth curve.6

y ¼ aebx ð8:5Þ
Because the unknown terms combine multiplicatively, their derivatives are not

independent. We can make them independent, however, by using a log transfor-

mation. As you might remember from elementary algebra, logarithms turn multi-

plication into addition and exponents into multipliers. Consequently, with one

important stipulation, we can recast Eq. (8.5) as an additive model and use OLS

to fit the data by predicting In( y) from x.

ln yð Þ ¼ ln að Þ þ bx ð8:6Þ

The stipulation is that we must treat the error term v in the original equation as a

multiplicative term rather than an additive one,

y ¼ aebxev ð8:7Þ

creating

ln yð Þ ¼ ln að Þ þ bxþ ln vð Þ: ð8:8Þ

In many cases this assumption will be reasonable. For example, with an exponential

model, our ability to predict y from xwill probably be less exact when y is large than
when y is small. In this case, OLS regression on the transformed variables is

appropriate and might even reduce heteroscedasticity. But if the error term is

presumed to be additive on the original scale, an OLS regression on the transformed

variables will not produce an accurate solution and might introduce heterosce-

dasticity rather than correct it. In this case, nonlinear methods must be used.

8.2.3.1 Example

To illustrate an exponential model, imagine we conduct another study, this time

concerning the relation between hours of practice at typing and performance on a

timed test. Learning to type is generally harder than learning to add or subtract, so

we might expect a different learning curve than we saw in our earlier example. In

particular, we might expect very little progress among those who practice infre-

quently and rapidly increasing progress among those who practice often. After all,

once people take the time to learn the keyboard, muscle memory takes over and

people become proficient at typing.

6We use a negative value for b to model an exponential decay curve.
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The (phony) data appear in Table 8.7 and an OLS regression on the raw data

reveals a strong linear trend (b¼ 3.7922, p< .0001), the nature of which is shown in

Fig. 8.6. However, we also see evidence for a nonlinear trend, as performance

improves little among students who seldom practice, then improves dramatically

among those who practice frequently.7 Moreover, the residuals from an OLS

regression show strong evidence of curvature, and a significant lack of fit test

provides additional evidence of nonlinearity, F(7, 3)¼ 116.11, p<.0012. Finally,

notice that the residuals also show evidence of heteroscedasticity, as the variance

increases with increasing values of y. A significant Breusch-Pagan test (see

Chap. 7) confirms this violation, χ2BP ¼ 6.27, p¼ .0123, indicating that the error

term is multiplicative, not additive.

Table 8.7 Hypothetical data illustrating the linearization of an exponential function

Raw scores After log transformation of y

x y In( y) ŷ residuals h ŷ � ¼ eŷ

2 5.92 1.77834 1.67637 .10196 .21031 5.34612

2 4.44 1.49065 1.67637 �.18572 .21031 5.34612

2 6.00 1.79176 1.67637 .11539 .21031 5.34612

3 6.94 1.93730 1.89561 .04169 .15759 6.65660

4 8.07 2.08815 2.11485 �.02669 .11892 8.28831

6 13.46 2.59972 2.55332 .04640 .08377 12.84969

7 17.62 2.86903 2.77256 .09648 .08729 15.99949

8 15.49 2.74019 2.99179 �.25160 .10486 19.92139

9 23.59 3.16082 3.21103 �.05021 .13650 24.80466

10 30.08 3.40386 3.43027 �.02641 .18219 30.88493

10 30.44 3.41576 3.43027 �.01451 .18219 30.88493

12 55.81 4.02195 3.86874 .15321 .31576 47.88215

Significance test after log transformation of y

SS df MS R2 F p

Regression 6.83723 1 6.83723 .97681 421.2232 .0000

Residual .16232 10 .01623

Total 6.99955

Regression coefficients after log transformation of y

b seb t p (X0X)� 1 C

b0 1.23790 .07622 16.24040 .0000 .35794 �.04394 .005810 �.000713

b1 .21924 .01068 20.52372 .0000 �.04394 .00703 �.000713 .000114

7 People commonly refer to tasks that are difficult to master as having a “steep learning curve,” but

this is incorrect. Easy tasks produce a steep learning curve, as was the case in our earlier example

when performance rose quickly with practice, then leveled off. In contrast, difficult tasks produce

shallow learning curves, like the function we are considering in this example.
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8.2.3.2 Transforming the Criterion

After applying a logarithmic transformation to our criterion, we can use OLS

regression to analyze our data. The pertinent data and results from this analysis

are shown in Table 8.7 and appear graphically in the bottom portion of Fig. 8.6.

Following the transformation, the relation is now (approximately) linear, with a

nonsignificant lack of fit test, F(7, 3)¼ .7721, p ¼ .6511. Heteroscedasticity is also

eliminated, χ2BP¼.0012, p¼ .9723, indicating that the error term for the transformed

equation is now appropriately additive.

8.2.3.3 Interpreting the Regression Coefficients and Fitted Values

To interpret our regression coefficients, we use Eq. (8.9) to return our fitted values

to their original scale (see final column in Table 8.7).
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Fig. 8.6 Scatterplot and residual plot illustrating the linearization of an exponential function
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ŷ � ¼ eŷ ð8:9Þ

When we do so, we find that a one unit change in x predicts an eb ratio change in ŷ �.
To illustrate, consider what happens when x changes from 2 to 3.

ŷ �		 x ¼ 2ð Þ ¼ 5:34612

ŷ �		 x ¼ 3ð Þ ¼ 6:65660

The ratio of the two fitted values ¼ 1.24513. This value can be derived from

Eq. (8.10).

ŷ�2
ŷ�1

 �
¼ e Δx�bð Þ ¼ e 1�:21924ð Þ ¼ 1:2451 ð8:10Þ

So instead of saying “a one unit change in x predicts a b unit change in y” (as would
normally be true with a linear model), we say “a one unit change in x predicts an eb

ratio change in y.”
Applying this equation, we can find the ratio change in ŷ � for other changes in x.

For example, a two unit change in x is associated with an e(2 * .21924)¼ 1.5503 ratio

change in ŷ � and a three unit change in x is associated with an e(3 * .21924)¼ 1.9304

ratio change in ŷ �.
With an exponential function, we can express changes in ŷ � as percentages.

When b is small (~<.15), the regression coefficient approximates the expected

percentage change. For example, if b¼.13, a one unit increase in x predicts a ~ 13%
increase in y; for larger values of b, percentages can be found by subtracting 1 from
the results calculated using Eq. (8.10). Table 8.8 shows the percentage values for

our data.

Table 8.8 Percentage changes in y as a function of unit changes in x: exponential function

Hourly change in study

time

Expected ratio change

in performance

Expected percentage

change (%)

1 1.2451 24.5

2 1.5503 55.0

3 1.9304 93.0

4 2.4036 140.4

5 2.9927 199.3

6 3.7263 272.6

7 4.6397 364.0

8 5.7771 477.7

9 7.1932 619.3

10 8.9564 795.6
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8.2.3.4 Summary

Exponential functions are used when unit changes in x predict ratio changes in y. In
our example, practicing two additional hours yields greater benefits if you are

increasing from 8 to 10 h than if you are increasing from 1 to 3 h. Why might

this be the case? Perhaps 3 h/week is not enough to learn to type, so you might as

well not bother practicing at all. More generally, if you believe that practice is

disproportionately beneficial at high levels than at low levels, you are assuming that

performance is an exponential function of effort.

8.2.4 Power Function

The final function we will consider in this section is a power function. Here, we

raise the predictor to the value of a regression coefficient.

y ¼ axb ð8:11Þ
With a power function, ratio changes in x predict ratio changes in y. Probably the

best known example of a power function is Huxley’s work on growth phenomena in

animals. Across a variety of species, a power function describes how the expected

size or weight of one physical characteristic can be predicted from the known size

or weight of another physical characteristic. For example, using a power function,

the mass of an animal’s skeleton can be predicted from its body weight.

To keep things consistent with our previous examples, we will continue

discussing practice time and test performance, this time looking at performance

in a matrix algebra class. Matrix algebra is harder to learn than arithmetic, but it

also does not require a substantial investment in time before any improvements

appear (as was true with typing). So we might expect to find a third pattern in which

ratio changes in x predict ratio changes in y.
The (phony) data appear in Table 8.9, and the results of an OLS regression

on the raw data reveal a strong linear trend (b¼ 1.18165, p< .0001) that can be

seen in Fig. 8.7. The scatterplot suggests a linear relation, but the residual plot

shows evidence of curvature. A significant lack of fit test provides additional

evidence of nonlinearity, F(7, 3)¼ 135.34, p¼.0009. Finally, the residuals show

evidence of heteroscedasticity, χ2BP ¼ 5.63, p¼ .0177, suggesting that they enter the

model multiplicatively, not additively, as shown in Eq. (8.12).

y ¼ axbev ð8:12Þ

8.2.4.1 Fitting the Regression Model

Taking the logarithm of both sides of Eq. (8.12) produces a model that is linear in

the parameters but not in the variables.
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ln yð Þ ¼ ln að Þ þ b � ln xð Þ þ ln vð Þ ð8:13Þ

Consequently, we can use OLS regression to analyze the transformed function.

The transformed values appear in Table 8.9 and the results of an OLS regression

reveal a strong fit to the data. The bottom half of Fig. 8.7 shows that the log

transformations linearized the data, an impression confirmed by a lack of fit test,

F¼ (7, 3)¼.7009, p¼.6854; heteroscedasticity has also been eliminated,

χ2BP¼.1249, p¼ .7237.

8.2.4.2 Interpreting the Regression Coefficients and Fitted Values

When both variables have been log transformed, ratio changes in x predict ratio

changes in y:

ŷ�2
ŷ�1

 �
¼ x2

x1

 �
b ð8:14Þ

To illustrate, let’s look at the mean expected difference in ŷ � when x doubles from
2 to 4.

Table 8.9 Hypothetical data illustrating the linearization of a power function

Raw scores Following log transformations of x and y

x y ln(x) ln( y) ŷ e h ŷ � ¼ eŷ

2 3.02 .69315 1.10526 1.02795 .07731 .25347 2.7953

2 2.26 .69315 .81536 1.02795 �.21259 .25347 2.7953

2 3.06 .69315 1.11841 1.02795 .09046 .25347 2.7953

3 5.61 1.09861 1.72455 1.67072 .05383 .13887 5.3160

4 8.39 1.38629 2.12704 2.12678 .00027 .09548 8.3878

6 17.27 1.79176 2.84897 2.76955 .07942 .08777 15.9514

7 23.05 1.94591 3.13767 3.01392 .12375 .10124 20.3670

8 19.94 2.07944 2.99273 3.22560 �.23287 .12021 25.1687

9 29.06 2.19722 3.36936 3.41232 �.04295 .14257 30.3355

10 34.71 2.30259 3.54703 3.57934 �.03231 .16705 35.8499

10 35.13 2.30259 3.55906 3.57934 �.02029 .16705 35.8499

12 53.75 2.48491 3.98434 3.86837 .11597 .21937 47.8643

Significance test after log transformation of x and y

SS df MS R2 F p

Regression 13.21670 1 13.21670 .98842 853.50 .0000

Residual .15485 10 .01549

Total 13.37155

Regression coefficients after log transformation of x and y

b seb t p (X0X)� 1 C

b0 �.07087 .09592 �.7389 .4770 .59416 �.31166 .092007 �.048261

b1 1.58527 .05426 29.2148 .0000 �.31166 .19014 �.048261 .029444
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ŷ �		 x ¼ 2ð Þ ¼ 2:7953

ŷ �		 x ¼ 4ð Þ ¼ 8:3878

The ratio change in ŷ � ¼ 3:0007. This value can also be found by calculating

2b (21.58527¼ 3.0007). In our data, doubling your study time predicts a ~3-fold

increase in test performance. If you triple your study time, you can expect a

31.58527¼ 5.70645-fold increase in test performance. As before, this is true regard-

less of whether study time triples from 3 to 9 or from 4 to 12.

8.2.4.3 Summary

Power functions are appropriate when ratio changes in x predict ratio changes in y.
If, regardless of how much you are studying now, you expect your performance to

double when you double your study time, you are assuming that a power function
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Fig. 8.7 Scatterplot and residual plot illustrating the linearization of a power function
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explains the relation between study time and performance (and that the regression

coefficient from the log transformed regression¼ 1).8 When it comes to learning

matrix algebra, it seems reasonable to assume that proportional gains in studying

yield proportional gains in performance.

8.2.5 Box-Tidwell Transformation

In our previous examples, we have known the function that generated our nonlinear

data. More commonly, the function underlying a nonlinear pattern is unknown. If

all of the usual assumptions of OLS regression are met (i.e., the residuals are NID),
we can attempt to linearize a nonlinear relation by using a power transformation of

the predictor. Box and Tidwell (1962) developed an iterative technique to find the

appropriate power function.

To illustrate the technique, imagine we conduct one last study to examine the

association between study time and errors on a homework assignment in a math

class. The first two columns in Table 8.10 present the (imaginary) raw data, and the

Table 8.10 First iteration of Box-Tidwell procedure for transforming predictor

Initial analysis First iteration

x y x x[ln(x)] y x0 y x0 x0[ln(x)] y

2 11.61 2 1.3863 11.61 .6017 11.61 .6017 .4170 11.61

2 11.58 2 1.3863 11.58 .6017 11.58 .6017 .4170 11.58

2 12.18 2 1.3863 12.18 .6017 12.18 .6017 .4170 12.18

3 7.35 3 3.2958 7.35 .4470 7.35 .4470 .4911 7.35

4 5.32 4 5.5452 5.32 .3620 5.32 .3620 .5019 5.32

6 4.26 6 10.7506 4.26 .2689 4.26 .2689 .4819 4.26

7 3.91 7 13.6214 3.91 .2402 3.91 .2402 .4674 3.91

8 2.89 8 16.6355 2.89 .2178 2.89 .2178 .4529 2.89

9 1.63 9 19.7750 1.63 .1998 1.63 .1998 .4390 1.63

10 1.59 10 23.0259 1.59 .1849 1.59 .1849 .4259 1.59

10 1.48 10 23.0259 1.48 .1849 1.48 .1849 .4259 1.48

12 1.71 12 29.8189 1.71 .1618 1.71 .1618 .4021 1.71

b0 12.2 b0 21.2723 b0 �2.5117 b0 �.6945

b1 �1.07858 b1 �6.2597 b1 23.4869 b1 23.4038

b2 1.86912 b2 �4.0209

λ �.73295 λ �.90415

8 Economists use power functions to describe the elasticity of a commodity, defined as the

expected percentage change in demand with a 1 % change in price. When b is < 2, the regression

coefficient from the transformed analysis provides a good approximation of elasticity; when b is

> 2, elasticity should be computed from the data: E¼ (1.01b * 100)� 100.
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scatterplot shown in the first panel of Fig. 8.8 shows a clear nonlinear trend, with

many errors when study time is low but very few errors once study time reaches

9 h/week. As with our earlier examples, the residuals also show evidence of

curvature, and a lack of fit test produces a significant effect, F(7, 3)¼ 51.70,

p ¼ .0040; unlike our earlier examples, log transformations do not linearize the

data. Consequently, we will use the Box-Tidwell procedure to find a power transfor-

mation of x (denoted λ) that will reduce (if not eliminate) nonlinearity.

To begin, we perform an OLS regression on the raw data, finding the regression

coefficient relating study time to homework errors. The left-hand side of Table 8.10

shows that b1¼� 1.07858. We then perform a second analysis using x and [x * ln(x)]
to predict y (see Table 8.10). Finally, we use Eq. (8.15) to find our first approximation

of λ, with λn indicating that we are finding a new, updated value, λo indicating a

previous value, b1 * indicating that the denominator comes from our first regression

analysis, and b2 indicating that our numerator comes from the second regression

analysis.
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Fig. 8.8 Scatterplot and residual plot illustrating a Box-Tidwell (reciprocal) transformation of x
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λn ¼ λo þ b2
b1�

ð8:15Þ

Plugging in our numbers yields the following value.9

λn ¼ 1þ 1:86912

�1:07858
¼ �:73295

We then repeat the procedure forming a new predictor, x0 ¼ xλ. Table 8.10 shows the
data we use. The first value for x0 was found using xλ¼ 2�.73295¼.6017, and the first

value for x0[In(x)] was found using [.6017 * In(2)]¼.4170. Notice that when

computing this term, we use the updated value of x for x0 but the original value of
x when computing [In(x)]. After calculating the remaining values, we conduct two

more regression analyses and compute an updated term for λ.

λn ¼ �:73295þ�4:0209

23:4869
¼ �:90415

We continue using this technique until changes in λ fall below some designated stop

value (e.g., <.000001). Table 8.11 shows five iterations, but precision is not our

goal, so two iterations usually suffice. As with the Box-Cox procedure (see

Chap. 6), we are looking for the best interpretable transformation of x.10

A reciprocal transformation of x is appropriate when λ ~�.9. Reciprocal trans-

formations (x� 1¼ 1/x) exaggerate the differences between small values and attenuate

the differences between large ones. Such a transformation makes sense with our

(phony) data, because differences in error rates becomeminiscule once students study

for a sufficient number of hours. Applying this transformation of x linearizes the data
(see Fig. 8.8); produces a nonsignificant lack of fit test, F(7, 3)¼ 4.22, p¼ .1319; and

reveals a strong effect of study time on performance, b¼ 24.4645, p< .0001.

Table 8.11 Five iterations of

the Box-Tidwell procedure

for transforming the predictor

Iteration λ

0 �.732947315

1 �.904146720

2 �.923505612

3 �.925340152

4 �.925509867

5 �.925525531

9We are setting λo¼ 1 for our initial value (i.e., x1¼ x).
10 λ ~ 0 indicates that a log transformation of the predictor is appropriate, and λ ~ 1 indicates that no
transformation is needed.
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8.2.6 Summary

In this section you have learned a variety of techniques that convert nonlinear

relations into linear ones. In some cases, this transformation can be effected without

changing the parameters of the regression model; in other cases the conversion

requires reconfiguring the model itself. As the latter approach is appropriate only

when the error term is assumed to be multiplicative, a careful examination of the

residuals before and after any transformations have been made is required. For this

reason, the diagnostic tools we discussed in Chaps. 6 and 7 should be applied

whenever decisions regarding the transformation of variables are made.

8.2.7 R Code: Linear Transformations

#Log Transformation

x=c(2,2,2,3,4,6,7,8,9,10,10,12)

y=c(2.99,2.70,3.00,4.02,4.71,5.83,6.28,6.27,6.76,7.04,7.05,7.66)

log.mod <-lm(y~log(x))

summary(log.mod)

#Exponential Transformation

x=c(2,2,2,3,4,6,7,8,9,10,10,12)

y=c(5.92,4.44,6.00,6.94,8.07,13.46,17.62,15.49,23.59,30.08,30.44,

55.81)

exp.mod <-lm(log(y)~ x)

summary(exp.mod)

#Percentile Changes with Unit changes

change <-seq(1,10,1)

percent <-100*((exp(change*exp.mod$coef[2]))-1)

percha <-rbind(paste(round(percent, 2), "%"));percha

#Power Function

x=c(2,2,2,3,4,6,7,8,9,10,10,12)

y=c(3.02,2.26,3.06,5.61,8.39,17.27,23.05,19.94,29.06,34.71,35.13,

53.75)

pow.mod <-lm(log(y)~log(x))

summary(pow.mod)

#Box-Tidwell Transformation

x=c(2,2,2,3,4,6,7,8,9,10,10,12)

y=c(11.61,11.58,12.18,7.35,5.32,4.26,3.91,2.89,1.63,1.59,1.48,

1.71)

#Check Linearity Before Box-Tidwell Transformation

pre.reduced <- lm(y ~ x)

(continued)
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8.2.7 R Code: Linear Transformations (continued)

pre.full <- lm(y ~ factor(x))

anova(pre.reduced, pre.full)

#Box-Tidwell

library(car) #attach car package

boxTidwell(y~x)

#Reciprocal Transformation

recip.mod <-lm(y~I(x^-1))

summary(recip.mod)

#Check Linearity After Box-Tidwell Transformation

x.recip=x^-1

post.reduced <- lm(y ~ x.recip)

post.full <- lm(y ~ factor(x.recip))

anova(post.reduced, post.full)

8.3 Nonparametric Smoothers

The transformations we have been studying are useful when the association between

x and y is known or easily discerned. This is not always the case. Data are frequently
noisy and a clearly defined relation between x and y is often obscured. Nonparametric

smoothers can help clarify things. There are a large number of them, but they share

two features: (1) they forgo estimating the parameters of a function (e.g., regression

coefficients) in favor of identifying the function itself and (2) they smooth the data

using a technique known as local fitting, in which multiple observations surrounding

a focal value are combined to reduce noise. In this manner, nonparametric methods

reveal the form of the association between x and y.
Nonparametric smoothers can be particularly useful when we are dealing with

“big data,” a popular term that refers to situations where the number of observations

is excessively large and noisy (e.g., the number of people who GOOGLE the term

big data in any day). In the examples we have covered in this chapter, I have

purposefully made the nonlinear functions easy to see when plotting the data, but

this is not always possible. To reinforce this point, consider the data on the left-hand

side of Fig. 8.9. Looking at these data, it is difficult to discern any lawful pattern,

but, in fact, there is one. After generating a list of 100 random x values between

0 and 1 and a standardized disturbance term v, I created these data using the

following function.

y ¼ sin 10xð Þ þ v

It is very difficult to see the sine function through the noise unless you look at the

right-hand figure. When we add the sine function without the disturbance term, the
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pattern becomes apparent. Nonparametric scatterplot smoothers serve a similar

function; they help us extract the big picture from big data.11

8.3.1 Understanding Nonparametric Regression

8.3.1.1 Three Regression Models

An easy way to understand nonparametric smoothers is to compare a nonparametric

model with other regression models.

• Our first model is the familiar linear regression model. We don’t specify a

function in Eq. (8.16) because it is linear by default, and our interest centers

around estimating the parameters (aka coefficients).

y ¼ βxþ ε ð8:16Þ

• Equation (8.17) shows a nonlinear regression model. Here, we assume that y is a
weighted function of the parameters, but the function can take numerous forms

(e.g., exponential, power). In this case, we first specify a nonlinear function

before estimating its parameters.

y ¼ f βxð Þ þ ε ð8:17Þ

• Equation (8.18) shows a nonparametric model. Here, we assume that y is a

function of x, but we are interested only in identifying that function, not
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Fig. 8.9 Scatterplots of a noisy nonlinear function

11With a single predictor, nonparametric smoothers are called scatterplot smoothers.
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estimating the parameters. In fact, there aren’t any parameters to estimate in

Eq. (8.18), which is why it’s called a nonparametric model.

y ¼ f xð Þ þ ε ð8:18Þ

8.3.1.2 Classifying Nonparametric Smoothers

Table 8.12 shows that nonparametric smoothers can be characterized along two

dimensions. The first dimension is the estimation technique that is used to smooth

the data; some smoothers compute averages and some calculate fitted values from

an OLS regression. The second dimension is the weighting scheme; some

smoothers use unweighted values and some use weighted values.

8.3.1.3 Neighborhood Size

Regardless of which technique we use, we must decide how many observations will

contribute to the smoothing function. The term neighborhood size is used when

referring to this value, although other terms, such as bandwidth, span, and window
size, are used as well. Two common approaches are nearest neighbors and sym-
metric nearest neighbors.

• Nearest neighbors uses the n closest values to a focal value, irrespective of

whether these values are larger or smaller than the focal value. To illustrate,

suppose we have the following sequence of values and wish to calculate the

average of the four nearest neighbors for the focal value of 5.3.

1:0 2:4 2:8 3:9 4:7 5:3 7:6 8:1 8:3 9:9 ð8:19Þ

Looking over the numbers, we find the four closest values to 5.3 and compute

the average.

2:8þ 3:9þ 4:7þ 5:3þ 7:6

5
¼ 4:86

Table 8.12 2� 2 Classification of nonparametric smoothers

Weighting scheme

Unweighted Weighted

Estimation

technique

Averaging Running average Kernel regressiona

Fitted values using OLS

regression

Running line Locally weighted least squares

regression (LOESS)
aThe smoothing technique known as “kernel regression” involves weighted averages, not fitted

values, so the term is somewhat of a misnomer.
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Notice that three of the values lie below the focal value and one lies above.

• Symmetric nearest neighbors uses n/2 values on either side of a focal value. With

our example, we use two values lower than 5.3 and two values greater than 5.3.

In our example, the average found using the symmetric nearest neighbors is quite

a bit larger than the average found using nearest neighbors.

3:9þ 4:7þ 5:3þ 7:6þ 8:1

5
¼ 5:92

8.3.1.4 Small Sample Example

All of the nonparametric techniques we will review involve numerous calculations,

so performing them without a computer is impractical when sample sizes are large.

Accordingly, we will use a small sample example to help us learn the techniques.

Note, however, that the sample size is small only for illustrative purposes, and we

ordinarily would be applying the techniques to a much larger number of

observations.

Keeping that in mind, Table 8.13 shows a data set calculated using the same sine

function as before [y¼ sin(10x) + v], along with the results from four nonparametric

smoothers. Figure 8.10 shows a scatterplot and the residuals from an OLS regres-

sion. Notice that the residuals look very much like the raw data, indicating that a

linear trend is inadequate to describe the data. Notice also that the data do not

Table 8.13 Raw data and four nonparametric smoothers

v x y

Running

average

(h¼ 1/4)

Running

line

(s¼ 1/3)

Kernel

regression

(h¼ .17044)

LOESS

( f¼ 6)

�.68452 .0931 .1177 .74955 1.16704 .27225 .94413

.41244 .1821 1.3814 .09500 .36970 �.01449 .34510

�.77306 .3598 �1.2141 �.12897 �1.22228 �.76228 �.88659

.19060 .3982 �.5542 �1.74667 �.56270 �.84111 �1.29944

�2.51631 .5012 �3.4717 �1.09303 �.81176 �.71345 �1.15602

.55026 .6481 .7468 �.42677 �.25050 �.00695 .39044

.56368 .7361 1.4446 .59290 .17844 .29000 .69600

�1.41086 .7914 �.4127 .42063 .48348 .38952 .46891

�.76646 .7938 .2300 .24230 .70884 .39263 .44954

�.00962 .8259 .9096 .93967 .29789 .42668 .61252

1.18895 .8912 1.6794 .63823 .50068 .46272 .48077

�1.03781 .9053 �.6743 .50255 .54446 .46642 .47601

sd¼.280159

Note: y¼ sin(10x) + v—angle in radians
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readily suggest any other pattern, but seem to represent nothing but noise. Since we

know how the data were generated, we know this is not so. But let’s pretend we

don’t know, and see whether our smoothers can identify the pattern.

8.3.2 Running Average

The simplest, nonparametric smoother is a running average with symmetric nearest

neighbors. For illustrative purposes, we will set the neighborhood size to equal 1/4

of the observations. Each estimated value of y will then be the average of three

observations, one on each side of the focal value and the focal value itself.

We could work through all of the averaging by hand, but there’s an easier way. If

we create a smoother matrix S, we can do the averaging using matrix multiplication.

a ¼ Sy ð8:20Þ

The relevant values for S are shown below. First, notice that most of the values

are weighted by a value of 1/3, which is 1/4 of our sample. This makes sense

because we are averaging three values, so each receives equal weight. Now notice

that a different weighting scheme is used at both ends of the distribution. Looking

at the beginning of the distribution, we see that our first running average is

computed using only two values. This is because we can’t find a value below our

first value, so we use only the focal value and the value that follows. The same

pattern characterizes our final value, except here we use the last value and the

preceding value.

-4

-3

-2

-1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

y

x

Raw Data

-3
-2.5

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

-2 -1 0 1 2

St
ud

en
tiz

ed
 R

es
id

ua
ls

Standardized Fitted Values

Residuals

Fig. 8.10 Scatterplots of data from Table 8.13

290 8 Linearizing Transformations and Nonparametric Smoothers



S:25 ¼

1=2 1=2 0 0 0 0 0 0 0 0 0 0

1=3 1=3 1=3 0 0 0 0 0 0 0 0 0

0 1=3 1=3 1=3 0 0 0 0 0 0 0 0

0 0 1=3 1=3 1=3 0 0 0 0 0 0 0

0 0 0 1=3 1=3 1=3 0 0 0 0 0 0

0 0 0 0 1=3 1=3 1=3 0 0 0 0 0

0 0 0 0 0 1=3 1=3 1=3 0 0 0 0

0 0 0 0 0 0 1=3 1=3 1=3 0 0 0

0 0 0 0 0 0 0 1=3 1=3 1=3 0 0

0 0 0 0 0 0 0 0 1=3 1=3 1=3 0

0 0 0 0 0 0 0 0 0 1=3 1=3 1=3
0 0 0 0 0 0 0 0 0 0 1=2 1=2

26666666666666666664

37777777777777777775
Table 8.13 shows the values obtained when we perform the multiplication, and

Fig. 8.11 adds the smooth and the true sine function to the raw data. As you can see

the running average does a pretty good job of identifying the undulating pattern of

the data, although the pattern is far from smooth.

Using more values in our smoothing function will create a smoother pattern (and

using fewer values will create a more jagged one). To illustrate, we’ll form one

more smoothing matrix, this time using 1/3 of the observations. The smoother

matrix appears below, and its form is similar to our earlier matrix, with one

exception. Our very last value is different than our first. Had there been an odd

number of observations, this adjustment would not have been necessary. The right-

hand side of Fig. 8.11 shows the running average obtained with the new smoother.

It is less jagged than our earlier smoother, failing to show the underlying data

pattern. In this case, the bandwidth is too large and we should choose the smaller

bandwidth.

-4

-3

-2

-1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0
x

Running Average

Raw Sine Running Average (s = .25)

-4

-3

-2

-1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0
x

Running Average

Raw Sine Running Average (s = .33)

Fig. 8.11 Two running average smoothers for data from Table 8.13
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S:33 ¼

1=3 1=3 1=3 0 0 0 0 0 0 0 0 0

1=4 1=4 1=4 1=4 0 0 0 0 0 0 0 0

0 1=4 1=4 1=4 1=4 0 0 0 0 0 0 0

0 0 1=4 1=4 1=4 1=4 0 0 0 0 0 0

0 0 0 1=4 1=4 1=4 1=4 0 0 0 0 0

0 0 0 0 1=4 1=4 1=4 1=4 0 0 0 0

0 0 0 0 0 1=4 1=4 1=4 1=4 0 0 0

0 0 0 0 0 0 1=4 1=4 1=4 1=4 0 0

0 0 0 0 0 0 0 1=4 1=4 1=4 1=4 0

0 0 0 0 0 0 0 0 1=4 1=4 1=4 1=4
0 0 0 0 0 0 0 0 0 1=3 1=3 1=3
0 0 0 0 0 0 0 0 0 0 1=2 1=2

26666666666666666664

37777777777777777775
Perhaps you are thinking that subjective impressions of smoothness are, well,

too subjective to guide our choice of bandwidth. In Chap. 10 you will learn a more

objective technique for selecting a bandwidth when we discuss another scatterplot

smoother called a spline. For now, we will note only that scatterplot smoothers

are used primarily to describe and understand our data and visual judgments are

critical to their success. As Cohen, Cohen, West, and Aiken (2003) note, “Simple

visual judgments by the analyst are normally sufficient to choose a reasonable

window size that provides a good estimate of the shape of the distribution in the

population” (p. 108).12

8.3.3 Running Line

Our next smoother is called a running line smoother. Here, we use symmetric

nearest neighbors to find fitted values from an OLS regression. More observa-

tions are usually needed to compute a regression line than an average, so we will

set our first window size for s¼ 1/3 and our second window size to s¼ 1/2.

Table 8.14 shows the observations that are included for each fitted value,

and Fig. 8.12 shows the smooth. As you can see, the first smoother does a

good job of identifying the underlying pattern, but the second produces too

much smoothing.

Because we don’t need the regression coefficients, the easiest way to find

the fitted values is to use the hat matrix, including only relevant values of x.
To illustrate, the first hat matrix using s¼ 1/3 includes only the first five

observations.

12 See also Fox (2000, p. 23).
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H 1:5½ � ¼

:61482 :44213 :09731 :02280 �:17706
:44213 :34132 :14006 :09657 �:02009
:09731 :14006 :22542 :24386 :29334
:02280 :09657 :24386 :27569 :36107
�:17706 �:02009 :29334 :36107 :54274

266664
377775

Multiplying this matrix by the corresponding values in y produces five fitted values.

Table 8.14 Observations used in two running line smoothers with different bandwidths

s¼ 1/3 s¼ 1/2

For fitted

value

Observations included

in the regression ŷ
Observations included

in the regression ŷ

1 1–5 1.167040 1–7 �.279368

2 1–5 .369704 1–7 �.263425

3 1–5 �1.222282 1–7 �.231593

4 2–6 �.562705 1–7 �.224715

5 3–7 �.811758 2–8 �.305070

6 4–8 �.250497 3–9 �.254043

7 5–9 .178437 4–10 .221065

8 6–10 .483477 5–11 .695757

9 7–11 .708842 6–12 .570399

10 8–12 .297894 6–12 .507120

11 8–12 .500675 6–12 .378394

12 8–12 .544461 6–12 .350598
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Fig. 8.12 Two running line smoothers for data from Table 8.13
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ŷ 1:5½ � ¼ H 1:5½ �y 1:5½ � ¼

1:16704
:36970

�1:22228
�1:56630
�2:48906

266664
377775

Even though we computed five fitted values, Table 8.14 shows that we only use the

first three for our running line smoother. This is because we can find more

symmetric nearest neighbors for observation 4 (H[2:6]) and 5 (H[3:7]). Similar

calculations produce the rest of the fitted values.

8.3.4 Kernel Regression

In the previous examples, a fixed number of observations was specified and all

observations included in the neighborhood received equal weight. An alternative

approach is to include all observations but differentially weight them, with values

lying close to a focal value receiving more weight than values that lie far from a

focal value. Formally, this type of continuous weighting scheme is known as a

kernel function, and its application with scatterplot smoothing is called kernel

regression.13 The procedures are somewhat complicated, but only arithmetic is

involved.

8.3.4.1 Steps

1. Select a bandwidth value, h. A good rule of thumb, known as Silverman’s rule, is

to use the standard deviation of the predictors to find an initial value of h.

h ¼ sx � N�:2 ð8:21Þ

2. Create an N�N matrix of the predictors, then calculate u by centering each

column value around its diagonal value and dividing by h.

u ¼ xij � xii
� �

h
ð8:22Þ

3. Select a weighting scheme. Table 8.15 shows two common density functions,

but several others are available (Buskirk et al. 2013).

13 If you are thinking that this procedure sounds a lot like the Newey-West technique we learned in

Chap. 7, you are absolutely right. The Newey-West technique uses a kernel known as the Bartlett

kernel.
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4. Compute the kernel smooth using the Nadaraya-Watson estimator.

μ̂ x�
		x, h� � ¼Xn

i¼1
K uð ÞyXn

i¼1
K uð Þ

ð8:23Þ

As is true with a regression coefficient, the numerator is a cross-product term and

the denominator involves only the predictor. Unlike a regression coefficient, how-

ever, these are weighted sums, not estimates of variability.

8.3.4.2 Illustration

Let’s work through the steps for our sample data set.

• Our first task is to find an initial value of h. Using the standard deviation shown

in Table 8.13 (s¼.280159), we derive the following value using Eq. (8.21).

h ¼ :280159 � 12�:2 ¼ :17044

• We then create a 12� 12 matrix from our predictors and find u by centering each
column entry around its diagonal value and dividing the difference by h [see

Eq. (8.22)]. Table 8.16 shows the obtained values. To illustrate, the first three

values in Column 1 were found as follows.

x11 � x11ð Þ
h

¼ :0931� :0931ð Þ
:17044

¼ 0

x21 � x11ð Þ
h

¼ :1821� :0931ð Þ
:17044

¼ :5222

and

x31 � x11ð Þ
h

¼ :3598� :0931ð Þ
:17044

¼ 1:5648

The remaining values were found in a similar fashion. Notice that the matrix

has 0 s along the main diagonals.

Table 8.15 Common kernel

density functions, K
Kernel Formula (K )

Gaussian 1ffiffiffiffiffi
2π

p � e� u2

2

Epanechnikov
3 1� u2

5

 ��
4
ffiffiffi
5

p for u2 < 5

0 otherwise

8><>:
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• Next, we weight our values using a kernel function. Table 8.17 presents the

weights using a Gaussian kernel. To illustrate, the first three values in Column

1 were found as follows.

1ffiffiffiffiffi
2π

p � e� 02

2
¼ :3989

1ffiffiffiffiffi
2π

p � e� :52222

2
¼ :3481

and

1ffiffiffiffiffi
2π

p � e� 1:56482

2
¼ :1173

Notice that the weight of each observation decreases with distance from the

diagonal value of .3989.

Table 8.16 Values for u using h¼.17044

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12

.0000 �.5222 �1.5648 �1.7901 �2.3944 �3.2563 �3.7726 �4.0971 �4.1112 �4.2995 �4.6826 �4.7653

.5222 .0000 �1.0426 �1.2679 �1.8722 �2.7341 �3.2504 �3.5749 �3.5890 �3.7773 �4.1604 �4.2432

1.5648 1.0426 .0000 �.2253 �.8296 �1.6915 �2.2078 �2.5323 �2.5464 �2.7347 �3.1178 �3.2006

1.7901 1.2679 .2253 .0000 �.6043 �1.4662 �1.9825 �2.3070 �2.3211 �2.5094 �2.8925 �2.9753

2.3944 1.8722 .8296 .6043 .0000 �.8619 �1.3782 �1.7027 �1.7167 �1.9051 �2.2882 �2.3709

3.2563 2.7341 1.6915 1.4662 .8619 .0000 �.5163 �.8408 �.8549 �1.0432 �1.4263 �1.5090

3.7726 3.2504 2.2078 1.9825 1.3782 .5163 .0000 �.3245 �.3385 �.5269 �.9100 �.9927

4.0971 3.5749 2.5323 2.3070 1.7027 .8408 .3245 .0000 �.0141 �.2024 �.5855 �.6683

4.1112 3.5890 2.5464 2.3211 1.7167 .8549 .3385 .0141 .0000 �.1883 �.5715 �.6542

4.2995 3.7773 2.7347 2.5094 1.9051 1.0432 .5269 .2024 .1883 .0000 �.3831 �.4659

4.6826 4.1604 3.1178 2.8925 2.2882 1.4263 .9100 .5855 .5715 .3831 .0000 �.0827

4.7653 4.2432 3.2006 2.9753 2.3709 1.5090 .9927 .6683 .6542 .4659 .0827 .0000

Table 8.17 Gaussian kernel weights (Kui)

Ku1 Ku2 Ku3 Ku4 Ku5 Ku6 Ku7 Ku8 Ku9 Ku10 Ku11 Ku12

.3989 .3481 .1173 .0804 .0227 .0020 .0003 .0001 .0001 .0000 .0000 .0000

.3481 .3989 .2317 .1786 .0691 .0095 .0020 .0007 .0006 .0003 .0001 .0000

.1173 .2317 .3989 .3889 .2828 .0954 .0349 .0162 .0156 .0095 .0031 .0024

.0804 .1786 .3889 .3989 .3324 .1362 .0559 .0279 .0270 .0171 .0061 .0048

.0227 .0691 .2828 .3324 .3989 .2752 .1543 .0936 .0914 .0650 .0291 .0240

.0020 .0095 .0954 .1362 .2752 .3989 .3492 .2802 .2768 .2315 .1443 .1278

.0003 .0020 .0349 .0559 .1543 .3492 .3989 .3785 .3767 .3472 .2637 .2437

.0001 .0007 .0162 .0279 .0936 .2802 .3785 .3989 .3989 .3909 .3361 .3191

.0001 .0006 .0156 .0270 .0914 .2768 .3767 .3989 .3989 .3919 .3388 .3221

.0000 .0003 .0095 .0171 .0650 .2315 .3472 .3909 .3919 .3989 .3707 .3579

.0000 .0001 .0031 .0061 .0291 .1443 .2637 .3361 .3388 .3707 .3989 .3976

.0000 .0000 .0024 .0048 .0240 .1278 .2437 .3191 .3221 .3579 .3976 .3989

Σ .9699 1.2397 1.5966 1.6541 1.8385 2.3269 2.6054 2.6410 2.6390 2.5811 2.2885 2.1983
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• Finally, we compute our kernel-weighted average using the Nadaraya-Watson

estimator [see Eq. (8.23)].

– Multiply each column in Table 8.17 by the column of y values from

Table 8.13 (see Table 8.18).

– Sum the obtained values (see bottom row of Table 8.18).

– Divide each sum by the sum of the column Kui values from the bottom row of

Table 8.17.

Performing the calculations yields the estimated values shown in Table 8.13 and

displayed on the left-hand side of Fig. 8.13. Inspection of the smoother suggests that

our initial value of h was too large and oversmoothed the data. The right-hand side

of Fig. 8.13 shows the results when h¼.10. This smoother more clearly reveals the

underlying data pattern, underscoring the need to try several values and choose the

most illuminating one.

Table 8.18 Calculations for Nadaraya-Watson estimator

Ku1y Ku2y Ku3y Ku4y Ku5y Ku6y Ku7y Ku8y Ku9y Ku10y Ku11y Ku12y

.0470 .0410 .0138 .0095 .0027 .0002 .0000 .0000 .0000 .0000 .0000 .0000

.4809 .5511 .3200 .2467 .0955 .0131 .0028 .0009 .0009 .0004 .0001 .0001

�.1424 �.2813 �.4844 �.4722 �.3433 �.1158 �.0423 �.0196 �.0189 �.0115 �.0038 �.0029

�.0445 �.0990 �.2156 �.2211 �.1842 �.0755 �.0310 �.0154 �.0150 �.0095 �.0034 �.0026

�.0788 �.2400 �.9817 �1.1538 �1.3850 �.9553 �.5358 �.3250 �.3173 �.2256 �.1010 �.0833

.0015 .0071 .0713 .1017 .2055 .2979 .2608 .2092 .2067 .1729 .1077 .0954

.0005 .0029 .0504 .0808 .2229 .5044 .5763 .5468 .5442 .5016 .3809 .3521

.0000 �.0003 �.0067 �.0115 �.0386 �.1156 �.1562 �.1646 �.1646 �.1613 �.1387 �.1317

.0000 .0001 .0036 .0062 .0210 .0637 .0866 .0917 .0918 .0901 .0779 .0741

.0000 .0003 .0086 .0156 .0591 .2106 .3159 .3555 .3565 .3629 .3372 .3256

.0000 .0001 .0052 .0102 .0489 .2423 .4428 .5644 .5690 .6226 .6700 .6677

.0000 .0000 �.0016 �.0032 �.0162 �.0862 �.1643 �.2152 �.2172 �.2413 �.2681 �.2690

Σ .2641 �.0180 �1.2171 �1.3913 �1.3117 �.0162 .7556 1.0287 1.0362 1.1013 1.0589 1.0254
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Fig. 8.13 Two kernel regression smoothers for data from Table 8.13
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8.3.5 Locally Weighted Regression

The final smoother we will consider uses locally weighted regression to find fitted

estimates of y. It is an unfortunate fact that it goes by two names, LOESS (local

regression) and LOWESS (locally weighted scatterplot smoother). Although there

are slight differences between LOESS and LOWESS, both involve selecting a

portion of the data to be included in a regression analysis, weighting each selected

value in accordance with its distance from the value being smoothed, and using

weighted least squares estimation (see Chap. 7) to calculate a fitted value.

8.3.5.1 Steps

1. The first step is to select a fixed window width of nearest neighbors. As noted

earlier, unlike symmetric nearest neighbors that uses k/2 values on either side of
a focal value, nearest neighbors selects values without regard to whether they are

higher or lower than the focal value. The bandwidth usually lies between

40 % and 60 % of the total sample, so we will chose 50 % to begin. With

N¼ 12, this means we will be selecting the five values closest to our focal value,

along with the focal value itself for a total of six values in each window.

2. Once we select our values, we calculate the absolute difference between each

value and the focal value and then scale these absolute values by dividing each

one by the maximum. In this manner, the value that lies farthest from our focal

value receives a scaled value¼ 1. We will designate these scaled, absolute

values, s.
3. Next, we apply a weighting function to the scaled values. Cleveland (1979)

recommends a tricube function.

w ¼ 1� s3
� �3 ð8:24Þ

Notice that now the value closest to our focal value receives a weight of 1.

4. Finally, we perform a weighted least squares regression using only the six scaled

values. Recall from Chap. 7 that with a weighted regression, we multiply each of

our original values by the square root of the weight and find the fitted values

from an OLS regression through the origin.

8.3.5.2 Illustration

Table 8.19 illustrates the steps involved in computing a LOESS smoother for the

seventh observation (in bold font). Notice that the seventh observation presents an

unusual case, as four of the five nearest neighbors lie above the seventh value and

only one lies below. Other than that, the steps involved are straightforward.
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• Calculate the absolute difference between the focal observation and the five

nearest neighbors.

• Scale these differences by dividing each by the maximum.

• Weight the scaled values using a tricube function.

• Multiply the intercept, the predictor, and the criterion by the square root of the

weighted values.

• Conduct an OLS regression through the origin (i.e., don’t add a column vector of

leading 1’s) and find the fitted value using the hat matrix and weighted criterion.

The left-hand side of Fig. 8.14 plots the fitted values. As you can see, they do an

excellent job of representing the function that generated the data. The right-hand

side of Fig. 8.14 shows another LOESS smooth using a larger bandwidth. In this

case, the curve is a bit too smooth and the first one is more informative.

Table 8.19 Illustrative calculations for LOESS procedure for seventh observation

x y |xi� x| s w 1 � ffiffiffiffi
w

p
x � ffiffiffiffi

w
p

y � ffiffiffiffi
w

p

.0931 .1177 .64300

.1821 1.3814 .55400

.3598 �1.2141 .37630

.3982 �.5542 .33790

.5012 �3.4717 .23490

.6481 .7468 .08800 .56738 .54605 .73895 .47891 .55185

.7361 1.4446 0 0 1 1 .73610 1.44460

.7914 �.4127 .05530 .35654 .87009 .93279 .73821 �.38496

.7938 .2300 .05770 .37202 .85336 .92377 .73329 .21247

.8259 .9096 .08980 .57898 .52344 .72349 .59753 .65809

.8912 1.6794 .15510 1 0 0 0 0

.9053 �.6743 .16920 ŷ .69600

-4

-3

-2

-1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

LOESS Smoother
Raw Sine LOESS (f =.5)

-4

-3

-2

-1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

LOESS Smoother
Raw Sine LOESS (f =.75)

Fig. 8.14 Two LOESS smoothers for data from Table 8.13
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8.3.6 Extensions and Applications

Four scatterplot smoothers have been described in this section. The calculations

aremanageablewith a small data set, but computers are neededwithmore observations.

Moreover, although the techniques can be extended to situations involving multiple

predictors, the calculations become increasingly difficult and the interpretation

increasingly murky (a state of affairs known as the “curse of dimensionality”).

Although they are primarily used to identify the form of the function relating

x and y, nonparametric smoothers can also be used for interpolation (i.e., to find

fitted values corresponding to values included with the range of predictors but not

represented among the predictors) and parametric estimation (i.e., one can test a

parametric model based on the visual depiction of the nonparametric function). In

some cases, confidence limits around the fitted values can be calculated and

inferential statistics regarding goodness of fit can be performed. We will cover

these issues in more detail in Chap. 10 when we discuss penalized cubic splines.

8.3.7 R Code: Nonparametric Smoothers

#Sine Function

x=c(.0931,.1821,.3598,.3982,.5012,.6481,.7361,.7914,.7938,.8259,.8912,

.9053)

y=c(.1177,1.3814,-1.2141,-.5542,-3.4717,.7468,1.4446,-.4127,.2300,.9096,

1.6794,-.6743)

pure=c(0.802217374,0.968862012,-0.440726043,-0.744914947,-0.955451368,

0.196527112,0.880925705,0.998199438,0.996472533,0.91909516,0.49059981,

0.363272501)

#Running Average (h=.33)

library(caTools) #(attach caTools package)

run.aver <-runmean(y,3)

run.aver

#Running Line (s = 1/3)

run.line33 <-supsmu(x,y,span=.33)

run.line33

#Kernel Regression (h=.17044)

library(np) #(attach np package)

kernel.reg <-npreg(y~x,bws=.17044,ckertype="gaussian")

fitted(kernel.reg)

#LOESS (f=.5)

reg.lo <- lowess(y ~ x,f=.5,iter=0)

reg.lo
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8.4 Chapter Summary

1. A model is linear in the parameters when the criterion is an additive function of

weighted predictors and a disturbance term, and the regression weights are of

the first power and are not multiplied or divided by any other value.

2. A model is linear in the variables when it forms a straight line or plane when

plotted. A model that is linear in the variables might or might not be linear in

the parameters.

3. If our predictor has at least one set of duplicate values, a lack of fit test can be

used to identify the presence of a nonlinear relation. The test compares the

residual sum of squares from an OLS regression to the residual sum of squares

from a categorical analysis that treats the duplicate values as nonlinear factors.

4. Many nonlinear relations can be linearized by transforming the predictors

and/or the criterion.

5. Logarithmic functions with additive errors can be converted to a linear form by

regressing the criterion on the log of the predictors. In this case, ratio changes in

x predict unit changes in y.
6. Exponential functions with multiplicative errors can be converted to a linear

form by regressing the log of the criterion on the raw predictors. In this case,

unit changes in x predict ratio changes in y.
7. Power functions with multiplicative errors can be converted to a linear form by

regressing the log of the criterion on the log of the predictors. In this case, ratio

changes in x predict ratio changes in y.
8. The Box-Tidwell procedure can be used to find a linearizing transformation of x.
9. Nonparametric methods describe the functional relation between predictors

and a criterion by using subsets of the data to calculate central tendencies.

With a single predictor, nonparametric methods are called scatterplot

smoothers.

10. A running average is the simplest scatterplot smoother. Here, the average value

of y is computed from a moving window of predictor values. The window is

constructed using symmetric nearest neighbors, with k/2 values on either side

of a focal observation.

11. A running line is a fitted value from an unweighted subset of symmetric nearest

neighbors.

12. With kernel regression, a smoother parameter is chosen and each predictor is

weighted in accordance with its distance from a focal value being smoothed.

The nearer the predictor is to the value being smoothed, the more weight it

receives. Smoothed estimates of y are found using the Nadaraya-Watson

formula, with a weighted xy cross-product term in the numerator and the sum

of the weighted predictors in the denominator.

13. With locally weighted regression (LOESS/LOWESS) k predictors closest to a

focal value are chosen without regard to whether they are equally distributed

around the focal value. The predictors are scaled and weighted, and the fitted

value from a weighted least squares regression comprises the smoothed value.
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Chapter 9

Cross-Product Terms and Interactions

In a linear regression model with multiple predictors, the regression coefficients

represent the unique contribution of each variable to the prediction of a criterion

holding all other variables constant. Because the coefficients are statistically inde-

pendent, a one-unit change in xi predicts a bi change in y across all levels of xk. This
conditional invariance (as it is called) is demanded by the form of an ordinary

linear regression model:

y ¼ β0 þ β1x1 þ β2x2 þ . . .þ βkxk þ ε ð9:1Þ

9.1 Understanding Interactions

One can easily imagine situations, however, in which the expected change in

y associated with a one-unit change in one predictor depends on the value of another
predictor. For example, stressful life events predict well-being, but this is especially

true among people who lack social support (i.e., a friend or loved one they can trust

in times of trouble). In this case, the magnitude of the expected change in well-

being following a one-unit increase in stress depends on whether social support is

low or high. When the predictive effect of one variable changes with the values of

another variable, we say that the two variables interact to predict a criterion or that

one predictor moderates the effects of another.
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9.1.1 Depicting an Interaction

Visually, an interaction can be detected by examining the slope of the regression

lines relating one predictor to a criterion across values of another predictor. If the

slopes are parallel, there is no interaction; if the slopes are not parallel, there

is. Figure 9.1 displays both possibilities, using the relation between stress and

illness as a function of social support. In Panel A, the regression lines are parallel,

indicating that the simple slope of stress is constant across levels of social support.1

In this case, there is no interaction. Panel B shows a different pattern. Here, the

simple slopes are not parallel, signifying the presence of an interaction. The

interaction indicates that the negative effects of stress are less severe when social

support is high than when it is low. Interactions can take several forms, so they

won’t always look like the one displayed in Panel B; but whenever we see

nonparallel regression lines, we know that an interaction exists.

9.1.2 Modeling Interactions with Cross-Product Terms

To model an interaction, we expand our regression equation so that the magnitude

of a regression coefficient can change across levels of another predictor. To effect

this modification, we add a new term to our equation, formed by multiplying two

(or more) predictors to create a cross-product term. It will be a bit easier to illustrate

this point if we name our predictors x and z rather than x1 and x2, so let’s rewrite our
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Fig. 9.1 Examples of no interaction (Panel A) and an interaction (Panel B) involving social

support, stress, and illness

1 The term “simple slope” is used to describe the slope of a regression line at a particular value of

another predictor. We will denote it bs to distinguish it from the unstandardized regression

coefficient b.
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regression equation using this new nomenclature, adding a cross-product term we

will designate xz:

ŷ ¼ b0 þ b1xþ b2zþ b3xz ð9:2Þ

In a moment, we will see that the regression coefficient associated with the cross-

product term (b3) tests whether our two predictors are conditionally invariant.

Before we describe this test, let’s examine why we multiply our predictors to

model an interaction. We can best see the logic here by rearranging some of the

terms in our regression equation:

ŷ ¼ b0 þ b1 þ b3zð Þxþ b2z ð9:3Þ

The highlighted term in the middle portion of the equation indicates that the slope

of the regression of y on x now depends on the value of z. Similarly, we can recast

the equation to show that a one-unit change in z now depends on values of x:

ŷ ¼ b0 þ b2 þ b3xð Þzþ b1x ð9:4Þ

9.1.2.1 Cross-Product Terms and Partial Derivatives

Considering that x and z combine multiplicatively in Eq. (9.2), you might think that

adding a cross-product term to a regression equation creates a nonlinear model.

This is not so. In a linear model, the parameters cannot combine multiplicatively,

but the predictors can. To reinforce this point, recall from Chap. 8 that all partial

derivatives are independent in a linear model. This property applies to Eq. (9.2):

∂y
∂b1

¼ x;
∂y
∂b2

¼ z;
∂y
∂b3

¼ xz ð9:5Þ

In short, Eq. (9.2) is nonlinear in the variables, but linear in the parameters.

9.1.2.2 Numerical Example of Cross-Product Terms

Rather than continuing to discuss interactions in abstract terms, let’s consider how

the introduction of a cross-product term influences our fitted values using the

following equation as an illustration:

ŷ ¼ 4:0þ 2:5xþ 1:25zþ 3:0xz

Now, we will plug in various values for x and z. The left-hand column in Table 9.1

showswhat happenswhenwe hold z constant and vary x. Several points are of interest.

• First, notice that when z¼� 2, a one-unit change in x is associated with a� 3.50

unit change in y, but when z¼� 1, a one-unit change in x is associated with a
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�.50 unit change in y. Thus, these simple slopes are not conditionally invariant.

We can see this effect graphically in Fig. 9.2, which plots the simple slopes of

x at each level of z. Clearly, these lines are not parallel, indicating the presence of
an interaction.

• Second, notice that the difference between the two simple slopes ¼ 3.0. It is no

coincidence that this value equals the regression coefficient for the cross-product

term (i. e., b3¼ 3.0), as this is precisely what the cross-product coefficient

represents. It quantifies how much the simple slope of x changes with a

one-unit change in z.
• Third, notice that this change in slope is uniform across all values of z. No matter

which value we start with, the simple slope of x changes by 3.0 units with every

one-unit change in z.
• The right-hand side of Table 9.1 reveals a complementary pattern when we hold

x constant and vary z. When x¼� 2, a one-unit change in z is associated with a

� 4.75 unit change in y, but when x¼� 1, a one-unit change in z is associated

Table 9.1 Illustration of simple slopes with a cross-product term

Simple slopes of x at z Simple slopes of z at x

x z ŷ bs Δbs x z ŷ bs Δbs
1 �2 �2.0 �2 1 �5.75

2 �2 �5.5 �3.50 �2 2 �10.5 �4.75

1 �1 2.25 3.0 �1 1 �0.25 3.0

2 �1 1.75 �0.50 �1 2 �2.0 �1.75

1 0 6.5 3.0 0 1 5.25 3.0

2 0 9.0 2.50 0 2 6.50 1.25

1 1 10.75 3.0 1 1 10.75 3.0

2 1 16.25 5.50 1 2 15.0 4.25

1 2 15.0 3.0 2 1 16.25 3.0

2 2 23.5 8.50 2 2 23.5 7.25
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Fig. 9.2 Simple slope of

x at five levels of z
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with a � 1.75 unit change in y. As before, these simple slopes are not condition-

ally invariant.

• Note, however, that the simple slope of z changes b3 ¼ 3.0 units with every

one-unit increase in x. Because the cross-product coefficient is symmetrical, this

will always be true. Just as the simple slope of x changes b3 units with a one-unit
change in z, so, too, does the simple slope of z change b3 units with a one-unit

change in x.
• Table 9.1 reveals one more point of interest. Notice that, when z¼ 0, the simple

slope of x¼ 2.50 and that this value is the same as b1 in our regression equation.
Similarly, when x¼ 0, the simple slope of z¼ 1.25, which equals b2 in our

regression equation. These are not coincidences either. When a regression

equation contains a cross-product term, the lower-order effects (as they are

called) represent the expected change in y with every one-unit change in xi
when all xk¼ 0.

It is important to fully understand the meaning of a lower-order coefficient when

a cross-product term is included in a regression equation. Without a cross-product

term in the equation, bi represents the expected change in y with a one-unit change

in xi at every level of xk; with a cross-product term in the equation, bi represents the
expected change in y with a one-unit change in xi only when xk¼ 0. In short, the

lower-order terms in a cross-product model represent simple slopes, not general

ones. Unfortunately, not all researchers are aware of this fact. Instead of recogniz-

ing that lower-order coefficients represent a conditional effect of xi when xk¼ 0,

they erroneously assume that these coefficients represent an invariant effect of xi
across all levels of xk.

9.1.2.3 Mean-Centering the Predictors Before Computing

the Cross-Product Term

Even when lower-order coefficients are interpreted correctly, they are not neces-

sarily of interest. Many variables do not have a true zero point, so knowing the

simple slope when a variable equals zero is not always informative. To mitigate the

problems involved in interpreting lower-order coefficients, many statisticians rec-

ommend centering predictors before computing a cross-product term. Doing so

isn’t necessary, but it does clarify the meaning of the lower-order terms.2 Mean-

centering a variable means nothing more than computing its deviate score

(observed score – mean). If we then use these deviate scores in our regression

analysis, each predictor’s mean will equal 0, and the value of our lower-order

regression coefficients will represent the simple slope of one predictor at the

mean of another predictor.

2 Some textbooks encourage researchers to center the predictors to minimize collinearity, but there

is no statistical basis to this recommendation. The only reason to center the predictors is to

facilitate the interpretation of lower-order effects.
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9.1.3 Testing Cross-Product Terms

Now that we understand the logic behind a cross-product term, let’s consider a

complete example. Suppose we are interested in whether the weekend weather

forecast predicts people’s moods. To address this issue, we code the weekend

weather forecast for 12 cities (x) using a 9-point scale (1¼ lousy; 9¼ glorious).

We then call up one person from each city and ask the respondent how many hours

they expect to spend outside that weekend (z) and how excited they are for the

upcoming weekend (y). Table 9.2 presents the (imaginary) raw data.

To analyze these data using a cross-product term, we will first create deviate

scores. These values appear to the right of the original scores in Table 9.2. Four

points are noteworthy.

• First, although both deviate variables now have a mean of zero, the cross-

product term does not. This is because the cross-product term is formed by

multiplying the deviate predictors, but is not, itself, centered.

• Notice also that the standard deviations of the deviate scores match the standard

deviations of the original scores. So although we have altered the mean, we have

not altered the variance (as would be true if we had standardized the scores).

• Third, we do not center the criterion.

• Finally, we still include a column of leading 1’s to model the intercept.

Table 9.2 Small sample example using deviate scores and a cross-product term to model an

interaction

Original variables Variables used in the analysis

Weather

forecast

(x)
Time to spend

outdoors (z)
Excitement for

the weekend (y) devx devz xz y

1 3 2 1 �4.0833 �2.00 8.1667 2

9 7 9 1 3.9167 2.00 7.8333 9

5 1 6 1 �.0833 �4.00 .3333 6

2 6 1 1 �3.0833 1.00 �3.0833 1

5 5 5 1 �.0833 0.00 0.00 5

6 6 6 1 .9167 1.00 .9167 6

4 9 2 1 �1.0833 4.00 �4.3333 2

7 1 3 1 1.9167 �4.00 �7.6667 3

6 1 5 1 .9167 �4.00 �3.6667 5

8 5 8 1 2.9167 0.00 0.00 8

2 7 2 1 �3.0833 2.00 �6.1667 2

6 9 6 1 .9167 4.00 3.6667 6

Mean 5.0833 5.00 4.5833 0.00 0.00 �.3333 4.5833

Standard
deviation

2.4664 2.9233 2.5746 2.4664 2.9233 5.0421 2.5746
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9.1.3.1 Regression Model

Table 9.3 shows the results of a regression analysis in which y was regressed on all

predictors. As you can see, the overall model is significant and, in combination, the

predictors explain ~87 % of the variance in the criterion. However, with a cross-

product term in the equation, our interest normally centers on the cross-product

term’s regression coefficient, b3. Table 9.3 shows that the coefficient is statistically
significant, indicating that the regression line relating x to y is not uniform across

levels of z (and, equivalently, that the regression line relating z to y is not uniform
across levels of x).

