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Preface
This book was originally compiled for a course I taught at the University of

Rochester in the fall of 1991, and is intended to give advanced graduate students
in statistics an introduction to Edgeworth and saddlepoint approximations, and
related techniques. Many other authors have also written monographs on this sub-
ject, and so this work is narrowly focused on two areas not recently discussed in
theoretical text books. These areas are, first, a rigorous consideration of Edgeworth
and saddlepoint expansion limit theorems, and second, a survey of the more recent
developments in the field.

In presenting expansion limit theorems I have drawn heavily on notation of
McCullagh (1987) and on the theorems presented by Feller (1971) on Edgeworth
expansions. For saddlepoint notation and results I relied most heavily on the many
papers of Daniels, and a review paper by Reid (1988). Throughout this book I have
tried to maintain consistent notation and to present theorems in such a way as to
make a few theoretical results useful in as many contexts as possible. This was not
only in order to present as many results with as few proofs as possible, but more
importantly to show the interconnections between the various facets of asymptotic
theory.

Special attention is paid to regularity conditions. The reasons they are needed
and the parts they play in the proofs are both highlighted.

Computational tools are presented to help in the derivation and manipulation
of these expansions. The final chapter contains input for calculating many of the
results here in Mathematica (R), a symbolic algebra and calculus program. Math-
ematica is a registered trademark of Wolfram Research, Inc.

This book is organized as follows. First, the notions of asymptotics and distri-
bution approximations in general are discussed, and the present work is placed in
this context. Next, characteristic functions, the basis of all of the approximations in
this volume, are discussed. Their use in the derivation of the Edgeworth series, both
heuristically and rigorously, is presented. Saddlepoint approximations for densities
are derived from the associated Edgeworth series, and investigated. Saddlepoint
distribution function approximations are presented. Multivariate and conditional
counterparts of many of these results are presented, accompanied by a discussion
of the extent to which these results parallel univariate results and the points where
multivariate results differ. Finally, these results are applied to questions of the dis-
tribution of the maximum likelihood estimator, approximate ancillarity, Wald and
likelihood ratio testing, Bayesian methods, and resampling methods.

Much of this volume is devoted to the study of lattice distributions, because
in representing a departure from regularity conditions they represent an interesting
variation on and completion of the mathematical development of the rest of the
material, because they arise very frequently in generalized linear models for discrete
data and in nonparametric applications, and because many of my research interests
lie in this direction. In the interest of not unnecessarily burdening those who wish
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vi Preface

to avoid the additional complication of lattice distributions, I have tried to place
the lattice distribution material as late in each chapter as possible. Those who wish
may skip these sections without sacrificing much of the foundation for the rest of
the book, but I recommend this material as both useful and inherently interesting.

Prerequisites and Notation

A knowledge of undergraduate real and complex analysis, on the level of Rudin
(1976), Chapters 1-9, and Bak and Newman (1996), Chapters 1-12, is presupposed
in the text. In particular, an understanding of continuity, differentiation, and inte-
gration in the senses of Riemann and Riemann-Stieltjes, is needed, as is an under-
standing of basic limit theorems for these integrals. An understanding of complex
contour integration is also required. Lebesgue integration and integration of differ-
ential forms are not required. A background in matrix algebra of comparable depth
is also presupposed, but will not be required as frequently.

As far as is possible, statistical parameters will be denoted by Greek characters.
In general, upper-case Latin characters will in general refer to random variables,
lower-case Latin characters will refer to potential observed values for the corre-
sponding random variables, and bold face will in general denote vector or matrix
quantities. Lower case Gothic characters refer to integer constants, and capital
Gothic characters refer to sets. For example R, C, and Z represent the sets of real
numbers, complex numbers, and integers, respectively.

I have been unable to follow these conventions entirely consistently; for instance,
densities and cumulative distribution functions are generally denoted by f and F ,
and cumulant generating functions are generally denoted by K. Additionally, esti-
mates of parameter values under various assumptions are denoted by the parameter
value with a hat or tilde accent, and random estimators are denoted by upper case
counterparts. For instance, ω will represent the signed root of the likelihood ratio,
ω̂ will represent its fitted value, and Ω̂ will represent the random variable of which
w is an observed value.

Unless stated otherwise, all integrals are Riemann-Stieltjes integrals, and the
limiting operation implied by non-absolutely integrable improper integrals are given
explicitly. The symbols � and � are functions returning the real and imaginary
parts of complex numbers respectively. The Gamma function is denoted by Γ(x),
and ψ is the di–gamma function (d/dx) log(Γ(x)). All logarithms are with respect
to the natural base.
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1

Asymptotics in General

Many authors have examined the use of asymptotic methods in statistics. Ser-
fling (1980) investigates applications of probability limit theorems for distributions
of random variables, including theorems concerning convergence almost surely, to
many questions in applied statistics. Le Cam (1969) treats asymptotics from a
decision-theoretic viewpoint. Barndorff–Nielsen and Cox (1989) present many ap-
plications of the density and distribution function approximations to be described
below in a heuristic manner. Hall (1992) investigates Edgeworth series with a par-
ticular view towards applications to the bootstrap. Field and Ronchetti (1990)
treat series expansion techniques in a manner that most closely parallels this work;
I have included more detailed proofs and discussion of regularity conditions, and a
survey of the use of Barndorff–Nielsen’s formula. Their work covers many aspects
of robustness and estimating equations not included here. Skovgaard (1990) ex-
plores characteristics of models making them amenable to asymptotic techniques,
and derives the concept of an analytic statistical model. He also investigates con-
vergence along series indexed by more general measures of information than sample
size. Jensen (1995) presents a range of topics similar to that presented here, but
with a different flavor.

The question of convergence of various approximations to distribution functions
and densities will be considered with as much attention to regularity conditions and
rigor as possible. Bhattacharya and Rao (1976) and Bhattacharya and Denker
(1990) rigorously treat multivariate Edgeworth series; the present work begins with
the univariate case as a pedagogical tool. Valuable recent review articles include
those of Reid (1996) and Skovgaard (1989).
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2 1. Asymptotics in General

1.1. Probabilistic Notions

Serfling (1980) describes various kinds of probabilistic limits often used in statistics.
Probabilists generally model random variables as functions of an unobserved sample
point ω lying in some sample space Ω, with a measure P [·] assigning to each set in a
certain class F of subsets of Ω a probability between 0 and 1. Generally, sequences
of related random variables are modeled as a sequence of functions of ω, and a
large part of asymptotic theory is concerned with describing the behavior of such
sequences.

The strongest types of convergence are convergence almost surely, and conver-
gence in mean. Random variables Xn are said to converge almost surely, or converge
with probability 1, to Y if P [Xn(ω) → Y (ω)] = 1. This notion of convergence cru-
cially involves the sample point ω, and concerns behavior of the functions Xn at ω
for all n, or at least for all n sufficiently large, simultaneously. For instance, the
strong law of large numbers implies that if Xn is a Binomial random variable repre-
senting the number of successes in n independent trials, with each trial resulting in a
success with probability π and a failure with probability 1−π, then Xn/n converges
almost surely to π. Using this result, however, requires conceptually constructing
a sample space Ω on which all of these random variables exist simultaneously. The
natural sample space for Xn is Ωn = {0, 1}n consisting of sequences of zeros and
ones of length n. In this case Xn(ω) =

∑
i ωi, and probabilities are defined by as-

signing each ω ∈ Ωn the probability 2−n. The common sample space Ω must be
constructed as a sort of infinite product of the Ωn; this expanded sample space then
bears little relation to the simple Ωn describing the specific experiment considered.

Random variables Xn are said to converge to Y in r-th mean, for some r ∈ (0, ∞)
if E [|Xn(ω) − Y (ω)|r] → 0. This type of convergence is less concerned with the
simultaneous behavior of the random variables for each ω and more concerned about
the overall relationship between Xn(ω) and Y (ω) globally on Ω for fixed n. The
relative values of Xn and Y for a fixed ω play the central role.

A weaker form of convergence is convergence in probability. The variables Xn

converge to Y in probability, if for every ε > 0, then limn→∞ P [|Xn − Y | < ε] = 1.
As with convergence in r-th mean, convergence in probability concerns the overall
relationship between Xn(ω) and Y (ω) globally on Ω for fixed n, but in a weaker
sense.

Random variables Xn are said to converge in distribution to Y , if

lim
n→∞ P [Xn(ω) ≤ x] = P [Y (ω) ≤ x]

for all x continuity points of P [Y (ω) ≤ x]. Of these various convergence notions
convergence in distribution is the weakest, in the sense that convergence almost
surely and convergence in r-th mean both imply convergence in distribution. It is
also weakest in the sense that it relies the least heavily on the classical measure
theoretic probability notions. In the binomial example above, then, one can show



1.2. The Nature of Asymptotics 3

that (Xn −nπ)/
√

nπ(1 − π) converges in distribution to a standard normal variable
Y , without having to envision, even conceptually, a probability space upon which
Y and even one of the Xn are simultaneously defined.

If Fn is the cumulative distribution function for Xn and F is the cumulative
distribution function for Y then the criterion for convergence in distribution can be
written as Fn(x) → F (x) as n → ∞ for all x at which F is continuous. Often times
the limiting distribution F is then used to approximate the distribution Fn in cases
when n is considered sufficiently large.

This course will concentrate on variants of the idea of convergence in distribu-
tion, and will involve deriving easily–calculated approximations Gn to Fn.

At this point it may be useful to introduce order notation. Suppose f and g are
two functions of a parameter, and one wishes to describe how much they differ as the
parameter approaches some limiting value. One might begin by assessing whether
the difference converges to zero or whether the differences are bounded in the limit;
a refined analysis might describe the rate at which the difference converges to zero or
diverges from zero. The notation f(n) = g(n)+o(h(n)) means (f(n)−g(n))/h(n) →
0; the notation f(n) = g(n) + O(h(n)) means (f(n) − g(n))/h(n) is bounded as n
approaches some limiting value. Usually the implied limit is as n → ∞ if n is a
discrete quantity like sample size. If n is a continuous quantity the implied limit is
often as n → 0. For example, 1+2t+ t3 = 1+2t+o(t2) as t → 0, and (n+log(n)−
1)/n2 may be described alternatively as 1/n+o(1/n) or 1/n+log(n)/n2 +O(1/n2).
As another example, the numbers a0, a1, . . . , al are the value and first l derivatives
of a function f at zero if and only if f(t) =

∑l
j=0 alt

l/l! + o(tl) as t → 0.
Probabilistic versions of this order notation also exist. For two sequences of

random variables Un and Vn defined on the same probability space, we say that
Vn = Op(Un) if for any ε > 0 there exist Mε and Nε such that P [|Vn/Un| > Mε] < ε
for n > Nε. We say that Vn = op(Un) if Vn/Un converges in probability to zero.

1.2. The Nature of Asymptotics

Wallace (1958) discusses the question of approximating a cumulative distribution
function Fn depending on an index n by a function Gn also depending on n, in
general terms. Often one estimates Fn(x) as the truncation of a nominal infinite
series, whose coefficients depend on n. That is,

Gj,n(x) =
j∑

j=0
Aj(x)aj,n, (1)

where aj,n decreases in n. In the case of sample means often aj,n = n−j/2. In
many cases, the difference between the target cumulative distribution function
and the approximation is of a size comparable to the first term neglected; that
is, |Fn(x) − Gj,n(x)| < c(x)aj+1,n, or in other words,

Fn(x) = Gj,n(x) + O(aj+1,n). (2)
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In general an expression line (1) does not imply that

Fn(x) =
∞∑

j=0
Aj(x)aj,n. (3)

Approximations of the form (1) are useful even when the infinite sum (3) does not
converge, as noted by Cramér (1925).

As an example, consider the standard normal survival function. If j is a non-
negative integer, and x > 0, then integrating by parts shows that

∫ ∞

x
φ(y)y−2j dy = −

∫ ∞

x
[−yφ(y)]

dy

y2j+1

= − (φ(y)/y2j+1)
∣∣∣∞
x

− (2j + 1)
∫ ∞

x
φ(y)

dy

y2j+2

= φ(x)/x2j+1 − (2j + 1)
∫ ∞

x
φ(y)

dy

y2j+2 .

Applying this identity recursively, for any k,

Φ̄(x) = φ(x)
k∑

j=0
x−1−2j(−1)jaj + (−1)k+1aj+1

∫ ∞

x
φ(y)

dy

y2k+2 , (4)

for aj =
{ 1 if j = 0∏j−1

i=0 (2i + 1) otherwise, for any x > 0. Then

Φ̄(
√

nx) =
φ(

√
nx)√
n

⎡
⎣ k∑

j=0
x−1−2jn−j(−1)jaj + O(n−j−1)

⎤
⎦ . (5)

Thus (5) constitutes an asymptotic expansion for Φ̄(
√

nx). Furthermore, the asso-
ciated infinite series is alternating; since the integral in (4) is positive,

Φ̄(x)
{

≤ φ(x)
∑k

j=0 x−1−2j(−1)jaj if k even
≥ φ(x)

∑k
j=0 x−1−2j(−1)jaj if k odd

. (6)

Hence

φ(x){1/x − 1/x3} ≤ Φ̄(x) ≤ φ(x){1/x − 1/x3 + 3/x5}. (7)

However, the aj increase quickly enough that when the finite sum is transformed
into an infinite series, the series does not converge for any x.

As a second example, consider Stirling’s asymptotic expansion for the Gamma
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function

exx
1
2−x Γ(x)√

2π
= 1+

x−1

12
+

x−2

288
− 139x−3

51840
− 571x−4

2488320
+

163879x−5

209018880
+

5246819x−6

75246796800
− 534703531x−7

902961561600
− 4483131259x−8

86684309913600
+

432261921612371x−9

514904800886784000
+ O

(
x−10

)
;

this is a valid asymptotic expansion as x → ∞, but fixing x and letting the number
of terms included increase to infinity eventually degrades performance (Fig. 1).

Error in Stirling’s Series as the Order of Approximation Increases
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Note the distinction between asymptotic expansions and convergence of series
like (3). The main concern in this volume is the behavior of the difference between
Fn and Gj,n as n, rather than j, increases. An asymptotic expansion, then, is a
formal series like (3) which when truncated after any number of terms j as in (1)
exhibits the behavior described by (2).



2

Characteristic Functions and the Berry–Esseen
Theorem

This chapter discusses the role of the characteristic function in describing proba-
bility distributions. Theorems allowing the underlying probability function to be
reconstructed from the characteristic function are presented. Results are also de-
rived outlining the sense in which inversion of an approximate characteristic function
leads to an approximate density or distribution function. These results are applied
to derive Berry–Esseen theorems quantifying the error incurred in such an approx-
imation. Finally, the relationship between the characteristic function and moments
and cumulants is investigated.

2.1. Moments and Cumulants and their Generating Functions

The characteristic function for a random variable X taking values in R is defined
to be

ζX(β) = E [exp(iβX)] ; (8)

ζX(β) is also known as the Fourier transform of the distribution. The characteristic
function always exists for β ∈ R, and if the density for X is symmetric then ζ(β) ∈
R for all β. It is called “characteristic” because in a sense described below it
characterizes the distribution uniquely.

Additionally, the characteristic function has properties convenient when con-
sidering transformations of random variables. First, if X1 and X2 are independent
random variables, a1, a2, and b are constants, and X = a1X1 + a2X2 + b, then

ζX(β) = E [exp(i[a1X1 + a2X2 + b]β)]
= exp(ibβ)E [exp(ia1X1β)] E [exp(ia2X2β)] = exp(ibβ)ζX1(a1β)ζX2(a2β). (9)

Hence ζX(β) =
∏n

j=1 ζXj
(ajβ) if X =

∑n
j=1 ajXj and the variables Xj are indepen-

dent, and ζX̄(β) = ζX1(β/n)n if X̄ is the mean of n independent and identically
distributed random variables Xj.

7



8 2. Characteristic Functions and the Berry–Esseen Theorem

The distribution of the random variable
∑n

j=1 Xj where aj = 1 for all j is called
the convolution of the distributions of the random variables Xj.

One can recover the moments of a distribution from its characteristic function.
By differentiating (8) l times and evaluating the result at zero, one sees that

ζ
(l)
X (0) = E

[
ilX l exp(i × 0 × X)

]
= ilE

[
X l

]
, (10)

assuming that the orders of integration and differentiation can be interchanged.
The relationship between the characteristic function and moments of the under-

lying distribution unfortunately involves i. In chapters following this one, we will
make use of a more direct generating function, the moment generating function, de-
fined to be MX(β) = E [exp(βX)] , which is (8) with the i removed. The function
MX(β), with β replaced by −β, is called the Laplace transform for the probability
distribution of X. Unlike characteristic functions, these need not be defined for any
real β 	= 0. The range of definition is convex, however, since for any x the function
exp(xβ) is convex. That is, if p ∈ (0, 1), then

MX(pγ + (1 − p)β) = E [exp((pγ + (1 − p)β)X)]

≤ E [p exp(γX) + (1 − p) exp(βX)]

= pMX(γ) + (1 − p)MX(β).

Hence if MX(β) < ∞ for any real β 	= 0, then MX(β) < ∞ for all β in an interval
Q containing 0, although 0 may lie on the boundary of Q. The function MX may
only be defined for values of β lying on one side or the other of the origin. If
MX(β) < ∞ on some open interval containing 0, then all moments are finite, and
MX has a power series expansion about 0 of the form MX(β) =

∑∞
j=0 µjβ

j/j!. The
counterpart of (10) is M(l)

X (0) = E
[
X l

]
. This will be demonstrated in §2.3. The

radius of convergence of this series is given by

R = min(sup({β : β > 0,MX(β) < ∞}, sup({−β : β < 0,MX(β) < ∞})). (11)

Proof of this claim is left as an exercise.
Furthermore, if β ∈ Q × iR, then E [|exp(βX)|] < ∞, and hence MX exists for

these β as well. Conversely, since |exp(βX)| = exp(�(β)X), then E [|exp(βX)|] <
∞ implies that �(β) ∈ Q, and β ∈ Q × iR.

A slightly more general definition of MX(β) is limR→∞
∫ R
−∞ exp(xβ)dFX(x),

when �(β) > 0, and analogously when �(β) < 0. This limit might exist for some β
for which E [|exp(βX)|] = ∞. Widder (1946) proves the following:

Lemma 2.1.1: If limR→∞
∫ R
−∞ exp(ixβ)dFX(x) exists and is finite, then β ∈ Q̄ ×

iR. Here ·̄ applied to a set denotes closure; since Q is an interval, the closure
represents the set together with its supremum and infimum.

Proof: It suffices to show that if limR→∞
∫ R
−∞ exp(xβ)dFX(x) exists and is finite

for �(β) > 0, and if γ ∈ R and γ ∈ [0,�(β)), then limR→∞
∫ R
−∞ exp(xγ)dFX(x)
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exists and is finite. To see this, let G(x) =
∫ x
−∞ exp(βy) dFX(y). Then, integrating

by parts,
∫ R
−∞ exp(xγ)dFX(x) =

∫ R
−∞ exp(x[γ − β])dG(x) = G(R) exp(R[γ − β]) +

(β −γ)
∫ R
−∞ exp(x[γ −β])G(x) dx. Since limR→∞ G(R) = MX(β) and �(γ −β) < 0,

the first term converges to zero. Furthermore, the second integral is bounded.
Q.E.D

The moment generating function will be used for two purposes below. In the
remainder of this section it will be used to define a sequence of numbers providing
a characterization of a distribution that is more useful than the moments, and in
later chapters on saddlepoint approximations, the real part of the moment gen-
erating function argument will be used to index an exponential family in which
the distribution of interest is embedded, and the imaginary part will be used to
parameterize the characteristic function of that distribution.

Normal approximations to densities and distribution functions make use of the
expectation, or first moment, and the variance, or second central moment, of the
distribution to be approximated. The Berry–Esseen theorem, to be discussed below,
which assesses the quality of this approximation involved also the third central
moment. Thus far, then, for the purposes of approximating distributions it seems
sufficient to describe the distribution in terms of its first few moments.

For reasons that will become clear later, it is desirable to use, rather than mo-
ments, an alternate collection of quantities to describe asymptotic properties of
distributions. These quantities, which can be calculated from moments, are called
cumulants, and can be defined using the power series representation for the loga-
rithm of the characteristic function. Since manipulation of logarithms of complex
numbers presents some notational complications, however, we will instead derive cu-
mulants from a real-valued function analogous to the characteristic function, called
the moment generating function. Its logarithm will be called the cumulant generat-
ing function. Much of the material on this topic can be found in McCullagh (1987),
§2.5-2.7, and Kendall, Stuart, and Ord (1987), §3.

Since MX(β) is real and positive for all β, we can define the cumulant generating
function KX(β) = log(MX(β)). Let κj be its derivative of order j at zero. If deriva-
tives of all orders exist, the formal expansion of KX about β = 0 is

∑∞
j=0 κjβ

j/j!.
Since MX(0) = 1, κ0 = 0. The coefficients κj for j > 0 are called cumulants or
semi-invariants.

These terms will be justified below. An important feature of the cumulant gen-
erating function is the simple way the cumulant generating function for an affine
transformation of independent random variables is related to the underlying cumu-
lant generating functions. Substituting β for iβ in (9), and taking logs, shows that
the cumulant generating function of an affine transformation of one variable is given
by

KaX+b(β) = KX(aβ) + bβ,

and hence if κj and λj are the cumulants of X and aX + b, λj = ajκj for j > 1
and λ1 = aκ1 + b. Thus cumulants of order two and higher are invariant under
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translation, and vary in a regular way with rescaling. This justifies the name semi-
invariant.

If X has cumulants κ = (κ1, κ2, . . .), then the cumulant of order j of (X −
κ1)/

√
κ2 is ρj = κjκ

−j/2
2 for j > 1, and 0 for j = 1. Call these quantities the

invariants. These do not change under affine transformations of X. Now consider
linear combinations of more than one variable. Choose any X and Y independent.
Then substituting β for iβ in (9), and taking logs,

KX+Y (β) = KX(β) + KY (β),

and hence if κj, λj, and νj are cumulants of X, Y , and X + Y respectively, νj =
κj + λj. Thus the cumulants “cumulate”, giving rise to the name.

If Yj are independent and identically distributed, and Z = (1/
√

n)
∑n

j=1 Yj,
then

KZ(β) = nKY (β/
√

n) =
∞∑

j=0
κjn

(2−j)/2βj/j!.

Using the fact that log(1 + z) =
∑∞

j=1(−1)j−1zj/j, convergent for |z| < 1,
one can express cumulants in terms of moments, and using exp(z) =

∑∞
j=0 zj/j!,

convergent for all z, one can express moments in terms of cumulants. These results
are tabulated in Table 1.

Table 1: Conversions between Moments and Cumulants

κ1 = µ1, µ1 = κ1,
κ2 = µ2 − µ2

1, µ2 = κ2 + κ2
1,

κ3 = µ3 − 3µ1µ2 + 2µ3
1, µ3 = κ3 + 3κ1κ2 + κ3

1,
κ4 = µ4 − 4µ1µ3 − 3µ2

2 + 12µ2µ
2
1 − 6µ4

1, µ4 = κ4 + 4κ1κ3 + 3κ2
2 + 6κ2κ

2
1 + κ4

1.

Conversion in either direction, then, involves forming linear combinations of
products of moments and cumulants, with the coefficients derived from the coef-
ficients of the moments or cumulants in the appropriate generating function, and
from the number of ways in which a particular term arises in the series exponen-
tiation or logarithm. The constants arising in these conversion relations are more
transparent in the multivariate case since the number of times symmetric terms
arise in the transformed power series is explicitly recorded. See McCullagh (1987)
for a further discussion of these transformations. Kendall, Stuart, and Ord (1987)
§3.14 give transformations between these in both directions.

One can define cumulants even when KX does not have a positive radius of
convergence, using the same conversion rules as above, or using the definition

κj = (−i)j d
j log(ζ(β))

dβj

∣∣∣∣∣
β=0

, (12)



2.2. Examples of Characteristic and Generating Functions 11

and some suitable definition for complex logarithms, when this derivative exists.
As we will see below, however, existence of derivatives of the characteristic function
implies the existence of the moment of the corresponding order only if that order
is even; the exercises provide a counterexample in which the first derivative of a
characteristic function exists but the first moment does not. Loosely then we will
say that moments to a certain order exist if and only if cumulants of the same order
exist.

2.2. Examples of Characteristic and Generating Functions

The following are simple examples of calculating characteristic functions.
a. The normal distribution: Recall that the standard normal density has the form

fX(x) = exp(−x2/2)/
√

2π.

Two options for presenting the corresponding characteristic function present
themselves. One might evaluate the integral

ζX(β) =
∫ ∞

−∞
exp(ixβ) exp(−x2/2)(2π)−1/2 dx

=
∫ ∞

−∞
(cos(βx) + i sin(βx)) exp(−x2/2) dx/

√
2π

=
∫ ∞

−∞
cos(βx) exp(−x2/2) dx/

√
2π.

Alternatively one might calculate moments of the random variable and then use
the power series expression for the characteristic function to construct ζX(β).
The moments may be expressed as an integral, which may be evaluated using
integration by parts to show:

µl =
{ 0 l odd

2−l/2l!/(l/2)! l even.

Since the radius of convergence is infinite,

ζX(β) =
∑

l even
(iβ)l/(2l/2(l/2)!) =

∑
l

(−β2/2)l/l! = exp(−β2/2).

The moment generating function is calculated more easily.

MX(β) =
∫ ∞

−∞
exp(βx − x2/2) dx/

√
2π

= exp(β2/2)
∫ ∞

−∞
exp(−(x − β)2/2) dx/

√
2π = exp(β2/2),

for β real. Hence M(β) exists (and is hence differentiable) for β ∈ R; exp(β2/2)
also is defined and differentiable for β ∈ R. Since these functions coincide on
a set of points converging to 0, then MX(β) = exp(β2/2) for β ∈ R (Bak and
Newman, 1996, §6.3). The set on which KX(β) exists is smaller, since the log
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function is not defined for arguments with a zero imaginary part and a non-
positive real part. For instance, since exp((π + i)2/2) = exp((π2 − 1)/2 + iπ) =
− exp((π2−1)/2), then KX(π+i) is not defined. However, on some neighborhood
of R, KX(β) = β2/2, and cumulants of order 3 and above are zero.

b. The uniform distribution on (−1/2, 1/2):

ζX(β) =
∫ 1/2

−1/2
(cos(βx) + i sin(βx)) dx

= [sin(β/2) − sin(−β/2) + i cos(−β/2) − i cos(β/2)]/β = 2 sin(β/2)/β.

Calculation of its cumulant generating function is left as an exercise.
c. The Cauchy distribution: The density fX(x) = 1/(π(1 + x2)) has the corre-

sponding characteristic function

ζX(β) = exp(−|β|), (13)

differentiable everywhere except at 0. Its derivation is left as an exercise. No
moments of order greater than or equal to one exist for this distribution, but
expectations of the absolute value of the random variable raised to positive
powers less than one do exist. Kendall, Stuart, and Ord (1987) give these as
E [|X|c] = 1/ sin((1+c)π/2) for |c| < 1. For β ∈ R such that β 	= 0, the integral

ζX(β) =
∫ ∞

−∞
exp(xβ)/(π(1 + x2)) dx

is infinite, and so the cumulant generating function does not exist.
d. The Bernoulli distribution and the binomial distribution: If X is a Bernoulli

variable taking the value 1 with probability π and the value 0 otherwise, then
its characteristic function is ζX(β) = (1 − π) + π exp(iβ), and if Yn has the
distribution of the sum of n independent such variables, its characteristic func-
tion is ζYn(β) = ((1 − π) + π exp(iβ))n. The cumulant generating function is
log((1 − π) + π exp(β)).
The Bernoulli example illustrates two points. First, this characteristic function

has a non-zero imaginary part. In the three preceding examples the distributions
were symmetric about zero, eliminating the imaginary part of the integral. This
distribution is not symmetric, and so imaginary parts do not cancel out, since,
for a fixed value of x, values of the summands or integrands in the expectation
calculation are no longer in general the conjugates of the values at −x. Second, this
characteristic function is periodic. This arises from the fact that possible values for
the random variable are restricted to a lattice of equally spaced points. Most of
the applications considered in this volume will involve either continuous or lattice
distributions. Complications arising from other distributions will be discussed along
with the regularity conditions for Edgeworth series. The Bernoulli distribution
arises in applications involving testing a binomial proportion, including determining
critical regions for the non–parametric sign test.
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2.3. Characteristic Functions and Moments

We have seen that under certain regularity conditions, the set of derivatives of
the characteristic function ζY of a random variable Y determines the moments of
Y , which in turn under certain regularity conditions determines the distribution
of Y . Billingsley (1986) proves as Theorem 26.2 that two distinct real random
variables cannot have the same characteristic function. A portion of this argument
is summarized below, in providing an expansion for the characteristic function in
terms of moments of the underlying distribution. Some lemmas link the existence
of derivatives of the characteristic function at zero to the existence of moments of
Y .

I first demonstrate an inequality for use in bounding the error when exp(iy) is
approximated by partial sums of its Taylor expansion; this is given by Billingsley
(1986), p. 297.

Lemma 2.3.1: For any real y,
∣∣∣∣∣exp(iy) −

l∑
k=0

(iy)k/k!
∣∣∣∣∣ ≤ min

(
|y|l+1

(l + 1)!
,
2 |y|l

l!

)
.

Proof: Integration by parts shows that
∫ x

0
(y − s)j exp(is) ds =

yj+1

j + 1
+

i

j + 1

∫ x

0
(y − s)j+1 exp(is) ds.

Furthermore, exp(iy) = 1 + i
∫ y
0 exp(is) ds, and hence by induction,

exp(iy) =
j∑

k=0

(iy)k/k! + (ij+1/j!)
∫ y

0
(y − s)j exp(is) ds.

Note that ∣∣∣∣
∫ y

0
(y − s)j exp(is) ds

∣∣∣∣ ≤ |y|j+1 .

By integration by parts,∫ y

0
(y − s)j exp(is) ds = −iyj + ij

∫ y

0
(y − s)j−1 exp(is) ds

= ij
∫ y

0
(y − s)j−1(exp(is) − 1) ds

and hence ∣∣∣∣
∫ y

0
(y − s)j exp(is) ds

∣∣∣∣ ≤ 2j |y|j .

Q.E.D
Lemma 2.3.1 will be used in this section and §2.6 to bound errors in approximat-

ing exp(y). The following result was presented by Billingsley (1986), §26. We will
also need the following result limiting the size of tails of the distribution function.
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Lemma 2.3.2: If G(y) is a cumulative distribution function, then

lim
A→∞

∫ A

−∞
y dG(y)/A = 0.

Proof: If the result fails to hold, then there exists ε > 0 and a sequence Ak such
that limk→∞ Ak = ∞ and

∫ Ak
−∞ y dG(y) ≥ εAk for all k. In this case,

∑k
j=1(G(Aj) −

G(Aj−1))Aj ≥ Akε for all k. Choose K so that G(AK) > 1 − ε/2. Then

K∑
j=1

(G(Aj) − G(Aj−1))Aj + εAk/2 ≥ Akε

for all k. This is a contradiction, and the result holds.
Q.E.D

All of the preliminaries are completed for demonstrating that the existence of
absolute moments of a random variable implies differentiability of the characteristic
function to the same order.

Lemma 2.3.3: If Y has a moment µl of order l (in the sense that E
[
|Y |l

]
< ∞),

then the derivative of ζ of order l exists at zero, with ζ(l)(0) = µli
l, and ζ(β) =∑l

k=0 µk(iβ)k/k! + o(βl).

Proof: Let F (y) be the distribution function for |Y |. Substituting the random
variable βY for y in Lemma 2.3.1, and taking expectations on both sides,∣∣∣∣∣ζ(β) −

l∑
k=0

βkikµk/k!
∣∣∣∣∣ ≤ |β|l E

[
min(|β| |Y |l+1 /(l + 1)!, 2 |Y |l /l!)

]
. (14)

If G(y) =
∫ y
−y |y|l dF (y)/E

[
|Y |l

]
, then

∣∣∣∣∣ζ(β) −
l∑

k=0

βkikµk

k!

∣∣∣∣∣ ≤
E
[
|Y |l

]
|β|l

l!

[
|β|

l + 1

∫ 2(l+1)/|β|

0
y dG(y) + 2G

(
2(l + 1)

|β|

)]
.

The second term in brackets above clearly goes to zero as |β| → 0. The first term in
brackets above goes to zero as |β| → 0, by Lemma 2.3.2. Hence if Y has moments
µ1, ..., µl, then ζ(β) =

∑l
k=0 µk(iβ)k/k!+o(βl), and ζ is l-times differentiable at zero

with the derivatives claimed.
Q.E.D

The previous result shows that if Y has a moment of a certain order, then the
corresponding derivative of ζY also exists. The next result is a partial converse.

Lemma 2.3.4: If l is an even integer, and if the derivative of ζ of order l exists
at zero, then Y has a moment of order l given by (10).

Proof: This proof is essentially that given by Cramér (1946). Let g0(β, y) =
exp(βy) and gk(β, y) = ((exp(βy) − exp(−βy))/(2β))k for k > 0. Furthermore, let
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Z be the random variable taking the value of Y if |Y | < K and zero otherwise.
Exercise 1 of this chapter outlines a proof that if the derivative of order k of ζ at 0
exists, then

ζ(k)(0) = lim
β→0

E [gk(β, iY )] . (15)

Hence
ζ(l)(0) = lim

β→0
E [gl(β, iY )] ≥ lim

β→0
E [gl(β, iZ)] = E

[
Z l
]

for all K. The last equality holds by the Bounded Convergence Theorem, since
|(exp(iβy) − exp(−iβy))/(2β)| ≤ |y|. By the Monotone Convergence Theorem,
ζ(l)(0) = E

[
Y l
]
.

Q.E.D
If l is odd, the Monotone Convergence Theorem does not apply. The claim of

the lemma does not hold for odd l. Left as an exercise is a counterexample in which
the first derivative of the characteristic function of a random variable is defined at
0 even though the first absolute moment does not exist. The principal value of the
associated sum is 0.

When derivatives of a characteristic function of all orders exist, one might con-
sider constructing the power series representation for the function. The next theo-
rem considers the radius of convergence for this series.

Theorem 2.3.5: If Y has moments of all orders, and R = 1/ lim sup(µl/l!)1/l

then ζ has the expansion
∑∞

k=0(iβ)kµk/k! valid on |β| < R. This radius R might be
zero, in which case the series expansion holds for no β 	= 0, or R might be ∞, in
which case the expansion holds for all β ∈ R.

Proof: First, a note about notation. Given a sequence an of real numbers,
lim sup an is the upper bound on the set of limits of subsequences of the sequence
an, if any convergent subsequences exist, and is infinite otherwise. If the sequence
an converges, then limn→∞ an = lim sup an.

The theorem follows from (14).
Q.E.D

These results for characteristic functions also hold for moment generating func-
tions; in fact, since the existence of a moment generating function is a rather re-
strictive condition, results for moment generating functions are stronger:

Lemma 2.3.6: Suppose that the moment generating function MY (β) exists for β

in a neighborhood (−ε, ε) of 0. Then moment of Y of order k, µk = E
[
Y k

]
exist

for all k and are given by µk = M(k)
Y (β).

Proof: Choose β ∈ (−ε, ε) × iR. Choose γ ∈ (�(β) − (ε − |�(β)|)/2,�(β) + (ε −
|�(β)|)/2)) × iR. Then

(MY (β) − MY (γ))/(β − γ) = E [[exp(Y β) − exp(Y γ)]/(β − γ)] , (16)
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and for some β∗ between β and γ,∣∣∣∣∣exp(Y β) − exp(Y γ)
β − γ

∣∣∣∣∣ = |Y exp(Y β∗)|

≤ |Y | exp(Y [|�(β)| /2 + ε/2]) ≤ sup
w∈R

(w exp(w(|�(β)| − ε)/2) exp(Y ε).

The supremum above is finite. Since this last quantity is integrable, the Dominated
Convergence Theorem allows us to interchange expectation and limβ→γ to show
that MY (β) is differentiable as a complex function on (−ε, ε)× iR. Hence MY has
derivatives of all orders, and Lemma 2.3.4 applies.

Q.E.D
Alternatively, we might avoid using Lemma 2.3.4 by noting that the proof to

Lemma 2.3.6 shows that M′
Y (β) = E [Y exp(βY )]; the argument might be iterated

to show that M(k)
Y (β) = E

[
Y k exp(βY )

]
.

2.4. Inversion of Characteristic Functions

The following theorem on inverting characteristic functions to recover the underlying
cumulative distribution function is found in Billingsley (1986).

Theorem 2.4.1: If a distribution function F corresponds to a characteristic func-
tion ζ and the points b1 and b2 have zero probability assigned to them then

F (b2) − F (b1) = lim
Θ→∞

1
2π

∫ Θ

−Θ

exp(−iβb1) − exp(−iβb2)
iβ

ζ(β) dβ. (17)

Proof: Let IΘ =
1
2π

∫ Θ

−Θ

exp(−iβb1) − exp(−iβb2)
iβ

ζ(β) dβ. Then

IΘ =
1
2π

∫ Θ

−Θ

∫ ∞

−∞

exp(−iβb1) − exp(−iβb2)
iβ

exp(iβx) dF (x) dβ

=
1
2π

∫ Θ

−Θ

∫ ∞

−∞

exp(iβ(x − b1)) − exp(iβ(x − b2))
iβ

dβ dF (x).

Interchange of the order of integration is justified because the integrand is bounded
and the set of integration is of finite measure. Expanding the complex exponential,
one can express IΘ as
∫ Θ

−Θ

∫ ∞

−∞

cos(β(x − b1))+i sin(β(x − b1))−cos(β(x − b2))−i sin(β(x − b2))
2πiβ

dβ dF (x).

Since the cosine is an even function, the integral of terms involving cosine is zero,
leaving

IΘ =
1
2π

∫ ∞

−∞

∫ Θ

−Θ

sin(β(x − b1)) − sin(β(x − b2))
β

dβ dF (x).
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Let S(θ) =
∫ θ
0 sin(x)/x dx. Since the quantities qk =

∫ kπ
(k−1)π sin(x)/x dx form an

alternating sequence with terms whose absolute values are decreasing, then S(∞) =
limθ→∞ S(θ) is finite. By the dominated convergence theorem,

lim
Θ→∞

IΘ =
∫ ∞

−∞

1
2π

(2S(∞) sgn(x − b1) − 2S(∞) sgn(x − b2)) dF (x)

Since sgn(x − b1) − sgn(x − b2) is 1 for x ∈ (b1, b2) and 0 for x ∈ [b1, b2]c, then for
Θ > max(|b1| , |b2|), IΘ = c

∫ b2
b1

dF (x) = c(F (b2) − F (b1)), for c = S(∞)/π, which
will be shown to equal 1. The result follows.

Q.E.D
The first factor in the integrand in (17) has a removable singularity at zero;

that is, although it is undefined for β = 0, if the value b2 − b1 is substituted for
(exp(−iβb1) − exp(−iβb2))/iβ when β = 0 the resulting factor is a differentiable
complex function.

A version of this theorem for recovering density functions also exists.

Theorem 2.4.2: The density of a random variable with the characteristic function
ζ satisfying ∫ ∞

−∞
|ζ(β)| dβ < ∞ (18)

exists and is given by
1
2π

∫ ∞

−∞
exp(−iβy)ζ(β) dβ; (19)

furthermore, the constant c in the previous theorem has the value 1.

Proof: By (18) one can replace the limit of proper integrals as Θ → ∞ by the
corresponding improper integral over the real line in (17). Furthermore, the bounded
convergence theorem assures that the right hand side of (17) is continuous in b1 and
b2. Then

F (b2) − F (b1) =
c

2π

∫ ∞

−∞

exp(−iβb1) − exp(−iβb2)
iβ

ζ(β) dβ

=
c

2π

∫ ∞

−∞

∫ b2

b1
exp(−iβy) dy ζ(β) dβ

=
∫ b2

b1

c

2π

∫ ∞

−∞
exp(−iβy)ζ(β) dβ dy.

Interchange of the order of integration is justified by Fubini’s Theorem using the
absolute convergence of the integral (18). By comparing the last line with the
normal characteristic function, we find that c = 1. Hence the density is (19). The
bounded convergence theorem implies that the resulting density is continuous.

Q.E.D
A useful corollary to Theorem 2.4.2 may formulated for functions that are not

necessarily densities.
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Corollary 2.4.3: Suppose that two functions (not necessarily a density and char-
acteristic function) are related by the equation ζ(β) =

∫∞
−∞ exp(iβx)f(x) dx, and

that both are uniformly integrable. Then f(x) = 1
2π

∫∞
−∞ exp(−iβx)ζ(β) dβ.

Proof: Apply Theorem 2.4.2 to the positive and negative parts of f(x) separately,
after rescaling to make each part integrate to 1.

Q.E.D
A condition like integrability of the first derivative of the density implies the

condition on integrability of the characteristic function (18). The presence of prob-
ability atoms, or singleton sets of positive probability, implies that condition (18)
is violated.

The converse of Theorem 2.4.2 is not true. The existence of a density need
not imply absolute convergence of the integral of the characteristic function. The
question of minimal conditions on a function ζ to make it a characteristic function,
and particularly the characteristic function of a distribution with a density, arises
in functional analysis. The interested reader should consult Rudin (1973). We
will instead ask the weaker question of what characteristic functions correspond
to distributions whose convolutions with itself eventually have densities. For the
present purposes this later question is more important, in that most of the density
expansion theorems will hold as the number of summands in the quantity whose
distribution is approximated is sufficiently large; hence it is necessary to consider
when the quantity being approximated actually exists.

Lemma 2.4.4: The characteristic function ζ of a random variable satisfies∫ ∞

−∞
|ζ(β)|r dβ < ∞

for some r > 1 if and only if there exists an integer j such that the density of a
j-fold convolution of the random variable with itself exists and is bounded.

Proof: The “only if” clause holds by the preceding theorem applied to j = 
r�,
where 
r� is the smallest integer at least as large as r. The “if” clause holds since
for any Θ > 0,

∫ Θ

−Θ

∣∣∣ζ2j(β)
∣∣∣ dβ =

∫ Θ

−Θ

[∫ ∞

−∞
fj(x) exp(iβx) dx

] [∫ ∞

−∞
fj(y) exp(−iβy) dy

]
dβ

=
∫ ∞

−∞

∫ ∞

−∞

∫ Θ

−Θ
fj(x) exp(iβx)fj(y) exp(−iβy) dβ dy dx;

the interchange in order of integration holds by Fubini’s Theorem. Then
∫ Θ

−Θ

∣∣∣ζ2j(β)
∣∣∣ dβ =

∫ ∞

−∞

∫ ∞

−∞

∫ Θ

−Θ
fj(x)fj(x + z) exp(−iβz) dβ dx dz

=
∫ ∞

−∞

∫ ∞

−∞
fj(x)fj(x + z)

exp(−iΘz) − exp(iΘz)
−iz

dx dz.
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Imaginary parts in the previous integral cancel, leaving
∫ Θ

−Θ

∣∣∣ζ2j(β)
∣∣∣ dβ =

∫ ∞

−∞

∫ ∞

−∞
fj(x)fj(x + z)2 sin(Θz)z−1 dx dz.

Changing variables from z to v = Θz, and splitting the range of integration for v,
∫ Θ

−Θ

∣∣∣ζ2j(β)
∣∣∣ dβ =

∫ ∞

−∞

∫ π

−π
fj(x)fj(x + v/Θ)

2 sin(v)
v

dv dx+
∫ ∞

−∞

∫
(−π,π)c

fj(x)fj(x + v/Θ)
2 sin(v)

v
dv dx.

The first integral above is bounded by the maximum value of fj times the integral of
2 sin(v)/v over (−π, π); the second integrand is bounded by fj(x)fj(x + v/Θ)2π−1,
and hence the integrating with respect to v and then with respect to x shows that
the second integral can be bounded by 2π−1, which is independent of Θ.

Q.E.D
The inversion integrand in (19) is the derivative of the inversion integrand in

(17), evaluated with b1 = b2. This will become important in our discussion of
saddlepoint series.

2.5. Bounding Distribution Function Differences using Fourier
Transforms

The following material is adapted from Feller (1971). Suppose Xn is a sequence
of random variables, with cumulative distribution functions Fn and characteristic
functions ζn, and suppose X has the cumulative distribution function F and charac-
teristic function ζ, such that ζn → ζ pointwise. Then Fn(x) → F (x) for all x where
F is continuous. This in known as weak convergence. A classical elegant probabilis-
tic proof can be found in Billingsley (1986), §26. A classical analytic proof can be
found in Feller (1971), §VIII.1. In the present context higher order approximations
to Fn(x) as n varies are considered. To generate these approximations additional
regularity conditions will be required.

Series expansions will be generated by approximating the appropriate Fourier
inversion integral. The first step is to investigate what changes in the cumulative
distribution function arise from small changes in a characteristic function. Fun-
damental is a theorem relating differences in cumulative distribution functions to
differences in characteristic functions. Suppose a cumulative distribution function
H with expectation 0 is to be approximated. Approximations G having properties
similar to those of a cumulative distribution function of a continuous random vari-
able will be considered. Specifically, G will be required to have a Fourier transform
ξn(β) =

∫∞
−∞ exp(iβx) dG whose derivative will have the correct value of 0 at 0, and

the limiting values of G(x) as the argument becomes large will be the same as for
a cumulative distribution function. Heuristically the difference between H and G
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will be bounded by bounding the difference in inversion integrals (17) to obtain

H(b2) − H(b1) − G(b2) + G(b1)

= lim
Θ→∞

∫ Θ

−Θ

exp(−iβb1) − exp(−iβb2)
2πiβ

(ζ(β) − ξn(β)) dβ. (20)

The coarsest bound for (20), obtained by bounding the numerator of the integrand
by 2, is

|H(b2) − H(b1) − G(b2) + G(b1)| ≤ lim
Θ→∞

1
2π

∫ Θ

−Θ

2
|β| |ξ(β) − ζ(β)| dβ. (21)

The integrand in (21) has a removable singularity at 0 and hence the integral in
(21) is finite for Θ finite. The integral over (−∞,∞), however, need not converge,
and so some device is necessary to allow the limit in (21) to be truncated after
some finite Θ. In fact a result which explicitly bounds the error incurred when
the cumulative distribution functions on the left hand side of (20) are replaced
by smoothed versions, is proved. The random variable added to smooth these
cumulative distribution functions has a distribution which will vary with Θ. Its
characteristic function disappears outside of (−Θ, Θ). Since the Fourier transform
of a sum of random variables is the product of the individual Fourier transforms, the
Fourier transforms of the smoothed variables will then be zero outside of a bounded
region, and the limit in (21) can be replaced by the improper integral. The amount
of error incurred in the substitution will depend on Θ. The Edgeworth convergence
theorems for cumulative distribution functions later in this book will then be proved
by balancing the contribution of this error term with other terms, and so Θ is here
left unspecified.

Lemma 2.5.1: Suppose H is a cumulative distribution function, and G is a
function with the proper limits at infinity, such that G′ exists and |G′| ≤ m < ∞.
Let D = H − G and DΘ(y) =

∫∞
−∞ D(y − x)v(xΘ)Θ dx be D smoothed by adding

on a little bit of a continuous variate with density v(x) = π−1(1 − cos(x))/x2. Let
η = sup |D| and ηΘ = sup

∣∣∣DΘ
∣∣∣. Then ηΘ ≥ η/2 − 12m/(πΘ).

Proof: Unlike most of the results in this volume, the present lemma provides a
lower bound for a maximum difference, rather than an upper bound. The proof
will proceed by finding a point x0 at which the difference should, heuristically, be
largest, and use that difference as the lower bound for the maximal difference.

Construct a smoothing variable V with density

v(x) = (1 − cos(x))/(πx2) (22)

on (−∞,∞), and characteristic function

ω(β) =
{

1 − |β| if |β| ≤ 1
0 if |β| > 1 . (23)
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Verification that this is indeed the characteristic function is left as an exercise.
The proof is completed by constructing a neighborhood to the left of x0 where D

is bounded below. Since D is right continuous, there exists x0 such that |D(x0)| =
η. Without loss of generality assume D(x0) = η. Refer to Fig. 2. Note that
D(x0 + s) ≥ η − ms for s > 0, since H is non-decreasing and the derivative of G is
bounded by m. The supporting line η − ms hits the x axis at x2 = x0 + η/m. Let
x1 be midway between these. Call the supporting function just defined

DL =
{

η/2 − (x − x1)m if x ∈ (x0, x2)
−η otherwise.

Bound below the convolution DΘ at x1 by the convolution of DL with V/Θ, where
V has density v. Note that P [|V/Θ| ≤ v] ≤ 4

∫∞
vΘ(πx2)−1 dx = 4/(πvΘ). Since

on (x0, x2) the support function DL is a constant plus a linear term, and the linear
part convolves to 0 by symmetry, the contribution to the convolution here is at least
η/2 times the minimum probability of the interval, 1 − 4/(πΘ(x2 − x1)), and since
the probability mass for V/Θ outside this region is no more than 4/(πΘ(x2 − x1))
the entire convolution is at least η/2 × [1 − 4/(πΘ(η/2m))] − η × (4/πΘ(η/2m)) =
η/2 − 12m/(πΘ).

Q.E.D
Feller, 1971, §XVI.4 presents the following Smoothing Theorem.

Theorem 2.5.2: Suppose H is a cumulative distribution function with expectation
0 and characteristic function ζ, and G is differentiable, its Fourier transform ξ has
a derivative ξ′ which takes the value 0 at 0, and G has the limits 0 and 1 as its
argument approaches ±∞ respectively. Then

|H(x) − G(x)| ≤ 1
π

∫ Θ

−Θ
|ξ(β) − ζ(β)| / |β| dβ + 24 max(|G′|)/(πΘ). (24)

Proof: Both H and G will be convolved with a rescaled v to create differentiable
functions. The preceding lemma shows that a bound on the smoothed differences
yields a bound on the original differences.

Denote by HΘ and GΘ the convolutions of H and G with the smoothing variable
V/Θ, where V is as in Lemma 2.5.1. Since V/Θ is a continuous variable, these have
derivatives hΘ and gΘ. Letting b1 → −∞ and replacing b2 by x in (21), and noting
that the characteristic functions of HΘ and GΘ disappear outside of (−Θ, Θ),

∣∣∣DΘ
∣∣∣ ≤ 1

2π

∫ ∞

−∞
|ζ(β) − ξ(β)| |ω(β/Θ)| dβ/ |β| .

Bound |ω(β/Θ)| by 1. Then ηΘ ≤ π−1 ∫Θ
−Θ |(ζ(β) − ξ(β))/β| dβ and the assertion

follows.
Q.E.D
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Geometric Construction for Smoothing Lemma; Centered Binomial ( 4 , 0.5 ) Example
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A bounding inequality similar to (21) for densities can be derived from (19). If
H and G have Fourier transforms ξ(β) and ζ(β) and derivatives h and g, then from
(19),

|h(x) − g(x)| ≤ 1
2π

∫ ∞

−∞
|ξ(β) − ζ(β)| dβ. (25)

The next step is to measure variation between the true cumulant generating
function and the approximation based on its Taylor expansion that will be then
used to generate cumulative distribution function approximations. Henceforth this
result will be known as the Series Theorem.

Theorem 2.5.3: For any complex α and υ, and any l a non-negative integer,
∣∣∣∣∣exp(α) −

l∑
k=0

υk

k!

∣∣∣∣∣ ≤ max(exp(|α|), exp(|υ|))
(
|α − υ| +

∣∣∣∣∣ υl+1

(l + 1)!

∣∣∣∣∣
)

.

Proof: By the triangle inequality,

∣∣∣∣∣exp(α) −
l∑

k=0

υk

k!

∣∣∣∣∣ ≤ |exp(α) − exp(υ)| +

∣∣∣∣∣∣
∞∑

k=l+1

υk

k!

∣∣∣∣∣∣ .
The second term is bounded by

∣∣∣∣∣∣
∞∑

k=l+1

υk

k!

∣∣∣∣∣∣ ≤
∣∣∣∣∣ υl+1

(l + 1)!

∣∣∣∣∣
∞∑

k=0

∣∣∣υk
∣∣∣ (l + 1)!
(k + l + 1)!

≤
∣∣∣∣∣ υl+1

(l + 1)!

∣∣∣∣∣
∞∑

k=0

∣∣∣∣∣υ
k

k!

∣∣∣∣∣ ≤
∣∣∣∣∣ υl+1

(l + 1)!

∣∣∣∣∣max(exp(|υ|), exp(|α|)).

Also, by Taylor’s Theorem, for some θ ∈ (0, 1),

|exp(α) − exp(υ)| = |υ − α| exp(θα + (1 − θ)υ)

≤ |υ − α| max(exp(|α|), exp(|υ|)).

Q.E.D
The following result using Theorem 2.5.3 will be used in the construction of

Edgeworth series.

Corollary 2.5.4: Suppose that ζ(β) is a function Rk → C with g derivatives in
a neighborhood of 0, such that ζ(0) = 1, and let

κs1···sk = (−i)s1+···+sk
d

dβs1

· · · d

dβsg

log(ζ(β))|β=0
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for every vector s ∈ {1, . . . , k}g. Suppose that κjk =
{

1 if j = k
0 otherwise

. Let

ξ(β) = exp(− ‖β‖2 /2)
g−2∑
k=0

⎡
⎣1 +

g∑
j=3

∑
s∈{1,...,k}j

ijκs1···sjβs1 · · ·βsg

nj/2−1j!

⎤
⎦

k

/k!.

Then for every ε > 0, there exists δ > 0 and a constant C such that

∣∣∣exp(n[log(ζ(β/
√

n))]) − ξ(β)
∣∣∣ ≤ exp(− ‖β‖2 /4)

⎡
⎣ε ‖β‖g

ng/2−1 +
Cg−1 ‖β‖3(g−1)

(g − 1)!ng/2−1/2

⎤
⎦ ,

for β ∈ Rk such that ‖β‖ < δ
√

n.

Proof: Set α∗(β) = log(ζ(β)) +
∑

j(βj)2/2, and

υ∗(β) =
g∑

j=3

∑
s∈S(j)

ijκs1···skβs1 · · ·βsk
/j!.

Set α(β) = nα∗(β/
√

n), and υ(β) = nυ∗(β/
√

n). Then α(β) − υ(β) has g contin-
uous derivatives at 0 and all are 0. Hence there exists δ > 0 such that if ‖β‖ < δ
then

|α∗(β) − υ∗(β)| < ε ‖β‖g , (26)

and if ‖β‖ <
√

nδ then α(β) − υ(β) < ε ‖β‖g n1−g/2. Furthermore require that
‖β‖ < δ imply that

∣∣∣ζ(β) +
∑

j β2
j /2

∣∣∣ < ‖β‖2 /4; hence ‖β‖ < δ
√

n implies that

|α(β)| =

∣∣∣∣∣∣nζ(β/
√

n) +
∑
j

β2
j /2

∣∣∣∣∣∣ < ‖β‖2 /4.

Also, since the first two derivatives of υ∗(γ) at zero are 0, and third derivative of
υ∗(γ) is bounded on {γ| ‖γ‖ < δ}, then ‖β‖ < δ

√
n implies that

υ(β) = nυ∗(β/
√

n) < C ‖β‖3 /
√

n

for
C = sup

‖γ‖≤δ,i,j,k∈{1,k}
k
3
∣∣∣υ∗ijk(γ)

∣∣∣ . (27)

The result follows from Theorem 2.5.3.
Q.E.D

Corollary 2.5.4 is generally applied with ζ the characteristic function of a pos-
sibly multivariate distribution. The coefficients κ with superscripts correspond to
the cumulants of the associated distribution.

Lemma 2.3.1 represented a result on a topic similar to that of Lemma 2.5.3.
Lemma 2.3.1 bounded the difference between the exponential of a real number and
its Taylor expansion, while Lemma 2.5.3 bounds the difference between the exponen-
tial of a general complex number and the value of its Taylor expansion evaluated



2.6. The Berry–Esseen Theorem 25

at a neighboring complex number. Hence Lemma 2.3.1 requires more restrictive
conditions, and in return avoids the absolute values applied to the argument of the
exponential in the bound of Lemma 2.5.3.

2.6. The Berry–Esseen Theorem

Before proceeding to cumulative distribution function approximations representing
refinements of the normal approximation, we assess the error incurred when using
the normal approximation. Here of interest is not just the asymptotic order of the
error, but actual numeric bounds on the error. Theorems addressing this question
are generally known as Berry–Esseen theorems.

Theorem 2.6.1: Let {Yn} be a sequence of independent and identically distributed
random variables with zero mean and unit variance. Let Z =

∑n
j=1 Yj/

√
n, and

FZ(z) = P [Z ≤ z]. Suppose further that ρ = E
[
|Y1|3

]
< ∞. Then |FZ − Φ| ≤

Cρ/
√

n, where C is a constant independent of the distributions of the variables Yn

whose value can be taken to be 3.

Proof: This theorem will be proved by using the Smoothing Theorem. Use the
series expansion techniques introduced earlier to bound the characteristic function
as |ζ(β)| ≤ 1 − β2/2 + |β|3 ρ/6 if β2/2 ≤ 1. The integrand is bounded over finite
regions. The boundary of the finite region, Θ, is chosen to balance the contributions
from the two terms in (24). Choose Θ = (4/3)

√
n/ρ. Since E [|Z2|]3/2 ≤ E

[
|Z|3

]
by

Jensen’s inequality, ρ > 1 and Θ ≤ (4/3)
√

n <
√

2n. Hence the theorem is trivially
true for n < 10. Using the Smoothing Theorem,

π |FZ − Φ| ≤
∫ Θ

−Θ

∣∣∣ζn(β/
√

n) − exp(−β2/2)
∣∣∣ / |β| dβ + 24 max(|φ|)/Θ, (28)

where max(|φ|) = 1/
√

2π ≤ 2/5. (This corresponds to a lower bound on π of
25/8 = 3.125.) Using Lemma 2.3.1, for l an integer and z real,∣∣∣∣∣∣eiz −

l∑
j=0

(iz)j/j!

∣∣∣∣∣∣ ≤ min(|z|l+1 /(l + 1)!, 2 |z|l /l!);

hence |ζ(β) − 1 + β2/2| ≤ |β|3 ρ/6 ∀β ∈ C, yielding, after rescaling, |ζ(β/
√

n)−1−
β2/(2n)| ≤ |β|3 ρn−3/2/6 and |ζ(β/

√
n)| ≤ 1 − β2/(2n) + |β|3 ρ/(6n3/2) if |β| ≤ Θ.

Hence ∣∣∣ζ(β/
√

n)
∣∣∣ ≤ 1 − β2/(2n) − |β|2 4/(3 × 6n)

= 1 − 5/(18n)β2 ≤ exp((−5/18n)β2) if |β| ≤ Θ

and ∣∣∣ζ(β/
√

n)
∣∣∣n−1

= exp((−5(n − 1)/18n)β2) if n ≥ 10

≤ exp(−β2/4).
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For α and υ complex, with |α| ≥ |υ|,

|αn − υn|= |α − υ|
∣∣∣∣∣∣
n−1∑
j=0

αjυn−1−j

∣∣∣∣∣∣≤|α − υ|
n−1∑
j=0

∣∣∣αj
∣∣∣∣∣∣υn−1−j

∣∣∣ = |α − υ|n |α|n−1 .

Hence the integrand in (28) is bounded by |ζ(β/
√

n) − exp(−β2/2n)| exp(−β2/4)×
n |β|−1 , and

∣∣∣ζ(β/
√

n) − exp(−β2/2n)
∣∣∣≤∣∣∣ζ(β/

√
n)−1+β2/(2n)

∣∣∣+∣∣∣1−β2/(2n)−exp(−β2/(2n))
∣∣∣

≤ |β|3 ρ/(6
√

n) + |β|4 /(8n)

Hence the integrand is bounded by

n

(
|β|2 ρ

6
√

n
+

|β|3

8n

)
exp(−β2/4)(4/3

√
n)/Θ ≤

(2
9
β2 +

1
18

|β|3
)

exp(−β2/4)/Θ.

This can be integrated using integration by parts over (−Θ, Θ) to show

πΘ |FZ(z) − Φ(z)| ≤ (8/9)
√

π + 8/9 + 10 < 4π

Hence the theorem holds with C = 3.
Q.E.D

The bound C is constructed rather crudely. It may be replaced by Esseen’s
original bound, 7.59, Esseen’s unpublished bound, 2.9, or Wallace’s unpublished
bound 2.05.

Esseen (1956) showed by constructing a binomial counterexample that C must
be greater than (3 +

√
10)/(6

√
2π) ≈ .40.

The constant C is required to hold for all distributions F and all sample sizes
n. If uniformity is required only over all F as n → ∞ then C may be replaced
by a lower value. Beek (1972) shows that C = 0.7975 fulfills these less stringent
requirements.
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2.7. Inversion of Characteristic Functions for Lattice Variables

Now consider inversion integrals for lattice distributions. Suppose that X is a
random variable taking values on the lattice {a + ∆Z}. Assume further, without
loss of generality, that a = 0 and ∆ = 1. The limiting operation (17) can be
taken along any sequence of Θ going to infinity. Taking the limit along Θ that are
integer multiples of 2π plus π will simplify the calculations of this section. Choose
x ∈ {a + ∆Z}.

P [X = x] = lim
Θ→∞

1
2π

∫ Θ

−Θ

exp(−iβ(x − 1
2)) − exp(−iβ(x + 1

2))
iβ

ζ(β) dβ.

= lim
Θ→∞

1
2π

∫ Θ

−Θ
exp(−iβx)

exp(1
2iβ) − exp(−1

2iβ)
iβ

ζ(β) dβ.

= lim
Θ→∞

1
2π

∫ Θ

−Θ

exp(−iβx) sinh(iβ/2)
iβ/2

ζ(β) dβ.

The same integral is involved in the inversion here as was involved in (19), with
the introduction of sinh(iu/2)/(u/2). Generation of an asymptotic approximation
to this integral will differ, however, because in the lattice case the tails of ζ do not
die out. We need to express this as an integral over one period of ζ. The correct
expression will be shown to be

P [X = x] =
1
2π

∫ π

−π
exp(−iβx)ζ(β) dβ. (29)

This can be derived by working backwards. First, substitute in the definition of the
characteristic function:

1
2π

∫ π

−π
exp(−iβx)ζ(β) dβ =

1
2π

∫ π

−π

∞∑
j=−∞

P [X = x + j] exp(iβ(x + j) − iβx) dβ.

Now, separate out the term with zero multiplying iβ in the exponential from the
other terms, and note that each of these other terms integrates to zero:

1
2π

∫ π

−π
exp(−iβx)ζ(β) dβ =

1
2π

∫ π

−π

⎡
⎣P [X = x] +

∑
j �=0

P [X = x + j] exp(iβj)

⎤
⎦ dβ

=
1
2π

∫ π

−π
P [X = x] dβ = P [X = x]

or by proceeding from (17), and noting that characteristic function has period 2π.
This periodicity allows the limit of the integral from −Θ to Θ to be transformed
into an integral over (−π, π] of an infinite sum. This infinite sum is then shown to
equal the integrand in (29).
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Of more interest are inversion integrals for tail probabilities. For x0, x ∈ Z,

P [x0 > X ≥ x] =
x0−1∑
y=x

1
2π

∫ π

−π
ζ(β) exp(−iβy) dβ

=
1
2π

∫ π

−π
ζ(β)

x0−1∑
y=x

exp(−iβy) dβ

=
1
2π

∫ π

−π
ζ(β)

exp(−iβx) − exp(−iβx0)
1 − exp(−iβ)

dβ. (30)

Letting x0 → ∞,

P [X ≥ x] =
1
2π

∫ π

−π
ζ(β)

exp(−iβ(x − 1
2))

2 sinh(iβ/2)
dβ

=
1
2π

∫ π

−π
ζ(β)

exp(−iβ(x − 1
2))

β

β/2
sinh(iβ/2)

dβ. (31)

Unfortunately the result (31) is not strictly correct, since it assumes that exp(−iβx0)
converges to zero uniformly as x0 → ∞. In a later chapter on saddlepoint cumulative
distribution function approximations attention will be restricted to cases in which
ζ(β) exists for complex β in a neighborhood of 0, and the above manipulations
will be justified by deforming the path of integration to make the real part of the
argument of the exponential function in exp(−iβx0) negative. In general (30) is
true, and will be used to develop Edgeworth series expansions for lattice random
variable cumulative distribution functions.

These equations are easily extended to cases with general positive ∆ and general
a. If X has characteristic function ζ and is confined to the lattice {a + ∆Z} then
X∗ = (X − a)/∆ has characteristic function ζ(β/∆) exp(−iβa/∆) and satisfies the
requirements for applying (29), (30), and (31). Hence

P [X = x] =
1
2π

∫ π

−π
exp(−iβ(x/∆ − a/∆))ζ(β/∆) exp(−iβa/∆) dβ

=
1
2π

∫ π/∆

−π/∆
exp(−iβx)ζ(β)∆ dβ. (32)

Summing (32), interchanging the order of summation and integration, and using
the standard formula for the sum of a geometric series,

P [x0 > X ≥ x] =
1
2π

∫ π/∆

−π/∆
ζ(β)

exp(−iβx) − exp(−iβx0)
1 − exp(−i∆β)

∆ dβ (33)

These inversion integrals will be used to generate Edgeworth and saddlepoint series
for lattice distributions in later chapters.
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2.8. Exercises

1. Justify (15) by showing that if f0(β) is a function with n derivatives on an
interval containing 0, and fk(β) is defined recursively by fk(β) = (fk−1(β) −
fk−1(−β))/(2β) then the derivative of order n of f0 at 0 is limβ→0 fn(β). Con-
sider using L’Hospital’s Rule (See Rudin (1976), p. 109 and exercises.) Apply
this to the function f0(β) = E [exp(iyβ)], noting that the resulting fk(β) =
E [gk(β, y)], to demonstrate Lemma 2.3.4.

2. Consider a random variable X taking values on the set of non-zero integers,
assigning to the integer j, whether positive or negative, the probability c/j2.
(Hint: This problem can most easily be done using Fourier series methods;
Rudin (1976) on page 191 outlines an approach.)
a. What is the value of c?
b. Show that E [|X|] = ∞, and hence that E [X] does not exist, even though

the distribution is symmetric about zero.
c. Calculate ζX(β), and discuss its derivative at zero.

3. Show that the function defined in (23) is actually the characteristic function
associated with the density in (22).

4. Show that the density determined in (19) is continuous.
5. Verify that the characteristic function for the Cauchy distribution is as given in

(13), possibly making use of the inversion theorem. The right hand side of (13)
is the density of the double exponential distribution rescaled and evaluated at
β.

6. Prove that the quantity R defined in (11) is actually the radius of convergence
of the power series representation of the moment generating function MX(β).

7. Calculate the characteristic function for the following distributions. Calculate
the radius of convergence for the series expansion about the origin, if it exists,
and if it doesn’t exist explain why.
a. The exponential distribution.
b. The logistic distribution, with the cumulative distribution function given by

(1 + exp(−x))−1. (Hint: You may have to use tabulated definite integral
values to do this. The answer is (iπβ)/ sin(iπβ) for β ∈ (−1, 1).)

8. Let U be a random variable uniform on (−1
2 ,

1
2).

a. Show that the cumulant generating function for U is log(sinh(1
2β)/(1

2β)),
where

sinh(x) = 1
2(exp(x) − exp(−x)).

b. Show that K′(β) = −1/β + 1
2 + (exp(β) − 1)−1.

c. Let Bk be the coefficients in the power series expansion

β/(exp(β) − 1) =
∞∑

k=0

Bkβ
k/k!. (34)
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These constants are known as the Bernoulli numbers (Haynsworth and Gold-
berg (1965), p. 804). Show that (exp(β) − 1)−1 − 1/β =

∑∞
k=1 Bkβ

k−1/k!,
and hence that K(β) = 1

2β +
∑∞

k=1 Bkβ
k/(kk!). Show that the cumulant of

order k is Bk/k.
9. Give the moments for the standard lognormal distribution (ie., Y = exp(X),

X standard normal). Comment on convergence properties of the formal power
series associated with the characteristic function. Comment on the possibility
that there exists another distribution with these same moments.

10. Define the inverse Gaussian distribution to have a density proportional to

x−3/2 exp(−1
2(ξ/x + ψx))

for positive x. The parameters ξ and ψ are also both positive.
a. Show that the normalizing constant is exp(

√
ψ ξ)

√
ξ/(2π).

b. Show that the cumulant generating function for this distribution is√
ψ ξ −

√
(ψ − 2β) ξ.

What is the functional inverse of this function? Justify the name inverse
Gaussian.
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Edgeworth Series

The accuracy of the normal approximation was assessed in §2. The normal ap-
proximation was motivated by treating the log of the characteristic function as
approximately quadratic and inverting this quadratic approximation. Deviations
from this normal approximation were measured by the third derivative of the char-
acteristic function at 0. This chapter considers higher-order approximations to
cumulative distribution functions and densities. Not surprisingly, these can also be
expressed as approximate inversions of the characteristic function. Two heuristic
motivations for the Edgeworth series are presented. Their correctness for densities
and distribution functions is demonstrated using the methods of the previous chap-
ter. Regularity conditions are investigated and discussed. Examples are given. The
standards for assessment of accuracy of these methods are discussed and criticized.
The Edgeworth series is inverted to yield the Cornish–Fisher expansion. Extensions
of results from the standard application of means of independent and identically dis-
tributed continuous random variables to non-identically distributed and lattice cases
are presented. Parallels in the lattice case with classical Sheppard’s corrections are
developed.

Heuristically, if Z =
∑n

j=1 Yj/
√

n is the standardized sum of n independent and
identically distributed unit variance zero mean random variables Y1, . . . , Yn, then
its characteristic function is

exp(−β2/2 +
∞∑

j=3
κn

j (iβ)j/j!), (35)

where κn
j is the cumulant of Z of order j, with κn

j = n(2−j)/2κj. The Central Limit
Theorem in its most basic form, and the Edgeworth series defined below, rely on the
heuristic notion of approximating the distribution of Z by truncating the infinite
sum in the exponent above, approximating the quantity exp(

∑j
j=3 κn

j (iβ)j/j!) as a
polynomial p(β), and calculating that approximate cumulative distribution function
whose Fourier transform is approximately exp(−β2/2)p(β). The result is approx-
imately a cumulative distribution function; it need not be monotonic, nor need it
take values in [0, 1]. Whether this matters will be discussed below.

31
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After presenting heuristic arguments indicating what the expansion should be,
careful attention is paid to quantify both the error incurred in truncating (35) to
exp(−β2/2)p(β), and then to the way in which this translates to error in the Fourier
inversion. This yields a rigorous proof that the order of error in the resulting
Edgeworth series is what the heuristic arguments indicate.

Applications considered in this chapter derive primarily from the Edgeworth
series to the cumulative distribution function; these are presented in §§3.12f and in
the exercises.

3.1. Heuristic Development

Formally, the Edgeworth series approximation to a density fX is constructed as
a modification of a baseline density fY . The following formal construction is due
to Davis (1976). Let X and Y be two random variables, such that Y has density
fY , and X has density fX . Suppose further that X and Y can be constructed on a
common probability space, such that Z = X−Y is independent of Y . Conditionally
on Z = z, X has density fY (x − z), and expanding fY as a power series about
x, fY (x − z) =

∑∞
j=0 f

(j)
Y (x)(−z)j/j!. Hence the unconditional density of X is

fX(x) =
∑∞

j=0 f
(j)
Y (x)(−1)jµ∗

j/j!, where µ∗
j are the moments of Z, again assuming

that such a construction is possible. Writing

hj(x) = (−1)jf
(j)
Y (x)/fY (x), (36)

we observe that
f(x) = fY (x)

∞∑
j=0

hj(x)µ∗
j/j!. (37)

The “moments” µ∗
j are the moments of whatever distribution is necessary to add

to Y to get X. The cumulant of order j associated with these moments is the
cumulant of order j associated with X minus the corresponding cumulant for Y ,
since Y + Z = X and Z is independent of Y . The functions hi are ratios of the
derivatives of the baseline density to the density itself. In the case a normal baseline
these are polynomials.

The problem with this construction is that in general the random variable Z
described above cannot be constructed. For instance, if fY is the normal density
with the same mean and variance as the density fX to be approximated, the variance
of the variable Z is necessarily zero; hence all cumulants of Z must be zero.

3.2. A Less Untrue but Still Heuristic Development

McCullagh (1987), Chapter 5, presents an alternative heuristic construction of the
Edgeworth series. Suppose that fY and fX have moment generating functions
MY (β) and MX(β). Express their ratio as a power series in β:

MX(β) = MY (β)
∞∑

j=0
βjµ∗

j/j!;
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this equation defines the coefficients µ∗
j . The inverse Laplace transform will now be

applied term-wise to this sum to obtain an approximation to fX .
The equation defining the coefficients µ∗

j can be expressed as

log

⎛
⎝ ∞∑

j=0
βjµ∗

j/j!

⎞
⎠ = KX(β) − KY (β), (38)

where KX and KY are cumulant generating functions associated with fX and fY

respectively. Heuristically, µ∗
j are the moments that would be associated with the

distribution whose cumulants κ∗
j are the difference between the cumulants of fX

and fY ; rigorously they are the coefficients of the formal power series obtained
when the power series defined by exp(z) is composed with the power series whose
coefficients are the cumulant differences. Since these cumulant differences need not
be the cumulants of any distribution, following McCullagh (1987), Chapter 5 we call
these pseudo-cumulants and we call the coefficients µ∗

j pseudo-moments. In general
these pseudo-moments will not be the moments of any real random variable; µ∗

2 will
generally be zero, and in some applications it may be negative.

By the definition of MY (β) the first term in the inversion is fY (x), and
∫ ∞

−∞
exp(βx)

dfY

dx
dx = exp(xβ)fY (x)|∞−∞ − β

∫ ∞

−∞
exp(xβ)fY (x) dx = −βMY (β),

where f
(j)
Y (x) represents the derivative of order j of fY (x) with respect to x. This

calculation is predicated on the assumption that limx→±∞ exp(xβ)fY (x) = 0 for all
β in the domain of MY . Weak assumptions, such as uniform continuity of fY , will
insure this. Similarly∫ ∞

−∞
exp(βx)f (j)

Y (x) dx = βj(−1)jMY (β). (39)

Applying the inverse Laplace transform, in Corollary 2.4.3,

f
(j)
Y (x) =

1
2πi

∫ +i∞

−i∞
exp(−xβ)βj(−1)jMY (β) dβ. (40)

Hence at least formally, fX(x) can be expressed as

∞∑
j=0

f
(j)
Y (x)(−1)jµ∗

j/j! =
∞∑

j=0
hj(x)µ∗

j/j!. (41)

Then (37), where hj(x) is given in (36), will be used as a formal expansion for fX(x).
The density approximation (37) gives rise to a cumulative distribution function

approximation that is calculated very easily. Suppose FY is the cumulative distri-
bution function associated with fY . As will be argued later, the coefficient of the
leading term in (37), µ∗

0, is 0. Integrating (37) term-wise we obtain the formal series
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approximation to F (x),

FY (x) +
∞∑

j=1
f

(j−1)
Y (x)(−1)jµ∗

j/j! = FY (x) − fY (x)
∞∑

j=1
hj−1(x)µ∗

j/j!. (42)

Here the first term arises from integrating the the density fY (x) by itself. Other
terms arise from lowering the order of the derivatives involved by one. Since the
order of derivatives changes but the power of (−1) does not, when expressing the in-
tegrated approximation in terms of the functions hj to obtain (42) the sign changes,
explaining the subtraction rather than addition of the terms of order one and higher.

Note that (41) and (42) were formed from the relationship (39), which holds only
when M0(β) exists for some β 	= 0. For the sake of completeness, the counterpart
of (39) in terms of characteristic functions, which holds generally, is∫ ∞

−∞
exp(iβz)fk

0 (z) dz = (−iβ)kζ0(β), (43)

where ζ0 is the characteristic function of f0, and fk
0 represents the derivative of

order k of f0.

3.3. Choice of Baseline

Typically the target distribution depends on some parameter like sample size; here
we denote this by n. The resulting moments and cumulants for the target density
will also depend on n; when necessary denote the dependence by a superscript
n. Although (37) is expressed in terms of pseudo-moments, it is often easier to
think of it with the pseudo-moments expressed in terms of the pseudo-cumulants,
since the pseudo-cumulants are more directly calculated from the target and baseline
distributions, and since the dependence of the pseudo-cumulants on n is simpler. As
above, in the case of standardized sums of independent and identically distributed
random variables, κn

l = κ1
l n

1−l/2. These series expansion methods are also often
used in the case of sums of non-independent and identically distributed random
variables if κn

l = O(n1−l/2). Note especially that κn
1 increases rather than decreases

as n → ∞. Often the terms in the resulting series can be divided into those that
do not decrease as n gets large, and those which get small as n gets large. In the
cases when κn

l = O(n1−l/2), an approximating distribution which matches the first
and second cumulants of the target distribution makes zero all terms involved in the
pseudo-moments, and hence involved in (37), to vanish as n → ∞. When viewing
these methods as extensions of the Central Limit Theorem, it is natural to use the
approximating normal density as the baseline. This works well as long as κn

j = o(1)
for j ≥ 3. When the baseline distribution is Gaussian, the series (37), truncated
after a chosen number of terms, is called the Gram–Charlier series. Expansions
based on other than the normal distribution are rare. On occasions expansions
based on the χ2 distribution are used.
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3.4. Calculation of Hermite Polynomials and Pseudo-moments

When the approximating normal baseline function is used, the functions hj defined
in (36) and used in (37) are

hj(x) = (−1)j

[
dj

dxj
exp(−x2/2)

]
/ exp(−x2/2).

These are called Hermite polynomials. The first few are tabulated in Table 2.

Table 2: The First Six Standard Hermite Polynomials

h1(x) =x h3(x) =x3 − 3x h5(x) =x5 − 10x3 + 15x
h2(x) =x2 − 1 h4(x) =x4 − 6x2 + 3 h6(x) =x6 − 15x4 + 45x2 − 15

Note the similarity between these equations and the equations for moments in
terms of cumulants from Table 1. If in Table 1, x is substituted for κ1 and −1 is
substituted for κ2, and zero is substituted for all other cumulants, the quantities µj

are the Hermite polynomials. Recall that the moments are coefficients in the formal
power series exp(

∑∞
j=1 κjβ

j/j!); McCullagh (1987) exhibits the functions hj(x) as
coefficients in the formal power series exp(βx − β2/2). This relationship extends to
the case of a normal baseline with non-zero mean or non-unit variance, and to the
multivariate case as well.

The pseudo-moments are easily calculated from the underlying baseline cumu-
lants λj and target cumulants κj. One begins by taking the difference κj − λj

between respective cumulants. The cumulant to moment conversion formulas in re-
verse yield expressions for the pseudo-moments µ∗

j as a sum of products of the third
and higher order cumulants of the target distribution. That is, the pseudo-moments
µ∗

j satisfy the series equation

exp(
∞∑

j=1
(κj − λj)βj/j!) =

∞∑
j=1

µ∗
jβ

j/j!. (44)

These are the same as those µ∗
j given previously in (38), when the approximating

distribution is Gaussian, with mean and variance matching the target distribution.
The leading term in both cumulant generating function series expansions are zero;
the pseudo-cumulant of order zero is then always zero and the leading term in the
exponentiated series, µ∗

0, is always 1. When a normal baseline distribution is used
the first two pseudo-cumulants are generally zero and the rest are the unmodified
corresponding cumulants of the target distribution. If κj is of size O(n(2−j)/2), the
various terms in the pseudo-moments can be sorted according to their order in n.
These are given in Table 3.



36 3. Edgeworth Series

Table 3: Pseudomoments as a Function of Cumulants

Order in n

O(n−1/2) O(n−1) O(n−3/2) O(n−2) O(n−5/2) O(n−3) O(n−7/2)

µ∗
3 = κ3

µ∗
4 = κ4

µ∗
5 = κ5

µ∗
6 = 10κ2

3 κ6

µ∗
7 = 35κ4κ3 κ7

µ∗
8 = 35κ2

4+
56κ5κ3

κ8

µ∗
9 = 280κ3

3
84κ6κ3+
126κ5κ4

κ9

3.5. The Expansion Theorem

This section contains a statement of the Edgeworth series theorem for distribution
functions and densities of standardized sums. For the present, we may restrict
attention to the case in which µ = 0 and σ = 1. Proofs will follow in the next three
sections.

The formal Edgeworth expansion (37) is generally truncated to a finite number
of terms, by using only the first j cumulants. When the cumulant of order j is
of size O(n(2−j)/2) for j ≤ j, then the resulting error is of size at least O(n(1−j)/2).
This error is at least as large of some of the contributions to the pseudomoments,
as noted in §3.3. For example, if j = 4, then pseudomoments through order 6 are
required to capture all of the terms of size O(1/n). However, µ∗

6 includes the term
κn

6 , which is of size O(1/n2), when it exists. The Edgeworth series does not include
the term with h6(x)κn

6 .
More generally, let µ∗

j,j be those terms in µ∗
j that are not o(n(2−j)/2). These are

the sums across the rows in Table 3, of items in columns 1 through j − 1. Applying
this truncation to (37) and (42), with the baseline distribution taken to be the
standard Gaussian distribution, we obtain the Edgeworth density and cumulative
distribution function approximations are respectively

ej(x; κn) = φ(x)
j∑

j=0
hj(x)µ∗

j,j/j!, Ej(x; κn) = Φ(x) − φ(x)
j∑

j=1
hj−1(x)µ∗

j,j/j!. (45)

Recall again that µ∗
0,j = 1, µ∗

1,j = 0, and µ∗
2,j = 0.

This notation Ej(z,κn) and ej(z,κn) is chosen to reflect the fact that the Edge-
worth approximation depends on n only through the cumulants of the target dis-
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tribution.
After substituting in the expressions for pseudo-moments in terms of pseudo-

cumulants, and collecting terms according to their power in n, we find

Ej(z,κn) = Φ(z) − φ(z)[κn
3h2(z)/6 + (κn

4h3(z)/24 + 10κn
3
2h5(z)/720)

+ (κn
5h4(z)/120 + 35κn

3κ
n
4h6(z)/5040 + 280κn

3
3h8(z)/362880) + · · ·]

and

ej(z,κn) = φ(z)[1 + κn
3h3(z)/6 + (κn

4h4(z)/24 + 10κn
3
2h6(z)/720)

+ (κn
5h5(z)/120 + 35κn

3κ
n
4h7(z)/5040 + 280κn

3
3h9(z)/362880) + · · ·].

The above definition of Ej(z,κn) is appropriate only when the first two cumu-
lants of the summands are 0 and 1 respectively, forcing κn

1 = 0 and κn
2 = 1 for all

n. For general cumulants κ, calculate the invariants ρ as in §2.1, and define

Ej(z,κn) = Ej((z − κn
1 )/

√
κn

2 , ρ
n). (46)

When Z is the sum of n independent and identically distributed summands, each
with cumulants κY,j, divided by

√
n, then κn

1 =
√

nκY,1 and κn
2 = κY,2. As we shall

see later, however, (46) is applicable in cases when the cumulants of Z depend on
n in a more complicated way.

Theorem 3.5.1: Suppose Yj are independent and identically distributed random
variables, with mean 0 and variance 1, and that j is an integer greater than or equal
to two, such that Yj has a cumulant of order j. When j > 2 suppose further that{

|ζ(β)| < 1 ∀β 	= 0 if j = 3, or
lim sup|β|→∞ |ζ(β)| < 1 if j > 3. (47)

Let Z =
∑n

j=1 Yj/
√

n, and let FZ be the cumulative distribution function for Z.
Let κn be the set of cumulants of Z. When Ej(z,κn), as in (45), is used to ap-
proximate FZ, the absolute error is uniformly of order o(n1−j/2). If, furthermore,∫∞
−∞ |ζ(β)|r dβ < ∞ for some r ≥ 1, then the density fn exists for Z for n ≥ r.

When ej(z,κn), as in (45), is used to approximate fn(z), the absolute error is uni-
formly of order o(n1−j/2).

3.6. Rigorous Construction for Cumulative Distribution Functions

Density approximations created by multiplying the normal density times sums of
multiples of Hermite polynomials have Fourier transforms of the form the normal
characteristic function times a polynomial. In §3.3 a choice for the definition of
the Hermite polynomials and their multipliers was motivated by truncating the
power series that resulted from dividing the characteristic function to be inverted
by the approximating normal characteristic function after a fixed number of terms,
and inverting the Fourier transform term-wise. In §3.4 these Hermite polynomials
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and coefficients were calculated. The error incurred by this series truncation is
measured by (25) and (24). Use of these inequalities requires bounding the difference
between the true and approximating characteristic functions. In §2.5, Corollary
2.5.4 bounded the portion of the integrals in (25) and (24) near the origin.

The following exposition is based on Chapter XVI of Feller (1971). It makes
rigorous the arguments of §3.2, with the characteristic function substituted in
place of the moment generating function. Define the approximation E∗

j (x, κn)
to be that function having the Fourier transform ξn of Corollary 2.5.4. Then
E∗

j (x, κn) = Ej(x, κn) + o(n1−j/2). Since the cumulative distribution functions can
be recovered from their characteristic functions using (17), using the smoothing
lemma the difference between FZ and E∗

j (x, κn) can be bounded by the principal
value of the integral

1
2π

∫ ∞

−∞

2
|β| |ζn(β) − ξn(β)| dβ, (48)

defined to be
lim

Θ→∞

1
2π

∫ Θ

−Θ

2
|β| |ζn(β) − ξn(β)| dβ.

Because the integral (48) is derived from (17), which need not converge absolutely,
this argument will proceed indirectly.

Three ideas go into this proof, the Smoothing Theorem, the Series Theorem, and
a fact about what kind of functions have Fourier transforms looking like polynomials
times the normal characteristic function. The Smoothing Theorem is used to convert
the possibly non-absolutely convergent integral (48) to an integral over a finite range,
to which can be applied a wider range of integral approximation techniques. The
Series Theorem is a really key idea here, since it allows truncation from the infinite
series to a finite sum.

The approximation Ej(x, κn) defined earlier is then formed by discarding terms
of size o(n1−j/2). For example, if j = 4, then E∗

j (x, κn) contains a term involving
κn

4
2, and this term is omitted from Ej(x, κn). I need to prove that for any ε > 0,

there exists N(ε) > 0 such that |Ej(x, κn) − FZ(x)| ≤ εn1−j/2 whenever n > N(ε).
Apply the Smoothing Theorem with the target cumulative distribution function

FZ in place of H, and the cumulative distribution function approximation repre-
sented by E∗

j (x, κn) in place of G. The integral (48) heuristically representing error
has three ranges. The areas far out in the tails, the area very close to the origin,
and the area in between will all be handled separately. Apply Corollary 2.5.4, with
g = j, to determine δ such that the integrand is bounded by

exp(−β2/4)

⎡
⎣ ε |β|j

nj/2−1 +
Cj−1 |β|3(j−1)

(j − 1)!nj/2−1/2

⎤
⎦ 1

|β| (49)

for β such that |β| < δ
√

n.
a. Far in the tails (|β| > Θ) the contribution of the error in approximating the

inversion integral is accounted for by the remainder term in the Smoothing
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Theorem, Theorem 2.5.2. A bound on the error in inversion begins by choosing
Θ large enough to make this remainder term small enough. Take Θ in the
Smoothing Theorem to be nj/2−1/(πε). Then the final term in (24), representing
the contribution in the tails of (48), is

24 sup
x∈R

|ej(x, κn)| εn1−j/2. (50)

b. Near the origin (|β| < δ
√

n), the contribution to the integral of this region is
bounded by the integral of (49) over R. This integral is

n1−j/2[ε2j/2µj−1 + 23j/2−1µ3j−2C
j−1/(

√
n(j − 1)!)], (51)

for µj the absolute moment of order j for the standard normal distribution. ε

was arbitrary, shows that this contribution is of order o(n1−j/2).
c. For intermediate values of β (β ∈ ±[δ

√
n, Θ]), regularity conditions (47) on the

characteristic function are used to bound the integrand. In the case where j = 3
the weaker condition suffices, since Θ is proportional to

√
n and hence the set

of β/
√

n such that |β| ∈ [δ
√

n, Θ] is fixed as n varies. The contribution of this
part of the range of integration is bounded by the bound on the integrand, times
the length of the range of integration, which is bounded. When j > 3 then Θ
increases faster than

√
n and the stronger condition in (47) is necessary. In any

event, the contribution to the integral (48) in this region is bounded by 2qnC†Θ
and approaches 0 geometrically, at a rate that does not depend on ε.

Q.E.D

3.7. Rigorous Construction for Density Functions

The following proof is almost identical to the last. Since the cumulative distribu-
tion functions can be recovered from their characteristic functions using (19), the
difference between fZ(z) and ej(z,κn) can be bounded by the integral

1
2π

∫ ∞

−∞
2 |ζn(β) − ξn(β)| dβ, (52)

where ξn is the characteristic function associated with the approximate distribution
function ej(z,κn). Because the integral (52) converges absolutely, this argument
will not need the Smoothing Theorem. The Series Theorem is still a key idea here.

The integral (52) representing error is the same as (48) of the previous proof,
except that the factor of |β|−1 is gone. The range of integration will now be split
in two parts. The area very close to the origin, and the area farther out will be
handled separately.
a. Very near the origin (|β| < δ

√
n for δ determined as before), exactly the same

arguments, with the same value of δ, imply that the integrand is bounded by

exp(−β2/4)
[
n1−j/2ε |β|j + n1/2−j/2Cj−1 |β|3(j−1)/(j − 1)!

]
,
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for β such that |β| < δ
√

n. This is exactly the same bound as (49), except that
the factor of |β|−1 is gone, since it was missing in (52). When integrated over
(−δ

√
n, δ

√
n) the result is still of order o(n1−j/2).

b. For more extreme values of β (|β| > δ
√

n), the integrability condition on the
cumulant generating function is used to bound the integrand. As will be shown
in the next section, this condition implies the stronger condition in (47). There
exists q < 1 such that if |β| > δ

√
n then |ζ(β/

√
n)| < q. Hence the contribution

of (52) from this part of the range of integration can be bounded by

qn−r
∫ ∞

−∞
|ζ(β)|r dβ +

∫
|β|>δ

√
n
|ξn(β)| dβ,

and approaches 0 geometrically.

3.8. Regularity Conditions

In these proofs an integral involving the characteristic function was bounded by
bounding the integrand near the origin. The regularity conditions were used to
ensure that contributions to the integral in the range of integration far from the
origin are negligible. The regularity conditions needed for various variants of the
approximation theorem are:
1. Distribution functions when j = 2: This results in the Central Limit Theorem.

No regularity conditions, apart from the existence of the mean and variance,
are needed. In the cumulative distribution function proof, T does not depend
on n when j = 2, and hence one can pick n sufficiently large so that parts (a)
and (b) of the range of integration for the error integral cover R; hence part (c)
need not be considered.

2. Distribution functions when j = 3: Here we require |ζ(β)| < 1 ∀β 	= 0. This
suffices for the cumulative distribution function Edgeworth proof, since an upper
bound on |ζ(β)| over the whole line is unnecessary. One need bound it only over
(δ, T ). This requirement is equivalent to requiring the summands have a non-
lattice distribution.

3. Distribution functions when j > 3: Here we require the stronger condition

lim sup
|β|→∞

|ζ(β)| < 1,

since T increases faster than
√

n. This condition is known as Cramér’s condition,
and rules out perverse examples like cumulative distribution functions that do
all of their jumping on a Cantor set, as well as examples where the summands
have probability masses on 0, 1, a where a is irrational. Examples similar to the
latter arise, for instance, in likelihood ratio testing and will be addressed in a
later chapter. Both of these examples are of non-lattice singular distributions.

4. Density functions for all orders: We require that
∫∞
−∞ |ζ(β)r| dβ < ∞ for some

r ≥ 1. This condition is needed for density proofs, since the Smoothing The-
orem is not used to truncate the range of integration for the error integral.
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This condition implies that the distribution has a density at every point on
R. Lemma 2.4.4 shows that the finiteness of the integral of the absolute value
of the characteristic function over R implies the existence of a density, since
the characteristic function of a sum of independent and identically distributed
random variables is the characteristic function of the summands raised to the
power equal to the number of summands. This condition is both necessary and
sufficient for a bounded density to exist for some convolution of the random
variable with itself.
Condition 4 implies condition 3, since condition 4 implies the existence of a

density for Z when n = r, and the existence of this density implies condition 3 by
the Riemann–Lebesgue Theorem:

Theorem 3.8.1: If g is a real function such that
∫∞
−∞ |g(x)| dx < ∞, and if its

Fourier transform is given by ζ(β) =
∫∞
−∞ exp(iβx)g(x) dx, then lim|β|→∞ ζ(β) = 0.

Proof: Choose ε > 0. Since
∫∞
−∞ |g(x)| dx < ∞, there exists a step function

g∗(x) =
∑J

j=1 gjI(aj ,aj+1](x), where I(aj ,aj+1](x) is the function taking the value 1 on
(aj, aj+1] and zero otherwise, such that

∫∞
−∞ |g(x) − g∗(x)| dx < ε. Let ζ∗(β) =∫∞

−∞ exp(iβx)g∗(x) dx. Then

|ζ∗(β) − ζ(β)| ≤
∫ ∞

−∞
|g(x) − g∗(x)| dx < ε.

Since ∫ aj+1

aj

exp(iβx) dx = (exp(iβaj+1) − exp(iβaj))/(iβ),

and |exp(iβaj+1) − exp(iβaj)| ≤ aj+1 − aj, then

|ζ∗(β)| ≤
∑
j

gj(aj+1 − aj)/ |β| =
∫ ∞

−∞
g∗(x) dx/ |β| ,

and hence

ζ(β) < ζ∗(β) + ε ≤
∫ ∞

−∞
g∗(x) dx/ |β| + ε <

∫ ∞

−∞
g(x) dx/ |β| + 2ε

for all ε > 0, and ζ(β) ≤ ∫∞
−∞ g(x) dx/ |β|.

Q.E.D

3.9. Some Examples

The gamma and beta distributions illustrate the behavior of Edgeworth series in
approximating distributions that differ from normal in certain fundamental ways.
These will be displayed in Fig. 3.

A Γ(p, λ) random variable is one with the density

f(x) = λpxp−1 exp(−λx)/Γ(p).



42 3. Edgeworth Series

Its characteristic function is ζ(β) = 1/(1 − iβ/λ)p, and its cumulant generating
function is K(β) = p log(λ) − p log(λ − β). Hence the cumulant of order j is
κj = pΓ(j)/λj, and the convolution of n Γ(p, λ) densities is a Γ(np, λ) density. The
standardized mean has a Γ(np, λ/

√
n) distribution. Note that

∫∞
−∞ |ζ(β)|ν dβ < ∞

if and only if ν > 1/p. This example illustrates the effect of the condition on the
integrability of the characteristic function. Part of the claim of the density approx-
imation theorem then is that the density of the standardized sum of n independent
replicates of such a random variable exists and is continuous for all n > 1/p. In this
example, one can explicitly calculate the density of such sums. Those sums with
n < 1/p have a density that approaches infinity as x → 0, and sums with n = 1/p
have a density discontinuous at zero. Thus, the integrability condition successfully
indicates all sums with a continuous density.

Fig. 3a shows the poor performance of the Edgeworth series using two, three,
and four cumulants when p = 1, yielding the exponential distribution. In this
case the target density is discontinuous at zero. The highest order approximation,
using four cumulants, behaves poorly in the upper tail. Since it involves a higher
order polynomial than the other approximations, oscillations in the tail are more
severe. Near the ordinate 3 this approximation is negative. Fig. 3b shows that
the performance of the Edgeworth series involving the third and fourth cumulants
is much improved for standardized sums of 10 such variables. Distinguishing the
E4(x, κ∗10) approximation from the true density visually is difficult for most of the
range plotted. Figs. 3c and 3d show improved behavior when p = 2.

A B(p, q) random variable is one with the density

f(x) = xp−1(1 − x)q−1/B(p, q)

for x ∈ (0, 1), where B(p, q) is the beta function B(p, q) = Γ(p)Γ(q)/Γ(p + q). Its
moment of order l is Γ(p + l)Γ(p + q)/(Γ(p)Γ(p + q + l)). From these moments the
cumulants can be calculated. Fig. 4 illustrates the behavior of the Edgeworth series
when p = q = 4.

If p = q the distribution is symmetric about 1
2 . Hence the odd cumulants are

zero, and the normal approximation E2(x, κ∗n) and the next order Edgeworth ap-
proximation E3(x, κ∗n) coincide exactly. The Edgeworth approximation E4(x, κ∗n)
involving kurtosis represents a distinct improvement.

Additional examples occur in later sections on Edgeworth approximation for
non-identically distributed and lattice random variables, and in the exercises of this
chapter.

3.10. Relative versus Absolute Error

While absolute error is bounded by our convergence theorem, the relative error,
defined as the ratio of the approximation error to what is being approximated, can
behave very badly. The first term omitted can be expressed as the normal density
approximation times a polynomial, and hence the relative error can usually be
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Calculations for Gamma(1,1)
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Calculations for Gamma(1,2)
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Calculations for Beta(4,4);n=1
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expected to be approximately polynomial. In those cases where the approximation
becomes negative the relative error exceeds 100%.

3.11. The Non-Identically Distributed Case

Chambers (1967) provides an algorithm for constructing Edgeworth series for ran-
dom vectors. He gives conditions for Edgeworth approximation to the density to
hold other than in the independent and identically distributed standardized mean
case using the two conditions:
1. The cumulants are of the same order in n as they are for standardized means;
2. A condition on the size of the integral of the characteristic function in the tails

of the distribution.
When leaving the case of independent and identically distributed summands the

construction of the Edgeworth series from the cumulants of the resulting variable,
rather than from the cumulants of the original summands, becomes important,
since these are either no longer the same across summands, or they cumulate in a
non-standard manner. Regularity conditions are simpler in the case of independent
summands, and are considered below.

As an example, consider the distribution of a least-squares estimate T for the
parameter θ in a simple linear regression model Yj = γ + θzj + Ej, where the errors
Ej are independent and identically distributed with mean zero and j cumulants
λl. Then T =

∑n
j=1(zj − z̄)Yj/

∑n
j=1(zj − z̄)2, and the cumulants κn

l are given by
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∑n
j=1(zj − z̄)lκl/(

∑n
j=1(zj − z̄)2)l. In applications where the ordinates zj do not

vary much the estimator should have a distribution as well approximated by an
Edgeworth series as is the distribution of means of the errors. A theorem of this
section shows that this is true.

When the summands comprising the sum whose distribution is to be approx-
imated by an Edgeworth series do not have equal variances, the reduction to the
case of summands with unit variance cannot be made without loss of generality.
We must then rescale the sum by dividing by its standard deviation, as was done in
(46). This requires that the cumulants be replaced by their invariants, before sub-
tracting off the expectation and variance of the approximating normal distribution
(viz., 0 and 1).

First, a lemma adapted from Bhattacharya and Rao (1976):

Lemma 3.11.1: Suppose Yj are independent random variables, with characteristic
functions ζj(β), means zero and variances σ2

j , and j is an integer greater than or
equal to two, such that for all j, Yj has a cumulant of order j. Let ς2

n = n−1 ∑n
j=1 σ2

j ,
and ω̄n,j = n−1 ∑n

j=1 E
[∣∣∣Y j

j

∣∣∣] ς−j
n . Let ζ be the characteristic function of

∑n
j=1 Yj.

Then there exist K and δ > 0 not depending on the distribution of the summands
such that if |β| ≤ δn1/2−1/jω̄n,j then∣∣∣∣∣∣log(ζ(β/(

√
nςn))) + β2/2 −

n∑
j=1

υj(β/(
√

nςn))

∣∣∣∣∣∣ < Kn1−j/2ω̄n,j |β|j . (53)

Proof: Let υj(β) =
∑j

l=3 κj,l(iβ)l/l!, and let Cj = E
[
|Yj|j

]1/j
. By Jensen’s In-

equality σj ≤ Cj. The argument proceeds by applying Lemma 2.5.3. Note that∣∣∣∣∣∣
n∑

j=1
log(ζj(β/(

√
nςn))) + σ2

j β
2/[2(nς2

j )] − υj(σjβ/(
√

nςn))

∣∣∣∣∣∣ = O(|β|j)

for β < ςnδ, for some δ > 0. Let β∗ = β/(
√

nςn). For every non-zero complex
a and b, |log(a) − log(b)| ≤ |a − b| max(|1/a| , |1/b|). Letting a = ζj(β∗) and b =
exp(−σ2

j β
∗2/2 + υ(β∗)), one needs to establish a neighborhood of zero in which a

and b are bounded away from zero, and one needs to provide a bound on |a − b|. By
(14), with j = 1, |ζj(β∗) − 1| < 2 |β∗|2 σ2

j ≤ 2 |β∗|2 C2
j . Hence for β∗ < 1

2 , |a| > 1
2 .

Also, |b − 1| ≤ exp(p3(|β∗|)) − 1. Hence there exists δ < 1
2 such that |β∗| ≤ δ/Cj

implies |b − 1| ≤ 1
2 and a > 1

2 . The factor |a − b| may be bounded by
∣∣∣∣∣ζj(β∗) −

j∑
l=2

µj,l(iβ∗)l/l!
∣∣∣∣∣ +

∣∣∣∣∣
j∑

l=3

µj,l(iβ∗)l/l! − exp
(

j∑
l=3

κj,l(iβ∗)l/l!
)∣∣∣∣∣ .

The first term above can be bounded by (14), to yield a bound of 2 |β∗|j Cj
j/j!. The

second term has a bound of the form |β∗|j Cj
j exp(p1(Cj |β∗|))p2(|Cjβ

∗|), with p1 and
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p2 polynomials not depending on the distributions of summands. Hence there exists
K depending only on p1, p2, and p3, such that if |β| ≤ δ

√
nn−1/j/[n−1 ∑

j(Cj
j/(ς j

n))]1/j

then ∣∣∣∣∣∣log(ζ(β/(
√

nςn))) + β2/2 −
n∑

j=1
υj(β/(

√
nςn))

∣∣∣∣∣∣ < Kn−j/2
n∑

j=1
[Cj

j/ς
j
n] |β|j .

Q.E.D
The quantities The following theorem demonstrating the validity of the Edge-

worth series depends on the bounds on the average standardized moments ω̄n,j. This
condition guarantees that invariant j of the desired distribution is of size no larger
than O(n(2−j)/2), for j ≤ j. Under this condition, the Edgeworth approximation is
valid to the order expected.

Theorem 3.11.2: Suppose Yj are independent random variables, with character-
istic functions ζj(β), means zero and variances σ2

j , and j is an integer greater than
or equal to two, such that for all j, Yj has a cumulant of order j. Assume that ω̄n,j

remains bounded as n increases, and that ς2
n as defined in Lemma 3.11.1 is bounded

away from 0. Further assume that
n∏

j=1
ζj(β) = o(n−a) uniformly for |β| > δ ∀δ, a > 0. (54)

Then the approximation Ej(z,ρn) formed as in (46) by calculating the associated
invariants ρn

j , and omitting terms of size O(n1−j/2), satisfies FZ(z) = Ej(z,κn) +

O(n1−j/2), where FZ is the cumulative distribution function of Z =
∑n

j=1 Yj/
√

nς2
n.

Proof: This proof will parallel the development of §3.6. Bound (53) replaces
(26), and (54) replaces Cramér’s condition. The minimum bound on ς2

n guarantees
that the region near the origin in which the true characteristic function is well–
approximated by the Fourier transform of the Edgeworth series expands at the
correct rate. The rest of the theorem proceeds as before.

Q.E.D
Returning to the example of regression estimators, T has an Edgeworth approx-

imation valid to O(n1−j/2) if

sup
n

n−1
n∑

j=1
(zj − z̄)jκj/(n−1

n∑
j=1

(zj − z̄)2κ2)j/2 < ∞, inf
n

n−1
n∑

j=1
(zj − z̄)2κ2 > 0.

These conditions are trivially true if zj takes on a finite number of values in a
fixed proportion. They are also true with probability one if the regression ordinates
are drawn from a population with a finite moment of order j and the regression is
considered conditional on the observed collection of ordinates, by the strong law of
large numbers.
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3.12. Cornish–Fisher Expansions

Related to the problem of approximating tail areas is the inverse problem of ap-
proximating quantiles of a distribution. Let Z be the standardized sum of n in-
dependent and identically distributed continuous random variables with mean zero
and variance one, and a finite fourth moment. Let FZ be the cumulative distri-
bution function of Z. For each α ∈ (0, 1), there exists at least one solution to
FZ(y) = α. Denote this solution by zn

α. This section provides a series expansion for
zn

α. The result is called the Cornish–Fisher expansion (Cornish and Fisher, 1937,
Barndorff–Nielsen and Cox, 1989).

Let zα = Φ−1(α). Note that the sequence zn
α converges to zα, since otherwise

for any ε > 0 the distribution FZ either assigns probability less than Φ−1(α) to the
interval (−∞, zα + ε], or assigns probability less than 1 − Φ−1(α) to the interval
[zα − ε, ∞), for infinitely many n. This contradicts the central limit theorem.

Applying the Edgeworth cumulative distribution function approximation using
the first four cumulants,

FZ(z) = Φ(z) − φ(z){h2(z)κn
3/6 + h3(z)κn

4/24 + κn2
3 h5(z)/72} + Cn(z)/n

= Φ(z) − φ(z)
{

h2(z)
6

κ3√
n

+
h3(z)
24

κ4

n
+

h5(z)
36

κ2
3

2n

}
+ Cn(z)/n.