Using Eq. (9.6), we can calculate the squared semipartial correlation of the

cross-product term or, equivalently, how much R2 changes when the cross-product

term is subtracted from the regression model:

ΔR2 ¼ b=SEbð Þ2 �MSe
ssy

ð9:6Þ

Plugging in values from Table 9.3, we see that the cross-product term explains

~15 % of the total variance:

ΔR2 ¼ :1985=:0662ð Þ2 � 1:1738
72:9167

¼ :1447

9.1.3.2 Simple Slopes

The value of the cross-product coefficient tells us how much the simple slope of

each variable changes across levels of the other. In our case, we see that the simple

slope of x changes by .1985 units with every one-unit increase in z (and that the

Table 9.3 Regression model for small sample example with cross-product term

Significance test of regression model

SS df MS R2 F p

Regression 63.5266 3 21.1755 .8712 18.0408 .0006

Residual 9.3901 8 1.1738

Total 72.9167

Regression coefficients

b seb ΔR2 t p

b0 4.6495 .3135 14.8296 .0000

b1 .8379 .1338 .6315 6.2636 .0002

b2 �.0090 .1135 .0001 �.0790 .9390

b3 .1985 .0662 .1447 2.9978 .0171

(X0X)� 1 C

.083748 �.000332 �.000361 .001245 .098301 �.000389 �.000424 .001462

�.000332 .015247 .000926 �.000995 �.000389 .017897 .001087 �.001168

�.000361 .000926 .010979 �.001082 �.000424 .001087 .012887 �.001271

.001245 �.000995 �.001082 .003736 .001462 �.001168 �.001271 .004386
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simple slope of z changes by .1985 units with every one-unit increase in x). We can

verify this is true by calculating the simple slopes of x at various levels of z3:

bs @ z ¼ b1 þ zb3 ð9:7Þ
For simplicity, let’s calculate the simple slope of x when z ¼ 2 and when z ¼ 4:

bs @ z ¼ 2 ¼ :8379þ 2 :1985ð Þ ¼ 1:2349
bs @ z ¼ 4 ¼ :8379þ 4 :1985ð Þ ¼ 1:6319

Unsurprisingly, the difference between the two simple slopes divided by the difference

between the z values¼ .1985, which is the value associated with b3. We get the same

result when we calculate the simple slope change in z at every one-unit change in x:

bs @ x ¼ b2 þ zb3 ð9:8Þ
bs @ x ¼ 2 ¼ �:0090þ 2 :1985ð Þ ¼ :3880
bs @ x ¼ 4 ¼ �:0090þ 4 :1985ð Þ ¼ :7850

9.1.3.3 Lower-Order Effects

Now let’s examine the lower-order effects shown in Table 9.3. With a cross-product

term in the regression equation, b1 represents the simple slope of x when z¼ 0 and

b2 represents the simple slope of z when x¼ 0. Because both variables have been

centered around their mean, the mean of each variable is 0 and the lower-order

coefficients indicate the simple slopes at the mean of each variable. In this case, we

can see that x is a significant predictor of y at the mean of z, but z is not a significant
predictor of y at the mean of x.

Mean-centering also allows us to interpret the lower-order coefficients as the

average simple slope across all observed values. To illustrate, if we compute the

simple slopes for each observed (deviate) score of x, we find that the average simple

slope of x ¼ b1; similarly, if we compute the simple slopes for each observed

(deviate) score of z, we find that the average simple slope of z ¼ b2. These
calculations appear in Table 9.4.

Finally, lower-order effects are sometimes called “main effects,” a term derived

from a factorial analysis of variance (to be discussed in Chap. 12). There is,

however, an important difference in the way the two terms are calculated. Because

they give each score equal weight, lower-order effects in the presence of a cross-

product term represent weighted averages. In contrast, the main effects in a factorial

analysis of variance are ordinarily computed as unweighted averages, collapsing

across cell size differences. We will have more to say about these differences in

3 This method of calculating simple slopes differs from the one we used earlier. Previously, we

generated fitted values from our overall equation and then found the simple slopes by subtracting

one fitted value from another; here, we are directly calculating simple slopes by using a subset of

terms from our original regression. The two approaches yield identical results.

310 9 Cross-Product Terms and Interactions

http://dx.doi.org/10.1007/978-3-319-11734-8_12


Chap. 12; for now, we will simply note that it is preferable to refer to lower-order

effects as lower-order effects, not main effects.

9.1.4 R Code: Testing a Cross-Product Term

x=c(1,9,5,2,5,6,4,7,6,8,2,6)

z=c(3,7,1,6,5,6,9,1,1,5,7,9)

y=c(2,9,6,1,5,6,2,3,5,8,2,6)

#Center Variables

dx=scale(x, center = TRUE, scale = FALSE)

dz=scale(z, center = TRUE, scale = FALSE)

#Regression with all three terms

mod <-lm(y~dx*dz) #asterisk includes lower order terms

summary(mod)

#View model matrix and covariance matrix

X <-model.matrix(mod)

X

covar <-vcov(mod)

covar

#Simple slopes as Weighted Averages

simp.x <-mod$coef[2]+(dz*mod$coef[4])

simp.z <-mod$coef[3]+(dx*mod$coef[4])

simple <-cbind(simp.x,simp.z)

simple

mean(simple[,1])

mean(simple[,2])

Table 9.4 Mean-centered lower-order effects as weighted averages of simple slopes

b1 as average slope b2 as average slope

devz Simple slope of x devx Simple slope of z

�2 .4409 �4.0833 �.8196

2 1.2350 3.9167 .7686

�4 .0438 �.0833 �.0255

1 1.0365 �3.0833 �.6211

0 .8379 �.0833 �.0255

1 1.0365 .9167 .1730

4 1.6321 �1.0833 �.2240

�4 .0438 1.9167 .3715

�4 .0438 .9167 .1730

0 .8379 2.9167 .5701

2 1.2350 �3.0833 �.6211

4 1.6321 .9167 .1730

Average .8379 Average �.0090
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9.2 Probing an Interaction

Knowing that a cross-product term is a significant predictor of a criterion tells us

little about the nature of the interaction. To unravel its meaning, we need to

examine its form. One common technique calculates and tests the simple slopes

of one predictor at three values of another predictor—one standard deviation below

the mean, at the mean, and one standard deviation above the mean. The following

steps are involved:

1. Calculate predicted values of y at each of the 9 (3� 3) locations.

2. Plot the predicted values and examine the form of the interaction.

3. Compute simple slopes at each location, calculate their standard errors, and test

their significance against the null hypothesis that each slope equals 0.

9.2.1 Calculating Predicted Values

It is easy to calculate predicted values using simple algebra, but we will save time

later if we learn how to do so using matrix algebra. The first step is to compute a

matrix of weights, with each column representing one of the 9 (3 levels of

x�3 levels of z) combinations. The weights for this matrix, which we will designate

P, are shown in the left-hand side of Table 9.5. As you can see, we enter a “1” to

model the intercept and then insert the relevant values for x, z, and xz. Using the

standard deviations from Table 9.3 produces the nine entries in our P matrix.4

If we then multiply P0b, we generate a column vector that displays the predicted

values for all nine combinations (see Table 9.6).

Table 9.5 Coefficient weights for a P matrix of predicted values

1 sd. below the mean of x Mean of x 1 sd. above the mean of x

Weight xLzL xLzM xLzH xMzL xMzM xMzH xHzL xHzM xHzH

b0 1 1 1 1 1 1 1 1 1 1

b1 x �2.4664 �2.4664 �2.4664 0 0 0 2.4664 2.4664 2.4664

b2 z �2.9233 0 2.9233 �2.9233 0 2.9233 �2.9233 0 2.9233

b3 xz 7.2101 0 �7.2101 0 0 0 �7.2101 0 7.2101

4 The subscripts indicate whether the value is one standard deviation below the mean (L ), at the
mean (M ), or one standard deviation above the mean (H ).
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9.2.2 Plotting Predicted Values

Our next step is to plot the predicted values to observe the form of the interaction. The

left-hand panel in Fig. 9.3 reveals the nature of the interaction whenwe plot the values

of x at three levels of z. Looking at the figure, it appears that the weekend weather

forecast has very little effect on mood when people do not expect to be able to get

outside, a moderately positive effect on mood when people expect to be outside a bit,

and a large positive effect onmoodwhen people expect to spend a lot of time outdoors.

9.2.3 Testing Simple Slopes

Observing a trend is suggestive, but oftentimes we’d like to test the statistical

significance of our simple slopes. Doing so involves dividing each simple slope

by its standard error.

Table 9.6 Predicted values

at various combinations of

low, medium, and high scores

on two predictors

Cell combination Predicted value

xLzL 4.0404

xLzM 2.5828

xLzH 1.1252

xMzL 4.6757

xMzM 4.6495

xMzH 4.6233

xHzL 5.3111

xHzM 6.7162

xHzH 8.1214
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Fig. 9.3 Simple slope of x at three levels of z (left-hand panel) and simple slope of z at three levels
of x (right-hand panel)
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9.2.3.1 Computing Simple Slopes

To compute the simple slopes of the regression lines we see depicted in Fig. 9.3,

we construct a new matrix we will designate S.5 The weights, which appear in

Table 9.7, were generated using the same rules we used in Chap. 3 to find the first-

order partial derivative of a function. This is no coincidence, because simple

slopes are first-order partial derivatives [i.e., they represent the (near) instanta-

neous rate of change at a particular point on a curve holding other variables

constant]:

• Enter a “0” for all effects that do not include the simple slope (because the

derivative of a constant equals 0).

• Enter a “1” for the simple slope of interest (because the derivative of a derivative

equals 1).

• Multiply all effects that include the simple slope by “1.”

Table 9.8 shows the results when we enter values from our data set. For example,

to model the simple slope of x when z is one standard deviation below the mean, we

enter a “0” for the intercept (which will always be true), a “1” for x, and “0” for z.
Finally, we multiply 1 * the value of z at which we seek the simple slope of x. Since
the standard deviation of z ¼ 2.9233, we want the value for � 2.9233 (i.e., one

standard deviation below the mean of 0). The remaining values in Table 9.8 were

found in a comparable way. We will be making great use of these procedures

throughout this text, so take the time now to be sure you understand how the values

were generated.

Table 9.7 Rules for

constructing a matrix of

weights for computing simple

slopes, S

Simple slope of x @ z Simple slope of z@ x

b0 0 0

b1 (x) 1 0

b2 (z) 0 1

b3 (xz) 1 * z 1 * x

Table 9.8 S matrix of weights for computing simple slopes

x @ zL x @ zM x @ zH z @ xL z @ xM z @ xH

b0 0 0 0 0 0 0

b1(x) 1 1 1 0 0 0

b2(z) 0 0 0 1 1 1

b3(xz) �2.9233 0 2.9233 �2.4664 0 2.4664

5 The designation of this matrix as S (for simple slopes) is arbitrary, and the matrix should not be

confused with a sum of squares and cross-product matrix discussed in Chap. 1 or the smoother

matrix discussed in Chap. 8.
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If we then multiply S0b, we create a column vector of simple slopes

(see Table 9.9). Notice that the simple slope of x @ zM equals b1 from our original

regression analysis and that the simple slope of z @ xM equals b2 from our

original regression analysis. This is because the lower-order coefficients in our

original analysis are simple slopes of one variable when the other variable equals

zero (which, after centering our variables, now equals the mean).

9.2.3.2 Calculating Standard Errors of the Simple Slopes

Our next task is to calculate the standard errors of the simple slopes. The algebraic

formula for doing so is shown below, where c ¼ entries from the parameter

covariance matrix and z refers to the level of z for which we seek the simple

slope of x:

sebs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cii þ 2zcij þ z2cjj

q
ð9:9Þ

To illustrate, we will calculate the standard error for the simple slope of x when z is
one standard deviation below the mean:

sebs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c22 þ 2zc23 þ z2c33

p
Inserting the relevant values from Table 9.3 produces the standard error:

sebs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:017897þ 2 � �2:9233 � �:001168ð Þ þ �2:92332 � :004386� �q

¼
ffiffiffiffiffiffiffiffiffiffiffi
:0622

p
¼ :2494

We could continue using this formula to compute each of our standard errors, but

it’s easier to use our Smatrix. If we calculate S0CS, the standard errors of the simple

slopes can be found by taking the square root of the diagonal elements of the

product matrix (see highlighted portion of Table 9.10).

Table 9.9 Simple slopes

at three levels
Term sb

x @ zL .2576

x @ zM .8379

x @ zH 1.4183

z @ xL �.4986

z @ xM �.0090

z @ xH .4807
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9.2.3.3 Testing the Statistical Significance of Simple Slopes

If we then divide each simple slope by its corresponding standard error, we derive a

t-statistic we can use to test each slope’s statistical significance.We can also compute

confidence intervals by applying Eq. (2.31). The first three rows in Table 9.11

provide the statistical tests for the regression lines shown in the left-hand side of

Fig. 9.3. The probability values confirm our earlier impression: the weather forecast

has little effect on people who do not expect to be outdoors (bs¼.2576, p¼.3319),

but a sizable effect among people who expect to spend some time outdoors

(bs¼.8379, p¼.0002) or a lot of time outdoors (bs¼ 1.4183, p¼ .0002). To charac-

terize these findings, we might say that the weekend weather forecast is only

important when people expect to spend at least some time outdoors. Note, also,

that the probability levels for the last two simple slopes are approximately equal

(both ps¼ .0002), suggesting that it might not matter whether one is expecting to

spend a lot of time outdoors or only a little time outdoors. We will have more to say

about this (apparent, but illusory) equivalence in a moment.

Although interactions are symmetrical, their interpretation is not. We can appre-

ciate this point by considering the simple slopes of z at various levels of x (see the
last three rows of Table 9.11 and the right-hand side of Fig. 9.3). Here, we see that

time available to spend outdoors negatively predicts excitement for the weekend

when the weather forecast is bad (bs¼�.4986, p¼ .0482), has no effect on

excitement for the weekend when the weather forecast is average

(bs¼�.0090, p¼ .9390), and has a positive effect on excitement for the weekend

Table 9.10 Parameter covariance matrix for simple slopes

x @ zL x @ zM x @ zH z @ xL z @ xM z @ xH

x @ zL .062205 .021312 �.019581 .039304 .004801 �.029702

x @ zM .021312 .017897 .014481 .003968 .001087 �.001795

x @ zH �.019581 .014481 .048544 �.031367 �.002627 .026112

z @ xL .039304 .003968 �.031367 .045834 .016021 �.013793

z @ xM .004801 .001087 �.002627 .016021 .012887 .009753

z @ xH �.029702 �.001795 .026112 �.013793 .009753 .033299

Standard errors are found by taking the square root of the diagonal entries

Table 9.11 Simple slope tests of significance

Term bs seb t p CI� CI+

x @ zL .2576 .2494 1.0328 .3319 �.3176 .8327

x @ zM .8379 .1338 6.2636 .0002 .5294 1.1464

x @ zH 1.4183 .2203 6.4372 .0002 .9102 1.9264

z @ xL �.4986 .2141 �2.3291 .0482 �.9923 �.0049

z @ xM �.0090 .1135 �.0790 .9390 �.2707 .2528

z @ xH .4807 .1825 2.6342 .0300 .0599 .9015
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when the weather forecast is good (bs¼.4807, p¼.0300). In short, whether spending

time outside is good or bad depends entirely on whether the weather is expected to

be good or bad: If the weather forecast is good, more time outside is good; if the

weather forecast is bad, more time outside is bad.

9.2.3.4 Comparing Simple Slopes

Earlier, we noted that the probability level for the simple slope of x @ zM is nearly

equivalent to the probability level for the simple slope of x@ zH ( p¼.0002 for both

simple slopes). Given this equivalence, we might reasonably expect that if we

compared the two slopes, we would find that they are not statistically different

from each other. We can test the difference between any two simple slopes using

the following formula, where s refers to an entry in our S0CS matrix shown in

Table 9.10:

t ¼ bs1 � bs2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sii þ sjj � 2sij

p ð9:10Þ

Inserting our values, we learn something interesting:

t ¼ :8379� 1:4183ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:017897þ :048544� 2 � :014481ð Þp ¼ �:5804

:1936
¼ �2:9978, p ¼ :0171

Why is this interesting? Even though the two simple slopes are “equally probable,”

the simple slope of x@ zM is significantly smaller than the simple slope of x@ zH. If
you look back at our original regression coefficients in Table 9.3, you will under-

stand why. Notice that the t and p values for the xz product term match the absolute

values of the t and p values from our test of slope differences. This is because a

cross-product coefficient in the original table is a test of the difference between any
two simple slopes. So no matter which simple slopes we compare, the statistical

significance of their difference will always equal the probability level associated

with our cross-product term.

To reinforce this point, let’s testwhether the simple slope of z@ xL differs from the

simple slope of z@ xH. Notice that this is now a test of the simple slopes in the right-

hand panel in Fig. 9.3 and that the slopes are now farther apart than they were in the

preceding comparison. Nonetheless, the test of differences yields the same (absolute)

t value as the original cross-product term, and this will be true for any two values we

select, regardless of whether they are very close together or very far apart:

t ¼ �:4986� :4807ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:045834þ :033299 � 2 � �:013793ð Þp ¼ �:9793

:3267
¼ �2:9978, p ¼ :0171
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9.2.4 Characterizing an Interaction

By definition, nonparallel lines eventually cross, so simple slopes always cross

whenever a significant interaction is present. Whether they cross within the range of

the data we have collected, however, is not guaranteed. If they do, the interaction is

said to be disordinal; if they do not, the interaction is termed ordinal.

The following formula can be used to calculate the crossing point (cp) for the
simple slopes of x:

cpx ¼
�b2
b3

ð9:11Þ

Inserting values from Table 9.3 yields the crossing point:

cpx ¼
:0090

:1985
¼ :0453

This value indicates that the simple slopes of x cross when devx¼.0453.

Glancing back to Table 9.2, we can see that the deviate values for x range from

� 4.0833 to + 3.9167. A crossing point of .0453 falls well within this range,

indicating that our interaction is disordinal.

We compute the crossing point of the simple slopes of z in a comparable manner,

cpZ ¼ �b1
b3

ð9:12Þ

and inserting values from Table 9.3 yields the crossing point:

cpZ ¼ �:8379

:1985
¼ �4:2207

This values indicates that the simple slopes of z cross when devz¼� 4.2207.

Table 9.2 shows that this value lies outside the range of scores we observed

(devz range ¼� 4 to + 2), so we conclude that the interaction is ordinal.

If you’re confused, you’re not alone. What we see here is that the same

interaction can be classified as disordinal or ordinal depending on how it is plotted.

For this reason, I recommend describing an interaction as taking one of three forms:

1. If one of the simple slopes is not significant, we have an “only for” interaction

(e.g., weekend weather is a significant predictor of mood only if you are going to
be outside at least some of the time).

2. If all simple slopes are significant in the same direction, we have an “especially

for” interaction (e.g., weekend weather is a significant predictor of mood,

especially when you are going to be spending a lot of time outdoors).

3. If at least two of the simple slopes are significant but of opposite sign, we have a

crossover interaction (e.g., time outdoors negatively predicts mood when the

weather is bad, but positively predicts mood when the weather is good).
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Applying these rules, we would classify our interaction as an “only for” inter-

action when describing how time spent outdoors moderates the effects of weather

and a crossover interaction when describing how weather moderates the effects of

time spent outdoors.

9.2.5 R Code: Predicted Values and Simple Slopes

x=c(1,9,5,2,5,6,4,7,6,8,2,6)

z=c(3,7,1,6,5,6,9,1,1,5,7,9)

y=c(2,9,6,1,5,6,2,3,5,8,2,6)

dx=scale(x, center = TRUE, scale = FALSE)

dz=scale(z, center = TRUE, scale = FALSE)

mod <-lm(y~dx*dz) #asterisk includes lower order terms

#Construct P Matrix for Predicted Values

p0 <-rep(1,9);p1 <-c(rep(-sd(x),3),rep(0,3),rep(sd(x),3))

p2 <-rep(c(-sd(z),0,sd(z)),3);p3 <-p1*p2

P <-round(rbind(p0,p1,p2,p3),digits=5);P

pred.val <-t(P)%*%coef(mod)

dimnames(pred.val)=list(c("lo.x/lo.z","lo.x/med.z","lo.x/hi.

z","med.x/lo.z","med.x/med.z","med.x/hi.z","hi.x/lo.z","hi.x/med.

z","hi.x/hi.z"))

pred.val

#Plot Predicted Values 1

byrow <-rbind(c(pred.val[1:3]),c(pred.val[4:6]),c(pred.val[7:9]))

matplot((byrow), main = "Simple Slopes of Weather at Three Levels of Free

Time", type="l",ylab = “Mood”, xlab = "Weather",lwd=2)

legend("topleft",legend=c("Low Free Time","Average Free Time","Lots

of Free Time"),

lty=1,lwd=2,pch=21,col=c("black","red","darkgreen"),

ncol=1,bty="n",cex=0.8,

text.col=c("black","red","darkgreen"),

inset=0.01)

dev.new()

#Plot Predicted Values 2

bycol <-cbind(c(pred.val[1:3]),c(pred.val[4:6]),c(pred.val[7:9]))

matplot((bycol), main = "Simple Slopes of Free Time at Three Levels of

Weather", type="l",ylab = “Mood”, xlab = "Free Time")

legend("topleft",legend=c("Lousy Weather","Average Weather","Great

Weather"),

lty=1,lwd=2,pch=21,col=c("black","red","darkgreen"),

ncol=1,bty="n",cex=0.8,

text.col=c("black","red","darkgreen"),

inset=0.01)

(continued)
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9.2.5 R Code: Predicted Values and Simple Slopes (continued)

#Construct S Matrix for Simple Slopes and Simple Standard Errors

s0 <-rep(0,6);s1 <-c(rep(1,3),rep(0,3));s2 <-c(rep(0,3),rep(1,3))

s3 <-c(-sd(z),0,sd(z),-sd(x),0,sd(x))

S <-round(rbind(s0,s1,s2,s3),digits=5);S

simp.slope <-t(S)%*%coef(mod)

simp.cov <-t(S)%*%vcov(mod)%*%S

simp.err <-sqrt(diag(simp.cov))

simples <-simp.slope/sqrt(diag(simp.cov))

tvalues <-2*pt(-abs(simples),df=(length(x)-nrow(S)))

crit <-abs(qt(0.025,(length(x)-nrow(S))))

CI.low <-simp.slope-(crit*simp.err)

CI.high <-simp.slope+(crit*simp.err)

simp.table<-round(matrix(c(simp.slope,simp.err,simples,tvalues,

CI.low,CI.high),nrow=6,ncol=6),digits=5)

dimnames(simp.table)=list(c("x@z.low","x@z.med","x@z.high","z@x.

low","z@x.med","z@x.high"), c("slope", "stderr", "t","p","CI.low",

"CI.high"))

simp.table

9.2.6 Johnson-Neyman Technique

Before concluding this section, we will examine an alternative approach to probing

an interaction called the Johnson-Neyman technique. Instead of computing the

significance of a simple slope of x at selected values of z, this approach identifies

the range of z values for which the simple slope of xwill be significant (and likewise
for the simple slope of z). Calculating these “regions of significance” isn’t difficult,
but there are quite a few steps. Before describing them, let’s review the formula we

use to test the significance of a simple slope [see Eq. (9.9)], using the simple slope

of x @ z for illustrative purposes

t ¼ b1 þ b3zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c11 þ 2zc13 þ z2c33

p
Using the Johnson-Neyman technique, we solve the equation to find values of z that
return a significant value of t. Once we do, we have identified the range of values of
z for which the simple slope of x will be significant. The following steps solve the

equation:

• Cross multiply to set up equality:

t �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c11 þ 2zc13 þ z2c33

p
¼ b1 þ b3z
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• Square all terms to eliminate square root sign:

t2 � c11 þ 2zc13 þ z2c33
� �� � ¼ b1 þ b3zð Þ b1 þ b3zð Þ

• Multiply and rearrange terms to¼ 0:

t2 � c11 þ 2zc13 þ z2c33
� �� �� b21 þ 2b1b3zþ b23z

2
� � ¼ 0

• Collect like terms using quadratic equation: Az2 +Bz+C:

A ¼ t2 � c33ð Þ � b23
B ¼ 2 � t2 � c13ð Þ � b1 � b3ð Þ½ �

C ¼ t2 � c11ð Þ � b21

ð9:13Þ

• Find the critical t value for our sample size and desired level of significance. In

our example, with 8 degrees of freedom and a desired .05 level of significance,

the critical value of t¼ 2.306.

• Calculate terms and insert returned values into the quadratic formula to find the

boundaries of the regions of significance (rs):

rs ¼ �B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p

2A
ð9:14Þ

Inserting values from Table 9.3 into the various equations produces the range of

z for which the simple slope of x is significant:

A ¼ 2:3062 � :004386� �� :19852 ¼ �:0161

B ¼ 2 � 2:3062 � �:001168
� �� :8379 � :1985ð Þ� � ¼ �:3451

C ¼ 2:3062 � :017897� �� :83792 ¼ �:6069

and

rs ¼
� �:3451ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�:34512 � 4 �:0161ð Þ �:6069ð Þ

q
2 �:0161ð Þ

Solving the equation yields the lower (�19.5019) and upper boundary (�1.9329) of

the region of significance.6 These values indicate that the simple slope of x is

significant when devz is less than � 19.5019 (which falls well outside the data we

observed), or greater than � 1.9329, but not when devz falls between these two

6Due to rounding error, these values differ a bit from the ones you will find if you use the R code

that accompanies this section.
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values. Because 0 does not fall between these two values, these calculations are

consistent with the fact that b1 was significant in our original regression analysis.

We can perform similar calculations to find the regions of significance for the

simple slope of z:

A ¼ 2:3062 � :004386� �� :19852 ¼ �:0161

B ¼ 2 � 2:3062 � �:001271
� �� �:0090 � :1985ð Þ� � ¼ �:0099

C ¼ 2:3062 � :012887� �� :00902 ¼ :0684

and

rs ¼
� �:0099ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�:00992 � 4 �:0161ð Þ :0684ð Þ

q
2 �:0161ð Þ

Here, we find that the simple slope of z will be significant when devx is less than
� 2.3914 or greater than 1.7765. Because 0 falls between these two values, these

calculations match our finding that b2 was not significant in our original regression

analysis.

9.2.7 R Code: Johnson-Neyman Regions of Significance

#Johnson-Neyman Regions of Significance

x=c(1,9,5,2,5,6,4,7,6,8,2,6)

z=c(3,7,1,6,5,6,9,1,1,5,7,9)

y=c(2,9,6,1,5,6,2,3,5,8,2,6)

dx=scale(x, center = TRUE, scale = FALSE);

dz=scale(z, center = TRUE, scale = FALSE)

#Function for 2-way regions –-enter 1 for x; 2 for z

JN <-function(simple){

mod <-lm(y�dx*dz)

coef <-mod$coef[2:4]

cov <-vcov(mod)[2:4,2:4]

df <-length(y)-4

t.crit <-abs(qt(.025,df))

A <-(t.crit^2*cov[3,3])-coef[3]^2

B <-2*((t.crit^2*cov[simple,3]-(coef[simple]*coef[3])))

C <-(t.crit^2*cov[simple,simple])-coef[simple]^2

lower <-(-B+sqrt(B^2-4*A*C))/(2*A)

upper <-(-B-sqrt(B^2-4*A*C))/(2*A)

return(cbind(lower,upper))

}

JN(1)

JN(2)
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9.3 Higher-Order Interactions

So far we have learned how to test an interaction using only two predictors, but

higher-order interactions can also be tested. To illustrate, suppose a researcher

decides to expand upon our study of weekend weather and time outdoors as

predictors of upcoming mood. The researcher believes that the effects we reported

apply only to cities that generally have bad weather (e.g., Seattle), not ones that

usually have good weather (e.g., San Diego). After all, if the weather is normally

good, one bad weekend might not affect one’s mood very much. To test her ideas,

the researcher repeats our earlier study, adding another variable, typical weather

(w), coded on a 1–9 scale. Equation (9.15) shows the regression model, and

Table 9.12 displays the (bogus) data. The last two rows of the table provide the

mean and standard deviation of each variable:

ŷ ¼ b0 þ b1xþ b2zþ b3wþ b4xzþ b5xwþ b6zwþ b7xzw ð9:15Þ

Notice that now, there are four cross-product terms: three two-way interactions and

one three-way interaction. The two-way interactions are formed by multiplying two

of the deviate scores, and the three-way interaction is found by multiplying all three

deviate scores. As before, we do not center the criterion or the cross-product terms

after forming them.

9.3.1 Testing the Regression Equation

Table 9.13 shows the results of a regression in which all predictors are entered at

once. As you can see, collectively, our seven predictors account for a significant

amount of the variance in our criterion. Because lower-order coefficients represent

conditional slopes, we concern ourselves only with the three-way interaction

represented by b7. Supporting the researcher’s intuition, the interaction is statisti-

cally significant, uniquely explaining ~10 % of the variance in our criterion.

9.3.2 Probing a Three-Variable Interaction

Having found a significant three-variable interaction, we must now probe its form.

Insofar as the researcher predicted that the xz interaction we observed earlier

depends on a city’s usual weather, we will focus on the simple slopes of x and

z when w is low and high.
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9.3.2.1 Calculating and Plotting Predicted Values

Our first step is to calculate and plot predicted values, again using values one

standard deviation below and above the mean. Table 9.14 shows the P matrix we

use, and the predicted values generated by multiplying P0b are displayed in

Fig. 9.4.7

Table 9.13 Regression analysis for higher-order interactions example

Significance test of regression model

SS df MS R2 F p

Regression 50.788 7 7.2554 .9598 13.6310 .0119

Residuals 2.1291 4 .5323

Total 52.917

Regression coefficients

b seb ΔR2 t p

b0 4.8317 .2863 16.8776 .0001

b1 .5620 .1601 .1239 3.5093 .0247

b2 �.3182 .1637 .0380 �1.9434 .1239

b3 �.1317 .0858 .0237 �1.5346 .1997

b4 .1978 .0743 .0714 2.6642 .0561

b5 .0485 .0549 .0079 .8836 .4268

b6 �.1278 .0600 .0457 �2.1319 .1000

b7 �.1009 .0316 .1028 �3.1966 .0330

Covariance matrix

.081956 �.004627 �.009665 .005888 �.013429 �.000656 �.001539 �.004997

�.004627 .025645 �.016258 �.000399 .003208 .006005 �.005667 .001809

�.009665 �.016258 .026807 �.000779 .002242 �.004601 .006611 .000436

.005888 �.000399 �.000779 .007367 �.002323 �.000824 .000155 �.000936

�.013429 .003208 .002242 �.002323 .005514 .001163 .000397 .001698

�.000656 .006005 �.004601 �.000824 .001163 .003018 �.001676 .000712

�.001539 �.005667 .006611 .000155 .000397 �.001676 .003594 �.000177

�.004997 .001809 .000436 �.000936 .001698 .000712 �.000177 .000996

7 Table 9.14 does not report the predicted values when the variables are at their means. These

values were derived in Fig. 9.5 by simple arithmetic mean ¼ lowþ highð Þ
2

 �
.
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Looking over the figure, it seems that our researcher was right: weather forecast

and time outdoors interact in cities with generally bad weather (left-hand panel in

Fig. 9.4), but not in cities with generally good weather (right-hand panel in

Fig. 9.4).

9.3.2.2 Calculating and Testing Simple Slopes

Our next step is to calculate simple slopes and test their significance using their

associated standard errors. As before, we differentiate our function and create an

S matrix using the following rules:

• Enter a “0” for all effects that do not include the simple slope.

• Enter a “1” for the simple slope of interest.

• Multiply all effects that include the simple slope by “1.”

0
1
2
3
4
5
6
7
8
9

10

Bad Weather
(XL)

Average
Weather (XM)

Great Weather
(XH)

Simple Slope of X at Z, Low W (Bad 
Weather)

Little Time to Be Outside (ZL)

Average Time to be Outside (ZM)

Lots of Time to Be Outside (ZH)

0
1
2
3
4
5
6
7
8
9

10

Bad Weather
(XL)

Average
Weather (XM)

Great Weather
(XH)

Simple Slope of X at Z, High W 
(Good Weather)

Little Time to Be Outside (ZL)

Average Time to be Outside (ZM)

Lots of Time to Be Outside (ZH)

Fig. 9.4 Simple slopes of x and z when w is low (left panel) and high (right panel)

Table 9.14 P matrix for calculating predicted values of x and z at two levels of w

wL wH

xLzL xLzH xHzL xHzH xLzL xLzH xHzL xHzH

b0 1 1 1 1 1 1 1 1

b1(x) �2.3484 �2.3484 2.3484 2.3484 �2.3484 �2.3484 2.3484 2.3484

b2 (z) �2.2156 2.2156 �2.2156 2.2156 �2.2156 2.2156 �2.2156 2.2156

b3 (w) �2.8431 �2.8431 �2.8431 �2.8431 2.8431 2.8431 2.8431 2.8431

b4 (xz) 5.2033 �5.2033 �5.2033 5.2033 5.2033 �5.2033 �5.2033 5.2033

b5 (xw) 6.6769 6.6769 �6.6769 �6.6769 �6.6769 �6.6769 6.6769 6.6769

b6 (zw) 6.2994 �6.2994 6.2994 �6.2994 �6.2994 6.2994 �6.2994 6.2994

b7 (xzw) �14.7936 14.7936 14.7936 �14.7936 14.7936 �14.7936 �14.7936 14.7936
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Applying these rules generates the S matrix shown in the left-hand portion of

Table 9.15. The right-hand portion of the table illustrates their application when

w is one standard deviation below its mean. Because the researcher had predicted

that the xz interaction would be significant when w was low but not when w was

high, the first column represents the simple xz cross-product term.

After computing the simple slopes using S0b and finding the standard errors by

taking the square root of the diagonal entries of S0CS, we construct t-tests. In
accordance with predictions, the top portion of Table 9.16 shows that the simple

xz interaction is significant when w is low (bs¼.4847, p¼.0015). Additional tests

showed that the simple slope of weather is negative for people who can’t get outside

very much (bs¼�.6500, p¼.0230), but positive for people who expect to get

Table 9.15 Matrix weights for calculating simple slopes of x, z, and xz at w

Weights Illustration using simple slopes of x and z @ wL

xz x @ z z @ x xz x @ zL x @ zM x @ zH z @ xL z @ xM z @ xH

b0 0 0 0 0 0 0 0 0 0 0

b1(x) 0 1 0 0 1 1 1 0 0 0

b2(z) 0 0 1 0 0 0 0 1 1 1

b3(w) 0 0 0 0 0 0 0 0 0 0

b4(xz) 1 z x 1 �2.2156 0 2.2156 �2.3484 0 2.3484

b5(xw) 0 w 0 0 �2.8431 �2.8431 �2.8431 0 0 0

b6(zw) 0 0 w 0 0 0 0 �2.8431 �2.8431 �2.8431

b7(xzw) w zw xw �2.8431 6.2994 0 �6.2994 6.67689 0 �6.6769

Table 9.16 Simple slopes of x, z, and xz at two levels of w

Simple slopes @ wL

sb seb t p CIlow CIhigh
xz .4847 .0626 7.7490 .0015 .3110 .6584

x @ zL �.6500 .1812 �3.5875 .0230 �1.1530 �.1469

x @ zM .4240 .1261 3.3630 .0282 .0739 .7740

x @ zH 1.4979 .1933 7.7478 .0015 .9611 2.0347

z @ xL �1.0931 .2172 �5.0332 .0073 �1.6961 �.4901

z @ xM .0452 .1351 .3344 .7548 �.3300 .4204

z @ xH 1.1835 .1803 6.5627 .0028 .6828 1.6842

Simple slopes @ wH

sb seb t p CIlow CIhigh
xz �.0890 .1524 �.5842 .5904 �.5121 .3341

x @ zL .8972 .3479 2.5790 .0614 �.0687 1.8632

x @ zM .7000 .2901 2.4125 .0734 �.1056 1.5056

x @ zH .5027 .5247 .9581 .3923 �.9542 1.9596

z @ xL �.4725 .4545 �1.0395 .3573 �1.7345 .7895

z @ xM �.6816 .3057 �2.2295 .0897 �1.5303 .1672

z @ xH �.8907 .4863 �1.8316 .1410 �2.2408 .4595
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outside a bit (bs¼.4240, p¼.0282), or a lot (bs¼ 1.4979, p¼.0015). These findings

support the claim that weekend weather and time to spend outdoors matter a lot

when you live in a gloomy climate with only a few nice weekends a year. In fact, the

situation is so dire that people who cannot get outside on a nice weekend feel sad.8

The bottom portion of Table 9.16 shows the simple slopes for cities that

generally have good weather.9 As you can see, none of the simple slopes (including

the xz interaction) is significant. Thus, when the weather is generally good, week-

end weather and time outdoors have very little effect on mood.

9.3.2.3 Comparing Simple Slopes

Earlier, you learned how to test whether two simple slopes are significantly

different. With a two-way interaction, there really wasn’t much reason to do so

because all comparisons have the same probability value as the cross-product term.

This is not true with a three-way interaction, so it will be useful to review the steps

we take to compare simple slopes. To illustrate, Table 9.17 presents an Smatrix we

will use to compare the simple slope of x at various combinations of w and z.

After calculating simple slopes (S0b) and their associated standard errors by

taking the square root of the diagonal entries of S0CS,

S
0
b ¼

�:6500
:8972
1:4979
:5027

2664
3775S0

CS ¼
:032825 :000074 �:003314 :021850
:000074 :121033 :005582 �:029820
�:003314 :005582 :037377 �:022503
:021850 �:029820 �:022503 :275345

2664
3775

Table 9.17 S matrix for comparing simple slopes of x at various combinations of z and w

zLwL

Little time to

spend outside in a

bad weather city

zLwH

Little time to spend

outside in a good

weather city

zHwL

Lots of time to

spend outside in a

bad weather city

zHwH

Lots of time to

spend outside in a

good weather city

b0 0 0 0 0

b1(x) 1 1 1 1

b2 (z) 0 0 0 0

b3 (w) 0 0 0 0

b4 (xz) �2.2156 �2.2156 2.2156 2.2156

b5 (xw) �2.8431 2.8431 �2.8431 2.8431

b6 (zw) 0 0 0 0

b7 (xzw) 6.2994 �6.2994 �6.2994 6.2994

8 Living in Seattle, I can attest to the [fabricated] effect!
9 I leave it as an exercise for you to construct an S matrix to derive the values shown in the bottom

portion of Table 9.16.
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we use the following formula, first presented in Eq. (9.10), to compare any two

simple slopes, where s refers to values in S0CS:

t ¼ bs1 � bs2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sii þ sjj � 2sij

p
To illustrate, we will compare the simple slope of x when one has little time to

spend outside in a city with generally bad weather (x@ zLwL) vs. the simple slope of

x when one has little time to spend outside in a city with generally good weather

(x @ zLwH):

t ¼ �:6500� :8972ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:032825þ :121033� 2 � :000074ð Þp ¼ �1:5472

:3921
¼ �3:9463, p ¼ :0169

The comparison is significant, supporting the following conclusion: when people

have little time to spend outside, the simple slope of x is significantly different for

cities with bad weather (bs¼�.6500) than for cities with good weather (bs¼.8972),

t(8)¼ 3.9463, p¼.0169. Table 9.18 presents the remaining comparisons. It is a good

idea to test your understanding of how the terms were calculated and practice

interpreting the [sham] effects in your own words.

9.3.2.4 Other Ways to Probe a Three-Way Interaction

In our example, we probed the simple slopes of x and z at two levels of w. But we
could have probed the simple slopes of z and w at two levels of x or the simple

slopes of x and w at two levels of z. Only the weights we use to construct the

Smatrix will change with these variations. Table 9.19 presents these weights, and it

is a good idea to carefully study them because we will be computing and testing

simple slopes throughout the rest of this book.

Table 9.18 Comparing simple slopes of x at various combinations of z and w

Group

Comparisons t p

1 v 2 Little time to spend outside in a bad weather city vs.

little time to spend outside in a good weather city

�3.9463 .0169

1 v 3 Little time to spend outside in a bad weather city vs.

lots of time to spend outside in a bad weather city

�7.7490 .0015

1 v 4 Little time to spend outside in a bad weather city vs.

lots of time to spend outside in a good weather city

�2.2414 .0885

2 v 3 Little time to spend outside in a good weather city vs.

lots of time to spend outside in a bad weather city

�1.5653 .1926

2 v 4 Little time to spend outside in a good weather city vs.

lots of time to spend outside in a good weather city

.5842 .5904

3 v 4 Lots of time to spend outside in a bad weather city vs.

lots of time to spend outside in a good weather city

1.6639 .1715
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9.3.3 R Code: Three-Way Interaction

x=c(1,8,2,2,5,6,5,7,4,8,3,5)

z=c(3,7,1,6,6,6,7,2,3,6,5,8)

w=c(7,4,3,1,8,8,5,1,8,1,5,2)

y=c(3,7,8,3,4,5,4,2,5,9,3,6)

dx=scale(x, center = TRUE, scale = FALSE)

dz=scale(z, center = TRUE, scale = FALSE)

dw=scale(w, center = TRUE, scale = FALSE)

mod <-lm(y~dx*dz*dw)

#Function for Predicted Values

pp <-function(a,b,c){

p0 <-rep(1,8)

p1<-c(rep(c(rep(-sd(a),2),rep(sd(a),2)),2))

p2 <-c(rep(c(-sd(c),sd(c)),4))

p3 <-c(rep(-sd(b),4),rep(sd(b),4))

p4 <-p1*p2

p5 <-p1*p3

p6 <-p2*p3

p7 <-p1*p2*p3

P <-round(rbind(p0,p1,p2,p3,p4,p5,p6,p7),digits=5)

pred.val <-t(P)%*%coef(mod)

dimnames(pred.val)=list(c("lo.x,lo.z,lo.w","lo.x,hi.z,lo.w","hi.x,

lo.z,lo.w","hi.x,hi.z,lo.w","lo.x,lo.z,hi.w","lo.x,hi.z,hi.w","hi.

x,lo.z,hi.w","hi.x,hi.z,hi.w"))

return(list(P,pred.val))

}

predicted <-pp(x,w,z)

predicted

#Function for Simple Slopes Tests

ss <-function(a,b,c,d){

s0 <-rep(0,7)

(continued)

Table 9.19 S matrix weights

for calculating simple slopes
zw z @ w w @ z xw x @ w w @ x

b0 0 0 0 0 0 0

b1(x) 0 0 0 0 1 0

b2 (z) 0 1 0 0 0 0

b3 (w) 0 0 0 0 0 1

b4 (xz) 0 x 0 0 z 0

b5 (xw) 0 0 x 1 w x

b6 (zw) 1 w z 0 0 z

b7 (xzw) x xw xz z zw xz
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9.3.3 R Code: Three-Way Interaction (continued)

s1 <-c(0,rep(1,3),rep(0,3));s2 <-c(0,rep(0,3),rep(1,3))

s3 <-rep(0,7);s4 <-c(1,-sd(b),0,sd(b),-sd(a),0,sd(a))

s5 <-c(0,rep(d*sd(c),3),rep(0,3));s6 <-c(0,rep(0,3),rep(d*sd(c),3))

s7 <-c(d*sd(c),-sd(b)*d*sd(c),0,sd(b)*d*sd(c),-sd(a)*d*sd(c),0,

sd(a)*d*sd(c))

S <-round(rbind(s0,s1,s2,s3,s4,s5,s6,s7),digits=5)

simp.slope <-t(S)%*%coef(mod)

simp.err <-sqrt(diag(t(S)%*%vcov(mod)%*%S))

ttests <-simp.slope/simp.err

pvalues <-2*pt(-abs(ttests),df=(length(x)-nrow(S)))

crit <-abs(qt(0.025, df=(length(x)-nrow(S))))

CI.low <-simp.slope-(crit*simp.err)

CI.high <-simp.slope+(crit*simp.err)

simp.table<-round(matrix(c(simp.slope,simp.err,ttests,pvalues,

CI.low,CI.high),nrow=7,ncol=6),digits=5)

dimnames(simp.table)=list(c("xz@low","x@z.low","x@z.med","x@z.

high","z@x.low","z@x.med","z@x.high"), c("slope", "stderr", "t","p",

"CI.low","CI.high"))

return(list(S,simp.table))

}

#Simple Slopes Tests (first two variables define simple slopes at third

#variable; specify -1 for @ low and 1 for @ high

simple <-ss(x,z,w,-1)

simple

#Compare any two simple slopes

simptest =function(a,b,c,d,e,f) #use 0 for effect of interest, 1 or -1

#for high or low

{

s1<-c(0, 1, 0, 0, b*sd(z), c*sd(w), 0, b*sd(z)*c*sd(w))

s2<-c(0, 0, 1, 0, a*sd(x), 0, c*sd(w), a*sd(x)*c*sd(w))

s3<-c(0, 0, 0, 1, 0, b*sd(z), c*sd(w), a*sd(x)*b*sd(z))

if (a == 0) {slope1 <- s1}

else if(b==0) {slope1<-s2}

else slope1 <-s3

s4<-c(0, 1, 0, 0, e*sd(z), f*sd(w), 0, e*sd(z)*f*sd(w))

s5<-c(0, 0, 1, 0, d*sd(x), 0, f*sd(w), d*sd(x)*f*sd(w))

s6<-c(0, 0, 0, 1, 0, e*sd(z), f*sd(w), d*sd(x)*e*sd(z))

if (d == 0) {slope2 <- s4}

else if(e==0) {slope2<-s5}

else slope2 <-s6

S= cbind(slope1,slope2)

SB<-t(S)%*%coef(mod);

(continued)
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9.3.3 R Code: Three-Way Interaction (continued)

sb<-SB[1]-SB[2]

SC<-t(S)%*%vcov(mod)%*%S

seb<-sqrt(SC[1]+SC[4]-(2*SC[2]))

ttest <-sb/seb

p <-2*pt(-abs(ttest),df=(length(x)-nrow(S)))

slopetest <-cbind(ttest,p)

return(list(S,slopetest))

}

S<-simptest(0, -1, -1, 0, -1, 1) #simple slope of X at Z_low, W_low vs.

#simple slope of X at Z_low, W_high

S

9.3.4 Recentering Variables to Calculate Simple Slopes

Differentiating a function to create an S matrix helps us identify the terms that

determine the shape and statistical significance of each simple slope. There is,

however, another way to calculate simple slopes. It is less informative than

constructing an S matrix, but a bit easier to perform, especially if we are using

statistical software to analyze our data. The trick is to remember that when a cross-

product term is added to a regression equation, the lower-order coefficients repre-

sent the simple slopes of one variable when other variables equal 0. When we

centered each variable around its mean, we made 0 equal each variable’s mean. But

we could make 0 equal something else. For example, if 0 actually represented

1 standard deviation below z’s mean, then b1 in the original analysis would give us

the simple slope of x at zL.
To illustrate, we will calculate the simple slopes of x and z when w is one

standard deviation below its mean. To begin, we add the standard deviation of

w to every devw score: recentered Score¼ [(Raw Score�Mean) + Standard Devi-

ation]. Table 9.20 shows the transformed data, with the key column highlighted.

Notice that I have changed the name to low (to indicate that the values have been

recentered) and that the mean of low now equals 2.8431 instead of 0. Finally, it

might seem odd that we add the standard deviation from the mean-centered values

to find the simple slope when w is low, but you can understand the logic if

you examine the variable’s new mean. Because this variable’s mean is now

one standard deviation above 0, 0 represents one standard deviation below

the mean.

If we now recalculate our cross-product terms using our recoded variable, and

then perform a normal regression analysis using the modified variables, we get the
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regression coefficients displayed in Table 9.21. We interpret only coefficients that

do not involve the recentered variable, as these coefficients represent simple slopes

when w is one standard deviation below its mean. Notice that the coefficient for the

xz cross-product term is identical to the value reported in the top row of Table 9.16

(both coefficients ¼ .4847). By recentering the data, the xz cross-product term in

this analysis represents the simple slope of xz when w is one standard deviation

below its mean.

Suppose we then want to find the simple slope of x when z is one standard

deviation above its mean and w is one standard deviation below its mean (i.e.,

simple slope of x@ zHwL). In this case, we subtract the standard deviation of z from
devz, add the standard deviation of w to devw, and perform a new analysis with both

recentered variables. Table 9.22 shows the transformed data, and Table 9.23 shows

the regression coefficients.

As before, we interpret only effects that do not involve recentered variables. In
this case, we concern ourselves only with the simple slope of x. If you look back at
Table 9.16, you will find that the simple slope of x @ zHwL is identical to the

simple slope of x in Table 9.23 (both coefficients ¼ 1.4979). By recentering both

variables, the regression coefficient for x now represents the simple slope of

x @ zHwL.

Table 9.21 Simple slopes of x, z, and xz when w is one standard deviation below its mean

b seb t ΔR2 p

b0 5.2062 .3287 15.8401 .0001

b1(x) .4240 .1261 3.3630 .1138 .0282

b2 (z) .0452 .1351 .3344 .0011 .7549

b3 (w) �.1317 .0858 �1.5346 .0237 .1997

b4 (xz) .4847 .0626 7.7490 .6040 .0015

b5 (xw) .0485 .0549 .8836 .0079 .4268

b6 (zw) �.1278 .0600 �2.1319 .0457 .1000

b7 (xzw) �.1009 .0316 �3.1966 .1028 .0330
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9.3.5 R Code: Three-Way Interaction Using Recentering

x=c(1,8,2,2,5,6,5,7,4,8,3,5)

z=c(3,7,1,6,6,6,7,2,3,6,5,8)

w=c(7,4,3,1,8,8,5,1,8,1,5,2)

y=c(3,7,8,3,4,5,4,2,5,9,3,6)

dx=scale(x, center = TRUE, scale = FALSE)

dz=scale(z, center = TRUE, scale = FALSE)

dw=scale(w, center = TRUE, scale = FALSE)

mod <-lm(y~dx*dz*dw)

#Simple Slopes by Recentering Variables

lo.x <-dx+sd(x)

hi.x <-dx-sd(x)

lo.z <-dz+sd(z)

hi.z <-dz-sd(z)

lo.w <-dw+sd(w)

hi.w <-dw-sd(w)

#Simple slopes of x and z at low w - - (interpret only effects that do NOT

#include recentered variable)

simple.1 <-lm(y~dx*dz*lo.w)

summary(simple.1)

#Simple slope of x for high z and low w - - (interpret only effects that do

#NOT include recentered variable)

simple.2 <-lm(y~dx*hi.z*lo.w)

summary(simple.2)

9.4 Effect Size and Statistical Power

In theory, we could keep adding variables to our regression equation and continue

exploring four-variable, five-variable, and even six-variable interactions. In actu-

ality, this is rarely done. There are two problems. First, it becomes difficult to

interpret interactions that involve more than three variables. Second, detecting a

Table 9.23 Simple slope

of x @ zHwL

b seb t ΔR2 p

b0 5.3063 .4354 12.1862 .0003

b1(x) 1.4979 .1933 7.7478 .6038 .0015

b2 (z) .0452 .1351 .3344 .0011 .7549

b3 (w) �.4149 .1603 �2.5883 .0674 .0608

b4 (xz) .4847 .0626 7.7490 .6040 .0015

b5 (xw) �.1750 .1052 �1.6639 .0278 .1715

b6 (zw) �.1278 .0600 �2.1319 .0457 .1000

b7 (xzw) �.1009 .0316 �3.1966 .1028 .0330
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significant multivariable interaction isn’t very likely. In the final section of this

chapter, we will consider the power to detect cross-product terms in a multiple

regression analysis.

9.4.1 Effect Size

The small sample examples I create are contrived. Because I believe it is easier for

students to understand statistics when the findings are “statistically significant,” I

create examples where the key effects will be strong and interpretable. But doing so

with such a small sample requires constructing an unrealistic data set.

To appreciate this fact, we need to quantify the strength of an effect by comput-

ing its effect size. Effect sizes are calculated in different ways depending on the

particular effect of interest, but when we are testing the unique contribution of a

variable in a regression analysis, we commonly use a measure developed by Cohen

(1988) called f 2. This statistic quantities the proportion of variance explained by a

single predictor to the total amount of unexplained variance:

f 2 ¼ Δr2

1� R2
all

ð9:16Þ

You might recognize from Chap. 4 that the numerator represents the squared

semipartial correlation, and the denominator is 1� the coefficient of determination.

If we desire, the value of the effect size can be converted to a squared partial

correlation:

partial r2 ¼ f 2

1þ f 2
ð9:17Þ

To compute the effect size for the three-way interaction we discussed earlier, we

take the overall R2 value from Table 9.13 (.9598) and the Δr2 value from Table 9.23

(.1028) and perform the calculations:

f 2 ¼ :1028

1� :9598
¼ 2:5545

An effect size of this magnitude is extremely large. Values of .10 are more

common, so this effect is more than 25 * more powerful than average. In short, it

is unrealistically large and you shouldn’t believe for a second that the effects we

have been discussing are representative of real-world effects.

9.4.2 Statistical Power

A discussion of effect sizes leads naturally to a discussion of statistical power. The

power of statistical tests refers to the probability that we will correctly reject a null
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hypothesis. For example, if it is the case that weekend weather and time outdoors

interact only in cities with lousy weather, the statistical power of a test refers to the

likelihood we would find a significant three-way interaction in our sample. Clearly,

we can’t expect to find the effect every time we run our study, so there will always

be some error.

Statistical power depends on four interrelated factors: (a) effect size, (b) sample

size, (c) our adopted level of statistical significance [designated alpha (α) and

generally set at .05], and (d) our tolerance for failing to detect a true population

effect [designated beta (β) and generally set at .80]. Power, which equals 1� β,
represents the likelihood of finding a significant sample effect given that a true

effect exists in the population.

Because statistical power is affected by sample size, we can use knowledge of

the other three parameters to determine how many subjects we need in order to

achieve a desired level of power. The following formula can be used to determine

how many subjects are needed to achieve 80 % power with α ¼ .05 (two-tailed) for

the 1df cross-product terms we have been testing (in the formula, k refers to the total
number of predictors in the regression equation, including the cross-product term):

N ¼ 7:85

f 2
þ k � 1ð Þ ð9:18Þ

To illustrate its use, suppose that based on previous research, we believe a three-

way interaction is likely to have a small effect size of .03. There are seven pre-

dictors in our regression equation (x, z, w, xz, xw, zw, and xzw), so k¼ 7. Performing

the calculations yields the sample size needed to detect the effect:

N ¼ 7:85

:03
þ 7� 1ð Þ ¼ 267:6667

After rounding, we learn that 268 subjects are needed to detect the effect 80 % of

the time. Now, suppose you have reason to believe that the effect size is 10 times

larger (i.e., f2¼ .30). In this case, we would need only 33 subjects to detect the

effect 80 % of the time:10

N ¼ 7:85

:30
þ 7� 1ð Þ ¼ 32:1667

If the effect size were as large as the one I contrived, you would need only

10 subjects:

N ¼ 7:85

2:5545
þ 7� 1ð Þ ¼ 9:0731

10 It’s a good idea to round up for these calculations.
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Obviously, it pays to be working with large effect sizes or have access to lots of

subjects. Insofar as it is difficult to control our effect sizes (unless we are making up

our data!), we need to be sure we have lots of subjects to achieve a satisfactory level

of power. This is especially important when testing cross-product terms, as their

effect sizes tend to be rather low (McClelland and Judd 1993).

Finally, considering the difficulties involved in detecting them, you might be

wondering whether searching for interactions is worth the costs it entails. My

answer is an unqualified “yes.” Almost all effects occur only within a limited

range of conditions. Interactions help us identify those conditions, thereby provid-

ing clues to an effect’s causes and consequences. But interpreting them accurately

takes time and practice. As we have seen, the same interaction that yields one

conclusion when viewed from one vantage point can yield a different conclusion

when viewed from another angle. Being able to extract the meaning from an

interaction is a valuable skill, well worth the effort it takes to cultivate.

9.4.3 R Code: Effect Size of Three-Way
Cross-Product Term

x=c(1,8,2,2,5,6,5,7,4,8,3,5)

z=c(3,7,1,6,6,6,7,2,3,6,5,8)

w=c(7,4,3,1,8,8,5,1,8,1,5,2)

y=c(3,7,8,3,4,5,4,2,5,9,3,6)

dx=scale(x, center = TRUE, scale = FALSE)

dz=scale(z, center = TRUE, scale = FALSE)

dw=scale(w, center = TRUE, scale = FALSE)

mod <-lm(y~dx*dz*dw)

#Calculate Effect Size for Highest Order Cross-Product Term

r.2 <-summary(mod)$r.squared

ss.y <-var(y)*(length(y)-1)

ms.e <-(sum(resid(mod)^2)/(length(y)-nrow(summary(mod)$coef)))

r.cha <-((((mod$coef[8]/sqrt(vcov(mod)[8,8]))^2)*ms.e)/ss.y)

f.2 <-r.cha/(1-r.2)

f.2

#Sample Size Needed for 80% Power - enter effect size and k

sampsize <-function(f,k){

N = 7.85/f+(k-1)

}

sample <-sampsize(.03,7)

sample
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9.5 Chapter Summary

1. Two variables interact when the slope relating one of the predictors to the

criterion changes across levels of another predictor. In a multiple regression

analysis, interactions can be tested by including a cross-product term, formed by

multiplying two (or more) predictors. If the cross-product term is significant, the

slope relating a predictor to the criterion varies significantly across levels of

another predictor.

2. Adding a cross-product term to a regression equation transforms the lower-order

coefficients into simple slopes, such that each lower-order coefficient represents

the slope of a line relating a predictor to a criterion only when other variables

equal 0. To render these lower-order coefficients more interpretable, many

researchers use mean-centered (deviate) scores as predictors.

3. To probe the form of an interaction, researchers commonly calculate simple

slopes for values one standard deviation below the mean, at the mean, and one

standard deviation above the mean. The nature of an interaction is revealed by

visually examining the simple slopes and testing their statistical significance.

4. Simple slopes represent first-order partial derivatives, and they can be calculated

using rules of differentiation first described in Chap. 3. Alternatively, we can

recalculate our predictors so that a score of zero equals a particular value of

interest (e.g., one standard deviation below the mean).

5. Regions of significance that identify the range of values for which a simple slope

will be statistically significant can be calculated using the Johnson-Neyman

technique.

6. Cross-product terms can test higher-order interactions. In theory, we can add as

many variables as we like, but it is difficult to find and interpret interactions

involving more than three variables.

7. An effect size quantifies the strength of an observed effect, and the power of a

statistical test refers to the likelihood that the test will correctly reject a null

hypothesis. The greater the effect size, the more powerful the statistical test. The

effect sizes of cross-product terms tend to be low, so sample sizes need to be

large to have a test powerful enough to detect them.
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Chapter 10

Polynomial Regression

Linear regression normally fits a straight line through a set of observations. Not all

relations are characterized by a straight line, however. Suppose we wish to deter-

mine how much children enjoy a dessert as a function of the amount of sugar we use

in its preparation. Surely children like a sugary treat, but only up to a point. If we

put in too much sugar, they will stop enjoying it. The same is true for just about

anything else we can think of (which is why we have phrases like “too much of a

good thing” and “everything in moderation”). Formally, these phrases describe

curvilinear relations. Figure 10.1 displays two common curvilinear relations, but

other forms are possible.

We have already seen that linear regression models can accommodate nonlinear

relations by transforming variables (Chap. 8) or by adding cross-product terms

(Chap. 9). In this chapter we will discuss another approach to accommodating

nonlinear relations: polynomial regression.

Consider the following, third-order polynomial, named for the highest power

term in the equation.

y ¼ β0 þ β1xþ β2x
2 þ β3x

3 þ ε ð10:1Þ

Looking over the equation, we see that it satisfies our properties of linearity

(see Chap. 8). None of the regression coefficients is raised to a power other than

1 or is multiplied or divided by another coefficient, and the equation is solved by

summing the weighted terms and the disturbance. Notice, however, that not all of

the predictors are of the first order. This is not a problem; only the regression

coefficients (i.e., the parameters) must be of the first order in a linear model.
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Including power terms in a regression equation allows us to determine whether

various nonlinear functions (e.g., quadratic, cubic) describe our data. We can do so

using linear regression only if lower-order terms are also included in the regression

equation. This is because each power term can be thought of as a cross-product term

[e.g., x2¼ (x * x)], so before we examine the contribution of a higher-order term, we

must first take into account its lower-order term. In this sense, we can think of

polynomial regression as a subset of the models we covered in Chap. 9.

10.1 Simple Polynomial Regression

To make our discussion more concrete, imagine that a behavioral scientist is

interested in testing the relation between temperature and violent crimes. To

address the issue, she records the maximum temperature for 12 summer days and

the number of violent crimes committed in the city in which she resides.

10.1.1 Testing the Linear Component

The (pretend) data appear in Table 10.1, and a scatterplot (with residuals) from a

simple linear regression is shown in Fig. 10.2.

The scatterplot shows that temperature and crime are not related in a linear

fashion. Instead, crime rises as temperatures increase up to a point and then

decreases as temperatures climb even higher. More formally, the relation between

temperature and crime appears to be curvilinear, best represented by a second-order,
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Fig. 10.1 Two curvilinear relations
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quadratic, polynomial. The residuals also show a nonlinear pattern, confirming that a

linear fit to the data is inadequate. The lack of a significant linear effect in Table 10.1

provides additional evidence that this is so.1

Table 10.1 Linear and polynomial regression

Simple linear regression Polynomial regression

x y ŷ e devx devx2 ŷ e

36 3 5.1228 �2.1228 �2.75 7.5625 3.2158 �.2158

36 2 5.1228 �3.1228 �2.75 7.5625 3.2158 �1.2158

37 4 5.0175 �1.0175 �1.75 3.0625 4.7994 �.7994

37 7 5.0175 1.9825 �1.75 3.0625 4.7994 2.2006

38 8 4.9123 3.0877 �0.75 .5625 5.7858 2.2142

39 8 4.8070 3.1930 0.25 .0625 6.1749 1.8251

39 6 4.8070 1.1930 0.25 .0625 6.1749 �.1749

39 6 4.8070 1.1930 0.25 .0625 6.1749 �.1749

40 5 4.7018 .2982 1.25 1.5625 5.9668 �.9668

39 3 4.8070 �1.8070 0.25 0.0625 6.1749 �3.1749

42 4 4.4912 �.4912 3.25 10.5625 3.7587 .2413

43 2 4.3860 �2.3860 4.25 18.0625 1.7588 .2412

Mean 38.75 4.8333 .0000 4.3542

SD 2.1794 2.1672 2.1794 5.6103

SS 52.25 51.6667 52.25 346.2292

b seb t p b seb t p

b0 8.9123 12.1343 .7345 .4795 6.1336 .6679 9.1829 .0000

b1 �.1053 .3127 �.3366 .7433 .2398 .2653 .9039 .3896

b2 �.2986 .1031 �2.8974 .0177
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Fig. 10.2 Scatterplot and residuals relating temperature to violent crime: simple linear regression

1A lack of fit test (see Chap. 8) does not produce a significant effect ( p¼ .2529). This is usually

true with a curvilinear relation, so the test is not very useful in this case.
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10.1.2 Adding a Quadratic Term

Having determined that our (fictitious) relation between temperature and crime is

nonlinear, we will perform a polynomial regression analysis. With our data, we first

create deviate scores for our predictor and then square them to find a second order

polynomial. The right-hand side of Table 10.1 shows the calculations. Notice that

we square the deviate score, not the raw score.