Here Cz,n converges to zero uniformly in z, for z in a bounded region. We solve
FZ(zn

α) = α. Expanding in a power series about zα,

FZ(zn
α) − α = φ(zα)

{
− h2(zα)

6
κ3√
n

− h3(zα)
24

κ4

n
− h5(zα)

36
κ2

3

2n
+

(
1 +

h3(zα)
6

κ3√
n

+
h4(zα)

24
κ4

n
+

h6(zα)
36

κ2
3

2n

)
(zn

α − zα)−
(
h1(zα)+

h4(zα)
6

κ3√
n

+
h5(zα)

24
κ4

n
+

h7(zα)
36

κ2
3

2n

)
(zn

α − zα)2

2

}
+O((zn

α−zα)3)+
Cn(zn

α)
n

.

Setting FZ(zn
α) − α equal to 0, and neglecting terms of size o(n−1/2), zn

α − zα =
(κ3/[6

√
n])h2(zα) + o(1/

√
n) = O(1/

√
n). Setting FZ(zn

α) − α to zero and dropping
terms of size o (1/n):

o
( 1

n

)
=

h2(zα)κ3

6
√

n
+

h3(zα)
24

κ4

n
+

h5(zα)
36

κ2
3

2n
−
(

1 +
h3(zα)κ3

6
√

n

)
(zn

α − zα)

+
h1(zα)(zn

α − zα)2

2
.
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Solving for zn
α one finds that

zn
α = zα +

κ3√
n

h2(zα)
6

+
κ4

n

h3(zα)
24

+
κ2

3

2n

(
h5(zα) − 2h3(zα)h2(zα) + h1(zα)h2

2(zα)
36

)
+ o

( 1
n

)

= zα +
κ3√
n

h2(zα)
6

+
κ4

n

h3(zα)
24

− κ2
3

2n
(2z3

α − 5zα)
18

+ o
( 1

n

)
.

For standardized sums of random variables with arbitrary first and second cumu-
lants,

zn
α =

√
nκ1 +

√
κ2

[
zα +

ρZ,3√
n

h2(zα)
6

+
ρZ,4

n

h3(zα)
24

−
ρ2

Z,3

2n
(2z3

α − 5zα)
18

]
+ o(1/n),

where the coefficients ρZ,j are the invariant cumulants of §2.1. If the summands have
a fifth cumulant, o(1/n) may be replaced by O(n−3/2), since an additional term in
the series might be constructed. Let C2, C3, and C4 represent zn

α with terms of size
o(1), o(1/

√
n), and o(1/n) dropped, respectively.

Fisher and Cornish (1960) provide tables aiding the construction of higher order
approximations in the same spirit. Hall (1983) provides an extension to these meth-
ods to smooth transformations of random variables with known cumulants; these
generalized expansions rely only on the cumulants of the underlying distribution
and derivatives of the transformation; limiting properties are demonstrated with
full rigor.

Koning and Does (1988) consider the distribution of Spearman’s Rank Corre-
lation, used for nonparametric bivariate inference. Spearman’s Rank Correlation is
an affine transformation of T =

∑n
j=1 jRj/(n + 1) where Rj are ranks of n indepen-

dently and identically distributed random variables. This distribution is difficult
to calculate exactly, but moments, and hence cumulants and the Cornish–Fisher
expansion, are readily available. Koning and Does (1988) give Fortran code im-
plementing this expansion for T . This code is available from STATLIB. In this
example the summands are identically distributed but not independent. Also, T
has a lattice distribution, while the Cornish–Fisher expansion is continuous. None
the less, the Cornish–Fisher expansion nominally to order o(1/n) performed very
well. An example of its application is given in Fig. 5.

As a second example, Barndorff–Nielsen and Cox (1989) approximate quantiles
for the χ2

n distribution; the cumulants of the square of a standard normal random
variable are κl = 2l−1(l − 1)! and the standardized cumulants are ρZ,l = 2l/2−1(l −
1)!; ρZ,3 = 2

√
2 and ρZ,4 = 12. The χ2

n distribution is the convolution of n such
distributions. True tail probabilities and the Cornish–Fisher expansions are given
in Fig. 6.
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Inverse CDF of the Spearman Statistic T for Sample Size 8
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Fig. 5.

Konishi, Niki, and Gupta (1988) apply these methods to independently but non-
identically distributed sums of random variables. Withers (1988) and Hall (1988)
apply these methods to the empirical cumulative distribution function instead of
the true cumulative distribution function in order to avoid resampling in bootstrap
applications. Such methods are discussed in §9.3 in the context of saddlepoint
approximations.

3.13. The Lattice Case

As before, suppose that {Yj} are independent and identically distributed random
variables, where for notational simplicity assume that the summands have zero
mean and unit variance, and Z =

∑n
l=1 Yl/

√
n. Consider again the problem of

approximating the cumulative distribution function FZ of Z. Now, however, suppose
that the summands Yj take values on the lattice {a + ∆Z} where Z is the set of
integers. This violates even the weaker regularity condition of §3.5.

One might be interested in this problem for three reasons. First, many distri-
butions in applied statistics are lattice distributions. These include distributions of
sufficient statistics in logistic regression, contingency table applications, and non-
parametric inference. Hypothesis testing and confidence interval generation require
the approximation of tail probabilities in these cases. Secondly, lattice distributions
have applications to fields like queuing theory. Thirdly, the results of this section
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Cornish-Fisher Approximation to Chi-Square (1) Quantiles
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Cornish-Fisher Approximation to Chi-Square (10) Quantiles
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tie together a number of seemingly unrelated ideas in probability; specifically, they
extend the Edgeworth series to the next (and perhaps last) area of regular problems.
Asymptotic expansions for lattice distributions exist, and putting them in the same
framework as Edgeworth series has theoretical appeal.

A bit of reflection yields reasons why unmodified Edgeworth series will not
suffice here. They clearly will not work uniformly, since the cumulative distribution
function has jumps of order O(1/

√
n). Feller (1971) shows that the Edgeworth

series evaluated only at continuity-corrected points z+ = z + ∆/(2
√

n) will yield
results accurate to o(1/

√
n).

Esseen (1945) derives an approximation based on the Edgeworth series plus cor-
rection terms containing derivatives of the Edgeworth series, involving the functions
Ql given by

Ql(y) =
{

(l − 1)!gl
∑∞

j=1 cos(2πjy)/(2l−1(πj)l) if l is even
(l − 1)!gl

∑∞
j=1 sin(2πjy)/(2l−1(πj)l) if l is odd,

(55)

with the constants gl given by

gl =
{

+1 if l = 4j + 1 or l = 4j + 2 for some integer j
−1 if l = 4j + 3 or l = 4j for some integer j.

These functions have the following properties:
1. Ql has period 1,
2. Ql is piecewise polynomial,
3. Ql is continuous for l > 1 on R.

Let Bl be the polynomial versions of Ql on [0, 1). The first few of these polyno-
mials are:

B1(y) = y − 1
2
, B2(y) = y2 − y +

1
6
, B3(y) = y3 − 3y2

2
+

y

2
.

These polynomials are known as the Bernoulli polynomials and are defined by the
relation

iβ
exp(−iβy)

1 − exp(−iβ)
=

∞∑
l=0

Bl(y)(−iβ)l/l!

for |β| < 2π (Haynsworth and Goldberg, 1965, p. 804).
In the presence of j cumulants, Esseen (1945) constructs an approximation valid

uniformly to o(n1−j/2), the same order as the original Edgeworth series in the non-
lattice case:

Theorem 3.13.1: If {Yn} are independent and identically distributed random
variables with zero mean and unit variance taking values on the lattice {a + ∆Z},
with finite cumulant of order j, and if Z =

∑n
l=1 Yl/

√
n, then Esseen’s series

Ej(z; κn) + Dj(z; κn) (56)
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is valid uniformly to o(n1−j/2), where Dj(z; κn) is a discontinuous correction term

j−2∑
l=1

1
l!

(∆n)lQl((z − zn)/(∆n))(−1)l dl

dzl
Ej(z,κn), (57)

∆n = ∆/
√

n, Ej(z,κn) is the Edgeworth series as in (46), and zn is any point on
the lattice {√

na + ∆Z/
√

n}.

Proof: Let ζn(β) be the characteristic function of Z. The inversion integral for
lattice tail probabilities with separation ∆n = ∆/

√
n in (33) is

P [z > Z ≥ z0] =
1
2π

∫ π/∆n

−π/∆n

ζn(β)
exp(−iβz0) − exp(−iβzn)

1 − exp(−i∆nβ)
∆n dβ

=
1
2π

∫ π/∆n

−π/∆n

ζn(β)
(

exp(−iβz0)
1 − exp(−i∆nβ)

− exp(−iβz)
exp(−iβ(z0 − z))
1 − exp(−i∆nβ)

)
∆n dβ,(58)

where zn is the minimal lattice point greater than or equal to z. This proof will be
performed in four steps. First, ζn(β) in (58) will be replaced by ξn(β) of §3.6. Sec-
ond, the remaining factors in (58) will be expanded in a power series and truncated.
Third, the inversion integral (58) will be extended over R. Fourth, the result will
be shown to agree with (56).

Since the function iy/(1 − exp(iy)) is bounded for y ∈ [−π, π], there exists C
such that 2∆n/(1 − exp(−iβ∆n)) can be bounded by C/ |β|, for |β| ≤ π/∆n. The
quantity C may be chosen independently of n and ∆. As in §3.6, choose δ such
that |(ζn(β) − ξn(β))/β| is bounded by (49) for |β| < δ

√
n. Then for |β| < δ

√
n the

difference between the integrand of (58) and this integrand with ζn replaced by ξn

is also of the form (49), and uniformly,
∣∣∣∣∣ 1
2π

∫ δ
√

n

−δ
√

n

(ζn(β) − ξn(β))
β

β

1 − exp(−i∆nβ)
∆n dβ

∣∣∣∣∣ = o(n1−j/2).

Over the region δ ≤ |β| ≤ π/∆ the function |ζY (β)| is bounded away from
1, and hence over the region δ

√
n ≤ |β| ≤ π/∆n, the function ζn(β

√
n) converges

uniformly and geometrically to 0. Also, ξn(β) converges uniformly and geometrically
to 0. Hence∣∣∣∣∣ 1

2π

∫ π/∆n

−π/∆n

(ζn(β) − ξn(β))
1

1 − exp(−i∆nβ)
∆n dβ

∣∣∣∣∣ = o(n1−j/2). (59)

A polynomial approximation will now be substituted for the terms of form
exp(−iβy)iβ(1 − exp(−iβ))−1 in (58). Choose δ > 0 and C1 > 0 such that

∣∣∣∣∣iβ∗ exp(−iβ∗y)
1 − exp(−iβ∗)

−
j−2∑
l=0

Bl(y)(−iβ∗)l/l!
∣∣∣∣∣ < C1 |β∗|j−1
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whenever |β∗| < δ and y ∈ [0, 1). Set β∗ = β∆n. Choose any real u. Then∣∣∣∣∣ 1
2π

∫ π/∆n

−π/∆n

ξn(β)
β

[
exp(−iβ(∆ny + u))∆nβ

1 − exp(−i∆nβ)
− exp(−iuβ)

j−2∑
l=0

Bl(y)(−iβ∆n)l

l!

]
dβ

∣∣∣∣∣
≤ C1

2π

∫ π/∆n

−π/∆n

∣∣∣ξn(β)βj−2
∣∣∣ dβ∆j−1

n ,

where C1 is independent of n, z, zn, and δ. The integral on the right-hand side
above can be bounded independently of n, z, zn, and δ, yielding∣∣∣∣∣

∫ π/∆n

−π/∆n

ξn(β)
2πβ

[
exp(−iβ(∆ny + u))∆nβ

1 − exp(−i∆nβ)
− exp(−iuβ)

j∑
l=0

Bl(y)(−iβ∆n)l

l!

]
dβ

∣∣∣∣∣
= O(n(1−j)/2). (60)

Applying (60) twice, once with u = z and y = (zn − z)/∆n, and once with
u = z0 and y = 0, and applying the triangle inequality,

P [z > Z ≥ z0] =
1
2π

∫ π/∆n

−π/∆n

ξn(β)
−iβ

×
j∑

l=0

(
exp(−iβz)Bl

(
zn − z

∆n

)
− exp(−iβz0)Bl (0)

) (−iβ∆n)l

l!
dβ + o(n1−j/2).

The third step in the proof is to prove that the above inversion integral is un-
changed to o(n1−j/2) when the range of integration is extended to the entire real line.
Since the above integrand on the compliment of the above range of integration may
be bounded by exp(−nπ2/(4∆2)) times an integrable function, times a polynomial
in n, the change occurring in extending the range of integration is of the proper
order. By (43),

P [z > Z ≥ z0] =
j∑

l=0

∆l
n

l!

(
Bl

(
zn−z

∆n

)
E

∗(l)
j (z; κn)−Bl (0)E∗(l)

j (z0; κn)
)

+o(n1−j/2),

where E
∗(l)
j (z; κn) = dl/(dzl)E∗

j (z; κn). Letting z0 → ∞, and discarding terms of
size o(n1−j/2), gives (56).

Q.E.D
Even at the continuity-corrected points the correct asymptotic approximation

is not the usual Edgeworth series. Fig. 7 demonstrates the behavior of this approx-
imation.

Bhattacharya and Rao (1976) present a lattice analogue for Theorem 3.11.2:

Theorem 3.13.2: Suppose Yj are independent random variables, with character-
istic functions ζj(β), means zero and variances σ2

j , and j is an integer greater than
or equal to two, such that for all j, Yj has a cumulant of order j. Assume that ω̄n,j as
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defined in Theorem 3.11.2 remains bounded as n increases, and that ς2
n as defined in

Lemma 3.11.1 is bounded away from zero. Further assume that each summand takes
values in the lattice {a + ∆Z}, and that this lattice is the minimal one supporting
the entire sequence of random variables. Form the Edgeworth series Ej(z,κn) us-
ing (46) as in Theorem 3.11.2. Then (56) approximates FZ(z) with an accuracy of
O(n1−j/2), where FZ is the cumulative distribution function of Z =

∑n
j=1 Yj/

√
nς2

n,
(57) is calculated with ∆n = ∆/

√
nς2

n, and explicit dependence on sample size in
(57) is replaced by a dependence through derivatives of Ej(z,κn).

Proof: This theorem parallels the development of §3.6. Bound (53) replaces (26),
causing (59) to hold with O(n1−j/2) replacing o(n1−j/2). The rest of the theorem
proceeds as before.

Q.E.D
As an example, Albers, Bickel, and van Zwet (1976) explore Edgeworth expan-

sions for cumulative distribution functions of nonparametric one-sample location
general score test statistics. For independent and identically distributed random
variables Y1, · · · , Yn known to have an absolutely continuous distribution, tests of
the hypothesis that their common median is zero may be constructed from the
indicators Vi taking the value one if the Yi is positive and zero otherwise, if the
observations are ordered according to the magnitude of their absolute values. Let
the general score test statistic be Tn =

∑n
j a

(n)
j Vj for constants a

(n)
j . In this case the

summands are independent but not identically distributed, unless all of the a
(n)
j are

identical. The first four cumulants are

κ1 =
n∑

j=1
a

(n)
j /2, κ2 =

n∑
j=1

a
(n)
j

2
/4, κ3 =0, κ4 =−

n∑
j=1

a
(n)
j

4
/8.

A simple example of this test statistic sets a
(n)
j = j, yielding the Wilcoxon signed

rank statistic (Hettmansperger, 1984). In this case,

κ1 =
n(n + 1)

4
, κ2 =

n(n + 1)(n + 1
2)

12
, κ3 = 0, κ4 = −n(n + 1)(n + 1

2)(n
2 + n + 1

3)
120

,

and generally κj = O(nj+1). Then if ρY,j is the invariant of order j,

ρY,j = O(nj+1−3j/2) = O(n1−j/2),

and hence Tn/
√

κ2 has invariants of the same order in n as is usual in Edge-
worth series applications. Specifically, Theorem 3.13.2 applies. Furthermore, ∆n =
O(n−3/2), indicating that E4(z,κn) is valid to O(n−3/2). Albers, Bickel, and van
Zwet (1976) derive the error bound of O(n−5/4) for more general scores a

(n)
j .

As a further example, recall the distribution of T , related to Spearman’s Rank
Correlation, discussed in §3.12. Its Cornish–Fisher expansion to o(1/n) is dependent
on the validity of the standard Edgeworth series to the same order. As the minimal
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lattice for T has spacings 1/(n+1), and Var [T ] = n2(n− 1)/144, T/
√

Var [T ] takes
values on a lattice with spacings O(n−5/2). In this case errors induced by the lattice
nature of the summands at continuity–corrected points are of order O(n−5). An
Edgeworth series theorem for dependent variables is needed in this case. Prášková–
Vizková (1976) addresses this question as well.

Robinson (1982) addresses this problem of calculating tail probabilities for score
statistics. Details will follow in a later chapter devoted to resampling and permu-
tation methods. Kong and Levin (1996) address the problem of approximating
multivariate distribution functions of sufficient statistics arising in logistic regres-
sion, and demonstrate that if the lattice nature of the problem is not too strong,
conventional Edgeworth series methodology applies.

3.14. Sheppard’s Corrections and Edgeworth Series

The preceding section presented an asymptotic approximation to tail areas for lat-
tice variables that involved adding a correction to the standard Edgeworth series
for continuous variables. This section discusses modifications to the cumulants
that make the standard Edgeworth series valid for lattice variables. One might
try constructing an asymptotically correct series expansion by smoothing the orig-
inal lattice distribution to a continuous distribution whose cumulative distribution
function agrees with the original cumulative distribution function at continuity-
corrected points z+, and using Edgeworth approximation techniques to approxi-
mate the smoothed cumulative distribution function. One method for doing this is
as follows:
1. Construct a smoothed variable Z∗ by choosing U uniform on [−1

2 ,
1
2 ]. Set

Z∗ = Z + (∆/
√

n)U . Then Z∗ has a density, and furthermore its cumulative
distribution function agrees with Fn at continuity-correction points.

2. The cumulant of order k of (∆/
√

n)U is εn
k = (∆/

√
n)kBk/k, for k ≥ 2; the

constants Bk are known as the Bernoulli numbers and are derived directly from
the series expansion for the characteristic function for U as part of the exercises
for Chapter 2.
Since Z∗ is not a standardized sum the Edgeworth theorems do not necessarily

apply. The density for Z∗ has jumps of order O(1/
√

n) at continuity corrected
points, but any approximation by a continuous function must have errors that do
not get smaller in n as more cumulants are used.

The previous smoothing attempt failed because the density constructed was
not differentiable. One might change the distribution of the added smoother U to
produce a result with a density having more derivatives.

A simpler smoothing method is as follows: If D represents a continuous random
variable C grouped to a lattice with spacing ∆, then the cumulants κD,k of D
are given by κC,k − εn

k where κC,k are the cumulants of C. These modifications
to cumulants of grouped data to recover cumulants of the underlying continuous
variate are known as Sheppard’s corrections, and are tabulated in Table 4. To obtain
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Sheppard-corrected cumulants, subtract the last column from the appropriate raw
cumulant, after multiplying by the appropriate power of the lattice spacing.

Table 4: Bernoulli Numbers and Sheppard’s Corrections

k Bk Bk/k
any odd integer 0 0

2 1/6 1/12
4 −1/30 −1/120
6 1/42 1/252

Heuristically, then, ζCζ∆U ≈ ζC,∆U/
√

n. and that the continuous variable C
and the smoothing ∆U are approximately independent in the sense measured by
multiplicative nature of the characteristic functions, for ∆ small. Calculations are
performed using calculus of finite differences:

Theorem 3.14.1: Suppose the random variable C has a continuous density h on
R, and that the first 2l derivatives of h(x) exist and converge to zero as x → ±∞.
This condition is known as high contact. Let D = ∆〈C

∆〉 be C rounded to the nearest
lattice point, and define U = (C − D)/∆ to be the standardized difference between
C and the nearest lattice point, which takes values on the interval (−1

2 ,
1
2 ]. Here

〈.〉 denotes the nearest integer, with the convention that integers plus one half are
rounded upwards. Let ζC(β1), ζU(β2), and ζC,U(β1, β2) be the characteristic functions
of C, U , and the pair (C,U) respectively. Then as ∆ → 0,

ζC,U(β1, β2) = ζC(β1)ζU(β2) + O(∆2l) and ζU(β2) = sinh(1
2iβ2)/(1

2iβ2) + O(∆2l).

Proof: By definition,

ζC,U(β1, β2) =
∫ ∞

−∞
exp[i(sβ1 + (s/∆ − 〈s/∆〉β2))]h(s) ds

=
∫ ∞

−∞
exp[i(s(β1 + β2/∆) − 〈s/∆〉β2)]h(s) ds

=
∑
j∈Z

exp(−ijβ2)
∫ (j+1/2)∆

(j−1/2)∆
exp[is(β1 + β2/∆)]h(s) ds.

Also,

ζC(β1)ζU(β2) =
[∫ ∞

−∞
eisβ1h(s) ds

] ⎡⎣∑
j∈Z

e−ijβ2

∫ (j+1/2)∆

(j−1/2)∆
eisβ2/∆h(s) ds

⎤
⎦

=
[∫ ∞

−∞
exp(isβ1)h(s) ds

] ⎡⎣∑
j∈Z

∫ 1
2

−1
2

exp(itβ2)h(∆(t + j))∆ dt

⎤
⎦ .
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Hence ζC,U(β1, β2) − ζC(β1)ζU(β2) may be expressed as

∑
j∈Z

∫ 1
2

−1
2

[
ei(∆(j+t)β1+tβ2) −

∫ ∞

−∞
eisβ1+itβ2h(s) ds

]
h(∆(j + t))∆ dt

=
∑
j∈Z

∫ 1
2

−1
2

eitβ2

[∫ ∞

−∞

{
ei∆(j+t)β1 − eisβ1

}
h(s) ds

]
h(∆(j + t))∆ dt

=
∑
j∈Z

e−ijβ2

∫ (j+1/2)∆

(j−1/2)∆
eitβ2/∆

[∫ ∞

−∞

{
eitβ1 − eisβ1

}
h(s) ds

]
h(t) dt =

∑
j∈Z

f(j)

where
f(j) = e−ijβ2

∫ (j+1/2)∆

(j−1/2)∆
eitβ2/∆[exp(itβ1) − ζC(β1)]h(t) dt.

Note that f depends also on β1 and β2.
If f : R → R is a function with 2l continuous derivatives, and limt→±∞ f (k)(t)

exists for all k ≤ 2l, then, by the Euler–Maclaurin Summation Formula (Haynsworth
and Goldberg, 1965, page 806),

∑
j∈Z

f(j)=
∫ ∞

−∞
f(t) dt+ lim

t→∞

[
1
2(f(t) + f(−t)) +

l−1∑
k=1

B2k

(2k)!
(f (2k−1)(t) − f (2k−1)(−t))

]

+
B2l

(2l)!
∑
j∈Z

f (2l)(j + δ0)

for some δ0 ∈ (0, 1). The first term on the right hand side above is
∫ ∞

−∞
f(x) dx =

∫ ∞

−∞
e−ixβ2

∫ (x+1/2)∆

(x−1/2)∆
eitβ2/∆[exp(itβ1) − ζC(β1)]h(t) dt dx

=
∫ ∞

−∞

∫ t/∆+1
2

t/∆−1
2

e−ixβ2eitβ2/∆[exp(itβ1) − ζC(β1)]h(t) dx dt

=
∫ ∞

−∞
(eiβ2/2 − e−iβ2/2)/(iβ2)[exp(itβ1) − ζC(β1)]h(t) dt = 0.

To evaluate the second term, derivatives of f are needed. Since

f(x) =
∫ 1

2

−1
2

eitβ2g(t + x) dt,

where

g(t) = ∆
∫ ∞

−∞
(eit∆β1 − eisβ1)h(s) dsh(∆t) = ∆h(∆t)[eit∆β1 − ζC(β1)],

then

f (k)(x) =
∫ 1

2

−1
2

eitβ2g(k)(t + x) dt → 0
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as x → ±∞ for k < 2l, by the high contact condition for h. Also,

∑
j∈Z

f (2l)(j + δ0) ≤ ∆2l
∑
j∈Z

∫ 1
2

−1
2

2l∑
k=0

h(k)(∆(t + j))∆ dt

= ∆2l
2l∑

k=0

∫ ∞

−∞
h(k)(∆t)∆ dt = O(∆2l).

This now proves the first claim of the theorem.
The characteristic function ζU of the smoothing variable U must now be calcu-

lated.

ζU(β2) =
∑
j∈Z

∫ 1
2

−1
2

eitβ2h(∆(t + j))∆ dt =
∑
j∈Z

f(j),

where

f(j) =
∫ 1

2

−1
2

eitβ2h(∆(t + j))∆ dt.

The first term in the Euler–Maclaurin Summation Formula is
∫ ∞

−∞
f(x) dx =

∫ 1
2

−1
2

eitβ2 [
∫ ∞

−∞
h(∆(t + x))∆ dx] dt =

∫ 1
2

−1
2

eitβ2 dt =
sinh(1

2iβ2)
1
2iβ2

.

Also, f (k)(x) = ∆k
∫ 1

2
−1

2
eitβ2h(k)(∆(t+x))∆ dt. Again the integrability of derivatives

of h insures that limt→±∞ f (k)(t) = 0. Hence

ζU(β2) =
sinh(1

2iβ2)
1
2iβ2

+ ∆2l
∑
j∈Z

∫ 1
2

−1
2

eitβ2h(2l)(∆(t + j))∆ dt =
sinh(1

2iβ2)
1
2iβ2

+ O(∆2l).

Q.E.D

3.15. Continuity-Corrected Edgeworth Series

The smoothing argument presented earlier suggests using an Edgeworth series with
cumulants adjusted by Sheppard’s corrections to approximate the lattice distribu-
tion FZ . Kolassa and McCullagh (1990) prove that by evaluating such an Edge-
worth expansion at continuity-corrected points, the resulting errors are as small as
are usually obtained in an Edgeworth approximation.

Suppose {Yi} is an independent and identically distributed collection of random
variables in R, with mean 0, variance σ2, and cumulants κ = (κj, j = 1, 2, 3, . . .).
Suppose further that these variables are confined to the lattice a+∆Z almost surely.
Let Z =

∑n
i=1 Yi/

√
n. Then Z has cumulants κn = (κn

j , j = 1, 2, 3, 4, . . .), with
κn

j = κjn
(2−j)/2. Let λn

j = κj − εjn
−1 be the adjusted cumulants. Let λn denote the
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infinite vector (0, λn
2 , λ

n
3 , λ

n
4 , . . .), and let Ej(z; λn) be the Edgeworth series defined

in (42), with pseudo-moments as in (44), but with λn
j ’s in place of the κn

j ’s. Then

Ej(z,λn) = ψj,z

⎛
⎝exp

⎡
⎣1

2(λ2 − 1)β2 +
j∑

j=3

1
j!

λn
kβ

j

⎤
⎦
⎞
⎠ + o(n− j−2

2 ).

For instance, one constructs E4(z+, λn) from

Φ(z+) − φ(z+)
(

h2(z+)κ3√
n

− h1(z+)ε2

n
+

h3(z+)
n

(
ε2
2

8n
+

ε4

24n
+

κ4

24

))
,

but by definition ψ4,z

(
exp

[
1
2(λ2 − κ2)β2 +

∑4
j=3

1
j!λ

n
kβ

j
])

omits the terms of size

o(n−1). The expression E4(z+, λn) = Φ(z+) − φ(z+)
(

h2(z+)κ3√
n

− h1(z+)ε2
n

+ κ4h3(z+)
24n

)
has more terms than E4(z+, κn), since second cumulants are no longer matched;
instead, following Chambers (1967), pick the baseline variance to be the asymptotic
variance. Since λn

2 − σ2 = −1/12n, the exponent on the left hand side of (44) now
has a quadratic term.

Theorem 3.15.1: Suppose that a random variable Z, with zero mean and unit
variance, is supported on a lattice with spacing ∆n = ∆/

√
n. When the cumu-

lative distribution function of Z is approximated using an Edgeworth series, with
the cumulants adjusted according to Sheppard’s corrections, and the result is eval-
uated at continuity – corrected lattice points, the result is valid to the same or-
der in n as in standard applications of the Edgeworth series; that is, FZ(z+) =
Ej(z+; λn) + o(n− j−2

2 ) for any lattice point z, with z+ = z + ∆/(2
√

n).

Proof: The following is similar to the treatment of series expansions found in
Chambers (1967), pages 368-371. The proof is completely algebraic and proceeds
by the manipulations of power series generating functions for cumulants.

This proof exploits a relation between power series and Edgeworth-like series.
Let P [β] be the set of formal power series in the variable β, of form

∑∞
j=0 αjβ

j,
where the coefficients αj are polynomials in 1/

√
n. Consider this set to contain all

conceivable exponentiated differences of the true cumulant generating function from
the approximating normal cumulant generating function, convergent or not; the αj

are the possible cumulant differences. Choose an ordinate z at which to evaluate
an Edgeworth series. Let ψj,z : P [β] → R be the function that maps

∑∞
j=0 αjβ

j to
the Edgeworth-like series evaluated at z:

α0Φ(z) − φ(z)
∞∑

j=1
αjhj−1(z),

with all terms of size o(n− j−2
2 ) discarded. This will not be an actually Edgeworth

series unless α0 = 1 and some other restrictions among the coefficients hold. Effec-
tively, we apply the Fourier inversion operation termwise, and discard terms that
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are small enough, to obtain the Edgeworth series. The usual Edgeworth series for
the standardized mean of independent and identically distributed random variables,
with cumulants κn, is

Ej(z,κn) = ψj,z

⎛
⎝exp

⎡
⎣ k∑

j=3

1
j!

κn
j β

j

⎤
⎦
⎞
⎠ .

The function ψj,z has the following linearity property:

ψj,z(γ1p1(β) + γ2p2(β)) = γ1ψj,z(p1(β)) + γ2ψj,z(p2(β)).

Also,

ψj,z(βjp(β)) = (−1)jDjψj,z(p(β)). (61)

Esseen’s series (56) is a linear combination of derivatives of the Edgeworth series.
The periodicity of the functions Bj causes all of the multipliers for these derivatives
to be independent of the specific continuity-corrected point under consideration.
Using (61) express the derivatives of the Edgeworth series as ψj,z+ applied to a
multiple of a power of β times the power series

exp

⎡
⎣ k∑

j=3

1
j!

κn
j β

j

⎤
⎦ (62)

to generate the Edgeworth series. Using the linearity of ψj,z+ , express this as ψj,z+

applied to the product of a new series times the series (62). This new series will
now be expressed as the exponential of the series with Sheppard’s corrections.

Substituting into Esseen’s series (56),

FZ(z) = Ej(z,κn) +
j−2∑
j=1

∆j
n

1
j!

Bj

(
(z − zn)

∆n

)
(−1)j dj

dxj
Ej(z,κn) + o(n− j−2

2 ).

Choose any integer J . Let z+ = (na + J∆ + ∆/2)/
√

n. Then

(z+ − zn)/∆n = J − �na/∆� + 1
2 ,

which is an integer plus half. Hence for all positive integers j, Bj ((z+ − zn)/∆n) =
Bj(1

2), by the periodicity of Bj. Straight-forward calculations show that

Bj(0) = Bj and Bj(1
2) = (21−j − 1)Bj, (63)
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where again, Bj is the Bernoulli number of order j. Then

FZ(z+) =
j−2∑
j=0

n−j/2 1
j!

Bjgj(21−j − 1)DjEj(z+; κn) + o(n− j−2
2 )

=
j−2∑
j=0

n−j/2 1
j!

Bj(21−j − 1)(−1)jψj,z+

⎛
⎝βj exp

⎡
⎣ k∑

j=3

1
j!

κn
j β

j

⎤
⎦
⎞
⎠ + o(n− j−2

2 )

= ψj,z+

⎛
⎝j−2∑

j=0
n−j/2 1

j!
Bj(21−j − 1)βj exp

⎡
⎣ k∑

j=3

1
j!

κn
j β

j

⎤
⎦
⎞
⎠ + o(n− j−2

2 )

= ψj,z+

⎛
⎝exp

⎡
⎣ ∞∑

j=2

−Bj

j j!
n− j

2 βj

⎤
⎦ exp

⎡
⎣ k∑

j=3

1
j!

κn
j β

j

⎤
⎦
⎞
⎠ + o(n− j−2

2 )

since

∞∑
s=0

(21−s − 1)
Bsβ

s

s!ns/2 =
(β/

√
n) exp[(β/

√
n)/2]

exp(β/
√

n) − 1
= exp

⎡
⎣ ∞∑

j=2

−Bj

j j!
n−j/2βj

⎤
⎦ . (64)

The last equality in (64) follows directly from Exercise 9 of Chapter 2. The first
equality will be proved as part of the exercises in this chapter. Powers of (−1) drop
out of the second of these equations, because the odd Bernoulli numbers are zero.
Sheppard’s correction for the cumulant of order j is −Bj/(jnj/2). Let λn = (λn

k) be
the cumulants κn adjusted by Sheppard’s correction.

Hence

FZ(z+) = ψj,z+

⎛
⎝exp

⎡
⎣ j∑

j=3

1
j!

λn
kβ

j

⎤
⎦
⎞
⎠ + o(n− j−2

2 ) = Ej(z+, λn) + o(n− j−2
2 ).

Q.E.D

3.16. Exercises

1. Justify the first equality in (64). Distributing two terms in the factor (21−s − 1)
into two separate infinite series should help.

2. Justify the first equality (63) by evaluating the Fourier series expressions (55)
for Bk(0), substituting this expression in for Bk on the right hand side of (34),
and showing that the result is the left hand side of (34).

3. Justify the second equality(63) by evaluating the Fourier series expressions ex-
pression (55) for Bk(1

2), and comparing it to the similar expansion for Bk(0).
4. Refer to the example of calculating an Edgeworth expansion for a Γ(p, λ) random

variable, as in §3.9. Prove that
∫∞
−∞ |ζ(β)|k dβ < ∞ if and only if k > 1/p.

5. Justify relation (43).
6. Justify claim (60).
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7. Analytically or numerically calculate the cumulative distribution function for
the convolution of 3, 4, 5, and 6 random variables uniform on [0, 1]. Compare
tail probabilities one, two, and three standard deviations above the mean with
the Edgeworth estimates.

8. Let Fn be the cumulative distribution function of the sum of n independent
random variables each with cumulative distribution function

F (x) =
{ 0 if x < 0

Φ(
√

x) otherwise .

Kolassa (1992) constructs a test statistic S(X, θ) whose cumulative distribution
function is bounded by Fn if the parameter vector θ governed a mechanism
generating a set of data summarized by X and consisting of n data points. If s
satisifes Fn(sn) = .95 then {θ|S(X, θ) ≤ sn} represents a 95% confidence region
for θ. Calculate s5, s10, and s20 numerically, and compare with the Cornish–
Fisher expansions to orders o(1), o(1/

√
n), and o(1/n). Also, compare bounds

on the coverage rates of the resulting regions when sn is calculated using the
normal approximation, by applying the Edgeworth approximation incorporating
the kurtosis term.

9. Compare the accuracies of Cornish–Fisher and normal approximations to the
Mann–Whitney–Wilcoxon statistic (Hettmansperger, 1984) percentage points.
These approximations are available as FORTRAN subroutines in the STATLIB
archive, at http://statlib@lib.stat.cmu.edu. Select software from the jour-
nal Applied Statistics. Algorithm 62 calculates the distribution of the Mann-
Whitney-Wilcoxon statistic, and Algorithm 234 calculats the Cornish Fisher in-
version of the Mann-Whitney-Wilcoxon statistic. Compare the accuracy of the
various Cornish–Fisher approximations for a variety of sample sizes. Algorithm
234 takes as input standard normal quantiles. You may also need Algorithm
111, calculating these quantiles; this algorithm is coded as function PPND. Let
m be the size of the smaller of the two groups. Let n be the other group size.
Let N be the sum of group sizes. Here N is an input to Algorithm 234, and
n is the input to Algorithm 62. Algorithm 62, coded as subroutine UDIST, cal-
culates probabilities for the each of the potential statistic values, starting with
the minimal value. You’ll have to supply a real function that gives the ranks,
which in this case is the identity function. We really want the tail probablities;
modify the code as directed in the comments. The minimal statistic value is
m(m + 1)/2, and so after modifying the code entry i in the output correspond
to a sum of ranks of m(m + 1)/2 + i − 1. Algorithm 234, coded as the sub-
routine PPRANK, takes as the definition of the statistic the rank sum divided by
N + 1. Hence the Cornish–Fisher expansion evaluated at the probabilities in
component i of the results from Algorithm 62 to (m(m + 1)/2 + i − 1)/(N + 1).
Finaly, Algorithm 234 contains a mistake: The constant CTA1 should have an
exponent of −1 rather than 0.
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Saddlepoint Series for Densities

In many statistical applications, approximations to the probability that a random
variable exceeds a certain threshold value are important. Such approximations are
useful, for example, in constructing tests and confidence intervals, and for calculat-
ing p-values. Edgeworth series converge uniformly quickly over the entire possible
range of the random variable, when error is measured in an absolute sense. Often
times, relative error behavior is more important than absolute error behavior; an er-
ror of .005 is of little importance when considering tests of approximate size .05 but
is of great importance when considering tests of approximate size .001. Saddlepoint
methodology is a method for achieving in many cases uniform bounds on relative
error over the range of the distribution. This work was pioneered by Daniels (1954).

This chapter considers the problem of estimating the density of a random vari-
able X, whose distribution depends on n, and whose cumulant generating function is
represented by KX . Throughout this chapter implicitly assume that such a density
exists for sufficiently large n. This condition will be strong enough for the intro-
ductory material heuristically motivating the saddlepoint density approximation as
a rescaled approximation to a member of the natural exponential family contain-
ing the true density. When motivating the saddlepoint density as the asymptotic
expansion of a complex integral over a properly deformed path, integrability of
the characteristic function for sufficiently large n will be assumed, as was done for
Edgeworth series density theorems. Recall that the equivalence of these assumptions
was given in §2.4. Additional regularity conditions will be added when considering
uniform relative error behavior of the saddlepoint approximation.

The saddlepoint approximation is first explored heuristically using an exponen-
tial family, and a parallel is developed between the saddlepoint and the maximum
likelihood estimator. The question of existence of the saddlepoint is addressed.
The saddlepoint approximation is derived using saddlepoint integration techniques
applied to the density inversion integral. Advantages of saddlepoint techniques
including uniform relative error are discussed. Possibilities of improving the accu-
racy of the saddlepoint approximation by determining a multiplicative correction

63
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to normalize the approximate density to integrate to unity are considered. Finally,
numeric hints for applying saddlepoint approximations are given.

The following chapter will concern saddlepoint distribution function approxi-
mations. Dividing material on saddlepoint approximations into two chapters, the
first for density approximations and the second for distribution function approx-
imations, while Edgeworth density and distribution function approximations are
included in one chapter, may appear as a clumsy disruption of a natural parallelism
between Edgeworth and saddlepoint approximations. I have chosen to organize the
material in this manner precisely because while saddlepoint density approximations
may be derived from Edgeworth density approximations, the same does not hold for
distribution function approximations. In general Edgeworth distribution function
approximations can be expressed as integrals of Edgeworth density approximations,
and in general saddlepoint density approximations may not be analytically inte-
grated.

The inversion results presented here will have their primary applications in the
following chapter.

4.1. Expression using Exponential Families

Suppose that an approximation to a density fX(x) is desired, based on its cumulant
generating function KX(γ). Suppose further that the distribution of X depends on
a parameter n, and that one desires to approximate this density far in the tails.
Edgeworth series may work poorly in this case. An alternative is to embed the
density of interest in an exponential family, and choose a density in this exponen-
tial family to estimate. Specifically, let fX(x, γ) = exp(xγ − KX(γ))fX(x). Here
the density of interest is embedded in an exponential family having the cumulant
generating function evaluated at τ : KX(τ + γ) − KX(γ). An approximation for any
member of this family easily results in an approximation for the original density,
since members of this family differ only by a factor of exp(xγ − KX(γ)). Next
one determines which member of this family is easiest to approximate. Recall that
Edgeworth series are most accurate for ordinates near the mean, and least accurate
for ordinates in the tails. One would expect that the easiest member of this family
to approximate is the one whose mean is equal to the ordinate at which we wish
to evaluate the approximation. The mean of the generic member of this family
whose parameter is γ is K′

X(γ). Let γ̂ be the parameter associated with the chosen
member of the exponential family. Then γ̂ is given by the solution to

K′
X(γ̂) = x. (65)

One might think of this solution as the maximum likelihood estimator for the ex-
ponential family model based on the data x.

Once the element of the exponential family to be approximated is chosen, one
must choose an approximation for it. Start with the Gaussian approximation to
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fX(x; γ̂):

exp(−(x − K′
X(γ̂))2K′′

X(γ̂)−1/2)/
√

2πK′′
X(γ̂) = 1/

√
2πK′′

X(γ̂),

implying the approximation to fX(x):

gX(x) = exp(KX(γ̂) − γ̂x)/
√

2πK′′
X(γ̂). (66)

Although the standard normal approximation to fX(x; γ̂) is used, the result-
ing approximation to fX(x) uses information from all of the cumulants, because
of the way in which γ̂ is chosen. Unlike the higher-order Edgeworth expansions,
this approximation is fortunately always positive. This approximation has a very
simple form, but often not calculable explicitly, since an analytic expression for the
saddlepoint γ̂ is not always available.

To improve the accuracy of (66) one might use a higher-order Edgeworth ex-
pansion to fX(x; γ̂):

gX(x) =
exp(KX(γ̂) − γ̂x)√

K ′′
X(γ̂)

φ(0)
∞∑

j=0
hj(0)µ∗

j(γ̂)/j!

=
exp(KX(γ̂) − γ̂x)√

K ′′
X(γ̂)

φ(0)
[
1 +

ρ̂X,3h3(0)
6

+
(

ρ̂X,4h4(0)
24

+
10ρ̂2

X,3h6(0)
720

)

+
(

ρ̂X,5h5(0)
120

+
35ρ̂X,3ρ̂X,4h7(0)

5040

)
+ · · ·

]

=
exp(KX(γ̂) − γ̂x)√

K ′′
X(γ̂)

φ(0)[1 + ρ̂X,4/8 − 5ρ̂2
X,3/24 + · · ·] (67)

using h4(0) = 3, h6(0) = −15. Here ρ̂X,j = K(j)
X (γ̂)/(K(2)

X (γ̂))j/2. When X is the
average of n independent and identically distributed random variables, ρ̂X,j =
O(n(2−j)/2).

The above approximation (66) is derived from the cumulant generating function
KX for the associated random variable. The nature of the dependence of KX on n
was not important in this heuristic development. When results involving any math-
ematical rigor are desired, however, assumptions about the form of KX , or almost
equivalently about the distribution of X, are needed. The rigorous development for
the Edgeworth series of §§3.6 and 3.7 involved standardized sums of independent
and identically distributed random variables. Limit theorems for other standardized
sums were also considered in §3. When developing the saddlepoint approximations,
it will be useful to take the mean of independent and identically distributed random
variables as the prototypical distribution to be approximated. Reasons for this will
be given shortly.

When the distribution of X, the mean of independent and identically dis-
tributed copies of a random variable Y , is desired, usually an expression in terms
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of the cumulant generating function of the individual addends is preferred. Since
KX(γ) = nKY (γ/n), the saddlepoint γ̂ satisfies K′

Y (γ̂/n) = x, and the approxi-
mation (66) becomes gX(x) =

√
n exp(n[KY (γ̂/n) − (γ̂/n)x])/

√
2πK′′

Y (γ̂/n). The

leading factor
√

n arises from
√

K′′
X(γ̂/n). If β̂ = γ̂/n, then the usual saddlepoint

density approximation is obtained:

gX(x) =
√

nexp(n[KY (β̂) − β̂x])/
√

2πK′′
Y (β̂). (68)

The saddlepoint β̂ is given by the solution to

K′
Y (β̂) = x. (69)

For the Edgeworth series the natural scaling for sums of random variables was
the standardized sum giving constant variance as n increases. For saddlepoint
approximations the natural scaling is the mean, since it gives an expression for
β̂ independent of n, and because the term in the exponent in (68) is n times a
factor independent of n. The saddlepoint approximation may be expressed in terms
of the Legendre transform K∗

Y of KY : For x in the range of K′
Y define K∗

Y (x) =

β̂x − KY (β̂) for β̂ satisfying (69). Then gX(x) =
√

nexp(−nK∗
Y (x))/

√
2πK′′

Y (β̂).
Since (d/dx)K∗

Y (x) = β̂(x) and dβ̂/dx = 1/K′′
Y (β̂), then

(d2/dx2)K∗
Y (x) = 1/K′′

Y (β̂) > 0

for all x. Hence K∗
Y strictly concave as a function of x. These relations will be useful

when assessing the error in the renormalized saddlepoint density approximation.
Since ρX,j = n1−jK(j)

Y (β̂)/(n−1K(2)
Y (β̂))j/2, the counterpart of (67) in terms of

KY is:

fX(x) =
√

n
exp(n[KY (β̂) − β̂x])√

2πK′′
Y (β̂)

[1 + b(β)/[2n] + O(n−2)], (70)

for
b(β) = ρ̂Y,4/4 − 5ρ̂2

Y,3/12. (71)

Here
ρ̂Y,j = K(j)

Y (β)/(K(2)
Y (β))j/2. (72)

This justifies the following result:

Theorem 4.1.1: Suppose that fY is a density function for a random variable
Y , with characteristic function KY defined in an open interval I containing zero,
and one desires an approximation to the density fX of X, the mean of n inde-
pendent and identically distributed copies of Y . Suppose that equation (69) has a
solution in I. Then the expansion (70) represents a valid asymptotic expression for
fX . Furthermore, general higher-order terms in (70) are generated using an easy
algorithm:
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1. The saddlepoint β̂ is determined.

2. The cumulant generating function nKY (β/(
√

nK′′
Y (β̂))) is expanded about β̂.

3. The quadratic term is removed.
4. The resulting series is exponentiated, to form a bivariate series for

exp
(
nKY

(
β/(n

√
K′′

Y (β̂))
)

− (β − β̂)2/2
)

in β about β̂, and in 1/
√

n about 0.
5. Powers of β− β̂ are replaced by the corresponding Hermite polynomial evaluated

at 0.

Proof: As this is merely the result of the Edgeworth series theorem for density
functions, Theorem 3.5.1, applied to the density proportional to exp(βx)fY (x), it
suffices to verify the conditions of Theorem 3.5.1. Moments of all orders for this
distribution exist, by the arguments of §2.1. Furthermore, since the density fY

exists, by Lemma 2.4.4, the integrability condition is also fulfilled.
Q.E.D

Here the cumulants of the standardized distribution are varying, and the point
at which the Hermite polynomials are evaluated is fixed. Hence uniform asymp-
totic properties do not follow from the Edgeworth theorem already proved, since
the distributions that the Edgeworth series approximation theorems are applied to
vary with both x and n. We can say that the series is valid asymptotically as an
approximation for the density of X at x as n → ∞ and x changes so as to keep the
saddlepoint fixed. In the case of an approximation to the mean of independent and
identically distributed random variables, this corresponds to fixing the value of the
mean as n varies. Contrast this with the Edgeworth series approximation, in which
the value of n−1/2 ∑

j Yj is held fixed.
Later this chapter conditions will be given under which far more can be said

about asymptotic bounds on the error for approximations of the form (66), or exten-
sions of the form (70). Heuristically this works because under lax assumptions the
standardized cumulants are bounded as β̂ varies. Hence good relative error behav-
ior rather than merely absolute error behavior can be expected. Recall that for the
Edgeworth series, as the ordinate varied over R, the point at which Hermite poly-
nomials were evaluated also varied over R, inducing poor relative error properties.
Kolassa (1991) shows that an approximate solution to the saddlepoint equation (69),
with consequent modifications to (70), provides a compromise between Edgeworth
and saddlepoint methodologies, in that good relative error properties are preserved
while possibly intractable equations are avoided.

Blackwell and Hodges (1959), without referencing Daniels (1954), note that
when Yj are supported on the integers, and on no coarser lattice, then (70) also
represents

nP [X = x] (1 + O(1/n2)) (73)
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for X =
∑n

j=1 Yj/n. Proof of this fact will deferred until §4.5.
Jing and Robinson (1994) note that if Z = g(X), and g is monotonic and

differentiable, then the density fZ of Z evaluated at z may be approximated by

√
n

exp(n[KY (β̂) − β̂g−1(z)])

g′(g−1(z))
√

2πK′′
Y (β̂)

[1 + b(β)/[2n] + O(n−2)], (74)

and (69) is evaluated at x = g−1(z).

4.2. Examples

The following three examples are cited by Daniels (1954): Consider the saddlepoint
density approximation to means of independent and identically distributed random
variables, each with a normal distribution with mean µ and unit variance. The
cumulant generating function for each summand is KY (β) = µβ + β2/2, and hence
the saddlepoint satisfies β̂ + µ = x. Then β̂ = x − µ. Then approximation is
gX(x) = exp(−n(x − µ)2/2)/n

√
2π. In this case, the approximation is exactly the

correct distribution.
As a further example, consider the gamma distribution. Recall that a Γ(λ, α)

random variable has density

fX(x) = λαxα−1 exp(−λx)/Γ(α)

and the cumulant generating function KX(β) = α log(λ) − α log(λ − β). The sad-
dlepoint β̂ satisfies x = −α/(λ − β̂), and hence β̂ = λ − α/x. Then K′′

X(β̂) =
α/(λ−β̂)2 = x2/α, K′′′

X(β̂) = 2α/(λ−β̂)3 = 2x3/α2, K′′′′
X (β̂) = 6α/(λ−β̂)4 = 6x4/α3,

and b(β̂) = 1
4(6x

4/α3)α2/x4 − 5(4x6/α4)(α3/x6)/12 = −1
6α

−1.

fX(x) =
√

n
exp(n(α log(λ) − α log(λ − λ + α/x) − xλ + α))

x
√

2π/α

=
√

nλnαα−nαxnα−1 exp(nα − xλn)
√

α/2π[1 − 1
12α

−1]

= (nλ)nαxnα−1 exp(nα − nxλ)(nα)−nα+1/2/
√

2π[1 − 1
12α

−1]

From the cumulant generating function one finds that the convolution of n densities
of the form Γ(α, λ) is a Γ(nα, λ) density, and hence/ the mean has a Γ(nα, nλ)
distribution. The saddlepoint approximation agrees with the exact density ex-
cept that the gamma function is replaced by its Sterling approximation Γ(nα) ≈
exp(−nα)(nα)nα−1/2

√
2π.

As a final example, the moment generating function of the uniform distribution
on (−1/2, 1/2) is

MU(β) = (exp(β/2) − exp(−β/2))/β = sinh(β/2)/(β/2),
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and the cumulant generating function KU is the logarithm of MU . Then

K′
U(β) = (exp(β/2) + exp(−β/2))/(exp(β/2) − exp(−β/2)) − 1/β

and K′′
U(β) = 1/β2 − 4/(exp(β/2) − exp(−β/2))2. The solution to the saddlepoint

equation must either be approximated, or obtained numerically. Here the latter
approach is taken. Results show that far in the tails saddlepoint outperforms both
the normal and Edgeworth-4 approximations. See Fig. 8.
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4.3. Conditions for the Existence of the Saddlepoint

The preceding discussion presupposes the existence of β̂ solving (69). Daniels (1954)
investigates under what circumstances such a β̂ exists. These conditions will depend
on the form of the interval Q on which the cumulant generating function KY is
defined, and also on the form of the interval of support for FY . Express Q as an
interval with end points −c1 ≤ c2 where c1 and c2 are non-negative. Saddlepoint
approximation methods are only considered when these endpoints are not both zero.
Express the interval of support for the distribution FY as [−x1, x2], where values of
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∞ for x1 or x2 or both are allowed. Then a solution of the saddlepoint equation
exists for all values of x ∈ (−x1, x2) if

lim
β→−c1

K′
Y (β) = −x1, lim

β→c2
K′

Y (β) = x2, (75)

since K′
Y is continuous, and K′′

Y > 0. Hence K′
Y is strictly increasing. Define

the conditions Ci : limβ→(−1)ici
K′

Y (β) = (−1)ixi. When xi are infinite, condition
C1 ∩ C2 is known as steepness (Barndorff–Nielsen, 1978). Define the conditions C ′

i

as ci = ∞. Note that C ′
i is implied by xi < ∞. As we will see below, the condition

xi < ∞ forces ci = ∞; however, the following lemma and theorem will be stated in
terms of the slightly more immediate conditions. The following lemma holds.

Lemma 4.3.1: Condition C ′
i implies Ci for i = 1, 2.

Proof: This lemma is proved for i = 2; the case when i = 1 is similar. Consider
the two cases.
1. x2 is finite. Note that

x2 − K′
Y (β) =

∫ x2

−x1

(x2 − y) exp(βy) dF (y)/
∫ x2

−x1

exp(βy) dF (y) ≥ 0.

Showing that limβ→∞[x2 − K′
Y (β)] ≤ 0 implies C2 in this case. For any z < x2,

x2 − K′
Y (β) ≤ (x2−z)

∫ x2
z exp(β(y−z)) dF (y) +

∫ z
−x1

(x2 − y) exp(β(y−z)) dF (y)∫ x2
z exp(β(y−z))dF (y) +

∫ z
−x1

exp(β(y−z))dF (y)

=
(x2−z) +

∫ z
−x1

(x2−y) exp(β(y−z)) dF (y)/
∫ x2
z exp(β(y−z)) dF (y)

1 +
∫ z
−x1

exp(β(y−z))dF (y)/
∫ x2
z exp(β(y−z)) dF (y)

→ x2 − z

Hence limβ→∞ K′
Y (β) = x2.

2. x2 = ∞. Then K′
Y (β)=

∫∞
−x1

y exp(βy) dF (y). Set a∗=
∫∞
0 y2 dF (y)/

∫∞
0 y dF (y).

Then
K′

Y (β) ≥
∫ 0

−x1

y exp(βy) dF (y) +
∫ ∞

0
y dF (y) exp(βa∗).

The limit of the first term is zero as β → ∞, and the second term diverges to
∞.

Q.E.D
This lemma leads immediately to the following theorem:

Theorem 4.3.2: If X is a random variable supported on the possibly infinite
interval [−x1, x2], whose cumulant generating function is defined on an interval
with end points −c1 and c2, and if for i = 1 and 2, xi < ∞ or ci = ∞, then a
solution of the saddlepoint equation exists for all values of x ∈ (−x1, x2).

Proof: Conditions C ′
1 and C ′

2 implies (75), by Lemma 4.3.1.
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Q.E.D
Daniels (1954) presents an example in which these conditions fail.
In this section we have considered only solutions to the saddlepoint approxima-

tion for x ∈ (−x1, x2). If x = −x1 or x = x2 one may take the density approximation
to be 0, since x sits at the edge of the support of the distribution. When consider-
ing cumulative distribution function approximations this choice will be even easier,
since by definition the cumulative distribution function evaluated at x will be 0 if
x = −x1 and 1 if x = x2. When considering double saddlepoint approximations to
conditional densities and distribution functions, other cases with conditioning ran-
dom variables on the edges of their ranges of definition will be more troublesome.
This question will be addressed later.

4.4. Construction of the Steepest Descent Curve

The saddlepoint density approximations (66) and (70) for a random variable X
with characteristic function ζX(γ) and cumulant generating function KX(γ) may
be derived by using the Fourier inversion formula and approximating the integral
involved. Recall from (19) that

fX(x) =
1
2π

∫ +i∞

−i∞
ζX(γ) exp(−iγx) dγ =

1
2πi

∫ +i∞

−i∞
exp(KX(γ) − γx) dγ. (76)

The variable of integration was changed from β to γ, since later in this section
the scale of this variable of integration will be changed, and the variable β will be
reserved for this changed scale to conform more closely to standard notation. This
expression will be manipulated to yield (70). First, denote the real domain of KX by
IX . Then within the set IX × iR the integrand above is differentiable, and the path
of integration can be chosen to be any path from −i∞ to +i∞, by the closed curve
theorem of complex variables (Bak and Newman (1996), §8.1). That is, the path
of integration need not be along the complex axis, but along any path diverting to
positive and negative infinity along the complex axis, but having perhaps non-zero
real components.

The next step is to show that the path of integration in (76) can be replaced by
a path along which the real value of the variable of integration is fixed at any value
in the range of definition of the cumulant generating function; that is, that

lim
T→∞

∫ iT

−iT
exp(KX(γ) − γx) dγ = lim

T→∞

∫ c+iT

c−iT
exp(KX(γ) − γx) dγ (77)

for all c ∈ IX . By the closed curve theorem, all that is required is to show that

lim
T→∞

∫ c+iT

iT
exp(KX(γ)−γx) dγ = 0 and lim

T→∞

∫ c−iT

−iT
exp(KX(γ)−γx) dγ = 0. (78)

At each point γ along the two paths of integration parallel to the real axis, the
integrand is the characteristic function of a random variable with density fX(y−x)×
exp(−KX(�(γ))+�(γ)(y−x)), evaluated at �(γ). Here y is a dummy argument for
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the density, and �(γ) = ±T . By the Riemann–Lebesgue Theorem, Theorem 3.8.1
of §3.8, this is bounded by |T |−1. Hence the integrands of (78) converge uniformly
to zero, and so the limits in (78) hold.

Use of steepest descent methods requires that (78) be manipulated so that the
exponent of the resulting integrand is approximately quadratic near β̂. Calculations
begin with an expression of the density inversion integral (19) in terms of the cumu-
lant generating function for one summand in the standardized mean of independent
and identically distributed components:

fX(x) =
1

2πi

∫ +i∞

−i∞
exp(KX(γ) − γx) dγ

=
n

2πi
exp(n[KY (β̂) − β̂x])

∫ +i∞

−i∞
exp(n[KY (β) − βx − KY (β̂) + β̂x]) dβ. (79)

The second equality above follows from the change of variables γ = βn. Relation
(77) ensures that (79) can be replaced by

fX(x) =
n exp(n[KY (β̂) − β̂x])

2πi

∫ β̂+i∞

β̂−i∞
exp(n[KY (β)−βx−KY (β̂)+β̂x]) dβ. (80)

Since the integrand is a characteristic function evaluated at �(β), when this integra-
tion is performed along the path parallel to the complex axis, the result recovered
is the Edgeworth series times the leading factor, yielding (70).

The preceding heuristic development of the saddlepoint series implies that a
better path of integration runs through the previously defined saddlepoint β̂. Re-
lation (77) shows that this integration may be performed along the path �(β) = β̂.
As will be shown later in this section, the integrand in (78) along this path is the
characteristic function of the tilted distribution used in the heuristic development of
the saddlepoint density approximation in §4.1, and the result will be (70) as before.
This derivation of the saddlepoint series using the shifted vertical path of integra-
tion will give the sharpest results, and will be crucial when considering uniformity
in the behavior of approximation errors. Never the less, one might ask whether local
changes in the path of integration might produce sharper results. To answer this
question by showing that the heuristically optimal results are (70), to exhibit the
saddlepoint development as introduced by Daniels (1954), and to set the stage for
further developments in which these methods will be very useful, this section and
the next present the development of saddlepoint series using the method of steepest
descent.

This approach can be motivated from a purely analytic point of view, by recourse
to saddlepoint integration techniques (Mathews and Walker, 1964). Pick β̂ along
the real axis minimizing K(β) − βx, and pick the path through β̂ along which the
real part of K(β)−βx decreases the fastest as one moves away from the real axis, at
least near β̂. This path is called the path of steepest descent. As will be explained
below, along this path K(β) − βx is real. See Fig. 9. The steepest descent curve in
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this figure is denoted by the most finely dotted line. The surface of the real part
of K above the complex plane then has paths through β̂ along which it rises in
either direction, and paths along which it falls in either direction. The surface has
the shape of a saddle, giving the name saddlepoint to β̂. Using the same ideas as
found in the proof of the asymptotic validity of Edgeworth series, as n increases,
the contribution to the integral of any bit outside of an increasingly small circle
about the saddlepoint vanishes exponentially, and the remainder is determined by
the derivatives of K at β̂.
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Steepest descent methods involve integration along paths through β̂ along which
the real part decreases fastest near β̂. The first objective is to determine whether
such paths exist. The quantity multiplying n in the exponent of (80),

h(β) = [KY (β) − βx − KY (β̂) + β̂x],

is an analytic function that is zero and has zero first derivative at β̂, by the choice
of β̂. Specifically, a function ω : R → C must be constructed that is continuous and
piecewise differentiable, such that lima→−∞ ω(a) = β̂−i∞, lima→+∞ ω(a) = β̂+i∞,
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and h(ω(a)) falls off as quickly per distance traveled along ω as along any other
path through β̂, in a neighborhood of β̂. The line integral in (80) is then defined
by splitting up this path into its differentiable parts, using the change of variables
theorem to express the integral along each part as the sum of two standard one-
dimensional integrals, representing the real and complex parts of the transformed
integrand

exp(n[KY (β(a)) − β(a)x − KY (β̂) + β̂x])(dβ/da) da,

performing the separate integrations, and summing the parts. The second objective
is to characterize this path.

Since h(β) is analytic, it has a convergent power series representation h(β) =∑∞
k=0 ck(β − β̂)k for

∣∣∣β − β̂
∣∣∣ < δ where δ > 0. By construction c0 = c1 = 0, and

c2 is real and positive. Then h(β)/(β − β̂)2 is analytic for
∣∣∣β − β̂

∣∣∣ < δ, and its

value at β̂ is c2. By the composition of functions theorem from complex analysis,√
2h(β)/(β − β̂)2 is analytic for

∣∣∣β − β̂
∣∣∣ < δ1, where δ1 > 0, and has the value

√
2c2 > 0 at β̂. An alternate square root function with the opposite sign could also

be defined. Let

ω(β) = ω̂ + (β − β̂)
√

2[KY (β) − βx − KY (β̂) + β̂x]/(β − β̂)2, (81)

where
ω̂ =

√
2(β̂x − KY (β̂)), (82)

with the sign the same as that of β̂. Then ω(β) is an analytic function of β for∣∣∣β − β̂
∣∣∣ < δ1, takes the value ω̂ at β̂, and has first derivative

√
2c2 > 0 at β̂. By the

inverse function theorem for complex variables, there exist δ2 > 0 and a function
β(ω) analytic for |ω − ω̂| < δ2, such that β(ω) is the inverse of ω(β) in (81).

Through this ball |ω − ω̂| < δ2 runs the path �(β(ω)) = β̂. Integrate instead
along the line �(ω) = ω̂, the path of steepest descent. Again, recall that this is
the same path along which KY (β) − βx − KY (β̂) + β̂x is real and negative. Within
|ω − ω̂| < δ2 will be constructed three curves: The line of steepest descent, along
�(ω) = ω̂, and two segments along which the imaginary part of ω is fixed, leading
back to the path �(β(ω)) = β̂. Construct these as follows: Let ω1 and ω2 be the two
places that the path �(β(ω)) = β̂ crosses the circle |ω − ω̂| = δ2, where �(ω1) < 0,
�(ω2) > 0. The three paths are then
1. �(ω) = �(ω1) from �(ω) = �(ω1) to �(ω) = �(ω̂).
2. �(ω) = �(ω̂) from �(ω) = �(ω1) to �(ω) = �(ω2).
3. �(ω) = �(ω2) from �(ω) = �(ω̂) to �(ω) = �(ω2).

This reparameterization β(ω) will make finding the path of steepest descent
easy. Since 1

2(ω(β) − ω̂)2 = KY (β) − βx − KY (β̂) + β̂x, the path along which the
exponent of (80) decreases most quickly, at least very close to β̂, is the path along
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which ω − ω̂ is pure imaginary. Let ω(a) = β(ω̂ + ia) for �(ω1) ≤ a ≤ �(ω2),
representing path 2 above. Along this path ω, when |a| < δ2, the exponent of (80)
is real and negative, since it is the square of a pure imaginary quantity. This gives
a second characterization of the path of steepest descent. Complete this path with
segments 1 and 3 from above, and segments from β(ω2) to β̂ + i∞ and from β̂ + i∞
to β(ω1), along which �(β) = β̂. See Fig. 9.

For the purposes so far, the choice of ω̂ was irrelevant. Choosing ω̂ = 0 would
have been as satisfactory. The particular choice of ω̂ will only become critical in
later sections when saddlepoint expansions for the cumulative distribution function
are constructed. At that point the the fact that the current choice of ω̂ implies not
only ω(β̂) = ω̂, but also ω(0) = 0, will become important.

Having determined the path of steepest descent, parameterizing (80) in terms
of this path yields

fX(x) =
n

2πi
exp(n[KY (β̂) − β̂x])

∫ ω̂+i∞

ω̂−i∞
exp(

n

2
[ω − ω̂]2)

dβ

dω
dω,

plus an error arising from points outside of the circle of radius δ2; this error converges
to zero geometrically quickly.

4.5. Rigorous Derivation using Steepest Descent

Daniels (1954) uses a special case of Watson’s Lemma, a theorem from complex
variables (Jeffreys, 1962), in conjunction with the method of steepest descent of the
previous section, to show that the order of the Edgeworth series carries over but
only pointwise for each value of the mean.

Lemma 4.5.1: If �(ω) satisfies �(ω) =
∑2j

j=0 ajω
j/j! + O(ω2j+1) as ω → 0, and

A and B are positive numbers, then

(
n

2π

)1
2
∫ B

−A
exp(−n

2
ω2)�(ω) dω =

j∑
j=0

�(2j)(0)/[(2n)jj!] + O(n−j−1/2), (83)

provided the integrand on the left hand side of (83) converges absolutely for some
n. Specifically, there exist constants Dj and Nj+1 independent of n such that for
n > Nj+1,∣∣∣∣∣∣

(
n

2π

)1
2
∫ B

−A
exp(−n

2
ω2)�(ω) dω −

j∑
j=0

�(2j)(0)/[(2n)jj!]

∣∣∣∣∣∣ ≤ Dj/n
j+1/2.

Proof: Let Ej+1(ω) = �(ω) − ∑2j
j=0 ajω

j/j!. Choose a < A, b < B, and Dj

such that on (−a, b), |Ej+1(ω)| ≤ 1
2Djω

2j+1. Choose Nj+1 such that 1
2Djn

−j−1/2 ≥
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exp(− max(a, b)n)�(j)(0), if n > Nj+1. Then

(
n

2π

)1
2
∫ B

−A
exp(−n

2
ω2)�(ω) dω =

2j∑
j=0

(
n

2π

)1
2
∫ ∞

−∞
exp(−n

2
ω2)

�(j)(0)
j!

ωj dω−

2j∑
j=0

(
n

2π

)1
2
∫ −A

−∞
exp(−n

2
ω2)

�(j)(0)
j!

ωj dω −
2j∑

j=0

(
n

2π

)1
2
∫ ∞

B
exp(−n

2
ω2)

�(j)(0)
j!

ωj dω

+
(

n

2π

)1
2
∫ −a

−A
exp(−n

2
ω2)�(ω) dω +

(
n

2π

)1
2
∫ B

b
exp(−n

2
ω2)�(ω) dω

+
(

n

2π

)1
2
∫ b

−a
exp(−n

2
ω2)Ej+1(ω) dω. (84)

The proof is completed by showing that
1. Even terms in the first summation of (84) are the corresponding terms given in

the statement of the theorem.
2. Odd terms in the first summation of (84) are zero.
3. The final term in (84) is bounded by Djn

−j−1/2 ∫∞
−∞ exp(−ω2/2) |ω|2j+1 dω.

4. All other terms of (84) converge to zero geometrically, at rate exp(− max(a, b)n).
Q.E.D

A rescaled version of Lemma 4.5.1 of more immediate use is:

Lemma 4.5.2: If �(ω) is analytic in a neighborhood of ω = ω̂ containing the
path (−Ai + ω̂, Bi + ω̂) with ∞ ≥ A > 0 and ∞ ≥ B > 0, then

i−1
(

n

2π

)1
2
∫ Bi+ω̂

−Ai+ω̂
exp(

n

2
(ω − ω̂)2)�(ω) dω =

∞∑
j=0

(−1)j�(2j)(ω̂)
(2n)jj!

is an asymptotic expansion in powers of n−1, provided the integral converges abso-
lutely for some n; that is,∣∣∣∣∣∣

(
n

2π

)1
2
∫ Bi+ω̂

−Ai+ω̂
exp(

n

2
(ω − ω̂)2)�(ω) dω −

j∑
j=0

(−1)j �
(2j)(ω̂)

(2n)jj!

∣∣∣∣∣∣ ≤ Dj/n
j+1.

Proof: This lemma follows immediately from Lemma 4.5.1 and the usual change
of variables theorem in integration. Since terms in the expansion of all orders in n
exist, the remainder term is of the same order as the last term omitted.

Q.E.D
The rescaled Watson’s Lemma will be applied to the center portion of the in-

tegral in (80), after changing the path of integration as in §4.4 and parameterizing
using (81). This reparameterization introduces the factor �x(ω) = dβ/dω, which
by the arguments of §4.4 is analytic at ω̂. One can prove a result that is stronger
than that of Theorem 4.1.1 using Watson’s lemma; the following result is stronger
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because it addresses uniformity properties of the approximation as the ordinate x
changes, it includes cases when the distribution of X is not continuous for small n
more cleanly, and it yields the formula of Blackwell and Hodges (1959) directly.

Theorem 4.5.3: Suppose that:
1. The random variables Y1, . . . , Yn are independent and identically distributed,

each with cumulant generating function KY defined on an open interval con-
taining 0, and each with cumulative distribution function FY .

2. An ordinate x is chosen such that the equation K′
Y (β̂) = x has a solution.

3. There exists N ∈ Z such that the characteristic function for the tilted density

ζN(s) = exp(N [KY (β + is)x − KY (β)])

is absolutely integrable for each real β ∈ [0, β̂]:
∫∞
−∞ |ζN(s)| ds < ∞.

Then the mean X = (Y1 + · · ·+Yn)/n has a density fX if n ≥ N , and the result
(70) is a valid asymptotic expansion for fX(x), in that the error incurred by
keeping only the first j terms can be bounded by a quantity of the form Dj/n

j+1.
Furthermore, if (3) is replaced

3’ Yj is supported on an integer lattice,
then (70) is a valid asymptotic expansion for nP [X = x].

Proof: As indicated above, fX is given by the inversion integral (80). This is
integrated along the five-part path described in §4.4.

Recall that the third part is the integral along the path of steepest descent:

√
n

2π
exp(n[KY (β̂) − β̂x])√

K′′
Y (β̂)

i−1
√

n

2π

∫ ω̂+iδ2

ω̂−iδ2
exp(

n

2
(ω − ω̂))

√
K′′

Y (β̂)dβ

dω
dω.

Lemma 4.5.2 is applied to this integral. Verification that

dβ

dω
=

[
1 − 1

3 ρ̂Y,3(ω − ω̂) + ( 5
24 ρ̂

2
Y,3 − 1

8ρY,4)(ω − ω̂)2 + O((ω − ω̂)3)
]

√
K′′(β̂)

(85)

and hence that the approximation agrees with (70), will be outlined in the exercises.
The second and fourth parts of the paths of integration contribute a pure imag-

inary portion. Since the complete resulting integral is real, imaginary contributions
must cancel out and can be ignored.

The first and fifth integrals, along rays to β̂ ± i∞, are treated exactly as in the
Edgeworth series proof for densities, part b, in §3.7. Along the line �(β) = β̂ the
integrand of (80) is the characteristic function of the sum of n random variables
whose probability distribution is given by

dF ∗
Y (y) = [exp(β̂y) dFY (y)]/

∫ ∞

−∞
exp(β̂z) dFY (z),
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evaluated at �(β). By condition 3, the limit of the characteristic function for
this distribution as the argument diverges to ±∞ is zero. Hence outside of a fixed
interval about the origin the absolute value of the characteristic function is bounded
away from one, and the integral over the first and fifth parts of the path is bounded
by the least upper bound of the individual characteristic functions over this region,
which is less than 1, to the power n − N , times a convergent integral. Hence the
contribution converges to zero geometrically.

The result for the lattice case is derived by noting that the inversion integral
for lattice probabilities, (32), is identical to that for densities, (19), except for the
factor of ∆, and for the different range of integration. Because the saddlepoint
result is obtained by truncating the range of integration in (19) to a small open set
containing the real line, then the same arguments justify the expansion of Blackwell
and Hodges (1959).

Q.E.D

4.6. Conditions for Uniformly Bounded Relative Error

The preceding steepest descent methods imply that the resulting series are, for a
given ordinate, the best approximate cumulant generating function inversion ap-
proximations available that require only derivatives of the cumulant generating
function at one point. Since the resulting error bounds involve only the invari-
ants of the summands. one might conjecture that suitable regularity conditions on
their behavior imply uniform relative error bounds of the asymptotic expansion.
This conjecture is true. Unfortunately steepest descent methods do not provide an
easy way to establish this uniformity. Two difficulties arise:
1. The error involved in truncating the power series expansion for dβ/dω near

the origin was governed by the behavior of higher-order derivatives of dβ/dω.
Bounding these coefficients away from the real axis using only behavior along
this axis is difficult.

2. The radius of convergence for dβ/dω determined the geometric rate at which
parts of the inversion integral away from β̂ converged to zero. This radius is not
constant, and in fact for extreme β̂ may converge to zero. Consider the logistic
distribution. The tilted cumulant generating function K(r + is) − (r + is)x is,
after simplification,

i arcsin

⎛
⎝

√
2 (s cosh(π s) sin(π r) − r cos(π r) sinh(π s))√

(r2 + s2) (cosh(2 π s) − cos(2 π r))

⎞
⎠ − 3

2
log(2)

−log(cosh(2πs)−cos(2πr))+ 1
2 log

((
r2+s2

)
(cosh(2πs)−cos(2πr))

)
−rx−isx,

and at r = 1 the imaginary part is

−s x + arcsin
(
(
√

2 sinh(π s))/(
√

(1 + s2) (cosh(2 π s) − 1))
)

.
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The value of s making this imaginary part zero can be plotted as a function
of x (Fig. 10). The length of the portion of the path of integration to which
arguments involving the derivatives of the integrand apply is shrinking to zero.
Fig. 11 illustrates this in the case of the logistic distribution.
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Fig. 10.

A different tactic must be employed demonstrating that the series (70) has desired
uniformity properties.

Theorem 4.6.1: Assume the conditions of Theorem 4.5.3. Suppose further that:

4. The standardized absolute moments E
[
|Y1|j exp(Y1β̂)

]
/E

[
|Y1|2 exp(Y1β̂)

]j/2
are

bounded for each j as β̂ varies.
5. For some integer r,

∫ i∞
−i∞

∣∣∣ζβ̂(γ)
∣∣∣r dγ ≤ c1 < ∞, for all β̂ in the domain of the

cumulant generating function, where

ζβ̂(γ) = exp(KY (β̂ + iγ/σ(β̂)) − KY (β̂) − ixγ/σ(β̂))

is the characteristic function for each tilted distribution.
6. ζβ̂(γ) converge uniformly to some function as β̂ goes to its extreme value,
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Steepest Descent Curve for Logistic Distribution
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Then the bound on the error in the asymptotic series (70) can be chosen indepen-
dently of x and β̂, for all x for which β̂ is defined.

Proof: Condition 4 in a sense refines the prior condition 2, in that attention
is restricted to ordinates for which β̂ exists, and condition 5 extends the prior
condition 3. The present condition 4 is slightly stronger than that considered by
Daniels (1954), and implies boundedness of the invariants. The result presented is
due to Jensen (1988).

Refer to the Edgeworth series density result, Theorem 3.5.1, as proved in §3.7.
Condition 1 of Theorem 4.5.3 shows that Corollary 2.5.4, with the cumulants re-
placed by the invariance, can be applied for g = j + 1 and ε = 1, yielding C from
(27) uniformly bounded. The result follows if we can demonstrate that δ may of
§3.7 may also be chosen independently of x and β̂. Consequently, all quantities
involved in bounding the portion of the error integral near the origin also can be
taken independent of x and β̂.

Condition 2 shows that away from the real axis, all of the characteristic func-
tions being approximately inverted converge to 0, and condition 3 shows that this
must happen uniformly. Outside of (−δ

√
n, δ

√
n) the characteristic function to be

inverted can be bounded by qn−r times something integrable, and whose integral is
bounded, by condition 2. The constant q < 1 is independent of x and β̂, and the
result follows.

Q.E.D
Uniformity in (70) refers to the accuracy of the series multiplying the first-
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order saddlepoint density approximation. Hence this uniformity refers not to the
absolute error of each partial sum in (70), but also to the relative error of the first-
order approximation. If

√
K′′

Y (β) remains bounded below, absolute uniformity is
recovered, although this theorem demonstrates no improvement over the Edgeworth
series result, when considering analytically proven uniform behavior. If

√
K′′

Y (β)
goes to infinity then in fact the resulting uniform behavior of the absolute error is
better than that for Edgeworth series. Bear in mind that this is all from an analytic
point of view; in practice the saddlepoint approximations behave much better than
the Edgeworth series.

4.7. Cases with Uniformly Bounded Relative Error

Daniels (1954) lists forms of summand densities such that the relative error of the
saddlepoint approximation to the distribution of means of independent and ident-
ically distributed copies is uniformly bounded. These are characterized by how the
tails behave as the ordinate goes to limiting values. Consider a distribution defined
on (−x1, x2) and examine behavior as the ordinate approaches x2. In the first three
examples x2 = ∞.
1. Gamma: f(x) ∼ Axα−1 exp(−cx) where α > 0, c > 0.
2. f(x) ∼ A exp(ψxα − cx); ψ > 0, c > 0, 0 < α < 1. Note Daniels’ paper reads

0 < x < 1.
3. Stable laws: f(x) ∼ A exp(−ψxα); ψ > 0, α > 1.
4. Beta: f(x) ∼ A(x2 − x)α−1 on (−x1, x2); α > 0.
5. f(x) ∼ A exp(−ψ(x2 − x)−γ) on (−x1, x2), ψ > 0, γ > 0.

Jensen (1988) presents conditions on density functions that imply the conditions
of the theorem of the previous section. These are applied to the cases presented by
Daniels.

4.8. The Effect of Renormalization

The quality of the saddlepoint approximation can often be improved by multiplying
the density approximation by a constant to make it integrate to 1. Recall from §4.2
that the saddlepoint approximation to a normal density is exact, and the saddlepoint
approximation to a gamma density is exact up to a constant of proportionality.
There are very few densities with this property, as the following theorem of Blæsild
and Jensen (1985) shows.

Theorem 4.8.1: Suppose that Yj are independent and identically distributed ran-
dom variables, and suppose that the saddlepoint approximation to the density of the
mean of n such variables is exactly proportional to the true density, for every n ∈ Z.
Then the distribution of the Yj is either gamma, normal, or inverse Gaussian.

Proof: Since §4.2 contains verification that the normal and gamma densities are
approximated exactly up to a multiplicative constant, it remains only to prove that
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the inverse Gaussian also shares this property, and that no other densities share
this property. Verifying the exactness of the approximation to the inverse Gaussian
is left as an exercise.

Barndorff–Nielsen and Klüppelberg (1999) consider the multivariate case of this
exactness phenomenon.

From (70), the relative error incurred when using the saddlepoint approximation
is

3ρ̂Y,4 − 5ρ̂2
Y,3

24n
+

385ρ̂4
Y,3 − 630ρ̂2

Y,3ρ̂Y,4 + 105ρ̂2
Y,4 + 168ρ̂Y,3ρ̂Y,5 − 24ρ̂Y,6

1152n2 + · · · , (86)

where ρ̂Y,l are given by (72) and depend on β̂. For this error to be constant, each
term in its series (86) must be constant as a function of β̂. This theorem will be
proved by examining the first two terms in (86), setting them equal to a constant,
treating them like a system of differential equations for KY , and showing that the
only solution is the cumulant generating function associated with a normal, gamma,
or inverse Gaussian distribution.

If the first term is zero, ρ̂Y,4/8 − 5ρ̂2
Y,3/24 = 0 and

3K(4)
Y (β̂) = 5K(3)

Y (β̂)2/K(2)
Y (β̂). (87)

This represents a second-order non-linear differential equation for K′′
Y (β̂). We seek

solutions for which K′′
Y has a power series representation near zero, and for which

K′′
Y (0) > 0. Expressing K′′

Y (β̂) as a power series, and substituting into (87) yields
a recursion for the power series coefficients of K′′

Y in which higher-order coefficients
are completely determined by the first two. The function K∗

Y
′′(β) = (aβ + b)−3/2

solves (87), for all b > 0. Since K∗
Y

′′(0) = b−3/2 and K∗
Y

′′′(0) = −(3/2)ab−5/2, the
set of possible cumulant generating functions satisfying (87) is contained in the
set generated from K∗

Y with a and b varied. Hence solutions of the form (aβ +
b)−3/2 for all b > 0 exhaust the class of solutions of interest. Showing that these
solutions represent cumulant generating functions of normal and inverse Gaussian
distributions is left as an exercise.

If the first term is constant but not zero, (87) no longer holds. An alternate
equation is derived by examining the conditions of constancy for the coefficients of
n−1 and n−2 in (86), and their derivatives. The following rule for differentiating the
ρ̂Y,l is useful:

dρ̂Y,l/dβ̂ = K(l)
Y (β̂)(−l/2)K(2)

Y (β̂)−(l+2)/2K(3)
Y (β̂) + K(l+1)

Y (β̂)K(2)
Y (β̂)−l/2

= (−l/2)
√

K′′
Y (β̂)ρ̂Y,lρ̂Y,3 +

√
K′′

Y (β̂)ρ̂Y,l+1. (88)

Setting the first two derivatives of ρ̂Y,4/8−5ρ̂2
Y,3/24 to 0, setting (ρ̂Y,4/8−5ρ̂2

Y,3/24)2

to a constant, and 385ρ̂4
Y,3 − 630ρ̂2

Y,3ρ̂Y,4 + 105ρ̂2
Y,4 + 168ρ̂Y,3ρ̂Y,5 − 24ρ̂Y,6/1152 to a
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different constant, results in the equations

15 ρ̂3
Y,3 − 16ρ̂Y,3ρ̂Y,4 + 3ρ̂Y,5 = 0

−135 ρ̂4
Y,3

2
+ 101 ρ̂2

Y,3ρ̂Y,4 − 16 ρ̂2
Y,4 − 47 ρ̂Y,3 ρ̂Y,5

2
+ 3 ρ̂Y,6 = 0

25ρ̂4
Y,3 − 30ρ̂2

Y,3ρ̂Y,4 + 9ρ̂2
Y,4 = c2

2

385 ρ̂4
Y,3 − 630 ρ̂2

Y,3 ρ̂Y,4 + 105 ρ̂2
Y,4 + 168 ρ̂Y,3 ρ̂Y,5 − 24 ρ̂Y,6 = c1.

Multiplying these by 20 ρ̂Y,3/3, 8, 23/9, and 1, and summing them yields

16 ρ̂2
Y,3

(
5 ρ̂2

Y,3 − 3ρ̂Y,4

)
9

=
16 ρ̂2

Y,3 c2

9

on the left hand side, and a constant on the right. Hence in this case, ρ̂Y,3 is constant,

and K′′
Y is determined by the first order differential equation K(3)

Y (β̂) = cK′′
Y (β̂)

3/2

for some constant c. A solution to this equation is K∗
Y

′′(β̂) = (−1
2cβ̂+b)−2 for b > 0.

For the same reasons as in the first case solutions of this form include all solutions
of interest. Showing that these solutions represent cumulant generating functions
of normal and gamma distributions is left as an exercise.

Q.E.D
Near exactness up to a multiplicative constant is fairly common for saddlepoint

density approximations. Such near exactness holds if the coefficients in (70) vary
slowly enough. Recovering the constant multiplier and normalizing has potential
for improving the behavior of the saddlepoint approximation. This constant may
be derived by numerically integrating the approximation, and Durbin (1980) shows
that in some cases the order of the error is divided by

√
n.

Theorem 4.8.2: Suppose that the conditions of Theorem 4.6.1 hold. Then the
saddlepoint density approximation (68) may be rescaled so that its relative error is
O(n−3/2) as the value of the sum standardized to constant variance is held fixed.
This rescaling may be calculated by integrating (68) and dividing by the result.

Proof: Without loss of generality assume that E [Y ] = 0. From (70),

fn(x) =
√

n
exp(n[KY (β̂) − β̂x])√

2πK′′
Y (β̂)

[1 + b(β̂)/(2n) + O(n−2)].

Here c is a sum of products of invariants; hence its derivative is the sum of products
of invariants and

√
K′′

Y (β̂), by (88). The derivative of b(β̂) with respect to x is

db/dx = b′(β̂)/
√

K′′
Y (β̂), which is bounded on a set of the form (−δ, δ) for some

δ > 0. By the strict concavity of the Legendre transform, KY (β̂) − β̂x is bounded
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away from zero for x outside of (−δ, δ). Using Taylor’s theorem, for x† ∈ [0, x],

fn(x) =
√

n
exp(n[KY (β̂) − β̂x])√

2πK′′
Y (β̂)

[1 + b(0)/(2n) + y(db/dx)(x†)/(2n
√

n) + O(n−2)]

(89)
where y = x

√
n. For any fixed y, then x ∈ (−δ, δ) for sufficiently large n. Hence

multiplying (68) by 1 + b(0)/(2n) gives the standardization resulting in a relative
error of size O(n−3/2). Furthermore, since

√
nX̄ has a limit in distribution, the limit

of ∫ ∞

−∞

√
n

exp(n[KY (β̂) − β̂x])√
2πK′′

Y (β̂)
(
√

nx)(db/dx)(x†) dx

is finite. Integrating both sides of (89),

1 = (1 + b(0)/(2n))
∫ ∞

−∞

√
n

exp(n[KY (β̂) − β̂x])√
2πK′′

Y (β̂)
dx(1 + O(n−3/2)).

Hence
∫∞
−∞

√
nexp(n[KY (β̂) − β̂x])/

√
2πK′′

Y (β̂) dx = (1 + b(0)/(2n))(1 + O(n−3/2)).
Q.E.D

4.9. Numeric Hints for Solving Saddlepoint Equations

In many applications the saddlepoint equation (69) cannot be solved analytically,
even when the solution β̂ exists. In these cases, saddlepoint methods can usually
still be applied by solving (69) numerically.

Often one uses Newton–Raphson derivative-based methods to calculate the sad-
dlepoint. These methods in general will work well, since the function KY (β) − βx
to be minimized is convex. The second derivative exists and is always positive. An
iterative procedure is then used to calculate the saddlepoint. An initial approxima-
tion β0 is chosen. In general this will not exactly solve K′

Y (β̂) = x, and so the initial
approximation must be modified. Approximating the saddlepoint equation linearly
in the neighborhood of β0, the saddlepoint β̂ satisfies K′

Y (β0)+K′′
Y (β0)(β̂ −β0) ≈ x.

The solution to this equation is

β̂ = (x − K′
Y (β0))/K′′

Y (β0) + β0. (90)

The solution to this equation is then used as an updated approximate solution,
and (90) is iterated until the approximation is considered close enough to the true
solution to (69). This convergence may be assessed by referring to the difference
|x − K′

Y (β0)|, or by referring to changes in subsequent values of β0. The former
method is preferred, because in cases where KY is defined only on a finite range,
and diverges to infinity as its argument approaches the end of this range, KY (β̂)
and K′′

Y (β̂) are far more sensitive to small errors in β̂ near the ends of the range
than in the middle. These quantities KY (β̂) and K′′

Y (β̂) are needed to calculate the
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saddlepoint density approximation. Hence a policy of terminating iterations of (90)
when changes in β̂ become small on an absolute scale is problematic, since it is
likely to be unnecessarily fine for moderate values of β̂ and too coarse for extreme
values of β̂.

The Newton–Raphson method is not guaranteed to yield a solution β̂. The
method depends on the cumulant generating function being approximately quad-
ratic, at least in a region containing the true and approximate saddlepoint. If the
cumulant generating function is exactly quadratic one iteration of (90) will result
in an exact solution to the saddlepoint equation. If the second derivative of the
cumulant generating function decreases as one moves from β0 to β̂, iterations of
(90) will tend to result in steps toward β̂ that are too small. In this case the
iterative saddlepoint approximations typically move monotonically toward β̂. If the
second derivative of the cumulant generating function increases as one moves from
β0 to β̂, iterations of (90) will tend to result in steps toward β̂ that overshoot β̂. In
this case the iterative saddlepoint approximations typically first cross to the other
side of β̂, and then move monotonically toward β̂. If the second derivative of KY

is lower on either side of the saddlepoint than it is at the saddlepoint, successive
saddlepoint approximations may move from one side of β̂ to the other while never
converging.

Since the Newton–Raphson method performs best when the cumulant generat-
ing function is approximately quadratic, rescaling the cumulant generating function
to make it closer to quadratic speeds convergence. Especially to be avoided are
cases in which the cumulant generating function exists only on a finite interval,
and in which Newton’s method may give iterations falling outside this domain of
definition. In this case rescaling the cumulant generating function argument often
avoids such problems.

For example, consider the logistic distribution. Exercise 7 of §2.8 gave this
cumulant generating function as KY (β) = log(πβ/ sin(πβ)). Its derivatives are

K′
Y (β) = 1/β − π cot(πβ)

K′′
Y (β) = −1/β2 + π2 csc2(πβ)

for β ∈ (−1, 1). Solving the saddlepoint equation in this case by iterating (90)
gives rise to two problems. First, note that the values at zero are K′

Y (0) = 0 and
K′′

Y (0) = π2/3. Hence for x > π2/3, when starting from β0 = 0, one iteration of
(90) gives a second saddlepoint approximation outside the domain of KY . Second,
supposing that for a large x a more reasonable starting value β0 is found. Since KY

is far from quadratic, the Newton–Raphson method can be expected to converge
very slowly.

Solving instead the equation K′
Y (2 tan−1(ŝ)/π) = x using the Newton–Raphson

method, and setting β̂ = 2 tan−1(ŝ)/π, avoids both of these problems. The new
quantity to be solved for can take any value on the real line, so no problem of
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provisional approximations lying outside the domain of the cumulant generating
function arises. Furthermore, no poles near the end points slow the convergence.
See Fig. 12.

Alternatively, one might use the secant method to solve for the saddlepoint.
Begin with two initial values, β0 and β1, are determined such that K′

Y (β0) < x <
K′

Y (β1). If K′(β) were linear, the saddlepoint would then be given by

β2 = (x[β1 − β0] + β0K′
Y (β1) − β1K′

Y (β0))/(K′
Y (β1) − K′

Y (β0)).

Graphically, one determines β̂ by observing where the secant joining (β0, K′
Y (β0)) to

(β1, K′
Y (β1)) crosses the horizontal line through x. One then evaluates K′

Y (β2) and
determines whether K′

Y (β2) > x, implying β2 replaces β1, or whether K′
Y (β2) < x,

implying β2 replaces β0. This process continues until β0 and β1 are close enough to
consider the common value the saddlepoint.

This secant method generally only produces the correct answer in one iteration
if K′

Y is linear, as is the case with the Newton–Raphson method. Like the Newton–
Raphson method, if K′′

Y varies quickly enough, convergence can be very very slow,
although divergence is not possible for the secant method.

4.10. Exercises

1. Complete the proof of Watson’s Lemma by following the steps:
a. Prove the first and second assertions in the proof of Watson’s Lemma

in §4.5, by using integration by parts, or other methods, to show that∫∞
−∞ exp(−ω2/2)ωk dω =

∫∞
−∞ exp(−ω2/2)(k − 1)ωk−2 dω for any integer k,

and hence for any even integer k,
∫∞
−∞ exp(−ω2/2)ωk dω = k!/((k/2)!)2−k/2.

b. Prove the third assertion in the proof of Watson’s Lemma in §4.5.
c. Prove the fourth assertion in the proof of Watson’s Lemma in §4.5.

2. Show that the expansion resulting from applying the modified version of Wat-
son’s Lemma to dβ/dω gives the results (70) by following the steps:
1. Show that if a function f(β) has a series expansion 1 +

∑∞
j=1 ajβ

j, then√
f(β) has the expansion

1 + 1
2a1β

1 + (1
2a2 − 1

8a
2
1)β

2 + (1
2a3 − 1

4a1a2 +
1
16

a3
1)β

3 + · · · .

2. Use the preceding result to show that if a function f(β) has a series expan-
sion

∑∞
j=2 ajβ

j, then
√

f(β) has the expansion

√
a2(β + 1

2a3β
2 + (1

2a4 − 1
8a

2
3)β

3 + (1
2a5 − 1

4a3a4 +
1
16

a3
3)β

4 + · · · . (91)

3. Show that if a function f(β) has a series expansion
∑∞

j=1 ajβ
j, and f(β) = s,

then
β = a−1

1 s − a−3
1 a2s

2 + a−5
1 (2a2

2 − a1a3)s3 + · · · . (92)
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Derivative of Logistic Cumulant Generating Function
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4. Use the result (91) to get a series expansion for ω in terms of β and deriva-
tives of KY (β̂), and use (92) to give an expansion for β in terms of ω. Take
a derivative of this to get the expansion for dβ/dω.

3. Complete the proof of the theorem of §4.8 using the following steps.
1. Show that normal and inverse Gaussian distributions have cumulant gener-

ating functions satisfying K′′(β) = (aβ + b)−3/2 for b > 0.
2. Show that normal and gamma distributions have cumulant generating func-

tions satisfying K′′(β) = (−1
2cβ̂ + b)−2 for b > 0.

3. Show that the saddlepoint approximation to the inverse Gaussian distribu-
tion is exact.



5

Saddlepoint Series for Distribution Functions

Recall from §3 that calculating distribution function approximations from Edge-
worth density approximations was a simple matter. The Edgeworth series for the
density is a linear combination of derivatives of the normal distribution function,
and hence is easily integrated to give a corresponding cumulative distribution func-
tion approximation. This cumulative distribution function approximation inherits
many good properties from the density approximation.

Throughout this chapter, assume that the random variable X results as the
mean of n independent and identically distributed random variables, each of which
has a cumulant generating function KY (β) defined in an open interval containing
zero. Hence X also has a cumulant generating function KX(β). Until noted to the
contrary, assume that X has a density fX .

Integrals involving saddlepoint density approximations are in general not tract-
able analytically. One might approximate the cumulative distribution function by
integrating the saddlepoint density (68) from −∞ to x numerically. Many tech-
niques for numeric integration exist (Thisted, 1988). Most of these techniques
involve calculating the integrand at a large number of points x0, . . . , xj between
−∞ and x, evaluating the integrand at each of these points to obtain y0, . . . , yj,
and estimating the integral as a linear combination of y0, . . . , yj. Each evaluation
of the saddlepoint density may require an iterative solution to (69). Daniels (1987)
notes that this numeric integration of the saddlepoint density can be simplified by
changing variables from x to β̂:

QX(x) = P [X ≥ x]

=
∫ max(X)

x
fX(z) dz (93)

=
∫ max(X)

x
exp(KX(β̂(z)) − zβ̂(z))/

√
2πK′′

X(β̂(z)) dz + O(n−1) (94)

=
∫ max(β̂)

β̂(x)
exp(KX(β) − βK′

X(β))
√

K′′
X(β)/2π dβ + O(n−1)

89
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to avoid having to calculate β̂ for each value xi, as would be required to numerically
evaluate (94). Although quite good results can be obtained in this way, this method
has the inelegant drawback of embodying both numeric and analytic approximation.
The rest of this chapter will be concerned with alternative analytic methods for
deriving saddlepoint cumulative distribution function approximations. No strong
heuristic parallels exist to guide us here. Principle results are derived directly from
the appropriate inversion integrals. This task is complicated by a pole at 0 in the
integrand. Approximations are derived ignoring and accounting for this pole, and
are compared. Finally, extensions of these techniques to lattice distributions are
presented. Reid (1996) provides a recent thorough review of these questions.

Rather than approximating the cumulative distribution function of a random
variable directly, we begin by calculating tail areas for the random variable. This is
done because some of the saddlepoint cumulative distribution function approxima-
tions degenerate for ordinates near the mean, as will be shown in the next sections.

Many analytic approximations to tail areas begin with integration of the exact
expression for the density (19). This results in a double integral, with respect to
the dummy ordinate representing potential values of the random variable, and with
respect to the cumulant generating function argument. Fubini’s Theorem justifies
interchanging the order of integration by selecting a path of integration C for which
all points have a positive real part bounded away from zero; hence

QX(x) =
∫ ∞

x

[ 1
2πi

∫
C

exp(KX(β) − βy) dβ
]

dy

=
1

2πi

∫
C

[∫ ∞

x
exp(KX(β) − βy) dy

]
dβ.

The integral over [x, ∞) can be replaced by a limiting operation:

QX(x) = lim
b→∞

1
2πi

∫
C

exp(KX(β))(exp(−βx) − exp(−βb)) dβ/β (95)

=
1

2πi

∫
C

exp(KX(β) − βx) dβ/β

=
1

2πi

∫
C

exp(n [KY (β) − βx]) dβ/β (96)

The result (96) of the limiting operation in (95) also requires a path for β with real
part bounded above zero. This inversion integral (96) lacks the factor n appearing
in the density inversion integral (79) from the linear transformation creating dβ,
since it is eliminated by an identical factor in β.
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5.1. A Large-Deviations Result

Bahadur and Ranga Rao (1960) approximate tail areas in a manner similar to
that used to derive (94). Instead of forming the Edgeworth series after tilting the
distribution separately for each y in the range of integration, one tilted Edgeworth
series is calculated; this is chosen so that the mean is at x. Recall that when it
can be constructed, the Edgeworth series ej has error uniformly of order o(n1−j/2) in
general, but in this case, since Edgeworth series of all orders can be constructed, ej

has error uniformly of order o(n1−j/2). Let ω̂ =
√

2(β̂x − KY (β̂)), with the sign the

same as that of β̂, exactly as in (82). Let σ̂ =
√

K′′
X(β̂) =

√
nK′′

Y (β̂). From (93),

QX(x) = exp(KX(β̂) − β̂x)
∫ ∞

x
exp(−(β̂y − β̂x)) exp((β̂y − KX(β̂)))fX(y) dy

= exp(−n

2
ω̂2)

∫ ∞

x
exp(−(β̂y − β̂x))fX(y; β̂) dy

= exp(−n

2
ω̂2)

∫ ∞

x

exp
(
−(β̂y − β̂x)

) [
ej((y − x)/σ̂; ρ̂X) + o(n1−j/2)

]
σ̂

dy

= exp(−n

2
ω̂2)

∫ ∞

0
exp

(
−β̂yσ̂

) [
ej(y; ρ̂X) + o(n1−j/2)

]
dy (97)

Here ρ̂X are the invariants of §2.1, after tilting, and implicitly involve n. Bahadur
and Ranga Rao (1960) expand the integral in (97) as an asymptotic series in n,
effectively using Watson’s Lemma, which is justified for any β̂ > 0, to obtain

φ(
√

nω̂)√
nẑ

{
1 + (1/n)

[
1
8
ρ̂Y,4 − 5

24
ρ̂2

Y,3 − ρ̂Y,3

2ẑ
− 1

ẑ2

]
+ O(n−2)

}
. (98)

Approximation (98) may also be derived from (96). The same change of vari-
ables as in (81) is used:

ω(β) = ω̂ + (β − β̂)
√

2[KY (β) − βx − KY (β̂) + β̂x]/(β − β̂)2,

for ω near ω̂. Then

QX(x) =
1

2πi
exp(n[KY (β̂) − β̂x])

∫ ω̂+i∞

ω̂−i∞
exp(

n

2
[ω − ω̂]2)�(ω)β−1 dβ

dω
dω. (99)

Since the factor of β−1 does not have an exponent of n this term is included with
dβ/dω in the function �(ω) of Lemma 4.5.1. The function � has a pole at 0.
Furthermore, if x = E [Y ], and hence β̂ = 0, this pole coincides with ω̂. Otherwise
�(ω) is analytic at ω̂, and Watson’s Lemma can be used. As before the value of
the integral is determined by the derivatives of � at ω̂. These derivatives will be
calculated by expanding �(ω) = (1/β)(dβ/dω) about ω̂.
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To expand �(ω), first integrate the expansion in (85) to obtain

β = β̂ +

[
(ω − ω̂) − 1

6 ρ̂Y,3(ω − ω̂)2 + ( 5
72 ρ̂

2
Y,3 − 1

24ρY,4)(ω − ω̂)3 + O((ω − ω̂)4)
]

√
K′′(β̂)

.

(100)
Divide (85) by (100) to obtain

�(ω) =

⎛
⎝1 +

(ω − ω̂)2
(
24 ẑ−2 + 12 ẑ−1 ρ̂Y,3 + 5 ρ̂2

Y,3 − 3 ρ̂4,Y

)
24

+ (ω − ω̂)4

⎞
⎠ /ẑ,

(101)
where

ẑ = β̂
√

K′′
Y (β̂), (102)

and ρ̂Y,3 and ρ̂Y,4 are invariants of the distribution with density proportional to
fY (y) exp(yβ̂ − KY (β̂)), defined in (72). The above series has odd order terms in
ω − ω̂ removed, since these do not affect the value of the integral as approximated
by Watson’s Lemma.

Alternatively, rather than expanding the composition of the logarithm function
with β(ω), one might expand the series dβ/dω and β(ω), and calculate the resulting
quotient.

Substituting (101) into (99), and then using Lemma 4.5.1 gives the tail prob-
ability approximation (98). This is valid only for x > 0, since the calculations
resulting in (96) only hold for integration paths C consisting of points with positive
real parts. One expects the expansion to become inaccurate as x moves close to 0,
since as x → 0 the radius of convergence for � shrinks, and the error incurred in
the outer parts of the inversion integral becomes more important.

Jensen (1988) includes uniform relative error bounds for (98) for ordinates with
β̂ bounded away from 0 as a consequence of the similar result for densities presented
in §4.6, under the same conditions. Since (98) diverges to infinity as β̂ → 0, it is
inappropriate for tail areas corresponding to ordinates near the mean.

5.2. Direct Saddlepoint Series for Distribution Functions

Robinson (1982) presents a much different approach. He expresses the tail proba-
bility QX(x) as (97), but unlike Bahadur and Ranga Rao (1960), explicitly accounts
for the end of the range of integration at zero, by expressing (97) as the sum of inte-
grals of the form Ij(a) =

∫∞
0 exp(−ay)hj(y)φ(y) dy, in essence deriving the Laplace

transform of the Edgeworth series.
Results of this section will be derived both by approximate integration of a

density approximation, and later by an approximation to the complex integral (96)
giving the tail probability exactly.

Robinson (1982) develops his approximation in cases more general than the
mean of independent and identically distributed random variables. Suppose that
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X is the mean of observations Yj, satisfying the conditions of Lemma 3.11.1 and
Theorem 3.11.2. By analogy with §4.1, let γ̂ solve K′

X(γ̂) = x, and let

ẑ = γ̂
√

K′′
X(γ̂)/n, ω̂ =

√
2[KX(γ̂) − xγ̂]/n. (103)

When X is the mean of independent and identically distributed summands, then ẑ
and ω̂ are the same as before. Relation (99) continues to hold under these relaxed
conditions with the broader definitions of ẑ and ω̂.

Theorem 5.4.1: Suppose that a random variable X with a distribution depending
on a parameter n has a cumulant generating function on an interval In such that
[infβ∈Ic

n
|β|2] supβ∈In

K′′
X(0)/n is bounded away from zero. Suppose further that the

density of X is approximated by a sum of form ej(x; ρn) with error that is uniformly
of order o(n(2−j)/2). Then

QX(x) = exp(−n

2
ω̂2)

j∑
j=0

µ∗
j,jIj(

√
nẑ) + o(n1−j/2)

for ω̂ and ẑ as in (103), and for µ∗
j,j the pseudomoments of Table 3, calculated from

the invariants ρn instead of the cumulants κn, and with terms of size o(n1/2−j/2)
deleted.

Proof: The result follows by integrating (97). The error remains of order stated
since the convergence is uniform.

Q.E.D
Using integration by parts, and noting that (d/dy)hj(y)φ(y) = −hj+1(y)φ(y),

one finds that Ij(a) = (2π)−1/2hj−1(0) − aIj−1(a) and I0(a) = exp(a2/2)(1 − Φ(a)).
Then

I1(a) = (2π)−1/2 − a exp(a2/2) (1 − Φ(a)) ,

I2(a) = −a
(
(2π)−1/2 + a exp(a2/2) (1 − Φ(a))

)
,

I3(a) = a2
(
(2π)−1/2 − a exp(a2/2) (1 − Φ(a))

)
− (2π)−1/2.

When j in (97) is 3, then µ∗
0,3 = 1, µ∗

1,3 = µ∗
2,3 = 0, and µ∗

3,3 = ρ̂X,3, and the resulting
approximation is

Q◦
X(x) = exp

(
n(ẑ2 − ω̂2)/2

)
×[

[1 − Φ(
√

nẑ)]
(
1 − n3/2ρ̂X,3ẑ

3/6
)

+ φ(
√

nẑ)
√

nρ̂X,3(nẑ2 − 1)/(6
√

n)
]
, (104)

and
QX(x) = Q◦

X(x) + φ(
√

nω̂)O(1/n). (105)

When X is the mean of independent and identically distributed random variables,
each with third invariant ρY,3, then

Q◦
X(x) = exp

(
n(ẑ2 − ω̂2)/2

)
×
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[
[1 − Φ(

√
nẑ)]

(
1 − nρ̂Y,3ẑ

3/6
)

+ φ(
√

nẑ)ρ̂Y,3(nẑ2 − 1)/(6
√

n)
]
, (106)

with ω̂ as in (82) and ẑ as in (102).
The remaining discussion of approximations of this type will center on (106),

since it is simpler, but most of the comments apply to (104) as well. Approximation
Q◦

X(x) is valid to the same order as the Edgeworth series it uses, since the error rate
of ej(y; κ(β̂)) is uniform. The invariant ρ̂Y,3 is for the tilted distribution; multipliers
involving n arise because the invariants of the tilted mean occurring in (97) have
been replaced by the tilted invariants of the original summands. The method is
adaptable to situations in which the Edgeworth series is valid, and particularly has
applications outside the realm of sums of independent and identically distributed
random variables.