10.1.2.1 Hierarchical Regression

We use hierarchical regression to analyze the data. The term “hierarchical” means

that lower-order terms are entered before higher-order ones. In our case, we enter

the linear term (devx) to the predictive equation before adding our power term

devx2ð Þ. The bottom right-hand portion of Table 10.1 shows that the quadratic term

makes a significant contribution to the prediction of our criterion, uniquely account-

ing for ~48 % of the total variance.2 Our sample regression equation thus becomes

ŷ ¼ 6:1336þ :2398x� :2986x2.

10.1.2.2 Predicted Values

To understand the nature of the quadratic effect, we can calculate predicted values

by constructing a P matrix with scores one standard deviation below the mean, at

the mean, and above the mean as weights (see Chap. 9). The left-hand side of

Table 10.2 displays the relevant values. Notice that the weight for the power term is

found by squaring the standard deviation of x, not by using the standard deviation of
the power term itself.

When we multiply P0b, we compute our predicted values.3 These values

(xL¼ 4.1925, xM¼ 6.1336, xH¼ 5.2378) are displayed in Fig. 10.3.4

Table 10.2 Matrices to calculate predicted values and simple slopes for polynomial regression

P Matrix for predicted values S Matrix for simple slopes

Weights xL xM xH Weights xL xM xH
1 1 1 1 0 0 0 0

x �2.1794 0 2.1794 1 1 1 1

x2 4.7500 0 4.7500 2x �4.3589 0 4.3589

2 Equation (9.6) was used to find the increment in R2associated with the regression coefficient.
3 Although we do not interpret the linear coefficient from the overall equation, we use it when

computing the predicted values.
4 Figures 10.3 and 10.4 have been smoothed for illustrative purposes. The topic of smoothing

polynomial functions will be discussed later in this chapter.
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10.1.2.3 Calculating and Testing Simple Slopes

The pattern shown in Fig. 10.3 confirms that violent crime initially increases as the

temperature rises, levels off just past the mean, and then declines as temperatures

climb even higher. Testing these apparent relations involves computing and testing

the simple slopes by differentiating the function to find its first derivative. Before

describing the specific procedures, recall that we can rearrange the terms of a

regression equation with a cross-product term to highlight the regression of y on

x at different values of z [see Eqs. (9.3) and (9.4)].

ŷ ¼ b0 þ b1xþ b2zþ b3xz

becomes

ŷ ¼ b0 þ b1 þ b3zð Þxþ b2z

Now let’s do the same thing using a power term.

ŷ ¼ b0 þ b1xþ b2x
2

becomes

ŷ ¼ b0 þ b1 þ b2xð Þx

Do you see the difference here? Instead of finding the change in x at different

values of z, we are now looking for the change in x at different values of x. The
solution is to find the slope of a tangent line at a point along the curve. As first

discussed in Chap. 3, a tangent line touches the curve at a single point without

crossing it. Figure 10.4 shows a tangent line that touches the curve at x¼ 0. If we

find the slope of this regression line, we have found the simple slope of x when

x¼ 0.
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From Chap. 3, we know that we find the tangent line by differentiating a function

to find its derivative. Our function appears below, and our task is to find the first

partial derivative of the function with respect to x.

ŷ ¼ b0 þ b1xþ b2x
2

Implementing the rules we learned in Chap. 3, we disregard all terms that do not

involve x, change x to 1 when it appears by itself, and apply the power rule when

x appears with an exponent.

∂ŷ
∂x

¼ b1 þ 2b2x ð10:2Þ

We then translate this formula into weights in an S matrix (see right-hand side of

Table 10.2) and plug in values for x that are one standard deviation below the mean,

at the mean, and above the mean.

Next, we find the simple slopes by calculating S0b and their standard errors by

taking the square root of the diagonal elements of S0CS. Finally, we can

construct t-tests and create confidence intervals if we desire. These values

appear in Table 10.3. It may be seen that the simple slope of x when x is one

standard deviation below the mean is significantly positive, the simple slope of

x when x¼ 0 is not significant, and the simple slope of x when x is one standard
deviation above the mean is significantly negative. These values confirm the

researcher’s hypothesis that temperature and violent crime are related in a

curvilinear fashion.
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Table 10.3 Simple slopes of x for a polynomial regression

sb seb t p CL� CI+

xL 1.5415 .6158 2.5032 .0337 .1484 2.9346

xM .2398 .2653 .9039 .3896 �.3604 .8400

xH �1.0619 .4065 �2.6125 .0282 �1.9814 �.1424
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Notice also that the simple slope of x when x¼ 0 is identical to b1 in our overall

regression equation. As is true with a cross-product term, when a power term is added

to a regression equation, the lower-order coefficients represent simple slopes at x¼ 0.

Because we have centered the predictor around its mean, zero represents an average

temperature. But we do not interpret the lower-order coefficients in a hierarchical

analysis because we are not interested in whether the linear component explains

variance that the quadratic component does not; we are interested only in whether the

quadratic component explains variance that the linear component does not.

10.1.2.4 Finding the Maximum Point

We know from Chap. 3 that the maximum or minimum point on a curve occurs

when the simple slope is 0 (i.e., the tangent line is horizontal).5 Mathematically, it is

found by setting the first partial derivative equal to 0.

b1 þ 2b2x ¼ 0

Rearranging terms,

b1 ¼ �2b2x

and solving for x produces Eq. (10.3).

mvx ¼ �b1
2b2

ð10:3Þ

Inserting our data yields the maximum value.

mvx ¼ �:2398

2 � �:2986ð Þ ¼ :4015

When devx¼.4015 (just a bit higher than the mean), the tangent line is horizontal,

the simple slope is 0, and the maximum is found. In terms of raw temperature

values, violent crime (in this fictitious example) is at its maximum when the

temperature is �39.15 Celsius.

10.1.3 Testing Other Polynomials

After we test a quadratic model, we test for a cubic function by adding x3 to the

regression equation. In our example, this term does not significantly increase

the prediction of our criterion, so we stop and decide that the quadratic model is

the highest polynomial function for these data.

5 To be a maximum, the second partial derivative must be negative. This is the case in our example.
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You might have noticed that I added “for these data.” It’s important to under-

score that we are only modeling the data we have collected. Most (if not all) linear

relations eventually level off or decline, but we are interested only in whether,

within the range of the data we have collected, the functional relation is linear or

curvilinear in form. For this reason, you should not speculate about the nature of

relations that lie outside the range of your data. It is conceivable that violence

returns when temperatures climb higher than the ones we recorded.

One other thing. Suppose we have two predictors that are highly correlated. If we

then find that their cross-product increases the prediction of y, we might actually

have uncovered a curvilinear relation rather than an interactive one. This possibility

provides another reason why we want to choose predictors that are somewhat

independent (see Chap. 6).

10.1.4 R Code: Cubic Polynomial

x=c(36,36,37,37,38,39,39,39,40,39,42,43)

y=c(3,2,4,7,8,8,6,6,5,3,4,2)

#Plot function

plot(x, y, cex = 1, col ="black", ,ylab = "Violent Crimes", xlab =

"Temperature", main = "Scatterplot")

#Regression

dx=scale(x, center = TRUE, scale = FALSE)

summary(linear <-lm(y~x))

summary(quad <-lm(y~dx+I(dx^2)))

#Predicted Values

p0 <-rep(1,3);p1 <-c(-sd(x),0,sd(x));p2 <-c(sd(x)^2,0,sd(x)^2)

P.mat <-round(rbind(p0,p1,p2),digits=5)

P <-round(rbind(p0,p1,p2),digits=5)

pred.val <-t(P)%*%coef(quad)

dimnames(pred.val)=list(c("lo.x","med.x","hio.x"))

pred.val

#Plotting Predicted Values

dev.new()

plot(pred.val,type="l",ylab = "Violent Crime", xlab = "Temperature",

main = "Predicted Values")

#Simple Slopes and Simple Standard Errors

s0 <-rep(0,3);s1 <-rep(1,3);s2 <-c(-2*sd(x),0,2*sd(x))

S <-round(rbind(s0,s1,s2),digits=5)

simp.slope <-t(S)%*%coef(quad)

simp.cov <-t(S)%*%vcov(quad)%*%S

simp.err <-sqrt(diag(simp.cov))

simples <-simp.slope/sqrt(diag(simp.cov))

(continued)
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10.1.4 R Code: Cubic Polynomial (continued)

tvalues <-2*pt(-abs(simples),df=(length(x)-nrow(S)))

crit <-abs(qt(0.025,(length(x)-nrow(S))))

CI.low <-simp.slope-(crit*simp.err)

CI.high <-simp.slope+(crit*simp.err)

simp.table<-round(matrix(c(simp.slope,simp.err,simples,tvalues,

CI.low,CI.high),nrow=3,ncol=6),digits=5)

dimnames(simp.table)=list(c("x@z.low","x@z.med","x@z.high"),

c("slope", "stderr", "t","p","CI.low","CI.high"))

simp.table

#Maximum Point

maximum <-(-quad$coef[2]/(2*quad$coef[3]));maximum

10.2 Polynomial Interactions

In Chap. 9, we discussed the construction and interpretation of cross-product terms

and interactions. We can also use cross-product terms to model polynomial inter-

actions. Suppose after reading our study of temperature and aggression another

researcher hypothesizes that these variables have a curvilinear relation in crowded

cities, but not in cities with low population density. After all, if you don’t live near

anyone, being hot and bothered is unlikely to foster aggression. To test this

hypothesis, the researcher repeats our study adding a new variable: population

density (in 100,000 increments). The researcher’s model is shown below, and

Table 10.4 presents the (imaginary) data.

ŷ ¼ b0 þ b1xþ b2x
2 þ b3zþ b4xzþ b5x

2z ð10:4Þ

10.2.1 Regression Equations

After creating deviate scores, we calculate our power and cross-product terms. We

then conduct a hierarchical regression analysis, entering the linear predictors (devx,
devz, devxz) before adding the quadratic terms devx2 anddevx2zð Þ. The top half of

Table 10.5 shows that the model is not significant before we add the power terms,

but is significant once they are included.

The fact that the latter model is significant but the former is not does not prove

that including the power terms significantly improves the prediction of our crite-

rion. To make this determination we need to test whether the model with the power

terms is significantly better than the model without them. This determination

involves testing the difference between the two models, designating the linear

model as the reduced model (since it has less terms).
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F ¼
R2
full � R2

reduced

� �
= kfull � kreduced
� �

1� R2
full

� �
= N � kfull � 1
� � ð10:5Þ

After plugging in our values, we find that adding the power terms does, in fact,

significantly improve the prediction of our criterion.

F 2; 6ð Þ ¼ :8147� :3004ð Þ= 5� 3ð Þ
1� :8147ð Þ= 12� 5� 1ð Þ ¼ 8:3269, p ¼ :0186

Table 10.4 Small sample example for polynomial interaction

x
(heat)

z
(density) y (crime) devx devx2 devz devxz devx2z

37 2 4 �.50 .25 �3.0833 1.5417 �.7708

35 1 2 �2.50 6.25 �4.0833 10.2083 �25.5208

38 8 8 .50 .25 2.9167 1.4583 .7292

38 3 2 .50 .25 �2.0833 �1.0417 �.5208

35 6 1 �2.50 6.25 .9167 �2.2917 5.7292

40 9 3 2.50 6.25 3.9167 9.7917 24.4792

36 7 6 �1.50 2.25 1.9167 �2.8750 4.3125

39 4 5 1.50 2.25 �1.0833 �1.6250 �2.4375

40 3 4 2.50 6.25 �2.0833 �5.2083 �13.0208

39 8 8 1.50 2.25 2.9167 4.3750 6.5625

36 2 5 �1.50 2.25 �3.0833 4.6250 �6.9375

37 8 9 �.50 .25 2.9167 �1.4583 .7292

Mean 37.5000 5.0833 4.7500 .0000 2.9167 .0000 1.4583 �.5556

s 1.7838 2.8749 2.5981 1.7838 2.6054 2.8749 4.9184 11.9349

Table 10.5 Regression equation for power interaction example before adding power terms (top
panel) and after adding power terms (bottom panel)

Regression equation before adding power terms

SS df MS R2 F p

Regression 22.3014 3 7.4338 .3004 1.1448 .3882

Residual 51.9486 8 6.4936

Total 74.2500

Regression equation after adding power terms

SS df MS R2 F p

Regression 60.4911 5 12.0982 .8147 5.2758 .0334

Residual 13.7589 6 2.2931

Total 74.2500
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10.2.2 Testing the Regression Coefficients

Next, we examine the individual coefficients. Concerning ourselves only with the

two power terms, b2 and b5, we see that both are significant (see Table 10.6).

10.2.3 Probing a Polynomial Interaction

Having found a significant polynomial interaction, we turn our attention toward

probing its form. As before, we will begin by constructing a P matrix and comput-

ing P0b to generate predicted values. The weights are shown in Table 10.7, and the

predicted values are displayed in Fig. 10.5. Confirming the researcher’s intuitions,

the relation between temperature and crime appears to be relatively flat for cities of

low density, moderately curvilinear for cities of moderate density, and substantially

curvilinear for cities of high density.

10.2.3.1 Testing the Linear and Quadratic Coefficients

Testing the significance of the relations shown in Fig. 10.5 involves testing the

significance of the linear and quadratic terms at three levels of z. Table 10.8 shows

the S matrix.

Table 10.6 Regression coefficients for a polynomial interaction

b seb ΔR2 t p CI� CI+

b0 6.3289 .6741 9.3886 .0001 4.6794 7.9783

b1(x) .3055 .2783 .0372 1.0978 .3144 �.3754 .9864

b2(x
2) �.5937 .1831 .3248 �3.2431 .0176 �1.0416 �.1457

b3(z) .9195 .2511 .4141 3.6616 .0106 .3050 1.5339

b4(xz) .0399 .0974 .0052 .4100 .6960 �.1984 .2782

b5(x
2z) �.1699 .0625 .2284 �2.7195 .0347 �.3228 �.0170

Table 10.7 P Matrix for predicted values for a polynomial interaction

zL zM zH

xL xM xH xL xM xH xL xM xH

b0 1 1 1 1 1 1 1 1 1

b1(x) �1.7838 0 1.7838 �1.7838 0 1.7838 �1.7838 0 1.7838

b2(x
2) 3.1818 0 3.1818 3.1818 0 3.1818 3.1818 0 3.1818

b3(z) �2.8749 �2.8749 �2.8749 0 0 0 2.8749 2.8749 2.8749

b4(xz) 5.1282 0 �5.1282 0 0 0 �5.1282 0 5.1282

b5(x
2z) �9.1475 0 �9.1475 0 0 0 9.1475 0 9.1475
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If we then calculate S0b to find the coefficients and take the square root of the

diagonal elements of S0CS to find the standard errors, we can construct t-tests to test
the significance of each coefficient (see Table 10.9). Confirming our impression of

the relations displayed in Fig. 10.5, we find that the quadratic term is negligible for

sparsely populated cities, moderate in size for cities of average density, and large

for crowded cities.

Table 10.8 S Matrix for testing linear and quadratic terms at three levels of z

Linear (x) Quadratic (x2)

Weights zL zM zH Weights zL zM zH
b0 0 0 0 0 0 0 0 0

b1(x) 1 1 1 1 0 0 0 0

b2(x
2) 0 0 0 0 1 1 1 1

b3(z) 0 0 0 0 0 0 0 0

b4(xz) z �2.8749 0 2.8749 0 0 0 0

b5(x
2z) 0 0 0 0 z �2.8749 0 2.8749
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Fig. 10.5 Predicted values

for power term interaction

Table 10.9 Significance tests for linear and quadratic terms at three levels of z

sb seb t p CI� CI+

Linear zL .1907 .3733 .5108 .6277 �.7228 1.1041

zM .3055 .2783 1.0978 .3144 �.3754 .9864

zH .4203 .4151 1.0126 .3503 �.5954 1.4360

Quadratic zL �.1052 .2464 �.4268 .6844 �.7081 .4978

zM �.5937 .1831 �3.2431 .0176 �1.0416 �.1457

zH �1.0822 .2662 �4.0659 .0066 �1.7334 �.4309
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10.2.3.2 Simple Slopes

Our final step is to calculate simple slopes. You might have assumed that we just did

that, but calculating the linear and quadratic coefficients is not the same as calcu-

lating the simple slopes. Recall that a simple slope refers to a tangent line that

touches a curve at one point only. There is no bend to a tangent line; it is always

linear. Consequently, only the linear coefficients shown in Table 10.9 provide

information about simple slopes. These coefficients represent the simple slopes at

three levels of z when x¼ 0. If we are interested in calculating the simple slopes at

other levels of x, we need to use the weighting scheme shown in the second column

of Table 10.10. The rest of the table shows the relevant values for our example.

If we then calculate S0b to find the coefficients and take the square root of the

diagonal elements of S0CS to find the standard errors, we can construct t-tests to test
the simple slope at each of the 9 combinations shown in Table 10.11.

Here we see that none of the simple slopes is significant at zL, but the simple

slopes of x at xL and xH are significant at zM and zH. To be clear about what these

coefficients tell us, let’s consider what happens when z is one standard deviation

above its mean (i.e., a city with lots of people in a small area). When temperatures

start out at a relatively comfortable level (i.e., when x is one standard deviation

Table 10.10 S matrix weights for calculating simple slopes of x at various values of x and z

zL zM zH

Weights xL xM xH xL xM xH xL xM xH

b0 0 0 0 0 0 0 0 0 0 0

b1(x) 1 1 1 1 1 1 1 1 1 1

b2(x
2) 2x �3.5675 0 3.5675 �3.5675 0 3.5675 �3.5675 0 3.5675

b3(z) 0 0 0 0 0 0 0 0 0 0

b4(xz) z �2.8749 �2.8749 �2.8749 0 0 0 2.8749 2.8749 2.8749

b5(x
2z) 2xz 10.2564 0 �10.2564 0 0 0 �10.2564 0 10.2564

Table 10.11 Significance tests for simple slopes at nine locations along three curves

sb seb t p CI� CI +

zL xL .5658 .8921 .6343 .5493 �1.6171 2.7488

xM .1907 .3733 .5108 .6277 �.7228 1.1041

xH �.1845 1.0140 �.1819 .8616 �2.6656 2.2967

zM xL 2.4234 .7258 3.3387 .0156 .6473 4.1995

xM .3055 .2783 1.0978 .3144 �.3754 .9864

xH �1.8124 .6935 �2.6133 .0399 �3.5094 �.1154

zH xL 4.2809 1.1529 3.7132 .0099 1.4599 7.1019

xM .4203 .4151 1.0126 .3503 �.5954 1.4360

xH �3.4403 .9048 �3.8025 .0089 �5.6542 �1.2265

10.2 Polynomial Interactions 353



below its mean), a one unit increase in temperature is associated with a 4.2809 unit

increase in crime; in contrast, when it’s already very hot (i.e., when x is one

standard deviation above its mean), a one unit increase in temperature is associated

with a 3.4403 unit decrease in crime.

10.2.3.3 Maximum Value

We can find the maximum/minimum value of the curve at any level of z using the

coefficients from our original polynomial regression.

� b1 þ b4zð Þ
2 � b2 þ b5zð Þ ð10:6Þ

To illustrate, we will find the maximum value when z is one standard deviation

below its mean.

mvL ¼ � :3055þ :0399 � �2:8749ð Þ½ �
2 � �:5937þ �:1699 � �2:8749ð Þ½ � ¼ :9067

Performing the rest of the calculations yields the maximum values when z is at
its mean (mvM¼.2573) and one standard deviation above its mean (mvH¼.1942).

Thus, in a crowded city, crime is at its maximum when devx¼.1942 (~37

Celsius).

10.2.4 R Code: Polynomial Interaction

x=c(37,35,38,38,35,40,36,39,40,39,36,37)

z=c(2,1,8,3,6,9,7,4,3,8,2,8)

y=c(4,2,8,2,1,3,6,5,4,8,5,9)

dx=scale(x, center = TRUE, scale = FALSE)

dz=scale(z, center = TRUE, scale = FALSE)

#Compare Linear and Polynomial Model

summary(lin.reg <-lm(y~dx*dz))

summary(poly.reg <-lm(y~dx+I(dx^2)+dz+dx*dz+I(dx^2)*dz))

anova(lin.reg,poly.reg)

#Predicted values

p0 <-rep(1,9);p1 <-rep(c(-sd(x),0,sd(x)),3);p2 <-rep(c(sd(x)^2,0,

sd(x)^2),3)

p3 <-c(rep(-sd(z),3),rep(0,3),rep(sd(z),3));p4 <-p1*p3;p5 <-p2*p3

P <-rbind(p0,p1,p2,p3,p4,p5)

preds <-matrix(t(P)%*%coef(poly.reg),nrow=3,ncol=3)

(continued)
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10.2.4 R Code: Polynomial Interaction (continued)

dimnames(preds)=list(c("low.z","med.z","high.z"),

c("low.x","med.x","high.x"))

preds

#Simple Polynomial Coefficients

q0 <-rep(0,6);q1 <-c(rep(1,3),rep(0,3));q2 <-c(rep(0,3),rep(1,3))

q3<-rep(0,6);q4<-c(-sd(z),0,sd(z),rep(0,3));q5<-c(rep(0,3),-sd(z),

0,sd(z))

Q <-round(rbind(q0,q1,q2,q3,q4,q5),digits=5)

simp.slope <-t(Q)%*%coef(poly.reg)

simp.cov <-t(Q)%*%vcov(poly.reg)%*%Q

simp.err <-sqrt(diag(simp.cov))

simples <-simp.slope/sqrt(diag(simp.cov))

tvalues <-2*pt(-abs(simples),df=(length(x)-nrow(Q)))

crit <-abs(qt(0.025, df=(length(x)-nrow(Q))))

CI.low <-simp.slope-(crit*simp.err)

CI.high <-simp.slope+(crit*simp.err)

simp.poly<-round(matrix(c(simp.slope,simp.err,simples,tvalues,

CI.low,CI.high),nrow=6,ncol=6),digits=5)

dimnames(simp.poly)=list(c("linear@z.low","linear@z.med","linear@z.

high","quad@x.low","quad@x.med","quad@x.high"),c("slope","stderr",

"t","p","CI.low","CI.high"))

simp.poly

#Simple Slopes

s0 <-rep(0,9);s1 <-rep(1,9);s2 <-rep(c(-sd(x)*2,0,sd(x)*2),3)

s3<-rep(0,9);s4<-c(rep(-sd(z),3),rep(0,3),rep(sd(z),3));s5<-s2*s4

S <-round(rbind(s0,s1,s2,s3,s4,s5),digits=5)

simp.slope <-t(S)%*%coef(poly.reg)

simp.cov <-t(S)%*%vcov(poly.reg)%*%S

simp.err <-sqrt(diag(simp.cov))

simples <-simp.slope/sqrt(diag(simp.cov))

tvalues <-2*pt(-abs(simples),df=(length(x)-nrow(S)))

crit <-abs(qt(0.025, df=(length(x)-nrow(S))))

CI.low <-simp.slope-(crit*simp.err)

CI.high <-simp.slope+(crit*simp.err)

simp.slop<-round(matrix(c(simp.slope,simp.err,simples,tvalues,

CI.low,CI.high),nrow=9,ncol=6),digits=5)

dimnames(simp.slop)=list(c("x.lo@z.low","x.med@z.low","x.hi@z.lo",

"x.lo@z.med","x.med@z.med","x.hi@z.med","x.lo@z.hi","x.med@z.hi",

"x.hi@z.med"),c("slope","stderr", "t","p","CI.low","CI.high"))

simp.slop

(continued)
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10.2.4 R Code: Polynomial Interaction (continued)

#maximum value

max<-(-(poly.reg$coef[2]+poly.reg$coef[5]*-sd(z))/((2*(poly.reg

$coef[3]+poly.reg$coef[6]*-sd(z)))))

max

10.3 Piecewise Polynomials

To this point we have used polynomials to perform a global fit to the data. In this

context, the word “global” means that the power term applies to all data points

rather than only some. For example, in a quadratic model, we square all terms; in a

cubic model, we raise all predictors to the third power; and so on.

10.3.1 Regression Splines

An alternative approach uses “local” fitting, applying a power term to only some of

the observations. This approach goes by several names, including a piecewise

polynomial, truncated power series, or a regression spline.6 Regardless of the

name, these models involve local fitting in which different polynomial terms are

applied to different segments of the data.

Figure 10.6 presents a schematic depiction of two piecewise polynomials. The

first panel illustrates a quadratic model with one knot. A “knot” refers to the point at

Piecewise-Quadratic Piecewise-Cubic

Fig. 10.6 Schematic depiction of piecewise polynomials

6 A spline is a thin strip of wood, flexible enough to be bent. Historically, engineers and builders

used splines to model a curved connection between two points. My guess is that computer imaging

has rendered this practice obsolete.
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which the relation between x and y changes in a nonlinear way. In our first example,

increases in x predict increases in y below the knot, but increases in x predict

decreases in y above the knot. The second panel depicts a cubic model. Here we

have two knots and three linear equations, two positive and one negative.

10.3.1.1 Piecewise Cubic Regression Spline

To clarify matters, let’s use an example that is familiar to many students and all too

familiar to way too many professors! Suppose we track the amount of time students

spend studying throughout an academic term. Table 10.12 presents the (hypotheti-

cal) data and Fig. 10.7 presents a scatterplot and the studentized residuals from a

linear fit.7 The scatterplot indicates two points at which the relation appears

to change direction (filled-in markers) and two points when exams are given

(large markers). The pattern is clear: study time increases as an exam approaches,

declines rapidly after the exam, and gradually picks up again as another exam nears.

10.3.1.2 Global Fitting of a Cubic Polynomial

One way to analyze our data is to use a cubic polynomial of the form shown

in Eq. (10.1). Following procedures described earlier, we would first create deviate

scores and then create two power terms (i.e., devx2 and devx3 ). We then include

all lower-order terms before testing the significance of the power terms. The right-

hand side of Table 10.12 shows the relevant vectors and Table 10.13 presents

Table 10.12 Small sample example predicting study time during an academic term

x
Weeks

y
Study hours/week devx devx2 devx3

Cubic polynomial

ŷ e

1 1.0 �5.5 30.25 �166.3750 .42857 .5714

2 1.5 �4.5 20.25 �91.1250 2.27872 �.7787

3 1.6 �3.5 12.25 �42.8750 3.23996 �1.6400

4 5.0 �2.5 6.25 �15.6250 3.53362 1.4664

5 6.0 �1.5 2.25 �3.3750 3.38102 2.6190

6 2.0 �.5 .25 �.1250 3.00350 �1.0035

7 1.4 .5 .25 .1250 2.62238 �1.2224

8 1.25 1.5 2.25 3.3750 2.45899 �1.2090

9 3.0 2.5 6.25 15.6250 2.73467 .2653

10 4.0 3.5 12.25 42.8750 3.67073 .3293

11 7.2 4.5 20.25 91.1250 5.48851 1.7115

12 7.3 5.5 30.25 166.3750 8.40934 �1.1093

7We will pretend that the academic term is 12 weeks long in order to maintain consistency with

other examples used in this book.
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a summary of the analysis. Note the probability level of the cubic term (b3),
indicating a significant cubic trend.

10.3.1.3 Local Fitting with a Piecewise Polynomial

So far, all we have done is follow the procedures we learned in the first part of the

chapter using global fitting. Now let’s try local fitting. Looking at the data, we see

that study time shows a steady rise from week 1 to week 5, a steep decline from

week 5 to week 8, and a second rise from week 8 to week 12. So we have two knots:

one at week 5 and one at week 8. Coincidentally (not!), the first exam is given at

week 5 and the second exam is given at week 12.

To model these changes locally, we create two new vectors that yield a value of

0 for scores that fall below or match the knot (k), and scores of a cubed difference

score [(x� k)3] for values that fall above the knot.

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12

H
ou

rs
/W

ee
k 

Sp
en

t S
tu

dy
in

g

Week of Academic Term

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1 0 1 2

St
ud

en
tiz

ed
 R

es
id

ua
l

Standardized Fitted Values

Fig. 10.7 Hours/week spent studying across weeks of an academic term. For the scatterplot,

larger markers indicate exams; filled-in markers indicate knots

Table 10.13 Regression analysis using global fitting of a cubic polynomial

SS df MS R2 F p

Regression 41.7324 3 13.9108 .6660 5.3162 .0262

Residual 20.9333 8 2.6167

Total 62.6656

b seb t p

b0 2.7996 .7046 3.9732 .0041

b1 �.3903 .3469 �1.1254 .2931

b2 .0535 .0443 1.2090 .2612

b3 .0369 .0150 2.4543 .0397
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0 . . . x 
 kð Þ
x� kð Þ3 . . . x > kð Þ

(
ð10:7Þ

Table 10.14 presents these calculations for k1¼ 5 and k2¼ 8. When we use these

terms (along with a vector of leading 10s) to predict study time, we get the results

shown in Table 10.15. The overall fit of the model is good, and both piecewise

terms b4 and b5 are significant.
8

Table 10.14 Truncated power basis for a cubic piecewise polynomial with two knots

x x2 x3 (x� k1)1
3 (x� k2)1

3 ŷ e

1 1 1 0 0 1.02729 �.02729

2 4 8 0 0 1.15161 .34839

3 9 27 0 0 2.64711 �1.04711

4 16 64 0 0 4.28282 .71718

5 25 125 0 0 4.82782 1.17218

6 36 216 1 0 3.53983 �1.53983

7 49 343 8 0 1.63135 �.23135

8 64 512 27 0 .80356 .44644

9 81 729 64 1 2.21013 .78987

10 100 1,000 125 8 4.81457 �.81457

11 121 1,331 216 27 7.03288 .16712

12 144 1,728 343 64 7.28103 .01897

Table 10.15 Regression analysis for a cubic piecewise polynomial with two knots

SS df MS R2 F p

Regression 55.6191 5 11.1238 .8876 9.4718 .0082

Residual 7.0465 6 1.1744

Total 62.6656

b seb t p

b0 3.5051 3.4317 1.0214 .3465

b1 �4.1892 3.6186 �1.1577 .2910

b2 1.9165 1.0634 1.8022 .1216

b3 �.2052 .0922 �2.2251 .0677

b4 .4887 .1598 3.0590 .0223

b5 �.5475 .1598 �3.4273 .0140

8Along with a column vector of leading 1’s, the first 5 columns of Table 10.14 form a truncated

power basis, so called because the values before the knots are truncated (i.e.,¼ 0).
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Figure 10.8 compares the fitted values from the global and local model against

the raw scores. Looking over the figure, it appears that the local fit hews closer to

the data than the global fit. If we test the two models using Eq. (10.5), we find that

the piecewise polynomial model does, in fact, fit the data better (R2¼.8896) than the

global cubic model (R2¼.6660), F(2,6)¼ 5.9122, p¼.0381.

10.3.2 Natural Cubic Splines

Piecewise polynomials often provide a good fit to the data, but they are not without

problems. First, the function can oscillate when the predictor is unevenly spaced;

second, with increases in the number of knots or degrees, the predictors become

highly correlated, creating collinearity (see Chap. 6). These problems can be

minimized by using an equivalent, but better conditioned basis function than a

truncated power basis. Several are available, including a B-spline basis (De Boors
1972) that is implemented in most statistical packages.

In this section, you will learn to create a cubic spline using a basis function

described by Gu (2002) and Wood (2006). A cubic spline is comprised of many

cubic polynomial equations joined to form a continuous function.9 Figure 10.9

shows a simple example with four control points, two interior knots, and the

following properties.

• Each curve segment passes through its control point (i.e., the x� y coordinate).
• The curve segments have the same slope where they join (i.e., their first

derivatives are constrained to be equal).
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9 Cubic splines are similar to the nonparametric smoothers we discussed in Chap. 8, and many

textbooks discuss them together. Because splines are not entirely nonparametric, I have chosen to

distinguish them from nonparametric smoothers.
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• The curvature of the curve segments is equal where they join (i.e., their second

derivatives are constrained to be equal).

If we further constrain the curves to be linear at their ends, we produce a natural
cubic spline, which is the variety we will learn.

10.3.2.1 Basis Function for a Natural Cubic Spline

Finding the coefficients for each segment of a natural cubic spline involves solving

a system of linear equations subject to the restrictions just described. Each segment

is a separate cubic polynomial, so we have four coefficients for each segment.

y ¼ aþ bxþ cx2 þ dx3 ð10:8Þ

Although there are methods for solving these equations directly, a less intuitive but

computationally advantageous solution is to apply Eq. (10.9) after transforming the

predictor so that all values lie within a range of 0 to 1 (i.e., x 2[0,1]).10

b1 xð Þ ¼ 1,

b2 xð Þ ¼ x,
biþ2 ¼ R xi; kið Þ for i ¼ 1 . . . q� 2

whereR xi; kið Þ ¼
ki � :5ð Þ2 � 1

12

� �
xi � :5ð Þ2 � 1

12

� �
4

�
xi � kij j � :5ð Þ4 � :5 xi � kij j � :5ð Þ2 þ 7

240

� �
24

8>>>>>>>>>><>>>>>>>>>>:
ð10:9Þ

Cubic Polynomial Cubic Polynomial Cubic Polynomial

xi-1 xi+1 xi+2xi

Fig. 10.9 Schematic representation of a cubic spline with four control points and two interior

knots

10 It is only coincidental that one of the terms in Eq. (10.9) uses a denominator that matches our

sample size (i.e., 1/12). This value is used regardless of how many observations we have.
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It looks complicated, but it’s just arithmetic, so let’s work through the calculations,

beginning with the transformation of our predictor to unit size.11

• Subtract the minimum value from all values to transform the smallest value to 0.

• Divide all subtracted values by the maximum value to transform the largest

value to 1.

Table 10.16 shows the result of these calculations. The knots associated with

weeks 5 and 8 are now represented by k1¼.3636 and k2¼.6364, respectively.

Our next step is to compute the two basis functions. To illustrate, the first two

values in the third column of Table 10.16 were computed as follows:

:3636� :5ð Þ2 � 1
12

h i
0� :5ð Þ2 � 1

12

h i
4

�
0� :3636j j � :5ð Þ4 � :5 0� :3636j j � :5ð Þ2 þ 7

240

h i
24

¼ �:003540

and

:3636� :5ð Þ2� 1
12

h i
:0909� :5ð Þ2� 1

12

h i
4

�
:0909� :3636j j� :5ð Þ4� :5 :0909� :3636j j� :5ð Þ2þ 7

240

h i
24

¼�:001610

Table 10.16 Basis function for natural cubic spline with two knots

x
x¼Unit

scaling k1¼.3636 k2¼.6364 ŷ e

1 0 �.003540 �.003540 .37271 .62729

2 .0909 �.001610 �.002532 1.92936 �.42936

3 .1818 .000177 �.001462 3.21859 �1.61859

4 .2727 .001617 �.000330 3.99114 1.00886

5 .3636 .002437 .000797 4.01759 1.98241

6 .4545 .002420 .001782 3.24063 �1.24063

7 .5455 .001782 .002420 2.23209 �.83209

8 .6364 .000797 .002437 1.73593 �.48593

9 .7273 �.000330 .001617 2.32724 .67276

10 .8182 �.001462 .000177 3.84636 .15364

11 .9091 �.002532 �.001610 5.96473 1.23527

12 1 �.003540 �.003540 8.37364 �1.07364

11 The transformation to unit length is made “without loss of generality,” meaning it does not alter

the relation between the predictor and the criterion.
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10.3.2.2 OLS Using Basis Function to Predict Criterion

If we perform an OLS regression using the basis function (along with a column

of leading 1’s) to predict y, we obtain the fitted values shown in Table 10.16.

Figure 10.10 compares the fit of a piecewise polynomial and a natural cubic spline.

As you can see, they are quite similar, except only the natural cubic spline is linear

at the ends.12

10.3.3 R Code: Unpenalized Regression Splines

x=seq(1:12)

y=c(1.0,1.5,1.6,5.0,6.0,2.0,1.4,1.25,3.0,4.0,7.2,7.3)

#Plot

plot(x, y, cex = 1, col ="gray", main = "Scatterplot")

lines(x = x, y = y, lwd = 1, col = "red")

#Linear model

lin.reg <-lm(y~x)

summary(lin.reg)

#Global Cubic

dx=scale(x, center = TRUE, scale = FALSE)

summary(cubic <-lm(y~dx+I(dx^2)+I(dx^3)))

(continued)
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12 These figures were created using 100 data points to create a smoother curve.
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10.3.3 R Code: Unpenalized Regression Splines (continued)

#Piecewise cubic spline using two knots

k1=5

k2=8

dum1 <-ifelse(x <= k1, 0, (x-k1))^3

dum2 <-ifelse(x <= k2, 0,(x-k2))^3

summary(piece <-lm(y~x+I(x^2)+I(x^3)+dum1+dum2))

#Compare Fit of Cubic and Piecewise Polynomial

anova(cubic,piece)

##Natural Cubic Spline Without Penalty

x <-seq(1:12)

x<-x-min(x);x<-x/max(x)

y=c(1,1.5,1.6,5,6,2,1.4,1.25,3,4,7.2,7.3)

kn <- c(x[5],x[8])

#Cubic Spline Function

basis<-function(x,z) {

((z-0.5)^2-1/12)*((x-0.5)^2-1/12)/4-

((abs(x-z)-0.5)^4-(abs(x-z)-0.5)^2/2+7/240)/24

}

# Model Matrix for Unpenalized Natural Cubic Spline

spline.X<-function(x,kn){

q<-length(kn)+2

n<-length(x)

X<-matrix(1,n,q)

X[,2]<-x

X[,3:q]<-outer(x,kn,FUN=basis)

X

}

X<-spline.X(x,kn)

nat.spline<-lm(y~X-1)

fitted(nat.spline)

10.3.4 Penalized Natural Cubic Spline

Regression splines avoid the ill-conditioning of a piecewise polynomial, but they

leave us with another problem: How many knots should we use and where should

they go? This was not an issue in our contrived example because we knew when the

exams were given, but this will not always be the case. When it’s not, we have two

choices. First, we can create an interpolating spline that passes through all of the

data points. An interpolating spline will fit the data perfectly, but will be extremely
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wiggly. Alternatively, we can attempt to balance fit and curvature by selecting a

subset of knots and adding a term that penalizes excessive wiggliness. Equation

(10.10) formalizes this compromise between fit and wiggliness.

S fð Þ ¼
Xn
i¼1

y� Xβ½ �2 þ λ

Z xmax

xmin

f
00
xð Þ

h i2
dx ð10:10Þ

The first part of Eq. (10.10) represents the sum of the squared residuals and the

second part penalizes curvature. In this equation, the penalty is the integrated

squared second derivative of the regression function. Why use this penalty?

Because the second derivative of a straight line equals 0, any departure from a

straight line (in either direction) represents curvature, and the squared departures

quantify a function’s wiggliness.13

The smoothing coefficient (λ) controls the weight of the penalty. When λ¼ 0,

there is no penalty and we will have a wiggly spline that minimizes the residual sum

of squares; as λ!1, we will have a minimally wiggly function that passes

between the data points much like a least squares line (though it need not be linear).

What we are looking for, then, is a smoother value that falls between these

extremes, providing the best, not-too-wiggly, fit.

10.3.4.1 Select Knots

Our first step is to select a set of knots. Absent any information about their likely

location, it is customary to use quantiles (with an equal number of observations in

each interval) or knots that are equally far apart (even if the number of observations

within each interval varies). Because our raw predictor values are all one unit apart,

these approaches are identical with our data set. For our example, we will use

quantiles, although the small sample size means there will be very few observations

within each interval. There is no hard-and-fast rule, but with 12 observations,

8 knots seems sufficient. Our first quantile is found as 1/9¼.1111, our second is

found as 2/9¼.2222, and so on through 8/9¼.8888.

10.3.4.2 Create a Basis Function

Our next step is to use Eq. (10.9) to create a basis function with the quantiles.

Table 10.17 presents the result of these calculations. To illustrate, the first two

values in the third column were computed as follows:

13 Eilers and Marx (1996) describe another common penalty function.
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:1111� :5ð Þ2� 1
12

h i
0� :5ð Þ2� 1

12

h i
4

�
0� :1111j j� :5ð Þ4� :5 0� :1111j j� :5ð Þ2þ 7

240

h i
24

¼ :003812

and

:1111� :5ð Þ2 � 1
12

h i
:0909� :5ð Þ2 � 1

12

h i
4

�
:0909� :1111j j � :5ð Þ4 � :5 :0909� :1111j j � :5ð Þ2 þ 7

240

h i
24

¼ :002799

If you conduct an OLS regression using this basis function, you will generate

unpenalized fitted values, similar to what we did before using only two knots.

10.3.4.3 Incorporating the Penalty

Our next step is to incorporate a penalty into our design matrix. The integrated

squared second derivative can be written as follows, with T representing a matrix to

be described momentarily (Ruppert et al. 2003)14:

Table 10.17 Basis function for penalized natural cubic spline with eight quantile knots

Quantiles

x

x
Unit

scaling .111111 .222222 .333333 .444444 .555556 .666667 .777778 .888889

1 0 .003812 �.000113 �.002984 �.004495 �.004495 �.002984 �.000113 .003812

2 .090909 .002799 .000717 �.001183 �.002473 �.002875 �.002264 �.000668 .001732

3 .181818 .001513 .001299 .000452 �.000533 �.001253 �.001459 �.001055 �.000095

4 .272727 .000086 .001342 .001694 .001182 .000310 �.000546 �.001166 �.001480

5 .363636 �.001195 .000875 .002252 .002458 .001685 .000429 �.000964 �.002301

6 .454545 �.002109 .000189 .002045 .003015 .002676 .001354 �.000480 �.002506

7 .545455 �.002506 �.000480 .001354 .002676 .003015 .002045 .000189 �.002109

8 .636364 �.002301 �.000964 .000429 .001685 .002458 .002252 .000875 �.001195

9 .727273 �.001480 �.001166 �.000546 .000310 .001182 .001694 .001342 .000086

10 .818182 �.000095 �.001055 �.001459 �.001253 �.000533 .000452 .001299 .001513

11 .909091 .001732 �.000668 �.002264 �.002875 �.002473 �.001183 .000717 .002799

12 1 .003812 �.000113 �.002984 �.004495 �.004495 �.002984 �.000113 .003812

14 In Eq. (10.11), T is known as a smoother matrix and is commonly designated S. The designation
is arbitrary, but we are using T because we designated our matrix of simple slopes as S.
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Z xmax

xmin

f
00
xð Þ

h i2
dx ¼ β0

Tβ ð10:11Þ

Substituting for the relevant portion in Eq. (10.10) gives us

S fð Þ ¼
Xn
i¼1

y� Xβ½ �2 þ λβ0
Tβ ð10:12Þ

and solving for β produces augmented normal equations:

β ¼ X
0
XþλT

� ��1

X
0
y ð10:13Þ

and an augmented hat matrix:

H¼X X
0
XþλT

� ��1

X
0 ð10:14Þ

Looking over these equations, we see that we incorporate a weighted penalty by

including it as part of our design matrix. Doing so involves three steps.

• First, substitute the quantile knot values for the predictors, and use Eq. (10.9) to

create another knot matrix T. The top portion of Table 10.18 presents the matrix,

and the first value was found as follows:

:1111� :5ð Þ2 � 1
12

h i
:1111� :5ð Þ2 � 1

12

h i
4

�
:1111� :1111j j � :5ð Þ4 � :5 :1111� :1111j j � :5ð Þ2 þ 7

240

h i
24

¼ :00254

• Using procedures described in Chap. 5, perform an eigen decomposition of T to

find its square root: ffiffiffiffi
T

p
¼VDV

0 ð10:15Þ
where V is a matrix of the eigenvectors of T and D is a diagonal matrix of the

square root of the eigenvalues of T. Table 10.18 shows the relevant values using

our data set.15

• Create an augmented matrix, inserting
ffiffiffiffi
T

p
and two rows and columns of zeros as

shown in Table 10.19. Notice that I have included a column for the criterion that

also includes zeros.

15 Finding the eigenpairs of T using the procedures described in Chap. 5 requires many iterations,

so you might want to save yourself some time by using a statistical package for these calculations.
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Table 10.18 Appended knot matrix and eigen decomposition

.11111 .22222 .33333 .44444 .55556 .66667 .77778 .88889

.11111 .00254 .00088 �.00080 �.00203 �.00251 �.00209 �.00077 .00130

.22222 .00088 .00140 .00107 .00027 �.00054 �.00107 �.00114 �.00077

.33333 �.00080 .00107 .00216 .00210 .00126 .00010 �.00107 �.00209

.44444 �.00203 .00027 .00210 .00300 .00259 .00126 �.00054 �.00251

.55556 �.00251 �.00054 .00126 .00259 .00300 .00210 .00027 �.00203

.66667 �.00209 �.00107 .00010 .00126 .00210 .00216 .00107 �.00080

.77778 �.00077 �.00114 �.00107 �.00054 .00027 .00107 .00140 .00088

.88889 .00130 �.00077 �.00209 �.00251 �.00203 �.00080 .00088 .00254ffiffiffiffi
T

p ¼VDV
0

.028297 .008306 �.003691 �.016264 �.024108 �.023090 �.009772 .010264

.008306 .025059 .014513 .000858 �.008952 �.009385 �.014364 �.010402

�.003691 .014513 .032358 .021042 .009164 �.003775 �.005928 �.019509

�.016264 .000858 .021042 .036099 .019845 .010229 �.006752 �.021636

�.024108 �.008952 .009164 .019845 .034794 .018494 �.000166 �.017789

�.023090 �.009385 �.003775 .010229 .018494 .028255 .014309 �.004651

�.009772 �.014364 �.005928 �.006752 �.000166 .014309 .027962 .011276

.010264 �.010402 �.019509 �.021636 �.017789 �.004651 .011276 .031197

Table 10.19 Form of the

augmented matrix for a

penalized smoothing spline

1 x xb1 xb2 xb3 xb4 xb5 xb6 xb7 xb8 y

1 x xb1 xb2 xb3 xb4 xb5 xb6 xb7 xb8 y

1 x xb1 xb2 xb3 xb4 xb5 xb6 xb7 xb8 y

1 x xb1 xb2 xb3 xb4 xb5 xb6 xb7 xb8 y

1 x xb1 xb2 xb3 xb4 xb5 xb6 xb7 xb8 y

1 x xb1 xb2 xb3 xb4 xb5 xb6 xb7 xb8 y

1 x xb1 xb2 xb3 xb4 xb5 xb6 xb7 xb8 y
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Note: xbi denotes a basis function, and
ffiffiffiffi
T

p
denotes the square root

of the appended knot matrix
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10.3.4.4 Calculating the Smoothing Parameter

The final step is to weight the penalty matrix by the smoothing parameter, λ. As
noted earlier, if the smoothing parameter is very small, then curvature is not

penalized and a wiggly function that (nearly) interpolates the data will provide

the best fit. On the other hand, if the smoothing parameter is large, then curvature is

penalized heavily, resulting in a relatively flat line of best fit (that could be linear or

nonlinear). Figure 10.11 shows examples of each kind. The top half shows a linear

fit. When λ¼ 0, the plotted function is very wiggly; when the smoothing parameter

is increased (λ¼ 0.5), the function is flattened out. The bottom half of the figure

shows a similar pattern using a quadratic function. As before, the magnitude of the

smoothing parameter controls the wiggliness of the line, not its form.
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Fig. 10.11 Effects of smoother values on wiggliness of a penalized natural cubic spline
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The following steps can be used to find a value of λ that best balances fit and

smoothness:

• Create a small starting value for λ (e.g., 1.00 E� 8) and increase it incrementally

[e. g., (λnew¼ λold+ λold
1.5)] after cycling through the remaining steps.

• Multiply
ffiffiffiffi
T

p � ffiffiffi
λ

p
to complete the design matrix.

• Perform an OLS regression using the design matrix, and calculate the residual

sum of squares and hat values (hi) from the hat matrix.

• Compute the generalized cross-validation term.

GCV ¼ N � SSresð Þ= N �
X

hi

� �2
ð10:16Þ

Similar to the DFFIT statistic described in Chap. 6, this term represents the results

from a series of “leave one observation out” analyses, quantifying the averaged

squared difference between the omitted value and its fitted value. Small values

signify a good fit, so we perform a grid-search looking for the smoother value λ that
minimizes the term.

Table 10.20 shows the results from 20 smoother values. As you can see, the

smallest GCV value is found when λ¼ .000022168.

Table 10.20 Generalized cross-validation term, smoothing parameter, and penalized natural

cubic spline: example 1

λ GCV ŷ

1 .000000577 2.709330598 1.048477
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Week (Unit Value)

Raw Data Penalized Natural Cubic Spline

2 .000000865 2.644660469 1.238514

3 .000001297 2.556719041 2.083817

4 .000001946 2.442410940 4.807188

5 .000002919 2.303005798 5.601235

6 .000004379 2.147369542 2.457529

7 .000006568 1.993367637 1.163116

8 .000009853 1.864280784 1.549287

9 .000014779 1.779688145 2.551352

10 .000022168 1.746171002 4.554544

11 .000033253 1.755721124 6.740053

12 .000049879 1.793659612 7.454887

13 .000074818 1.849238001

14 .000112227 1.920584570

15 .000168341 2.011652669

16 .000252512 2.125307061

17 .000252512 2.125307061

18 .000378768 2.258648482

19 .000568151 2.404439496

20 .000852227 2.557884776
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Multiplying
ffiffiffiffi
T

p
by

ffiffiffi
λ

p
yields the augmented matrix shown in Table 10.21, and

performing a regression analysis with this matrix yields the fitted values shown in

Table 10.20. Because the smoother value lies very close to 0, the function nearly

interpolates the data.

We can quantify the strength of the association shown in Table 10.20 by forming

a test statistic known as “deviance explained” (DE).

DE ¼ SSregression=SStotal ð10:17Þ
This statistic is comparable to the coefficient of determination (R2) in a linear

regression analysis and represents the proportion of the total variance in y that

can be explained by the penalized cubic spline. In our example, this statistic is

extremely large (DE¼.9745), indicating an excellent fit.

10.3.4.5 A Second Example

In our first example, the predictors were unique and evenly spaced, making it easy to

compute the sample quantiles. This will not always be the case, so we will finish this

section with a second example that requires us to compute the quantiles using a

different method. To help us out, imagine I had also asked students “How concerned

are you with getting good grades,” andwe nowwant to examine how this new variable

predicts our criterion (i.e., hours/week spent studying). The new predictor appears in

Table 10.22 and unlike our first predictor, (1) the values are not evenly spaced, (2) the

values are not sorted in ascending order, and (3) there are duplicates.16 To accommo-

date these features, we need to modify the quantiles for our sample.

Table 10.22 Basis function for a second data set with quantile knots

Sample quantiles

x x
Unit

scaling .014815 .050370 .164444 .268148 .423704 .524444 .670222 .813630

1 1.45 .32000 �.002421 �.001740 .000297 .001665 .002016 .001340 �.000077 �.001406

1 2.91 .70933 �.001989 �.001889 �.001463 �.000852 .000420 .001260 .001867 .000877

1 .30 .01333 .007225 .005896 .001826 �.001249 �.004025 �.004388 �.002814 .000901

1 3.35 .82667 .001305 .000827 �.000525 �.001317 �.001476 �.000948 .000346 .001470

1 .35 .02667 .006733 .005547 .001830 �.001050 �.003726 �.004126 �.002716 .000746

1 .75 .13333 .002877 .002666 .001725 .000444 �.001371 �.002031 �.001882 �.000390

1 1.10 .22667 �.000101 .000254 .001184 .001387 .000513 �.000255 �.001032 �.001093

1 .25 .00000 .007716 .006245 .001822 �.001448 �.004325 �.004650 �.002912 .001057

1 2.15 .50667 �.004380 �.003650 �.001332 .000630 .002762 .003099 .001741 �.000810

1 2.25 .53333 �.004334 �.003652 �.001471 .000415 .002585 .003086 .001925 �.000616

1 3.35 .82667 .001305 .000827 �.000525 �.001317 �.001476 �.000948 .000346 .001470

1 4 1.00000 .007716 .006245 .001822 �.001448 �.004325 �.004650 �.002912 .001057

16 The (fabricated) data in Table 10.22 were collected by asking students to place a mark on a line

with endpoints (0¼ not at all 4¼ very) to indicate how concerned they were about getting good

grades. The tabled values represent distance from 0.
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There are several ways to calculate sample quantiles, and the method we will

learn is the default method in R.

• After ensuring that all values lie within [0,1], sort the data in ascending order

using only unique values, and record their rank order (see Table 10.23).

• Perform the following calculations, where q¼ the quantile, and designate the

integer ( j) and the remainder (g).

h ¼ N � 1ð Þq½ � þ 1 ð10:18Þ
To illustrate, with 11 unique values in our data set, the following calculations

produce h for our first value:

h ¼ 11� 1ð Þ � :11111½ � þ 1 ¼ 2:11111

and

j ¼ 2

g ¼ :11111

• Locate the predictor value associated with j and ( j+ 1) and use the following

formula to calculate the sample quantile:

qs ¼ jþ g � jþ 1ð Þ � j½ �f g ð10:19Þ

Notice that j refers to the predictor value associated with a particular ordinal

position. Using our sample, j¼ 2, refers to our second, sorted predictor (.01333),

and j+ 1 refers to our third, sorted predictor (.02667). Table 10.23 presents the

complete calculations.

After computing the sample quantiles, we use them to compute the basis

function and an appended knot matrix and its eigen decomposition in the manner

described earlier. Finally, we create an augmented design matrix and perform OLS

Table 10.23 Calculations for sample quantiles

Rank

Unique,

ordered

values

Desired

quantile h Calculation of sample quantiles using Eq. (10.19)

1 .00 .11111 2.11111 .01333 + {.11111 * [(.02667)�.01333]}¼.014815

2 .01333 .22222 3.22222 .02667 + {.22222 * [(.13333)�.02667]}¼.050370

3 .02667 .33333 4.33333 .13333 + {.33333 * [(.22667)�.13333]}¼.164444

4 .13333 .44444 5.44444 .22667 + {.44444 * [(.32000)�.22667]}¼.268148

5 .22667 .55556 6.55556 .32000 + {.55556 * [(.50667)�.50667]}¼.423704

6 .32000 .66667 7.66667 .50667 + {.66667 * [(.53333)�.50667]}¼.524444

7 .50667 .77778 8.77778 .53333 + {.77778 * [(.70933)�.53333]}¼.670222

8 .53333 .88889 9.88889 .70933 + {.88889 * [(.82667)�.70933]}¼.813630

9 .70933

10 .82667

11 1.00
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regression using a grid-search method to find a smoother value that minimizes the

GCV. If you follow those steps, you will find that λ¼.0218416 andGCV¼ 4.29011.

Table 10.24 shows the pattern. As you can see, the form of this smoothing spline is

quite different from the one we found in our original example and does not fit the

data as well (deviance explained¼.5173). Apparently, students have to care a lot

about getting good grades before they study hard!

10.3.5 R Code: Penalized Natural Cubic Splines

#Penalized Splines (Returned values approximate textbook values)

x=seq(1:12)

y=c(1,1.5,1.6,5,6,2,1.4,1.25,3,4,7.2,7.3)

spl.x <-smooth.spline(x,y,spar=.25);fitted(spl.x);spl.x$lambda

z=c(1.45,2.91,.3,3.35,.35,.75,1.10,.25,2.15,2.25,3.35,4)

spl.z <-smooth.spline(z,y,spar=.875);fitted(spl.z);spl.z$lambda

#Create split plots

old.par <- par(mfrow=c(1, 2))

plot (x,fitted(spl.x))

plot(z,fitted(spl.z))

par(old.par)

Table 10.24 Generalized cross-validation term, smoothing parameter, and penalized natural

cubic spline: example 2

λ GCV ŷ

1 .00056815 5.93436146 2.323445
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Concern with Getting a Good Grade (Unit
Value)

Raw Data Penalized Natural Cubic Spline

2 .00085223 5.70021776 4.222038

3 .00127834 5.45261218 2.329945

4 .00191751 5.20332861 5.208435

5 .00287627 4.96503609 2.318033

6 .00431440 4.74923697 2.230435

7 .00647160 4.56587209 2.216508

8 .00970740 4.42368620 2.341798

9 .01456110 4.33021362 2.961791

10 .02184164 4.29011151 3.094437

11 .03276247 4.30183034 5.208435

12 .04914370 4.35530204 6.794699

13 .07371555 4.43384697

14 .11057332 4.51979577

15 .16585998 4.59979617

16 .24878998 4.66679353

17 .37318497 4.71898650

18 .55977745 4.75766759

19 .83966617 4.78536911

20 1.25949926 4.80474924
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10.4 Chapter Summary

1. Power terms can be used in a linear regression model to analyze curvilinear

relations. Two common polynomial models are a quadratic model (x2) and a

cubic model (x3).
2. When conducting a polynomial regression, all lower-order terms should be

entered into the predictive equation before adding higher-order ones. It isn’t

necessary, but it is also a good idea to center a predictor before computing any

of its higher-order terms.

3. The simple slopes in a polynomial regression are calculated by differentiating

the function to find its first derivative.

4. Interactions involving polynomial terms can be modeled by creating cross-

product terms. Simple effects involving lower-order terms (e.g., linear and

quadratic components) can then be tested for statistical significance.

5. Polynomial regression constitutes a global fit, as all observations are raised to a

given power (e.g., all terms in a quadratic model are squared). Piecewise

polynomials use local fitting (e.g., only some observations are squared). The

value above which the observations are altered is known as a knot.

6. Regression splines are piecewise polynomials with relatively few knots, chosen

by the researcher based on theory or observation. They can be computed using

a truncated power series or an equivalent basis function with greater numerical

stability.

7. A cubic spline is comprised of sections of cubic polynomials, constrained to be

continuous in value, and equal in their first and second derivatives. A natural

cubic spline is further constrained to be linear at the ends.

8. Interpolating splines use as many knots as there are observations. Such splines

fit the data perfectly, but are very wiggly.

9. Penalized regression splines use a large subset of knots, but penalize wiggliness

to create a smoother function. The weight of the penalty is controlled by the

smoothing parameter, λ.
10. Generalized cross-validation is used to find a smoothing parameter that best

balances fit and wiggliness.
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Chapter 11

Categorical Predictors

The predictors in a linear regression model are usually continuous, not categorical.

A categorical variable has clearly defined levels, and the differences between levels

are qualitative (either-or) rather than quantitative (more or less). Examples include

subject variables (male, female), affiliations (Democrat, Republican, Libertarian),

or an experimental treatment (control group vs. experimental group). Historically,

analysis of variance (ANOVA) was used to analyze data with categorical pre-

dictors, but multiple regression can be used as well. This is because ANOVA and

multiple regression are subsets of a broader approach, known as the general linear

model. Of the two, multiple regression is the more flexible. Whereas ANOVA can

only be used with categorical predictors, multiple regression can be used with

continuous and categorical predictors.

The two approaches differ in their typical application. ANOVA is most often used

with experimental research conducted under controlled laboratory conditions, and

multiple regression is more commonly used in field settings with naturally occurring

variables. These distinctions are somewhat arbitrary, because multiple regression can

analyze experimentally manipulated or naturally occurring categorical variables.

The biggest practical difference between ANOVA and multiple regression is that

a coding scheme is needed to model the categorical predictors when using multiple

regression, such that each of the J groups needs a unique code on a set of J� 1

vectors. Creating these codes has pros and cons. On the one hand, constructing a

coding scheme offers more flexibility and forces us to think carefully about the

statistical hypotheses we wish to test; on the other hand, constructing a coding

scheme takes time, especially as the number of groups increases. Considering these

issues, I recommend that you learn the coding method and then decide whether you

want to use ANOVA or multiple regression when you analyze data with categorical

predictors.
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11.1 Coding Schemes

Imagine a fitness trainer claims to have invented a painless way to get in shape

called the Ripomatic 450. Unlike traditional exercise that requires exertion and

sweat, the Ripomatic 450 builds muscle tone effortlessly while you sleep. The

trainer conducts an experiment to test his invention. He randomly assigns 12 sub-

jects to 1 of 3 groups—(1) a no exercise control condition, (2) a traditional weight

training condition, or (3) the Ripomatic 450—with 4 subjects in each group.1 After

several weeks, he measures muscle tone using a 1–9 scale. Table 11.1 presents the

(supposed) data, along with three coding schemes we can use to analyze them, and

Fig. 11.1 presents the means.