Both approximations (98) and (104) are derived from the integral (97). The
uniform error behavior of the Edgeworth series and the bounded convergence the-
orem might lead one to believe that the integral represented by (97) will converge
uniformly at least on intervals bounded above zero. This is not necessarily true,
as the coefficients of the Edgeworth series depend on the ordinate. One expects
the accuracy of (104) to deteriorate as β̂ → 0, since the quantity multiplying the
error term increases as β̂ decreases. Unlike the previous large-deviations result (98),
however, (104) is still defined when β̂ = 0.

Daniels (1987) notes that (106) may be formally derived from (96) by expanding
the exponent in β about β̂, retaining the quadratic term in the exponent, and expo-
nentiating the rest of the series, while retaining β in the denominator unexpanded.
That is,

QX(x) =
exp(−nω̂2/2)

2πi

×
∫

C
exp

(
n
[
K′′

Y (β̂)(β − β̂)2/2
])

(1 +
n

6
K′′′

Y (β̂)(β − β̂)3 + · · ·) dβ

β
,(107)

where terms represented by · · · are powers of β − β̂ times an inverse factorial, times
pseudo-moments calculated from third and higher order derivatives of KY at β̂, as
in §3.2. Kolassa (2003a) shows that the infinite series implied in (107) may be
truncated and integrated termwise to yield an error that is of the same order as
the first omitted term. The resulting integrated truncated series be expressed as a
linear combination of integrals of the form

Jk(v) =
∫ ω̂+i∞

ω̂−i∞

exp(n[12γ
2 − γv])(γ − v)k

2πiγ
dγ;

specifically, when the sum in (107) is truncated to only those terms given explicitly,
then

Q◦
X(x) = exp(n[ẑ2 − ω̂2]/2)(J0(ẑ) +

n

6
ρ̂Y,3J3(ẑ)).
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These integrals Jk(v) can be calculated analytically, by noting that

Jk(v) =
∫ ω̂+i∞

ω̂−i∞

exp(n[12γ
2 − γv])(γ − v)k−1

2πi
dγ − vJk−1(v),

and by applying (96) to the standard normal distribution, to see that

J0(v) = 1 − Φ(v). (108)

Relation (106) results from substitution of J0 and J3. The exercises invite explo-
ration of the relationship between Ij and Jj(v).

The results of this section involve two difficulties. As v → 0, these integrals
become larger, and one expects the accuracy of approximating the infinite series by
a truncated series to deteriorate. Furthermore, if Q† represents (106) calculated for
the distribution of −X, then Q◦(x) 	= 1 − Q†(x), illustrating that (106) is not the
appropriate expansion when β̂ < 0.

Robinson (1982) notes that his approach and that of Bahadur and Ranga Rao
(1960) differ in that his series contains terms involving the normal distribution func-
tion and the equivalent terms in the Bahadur and Ranga Rao (1960) series have this
replaced by a first order approximation. The results of Robinson (1982) correspond
to inversion integrals with β in the denominator of the integrand, while Bahadur
and Ranga Rao (1960) expand β−1 about β̂, removing β from the denominator.
Heuristically, in the work of Bahadur and Ranga Rao (1960), factors like Φ(x) are
replaced by approximations.

5.3. Less Direct Saddlepoint Series for Distribution Functions

Lugannani and Rice (1980) provide an alternate expansion again using the methods
of steepest descent. The form of this expansion is very simple, and it is valid over
a wide range of possible ordinates. Again the same steepest descent path (81) is
used, and the transformed distribution function inversion integral is still (99). An
expansion is now developed for this integral that will differ from (98) in that it will
explicitly account for the singularity in �(ω) = (1/β)(dβ/dω) at zero. This will
illustrate why care has been taken in the selection of ω̂. Until now the only value
of ω of interest has been that value corresponding to β = β̂. In the development of
this section the value of ω corresponding to β = 0 is also of interest, since explicit
allowance for the singularity here is desired.

Theorem 5.3.1: Suppose that a random variable X arises as the mean of n inde-
pendent and identically distributed random variables, each with cumulant generating
function KY . Consider any x for which the saddlepoint equation (69) has a solution,
and let β̂ be that solution. Let QX(x) = P [X ≥ x], and let the Lugannani and Rice
approximation to QX(x) be

Q∗
X(x) = 1 − Φ(

√
nω̂) + φ(

√
nω̂)(1/ẑ − 1/ω̂)/

√
n, (109)
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where again ω̂ is given by (82) and ẑ is given in (102). When β̂ = 0, replace
1/ẑ − 1/ω̂ by 1

6 ρ̂Y,3. Then

QX(x) = Q∗
X(x) + φ(

√
nω̂)(1 + O(n−3/2)). (110)

Proof: Express the factor �(ω) in the integrand of (99) as the sum of two terms,
�∗(ω) = (1/β)(dβ/dω) − (1/ω) and �†(ω) = 1/ω, and integrate the two terms
separately. In the first instance the function is differentiable for ω in a region about ω̂
which does not shrink as ω̂ approaches zero. To see this, note that ω�∗(ω) is analytic
and hence �∗(ω) =

∑∞
j=−1 cjω

j for some coefficients {cj}. Also, limω→0 ω�∗(ω) =
limω→0(ω/β)(dβ/dω) − 1 = 0 by the definition of first derivative. This implies that
c−1 = 0 and �∗(ω) is analytic at 0. Hence the use of Watson’s Lemma does not
have the problems associated with it as does the process yielding (98).

As noted in §4.5, (dβ/dω)(ω̂) = 1/
√

K′′
Y (β̂), and hence �∗(ω̂) = 1/ẑ − 1/ω̂.

Hence Watson’s Lemma shows that

exp(−n
2 ω̂2)√

2π

ω̂+iB∫
ω̂−iA

exp
(

n

2
[ω − ω̂]2

)( 1
β

dβ

dω
− 1

ω

)
dω =

exp(−n
2 ω̂2)√

2nπ

(1
ẑ

− 1
ω̂

+ O(n−1)
)

= φ(
√

nω̂)
(1

ẑ
− 1

ω̂
+ O(n−1)

)
/
√

n.

Integration of �†(ω̂) can be done exactly; (108) implies that

exp(−n
2 ω̂2)

2π

∫ ω̂+i∞

ω̂−i∞
exp(

n

2
[ω − ω̂]2)dω/ω = 1 − Φ(

√
nω̂).

When β̂ = 0, both ω̂ and ẑ are zero, and 1/ẑ − 1/ω̂ has a singularity. This
singularity is removable; that is, as β̂ → 0, the limit of 1/ẑ − 1/ω̂ exists. Yang
and Kolassa (2002) present a smooth method for removing this singularity. Note
that ω̂2 = 2[K′

Y (β̂)β̂ − KY (β̂)] = K′′
Y (0)β̂2 + 2K(3)

Y (0)β̂3/3 + O(β̂4), ẑ2 = K′′
Y (0)β̂2 +

K(3)
Y (0)β̂3 + O(β̂4), and hence ẑ/ω̂ − 1 = 1

6 ρ̂Y,3ẑ + o(β̂).
Q.E.D

When β̂ = 0, (109), after the modification in the statement of the theorem,
equals Robinson’s approximation (106).

When (109) is applied to calculate tail areas for the mean of n variables following
a logistic distribution, even when n = 1, it performs very well. See Fig. 13a. Fig. 13b
exhibits this approximation when applied to the mean of ten independent and ident-
ically distributed variables. In this case, the cumulant generating function was given
in exercise 7 of §2.8, and its derivatives were given in in 4.9. Fig. 13 might then
be drawn by selecting a set of ordinates X, and for each x ∈ X, solve (69) for β̂,
calculate ω̂ and ẑ from x and β̂, calculate the invariants ρ̂Y,j, and then apply (98),
(104), and (109). Solving (69) might require some computational effort; in this case,
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Fig. 13 might more easily be constructed by selecting a set of saddlepoints T, and
for each β̂ ∈ T, calculating x from (69). One might then proceed as before.

If Q∗
−X represents Q∗ calculated for the distribution of −X, then Q∗

−X(x) =
1 − Q∗

X(−x). Hence the Lugannani and Rice approximation to upper tails applies
equally well to lower tails, unlike the previous tail probability approximations.

One might try to add terms to (109) in order to construct an approximation
whose error converges to zero more quickly as n increases. Kolassa (1996b) provides
such an approximation for conditional distributions; these results are discussed in
§7.4. An unconditional higher–order counterpart to (109) is a special case of the
expansion of §7.4.

The following section presents an alternate derivation of (109) that avoids con-
struction of the exact inversion integral for the tail probability.

5.4. The Equivalence of the Series of Lugannani and Rice and Robinson

The approximations (109) and (104), when applied to sums of independent and
identically distributed continuous random variables, agree to O(n−1), since both
agree with the true tail probabilities to this order. Robinson justifies the use of
(104) in more general cases when the tail probabilities are given by an Edgeworth
series. In these cases no generalization of (109) is available. In this section I
give conditions under which (109) and (104) agree to O(n−1), allowing the use of
(109) as an alternative to (104). This proof makes use of the derivatives of the
two approximations; before proving the theorem, I will construct these derivatives.
Differentiating ω̂2/2 = β̂Kn

′(β̂) − Kn(β̂), ẑ2 = β̂2Kn
′′(β̂), and Kn

′(β̂) = x with
respect to x, and solving, yields

dω̂

dx
= ẑ

√
Kn

′′(β̂)/ω̂
dβ̂

dx
,

dẑ

dx
=
√

Kn
′′(β̂)[1 + 1

2 ẑρ̂n,3]
dβ̂

dx
,

dβ̂

dx
= 1/Kn

′′(β̂). (111)

Hence d
dx

Q∗
X(x) =

√
nφ(

√
nω̂){−1+(ω̂−3ẑ−ẑ−2[1+ 1

2 ẑρ̂n,3])/n}/
√

Kn
′′(β̂). Similarly,

d

dx
Q◦

X(x) =
√

nφ(
√

nω̂)√
Kn

′′(β̂)

{
− 1 +

3 ρ̂2
n,3 + n2 ẑ4 ρ̂2

n,3 − n ẑ2
(
ρ̂2

n,3 − 2 ρ̂n,4

)
− 2 ρ̂n,4

12 n
+

n3/2 ẑ3 Φ̄(
√

n ẑ)
(
n ẑ2 ρ̂2

n,3 + 2 ρ̂n,4

)
12 nφ(

√
n ẑ)

}

Kolassa (2005) proves the following result:

Theorem 5.4.1: Suppose that Kn is a sequence of complex functions analytic
on I × iR, for I ⊂ R a compact set such that the interior of I contains 0.
Suppose that Kn

′′(0) = 1 for all n, and that Kn restricted to I is convex. Let
ρ̂n,j = Kn

(j)(β̂)/Kn
′′(β̂)j/2, and suppose further that |ρ̂n,j| ≤ Bj for β̂ ∈ I, and

j = 3, 4. Let β̂ be a function of x satisfying Kn
′(β̂) = x, and let ẑ(x) and ω̂(x)
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Saddlepoint Approximations to the CDF of a Logistic Variable
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be as in (103). Then (104) and (109) agree to order O(1/n)φ(
√

nω̂); this order is
uniform on I ∩ [0,∞).

Proof: The conditions of this theorem put bounds in standardized derivatives of
Kn(β̂), of the form Kn

(j)(β̂)/Kn
′′(β̂)j/2 During the course of this proof it will be

necessary to bound similar derivatives, but a different argument to Kn
′′ in some

of the factors making up the denominator. The first step in the proof bounds the
variation in Kn

′′(β). For some δ > 0 and B3 > 0, three cases are treated separately.
Case 1: β̂ ≤ n−1/2δ. Case 2: 1/(2B3) ≥ β̂ ≥ δn−1/2. Case 3: β̂ ≥ 1/(2B3).

Case 3 is handled by examining the asymptotic expansion for Φ̄(x) in powers of
1/x. Cases 1 and 2 are handled by examining the bound on the error of the Taylor
series for the difference in the two approximations. Treatment of cases 1 and 2 differ
according to what is allowed to occur in denominators of the terms in the difference
bound.

Q.E.D

5.5. Approximate Sample-Space Integration

As an alternative to the derivation of saddlepoint cumulative distribution func-
tion approximations via inversion of the cumulant generating function, this section
discusses derivation by integrating the saddlepoint density approximation. First,
consider the following special case of a result due to Temme (1982), giving an
asymptotic expansion for the integral of a normal density times another function,
over part of the reals:

Lemma 5.5.1: Suppose that H(w) is a function with two derivatives, such that
sup−K≤w≤K |H ′′(w)| < ∞. Choose ε > 0. Choose u ∈ [0, K − ε]. Then

√
n
∫ K−ε

u
φ(

√
nw)H(w) dw =

(
H(0) +

H ′′(0)
2n

)
Φ̄(

√
nu)+

φ(
√

nu)√
n

{
H(u) − H(0)

u
+ O

( 1
n

)}
.

Proof: With a bit of algebra,

√
n
∫ K

u
φ(

√
nw)H(w) dw = H(0)[Φ(

√
nK) − Φ(

√
nu)]

+
∫ K

u

√
nwφ(

√
nw)

H(w) − H(0)
w

dw.

After integration by parts,

√
n
∫ K

u
φ(

√
nw)H(w) dw = H(0)[Φ̄(

√
nu) − Φ̄(

√
nK)]

− 1√
n

φ(
√

nw)[H(w) − H(0)]/w
∣∣∣K
u

+
1√
n

∫ K

u
φ(

√
nw)

d

dw

H(w) − H(0)
w

dw.
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The final term may be bounded by [Φ(
√

nK) − Φ(
√

nu)] supw∈[0,K] |H ′′(w)| /n; this
bound is of size φ(

√
nu)O(1/n). Similarly,

√
n
∫ K

u
φ(

√
nw)

d

dw

H(w) − H(0)
w

dw = 1
2H

′′(0)Φ̄(
√

nu) + O(1/
√

n)φ(
√

nu).

Q.E.D
The preceding lemma will be used to integrate a saddlepoint density to obtain

a saddlepoint cumulative distribution function approximation. Since the exponent
of the saddlepoint density approximation is not exactly the sample size times a
quadratic, exponentiated, the following corollary will be useful.

Corollary 5.5.2: Suppose that g is a twice–differentiable function defined on
[0, K], with g(0) = 0, g′(0) = 0, and g′′(v) > 0 for all v, and suppose that G has
two bounded derivatives on [0, K]. Then for any x ∈ [0, K],

∫ K

x

√
n exp(−ng(v))√

2π
G(v) dv =

G(0)√
g′′(0)

[
1 +

5 a3
2 − 3a4 − 12a3 b1 + 12b2

12n

]
×

Φ̄(
√

2ng(x)) + n−1/2φ(
√

2ng(x))

⎡
⎣G(x)

g′(x)
− G(0)√

2g(x)g′′(0)
+ O(1/n)

⎤
⎦ , (112)

where aj = g(j)(0)(g(2)(0))−j/2, and bj = G(j)(0)(g(2)(0))−j/2G(0)−1.

Proof: Let w =
√

2g(v). Then dw
dv

w = g′(v); hence dv
dw

= w/g′(v) =
√

2g(v)/g′(v),

and dv
dw

∣∣∣
w=0

= 1/
√

g′′(0). After changing variables,

∫ ∞

x

√
n exp(−ng(v))√

2π
G(v) dv =

∫ ∞
√

2g(x)

√
nφ(

√
nw)G(v(w))

dv

dw
dw.

Applying Lemma 5.5.1, with u =
√

2g(x) as above, and H(w) = G(v(w)) dv
dw

. Then

[H(u)−H(0)]/u = G(x)/g′(x)−G(0)/[
√

2g′′(0)g(x)], and H(0) = G(0)/g′′(0), gives
the result.

Q.E.D
These results apply to the integration of the saddlepoint density approximation

(68) over a tail region to obtain a saddlepoint tail probability approximation. Recall
from the discussion surrounding Theorem 4.1.1 that standard regularity conditions
generally guarantee the existence of the saddlepoint density approximation only on
a convex set containing zero, and so the range of integration must be truncated.
A lemma that is a simpler version of Theorem 15 of Petrov (1975), Chapter 3, is
needed.

Lemma 5.5.3: Suppose that X is a random variable with cumulant generating
function KX . Then P [X ≥ x] ≤ exp(KX(β) − βx).
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Proof: For β > 0, let Y = exp(xβ) if X > x, and 0 otherwise. Since exp(Xβ) ≥
Y , then exp(K(β)) = E [exp(Xβ)] ≥ E [Y ] = exp(xβ)P [X ≥ x].

Q.E.D
These results may now be used to provide an alternate proof to Theorem 5.3.1.

Assume without loss of generality that E [X] = 0. If the saddlepoint tail probability
approximation (70) to a random variable X is defined for x ∈ [0, K] (and perhaps for
other x), and if x is an element of the smaller interval [0, K − ε], then Lemma 5.5.3
shows that P [X ≥ x] = P [K ≥ X ≥ x] + O(exp(KX(β) − βx)/n3/2). We will now
apply Corollary 5.5.2 with g(x) = β̂x − KY (β̂), and G(x) = K′′

Y (β̂)−1/2[1 + (ρ̂4/8 −
5ρ̂2

3/24)/n]. In order to prove a slightly weaker result than Theorem 5.3.1, in which
the relative error is of size O(1/n), one need only observe that G(0)/

√
g′′(0) = 1,

and that u of Corollary 5.5.2 is the same as ω̂ of (82), and g′(x)/G(x) is the same
as ẑ of (102). To capture the full result of Theorem 5.3.1, one must verify that the
term of size O(1/n) multiplying Φ̄(

√
nu) in (112) exactly balances the O(1/n) term

in G(0). Verifying this is an exercise in rather tedious algebra, and is suggested in
the exercises.

Future applications of Corollary 5.5.2 will also require an argument like Lemma
5.5.3 to complete the argument; this level will not always be given in the sequel.

5.6. An Adjusted Approximation

Again suppose that X is the mean of n independent and identically distributed
random variables, each with cumulant generating function KY . Note that ω̂ (first

defined in (82)) is the value of Ω̂ =
√

2(β̂(X)X − KY (β̂(X))), the signed root of
the log likelihood ratio statistic, corresponding to the potential data value x. As
before, β̂(X) satisfies K′

Y (β̂(X)) = X. Since ω̂ is an increasing function of x, tail
probabilities for Ω̂ satisfy P

[
Ω̂ ≥ ω̂

]
= Q∗

X(x(ω̂))(1 + O(n−1)), for x(ω̂) the inverse
of relationship (82), and where ẑ is considered as a function of ω̂. Recall that
Q∗

X(x(ω̂)) = Φ̄(
√

nω̂)+φ(
√

nω̂)(1/ẑ−1/ω̂)/
√

n; that is, the approximation consists
of the normal tail probability associated with the observed statistic value, plus a
correction of smaller order. Practitioners might find an alternative approximation
useful; if an additive correction to the normal tail probability were found that is
applied to the statistic value rather than to the probability, the corrected statistic
value might be reported as part of routine data analyses, and significance levels
could be approximated using standard normal tables.

This section produces such a modified saddlepoint tail probability approxima-
tion. It also presents a proof that the approximations presented in §§5.2 and 5.3
are asymptotically equivalent. Of course, since both of these approximations are
accurate to O(1/n) when the regularity conditions for both approximations are
satisfied.

Barndorff–Nielsen (1986, 1990a) provides corrections additive on the ordinate
scale instead, in order to facilitate conditional inference. Jensen (1992) demonstrates
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that these corrections hold in great generality, by demonstrating the following result:

Lemma 5.6.1: Let g1 and g2 be smooth increasing functions from R to R, such
that g1(0) = g2(0) = 0 and g′

1(0) = g′
2(0) > 0. Let g3(s) = g1(s)−1 log (g2(s)/g1(s)),

and let g4(s) = g1(s) − g3(s)/n. Then for s0 > 0,

Φ
(√

ng4(s)
)

= Φ
(√

ng1(s)
)

− φ (
√

ng1(s))√
n

{
1

g2(s)
− 1

g1(s)
+

e1,n(s)

g1(s)n

}
,

with

sup{e1,n(s)|0 ≤ s ≤ s0, n > 0} < ∞, sup{
√

ne1,n(s)|0 ≤ s ≤ s0/
√

n, n > 0} < ∞.
(113)

Proof: For s < s0/
√

n, the quantities g1(s)
√

n, g2(s)
√

n, |g1(s)/g2(s) − 1| s−1,
and g1(s)−1 |g1(s)/g2(s) − 1| are bounded. The power series expansion for log(z) is
(z − 1) − 1

2(z − 1)2 + 1
3z

∗−3(z − 1)3 for z∗ between 1 and z, so there exist bounded
functions e2,n(s) and e3,n(s) such that

g4(s) − g1(s) =
n−1

g1(s)

⎧⎨
⎩
(

g1(s)
g2(s)

− 1
)

− 1
2

(
g1(s)
g2(s)

− 1
)2

+ e2,n(s)
(

g1(s)
g2(s)

− 1
)3
⎫⎬
⎭ ,

and

Φ(
√

ng4(s)) − Φ(
√

ng1(s)) =
√

n(g4(s) − g1(s))×

φ(
√

ng1(s))
[
1 − n

2
(g4(s) − g1(s))g1(s)

]
+ e3,n(s)n3/2(g4(s) − g1(s))3.

Substituting,

Φ(
√

ng4(s)) − Φ(
√

ng1(s)) =
φ(

√
ng1(s))√
ng1(s)

{(
g1(s)
g2(s)

− 1
)

− 1
2

(
g1(s)
g2(s)

− 1
)2

+e2,n(s)
(

g1(s)
g2(s)

−1
)3}⎡⎣1− 1

2

(
g1(s)
g2(s)

−1
)

+ 1
4

(
g1(s)
g2(s)

−1
)2

− e2,n(s)
2

(
g1(s)
g2(s)

−1
)3
⎤
⎦

+e3,n(s)n3/2(g4(s)−g1(s))3.

Thus the second relation in (113) holds.

For s > s0/
√

n, replace the difference in the normal cumulative distribution
function values by an integral of the density over the interval between the ordinates,
replace the density using the first relationship of Table 2, and use integration by
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parts, to find

Φ
(√

ng4(s)
)

− Φ
(√

ng1(s)
)

=
∫ √

ng4(s)

√
ng1(s)

φ(x) dx = −
∫ √

ng4(s)

√
ng1(s)

φ′(x)x−1 dx

=
φ(

√
ng1(s))√
ng1(s)

− φ(
√

ng4(s))√
ng4(s)

−
∫ √

ng4(s)

√
ng1(s)

φ(x)x−2 dx

=
φ(

√
ng1(s))√
ng1(s)

−φ(
√

ng4(s))√
ng4(s)

+g3(s)
φ(

√
ng1(s))√

ng1(s)2 −

√
ng4(s)∫

√
ng1(s)

[
φ(x)
x2 − φ(

√
ng1(s))

ng1(s)2

]
dx

=
φ(

√
ng1(s))√
ng1(s)

− φ(
√

ng4(s))√
ng4(s)

+ g3(s)
φ(

√
ng1(s))√

ng1(s)2

− φ(
√

ng1(s))
∫ √

ng4(s)

√
ng1(s)

∫ x

√
ng1(s)

exp(ng2
1(s)/2 − u2/2)(2 + u2)

u3 du dx.

The final integral may be expressed as

φ(
√

ng1(s))√
ng1(s)

√
ng4(s)∫

√
ng1(s)

x∫
√

ng1(s)

exp(1
2(ng1(s)−

√
nu)(g1(s)+u/

√
n))

√
ng1(s)(2+u2)

u3 du dx.

The integrand above is bounded, and hence the integral is bounded by a constant
times n |g4(s) − g1(s)|2, which in turn is bounded by a constant times 1/n. Note
that

φ(
√

ng4(s))√
ng4(s)

=
φ(

√
ng1(s))√
ng1(s)

exp(−1
2g3(s)/

√
n)/(1 + n−1g3(s)/g1(s));

this allows expansion of the remaining terms, demonstrating the result.
Q.E.D

Lemma 5.6.1 justifies the approximation

FX(x) = FΩ̂(ω̂) = Φ(
√

nω̂∗) + φ(
√

nω̂)O(n−1), (114)

for ω̂∗ = ω̂ + (nω̂)−1 log (ẑ/ω̂); (114) is known as the r∗ approximation, since the
symbol r is often used in place of ω̂.

5.7. Secant Approximations

Consider a random variable Xn with density fn(x) = cn

√
n exp(−np(x))q(x), with

p(x) → ∞ as x → a or x → b, and with its unique minimum at x̂, and with q posi-
tive. Tail probabilities might be calculated for X under conditions weaker than those
assumed so far. Change variables to obtain y(x) = (x−x̂)

√
2(p(x) − p(x̂))/(x − x̂)2.

This is similar to the change of variables in (81). Let Yn = y(Xn). Then dy/dx =
p′(x)/y, the density of Yn is given by exp(−np(x̂)− n

2y2)g(y), with g(y) = q(x(y))×
y/p′(x(y)), and the integral to be approximated is

∫∞
y0

exp(−n
2y2)g(y) dy. The func-

tion g(y) could be expressed as a power series in y, and the resulting integrand could
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be treated as in (97). Such a treatment would have the disadvantages outlined at
the end of §5.3. Skates (1993) presents an alternative to (109) for such cases, and
refers to it as the secant approximation. No cumulant generating function is as-
sumed to exist in this example, and hence usual saddlepoint inversion techniques
do not apply. The hard analytical work for these results is contained in the following
lemma.

Lemma 5.7.1: If g is a function of bounded variation defined on R, having the
expansion g(y) =

∑2j
j=1 ajy

j/j! + O(y2j+1) as y → 0, and j continuous derivatives in
a neighborhood of y0, such that

In,0(y0) =
√

n
∫ ∞

y0

φ(
√

ny)g(y) dy (115)

is finite for some integer n, and if I0,j(−∞) is as in (115) with the range of inte-
gration replaced by the whole real line, then

In,0(y0)
In,0(−∞)

= 1 − Φ(
√

ny0) +

⎛
⎝ j∑

j=0
aln

−l + O(n−j−1
2 )

⎞
⎠φ(

√
ny0)/

√
n, (116)

for quantities al defined in terms of y0 below. Furthermore, if the functions ml as
defined below, and their derivatives, exist and are bounded on R, then the error
term given above is uniform.

Proof: By symmetry about 0, it suffices to prove this for y0 > 0. Let

In,j(y0) =
√

n
∫ ∞

y0

φ(
√

ny)gj(y) dy.

Following Bleistein (1966), Skates (1993) notes that when the function g(y) is ap-
proximated by the affine function of y taking the correct value both at y(x̂) and
at zero, the integral of the remainder is of a lower order in n. Specifically, let
g0(y) = g(y), and recursively, let mj(y) = (gj(y) − gj(0))/y and gj+1(y) = m′

j(y).
Since gj(y) = gj(0) + ymj(y0) + y [mj(y) − mj(y0)], then for j ≤ j,

In,j(y0) =
√

n
∫ ∞

y0

φ(
√

ny){gj(0) + ymj(y0) + y [mj(y) − mj(y0)]} dy

= gj(0)(1 − Φ(
√

ny0)) +
mj(y0)√

n
φ(

√
ny0)+

√
n
∫ ∞

y0

φ(
√

ny)y[mj(y) − mj(y0)] dy.

Integrating by parts, using the identity
∫ b
a u dv = uv|ba − ∫ b

a v du with v = φ(
√

ny),
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and dv = nyφ(
√

ny) yields for j < j,

In,j(y0) = gj(0)(1 − Φ(
√

ny0)) + n−1/2mj(y0)φ(
√

ny0)

−
[
exp(−n

2
y2)[mj(y) − mj(y0)]/n

]∞

y0

+ n−1√n
∫ ∞

y0

φ(
√

ny)m′
j(y) dy

= gj(0)(1 − Φ(
√

ny0)) + n−1/2mj(y0)φ(
√

ny0) + n−1In,j+1(y0),

since m′
j(y) = gj+1(y). This integration by parts is valid only in a formal sense;

strictly speaking, mj need not be differentiable outside a neighborhood of y0. The
contribution to the integral outside of this neighborhood, however, converges to 0
geometrically. Inductively, ml has j − l continuous derivatives in a neighborhood
of y0, and gl has j − l + 1 continuous derivatives in a neighborhood of y0. This
integration by parts can also be performed in the Riemann-Stieltjes sense for j =
j; here In,j+1(y0) =

√
n
∫∞
y0

φ(
√

ny)mj(dy). Since In,j+1(y0) = φ(
√

ny0)O(1), then
In,0(y0) =

∑j
j=0 gj(0)n−j(1−Φ(

√
ny0))+(

∑j
j=0 mj(y0)n−j+O(n−j−1/2))φ(

√
ny0)/

√
n.

This uses the fact that for s > 0,

1 − Φ(s) ≤ φ(s)/s. (117)

Still to be determined are the coefficients gj(0). Since g(y) =
∑j

j=0 g(j)(0)yj/j!+
o(yj), then g0(0) = g(0), by definition, and by induction

ml(y) =
j∑

j=1+2l

g(j)(0)(j + 1) · · · (j + 1 − 2l)yj−1−2l/(j + 1)! + o(yj−1−2l)

gl(y) =
j∑

j=2l

g(j)(0)(j + 1) · · · (j + 1 − 2l)yj/(j + 1)! + o(yj−j),

and hence gl(0) = g(2l)(0)2−l/l!. By Lemma 4.5.1,

In,j(−∞) =
j∑

j=0
g(2j)(0)/((2n)jj!) + O(n−j−1/2).

Let the series
∑j

j=0 aln
−l be the quotient of

∑j
j=0 mj(y0)n−j and

∑j
j=0 g(2j)(0)×

(j!)−1(2n)−j, satisfying mk(y0) =
∑k

j=0 g(2j)(0)/(2jj!)ak−j. Hence (116) holds. Fur-
thermore, under the last conditions above, uniformity holds since none of the error
terms depended on y0 except through values of mj.

Q.E.D
Now to apply this lemma to the problem at hand:

Theorem 5.7.2: If Xn has the density fn(x) = cn

√
n exp(−np(x))q(x) on (a, b),

where
1. p has a single local minimum at x̂, and p(x) → ∞ as x → a or x → b.
2. p and q have expansions p(x) =

∑2j+1
j=0 pj(x − x̂)j + o((x − x̂)2j+1) and q(x) =∑2j

j=0 qj(x − x̂)j + o((x − x̂)2j).
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3. p(j+1) and q(j) are continuous in a neighborhood (x− δ, x+ δ) in which p′ has no
zeros.

4. In(y) =
∫ b
x̂ exp(−np(x))q(x) dx converges absolutely

then QX(x0) =
∑j−1

j=0 gj(0)n−j(1 − Φ(
√

ny0)) +
∑j

j=0 mj(y0)n−j−1/2φ(
√

ny0) +
O(n−j). Furthermore, if the functions ml as defined below, and their derivatives,
exist and are bounded on R, then the error term given above is uniform.

Proof: Apply Lemma 5.7.1 to g(y) = yq(x(y))/p′(x(y)). The coefficients gj(0)
and mj(y0) are calculated based on the functions p(x) and q(x).

Q.E.D
Without loss of generality p(x) and q(x) may be chosen such that p(x̂) = 0,

p′′(x̂) = 1, and q(x̂) = 1. Then g0(0) = 1, m0(y) = (g(y)− 1)/y, and a0 = m0(y0) =
q(x0)/p′(x0) − 1/y0. Hence

QX(x0) = 1 − Φ(
√

ny0) +
(
(q(x0)/p′(x0) − 1/y0) + O(n−1/2)

)
φ(

√
ny0).

When the cumulant generating function of a distribution exists, Lemma 5.7.1
can also be used to calculate integrals of the form (97). This alternate method also
produces (109).

5.8. Saddlepoint Series for Lattice Variables

Now consider saddlepoint cumulative distribution function approximations for lat-
tice distributions. As before, suppose that {Yn} are independent and identically
distributed random variables, but explicitly drop the assumption that they have
a density. Rather, suppose that they take values on the lattice {a + ∆Z}, and
that X =

∑n
k=1 Yk/n. Assume further, without loss of generality, that a = 0 and

∆ = 1. Again an approximation to the distribution function FX of X is desired.
Recall from §2.7 that characteristic functions for lattice distributions are periodic,
thus changing the form of the inversion integrals. This periodicity is inherited by
cumulant generating functions.

Consider the inversion integral (33) for P [x0 > X ≥ x]. If we deform the path
of integration to run through �(β) = c for some c > 0, then one can pass the limit
as x0 → ∞ through the integral, to obtain

P [X ≥ x] =
1

2πi

∫ c+iπn

c−iπn

exp(nKY (β/n) − β(x − 1/[2n]))
β

β/[2n]
sinh(β/[2n])

dβ

=
1

2πi

∫ c+iπ

c−iπ

exp(n[KY (β) − β(x − 1/[2n])])
β

β/2
sinh(β/2)

dβ

=
1

2πi

∫ c+iπ

c−iπ

exp(−KU(β) + n[KY (β) − β(x − 1/[2n])])
β

dβ

Here KU = log(sinh(β/2)) − log(β/2) is the cumulant generating function for the
uniform variable on (−1/2, 1/2). One might be tempted to use usual saddlepoint
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cumulative distribution function methods (98), (106), or (109), with continuity
correction and the cumulant generating function corrected by subtracting KU(β);
however, since this does not have the factor n the behavior of this approximation
is an open question. Daniels (1987) includes exp(−KU(β)) in the n-independent
function � in Watson’s Lemma. Approximation (109) still satisfies (110), with

ẑ = 2
√

K′′
Y (β̂) sinh(β̂/2), and β̂ satisfying

K′
Y (β̂) = x − 1/[2n]. (118)

One might again try to add terms to (109) in order to construct an approxima-
tion whose error, in the lattice case, converges to zero more quickly as n increases.
Kolassa (1996b) provides such an approximation for conditional distributions; these
results are discussed in §7.4. An unconditional higher–order counterpart to (109) is
a special case of the expansion of §7.4.

In order to adapt approximation (106) of Robinson (1982), first calculate β̂ from
the continuity–corrected data, as in (118). Now note that QX(x) is still given by
(108) if the integrand is multiplied by

β

2 sinh(β/2)
=

β̂

2 sinh(β̂/2)
− 1

4

(
β̂ coth(β̂/2) − 2

)
csch(β̂/2)

(
β − β̂

)
+ O(β − β̂)2.

The resulting approximation, a special case of the multivariate approximation pre-
sented by Kolassa (2003a), is

1
2 β̂ csch(β̂/2)

(
exp([ẑ2 − ω̂2] n/2) Φ̄(ẑ

√
n)

(
β̂ coth(β̂/2)/2 − ẑ3 n ρY,3/6

)
+

φ(ω̂
√

n)
(
1/ẑ − 1

2 β̂ coth(β̂/2)/ẑ + ρY,3[ẑ2 n − 1]/6
)
/
√

n

)
.

5.9. Exercises

1. Numerically calculate the cumulative distribution function for the convolution
of 5, 10, and 20 copies of the distribution of Kolassa (1992) whose cumulative
distribution function is given by

F (x) =
{ 0 if x < 0

Φ(
√

x) otherwise

at its mean and one, two, and three standard deviations above the mean,
and compare to the Robinson and Lugannani and Rice approximations. You
may find it useful to manipulate the gamma distribution to do the exact cal-
culations. You can get Fortran routines by sending electronic mail twice to
statlib@lib.stat.cmu.edu, with send 147 from griffiths-hill and send
acm291 from griffiths-hill as subject lines.
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2. Verify formula (117), by considering the integral representation of 1−Φ(s), and
changing variables so that φ(s)/s may be factored out, leaving an integrand
depending on s. This integrand may be bounded by something that integrates
to unity.

3. Suppose that X is a random variable with a binomial distribution, with 15
trials and success probability π. In the below calculations, make sure that you
properly account for discreteness of X.
1. Use the Lugannani and Rice approximation to approximate the observed

significance level for the hypothesis π = 1
2 vs. the alternative π > 1

2 , if 9
successes are observed.

2. Use the Lugannani and Rice approximation to approximate the standard
confidence interval for π, if 9 successes are observed.

4. Describe the relationship between the integrals Ij and Jj(v) of §5.2.
5. Verify that the term of size O(n−3/2) in the expansion of Theorem 5.3.1, calcu-

lated according to the method of §5.5, agrees with the value given in (109).
6. Prove (111).
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Multivariate Expansions

Edgeworth and saddlepoint expansions also have analogues for distributions of ran-
dom vectors. As in the univariate case these expansions will be derived with ref-
erence to characteristic functions and cumulant generating functions, and hence
these will be defined first. Subsequently Edgeworth density approximations will be
defined. Just as in the univariate case, the Edgeworth approximation to proba-
bilities that a random vector lies in a set is the integral of the Edgeworth density
over that set; however, since sets of interest are usually not rectangular, theorems
for the asymptotic accuracy of these approximations are difficult to prove. These
proofs are not presented here. Approximation for variables on a multivariate lat-
tice are discussed. Multivariate saddlepoint approximations are also defined, by a
multivariate extension of steepest descent methods. These methods are also used
to approximate conditional probabilities.

Results presented in this chapter will have their primary applications in justi-
fying techniques presented in the following two chapters.

6.1. Multivariate Generating Functions

Define the multivariate characteristic function of X = (X1, ..., Xk)� as

ζX(β) = E
[
exp(iβ�X)

]
= E

⎡
⎣exp(i

k∑
j=1

βjX
j)

⎤
⎦ .

This always exists over Rk. Define the multivariate moment generating function
of X as MX(β) = E

[
exp(β�X)

]
. As in the univariate case, MX exists at

0 = (0, . . . , 0). Saddlepoint expansions will be available when MX exists in a
neighborhood Q ⊂ Rk of 0.

Many of the useful properties of univariate moment generating functions hold in
the multivariate case as well. For instance, if A and B are matrices and X and Y
are independent random vectors such that the combination AX + BY is defined,

109
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(that is, A and B have the same number of rows, and the numbers of columns equal
the lengths of X and Y respectively), then

MAX+BY (β) = E
[
exp(β�(AX + BY ))

]
= E

[
exp(β�AX) exp(β�BY ))

]
= E

[
exp(β�AX)

]
E
[
exp(β�BY ))

]
= MX(A�β)MY (B�β).(119)

Expand the moment generating function as

MX(β) =
∞∑

j=0

∑
s∈S(j)

1
j!

µs1···sjβs1 · · ·βsj

where S(j) = {1, . . . , k}j, the set of vectors of integers with j components and all
entries between 1 and k. This series by itself is not enough to uniquely define the µ’s,
since all coefficients µ with the same set of indices permuted correspond to the same
product of elements of β. Adding the requirement that the µ’s have the same value
if their indices are permuted, however, does allow the above expansion to uniquely
determine the coefficients. As in the univariate case, µs1···sj = E [Xs1 · · ·Xsj ] . For
example, µ1 = E [X1], µ2 = E [X2], µ11 = E [X1X1], and µ12 = E [X1X2].

One may also define the multivariate cumulant generating function KX(β) using
the moment generating function in analogy with the univariate case: KX(β) =
log(MX(β)). Again this function will generate the cumulants. Expand KX as

KX(β) =
∞∑

j=1

∑
s∈S(j)

1
j!

κ
s1···sj

X βs1 · · ·βsj
, (120)

with the same definition for the inner sum. As above, require that coefficients κX

with the same indices up to permutation have the same value. This is enough to de-
fine the multivariate cumulants κX uniquely via the series expansion. Alternatively,
as a generalization of (12),

κ
s1···sj

X =
dj

dβs1 · · · dβsj

KX(β)|β=0 = (−i)s1+···+sj
dj

dβs1 · · · dβsj

log(ζX(β))|β=0

.
As in the univariate case, these cumulants may be expressed in terms of the

moments. For example, κ1
X = E [X1], κ2

X = E [X2], κ11
X = Var [X1], and κ12

X =
Cov[X1, X2]. If the components of X are independent, then

KX(β) = log

⎛
⎝E

⎡
⎣exp

⎛
⎝ k∑

j=1
βjX

j

⎞
⎠
⎤
⎦
⎞
⎠ = log

⎛
⎝ k∏

j=1
E
[
exp(βjX

j)
]⎞⎠

=
k∑

j=1
log

(
E
[
exp(βjX

j)
])

=
k∑

j=1
KXj(βj)

Hence in the case of independent components mixed cumulants are zero. That is,
κ

s1···sj

X = 0 if the indices are not all the same.
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Multivariate cumulants have some of the same invariance properties as have
univariate cumulants, as described in §2.1. Applying (119) with B = 0, and tak-
ing logarithms, KAX(β) = KX(A�β). If λ denotes the cumulants of the linear
combination AX, and if the element in the i, j element of A� is aj

i , then

KAX(β) =
∞∑

j=1

∑
s∈S(j)

1
j!

κ
s1···sj

X (
∑
r1

ar1
s1

βr1) · · · (
∑
rj

arj
sj

βrj
)

=
∞∑

j=1

∑
r∈S(j)

1
j!

∑
s∈S(j)

[
κ

s1···sj

X ar1
s1

· · · arj
sj

]
βr1 · · ·βrj

.

Hence λr1...rj =
∑

s∈S(j)

[
κ

s1···sj

X ar1
s1

· · · arj
sj

]
.

6.2. Multivariate Inversion Integrals

We require the following multivariate extension of the univariate theorem on in-
verting characteristic functions to recover the underlying cumulative distribution
function, presented in §2.4. This proof is also found in Billingsley (1986).

Theorem 6.2.1: If a probability distribution P [·] on Rk corresponds to a charac-
teristic function ζ, and the rectangle B = {x ∈ Rk|xj ∈ [b1j, b2j] ∀j = 1, . . . , k} has
a boundary

∂B = {x ∈ R
k|xj ∈ [b1j, b2j] ∀j = 1, . . . , k, xj = b1j or b2j for some j}

that is assigned zero probability, then

P [B] = lim
Θ→∞

∫ Θ

−Θ
· · ·

∫ Θ

−Θ

k∏
j=1

exp(−iβjb
1j) − exp(−iβjb

2j)
iβj

ζ(β)
dβ

(2π)k
. (121)

The factors in the product over j in the integrand have a removable singularity at
βj = 0; as before substitute the value b2j − b1j.

Proof: Let

IΘ =
∫ Θ

−Θ
· · ·

∫ Θ

−Θ

k∏
j=1

exp(−iβjb
1j) − exp(−iβjb

2j)
iβj

ζ(β)
dβ

(2π)k

be the quantity inside the limit operation in (121). After expressing this character-
istic function as an integral over possible values of x,

IΘ =
∫ Θ

−Θ
· · ·

∫ Θ

−Θ

∫ ∞

−∞
· · ·

∫ ∞

−∞

k∏
j=1

exp(iβj(xj − b1j)) − exp(iβj(xj − b2j))
iβj

dF (x)
dβ

(2π)k
.

The integrand above is bounded by
∏k

j=1 |b2j − b1j| by Theorem 2.5.3. The order
of integration can therefore be interchanged, and the complex exponential can be
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expressed in terms of sines and cosines:

IΘ =
∫ ∞

−∞
· · ·

∫ ∞

−∞

∫ Θ

−Θ
· · ·

∫ Θ

−Θ

k∏
j=1

(cos(βj(xj − b1j)) + i sin(βj(xj − b2j))
iβj

− cos(βj(xj − b2j)) + i sin(βj(xj − b2j))
iβj

)
dβ

(2π)k
dF (x).

Since the cosine terms involve odd order terms in βj these terms integrate to zero:

IΘ =
∫ ∞

−∞
· · ·

∫ ∞

−∞

∫ Θ

−Θ
· · ·

∫ Θ

−Θ

k∏
j=1

sin(βj(xj − b1j)) − sin(βj(xj − b1j))
βj

dβ

(2π)k
dF (x)

=
∫ Θ

−Θ
· · ·

∫ Θ

−Θ

k∏
j=1

2S(β |xj−b1j|) sgn(xj−b1j)−2S(β |xj−b2j|) sgn(xj−b2j)
2π

dF (x)

where again S(θ) =
∫ θ
0 sin(x)/x dx. Since the integrand is bounded, one can pass

to the limit:

lim
Θ→∞

IΘ = (S(∞)/π)k
∫ ∞

−∞
· · ·

∫ ∞

−∞

k∏
j=1

(sgn(xj − b1j) − sgn(xj − b2j)) dF (x)

=
∫ ∞

−∞
· · ·

∫ ∞

−∞

k∏
j=1

(sgn(xj − b1j) − sgn(xj − b2j)) dF (x),

since S(∞)/π = 1 as was found in §2.4.
Q.E.D

A theorem for recovering multivariate density functions also exists:

Theorem 6.2.2: If a random vector has the characteristic function ζ satisfying∫ ∞

−∞
· · ·

∫ ∞

−∞
|ζ(β)| dβ < ∞ (122)

then its density is given by

fY (y) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
exp(−iβy)ζ(β)

dβ

(2π)k
. (123)

Proof: By (122) one can replace the limit of proper integrals as Θ → ∞ by the
corresponding improper integral over the real line in (121). As in §2.4 replace the
difference in exponentials by an integral. Then

F (b2) − F (b1) =
∫ ∞

−∞
· · ·

∫ ∞

−∞

∫ b21

b11
· · ·

∫ b2k

b1k
exp(−iβy) dyζ(β)

dβ

(2π)k

=
∫ b21

b11
· · ·

∫ b2k

b1k

∫ ∞

−∞
· · ·

∫ ∞

−∞
exp(−iβy)ζ(β)

dβ

(2π)k
dy
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Interchange of the order of integration is justified by the absolute convergence of
the integral (122). Hence the density is (123).

Q.E.D
The bounded convergence theorem implies that the resulting density is contin-

uous. A condition like integrability of the first derivative of the density implies the
integrability condition of the cumulant generating function (122). The presence of
probability atoms implies that this condition (122) is violated.

The inversion integrand in (123) is the k-order derivative of the inversion inte-
grand in (121) with respect to each component of b, and evaluated with b1j = b2j.
This will become important in our discussion of saddlepoint series.

For completeness, and because it will be useful in the later development of
multivariate saddlepoint density approximations, the following analogue of Lemma
2.4.4 is stated:

Lemma 6.2.3: The characteristic function ζ of a random vector satisfies∫ ∞

−∞
· · ·

∫ ∞

−∞
|ζ(β)|r dβ < ∞

for some r > 1 if and only if the density of a j-fold convolution of the random
variable with itself exists and is bounded, for some integer j.

Proof: Left as an exercise.
There is also a multivariate inversion counterpart to (32) for the probability

mass function for a random vector X confined to a multivariate lattice:

Theorem 6.2.4: Suppose that a random vector X of length k is confined to a
generalized lattice in the following sense: The distribution of Xk is confined to a
lattice of form ak + ∆kZ, and for each j < k the distribution of Xj is confined to a
lattice of form aj(xj+1, . . . , xk) + ∆jZ. Then

k∏
j=1

∆j

2π

∫ π/∆1

−π/∆1

· · ·
∫ π/∆k

−π/∆k

exp(−iβx)ζ(β) dβ = P [X = x] . (124)

Proof: By Fubini’s theorem,

k∏
j=1

∆j

2π

∫ π/∆1

−π/∆1

· · ·
∫ π/∆k

−π/∆k

∞∑
l1=−∞

· · ·
∞∑

lk=−∞
P [X = x + ∆l] exp(iβ(x + ∆l) − iβx) dβ

=
k∏

j=1

∆j

2π

∫ π/∆1

−π/∆1

· · ·
∫ π/∆k

−π/∆k

P [X = x] dβ

The left hand side of the above equation is equal to the left hand side of (124) after
expanding the definition of the characteristic function; the right hand side of the
above equation is trivially equal to the right hand side of (124).

Q.E.D
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The above generalized lattice definition generalizes the conventional definition
as the set

a + ∆1Z × · · · × ∆kZ

in that it allows the starting point for the lattice to depend on other components of
the vector x. This generalization will prove useful in a later chapter on conditional
cumulative distribution function approximations for lattice random variables.

Finally, Kolassa (2003a) demonstrates the following analogue to (96):

Lemma 6.2.5: Suppose that T 1, . . . , T k has a cumulant generating function K,
and is either continuous (that is, T has a bounded density, in which case ψ(β) is
set to β, K = ∞, and t = t∗) or confined to an integer lattice (in which case ψ(β)
is set to 2 sinh(β/2), K = π, and t = t∗ − 1

21). Choose c > 0 in the domain of K.
Then the relation

P [T ≥ t] =
∫ c+iK

c−iK

exp(K(β) − β�t∗)
(2πi)k

∏k
j=1 ψ(βj)

dβ, (125)

holds.

Proof: When T has a density, standard Fourier inversion techniques imply that
for K = ∞,

fT (t) =
∫ c+iK

c−iK
(2πi)−k exp(K(β) − βjt

j) dβ,

and∫ c+i∞

c−i∞

∫
u≥t

∣∣∣exp(K(β) − βju
j)
∣∣∣ dudβ =

∫ c+i∞

c−i∞

∫
u≥t

|exp(K(β))| exp(−cju
j) dudβ

=
[∫ c+i∞

c−i∞
|exp(K(β))| dβ

] [∫
u≥t

exp(−cju
j) du

]
.

The first factor above is finite since T has a density, and the second is exp(cjt
j)×

[
∏k

j=1 cj]−1. By Fubini’s theorem, the result follows by interchanging the order of
integration with respect to t and with respect to β, as long as all components of c
are positive. When T is confined to an integer lattice, K = π and the integration
with respect to u is replaced by summation.

Q.E.D
The requirement that c > 0, needed to justify Fubini’s theorem, is impor-

tant; because of this requirement, tail probabilities associated with t for which
one or more of the components of β̂ are negative must be calculated by applying
the approximation to random vectors with some of their components negated, and
differencing.
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6.3. Edgeworth Series

In this section the multivariate counterpart of the Edgeworth approximations to
densities and distribution functions are presented. These approximations can be
expressed as refinements to the normal approximations, and so these normal ap-
proximations are presented first. Proofs are deferred until a later section.

Assume that X is a random vector such that E[X] = 0. Let Σ represent the
covariance matrix of X, and let Σ−1 = [κij] represent its inverse. If the distribution
of X has a density, define the normal approximation to this density to be

φ(x, Σ) =
exp(−1

2
∑k

j=1
∑k

i=1 xjxiκji)

(2π)k/2
√

det [Σ]
.

Define its cumulative distribution function FX(x) to be the normal approximation
for the cumulative distribution function P [X ≤ x] = P [Xj ≤ xj ∀j] and define the
normal approximation for the cumulative distribution function to be

Φ(x, Σ) =
∫ x1

−∞
· · ·

∫ xk

−∞
φ(y, Σ) dy.

Just as in the univariate case, the normal approximation uses information in
the first and second order cumulants to approximate the distribution of interest.
Also as in the univariate case, higher order cumulants can be used to correct this
series, producing a higher-order analogue to the Edgeworth series.

Multivariate Fourier inversion techniques will be used to approximate a density
inversion integral. As before, the exponent will be divided into a quadratic term in
β, and a higher-order term in β. The higher order term will be exponentiated, and
the result will be integrated term by term.

Begin by defining higher-order analogues to pseudo-moments. Let κs1···sj repre-
sent the cumulants of a random vector X, as defined in (120). Let the coefficients
µ∗ be defined from the power series expansion

1+
∞∑

j=3

∑
s∈S(j)

µ∗sβs1 · · ·βsj
/j! = exp

⎛
⎝ ∞∑

j=3

∑
s∈S(j)

κsβs1 · · ·βsj
/j!

⎞
⎠

= 1 +
( 1

3!
κijkβiβjβk +

1
4!

κijklβiβjβkβl + · · ·
)

+
1
2

( 1
3!

κijkβiβjβk +
1
4!

κijklβiβjβkβl + · · ·
)2

+ · · · (126)

again with the convention that the µ∗’s have the same value if their indices are
permuted, and again where the inner sum is over all j-long vectors of integers s
between 1 and k. For a vector s = (s1, . . . , sk) let κs and µ∗s denote the cumulants
and pseudo-moments with superscripts s1, . . . , sk. Although s is a vector these
quantities do not depend on the order of the components of s. Then, still assuming
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E [X] = 0, the characteristic function of fX(x) is

exp(1
2β

�Σβ)

⎧⎨
⎩1 +

∞∑
j=1

∑
s∈S(j)

ij

j!
µ∗sβs1 · · ·βsj

⎫⎬
⎭ .

Applying (123) to the multivariate normal case, and differentiating,
∫ ∞

−∞
· · ·

∫ ∞

−∞
exp(βz)φs1...sl(z; Σ) dz = βs1 · · ·βsl

(−1)l exp(1
2βjΣjkβk), (127)

where again superscripts on φ(z; Σ) refer to derivatives with respect to the indicated
components of its argument. Relation (127) generalizes (43). The density of X can
be approximated by an Edgeworth series derived from the formal series expansion

∞∑
j=0

∑
s∈S(j)

1
j!

µ∗s1···sj(−1)j dj

dxs1 · · · dxsj
φ(x, Σ) (128)

where the µ∗s1···sj are sums of products of the joint cumulants. This can also be
defined in terms of the generalized Hermite polynomials

hs1,...,sj
(x; K′′(β̂)) = (−1)j dj

dxs1 · · · dxsj
φ(x, Σ)/φ(x, Σ). (129)

Integrating with respect to x, the cumulative distribution function of X can be
approximated by an Edgeworth series derived from the formal series expansion

∞∑
j=1

∑
s∈S(j)

1
j!

µ∗s1···sj(−1)j dj

dxs1 · · · dxsj
Φ(x, Σ). (130)

Kolassa (2003a) provides recursive formulae for calculating derivatives of Φ(x, Σ).
When the distribution of X depends on a parameter n, the cumulants κs

X then
also depend on n. When X is the standardized sum of independent and identically
distributed components, and each of these components has as its s1 · · · sj cumulant
κ

s1···sj

Y , then κs
X = n1−|s|/2κs

Y , and in this case discarding terms in (128) of size
o(n−j/2) leaves an Edgeworth series ej(x,κn) such that

fX(x) = ej(x,κn) + o(n−j/2). (131)

Under other assumptions on the distribution for X, κs
X = O(n1−|s|/2) (Chambers,

1967). Here |s| denotes the number of elements in s. McCullagh (1987) treats this
multivariate case in detail. Proofs demonstrating the order of the error are provided
in §6.6.
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6.4. Saddlepoint Approximations

As in the univariate case, the first order saddlepoint density approximation can be
calculated directly from the normal approximation. Suppose that a random vector
X has a density fX(x) and a multivariate cumulant generating function KX(γ).
Embed X in an exponential family, to define a density fX(x,γ) = exp(γ�x −
KX(γ))fX(x). As before we desire an approximation gn(x) to fX(x), and proceed
by finding γ̂ dependent on x such that fX(x, γ̂) has mean x and approximating
fX(x, γ̂) by a normal density with mean 0. Then γ̂ is defined by the multivari-
ate saddlepoint equation K′

X(γ̂) = x. The Gaussian approximation to fX(x, γ̂) is
(2π)(−k/2) det [K′′

X(γ̂)]−1/2. By (131),

fX(x) = exp(KX(γ̂) − γ̂�x)(2π)(−k/2) det [K′′
X(γ̂)]−1/2 + O(n−1/2).

This derivation generalizes the univariate argument leading to (66). As in the
univariate case, when the saddlepoint equation has a solution the only conditions
to be checked are the those necessary to demonstrate the order of error of the
underlying Edgeworth series. We will see that this requires only the existence of
the proper cumulants, which is verified by noting that moments of all orders exist,
and the integrability of some power of the characteristic function, which is verified
by noting that the density fX is assumed to exist. Also as in the univariate case
no uniformity claim is made here, although the same heuristics lead one to expect
good uniform error properties.

The solution to the saddlepoint equation is once again the maximum likelihood
estimator, this time for the multivariate parameter γ in the exponential family
defined by fX(x, γ). Existence of such a solution will be considered in §7.7.

Predictably, the higher-order saddlepoint approximations can be derived from
the Edgeworth approximation. Suppose that X arises as the mean of n independent
and identically distributed copies of Y . Let β̂ be the solution to the saddlepoint
equation defined in terms of the distribution of Y ,

K′
Y (β̂) = x. (132)

In the multivariate setting, as in the univariate setting, the factor multiplying 1/
√

n
in the multiplicative correction factor to the baseline approximation is zero, since
the associated Hermite polynomial is evaluated at 0. One might expect that fX(x)
might have an expansion of the form

fX(x) =
exp(n[KY (β̂) − β̂�x])√

det
[
K′′

Y (β̂)
]

(
n

2π

)k/2
[
1 +

b(β̂)
2n

+ O
(
n−2

)]
. (133)

To obtain b(β̂), approximate the tilted distribution fX(x, β̂) by
∞∑

j=0

∑
s∈S(j)

1
j!

µ∗s1···sj(−1)j dj

dxs1 · · · dxsj
φ(0, K′′(β̂)), (134)
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where the cumulants involved in (134) are derivatives of KX at β̂. One may easily
check that the terms of order O(1/

√
n) are zero. Then identify the terms of order

O(n−1) and evaluate the generalized Hermite polynomials hs1,...,sj
(x; K′′(β̂)) of (129)

at zero. The pseudo-moments µ∗s1···sj were defined in (126). Here and below invoke
the convention that an index appearing both as a subscript and as a superscript
is summed over. After replacing products of components of β by the associated
Hermite polynomials, terms of order O(1/

√
n) in (134) are

1
3!

Kijk
X (β̂)hijk(x; K′′(β̂));

the terms of order O(n−1) in (134) are

1
4!

Kijkl
X (β̂)hijkl(x; K′′(β̂)) +

1
2 × 3!3!

Kijk
X (β̂)Klmn

X (β̂)hijklmn(x; K′′(β̂)).

Here dependence of KX on n is suppressed, and the superscripts refer to deriva-
tives with respect to components of β. For some purposes it is preferable to have
the pseudo-moments be symmetric in their indices; the coefficients of products of
components of β in (126) do not have this property. In particular, the second term
of size O(n−1) is asymmetric. These terms may be made symmetric by summing
over all permutations giving recognizably different index patterns and dividing by
the number of such patterns. Were this necessary in the present context we would
be required to add up over all (6!/(3!3!))/2 = 10 ways to partition ijklmn into two
groups of 3 each, and then divide by 10. This is not necessary for what follows.
McCullagh (1987) gives formulas for the Hermite polynomials associated with an
arbitrary covariance matrix Σ as equation (5.7); for the present purposes it suffices
to note that

hijk(0; Σ) = 0

hijkl(0; Σ) = κijκkl[3] = κijκkl + κikκjl + κilκjk

hijklmn(0; Σ) = −κijκklκmn[15].

These polynomials will be evaluated with Σ equal to the covariance matrix [κ̂ij]
associated with the saddlepoint. Here we use the notation of McCullagh (1987) in
denoting by quantity with subscripts followed by an integer in brackets the sum of
all similar but distinct terms generated by permuting the indices. After replacing
quantities involving KX by counterparts involving KY ,

1
2b(β̂) =

1
4!

Kijkl
Y (β̂)hijkl(0; K′′(β̂)) +

1
2 × 3!3!

Kijk
Y (β̂)Klmo

Y (β̂)hijklmo(0; K′′(β̂))

=
1
4!

κ̂ijkl(κ̂ijκ̂kl[3]) − 10
6!

κ̂ijkκ̂lmo(κ̂ijκ̂klκ̂mo[15]).

Sorting the fifteen summands represented by κ̂ijκ̂klκ̂mo[15] into nine for which the
indices for two factors are subsets of the indices of κ̂ijk or κ̂lmo, and six for which
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indices of all three factors are split between the indices of κ̂ijk and κ̂lmo,

b(β̂) =
2
4!

κ̂ijkl(κ̂ijκ̂kl[3]) − 20
6!

[
(κ̂ijkκ̂lmoκ̂ijκ̂klκ̂mo[9]) + (κ̂ijkκ̂lmoκ̂ilκ̂jmκ̂ko[6])

]

=
6
4!

κ̂ijklκ̂ijκ̂kl −
[90
6!

κ̂ijkκ̂lmoκ̂ijκ̂klκ̂mo +
60
6!

κ̂ijkκ̂lmoκ̂ilκ̂jmκ̂ko

]

= 1
4 ρ̂Y ,4 − 1

4 ρ̂Y ,13 − 1
6 ρ̂Y ,23, (135)

for

ρ̂Y ,4 = κ̂ijklκ̂ijκ̂kl, ρ̂Y ,13 = κ̂ijkκ̂lmoκ̂ijκ̂klκ̂mo, ρ̂Y ,23 = κ̂ijkκ̂lmoκ̂ilκ̂jmκ̂ko. (136)

For the sake of brevity all cumulants κ̂ denote those of the distribution tilted to β̂

and are given by derivatives of KY (β)−β�x at β̂. For example, κ̂1 = ∂KY /∂β1−x1,
and κ̂12 = ∂2KY /∂β1∂β2. Let κ̂ij refer to the i, j entry of the inverse of the matrix
formed by κ̂ij. The quantities ρ̂Y ,4, ρ̂Y ,13, and ρ̂Y ,23 are multivariate skewness and
kurtosis measures proposed by Mardia (1970) and McCullagh (1986). Hence, as in
the univariate case the terms of order O(n−1/2) and O(n−3/2) are zero, and (133)
holds.

Jing and Robinson (1994) present a saddlepoint approximation to the density
of a smooth transformation of a random vector X approximated by (133); this will
be recounted in §6.7.

The saddlepoint approximation may be expressed in terms of the Legendre
transform K∗

Y of KY : For x in the range of K′
Y define

K∗
Y (x) = β̂�x − KY (β̂) (137)

for β̂ satisfying (132). Then K∗′
Y (x) = [x� − K′

Y (β̂)]β̂′(x) + β̂(x) = β̂(x), and
K∗′′

Y (x) = β̂′(x). Differentiating (132), K′′
Y (β̂)β̂′(x) = I, and hence

K∗′′
Y (x) = K′′

Y (β̂(x))−1. (138)

Hence

fX(x) = exp(−nK∗
Y (x))

√
det

[
K∗′′

Y (β̂)
] ( n

2π

)k/2
[
1 +

b(β̂)
2n

+ O
(
n−2

)]
. (139)

6.5. Multivariate Integral Expansion Theorems

Multivariate saddlepoint approximations may also be derived via a multivariate
version of Watson’s Lemma. The aim is to calculate integrals whose integrand is
the exponential of a quadratic term times sample size, times a function defined on
a set Q containing the minimum of the quadratic form. Two additional results are
presented, one recasting the first result in terms of integrations in complex space
along hyperplanes of constant real part, and the second presenting results with
integrands with functions that are not exactly quadratic in the integrand.
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Lemma 6.5.1: Suppose that θ has derivatives of order 2j, bounded on [−ε, ε]k. Let
F(s) = {v ∈ Zk|v1, · · · , vk ≥ 0,

∑
vj = s}, and

As =
∑
F(s)

(−2)−
∑k

j=1 vj

v1! · · · vk!

[
∂2v1+···+2vk

∂2v1ω1 · · · ∂2vkωk

θ

]
(0);

then (
n

2π

)k/2 ∫ ε

−ε
· · ·

∫ ε

−ε
exp(−n

2
∑
j

ω2
j )θ(ω) dω =

j−1∑
s=0

Asn
−s + O(n−j).

Proof: Problem 1a of §4.10 shows that
∑j−1

s=0 Asn
−s is the value of the integral

with θ(ω) replaced by its Taylor approximation using derivatives of order 2(j − 1)
and lower. Hence it suffices to prove the lemma assuming all derivatives of order
2(j − 1) and lower are zero.

Applying the univariate Taylor series approximation to θ(λω) find that θ(ω) =
ωjωk · · ·ωmθjk...m(ω∗)/(2j)!, where the list j, k, . . . , m has 2j entries and ω∗ is a linear
combination of 0 and ω. So

|θ(ω)| ≤ (
∑
j

ω2
j )

j
√

sup
(j,k,...,m)F(2j),ω∗∈[−ε,ε]k

|θjk...m(ω∗)|kj/(2j)!.

The result follows directly.
Q.E.D

Theorem 6.5.2: Suppose that θj(ω) are analytic functions from Q ⊂ Ck to C,
and let

fn(ω) =
j∑

j=0
θj(ω)/nj, (140)

Take ω̂ ∈ Q, such that ω̂ + i[−ε, ε]k ⊂ Q. Then
(

n

2π

)k/2
i−k

∫ ω̂1+iε

ω̂1−iε
· · ·

∫ ω̂k+iε

ω̂k−iε
exp(

n

2
∑
j

(ωj − ω̂j)2)fn(ω) dω =
j−1∑
s=0

Asn
−s + O(n−j),

for F(j) = {v ∈ Zk|v1, · · · , vk ≥ 0,
∑

vj ≤ s}, and

As =
∑
F(j)

(−2)−
∑k

j=1 vj

v1! · · · vk!

[
∂2v1+···+2vk

∂2v1ω1 · · · ∂2vkωk

θs−
∑

vj

]
(ω̂). (141)

Proof: This is just Lemma 6.5.1 applied term-wise, after changing the variable
of integration.

Q.E.D
The next result shows that similar techniques may be used to approximate more

general real integrals.
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Lemma 6.5.3: Suppose B(x) is a convex function minimized at x̂ ∈ ([−ε, ε]k)◦,
and with all order 6 derivatives existing. Suppose that θ(x) is a function such that∣∣∣θijkl(x)

∣∣∣ ≤ C1 exp(C2 |x|2) for constants C1 and C2, for all fourth degree derivatives
θijkl(x). Then

(
n

2π

)k/2 ∫ ε

−ε
· · ·
∫ ε

−ε
exp(−n

2
B(x))θ(x) dx =

exp(−n
2B(x̂))

det [B′′(x̂)]1/2 {θ(x̂)(1+

[18ρ4 − 1
8ρ31 − 1

12ρ32]/n) − 1
2(θ̂

ijB̂ij − B̂ijkθ̂lB̂ijB̂kl)/n + O(1/n2)},(142)

for

ρ4 = −B̂ijklB̂ijB̂kl, ρ31 = −B̂ijkB̂lmpB̂ijB̂klB̂mp and ρ32 = −B̂ijkB̂lmpB̂ilB̂jmB̂kp,

and B̂ with superscripts the derivative of B with respect to the indicated components
of x, evaluated at x̂, B̂ = B(x̂), and B̂kl the element in row k and column l of the
inverse of B′′(x̂); θ̂ with and without superscripts is defined similarly. The error is
uniform for x̂ bounded away from the boundary of [−ε, ε]k, if fourth derivatives of
B are bounded.

Proof: First assume that B′′(x̂) is the identity matrix, and that x̂ = 0. Let

P (x) = 1−B̂jklxjxkxl

6
√

n
−B̂jklmxjxkxlxm

24n
−B̂jklmpxjxkxlxmxp

120n
√

n
−B̂jklmpqxjxkxlxmxpxq

720n2 .

Then by Corollary 2.5.4,∣∣∣∣∣exp(−n

2
B(x)) − exp(−n

2
xjδ

jkxi)
4∑

s=0

P (x)s

s!

∣∣∣∣∣ ≤ exp(−n

4
xjδ

jkxi)C3(δj |xj|)4, (143)

and∣∣∣θ(x) − θ̂ − θ̂ixi − 1
2 θ̂

ijxixj − 1
6 θ̂

ijkxixjxk

∣∣∣ ≤ |xi| |xj| |xk| |xl|C1 exp(C2 ‖x‖2).
(144)

Without loss of generality, assume that C1 and C2 are large enough that |θ(x)| ≤
C1 exp(C2 |x|2) as well. Multiplying all but the first quantities inside the absolute
value signs on the left hand sides of (143) and (144), eliminating terms with odd
numbers of factors of components of x, noting every term involving 2k factors of
components of x is of size n−k, and deleting terms of size O(n−2) and smaller,
implies that the left side of (142) is

(
n

2π

)k/2∫ ε

−ε
· · ·
∫ ε

−ε
exp(−n

2
xiδ

ijxj)
[
θ̂

{
1− n

24
B̂ijklxixjxkxl+

n2

72
B̂ijkB̂lmpxixjxkxlxmxp

}

− n

6
θ̂jB̂klmxjxkxlxm − 1

2 θ̂
jkxjxk

]
dx + O(n−2) (145)
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Integrating term-wise yields the result. The calculations for the non–error part of
the integral may be performed either by analogy with the integrals generating the
multivariate Edgeworth series, using the inverse of (127) to express multidimensional
integrals of an exponentiated quadratic form in β times powers of components of
β in terms of derivatives of the multivariate normal density, or more directly. The
next proof of the next lemma demonstrates this direct calculation for one of the
terms above.

Proof when B̂ij is not the identity matrix follows by applying a Cholesky de-
composition to B̂ij, and changing variables to reduce the problem to the simpler
case.

Q.E.D
The proof of the previous lemma involved calculating multivariate integrals

using the information about the Laplace transform of derivatives of the normal cu-
mulative distribution function. The next lemma demonstrates that these quantities
may also be calculated more directly.

Lemma 6.5.4: When B̂ijk is a symmetric array, in that the elements are un-
changed if the indices are permuted, then

(
n

2π

)1/2 ∫ ε

−ε
· · ·
∫ ε

−ε
exp(−1

2xiδ
ijxj)

1
72

B̂ijkB̂lmpxixjxkxlxmxp dx = 1
8ρ31 + 1

12ρ32.

Proof: Any term involving a component of x to an odd power is zero, and so three
cases must be considered. When all indices agree, the integral is 15B̂iiiB̂iii/72. This
exactly corresponds to the sum of addends in −1

8ρ31− 1
12ρ32 in which all superscripts

agree. When there are two distinct indices, one must be appear twice and the
other four times. The resulting integral is either 3B̂iiiB̂ijj/72, or 3B̂iijB̂iij/72. The
first pattern occurs six times in B̂ijkB̂lmpxixjxkxlxmxp (as B̂iiiB̂ijj, B̂iiiB̂jij, B̂iiiB̂jji,
B̂jjiB̂iii, B̂ijjB̂iii, B̂jijB̂iii), and so the integral contributes 1

4 B̂iiiB̂ijj. This pattern
occurs twice in ρ31, and not at all in ρ32, and hence contributions on both sides of
the equality match. The second pattern occurs nine times in B̂ijkB̂lmpxixjxkxlxmxp

(as can be seen by rearranging the two sets of indices separately), and so has a
multiplier of 3

8 , and occurs three times in ρ32, and once in ρ31, making the total
contributions match on both sides of the equal sign.

When there are three distinct indices, each must appear three times, and re-
sulting integral is either B̂iikB̂kjj/72, or B̂ikjB̂ikj/72. Each term of the first form
appears 18 times (since in each factor the location for the non-duplicated index
may be chosen 3 different ways, and the factors may be swapped). Each term of
second form appears 36 times (since each set of indices may be rearranged 6 ways
separately), Each of the first type of term appears twice in ρ31, and each of the
second type of term appears six times in ρ32. Hence the coefficients agree.

Q.E.D



6.6. Error Analysis for the Edgeworth Series 123

Alternatively, one might prove Lemma 6.5.3 by defining new variables

yj =
√

2[min(B(z)|zk = xk∀k ≤ j) − min(B(z)|zk = xk∀k < j)],

for j = 1, k, and change variables from z to y.
The relative error of the O(1/n) approximation in the results of Lemma 6.5.3

is determined by ρ4, ρ31, and ρ32; when these terms are small, the remaining terms
tend to be small as well. In this way, Lemma 6.5.3 motivates a more heuristic
approximation, which might be used whether or not B(x) is a multiple of sample
size: ( 1

2π

)k/2 ∫ ε

−ε
· · ·

∫ ε

−ε
exp(−1

2B(x))θ(x) dx ≈ exp(−1
2B(x̂))

det [B′′(x̂)]1/2 θ(x̂). (146)

This approximation (146) is known as Laplace’s method, and is justified whenever
the derivative ratios can be expected to be small. This quantity is of size O(1/n)
when B(x) is a multiple of sample size; (146) has also proved useful in other contexts
as well.

The identification of B(x) and θ(x) on the left side of (146) is not entirely
rigid; for example, if θ(x) is positive for all x, then the integrand may also be
written as exp(−1

2B(x) + log(θ(x))), and x̂ would then be chosen to minimize
B̃(x) − 2 log(θ(x)). The determinant in the denominator of the right hand side of
(146) will be changed. Similar results are generally obtained with a wide variety
of identifications of B (and hence θ), as long as quantities like ρ4, ρ31, and ρ32

remain small. Kass (1988) discusses the relationship between Laplace’s method
and saddlepoint methods.

6.6. Error Analysis for the Edgeworth Series

This section contains a proof of the multivariate Edgeworth approximation for den-
sities, and discusses the proof for distribution functions.

Theorem 6.6.1: Suppose F is a cumulative distribution function, with mean µ
and positive definite variance matrix Σ, and j is an integer greater than or equal to
two, such that F has all cumulants of order j. Suppose further that∫ ∞

−∞
· · ·

∫ ∞

−∞
|ζ(β)|r dβ < ∞ for some r ≥ 1. (147)

Let Yj be independent and identically distributed random vectors with distribution
function F . Let X = (

∑n
j=1 Yj − nµ)/

√
n. Then X has a bounded density fX for

sufficiently large n, and when (128) is calculated using only the first j cumulants,
terms of order o(n1−j/2) dropped, and the result ej(x,κn) is used to approximate the
density fX , the absolute error is uniformly of order o(n1−j/2).

Proof: The following proof is almost identical to the univariate proof. Without
loss of generality assume Σ = I. Since the cumulative distribution functions can
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be recovered from their characteristic functions using (19), the difference between
fX(x) and ej(x, κX) can be bounded by the integral

( 1
2π

)k ∫ ∞

−∞
· · ·

∫ ∞

−∞
2 |ζX(β) − ξX(β)| dβ, (148)

the analogue of (52). Here ξX is the Fourier transform of the approximate density
ej(x,κX). Because the integral (148) converges absolutely, this argument will not
need the Smoothing Theorem. The Series Theorem is still a key idea here.

The range of integration will now be split in two parts. The area very close to
the origin, and the area farther out will be handled separately.
a. Very near the origin, Corollary 2.5.4 implies that the integrand is bounded by

exp(− ‖β‖2 /4)

⎡
⎣ε ‖β‖j

nj/2−1 +
Cj−1 ‖β‖3(j−1)

(j − 1)!nj/2−1/2

⎤
⎦ ,

for β such that ‖β‖ < δ
√

n. When integrated over (−δ
√

n, δ
√

n)k the result is
still of order o(n1−j/2). Integration is performed using a trivial application of
Lemma 6.5.1.

b. For more extreme values of β (‖β‖ > δ
√

n), the integrability condition on the
characteristic function is used to bound the integrand. There exists q < 1 such
that if ‖β‖ > δ

√
n then |ζ(β/

√
n)| < q. Hence the contribution of (148) from

this part of the range of integration can be bounded by

qn−p
∫ ∞

−∞
· · ·

∫ ∞

−∞
|ζ(β)|p dβ +

∫
· · ·

∫
‖β‖>δ

√
n
|ξX(β)| dβ,

and approaches 0 geometrically.
Q.E.D

The following theorem is the analogue of the univariate Edgeworth cumulative
distribution function theorem. As the flavor of its proof deviates from that of the
rest of this volume, and as it will not be needed to prove later results, it is cited
without complete proof.

Theorem 6.6.2: Suppose F is a cumulative distribution function, with mean µ
and positive definite variance matrix Σ, and j is an integer greater than or equal to
two, such that F has all cumulants of order j. Suppose further that{

|ζ(β)| < 1 ∀β 	= 0 if j = 3, or
lim sup‖β‖→∞ |ζ(β)| < 1 if j > 3. (149)

The condition when j > 3 is a multivariate version of Cramér’s condition. Let Yj

be independent and identically distributed random vectors with distribution function
F . Let X = (

∑n
j=1 Yj −nµ)/

√
n, and let FX be the cumulative distribution function

for X. When (130) is calculated using only the first j cumulants, terms of order
o(n1−j/2) dropped, and the result Ej(x,κn) is used to approximate the distribution
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given by FX , the absolute error is uniformly of order o(n1−j/2), in the sense that not
only

sup
x

|Ej(x,κn) − FX(x)| = o(n1−j/2), (150)

but furthermore, that supC |∫C dEj(x,κn) − ∫
C dFX(x)| = o(n1−j/2), where the

supremum is taken over all convex Borel sets C.
The precise definition of a Borel set is unimportant for the present purposes; it

suffices to note that this class of sets contains all open sets and all closed sets.
Note that (150) provides a result applicable when approximating probabilities

of multivariate rectangles and their unions. Proof of this result is a simple exten-
sion of univariate results. A multivariate version of the Smoothing Theorem could
be constructed to prove that the difference between FX(x) and Ej(x,κn) can be
bounded by the principal value of the integral

lim
Θ→∞

1
2π

∫ Θ

−Θ
· · ·

∫ Θ

−Θ

2
‖β‖ |ζX(β) − ξX(β)| dβ, (151)

where ξ is the Fourier transform of Ej(x,κn). Remember that ξ is not really a char-
acteristic function since Ej(x,κn) is not really a cumulative distribution function.
Nevertheless, just as in the univariate case the cumulative distribution function in-
version theorem arguments hold for ξ as well, justifying (151). As in the univariate
case, the range of integration is divided into three parts: within a multivariate cube
with edges of length δ, outside a multivariate cube with edges of length Θ, and in
the region between these. The outer region again is eliminated through the use of
the Smoothing Theorem. The inner region can be bounded just as in the multi-
variate density proof, and the intermediate region bounded using conditions (149).
Proving the final result is more difficult. See Bhattacharya and Rao (1976).

Q.E.D
Result (150) is, however, too weak to be useful in the sequel, since of interest

will be primarily approximately elliptically-shaped regions. Bhattacharya and Rao
(1976) also present a direct analogy to Esseen’s series, given in Theorem 3.13.2,
for lattice variables. These theorems in general are more complicated, since of
interest are probabilities of sets in Y -space with complicated shapes. As in the
univariate case, this series evaluated at continuity corrected points is equivalent to
the multivariate Edgeworth series, to the proper order in n (Kolassa, 1989).

6.7. A Direct Derivation of the Multivariate Saddlepoint Approximation

The multivariate saddlepoint density might be derived directly from (123), using the
results of the previous section. Consider specifically the case in which fX represents
the distribution of the mean of n independent and identically distributed copies of
Y . After changing variables,

fX(x) =
(

n

2πi

)k ∫ +i∞

−i∞
· · ·

∫ +i∞

−i∞
exp(n[KY (β) − βx]) dβ. (152)
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Choose a differentiable function ω(β) so that

1
2(ω − ω̂)�(ω − ω̂) = KY (β) − β�x − KY (β̂) + β̂�x (153)

A specific choice for ω(β) that will be both useful and easily shown to be analytic
will be constructed in this section.

As these results will be used not only in the present chapter but also in a
subsequent chapter on approximating conditional distributions, the function ω will
be constructed such that for each integer l, ω1, . . . , ωl depend only on β1, . . . , βl. In
essence, ωl becomes the signed likelihood ratio statistic for the hypothesis that the
canonical parameter associated with X l is zero in the exponential family into which
(X1, · · · , X l) is embedded, as in §6.4.

For real β, and 1 ≤ l ≤ k, let

−1
2(ωl − ω̂l)2 = min(KY (γ) − γjx

j|γj = βj ∀j < l)−
min(KY (ξ) − ξjx

j|ξj = βj ∀j ≤ l) (154)
−1

2 ω̂
2
l = min(KY (γ) − γjx

j|γj = 0 ∀j < l)−
min(KY (ξ) − ξjx

j|ξj = 0 ∀j ≤ l). (155)

We adopt the notation that indices appearing both as superscripts and subscripts
are to be summed over. Determine the signs of the square roots in (154) by re-
quiring that for real β, ωl is increasing in βl, and determine the signs of the square
roots in (155) by requiring that ω̂l have the same sign as the maximizing γl. This
parameterization makes proving the following lemma easy. Recall that a function of
one or more complex variables having a power series representation about a point
is called analytic at that point.

Lemma 6.7.1: The function ω(β) satisfying (154) for β ∈ Q is analytic for
ω in a neighborhood of ω̂. Furthermore, for j ∈ {1, . . . , k}, ωj depends only on
β1, . . . , βj, and if the first j components of β are zero, so are the corresponding first
j components of ω. Finally, ω(β) satisfies (153).

Proof: For each l the components γl+1, . . . , γk at which the first minimum in
(154) occurs satisfy Kj

Y (β1, . . . , βl, γl+1, . . . , γk) = xj for j = l + 1, . . . , k, and hence
by the inverse function theorem for complex variables (Bochner and Martin, 1948)
is a differentiable function of β1, . . . , βl. A similar characterization holds for ξ
involving the the second minimum in (154). Holding β1, . . . , βl−1 fixed, the right
hand side of (154) achieves a maximal value of 0 at βl = γl(β1, . . . , βl−1). The same
argument as gave (81) demonstrates that the right side of (154) may be expressed as
(βl−γl(β1, . . . , βl−1))2 times a function hl(β) of β analytic at β̂ and such that hl(β̂) is
real and strictly positive. Then ωl−ω̂l = (βl−γl(β1, . . . , βl−1))

√
2hl(β) describes the

function ωl of (154), where branch of the square root function assigning a positive
result is used. Hence ωl is analytic. Note that ωl depends only on β1, . . . , βl.
Furthermore, when β1 = . . . = βl = 0 then −1

2(ωl − ω̂l)2 = −1
2 ω̂

2
l . Possible solutions
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for ωl are 0 or 2ω̂2; the second contradicts the requirement that ωl be increasing in
βl.

The final claim holds by summing (154), and noting that all of the minimizations
except for the first with l = 1 and the last with l = k cancel. The first minimization
with l = 1 is degenerate, since all values of the argument to KY are set to β, and
the second minimum with l = k is achieved at ξ = β̂.

Q.E.D
Kolassa (1996a) demonstrates that this parameterization may be constructed in

a ball whose size is bounded away from zero in an appropriate metric, as β̂ varies.
Changing variables in (152),

fX(x)=
(

n

2πi

)k

exp(n[KY (β̂)−β̂�x])
∫ +i∞

−i∞
· · ·

∫ +i∞

−i∞
exp(

n

2
(ω−ω̂)�(ω− ω̂))

∣∣∣∣∣ ∂β

∂w

∣∣∣∣∣ dω.

(156)
By differentiating both sides of (153) with respect to β,

∑
l(ωl − ω̂l)(∂ωl/∂βj) =

Kj
Y (β) − xj and

∑
l(∂ωl/∂βj)(∂ωl/∂βk) + (ωl − ω̂l)(∂2ωl/∂βj∂βk) = Kjk

Y (β). Hence

det
[
∂ω

∂β
(ω̂)

]
=
√

det
[
K′′

Y (β̂)
]
. (157)

Application of Theorem 6.5.2 yields the first order terms in (133). Higher-order
terms will be calculated by evaluating derivatives of dβ/dω; as (133) has already
been completely derived in §6.4, and as these calculations are lengthy, the calcula-
tions will be deferred until §7.5.

Approximations to probabilities of random vectors supported on a lattice may
be obtained as a byproduct of the calculations of this section. When the lattice has
unit spacings, then (123) and (124) differ only in the range of integration, and by
a fixed multiple involving n. As before, the portion of the inversion integral more
than an arbitrarily small distance from the real axis contributes a term of relative
size exp(−cn) for some c > 0. Approximation of these integrals to the error present
in (136) is identical. This represents a multivariate extension of the approximation
of Blackwell and Hodges (1959), who present the univariate density approximation
(70) as an approximation to n times univariate lattice probability atoms (73). When
the lattice for Yj has unit spacings in each direction,

P [X = x] =
exp(n[KY (β̂) − β̂�x])

(2π)k/2nk/2 det
[
K′′

Y (β̂)
]1/2

[
1 +

b(β̂)
2n

+ O
(
n−2

)]
.

A multivariate analogue of (74), the saddlepoint density of a smooth transfor-
mation of a random variable, holds in higher dimensions. Various authors, including
Phillips (1983), Tierney, Kass, and Kadane (1989), and Jing and Robinson (1994)
consider this problem. When Z = G(X), for a transformation G that is one-to-one
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on an open set containing E [X]. In this case,

fZ(z) =
exp(n[KY (β̂) − β̂�G−1(z)])

det [G ′(G−1(z))]
√

det
[
K′′

Y (β̂)
]
(

n

2π

)k/2
[
1 +

b(β̂)
2n

+ O
(
n−2

)]
. (158)

6.8. Saddlepoint Approximations to Marginal Distributions

When one can exhibit the cumulant generating function of random vector X, ap-
proximations to marginal distributions of some components of X without regard
to the other components may be derived in the same way as (133) was derived.
The cumulant generating function for the marginal distribution is the cumulant
generating function of the joint distribution with the components of the argument
corresponding to components of X not of interest set to zero. This derived cumulant
generating function is then used in (133) and (132).

When considering approximations to marginal distributions for transformed ran-
dom vectors, and the joint cumulant generating function of the transformed vec-
tor is not available, this method is no longer adequate. Marginal approximations
are obtained by integrating the saddlepoint density approximation using Lemma
6.5.3. This is done most easily by rephrasing (158) in terms of the Legendre trans-
form, defined in (137), evaluated at the transformed ordinate. Recall (138), and let
K†

Z(z) = K∗
Y (G−1(z̃)). Then

fZ(z) = exp(nK†
Z(z))

√
det

[
K∗′′

Y (G−1(z))
]

det [G ′(G−1(z))]

(
n

2π

)k/2 [
1 + O

(
n−1

)]
. (159)

Suppose a density for components m + 1, . . . , k of Z is desired. Let z̃ minimize
K†

Y (z), subject to z̃j = zj ∀j > m. Apply Lemma 6.5.3 with Q(zm+1, . . . , zk) =
K†

Y (z). In this case,

fZm+1,...,Zk(zm+1, . . . , zk) =
exp(nK†

Z(z̃))
det [G ′(G−1(z̃))]

√
det

[
K∗′′

Y (G−1(z̃))
]
/det [C]

(
n

2π

)(k−m)/2

[
1 + O

(
n−1

)]
, (160)

where C is the submatrix of K†′′
Z (z̃) with row and column indices no larger than m.

Approximation (160) is most closely related to that provided by Jing and
Robinson (1994). Phillips (1983) and Tierney, Kass, and Kadane (1989) construct
marginal approximations by applying Lemma 6.5.3 to the exact representation for
a multivariate density, rather than to the saddlepoint approximation.

As an example, consider the distribution of Z1 = log(X1 + X2), when X is the
mean of n independent vectors, each with independent components, with component
j having an exponential distribution, with rate λj. In this case, KY (β) = − log(1−
β1/λ1) − log(1 − β2/λ2), Then β̂ = (λ1 − 1/x1, λ2 − 1/x2), and K∗

Y (x) = λ1 x1 +
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λ2 x2 − 2 − log(λ1 x1) − log(λ2 x2). Assume that λ2 < λ1, and let δ = λ1 − λ2. Let
G(x) = (log(x1 + x2), x2/(x1 + x2)). Then G−1(z) = (exp(z1)(1 − z2), exp(z1)z2),
and

K†
Z(z) = −2(z1 + 1) − log(λ1

(
1 − z2

)
) − log(λ2 z2) + ez1

λ1
(
1 − z2

)
+ ez1

λ2 z2.

Differentiating K†
Z(z) with respect to z2 and setting the result to zero,

z̃ = (z1, 1
2 − exp(−z1)/δ +

√
1
4 + exp(−2z2)δ−1).

Furthermore,

det
[
K∗′′

Y (G−1(z̃))
]

=
δ2 e2 z1 + 4

(
2 +

√
4 + δ2 e2 z1

)
e4 z1 ,

det [A] = 4 + δ2 e2 z1 + 2
√

4 + δ2 e2 z1 , and det [G ′(G−1(z))] = exp(−2z1). Approx-
imation (160) may now be assembled. The behavior of this approximation when
n = 10 is exhibited in Fig. 14. The exact value of the marginal density may also
be calculated. Then

fZ(z) =
exp(exp(z1)k (−δz2 − λ2)) λ1

k λ2
k e2kz1 (1 − z2)k−1

z2k−1

Γ(k)2 k2k,

and

fZ1(z1) =
∫ 1

0
fZ(z1, z2) dz2

=
∫ 1

0

exp(exp(z1)k (−δz2 − λ2)) λ1
k λ2

k e2kz1 (1 − z2)k−1
z2k−1

Γ(k)2 k2k dz2

=
(λ1λ2 exp(2z1))k exp(− exp(z1)kλ2)

Γ(k)δk
×

k−1∑
j=0

Γ(k + j)
j!Γ(k − j)

[−kδ exp(z1)]−jFk+j(kδ exp(z1)),

where Fj is the cumulative distribution function associated with the gamma distri-
bution with shape parameter j and scale parameter 1. The complete parameteri-
zation z was used to show that z2 = (2 + δ exp(z1) − s)/(2 δ exp(z1)) minimizes
K†

Z(z) with z1 held fixed. Furthermore, G−1(z) = (exp(z1)(z2 − 1), exp(z1)z2), and
hence the expression for x̃ above holds.

DiCiccio and Martin (1991) apply Corollary 5.5.2 to an approximate univari-
ate marginal density to obtain approximate marginal tail probabilities. Jing and
Robinson (1994) apply Corollary 5.5.2 to a marginalized saddlepoint density ap-
proximation (160). This application requires the evaluation of det

[
K†′′

Z (z̃)
]

for z̃

satisfying K†
Y

k
(z) = 0 ∀k ≤ m and z̃j = zj ∀j > m. The following result is useful

in this situation:
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Approximating the Density of the Log of the Sum of Two Gamma Variables
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Lemma 6.8.1: Suppose that a function h(x) : Rk → R is twice differentiable,
and that xj = yj if j ≤ J and hk(x) = 0 for k > J . Let g(y) = h(x). Express

h′′(x) =
(

A B
B� C

)
,

for A a square matrix with J rows and columns, and the other submatrices with
their implied dimensions. Then for y such that h′(x) = 0, g′′(y) = A − B�C−1B.

Proof: Let xj
m = d

dym
xj. Note that hkj(x)xm

j = 0 for k > J . Then

(
I 0

B� C

)
x′(y) =

(
I
0

)
,

where 0 and I have their implied dimensions. Since
(

I 0
B� C

)−1

=
(

I 0
−C−1B� C−1

)
,

then

x′(y) =
(

I 0
−C−1B� C−1

)(
I
0

)
=
(

I
−C−1B

)
.
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Then gij(y) = hk(x)xij
k (y) + hkl(x)xi

k(y)xm
l (y), and since hk(x) = 0,

g′′(y) = ( I −B�C−1 )
(

A B
B� C

)(
I

−C−1B

)

= ( I −B�C−1 )
(

A − B�C−1B
0

)
,

which gives the result.
Q.E.D

Now apply (112) to the integration of (160), with g(zk) = −K†
Y (z̃) and m = k−1,

and G(zk) = det [G ′(G−1(z̃))]−1
√

det
[
K∗′′

Y (G−1(z̃))
]
/det [C]. Translate zk so that

g′(0) = 0. When zk = 0, K∗′
Y (G−1(z̃)) = 0, and

det
[
K∗′′

Y (G−1(z̃))
]
det

[
G ′(G−1(z̃))

]−2
= det

[
K†′′

Z (z̃)
]
,

and so G(0) =
√

g′′(0), using Lemma 6.8.1. Let ω̂ =
√

2g(x), and ẑ = g′(x)/G(x).
Hence ∫ ∞

x
fZk(v) dv = Φ̄(

√
nω̂) + n−1/2φ(

√
nω̂)

[
1/ẑ − 1/ω̂ + O(1/

√
n)
]
.

6.9. Multivariate Saddlepoint Distribution Function Approximations

In this section I present a saddlepoint approximation for multivariate tail proba-
bilities, and in the following section I present formulae for computing some of the
components. Unless otherwise noted, results of this section and the next are due to
Kolassa (2003a).

Theorem 6.9.1: Suppose that T is the mean of n independent random vectors,
each with cumulant generating function K. Choose a compact subset W of the range
of K′. For r, m ∈ Zk, and for Σ a positive definite matrix, let

I(Σ, r, m, t, β̂) =
∫ β̂+i∞

β̂−i∞

exp(βjΣ
jkβk/2 − βjδ

jktk))
(2πi)k

k∏
l=1

[βrl
l (βl − β̂l)ml ] dβ.

Here δjk is 1 if j = k and zero otherwise. When T1, . . . , Tk has a continuous distri-
bution, let s be the vector such that sj = −1 for all j. For t ∈ W, set

Q(t) = exp(n[K(β̂) − β̂jt
j + β̂jKjk(β̂)β̂k/2])

[
I(nK′′(β̂), s, 0, nK′′(β̂)β̂, β̂)

+ 1
6K

jkl(β̂)I(nK′′(β̂), s, ej + ek + el, nK′′(β̂)β̂, β̂)/
√

n

]
, (161)
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where ej is the vector with every component 0 except for component j, which is 1.
When T is supported on a unit lattice, let αj = 1/β̂j − cosh(β̂j/2)/(2 sinh(β̂j/2)),
and let

Q(t) = exp(n[K(β̂) − β̂jt
j + β̂jKjk(β̂)β̂k/2])

k∏
j=1

β̂j

2 sinh(β̂j/2)

[

I(nK′′(β̂), s, 0, nK′′(β̂)β̂, β̂) + αjI(nK′′(β̂), s, ej, nK′′(β̂)β̂, β̂)

+ 1
6K

jkl(β̂)I(nK′′(β̂), s, ej + ek + el, nK′′(β̂)β̂, β̂)/
√

n

]
. (162)

Then

P [T ≥ t] = Q(t) + exp(n[K(β̂) − β̂jt
j])E2(t)/n, for sup

t∈W
|E2(t)| < ∞. (163)

Proof: Begin with (125). The first step is to reduce the range of integration in
(125) from β̂ ± i∞ to a bounded range on which the exponent in the integrand
is well–behaved. Existence of a bounded density corresponding to the cumulant
generating function K(β) − βjt

j − K(β̂) + β̂jt
j, and Theorem 6.2.3, show that the

contribution to the relative error from outside a small region about β̂ is exponen-
tially small, and one might choose ε > 0 and q < 1 so that

sup
t∈W,(βj−β̂j)Kjk(β̄k−β̂k)>ε2

∣∣∣exp(K(β) − βjt
j)
∣∣∣ < q,

as was done in §3.7; here ·̄ denotes complex conjugate, and β̂(t) is the solution to
K′(β̂) = t. Below the dependence of β̂ on t is not generally made explicit. Hence,
using (125),

P [T ≥ t] =
∮ exp(n[K(β) − βjt

j])
(2πi)k

∏k
j=1 ψ(βj)

dβ + exp(n[K(β̂) − β̂jt
j])E1,

with |E1| ≤ exp(−nc) for some c > 0, and
∮

representing integration along paths
with real parts given by β̂, and imaginary parts γ satisfying γjκ̂

jkγk ≤ ε2. Expand
K about β̂, and let κ̂ij···s = Kij···s(β̂). Consider first the case when T has a density;
in this case, ψ is the identity function. Then there exists β† between β̂ and β, such
that

P [T ≥ t] = exp(n[K(β̂) − β̂jt
j])
{∮ exp(n[γjκ̂

jkγk/2])
(2πi)k

∏k
j=1(β̂j + γj)

[
1 +

n

6
κ̂klmγkγlγm+

n

24
κ†jklm

γjγkγlγm +
n2

72
κ†jkl

κ†mpq
γjγkγlγmγpγq

]
dγ + E1

}

= exp(n[K(β̂) − β̂jt
j])
[ ∮ exp(n[γjκ̂

jkγk/2])
(2πi)k

∏k
j=1(β̂j + γj)

[
1+
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n

6
κ̂klmγkγlγm

]
dγ + E2/n + E1

]
, (164)

where κ†ij···s = Kij···s(β†), and

E2 =
∮ n exp(n[γjκ̂

jkγk/2])
(2πi)k

∏k
j=1(β̂j + γj)

⎡
⎣κ†jklm

24
γjγkγlγm +

nκ†jkl
κ†mpq

72
γjγkγlγmγpγq

⎤
⎦ dβ.

The terms in E2 will be shown to be of the correct size using Theorem 6.11.3, of
§6.11. The case when T is similar.

Q.E.D
Wang (1990b) provides a saddlepoint approximation to bivariate cumulative

distribution functions.

6.10. Terms in Multivariate Distribution Function Approximations

Non-error terms in expression (164) will be integrated term-wise. Evaluation of
Q(t) requires evaluation of I(Σ, r, m, t, β̂) for r a vector of integers no smaller
than −1. For any r, m ∈ Zk, and j ∈ {1, . . . , k},

I(Σ, r, m, t, β̂) = I(Σ, r + ej, m − ej, t, β̂) − β̂jI(Σ, r, m − ej, t, β̂). (165)

This recursion may be continued until for each j, mj = 0. Alternatively, one might
expand each of the factors (βj − β̂j)mj using the binomial theorem and integrate
term-wise. Manipulating (23),

I(Σ, r, 0, t, β̂) =
k∏

j=1
(−1)rj+1 drj+1

(dtj)rj+1 Φ̄(t, Σ). (166)

The integrals I(Σ, r, 0, t, β̂) will be evaluated by expressing them in closed form
when r takes on only values in {−1, 0}, and by providing a recursive representation
for other values of r. For A, B ⊂ F = {1, . . . , k}, and for vector t of length k and
k×k matrix Σ, let tA be the components of t with indices in A, let ΣA the elements
of Σ with row and column indices in A, if any, and ΣA,B the elements of Σ with
row indices in A and column indices in B, if any. Let ΣA,B be the corresponding
entries in Σ−1. Let A = {j|rj = 0}.

Differentiation of the k dimensional normal tail probability with respect to com-
ponents whose indices are in A yields the marginal density for components in A
times the conditional tail probability of components in Ac conditional on those in
A, all evaluated at t, and hence

I(Σ, r, 0, t, β̂) = φ(tA, ΣA)Φ̄(tAc
+ (Σc

A)−1ΣAc,AtA, Σc
A)

for rj ∈ {0,−1}∀j, A = {j|rj = 0}. (167)
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If r ∈ Zk such that rl ≥ −1 ∀l, then

I(Σ, r + ej, 0, t, β̂) = − d

dtj
I(Σ, r, 0, t, β̂) (168)

If r ∈ Zk such that rl ∈ {−1, 0} ∀l and rj = rk = 0, (168) implies

I(Σ, r + ej, 0, t, β̂) = [(ΣA)−1tA]jI(Σ, r, 0, t, β̂)

+
∑
l∈Ac

I(Σ, r + el, 0, t, β̂)[(Σc
A)−1ΣAc,{j}]l, (169)

and

I(Σ, r + ej + ek, 0, t, β̂) = [(ΣA)−1tA]jI(Σ, r + ek, 0, t, β̂)

− (ΣA)−1
jk I(Σ, r, 0, t, β̂)

+
∑

m∈Ac

I(Σ, r + em + ek, 0, t, β̂)[(Σc
A)−1ΣAc,{m}]j (170)

and

I(Σ, r + ej + ek + el, 0, t, β̂) = (ΣA)−1
jl I(Σ, r + ek, 0, t, β̂)

− [(ΣA)−1tA]jI(Σ, r + ek + el, 0, t, β̂) + (ΣA)−1
jk I(Σ, r + el, 0, t, β̂)

−
∑

m∈Ac

I(Σ, r + em + ek + el, 0, t, β̂)[(Σc
A)−1ΣAc,{m}]j. (171)

Hence (165), (167), (169), (170), and (171) allow for the recursive calculation of the
quantities in Q(t).

Expanding K about 0 rather than β̂ causes (164) to be replaced by

Q∗(t) =
∫ +i∞

−i∞

exp(n[βjKjk(0)tk/2 − βjδ
jkβ̂k])

(2πi)k
∏k

j=1 ψ(βj)

[
1 + nKklm(0)βkβlβm

]
dβ + O(1/n),

= I(nK′′(0), s, 0, nt, 0) +
Kjkl(0)
6
√

n
I(nK′′(0), s + ej + ek + el, 0, nt, 0)

+ O(1/n).

Expansion Q∗ is the well–known Edgeworth expansion for P [T ≥ t], and is valid
even when K(β) exists only for pure imaginary arguments. It is also valid when T
is confined to a unit lattice and t1, . . . , tk is evaluated at continuity corrected points
(Kolassa, 1989). In this case ψ(τ) = 2 sinh(τ/2), and linear terms generated by
expanding τ/ψ(τ) are zero. Note that 1/β̂ − cosh(β̂/2)/2 sinh(β̂/2) evaluated at
β̂ = 0 is zero.

Approximation Q(t) holds only when all components of β̂ are positive. Ap-
proximations for other t may be calculated recursively. Specifically, suppose that
a vector with a negative subscript denotes that vector with the indicated compo-
nent omitted, and suppose that t corresponds to a multivariate saddlepoint β̂ with
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β̂j < 0. Then let u = (t1, . . . , tj−1, −tj, tj+1, . . . , tk), and define U analogously.
Then P [T ≥ t] = P [T−j ≥ t−1] − P [U ≥ u], and the saddlepoints associated with
u has one fewer negative entries than does β̂, and Q(t) may be applied to U and
T−j.

The vector β̂ might be interpreted as the maximum likelihood estimator for
β when t is embedded in the exponential family with density fT (t) exp(β�t −
K(β)). Lugannani and Rice (1980), Skovgaard (1987), and Wang (1990b) have
developed approximations built around modifications of signed roots of likelihood
ratio statistics when d ≤ 2; the next section will review the two dimensional version
for comparison with Q(t), and argue why this approach is infeasible for higher
dimensions.

Saddlepoint approximations to densities typically yield an error term that is
relative; that is, the ratio of the true density to the approximation may be expressed
as one plus a negative power of the sample size times a term that is uniformly
bounded as n increases and t varies, at least within a compact set such as W . Many
authors, including Routledge and Tsao (1995), describe such results. Achieving a
uniform relative bound on tail probability approximations is more difficult, even
in one dimension. These approximations are typically of form a(t, n)Φ̄(

√
nv(t)) +

b(t, n)φ(
√

nv(t)), for functions a, b, and v; see, for example, Robinson (1982) and
Daniels (1987). The error term typically has a bound of form n−αCφ(

√
nv(t)), for

some constant C. Unfortunately, Φ̄(
√

nv(t))/φ(
√

nv(t)) → 0 as n → ∞, and so
uniformity of the relative error fails. The error bound in Q(t) is of this form; the
error is uniformly exponentially small, but not strictly speaking both relative and
uniform.

6.11. Bounding Multiple Complex Integrals with Singularities

New results are needed to generate asymptotic expansions of multivariate complex
integrals with singularities in their denominators. These arguments are more deli-
cate than those above, since the integrals considered in this section do not converge
absolutely. First, a class of integrals whose values can be bounded by compar-
ison with results from §6.10 are investigated. These integrals have a quadratic
exponential factor, and remaining factors equal to the inverse of a constant plus
components of the variable of integration. Next, a result involving a more general
function multiplying the integrand is presented. Finally, a factor representing sam-
ple size is inserted into the quadratic exponent, and similar techniques are used to
demonstrate its asymptotic order.

Lemma 6.11.1: Let U ⊂ {1, . . . , k} be a collection of unique indices. possibly
non-exhaustive and non-unique. Let B(ε, κ̂jk) = {γ ∈ Rk|γjκ̂

jkγk ≤ ε2}. Suppose
for every s ∈ U , |us| ≤ 2ε/

√
κ̂ss. Let

C(U , ε) = sup
us=0∀s∈U c,|us|≤2ε/

√
κ̂ss∀s∈U

∣∣∣∣∣
∫

B(ε,κ̂jk)

exp(−γjκ̂
jkγk/2)

(2π)k
∏

j∈U(uj + iγj)
dγ

∣∣∣∣∣ . (172)
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Then C(U , ε) < ∞.

Proof: The arguments of §6.10 show that C(U , ∞) may be expressed as sums,
products, and ratios involving the multivariate normal cumulative distribution func-
tion and the multivariate normal density, all evaluated in a compact region around
0; hence the supremum above is finite. Furthermore, C(U , ε) − C(U , ∞) may be
expressed as as an integral whose integrand is the power of components of γ, times
a bounded function.

Q.E.D
The previous result is too restrictive for our purposes, since the integral that

will eventually be bounded includes integrals like (172), but with powers of γj as
factors of the integrand, and additionally, some of the components of u will be larger
than allowed above. Both of these complications will be accommodated by adding
a general function of γ as a factor of the integrand. Our eventual use of the next
lemma will be confined to g equal to the product of components of its arguments,
but a more general statement is necessitated by the first two remarks in the proof
simplifying the result without loss of generality.

Lemma 6.11.2: Let U ⊂ {1, . . . , k} be as in Lemma 6.11.1. Let g(ξ, u) be a
function from {(ξ, u)|�(ξ),u ∈ B(2ε, κ̂jk),�(ξ) ∈ B(ε, κ̂jk)} to C, such that all
derivatives of g with respect to components of ξ have a uniform bound over its
domain. Then ∫

B(ε,κ̂jk)

exp(−γjκ̂
jkγk/2)

(2π)k
∏

j∈U(uj + iγj)
g(u + iγ, u) dγ < K, (173)

where K is independent of us.