11.1.1 Analysis of Variance

Before learning how to use multiple regression to analyze the data in Table 11.1,

let’s analyze them using ANOVA. As you might know, an ANOVA partitions the

Table 11.1 Small sample example using coding schemes for categorical predictors with equal

cell sizes

Subject Group y

Orthogonal contrast codes Dummy codes

(group 1 as

reference)

Effect codes

(group

3 as base)

Whole

numbers Fractions

1 Control 2 �1 �1 �.5 �.3333 0 0 1 0

2 Control 3 �1 �1 �.5 �.3333 0 0 1 0

3 Control 4 �1 �1 �.5 �.3333 0 0 1 0

4 Control 3 �1 �1 �.5 �.3333 0 0 1 0

5 Weights 6 0 2 0 .6667 1 0 0 1

6 Weights 2 0 2 0 .6667 1 0 0 1

7 Weights 7 0 2 0 .6667 1 0 0 1

8 Weights 9 0 2 0 .6667 1 0 0 1

9 Ripomatic 450 7 1 �1 .5 �.3333 0 1 �1 �1

10 Ripomatic 450 6 1 �1 .5 �.3333 0 1 �1 �1

11 Ripomatic 450 6 1 �1 .5 �.3333 0 1 �1 �1

12 Ripomatic 450 7 1 �1 .5 �.3333 0 1 �1 �1

1Notice that the number of subjects in each group is equal in this example. Later in this chapter, we

will learn how to accommodate unbalanced cell sizes.
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total variance in a criterion into two parts—a between-group sum of squares (SSbg)
and a residual sum of squares (SSres):

2

• The between-group component is found by computing the deviation of each

group mean Yj

� �
from the grand mean Y

� �
, multiplying the squared deviations

by the number of subjects in each group (nj), and summing the weighted squared

deviations:

SSbg ¼
X
j

nj Yj � Y
� �2 ð11:1Þ

The mean muscle tone in our example is 5.1667, and plugging in the

remaining values yields our between-group sum of squares:

SSbg ¼ 4 3� 5:1667ð Þ2 þ 4 6� 5:1667ð Þ2 þ 4 6:5� 5:1667ð Þ2 ¼ 28:6667

• The residual sum of squares is found by summing the squared deviations of each

score (yij) from its group mean Yj

� �
:

SSres ¼
X
j

X
i

yij � Yj

� �2
ð11:2Þ

3.00 6.00 6.50
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Fig. 11.1 Group means

from small sample example

in Table 11.1

2 The residual sum of squares is sometimes called the within-subject sum of squares.
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Plugging in our values produces our residual sum of squares:

SSres ¼ 2� 3ð Þ2 þ 3� 3ð Þ2 þ 4� 3ð Þ2 þ 3� 3ð Þ2
h i
þ 6� 6ð Þ2 þ 2� 6ð Þ2 þ 7� 6ð Þ2 þ 9� 6ð Þ2
h i

þ 7� 6:5ð Þ2 þ 6� 6:5ð Þ2 þ 6� 6:5ð Þ2 þ 7� 6:5ð Þ2
h i

¼ 29:00

• We can derive the total sum of squares by summing the previous components or

by summing the squared deviation of each score from the grand mean:

SStot ¼
X
j

X
i

yij � Y
� �2

ð11:3Þ

In our example, the total sum of squares¼ 28.6667þ 29.00¼ 56.6667.

• Finally, we can form an F ratio and test the significance of the between-group

effect:

F ¼ SSbg=df bg
SSres=df res

ð11:4Þ

The degrees of freedom for the between-group effect is J� 1, and the degrees of

freedom for the residual effect is J(nj� 1).

Table 11.2 summarizes the calculations from our example in a form used by

many statistical packages. As you can see, the between-group effect is significant,

indicating that the variability among the three groups is unlikely to be due to chance

alone. At this point, it would be customary to perform post hoc comparisons to

pinpoint the source of this variability.

11.1.2 Overview of Coding Schemes

Now that we know how to analyze categorical data using ANOVA, let’s look at

how multiple regression can produce the same results. As indicated earlier, we

Table 11.2 Analysis of

variance summary table for

small sample example in

Table 11.1

SS df MS F p

Groups 28.6667 2 14.3333 4.4483 .0454

Residual 29.00 9 3.2222

Total 57.6667
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begin by constructing a coding scheme. Before describing them in detail, let’s

consider why we need them at all. Suppose we conduct a study with only two

groups, assigning a “1” to group 1 and a “2” to group 2. If we then use this

categorical designation to predict some criterion, the regression sum of squares

will represent a 1 df test of group differences.

Now suppose we have three groups in our study, as in our exercise example. It

might seem that all we need to do is assign a “3” to the third group, but this is not

so. As we have seen, with categorical data, we model the variability among the

groups by subtracting each group’s mean from the overall mean. Consequently,

each of the J¼ 3 groups needs a unique code on J� 1 vectors. When we then

regress our criterion on these vectors, the test of our regression model yields a 2 df
test of group differences, just as with an ANOVA.

Table 11.3 describes three common coding schemes: orthogonal contrast codes,

dummy codes, and effect codes. With three groups, each coding scheme is com-

prised of two vectors, with each vector representing a 1 df contrast among group

means. A contrast can specify a simple comparison between two groups (e.g.,

compare the average of group 1 vs. the average of group 2) or designate a contrast

involving multiple groups (e.g., contrast the average of group 1 vs. the combined

average of groups 2 and 3). Table 11.3 shows that coding schemes vary along this

dimension (i.e., some can handle multiple-group comparisons, whereas others can

accommodate only a single comparison). Coding schemes can also be differentiated

along two other dimensions: do the column entries sum to zero and do the cross-

product terms sum to zero. The importance of these dimensions will be described

momentarily.

11.1.3 Orthogonal Contrast Codes

We will first discuss orthogonal contrast codes because this is the scheme most

commonly associated with ANOVA. Table 11.4 illustrates this coding scheme for a

three-group design, using whole numbers for clarity. The entries specify the weight

we assign to each group mean. The first vector compares group 1 against group

3, and the second vector compares group 2 against the average of groups 1 and

3. Notice, then, that orthogonal contrast codes can handle simple comparisons and

multiple contrasts.

Table 11.3 Comparisons among three coding schemes

Coding dimension

Orthogonal contrast

codes

Dummy

codes

Effect

codes

Can handle multiple-group

contrasts

Yes No Yes

Column entries sum to zero Yes No Yes

Cross products sum to zero Yes Yes No
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Notice also that the entries within each column sum to zero and the sum of the

cross product equals zero. Collectively, these features create orthogonal contrast

codes. When we have the same number of subjects in each group, we can express

these conditions using Eq. (11.5):3

Σcij ¼ Σcijckj ¼ 0 ð11:5Þ

Orthogonal contrast codes produce uncorrelated regression coefficients. This

independence appears as a diagonal covariance matrix (i.e., variances on the

diagonals and 0 ’ s on the off diagonals) with two related consequences. First,

each regression coefficient is calculated independently of the other coefficients;

second, in combination, the regression coefficients generated from orthogonal

contrasts account for all of the between-group variance in our criterion.

It is useful (though not essential) to convert orthogonal contrast codes to

fractions by dividing each whole number by the number of groups being com-

pared.4 There are two groups being compared in the first contrast, so the contrast

weights become�.5, 0, and .5; there are three groups being compared in our second

contrast, so the weights become�.3333, .6667, and�.3333. If we then regress y on
these vectors in the usual manner (i.e., including a vector of leading 1 ’ s), we get the

output shown in Table 11.5. The top portion matches the output you get using

ANOVA. As before, we find a significant group effect, indicating that the variabil-

ity among our three groups is unlikely to be due to chance alone. The R2 value

(which ordinarily would not appear in an ANOVA table) shows that, collectively,

our vectors explain ~ 50% of the variance in muscle tone.

Table 11.4 Orthogonal

contrast codes for a three-

group design

Group Vector 1 Vector 2 Cross product

Group 1 �1 �1 1

Group 2 0 2 0

Group 3 1 �1 �1

Σ 0 0 0

3 Technically, two vectors are orthogonal if their cross products sum to zero, regardless of whether

their individual column values sum to zero. However, two contrasts are orthogonal only if both

criteria are met.
4 The advantage of using fractional orthogonal codes is that the regression coefficients represent

differences between group means.
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11.1.3.1 Interpreting the Regression Coefficients

Now let’s look at the regression coefficients themselves. The intercept represents

the unweighted grand mean, found by first calculating the mean of each group and

then averaging the group means:5

Mu ¼
Σyj
J

ð11:6Þ

Plugging in our values yields the value for b0 shown in Table 11.5:

Mu ¼ 3þ 6þ 6:5ð Þ
3

¼ 5:1667

The b1 coefficient (b1¼ 3.50) represents the difference between the mean of

group 3 (Ripomatic 450) and the mean of group 1 (control). When we divide the

coefficient by its standard error, we get the t value for this two-group comparison.

As you can see, the effect is significant in our example, indicating that the

Table 11.5 Regression output using orthogonal contrast coding

Significance test of regression model

SS df MS R2 F p

Regression 28.6667 2 14.3333 .4971 4.4483 .0454

Residual 29.00 9 3.2222

Total 57.6667

Regression coefficients

b seb SS t p Explanation

b0 5.1667 .5182 9.9706 .0000 Unweighted grand

mean

b1 3.50 1.2693 24.50 2.7574 .0222 Group 1 vs. group 3

b2 1.25 1.0992 4.1667 1.1371 .2848 Group 2 vs. average

of groups 1 and 3

Covariance matrix

.2685 .0000 .0000

.0000 1.6111 .0000

.0000 .0000 1.2083

5We will define the weighted grand mean in the last section of this chapter. For now, we note that

the unweighted and weighted grand means are the same with equal group sizes. Finally, you might

find it helpful to think of the unweighted mean as the equally weightedmean because we are giving

equal weight to each group. (Since the weights are equal, it’s the same as giving no weight at all,

which is why it’s called unweighted.)
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Ripomatic 450 is significantly different from the control condition. Applying

Eq. (11.7), we can also calculate the coefficient’s sum of squares:

SSbi ¼
bi
sebi

 �2

�MSres ð11:7Þ

Plugging in our numbers produces the sum of squares associated with b1:

SSb1 ¼
3:5

1:2693

 �2

� 3:2222 ¼ 24:50

The b2 coefficient (b2¼ 1.25) represents the difference between the mean of

group 2 (weights) and the average of groups 1 and 3. Dividing this coefficient by its

standard error yields the t value for this contrast, which, in our example, is not

significant. The sum of squares associated with this coefficient can also be found

using Eq. (11.7):

SSb2 ¼
1:25

1:0992

 �2

� 3:2222 ¼ 4:1667

11.1.3.2 Orthogonal Contrasts Reproduce the Regression Sum

of Squares

Looking at the covariance matrix, we see that all of the off-diagonal elements¼ 0.

This is because these contrasts are orthogonal. To understand why this is important,

let’s add up the SS values of our two regression coefficients:

24:50þ 4:1667 ¼ 28:6667

Notice that the total equals the SSreg entry in the ANOVA table shown in Table 11.2.

This is no coincidence. With three groups, the 2 df between-groups term in an

ANOVA represents the sum of two orthogonal contrasts.

To reinforce this point, let’s consider a different set of orthogonal contrasts

shown in Table 11.6. The first vector compares group 1 vs. group 2, and the second

vector contrasts group 3 against the average of groups 1 and 2.

Table 11.6 Second set of

orthogonal contrast codes for

a three-group design

Group Vector 1 Vector 2 Cross product

Group 1 �.5 �.3333 �.16667

Group 2 .5 �.3333 .16667

Group 3 0 .6667 0

Σ 0 0 0
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When we repeat our regression analysis substituting these codes, we get the

output shown in Table 11.7. Looking things over, we see that tests of our overall

regression model, b0 coefficient, and covariance matrix remain unchanged, but our

two regression coefficients are not the same as before. Now, b1 represents the

difference between the mean of group 2 (weights) and the mean of group 1 (control),

and b2 represents the difference between the mean of group 3 (Ripomatic 450) and

the average of groups 1 and 2. Nevertheless, if we add the sum of squares associated

with these tests, we still obtain SSreg (18.00 + 10.6667¼ 28.6667). This is because

the contrasts are orthogonal and, in combination, represent all of the explained

variance in our criterion.

11.1.3.3 Alternative Formula for Computing 1 df Contrasts

The sum of squares associated with a 1 df contrast can also be directly calculated

from the group means:

SScontrast ¼ Σ ciyð Þ2 � mh

Σci2
ð11:8Þ

where ci¼ the contrast coefficient,y¼ the mean involved in the comparison, andmh

¼ the harmonic mean. The harmonic mean is found using Eq. (11.9):

mh ¼ jc

Σ 1
nj

� � ð11:9Þ

Table 11.7 Regression coefficients and covariance matrix from second set of orthogonal contrast

codes

Significance test of regression model

SS df MS R2 F p

Regression 28.6667 2 14.3333 .4971 4.4483 .0454

Residual 29.00 9 3.2222

Total 57.6667

Regression coefficients

b seb SS t p Explanation

b0 5.1666 .5182 9.9706 .0000 Grand mean

b1 3.00 1.2693 18.00 2.3635 .0424 Group 1 vs. group 2

b2 2.00 1.0992 10.6667 1.8194 .1022 Group 3 vs. average

of groups 1 and 2

Covariance matrix

.2685 .0000 .0000

.0000 1.6111 .0000

.0000 .0000 1.2083
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where jc ¼ the number of groups involved in the comparison and nj ¼ the sample

size of each group. When the number of subjects in each group is equal (as is true in

our example), computing the harmonic mean is the same as taking the size of any

group; but when the sample sizes are unequal, as they will be later in the chapter, an

adjustment is needed. For clarity, we will compute the term now and then use

Eq. (11.8) to calculate the regression sum of squares for the comparisons in

Table 11.7:

mh ¼ 3

1

4
þ 1

4
þ 1

4

¼ 3

:75
¼ 4

• Compare group 1 vs. group 2:

SScontrast ¼ �:5 � 3ð Þ þ :5 � 6ð Þ½ �2 � 4
�:52 þ :� 52
� � ¼ 1:52 � 4

:5
¼ 18:00

• Compare group 3 vs. groups 1 and 2:

SScontrast¼ �:3333�3ð Þþ �:3333�6ð Þþ :6667�6:5ð Þ½ �2�4
�:33332þ :�33332þ :66672
� � ¼1:33332�4

:6667
¼10:6667

These values match the ones we found using multiple regression. If you like, you

can apply the formula to derive the values from Table 11.5.

11.1.3.4 Fitted Values Equal the Group Mean

When we use a set of codes to define our groups, everyone in the group receives the

same code. So our expectation is that everyone’s score will equal the group mean

and that all variations from the group mean represent error. To better appreciate this

point, let’s compute our fitted values in the usual manner by multiplying Xb. Using

the regression coefficients from Table 11.7 produces the fitted values shown in

Table 11.8. As you can see, each fitted value equals its group mean, which is why

the residual sum of squares in an ANOVA is found by summing the squared

deviations of each score from its associated group mean [see Eq. (11.3)]. Because

the fitted values are the group means, we are simply substituting the group mean for

the fitted value in our usual equation:

SSres ¼
X

y� ŷð Þ2
h i

Moreover, this will be true nomatter which coding scheme we use to analyze our data.
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11.1.4 Dummy Codes

Table 11.9 shows our next set of codes, called dummy codes. With dummy coding,

we designate one of our groups to be a reference group. This group receives a score

of 0 on all vectors. It is customary to use the control condition as the reference

group, so I have selected group 1 to be the reference group in our example. Each of

the other groups then receives a score of 1 or 0 on the remaining vectors, such that

each column sum equals 1 and the cross-product sum equals 0. Notice, then, that

even though the cross-product sum equals 0, these codes are not orthogonal because
the columns do not sum to 0.

Table 11.1 shows how this coding scheme can be implemented with our data. If

we regress y on these vectors in the usual manner, we get the results shown in

Table 11.10.

11.1.4.1 Test of the Regression Model

The test of our overall regression model is identical to the one we found using

contrast codes. Because all coding schemes produce the same fitted values, this

equivalence will occur no matter which coding scheme we use.

Table 11.8 Fitted values

for a three-group design
Subject Group ŷ

1 Control 3.0

2 Control 3.0

3 Control 3.0

4 Control 3.0

5 Weights 6.0

6 Weights 6.0

7 Weights 6.0

8 Weights 6.0

9 Ripomatic 450 6.5

10 Ripomatic 450 6.5

11 Ripomatic 450 6.5

12 Ripomatic 450 6.5

Table 11.9 Dummy codes

for a three-group design
Group Vector 1 Vector 2 Cross product

Group 1 0 0 0

Group 2 1 0 0

Group 3 0 1 0

Σ 1 1 0
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11.1.4.2 Interpreting the Regression Coefficients

Our regression coefficients, however, are not the same as the ones we observed

using orthogonal contrast codes. Now, b0 represents the mean of our reference

group (group 1), b1 represents the difference between groups 2 and 1 (6� 3.0¼ 3.0),

and b2 represents the difference between groups 3 and 1 (6.5� 3.0¼ 3.5). The t-
tests associated with these coefficients indicate whether the means being compared

are significantly different from each other. In our example, we see that the control

group differs from each of the two experimental conditions.

Finally, the off-diagonal entries of the covariance matrix do not equal 0. This is

because dummy coding does not produce orthogonal comparisons. As a conse-

quence, adding the coefficient sum of squares does not reproduce SSreg:

18:00þ 24:50 6¼ 28:6667

11.1.5 Effect Codes

Table 11.11 shows our final set of codes, called effect codes. With effect coding, we

designate one of our groups to be a base group and assign this group a score of �1

on both vectors. In our example, I have set group 3 (the Ripomatic 450) to be the

base group. Each of the other groups then receives a score of 1 or 0 on the remaining

vectors, such that each column sum equals 0 and the cross-product sum equals

1. Because the cross products do not sum to 0, these codes are not orthogonal.

The final columns in Table 11.1 illustrate the use of this coding scheme with our

data set, and regressing y on these vectors produces the results shown in

Table 11.12.

Table 11.10 Regression output using dummy coding

Significance test of regression model

SS df MS R2 F p

Regression 28.6667 2 14.3333 .4971 4.4483 .0454

Residual 29.00 9 3.2222

Total 57.6667

Regression coefficients

b seb SS t p Explanation

b0 3.0 .8975 3.3425 .0086 Mean of reference

group (group 1)

b1 3.0 1.2693 18.00 2.3635 .0424 Group 1 vs. group 2

b2 3.5 1.2693 24.50 2.7574 .0222 Group 1 vs. group 3

Covariance matrix

.8056 �.8056 �.8056

�.8056 1.6111 .8056

�.8056 .8056 1.6111
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11.1.5.1 Interpreting the Regression Coefficients

As before, the test of our regression model is identical to the one we found when

using contrast codes and dummy codes, but the regression coefficients differ. Here,

our intercept represents the unweighted grand mean (b0¼ 5.1667), b1 is the differ-
ence between the mean of group 1 and the unweighted grand mean, and b2 is the
difference between the mean of group 2 and the unweighted grand mean. Thus, with

effect codes, each group receiving a “1” is compared against the unweighted grand

mean. In some cases, we can think of these effects as “treatment effects,” because

they indicate how far a mean is from the overall average.

Effect codes also compare the average of one group vs. the average of all other

groups. Why? Since the unweighted grand mean is formed by averaging the group

means, each coefficient represents a comparison between the group receiving “1”

and all other groups combined. So, the t-test for b1 is a test of group 1 vs. groups

2 and 3, and the t-test for b2 is a test of group 2 vs. groups 1 and 3. In our example,

the first comparison shows that the control condition is significantly different from

the two experimental conditions.

Table 11.11 Effect codes

for a three-group design
Group Vector 1 Vector 2 Cross product

Group 1 1 0 0

Group 2 0 1 0

Group 3 �1 �1 1

Σ 0 0 1

Table 11.12 Regression output using effect coding

Significance test of regression model

SS df MS R2 F p

Regression 28.6667 2 14.3333 .4971 4.4483 .0454

Residual 29.00 9 3.2222

Total 57.6667

Regression coefficients

b seb SS t p Explanation

b0 5.1667 .5182 9.9707 .0000 Unweighted grand mean

b1 �2.1667 .7328 28.1667 2.9566 .0160 Group 1 – grand mean

[¼compare group 1 vs. aver-

age of groups 2 and 3]

b2 .8333 .7328 4.1667 1.1371 .2848 Group 2 – grand mean

[¼compare group 2 vs. aver-

age of groups 1 and 3]

Covariance matrix

.2685 .0000 .0000

.0000 .5370 �.2685

.0000 �.2685 .5370
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We can best appreciate this point by reexamining our three group means.

Looking back to Fig. 11.1, we find control condition (M ¼ 3.00), weights

(M ¼ 6.00), and Ripomatic 450 (M ¼ 6.50). Now, let’s multiply these values by

contrast weights that represent a group 1 vs. groups 2 and 3 pattern:

3:00 � :6667ð Þ þ 6:00 � �:3333ð Þ þ 6:50 � �:3333ð Þ ¼ �2:1667

When we do, we find that the sum equals our b1 coefficient. That’s because the b1
coefficient describes the slope of the line connecting the mean of the control

condition to the average of the other two groups. We find the same pattern for b2
6:

3:00 � �:3333ð Þ þ 6:00 � :6667ð Þ þ 6:50 � �:3333ð Þ ¼ :8333

It’s important to note that a base group in effect coding is not the same as a

reference group in dummy coding. With dummy coding, the reference group is

compared against each of the other groups, one at a time; with effect coding, the

group with a “1” is tested against all other groups at once, and the base group (with

�1 for both vectors) is never compared individually against any other group.

11.1.5.2 Covariance Matrix

Glancing at the covariance matrix in Table 11.12, we see that not all of the

off-diagonal entries equal zero. This is because effect codes do not create orthog-

onal comparisons. Consequently, if we sum the regression coefficient sum of

squares, our total does not equal SSreg:

28:1667þ 4:1667 6¼ 28:6667

11.1.5.3 Effect Contrast Vectors Must Be Considered as a Unit

If you examine the coefficients for our first effect vector (1, 0, �1), you might

assume that its associated regression coefficient would provide a simple compari-

son between groups 1 and 3. Similarly, you might assume that our second effect

vector (0, 1, �1) provides a simple comparison between groups 2 and 3. These

assumptions would be true if the contrast vectors were orthogonal, but they are not.

Recall from Chap. 4 that when two predictors are not orthogonal, the regression

coefficients are characterized by interdependence (i.e., the value of a regression

coefficient depends on both vectors, not just the one with which it is associated).

In the present case, even though the codes seem to indicate a two-group compar-

ison, the regression coefficients actually produce a contrast in which one group is

6Notice that the t value for b2 in Table 11.12 matches the t value for b2 in Table 11.5. This is

because both coefficients are tests of group 2 vs. groups 1 and 3.
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contrasted against the average of the other two. Only with orthogonal vectors can

we interpret the contrasts in one vector independent of the codes in other vectors.

11.1.6 Summary

In this section, we have discussed three coding schemes. They all produce the same

overall regression results, but each offers different information regarding compar-

isons among the groups. So which one should you use? The answer is it depends on

your specific hypotheses:

• Use orthogonal contrast codes when you want to test independent hypotheses

that reproduce the regression sum of squares.

• Use dummy codes when you want to compare one group against each of the

others.

• Use effect codes when you want to test one group vs. the average of all of the

other groups.

11.1.7 R Code: Coding Schemes

grp <-c(1,1,1,1,2,2,2,2,3,3,3,3)

y <-c(2,3,4,3,6,2,7,9,7,6,6,7)

#ANOVA

anova.mod <-aov(y~factor(grp))

summary(anova.mod)

#Create Chart

grpmeans <- tapply(y, grp, mean)

barplot(grpmeans, main="Fitness by Condition",

col=c("black","gray","black"), density=c(20,15,10), angle=c(30,20,0),

xlab= "Conditions", names = c("Control","Weights","Ripomatic 450"),

ylim = c(0, 7), ylab = "Fitness")

#Create coding scheme function for a balanced 3-grp design

codes.3 <-function(y,a,b,c,d,e,f){

n=length(y)/3

c1 <-c(rep(a,4),rep(b,4),rep(c,4))

c2 <-c(rep(d,4),rep(e,4),rep(f,4))

mod <-lm(y~c1+c2)

}

#Enter criterion and coding scheme

summary(ortho1 <-codes.3(y, -.5, 0, .5, -1/3, 2/3, -1/3))

summary(dummy <-codes.3(y, 0, 1, 0, 0, 0, 1))

summary(effect <-codes.3(y, 1, 0, -1, 0, 1, -1))
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11.2 Creating Orthogonal Contrast Codes

Each coding scheme has advantages, but orthogonal contrast codes are the most

flexible. They allow us to test single mean comparisons (as with dummy codes), one

group vs. all other group contrasts (as with effect codes), and any other hypothesis

of interest.7 In order to take advantage of this flexibility, however, our vectors must

be orthogonal. The question arises, then, as to how to create orthogonal contrast

codes. We know we can check to see if they are orthogonal by verifying that the

columns and cross products sum to 0, but is there a way other than trial and error to

ensure that these conditions are met?

The answer is “yes.” In fact, we can use several approaches. Before describing

them, let’s imagine another fitness expert is interested in the effects of exercise on

muscle flexibility. She randomly assigns subjects to one of four exercise condi-

tions—aerobics, weights, Pilates, and yoga—measures flexibility 4 weeks later, and

then wishes to use a set of orthogonal contrasts to analyze the data.

11.2.1 Helmert Contrasts

Table 11.13 shows one set of orthogonal contrasts, using whole numbers for clarity.

The contrasts, formally known as Helmert contrasts, were generated by following a

simple rule of thumb: Start with the broadest possible contrast (1 group vs. the other 3)

and then narrow your comparison by omitting the group with the largest weight from

subsequent comparisons. In terms of our example, the first vector contrasts yoga

against the other three forms of exercise, the second compares Pilates against weights

and aerobics, and the third compares weights vs. aerobics. We could easily change the

groups involved in these comparisons by rearranging the order of the groups (i.e., we

could list yoga first and weights last), but once we settle on an order, we must retain it

across all three contrasts.

Table 11.13 Helmert contrasts for a four-group design with cross-product terms

Group Contrast 1 Contrast 2 Contrast 3

Cross

product_12

Cross

product_13

Cross

product_23

Aerobics �1 �1 �1 1 1 1

Weights �1 �1 1 1 �1 �1

Pilates �1 2 0 �2 0 0

Yoga 3 0 0 0 0 0

Σ 0 0 0 0 0 0

7 In Chap. 12, we will learn how effect codes can be modified to test a variety of contrasts.

392 11 Categorical Predictors

http://dx.doi.org/10.1007/978-3-319-11734-8_12


11.2.2 Gram-Schmidt Orthogonalization

The rule of thumb approach is convenient, but it doesn’t necessarily test hypotheses

of interest, which, after all, is the entire point of using orthogonal contrasts. For this

reason, it is useful to learn another approach known as the Gram-Schmidt orthog-

onalization. The approach works best when we first use a theory to devise one or

more orthogonal contrasts and then use the Gram-Schmidt procedure to generate

the remaining contrasts.

11.2.2.1 Generating the Coefficients

To illustrate, let’s assume our researcher first wishes to test whether the combina-

tion of Pilates and yoga yields greater flexibility than the combination of aerobics

and weights. The coefficients for this test appear in Table 11.14. Suppose further

that the researcher believes that yoga is superior to Pilates; the second set of

contrast coefficients in Table 11.14 tests this contrast. Notice that these contrasts

are orthogonal (i.e., each sums to zero, and their cross product sums to zero).

In order to test both of these hypotheses in a single analysis, the researcher must

find a third set of codes that is orthogonal to the other two. This is where the Gram-

Schmidt procedure comes in:

vk ¼ ck �
Xk�1

j¼1

vjc
0
kvj

v
0
jvj

k ¼ 1, . . . , n ð11:10Þ

Starting with an arbitrary seed vector (c3), we solve Eq. (11.10) for our third

orthogonal vector (v3):

v3 ¼ c3 � v1c
0
3v1

v
0
1v1

� v2c
0
3v2

v
0
2v2

To illustrate, we will create a seed vector

Table 11.14 Gram-Schmidt

orthogonalization technique
Group Contrast 1 Contrast 2 Seed 3 Contrast 3

Aerobics �.25 0 1 �.5

Weights �.25 0 2 .5

Pilates .25 �.5 3 0

Yoga .25 .5 4 0

Σ 0 0 10 0
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c3 ¼
1

2

3

4

2664
3775

and plug in the remaining values to solve the equation

v3 ¼
1

2

3

4

2664
3775�

�:25
�:25
:25
:25

2664
3775 1 2 3 4½ �

�:25
�:25
:25
:25

2664
3775

�:25 �:25 :25 :25½ �
�:25
�:25
:25
:25

2664
3775

�

0

0

�:5
:5

2664
3775 1 2 3 4½ �

0

0

�:5
:5

2664
3775

0 0 �:50 :50½ �
0

0

�:5
:5

2664
3775

¼
2

3

2:5
2:5

2664
3775

Ifwe then express thevector in deviate form,wefindour third orthogonal contrast code:

v3 ¼
�:5
:5
0

0

2664
3775

In terms of our example, this vector contrasts weight training vs. aerobics.

11.2.2.2 Using the Coefficients in a Regression Analysis

Now let’s go ahead and use these vectors in a regression analysis. Table 11.15

presents some (fictitious) data, along with the orthogonal contrast codes we have

created, and Fig. 11.2 presents the means for each group.

Table 11.15 Orthogonal

coding using Gram-Schmidt

orthogonalization

Subject Exercise y c1 c2 c3

1 Aerobics 6 �.25 0 �.5

2 Aerobics 6 �.25 0 �.5

3 Aerobics 2 �.25 0 �.5

4 Weights 1 �.25 0 .5

5 Weights 2 �.25 0 .5

6 Weights 2 �.25 0 .5

7 Pilates 7 .25 �.5 0

8 Pilates 7 .25 �.5 0

9 Pilates 8 .25 �.5 0

10 Yoga 8 .25 .5 0

11 Yoga 4 .25 .5 0

12 Yoga 6 .25 .5 0
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If we then perform a multiple regression analysis using these contrast codes as

predictors and flexibility as our criterion, we get the results shown in Table 11.16.

The following findings are noteworthy:

• The overall regression model is significant, indicating that group differences in

flexibility are unlikely to be due to chance alone.

• The intercept represents the unweighted grand mean.

• The first regression coefficient is significant, indicating that yoga and Pilates

predict greater flexibility than aerobics and weights.
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Fig. 11.2 Group means

for data in Table 11.15

Table 11.16 Regression output using orthogonal coding

Significance test of regression model

SS df MS R2 F p

Regression 52.9167 3 17.6389 .7257 7.0556 .0123

Residual 20.00 8 2.50

Total 72.9167

Regression coefficients

b seb SS t p Explanation

b0 4.9167 .4564 10.7719 .0000 Unweighted grand

mean

b1 7.00 1.8257 36.75 3.8341 .0050 Average of groups

1 and 2 vs. Average

of groups 3 and 4

b2 �1.3333 1.2910 2.6667 1.0328 .3319 Group 3 vs. group 4

b3 �3.00 1.2910 13.50 2.3238 .0486 Group 1 vs. group 2

Covariance matrix

.2083 .0000 .0000 .0000

.0000 3.3333 .0000 .0000

.0000 .0000 1.6667 .0000

.0000 .0000 .0000 1.6667
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• The second regression coefficient is not significant, indicating that yoga does not

predict greater flexibility than Pilates.

• The third regression coefficient is significant, indicating that aerobics predicts

greater flexibility than weight training.

• The covariance matrix is diagonal (confirming that the contrasts are orthogonal).

Consequently, summing the contrast sum of squares reproduces the regression

sum of squares:

36:75þ 2:6667þ 13:50 ¼ 52:9167

11.2.3 Polynomial Terms in a Trend Analysis

Earlier we noted that we ordinarily cannot assign a meaningful numerical value to

categorical data because the ordering of groups is arbitrary. Trend analysis consti-

tutes an exception. Consider research designed to test the effectiveness of a new

medicine. Suppose a researcher randomly assigns subjects to receive either 10, 15,

20, or 25 mg of the medicine. In this case, the groups have a meaningful numerical

order and can be analyzed with a set of orthogonal polynomial contrast codes. Three

vectors are needed, each representing one of the three possible polynomial trends

(e.g., linear, quadratic, and cubic) in a four-group design.

Recall from Chap. 10 that polynomial terms are powers of an initial linear

predictor. For example, starting with x, we can test a quadratic function by adding
x2, a cubic function by adding x3, and so on. A similar logic can be applied to

categorical predictors with an interpretable numerical order. These predictors can

be of two varieties: equally spaced intervals (e.g., high school class: freshman,

sophomore, junior, senior) or unequally spaced intervals (e.g., ages: 10, 20,

40, and 65).

Most statistics textbooks provide tables of polynomial coefficients. These tables

are convenient, but they are useful only when the groups are equally spaced.

Moreover, they provide no insight into how the terms are calculated. Since one of

the reasons I am writing this book is to demystify such calculations, let’s spend a

moment learning how to calculate the coefficients themselves, using a four-group

design with unequal spacing.

Imagine we are predicting stiffness as a function of how many days/week a

person exercises. As just noted, we will use unequal spacing in our example (e.g.,

1, 2, 5, and 7 days/week), but the procedure works just as well with even spacing:

• Create three seed vectors: (1) The first represents the true numerical scores

assigned to the groups, (2) the second is the square of each of the first vector

values, and (3) the third is the cube of each of the first vector values.

• To create the linear coefficients, calculate deviate scores for the first vector by

subtracting its mean from each value.

• To create the quadratic coefficients, regress the second seed variable on a

constant (1’s are fine) and the linear term you just calculated. The residuals

are the quadratic term.
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• To create the cubic term, regress the third seed variable on a constant and the

linear and quadratic terms. The residuals are the cubic term.

Table 11.17 illustrates the calculations, and Table 11.18 applies the contrast

codes to a (hypothetical) data set. The means appear in Fig. 11.3, and Table 11.19

shows the results from a regression analysis. The following findings are noteworthy:

• The overall regression model is significant, indicating that group differences in

stiffness are unlikely to be due to chance alone.

• The intercept represents the unweighted grand mean.

• The first regression coefficient represents the linear trend, which is not

significant.

• The second regression coefficient represents the quadratic trend, which is sig-

nificant. Looking over Fig. 11.3, we see that people who exercise infrequently

(1 day/week) and those who exercise constantly (7 days/week) experience more

stiffness than do those who exercise a moderate amount.

• The third regression coefficient, which represents the cubic trend, is not

significant.

Table 11.17 Creating orthogonal polynomials for a four-group design

Seed Seed2 Seed3

Linear:

subtract

mean from

all scores of

seed 1

Quadratic: regress Seed2

on a vector of 1’s and the

linear term. The residuals

are the quadratic term

Cubic: regress Seed3 on a

vector of 1’s, the linear

term, and the quadratic

term. The residuals are the

cubic term

1 1 1 �2.75 3.09890 �5.08475

2 4 8 �1.75 �1.84615 8.13559

5 25 125 1.25 �4.68132 �5.08475

7 49 343 3.25 3.42857 2.03390

Table 11.18 Trend analysis using orthogonal polynomials with unequal spacing

Subject Days/week of exercise y c1 c2 c3

1 1 2 �2.75 3.0989 �5.0847

2 1 1 �2.75 3.0989 �5.0847

3 1 3 �2.75 3.0989 �5.0847

4 2 3 �1.75 �1.8462 8.13559

5 2 8 �1.75 �1.8462 8.13559

6 2 7 �1.75 �1.8462 8.13559

7 5 5 1.25 �4.6813 �5.0847

8 5 8 1.25 �4.6813 �5.0847

9 5 7 1.25 �4.6813 �5.0847

10 7 2 3.25 3.42857 2.0339

11 7 4 3.25 3.42857 2.0339

12 7 3 3.25 3.42857 2.0339
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• The covariance matrix is diagonal (confirming that the contrasts are orthogonal).

Consequently, summing the contrast sum of squares reproduces the regression

sum of squares:

:5723þ 42:7850þ 2:8920 ¼ 46:25
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Fig. 11.3 Group means

from orthogonal

polynomials with unequal

spacing

Table 11.19 Regression output using orthogonal polynomials with unequal spacing

Significance test of regression model

SS df MS R2 F p

Regression 46.25 3 15.4167 .6711 5.4412 .0247

Residual 22.6667 8 2.8333

Total 68.917

Regression coefficients

b seb SS t p Explanation

b0 4.5833 .4859 9.4324 .0000 Unweighted grand mean

b1 �.0916 .2037 .5723 .4494 .6650 Linear

b2 .5527 .1422 42.7850 3.8859 .0046 Quadratic

b3 �.0889 .0880 2.8927 1.0104 .3419 Cubic

Covariance matrix

.2361 .0000 .0000 .0000

.0000 .0415 .0000 .0000

.0000 .0000 .0202 .0000

.0000 .0000 .0000 .0077
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11.2.4 R Code: Creating Orthogonal Contrasts

#Gram-Schmidt Orthogonalization

v1 <-rbind(-.25,-.25,.25,.25)

v2 <-rbind(0,0,-.5,.5)

c3 <-rbind(1,2,3,4) #Seed vector

v3<-c3-(v1%*%t(c3)%*%v1)/as.vector(t(v1)%*%v1)-

(v2%*%t(c3)%*%v2)/as.vector(t(v2)%*%v2)

v3 <-v3-mean(v3)

codes <-cbind(v1,v2,v3);codes

#Regression Analysis Using Orthogonal Codes

y=c(6,6,2,1,2,2,7,7,8,8,4,6)

orth1 <-c(rep(v1[1],3),rep(v1[2],3),rep(v1[3],3),rep(v1[4],3))

orth2 <-c(rep(v2[1],3),rep(v2[2],3),rep(v2[3],3),rep(v2[4],3))

orth3 <-c(rep(v3[1],3),rep(v3[2],3),rep(v3[3],3),rep(v3[4],3))

gram.reg <-lm(y~orth1+orth2+orth3)

summary(gram.reg)

#Create Orthogonal Polynomial Coefficients

seed1 <-rbind(1,2,5,7)

seed2 <-seed1^2

seed3 <-seed1^3

line <-seed1-mean(seed1)

quad.reg <-lm(seed2~seed1+line)

quad <-resid(quad.reg)

cubic.reg <-lm(seed3~line+quad)

cube <-resid(cubic.reg)

#Regression Analysis Using Orthogonal Polynomial Coefficients

y=c(7,8,6,6,1,2,4,1,2,7,5,6)

poly1 <-c(rep(line[1],3),rep(line[2],3),rep(line[3],3),rep(line[4],3))

poly2 <-c(rep(quad[1],3),rep(quad[2],3),rep(quad[3],3),rep(quad[4],3))

poly3 <-c(rep(cube[1],3),rep(cube[2],3),rep(cube[3],3),rep(cube[4],3))

poly.reg <-lm(y~poly1+poly2+poly3)

summary(poly.reg)

11.3 Contrast Codes with Unbalanced Designs

The procedures we have been discussing are appropriate when the number of

subjects in each group is the same, but adjustments need to be made to orthogonal

contrast codes and effect codes when cell sizes are unequal. Dummy codes do not

need to be adjusted.
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To help us understand the issues involved, let’s concoct another study. Imagine a

researcher wishes to determine which form of exercise is associated with more

physician visits for injury or accident. The researcher selects four forms of exercise

for study (swimming, jogging, rowing, and cycling) and then records exercise-

related visits to a physician. The (phony) data appear in Table 11.20, and it is

apparent that the cell sizes are uneven.

Depending on why they have come about, we have two ways of dealing with

unequal cell sizes. If we have randomly assigned subjects to conditions and, by

chance, the cell sizes are unequal, we use an unweighted means analysis that

compensates for the cell size differences. This is the method most commonly

used with ANOVA because, in an experimental setting, cell size differences are

usually accidental, not meaningful.

On the other hand, there might be instances in which different cell sizes have

occurred because of some meaningful event, such as differential attrition rates in an

experiment, or because of true differences in the population. For example, if many

more people choose one form of exercise over another, then a survey study would

most likely want to take those differences into account rather than ignore them. In

this case, we use a weighted means analysis.

11.3.1 Analysis with Unweighted Means

We will begin by considering the case where cell size differences are unintentional

rather than meaningful, which is the default setting for an ANOVA in most statistical

packages. To illustrate the process, we will use the Helmert procedure to generate a

set of orthogonal contrast weights. These weights are displayed in Table 11.21, using

whole numbers for clarity. Our first contrast compares swimming against the other

three forms of exercise, our second contrast compares jogging against rowing and

cycling, and our third contrast compares rowing vs. cycling.

Table 11.20 Small sample

example for analysis with

unequal group sizes

Group y Group nj Mean

Swimming 2 Swimming 2 1.5

Swimming 1 Jogging 5 7.2

Jogging 8 Rowing 3 4.0

Jogging 9 Cycling 2 6.5

Jogging 8

Jogging 6

Jogging 5

Rowing 3

Rowing 6

Rowing 3

Cycling 6

Cycling 7
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If we regress y on these vectors in the usual manner, we get the output shown in

Table 11.22.

We know from previous analyses that the test of our overall regression equation

does not vary across coding schemes, so we will not spend time interpreting

it. Instead, let’s look at our covariance matrix. Even though we used orthogonal

predictors, we can see that we do not have a diagonal covariance matrix. This is

because the cell sizes are unequal. Formally, we can say that a set of contrasts is

orthogonal only if it satisfies the requirements in Eq. (11.11):

Table 11.21 Unweighted

contrast coefficients with

unbalanced designs

Subject GRP c1 c2 c3 y

1 Swimming 3 0 0 2

2 Swimming 3 0 0 1

3 Jogging �1 2 0 8

4 Jogging �1 2 0 9

5 Jogging �1 2 0 8

6 Jogging �1 2 0 6

7 Jogging �1 2 0 5

8 Rowing �1 �1 �1 3

9 Rowing �1 �1 �1 6

10 Rowing �1 �1 �1 3

11 Cycling �1 �1 1 6

12 Cycling �1 �1 1 7

Table 11.22 Regression output using unweighted contrast coding with an unbalanced design

Significance test of regression model

SS df MS R2 F p

Regression 54.8667 3 18.2889 .7550 8.2197 .0079

Residual 17.80 8 2.2250

Total 72.667

Regression coefficients

b seb SS t p Explanation

b0 4.80 .4618 10.3948 .0000 Unweighted grand mean

b1 �1.10 .2924 31.4892 3.7620 .0055 Swimming vs. other sports

b2 .65 .3177 9.3122 2.0458 .0750 Jogging vs. rowing and

cycling

b3 1.25 .6808 7.50 1.8360 .1037 Rowing vs. cycling

Covariance matrix

.2132 .0216 �.0402 .0464

.0216 .0855 .0134 �.0155

�.0402 .0134 .1009 �.0309

.0464 �.0155 �.0309 .4635
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Σnjcj ¼ Σnjcijckj ¼ 0 ð11:11Þ

The equation looks complicated, but all we’ve done is add each group’s sample size

(nj) to Eq. (11.5). We didn’t need to do that earlier because each group had the same

number of observations, but we do need to make this adjustment when the cell sizes

are uneven.

11.3.1.1 Interpreting the Regression Coefficients

Turning now to the regression coefficients, we see that our first contrast is signif-

icant, but our second and third contrasts are not. We might also note that when we

add up the sum of the squares associated with each coefficient, we do not reproduce

our regression sum of squares:

31:4892þ 9:3122þ 7:50 6¼ 54:8667

Finally, notice that the intercept represents the unweighted grand mean [see

Eq. (11.6)]:

1:5þ 7:2þ 4þ 6:5ð Þ
4

¼ 4:80

11.3.1.2 Calculating the Sum of Squares from the Group Means

The sum of squares for an unweighted contrast (SScu) can also be calculated using

the group means:

SScu ¼
Σ ycið Þ2
h i

� cmh

Σci2
ð11:12Þ

where y refers to a group mean, ci refers to the contrast coefficients, and cmh refers

to the harmonic mean of the contrast:

cmh ¼ 1

Σ
1

n
� c2

Σc2

� � ð11:13Þ

To see how the formula works, we will apply it to our first contrast in which we

compared swimming against the other forms of exercise. We begin by calculating

the harmonic mean of the contrast:
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cmh ¼ 1

1
2
� 32

12

� �
þ 1

5
� �12

12

� �
þ 1

3
� �12

12

� �
þ 1

2
� �12

12

� � ¼ 2:1687

We then compute the sum of squares as follows, matching the value shown in

Table 11.22:

SScu ¼ 1:5 � 3ð Þ þ 7:2 � �1ð Þ þ 4 � �1ð Þ þ 6:5 � �1ð Þ½ �2 � 2:1687
12

¼ 31:4892

Similar calculations produce our second contrast:

cmh ¼ 1

0ð Þ þ 1
5
� 22

6

� �
þ 1

3
� �12

6

� �
þ 1

2
� �12

6

� � ¼ 3:6735

and

SScu ¼ 0ð Þ þ 7:2 � 2ð Þ þ 4 � �1ð Þ þ 6:5 � �1ð Þ½ �2 � 3:6736
6

¼ 9:3122

I will leave it to you to calculate the sum of squares for our third contrast.

11.3.2 Weighted Means Analysis

In most situations, the unweighted approach is the one to use when analyzing

categorical data with uneven cell sizes. When cell size differences are meaningful,

however, you might wish to incorporate them rather than ignore them by using a

weighted means analysis.

11.3.2.1 Calculating Orthogonal Coefficients

To perform a weighted means analysis, we need to adjust our contrast coefficients

by their cell sizes. There are several ways to do this, but I prefer a slight modifi-

cation of the method of successive residuals that we learned when calculating

orthogonal polynomial coefficients. Here, we will use the following terminology:

ui ¼ unweighted coefficients we are using as seeds

wi ¼ weighted coefficients we wish to calculate
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Table 11.23 reproduces Table 11.21 using this new terminology. We calculate

the weighted coefficients using the same procedures we used to calculate orthog-

onal polynomial coefficients in Table 11.17:

• To calculate w1, create deviate scores of u1.
• To calculate w2, regress u2 on leading 1’s and w1. The residuals ¼ w2.

• To calculate w3, regress u3 on leading 1’s, w1, and w2. The residuals ¼ w3.

11.3.2.2 Weighted Regression Analysis

Regressing y on the adjusted coefficients produces the results shows in Table 11.24.
Five points merit attention:

• The overall test of the regression model remains unchanged. As noted through-

out this chapter, this will be true no matter which coding scheme we use.

• The intercept now equals the weighted grand mean, not the unweighted grand

mean. The weighted mean is found using Eq. (11.14):

Mw ¼ ΣY
N

ð11:14Þ

• The covariance matrix is now diagonal, indicating that our coefficients are

orthogonal.

• Because the coefficients are orthogonal, summing the contrast sum of squares

reproduces the regression sum of squares:

35:2667þ 12:10þ 7:50 ¼ 54:8667

Table 11.23 Unweighted and weighted orthogonal contrast coefficients with unbalanced design

Subject Group u1 u2 u3 w1 w2 w3

1 Swimming 3 0 0 3.3333 0 0

2 Swimming 3 0 0 3.3333 0 0

3 Jogging �1 2 0 �0.6667 1.5 0

4 Jogging �1 2 0 �0.6667 1.5 0

5 Jogging �1 2 0 �0.6667 1.5 0

6 Jogging �1 2 0 �0.6667 1.5 0

7 Jogging �1 2 0 �0.6667 1.5 0

8 Rowing �1 �1 �1 �0.6667 �1.5 �0.8

9 Rowing �1 �1 �1 �0.6667 �1.5 �0.8

10 Rowing �1 �1 �1 �0.6667 �1.5 �0.8

11 Cycling �1 �1 1 �0.6667 �1.5 1.2

12 Cycling �1 �1 1 �0.6667 �1.5 1.2

404 11 Categorical Predictors



• The significance levels of some of our coefficients have changed. A comparison

involving only two means will be the same no matter which coding scheme we

use (which is why dummy codes require no adjustment for unequal cell sizes),

but a contrast involving more than two means will vary with changes in the cell

sizes. In our example, we see that our second contrast (jogging vs. rowing and

cycling), which was not significant with the unweighted means analysis, is now

significant. The change occurs because jogging has a disproportionate number of

subjects in our example. With an unweighted means analysis, this disparity is

neutralized; with a weighted means analysis, it is preserved. As I said before, if

the group size differences are interpretable, we might want to use the weighted

means analysis to incorporate these disparities.

11.3.2.3 Sum of Squares with Weighted Analysis

If we desire, we can calculate the sum of squares for a weighted contrast directly

from the means. Here, we ignore the group labels when computing our terms,

focusing only on the observations that go into creating the contrast:

SScw ¼ Σ yci � YC

� �2�ncih i
ð11:15Þ

where yci refers to the mean of each group involved in the contrast, YC refers to the

mean of the entire contrast, and nci refers to each contrast group’s cell size.

Table 11.24 Regression output using weighted contrast coding with an unbalanced design

Significance test of regression model

SS df MS R2 F p

Regression 54.8667 3 18.2889 .7550 8.2197 .0079

Residual 17.80 8 2.2250

Total 72.667

Regression coefficients

b seb SS t p Explanation

b0 5.3330 .4306 12.3849 .0000 Weighted grand mean

b1 �1.15 .2889 35.2667 3.9812 .0041 Swimming vs. other

sports

b2 .7333 .3145 12.10 2.3320 .0480 Jogging vs. rowing and

cycling

b3 �1.25 .6808 7.50 1.8360 .1037 Rowing vs. cycling

Covariance matrix

.1854 .0000 .0000 .0000

.0000 .0834 .0000 .0000

.0000 .0000 .0989 .0000

.0000 .0000 .0000 .4635
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To see how the formula works, we will compute our first weighted contrast,

comparing group 1 to the average of groups 2, 3, and 4. We’ll begin by computing

three means:

Group 1 ¼ 2þ 1ð Þ
2

¼ 1:5

Groups 2, 3, 4ð Þ ¼ 8þ 9þ 8þ 6þ 5þ 3þ 6þ 3þ 6þ 7ð Þ
10

¼ 6:1

Groups 1, 2, 3, 4ð Þ ¼ 2þ 1þ 8þ 9þ 8þ 6þ 5þ 3þ 6þ 3þ 6þ 7ð Þ
12

¼ 5:3333

We then find our contrast:

SScw ¼ 1:5� 5:3333ð Þ2 � 2
h i

þ 6:1� 5:3333ð Þ2 � 10
h i

¼ 35:2667

Our second contrast compares group 2 vs. groups 3 and 4:

Group 2 ¼ 8þ 9þ 8þ 6þ 5ð Þ
5

¼ 7:2

Groups 3, 4ð Þ ¼ 3þ 6þ 3þ 6þ 7ð Þ
5

¼ 5:0

Groups 2, 3, 4ð Þ ¼ 8þ 9þ 8þ 6þ 5þ 3þ 6þ 3þ 6þ 7ð Þ
10

¼ 6:1

SScw ¼ 7:2� 6:1ð Þ2 � 5
h i

þ 5:0� 6:1ð Þ2 � 5
h i

¼ 12:10

You can compute the sum of the squares for the third contrast if you desire.

11.3.2.4 Weighted Polynomial Trends and Effect Codes

As noted earlier, dummy codes do not need to be adjusted for unbalanced sample

sizes, but polynomial coefficients and effect codes do. The procedures described in

Sect. 11.3.2.1 can be used to adjust polynomial codes, and the easiest way to create

weighted effect codes is simply to divide each effect code by its group sample size.

The R code that accompanies this chapter performs the latter analysis.
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11.3.3 R Code: Unbalanced Designs

#Unbalanced Designs with Orthogonal Contrast Codes

g <-c(1,1,2,2,2,2,2,3,3,3,4,4)

y <-c(2,1,8,9,8,6,5,3,6,3,6,7)

c1 <-c(3,3,rep(-1,10))

c2 <-c(0,0,rep(2,5),rep(-1,5))

c3 <-c(rep(0,7),rep(-1,3),rep(1,2))

#Unweighted Regression

unweighted.reg <-lm(y~c1+c2+c3)

summary(unweighted.reg)

vcov(unweighted.reg)

anova(unweighted.reg)

#Weighted Regression

linear <-c1-mean(c1)

quad.reg <-lm(c2~c1+linear)

quadratic <-resid(quad.reg)

cubic.reg <-lm(c3~linear+quadratic)

cubic <-resid(cubic.reg)

wgts <-cbind(linear,quadratic,cubic)

wgts

weighted.reg <-lm(y~wgts)

summary(weighted.reg)

vcov(weighted.reg)

anova(weighted.reg)

#Weighted Effect Codes With Last Group as Base Group

u1 <-c(1,1,0,0,0,0,0,0,0,0,-1,-1)

u2 <-c(0,0,1,1,1,1,1,0,0,0,-1,-1)

u3 <-c(0,0,0,0,0,0,0,1,1,1,-1,-1)

gsize <-c(rep(2,2),rep(5,5),rep(3,3),rep(2,2))

e1 <-u1/gsize

e2 <-u2/gsize

e3 <-u3/gsize

wgt.eff <-lm(y~e1+e2+e3)

summary(wgt.eff)
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11.4 Chapter Summary

1. Multiple regression is commonly used with continuous predictors, but it can also

be used with categorical ones. Doing so requires constructing a set of vectors

that uniquely identifies each of the J groups. The number of vectors will always

be 1 less than the number of groups.

2. Orthogonal contrast codes partition the between-group variance into an inde-

pendent set of J� 1 contrasts. This coding scheme can accommodate two-group

comparisons and multiple-group contrasts.

3. Dummy codes are used when a single group is compared with one other group.

4. Effect codes compare one group against the average of all other groups.

5. Orthogonal contrast codes can be computed using the Gram-Schmidt technique

or by saving the residuals from a series of regression analyses using seeded

vectors.

6. A trend analysis using orthogonal polynomial terms can be used when a grouping

variable reflects a naturally increasing or decreasing category. The differences

can be evenly spaced or unevenly spaced.

7. Modifications to orthogonal contrast coefficients and effect codes are required

when cell sizes are unequal or disproportionate. The nature of the modification

depends on whether the imbalance is accidental or meaningful. We use

unweighted means when the imbalance is accidental and weighted means

when it is meaningful.
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Chapter 12

Factorial Designs

In Chap. 11, we used multiple regression to analyze data with a single categorical

predictor. Yet multiple regression, like analysis of variance (ANOVA), can also be

used with designs that combine two or more categorical predictors. In most cases,

the categorical variables are crossed to form a factorial design. In this chapter, you

will learn how to use multiple regression to analyze and interpret factorial designs.

12.1 Basics of Factorial Designs

The easiest way to understand the mechanics of a factorial design is to compare it to

a single factor design. Imagine that after reading Chap. 11, a researcher decides to

conduct another exercise study to follow-up on the (fictitious) ones we conducted.

The researcher randomly assigns 12 subjects to one of four conditions: a control

(no exercise) condition, weightlifting, cycling, or a cross-training condition in

which subjects lift weights and cycle. Several weeks later, the researcher measures

muscle tone. The (imaginary) data, along with the coding scheme we will use are

shown in Table 12.1; the means are displayed in Fig. 12.1.

12.1.1 Regression Analysis of a One-Way Design

We have used dummy codes to create our 3 vectors, designating the control

condition as the reference group. If we then regress our criterion on these coded

vectors in the usual manner, we get the output displayed in Table 12.2. By now,

interpreting the output should be familiar.
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• Our overall regression model is significant, indicating that the variation among

the four conditions is unlikely to be due to chance alone.

• The weightlifting group does not differ from the control condition, but the

cycling and cross-training groups do.

• The covariance matrix is not diagonal (because dummy codes are not

orthogonal).

12.1.2 Recasting the Data as a Factorial Design

It is perfectly acceptable to analyze the data as we have done, but Table 12.3 shows

another way to organize our data, known as a 2� 2 (read “2 by 2”) factorial design.

The first factor is cycling, and it has two levels (no or yes); the second factor is

Table 12.1 Four-group experiment as a single factor design

Subject Group y Dummy code 1 Dummy code 2 Dummy code 3

1 Control 3 0 0 0

2 Control 4 0 0 0

3 Control 3 0 0 0

4 Weightlifting 5 1 0 0

5 Weightlifting 3 1 0 0

6 Weightlifting 4 1 0 0

7 Cycling 5 0 1 0

8 Cycling 6 0 1 0

9 Cycling 4 0 1 0

10 Cross-training 9 0 0 1

11 Cross-training 9 0 0 1

12 Cross-training 8 0 0 1

3.33 4.00 5.00 8.67
1

2

3

4

5

6

7

8

9

10

Control Weightlifting Cycling Cross-Training

M
us

cl
e 

To
ne
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weightlifting, and it also has two levels (no or yes). The control condition is

represented by the absence of both forms of exercise; the cross-training condition

is represented by the presence of both forms of exercise; and the other two groups

represent a single form of exercise. Figure 12.2 shows the means using this

organizational scheme.

12.1.3 Properties of a Factorial Design

In a factorial design, two or more factors are crossed such that all possible

combinations of all factors are represented.1 The number of combinations

(or cells) is found by multiplying the levels of each factor. For example, in a

3� 4 factorial design, there are two factors: the first factor has 3 levels and the

Table 12.2 Regression output from a one-way, four-group design

Significance test of regression model

SS df MS R2 F p

Regression 50.9167 3 16.9722 .9052 25.4583 .0002

Residual 5.3333 8 .6667

Total 56.25

Regression coefficients

b seb SS t p Explanation

b0 3.3333 .4714 7.0711 .0001 Mean of control group

b1 .6667 .6667 .6667 1.00 .3466 Control vs. weightlifting

b2 1.6667 .6667 4.1667 2.50 .0369 Control vs. cycling

b3 5.3333 .6667 42.6667 8.00 .0000 Control vs. cross-training

Covariance matrix

.2222 �.2222 �.2222 �.2222

�.2222 .4444 .2222 .2222

�.2222 .2222 .4444 .2222

�.2222 .2222 .2222 .4444

Table 12.3 Recasting a one-way, four-group design as a 2� 2 factorial design

Weightlifting

No Yes

Cycling

No Control (group 1) Weightlifting (group 2)

Yes Cycling (group 3) Cross-training (group 4)

1 To be precise, the preceding definition defines a complete factorial design. Partial (or fractional)
factorial designs, which will not be considered here, occur when only some combinations are

represented.

12.1 Basics of Factorial Designs 411



second factor has 4 levels, yielding 12 possible combinations. A 2� 3� 5 design

has 3 factors: the first factor has 2 levels, the second factor has 3 levels, and the third

factor has 5 levels. Crossing all 5 factors yields 30 combinations.

Factorial designs possess several desirable features. First, by allowing us to

examine multiple factors in a single design, they are efficient. Factorial designs

are also very informative. In fact, their chief advantage is their ability to partition

the total amount of explained variance (i.e., SSreg) into components, helping us to

better understand our data. Before discussing this partitioning, you should be aware

that the following presentation applies only to balanced designs. As shown in

Table 12.4, a balanced design is one in which the cell frequencies are equal or

proportional. The variance in unbalanced factorial designs can also be partitioned,

but the components do not always equal SSreg. For this reason, we will start with a

balanced design and consider unbalanced designs later in this chapter.

12.1.4 Sources of Variance in a Balanced Factorial Design

The explained variance (SSreg) in a factorial design can be partitioned into two

components: main effects and interactions.

1. Main effects examine the overall impact of a variable without taking other

variables into account. Sometimes we say main effects “collapse” across other

variables because they are represented by the marginal means. A marginal mean

is the unweighted average of two (or more) cells in a factorial design. Table 12.5

presents the data from our exercise study, with the marginal means identified.
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Table 12.4 Cell sizes in three 2� 2 factorial designs

Balanced (equal) Balanced (proportional) Unbalanced

B1 B2 B1 B2 B1 B2

A1 3 3 A1 3 4 A1 3 4

A2 3 3 A2 6 8 A2 2 5
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2. Interactions test whether the effects of one variable vary across levels of another

variable. If, for example, the effects of weightlifting depend on whether one is

also cycling, we would say that weightlifting and cycling interact to predict

muscle tone. Conversely, if the effects of weightlifting do not depend on whether

one is also cycling, there is no interaction.

12.1.4.1 Coding with Factorial Designs

In a 2� 2 factorial design, there are two main effects. The first main effect in our

example examines whether subjects who rode a bike developed better muscle tone

than those who did not. Here we are comparing the row marginal means in

Table 12.5. The first column of contrast weights in Table 12.6 shows that we can

test these means by comparing Groups 1 and 2 vs. Groups 3 and 4. Our second main

effect is the main effect of weightlifting. Here we are comparing the column

marginal means in Table 12.5. The second column of contrast weights in Table 12.6

shows that we test these means by comparing Groups 1 and 3 vs. Groups 2 and

4. The third column of contrast weights in Table 12.6 shows a cross-product term,

formed by multiplying contrast 1 and contrast 2. As in Chap. 9, the cross-product

term will allow us to test the interaction between the two factors.

Table 12.5 Cell means and marginal means for a 2� 2 factorial design

Weightlifting

No Yes Marginal mean

Cycling No 3.3333 4.00 3.6667

Yes 5.00 8.6667 6.8333

Marginal mean 4.1667 6.3333 5.25

Table 12.6 Contrast coding for a 2� 2 factorial design

Subject y
Contrast 1

(main effect of A)

Contrast 2

(main effect of B)

Contrast 3

(A�B interaction)

1 Control 3 �.5 �.5 .25

2 Control 4 �.5 �.5 .25

3 Control 3 �.5 �.5 .25

4 Weights 5 �.5 .5 �.25

5 Weights 3 �.5 .5 �.25

6 Weights 4 �.5 .5 �.25

7 Cycling 5 .5 �.5 �.25

8 Cycling 6 .5 �.5 �.25

9 Cycling 4 .5 �.5 �.25

10 Cross-training 9 .5 .5 .25

11 Cross-training 9 .5 .5 .25

12 Cross-training 8 .5 .5 .25
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12.1.4.2 Main Effect Sum of Squares

Table 12.7 displays the output from a regression analysis that uses the coding

scheme shown in Table 12.6. The test of the regression equation is identical to

the one we obtained earlier using dummy coding, but the regression coefficients

have changed. The intercept shows the unweighted grand mean, and the value of the

first regression coefficient (b1¼ 3.1667) corresponds to the difference in the aver-

age muscle tone of subjects who cycled (M¼ 6.8333) vs. those who did not

(M¼ 3.6667).2 Notice that these values match the marginal row means in

Table 12.5. A test of this coefficient represents the main effect of cycling. With a

balanced 2� 2 design, we can use Eq. (11.7) to compute the sum of squares

associated with this main effect.3

Table 12.7 Regression output from a 2� 2 factorial design

Significance test of regression model

SS df MS R2 F p

Regression 50.9167 3 16.9722 .9052 25.4583 .0002

Residual 5.3333 8 .6667

Total 56.25

Regression coefficients

b seb SS t p Explanation

b0 5.25 .2357 22.2739 .0000 Unweighted grand mean

b1 3.1667 .4714 30.0833 6.7175 .0001 Cycling vs. no cycling

b2 2.1667 .4714 14.0833 4.5962 .0018 Weights vs. no weights

b3 3.00 .9428 6.75 3.1820 .0130 Interaction

Covariance matrix

.0556 0 0 0

0 .2222 0 0

0 0 .2222 0

0 0 0 .8889

2With categorical predictors, the slope of the regression line equals the difference between two

means.
3 If we had used dummy coding to create our grouping vectors, the b1 coefficient would represent a
simple effect rather than a main effect. For example, if we had assigned 0’s to those who did not lift

weights and 1’s to those who did, the b1 coefficient would represent the simple effect of cycling

when no weights were lifted rather than the main effect of cycling across weightlifting conditions.