Proof: Without loss of generality, we may assume that for every j ∈ U , |us| ≤
2ε/

√
κ̂ss; otherwise, the corresponding factors in the numerator of the integrand

could be moved into g. Furthermore, we may assume that κ̂jk = 0 if j ∈ U and
k /∈ U ; otherwise, γk may be redefined as a linear combination of γk and the γj for
j ∈ U . Finally, without loss of generality, assume that U consists of consecutive
integers starting with 1.

Suppose that p is the minimal index such g(ξ, u) = g(γ, u) whenever γs = ξs if
s ≤ p for all v. If p = 0, then g does not depend on any of the variables occurring
in the denominator of the integrand, and, because of our assumptions about κ̂jk,
the integral may be expressed as the product of two factors. One factor consists
of integration with respect to γj for j ∈ U , and the other consists of integration
with respect to the remaining variables. The first integral is bounded by Lemma
6.11.1. The second is bounded by the arguments used in Theorem 6.5.2. Hence the
theorem holds for p = 0.

During the above factoring of the integral, an exponentially small error is in-
curred, when transforming the original spherical range of integration into the prod-
uct of two separate spherical ranges of integration of lower dimension.



6.11. Bounding Multiple Complex Integrals with Singularities 137

Suppose that the theorem holds for p, and suppose that p + 1 ∈ U . Let ξ be
such that ξj = γj if j 	= p + 1, and ξp+1 = −up+1. Express (173) as the sum of two
integrals, with g(ξ, u) and g(γ, u) − g(ξ, u) replacing g(γ, u). Apply the result for
p to the first of these integrals, and note that the second term may be expressed as
(173), with g(γ, u) replaced by (g(γ, u)−g(ξ, u))/(up+1+iγp+1), and p+1 removed
from U . The result follows by induction.

Q.E.D
The next result considers integrals with n multiplying the quadratic term in the

exponent.

Theorem 6.11.3: Let U ⊂ {1, . . . , k} be a collection of unique indices, and let
T be a collection of entries of U , possibly non-exhaustive and non-unique. Let g be
a function from [−ε, ε]k × Rk to C, such that every derivative of g, with respect to
components of its first argument, has a bound independent of β̂ and its arguments.
Then

∫
B(ε,κ̂jk)

exp(−nγjκ̂
jkγk/2)

(2π)k
g(γ, β̂)

∏
j∈T γt∏

j∈U(β̂s + iγs)
dγ = O(n(#(U)−k−#(T ))/2)

Proof: This result will be proved by induction, in a manner similar to the previous
proof. Again without loss of generality, one may assume that κ̂jk = 0 if j ∈ U and
k ∈ U c. Suppose that g depends only on components of its argument that lie outside
U . Then the integral may be factored into two integrals, one over components of
γ with components in U , and the other over the remaining components of γ. The
first factor is of size O(n(#(U)−k)/2), using standard methods, and the second factor
is

n−#(T )/2
∫

B(
√

nε,κ̂jk)

exp(−Q/2)
(2π)k−#(U)

∏
j∈T γj∏

j∈U(
√

nβ̂j + iγj)

∏
j∈U

dγj. (174)

Here Q represents the contribution to γjκ̂
jkγk when the implicit sum over j and k

is restricted to indices in U . The contribution to the above integral from B(ε, κ̂jk)c

is bounded, and the remaining integral is bounded by Lemma 6.11.2. Now suppose
the result holds when fewer than p of those components of its first argument which
g actually depends on are in U . Choose g dependent only on p components of its
first arguments, with indices are in U . Let m be one such index. Let g1(γ, β̂) be
g(γ, β̂) with γm = 0, and let g2(γ) = (g(γ, β̂)−g1(γ, β̂))/γm. Then the result holds
if both

∫ +ε

−ε

exp(−nγjκ̂
jkγk/2)

(2π)k
g1(γ)

∏
j∈T γt∏

j∈U(β̂s + iγs)
dγ = O(n(#(U)−k−#(T ))/2)

∫ +ε

−ε

exp(−nγjκ̂
jkγk/2)

(2π)k
g2(γ)

∏
j∈T γt∏

j∈U ,j �=m(β̂s + iγs)
dγ = O(n(#(U)−k−#(T ))/2).
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In both cases, gl depends on fewer than p components with indices in represented
in the denominator, and the result holds.

6.12. Exercises

1. Prove Lemma 6.2.3.
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Conditional Distribution Approximations

Often inference for a subset of model parameters is desired, and the others are
treated as nuisance parameters. The sampling distribution of quantities like p-
values and confidence intervals generally depends on the nuisance parameter value.
Among the many methods removing this dependence is conditional inference, in
which sufficient statistics for nuisance parameters are conditioned on. Calculations
involving these conditional distributions are often quite difficult. This chapter will
develop methods for approximating densities and distribution functions for condi-
tional distributions.

Consider full canonical exponential family distributions consisting of distribu-
tions with densities of the form

fY (y; υ) = exp(y�υ − HY (υ) − GY (y)). (175)

Here the cumulant generating function of Y is KY (β; υ) = HY (β + υ) − HY (υ).
In such families the conditional distribution of a subset of sufficient statistics con-
ditional on the rest is also a canonical exponential family, depending only on the
corresponding canonical parameters:

fY (Y 1 = y1, · · · , Y m = ym|Y m+1 = ym+1, · · · , Y k = yk; υ)

=
exp(y1υ1 + · · · + ykυk − GY (Y ))∫∞

−∞· · ·
∫∞
−∞ exp(y1υ1 + · · · + ykυk − GY (Y )) dy1 · · · dym

.

This conditional distribution may be used for inference on a subset of model pa-
rameters, while treating the remaining model parameters as nuisance parameters.

Also note that if X is the mean of n independent and identically distributed
random vectors with density (175), then the density for X may be expressed as

fX(x; θ) = exp(x�θ − HX(θ) − GX(x)), (176)

with θ = nυ, and so a similar conditioning argument can be used for inference.
Furthermore, if y and υ in (175) are of length n, with components of Y independent,
so that HY (υ) =

∑n
j=1 HYj

(υj), and if Z is a n × k matrix such that

υ = Zθ, (177)

139
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then T = Z�Y is sufficient for θ, and the density or probabilities for T are given
by

fT (t; θ) = exp(t�θ − HT (θ) − GT (t)), (178)

with HT (θ) =
∑n

j=1 HYj
(z�

j θ), for zj representing row j of Z. Relations (175) and
(177) represent the simplest examples of generalized linear models, including logistic
and Poisson regression. The methods derived in this chapter will allow inference on
one component of θ without specification of the remaining components.

This chapter will consider approximations that aid in conditional inference for
some components of a parameter vector that is a linear transformation of the canon-
ical parameter in an exponential family as in (176), especially those arising under
repeated sampling from a family like (175). The question of inference on a sub-
set of model parameters that cannot be expressed as canonical parameters in an
exponential family will be addressed in the next chapter.

7.1. Double Saddlepoint Density Approximations

In this section an approximation to the conditional density of the first m components
of a random vector X = (X1, . . . , Xk) arising as the mean of n independent and
identically distributed random vectors Yj, each with cumulant generating function
KY . is derived. Let β̂ satisfy K′

Y (β̂) = x, as in (132). Let β̃ satisfy

β̃1, . . . , β̃m = 0, Kj
Y (β̃) = xj for j > m. (179)

Barndorff–Nielsen and Cox (1979) present the double saddlepoint approximation
to the conditional density. Its name derives from the fact that the saddlepoint
equations are solved twice, once in (132) to obtain β̂ and once in (179) to obtain
β̃. This approximation might also be derived from two applications of (133); the
ratio of (133) calculated for (Xm+1, . . . , Xk) and for X, with terms of size o(1/n)
deleted, is valid to O(n−2), and is

fX1,...,Xm|Xm+1,...,Xk(x1, . . . , xm|xm+1, . . . , xk)

= nm/2
det

[
K′′

Y m+1,...,Y k(β̃)
]

det
[
K′′

Y (β̂)
] exp(n[KY (β̂) − KY (β̃) − (β̂ − β̃)�x])

(2π)m/2

×
(
1 + n−1[18(ρ̂13 − ρ̃13) + 1

12(ρ̂23 − ρ̃23) − 1
8(ρ̂13 − ρ̃13)] + O(n−2)

)
. (180)

Here the invariants ρ̂ are exactly as in (136), and the invariants ρ̃ are as in (136), cal-
culated from the derivatives of the cumulant generating function of (Xm+1, . . . , Xk),
evaluated at β̃.

The two approximations whose ratio gives (180) also represent the multivariate
Blackwell–Hodges approximations for random vectors X that are means of random
vectors supported on a unit lattice, with an appropriately adjusted leading factor,
from (142). Hence in this case, the right-hand side of (180) is also an asymptotic
expansion for P

[
X1 = x1, . . . , Xm = xm|Xm+1 = xm+1, . . . , Xk = xk

]
.
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Jing and Robinson (1994) present approximations for conditional densities aris-
ing from smooth but nonlinear transformations of random vectors. Dividing (159)
by (160),

fZ1,...,Zm|Zm+1,...,Zk(z1, . . . , zm|zm+1, . . . , zk)

= nm/2 exp(n[K†
Y (ẑ) − K†

Y (z̃)])
(2π)m/2

√√√√√ det
[
K†′′

Z (z̃)
]

det
[
K†′′

Z (z)
]
det [A]

(
1 + O(n−1)

)
. (181)

where again z̃ minimizes K∗
Y (G−1(z)), K†

Z(z) = K∗
Y (G−1(z̃)), and A is the subma-

trix of K†′′
Z (z̃), with row and column indices no larger than m. DiCiccio, Martin,

and Young (1993) apply similar techniques to an exact joint distribution, rather
than to its saddlepoint approximation.

7.2. The Sequential Saddlepoint Approximation

Most statistical applications rely on the evaluation of tail probabilities rather than
densities. Perhaps the most direct approach to calculating conditional tail prob-
abilities involves calculating the cumulant generating function for the conditional
distribution. Specifically, when desiring the distribution of (X1, . . . , Xm) conditional
on (Xm+1, . . . , Xk), one could calculate

KX1,...,Xm|Xm+1,...,Xk(β1, . . . , βm)

= log
(∫∞

−∞· · ·
∫∞
−∞ exp(

∑m
j=1 xjβj)fX(x) dx1 · · · dxm∫∞

−∞· · ·
∫∞
−∞ fX(x) dx1 · · · dxm

)
. (182)

This is often not obtainable in closed form even when the unconditional cumulant
generating function is available.

In this case cumulant generating function derivatives may be obtained from log
likelihood derivatives. This relationship will be further explored in the next chap-
ter. Fraser, Reid, and Wong (1991) exploit this fact, and suggest approximating
the marginal density in the denominator of (182) by its saddlepoint approximation,
and approximating numerically the derivatives of this approximate conditional like-
lihood. The result of this method is called the sequential saddlepoint approximation.
Consider the density (176), arising from (175) under repeated sampling. The cu-
mulant generating function for the marginal distribution of X−m = (Xm+1, . . . , Xk)
is HX(θ + β) − HX(θ), with βj = 0 for j ≤ m, and the multivariate saddlepoint
satisfies Hi

X(θ+β̃) = xi for i ≥ m+1 and β̃j = 0 for j ≤ m, where Hi
X is the partial

derivative of HX with respect to argument i. Let θ̃ = θ + β̃. Then θ̃ satisfies

Hi
X(θ̃) = xi for i ≥ m + 1, θ̃j = θj for j ≤ m. (183)

The saddlepoint approximation to this marginal density fX−m(x−m), treating X as
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the mean of 1 independent and identically distributed copy of X, is proportional to

exp

⎛
⎝ k∑

j=m+1
(θj − θ̃j)xj − HX(θ) + HX(θ̃)

⎞
⎠ /

√
det

[
H′′

X−m
(θ̃)

]
,

where H′′
X−m

(θ̃) is the matrix of second derivatives of HX with respect to argu-
ments with indices greater than m. Dependence in sample size is implicit in the
relationship between HX and HY . An approximation to the conditional density
fX1,...,Xm|X−m

(x1, . . . , xm|x−m) = fX(x)/fX−m(x−m) is

exp

⎛
⎝ m∑

j=1
xjθj +

k∑
j=m+1

θ̃jx
j − HX(θ̃) − GX1,...,Xm|X−m

(X)

⎞
⎠ /

√
det

[
H′′

X−m
(θ̃)

]
,

where GX1,...,Xm|X−m
(X) is a function that might be quite difficult to evaluate, but

fortunately will not be needed in the sequel. This corresponds to the conditional
profile log likelihood of Cox and Reid (1987) after adjustment for non-orthogonality
of parameters; also see Levin (1990). This thread, with more references, will be
picked up later in §8.6. Approximately, then, the cumulant generating function for
this conditional distribution is

−
∑
j>m

θ̃jx
j + HX(θ̃) − 1

2 log
(
det

[
H′′

X−m
(θ̃)

])
. (184)

Derivatives of this cumulant generating function can be calculated numerically, and
be used in conjunction with univariate saddlepoint formulae such as (66) and (109).
Fraser, Reid, and Wong (1991) consider this argument with m = 1.

As an example, let X1 and X2 be independent exponential random variables,
from the family fX(x; θ) = exp(xθ − x + log(1 − θ)) for x > 0 and θ < 1. Consider
the distribution of T 1 = X1 conditional on T 2 = t2, where T 2 = X1 +X2. The joint
cumulant generating function of T = (T 1, T 2) is − log(1 − θ1 − 2 θ2 + θ2 (θ1 + θ2)).
The saddlepoint equation for θ1 fixed is (2−θ1−2 θ2)/(1−θ1−2 θ2+θ2 (θ1+θ2)) = t2;
this equation has two solutions for θ2:

θ2 = 1 − 1
2θ1 −

(
1 ±

√
1 + 1

4θ
2
1 (t2)2

)
/t2.

The solution taking ± as − reduces to θ2 = 1 when θ1 = 0, and as this lies outside
the range of definition for the full cumulant generating function, the solution with
± taken as + is chosen. The approximate conditional profile log likelihood is

1
2 log(2 +

√
4 + θ2

1 (t2)2) + 1
2 log(

√
4 + θ2

1(t2)2) + θ1 t1 − 1
2θ1 t2 − 1

2

√
4 + θ2

1 (t2)2,

and hence K†
T 1|T 2(θ1) = 2 − 1

2 log(4 + 2
√

4 + θ1
2 (t2)2) − 1

4 log(4 + θ2
1 (t2)2) + 1

2θ1 t2 +
1
2

√
4 + θ1

2 (t2)2 represents the cumulant generating function approximation (184).
The true conditional distribution of T 1 is uniform over (0, t2), and if t2 = 1, the
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true cumulant generating function of this conditional distribution is KT 1|T 2(θ1) =
log(2 sinh(θ1/2)/θ1) + 1

2θ1, the cumulant generating function of a uniform random
variable on (0, 1). Fig. 15 illustrates how well K†

T 1|T 2(θ1) approximates KT 1|T 2(θ1).
This example illustrates an interesting aspect of joint cumulant generating func-

tions. The domain of KT is not the product of the domains of KT 1 and KT 2 . Thus,
while the domain of KT 1 is (−∞, 1), the domain of K†

T 1|T 2(θ1) is R, as is the domain
of KT 1|T 2 .

An alternate expression for (184) may be derived by considering the problem
of conditional inference based on a T , a linear transformation of X. Then the
likelihood equations (183) can be expressed in terms of HX rather than HT , which
is an advantage when HX has a simple form.

Lemma 7.2.1: Suppose that X has the density (176), and that T = BX, with B
invertible. Express B as a partitioned matrix, with the first row, giving T 1, denoted
by c, and the remaining rows denoted by the (k − 1) × k matrix A. Suppose that
Ac� = 0, a vector of all zeros. Then T has a density of the form

fT (t) = exp(t�η − HT (η) − GT (t)),

with HT (η) = HX(B�η). Suppose t is the observed value of T , and x is the
associated value for X. Let η̂ and η̃ satisfy H′

T (η̂) = t� and H′
T−1

(η̃) = t�
−1

with η̃1 = η1. Let θ̂ and θ̃ satisfy H′
X(θ̂) = x� and H′

X−1
(θ̃)A = x�

−1A with
c�θ̃/(c�c) = η1. Then B�η̂ = θ̂ and B�η̃ = θ̃.

Proof: This result follows from straight-forward calculation.
Q.E.D

The following lemma will also be useful:

Lemma 7.2.2: Suppose that V is a symmetric invertible matrix of size k × k,
that A is a k × (k − 1) matrix of full rank, and c is a vector of length k such that
A�c = 0. Let B be the k × k matrix whose first row is c and whose remaining rows
are A. Then det

[
BV B�

]
= (c�c)2 det

[
AV A�

]
/(c�V −1c).

Proof: Expanding the product of partitioned matrices, and using standard de-
terminant formulae for partitioned matrices (Hocking, 1985, Appendix A.II.1.2),

det
[
(cA�)�V (cA�)

]
= det

[(
c�V c c�V A�

AV c AV A�

)]

= det
[
AV A�

] ∣∣∣c�V c − c�V A�(AV A�)−1AV c
∣∣∣ .

Letting U be a matrix such that UU� = V , this last factor can be expressed as∣∣∣c�U (I − (AU )�(AU (AU )�)−1AU )U�c
∣∣∣ .
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Sequential Saddlepoint Approximation to
the Uniform Cumulant Generating Function
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Derivative of Sequential Saddlepoint Approximation
to the Uniform Cumulant Generating Function

−1 −0.5 0 0.5 1

β

−0.05

0

0.05

0.1

K

...................
...................

...................
...................

...................
...................

...................
...................

...................
..................

...................
...................

...................
...................

...................
...................

...................
...................

..................
...................

...................
...................

...................
...................

...................
...................

...................
..................

...................
...................

...................
...................

...................
...................

...................
...................

..................
...................

...................
...................

...................
...................

...................
...................

...................
..................

...................
...................

...................
...................

...................
................

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.............................................. True CGF

. . . . Sequential Saddlepoint Approximation
to the CGF of a unit exponential conditional
on the sum of two unit exponentials

Fig. 15b.



7.3. Double Saddlepoint Distribution Function Approximations 145

The inner matrix is the projection matrix onto the space perpendicular to the space
spanned by AU ; this space is spanned by c�U−1�, and the projection matrix onto
this space can be expressed as

U−1c(c�V −1c)−1c�U−1�.

Hence
∣∣∣c�V c − c�V A�(AV A�)−1AV c

∣∣∣ = (c�c)2(c�V −1c)−1.
Q.E.D

Then assuming the setup of Lemma 7.2.1, (184) can be expressed as

−θ̃�x + HX(θ̃) − 1
2 log

(
det

[
H′′

X(θ̃)
])

− 1
2 log(c�H′′

X(θ̃)−1c).

Alternatively, McCullagh and Tibshirani (1990) attack the problem of infer-
ence in the presence of nuisance parameters by approximating marginal rather than
conditional distributions, and derive an adjusted profile log likelihood.

Kolassa (2004) provides formulas that avoid numerical differentiation of (184),
and also demonstrates that (184) might be used in conjunction with Theorem 6.9.1
to approximate conditional multivariate tail probabilities.

7.3. Double Saddlepoint Distribution Function Approximations

Skovgaard (1987) applies double saddlepoint techniques to the problem of approxi-
mating tail probabilities for conditional distributions, by approximating the saddle-
point inversion integral for the quantity D(x1|x−1) =

∫∞
x1 fn(y, x2, . . . , xk) dy; the

ratio
D(x1|x−1)/fn,X2,...,Xk(x2, . . . , xk)

is by definition the conditional cumulative distribution function. Here x−1 =
(x2, . . . , xk). An inversion integral representation for D is derived by replacing x1

by a dummy integration variable y in (133), and then integrating with respect to y

between x1 and ∞, to yield, for Cn,k = (n/[2πi])k exp(n[KY (β̂) − β̂�x]),

D(x1|x−1) =
(

n

2πi

)k ∫ ∞

x1

∫ +i∞

−i∞
· · ·

∫ +i∞

−i∞
exp

(
n[KY (β) − β1(y − x1) − β�x]

)
dβ dy

=
(

n

2πi

)k ∫ +i∞

−i∞
· · ·

∫ +i∞

−i∞

∫ ∞

x1
exp

(
n[KY (β) − β1(y − x1) − β�x]

)
dy dβ

= Cn,k

∫ +i∞

−i∞
· · ·

∫ +i∞

−i∞
exp

(
n[KY (β) − KY (β̂) + (β� − β̂)x]

) dβ

nβ1
. (185)

The last equality in (185) follows only if the path of integration for the integral
with respect to β1 is deformed so that the real part of the path is bounded below
by some positive number. After changing the variable of integration from β to ω
in the same way that generated (156), we obtain,

D(x1|x−1) = Cn,k

∫ +i∞

−i∞
· · ·

∫ +i∞

−i∞
exp

(
n

2
(ω − ω̂)�(ω − ω̂)

) ∣∣∣∣∣ ∂β

∂w

∣∣∣∣∣ dω

nβ1(ω)
. (186)
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Skovgaard expands D in terms of the multivariate saddlepoints β̂ for the full distri-
bution of X and β̃ for the distribution of the shorter random vector (X2, . . . , Xk),
and in terms of derivatives of KY at these saddlepoints β̂ and β̃. Analytic dif-
ficulties in expanding (186) are similar to those that arose in expanding (99), in
that the integrand has a simple pole at β1 = 0. As with the univariate cumulative
distribution function approximation of Lugannani and Rice (1980), presented in
§5.3, the singularity will be isolated into a term that can be integrated exactly, and
the remaining integral will be approximated. As with the saddlepoint density, the
expansion for D can be factored into two components, with one factor identical to
the saddlepoint approximation to the density of X2, . . . , Xk. The second factor is
then the conditional tail probability approximation of interest.

Let g(ω) = det [dβ/dω] ω1/β1(ω). Expressing g(ω) as g(0, w−1) + (g(ω) −
g(0, w−1)) separates out the singularity into a term that can be integrated exactly.
Here w−1 denotes the vector (ω2, . . . , ωk). These two terms will be integrated sepa-
rately. That is, D is expressed as D1 + D2, where

D1 = Cn,k

∫ +i∞

−i∞
· · ·

∫ +i∞

−i∞
exp(

n

2
(ω − ω̂)�(ω − ω̂))

g(0, w−1)
ω1

dω

D2 = Cn,k

∫ +i∞

−i∞
· · ·

∫ +i∞

−i∞
exp(

n

2
(ω − ω̂)�(ω − ω̂))

g(ω) − g(0, w−1)
ω1

dω.

(187)

The particular choice of β(ω) of §6.7 implies that ∂β/∂w is triangular, and hence
the Jacobian is the product of the derivatives; specifically, for any j ∈ {2, . . . , k},

∣∣∣∣∣ ∂β

∂w

∣∣∣∣∣ = det
[
∂β1, . . . , βj−1

∂ω1, . . . , ωj−1

]
(ω) det

[
∂βj, . . . , βk

∂ωj, . . . , ωk

]
(ωj, . . . , ωk). (188)

Since limω1→0 ω1/β1 = ∂β1/∂ω1, equation (188) implies that

lim
ω1→0

β1

ω1

∣∣∣∣∣ ∂β

∂w

∣∣∣∣∣ =
∂β−1

∂w−1
(0, w−1).

Since g(0, w−1)/ω1 factors as the product of 1/ω1 times a function of the other
variables, the resulting integral D1 may be factored the same way, and may be
expressed as

D1 =
φ(nω̂1)
i
√

2π

∫ c+i∞

c−i∞
exp

(
n

2
(ω1 − ω̂1)2

)
dω1

ω1

{(
n

2πi

)k−1
exp(n[KY (β̃) − β̃�x])×

∫ c+i∞

c−i∞
· · ·

∫ c+i∞

c−i∞
exp

⎛
⎝n

2

k∑
j=2

(ωj − ω̂j)2

⎞
⎠ det

[
∂β−1

∂w−1
(0, w−1)

]
dw−1

}
.

By (156) the quantity in brackets is exactly the unconditional density of (x2, . . . , xk);
the first factor is 1 − Φ(

√
nω̂1), by (108).
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Then (g(ω) − g(0, w−1))/ω1 can be expressed as(
∂β

∂w
(ω)/β1 − ∂β−1

∂w−1
(0, w−1)/ω1

)
.

The integrals will not factor as those in the preceding paragraph did. However, the
first-order Watson’s Lemma approximation to this integral does factor into

D2 =

⎡
⎣n(k−1)/2 exp(n[KY (β̃) − ∑k

j=2 β̃jx
j])

(2π)(k−1)/2 det
[
∂β2, . . . , βk

∂ω2, . . . , ωk

]
(ω̂2, . . . , ω̂k)

⎤
⎦×

[
exp(n[KY (β̂) − KY (β̃) − (β̂ − β̃)�x])

(2π)1/2
√

n

(
det

[
∂β1

∂ω1

]
(ω̂)/β̂1 − 1

ω̂1

)]
(1 + O(n−1)).

Again the first factor is the density approximation for (X2, . . . , Xk) to O(n−1). This
implies that

1 − Fx1|x−1(X
1|X−1) = 1 − Φ(

√
nω̂1) +

φ(
√

nω̂1)√
n

(
ϑ

û1
− 1

ω̂1
+ O(n−1)

)
, (189)

where

û1 = β̂1, ω̂1 = sgn(β̂1)
√

2[β̂�x − KY (β̂)] − 2[β̃�x − KY (β̃)],

ϑ = det
[
K′′

Y−1
(β̃)

]1/2
det

[
K′′

Y (β̂)
]−1/2

, (190)

KY−1 is the (k − 1) × (k − 1) submatrix of the matrix of second derivatives of K,
corresponding to all components of β except the first, and Φ and φ are the normal
distribution function and density respectively, since D is (189) times the saddlepoint
density approximation for (X2, . . . , Xk) to O(n−1). This is the double saddlepoint
approximation to the conditional distribution function.

Also of interest are inversion techniques random vectors X confined to a gen-
eralized lattice in the sense of Lemma 6.2.4. Let D(x1|x−1) =

∑∞
x1 pn(y, x2, . . . , xk)

where pn is the probability mass function for X. Using the multivariate lattice
probability inversion theorem (124), the counterpart of equation (185) is

D(x1|x−1) =
∞∑

y1=x1

(
n

2πi

)k ∫ π/∆1

−π/∆1

· · ·
∫ π/∆k

−π/∆k

exp(n[KY (β) − y1β1 − β�
−1x−1]) dβ

=
(

n

2πi

)k∫ π/∆1

−π/∆1

· · ·
∫ π/∆k

−π/∆k

exp(n[KY (β) − (x1 − 1
2∆1)β1 − β�

−1x−1])
2 sinh(∆1β1/2)

dβ.

The last equality above follows only if the path of integration for the integral with
respect to β1 is deformed so that the real part of the path is bounded below by
some positive number. The same analysis as above is performed with g(ω) =
det [dβ/dω] ω1/2 sinh(β1(ω)/2). In the lattice case (189) holds, with

û1 = 2 sinh(1
2∆1β̂1)/∆1, ω̂1 = sgn(β̂1)

√
2[β̂�x − KY (β̂)] − 2[β̃�x − KY (β̃)],
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ϑ = det
[
K′′

Y−1
(β̃)

]1/2
det

[
K′′

Y (β̂)
]−1/2

, (191)

and x1 is corrected for continuity when calculating β̂. That is, if possible values
for X1 are ∆1 units apart, β̂ solves K′

Y (β̂) = x̃ where x̃j = xj if j 	= 1 and
x̃1 = x1 − 1

2∆1.
When û1 = 0, (189) is undefined; these can be replaced by their limiting values,

which are given by Skovgaard (1987). When û1 is close to zero, (189) is numerically
unstable. Yang and Kolassa (2002) provide a Taylor series replacement to (189) in
this case.

These methods have been applied to distributions that are either wholly contin-
uous or wholly lattice. Results in mixed cases are also not only possible but easily
derived.

Reconsider the case in which X arises from the full exponential family (175).
In this case the double saddlepoint distribution function approximation can be
expressed in terms of the quantities in (175). Skovgaard’s approximation (189)
holds, with

ω̂1 = sgn(θ̂1 − θ1)
√

2[θ̂�x − HY (θ̂) − θ̃�x + HY (θ̃)], û1 = θ̂1 − θ1,

ϑ = det
[
H′′

Y−1
(θ̃)

]1/2
det

[
H′′

Y (θ̂)
]−1/2

(192)

and depends on the parameter vector θ only through ω̂1, the restricted maximum
likelihood estimator θ̃, and the second derivative matrix of HY at θ̃. The saddle-
point θ̃ is chosen to satisfy (183), and the saddlepoint θ̂ is chosen to satisfy

Hi
Y (θ̂) = X i for all i, (193)

where the superscript denotes partial differentiation. Hence Skovgaard’s approxi-
mation also depends only on the first component of the parameter vector and not
on any of the other components. When X1 has a lattice distribution approximation
(189) holds with

ω̂1 = sgn(θ̂1 − θ1)
√

2[θ̂�x − HY (θ̂) − θ̃�x + HY (θ̃)],

û1 = 2 sinh(∆1(θ̂1 − θ1)/2)/∆1,

ϑ = det
[
H′′

Y−1
(θ̃)

]1/2
det

[
H′′

Y (θ̂)
]−1/2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(194)

where θ̂ is calculated from continuity-corrected data.
Alternate versions of (192) and (194) for conditional calculations involving ran-

dom vectors that are linear transformations of more simple vectors are also desir-
able. Assume the definitions of Lemma 7.2.1. Suppose further that the distribu-
tion of T 1 conditional on all other components of T is desired. Then HT (η̂) −
η̂�t − HT (η̃) + η̃�t = HX(θ̂) − θ̂�x − HX(θ̃) + θ̃�x, and so the magnitude
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of ω̂1 is unchanged by substituting HX , θ̂, and θ̃ for HT , η̂, and η̃. Further-
more, η̂1 = (c�c)−1c�θ̂, and det [H′′

T (η̂)] = det
[
H′′

X(θ̂)
]
det [B]2. By Lemma 7.2.2,

det
[
H′′

T−1
(η̃)

]
=det

[
AH′′

X(θ̃)A�
]
=det [H′′

X(η̃)] (c�
[
H′′

X(θ̃)
]−1

c) det [B]2 (c�c)−2.
After accounting for n by replacing HX by its expression in HY , (189) holds, with
T substituted for X, and

ϑ =
√

det
[
H′′

Y (θ̃)
]
(c�

[
H′′

Y (θ̃)
]−1

c)/
(
c�c

√
det

[
H′′

Y (θ̂)
])

,

u1 = c�θ̂/c�c − η1, ω̂1 is as in (194), (195)

when Y has a continuous distribution, and

ϑ =
√

det
[
H′′

Y (θ̃)
]
(c�

[
H′′

Y (θ̃)
]−1

c)/
(
c�c

√
det

[
H′′

Y (θ̂)
])

,

u1 = 2 sinh
(
∆1[(c�θ̂)/(c�c) − η1]/2

)
/∆1, ω̂1 is as in (194), (196)

when Y has a lattice distribution.
The following theorem summarizes the results of this this section:

Theorem 7.3.1: Suppose that the random vector X is the mean of n independent
and identically distributed random vectors, each of which has a cumulant generating
function defined on an open neighborhood about 0. Take a potential value x for the
mean of n independent and identically distributed copies of such vectors. If one of
the following approximations is desired:
a. An expansion for the cumulative distribution function of X1 conditional on

X2, . . . , Xk in terms of the cumulant generating function
b. An expansion for the cumulative distribution function of X1 conditional on

X2, . . . , Xk in terms of the exponential family expression
c. An expansion for the cumulative distribution function of T 1 conditional on

T 2, . . . , T k, where T = BX with B as above, in terms of the cumulant gen-
erating function of X

and one of the following conditions holds:
1. A joint density exists for X,
2. X is confined to a generalized lattice as in Lemma 6.2.4.

Then (189), with components defined as indicated in Table 5, gives valid a
asymptotic expansion.

Table 5: Appropriate Double Saddlepoint Distribution Function Results

Condition Objective
a. b. c.

1. (190) (192) (195)
2. (191) (194) (196)
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Proof: See the above discussion in this section.
Q.E.D

When conditioning on variables taking values at the ends of their ranges, (179)
may not have a finite solution. Additionally, when limits are taken in (180) as
components of this vector converge to plus or minus infinity, the matrices whose
determinants are taken become of less than full rank. Kolassa (1997) discusses
modifications to (180) in this case. This will be revisited in §7.7.

Expressions (189) and (109) are formally equivalent. The adjusted r∗ approxi-
mation of §5.6 may also be used here, following Lemma 5.6.1.

The calculations of this chapter are applied to conditional inference in one of
the exercises; the application is due to Davison (1988).

Jing and Robinson (1994) calculate conditional tail probabilities for smooth
transformations of random vectors satisfying certain non-lattice properties; they
integrate (181) using Corollary 5.5.2.

7.4. Higher-Order Double Saddlepoint Approximations

Kolassa (1996b) derives a higher-order double saddlepoint distribution function ap-
proximation from (187). Recall that the first-order approximation to D1 was exact;
higher order terms will all come from D2. Skovgaard (1987) suggests performing
the integrals with respect to ω2, . . . , ωk to obtain the standard higher order saddle-
point approximation to the density of the conditioning variables, and then applying
Temme’s Theorem to the remaining univariate integral. The present approach of us-
ing the extended version of Temme’s Theorem is analytically more straight-forward.
Theorem 6.5.2 is applied once to D2. The series expansion for D2 will be expressed
as the product of two factors. The first will be the series expansion for the density
of X−1; the second will then be what is added to 1 − Φ(ω̂1) to produce the desired
expansion for the conditional cumulative distribution function.

Use of Theorem 6.5.2 requires evaluation of the quantities As defined by (141).
Since the integrand is free of n except in the exponent, the functions θs vanish unless
s = 0. The inequality in the description of the set over which summation is taken in
(141) becomes equality, yielding, after combining factors of i in Theorem 6.5.2 and
in the leading factor of D2, D2 = (n/2π)k/2 exp(−n

2
∑k

j=1 ω̂2
j )
∑∞

s=0 Asn
−s, where

As =
∑

v1,···,vk≥0,
∑

vj=s

(−2)−s

v!

[
∂2v

∂2vω
θ0

]
(ω̂),

and θ0(ω) = det [∂β/∂ω] /β1−det [∂β−1/∂w−1(0, w−1)] /ω1. Again employ the con-
vention that indices appearing as superscripts and subscripts in a term are summed
over. Let h(ω) be the function of ω whose power series about ω̂ is constructed from
that of det [(∂β−1/∂w−1)(0, w−1)], with all terms involving components of ω − ω̂
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to odd powers omitted. Let

g(ω) =
θ0(ω)
h(ω)

= det
[

∂β

∂w
(ω)

]
/(h(ω)β1) − det

[
∂β−1

∂w−1
(0, w−1)

]
/(h(ω)ω1). (197)

Then

(−2)−s

v!

[
∂2v

∂2vω
θ0

]
(ω̂) =

1
v!

∑
0≤uj≤2vj

2−s(2v)!
u!(2v − u)!

[
∂u

∂uω
h

]
(ω̂)

[
∂2v−u

∂2v−uω
g

]
(ω̂).

Recalling that h has only even-order terms,

As =
∑

v1,···,vk≥0∑
vj=s

(2v)!
v!

∑
0≤uj≤vj

(−2)−s

(2u)!(2v − 2u)!

[
∂2u

∂2uω
h

]
(ω̂)

[
∂2v−2u

∂2v−2uω
g

]
(ω̂). (198)

The aim here, then, is to express the expansion
∑j−1

s=0 Asn
−s as

j−1∑
s=0

Bsn
−s ×

j−1∑
s=0

Csn
−s + O(n−j),

where by Theorem 6.5.2, Bs are coefficients in the asymptotic expansion of the
density for the conditioning variables:

Bs =
∑

v2,···,vk≥0∑k

j=2
vj=s

(−2)−
∑k

j=2 vj

v2! · · · vk!

[
∂2v2+···+2vk

∂2v2ω2 · · · ∂2vkωk

h

]
(ω̂)

such that fX2,···,Xk =
∑j−1

s=0 Bsn
−s + O(n−j). Since

(
1 − Φ(

√
nω̂1) + φ(

√
nω̂1)n−1/2

j−1∑
s=0

Csn
−s

)(
φ(

√
nω̂−1)n(1−k)/2

j−1∑
s=0

Bsn
−s

)

is an asymptotic expansion for D, 1 − Φ(
√

nω̂1) + φ(
√

nω̂1)n−1/2 ∑j−1
s=0 Csn

−s is
the required expansion for the conditional tail probability. Skovgaard (1987) pro-
vides such a decomposition for j = 1; that is, he factors the lead term A0 =
det

[
∂β−1
∂w−1

(0, w−1)
]
×g(ω̂) into the lead term B0 = det

[
∂β−1
∂w−1

(0, w−1)
]

in the asymp-
totic expansion for the density of the conditioning density times a factor C0 =

g(ω̂) =
√

det
[
K′′

X−1
(0, β̂−1)

]
/(β̂1

√
det

[
K′′

X(β̂)
]
) − 1/ω̂1 which consequently con-

tributes to the lead term in the asymptotic expansion for the conditional tail prob-
ability desired.

When j = 2, of concern are A0 and A1. When s = 0 or s = 1, (2v)! in (198) is
equal either to (2u)! or (2v − 2u)!, or to both. The other quantity is 1. Also, u!,
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v!, and (v − u)! are all 1. Hence when s = 0 or s = 1,

As =
∑

v1,···,vk≥0∑
vj=s

∑
0≤uj≤vj

(−2)−s

(u)!(v − u)!

[
∂2u

∂2uω
h

]
(0, w−1)

[
∂2v−2u

∂2v−2uω
g

]
(ω̂),

indicating that C1 =
∑k

j=1
(−2)−1

1!
∂2

∂ω2
j
g(ω̂) = −1

2
∑k

k=1 gkk(ω̂), where g is given by

(197), and superscripts on g indicate derivatives with respect to components of ω.

The next section shows that

C1 = −1
ẑ

(
1
8(ρ̂13 − ρ̃13 − ρ̂4 + ρ̃4) + 1

12(ρ̂23 − ρ̃23) + 1
2

κ̂1jκ̂
ijkκ̂ik

β̂1
+

κ̂11

(β̂1)2

)
− 1

(ω̂1)3 ,

(199)
where ẑ = β̂1 det

[
∂β
∂w

(ω̂)
]
/ det

[
∂β−1
∂w−1

(0, ω̂−1)
]
, and ρ̂4, ρ̂13, ρ̂23, ρ̃4, ρ̃13, and ρ̃23 are as

in §7.1. The second-order saddlepoint approximation to the conditional cumulative
distribution function is now, to O(n−5/2),

1 − F̃ (x1|x−1) = 1 − Φ(
√

nω̂1) +
φ(

√
nω̂1)√
n

(
1

nω̂3
1

− 1
ω̂1

+
1
ẑ

(
1 +

1
n

[18(ρ̂4 − ρ̃4)−

1
8(ρ̂13 − ρ̃13) − 1

12(ρ̂23 − ρ̃23) − 1
2

κ̂1kκ̂
ijkκ̂ij

β̂1
− κ̂11

(β̂1)2
]
))

.

In the lattice case,

1 − F̃ (x1|x−1) = 1 − Φ(
√

nω̂1) +
φ(

√
nω̂1)√
n

(
− 1

ω̂1
+

1
ẑ

(
1 +

1
n

[
1
8(ρ̂4 − ρ̃4) − 1

8(ρ̂13 − ρ̃13) − 1
12(ρ̂23 − ρ̃23)

− 1
4∆κ̂1kκ̂

ijkκ̂ij coth(1
2 β̂1∆1) −

(
1
4 coth(1

2 β̂1∆1)2 − 1
8

)
∆2κ̂11

])
+

1
nω̂3

1

)
, (200)

where ẑ = 2 sinh(1
2 β̂1∆1) det

[
∂β
∂w

(ω̂)
]
/ det

[
∂β−1
∂w−1

(0, ω̂−1)
]
.
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7.5. Derivatives of the Jacobian

In this section are presented calculations of derivatives of functions of ∂β/∂ω nec-
essary for for deriving via Temme’s Theorem higher-order terms in the series expan-
sions given in §6.4, §7.1, and §7.4. In this section again we employ the convention
that an index appearing in a term both as a subscript and as a superscript is summed
over.

Let β̂m...o
r be the derivative of component r of β with respect to m, . . . , o, eval-

uated at ω̂. Implicitly differentiating (153),

δm,n = β̂m
l β̂n

j κ̂jl + κ̂jβ̂mn
j

0 = κ̂jliβ̂o
j β̂

m
l β̂n

i + κ̂jiβ̂mo
j β̂n

i [3] + κ̂jβ̂mno
j

0 = κ̂ijklβ̂o
j β̂

m
l β̂n

i β̂p
k + κ̂ijlβ̂o

j β̂
m
l β̂np

i [6] + κ̂ijβ̂
mo
j β̂np

i [3]+

κ̂ijβ̂
mop
j β̂n

i [4] + κ̂jβ̂mnop
j .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(201)

Evaluating these at β = β̂, note that −1
3 β̂

m
l βn

j κ̂jlp = κ̂pjβ̂mn
j satisfies the second

equality of (201); substituting into the third equality of (201),[
−κ̂ijkl + 5

9 κ̂
gijκ̂ghκ̂

hkl[3]
]
β̂o

j β̂
m
l β̂n

i β̂p
k = κ̂ijβ̂mop

j β̂n
i [4] + κ̂jβ̂mnop

j .

Then 1
4

[
5
9 κ̂

gijκ̂ghκ̂
hkl[3] − κ̂ijkl

]
β̂o

j β̂
m
l β̂n

k = κ̂ijβ̂mon
j satisfies this equation. Hence

β̂mn
r = −1

3 κ̂irκ̂
ijkβ̂m

j β̂n
k , β̂mno

r = 1
4 κ̂ir

[
5
9 κ̂

gijκ̂ghκ̂
hkl[3] − κ̂ijkl

]
β̂o

j β̂
m
l β̂n

k .

Let αr
q represent the matrix inverse of β̂q

r . By (201) αr
qκ̂ri = β̂r

i δqr and κ̂ij = β̂g
i δghβ̂

h
i .

Also

αr
qβ̂

mn
r = −1

3α
r
qκ̂riκ̂

ijkβ̂m
j β̂n

k = −1
3δrqκ̂

ijkβ̂r
i β̂

m
j β̂n

k

αr
qβ̂

mt
r αs

t β̂
no
s = 1

9δrqκ̂
gijκ̂ghκ̂

hklβ̂o
l β̂

m
j β̂n

k β̂r
i

αr
qβ̂

mno
r = 1

4

[
5
9 κ̂

gijκ̂ghκ̂
hkl[3] − κ̂ijkl

]
κ̂ijβ̂

m
l β̂n

k .

αr
qβ̂

mq
r αp

sβ̂
ns
p = 1

9 κ̂
ijgκ̂igβ̂

m
j κ̂klhβ̂m

l κ̂kh.

Standard matrix determinant differentiation formulae (Hocking, 1985, Appendix
A.II.1.2) show that

∂β

∂w
(ω) =

∂β

∂w
(ω̂)

(
1 + αr

qβ̂
qm
r (ωm − ω̂m)+

1
2

(
αr

qβ̂
qm
r αs

pβ̂
pn
s + αr

qβ̂
qmn
r − αr

qβ̂
sn
r αt

sβ̂
qm
t

)
(ωm − ω̂m)(ωn − ω̂n)

)
+ O(‖ω − ω̂‖3)

=
∂β

∂w
(ω̂)

(
1 − 1

3 κ̂
ijkκ̂ikβ̂

m
j (ωm − ω̂m) + 1

2

[
1
4 κ̂

gijκ̂ghκ̂
hklκ̂ij + 1

6 κ̂
gilκ̂ghκ̂

hjkκ̂ij

− 1
4 κ̂

ijklκ̂ij

]
β̂m

k β̂n
l (ωm − ω̂m)(ωn − ω̂n)

)
+ O(‖ω − ω̂‖3). (202)
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Similarly,

1
h(ω)

= det
[

∂β−1

∂w−1
(ω̂)

]−1 (
1 + 1

2

[
− 1

4 κ̃
gijκ̃ghκ̃

hklκ̃ij − 1
6 κ̃

gilκ̃ghκ̃
hjkκ̃ij

+ 1
4 κ̃

ijklκ̃ij

]
β̃m

k β̃n
l (ωm − ω̂m)(ωn − ω̂n)

)
+ O(‖ω − ω̂‖3). (203)

Furthermore,

β̂1

β1
= 1 − β̂m

1 (ωm − ω̂m)
β̂1

+

⎡
⎣ β̂m

1 β̂n
1

(β̂1)2
−

1
2 β̂

mn
1

β̂1

⎤
⎦ (ωm − ω̂m)(ωn − ω̂n) + O(‖ω − ω̂‖3)

= 1 − β̂m
1

β̂1
(ωm − ω̂m) +

⎡
⎣ β̂m

1 β̂n
1

(β̂1)2
+

κ̂1iκ̂
ijkβ̂m

j β̂n
k

6β̂1

⎤
⎦ (ωm − ω̂m)(ωn − ω̂n)

+ O(‖ω − ω̂‖3). (204)

Also needed for the expansion in the lattice case is:

1
sinh(1

2β
1∆)

=
1

sinh(1
2 β̂

1∆)

(
1 − 1

2 β̂
m
1 ∆ coth(1

2 β̂
1∆)(ωm − ω̂m)+

(
β̂m

1 β̂n
1 ∆2

(
1
4 coth(1

2 β̂
1∆)2 − 1

8

)

− 1
4 β̂

mn
1 ∆ coth(1

2 β̂
1∆)

)
(ωm − ω̂m)(ωn − ω̂n)

)
+ O(‖ω − ω̂‖)3. (205)

Then (199) follows by multiplying (202), (203), and (204), and summing over all
coefficients of squared components of ω − ω̂. Also, (200) follows by multiplying
(202), (203), and (205), and summing the appropriate coefficients. Furthermore, the
unconditional multivariate saddlepoint density formula (133) follows from summing
over the same coefficients in (202), and the conditional double saddlepoint density
approximation (180) follows by multiplying (203) and (202) and summing over the
appropriate coefficients.

7.6. An Example

Skovgaard illustrates (194) in the context of the hypergeometric distribution, which
has applications to testing independence in 2 × 2 contingency tables. Suppose
that X i are independent random variables Poisson variables with intensities η, for
i = 1, . . . , 4, and arranged into the following table:

X1 X2 T 2

X3 X4

T 3 T 4 .
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Of interest is whether η1η4 = η2η3; that is, whether the data come from a hyper-
geometric distribution. A test will be performed conditional on row and column
marginals. This test will be performed by determining whether X1, or equiva-
lently, c�X, is too high or low to be consistent with the null hypotheses. Here
c = (1, −1, 1,−1)�. Approximation (196) will be used to approximate tail proba-
bilities, with n = 1. Here T = BX, where

B =

⎛
⎜⎜⎜⎝

1 −1 −1 1
1 1 0 0
1 0 1 0
1 1 1 1

⎞
⎟⎟⎟⎠ .

Then η̂, defined by (132), is log(X̃) where X̃ is X corrected for continuity. Let
X∗ be the vector of fitted values, that is, the vector of cell values given by the
product of the appropriate row and column mean, divided by the grand mean. Then
c� log(X∗) = 0 and AX∗ = AX, and η̃ = log(X∗). The cumulant generating
function second derivative matrices are diagonal with elements X̃ and X∗, and
hence their determinants and inverses are simple to calculate. The lattice spacing
for T 1 = c�X and c�c are both 4, and hence cancel. Skovgaard (1987) then
simplifies the double saddlepoint approximation to:

1 − Φ(ω̂) + φ(ω̂)
{(

x1.x.1x2.x.2

x..x̃11x̃12x̃21x̃22

)1/2
(2 sinh (µ))−1 − ω̂−1

}

where, in an abuse of notation, x is now the matrix of cell counts, and x̃ is the
continuity-corrected vector of cell counts. An index replaced with a . denotes
summation. Also, µ = log(x̃11x̃22/(x̃21x̃12)) is the log of the observed continuity-
corrected odds ratio, and

ω̂ = sgn(µ)

⎧⎪⎨
⎪⎩2

⎡
⎢⎣ ∑

l=1,2
j=1,2

x̃lj log(x̃lj)−
∑

l=1,2

xl. log(xl.)−
∑

j=1,2
x.j log(x.j)+x.. log(x..)

⎤
⎥⎦
⎫⎪⎬
⎪⎭

1
2

.

Alternatively one might proceed directly from (191), rather than taking ad-
vantage of the simplification offered by the methods of Lemma 7.2.1. If θ are the
canonical parameters associated with T , then

η1 = θ1 + θ2 + θ2 + θ4, η2 = θ2 + θ4, η3 = θ3 + θ4, η4 = θ4.

The joint probability mass function of T is given by

exp(− exp(θ1 + θ2 + θ3 + θ4) − exp(θ2 + θ4) − exp(θ3 + θ4) − exp(θ4) + θ�t)
t1!(t2 − t1)!(t3 − t1)!(t4 − t2 − t3 + t1)!

.

In this case H(θ) = exp(θ1 + θ2 + θ3 + θ4) + exp(θ2 + θ4) + exp(θ3 + θ4) + exp(θ4).



156 7. Conditional Distribution Approximations

When testing whether θ1 = 0, θ̃ satisfies

exp(θ̃2 + θ̃3 + θ̃4) + exp(θ̃2 + θ̃4) + exp(θ̃3 + θ̃4) + exp(θ̃4) = t4

exp(θ̃2 + θ̃3 + θ̃4) + exp(θ̃3 + θ̃4) = t3

exp(θ̃2 + θ̃3 + θ̃4) + exp(θ̃2 + θ̃4) = t2.

These equations have the solutions

θ̃2 = log
(

t2

t4 − t2

)
, θ̃3 = log

(
t3

t4 − t3

)
θ̃4 = log

((
t4 − t2

) (
t4 − t3

)
/t4

)
.

From knowledge of θ̂ and θ̃ approximation (191) may easily be calculated.
Exact probabilities for atoms for the conditional distribution are given by

P
[
T 1 = t1|T 2 = t2, T 3 = t3, T 4 = t4

]
=
(
t2

t1

)(
t4 − t2

t3 − t1

)
/

(
t4

t3

)
.

Exact tail probabilities are quite difficult to compute when t4, t2, t3, t1, and
min(t2, t3) − t1 are large. The double saddlepoint distribution function approxi-
mation is very accurate and is a simple function of the xij (Fig. 16).
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Skovgaard (1987) shows that the double saddlepoint approximation performs
very well for large tables that are not extreme, but not so well for extreme tables.

The sequential saddlepoint approximation will also be applied to these data. As
above, let θ be the canonical parameter vector for T , and let θ = B�η. Then if X̃
is once again the vector of fitted table entries, this time under the null hypothesis
that the log odds ratio is 4θ1 rather than 0, then

X̃1 = 1
2

(
t2 + t3 − t4(1 − exp(4θ1))−1+

√
(t22+t32)(1 − exp(4θ1))2+2t2t3(1−exp(4θ1)2)+2t4(t2+t3)(exp(4θ1)−1) + t42

1−exp(4θ1)

)
.

Other elements of X̃ can be calculated from X̃1, T 2, T 3, and T 4. The sequen-
tial saddlepoint approximation performs even better than the double saddlepoint
approximation, but is not so easy to compute.

7.7. Corrections when the Saddlepoints Do Not Exist

Most of the material in this section was originally presented by Kolassa (1997).
Consider the canonical generalized linear model (175) and (177). Suppose that the
support of Yj is contained in a finite interval, without loss of generality of form
[0, mj]. For example, when the Yj are binomial variables, and (175) and (177)
constitute a logistic regression model, then mj is the number of Bernoulli trials
comprising observation j. When Yj is supported on a finite interval, the domain of
HYj

is R. Suppose further that P [Yj = 0] and P [Yj = mj] are positive for some,
and hence all, values of υ. Then for each j,

lim
υ→∞

H′
Yj

(υ) = mj and lim
υ→−∞

H′
Yj

(υ) = 0. (206)

Finally, suppose that Z is of full rank.
For some Y one or more components of θ̂ solving (193) may be infinite. This

happens, for example, when all of the entries of Z are positive, and when Y = 0.
Barndorff–Nielsen (1978) gives necessary and sufficient conditions for finiteness of
the solution to (193) (p. 151). Jacobsen (1989) gives more precise conditions
specifically tailored to regression models.

This section considers circumstances under which finite solutions to (193) do
not exist. Infinite solutions are expressed as rays in Rk, and contemporary methods
for describing these rays are reviewed. Kolassa (1997) proposed modifications to
the methods described in §7.3 for implementing the double saddlepoint conditional
distribution function approximation of Skovgaard (1987), facilitating applications
to conditional inference, both in the unidimensional case considered by Davison
(1988) and in the multivariate case considered by Kolassa and Tanner (1994). In
the latter application the dependence of the results only on the canonical sufficient
statistics T = Z�Y is critical.
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Albert and Anderson (1984) and Jacobsen (1989) both provide conditions for
determining whether all parameter estimates are finite. They provide results that
simplify to the following in the case of logistic regression:

Lemma 7.7.1: Choose λ ∈ Rk. Let U = {u ∈ Rk| lima→∞ t�(λ + ua) − HT (λ +
ua) > −∞}. Then U is independent of λ, and is the set of vectors u satisfying⎧⎪⎨

⎪⎩
zju ≥ 0 whenever yj = mj,
zju ≤ 0 whenever yj = 0,
zju = 0 whenever yj ∈ (0, mj).