Unfortunately, many researchers are unaware of this fact, leading them to erroneously interpret

their dummy-coded coefficients as main effects rather than simple effects. To avoid confusion, you

should not use dummy coding with a factorial design.
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SSA ¼ 3:1667

:4714

 �2

� :6667 ¼ 30:0833

The b2 coefficient (2.1667) corresponds to the difference in the average muscle

tone of subjects who lifted weights (M¼ 6.3333) vs. those who did not

(M¼ 4.1667). As before, these means match the column marginal means in

Table 12.5, and a test of this coefficient represents a main effect of weightlifting.

SSB ¼ 2:1667

:4714

 �2

� :6667 ¼ 14:0833

12.1.4.3 Interaction

Our final source of variance is the A� B interaction. In Chap. 9, you learned how to

model an interaction using a cross-product term, formed by multiplying two

(or more) deviate vectors. The same procedure is used with categorical variables,

except we don’t bother creating deviate values with a balanced design because our

contrasts already sum to 0. Our third contrast vector in Table 12.6 was formed by

multiplying vector 1 and vector 2. Table 12.7 shows that its associated regression

coefficient (b3¼ 3.00) is significant and its sum of squares is found as follows:

SSAB ¼ 3:00

:9428

 �2

� :6667 ¼ 6:75

12.1.4.4 Reproducing SSreg in a Balanced Factorial Design

In a moment, we will probe the nature of the interaction in detail. Before we do,

let’s consider our three sources of variance taken as a whole. First, notice that the

covariance matrix is diagonal, indicating that our three contrast vectors are orthog-

onal. We should not be surprised, therefore, to find that when we add up the sum of

squares of each term, we reconstruct our regression sum of squares.

30:0833þ 14:08333þ 6:75 ¼ 50:9167

Thus, in a balanced, two factor factorial design, the regression sum of squares

equals the sum of the main effects and interaction sum of squares.

SSreg ¼ SSA þ SSB þ SSAB ð12:1Þ

12.1.4.5 Summary

In this section you learned how to analyze a balanced factorial design using

multiple regression with coded vectors. If we had used ANOVA instead of multiple

regression, we would have gotten output similar to that shown in Table 12.8.
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The regression approach yields identical values and provides greater insight into the

calculations that produced them.

12.1.5 Probing an Interaction

Recall from Chap. 9 that an interaction tests whether the simple slope of a

regression line is parallel across all values of another variable. If the regression

lines are parallel, the interaction is not significant; if the regression lines are not

parallel, the interaction is significant.

12.1.5.1 Simple Effects

With a 2� 2 factorial design, we have only two values of each categorical variable

to compare. We calculate the simple slopes using the same procedures we first

learned in Chap. 9—create an S matrix of contrast weights, and then find the

regression coefficients by computing S0b and their associated standard errors by

taking the square root of the diagonal entries formed from S0CS.
Table 12.9 shows the Smatrix we will use to calculate our simple effects.4 There

is only one difference between the procedure we used in Chap. 9 and the one we use

here. Instead of defining high and low groups in terms of their standard deviation

from the mean, we define our groups by using their contrast codes. To illustrate, to

Table 12.8 ANOVA table

for a 2� 2 factorial design
SS df MS F p

A 30.0833 1 30.0833 45.1250 .0001

B 14.0833 1 14.0833 21.1250 .0018

AB 6.75 1 6.75 10.1250 .0130

Error 5.3333 8 .6667

Total 56.25

Table 12.9 S Matrix to derive simple effects for a 2� 2 factorial design

Simple effect

of A @ B1

Simple effect

of A @ B2

Simple effect

of B @ A1

Simple effect

of B @ A2

b0 0 0 0 0

b1 1 1 0 0

b2 0 0 1 1

b3 �0.5 0.5 �0.5 0.5

4With categorical predictors, it is customary to refer to the simple slopes as simple effects. The

terms are equivalent because, as noted in footnote 2, a simple slope represents the difference

between two group means.
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find the simple effect of cycling when no weights were lifted (see first column of

contrast codes in Table 12.9), we assign a 1 to the b1 coefficient (which represents

the effect of cycling) and �.5 to the interaction coefficient, b3. We use �.5 simply

because that’s the code we assigned to the “no-weights” condition. Had we used a

different value (e. g.,+.5 or� 1), we would have used that value instead. A similar

algorithm was used to calculate the values in the remaining columns.

After calculating our coefficients and standard errors, we get the results shown in

Table 12.10. Several points are noteworthy.

• First, let’s examine the simple slope of A @ B1 (1.6667) and the simple slope of

A @ B2 (4.6667). The difference between the two slopes equals the slope of the

interaction coefficient in Table 12.7 (b3¼ 3.00). This is no coincidence, as the

interaction term represents the difference between two simple slopes. And

because interactions are symmetrical, the difference between the two simple

slopes of B also equals 3.00.

• Also note that the simple effects of A are significant at both levels of B. To be

sure, the effects of cycling are stronger when weights are lifted, but they are also

significant when weights are not lifted. In this case, we have an “especially for”

interaction, and it is appropriate to interpret the main effect.

• The situation is different when we consider the simple effects of B. Here we find

that weightlifting does not affect muscle tone when subjects do not cycle (B @

A1 is not significant), but does affect muscle tone when subjects do cycle (B @

A2 is significant). In this case, we have an “only for” interaction and we should

refrain from interpreting the main effect of B even though it was significant.

• Finally, let’s add up the sum of squares for the two simple effects of A (4.1667

+ 32.6667¼ 36.8333). If we then subtract the interaction sum of squares

from this total, we get the sum of squares for the main effect of A

(SSA¼ 36.0833� 6.0¼ 30.0833). The same holds true for B (.6667

+ 20.1667� 6.75¼ 14.0833). In short, with a balanced design, a main effect

sum of squares equals the sum of its simple effects sum of squares minus the

interaction sum of squares.

SSme ¼ Σ SSsimple
� �� SSab ð12:2Þ

Table 12.10 Simple effects

for a 2� 2 factorial design
b seb SS t p

A @ B1 1.6667 .6667 4.1667 2.50 .0369

A @ B2 4.6667 .6667 32.6667 7.00 .0001

B @ A1 .6667 .6667 .6667 1.00 .3466

B @ A2 3.6667 .6667 20.1667 5.50 .0006
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12.1.5.2 Understanding an Interaction

Before concluding this section, let’s solidify our understanding of an interaction.

Returning to Fig. 12.2, we see that the cross-training mean is higher than the other

means. This fact alone, however, is not evidence of an interaction. The critical issue

is not whether the combination of cycling and weightlifting produces the most

benefits; the issue is whether cycling and weightlifting combine additively to affect

muscle tone. If they combine additively, there is no interaction; if they don’t, there

is. In our example, their effects are not additive.

To appreciate this point, consider the hypothetical data in Table 12.11. The

combination of weightlifting and cycling produces the greatest muscle tone in both

examples (7.0), but they differ in an important way. In the first example, the effects

are additive: Weightlifting leads to a 1.5 unit increase in muscle tone when subjects

do not cycle (5.0� 3.5), and a 1.5 unit increase in muscle tone when subjects do

cycle (7.0� 5.5). We could also say that cycling produces a 2-unit increase in

muscle tone regardless of whether subjects lift weights.

The situation is different in the second example. Here the effects of each variable

are not additive. Weightlifting produces a 1 unit increase in muscle tone when

subjects do not cycle (4.0� 3.0), but a 2-unit increase in muscle tone when subjects

do cycle (7.0� 5.0). We could also say that cycling produces a 2-unit increase in

muscle tone when subjects don’t lift weights (5.0� 3.0) but a 3-unit increase in

muscle tone when subjects do lift weights (7.0� 4.0).

In sum, only the data on the right tell us that the combination of cycling and

weightlifting produces benefits that go beyond the benefits each exercise provides

alone. In this sense, we can say that the whole equals the sum of the parts when

there is no interaction, but not when there is an interaction.

12.1.6 R Code: Factorial Design

grp <-c(1,1,1,2,2,2,3,3,3,4,4,4)

y <-c(3,4,3,5,3,4,5,6,4,9,9,8)

dum1 <-c(rep(0,3),rep(1,3),rep(0,6))

dum2 <-c(rep(0,6),rep(1,3),rep(0,3))

dum3 <-c(rep(0,9),rep(1,3))

summary(dum.reg <-lm(y~dum1+dum2+dum3))

tapply(y, factor(grp), mean) #Calculate Group Means

(continued)

Table 12.11 Additive and not additive (interactive) effects in a factorial design

Example #1

Additive/no interaction

Example #2

Not additive/interaction

Weightlifting Weightlifting

No Yes No Yes

Cycling

No 3.5 5.0

Cycling

No 3.0 4.0

Yes 5.5 7.0 Yes 5.0 7.0
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12.1.6 R Code: Factorial Design (continued)

#Effect coding

eff1 <-c(rep(-.5,6),rep(.5,6));

eff2 <-c(rep(c(rep(-.5,3),rep(.5,3)),2))

#ANOVA

anova.mod <-aov(y~factor(eff1)*factor(eff2))

summary(anova.mod)

barplot(tapply(y,list(eff2,eff1),mean),beside=T,

main = "Exercise and Muscle Tone", col = c("white", "gray"),

xlab = "Weightlifting", names = c("No", "Yes"),

ylab = "Muscle Tone", legend = c("No Bike", "Bike"),

args.legend = list(title = "Bike", x = "top", cex =1),ylim = c(0, 10))

#Regression model

reg.mod <-lm(y~eff1*eff2)

summary(reg.mod)

anova(reg.mod)

#Construct S Matrix for Simple Slopes

s0 <-rep(0,4)

s1 <-c(rep(1,2),rep(0,2))

s2 <-c(rep(0,2),rep(1,2))

s3 <-c(-.5,.5,-.5,.5)

S <- rbind(s0,s1,s2,s3)

#Simple Effecs

simp.slope <-t(S)%*%coef(reg.mod)

simp.cov <-t(S)%*%vcov(reg.mod)%*%S

simp.err <-sqrt(diag(simp.cov))

simples <-simp.slope/sqrt(diag(simp.cov))

df <-length(y)-nrow(S)

tvalues <-2*pt(-abs(simples),df=df)

crit <-abs(qt(0.025,df))

CI.low <-simp.slope-(crit*simp.err)

CI.high <-simp.slope+(crit*simp.err)

simp.table<-round(matrix(c(simp.slope,simp.err,simples,tvalues,

CI.low,CI.high),nrow=nrow(S),ncol=6),digits=5)

dimnames(simp.table)=list(c("a@b1","a@b2","b@a1","b@a2"),

c("slope", "stderr", "t","p","CI.low","CI.high"))

simp.table
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12.2 Unbalanced Factorial Designs

The preceding discussion applies only to balanced designs (i.e., ones with equal or

proportional cell sizes). Adjustments need to be made with unbalanced designs. As

we learned in Chap. 11, these adjustments can take two forms: use unweighted

means or weighted ones. This decision is even more important with a factorial

design, as the same set of data can produce very different interpretations depending

on which approach is taken.

To help us appreciate the issues involved, let’s pretend a public university is

interested in knowing how many minutes/week math students spend studying matrix

algebra as a function of their class standing and living arrangement. Having only

limited resources to answer this question (this is a public university after all!), the

administration passes out a survey to sophomores and seniors taking a course inmatrix

algebra asking (1) do you live in a dorm or in an off-campus apartment and (2) how

manyminutes/week do you study thematerial. The (mock) data appear in Table 12.12,

and themeans appear inTable 12.13,with the cell sizes in parentheses.Clearly, the cell

sizes are neither equal nor proportional, signaling an unbalanced design.

Table 12.12 Small sample example for an unbalanced 2� 2 factorial design

Subject Class

Living

arrangement y

Contrast

1 (main

effect of A)

Contrast

2 (main effect

of B)

Contrast

3 (A � B

interaction)

1 Sophomore Dorm 62 �.5 �.5 0.25

2 Sophomore Dorm 58 �.5 �.5 0.25

3 Sophomore Dorm 62 �.5 �.5 0.25

4 Sophomore Apartment 42 �.5 .5 �0.25

5 Sophomore Apartment 40 �.5 .5 �0.25

6 Senior Dorm 66 .5 �.5 �0.25

7 Senior Dorm 64 .5 �.5 �0.25

8 Senior Apartment 46 .5 .5 0.25

9 Senior Apartment 44 .5 .5 0.25

10 Senior Apartment 42 .5 .5 0.25

11 Senior Apartment 46 .5 .5 0.25

12 Senior Apartment 42 .5 .5 0.25

Table 12.13 Means for an unbalanced factorial design with cell sizes in parentheses

Living arrangement

Dorm Apartment Marginal mean

Class standing Sophomore 60.6667 (3) 41.00 (2) 50.8333

Senior 65.00 (2) 44.00 (5) 54.50

Marginal mean 62.83 42.50 52.6667
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12.2.1 Unweighted Means

Oneway to analyze unbalanced data is to assign contrast codes to each group without

taking cells size differences into account. The coding vectors in Table 12.12

follow this approach, producing the output shown in Table 12.14.5

12.2.1.1 Interpretation of Unweighted-Means Regression

• The overall regression equation is statistically significant, indicating that the

variance among our groups is greater than would be expected if chance were the

only operating factor.

• The intercept equals the unweighted grand mean (average of the group

averages).

• Both main effects are significant, but the interaction is not.

• The main effect of A (b1) indicates that sophomores study fewer hours per week

(M¼ 50.8333) than do seniors (M¼ 54.50). Notice that the regression coeffi-

cient for this term equals the difference between the two marginal means

(b1¼ 3.6667) (which do not take sample size into account).

• The main effect of B (b2) indicates that students who live in the dorms study

more hours per week (M ¼ 62.8333) than do students who live off campus

Table 12.14 Regression output for an unbalanced factorial design using unweighted means

Significance test of regression model

SS df MS R2 F p

Regression 1,117.00 3 372.3333 .9733 97.1304 .0000

Residual 30.6667 8 3.8333

Total 1,147.6667

Regression coefficients

b seb SS t p Explanation

b0 52.6667 .6061 86.8939 .0000 Unweighted grand mean

b1 3.6667 1.2122 35.0725 3.0248 .0164 Sophomore vs. senior

b2 �20.3333 1.2122 1078.5507 16.7738 .0000 Dorm vs. apartment

b3 �1.3333 2.4244 1.1594 .5500 .5974 Interaction

Covariance matrix

.3674 �.0639 �.0639 �.4472

�.0639 1.4694 �.4472 �.2556

�.0639 �.4472 1.4694 �.2556

�.4472 �.2556 �.2556 5.8778

5 The values reported in Table 12.14 are the ones you get by default using the ANOVA program in

most statistical packages. R is an exception, and the code you need to reproduce the table in R is

provided at the end of this section.
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(M ¼ 42.50). Unsurprisingly, the difference between these marginal means

equals the regression coefficient for this term (b2¼ 20.3333).

• The covariance matrix is not diagonal. Consequently, if we add up the sum of

squares of each of our component effects, we do not reproduce SSreg.

35:0725þ 1078:5507þ 1:1594 6¼ 1117:00

12.2.1.2 Calculating the Sum of Squares from the Group Means

The values shown in Table 12.14 can be calculated from the group means displayed

in Table 12.13. First, we use Eq. (11.9) to calculate the harmonic mean:

mh ¼ 4

1

3
þ 1

2
þ 1

2
þ 1

5

¼ 4

1:5333
¼ 2:6087

and then we calculate the contrasts using Eq. (11.8). I will show the calculations for

SSA, and you can calculate the other terms if you desire.

SSA ¼ 60:6667 � �:5ð Þ þ 41:00 � �:5ð Þ þ 65:00 � :5ð Þ þ 44:00 � :5ð Þ½ �2 � 2:6087
�:52 þ�:52 þ :52 þ :52
� � ¼ 35:0725

12.2.2 Weighted Means

Performing an unweighted-means ANOVA with unbalanced data requires no

adjustment to the contrast coefficients, but this is not true when weighted means

are desired. There are some tricks we can use with a 2 � 2 design, but more

complicated designs require one of the orthogonalization methods we discussed in

Chap. 11. We will use the method of successive residuals, as shown in Table 12.15.

Notice that the contrast codes comprise the seed vectors.

If we then perform the usual regression analysis, we get the output shown in

Table 12.16.

12.2.2.1 Interpretation of Weighted-Means Regression

• The overall regression equation is identical to the one produced using the

unweighted-means approach.

• The regression coefficients have changed from the earlier analysis.

• Our intercept now equals the weighted grand mean (simple average) rather

than the unweighted grand mean (average of the group averages).

• As before, both of our main effects are significant, but our interaction is not.

Notice, however, that the sign of the coefficient for the main effect of A is
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opposite to the one we found using the unweighted approach. We will discuss

this issue in greater detail momentarily.

• Notice also that the interaction term is identical to the one we found using an

unweighted-means regression. Because this term includes all four cells, it is

the same regardless of whether we use unweighted or weighted means.

Table 12.15 Orthogonal contrast codes for an unbalanced factorial design using weighted means

Seed 1 Seed 2 Seed 3

Subtract mean

from all scores

of seed 1 to find

first contrast

codes

Regress seed 2 on a

vector of 1’s and the

preceding vector. The

residuals are the second

orthogonal contrast

codes

Regress seed 3 on a

vector of 1’s and the

two preceding vectors.

The residuals are the

third orthogonal

contrast codes

�0.5 �0.5 0.25 �.583333 �.4 .217391

�0.5 �0.5 0.25 �.583333 �.4 .217391

�0.5 �0.5 0.25 �.583333 �.4 .217391

�0.5 0.5 �0.25 -.583333 .6 �.326087

�0.5 0.5 �0.25 �.583333 .6 �.326087

0.5 �0.5 �0.25 .416667 �.714286 �.326087

0.5 �0.5 �0.25 .416667 �.714286 �.326087

0.5 0.5 0.25 .416667 .285714 .130435

0.5 0.5 0.25 .416667 .285714 .130435

0.5 0.5 0.25 .416667 .285714 .130435

0.5 0.5 0.25 .416667 .285714 .130435

0.5 0.5 0.25 .416667 .285714 .130435

Table 12.16 Regression output for an unbalanced factorial design using weighted means

Significance test of regression model

SS df MS R2 F p

Regression 1,117.00 3 372.3333 .9733 97.1304 .0000

Residual 30.6667 8 3.8333

Total 1,147.6667

Regression coefficients

b seb SS t p Explanation

b0 51.1667 .5652 90.5294 .0000 Weighted

grand mean

b1 �2.80 1.1464 22.8667 2.4424 .0404 Sophomore

vs. senior

b2 �20.3913 1.2076 1092.9739 16.8856 .0000 Dorm

vs. apartment

b3 �1.3333 2.4244 1.1594 .5500 .5974 Interaction

Covariance matrix

.3194 0 0 0

0 1.3143 0 0

0 0 1.4583 0

0 0 0 5.8778
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• Finally, notice that our covariance matrix is diagonal, confirming that we have

created orthogonal contrast weights. When we sum the various sum of squares,

we find that they equal SSreg.

22:8667þ 1092:9739þ 1:1594 ¼ 1117:00

12.2.2.2 Comparing the Unweighted and Weighted-Means Analysis

The most interesting result from this analysis is that the main effect of Factor A is

significant in both analyses, but opposite in sign. When we use the unweighted

analysis, we find that sophomores study fewer hours per week (M¼ 50.8333)

than seniors (M¼ 54.50), but when we use the weighted analysis, we find that

sophomores study more hours per week (M¼ 52.80) than seniors (M¼ 50.00).

Which conclusion is correct? The answer is it depends on the question you are asking.

With an unweighted analysis, we are taking living arrangement into account.

Among dorm students and among those who live off campus, seniors study harder

than sophomores. We can think of this conclusion as similar to a semi-partial

correlation in which we are controlling for living arrangement before assessing

the effects of class standing.

With a weighted analysis, we ignore living arrangement when calculating the

effects of class standing. In this case, we conclude that sophomores study harder than

seniors. The reversal comes about because we have very few seniors living in a dorm

and very few sophomores living off campus, and the means of these two groups are

very discrepant. The unweighted analysis treats these smaller cells as if they were

the same size as the others, amplifying the amount of time seniors spend studying

and reducing the amount of time sophomores spend studying. In contrast, the

weighted analysis assigns these scores less weight because there are so few of them.

Finally, you should bear in mind that this contrived example is, well, contrived,

and that reversals this dramatic are rare. But the issue we confront when deciding

whether to use an unweighted or weighted approach still requires careful thought.

Given that the whole point of using a factorial design is to take more than one factor

into account, a weighted-means approach will usually be misleading. The only

exception is when the two categorical variables are classificatory (rather than

manipulated), and the imbalance in their cell weights reflects a genuine difference

in the population at large. This is true in our example, so the weighted-means

approach is a viable alternative to the usual, unweighted approach.

12.2.3 R Code: Unbalanced Factorial Design

g <-c(1,1,1,2,2,3,3,4,4,4,4,4)

y <-c(62,58,62,42,40,66,64,46,44,42,46,42)

#Effect coding

eff1 <-c(rep(-.5,5),rep(.5,7))

(continued)
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12.2.3 R Code: Unbalanced Factorial Design (continued)

eff2 <-c(rep(-.5,3),rep(.5,2),rep(-.5,2),rep(.5,5))

tapply(y, factor(g), mean) #Calculate Group Means

#Plot Means

barplot(tapply(y,list(eff2,eff1),mean),beside=T,

col = c("white", "gray"),

xlab = "Class", names = c("Sophomore", "Senior"),

ylab = "Study Time", legend = c("Dorm", "Apartment"),

args.legend = list(title = "Domicile", x = "topright", cex =.9),ylim =

c(0, 80))

#Unweighted Means

unweighted.mod <-lm(y~eff1*eff2)

summary(unweighted.mod)

vcov(unweighted.mod)

library(car) #Attach car package for unweighted ANOVA

Anova(unweighted.mod,type=3)

#Weighted Means

eff3 <-eff1*eff2

b1.A <-eff1-mean(eff1)

b1.reg <-lm(eff2~eff1+b1.A)

b2.B <-resid(b1.reg)

b2.reg <-lm(eff3~b1.A+b2.B)

b3.AB <-resid(b2.reg)

wgts <-cbind(b1.A,b2.B,b3.AB)

wgts

weighted.mod <-lm(y~b1.A+b2.B+b3.AB)

summary(weighted.mod)

vcov(weighted.mod)

Anova(weighted.mod) #No need to specify type with weighted means

12.3 Multilevel Designs

I have used a 2� 2 factorial to introduce you to factorial designs because the logic

and computations are best learned when the number of factors and their levels is

small. But computationally, a 2� 2 design is a special case, and it’s important to be

familiar with more complicated designs as well. In this section, we will learn how to

analyze a 3� 2 design. We still have only 2 factors, but the first factor now has

3 levels instead of 2. Consequently, we have 6 possible combinations and we need

2 coding vectors to represent our 3 level factor.

To make things less abstract, let’s imagine that the university received some

additional funds to conduct their research again. This time they are able to
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randomly assign three groups of math students (sophomores, juniors, and seniors)

to one of two living conditions (dorm or off-campus apartment) for one semester.

To keep things manageable, we will imagine we have a balanced design, with two

subjects in each of the six (3 groups of students � 2 types of living arrangements)

cells. The (invented) data, along with a coding scheme we will use to analyze them

are presented in Table 12.17; Table 12.18 presents the means.

12.3.1 Coding Scheme

Notice that we are using effect coding for this analysis. Vectors 1 and 2 represent

our 2 df grouping variable of class standing, with the third group of seniors

designated as the base group. The importance of this coding scheme will be

explained momentarily. Notice also that we have used fractional contrast coding

for living arrangement (v3). With 1 df, there is no difference between effect coding
and contrast coding, but using fractional codes here will help us distinguish the 1 df
main effect of living arrangement from the 2 df main effect of class standing.6

Table 12.17 Small sample example for a balanced 3� 2 factorial design

Group 1 Group 2 y V1 V2

V3

(Housing) V4¼ (V1�V3) V5¼ (V2�V3)

1 1 48 1 0 .5 .5 0

1 1 46 1 0 .5 .5 0

1 2 30 1 0 �.5 �.5 0

1 2 35 1 0 �.5 �.5 0

2 1 56 0 1 .5 0 .5

2 1 66 0 1 .5 0 .5

2 2 76 0 1 �.5 0 �.5

2 2 72 0 1 �.5 0 �.5

3 1 76 �1 �1 .5 �.5 �.5

3 1 68 �1 �1 .5 �.5 �.5

3 2 53 �1 �1 �.5 .5 .5

3 2 49 �1 �1 �5 .5 .5

Table 12.18 Means for a balanced 3� 2 factorial design

Living arrangement

Dorm Apartment Marginal mean

Class standing Sophomore 47.00 32.50 39.75

Junior 61.00 74.00 67.50

Senior 72.00 51.00 61.50

Marginal mean 60.00 52.50 56.25

6You might notice that V3 starts with a positive value (.5) not a negative one, as was true in our

earlier examples. When a factor has only two levels, this decision is largely arbitrary.
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Finally, notice that there are two cross-product terms. Each involves multiplying

one of the Factor A vectors with the Factor B vector. We do not multiply the two

vectors that represent Factor A.

12.3.2 Regression Analysis

Table 12.19 presents the regression output, along with an ANOVA table for

reference. The regression equation shows that the six groups show significant

variation, and each regression coefficient provides unique information:

Table 12.19 Regression output from a balanced 3� 2 factorial design

Significance test of regression model

SS df MS R2 F p

Regression 2,525.75 5 505.1500 .9574 26.9413 .0005

Residual 112.50 6 18.7500

Total 2,638.25

Regression coefficients

b seb SS t p Explanation

b0 56.25 1.25 45.00 .0000 Unweighted grand

mean

b1 �16.50 1.7678 1,633.50 �9.3338 .0001 Sophomores—

grand mean

b2 11.25 1.7678 759.3750 6.3640 .0007 Juniors—grand

mean

b3 7.50 2.50 168.75 3.00 .0240 Dorm—apartment

b4 7.00 3.5355 73.50 1.9799 .0950 Contrast 1 �
contrast 3

b5 �20.50 3.5355 630.3750 �5.7983 .0012 Contrast 2 �
contrast 3

Covariance matrix

1.5625 0 0 0 0 0

0 3.1250 �1.5625 0 0 0

0 �1.5625 3.1250 0 0 0

0 0 0 6.25 0 0

0 0 0 0 12.50 �6.25

0 0 0 0 �6.25 12.50

ANOVA table

SS df MS F p

A 1,705.50 2 852.75 45.48 .0002

B 168.75 1 168.75 9.00 .0240

AB 651.50 2 325.75 17.3733 .0032

Error 112.50 6 18.75
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• The intercept represents the unweighted grand mean (average of the group

averages). With a balanced design, this value also equals the weighted grand

mean, but it’s best to think of this as an unweighted average rather than a

weighted one.

• b1 is the difference between the marginal mean for sophomores (M¼ 39.75) and

the unweighted grand mean (M¼ 56.25).

• b2 is the difference between the marginal mean for juniors (M¼ 67.05) and the

unweighted grand mean (M¼ 56.25).

• b3 is the difference between the marginal mean of dorm dwellers (M¼ 60.00)

vs. those who live off campus (M¼ 52.50).

• b4 is a difference score between two other difference scores: dorm sopho-

mores—dorm mean (47.00� 60.00¼� 13.00) and apartment sophomores—

apartment mean (32.50� 52.50¼� 20.00).

�13:00��20:00 ¼ 7:00

• b5 is also a difference score between two difference scores: dorm juniors—dorm

mean (61.00� 60.00¼ 1.00) and apartment juniors—apartment mean

(74.00� 52.50¼ 21.50).

1:00� 21:50 ¼ � 20:50

• The covariance matrix is not diagonal, confirming that we have not used

orthogonal contrast weights. When we sum the various sum of squares, they

do not equal SSreg
7.

1633:50þ 759:3750þ 168:75þ 73:50þ 630:3750 6¼ 2525:75

12.3.3 ANOVA Table

The final entry in Table 12.19 shows an ANOVA summary table. With a balanced

design, there are some shortcuts we could use to recover our sum of squares when

using effect coding, but these shortcuts won’t work with an unbalanced design, so

we will learn a more general method that will come in handy later in this text.

In the present case, we need to conduct three additional regression analyses. For

each one, we omit one of the three terms (i.e., vectors associated with Factor A,

vector associated with Factor B, and the cross-product vectors associated with the

A�B interaction). Next, we subtract SSreg from the reduced analysis from SSreg
from our full analysis to derive the sum of squares for each effect. Finally, we

construct an F statistic.

7 The highlighted portion of the covariance matrix will be used in a subsequent section to construct

an augmented covariance matrix.
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F ¼
SSregfull � SSregreduced

� �
= df regfull � df regreduced

� �
SSresfull=df resfull

ð12:3Þ

Before performing these operations, let’s look more closely at the procedures

themselves. To start, you might have noticed that the form of this equation is similar

to the one we used to test the significance of a semi-partial correlation in Chap. 4

(see Eq. 4.13). This is no coincidence. Both equations use a subtraction method to

test the increment in explained variance due to a predictor. Here we are using

changes in SSreg instead of changes in R2, but we could just as easily use R2.

Returning now to our data set, Table 12.20 repeats the pertinent information

from the full analysis, followed by the SSreg, R
2, and degrees of freedom from each

of the three reduced analyses. To calculate the main effect of Factor A, we subtract

the SSreg value obtained when we omitted the two vectors that represent this factor

from the overall analysis.

Main Effect of A ¼ 2525:75� 820:25 ¼ 1705:50

We then construct an F test using Eq. (12.3).

F ¼ 1705:50=2

112:50=6
¼ 45:48

The other two terms are calculated in a similar fashion.

Main Effect of B ¼ 2525:75� 2357:00 ¼ 168:75

F ¼ 168:75=1

112:5000=6
¼ 9:00

Table 12.20 Reduced regression analyses for a balanced 3� 2 factorial design

Complete regression analysis

SS df MS R2 F p

Regression 2,525.75 5 505.1500 .9574 26.9413 .0005

Residual 112.50 6 18.7500

Total 2,638.25

Reduced regression analyses

SSreg dfreg ΔSSreg Δdfreg F p

Omit vectors for Factor A 820.25 3 1,705.50 2 45.48 .0002

Omit vector for Factor B 2357.00 4 168.75 1 9.00 .0240

Omit cross-product

vectors

1,874.25 3 651.50 2 17.3733 .0032

12.3 Multilevel Designs 429

http://dx.doi.org/10.1007/978-3-319-11734-8_4
http://dx.doi.org/10.1007/978-3-319-11734-8_4


and

A� B ¼ 2525:75� 1874:25 ¼ 651:50

F ¼ 651:50=2

112:5000=6
¼ 17:3733

When we refer these values to an F distribution with appropriate degrees of

freedom, we find that all three terms are statistically significant, matching the

results of the ANOVA table shown at the bottom of Table 12.19.

12.3.4 R Code: Multilevel Design

g <-c(1,1,2,2,3,3,4,4,5,5,6,6)

y=c(48,46,30,35,56,66,76,72,76,68,53,49)

g1 <-c(1,1,1,1,2,2,2,2,3,3,3,3)

g2 <-c(1,1,2,2,1,1,2,2,1,1,2,2)

tapply(y, factor(g), mean) #Calculate Group Means

#ANOVA model

anova.mod <-aov(y~factor(g1)*factor(g2))

summary(anova.mod)

barplot(tapply(y,list(g2,g1),mean),beside=T,

main = "Unbalanced ANOVA", col = c("white", "gray"),

xlab = "Class Standing", names = c("Sophomores", "Juniors", "Seniors"),

ylab = "Study Time", legend = c("Dorm", "Apartment"),

args.legend = list(title = "Housing", x = "top", cex =1),ylim = c(0, 100))

#2df coding for Regression Model

v1 <-c(rep(1,4),rep(0,4),rep(-1,4))

v2 <-c(rep(0,4),rep(1,4),rep(-1,4))

v3 <-c(rep(c(rep(.5,2),rep(-.5,2)),3))

v4 <-v1*v3

v5 <-v2*v3

reg.mod <-lm(y~v1+v2+v3+v4+v5)

summary(reg.mod)

#Get Weighted Sum of Squares Regression for Each Model

ssreg <- sum(anova(reg.mod)[1:5,2] );

dfreg <- sum(anova(reg.mod)[1:5,1] )

ssres <- anova(lm(y~v1+v2+v3+v4+v5))[6,2]

dfres <- anova(lm(y~v1+v2+v3+v4+v5))[6,1]

msres = ssres/dfres

ss.omit.a <- sum(anova(lm(y~v3+v4+v5))[1:3,2])

df.omit.a <- sum(anova(lm(y~v3+v4+v5))[1:3,1])

ss.a <- ssreg-ss.omit.a;ss.a

f.a <-(ss.a/(dfreg-df.omit.a))/msres;f.a

(continued)
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12.3.4 R Code: Multilevel Design (continued)

ss.omit.b <- sum(anova(lm(y~v1+v2+v4+v5))[1:4,2])

df.omit.b <- sum(anova(lm(y~v1+v2+v4+v5))[1:4,1])

ss.b <- ssreg-ss.omit.b;ss.b

f.b <-(ss.b/(dfreg-df.omit.b))/msres;f.b

ss.omit.ab <- sum(anova(lm(y~v1+v2+v3))[1:3,2])

df.omit.ab <- sum(anova(lm(y~v1+v2+v3))[1:3,1])

ss.ab <- ssreg-ss.omit.ab;ss.ab

f.ab <-(ss.ab/(dfreg-df.omit.ab))/msres;f.ab

12.3.5 Probing the Interaction

The ANOVA in Table 12.19 shows a significant interaction. Figure 12.3 plots the

means, and it appears that sophomores and seniors study more when they live in a

dorm than when they live in an apartment, but juniors do just the opposite.

Visual impressions don’t always translate into statistical significance. For this

reason, we need to test the simple effects of our interaction. With a 3� 2 design,

there are 29 possible tests to conduct. That’s a lot of tests! 8 In this section, you will

learn a method that will allow you to perform these tests in a reasonably efficient

manner. You won’t need every test with any one data set, but once you learn how to
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8 To avoid making Type I errors, it is customary to adjust your alpha levels when you report

multiple comparisons. A discussion of this issue can be found in most introductory statistics texts.
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conduct all of them you can pick the ones that are relevant to the data you have

collected. After working through the procedures, we will apply a few of these

contrasts to our data set. A word of warning: There are quite a few steps to follow,

so it’s best to go slow and work through them carefully.

12.3.5.1 Augmented b Vector and Covariance Matrix

To utilize the new procedure we must start with effect codes (as we have done in our

example). We then create a new column vector of regression coefficients we will

designate b+ and a modified covariance matrix we will designate C+. Before we do,

let’s review the meaning of the regression coefficients when effect coding is used.

As first discussed in Chap. 11, with effect coding, each coefficient represents the

deviation of a group mean (designated with 1 ’ s) vs. the grand mean. We can think

of these scores as treatment effects, as they represent each group’s unique deviation

from the overall mean.

We already know our treatment effects for our first two groups (sophomores and

juniors) because they equal the regression coefficients, b1 and b2, respectively (see

Table 12.19). But we do not know the treatment effect for our third group of seniors

because this was our base group (i.e., the one that received � 1 ’ s on both vectors).

Fortunately, we can easily calculate the effect by taking advantage of a simple fact:

The sum of the deviation scores from the grand mean must equal 0. Consequently,

we can use Eq. (12.4) to compute our missing treatment effect.

bþ ¼ �Σbj ð12:4Þ

Gathering the values from Table 12.19 and applying the formula yields the follow-

ing value for our group 3 coefficient (which we will designate b2 +):

b2þ ¼ � �16:50þ 11:25ð Þ ¼ 5:25

Looking back to the means displayed in Table 12.18 confirms that this value

represents the treatment effect for group 3.

Now we need to calculate an interaction coefficient for group 3. Here again, we

take advantage of the fact that the three cross-product coefficients must sum to 0 to

create another coefficient we will designate b5 +.

b5þ ¼ � 7:00þ � 20:50ð Þ ¼ 13:50

As shown in Table 12.21, we then place these values, along with our original

coefficients into a column vector to create an augmented vector of regression

coefficients. (Notice that the augmented vector does not include the intercept.)

Our next step is to create an augmented covariance matrix. We begin by

gathering the variance/covariance matrix from our overall regression analysis,

omitting the intercept term (see Table 12.19). We then augment the matrix
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following the same rules we used above, only this time we use variances and

covariances rather than regression coefficients.

cþ ¼ �Σcj ð12:5Þ
The highlighted portion of the covariance matrix shown in Table 12.19 serves as

our original covariance matrix, and Table 12.22 presents the augmented matrix.

The shaded values have been calculated using Eq. (12.5). To illustrate, the shaded

entries in the first row were calculated as follows:

c12þ ¼ � c12 þ c13ð Þ
¼ � 3:1250þ � 1:5625ð Þ ¼ � 1:5625

and

c15þ ¼ � c14 þ c15ð Þ
¼ � :0000þ � :0000ð Þ ¼ :0000

After repeating these calculations for the second row, we find our third row as the

negative sum of the first two augmented rows [i. e., � (c1 + c2)]. The other shaded

values in Table 12.22 were calculated in a similar fashion, with the final row found

as � (c4 + c5).

Table 12.22 Augmented covariance matrix

c1 c2 c2+ c3 c4 c5 c5+

c1 3.1250 –1.5625 –1.5625 .0000 .0000 .0000 .0000

c2 –1.5625 3.1250 –1.5625 .0000 .0000 .0000 .0000

c2+ –1.5625 –1.5625 3.1250 .0000 .0000 .0000 .0000

c3 .0000 .0000 .0000 6.2500 .0000 .0000 .0000

c4 .0000 .0000 .0000 .0000 12.5000 –6.2500 –6.2500

c5 .0000 .0000 .0000 .0000 –6.2500 12.5000 –6.2500

c5+ .0000 .0000 .0000 .0000 –6.2500 –6.2500 12.5000

Table 12.21 Augmented

vector of regression

coefficients

Coefficient order Computation Value

b+¼ b1 b1 �16.50

b2 b2 11.25

b2 + � (b1 + b2) 5.25

b3 b3 7.50

b4 b4 7.00

b5 b5 �20.50

b5 + � (b4 + b5) 13.50
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12.3.5.2 S Matrix for Simple Effects

Having created these terms, we are ready to calculate 27 of the 29 possible simple

effects.9 As always, we begin by constructing an S matrix of contrast weights. The

entries shown in Table 12.23 present the contrast weights we use, along with

the rules used to generate each one. There is a lot of information here, but if you

take the time to study things, I think it will be clear. To help you, I will provide an

overview.

• First, we might wish to examine the effects of B at each level of A. Here we are

asking whether living condition makes a difference among sophomores, juniors,

and seniors. The coefficients needed to make this determination appear in the

first column of coefficients in Table 12.23.

Table 12.23 S matrix rules for computing 27 simple effects for a 3� 2 factorial design

Description

Simple effects of B

@ each

level of A

Factor A

contrasts

collapsed

across B

Simple

A�B

interactions

Factor A

contrasts @

B1

Factor A

contrasts @

B2

# 3 6 6 6 6

Rules Enter “1” for the B

coefficient, and “1”

for the A � B level

of interest

Enter con-

trast coeffi-

cients in

first three

rows

Enter con-

trast coeffi-

cients in

last three

rows

Enter con-

trast coeffi-

cients in first

three rows,

and multiply

them by the

B1 code in

last 3 rows

Enter

contrast

coefficients

in first

three rows,

and

multiply

them by the

B2 code in

last 3 rows

Example

B @ A1 A1 vs. A3

A1 vs. A3

� B

A1 vs. A3 @

B1

A1 vs. A3 @

B2

b1 A1 0 1 0 1 1

b2 A2 0 0 0 0 0

b2 + A3
* 0 �1 0 �1 �1

b3 B 1 0 0 0 0

b4 A1� B 1 0 1 .5 �.5

b5 A2� B 0 0 0 0 0

b5 + A3
*� B 0 0 �1 �.5 .5

9We will discuss the other two comparisons after we complete our discussion here.
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• We might also wish to assess the simple effects of Factor A collapsed across

Factor B. Here we are comparing the marginal means of Factor A. There are

6 comparisons we could make:

• Sophomore vs. juniors

• Sophomore vs. seniors

• Juniors vs. seniors

• Sophomores vs. (juniors + seniors)

• Juniors vs. (sophomores + seniors)

• Seniors vs. (sophomores + juniors)

The second column of coefficients in Table 12.23 provides the rules for these test.

• We can also compute interaction contrasts. For example, do living conditions have

a similar effect on sophomores and seniors? Here again, there are 6 possible

comparisons, and the rules appear in the third column of coefficients in Table 12.23.

• Finally, we can make Factor A comparisons within each level of B. For example,

we can compare sophomores vs. juniors in the dorm or juniors vs. seniors in an

apartment. The final two columns in Table 12.23 provide the rules needed to

make these comparisons.

Table 12.24 presents a complete S matrix with all 27 contrast weights. To

conduct our tests, we find their associated regression coefficients by calculating

S0b+ and their associated standard errors by taking the square root of the diagonal

entries of S0C+S. We then create t statistics and refer each value to a t distribution
with N� k� 1 degrees of freedom.

Table 12.25 presents the results of all 27 tests. As indicated earlier, you will

certainly not report them all with any given data set, but all of them can help you

better understand the data you have collected. Ultimately, you need to tell a

coherent and compelling story with your data, using your simple effects to back

up your narrative. There are no hard-and-fast rules regarding this process. You have

to look at your data and think carefully about the pattern of effects.

Returning to Fig. 12.3, I would start by examining the most visually salient

pattern: Sophomores and seniors study more when living in a dorm than when

living in an apartment, but juniors do the opposite. The simple effects of B at each

level of A test this pattern. The first row of coefficients in Table 12.25 confirms that

sophomores 1 and seniors 3 study more when living in a dorm than when living in

an apartment, but juniors 2 study more when they live in an apartment than when

they live in a dorm.10

Next, I would make comparisons within pairs of student groups, starting with a

comparison between sophomores and seniors. I would begin here because our

earlier study used only these groups, and it is important to know whether our earlier

survey findings were replicated with an experimental design. In our original study

using unweighted means, we found that seniors studied more than sophomores and

10 The boxed numbers reference the relevant comparison in Table 12.25.
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that this effect was just as true in the dorms as in an apartment. To determine

whether this pattern occurred in our current data set, we first examine the simple

Group 1 � Group 3 comparison collapsed across living conditions. Table 12.25

shows the comparison is significant 5 . To see whether the effect is qualified by living

conditions, we examine the simple Group 1 � Group 3 interaction. Table 12.25

shows the simple interaction is not significant 11 . Taken together, these findings

replicate our earlier findings: Seniors study more than sophomores, and this effect

does not vary across living conditions.

Table 12.25 27 1 df simple effects for a 3� 2 factorial design

# b seb SS t p

Simple effects of B at A

1 B @ A1 14.50 4.3301 210.25 3.3486 .0154

2 B @ A2 �13.00 4.3301 169.00 �3.0022 .0239

3 B @ A3 21.00 4.3301 441.00 4.8497 .0029

Simple effects of A collapsed across B

4 1 vs. 2 �27.75 3.0619 1540.125 �9.0631 .0001

5 1 vs. 3 �21.75 3.0619 946.125 �7.1035 .0004

6 2 vs. 3 6.00 3.0619 72.00 1.9596 .0978

7 1 vs. (2, 3) �49.5 5.3033 1633.5 �9.3338 .0001

8 2 vs. (1, 3) 33.75 5.3033 759.375 6.3640 .0007

9 3 vs. (1, 2) 15.75 5.3033 165.375 2.9698 .0250

Simple A � B interaction contrasts

10 1 vs. 2 27.50 6.1237 378.125 4.4907 .0041

11 1 vs. 3 �6.50 6.1237 21.125 �1.0614 .3293

12 2 vs. 3 �34.00 6.1237 578.00 �5.5522 .0014

13 1 vs. (2, 3) 21.00 10.6066 73.50 1.9799 .0950

14 2 vs. (1, 3) �61.50 10.6066 630.3750 �5.7983 .0012

15 3 vs. (1, 2) 40.50 10.6066 273.3750 3.8184 .0088

Simple effects of A at B1

16 1 vs. 2 �14.00 4.3301 196.00 �3.2332 .0178

17 1 vs. 3 �25.00 4.3301 625.00 �5.7735 .0012

18 2 vs. 3 �11.00 4.3301 121.00 �2.5403 .0441

19 1 vs. (2, 3) �39.00 7.50 507.00 �5.2000 .0020

20 2 vs. (1, 3) 3.00 7.50 3.00 .4000 .7030

21 3 vs. (1, 2) 36.00 7.50 432.00 4.8000 .0030

Simple effects of A at B2

22 1 vs. 2 �41.50 4.3301 1,722.25 �9.5840 .0001

23 1 vs. 3 �18.50 4.3301 342.25 �4.2724 .0052

24 2 vs. 3 23.00 4.3301 529.00 5.3116 .0018

25 1 vs. (2, 3) �60.00 7.50 1,200.00 �8.00 .0002

26 2 vs. (1, 3) 64.50 7.50 1,386.75 8.60 .0001

27 3 vs. (1, 2) �4.50 7.50 6.75 -.60 .5705
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I would then repeat these analyses, comparing sophomores and juniors. Here, the

simple Group 1 � Group 2 comparison collapsed across living conditions 4 is

qualified by a Group 1�Group 2 simple interaction 10 . The interaction reflects the

fact that juniors study more than sophomores in the dorm 16 , but this effect is even

more pronounced in an apartment 22 . We can characterize this pattern as “an

especially for” interaction: Juniors study more than sophomores, especially when

they live in an apartment.

Finally, I would repeat the analyses comparing juniors and seniors. Here, the

simple Group 2 � Group 3 comparison collapsed across living conditions is not

significant 6 , but the simple Group 2 � Group 3 interaction contrast is significant

12 . Follow-up tests show that seniors study more than juniors in a dorm 18 , but

juniors study more than seniors in an apartment 24 . This pattern represents a cross-

over interaction.

12.3.5.3 Summary

We have covered a lot of ground here, so let’s pause for a moment to take stock of

what we have accomplished. Using effect codes with a few modifications, we were

able to test all possible 1 df comparisons and contrasts. Neither orthogonal contrasts

nor dummy codes offer this feature. For this reason, effect codes should be used

when analyzing data with a factorial design. You have to augment the regression

coefficients and covariance matrix in order to take full advantage of the flexibility

they offer, but if you’re willing to do so, you will possess a highly efficient tool for

making group comparisons and contrasts.

12.3.5.4 Simple Effect of A at Each Level of B

We still have 2 simple effects to compute. This is because using an S matrix to

compute simple effects works only when each contrast has a single degree of

freedom. But suppose we wish to determine the simple effect of class standing

(Factor A) at each level of living condition (Factor B). Each of these simple effects

has 2 df, so we can’t use an S matrix. With a balanced design, there are some

shortcuts we could use, but it’s useful to learn a more general approach that will

work in all situations.

The easiest thing to do is to recode our 1df vector using dummy coding rather

than effect coding. For example, to find the simple effect of A at B1, we set dorm

¼ 0 and apartment¼ 1. We then compute cross-products with our grouping variable

using this new coding scheme and conduct a new regression analysis using only the

new dummy variable and the newly formed cross-products (i.e., we omit the group

A vectors after using them to compute the cross-products). By subtracting the

obtained SSreg from the SSreg obtained in the original, overall analysis, we find

the simple effect of A at B1. To find the simple effect of A at B2, we recode the

438 12 Factorial Designs



dummy variable so that apartment ¼ 0 and dorm ¼ 1, and then follow the steps just

described. The R code that accompanies this chapter performs these analyses,

yielding the results displayed in (Table 12.26).11

12.3.6 Higher-Order Designs

In this chapter we have only considered two-factor designs, but higher-order ones

are not uncommon. We analyze higher-order designs using the same statistical

techniques we have learned here and interpret their higher-order interactions using

methods discussed in Chap. 9. Although interpreting higher-order interactions

requires considerable care, it is worth remembering that most effects occur within

a limited range of conditions. Because factorial designs are well suited to identify-

ing these limiting conditions, they provide a powerful statistical tool for identifying

causal relations.

12.3.7 R Code: Simple Effects in Multilevel Design

grp <-c(1,1,2,2,3,3,4,4,5,5,6,6)

y <-c(48,46,30,35,56,66,76,72,76,68,53,49)

tapply(y, factor(grp), mean) #Calculate Group Means

#2df coding

v1<-c(rep(1,4),rep(0,4),rep(-1,4));v2<-c(rep(0,4),rep(1,4),rep(-1,4))

v3 <-c(rep(c(rep(.5,2),rep(-.5,2)),3));v4 <-v1*v3;v5 <-v2*v3

reg.mod <-lm(y~v1+v2+v3+v4+v5);summary(reg.mod)

#Generate Augmented Coefficients and Covariance Matrix

b <-reg.mod$coef[2: length(reg.mod$coef)]

BB<-c(b [1:2],-(b[1]+b[2]),b[3:5],-(b[4]+b[5]));BB;

covar <-vcov(reg.mod)

cov <- covar[2: length(reg.mod$coef),2: length(reg.mod$coef)]

(continued)

Table 12.26 2 df Tests of A at each level of B

SS df MS F p

Simple effect of A at B1 628.00 2 314.00 16.7467 .0035

Simple effect of A at B2 1,729.00 2 864.50 46.1067 .0002

11We would follow the same procedure if we had an A�B design of any size (e.g., 3� 4). Use

dummy coding for Factor B, setting one group to receive 0’s on all vectors, and rerun your

regression analysis. The regression coefficient is the simple effect of A at the level of B that

received 0’s on all vectors.
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12.3.7 R Code: Simple Effects in Multilevel Design (continued)

rows<-function(cov,i,j)cbind(cov[i,1],cov[i,2],-(cov[i,1]+

cov[i,2]),cov[i,3],cov[i,4],cov[i,5],-(cov[i,4]+cov[i,5]))

aug <-rows(cov)

CC<-rbind(aug[1,],aug[2,],-(aug[1,]+aug[2,]),aug[3,],aug[4,],

aug[5,],-(aug[4,]+aug[5,]));CC

#Simple Effects

simple <-function(S){

simp.slope <-t(S)%*%BB;simp.err <-sqrt(diag(t(S)%*%CC%*%S))

df=(length(y)-length(coef(reg.mod)))

ttests <-simp.slope/simp.err;pvalues <-2*pt(-abs(ttests),df=df)

crit <-abs(qt(0.025,df))

CI.low <-simp.slope-(crit*simp.err);CI.high <-simp.slope+

(crit*simp.err)

simp.table<-round(matrix(c(simp.slope,simp.err,ttests,pvalues,

CI.low,CI.high),nrow=ncol(S),ncol=6),digits=5)

dimnames(simp.table)=list(c(),c("slope","stderr","t","p",

"CI.low","CI.high"))

return(list(S,simp.table))

}

#B at Levels of A

c1 <-c(0,0,0);c2 <-c(0,0,0);c3 <-c(0,0,0);c4 <-c(1,1,1);c5 <

-c(1,0,0);c6 <-c(0,1,0);c7 <-c(0,0,1);S <-rbind(c1,c2,c3,c4,c5,

c6,c7);simple(S)

SEFF <-function(a,b){

s1 <-c(1*a,1*a,0,2*a,-1*a,-1*a);s2 <-c(-1*a,0,1*a,-1*a,2*a,-1*a)

s3 <-c(0,-1*a,-1*a,-1*a,-1*a,2*a);s4 <-c(rep(0,6))

s5 <-c(1*b,1*b,0,2*b,-1*b,-1*b);s6 <-c(-1*b,0,1*b,-1*b,2*b,-1*b)

s7 <-c(0,-1*b,-1*b,-1*b,-1*b,2*b);S <-rbind(s1,s2,s3,s4,s5,s6,s7)

simple(S)}

#Simple Effects Function #Codes must be specified

SEFF (1,0) #A collapsed across B

SEFF (0,1) #AxB interactions

SEFF (1,.5) #Simple effects of A @ b1

SEFF (1,-.5) #Simple effects of A @ b2

## 2df Simple Effects

dum.a1 <-ifelse(v3 == .5,0,v3);dum.a2 <-dum.a1*v1;dum.a3 <-dum.a2*v2

simpa <-lm(y~ dum.a1+dum.a2+dum.a3);F.A <-anova(simpa,reg.mod);F.A

dum.b1<-ifelse(v3 ==-.5,0,v3);dum.b2<-dum.b1*v1;dum.b3<-dum.b2*v2

simpb <-lm(y~ dum.b1+dum.b2+dum.b3);F.B <-anova(simpb,reg.mod);F.B
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12.4 Chapter Summary

1. A complete factorial design occurs when two or more categorical variables are

crossed, such that all levels of each variable are paired with all levels of all other

variables. The number of combinations (or cells) is found by multiplying the

levels of each factor.

2. In a balanced factorial design with equal or proportional cell sizes, the regression

sum of squares can be partitioned into two sources of variance: main effects and

interactions. Main effects examine the overall impact of a factor without taking

other factors into account; interactions examine non additive effects of each

unique pairing.

3. Simple effects describe the effect of one variable at a single level of another

variable. Simple effects are similar to simple slopes discussed in Chap. 9, and a

significant interaction occurs when the slopes of two simple effects are not

parallel.

4. An unbalanced design occurs when cells sizes are not equal or proportional.

There are two approaches to analyzing an unbalanced factorial design. When

cell size discrepancies arise from random or nonsystematic factors, we use

unweighted means that neutralize disparities in cell sizes; when cell size dis-

crepancies represent meaningful differences, we use weighted means that pre-

serve disparities in cell sizes.

5. Multiple vectors are needed to represent a factor with more than 2 levels. As the

number of factors increase, the number of main effects and the number of

interactions increase as well. Using effect coding, we can create an augmented

coefficient and covariance matrix that enables the efficient testing of all 1 df
simple effects.
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Chapter 13

Analysis of Covariance

In Chaps. 11 and 12, we learned that multiple regression can be used to analyze data

with categorical predictors. In the next three chapters, we will extend our coverage

to include designs that combine categorical and continuous predictors. The role of

our categorical predictor is straightforward. Either as a result of random assignment

to conditions or subject classification, subjects are divided into groups based on

discrete categories. We then use orthogonal, dummy, or effect coding to create

vectors that represent group membership.

Unlike the simplicity of the categorical variable, the continuous predictor can

assume various roles, each demanding its own statistical analysis. Figure 13.1

depicts three relations between a categorical predictor x, a continuous criterion y,
and a continuous third variable z. In the left-hand portion of the figure, x and

z independently predict y. When x is a grouping variable, we use analysis of

covariance (ANCOVA) to analyze data like these. In this chapter, we examine

this analytic strategy.

ModerationANCOVA Mediation

x

z

y

x

y

z

x

yxz
z

Fig. 13.1 Three possible relations between a categorical predictor (x), a continuous criterion ( y),
and a continuous third variable (z)
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The middle portion of Fig. 13.1 portrays a second possibility, known as moder-

ation. Here, x and z can be correlated, and we are interested not only in their

independent ability to predict y but also in their interaction (as represented by a

cross-product term). Chapter 14 examines this scenario.

The right-hand portion of Fig. 13.1 depicts a third possibility, termed mediation.

Here, we assume that x predicts z and that z predicts y. In this case, the effect of x on
y is said to be mediated through z. In some cases, x also has a direct effect on y,
indicating a situation known as partial mediation (see dotted line). Chapter 15

explores mediation.1

Table 13.1 presents another way to think about these blended designs. Notice

that each was developed for use in a particular situation for a particular purpose.

These descriptions represent ideal circumstances that are not always realized in

practice. As we will see, a design intended to answer one question is sometimes

mistakenly used to answer another.

13.1 Introduction to ANCOVA

As originally developed, ANCOVA involves adding a continuous predictor (here-

after termed a covariate) to a typical analysis of variance (ANOVA). Ideally, the

covariate is correlated with the criterion but uncorrelated with the categorical

Table 13.1 Nature of a continuous predictor in a blended design

ANCOVA Moderation Mediation

Was the continuous variable mea-

sured before subjects were assigned

to experimental conditions?

Yes Yes No

Does the continuous variable inter-

act with the grouping variable to

predict the criterion?

No Yes No

Does the researcher assume that the

continuous predictor explains the

observed effects of the categorical

variable on the criterion?

No No Yes

Primary purpose Minimize error term

by controlling extra-

neous sources of

variance

Establish the

boundary condi-

tions of a cate-

gorical variable

Illuminate

possible

causal

mechanisms

1A fourth possibility, known as confounding, is not depicted in Fig. 13.1. With confounding, x and
y are related because of their common association with z. This possibility exists only for

correlational designs, not experimental ones. For example, shoe size (x) and vocabulary size ( y)
are correlated among elementary school children: the bigger your feet, the more words you know.

But these variables are joined simply because they are both linked to a common third variable, age

(z). Older kids have bigger feet and a larger vocabulary than younger kids, but there is no causal

association in either direction between shoe size and vocabulary size. If we controlled for age by

measuring the association between shoe size and vocabulary size within each age group, we would
find no association between our predictor and our criterion.
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variable. Given these conditions, including a covariate reduces the unexplained

variance (SSres), thereby increasing the power of a categorical predictor (SSreg).
Unfortunately, the technique is not always used in its intended form, leading to

confusion. In this chapter, we will first discuss the correct approach and then

consider problems that arise in the misuse of ANCOVA.

13.1.1 Mechanics

Following some preliminary analyses, ANCOVA compares two regression models:

one in which the covariate predicts the criterion and one in which the categorical

predictors and covariate predict the criterion. The difference in SSreg between the

two models indicates whether group differences in the covariance adjusted means

are likely to be due to chance alone. The term “adjusted means” underscores that the

means being analyzed are not the same as the observed means. The size of the

difference between the observed and adjusted means depends on the strength of the

association between the covariate and the criterion, and the magnitude of group

differences for the covariate.

To make our discussion less abstract, imagine that an educator has developed a

method of teaching abstract reasoning to school children. The educator randomly

assigns 12 students to one of three conditions: the new method the educator has

developed, a traditional approach to teaching abstract reasoning, and a control

condition involving no instruction. At the end of three months, she administers a

standardized test of abstract reasoning. The (sham) data, along with a coding

scheme we will use to analyze them, are shown in Table 13.2. As you can see,

we are using effect coding, with the control condition as our base group.

Notice that Table 13.2 also includes each student’s age. Because the ability to

think abstractly increases with age during childhood, this variable is likely to

influence scores on the reasoning test. With enough subjects, random assignment

to conditions theoretically ensures that the experimental groups will not differ on

Table 13.2 Small sample

example for an analysis of

covariance with age as the

covariate

Method Age y V1 V2 Age�V1 Age�V2

New 12 7 1 0 12 0

New 8 5 1 0 8 0

New 9 5 1 0 9 0

New 7 4 1 0 7 0

Traditional 13 6 0 1 0 13

Traditional 8 2 0 1 0 8

Traditional 11 5 0 1 0 11

Traditional 8 3 0 1 0 8

Control 12 4 �1 �1 �12 �12

Control 10 4 �1 �1 �10 �10

Control 7 1 �1 �1 �7 �7

Control 9 2 �1 �1 �9 �9
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this variable; nevertheless, failing to take its influence into account inflates the error

term. However, if we statistically control for age by including it in our analysis, we

can reduce the error term and increase the power of our statistical test. This is the

intended use of an ANCOVA: Before assessing the impact of a categorical predic-

tor, we include a covariate to decrease the magnitude of the error term and increase

the power of our experimental treatment.

13.1.2 Preliminary Analyses

It is desirable to perform several preliminary analyses before conducting an

ANCOVA. Not all of them are essential, but all provide useful information.

Table 13.3 presents the results of various analyses we will examine.

13.1.2.1 Does the Covariate Predict the Criterion?

Because the goal of ANCOVA is to reduce our error term, we want to confirm that

our covariate predicts our criterion. The first entry in Table 13.3 shows the results of

a regression analysis in which the covariate predicts the criterion. A significant

Table 13.3 Regression analyses used in analysis of covariance

a. Regress criterion on covariate

SS df MS R2 F p

Regression 15.5106 1 15.5106 .4562 8.3890 .0159

Residual 18.4894 10 1.8489

Total 34.00

b. Regress covariate on categorical vectors

SS df MS R2 F p

Regression 2.00 2 1.00 .0426 .2000 .8223

Residual 45.00 9 5.00

Total 47.00

c. Regress criterion on categorical vectors

SS df MS R2 F p

Regression 12.50 2 6.25 .3676 2.6163 .1272

Residual 21.50 9 2.3889

Total 34.00

d. Regress criterion on covariate, categorical vectors, and cross-product terms

SS df MS R2 F p

Regression 32.0180 5 6.4036 .9417 19.3854 .0012

Residual 1.9820 6 .3303

Total 34.00

e. Regress criterion on covariate and categorical vectors

SS df MS R2 F p

Regression 31.8389 3 10.6130 .9364 39.2871 .0000

Residual 2.1611 8 .2701

Total 34.00
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effect is observed, indicating that age predicts abstract reasoning ability. Taking the

square root of the R2 value, we see that the correlation between the two continuous

predictors ¼ .6754, indicating a rather substantial association.

13.1.2.2 Do the Grouping Vectors Predict the Covariate?

Our next analysis examines whether our covariate is statistically independent of our

categorical variables. To examine this issue, we regress the covariate on the

categorical vectors. The second analysis in Table 13.3 shows the results. Here we

see that the three groups do not differ significantly with regard to their average age.

This is not surprising, as assignment to conditions was random. At the same time,

the two predictors are not completely independent. This, too, is not surprising, as it

is highly unlikely that random assignment would produce groups that are identical

with respect to any variable with a limited number of subjects. An ANCOVA is

appropriate as long as the association between the two variables is not greater than

would be expected by chance alone.

13.1.2.3 Do the Grouping Vectors Predict the Criterion?

Our third analysis examines whether our grouping vectors predict our criterion

before we have included the covariate. This test, which is simply an ANOVA on the

criterion, is not necessary, but it is often informative. Analysis “c” in Table 13.3

shows that the grouping variable does not significantly predict the criterion before

age is taken into account.

13.1.2.4 Testing the Homogeneity of Regression Lines

Our next analysis examines whether the covariate interacts with the categorical

variable to predict the criterion. If it does, we cannot perform an ANCOVA. Why?

AnANCOVAassumes that the slope of the regression line relating the covariate to the

criterion is identical across groups. Formally, this assumption is known as the “homo-

geneity of regression lines,” but it could just as easily be termed “parallelism of

regression lines.” Recall from Chap. 9 that parallel regression lines indicate that the

simple slope relating x to y is the same at all levels of z. The same is true when x is a
categorical predictor and z is a covariate. If this assumption is violated (i.e., the

regression lines for each group are not parallel), we forgo conducting an ANCOVA

and perform a moderated-regression analysis (to be discussed in Chap. 14).
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Testing for the homogeneity of regression lines involves three steps:

1. First, we create cross-product terms between our categorical vectors and our

covariate and regress our criterion on all of the predictors (covariate,

categorical predictors, and cross-product terms).2 Analysis “d” reports the

results of this analysis.

2. Next, we perform another regression analysis omitting the cross-product

terms (analysis “e” in Table 13.3).

3. Finally, we use the subtraction method discussed in Chap. 12 to test the

homogeneity of regression lines. In the present case, we subtract SSreg in

analysis “e” from SSreg in analysis “d” and then construct an F ratio with the

mean difference in the numerator and the error term from analysis “d” in the

denominator (see Eq. 12.3).

Plugging in our values tests the homogeneity of the regression lines:

SSdif ¼ 32:0180� 31:8389 ¼ :1791

F ¼ :1791=2ð Þ=:3303 ¼ :2711

With 2 and 6 degrees of freedom, the F value is not significant ( p¼.7714),

indicating that the cross-product terms do not add to the prediction of our criterion

and that the regression lines are homogeneous.3

13.1.2.5 Inspecting the Regression Lines

It is useful to visually examine the regression lines to confirm their homogeneity.

As these regression lines represent simple slopes, we follow the same procedures

we learned in earlier chapters (i.e., we construct an S matrix and then calculate

S0 b). The values we need for our b column vector are obtained from the regression

equation that includes all of the predictors (analysis “d” in Table 13.3). Table 13.4

shows the regression coefficients from that analysis, and Table 13.5 shows the

S matrix we use to find the simple intercepts and slopes. To find the simple

intercepts, we assign a 1 to our intercept coefficient and the group contrast codes

to b2 and b3; the remaining values are set to 0. To find the simple slopes, we assign a

1 to our covariate and the group contrast codes to the cross-product terms

(b4 and b5); the remaining values are set to 0. When we multiply S0 b, we obtain

the coefficients shown in Table 13.6.

2 There is no need to center our continuous predictor as our concern is with the cross-product

terms, which are unaffected by centering.
3We could also use changes in R2 to assess whether the cross-product terms add significantly to the

prediction of the criterion. Equation (4.13) presents the formula for performing this test.
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Notice that the simple slopes are of similar magnitude, indicating that the

regression slopes are homogeneous. We can visually confirm their homogeneity by

using the coefficients to calculate predicted values for subjects scoring one standard

deviation below and above the mean of age (sd¼ 2.0671). Figure 13.2 plots the

predicted values. As you can see, the lines relating age to reasoning ability are

nearly parallel across the three experimental conditions, indicating that the differ-

ences in slope are negligible. This is preciselywhat it means to say that the regression

lines are homogeneous. Notice, also, that the intercepts are not identical. As

the variables are categorical, the intercepts represent mean differences among the

three groups.

Table 13.5 S matrix for calculating simple regression lines (intercepts and slopes)

S matrix for intercept S matrix for slope

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3

b0 1 1 1 0 0 0

b1 0 0 0 1 1 1

b2 1 0 �1 0 0 0

b3 0 1 �1 0 0 0

b4 0 0 0 1 0 �1

b5 0 0 0 0 1 �1

Table 13.6 Simple

intercepts and slopes within

each experimental condition

b0 b1

New instructional method .1071 .5714

Traditional instructional method �3.2222 .7222

Control condition �3.4615 .6538

Table 13.4 Unstandardized regression coefficients for a regression model with age, categorical

vectors, and their cross-product terms predicting abstract reasoning scores

b seb SS t p

b0 �2.1922 .8358 2.6228 .0394

b1 (age) .6492 .0865 18.6003 7.5039 .0003

b2 (effect code 1) 2.2993 1.1676 1.2812 1.9694 .0964

b3(effect code 2) �1.0300 1.1567 .2620 .8905 .4075

b4 (age* effect code 1) �.0777 .1239 .1301 .6275 .5535

b5 (age*effect code 2) .0731 .1166 .1296 .6264 .5541
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13.1.3 Main Analysis

Having conducted a series of preliminary analyses, we are ready to perform an

ANCOVA by subtracting SSreg in analysis “a” from SSreg in analysis “e.” We then

test the mean difference using the MSres from analysis “e.” The difference between

the two models represents the effect of the omitted predictors. In the present case,

analysis “e” includes the covariate and categorical vectors, but analysis “a”

includes only the covariate. So the categorical vectors are absent in analysis “a,”

and we gauge their importance by subtraction:

SSdif ¼ 31:8389� 15:5106 ¼ 16:3283

and

F ¼ 16:3283=2ð Þ=:2701 ¼ 30:2220

Referring this value to an F distribution with 2 and 8 degrees of freedom shows a

statistically significant effect ( p¼.0002), indicating that variations in our covari-

ance adjusted means are unlikely to be due to chance alone. Table 13.7 summarizes

the analysis.4

Table 13.7 Summary

of the ANCOVA
SS df MS F P

Age 15.5106 1 15.5106 8.3890 .0159

Error 18.4894 10 1.8489

Groups 16.3283 2 8.1641 30.2220 .0002

Error 2.1611 8 .2701

-6

-5

-4

-3

-2

-1

0

1

2

Young Old
Re

as
on

in
g 

Ab
ili

ty

Age

Homogeneity of Regression Lines

New Traditional Control

Fig. 13.2 Simple

regression lines relating age

to reasoning ability across

three instructional methods

4 Table 13.7 shows that the error term for the covariate differs from the error term for the treatment

effect. This difference reflects the hierarchical nature of an ANCOVA, with the significance of the

covariate tested before the categorical vectors are entered. Unfortunately, many textbooks and

statistical packages use the overall error term to evaluate the statistical significance of the

covariate. This practice is inconsistent with the principles underlying the analysis and should be

avoided (see Cohen and Cohen 1975, p. 349).
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Perhaps you are wondering why the ANCOVA shows a significant effect when

the original ANOVA (analysis “c” in Table 13.3) does not. If you examine the error

terms from the two analyses you will understand why. Before we entered the

covariate, the residual error term was substantial (SSres¼ 2.3889 from analysis

“c” in Table 13.3); after entering the covariate, the residual error term is greatly

reduced (SSres¼.2701 from analysis “e” in Table 13.3). This reduction is largely

responsible for the difference between the two analyses. To emphasize this point,

consider the differences in the treatment sum of squares. Without the covariate,

SSbg¼ 12.50 (see analysis “c” in Table 13.3); after entering the covariate, SSbg is
only slightly larger (SSbg¼ 16.3283). Thus, the reduction in the error term, not

the increase of the treatment sum of squares, accounts for the greater power of the

ANCOVA over an ANOVA in our example.

13.1.4 R Code: ANCOVA

grp <-c(1,1,1,1,2,2,2,2,3,3,3,3)

age <-c(12,8,9,7,13,8,11,8,12,10,7,9)

y <-c(7,5,5,4,6,2,5,3,4,4,1,2)

eff1 <-c(rep(1,4),rep(0,4),rep(-1,4))

eff2 <-c(rep(0,4),rep(1,4),rep(-1,4))

#Compute all 5 models

summary(mod.a <-lm(y~age))

summary(mod.b <-lm(age~eff1+eff2))

summary(mod.c <-lm(y~eff1+eff2))

summary(mod.d <-lm(y~age+eff1+eff2+age*eff1+age*eff2))

summary(mod.e <-lm(y~age+eff1+eff2))

#Homogeneity of regression lines

anova(mod.e,mod.d)

#Plot Regression Lines Using Separate Coefficients for Each Group

p0 <-c(rep(1,3))

p1 <-c(rep(0,3))

p2 <-c(1,0,-1)

p3 <-c(0,1,-1)

p4 <-c(rep(0,3))

p5 <-c(rep(0,3))

P <-round(rbind(p0,p1,p2,p3,p4,p5),digits=5)

intercept <-t(P)%*%coef(mod.d)

(continued)
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13.1.4 R Code: ANCOVA (continued)

s0 <-c(rep(0,3))

s1 <-c(rep(1,3))

s2 <-c(rep(0,3))

s3 <-c(rep(0,3))

s4 <-c(1,0,-1)

s5 <-c(0,1,-1)

SS <-round(rbind(s0,s1,s2,s3,s4,s5),digits=5)

slope <-t(SS)%*%coef(mod.d)

#Predicted values one sd above and below age for each group

new.young <-(intercept[1]+(slope[1]*-(sd(age))))

new.old <-(intercept[1]+(slope[1]*(sd(age))))

trad.young <-(intercept[2]+(slope[2]*-(sd(age))))

trad.old <-(intercept[2]+(slope[2]*(sd(age))))

cont.young <-(intercept[3]+(slope[3]*-(sd(age))))

cont.old <-(intercept[3]+(slope[3]*(sd(age))))

preds<-cbind(c(new.young,new.old),c(trad.young,trad.old),

c(cont.young,cont.old))

matplot((preds), main = "Homogeneity of Regression Lines", type="l",

lwd=3,ylab = "Reasoning Ability", xlab = "Age")

legend("topleft",legend=c("New","Traditional","Control"),

lty=c(1,3,5),lwd=2,pch=21,col=c("black","red","darkgreen"),

ncol=1,bty="n",cex=1,

text.col=c("black","red","darkgreen"),

inset=0.01)

#ANCOVA by comparing two models

ancova <-anova(mod.a,mod.e)

13.1.5 Adjusted Means and Simple Effects

Earlier we noted that an ANCOVA examines group differences among adjusted

means. The following formula is used to compute the adjusted means:

yadj ¼ yg � bc zg � z
� � ð13:1Þ

where yg ¼ a raw group mean, bc ¼ the common regression coefficient, zg ¼ the

group mean on the covariate, and zg ¼ the overall mean of the covariate.

The common regression coefficient comes from analysis “e” in Table 13.3, in

which we predict the criterion using the covariate and two coded vectors. Table 13.8

presents the pertinent coefficients, and the displayed value for b1 represents the

common regression coefficient (bc¼.6556).
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13.1.5.1 Understanding the Common Regression Coefficient

The common regression coefficient is a weighted average of the group slopes:

bc ¼
Σ bg � SSg
� �
Σ SSg
� � ð13:2Þ

To compute this term, we need the regression coefficients and deviation sum of

squares for the covariate within each group. We already calculated the regression

coefficients (see Table 13.6), so we only need to find the deviation sum of squares

for our covariate. These values, along with some others we will need to compute

adjusted means, are shown in Table 13.9.

Substituting our values into Eq. (13.2) confirms the value shown in Table 13.8:

bc ¼ :5714 � 14ð Þ þ :7222 � 18ð Þ þ :6538 � 13ð Þ
14þ 18þ 13ð Þ ¼ :6556

13.1.5.2 Adjusting the Means

To adjust our means, we apply Eq. (13.1):

New Method of Instruction ¼ 5:25� :6556 9� 9:5ð Þ ¼ 5:5778

Traditional Instruction ¼ 4:00� :6556 10� 9:5ð Þ ¼ 3:6722

Control Group ¼ 2:75� :6556 9:5� 9:5ð Þ ¼ 2:75

Notice what has happened here. When the covariate group mean falls below the

covariate grand mean, the means are adjusted upward, but when the covariate group

mean lies above the covariate grand mean, the means are adjusted downward.

Table 13.8 Unstandardized

regression coefficients for

model “e” in Table 13.3

b seb SS t p

b0 �2.2278 .7512 2.9657 .0180

b1 .6556 .0775 19.3389 8.4610 .0000

b2 1.5778 .2157 14.4545 7.3149 .0001

b3 �.3278 .2157 .6238 1.5196 .1671

Table 13.9 Group means

and deviation sum of squares

for ANCOVA

Age Reasoning ability

Mean SS Mean Adjusted mean

New 9.00 14.00 5.25 5.5778

Traditional 10.00 18.00 4.00 3.6722

Control 9.50 13.00 2.75 2.75

Average 9.50 4.0
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No adjustment occurs when the covariate group mean equals the covariate grand

mean. Notice also that in our example, the adjustment is not all that great. Yes, the

adjusted means are farther apart than are the raw means, but the difference is slight.

This point further underscores that the power of an ANCOVA lies in the reduction of

the residual (error) term, rather than an increase in the spread of the adjusted means.

13.1.5.3 Contrasting Adjusted Means

The following formula can be used to test the different between any two adjusted

means:

F ¼ Y 1:adjð Þ � Y 2:adjð Þ
� �2

MSres
� 1

n1
þ 1

n2
þ X 1ð Þ � X 2ð Þ
� �2

SSres:X

" #
ð13:3Þ

The MSres comes from analysis “e” in Table 13.3, and the final denominator term

(SSres. x) refers to the residual sum of squares observed when the covariate was

regressed on the categorical predictors (see analysis “b” in Table 13.3). We will

illustrate the equation by using the adjusted means to compare the new instructional

method vs. the traditional method:

F ¼ 5:5778� 3:6722½ �2
:2701

� 1

4
þ 1

4
þ 9� 10½ �2

45:00

" #
¼ 3:6311

:1411
¼ 25:7342

Referring this value to an F distribution with 1 and 8 degrees of freedom reveals

a significant effect ( p¼ .0010). Consequently, we judge the new approach to be

superior to the traditional method once age is statistically controlled.

13.1.5.4 Multiple Contrasts Using Regression Coefficients

Equation (13.3) works, but it is a bit unwieldy. Moreover, if we have many

covariates or are using a factorial design, the algebra becomes tedious and prone

to error. Fortunately, we have another solution. If we use effect coding (as we have

done in our example), we can construct an augmented coefficient vector and

covariance matrix using the procedures discussed in Chap. 12. Table 13.10 shows

the original and augmented values. Looking first at the regression coefficients, we

already have the values we need for Group 1 (b2¼ 1.5778) and Group

2 (b3¼�.3278), so we apply Eq. (12.4) to calculate the coefficient for Group 3:

b3þ ¼ � 1:5778þ�:3278ð Þ ¼ �1:2500

The bottom portion of Table 13.10 shows the covariance matrix. We concern

ourselves only with the shaded portion, as these values represent our categorical
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vectors. Applying Eq. (12.5), we calculate the missing values. To illustrate, the final

value in column 1 was obtained as follows:� (.0465 +�.0240)¼�.0225. The other

values were calculated in a similar manner.

We are now ready to test any contrast of interest by creating an S matrix and

performing the calculations described in earlier chapters (i.e., we find our contrast

coefficients by multiplying S0b+ and their associated standard errors by taking the

square root of the diagonal entries of S0C+S). Table 13.11 shows all possible

two-group comparisons and three-group contrasts. Notice how easy it is to

construct these contrasts. For example, to compare Group 1 and Group 2, we assign

a �1 to Group 1 and a 1 to Group 2. The other contrasts are formed in an equally

intuitive way.

Table 13.12 presents the results after performing the necessary matrix multi-

plication. Let’s begin by looking at the first row, which compares the adjusted

mean of Group 1 vs. the adjusted mean of Group 2. This is the same comparison

we calculated algebraically, and if you square the observed t value, you will find

that, within rounding error, it matches the F value we obtained using the algebraic

formula (5.07342¼ 25.7394). Our second comparison compares the new method

Table 13.11 S matrix with all possible 3-group comparisons and contrasts

Group 1 vs.

Group 2

Group 1 vs.

Group 3

Group 2 vs.

Group 3

Group 1 vs.

(2, 3)

Group 2 vs.

(1, 3)

Group 3 vs.

(1, 2)

b2 �1 �1 0 �2 1 1

b3 1 0 �1 1 �2 1

b3 + 0 1 1 1 1 �2

Table 13.10 Original and augmented b vector and covariance matrix

Original regression coefficients Augmented regression coefficients

b0 �2.2278 (b+)

b1 .6556 b2 1.5778

b2 1.5778 b3 �.3278

b3 �.3278 b3+ �1.2500

Original covariance matrix Augmented covariance matrix

c0 c1 c2 c3 (C+)

c0 .5643 �.0570 �.0285 .0285

c1 �.0570 .0060 .0030 �.0030 c2 c3 c3+
c2 �.0285 .0030 .0465 �.0240 c2 .0465 �.0240 �.0225

c3 .0285 �.0030 �.0240 .0465 c3 �.0240 .0465 �.0225

c3+ �.0225 �.0225 .0450
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against the control condition. This comparison is also significant. Our third

comparison pits the traditional approach vs. the control group, and the third row

in Table 13.12 shows a significant difference. Thus, after controlling for age in

our (fabricated) example, we find that both teaching methods are superior to

the control condition, and the new approach is better than the traditional one.

The remaining tests report the results of various “one group vs. the other two”

contrasts.

13.1.6 R Code: Adjusted Means and Simple Effects

grp <-c(1,1,1,1,2,2,2,2,3,3,3,3)

age <-c(12,8,9,7,13,8,11,8,12,10,7,9)

y <-c(7,5,5,4,6,2,5,3,4,4,1,2)

eff1 <-c(rep(1,4),rep(0,4),rep(-1,4));eff2 <-c(rep(0,4),rep(1,4),

rep(-1,4))

summary(mod.e <-lm(y~age+eff1+eff2))

#Compute Adjusted Means

b.common <-mod.e$coef[2]

grp.y <-tapply(y, factor(grp), mean)

grp.age <-tapply(age, factor(grp), mean)

mean.age <-mean(age)

adj.new <-(grp.y[1]-(b.common*(grp.age[1]-mean.age)))

adj.trad <-(grp.y[2]-(b.common*(grp.age[2]-mean.age)))

adj.cont <-(grp.y[3]-(b.common*(grp.age[3]-mean.age)))

#Graph Adjusted Means

barplot(c(adj.new,adj.trad,adj.cont),

main="Adjusted Means",col=c("black","gray","black"),

density= c(20,15,10), angle=c(30,20,0),xlab= "Conditions",

names = c("New","Traditional","Control"), ylim = c(0, 6),

ylab = "Reasoning Ability")

(continued)

Table 13.12 Comparisons and contrasts

b seb SS t p

Group 1 vs. Group 2 �1.9056 .3756 6.9533 5.0734 .0010

Group 1 vs. Group 3 �2.8278 .3696 15.8169 7.6519 .0001

Group 2 vs. Group 3 �.9222 .3696 1.6823 2.4955 .0372

Group 1 vs. (2, 3) �4.7333 .6471 14.4545 7.3149 .0001

Group 2 vs. (1, 3) .9833 .6471 .6238 1.5196 .1671

Group 3 vs. (1, 2) 3.7500 .6366 9.3750 5.8910 .0004
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13.1.6 R Code: Adjusted Means and Simple Effects (continued)

#Intercepts Using Common Regression Coefficient

int.1 <-(1*mod.e$coef[3])+(0*mod.e$coef[4])+mod.e$coef[1]

int.2 <-(0*mod.e$coef[3])+(1*mod.e$coef[4])+mod.e$coef[1]

int.3 <-(-1*mod.e$coef[3])+(-1*mod.e$coef[4])+mod.e$coef[1]

intercepts <-cbind(int.1,int.2,int.3)

#Augmented Coefficients and Covariance Matrix

BB <-c(mod.e$coef[3],mod.e$coef[4],-(mod.e$coef[3]+mod.e$coef[4]));BB

covar <-vcov(mod.e)

cov <- covar[3: length(mod.e$coef),3: length(mod.e$coef)]

rows<-function(cov,i,j)cbind(cov[i,1],cov[i,2],-(cov[i,1]+cov[i,2]))

aug <-rows(cov)

CC<-rbind(aug[1,],aug[2,],-(aug[1,]+aug[2,]));CC

#Simple Slopes

s1 <-c(-1,-1,0,-2,1,1);s2 <-c(1,0,-1,1,-2,1);s3 <-c(0,1,1,1,1,-2)

S <-rbind(s1,s2,s3);S

simp.slope <-t(S)%*%BB;simp.err <-sqrt(diag(t(S)%*%CC%*%S))

ttests <-simp.slope/simp.err;pvalues <-2*pt(-abs(ttests),

(df=(length(y)-length(coef(mod.e)))))

crit <-abs(qt(0.025,(df=(length(y)-length(coef(mod.e))))))

CI.low<-simp.slope-(crit*simp.err);CI.high<-simp.slope+(crit*simp.err)

simp.table<-round(matrix(c(simp.slope,simp.err,ttests,pvalues,CI.low,

CI.high),

nrow=ncol(S),ncol=6),digits=5)

dimnames(simp.table)=list(c(),c("slope","stderr","t","p","CI.low",

"CI.high"))

simp.table

13.2 Extensions to More Complex Designs

The procedures described in the preceding section can be used with multiple

covariates and/or applied to factorial designs. Because more complex designs

necessitate very few changes, I will quickly describe the procedures we use to

perform a one-way ANCOVA with two covariates.

Imagine that our researcher repeats her study with a new sample of middle-

school children, but this time she gathers information on age and IQ. The (fake) data

are shown in Table 13.13, using the same effect coding scheme we used earlier.
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13.2.1 Preliminary Analyses

As before, we analyze these data by calculating a number of preliminary regression

analyses, shown in Table 13.14.

13.2.1.1 Do the Covariates Predict the Criterion?

Analysis “a” in Table 13.14 shows that, collectively, age and IQ predict reasoning

ability ( p¼.0013). Notice, also, however, that the regression coefficient for age

falls short of statistical significance. Some textbook authors recommend dropping

covariates that are not significant, but I disagree. Recall that regression coefficients

are characterized by interdependence. If we drop age from the analysis, it is

conceivable that IQ will no longer be significant; alternatively, if we drop IQ

from the analysis, age might be significant. Suffice it to say that if the set of

covariates is significant, you should retain all variables it contains.

13.2.1.2 Do the Grouping Vectors Predict the Covariate?

It’s a good idea to confirm that the covariates are unrelated to the experimental

conditions. Analysis “b” in Table 13.14 shows this to be the case for both covariates.

13.2.1.3 Do the Grouping Vectors Predict the Criterion?

As noted earlier, although it is not necessary to examine whether the experimental

manipulation predicts the criterion before entering the covariates, it is often

Table 13.13 Small sample data with two covariates

Condition Age IQ V1 V2

V3

(V1*age)

V4

(V2*age)

V5

(V1*IQ)

V6

(V2*IQ) y

New 9 130 1 0 9 0 130 0 9

New 8 85 1 0 8 0 85 0 3

New 11 105 1 0 11 0 105 0 7

New 7 100 1 0 7 0 100 0 4

Traditional 12 110 0 1 0 12 0 110 6

Traditional 8 80 0 1 0 8 0 80 1

Traditional 11 90 0 1 0 11 0 90 5

Traditional 8 100 0 1 0 8 0 100 3

Control 13 105 �1 �1 �13 �13 �105 �105 5

Control 10 110 �1 �1 �10 �10 �110 �110 4

Control 7 85 �1 �1 �7 �7 �85 �85 1

Control 7 100 �1 �1 �7 �7 �100 �100 2
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informative. In our case, analysis “c” shows that the groups do not differ on

reasoning ability before taking age and IQ into account ( p¼.2676).

13.2.1.4 Testing the Homogeneity of Regression Lines

Before entering our covariates, we must establish that the slopes relating the

covariates to performance are parallel across experimental conditions. We test

Table 13.14 Preliminary regression analyses used in analysis of covariance (multiple predictors)

a. Regress criterion on covariates

SS df MS R2 F p

Regression 49.0139 2 24.5070 .7699 15.0526 .0013

Residual 14.6528 9 1.6281

Total 63.6667

b seb F p

Age .3831 .1970 1.9446 .0837

IQ .1219 .0299 4.0816 .0028

b. Regress covariates on categorical vectors

SS df MS R2 F p

Age

Regression 2.00 2 1.00 .0415 .1946 .8265

Residual 46.25 9 5.1389

Total 48.25

IQ

Regression 200.00 2 100.00 .0952 .4737 .6374

Residual 1,900.00 9 211.1111

Total 2,100.00

c. Regress criterion on categorical vectors

SS df MS R2 F p

Regression 16.1667 2 8.0833 .2539 1.5316 .2676

Residual 47.50 9 5.2778

Total 63.6667

d. Regress criterion on covariates, categorical vectors, and cross products

SS df MS R2 F p

Regression 62.8021 8 7.8503 .9864 27.2409 .0101

Residual .8645 3 .2882

Total 63.6667

e. Regress criterion on covariates and categorical vectors

SS df MS R2 F p

Regression 60.6100 4 15.1525 .9520 34.6998 .0001

Residual 3.0567 7 .4367

Total 63.6667
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this effect by subtracting SSreg from analysis “e” from SSreg from analysis “d” and

dividing the difference by the residual error term from analysis “d”:

F ¼ 62:8021� 60:6100ð Þ=4½ �
:2882

¼ 1:9015

Referring this value to an F distribution with 4 and 3 degrees of freedom reveals a

nonsignificant effect ( p¼.3122). Accordingly, we conclude that our regression

lines are homogeneous and proceed to our main analysis.

13.2.2 Main Analysis

To perform the ANCOVA, we subtract analysis “a” from analysis “e” and divide

the difference by the residual term from analysis “e”:

F ¼ 60:6100� 49:0139ð Þ=2½ �
:4367

¼ 13:2770

Table 13.15 shows that, with 2 and 7 degrees of freedom, the effect is significant

( p¼.0041).

13.2.3 Adjusted Means

Our next task is to calculate adjusted means using the common regression coeffi-

cients from analysis “e” in Table 13.14. The coefficients, along with other relevant

values, are displayed in Table 13.16.

Expanding the procedures described in Eq. (13.1) yields the adjusted means:

New : 5:75� :4917 � 8:75� 9:25ð Þ½ � � :1019 � 105� 100ð Þ½ � ¼ 5:4864

Traditional : 3:75� :4917 � 9:75� 9:25ð Þ½ � � :1019 � 95� 100ð Þ½ � ¼ 4:0137

Control : 3:00� :4917 � 9:25� 9:25ð Þ½ � � :1019 � 100� 100ð Þ½ � ¼ 3:00

Table 13.15 Summary of

the ANCOVA with multiple

covariates

SS df MS F p

Age 6.1568 1 6.1568 3.7816 .0837

IQ 27.1227 1 27.1227 16.6593 .0028

Error 14.6528 9 1.6281

Groups 11.5960 2 5.7980 13.2777 .0041

Error 3.0567 7 .4367
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It is interesting to visually compare the raw means with the adjusted means.

Figure 13.3 shows them side by side, and it’s evident that there is very little

difference between them. Yet an ANOVA on the raw means failed to show a

significant effect ( p¼.2676), whereas the ANCOVA did ( p¼.0041). The disparity

between these significance levels seems all the more remarkable when we consider

how little the means differ, further underscoring that the power of an ANCOVA

derives from the reduction in the error term, rather than an adjustment to the means.

In this case, the error term from the ANOVA (MSe¼ 5.2778) is nearly 12 times

Table 13.16 Regression Coefficients

b seb SS t p

b0 �10.5722 1.5458 20.4262 6.8394 .0002

b1 (age) .4917 .1091 8.8643 4.5055 .0028

b2 (IQ) .1019 .0170 15.6379 5.9843 .0006

b3 (effect 1) 1.3197 .2954 8.7176 4.4681 .0029

b4 (effect 2) �.1530 .2954 .1172 .5181 .6204

Covariance Matrix

2.389464 �.025548 �.021168 .093063 �.093063

�.025548 .011912 �.000846 .010188 �.010188

�.021168 �.000846 .000290 �.001873 .001873

.093063 .010188 �.001873 .087238 �.050849

�.093063 �.010188 .001873 �.050849 .087238

Adjusted Means

AGE IQ Raw Means Adjusted

New 8.75 105 5.75 5.4864

Traditional 9.75 95 3.75 4.0136

Control 9.25 100 3.00 3.00

Average 9.25 100 4.1667

5.75 3.75 3.005.49 4.01 3.00
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larger than the error term from the ANCOVA (MSe¼.4367). As always, you should

bear in mind that the data set has been artificially created to make particular points

(of which this is one). But the point remains valid: When properly used with

random assignment to conditions, ANCOVA is designed to remove extraneous

sources of variance from our criterion, not modify our categorical predictor.

13.2.4 Augmented Matrix and Multiple Comparisons

Finally, we can conduct multiple comparisons and contrasts using augmented

matrices. The procedures are identical to the ones described earlier, so I will simply

show you the output and refer you to the R code that accompanies this section for

the calculations themselves (Table 13.17).

As you can see, the new method is superior to the traditional method ( p¼.0264)

and the control condition ( p¼.0013), but the traditional method and control condi-

tion do not differ ( p¼.0738).

Table 13.17 Augmented matrices from Table 13.15, S matrix, and simple effects

Augmented b vector (b+) Augmented covariance matrix (C+)

Group 1 1.3197 .0872 �.0508 �.0364

Group 2 �.1530 �.0508 .0872 �.0364

Group 3 �1.1667 �.0364 �.0364 .0728

S

Group 1 vs. Group

2

Group 1 vs.

Group 3

Group 2 vs.

Group 3

Group 1 vs.

(2, 3)

Group 2 vs.

(1, 3)

Group 3 vs.

(1, 2)

�1 �1 0 �2 1 1

1 0 �1 1 �2 1

0 1 1 1 1 �2

Simple effects

b seb SS t p

Group 1 vs. Group

2

�1.4727 .5255 3.4294 2.8024 .0264

Group 1 vs. Group

3

�2.4864 .4825 11.5960 5.1532 .0013

Group 2 vs. Group

3

�1.0136 .4825 1.9273 2.1009 .0738

Group 1 vs. (2, 3) �3.9591 .8861 8.7176 4.4681 .0029

Group 2 vs. (1, 3) .4591 .8861 .1172 .5181 .6204

Group 3 vs. (1, 2) 3.5000 .8093 8.1667 4.3246 .0035
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13.2.5 R Code: ANCOVA with Multiple Covariates

grp <-c(rep(1,4),rep(2,4),rep(3,4))

age <-c(9,8,11,7,12,8,11,8,13,10,7,7)

IQ <-c(130,85,105,100,110,80,90,100,105,110,85,100)

y <-c(9,3,7,4,6,1,5,3,5,4,1,2)

eff1 <-c(rep(1,4),rep(0,4),rep(-1,4))

eff2 <-c(rep(0,4),rep(1,4),rep(-1,4))

#Compute all 5 models

summary(mod.a <-lm(y~age+IQ))

anova(mod.b1 <-lm(age~eff1+eff2))

anova(mod.b2 <-lm(IQ~eff1+eff2))

summary(mod.c <-lm(y~eff1+eff2))

summary(mod.d <-lm(y~age+IQ+eff1+eff2+age*eff1+age*eff2+IQ*eff1+

IQ*eff2))

summary(mod.e <-lm(y~age+IQ+eff1+eff2))

ancova <-anova(mod.e,mod.a)

ancova

#Compute Adjusted Means

b.com1 <-mod.e$coef[2]

b.com2 <-mod.e$coef[3]

grp.y <-tapply(y, factor(grp), mean)

grp.age <-tapply(age, factor(grp), mean)

mean.age <-mean(age)

grp.IQ <-tapply(IQ, factor(grp), mean)

mean.IQ <-mean(IQ)

adj.new<-(grp.y[1]-(b.com1*(grp.age[1]-mean.age))-(b.com2*(grp.IQ

[1]-mean.IQ)))

adj.trad<-(grp.y[2]-(b.com1*(grp.age[2]-mean.age))-(b.com2*(grp.IQ

[2]-mean.IQ)))

adj.cont<-(grp.y[3]-(b.com1*(grp.age[3]-mean.age))-(b.com2*(grp.IQ

[3]-mean.IQ)))

adj.means <-cbind(adj.new,adj.trad,adj.cont);adj.means

#Graph Adjusted Means

barplot(c(adj.new,adj.trad,adj.cont),

main="Adjusted Means",col=c("black","gray","black"),density=

c(20,15,10), angle=c(30,20,0),xlab= "Condition", names =

c("New","Traditional","Control"), ylim = c(0, 6), ylab =

"Reasoning Ability")

#Generate Augmented Coefficients and Covariance Matrix

BB <-c(mod.e$coef[4],mod.e$coef[5],-(mod.e$coef[4]+mod.e$coef[5]))

BB

(continued)
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13.2.5 R Code: ANCOVA with Multiple Covariates (continued)

covar <-vcov(mod.e)

cov <- covar[4: length(mod.e$coef),4: length(mod.e$coef)]

rows<-function(cov,i,j)cbind(cov[i,1],cov[i,2],-(cov[i,1]+cov[i,2]))

aug <-rows(cov)

CC<-rbind(aug[1,],aug[2,],-(aug[1,]+aug[2,]))

CC

#Simple Effects

simple <-function(S){

simp.slope <-t(S)%*%BB;simp.err <-sqrt(diag(t(S)%*%CC%*%S))

ttests <-simp.slope/simp.err;pvalues <-2*pt(-abs(ttests),

(df=(length(y)-length(coef(mod.e)))))

crit <-abs(qt(0.025,(df=(length(y)-length(coef(mod.e))))))

CI.low <-simp.slope-(crit*simp.err);CI.high <-simp.slope+

(crit*simp.err)

simp.table<-round(matrix(c(simp.slope,simp.err,ttests,pvalues,

CI.low,CI.high),nrow=ncol(S),ncol=6),digits=5)

dimnames(simp.table)=list(c(),c("slope","stderr","t","p","CI.

low","CI.high"))

return(list(S,simp.table))

}

s1 <-c(-1,-1,0,-2,1,1);s2 <-c(1,0,-1,1,-2,1);s3 <-c(0,1,1,1,1,-2)

S <-rbind(s1,s2,s3)

simple(S)

13.3 Uses (and Misuses) of ANCOVA

Throughout this chapter, you have seen that ANCOVA creates a more powerful test

of a grouping variable by reducing the error variance. Ideally, the covariate is

assessed prior to the start of the experiment and is minimally associated with the

experimental groups that have been created through random assignment. When

these conditions are met, we can reasonably ask, “how different would the groups

be on y if everyone in the sample had been equivalent on z?”
Considering its ability to transform nonsignificant findings into significant ones,

ANCOVA seems to resemble a medieval alchemist. Alas, like other forms of magic,

ANCOVA can sometimes produce less than meets the eye. In the final section of this

chapter, we will identify two problems that limit ANCOVA’s usefulness.

13.3.1 A Residualized Criterion

The first issue concerns the nature of the criterion. With an ANOVA, we ask a very

straightforward question: “What percentage of y can be explained by our categorical
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predictor?”With ANCOVA, we ask a different question, namely, “What percentage

of y that is not explained by our covariate can be explained by our categorical

predictor?” Thus, the analyses predict to different criterions, and whether the

residualized criterion represents something meaningful is an open question.

To illustrate the potential problem, consider that the ability to reason abstractly

predicts important outcomes in life, such as GPA, level of educational attainment,

and success at matrix algebra. But whether reasoning ability predicts anything of

interest once age and IQ have been statistically removed is uncertain. Since we

probably don’t care whether a new method improves reasoning ability unless the

criterion still predicts significant outcomes, it would seem important to establish

that the residualized criterion is meaningfully related to some outcome of interest

when performing an ANCOVA. Unfortunately, this is rarely done.

13.3.2 Association with the Predictor

A second problem with ANCOVA is less tractable and therefore more serious.

ANCOVA was originally developed in the context of experimental research using

random assignment to conditions. Doing so ensured that the predictor and covariate

were largely independent. Over the years, the use of ANCOVA has broadened and

it is now widely used in nonexperimental contexts with subject variables rather than

randomly assigned ones (e.g., cultural groups, gender). Here, the attempt is to

equate naturally occurring groups that are inherently nonequivalent. This use of

ANCOVA is highly problematic, as the question now becomes: “What percentage

of y that is not explained by our covariate can be explained by that portion of our
categorical predictor that is not explained by our covariate?” It is evident that we
have now moved far beyond the simple question with which we began.

The overlap between the predictor and the covariate creates interpretive prob-

lems as well. It is far from obvious that we can statistically equate groups that

are intrinsically different. To paraphrase an anonymous observer, what does it

mean to say that “this is what the groups would look like if they didn’t look like

what they do look like?”!

Finally, any overlap between the predictor and the covariate can lead to mis-

leading conclusions. Imagine that a researcher believes that learning matrix algebra

promotes abstract reasoning skills. To test his hypothesis, he administers a test of

reasoning ability to two groups of students—ones who are enrolled in a matrix

algebra course and ones who are not enrolled in a matrix algebra course. Recog-

nizing that IQ also predicts reasoning ability, the researcher uses IQ scores as a

covariate. Table 13.18 presents some (made-up) data, and Fig. 13.4 depicts the raw

and covariance adjusted means.

If you work through the analysis (which you should do to solidify your under-

standing of an ANCOVA), you will discover something interesting: Before the

covariate is added, students who study matrix algebra outperform those who do not

study matrix algebra on the test of abstract reasoning [F(1, 10)¼ 5.3312, p¼.0436];
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after the covariate is added, the reverse is true [F(1, 9)¼ 7.4086, p¼.0235]. Were

these real data (which, of course, they are not), we would conclude that taking a

matrix algebra course impairs reasoning ability once IQ is taken into account.

The reversal comes about because, in this fictitious example, students who study

matrix algebra have higher IQ scores (M¼ 109.6667) than those who don’t

(M¼ 90.3333), [F(1, 10)¼ 54.2581, p¼.0000], and IQ scores are strongly corre-

lated with abstract reasoning scores (r¼.8106). Consequently, the adjustment raises

the scores of those who do not study matrix algebra and lowers the scores of those

who do. More generally, whenever a covariate is highly associated with the

categorical predictor and the criterion, an ANCOVA will produce a diminished

estimate of the categorical predictor.

For these, and other reasons (see Miller and Chapman 2001), the use of

ANCOVA with intact groups should be undertaken cautiously, and all results
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Table 13.18 Small sample

example for an ANCOVA

with a naturally occurring

categorical predictor

Enrolled in matrix algebra course IQ

Effect

Codes y

No 90 1 2.0

No 93 1 3.1

No 93 1 2.9

No 93 1 2.5

No 89 1 1.4

No 94 1 2.9

Yes 108 �1 3.7

Yes 108 �1 3.4

Yes 110 �1 4.1

Yes 107 �1 3.1

Yes 108 �1 2.9

Yes 107 �1 4.0
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should be interpreted carefully. A better solution is to incorporate the covariate into

a factorial design, treating it as a partner variable rather than a causally prior one.

This approach, known as moderation, is the topic of our next chapter.

13.4 Chapter Summary

1. Categorical and continuous predictors can be combined in a single analysis. The

form of the analysis depends on when the categorical predictor is measured and

its assumed relation with the criterion.

2. An analysis of covariance (ANCOVA) is appropriate when a continuous vari-

able is assessed before subjects are randomly assigned to experimental condi-

tions. In this case, it can be used to reduce the error variance, thereby creating a

more powerful statistical test of the categorical predictor.

3. An ANOCVA assumes that the slope of the regression line relating the covariate

to the criterion is equal across experimental conditions. The assumption is tested

by assessing the homogeneity of the regression lines.

4. A subtraction method is used to test the statistical significance of an ANCOVA.

The regression sum of squares obtained from a model using only the covariate is

subtracted from the regression sum of squares obtained from a model using the

covariate and categorical vectors.

5. Covariance adjusted means are computed by subtracting a weighted difference

score from each group mean. The difference score is found by calculating the

discrepancy between the group mean on the covariate and the overall covariate

mean and then weighting this difference by the common regression coefficient.

6. ANCOVAs are appropriate only when the covariate and the categorical variable

are uncorrelated. When the covariate and categorical variable are correlated, a

straightforward interpretation of the ANCOVA is problematic and the method

should be abandoned in favor of moderated regression.
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Chapter 14

Moderation

In Chap. 13, we discussed analysis of covariance (ANCOVA). With ANCOVA, we

enter a continuous predictor into a regression model before adding a categorical

one. The presence of the continuous predictor is designed to reduce the error

variance, thereby increasing the power of an experimental treatment or grouping

variable.

ANCOVA is not the only way to combine categorical and continuous predictors

in a regression analysis, however. Continuous predictors can also be used to

examine the generality of an experimental manipulation by studying their interac-

tion with a categorical variable. Such an analysis is termed moderated regression

analysis (or, simply, moderation), because our interest is in whether a continuous

predictor moderates the impact of a categorical one.

14.1 Moderated Regression

The procedures we follow when conducting a moderated regression analysis are

similar to the ones we used in Chap. 9 when analyzing continuous predictors. In

both cases, we create cross-product terms from our predictors to model an interac-

tion and then conduct simple slope tests or locate regions of significance if the

interaction is significant. The use of a categorical predictor necessitates some

changes to the implementation of the analysis, but the underlying logic is the same.

Testing whether a continuous variable and a categorical variable interact to

predict a criterion is also identical to the procedure we used in Chap. 13 to test the

homogeneity of regression lines with an ANCOVA. The only difference between

this test and a test of moderation is our perspective.When testing the homogeneity of
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regression lines, we examine whether the association between the covariate and the

criterion is consistent across experimental conditions; when performing a test of

moderation, we examine whether the association between the experimental manip-

ulation and the criterion is consistent across all levels of the covariate. Because

interactions are symmetrical, the same analysis answers both questions.

Despite these apparent similarities, ANCOVA and moderation address very

different issues. When the homogeneity assumption is upheld, ANCOVA asks,

“What effect would our manipulation have if everyone in our sample had the same

score on the covariate?” With moderation, we ask, “What effect does our manip-

ulation have on subjects with different scores on the covariate?” Thus, whereas

ANCOVA attempts to statistically remove the influence of a continuous variable,

moderation makes its impact focal.

14.1.1 Illustration

An example will further clarify the difference between ANCOVA and moderation.

Let’s pretend our researcher from Chap. 13 now wishes to test the generality of her

new method of teaching abstract reasoning by broadening her sample to include

adults of different ages. Having heard the adage “you can’t teach an old dog new

tricks,” she suspects her new teaching method might benefit younger adults, but not

older ones. Formally, the researcher is interested in testing the interaction between a

categorical variable (teaching method) and a continuous one (age).

To test her hypothesis, she randomly assigns 12 individuals ranging in age from

21 to 57 to one of three experimental conditions: her new method of teaching

abstract reasoning, a traditional method of teaching abstract reasoning, or a control

condition with no instruction. Three weeks later, she tests their abstract reasoning

ability. The (concocted) data, along with the same effect coding scheme we used in

Chap. 13, are shown in Table 14.1. Notice that we are creating cross-product terms

using mean-centered scores for our continuous variable (Devage). As first noted in

Chap. 9, you don’t need to center the continuous variable when using it to form a

cross-product term, but doing so makes it easier to interpret lower-order effects. For

this reason, I have centered the continuous variable (age) around its mean

(M¼ 38.00). I have also included its standard deviation in Table 14.1, as we will

use this information later.

14.1.2 Implementation

Moderated regression involves testing various models using the subtraction method

introduced in Chap. 12 (see Eq. 12.3). We begin with a model that includes all of

the predictors. We then subtract predictors one at a time and, with each subtraction,

we calculate the difference between the full model and the reduced one to
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determine whether the subtracted predictor makes a significant contribution to the

prediction of our criterion. Notice that these procedures differ a bit from the ones

we used with ANCOVA. With ANCOVA, we are interested in whether the cate-

gorical predictor explains variance that the continuous variable does not; with

moderation, we are interested in whether the cross-product terms explain variance

that the continuous and categorical vectors do not.

Analysis “a” in Table 14.2 shows that our overall regression equation is signif-

icant. Notice, also, that the R2 value is extremely large. As always, I created this

data set to make some specific points, so please remember that it is purposefully

unrealistic.

Analysis “b” shows the results of a regression analysis with the cross-product

terms omitted. To test the significance of the Groups�Age interaction, we subtract

the SSreg value for analysis “b” from the SSreg from our complete analysis, divide

the term by the differences in the degrees of freedom between the two analyses, and

test the difference using the residual term from the complete analysis:

F ¼ 39:1608� 21:0672ð Þ=2½ �
:8065

¼ 11:2167

Referring this value to an F distribution with 2 and 6 degrees of freedom reveals a

significant effect ( p¼.0094). Consequently, we conclude that age moderates the

relation between teaching method and reasoning ability.

At this point, we would usually examine the form of the interaction. However, in

the interest of being thorough, we’ll test the significance of the continuous predictor

Table 14.1 Small sample example for moderation

Instructional Method Age y Devage V1 V2 Devage *V1 Devage *V2

New Instructional Method 29 7 �9 1 0 �9 0

New Instructional Method 27 9 �11 1 0 �11 0

New Instructional Method 39 5 1 1 0 1 0

New Instructional Method 53 2 15 1 0 15 0

Traditional Instructional Method 57 5 19 0 1 0 19

Traditional Instructional Method 32 7 �6 0 1 0 �6

Traditional Instructional Method 45 6 7 0 1 0 7

Traditional Instructional Method 21 5 �17 0 1 0 �17

Control Condition 47 4 9 �1 �1 �9 �9

Control Condition 55 3 17 �1 �1 �17 �17

Control Condition 29 3 �9 �1 �1 9 9

Control Condition 22 4 �16 �1 �1 16 16

Mean 38.00 5.00

Standard Deviation 13.0384
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by subtracting SSreg from analysis “c” from the complete analysis and testing the

difference as described earlier:

F ¼ 39:1608� 25:4118ð Þ=1½ �
:8065

¼ 17:0468

This value is also significant ( p¼.0062), indicating that age uniquely predicts

reasoning ability. Finally, we can test the significance of the categorical vectors by

subtracting analysis “d” from analysis “a”:1

Table 14.2 Regression analyses used to perform moderated regression

a. Regress criterion on categorical vectors, continuous variable, and cross-product vectors

SS df MS R2 F p

Regression 39.1608 5 7.8322 .8900 9.7108 .0077

Residual 4.8392 6 .8065

Total 44.00

b. Omit cross-product vectors

SS df MS R2 F p

Regression 21.0672 3 7.0224 .4788 2.4497 .1383

Residual 22.9328 8 2.8666

Total 44.00

c. Omit continuous variable

SS df MS R2 F p

Regression 25.4118 4 6.353 .5775 2.39242 .1481

Residual 18.5882 7 2.6555

Total 44.00

d. Omit categorical vectors

SS df MS R2 F p

Regression 26.9768 3 8.9923 .6131 4.2259 .0458

Residual 17.0232 8 2.1279

Total 44.00

Analysis summary

SS df MS ΔR2 F p

Groups (a–d) 12.1839 2 6.0920 .2769 7.5532 .0230

Age (a–c) 13.7489 1 13.7489 .3125 17.0468 .0062

Interaction (a–b) 18.0935 2 9.0468 .4112 11.2167 .0094

Residual 4.8392 6 .8065

1When performing these analyses, some textbooks recommend a hierarchical approach, using a

different error term to test the significance of the lower-order terms. I disagree. When an

interaction is the focus of an investigation, I believe all terms should be tested using the overall

MSres with the cross-product term included. Consequently, the order you use to perform these

analyses is arbitrary.
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F ¼ 39:1608� 26:9768ð Þ=2½ �
:8065

¼ 7:5532

This effect is also significant ( p¼.0230), indicating that instructional method

predicts reasoning ability.

Considering that both lower-order effects are statistically significant, it is tempting

to think of them as analogous to main effects in an analysis of variance. This

interpretation is not warranted, however. As first noted in Chap. 9, with a cross-

product term in the analysis, lower-order effects are conditional simple slopes, not

general ones. Moreover, the value for the continuous variable can change depending

on the coding scheme we choose. For these, and other reasons, it’s best to refrain from

equating lower-order effects with main effects.

14.1.3 Regression Coefficients

Having established that age and instructional method interact to predict reasoning

ability, we will now examine the regression coefficients from analysis “a” in

Table 14.2. Table 14.3 presents the relevant values, using the effect coding scheme

shown in Table 14.1.

The easiest way to understand where these numbers come from is to compute

separate regression equations within each experimental condition. The easiest way to

find these values is to create two Smatrices, one for the intercept and one for the slope.

Table 14.4 shows the values we use. For the intercepts, we enter a “1” for b0 and the
group codes for b2 and b3; all other values receive 0’s. For the slopes, we enter a “1” for
b1 and the group codes for b4 and b5; all other values receive 0’s. When we multiply

S0b using the coefficients shown in Table 14.3, we get the values shown in the bottom

of Table 14.4. I have included the averages as well, as these values provide important

information.

Table 14.3 Regression

coefficients from analysis

“a” in Table 14.2

b seb t SS p

b0 4.9216 .2598 18.9433 .0000

b1 �.0886 .0215 4.1288 13.7489 .0062

b2 .5831 .3679 1.5850 2.0263 .1641

b3 .8358 .3673 2.2755 4.1762 .0632

b4 �.1567 .0331 4.7361 18.0910 .0032

b5 .0787 .0288 2.7361 6.0382 .0339
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We are now in a position to understand the meaning of the coefficients shown in

Table 14.3. First, b0 is the average of the group intercepts (b0¼ 4.9216) and b1 is the
average of the group slopes (b1¼�.0886). These values would be different had we

used dummy coding instead of effect coding, which is one reason we shouldn’t

interpret regression coefficients as main effects. The value for b2 is the deviation

of Group 1’s intercept from the average intercept (b2¼ 5.5047� 4.9216¼.5831) and

b3 is the deviation of Group 2’s intercept from the average intercept

(b3¼ 5.7574� 4.9216¼.8358). Similarly, the value for b4 is the deviation of Group

1’s slope from the average slope (b4¼�.2453��.0886¼�.1567) and b5 is the

deviation of Group 2’s slope from the average slope (b5¼�.0099��.0886¼.0787).

These values would be different had we used a different coding scheme or designated

a different group to be the base group.

14.1.4 Plotting Predicted Values

With a significant interaction, it is a good idea to plot the regression lines by

generating predicted values. In keeping with earlier chapters, we will plot values

for subjects scoring 1 standard deviation below the mean in age, at the mean, and

1 standard deviation above the mean in age using the Pmatrix shown in Table 14.5.

The values were derived as follows:

• Enter a 1 for the intercept (b0).
• Enter one standard deviation below the mean, zero, or one standard deviation

above the mean for the continuous predictor (b1).
• Enter the group codes for b2 and b3.
• Multiply the b1 values by the group codes to form the cross-product vectors

(b4¼ b1 * b2; b5¼ b1 * b3).

Table 14.4 S matrix to

derive intercept and slopes

within each experimental

condition

Intercepts Slopes

b0 1 1 1 0 0 0

b1 0 0 0 1 1 1

b2 1 0 �1 0 0 0

b3 0 1 �1 0 0 0

b4 0 0 0 1 0 �1

b5 0 0 0 0 1 �1

b0 b1
Group 1 5.5047 �.2453

Group 2 5.7574 �.0099

Group 3 3.5027 �.0106

Average 4.9216 �.0886
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When we multiply P0b, we get the values plotted in Fig. 14.1. Remembering

that nonparallel regression lines signal the presence of an interaction, Fig. 14.1

shows that age is negatively related to reasoning ability with the new method, but

not predictive of reasoning ability with the traditional method or in the control

condition. Notice also that the slope for the traditional method is (roughly) parallel

to the slope for the control condition but that the intercept is higher in the traditional

group. We will have more to say about these effects momentarily.

14.1.5 Crossing Point

We can determine the point at which the lines shown in Fig. 14.1 intersect using the

following formula:

CP ¼ a1 � a2
b2 � b1

ð14:1Þ

Table 14.5 P matrix to derive predicted values

Low age Average age High age

b0 1 1 1 1 1 1 1 1 1

b1 �13.0384 �13.0384 �13.0384 0 0 0 13.0384 13.0384 13.0384

b2 1 0 �1 1 0 �1 1 0 �1

b3 0 1 �1 0 1 �1 0 1 �1

b4 �13.0384 0 13.0384 0 0 �0 13.0384 0 �13.0384

b5 0 �13.0384 13.0384 0 0 �0 0 13.0384 �13.0384
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where a and b refer to intercepts and slopes, respectively, and the subscripts denote
the group number.2 To illustrate, we will calculate the crossing point of the new

method (Group 1) and the traditional method (Group 2):

CP12 ¼ 5:5047� 5:7574

�:0099� �:2453ð Þ ¼ �1:0735

When we convert the obtained deviate score to a raw one by adding 38, we find that

the simple slopes cross at ~37 years of age. This value is well within the range of

observed values, so we conclude that our interaction is disordinal.3 Our crossing

point also tells us that the new method is superior to the traditional method for

subjects who are younger than ~37, inferior to the traditional method for subjects

who are older than ~37, and equivalent in effectiveness for subjects who are ~37.

Bear in mind, however, that these characterizations only describe the data; they do

not tell us at what point these differences become statistically significant. The final

section of this chapter will consider this issue.

Continuing on, we find the crossing point of Group 1 and Group 3:

CP13 ¼ 5:5047� 3:5027

�:0106� �:2453ð Þ ¼ 8:53

After converting to raw scores, we find that this value (~46.5) is also within the

range of observed scores, so this interaction is also disordinal.

Glancing back to Fig. 14.1, it is apparent that the slopes for Groups 2 and 3 are

nearly parallel; consequently, there is no reason to calculate their crossing point.

14.1.6 Testing the Simple Slopes

Testing the significance of the regression lines displayed in Fig. 14.1 is our next

step. We already calculated their slopes (see bottom portion of Table 14.4), so we

need only find their standard errors to test their significance. We do so by taking the

square root of the diagonal elements of S0CS, using the Smatrix of slopes shown in

the upper right-hand portion of Table 14.4, and the complete covariance matrix

from analysis “a” in Table 14.2, which is shown below in Table 14.6.4

2 Equation 9.11 presents an alternative formula for calculating the crossing point with two

continuous predictors.
3 See Chap. 9 for a discussion of disordinal vs. ordinal interactions.
4 Later, we will use the highlighted portion of the covariance matrix to create an augmented

covariance matrix.
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When we perform the required calculations, we obtain the values shown in

Table 14.7. As suggested by Fig. 14.1, the simple slope of age is significant with the

new teaching method, but not with the traditional method or in the control condition.

14.1.7 R Code: Moderation—Simple Slopes

grp <-c(rep(1,4),rep(2,4),rep(3,4))

age <-c(29,27,39,53,57,32,45,21,47,55,29,22)

y <-c(7,9,5,2,5,7,6,5,4,3,3,4)

eff1 <-c(rep(1,4),rep(0,4),rep(-1,4));eff2 <-c(rep(0,4),rep(1,4),

rep(-1,4))

devage <-age-mean(age)

summary(mod.a <-lm(y~devage+eff1+eff2+eff1*devage+eff2*devage))

summary(mod.b <-lm(y~devage+eff1+eff2))

summary(mod.c <-update(mod.a, .~. -devage)) #Use update function to

#delete continuous variable but retain cross-products

summary(mod.d <-update(mod.a, .~. -eff1-eff2)) #Use update function

#to delete categorical terms but retain cross-products

anova(mod.b,mod.a) #test interaction

anova(mod.c,mod.a) #test continuous variable

anova(mod.d,mod.a) #test categorical variable

##Plot Regression Lines Using Separate Coefficients for Each Group

#Predicted Values and Simple Slopes

i0 <-c(rep(1,3));i1 <-c(rep(0,3));i2 <-c(1,0,-1);i3 <-c(0,1,-1)

(continued)

Table 14.7 Simple slopes within each experimental group

b seb SS t p

New �.2453 .0436 25.5094 5.6239 .0014

Traditional �.0099 .0332 .0717 .2982 .7756

Control �.0106 .0338 .0796 .3141 .7641

Table 14.6 Covariance matrix from analysis “a” in Table 14.2

.067500 .000088 .000346 �.000082 .000546 �.000363

.000088 .000460 .000546 �.000363 .000174 �.000094

.000346 .000546 .135346 �.067764 .000722 �.000271

�.000082 �.000363 �.067764 .134918 �.000271 �.000187

.000546 .000174 .000722 �.000271 .001095 �.000541

�.000363 �.000094 �.000271 �.000187 �.000541 .000827
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14.1.7 R Code: Moderation—Simple Slopes (continued)

i4 <-c(rep(0,3));i5 <-c(rep(0,3))

II <-round(rbind(i0,i1,i2,i3,i4,i5),digits=5);intercept <-t(II)%*%

coef(mod.a)

s0 <-c(rep(0,3));s1 <-c(rep(1,3));s2 <-c(rep(0,3));s3 <-c(rep(0,3))

s4 <-c(1,0,-1);s5 <-c(0,1,-1);SS <-round(rbind(s0,s1,s2,s3,s4,s5),

digits=5)

slope <-t(SS)%*%coef(mod.a);both <-cbind(intercept,slope);both

mean(both[,1]) #average intercept = intercept in mod.a

mean(both[,2]) #average slope = slope in mod.a

#Predicted Values for Ss one standard deviation above and below the mean

p0 <-c(rep(1,9))

p1 <-c(rep(-sd(age),3),rep(0,3),rep(sd(age),3))

p2 <-c(rep(c(1,0,-1),3))

p3 <-c(rep(c(0,1,-1),3))

p4 <-c(-sd(age),0,sd(age),rep(0,3),sd(age),0,-sd(age))

p5 <-c(0,-sd(age),sd(age),rep(0,3),0,sd(age),-sd(age))

P <-rbind(p0,p1,p2,p3,p4,p5)

pred.val <-t(P)%*%coef(mod.a); pred.val

#Plotting Predicted Values 1

byrow <-rbind(c(pred.val[1:3]),c(pred.val[4:6]),c(pred.val[7:9]))

matplot((byrow), main = "Simple Slopes Relating Age to Reasoning

Across Three Conditions", type="l",ylab = "Reasoning Ability", xlab =

"DEV_age",lwd=2)

legend("topright",legend=c("New","Traditional","Control"),

lty=1,lwd=2,pch=21,col=c("black","red","darkgreen"),

ncol=1,bty="n",cex=0.8,

text.col=c("black","red","darkgreen"),

inset=0.01)

#Crossing Points

cross.12 <-(intercept[1]-intercept[2])/(slope[2]-slope[1]);cross.12

cross.13 <-(intercept[1]-intercept[3])/(slope[3]-slope[1]);cross.13

cross.23 <-(intercept[2]-intercept[3])/(slope[3]-slope[2]);cross.23

#Test Simple Slopes

simple.slope <-function(S,B,C){

simp.slope <-t(S)%*%B

simp.cov <-t(S)%*%C%*%S

simp.err <-sqrt(diag(simp.cov))

simples <-simp.slope/sqrt(diag(simp.cov))

df <-length(y)-nrow(S)

tvalues <-2*pt(-abs(simples),df=df)

(continued)
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14.1.7 R Code: Moderation—Simple Slopes (continued)

crit <-abs(qt(0.025,df))

CI.low <-simp.slope-(crit*simp.err)

CI.high <-simp.slope+(crit*simp.err)

simp.table<-round(matrix(c(simp.slope,simp.err,simples,tvalues,

CI.low,CI.high),nrow=ncol(S),ncol=6),digits=5)

dimnames(simp.table)=list(c(),c("slope","stderr","t","p",

"CI.low","CI.high"))

return(list(S,simp.table))

}

simple <-simple.slope(SS,coef(mod.a),vcov(mod.a))

simple

14.2 Simple Effects

Testing the simple slope of a continuous predictor at each level of a categorical

variable is one way to probe an interaction, but the primary purpose of a moderated

regression analysis is to determine whether the effects of a categorical variable vary

across levels of a continuous predictor. In terms of our example, we wish to know

whether the effects of instructional method vary across age groups. To help us

address this issue, Fig. 14.2 shows our predicted values, organized by experimental

condition. Here, we have plotted the effects of the experimental manipulation at

two levels of age: one standard deviation below the mean (younger subjects) and

one standard deviation above the mean (older subjects).5 Looking the figure over,

the following conclusions seem warranted:

• The new method improves performance among younger subjects but impairs

performance among older subjects.

• Age makes little difference in the control condition or with the traditional

method.

• Across age groups, the traditional method is uniformly better than the control

condition.

Specific analyses are required to support each of these interpretations. In the

following section, we will examine the matrices and operations used to test these

comparisons, as well as a few others.

5 I have omitted plotting the predicted value for subjects of average age because the means fall

halfway between those that are displayed.

14.2 Simple Effects 479



14.2.1 Augmented b Vector and C Matrix

Using procedures first described in Chap. 12, we begin by creating an augmented

b vector to find our Group 3 coefficients (b+). The original regression coefficients

come from Table 14.3 (carried out to 6 decimals to minimize rounding error), and

the calculated values are shown in Table 14.8. Because the intercept is not involved

in any calculations, we omit b0 and find our coefficients for Group 3 using

Eq. (12.4), reproduced below:

bþ ¼ �Σbj ð14:2Þ

Looking only at the first column in Table 14.8, the two unshaded values were found

as follows:

b3þ ¼ � :583120þ :835824ð Þ ¼ �1:418944

Table 14.8 Augmented b vector and covariance matrix for simple effects (unshaded entries are

augmented values)

b+ C+

b2 .583120 .135346 �.067764 �.067581 .000722 �.000271 �.000451

b3 .835824 �.067764 .134918 �.067154 �.000271 �.000187 .000458

b3+ �1.418944 �.067581 �.067154 .134735 �.000451 .000458 �.000007

b4 �.156687 .000722 �.000271 �.000451 .001095 �.000541 �.000554

b5 .078702 �.000271 �.000187 .000458 �.000541 .000827 �.000287

b5+ .077984 �.000451 .000458 �.000007 �.000554 �.000287 .000841

8.70 5.89 3.642.31 5.63 3.36
1

2

3

4

5

6

7

8

9

New Traditional Control

Re
as

on
in

g 
Ab

ili
ty

Younger OlderFig. 14.2 Predicted values

for moderated regression

480 14 Moderation

http://dx.doi.org/10.1007/978-3-319-11734-8_12
http://dx.doi.org/10.1007/978-3-319-11734-8_12


and

b5þ ¼ � �:156687þ :078702ð Þ ¼ :077984

The value for b3 + represents Group 3’s deviation from the average intercept, and

the value of b5 + represents Group 3’s deviation from the average slope. You can

verify the correctness of these values by referring to the entries in Table 14.4.

Our next step is to create an augmented covariance matrix (C+). The shaded

entries in Table 14.8 come from the covariance matrix shown in Table 14.6. We

then augment the entries (unshaded entries) to find our variances and covariances

for Group 3 using Eq. (12.5), reproduced below:

cþ ¼ �Σcj ð14:3Þ

To illustrate, the first two values in the final column of Table 14.8 were found as

follows:

� :000722þ � :000271ð Þ ¼ � :000451

and

� �:000271þ � :000187ð Þ ¼ :000458

14.2.2 S Matrix

Having created these augmented matrices, we now create an S matrix that will

allow us to compute a large number of simple effects. We won’t use them all, but

it’s useful to calculate them for didactic purposes. Table 14.9 presents the coeffi-

cients used to compute 24 simple effects. The rules used to form the coefficients

follow the ones we used in Chap. 12 for a 3� 2 ANOVA (see Table 12.23). The

only difference is that we substitute the standard deviation of the continuous

variable (sdage¼ 13.0384) for the group codes when forming our coefficients.6

For each matrix shown in Table 14.9, we find our test coefficients by computing

S0b+ and our standard errors by taking the square root of the diagonal elements of

S0C+S.

6When comparing Table 14.9 to Table 12.23, you might also notice that only Table 12.23 reports

the coefficients for computing the simple effects of B at each level of A. I omitted these simple

slopes here because we computed them earlier (see Table 14.7).
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14.2.3 Specific Tests of Interest

We are now ready to test some specific effects of interest. In presenting these tests,

I will pretend our data were real in order to illustrate how researchers build an

argument to make sense of the data they have collected.

14.2.3.1 Simple Interaction Contrasts

We begin by returning to the hypothesis that motivated our (imaginary) research.

Recall that our researcher believed “you can’t teach an old dog new tricks,” leading

Table 14.9 S matrices for a three-group moderated regression

a. Simple group contrasts collapsed across B

1 vs. 2 1 vs. 3 2 vs. 3 1 vs. (2,3) 2 vs. (1,3) 3 vs. (1,2)

b2 1 1 0 2 �1 �1

b3 �1 0 1 �1 2 �1

b3 * 0 �1 �1 1 �1 2

b4 0 0 0 0 0 0

b5 0 0 0 0 0 0

b5 * 0 0 0 0 0 0

b. Simple A�B interaction contrasts

1 vs. 2 1 vs. 3 2 vs. 3 1 vs. (2,3) 2 vs. (1,3) 3 vs. (1,2)

b2 0 0 0 0 0 0

b3 0 0 0 0 0 0

b3 * 0 0 0 0 0 0

b4 1 1 0 2 �1 �1

b5 �1 0 1 �1 2 �1

b5 * 0 �1 �1 �1 �1 2

c. Simple group contrasts at one standard deviation below the mean of B

1 vs. 2 1 vs. 3 2 vs. 3 1 vs. (2,3) 2 vs. (1,3) 3 vs. (1,2)

b2 1 1 0 2 �1 �1

b3 �1 0 1 �1 2 �1

b3 * 0 �1 �1 �1 �1 2

b4 �13.0384 �13.0384 0 �26.0768 13.0384 13.0384

b5 13.0384 0 �13.0384 13.0384 �26.0768 13.0384

b5 * 0 13.0384 13.0384 13.0384 13.0384 �26.0768

d. Simple group contrasts at one standard deviation above the mean of B

1 vs. 2 1 vs. 3 2 vs. 3 1 vs. (2,3) 2 vs. (1,3) 3 vs. (1,2)

b2 1 1 0 2 �1 �1

b3 �1 0 1 �1 2 �1

b3 * 0 �1 �1 �1 �1 2

b4 13.0384 13.0384 0 26.0768 �13.0384 �13.0384

b5 �13.0384 0 13.0384 �13.0384 26.0768 �13.0384

b5 * 0 �13.0384 �13.0384 �13.0384 �13.0384 26.0768
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her to hypothesize that the new method of teaching abstract reasoning would benefit

younger subjects but not older ones. We can test the researcher’s hypothesis by

conducting interaction contrasts, followed up by simple effects tests within each

age group. First, we will perform an interaction contrast comparing the new method

(Group 1) with the control condition (Group 3). Locating the results of this test

in Table 14.10, we find that the predicted interaction contrast is significant 8 ,

Table 14.10 Simple comparisons and contrasts for a three-group moderated regression

# b seb SS t p

a. Simple group contrasts
collapsed across age

1 Group 1 vs. Group 2 �.2527 .6370 .1269 .3967 .7053

2 Group 1 vs. Group 3 2.0021 .6366 7.9775 3.1450 .0199

3 Group 2 vs. Group 3 2.2548 .6356 10.1506 3.5476 .0121

4 Group 1 vs. Groups (2,3) 1.7494 1.1037 2.0263 1.5850 .1641

5 Group 2 vs. Groups (1,3) 2.5075 1.1019 4.1762 2.2755 .0632

6 Group 3 vs. Groups (1,2) �4.2568 1.1012 12.0524 3.8657 .0083

b. Simple interaction contrasts

7 Group 1 vs. Group 2 �.2354 .0548 14.8817 4.2955 .0051

8 Group 1 vs. Group 3 �.2347 .0552 14.5943 4.2538 .0054

9 Group 2 vs. Group 3 .0007 .0473 .0002 .0152 .9884

10 Group 1 vs. Groups (2,3) �.4701 .0993 18.0910 4.7361 .0032

11 Group 2 vs. Groups (1,3) .2361 .0863 6.0382 2.7361 .0339

12 Group 3 vs. Groups (1,2) .2340 .0870 5.8334 2.6893 .0361

c. Simple effects of group at low
age

2 df F test 23.4774 14.5544 .0050

13 Group 1 vs. Group 2 2.8164 .9424 7.2027 2.9884 .0244

14 Group 1 vs. Group 3 5.0618 .9383 23.4707 5.3945 .0017

15 Group 2 vs. Group 3 2.2454 .9022 4.9954 2.4887 .0472

16 Group 1 vs. Groups (2,3) 7.8782 1.6502 18.3817 4.7740 .0031

17 Group 2 vs. Groups (1,3) �.5710 1.5887 .1042 .3594 .7316

18 Group 3 vs. Groups (1,2) �7.3072 1.5814 17.2206 4.6207 .0036

d. Simple effects of group at high
age

2 df F test 10.6628 6.6102 .0304

19 Group 1 vs. Group 2 �3.3218 .9718 9.4239 3.4182 .0142

20 Group 1 vs. Group 3 �1.0577 .9822 .9352 1.0768 .3229

21 Group 2 vs. Group 3 2.2641 .8695 5.4681 2.6038 .0405

22 Group 1 vs. Groups (2,3) �4.3795 1.7499 5.0517 2.5027 .0464

23 Group 2 vs. Groups (1,3) 5.5859 1.5608 10.3302 3.5788 .0117

24 Group 3 vs. Groups (1,2) �1.2065 1.5803 .4701 .7634 .4742

Note: 2 df tests are underlined
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indicating that when the new method is compared with the control condition, its

effectiveness varies by age.7

We then follow up this result by conducting simple comparisons within each

age group. As the researcher hypothesized, the new method is superior to the

control condition among younger subjects 14 , but not among older subjects 20 .

In this case, we have an “only for” interaction: the new method only benefits

younger subjects.

We can repeat these analyses comparing the new method (Group 1) with the

traditional method (Group 2). Table 14.10 shows that this interaction contrast is

also significant 7 , confirming that when the new method is compared with the

traditional method, its effectiveness varies by age. When we follow up this result by

conducting simple comparisons within each age group, we find that the new method

is superior to the traditional method among younger subjects 13 , but inferior to the

traditional method among older subjects 19 . In this case, we have a crossover

interaction.

Finally, we can compare Groups 2 and 3. This interaction contrast is not

significant 9 , indicating that the difference between the two groups does not

vary with age.

14.2.3.2 Simple Group Contrasts Collapsed Across Age

With a significant interaction, we ordinarily would not be concerned with simple

contrasts collapsed across a continuous variable. However, we have found there is

no interaction when we compare the traditional method (Group 2) with the control

condition (Group 3). It is of interest, then, to ask whether Group 2 is generally

different from Group 3. Analysis 3 in Table 14.10 shows that the traditional

method is, in fact, superior to the control condition.

Don’t forget that this is a conditional simple slope. As first discussed in Chap. 9,

with a cross-product term in the equation, lower-order effects represent a test of

slope differences when the continuous predictor¼ 0. Because we centered our

continuous predictor, the simple main effect tells us that the traditional method is

superior to the control group among subjects of average age.

14.2.3.3 Simple Main Effects of Group at Low and High Age

The preceding analyses have involved 1 df contrasts, but we might also wish to test

whether the simple main effect of group is significant within each “one standard

deviation away from the mean” age group. This is a 2 df test, as now we are asking

7 The boxed values reference the relevant analysis in Table 14.10.
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whether the three instructional conditions produce different results in reasoning

ability among younger and older subjects.

As first noted in Chap. 9, an easy way to answer this question is to rerun our

analyses after recentering our data so that 0 represents one standard deviation below

or above the mean on age (see Sect. 9.3.4). The following steps are involved to find

the simple main effect of group among younger subjects:

• Add the standard deviation for age (13.0384) to the mean-centered scores used in

the original analysis, and form cross products between the modified scores and

the group codes.

• Omit the group codes, and run a regression using the modified scores and the

cross products formed from them.

• Subtract the obtained SSreg from the SSreg from the original complete analysis

(analysis “a” in Table 14.2), and test the difference:

F ¼ 39:1608� 15:6833ð Þ=2½ �
:8065

¼ 14:5544

Referring this value to an F distribution with 2 and 6 degrees of freedom shows a

significant effect ( p¼.0050), confirming that the variance in performance across the

three groups for younger subjects is unlikely to be due to chance alone.

We repeat the steps for older subjects, except now we subtract the standard

deviation from the deviate scores so that 0 corresponds to one standard deviation

above the mean:

F ¼ 39:1608� 28:4979ð Þ=2½ �
:8065

¼ 6:6106

Referring this value to an F distribution with 2 and 6 degrees of freedom also

reveals a significant effect ( p¼.0304).

14.2.4 R Code: Moderation—Simple Effects

grp <-c(rep(1,4),rep(2,4),rep(3,4))

age <-c(29,27,39,53,57,32,45,21,47,55,29,22)

y <-c(7,9,5,2,5,7,6,5,4,3,3,4)

eff1 <-c(rep(1,4),rep(0,4),rep(-1,4))

eff2 <-c(rep(0,4),rep(1,4),rep(-1,4))

devage <-age-mean(age)

summary(mod.a <-lm(y~devage+eff1+eff2+eff1*devage+eff2*devage))

#Predicted Values for Ss one standard deviation above and below the mean

p0 <-c(rep(1,9))

p1 <-c(rep(-sd(age),3),rep(0,3),rep(sd(age),3))

p2 <-c(rep(c(1,0,-1),3))

(continued)
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14.2.4 R Code: Moderation—Simple Effects (continued)

p3 <-c(rep(c(0,1,-1),3))

p4 <-c(-sd(age),0,sd(age),rep(0,3),sd(age),0,-sd(age))

p5 <-c(0,-sd(age),sd(age),rep(0,3),0,sd(age),-sd(age))

P <-rbind(p0,p1,p2,p3,p4,p5)

pred.val <-t(P)%*%coef(mod.a); pred.val

#Create Bar Graph

bar.graph<-c(pred.val[1],pred.val[7],pred.val[2],pred.val[8],pred.val[3],

pred.val[9])

mat1 <- matrix(bar.graph, 2)

barplot(mat1,beside=T,

main = "Moderated Regression", col = c("white", "gray"),

xlab = "Treatment", names = c("New", "Traditional", "Control"),

ylab = "Reasoning Ability", legend = c("Younger", "Older"),

args.legend = list(title = "Age", x = "top", cex =1),ylim = c(0, 10))

#Create Augmented Matrices

aug.b <-function(mod,start){

coef <-coef(mod)

BB<-c(coef[start],coef[start+1],-(coef[start]+coef[start+1]),coef

[start+2],coef[start+3],-(coef[start+2]+coef[start+3]))

}

BB <-aug.b(mod.a,3)

aug.c <-function(mod,start){

covar <-vcov(mod)

cov <-covar[start:(start+3),start:(start+3)]

rows<-function(cov,i,j)cbind(cov[i,1],cov[i,2],-(cov[i,1]+cov

[i,2]),cov[i,3],cov[i,4],-(cov[i,3]+cov[i,4]))

aug <-rows(cov)

CC<-rbind(aug[1,],aug[2,],-(aug[1,]+aug[2,]),aug[3,],aug[4,],

-(aug[3,]+aug[4,]))

}

CC <-aug.c(mod.a,3)

#Simple Slopes

simple <-function(S){

simp.slope <-t(S)%*%BB;simp.err <-sqrt(diag(t(S)%*%CC%*%S))

df=(length(y)-length(coef(mod.a)))

ttests <-simp.slope/simp.err;pvalues <-2*pt(-abs(ttests),df=df)

crit <-abs(qt(0.025,df))

CI.low<-simp.slope-(crit*simp.err);CI.high<-simp.slope+(crit*simp.err)

simp.table<-round(matrix(c(simp.slope,simp.err,ttests,pvalues,

CI.low,CI.high),nrow=ncol(S),ncol=6),digits=5)

(continued)
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14.2.4 R Code: Moderation—Simple Effects (continued)

dimnames(simp.table)=list(c(),c("slope","stderr","t","p","CI.

low","CI.high"))

return(list(S,simp.table))

}

smat <-function(a,b){

s1 <-c(1*a,1*a,0,2*a,-1*a,-1*a);s2 <-c(-1*a,0,1*a,-1*a,2*a,-1*a)

s3 <-c(0,-1*a,-1*a,-1*a,-1*a,2*a);s4 <-c(1*b,1*b,0,2*b,-1*b,-1*b)

s5 <-c(-1*b,0,1*b,-1*b,2*b,-1*b);s6 <-c(0,-1*b,-1*b,-1*b,-1*b,2*b)

S <-rbind(s1,s2,s3,s4,s5,s6);simple(S)

}

simple.grp <-smat(1,0);simple.grp

simple.inter <-smat(0,1);simple.inter

simple.young <-smat(1,-sd(age));simple.young

simple.old <-smat(1,sd(age));simple.old

#2df Tests

dum.lo <-devage+sd(age)

eff1.lo <-eff1*dum.lo

eff2.lo <-eff2*dum.lo

summary(atlow <-lm(y~dum.lo+eff1.lo+eff2.lo))

anova(atlow,mod.a)

dum.hi <-devage-sd(age)

eff1.hi <-eff1*dum.hi

eff2.hi <-eff2*dum.hi

summary(athigh <-lm(y~dum.hi+eff1.hi+eff2.hi))

anova(athigh,mod.a)

14.3 Regions of Significance

In Chap. 9, we noted that plotting and testing the simple slopes at particular points is

not the only way to probe an interaction. Another approach is to identify regions of

significance using the Johnson-Neyman technique. Unfortunately, the Johnson-

Neyman formula was only designed to compare two groups. But suppose we

want to know the age at which the new method of instruction will be superior to

the average of the other two methods. To answer questions of this nature, we need

to modify the Johnson-Neyman technique (Bauer and Curran 2005, p. 380). As you

will see, the modification will allow us to identify regions of significance for any

1 df contrast.
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14.3.1 Reviewing the Johnson-Neyman Method

As you might remember, the Johnson-Neyman technique finds values of x that

produce statistically significant simple slopes:

bi þ bjxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cii þ 2xcij þ x2cjj

p � tcritical ð14:4Þ

The following steps are involved:

• Determine the critical value. With α¼.05 and 6 degrees of freedom, the critical

t value¼ 2.4469.

• Eliminate the square root in the denominator by squaring all terms so we are now

working with an F value rather than a t value:

Fcritical ¼ t2critical ¼ 5:9874

• Compute three preliminary terms:

A ¼ Fcritical � cjj
� �� b2j

B ¼ 2 � Fcritical � cij
� �� bibj
� � ð14:5Þ

C ¼ Fcritical � cii½ � � b2i

and enter them into the quadratic formula to find two values of x that produce a

statistically significant simple slope:

x ¼ �B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p

2A

14.3.2 Extending the Johnson-Neyman Method

Instead of individually testing all possible comparisons, we can do things more effi-

ciently using our augmented coefficient and covariance matrices and a modified

S matrix. The augmented matrices were computed earlier (see Table 14.8), and

Table 14.11 shows the modified Smatrix. There are two vectors for each contrast: the

first describes the group contrast (sg) and the secondmodels the cross-product term (sp).
After calculating these terms, we use them to find A, B, and C and then solve for

x using the quadratic formula.
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14.3.3 Illustration

To illustrate, we will work through the calculations for our first comparison (i.e.,

Group 1 vs. Group 2). Just as a reminder, we are looking for the ages for which this

comparison will produce a significant result. The final column in Table 14.11 shows

the result of the matrix multiplication, and inserting these values into our simple

slope formula leaves us with the following equation:

2:4469 ¼ :252704þ :235389xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:405792þ 2x � :001077ð Þ þ x2 � :003003ð Þp

After squaring all values, we solve for A, B, and C:

A ¼ 5:9874 � :003003ð Þ � :2353892 ¼ � :037428

B ¼ 2 � 5:9874 � :001077ð Þ � :252704 � :235389ð Þf g ¼ �:106074

and

C ¼ 5:9874 � :405792ð Þ � :2527042 ¼ 2:36578

Entering these values into the quadratic formula produces the region of

significance:

Table 14.11 Smatrix and matrix operations for regions of significance for 1df comparisons using

the augmented b vector (b+) and augmented covariance matrix (C+) from Table 14.8

s vectors for six possible 1df contrasts

1 vs. 2 1 vs. 3 2 vs. 3 1 vs. (2,3) 2 vs. (1,3) 3 vs. (1,2)

sg sp sg sp sg sp sg sp sg sp sg sp

b2 1 0 1 0 0 0 2 0 �1 0 �1 0

b3 �1 0 0 0 1 0 �1 0 2 0 �1 0

b3 + 0 0 �1 0 �1 0 �1 0 �1 0 2 0

b4 0 �1 0 �1 0 0 0 �2 0 1 0 1

b5 0 1 0 0 0 �1 0 1 0 �2 0 1

b5 + 0 0 0 1 0 1 0 1 0 1 0 �2

Term Matrix operations Illustration using Group 1 vs. Group 2

bi � (s
0
gb

+) .252704

bj s
0
p b+ .235389

cii s
0
g C

+ sg .405792

cij � (s
0
gC

+ sp) .001077

cjj s
0
p C+ sp .003003
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x ¼
� �:106074ð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�:1060742 � 4 � �:037428ð Þ � 2:36578ð Þ½ �

q
2 � �:037428ð Þ ¼ �9:4927

and

x ¼
� �:106074ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�:1060742 � 4 � �:037428ð Þ � 2:36578ð Þ½ �

q
2 � �:037428ð Þ ¼ 6:6586

Converting these deviate scores to raw scores, we predict that subjects who are

younger than ~ 28.50 years of age will perform significantly better with the new

method than with the traditional method and subjects who are older than ~ 44.66

years of age will perform significantly better with the traditional method than with the

new method. Subjects falling between these age differences should perform equally

well in both conditions.

Table 14.12 provides the remaining values, expressed in deviate form. To

convert to raw scores, add 38.00 to each value.

14.3.4 R Code: Regions of Significance

grp <-c(rep(1,4),rep(2,4),rep(3,4))

age <-c(29,27,39,53,57,32,45,21,47,55,29,22)

y <-c(7,9,5,2,5,7,6,5,4,3,3,4)

eff1 <-c(rep(1,4),rep(0,4),rep(-1,4))

eff2 <-c(rep(0,4),rep(1,4),rep(-1,4))

devage <-age-mean(age)

summary(mod.a <-lm(y~devage+eff1+eff2+eff1*devage+eff2*devage))

#Create function for augmented vector

aug.b <-function(mod,start){

coef <-coef(mod)

BB<-c(coef[start],coef[start+1],-(coef[start]+coef[start+1]),coef

[start+2],coef[start+3],-(coef[start+2]+coef[start+3]))

}

BB <-aug.b(mod.a,3) #Enter model and first categorical coefficient

(continued)

Table 14.12 Regions of

significance for six contrasts
Comparison Lower Upper

Group 1 vs. Group 2 �9.4927 6.6586

Group 1 vs. Group 3 1.7699 24.2561

Group 2 vs. Group 3 14.7210 �13.4888

Group 1 vs. (Group 2, Group 3) �2.0589 12.6927

Group 2 vs. (Group 1, Group 3) �108.6889 .8101

Group 3 vs. (Group 1, Group 2) 5.6032 205.6813

490 14 Moderation



14.3.4 R Code: Regions of Significance (continued)

#Create function for augmented covariance matrix

aug.c <-function(mod,start){

covar <-vcov(mod)

cov <-covar[start:(start+3),start:(start+3)]

rows<-function(cov,i,j)cbind(cov[i,1],cov[i,2],-(cov[i,1]+cov

[i,2]),cov[i,3],cov[i,4],-(cov[i,3]+cov[i,4]))

aug <-rows(cov)

CC<-rbind(aug[1,],aug[2,],-(aug[1,]+aug[2,]),aug[3,],aug[4,],-(aug

[3,]+aug[4,]))

}

CC <-aug.c(mod.a,3) #Enter model and first categorical coefficient

#Create Johnson-Neyman Function -- specify group comparisons

jnfunc <-function(a,b){

c = -(a+b)

j1 <-c(a,b,c,0,0,0)

j2 <-c(0,0,0,-a,-b,-c)

bg <-(-(t(j1)%*%BB))

bp <-t(j2)%*%BB

cgg <-t(j1)%*%CC%*%j1

cgp <-(-(t(j1)%*%CC%*%j2))

cpp <-t(j2)%*%CC%*%j2

df <-length(y)- length(coef(mod.a))

t.crit <-abs(qt(.025,df))

A <-(t.crit^2*cpp)-bp^2

B <-2*((t.crit^2*cgp-(bg*bp)))

C <-(t.crit^2*cgg)-bg^2

lower <-(-B+sqrt(B^2-4*A*C))/(2*A)

upper <-(-B-sqrt(B^2-4*A*C))/(2*A)

return <-cbind(lower,upper)

}

comp1 <-jnfunc(1,-1);comp2 <-jnfunc(1,0);comp3 <-jnfunc(0,1)

comp4 <-jnfunc(2,-1);comp5 <-jnfunc(-1,2);comp6 <-jnfunc(-1,-1)

regions <-rbind(comp1,comp2,comp3,comp4,comp5,comp6)

regions

raw.regions <-regions+mean(age);raw.regions

14.4 Chapter Summary

1. Moderation occurs when a continuous variable qualifies the effects of a

categorical one.
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2. Moderation is tested by creating cross-product terms between a continuous

variable and the vectors that represent a categorical predictor. A complete

model with all terms is then compared with one that excludes the cross-product

terms. Moderation is established if the complete model fits the data significantly

better than the reduced one.

3. Simple effects tests can be conducted to illuminate the nature of moderation.

These tests are comparable to ones that probe the form of an interaction in an

analysis of variance.

4. Regions of significance can be identified by modifying the Johnson-Neyman

technique. Using effect coding with an augmented matrix constitutes the easiest

way to perform these tests.
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Chapter 15

Mediation

When scientists find an association between two or more variables, they are rarely

content knowing only that the variables are related. Instead, they want to know why

they are related; by what causal mechanism does one variable affect another?

Unfortunately, the search for causes is fraught with difficulty. As the Scottish

philosopher David Hume noted more than 250 years ago, causes are always

inferred, never observed. For this reason, causal assumptions are subject to error,

leading scientists to function as detectives, examining clues to construct a plausible

(though not unassailable) causal argument.

In this chapter, we will examine a research strategy designed to illuminate the

causal pathway from a categorical predictor to a continuous criterion. Let’s begin

by reviewing some material we first discussed in Chap. 13. Figure 15.1 (reproduced

from Fig. 13.1) depicts three possible relations between a categorical predictor (x),
a continuous criterion (y), and a continuous third variable (z):

• In the first example, x and z independently predict y. This is the intended use of

an analysis of covariance (ANCOVA), covered in Chap. 13.

• In the second case, z moderates the relation between x and y. We discussed this

research strategy in Chap. 14.

• The final example shows the case where x causes z, and z causes y. Here,
z mediates (goes between) the predictor and the criterion in a presumed causal

chain. This possibility, known as mediation, is the subject of the present chapter.
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Before considering the steps involved in a test of mediation, let’s discuss a more

general issue, namely, research design and causal inference. Broadly speaking,

there are two types of research designs: experimental research and correlational

research. The most important difference between them is that subjects are randomly

assigned to conditions in the former design but not in the latter. Because of this

variation, only experimental research offers evidence of causality. Correlational

research can suggest causal hypotheses to be tested, but, as is often said, “correla-

tion is not causality.”

It follows from the preceding discussion that mediational analyses must use the

experimental method if they are to illuminate causal relations. Regrettably, this is

not always so. Many investigations combine mediation with correlational methods,

creating interpretive problems. In this chapter, we will first examine situations in

which mediational analyses are appropriately paired with random assignment to

conditions; afterward, we will consider problems that arise when mediational

analyses are conducted with correlational data.

15.1 Simple Mediation

We will begin with a small sample example using a single mediator. This type of

analysis is often called simple mediation. Imagine that our researcher from

Chaps. 13 and 14 is now interested in finding out why her new method of teaching

abstract reasoning works so well with young adults. She suspects that enhanced

creativity is the key: Her new method leads young adults to think “outside the box,”

and creativity improves their performance on tests of abstract reasoning. Notice the

causal argument here: Instructional method (X) affects creativity (henceforth des-

ignated M for mediator), and creativity affects performance (Y). Figure 15.2

illustrates the causal model, with lowercase letters (a, b, and c0) identifying various
pathways. The meaning of these designations will be clarified momentarily.

ModerationANCOVA Mediation

x

z

y

x

y

z

x

yxz
z

Fig. 15.1 Three possible relations between a categorical predictor (x), a continuous criterion ( y),
and a continuous third variable (z) (Reproduced from Fig. 13.1)
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To test her mediation model, the researcher randomly assigns 12 young adults

(age 30 and younger) to one of two conditions: the new instructional method or a

traditional instructional method. She then measures creativity and, afterward,

performance at a test of abstract reasoning. The (fictitious) data, along with a

coding scheme, appear in Table 15.1.1

15.1.1 Analytic Strategy

A test of mediation involves partitioning the total effect of X on Y into two

components: a direct (unmediated) effect and an indirect (mediated) effect. One

way to produce this partitioning is to conduct a series of regression analyses that

address five questions. Table 15.2 shows the regression analyses and questions,

along with notation that is commonly used with tests of mediation.

M

X Y

a b

c¢

Fig. 15.2 Simple

mediational model with a

categorical predictor (X),

a mediating variable (M),

and a criterion (Y)

Table 15.1 Small sample example for a mediational analysis using two experimental groups and

one mediator

Raw data One bootstrap sample

Subject

Instructional

method

Dummy

coding X Creativity M

Abstract

reasoning Y

Random
seed X M Y

1 New 0 6 7 2 0 5 7

2 New 0 5 7 12 1 1 3

3 New 0 9 9 2 0 5 7

4 New 0 7 8 11 1 2 2

5 New 0 8 8 6 0 4 6

6 New 0 4 6 10 1 8 7

7 Traditional 1 5 6 5 0 8 8

8 Traditional 1 2 4 4 0 7 8

9 Traditional 1 3 4 10 1 8 7

10 Traditional 1 8 7 1 0 6 7

11 Traditional 1 2 2 7 1 5 6

12 Traditional 1 1 3 6 0 4 6

1 Later in this chapter, we will add the control condition and older adults to round out the

experimental design used in Chap. 14.
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15.1.1.1 Preliminary Analyses

Our first question is whether the categorical variable predicts the criterion. This

question is answered by testing the statistical significance of the regression coeffi-

cient (c) in the first regression analysis.2 Replicating our (phony) research from

Chaps. 13 and 14, the top portion of Table 15.3 shows that the instructional method

is superior to the traditional method (c¼� 3.1667, p¼.0046). The left-hand portion

of Fig. 15.3 depicts the effect.

Mediational analyses are undertaken to illuminate why groups differ. In our

case, the researcher suspects that creativity explains why the new method is better

than the traditional one. To effectively make this argument, she first needs to

establish that instructional method affects creativity. The second analysis in

Table 15.3 confirms that creativity scores are significantly higher following the

new instructional method than the traditional method (a¼� 3.00, p¼.0442). The

middle portion of Fig. 15.3 displays the effect.

In our third regression analysis, we regress the criterion on the categorical

variable and the presumed mediator. Doing so allows us to determine whether the

mediator predicts the criterion after the categorical variable has been statistically

controlled. The final analysis in Table 15.3 shows that creativity does, in fact,

Table 15.2 Regression analyses and tests of mediation

Question

Regression

analysis Ordinary notation Mediation notation

Does the categorical variable

predict the criterion?

Regress Y on

X and test sig-

nificance of X

Ŷ ¼ b0 þ b1X Ŷ ¼ c0 þ cX

Does the categorical variable

predict the mediator?

Regress M on

X and test sig-

nificance of X

M̂ ¼ b0 þ b1X M̂ ¼ a0 þ aX

Does the mediator predict the

criterion after controlling for

the categorical variable?

Regress Y on

X and M, and

test signifi-

cance of M

Ŷ ¼ b0 þ b1Mþ b2X Ŷ ¼ b0 þ bMþ c
0
X

Does the categorical variable

predict the criterion after

controlling for the mediator?

Regress Y on

X and M, and

test signifi-

cance of X

Ŷ ¼ b0 þ b1Mþ b2X Ŷ ¼ b0 þ bMþ c0X

Does the categorical variable

predict significantly less var-

iance in the criterion after

controlling for the mediator?

c� c0 ¼ ab

2 Using statistical significance to answer this question assumes that the power of the experiment is

sufficient to detect an effect. Clearly, this is unlikely to be the case with a sample size as small as

ours. But since our data are fictitious anyway, we can also pretend that the sample size is large.
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predict performance after statistically controlling for the categorical variable

(b¼.6176, p¼.0001).

Taken together, the analyses we have performed provide preliminary evidence

of mediation: Instructional method predicts performance and creativity, and crea-

tivity predicts variance in performance that instructional method does not.

Having established a plausible mediational argument, we can ask two additional

questions of our data. First, does the categorical variable predict the criterion after

the mediator is statistically controlled? If it does not, we characterize the form of

mediation as “total mediation,” as here the mediator seems to completely explain

all of the benefits of the new instructional method; if it does, we say that we have

“partial mediation,” because creativity does not fully explain the benefits of the

new instructional method. The final analysis in Table 15.3 shows evidence of

partial mediation in our data set, as the categorical variable continues to predict

performance even after controlling for the mediator (c0 ¼� 1.3137, p¼.0149).

The final columns in Fig. 15.3 display the nature of the effect.3

Table 15.3 Regression analyses in tests of mediation using mediation notation

1. Predict criterion from categorical vector

SS df MS R2 F p

Regression 30.0833 1 30.0833 .5685 13.1752 .0046

Residual 22.8333 10 2.2833

Total 52.9167

b seb t p

c0 7.50 .6169 12.1577 .0000

c �3.1667 .8724 3.6298 .0046

2. Predict mediator from categorical vector

SS df MS R2 F p

Regression 27.00 1 27.00 .3462 5.2941 .0442

Residual 51.00 10 5.10

Total 78.00

b seb t p

a0 6.50 .9220 7.0502 .0000

a �3.00 1.3038 2.3009 .0442

3. Predict criterion from mediator and categorical vector

SS df MS R2 F p

Regression 49.5392 2 24.7696 .9362 66.0044 .0000

Residual 3.3775 9 .3753

Total 52.9167

b seb t p

b0 3.4853 .6111 5.7034 .0003

b .6176 .0858 7.2003 .0001

c0 �1.3137 .4374 3.0035 .0149

3 The adjusted means shown in Fig. 15.3 were calculated using Eq. (13.1).
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15.1.1.2 Partitioning the Variance

Figure 15.4 depicts our mediational model, but we still have one more question to

ask: Is the impact of the categorical variable significantly reduced after the mediator

is statistically controlled? It might seem that the most straightforward way to answer

this question is to test the statistical significance of c� c0, but there is an equivalent
but numerically superior solution: compute ab and test its statistical significance.

Partitioning the variance will convince you that c� c0 ¼ ab. Earlier, we noted that
a mediational analysis assumes that the total effect of a categorical variable on a

criterion is the sum of two components: an unmediated, direct effect and a mediated,

indirect effect. The total effect is represented by c, the direct effect is represented by
c0, and the mediated effect is found by multiplying the coefficient linking the

categorical variable to the mediator (a) by the coefficient representing the unique

effect of the mediator on the criterion with the categorical variable controlled (b):

c ¼ c
0 þ ab ð15:1Þ

7.50 6.50 6.574.33 3.50 5.26
1

2

3

4

5

6

7

8

Abstract Reasoning Creativity Abstract Reasoning
Adjusted for

Creativity

Pe
rf

or
m

an
ce

New Method Traditional MethodFig. 15.3 Abstract

reasoning, creativity, and

adjusted reasoning as a

function of instructional

method

M

X Y

a = -3.00 b = .6176

c¢ = -1.3137

Fig. 15.4 Simple

mediational model with a

categorical predictor (X),

a mediating variable (M),

and a criterion (Y)
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Rearranging these terms reveals that

ab ¼ c� c
0 ð15:2Þ

and simple arithmetic confirms their equivalence:

c� c
0 ¼ �3:1667��1:3137ð Þ ¼ �1:8529

and

ab ¼ �3:00 � :6176 ¼ �1:8529

15.1.2 Assessing the Importance of the Mediated Effect

There are at least four ways to judge the importance of a mediated effect: (1) test its

statistical significance, (2) calculate confidence intervals, (3) compute its effect

size, or (4) compare it with the size of other effects. All four methods require that

we first compute the standard error of the mediated effect. The standard error, you

will recall, represents the standard deviation of a distribution formed from repeat-

edly sampling a parameter. For example, if we conducted our study 10, 000 times,

we could form a distribution of all 10, 000 mediated effects and compute the

distribution’s standard deviation. We call that standard deviation the standard

error. Of course, we don’t actually conduct a study 10, 000 times; instead, we use

our knowledge of probability to calculate a standard error that matches the values

we expect to find had we performed all of the replications.

15.1.2.1 Calculating the Standard Error of the Mediated Effect

Because the mediated effect is the product of two terms computed from separate

regression equations, we cannot calculate its standard error in the usual fashion.

Fortunately, there is a work-around. Using a procedure known as the multivariate

delta method, Sobel (1982) derived an approximation of the standard error of a

mediated effect. The procedure starts by forming a column vector of partial

derivatives. As we have learned, a partial derivative represents the instantaneous

rate of change of a function as one of its input values changes while the others are

held constant.

With respect to mediation, we assume that y is a function of a (the path from x to
m), b (the path from m to y with x in the regression equation), and c0 (the path from

x to y with m in the regression equation):

ŷ ¼ abþ c
0 ð15:3Þ

Because we are interested only in the mediated effect, we disregard the path from

the categorical predictor to the criterion (c0), leaving ŷ ¼ ab.
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To calculate the partial derivative of ab with respect to a, we replace a with “1,”
leaving b:

∂ab
∂a

¼ b ð15:4Þ

To calculate the partial derivative of ab with respect to b, we replace b with “1,”

leaving a:

∂ab
∂b

¼ a ð15:5Þ

We then place these values into a column vector of partial derivatives we designate d:

d ¼ b
a

� �
ð15:6Þ

Inserting the values from Table 15.3 produces the vector of partial derivatives:

d ¼ :6176
�3:00

� �
Next, we form a covariance matrix that includes values from both analyses. The

covariance matrices for Analysis 2 (predict M from X) and Analysis 3 (predict Y

from M and X) appear in Table 15.4, with the relevant variances shaded for

emphasis.4

Because a and b come from different analyses, their covariance equals zero;

consequently, we form a diagonal covariance matrix we designate C:

C ¼ σ2a 0

0 σ2b

� �
ð15:7Þ

Inserting values from Table 15.4 produces our covariance matrix. Notice that

although b appears first in the column vector d, the variance of a appears first in C:

Table 15.4 Covariance matrices for Analysis 2 and Analysis 3 in Table 15.3

a0 a b0 b c0

a0 .8500 �.8500 b0 .3734328 �.0478288 �.2060319

a �.8500 1.7000 b �.0478288 .0073583 .0220748

c0 �.2060319 .0220748 .1913153

4 The shaded variances can also be calculated by squaring the relevant standard errors shown in

Table 15.3.
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C ¼ 1:70 0

0 :0073583

� �
Now, we compute the standard error in the usual manner by finding the square

root of d0Cd:5

seab ¼
ffiffiffiffiffiffiffiffiffiffi
d

0
Cd

p
ð15:8Þ

Plugging in our values yields our standard error:

seab ¼ :845431

15.1.2.2 Testing the Statistical Significance of the Mediated Effect

The standard error is used to test the statistical significance of the mediated effect.

The test, known as Sobel’s test, is normally distributed, and absolute values greater

than 1.96 are statistically significant:

Zab ¼ ab

seab
ð15:9Þ

Plugging in our values yields Sobel’s test:

Zabj j ¼ �1:8529

:845431
¼ 2:1917, p ¼ :0284

On the basis of this test, we would conclude that the mediated path from instruc-

tional method to performance via creativity is unlikely to be a chance finding. And

since testing ab is the same as testing c� c0, we can also say that the effect of

instructional method on performance is significantly reduced when creativity is

taken into account. These equivalent conclusions lend credence to the researcher’s

hypothesis that her new instructional method works, at least in part, because it

promotes creativity.

5 The formula in Eq. (15.8) computes a first-order standard error. It can also be found using simple

algebra, dropping the last term when the variables are uncorrelated:

seab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2σ2a þ a2σ2b þ 2abσab

q
Additionally, some researchers compute a more conservative, second-order standard error by

adding the variances to the first-order term. We will only use the formula for the first-order

standard error in this book because it is the one used by most statistical packages:

seab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2σ2a þ a2σ2b þ 2abσab þ σ2aσ

2
b

q
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We can also gauge the magnitude of the mediated effect by constructing 95 %

confidence limits around it:

�1:8529� 1:96 � :845431ð Þ ¼ �3:51

and

�1:8529þ 1:96 � :845431ð Þ ¼ �:1959

If we were to conduct our study 10, 000 times, we would expect to find a mediated

effect that falls between these extremes in 9, 500 of them; the remaining 500 sam-

ples would (probably) produce mediated effects that fall outside this range.

15.1.2.3 Bootstrapping

Sobel’s test assumes that the mediated effect is normally distributed, but this is not

always true when sample sizes are small (< ~200). Consequently, the test is not

always accurate and the confidence intervals are not always symmetric (MacKinnon

2008). There are several ways to remedy this situation, but the most common is to use

a technique known as bootstrapping. With bootstrapping, we use the data we col-

lected to simulate conducting hundreds of studies. The following steps are involved:

• Randomly selecting with replacement from the data you collected, create hun-

dreds of samples, each the same size as your original sample.

• Calculate the mediated effect from each sample, and construct 95% confidence

limits by computing the average of the bottom and top 2.5% of the calculated

effects.

The last four columns of Table 15.1 show one bootstrap sample. As you can see,

observations 2, 6, and 10 are represented twice, and observations 3, 8, and 9 are

missing. The mediated effect from this sample ¼ �.4914. If you then repeat this

process hundreds of times, you create bootstrapped standard errors. Due to its

repetitive nature, bootstrapping is tedious to perform with a spreadsheet, and I

would encourage you to use a statistical package when using this technique.

The R code that accompanies this chapter provides a function you can use, and

the values shown below represent the average of the top and bottom 2.5% of the

calculated values for our mediated effect when I performed these analyses:6

Lower Bootstrapping Confidence Limit ¼ � 3:767714

Upper Bootstrapping Confidence Limit ¼ :1489967

6Because the resamples are drawn randomly, the results you get using R will not precisely match

the ones reported here.
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Because our sample size is so small, these confidence intervals are quite different

from the ones we obtained using the standard error. With a larger sample, the two

estimates are ordinarily quite similar.

15.1.3 Effect Sizes

Effect sizes can also be used to characterize the magnitude of a mediated effect.

Currently, there is no accepted standard for computing the effect size of a mediated

effect, but several options are available (Preacher and Kelly 2011). Table 15.5

displays some of the effect size measures that have been suggested, along with their

values using our data set. In general, effect sizes with absolute values >.25 are

considered large, and all of the values listed in Table 15.5 far exceed this standard.

15.1.4 Contrasts

A final way to gauge the importance of the mediated effect is to test it against other

effects. For example, we could compare the size of the mediated effect against the

direct effect (ab� c0). To find the standard error of the contrast, we create a vector

of partial derivatives d:7

d ¼

∂ab
∂a

¼ b

∂ab
∂b

¼ a

∂c
0

∂c0 ¼ �1

266666664

377777775
ð15:10Þ

Table 15.5 Measures of

effect size for the mediated

effect

Proportion of total effect that is mediated ab

c

.5851

Ratio of direct effect to total effect c
0

c

.4149

Ratio of mediated effect to direct effect ab

c0
1.4104

Standardized effect ab

σy

�.8448

7 The partial derivative of c0 carries a negative sign in Eq. (15.10) because we are contrasting the

effect against the mediated effect.
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and a covariance matrix C (shown below):

C ¼
σa2 0 0

0 σb2 σbc0
0 σc0b σc02

24 35 ð15:11Þ

Inserting the relevant values from Tables 15.3 and 15.4 produces the vector and

matrix:

d ¼
:6176
�3:00
�1

" #
C ¼

1:70 0 0

0 :007358 :022075
0 :022075 :191315

24 35
We then find the square root of the contrast in the usual fashion:

seab�c0 ¼
ffiffiffiffiffiffiffiffiffiffi
d

0
Cd

p
¼ 1:0191

and construct a Z test to assess its significance:

Zab�c0
		 		 ¼ ab� c

0

seab�c0
¼ �1:8529� �1:3137ð Þ

1:0191
¼ :5291, p ¼ :5967

As you can see, the mediated effect is not significantly greater than the direct effect.

Note, however, that the standard error of the contrast is not normally distributed, so

bootstrapping should be used when sample sizes are small. In this case, you

compute the contrast (ab� c0) across hundreds of bootstrap samples and construct

confidence intervals using the bottom and top 2.5% of your observed values. If zero

falls within the confidence limits, you fail to reject the null hypothesis.

15.1.5 Summary

Mediational analyses are designed to illuminate causal pathways. Because we

measured creativity after randomly assigning subjects to experimental conditions,

it is reasonable to attribute any effect of creativity on performance to the causal

chain initiated by the instructional method, and to take this indirect effect into

account when considering the overall impact of instructional method on

performance.

Whether this conclusion would be warranted if the total effect of instructional

method on performance had fallen short of statistical significance is debatable.

Some researchers believe that a mediational analysis is appropriate only when the

total effect is statistically significant (Baron and Kenny 1986), whereas others

believe this requirement is too restrictive (Shrout and Bolger 2002). The latter

position rests on two facts: (1) a mediator can sometimes act as a suppressor

variable, obscuring the effects of X on Y, and (2) the power to detect a total effect
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can be less than the power to detect a mediated one (Kenny and Judd 2014). When

these circumstances can be shown to exist, testing for mediation in the absence of a

total effect of X on Y makes sense.

Power considerations are relevant to a related issue. Because they are based

solely on statistical significance, characterizations of “full mediation” vs. “partial

mediation” are problematic. By simply increasing the sample size, an effect

formerly described as representing “full mediation” could become one of “partial

mediation.” For this reason, it is best to forgo using this designation or offer the

description as appropriate only for the sample at hand.

15.1.6 R Code: Simple Mediation

X <-c(rep(0,6),rep(1,6))

M <-c(6,5,9,7,8,4,5,2,3,8,2,1)

Y <-c(7,7,9,8,8,6,6,4,4,7,2,3)

summary(mod.1 <-lm(Y~X))

summary(mod.2 <-lm(M~X))

summary(mod.3 <-lm(Y~M+X))

a <-mod.2$coef[2]

b <-mod.3$coef[2]

c <-mod.1$coef[2]

cdir <-mod.3$coef[3]

#Sobel’s Test

ab <-a*b

d <-rbind(mod.3$coef[2],mod.2$coef[2])

C <- matrix(c(vcov(mod.2)[2:2,2:2],0,0,vcov(mod.3)[2:2,2:2]),

nrow=2)

SE <-sqrt(t(d)%*%C%*%d)

Z.ab <-ab/SE

pvalue <-2*(1-pnorm(abs(Z.ab)))

CI.low <-ab-(1.96*SE)

CI.high <-ab+(1.96*SE)

Sobel<-round(matrix(c(ab,SE,Z.ab,pvalue,CI.low,CI.high),nrow=1,

ncol=6),digits=5)

dimnames(Sobel)=list(c(""),c("ab", "SE", "Z","p","CI.low","CI.

high"))

Sobel

#Bootstrap Function

med.boot <- function(X, M, Y, reps, ci){

ab_vector = NULL

for (i in 1:reps){

s = sample(1:length(X), replace=TRUE)

Xs = X[s]

Ys = Y[s]

Ms = M[s]

M_Xs = lm(Ms ~ Xs)

(continued)
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15.1.6 R Code: Simple Mediation (continued)

Y_XMs = lm(Ys ~ Xs + Ms)

a = M_Xs$coefficients[2]

b = Y_XMs$coefficients[3]

ab = a*b

ab_vector = c(ab_vector, ab)

}

sorted <-sort(ab_vector)

num=reps*(ci/2)

CI.low <-mean(sorted[1:num])

CI.high <-mean(sorted[(length(sorted)-(num-1)):length(sorted)])

CI <-cbind(CI.low,CI.high)

return=CI

}

bootstrap <-med.boot(X,M,Y,1000,.05);bootstrap #Specify variables,

#sample size, and confidence interval

#Effect Size Measures

prop <-ab/c

ratio.1 <-cdir/c

ratio.2 <-ab/cdir

standard <-ab/sd(Y)

effect <-cbind(prop,ratio.1,ratio.2,standard)

effect

#Contrasts

d <-rbind(b,a,-1)

c1 <-c(vcov(mod.2)[2:2,2:2],0,0)

c2 <-c(0,vcov(mod.3)[5],vcov(mod.3)[6])

c3 <-c(0,vcov(mod.3)[8],vcov(mod.3)[9])

CC <-cbind(c1,c2,c3)

se.cont <-sqrt(t(d)%*%CC%*%d)

Z.contrast <-(ab-cdir)/se.cont

Z.contrast

2*(1-pnorm(abs(Z.contrast)))

15.2 Higher-Order Designs

The procedures we have examined can be extended for use with more complicated

designs. We cannot cover all possibilities here, but I will discuss three extensions in

this section: (1) mediation with three groups and one mediator, (2) mediation with

two groups and two mediators, and (3) mediation with moderation.
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15.2.1 Mediation with Three Groups

The first extension we will consider uses a categorical predictor with three groups,

although the procedures apply to multiple groups of all sizes. Imagine our researcher

adds a control condition to her original design. After finding another sample of

12 young adults, she randomly assigns them to one of three conditions: her new

instructional method, the traditional method, or a control (no instruction) condition.

She then measures creativity, followed by performance on a test of abstract reason-

ing ability. The (concocted) data, along with a coding scheme we will use to analyze

them, appear in Table 15.6. Notice that we are using two dummy-coded vectors to

represent our three groups. The first compares the new method with the traditional

method, and the second compares the new method with the control condition.

15.2.1.1 Regression Analyses

As with a two-group design, we begin a test of mediation by conducting three

regression analyses. The regression equations appear below:

Ŷ ¼ c0 þ c1X1 þ c2X2

M̂ ¼ c0 þ c1X1 þ c2X2

Ŷ ¼ b0 þ bMþ c1
0X1 þ c2

0X2

ð15:12Þ

and the corresponding analyses shown in Table 15.7 support the following

conclusions:

• Both categorical vectors are significant in the first analysis, indicating that

abstract reasoning skills are greater with the new instructional method than

with the traditional instructional method or no instruction.

Table 15.6 Small sample

example for a mediational

analysis using three

experimental groups

and one mediator

Instructional

Method Creativity M X1 X2 Performance Y

New 7 0 0 7

New 9 0 0 8

New 7 0 0 7

New 6 0 0 7

Traditional 5 1 0 4

Traditional 5 1 0 4

Traditional 3 1 0 3

Traditional 7 1 0 5

Control 3 0 1 4

Control 2 0 1 3

Control 1 0 1 3

Control 2 0 1 2
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• Similarly, both categorical vectors are significant in the second analysis, indi-

cating that creativity scores are greater with the new instructional method than

with the traditional method or no instruction.

• All terms are significant in the final analysis, indicating that the mediated effect

is significant even after controlling for the categorical vector and that mediation

in this sample is partial, not total.

15.2.1.2 Partitioning of Effects

Figure 15.5 shows the mediational model. Computing an omnibus mediated effect is

not recommended, sowe form two equations, one for each categorical vector. Because

we have used dummy coding, each vector represents a comparison between the new

instructional method and one of the other groups. The left-hand side of Fig. 15.5

examines whether creativity explains differences in abstract reasoning between

Table 15.7 Regression analyses for a test of mediation with a 2 df predictor and one mediator

1. Predict criterion from categorical vectors

SS df MS R2 F p

Regression 39.50 2 19.75 .8927 37.4211 .0000

Residual 4.75 9 .5278

Total 44.25

b seb t p

c0 7.25 .3632 19.9592 .0000

c1 �3.25 .5137 6.3266 .0001

c2 �4.25 .5137 8.2733 .0000

2. Predict mediator from categorical vectors

SS df MS R2 F p

Regression 55.50 2 27.75 .7900 16.9322 .0009

Residual 14.75 9 1.6389

Total 70.25

b seb t p

a0 7.25 .6401 11.3264 .0000

a1 �2.25 .9052 2.4856 .0347

a2 �5.25 .9052 5.7996 .0003

3. Predict criterion from mediator and categorical vectors

SS df MS R2 F p

Regression 42.5890 3 14.1963 .9625 68.3741 .0000

Residual 1.6610 8 .2076

Total 44.25

b seb t p

b0 3.9322 .8898 4.4190 .0022

b (creativity) .4576 .1186 3.8571 .0048

c
0
1

�2.2203 .4184 5.3065 .0007

c
0
2

�1.8475 .7013 2.6344 .0300
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the new method and the traditional method, and the right-hand side of Fig. 15.5

examines whether creativity explains differences in abstract reasoning between the

new method and the control condition. Note, however, that the value for b (path from
mediator to criterion) is identical in both analyses. Even though we are separating the

categorical vectors to form our equations, both vectors are included when performing

the regression analyses, so the path from themediator to the criterion does not change.

After performing the regression analyses, we compute two mediated effects, one

for each vector:

ab1 ¼ �2:25 � :4576 ¼ �1:0297

ab2 ¼ �5:25 � :4576 ¼ �2:4025

We can then compute standard errors of each effect and calculate confidence

intervals, tests of statistical significance, and effect sizes using the procedures

described earlier. Table 15.8 presents the vector of partial derivatives and covari-

ance matrix for each categorical vector, first for a Sobel’s test and then for a contrast

in which the mediated path is compared with the direct effect.

Table 15.8 Vectors and matrices for standard errors used in Sobel’s test and a comparison of the

mediated effect vs. the direct effect

Test d C

Standard

error ¼ffiffiffiffiffiffiffiffiffiffiffi
d

0
Cd

p

Vector

1—Sobel’s

test

b
a1

� �
¼ :4576

�2:25

� �
σa1

2 0

0 σb2

" #
¼ :819444 0

0 :014076

" #
.4928

Vector

1—ab vs. c0
b
a1
�1

24 35 ¼
:4576
�2:25
�1

24 35 σa1
2 0 0

0 σb2 σbc0
1

0 σbc0
1

σc0
1

2

2664
3775 ¼

:819444 0 0

0 :014076 :031672

0 :031672 :175075

264
375

.7486

Vector

2—Sobel’s

test

b
a2

� �
¼ :4576

�5:25

� �
σa2

2 0

0 σb2

" #
¼ :819444 0

0 :014076

" #
.7481

Vector

2—ab vs. c0
b
a2
�1

24 35 ¼
:4576
�5:25
�1

24 35 σa2
2 0 0

0 σb2 σbc0
2

0 σ
cb

0
2

σc0
2

2

2664
3775 ¼

:819444 0 0

0 :014076 :073901

0 :073901 :491795

264
375

1.3518

M M

X1 X2Y Y

a1 = -2.25 a2 = -5.25b = .4576 b = .4576

c1¢ = -2.2203 c2¢ = -1.8475

Fig. 15.5 Mediational model with a 2 df predictor
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Table 15.9 presents the tests of significance. As you can see, both mediated

effects are significant, suggesting that the newer method is better than each of the

other methods, in part, because it fosters creativity and creativity fosters perfor-

mance. Note also, however, that neither mediated effect is significantly greater than

its corresponding direct effect.

15.2.1.3 Summary

Using a 2 df predictor poses no challenge to a mediational analysis. Both categor-

ical vectors are included in all regression analyses, but we treat them separately

when performing tests of mediation. We used dummy coding because it makes the

most sense in this context to compare the first group against each of the others,

but we could have used orthogonal contrast codes or effect codes. And if we use

effect codes, we can augment our vectors and matrices as we learned to do in

Chap. 12, yielding all possible 1 df comparisons and contrasts.

15.2.2 R Code: Mediation with Three Groups

X1 <-c(rep(0,4),rep(1,4),rep(0,4))

X2 <-c(rep(0,8),rep(1,4))

M <-c(7,9,7,6,5,5,3,7,3,2,1,2)

Y <-c(7,8,7,7,4,4,3,5,4,3,3,2)

summary(mod.1 <-lm(Y~X1+X2))

summary(mod.2 <-lm(M~X1+X2))

summary(mod.3 <-lm(Y~M+X1+X2))

b <-mod.3$coef[2]

#Sobel

Sobel <-function(x){

a <-mod.2$coef[1+x];ab <-a*b

d <-rbind(b,a)

C <- matrix(c(vcov(mod.2)[5],0,0,vcov(mod.3)[6]), nrow=2)

SE <-sqrt(t(d)%*%C%*%d)

Z <-ab/SE

pvalue <-2*(1-pnorm(abs(Z)))

(continued)

Table 15.9 Tests of mediated effects in a 2 df mediational model

Point estimate se |Z| p CIlow CIHigh

a1b �1.0297 .4928 2.0893 .0367 �1.9956 �.0637

a1b vs. c1
0 1.1907 .7486 1.5904 .1117 �.2767 2.65802

a2b �2.4025 .7481 3.2117 .0013 �3.8687 �.9363

a2b vs. c2
0 �.5551 1.3518 .4106 .6813 �3.2046 2.09443
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15.2.2 R Code: Mediation with Three Groups (continued)

CI.low <-ab-(1.96*SE)

CI.high <-ab+(1.96*SE)

Sobel<-round(matrix(c(ab,SE,Z,pvalue,CI.low,CI.high),nrow=1,

ncol=6),digits=5)

dimnames(Sobel)=list(c(""),c("ab", "SE", "Z","p","CI.low","CI.

high"))

Sobel

}

sobel.1 <-Sobel(1)

sobel.2 <-Sobel(2)

Sobel.table <-rbind(sobel.1,sobel.2);Sobel.table

#Contrasts

contrast <-function(x){

a <-mod.2$coef[1+x];ab <-a*b;c <-mod.3$coef[2+x];minus <-ab-c

d <-rbind(b,a,-1)

c1 <-c(vcov(mod.2)[2:2,2:2],0,0);

c2 <-c(0,vcov(mod.3)[6],vcov(mod.3)[6+x])

c3 <-c(0,vcov(mod.3)[6+x],vcov(mod.3)[6+x+(4*x)])

CC <-cbind(c1,c2,c3)

SE <-sqrt(t(d)%*%CC%*%d)

Z <-minus/SE

pvalue <-2*(1-pnorm(abs(Z)))

CI.low <-minus-(1.96*SE)

CI.high <-minus+(1.96*SE)

cont<-round(matrix(c(minus,SE,Z,pvalue,CI.low,CI.high),nrow=1,

ncol=6),digits=5)

dimnames(cont)=list(c(""),c("ab", "SE", "Z","p","CI.low","CI.

high"))

cont

}

cont.1 <-contrast(1)

cont.2 <-contrast(2)

contrasts <-rbind(cont.1,cont.2)

contrasts

15.2.3 Multiple Mediators

Our next analysis uses two mediators. Let’s imagine that our researcher now

believes that her new instructional method increases motivation as well as creativity

and that motivation independently improves performance. So now we have two

mediators: creativity and motivation. To test her hypothesis, she repeats her first,
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two-group only experiment and assesses creativity and motivation before

measuring performance. The (fictional) data, along with a coding scheme, appear in

Table 15.10.

15.2.3.1 Regression Analyses

With two mediators, we conduct four regression analyses instead of three:

Ŷ ¼ c0 þ cX

M̂ 1 ¼ a01 þ a1X
M̂ 2 ¼ a02 þ a2X
Ŷ ¼ b0 þ b1M1 þ b2M2 þ c

0
X

ð15:13Þ

The pertinent results from these analyses are shown in Table 15.11, and Fig. 15.6

displays the mediational model. Because the procedures used to analyze the data are

similar to the ones used with simple mediation, only the pertinent coefficients are

reported and discussed.

Before turning to the mediated effects, we’ll examine the probability values shown

in Table 15.11. Here we see that the total effect of X onY is significant (p¼.0493), the

path leading fromX to eachmediator is significant (p¼.0349 and p¼.0243), and each

mediator is an independent predictor of performance (p¼.0005 and p¼.0165) in a

regressionmodel that includes the categorical predictor. Note, however, that the direct

effect of X on Y is not significant (p¼.1832).

Table 15.10 Small sample example for a mediational analysis using two mediators

Experimental

condition Creativity M1 Motivation M2 Dummy coding X Performance Y

New 9 6 0 9

New 7 9 0 8

New 8 7 0 6

New 1 6 0 3

New 6 5 0 7

New 9 6 0 9

Traditional 2 3 1 3

Traditional 2 6 1 6

Traditional 1 7 1 5

Traditional 8 1 1 7

Traditional 2 2 1 2

Traditional 1 1 1 1
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15.2.3.2 Mediated Effects and Their Standard Errors

We calculate our mediated effects in the usual manner. First, we multiply the

relevant regression coefficients:

a1b1 ¼ �4:00 � :7136ð Þ ¼ �2:8544

and

a2b2 ¼ �3:1667 � :5323ð Þ ¼ �1:6857

Then we calculate the combined mediated effect by adding the separate paths:

combined mediated effect ¼ �2:8544þ�1:6857 ¼ �4:5401

Table 15.11 Regression coefficients and variance/covariance analyses for a test of mediation

with two mediators

Path b seb t p Variances/covariances

Regress Y on

categorical vector

c �3.00 1.3416 2.2361 .0493

Regress Mediator

1 on categorical

vector

a1 �4.00 1.6398 2.4393 .0349 a1 2.68889

Regress Mediator

2 on categorical

vector

a2 �3.1667 1.1949 2.6502 .0243 a2 1.42778

Regress Y on

mediators and

categorical vector

b1 b2 c0

b1 .7136 .1283 5.5628 .0005 b1 .01646 .00474 .08083

b2 .5323 .1760 3.0237 .0165 b2 .00474 .03099 .11710

c0 1.5402 1.0570 1.4572 .1832 c0 .08083 .11710 1.11719

Y

M1

X

a1= -4.00

c¢ = 1.5402

M2
a2= -3.1667 b2 = .5323

b1= .7136

Fig. 15.6 Mediation model

with two mediators
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To compute the standard errors of these terms, we need to find the partial

derivatives. Because we are also going to perform some additional contrasts, we

will create a large D matrix that will allow us to calculate many terms at once.

Using values from Table 15.11, Table 15.12 presents the coefficients for calculating

seven standard errors. The first two columns find the standard errors of the two

mediated effects; the third column finds the standard error of the combined medi-

ated effect; the fourth column contrasts the two mediated effects; the fifth and sixth

columns contrast each mediated effect against the direct effect; and the final column

contrasts the total mediated effect against the direct effect. To find our standard

errors, we multiply D0CD and take the square root of the diagonal entries. The point

estimates are derived using simple arithmetic.

Table 15.13 presents the results of these contrasts. Since the data are fictitious,

we will forget that we should be using bootstrapping with such a small sample and

go ahead and interpret the results as if they were accurate. The findings show that

Table 15.12 D matrix of partial derivatives and covariance matrix (C) for seven effects and

contrasts with multiple mediators

Sobel tests and contrasts

First

mediator

Second

mediator

Combined

mediation

Compare

mediators

First medi-

ator

vs. direct

effect

Second

mediator

vs. direct

effect

Total

mediation

vs. direct effect

a1b1 a2b2 a1b1 + a2b2 a1b1� a2b2 a1b1� c0 a2b2� c0 (a1b1 + a2b2)�
2c0

Rules for forming D matrix of partial derivatives

b1 b1 0 b1 b1 b1 0 b1
a1 a1 0 a1 a1 a1 0 a1
b2 0 b2 b2 � b2 0 b2 b2
a2 0 a2 a2 � a2 0 a2 a2
c0 0 0 0 0 �1 �1 �2

Inserted values for D matrix of partial derivatives

b1 .7136 0 .7136 .7136 .7136 0 .7136

a1 �4.00 0 �4.00 �4.00 �4.00 0 �4.00

b2 0 .5323 .5323 �.5323 0 .5323 .5323

a2 0 �3.1667 �3.1667 3.1667 0 �3.1667 �3.1667

c0 0 0 0 0 �1 �1 �2

Covariance matrix (C)

a1 b1 a2 b2 c0

a1 2.68889 0 0 0 0

b1 0 .01646 0 .00474 .08083

a2 0 0 1.42778 0 0

b2 0 .00474 0 .03099 .11710

c0 0 .08083 0 .11710 1.11719
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each mediator is significant when considered separately and that their combination

is also significant. They are not, however, significantly different from each other.

Finally, we can see that separately and in combination, they are significantly

different from the direct effect.

15.2.4 R Code: Multiple Mediators

M1 <-c(9,7,8,1,6,9,2,2,1,8,2,1)

M2 <-c(6,9,7,6,5,6,3,6,7,1,2,1)

X <-c(rep(0,6),rep(1,6))

Y <-c(9,8,6,3,7,9,3,6,5,7,2,1)

summary(mod.1 <-lm(Y~X))

summary(mod.2 <-lm(M1~X))

summary(mod.3 <-lm(M2~X))

summary(mod.4 <-lm(Y~M1+M2+X))

c <-mod.1$coef[2]

a1 <-mod.2$coef[2]

a2 <-mod.3$coef[2]

b1 <-mod.4$coef[2]

b2 <-mod.4$coef[3]

cdir <-mod.4$coef[4]

coef <-rbind(c,a1,a2,b1,b2,cdir)

coef

a1b1 <-a1*b1

a2b2 <-a2*b2

#D matrix

d1 <-c(b1,0,b1,b1,b1,0,b1)

d2 <-c(a1,0,a1,a1,a1,0,a1)

d3 <-c(0,b2,b2,-b2,0,b2,b2)

d4 <-c(0,a2,a2,-a2,0,a2,a2)

(continued)

Table 15.13 Sobel tests and contrasts with multiple mediators

Test Notation b seb |Z| p

Indirect effect of first mediator a1b1 �2.8545 1.2777 2.2340 .0255

Indirect effect of second mediator a2b2 �1.6857 .8458 1.9930 .0463

Indirect effect of both mediators a1b1 + a2b2 �4.5402 1.5710 2.8900 .0039

Contrast Mediator 1 vs. Mediator 2 a1b1� a2b2 �1.1688 1.4926 .7830 .4336

Contrast Mediator 1 vs. direct effect a1b1� c0 �4.3947 1.8430 2.3846 .0171

Contrast Mediator 2 vs. direct effect a2b2� c0 �3.2259 1.6044 2.0106 .0444

Contrast both mediators vs. direct

effect

(a1b1 + a2b2)�
2c0

�7.6205 3.1166 2.4451 .0145
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15.2.4 R Code: Multiple Mediators (continued)

d5 <-c(0,0,0,0,-1,-1,-2)

D <-rbind(d1,d2,d3,d4,d5)

c1 <-c(vcov(mod.2)[4],rep(0,4))

c2 <-c(0,vcov(mod.4)[6],0,vcov(mod.4)[7],vcov(mod.4)[8])

c3 <-c(0,0,vcov(mod.3)[4],0,0)

c4 <-c(0,vcov(mod.4)[10],0,vcov(mod.4)[11],vcov(mod.4)[12])

c5 <-c(0,vcov(mod.4)[14],0,vcov(mod.4)[15],vcov(mod.4)[16])

C <-rbind(c1,c2,c3,c4,c5)

#Function for Simple Slopes

simple.slope <-function(D,C){

simp.slope <-c(a1*b1,a2*b2,a1*b1+a2*b2,a1*b1-a2*b2,a1*b1-cdir,

a2*b2-cdir,(a1*b1+a2*b2)-2*cdir)

simp.cov <-t(D)%*%C%*%D

simp.err <-sqrt(diag(simp.cov))

simples <-simp.slope/sqrt(diag(simp.cov))

zvalues <-2*(1-pnorm(abs(simples)))

CI.low <-simp.slope-(1.96*simp.err)

CI.high <-simp.slope+(1.96*simp.err)

simp.table<-round(matrix(c(simp.slope,simp.err,simples,zvalues,

CI.low,CI.high),nrow=length(simp.slope),ncol=6),digits=5)

dimnames(simp.table)=list(c("a1b1","a2b2","a1b2+a2b2","a1b1-

a2b2","a1b1-cdir","a2b2-cdir","a1b1+a2b2-2*cdir"),c

("slope","stderr","Z","p","CI.low","CI.high"))

return(list(D,simp.table))

}

simple <-simple.slope(D,C)

simple

15.2.5 Mediation and Moderation

In Chap. 14, you learned that moderation occurs when a continuous variable

qualifies the effect of a categorical one. In this section, you will learn how to

combine moderation and mediation in a single analysis. Consider the information

presented in Fig. 15.7. The model shows four variables: a categorical predictor X, a

continuous moderator Z, a continuous mediator M, and a continuous criterion Y.

The moderator can intrude at three points:

1. First, it can moderate the relation between the predictor and the mediator (path

axz).
2. Second, it can moderate the relation between the mediator and the criterion (path

bmz).
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3. Third, it can moderate the direct effect of the predictor on the criterion (path c
0
xz).

None, some, or all of these relations can occur.8

In this section, we will examine a model with all three moderated paths. Recall

from Chap. 14 that our researcher’s new instructional method was less effective

with older adults than with younger ones. This is an example of moderation. We say

“age moderates the effectiveness of the experimental manipulation.” Now imagine

our researcher wants to know why older adults don’t benefit from the new instruc-

tional method. She suspects that anxiety is the key. Older adults get anxious when

they are asked to learn something new, and anxiety impairs their performance.

Notice the logic here: The new instructional is more likely to create anxiety in older

adults than in younger ones (path axz), and anxiety impairs performance (path bm).
We characterize this situation as “mediated moderation,” because a mediator

explains moderation.

Now suppose that the researcher further assumes that the new instructional

method not only produces greater anxiety in older adults than in younger ones but

that anxiety is also more likely to disrupt the performance of older adults than

younger ones.9 Now we have an example of moderated mediation, because the

mediator’s influence is moderated by age (path bmz).
To test these hypotheses, the researcher recruits 12 adults of various ages and

randomly assigns them to the new instructional method or the traditional method.

She then measures anxiety (the presumed mediator) and, afterward, performance on

Y

M

X

ax bm

cx¢ cxz¢

axz

bmz

Z
Fig. 15.7 Mediation

and moderation

8A moderator can also influence the total effect of X on Y (c). This effect is assessed prior to

including the mediator, so it is not depicted in Fig. 15.7.
9 This effect is not far-fetched. As many aging golfers will tell you, the older you get, the harder it

gets to control your nerves on the putting green.
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a test of abstract reasoning. The (phony) data appear in Table 15.14. Three aspects

of the data merit mention:

• First, we have centered the moderator (Age) and the mediator (Anxiety) around

their respective means.

• Second, we are using effect coding rather than dummy coding for our 1df group
vector.

• Third, we have added two cross-product terms (Effect Coding �Devage) and
(Devanxiety�Devage).

10

15.2.5.1 Preliminary Analyses

As before, we begin by conducting three regression analyses:

Ŷ ¼ c0 þ c1Xþ c2Zþ c3XZ
M̂ ¼ a0 þ a1Xþ a2Zþ a3XZ
Ŷ ¼ b0 þ c

0
1Xþ c

0
2Zþ c

0
3XZþ b1Mþ b2MZ

ð15:14Þ

Table 15.15 presents the results of these analyses, as well as some simple slope

vectors (s) we will use to perform some additional contrasts at three age levels (i.e.,

one standard deviation below the mean, at the mean, and one standard deviation

above the mean). To help us keep the analyses straight, the numbering below

matches the numbering in Tables 15.15 and 15.16:

Table 15.14 Small sample example illustrating mediation and moderation

Experimental

condition Age Anxiety

Effect

coding Devage

Effect coding

�Devage Devanxiety Devanxiety�Devage Y

New 62 8 0.5 17.8333 8.9167 3.25 57.9583 3

New 40 4 0.5 �4.1667 �2.0833 �0.75 3.1250 8

New 22 1 0.5 �22.1667 �11.0833 �3.75 83.1250 9

New 65 9 0.5 20.8333 10.4167 4.25 88.5417 1

New 43 5 0.5 �1.1667 �.5833 0.25 �.2917 7

New 32 7 0.5 �12.1667 �6.0833 2.25 �27.3750 8

Traditional 56 2 �0.5 11.8333 �5.9167 �2.75 �32.5417 6

Traditional 63 1 �0.5 18.8333 �9.4167 �3.75 �70.6250 7

Traditional 33 1 �0.5 �11.1667 5.5833 �3.75 41.8750 6

Traditional 62 5 �0.5 17.8333 �8.9167 0.25 4.4583 4

Traditional 27 5 �0.5 �17.1667 8.5833 0.25 �4.2917 5

Traditional 25 9 �0.5 �19.1667 9.5833 4.25 �81.4583 2

10We are using effect coding rather than dummy coding because it is easier to interpret the lower-

order effects of a mean-centered continuous variable when effect coding is used for the categorical

variable.
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1. In the first analysis, we predict performance from group, age, and the group �
age cross-product term. The cross-product term is significant ( p¼.0024), repli-

cating the moderator effect we found in Chap. 14. The rules for constructing the

s vector needed to probe the interaction appear in the final column of

Table 15.15, and Table 15.16 presents the simple slopes. As you can see, the

simple slope of instructional condition is significantly positive for younger

adults ( p¼.0042), not significant for adults of “average” age ( p¼.2787), and

significantly negative for older adults ( p¼.0471).

Table 15.15 Regression coefficients and covariance matrices for tests of moderation and

mediation

1. Predict performance from group, age, and group C+ age

Path b seb t p sc

Intercept 5.4807 .4207 13.0282 .0000

Group c1 .9776 .8414 1.1620 .2787 1

Age c2 �.0671 .0266 2.5212 .0357 0

Group � Age c3 �.2317 .0532 4.3535 .0024 z

Covariance matrix

Group .707887 .000236 .000030

Age .000236 .000708 .000089

Group � Age .000030 .000089 .002834

2. Predict anxiety from group, age, and group � age

Path b seb t p sa

Intercept .0196 .7183 .0272 .9789

Group a1 1.8429 1.4365 1.2829 .2354 1

Age a2 .0288 .0454 .6329 .5445 0

Group � Age a3 .2347 .0909 2.5820 .0325 z

Covariance matrix

Group 2.063629 .000688 .000087

Age .000688 .002065 .000260

Group � Age .000087 .000260 .008261

3. Predict performance from group, age, group � age, anxiety, and anxiety � age

Path b seb t p sb sc0

Intercept 5.5780 .2262 24.6553 .0000

Group c
0
1

3.0211 .6833 4.4215 .0045 0 1

Age c
0
2

�.0441 .0151 2.9304 .0263 0 0

Group � Age c
0
3

�.0702 .0446 1.5733 .1667 0 b3

Anxiety b1 �.6015 .1276 4.7135 .0033 1 0

Anxiety � Age b2 �.0161 .0061 2.6260 .0393 z 0

Covariance matrix

Group .466887 .002622 .016124 �.052987 �.002912

Age .002622 .000227 .000199 �.000608 �.000025

Group � Age .016124 .000199 .001993 �.004322 �.000140

Anxiety �.052987 �.000608 �.004322 .016286 .000396

Anxiety � Age �.002912 �.000025 �.000140 .000396 .000038
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15.2.5.2 Testing for Mediated Moderation

Our next step is to determine whether anxiety explains why the new instructional

method is less effective with older adults than with young adults.

2. To begin, we ask whether older adults experience more anxiety than younger

adults when using the new instructional method (path a in mediation notation).

The second analysis in Table 15.15 addresses this issue, and the cross-product

term is significant, indicating that agemoderates the effects of instructionalmethod

on anxiety (p¼.0325). Moreover, the simple slopes shown in Table 15.16 confirm

that older adults experienced more anxiety with the new method than with the

traditional method (p¼.0250), but instructional method did not affect the anxiety

levels of young adults (p¼.3554) or adults of average age (p¼.2354).

3. Next, we examine the path from the mediator to the criterion controlling for

instructional method (path b in mediation notation). The third analysis in

Table 15.15 shows that anxiety (p¼.0033) and the anxiety� age interaction

(p¼.0393) are significant predictors of performance, and the simple slope tests

in Table 15.16 confirm that, although anxiety negatively impacts performance

across age levels (all p0s< .005), its effects are most damaging among older adults.

Table 15.16 Simple slopes and standard errors for terms in an analysis of mediated moderation

1. Simple slopes of instruction predicting performance (c)

Age b seb t p

�1 SD 4.8110 1.217 3.9517 .0042

Mean .9776 .8414 1.1620 .2787

þ1 SD �2.8557 1.218 2.3441 .0471

2. Simple slopes of instruction predicting anxiety (a)

Age b seb t p

�1 SD �2.0389 2.079 .9809 .3554

Mean 1.8429 1.4365 1.2829 .2354

þ1 SD 5.7247 2.08 2.7522 .0250

3. Simple slopes of anxiety predicting performance with instruction in the equation (b)

Age b seb t p

�1 SD �.3352 .1161 2.8863 .0278

Mean �.6015 .1276 4.7135 .0033

þ1 SD �.8679 .1992 4.3578 .0048

4. Simple slopes of instruction predicting performance with anxiety in the equation (c0)
Age b seb t p

� 1 SD 4.1829 .6919 6.0455 .0009

Mean 3.0211 .6833 4.4215 .0045

þ1 SD 1.8594 1.2432 1.4957 .1854
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15.2.5.3 Calculating Mediated Simple Effects

Our next task is to calculate the mediated simple effects using the a and b values

shown in Table 15.16:

abL ¼ �2:0389ð Þ � �:3352ð Þ ¼ :6834

abM ¼ 1:8429ð Þ � �:6015ð Þ ¼ � 1:1086

abH ¼ 5:7247ð Þ � �:8679ð Þ ¼ � 4:9683

These values represent the simple mediated effect at each of the three age levels.

To test their significance, we construct a vector of partial derivatives and a

covariance matrix using the estimates from each simple effect. Table 15.17 presents

the relevant vectors and calculations. As you can see, the simple mediated effect is

significant for older adults ( p¼.0200), but not for young adults ( p¼.3530) or those

of average adult age ( p¼.2158). This pattern fits the researcher’s intuitions: Older

adults fail to benefit from the new instructional method because learning something

new is especially likely to make them anxious, and anxiety is especially likely to

impair their performance.

15.2.5.4 Direct Effects

The only effects left to examine are the direct effects (c0). Table 15.15 shows that

the group � age interaction is no longer significant once anxiety and the anxiety �
age interaction are controlled ( p¼.1667). If we had sufficient power to detect this

effect (which we clearly don’t with such a small sample), we would conclude that

anxiety can fully explain why the new instructional method is less effective with

older adults than with younger ones.

Table 15.17 Simple mediated effects at three age levels

One standard deviation below the mean

d C Sobel’s test

bL �.3352 σ2aL 4.320940 0 ab seab |Z| p

aL �2.0389 σ2bL 0 .013485 .6834 .7358 .9287 .3530

Mean

d C Sobel’s test

bM �.6015 σ2aM 2.063629 0 ab seab |Z| p

aM 1.8429 σ2bM 0 .016286 �1.1086 .8955 1.2379 .2158

One standard deviation above the mean

d C Sobel’s test

bH �.8679 σ2aH 4.326671 0 ab seab |Z| p

aH 5.7247 σ2bH 0 .039663 �4.9683 2.1351 2.3270 .0200
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Note that this is true even though the simple direct effects are significant for

young adults and those of average age, but not for older adults (see Analysis 4 in

Table 15.16). The critical issue is not whether some effects are significant but others

are not; the critical issue is whether the differences among the effects are likely to

be due to chance. If you look at the coefficients for the simple direct effects, you

will see that they are all positive, indicating that subjects of all ages benefit from the

new method once anxiety and its interaction with age are statistically controlled.

These results, which are graphically presented in Fig. 15.8, provide firm support for

the researcher’s hypotheses. Older adults not only experience more anxiety than

younger adults when learning the new method, but their performance also suffers

more from the anxiety they do experience. In combination, these effects explain

why they do not benefit from the new instructional method.11

15.2.6 R Code: Mediation and Moderation

Z <-c(62,40,22,65,43,32,56,63,33,62,27,25)

M <-c(8,4,1,9,5,7,2,1,1,5,5,9);

X <-c(rep(.5,6),rep(-.5,6))

Y <-c(3,8,9,1,7,8,6,7,6,4,5,2)

devZ <-Z-mean(Z);devM <-M-mean(M);XZ <-X*devZ;MZ <-devM*devZ

summary(mod.1 <-lm(Y~X*devZ))

summary(mod.2 <-lm(M~X*devZ))

summary(mod.3 <-lm(Y~X+devZ+XZ+devM+MZ))

#Simple slopes for predicting Y and M, respectively, from GRP, AGE,

#GRP*AGE

(continued)

Y

M

X

a = -2.0389 b =-.3352

c¢ = 4.1829

-1SD

Y

M

X

a = 1.8429 b = -.6015

c¢ = 3.0211

Mean

Y

M

X

a = 5.7247 b = -.8679

c¢’= 1.8594

+1SD

Fig. 15.8 Simple slopes at three age levels

11We can also use the Johnson-Neyman technique to identify ages at which the mediated effect is

significant. With two moderated paths, the calculations for performing the test are complicated. As a

work-around, I have included a root-finding function with the R code that accompanies this chapter.

Implementing the function, we find that the mediated effect in our example will be significant for

subjects who are older than 50.60 years of age and younger than 285.25 years of age.
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15.2.6 R Code: Mediation and Moderation (continued)

simp.mod <-function(model){

s0 <-c(0,0,0);s1 <-c(1,1,1);s2 <-c(0,0,0);s3 <-c(-sd(Z),0,sd(Z))

S <-rbind(s0,s1,s2,s3)

simp.slope <-t(S)%*%model$coef

simp.err <-sqrt(diag(t(S)%*%vcov(model)%*%S))

simple <-simp.slope/simp.err

tvalues <-2*pt(-abs(simple),df=(length(X)-nrow(S)))

crit <-abs(qt(0.025, 8))

CI.low <-simp.slope-(crit*simp.err)

CI.high <-simp.slope+(crit*simp.err)

simp.table<-round(matrix(c(simp.slope,simp.err,simple,tvalues,

CI.low,CI.high),nrow=length(simp.slope),ncol=6),digits=5)

dimnames(simp.table)=list(c("group", "age", "group*age"),c("slope",

"stderr", "t","p","CI.low","CI.high"))

simp.table

}

simp.c <-simp.mod(mod.1);simp.c

simp.a <-simp.mod(mod.2);simp.a

#Simple slopes for predicting Y from GRP, AGE, GRP*AGE, ANXIETY,

#GRP*ANXIETY

simp.med <-function(a,b){ # enter 0,1 for b values; 1,0 for cdirect

s0 <-c(0,0,0);s1 <-c(1*a,1*a,1*a);s2 <-c(0,0,0);s3 <-c(-sd(Z)*a,0,

sd(Z)*a)

s4 <-c(1*b,1*b,1*b);s5 <-c(-sd(Z)*b,0,sd(Z)*b)

S <-rbind(s0,s1,s2,s3,s4,s5)

simp.slope <-t(S)%*%mod.3$coef

simp.err <-sqrt(diag(t(S)%*%vcov(mod.3)%*%S))

simple <-simp.slope/simp.err

tvalues <-2*pt(-abs(simple),df=(length(X)-nrow(S)))

crit <-abs(qt(0.025, 6))

CI.low <-simp.slope-(crit*simp.err)

CI.high <-simp.slope+(crit*simp.err)

simp.table<-round(matrix(c(simp.slope,simp.err,simple,tvalues,

CI.low,CI.high),nrow=length(simp.slope),ncol=6),digits=5)

dimnames(simp.table)=list(c("group", "age", "group*age"),c("slope",

"stderr", "t","p","CI.low","CI.high"))

simp.table

}

simp.b <-simp.med(0,1)

simp.b

simp.cdir <-simp.med(1,0)

simp.cdir

d.lo <-rbind(simp.b[1],simp.a[1])

d.md <-rbind(simp.b[2],simp.a[2])

(continued)
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15.2.6 R Code: Mediation and Moderation (continued)

d.hi <-rbind(simp.b[3],simp.a[3])

ab.lo <-simp.b[1]*simp.a[1]

ab.md <-simp.b[2]*simp.a[2]

ab.hi <-simp.b[3]*simp.a[3]

s0 <-c(0,0,0);s1 <-c(1,1,1);s2 <-c(0,0,0);s3 <-c(-sd(Z),0,sd(Z))

S <-rbind(s0,s1,s2,s3)

cov.a <-diag(t(S)%*%vcov(mod.2)%*%S)

s.lo <-c(1,-sd(Z));s.md <-c(1,0);s.hi <-c(1,sd(Z))

SS <-cbind(s.lo,s.md,s.hi)

cov.b <-t(SS)%*%vcov(mod.3)[5:6,5:6]%*%SS

cov.lo <-matrix(c(cov.a[1],0,0,cov.b[1]),nrow=2)

cov.md <-matrix(c(cov.a[2],0,0,cov.b[5]),nrow=2)

cov.hi <-matrix(c(cov.a[3],0,0,cov.b[9]),nrow=2)

std.lo <- sqrt(t(d.lo)%*%cov.lo%*%d.lo)

Z.lo <-ab.lo/std.lo

Z.lo.p <-2*(1-pnorm(abs(Z.lo)))

std.md <- sqrt(t(d.md)%*%cov.md%*%d.md)

Z.md <-ab.md/std.md

Z.md.p <-2*(1-pnorm(abs(Z.md)))

std.hi <- sqrt(t(d.hi)%*%cov.hi%*%d.hi)

Z.hi <-ab.hi/std.hi

Z.hi.p <-2*(1-pnorm(abs(Z.hi)))

med.mod <-matrix(c(ab.lo, std.lo, Z.lo,Z.lo.p,ab.md, std.md, Z.md,

Z.md.p,ab.hi, std.hi, Z.hi,Z.hi.p ),nrow=3,byrow=TRUE)

dimnames(med.mod)=list(c("young", "medium", "old"),c("ab", "std.

err", "Z","p"))

med.mod

#Johnson-Neyman Regions of Significance Using Uniroot Function

JN <-function(q){

S.2<-c(0,1,0,q)

slope.2 <-t(S.2)%*%mod.2$coef

std.err.2 <-sqrt(t(S.2)%*%vcov(mod.2)%*%S.2)

S.3 <-c(0,0,0,0,1,q)

slope.3 <-t(S.3)%*%mod.3$coef

std.err.3 <-sqrt(t(S.3)%*%vcov(mod.3)%*%S.3)

ab <-slope.2*slope.3

D <-rbind(slope.3,slope.2)

S.4 <-c(0,1,0,q)

cov.a <-diag(t(S.4)%*%vcov(mod.2)%*%S.4)

S.5 <-c(1,q)

cov.b <-t(S.5)%*%vcov(mod.3)[5:6,5:6]%*%S.5

(continued)
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15.2.6 R Code: Mediation and Moderation (continued)

cov.m <-matrix(c(cov.a,0,0,cov.b),nrow=2)

std.m <- sqrt(t(D)%*%cov.m%*%D)

Z <-ab/std.m

P <-2*(1-pnorm(abs(Z)))

JN <-1.96-abs(Z)

}

jn.lo <-uniroot(JN,c(-100,100));jn.lo$root+mean(Z) #Use low starting

#values

jn.hi<-uniroot(JN,c(100,500));jn.hi$root+mean(Z) #Use high starting

#values

15.3 Mediation and Causal Inference

In this chapter, we have seen that mediational analysis offers a powerful method for

testing causal hypotheses. If we randomly assign subjects to conditions and mea-

sure our mediator before measuring our criterion, we can reasonably establish that

the effect of X on Y depends, in part, on its association with M.

These benefits cannot be realized when correlational methods are used. In the

absence of randomly assigning subjects to conditions, we cannot assume that an

observed association between X and Y is transmitted throughM. To understand why

this is so, we need to appreciate the difference between a mediator and a confound

variable. As first discussed in Chap. 13 (see Footnote 1), a confound creates an

association between two variables that are not causally related at all. Consider, for

example, the oft-cited claim that family dinners provide numerous benefits.

Having meals together helps strengthen family relationships because children have the

opportunity to learn more about their family’s history and are encouraged to remain

connected to their extended family, ethnic heritage, and community of faith. . . . Being
with family also encourages children to think critically and helps them feel as though they

have some control over their environment. Family meals predict a child’s behavior even

more than church attendance or school grades. While family meals are correlated to a

child’s reading readiness and linked to positive outcomes such as emotional stability,

academic success, psychological adjustment, higher self-esteem and higher family func-

tioning, they are also strongly related to lower incidence of negative outcomes such as low

GPAs, depression, suicide, and teenage alcohol and drug use.

http://www.parentingnow.net/documents/ThePowerofFamilyMeals.revised.pdf

Notice that this article assumes that there is a causal pathway from family

dinners to positive life outcomes and that this pathway has a variety of mediators

(e.g., opportunity to learn about family heritage, cultivate critical thinking skills,

and develop responsibility). These causal pathways are certainly plausible, but

there is another possibility—namely, stable, loving families eat dinner together

and enjoy a high level of psychological well-being, but the dinners themselves

produce no psychological benefits.
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Figure 15.9 illustrates both possibilities. With mediation, we assume that family

dinners foster a more favorable family environment and that a positive family

environment confers benefits. In contrast, confounding assumes that family dynamics

determine dining habits and life outcomes but that no causal association exists

between dining habits and life outcomes. Note, then, that while both models assume

that family dynamics influence outcomes, only the mediational model assumes that

family dynamics are a consequence of eating habits.

Without random assignment to eating conditions, there is no way to dismiss the

possibility that any observed association between family dinners, family dynamics, and

life outcomes is confounded. And this is true whenever mediational analyses are

undertaken with correlational data. Consequently, claims about mediation made using

correlational data should always be viewed with skepticism. The data can be consistent

with a causal claim, but the claim itself is always more than the data can substantiate.

Why is this important? Presumably, we’d all like to promote positive life out-

comes in people. But encouraging families to eat together will fulfill this goal only

if dining habits determine family dynamics. Unfortunately, unless we randomly

assign some families to eat dinner together and some to eat alone, we can never

conclude that dining habits initiate the causal chain.

15.4 Chapter Summary

1. A mediational analysis is performed to test whether a continuous predictor M

explains the association between a categorical variable X and a criterion Y.

Ideally, the categorical variable was formed through random assignment to

conditions and the mediator was assessed before the criterion was measured.

Life
Outcomes

Mediation

Family
Dynamics

Family
Dinners

Life
Outcomes

Confound

Family
Dynamics

Family
Dinners

Fig. 15.9 Contrasting

mediation and confounding

526 15 Mediation



2. A test of mediation involves partitioning the total effect of X on Y (c) into two

components: a direct effect (c0) and an indirect (mediated) effect (ab). The
effects are commonly calculated from three regression analyses:

2a. Predict the criterion from the categorical variable (c).
2b. Predict the mediator from the categorical variable (a).
2c. Predict the criterion from the mediator (b) and categorical variable (c0).

The mediated effect is found as ab.

3. Confidence intervals, tests of statistical significance, and effect sizes can be

computed for the mediated effect. Because the standard errors needed to produce

these effects come from two regression equations, the calculations are

specialized.

4. Mediational analyses can involve multiple groups and/or multiple mediators.

5. Mediation and moderation can be combined. Mediated moderation occurs when

a mediator explains a moderator effect; moderated mediation occurs when a

mediated effect is modified by a third variable.

6. Mediational analyses illuminate causal relations only when random assignment

to conditions is used to initiate the presumed causal chain. When all variables are

measured, it is not possible to distinguish mediational effects from confounds.
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Lack of fit test (for assessing linearity), 301

Lagged weights (for Newey West

procedure), 255

Laplace (aka cofactor) expansion, 22

Learning curve, 271, 275, 276

Least squares estimation, 48, 67, 110, 147, 173,

182–184, 225, 238

Leverage, 187, 190–193, 195, 197, 201,

202, 225
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Numerical methods, 96–100
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Partial mediation, 444, 497

Partitioning the sum of squares in an analysis of
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Piecewise polynomials, 356–374

Plotting predicted values, 313–317, 474–475
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Point estimates, 59, 67, 80, 87, 510

Polynomial coefficients, 396, 406

Polynomial interactions, 349–356

Polynomial regression, 341–375

Population estimation, 55–63
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Power
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Span, 288

Specification errors, 185, 186

Spectral decomposition. See Eigen
decomposition

Splines, 292, 300, 356–375

Spreadsheet functions, 27, 59, 70, 122, 138,

206, 210, 249

Squared semipartial correlation, 128–134, 145,

309, 337

Square matrix, 3, 10, 11, 14–17

Standard error

approximation in mediation, 499

of the mean, 87, 90, 95

of the mediated effect, 499–501, 513–515

and second partial derivatives, 87, 88, 96

of simple slopes, 315–316, 327, 328,

346, 520

with multiple regression, 120–121

Standardized regression coefficients, 51–54,

57, 112, 134, 143

Standardized residual, 194, 195, 210

Standard scores, 13, 14, 36, 51

Statistical significance, 55–65, 67
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Truncated power basis, 359, 360

U
Unbalanced designs, 399–407, 412, 420,

428, 441

Unbalanced factorial designs, 412,

420–425, 441

Unbiased coefficients, 48

Unequal spaced polynomial codes, 397, 398

Unit length, 154, 220, 362

Unstandardized regression coefficient, 51, 52,

108–109, 125, 134, 142, 143, 200, 304,

449, 453

Unweighted grand mean, 383, 389, 395,

397, 398, 401, 402, 414, 421, 422,

427, 428

Unweighted means, 383, 400–403, 405, 408,

421–423, 437, 441

Upper triangular matrix, 160, 161, 164, 166,

167, 177, 183

V
Variance inflation factor (VIF), 217–219, 226

Variance proportion decomposition, 219–223

W
Weighted grand mean, 383, 404, 405, 422, 423

Weighted least squares (WLS) estimation,

237–242, 250, 254, 259, 298, 301

Weighted means, 383, 400, 403–406, 408,

422–425, 441

White’s test of heteroscedasticity, 235, 236,

240, 259

Window size, 292

Within groups sum of squares, 11, 182,

221, 379

536 Index


	Linear Models in Matrix Form: A Hands-On Approach for the Behavioral Sciences
	You Do the Math!
	Intended Audience
	Using R
	To the Reader

	Contents
	Chapter 1: Matrix Properties and Operations
	1.1 Linear Equations and Matrix Algebra
	1.1.1 What Is a Matrix?
	1.1.2 Matrix Operations
	1.1.2.1 Matrix Multiplication
	1.1.2.2 Matrix Multiplication and Simultaneous Linear Equations

	1.1.3 Matrix Rules of Multiplication
	1.1.3.1 Matrix Multiplication Is Not Commutative
	1.1.3.2 Matrix Conformability
	1.1.3.3 Matrix Multiplication Is Associative

	1.1.4 Using a Spreadsheet to Perform Matrix Operations
	1.1.4.1 Working with Arrays
	1.1.4.2 Matrix Multiplication
	1.1.4.3 Naming Matrices


	1.2 Matrix Transpose and Sum of Squares
	1.2.1 Transposition
	1.2.2 Premultiplying a Matrix by Its Transpose
	1.2.3 Covariance Matrix
	1.2.4 Correlation Matrix
	1.2.5 Diagonal Matrix
	1.2.6 Summary
	1.2.7 R Code: Matrix Multiplication

	1.3 Matrix Determinants
	1.3.1 Visualizing the Determinant
	1.3.2 Using the Determinant to Solve Linear Equations
	1.3.2.1 Calculations
	1.3.2.2 Proof

	1.3.3 Linear Dependencies and Singular Matrices
	1.3.4 Calculating the Determinant with Large Matrices
	1.3.4.1 Minors
	1.3.4.2 Cofactors
	1.3.4.3 Creating a Cofactor Matrix

	1.3.5 R Code: Determinants
	1.3.5 R Code: Determinants

	1.4 Matrix Inverse
	1.4.1 Matrix Multiplication and Matrix Inverse
	1.4.1.1 Identity Matrix
	1.4.1.2 Inverse and the Multiplicative Reciprocal

	1.4.2 Calculating the Matrix Inverse
	1.4.2.1 Calculating the Adjugate
	1.4.2.2 Computing the Inverse
	1.4.2.3 Inverse Entries are Fractions
	1.4.2.4 Contrasting Matrix Multiplication and the Matrix Inverse
	1.4.2.5 Singular Matrices Are Not Invertible

	1.4.3 Using the Inverse to Solve Linear Equations
	1.4.3.1 Solving Linear Equations When the Matrices Are Conformable
	1.4.3.2 Solving Linear Equations When the Matrices Are Not Conformable
	1.4.3.3 Summary

	1.4.4 R Code: Matrix Inverse

	1.5 Chapter Summary
	Appendix

	Chapter 2: Simple Linear Regression
	2.1 Mathematical Models
	2.1.1 What Is a Model?
	2.1.2 What Is a Regression Model?
	2.1.3 What Is a Linear Regression Model?

	2.2 Simple Linear Regression
	2.2.1 Preliminary Analysis Without an Intercept
	2.2.1.1 Fitted Values
	2.2.1.2 Residuals

	2.2.2 Complete Analysis: Adding an Intercept
	2.2.2.1 Calculating Fitted Values and Residuals
	2.2.2.2 The Line of Best Fit
	2.2.2.3 Summary of Linear Regression with an Intercept

	2.2.3 Understanding Linear Regression
	2.2.3.1 Fitted Values as Conditional Averages
	2.2.3.2 Assumptions Regarding the Errors

	2.2.4 Standardized Regression Coefficients
	2.2.4.1 Calculating a Standardized Regression Coefficient
	2.2.4.2 Verifying the Meaning of a Standardized Regression Coefficient
	2.2.4.3 Comparing the Unstandardized and Standardized Coefficient
	2.2.4.4 Contrasting the Unstandardized and Standardized Coefficient

	2.2.5 Correlation Coefficient
	2.2.6 R Code: Simple Linear Regression

	2.3 Population Estimation and Statistical Significance
	2.3.1 The Logic Behind Null Hypothesis Testing
	2.3.2 Testing the Regression Model
	2.3.2.1 Partitioning the Sum of Squares
	2.3.2.2 Coefficient of Determination
	2.3.2.3 F Test of Significance

	2.3.3 Testing the Regression Coefficients
	2.3.3.1 Standard Error
	2.3.3.2 Statistical Significance
	2.3.3.3 Confidence Interval
	2.3.3.4 Testing the Significance of the Intercept

	2.3.4 Parameter Covariance Matrix (C)
	2.3.5 R Code: Hypothesis Testing
	2.3.5 R Code: Hypothesis Testing

	2.4 Forecasting
	2.4.1 Average Expected Values
	2.4.2 Single Predicted Values
	2.4.3 Forecasting with Caution
	2.4.4 R Code: Forecasting
	2.4.4 R Code: Forecasting

	2.5 Chapter Summary

	Chapter 3: Maximum-Likelihood Estimation
	3.1 Probability and Likelihood in a Normal Distribution
	3.1.1 Likelihood Function
	3.1.2 Log-Likelihood Function
	3.1.3 Using the Grid-Search Method to Find the Maximum-Likelihood Estimate
	3.1.4 R Code: Maximum-Likelihood Estimation with Normal Distribution

	3.2 Differential Calculus
	3.2.1 Differentiating a Function to Find Its Derivative
	3.2.1.1 Finding the Instantaneous Rate of Change at Specific Input Values
	3.2.1.2 Derivative Function: Instantaneous Rate of Change Across a Range of Values
	3.2.1.3 Analytic Solutions to Differentiating the Derivative Function
	3.2.1.4 Derivative Orders
	3.2.1.5 Mixed Derivatives and Partial Derivatives
	3.2.1.6 Complete Example
	3.2.1.7 Limit Method Revisited
	3.2.1.8 Summary

	3.2.2 Differentiation and Maximum-Likelihood Estimation
	3.2.2.1 Maximum-Likelihood Estimate of mu
	3.2.2.2 Maximum-Likelihood Estimate of sigma2

	3.2.3 Computing the Standard Errors
	3.2.3.1 Second Derivatives and the Slope of a Curve
	3.2.3.2 Information
	3.2.3.3 Hessian Matrix
	3.2.3.4 Fisher Information Matrix
	3.2.3.5 Standard Errors
	3.2.3.6 Using the Standard Error to Calculate Confidence Limits

	3.2.4 R Code: Derivatives and Standard Errors

	3.3 Maximum-Likelihood Estimation in Regression
	3.3.1 Differentiating the Function
	3.3.2 Standard Errors

	3.4 Maximum-Likelihood Estimation: Numerical Methods
	3.4.1 Newton-Raphson and Fisher´s Method of Scoring
	3.4.2 Illustration Using Fisher´s Method of Scoring
	3.4.3 R Code: Maximum-Likelihood Estimation with Fisher´s Method of Scoring

	3.5 Chapter Summary
	Appendix
	First Partial Derivatives of the Log-Likelihood Function for a Normal Distribution
	Second Partial Derivatives of the Log-Likelihood Function for a Normal Distribution
	First Partial Derivatives of the Log-Likelihood Function for Linear Regression
	Second Partial Derivatives of the Log-Likelihood Function for Linear Regression


	Chapter 4: Multiple Regression
	4.1 Multiple Regression
	4.1.1 Correlations
	4.1.2 Unstandardized Regression Coefficients
	4.1.3 Fitted Values and Residuals
	4.1.4 Testing the Regression Model
	4.1.5 R Code: Multiple Regression

	4.2 Interpreting and Testing Regression Coefficients
	4.2.1 Comparing Regression Coefficients and Correlations
	4.2.2 Interpreting the Numerical Value of a Regression Coefficient
	4.2.2.1 The Unique Weight of Each Predictor
	4.2.2.2 A Predictor´s Weight After Controlling for All Other Variables
	4.2.2.3 The Effect of One Variable Holding Other Variables Constant

	4.2.3 Calculating Regression Coefficients
	4.2.3.1 Algebraic Formula for Computing Multiple Regression Coefficients
	4.2.3.2 Regression Coefficients and Determinants

	4.2.4 Testing the Significance of Regression Coefficients
	4.2.4.1 Computing the Standard Errors
	4.2.4.2 Parameter Covariance Matrix (C)
	4.2.4.3 Confidence Intervals

	4.2.5 Forecasting
	4.2.5.1 Expected Average Scores
	4.2.5.2 Predicted Single Scores

	4.2.6 Comparing the Predictors
	4.2.6.1 Standardized Coefficients
	4.2.6.2 Directly Comparing Regression Coefficients

	4.2.7 R Code: Testing Regression Coefficients

	4.3 Partitioning the Variance
	4.3.1 Semipartial Correlation
	4.3.1.1 Correlation Between a Residualized Predictor and a Raw Criterion
	4.3.1.2 DeltaR2 and the Squared Semipartial Correlation
	4.3.1.3 Tests of Statistical Significance
	4.3.1.4 Using Zero-Order Correlations to Calculate Semipartial Correlations

	4.3.2 Partial Correlation
	4.3.2.1 Correlation Between a Residualized Predictor and a Residualized Criterion
	4.3.2.2 DeltaR2 and the Squared Partial Correlation
	4.3.2.3 Using Zero-Order Correlations to Calculate Partial Correlations
	4.3.2.4 Tests of Significance

	4.3.3 Are Regression Coefficients Semipartial Coefficients or Partial Coefficients?
	4.3.4 R Code: Partitioning the Variance

	4.4 Calculating Regression Coefficients Using Cofactors
	4.4.1 Complete Sum of Squares
	4.4.1.1 Compute VV
	4.4.1.2 Calculate the Determinant of VV
	4.4.1.3 Calculate Cofactors

	4.4.2 Residual Sum of Squares and Coefficient of Determination
	4.4.3 Regression Coefficients
	4.4.3.1 Unstandardized Regression Coefficients
	4.4.3.2 Cramer´s Rule and the Cofactor Matrix

	4.4.4 Computing the Remaining Coefficients and Correlations
	4.4.5 Summary
	4.4.6 R Code: Regression Coefficients as Cofactors

	4.5 Chapter Summary

	Chapter 5: Matrix Decompositions
	5.1 Eigen Decomposition
	5.1.1 Matrix Multiplication with an ``Ordinary´´ Vector
	5.1.2 Matrix Multiplication with an Eigenvector
	5.1.3 Calculating Eigenvalues
	5.1.3.1 Characteristic Equation
	5.1.3.2 Solving the Characteristic Equation

	5.1.4 Calculating Eigenvectors
	5.1.4.1 Calculating the Eigenvectors Associated with the First Eigenvalue
	5.1.4.2 Converting Eigenvectors to Unit Length
	5.1.4.3 Calculating the Eigenvectors Associated with the Second Eigenvalue
	5.1.4.4 Summary

	5.1.5 Eigenvalues and Variance Consolidation
	5.1.5.1 Eigenvalues and Other Properties of a Square Matrix
	5.1.5.2 Eigenvalues of Correlation Matrices

	5.1.6 Eigen Decomposition and Matrix Recomposition
	5.1.6.1 Algebraic Formula
	5.1.6.2 Matrix Powers

	5.1.7 R Code: Eigen Decomposition

	5.2 QR Decomposition
	5.2.1 Computations with Householder Transformations
	5.2.1.1 Steps of a Householder Transformation
	5.2.1.2 Example

	5.2.2 Linear Regression
	5.2.3 QR Algorithm for Finding the Eigenpairs
	5.2.3.1 Basic (Unshifted) QR Algorithm to Find Eigenvalue
	5.2.3.2 Explicitly Shifted QR Algorithm for Finding Eigenvalues
	5.2.3.3 Calculating Eigenvectors
	5.2.3.4 Summary

	5.2.4 R Code: QR Decomposition
	5.2.4 R Code: QR Decomposition

	5.3 Singular Value Decomposition
	5.3.1 Preliminary Calculations
	5.3.2 Reconstructing X
	5.3.3 Regression Coefficients
	5.3.4 Standard Errors
	5.3.5 R Code: Singular Value Decomposition
	5.3.5 R Code: Singular Value Decomposition

	5.4 Cholesky Decomposition
	5.4.1 Calculations
	5.4.2 Calculating the Determinant and the Inverse
	5.4.3 Least Squares Regression
	5.4.4 Using the Cholesky Decomposition to Find the Eigenvalues
	5.4.5 R Code: Cholesky Decomposition
	5.4.5 R Code: Cholesky Decomposition

	5.5 Comparing the Decompositions
	5.6 Chapter Summary

	Chapter 6: Problematic Observations
	6.1 Influential Observations
	6.1.1 Discrepant Observations
	6.1.2 Illustrating Undue Influence
	6.1.2.1 Analysis Using All Observations
	6.1.2.2 Deleting Observations
	6.1.2.3 Impracticality of the Deletion Method

	6.1.3 Leverage and the Hat Matrix
	6.1.3.1 Calculating the Hat Matrix
	6.1.3.2 Hat Matrix and Fitted Values
	6.1.3.3 Calculating Hat Values
	6.1.3.4 Using the Hat Values to Quantify Leverage

	6.1.4 Residuals and Outliers
	6.1.4.1 Scaling the Residuals
	6.1.4.2 Plotting the Residuals

	6.1.5 Variance of Fitted Values and Residuals
	6.1.6 Quantifying Influence
	6.1.6.1 DFFIT (Difference in Fitted Values with One Observation Excluded)
	6.1.6.2 DFBETA (Difference in Regression Coefficients with One Observation Excluded)
	6.1.6.3 Cook´s D
	6.1.6.4 COVRATIO (Changes in Standard Errors)
	6.1.6.5 R2 Following Omitted Values

	6.1.7 Commentary
	6.1.8 R Code: Regression Diagnostics

	6.2 Departures from Normality
	6.2.1 Reviewing the Normality Assumption
	6.2.2 Assessing Normality
	6.2.2.1 Normal Probability (QQ) Plot
	6.2.2.2 Jarque-Bera Test
	6.2.2.3 Detecting Violations of Normality in a Second Data Set

	6.2.3 Correcting Violations of Normality
	6.2.3.1 Box-Cox Transformation

	6.2.4 R Code: Departures from Normality
	6.2.4 R Code: Departures from Normality

	6.3 Collinearity
	6.3.1 Problems with Overly Redundant Predictors
	6.3.1.1 Singular Matrices Are Not Invertible

	6.3.2 Matrices with a Near-Linear Dependence are Ill Conditioned
	6.3.2.1 Ill-Conditioned Matrices Inflate Standard Errors

	6.3.3 Demonstrating Collinearity
	6.3.3.1 Correlations
	6.3.3.2 Regression Analyses

	6.3.4 Quantifying Collinearity with the Variance Inflation Factor
	6.3.5 Condition Index and Variance Proportion Decomposition
	6.3.5.1 Normalizing the Predictors
	6.3.5.2 Condition Number
	6.3.5.3 Variance Proportion Decomposition

	6.3.6 Summary
	6.3.7 R Code: Collinearity

	6.4 Chapter Summary

	Chapter 7: Errors and Residuals
	7.1 Errors and Their Assumed Distribution
	7.1.1 Why It Matters
	7.1.2 Errors and Residuals
	7.1.3 Generalized Least Squares Estimation

	7.2 Heteroscedasticity
	7.2.1 Small Sample Example
	7.2.1.1 Ordinary Regression Analysis
	7.2.1.2 Scatterplot of the Residuals

	7.2.2 Detecting Heteroscedasticity
	7.2.2.1 White´s Test of Heteroscedasticity
	7.2.2.2 Breusch-Pagan Test of Heteroscedasticity
	7.2.2.3 Managing Heteroscedasticity

	7.2.3 Weighted Least Squares Estimation
	7.2.3.1 Estimating the Variance of the Residuals
	7.2.3.2 Perform an OLS Regression on the Transformed Variables
	7.2.3.3 Matrix Calculations for WLS Estimation

	7.2.4 Heteroscedasticity-Consistent Covariance Matrix
	7.2.5 Summary
	7.2.6 R Code: Heteroscedasticity
	7.2.6 R Code: Heteroscedasticity

	7.3 Autocorrelations
	7.3.1 Mathematical Representation
	7.3.1.1 Modeling Autocorrelated Errors
	7.3.1.2 Building a Covariance Matrix of Errors in an AR(1) Model

	7.3.2 Detecting Autocorrelations
	7.3.2.1 Inspecting the Residuals
	7.3.2.2 Durbin-Watson Test
	7.3.2.3 Breusch-Godfrey (aka Lagrange Multiplier) Test of Autocorrelation
	7.3.2.4 Managing Autocorrelations

	7.3.3 Generalized Least Squares Estimation for Managing Autocorrelation
	7.3.3.1 Estimating the Autocorrelation Parameter
	7.3.3.2 Transformation Method
	7.3.3.3 Matrix Method

	7.3.4 Autocorrelation-Consistent Covariance Matrix
	7.3.4.1 Newey-West Procedure
	7.3.4.2 Autocorrelation- and Heteroscedasticity-Consistent Matrix
	7.3.4.3 Summary

	7.3.5 R Code: Autocorrelations

	7.4 Chapter Summary

	Chapter 8: Linearizing Transformations and Nonparametric Smoothers
	8.1 Understanding Linearity
	8.1.1 Partial Derivatives and Linear Functions
	8.1.2 Assessing Linear Relations
	8.1.2.1 Using Scatterplots to Assess the Linearity of the Variables
	8.1.2.2 Lack of Fit Test

	8.1.3 Options for Analyzing Nonlinear Relations
	8.1.4 R Code: Assessing Nonlinearity

	8.2 Transformations to Linearity
	8.2.1 Understanding Transformations
	8.2.1.1 Linear Transformations and Nonlinear Transformations
	8.2.1.2 To Linearize or Not to Linearize?
	8.2.1.3 Selecting Variables to Transform
	8.2.1.4 Selecting a Linearizing Transformation

	8.2.2 Logarithmic Model
	8.2.2.1 Log Transformation of x
	8.2.2.2 Interpreting the Regression Coefficients and Fitted Values
	8.2.2.3 Summary

	8.2.3 Exponential Model
	8.2.3.1 Example
	8.2.3.2 Transforming the Criterion
	8.2.3.3 Interpreting the Regression Coefficients and Fitted Values
	8.2.3.4 Summary

	8.2.4 Power Function
	8.2.4.1 Fitting the Regression Model
	8.2.4.2 Interpreting the Regression Coefficients and Fitted Values
	8.2.4.3 Summary

	8.2.5 Box-Tidwell Transformation
	8.2.6 Summary
	8.2.7 R Code: Linear Transformations
	8.2.7 R Code: Linear Transformations

	8.3 Nonparametric Smoothers
	8.3.1 Understanding Nonparametric Regression
	8.3.1.1 Three Regression Models
	8.3.1.2 Classifying Nonparametric Smoothers
	8.3.1.3 Neighborhood Size
	8.3.1.4 Small Sample Example

	8.3.2 Running Average
	8.3.3 Running Line
	8.3.4 Kernel Regression
	8.3.4.1 Steps
	8.3.4.2 Illustration

	8.3.5 Locally Weighted Regression
	8.3.5.1 Steps
	8.3.5.2 Illustration

	8.3.6 Extensions and Applications
	8.3.7 R Code: Nonparametric Smoothers

	8.4 Chapter Summary

	Chapter 9: Cross-Product Terms and Interactions
	9.1 Understanding Interactions
	9.1.1 Depicting an Interaction
	9.1.2 Modeling Interactions with Cross-Product Terms
	9.1.2.1 Cross-Product Terms and Partial Derivatives
	9.1.2.2 Numerical Example of Cross-Product Terms
	9.1.2.3 Mean-Centering the Predictors Before Computing the Cross-Product Term

	9.1.3 Testing Cross-Product Terms
	9.1.3.1 Regression Model
	9.1.3.2 Simple Slopes
	9.1.3.3 Lower-Order Effects

	9.1.4 R Code: Testing a Cross-Product Term

	9.2 Probing an Interaction
	9.2.1 Calculating Predicted Values
	9.2.2 Plotting Predicted Values
	9.2.3 Testing Simple Slopes
	9.2.3.1 Computing Simple Slopes
	9.2.3.2 Calculating Standard Errors of the Simple Slopes
	9.2.3.3 Testing the Statistical Significance of Simple Slopes
	9.2.3.4 Comparing Simple Slopes

	9.2.4 Characterizing an Interaction
	9.2.5 R Code: Predicted Values and Simple Slopes
	9.2.5 R Code: Predicted Values and Simple Slopes
	9.2.6 Johnson-Neyman Technique
	9.2.7 R Code: Johnson-Neyman Regions of Significance

	9.3 Higher-Order Interactions
	9.3.1 Testing the Regression Equation
	9.3.2 Probing a Three-Variable Interaction
	9.3.2.1 Calculating and Plotting Predicted Values
	9.3.2.2 Calculating and Testing Simple Slopes
	9.3.2.3 Comparing Simple Slopes
	9.3.2.4 Other Ways to Probe a Three-Way Interaction

	9.3.3 R Code: Three-Way Interaction
	9.3.3 R Code: Three-Way Interaction
	9.3.3 R Code: Three-Way Interaction
	9.3.4 Recentering Variables to Calculate Simple Slopes
	9.3.5 R Code: Three-Way Interaction Using Recentering

	9.4 Effect Size and Statistical Power
	9.4.1 Effect Size
	9.4.2 Statistical Power
	9.4.3 R Code: Effect Size of Three-Way Cross-Product Term

	9.5 Chapter Summary

	Chapter 10: Polynomial Regression
	10.1 Simple Polynomial Regression
	10.1.1 Testing the Linear Component
	10.1.2 Adding a Quadratic Term
	10.1.2.1 Hierarchical Regression
	10.1.2.2 Predicted Values
	10.1.2.3 Calculating and Testing Simple Slopes
	10.1.2.4 Finding the Maximum Point

	10.1.3 Testing Other Polynomials
	10.1.4 R Code: Cubic Polynomial
	10.1.4 R Code: Cubic Polynomial

	10.2 Polynomial Interactions
	10.2.1 Regression Equations
	10.2.2 Testing the Regression Coefficients
	10.2.3 Probing a Polynomial Interaction
	10.2.3.1 Testing the Linear and Quadratic Coefficients
	10.2.3.2 Simple Slopes
	10.2.3.3 Maximum Value

	10.2.4 R Code: Polynomial Interaction
	10.2.4 R Code: Polynomial Interaction
	10.2.4 R Code: Polynomial Interaction

	10.3 Piecewise Polynomials
	10.3.1 Regression Splines
	10.3.1.1 Piecewise Cubic Regression Spline
	10.3.1.2 Global Fitting of a Cubic Polynomial
	10.3.1.3 Local Fitting with a Piecewise Polynomial

	10.3.2 Natural Cubic Splines
	10.3.2.1 Basis Function for a Natural Cubic Spline
	10.3.2.2 OLS Using Basis Function to Predict Criterion

	10.3.3 R Code: Unpenalized Regression Splines
	10.3.3 R Code: Unpenalized Regression Splines
	10.3.4 Penalized Natural Cubic Spline
	10.3.4.1 Select Knots
	10.3.4.2 Create a Basis Function
	10.3.4.3 Incorporating the Penalty
	10.3.4.4 Calculating the Smoothing Parameter
	10.3.4.5 A Second Example

	10.3.5 R Code: Penalized Natural Cubic Splines

	10.4 Chapter Summary

	Chapter 11: Categorical Predictors
	11.1 Coding Schemes
	11.1.1 Analysis of Variance
	11.1.2 Overview of Coding Schemes
	11.1.3 Orthogonal Contrast Codes
	11.1.3.1 Interpreting the Regression Coefficients
	11.1.3.2 Orthogonal Contrasts Reproduce the Regression Sum of Squares
	11.1.3.3 Alternative Formula for Computing 1 df Contrasts
	11.1.3.4 Fitted Values Equal the Group Mean

	11.1.4 Dummy Codes
	11.1.4.1 Test of the Regression Model
	11.1.4.2 Interpreting the Regression Coefficients

	11.1.5 Effect Codes
	11.1.5.1 Interpreting the Regression Coefficients
	11.1.5.2 Covariance Matrix
	11.1.5.3 Effect Contrast Vectors Must Be Considered as a Unit

	11.1.6 Summary
	11.1.7 R Code: Coding Schemes

	11.2 Creating Orthogonal Contrast Codes
	11.2.1 Helmert Contrasts
	11.2.2 Gram-Schmidt Orthogonalization
	11.2.2.1 Generating the Coefficients
	11.2.2.2 Using the Coefficients in a Regression Analysis

	11.2.3 Polynomial Terms in a Trend Analysis
	11.2.4 R Code: Creating Orthogonal Contrasts

	11.3 Contrast Codes with Unbalanced Designs
	11.3.1 Analysis with Unweighted Means
	11.3.1.1 Interpreting the Regression Coefficients
	11.3.1.2 Calculating the Sum of Squares from the Group Means

	11.3.2 Weighted Means Analysis
	11.3.2.1 Calculating Orthogonal Coefficients
	11.3.2.2 Weighted Regression Analysis
	11.3.2.3 Sum of Squares with Weighted Analysis
	11.3.2.4 Weighted Polynomial Trends and Effect Codes

	11.3.3 R Code: Unbalanced Designs

	11.4 Chapter Summary

	Chapter 12: Factorial Designs
	12.1 Basics of Factorial Designs
	12.1.1 Regression Analysis of a One-Way Design
	12.1.2 Recasting the Data as a Factorial Design
	12.1.3 Properties of a Factorial Design
	12.1.4 Sources of Variance in a Balanced Factorial Design
	12.1.4.1 Coding with Factorial Designs
	12.1.4.2 Main Effect Sum of Squares
	12.1.4.3 Interaction
	12.1.4.4 Reproducing SSreg in a Balanced Factorial Design
	12.1.4.5 Summary

	12.1.5 Probing an Interaction
	12.1.5.1 Simple Effects
	12.1.5.2 Understanding an Interaction

	12.1.6 R Code: Factorial Design
	12.1.6 R Code: Factorial Design

	12.2 Unbalanced Factorial Designs
	12.2.1 Unweighted Means
	12.2.1.1 Interpretation of Unweighted-Means Regression
	12.2.1.2 Calculating the Sum of Squares from the Group Means

	12.2.2 Weighted Means
	12.2.2.1 Interpretation of Weighted-Means Regression
	12.2.2.2 Comparing the Unweighted and Weighted-Means Analysis

	12.2.3 R Code: Unbalanced Factorial Design
	12.2.3 R Code: Unbalanced Factorial Design

	12.3 Multilevel Designs
	12.3.1 Coding Scheme
	12.3.2 Regression Analysis
	12.3.3 ANOVA Table
	12.3.4 R Code: Multilevel Design
	12.3.4 R Code: Multilevel Design
	12.3.5 Probing the Interaction
	12.3.5.1 Augmented b Vector and Covariance Matrix
	12.3.5.2 S Matrix for Simple Effects
	12.3.5.3 Summary
	12.3.5.4 Simple Effect of A at Each Level of B

	12.3.6 Higher-Order Designs
	12.3.7 R Code: Simple Effects in Multilevel Design
	12.3.7 R Code: Simple Effects in Multilevel Design

	12.4 Chapter Summary

	Chapter 13: Analysis of Covariance
	13.1 Introduction to ANCOVA
	13.1.1 Mechanics
	13.1.2 Preliminary Analyses
	13.1.2.1 Does the Covariate Predict the Criterion?
	13.1.2.2 Do the Grouping Vectors Predict the Covariate?
	13.1.2.3 Do the Grouping Vectors Predict the Criterion?
	13.1.2.4 Testing the Homogeneity of Regression Lines
	13.1.2.5 Inspecting the Regression Lines

	13.1.3 Main Analysis
	13.1.4 R Code: ANCOVA
	13.1.4 R Code: ANCOVA
	13.1.5 Adjusted Means and Simple Effects
	13.1.5.1 Understanding the Common Regression Coefficient
	13.1.5.2 Adjusting the Means
	13.1.5.3 Contrasting Adjusted Means
	13.1.5.4 Multiple Contrasts Using Regression Coefficients

	13.1.6 R Code: Adjusted Means and Simple Effects
	13.1.6 R Code: Adjusted Means and Simple Effects

	13.2 Extensions to More Complex Designs
	13.2.1 Preliminary Analyses
	13.2.1.1 Do the Covariates Predict the Criterion?
	13.2.1.2 Do the Grouping Vectors Predict the Covariate?
	13.2.1.3 Do the Grouping Vectors Predict the Criterion?
	13.2.1.4 Testing the Homogeneity of Regression Lines

	13.2.2 Main Analysis
	13.2.3 Adjusted Means
	13.2.4 Augmented Matrix and Multiple Comparisons
	13.2.5 R Code: ANCOVA with Multiple Covariates
	13.2.5 R Code: ANCOVA with Multiple Covariates

	13.3 Uses (and Misuses) of ANCOVA
	13.3.1 A Residualized Criterion
	13.3.2 Association with the Predictor

	13.4 Chapter Summary

	Chapter 14: Moderation
	14.1 Moderated Regression
	14.1.1 Illustration
	14.1.2 Implementation
	14.1.3 Regression Coefficients
	14.1.4 Plotting Predicted Values
	14.1.5 Crossing Point
	14.1.6 Testing the Simple Slopes
	14.1.7 R Code: Moderation-Simple Slopes
	14.1.7 R Code: Moderation-Simple Slopes
	14.1.7 R Code: Moderation-Simple Slopes

	14.2 Simple Effects
	14.2.1 Augmented b Vector and C Matrix
	14.2.2 S Matrix
	14.2.3 Specific Tests of Interest
	14.2.3.1 Simple Interaction Contrasts
	14.2.3.2 Simple Group Contrasts Collapsed Across Age
	14.2.3.3 Simple Main Effects of Group at Low and High Age

	14.2.4 R Code: Moderation-Simple Effects
	14.2.4 R Code: Moderation-Simple Effects
	14.2.4 R Code: Moderation-Simple Effects

	14.3 Regions of Significance
	14.3.1 Reviewing the Johnson-Neyman Method
	14.3.2 Extending the Johnson-Neyman Method
	14.3.3 Illustration
	14.3.4 R Code: Regions of Significance
	14.3.4 R Code: Regions of Significance

	14.4 Chapter Summary

	Chapter 15: Mediation
	15.1 Simple Mediation
	15.1.1 Analytic Strategy
	15.1.1.1 Preliminary Analyses
	15.1.1.2 Partitioning the Variance

	15.1.2 Assessing the Importance of the Mediated Effect
	15.1.2.1 Calculating the Standard Error of the Mediated Effect
	15.1.2.2 Testing the Statistical Significance of the Mediated Effect
	15.1.2.3 Bootstrapping

	15.1.3 Effect Sizes
	15.1.4 Contrasts
	15.1.5 Summary
	15.1.6 R Code: Simple Mediation
	15.1.6 R Code: Simple Mediation

	15.2 Higher-Order Designs
	15.2.1 Mediation with Three Groups
	15.2.1.1 Regression Analyses
	15.2.1.2 Partitioning of Effects
	15.2.1.3 Summary

	15.2.2 R Code: Mediation with Three Groups
	15.2.2 R Code: Mediation with Three Groups
	15.2.3 Multiple Mediators
	15.2.3.1 Regression Analyses
	15.2.3.2 Mediated Effects and Their Standard Errors

	15.2.4 R Code: Multiple Mediators
	15.2.4 R Code: Multiple Mediators
	15.2.5 Mediation and Moderation
	15.2.5.1 Preliminary Analyses
	15.2.5.2 Testing for Mediated Moderation
	15.2.5.3 Calculating Mediated Simple Effects
	15.2.5.4 Direct Effects

	15.2.6 R Code: Mediation and Moderation
	15.2.6 R Code: Mediation and Moderation
	15.2.6 R Code: Mediation and Moderation
	15.2.6 R Code: Mediation and Moderation

	15.3 Mediation and Causal Inference
	15.4 Chapter Summary

	References
	Index