(207)

Proof: Note that t�(λ+ua)−HT (λ+ua) =
∑

j yjz
�
j (λ+ua)−HYj

(z�
j (λ+ua)).

By (206), each of these summands is bounded as a → ∞, and by the convexity of
HYj

, u ∈ U if and only if each of the summands is bounded below as a → ∞.
Furthermore, summand j is bounded below as a → ∞ if and only if z�

j u(yj −
H′

Yj
(z�

j (λ + ua))) → 0 as a → ∞, by the convexity of yjz
�
j (λ + ua) − HYj

(z�
j (λ +

ua)). Hence u ∈ U if and only if lima→∞ z�
j u(yj − H′

Yj
(z�

j (λ + ua))) = 0 for all j.
This happens if and only if (207) holds.

Q.E.D
Albert and Anderson (1984) note that describing the u satisfying the above con-

ditions may be achieved using linear programming methods. This method requires
knowledge of Y rather than just T . The following new result will serve as the basis
for characterizing U in terms of T , by creating new variables r and s representing
the contribution of u to the fitted probabilities for the individual observations; r
and s are related to Z by the relation s−r = Zu. In the following sections we will
determine which observations correspond to extreme fitted probabilities by maxi-
mizing the total number of positive entries in both r and s subject to constraints
outlined in the next theorem.

Theorem 7.7.2: Suppose that Z is of full rank. Let Q be the matrix of maximal
rank such that QZ0; note that Q = 0 unless n > k. Then U − 0 is exactly the set
of vectors

u = (Z�Z)−1Z�(s − r), (208)

such that r and s are column vectors of non-negative numbers such that s 	= r and
such that the following two conditions both hold:

(t�(Z�Z)−1Z� − m�)s − t�(Z�Z)−1Z�r = 0, (209)
Q(s − r) = 0, (210)

where T = Z�Y are the sufficient statistics associated with β, and t is the observed
value of this vector. Furthermore, suppose that r and s satisfy (209) and (210),
and that t = Zy. If rj > 0, then yj = 0, and if sj > 0, then yj = mj.

Proof: Let I(x) be the function returning 1 if its argument is true and 0 otherwise.
Let fj(u) = zju(I(zju ≥ 0) − yj/mj). Note that fj(u) ≥ 0 for all j and u, and by
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Lemma 7.7.1, u ∈ U if and only if fj(u) = 0 for all j ≤ n. Then
∑
j

mjfj(u) =
∑
j

njzjuI(zju ≥ 0) − t�u, (211)

and u ∈ U if and only if (211) is zero. Take u ∈ U such that u 	= 0. Choose s and
r vectors of non-negative real numbers satisfying s − r = Zu, and such that for
all j, either sj or rj is zero. Then (208) holds. Since Z is of full rank, s − r 	= 0.
If (211) is zero then m�s − t�u = 0, and (209) follows. Equation (210) follows by
multiplying Zu by Q.

Take s and r such that s 	= r and such that (209) and (210) hold. Relation
(210) implies that (I − Z(Z�Z)−1Z�)(s − r) = 0; hence (209) and (210) together
imply that −(m� − y�)s − y�r = 0, and so for each j either sj = 0 or rj = 0.
Hence if u is defined by (208), then sj and rj are the positive and negative parts
of zju respectively, and (209) implies that (211) is zero. The equation −(m� −
y�)s − y�r = 0 also proves the last claim of the theorem.

Q.E.D
One choice for Q is (I − Z(Z�Z)−1Z�); a more efficient choice is constructed

by using a trivial variation of the Gramm-Schmidt procedure to determine a set of
vectors orthogonal to the columns of Z. Clarkson and Jennrich (1991) begin with
the raw success counts y, and reparameterize the problem in such a way as to insure
that yj < nj for all j ≤ n. Since for each u ∈ U equivalent s and r satisfying (208),
(209), and (210) also satisfy −(m� − y�)s − y�r = 0, then s = 0. They proceed
using linear programming methods to provide a quick method of searching through
all possible subsets of {1, . . . , n} to find the maximal number of positive entries in
r satisfying (209) and (210). The algorithm of Kolassa and Tanner (1994) requires
proceeding using only sufficient statistics, the above reparameterization is impossi-
ble. This problem is solved by allowing s to be non-negative, and determining the
maximal number of positive entries in r and s satisfying (209) and (210).

Determine which covariate vectors zj are associated with fitted observations
of 0 or mj, as follows: Use a modification of the simplex algorithm described by
Clarkson and Jennrich (1991) to find vectors r and s with the maximal number of
positive entries, for sj and rj nonnegative, subject to (209) and (210). Let s∗ and
r∗ be the maximizing values of these vectors. Calculate u∗ from s∗ and r∗ using
(208). This method succeeds in identifying all problematic observations:

Lemma 7.7.3: Let s∗ and r∗ be the values of the non-negative vectors r and s,
satisfying (209) and (210), with the maximal number of positive entries. If v ∈ U,
and if j ∈ {1, · · · , n} such that r∗

j = s∗
j = 0, then zjv = 0.

Proof: Suppose that there exists a vector v ∈ U satisfying (207), and an index
j such that r∗

j = s∗
j = 0, and zjv 	= 0. Then u∗ + v ∈ U. Lemma 7.7.1 indicates

that for each j, zju
∗ and zjv cannot have opposite sign, since each is either zero or

has the sign of yj/mj − 1
2 . Hence Z(u∗ + v) has more nonzero elements than Zu∗,
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contradicting the optimality of s∗ and r∗.
Q.E.D

Clarkson and Jennrich (1991) suggest using a modified simplex algorithm to
solve the above optimization. That is, optimize an objective function of the form
1r + 1s as usual, subject to (209) and (210), and to r ≥ 0 and s ≥ 0, except
that when the algorithm suggests that increasing a component of (r, s) leads to
an increase in the objective function subject to (209) and (210), instead record
this fact, change the objective function multiplier for this component to zero, and
proceed as before.

Kolassa and Tanner (1994) use the approximation of §7.3 to probabilities of form
P [Tk ≥ tk|T−k = t−k] in conjunction with Gibbs sampling to calculate p-values for
tests of multivariate null hypotheses involving components of the canonical parame-
ter vector in a multivariate exponential family conditional on the sufficient statistics
associated with the other parameters. Here T is a random vector and T−k is the
same vector with component k removed.

Approximation (189) is undefined when (183) fails to have a finite solution. In
these cases, (193) also fails to have a finite solution. In this case the conditional
distribution of T j can be derived from the generalized linear model including only
some of the observations. The design matrix in this reduced regression model,
however, is of less than full rank. Some columns should be dropped to yield a full
rank matrix.

Lemma 7.7.4: Perform the optimization implied by Lemma 7.7.3 on the gener-
alized linear model with covariate 1, . . . , k omitted. Classify each of the covariate
vectors into one of three cases. Assign an index j to A if r∗

j > 0, assign an index j
to B if s∗

j > 0, and assign an index j to C if s∗
j = r∗

j = 0. Let Z∗ be the regression
matrix Z whose rows with indices in C are set to zero, and whose columns k, . . . , k
are reduced to form a full–rank matrix. Let D represent the deleted columns. Let
W = Z∗�Y , and let w = Z∗�y. Then P

[
T 1 = t1, . . . , T k = tk|T k+1 = tk+1, . . .

]
=

P
[
W 1 = w1, . . . , W k = wk|W k+1 = wk+1, . . .

]
. Here w is calculated from t by sub-

tracting zjmj for each j ∈ B, and dropping components in D.

Proof: Let
∑† represent the summation over all vectors y such that Zy = t,

and let
∑‡ be the larger summation over vectors y with the constraint arising from

t1, . . . , tk removed. Then

P
[
T 1 = t1, . . . , T k = tk|T k+1 = tk+1, . . .

]
=
∑† n∏

i=1
P [Yi = yi]/

∑‡ n∏
i=1

P [Yi = yi]

=
∑† n∏

i∈C
P [Yi = yi]/

∑‡ n∏
i∈C

P [Yi = yi], (212)

since for all vectors y in both summations, the values of yj are fixed at the same
values for all j /∈ C. Since the non-zero rows of Z span the same space as those of
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W ,
∑† also represents the summation over all vectors y such that Z∗y = w, and∑‡ also represents the summation over vectors y with the constraint arising from

w1 removed.
Q.E.D

Now conditional probabilities for T are exactly those of W , and may be calcu-
lated from (189):

Corollary 7.7.5: When k = 1, if the random vector W and the observed value
w are defined as in Lemma 7.7.4, then P [W 1 ≥ w1|W−1 = w−1] can be calculated
from (189) without further modification.

Proof: Lemma 7.7.4 presents a reparameterization of the generalized linear model
to avoid problems in the calculation of the saddlepoint for the reduced model. No
further reparameterization is generally necessary in order to calculate the saddle-
point approximation for tail probabilities. Since t1, and hence w1, is corrected for
continuity, then either w is in the interior of the range of H′

W , or outside of the
closure of the range of H′

W . In the former case, both the full and reduced saddle-
points exist, and (189) may be applied to the distribution of W with no further
modification. In the latter case, an additional maximization of 1r + 1s, using an
unmodified version of the simplex algorithm (Press, et. al., 1986), subject to (209)
and (210), and to r ≥ 0 and s ≥ 0, indicates that 1r+1s is unbounded, and hence
the conditional probability is either 0 or 1. One may choose between 0 and 1 by
checking the value of tk in question with a value known to lie in the conditional sam-
ple space. That is, if optimization indicates that P

[
T k ≥ tk|T−k = t−k

]
∈ {0, 1}, if

ť = Z�y for some y ∈ ∏
j[0, mj], if ť−k = t−k, then

P
[
T k ≥ tk|T−k = t−k

]
=
{

1 if tk < ťk

0 if tk > ťk
.

Q.E.D
On the other hand, the conditional version of the Blackwell–Hodges formula,

given by the right hand side of (180), requires more care, because there exist vectors
t assigned positive probability, for which no finite full saddlepoint exists, even when
the saddlepoint associated with the conditioning event exists and is finite. This
occurs because no continuity correction is employed in (180). In this case, first
apply the optimization in Lemma 7.7.4 on (Tm+1, . . . , T k), to eliminate observations
for which the conditioning event forces the response variable Yj to take on 0 or mj,
as was done to obtain (212). In many cases (180) may be applied to the reduced
data set. In all cases the unconditional multivariate Blackwell–Hodges formula
(142) may be applied to the denominator, but in some cases the full saddlepoint
may fail to exist. To allow for these cases, repeat the optimization on the reduced
observations, with covariates 1 through m added, to obtain new sets A′, B′, and
C ′, corresponding to observations in the reduced model in which the event W =
w forces response variable Yj to take the values 0, mj, and some other value,
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respectively. Probabilities for Yj for j ∈ A′ ∪ B′ may be factored out of
∑†. The

remainder of the summation corresponds to an unconditional probability from a
smaller regression model, as constructed in Lemma 7.7.4, in which (142) may be
applied directly. These calculations are presented by Kolassa (2001).

7.8. Multivariate Conditional Approximations

The preceding sections described methods for approximating one-dimensional con-
ditional probabilities. To approximate multidimensional conditional probabilities,
one might integrate with respect to other components of the random vector in (185),
to obtain approximations to probabilities of rectangular sets. Kolassa and Tanner
(1994) introduce a Markov chain Monte Carlo method for approximating probabil-
ities of less regular sets, including rejection regions for frequentist hypothesis tests.
They call this method the Gibbs–Skovgaard algorithm. Further details are given
by Kolassa (1994, 1995).

The Gibbs sampler is a popular Markov chain method useful for yielding a
sample from a posterior or likelihood density. It was first introduced by Geman
and Geman (1984) in the context of image reconstruction. See Tanner (1996) for
background details and important references.

Let the symbol p(· · · | · · ·) denote the distribution of those random variables
listed before the vertical line conditional on those listed after. To obtain a sample
from the joint distribution p(T 1, · · · , T j|Tj+1, . . . , Tk), the systematic scan Gibbs
sampler iterates the following loop:

1) Sample T 1
(i+1) from p(T 1|T 2

(i), · · · , T
j
(i), Tj+1, . . . , Tk).

2) Sample T 2
(i+1) from p(T 2|T 1

(i+1), T
3
(i), · · · , T

j
(i), Tj+1, . . . , Tk).

...
j) Sample T j

(i+1) from p(T j|T 1
(i+1), · · · , T

j−1
(i+1), Tj+1, . . . , Tk).

For a sufficiently large value of I we can take T 1
(I), · · · , T

j
(I) as a simulated obser-

vation from the equilibrium distribution p(T 1, · · · , T j|Tj+1, . . . , Tk) of the Markov
chain. Independently replicating this Markov chain produces an independent and
identically distributed sample from the distribution of interest. Kolassa and Tan-
ner (1994) sample instead from approximate conditional distributions of Theo-
rem 7.3.1, to give a sample drawn approximately from the conditional distribu-
tion p(T 1, · · · , T j|Tj+1, . . . , Tk), in order to perform conditional inference in certain
generalized linear models (McCullagh and Nelder, 1989).

Kolassa (2004) suggests the use of (161) or (162), in conjunction with the ap-
proximate conditional cumulant generating function (184), for approximating the
conditional probability of rectangular regions. Other authors, including Waterman
and Lindsay (1996), present an analytic asymptotic approximation to continuous
conditional distributions, resulting in accurate estimates and standard errors. The



7.9. Exercises 163

results of Strawderman, Casella, and Wells (1996) might also be extended to exam-
ine these conditional distributions.

7.9. Exercises

1. Consider the hypergeometric examples given by Skovgaard (1987):

a. 85 2
75 35 b. 14 6

8 12 c. 5 3
1 9 d. 5 1

1 5 e. 6 0
0 6

a. Calculate the tail probability approximation. (Note that the sign of ω̂ in
equation (5.5) of Skovgaard (1987) must be reversed.)

b. Compare these with the tail probability approximations ignoring continuity
corrections.

c. Using this approximation or otherwise, determine values for x11 giving ap-
proximately the lower 2.5% point of the distribution, and compare the ac-
curacy of the approximation embodying the continuity correction here. Do
not put much effort into determining this point; a normal approximation
will probably be good enough.

d. Calculate the higher–order expansion of §7.4.
2. Consider the logistic regression model:

yj ∼ B(πj, nj), πj = alogit(λj), λj =
d∑

i=1
zj

i θj,

and the data set

Observation
Variable 1 2 3 4 5 6 7 8 9 10 11 12

zj
1 1 1 1 1 1 1 1 1 1 1 1 1

zj
2 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1

nj 8 10 9 9 10 10 9 10 10 9 10 10
yj 3 4 2 3 2 2 1 1 2 1 1 1 ,

where the first two rows contain covariates and the last two the number of trials
and number of successes. This data is a subset of that collected by Berman,
et. al. (1990) as part of an experiment to measure the effect of magnetic ra-
diation on chicken embryos. Sufficient statistics for the parameter vector are
T = Z�Y , where Z is the transpose of the matrix formed by the first two rows
of the table above, and Y is the column vector whose transpose is given in the
final row.
a. Graph the approximate conditional probability that T2 meets or exceeds the

observed value, as a function of θ2, using (195).
b. Graph the approximate conditional probability that T2 fails to exceed the

observed value, as a function of θ2, using (195).
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c. From parts a and b construct an approximate 95% confidence interval for
θ2.

d. Repeat a – c using (109) in conjunction with (184).



8

Applications to Wald, Likelihood Ratio, and
Maximum Likelihood Statistics

The breath of this material is similar to that of Reid (1988). Of primary concern
will be approximation to densities and distribution functions of maximum likelihood
estimators, likelihood ratio statistics, and Wald statistics. Bartlett’s correction for
the distribution of likelihood ratio statistics is derived. Approximate ancillarity is
also discussed.

8.1. The Distribution of the Wald Statistic

Consider the problem of testing a hypothesis specifying a parameter θ in the model
having the sufficient statistic vector T ∈ Rk using the test statistic V (T ) = (T −
µ)�Σ−1(T − µ), when

E [‖T ‖s] < ∞, (213)

for some s ≥ 2. This statistic a trivial example of a Wald statistic, and in a
full exponential family is the score statistic. Suppose that µ = Eθ [T ] and Σ =
Varθ [T ], the expectation and variance of T calculated at the postulated parameter
value θ, exist and are finite. Suppose further that Σ is invertible. When T is
approximately multivariate normal, V has a distribution that is approximately χ2

on k degrees of freedom. This may be seen by expressing Σ−1 = Ω�Ω, and noting
that Ω(T − Eθ [T ]) is approximately multivariate normal with mean 0 and all
components independent with unit variance.

When T has a distribution dependent on n, such as when T is the standardized
sum of independent and identically distributed random vectors Xi, each with char-
acteristic function ζ, then the vague notions of approximation above can be refined.
Rigorous asymptotic approximation for tail probabilities of V can be derived with
reference to the underlying distribution of T . Let E′

n = {t|(t−µn)�Σ−1
n (t−µn) ≤

v} be the elliptical set of t giving rise to V ≤ v. Theorem 6.6.1 concerning multivari-
ate Edgeworth series, or its analogues in non-independent and identically distributed
cases, allows the approximation of probabilities of sets like E′

n, as long as T satisfies
regularity conditions discussed below. These are satisfied, for instance, if T arises

165
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from the likelihood for independent and identically distributed components, each of
whose distribution is given by a density with the proper moments. The first order
approximation is

∫ · · · ∫ φ(t; µn, Σn) dt where the integral is taken over E′. After a
change of variables this is expressed as Fk(v), where Fk is the χ2 cumulative distri-
bution function on k degrees of freedom. The χ2 approximation is accurate to o(1),
by the Central Limit Theorem. Under the hypothesis of an integrable characteristic
function (147), and with the existence of a third moment as in (213) with s = 3 the
χ2 approximation is accurate to O(1/

√
n). If fourth order moments exist, that is,

(213) holds with s = 4, the next term in the expansion can be added, resulting in
an approximation valid to O(n−1). However, by the symmetry of E′

n, the term of
O(1/

√
n) is zero, implying that P [V ≤ v] = Fk(v) + O(n−1).

This expansion holds when T is continuous. Esseen (1945) remarks at the end
of §7.4 that under a multivariate version of Cramér’s condition of (149),

lim sup
‖β‖→∞

|ζ(β)| < 1,

the next term in the asymptotic expansions for the probability of the ellipse is of
order O(n−1) in this case as well. These conditions allow the expansion with error
of order O(n−1) in the multivariate Edgeworth series.

Bhattacharya and Rao (1976) prove, under Cramér’s condition, crediting Rao
(1960, 1961), convergence for the multivariate Edgeworth series for general convex
sets, and get error terms of size o(n−s/2) when terms of size O(n−s/2) are included.
This is their Corollary 20.4, and this is paraphrased as Theorem 6.6.2 in §6.6 of
this volume. Earlier versions of these theorems included powers of log(n) in the
error term; see their book, p. 222, for more bibliographic information. In the case
of ellipses symmetric about the origin, the term of size O(1/

√
n) in the integral of

the multivariate case over this region is zero, proving that the χ2 approximation is
valid to O(n−1).

The most important class of distributions for which Cramér’s condition fails is
the class of lattice distributions. A random vector has a lattice distribution if it takes
on values in a translation and rotation of Zk = {(z1, ..., zk)|zj ∈ Z∀j}. When instead
T has a lattice distribution approximating probabilities of elliptical regions becomes
trickier. Kolassa and McCullagh (1990) show that in the unidimensional lattice case,
the Edgeworth series gives approximations valid to O(n−1) if evaluated at continuity
corrected points and using the third cumulant. The Edgeworth series gives higher
order approximations if the cumulants are adjusted and fourth and higher order
cumulants are used. In the multivariate case Esseen (1945) showed as Theorem 1 of
§7 that P [Tn ∈ E′

n] = Fk(v) + O(n−k/(k+1)) assuming only finite fourth moments for
general T . Esseen observed (Theorem 1 of §8) that one can approximate atoms of
the lattice by the Edgeworth series density approximation using the third cumulants,
times the volume of the lattice cell, to order O(n−(k+2)/2). Estimating the probability
of any set of constant volume involves adding O(nk/2) of these errors, leaving an
error of O(n−1). Kolassa (2003b) suggests adding saddlepoint approximations to
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probability atoms in order to approximate the probabilities of irregularly–shaped
sets.

Sharper results are based on careful expansions for the distribution function of
T . Rao (1960, 1961) develops an analogue to the Esseen’s series for the cumula-
tive distribution function of a lattice distribution in the multivariate case. Error
bounds here contain factors of log(n) later proved unnecessary by Bhattacharya
and Rao (1976). Evaluation of this series is, however, difficult for non-rectangular
and non-elliptical sets. Kolassa (1989) shows that this Rao series, when evaluated
at midpoints of lattice cubes, is equivalent to the Edgeworth series at the same
points, with cumulants adjusted by Sheppard’s corrections, to the same order of
error. Yarnold (1972) addresses the problem of evaluating the Rao series for convex
sets, and in particular for standardized ellipses. The Yarnold approximation is the
χ2 approximation plus the difference between the actual number of points in the
ellipse and the volume of the ellipse divided by the volume of a unit cube of the
lattice, times the normal approximation to the density at each point on the ellipse
boundary. Specifically, suppose Tn is the sum of independent and identically dis-
tributed distributed vectors X1, ...,Xn, divided by

√
n, and suppose that Xi are

confined to a lattice with unit spacings, with zero mean and Var [Xi] = Σ. Choose
a point a on the lattice. Then

P [V (T ) ≤ v] = Fk(v)+

⎛
⎝N(nv) − (πnv)k/2 det [Σ]1/2

Γ(k/2 + 1)

⎞
⎠ exp(−v/2)

(2πn)k/2 det [Σ]1/2 +O(n−1),

where N(nv) is the number of vectors of integers µ such that (µ + na)�Σ−1(µ +
na) < v. In general calculating N(nv) is computationally intensive. Furthermore,
finding an order O(n−1) correction term independent of v for use in the development
of a Bartlett’s correction, to be described below, seems very difficult.

Bartlett (1953, 1955) considers asymptotic approximations to the distributions
of score statistics in non-exponential-family settings; other authors including Levin
and Kong (1990) have addressed the same question.

8.2. Bartlett’s Correction

For a sufficient statistic T with density fT (t, θ) depending on a measure of sample
size n, with the unknown parameter θ ∈ P ⊂ Rd, let �n(θ; t) = log(fT (t, θ)), and
define the likelihood ratio statistic

Wn(θ) = 2(�n(θ̂; Tn) − �n(θ; Tn)), (214)

where θ̂ is the maximum likelihood estimator of θ. Then under wide regular-
ity conditions, P [Wn(θ) ≤ w] ≈ Fd(w) where Fd is the χ2 cumulative distribution
function on d degrees of freedom. Serfling (1980) demonstrates this by expanding
�n(θ̂; Tn) − �n(θ; Tn) in θ − θ̂ about θ̂. By the definition of θ̂ the first order term
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is zero; then

2(�n(θ̂; Tn) − �n(θ; Tn)) = (θ − θ̂)jn(θ̂)(θ − θ̂) + op(1)

= (θ − θ̂)in(θ)(θ − θ̂) + op(1) ∼ χ2
d.

Here jn(θ̂) is the observed information matrix evaluated at the maximum likelihood
estimator; that is, the negative of the matrix of second derivatives, and in(θ) is the
expected information matrix evaluated at the true parameter vector, which is equal
to the asymptotic inverse variance matrix. When data arise from the sum of inde-
pendent and identically distributed random variables,

jn = Op(n), in = Op(n), θ − θ̂ = Op(1/
√

n). (215)

Relations (215) hold if:
a. The distribution of the maximum likelihood estimator is multivariate normal

with the usual variance matrix to the correct order, which is true in turn if
1. f has three derivatives for all data values,
2. These are bounded by integrable functions near the true parameter values,
3. For any θ, 0 < Eθ [∂f(Y, θ)/∂θ]2 < ∞.

b. in(θ) and jn(θ) are sufficiently close; order op(n) component-wise is sufficient.
This is proved by noting that jn(θ) obeys the law of large numbers.

c. jn(θ) and jn(θ̂) are op(n) apart;
this result follows from expanding about θ and using dominated convergence meth-
ods.

Bartlett (1953) notes that generally the χ2
d approximation to the distribution

of the log likelihood ratio statistic does not hold to O(1/n). Since Wn(θ) has
approximately the χ2

d distribution, Eθ [Wn(θ)] ≈ d. As a first refinement to the
elementary χ2 approximation to the distribution of Wn(θ), consider multiplicative
rescalings, called Bartlett’s corrections, moving the entire distribution closer to the
asymptotic approximation. This approach is presented below.

Suppose that Yi are distributed independent and identically distributed, giving
rise to the log likelihood

�n(θ; Y1, . . . , Yn) =
n∑

i=1
�n(θ; Yi),

where θ ∈ P ⊂ Rd. The next theorem investigates the existence and value of
the multiplicative correction, and investigates the distribution of the transformed
statistic. In general these questions are hard to answer, and in this section attention
is restricted to the exponential family case, in which �n(θ; y) = θ�T (y) − H(θ).

Theorem 8.2.1: When the likelihood ratio test statistic Wn(θ) given by (214)
arising from n independent and identically distributed random vectors Yj from the
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exponential family (175) is divided by the factor 1−b(θ)/n, then the resulting statis-
tic W ′

n(θ) = Wn(θ)/(1 − b(θ)/n) has a χ2 density to order O(n−3/2). Here b(θ) is
as in (135).

Proof: Recall that

fT (t; θ) = (2π)−d/2 det
[
jn(θ̂)

]−1/2
exp(�n(θ) − �n(θ̂))(1 + b(θ̂)/(2n)) + O(n−2)

by (220), where Tn =
∑n

j=1 Yj. As before,

fθ̂(θ̂; θ) = (2π)−d/2 det
[
jn(θ̂)

]1/2
exp(−W (θ)/2)(1 + b(θ̂)/(2n)) + O(n−2);(216)

here j(θ) is the observed information matrix, and W (θ) is calculated as in (214) with
Tn the sufficient statistic vector necessary to yield a maximum likelihood estimator
θ̂. Since this is an exponential family, j(θ) is free of T and j(θ) = H′′

T (θ).
In the multivariate case this proof requires an integration over a d−1 dimensional

surface of θ̂ on which W is constant. The proof given here is for the simpler
univariate case, and is found in Barndorff–Nielsen and Cox (1979). Since W = 2((θ̂−
θ)T +n(H(θ)−H(θ̂)), and T = nH′(θ̂), then W = 2n((θ̂ − θ)H′(θ̂)+H(θ)−H(θ̂)).
Then dW/dθ̂ = 2n(θ̂ − θ)H′′(θ̂) + 2nH′(θ̂) − 2nH′(θ̂) = 2n(θ̂ − θ)H′′(θ̂), and

fW (w; θ) =
1

2
√

2πw
exp(−1

2w)
∑∣∣∣∣∣ w/n

(θ̂ − θ)2H′′(θ̂)

∣∣∣∣∣
1/2 {

1 +
b(θ̂)
2n

+ O(n−2)
}

.

The sum above is taken over both values of θ̂ yielding the same value for w.
Since H(θ̂) =

∑∞
j=0 H(j)(θ)(θ̂ − θ)j/j!, then

W/n = 2

⎡
⎣H(θ) + (θ̂ − θ)

∞∑
j=1

H(j)(θ)(θ̂ − θ)j−1/(j − 1)! −
∞∑

j=0
H(j)(θ)(θ̂ − θ)j/j!

⎤
⎦

= 2

⎡
⎣ ∞∑

j=2
H(j)(θ)(θ̂ − θ)j/(j(j − 2)!)

⎤
⎦ . (217)

Then

(W/n)/(θ − θ̂)2H′′(θ̂) =
∑∞

j=2 H(j)(θ)(θ − θ̂)j/j!∑∞
j=2 H(j)(θ)(θ − θ̂)j/(j(j − 2)!)

,

and √
(W/n)/(θ − θ̂)2H′′(θ̂) (218)

has a power series expansion for θ̂ near θ. The lead term is one. If the square
root is taken to both sides of (217) and one solves for θ̂ then powers of

√
W/n can

replace those of θ̂ in (218) yielding a power series for
√

(W/n)/(θ − θ̂)2H′′(θ̂) in

powers of
√

W/n. The solution will depend on whether θ is greater or less than θ̂.



170 8. Applications to Wald, Likelihood Ratio, and Maximum Likelihood Statistics

The coefficient of the first order term of
√

W/n in (218) will vary in sign according

to which side of the true parameter θ̂ is on, since to first order (217) is quadratic.
Higher order terms will also vary in magnitude. Hence

√
(W/n)/(θ − θ̂)2H′′(θ̂) = 1 ± c1

√
W/n + (c2 ± c3)W/n + O(n−3/2),

and [(θ − θ̂)2H′′(θ̂)]−1/2 =
√

n/W (1 ± c1

√
W/n + (c2 ± c3)W/n + O(n−3/2)), and

fW (w; θ) =
q1(w)

2

⎡
⎣∑(

1 ± c1

√
w

n
+(c2 ± c3)

w

n

)⎛⎝1+
b(θ) + en

√
w
n

2n

⎞
⎠ + O(n−3/2)

⎤
⎦

=
q1(w)

2

[∑(
1 + c2

w

n

)(
1 +

b(θ)
2n

)
+ O(n−3/2)

]

= q1(w)
(
1 + (2c2w + b(θ))/2n + O(n−3/2)

)
,

where q1(w) = φ(+
√

w)/
√

w is the density of a χ2 variable with one degree of
freedom, and en is the derivative of b(θ̂) with respect to w/n, evaluated somewhere
between θ and θ̂, and under the conditions of Theorem 4.6.1, this is bounded.
As the summation is taken over the two values corresponding to the positive and
negative values for ±, these terms cancel. Since fW must integrate to 1, and since
the norming constants for the χ2 distributions with 1 and 3 degrees of freedom are
the same, 2c2 + b(θ) = 0, and

fW (w; θ) = q1(w)(1 + b(θ)(1 − w)/2n + O(n−3/2)).

The density of W ′ = W/(1 − b(θ)/n) is fW ′(w′) = fW (w′(1 − b(θ)/n)) (1 − b(θ)/n).
Hence

fW ′(w′) = q1(w′) exp(w′b(θ)/2n) (1 − b(θ)/n)1/2
(

1 +
b(θ) − w′b(θ)

2n
+ O(n−3/2)

)
.

Then

fW ′(w′) = q1(w′)
(
1 + w′b(θ)/[2n] + O(n−2)

) (
1 − b(θ)/[2n] + O(n−2)

)
×(

1 + (1 − w′)b(θ)/[2n] + O(n−3/2)
)

= q1(w′)
(
1 + O(n−3/2)

)
.

Q.E.D
In the general multivariate case, recall (216). If A is a positive definite ma-

trix then for any c > 0, β̂�A�Aβ̂ = c is an ellipse in Rd, with surface area
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2
(
πd/2

)
/Γ(d/2) det [A]−1 cd/2−1/2. Hence, if dσ is the surface area measure,
∫

θ̂ yielding w
det

[
j(θ̂)

]1/2
dσ =

∫
θ̂|(θ̂−θ)�j(θ̂)(θ̂−θ)=w

det
[
j(θ̂)

]1/2
dσ

≈ wd/2−1/2/Γ(d/2).

As in the univariate case it is sufficient to show that an integrable term of or-
der O(n−1) exists. From the order O(n−1) term in the multivariate saddlepoint
expansion one can show that to order O(n−3/2) the resulting density for W is
(1−db(θ)/n)qd(w)+(db(θ)/n)qd+2(w), and that the density of W ′ = W/(1−b(θ)/n)
is qd(w′) to order O(n−3/2), where qd is the χ2 density on d degrees of freedom. Again
b(θ) is given by (136). References for this material are Reid (1988), Barndorff–
Nielsen and Cox (1979), and Barndorff–Nielsen and Cox (1984).

Another approach is presented by Lawley (1956), McCullagh and Cox (1986),
and McCullagh (1987). This involves constructing approximately normal random
variables Y such that W = Y �j(θ)Y , and such that Y has a non-zero mean. The
resulting W has a non-central χ2 distribution with cumulants κl = (1−c/n)l2l−1(l−
1)!d + O(n−2), implying that W ′ has the same cumulants as the χ2 distribution, to
order O(n−2). See also Cordeiro and Paula (1989).

The extension to cases of compound null hypotheses is more difficult. In many
such cases, the parameter of interest θ is written as (α,β), where the null hypoth-
esis is α = α0. Often the test statistic is W (α) = 2(�n(α̂, β̂) − �n(α, β̃(α))) where
β̃(α) maximizes �n for a fixed value of α. Barndorff–Nielsen and Cox (1984) do this
on a case-by-case basis, by determining if necessary the existence of an appropriate
ancillary statistic allowing use of the Barndorff–Nielsen’s formula to estimate the
density of the constrained maximum likelihood estimator. The Bartlett factor is
determined from the difference in norming function for these two approximations;
if b1(α̂, β̂) is the norming function for the density of the full maximum likelihood
estimator, and b2(α0, β̃(α0)) is the norming constant for the density of the con-
strained maximum likelihood estimator, as in (216), then the Bartlett factor is
1 − (b1(α̂, β̂) − b2(α0, β̃(α0))/(nd) where d is the length of α, the change in de-
grees of freedom as extra parameters are estimated. The functions b may often be
calculated from saddlepoint expansions to the densities of the sufficient statistics.

Proofs that the Bartlett’s correction is as above follow a general pattern:
1. Transform the saddlepoint density approximation,

fW (w; θ) = 1
2

exp(−w/2)
(
√

2πw)d

∫
det

[
j(θ̂)

]−1/2
ds(θ̂)

(
1 + b(θ)/2n + O(n−3/2)

)
.

2. Expand the integrand in
√

W/n. The constant term is 1, the first order term is 0,
and the second term is of form b2w/n. Find b2 either using a careful expansion,
or by using next correction term in the density of the sufficient statistic, and
the fact that the corrected density integrates to 1 + O(n−3/2).
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3. Show that (1 − c/2n)fW (w(1 − c/2n)) is a χ2 density to order O(n−3/2).
As an example consider testing H0 : µ = µ0 in the normal model with known

variance; that is, suppose that T = Y1 ∼ N(µ, 1). Since �n(µ; t) = (µt − µ2/2),
then W (µ0) = (t − µ0)2. Hence the distribution of W (µ0) is exactly χ2. The basic
saddlepoint approximation to the density of T is exact, and hence is, b(µ) = 0.

As another example consider testing the scale parameter in a gamma distribu-
tion with known shape α. The density here is γαyα−1 exp(−γy)/Γ(α); we assume
that α is known. The log likelihood for an independent and identically distributed
sample Y1, . . . , Yn of size n is − (γ

∑
i Yi)+nα log(γ)+(α−1)

∑
i log(Yi)−n log(Γ(α)),

its derivative is n(−T + α/γ) for T = Ȳ , and the maximum likelihood estimator
for γ is γ̂ = α/T . Then W (γ) = n[α(1 − log(T ) + log(α)) + γT − log(γ))]. From
§4.2, b(β) is −1

6α
−1, which is independent of γ. Recall from §4.8 that the gamma

distribution, with the normal and Inverse Gaussian, are the only distributions with
constant third and fourth standardized cumulants. Bartlett’s correction is

1 + 1/(6nα). (219)

The expectation of the likelihood ratio statistic may also be calculated exactly.
Recall that the density of the mean of n independent Γ(γ, α) random variables has a
Γ(nγ, nα) distribution. The likelihood for γ is now −

(
nγȲ

)
+αn (log(n) + log(γ))+

(αn − 1) log(Ȳ ) − log(Γ(αn)), and the likelihood ratio statistic is

2n
(
−γȲ + α(1 − log(α)) + α log(γ) + α log(Ȳ )

)
.

This expression is linear in Ȳ and log(Ȳ ). The expectation of these quantities can
be calculated analytically: E

[
Ȳ
]

= α/γ and E
[
log(Ȳ )

]
= ψ(αn) − log(nγ), where

ψ(x) = d
dx

log(Γ(x)) is the di-gamma function. Hence the expectation of W (γ) is

2αn (log(α) + log(n) − ψ(αn)) .

The approximation (219) agrees with this exact value very closely (Fig. 17).
These derivations are difficult for lattice distributions. Examples of lattice dis-

tributions for Tn might arise when the underlying random variables Y1, . . . , Yn for
which Tn is a summary are lattice variables. Examples are:
1. When Yi is a d-long vector of zeros except for a one in one place; multinomial

probabilities are to be estimated, and the sufficient statistics are Tn are the sum
of the Yi giving cell totals.

2. When Yi are response variables in a logistic regression corresponding to covari-
ates zi; the sufficient statistic is Tn = Z�Y where Z is the matrix with the zi

as rows, and Y is the vector (Y1, ..., Yn). When the ratios of entries of Z are all
rational, Tn is a lattice variable; otherwise it is not a lattice variable but has a
singular distribution.
In the present circumstance the variable of real interest is W (θ) rather than

Tn; in general W (θ) will not have a lattice distribution, but a singular non-lattice
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Evaluation of Bartlett’s Correction for Gamma(1,1) Mean Parameter
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distribution in which lim sup|t|→∞ φW (θ)(t) = 1 and the Edgeworth series to order
O(n−1) and smaller is not valid, and for which no continuity correction exists to
give the series better asymptotic properties. Since W (θ) does not have a density,
transformation techniques like those used in the continuous case do not apply, and
one is forced to proceed by using asymptotic techniques in Tn space rather than in
W (θ)-space. Of interest are calculations of quantities like P [Tn ∈ W (θ)−1[0, w]].
Since these regions are approximately elliptical with the form E′ = {t|t�Σ−1t ≤ c},
the ability to approximate probabilities for such sets should be an upper limit on the
ability to approximate the cumulative distribution function of W (θ). Frydenberg
and Jensen (1989) provide calculations indicating that while Bartlett’s correction
does not improve the asymptotic error rate, in many cases it does improve accuracy.
Comments on the difficulties in approximating the distribution of the Wald statistic
carry over to the likelihood ratio statistic as well.

As an example of Wald and likelihood ratio testing in multivariate discrete cases,
consider the problem of simultaneously testing values of means in two independent
Poisson distributions. Note the similarity in the Wald and likelihood ratio rejection
regions (Fig. 18). Note also the irregular pattern of jumps in both cumulative
distribution functions arising because points enter the expanding acceptance regions
at irregular intervals (Fig. 19).
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Wald and Likelihood Ratio Acceptance Regions for the the Poisson Distribution
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Wald and Likelihood Ratio CDFs for the Poisson Distribution
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Bartlett’s corrections may also be applied in less standard contexts; DiCiccio,
Hall, and Romano (1991) apply it to empirical likelihoods.

8.3. Distributions of Maximum Likelihood Estimators

As in §7.2, consider the exponential family model for a random vector T whose
density evaluated at t is: fT (t; θ) = exp(θ�t − HT (θ) − G(t)), such that HT is
twice differentiable and H′

T is one to one. The associated cumulant generating
function is KT (β, θ) = HT (β + θ) − HT (θ), and hence the saddlepoint β̂ is defined
by H′

T (β̂ + θ) = t. The log likelihood is �(θ; t) = θ�t − HT (θ), and the maximum
likelihood estimator is defined by H′

T (θ̂) = t. Hence β̂ + θ = θ̂. Then by (133),

fT (t; θ) = (2π)−k/2 det
[
K′′

T (β̂; θ)
]−1/2

exp(KT (β̂; θ) − β̂�t)(1 + 1
2b(θ̂)n−1 + O(n−2))

= (2π)−k/2 det
[
H′′

T (θ̂)
]−1/2

exp(HT (θ̂) − HT (θ) + (θ − θ̂)t)×

(1 + 1
2b(θ̂)n−1 + O(n−2))

= (2π)−k/2 det
[
j(θ̂)

]−1/2
(L(θ; t)/L(θ̂; t))

(
1 + 1

2b(θ̂)n−1 + O(n−2)
)
. (220)

Here j is the observed information, and L is the likelihood. In these full exponen-
tial families, j is equal to i, the Fisher information Eθ [−�′′]. Since H′

T (θ̂) = t,
H′′

T (θ̂)(dθ̂/dt) = I, and (dθ̂/dt) = H′′
T (θ̂)−1 = i(θ̂)−1. Let Θ̂ be the random vari-

able arising from solutions to H′
T (Θ̂) = T . Using standard change of variables

techniques,

fΘ̂(θ̂; θ) = (2π)−k/2 det
[
i(θ̂)

]1/2
L(θ; t)/L(θ̂; t) + O(n−1). (221)

Approximation (221), first noted by Daniels (1958), is a case of Barndorff–Nielsen’s
formula, and derived in various cases by Barndorff–Nielsen (1980, 1983) and Durbin
(1980), who also also noted that arguments analogous to those in §4.8 indicate that
after renormalizing, the error term in (221) can be replaced by O(n−3/2). Formula
(221) is also known as the p∗ formula, from a series of papers primarily by Barndorff–
Nielsen in which the density of the maximum likelihood estimator is denoted by p
and the approximation is denoted by adding the star.

Reid (1988) considers the example of a gamma distribution with an unknown
shape parameter. Suppose that Xi are independently distributed with density

f(x; µ, ν) = (ν/µ)νxν−1 exp(−xν/µ)Γ−1(ν).

Then the sample X1, . . . , Xn gives rise to the log likelihood

�n(µ, ν; X) = nν log(ν)−nν log(µ)+(ν −1)
∑

log(Xi)− (ν/µ)
∑

Xi −n log(Γ(ν)),

T = ((
∑

log Xi)/n, (
∑

Xi)/n) is sufficient, and the maximum likelihood estimators
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satisfy

ν (−µ + T1)/µ2 = 0 and 1 − T1/µ + T2 − log(µ) + log(ν) − ψ(ν) = 0,

where ψ is the di–gamma function defined to be ψ(ν) = (d/dν) log(Γ(ν)), and

µ̂ = T 1, ψ(ν̂) − log(ν̂) = T 2 − log(T 1). (222)

The matrix of log likelihood second derivatives is

∂2l

∂(µ, ν)∂(µ, ν)� = n
(

ν(µ − 2T 2)/µ3 (−µ + T 1)/µ2

(−µ + T 1)/µ2 1/ν − ψ′(ν)

)
.

Its determinant is

n2

µ2

⎧⎨
⎩
(

1 − 2T 2

µ

)
(1 − νψ′(ν)) −

(
T 2

µ
− 1

)2
⎫⎬
⎭=

n2

µ2

{
2T 2νψ′(ν)

µ
−νψ′(ν)− (T 2)2

µ2

}
.

After using (222) to eliminate T , det
[
j(θ̂)

]−1/2
= n{ν̂ψ′(ν̂) − 1}1/2/µ.

Also, �n(µ, ν; X) − �n(µ̂, ν̂; X) = n(ν̂ − µ̂ν/µ + ν log(µ̂/µ) + log(Γ(ν̂)/Γ(ν)) +
ν log(ν/ν̂)+(ν − ν̂)ψ′(ν̂)). The joint maximum likelihood estimator density approx-
imation (221) is

nexp (n (ν̂ − µ̂ν/µ + ν log (µ̂/µ) + ν log (ν/ν̂) + log (Γ(ν̂)/Γ(ν)) + (ν − ν̂)ψ′(ν̂)))×√
(ν̂ψ′(ν̂) − 1)/µ̂2

Let g1(µ̂; µ, ν) = exp(n(ν log(µ̂/µ) − µ̂ν/µ − log(Γ(ν)))(n/µ̂), and

g2(ν̂; ν) = exp(n(ν̂ + ν log(ν/ν̂) + (ν − ν̂)ψ′(ν̂) + log(Γ(ν̂)))
√

ν̂ψ′(ν̂) − 1.

Hence µ̂ has approximately a gamma density with scale parameter µ and shape
parameter nν, and is approximately independent of ν̂. One can easily verify that
up to a multiplicative constant the density approximation for µ̂ is exact. Fig. 20
demonstrates that the approximation for the density of ν̂ is very close.

The numeric approximation is calculated by sampling 10,000 sets of 10 Γ(1, 1)
random variables and calculating T 1 and T 2 for each set. The density for ν̂
might then be approximated by noting from (222) that since HT (ν̂) − log(ν̂) =
(T 2/n)‘ − log(T 1/n), the density of ν̂ is the density of (T 2/n) − log(T 1/n) times
the first derivative of ψ(ν̂) − log(ν̂). The density of (T 2/n) − log(T 1/n) can be
approximated by fitting a spline to the midpoints of the bars of the histogram of
(T 2/n) − log(T 1/n). However, since ψ(ν̂) − log(ν̂) from (222) has a pole at zero
a better approximation is derived by noting that h(ν̂) = exp((T 2/n) − log(T 1/n)),
where h(ν̂) = exp(ψ(ν̂) − log(ν̂)). The density is then approximated by fitting a
spline to the midpoints of the bars of the histogram of exp((T 2/n) − log(T 1/n))
and multiplying the result by h′. Also shown is the normal approximation to the
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Density of the MLE of the Scale Parameter in a Gamma(1,1) Distribution
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Fig. 20.

density of ν̂, based on the large sample approximations to the mean, ν, and to the
variance, n−1(−1/ν + ψ′(ν))−1 = (n[π2/6 − 1])−1.

Formula (221) holds in some non-exponential cases, as shown by Durbin (1980).
Suppose X is a random vector of length n, from density fX(x; θ) for θ ∈ P ⊂ Rd,
and suppose T = t(X) is a sufficient estimator of θ. By the definition of sufficiency,
the density for X can be factored as fX(x; θ) = g(t; θ)h(x), and for any θ and
θ0 ∈ P, g(t; θ0) = g(t; θ)f(x,θ0)/f(x,θ). In particular,

g(t; θ0) = g(t; t)[f(x,θ0)/f(x, t)].

This is a non-cumulant generating function analogy to exponential tilting to the
mean. Here since t estimates θ one might expect t to lie near the mean of g(.; t)
and hence for g(t; t) to be easy to approximate. Durbin (1980) uses the normal
approximation to the mean to show that

g(t; θ0) = (n/2π)d/2 det [i(t)]1/2 L(θ0)/L(t){1 + O(1/n)}. (223)

If X had a cumulant generating function KX then i(t) could be replaced by K′′
X(t);

if X came from an exponential family this would be H′′
X(t+θ). Durbin (1980) gives

four cases in which (223) holds. The first and most important is:

Theorem 8.3.1: Suppose that the sufficient statistic vector T with a distribution
depending on n estimates θ with a bias that is uniformly O(n−1) in a neighborhood of



178 8. Applications to Wald, Likelihood Ratio, and Maximum Likelihood Statistics

θ0, that nVar [T ] converge to a positive definite matrix uniformly in a neighborhood
of θ0, and that T have a valid Edgeworth expansion to order o(1/n). Then (221)
holds with θ̂ = t.

8.4. Ancillarity

More subtle expansions of use in conditional inference require a review of the back-
ground on sufficiency and ancillarity. A statistic T = t(X) calculated from raw
data X and used to make inference on θ is called sufficient if the density generating
X can be factored as g(t; θ)h(x). The implication is that inference on θ should be
based on T and not on information contained in X but not reflected in T . Examples
are:
a. If Xi are independent and identically distributed observations from a N(µ, σ2)

distribution, then their density is

fX(x; µ, σ) = exp
(
−n

µ2

2σ2 +
µ

σ2

∑
xi − 1

σ2

∑
i

x2
i − n log(σ) − n

2
log(2π)

)
.

Hence T = (
∑

i Xi,
∑

i X
2
i )� is sufficient.

b. If Xi are independent and identically distributed random vectors from a natural
multivariate exponential family, of the form fX(x; θ) = exp(θ�x−H(θ)−G(x)),
then T =

∑
i Xi is sufficient.

c. If Xi are independent draws form a binomial distribution with success proba-
bility π and number of trials Ni, with Ni known, then

∑
i Xi is sufficient.

For any statistical model the complete raw data set is always a sufficient statis-
tic. The principal of simplifying analysis by examining a sufficient reduction of
the data heuristically leads to choosing, among those sufficient statistics available,
the smallest or minimal sufficient statistic, where the minimal sufficient statistic is
defined to be any sufficient statistic that is a function of any other sufficient statistic.

Related to the concept of sufficiency is the concept of ancillarity. If T is a
minimal sufficient statistic and can be written as

T =
(

Y

A

)

where the distribution of A does not depend on θ, then A is called ancillary.
Many authors as early as Fisher (1934) have argued for inference conditional on
ancillary statistics. For example, if X has a binomial distribution with success
probability π and number of trials N , with N generated from some probability
model not depending on π, then T = (X,Y )� is sufficient and Y is ancillary. Then
Pπ [X = x, Y = y] = exp(x log(π/(1 − π)) + y log(1 − π) + log(

(
y
x

)
).
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8.5. Approximate Ancillarity

For a multivariate (k, d) curved exponential family assigning probabilities to a ran-
dom vector T taking values in a convex set T ⊂ Rk according to the density

f(t; θ) = exp(t�η(θ) − H(θ) − G(t)) with η : H ⊂ R
d → R

k, H open, (224)

a sufficient statistic is T . In this case no shorter sufficient statistic is available,
except when η is very simple, even though when k > d the sufficient statistic vector
is longer than the parameter vector. Efron (1975) discusses the geometry of such
families, and produces an asymptotic expansion for the variance of the maximum
likelihood estimator. This will be discussed later in the context of efficiency.

Often times greater asymptotic precision can be obtained by using conditioning
to reduce the dimensionality of the conditioned sampling distribution to that of the
unknown parameter. Assume that the curved exponential family can be embedded
in a full exponential family; that is, suppose that there exists an open set Q ⊃ η(H)
such that

H∗(η) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
exp(t�η − G(t)) dt < ∞ ∀η ∈ Q.

Then the cumulant generating function for the larger family exists. This assumption
insures that the variance matrix for the sufficient statistic vector exists, and insures
that the chain rule can be used for differentiating. It also insures that H∗ is twice-
differentiable, and that the second derivative matrix is positive-definite at all η ∈ Q.
Assume further that the full-model likelihood equation H∗′(η) = t has a solution in
Q for all t ∈ T. Set τ (θ) = Eθ [T ] and Σ(θ) = Varθ [T ]. Since τ (θ) = H∗′(η(θ)),
then

∂τ/∂θ = H∗′′(η(θ))∂η/∂θ = Σ∂η/∂θ. (225)

The range of τ (θ) then represents the part of the data space that can be explained
by the data. The observed information j(θ) and the Fisher information i(θ) in this
family are given by

j(θ) = −
∑
j

(T j − τ j)∂2ηj/(∂θ�∂θ) + (∂τ/∂θ)�∂η/∂θ

i(θ) = (∂τ/∂θ)�∂η/∂θ = (∂η/∂θ)�Σ∂η/∂θ. (226)

Barndorff–Nielsen (1980) suggests taking as an ancillary A perpendicular to
η(θ̂) in the metric defined locally by the covariance matrix of T . See Fig. 21. The
desired ancillary should have a distribution such that as θ̂ becomes more and more
precise, then A converges to a non-degenerate distribution. In fact, it can be made
to have approximately zero mean and unit variance, if it is given by

A = B(θ̂)(T − τ (θ̂)), (227)

where B(θ) = [(∂τ/∂θ)⊥�Σ(∂τ/∂θ)⊥]−
1
2 (∂τ/∂θ)⊥�. This will be proven below.
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The matrix (∂τ/∂θ)⊥ is chosen such that

(∂τ/∂θ)⊥(∂τ/∂θ)� = 0 and det
[
(∂τ/∂θ)⊥Σ(∂τ/∂θ)⊥�

]
= det [i] / det [Σ] ;

(228)
in other words ∂τ/∂θ is chosen to have rows orthogonal according to an inner

product determined by Σ. The second condition in (228) is equivalent to

det
[(

∂η/∂θ
(∂τ/∂θ)⊥

)]
= det [i] / det [Σ] ,

as is seen by expanding the determinant for
(

∂η/∂θ
(∂τ/∂θ)⊥

)�
Σ
(

∂η/∂θ
(∂τ/∂θ)⊥

)
,

and using (225) and the second expression for i(θ). That such a matrix can be
constructed for each value of θ is an elementary result from linear algebra; that
(∂τ/∂θ)⊥ can be expressed as a differentiable function of θ is a deeper question.
Construction of such a matrix will be outlined in the exercises. The key idea here
is that while the matrix B(θ̂) is the function of the random quantity θ̂ and hence
is random, it varies far less than T − τ (θ̂).

To make these notions precise, suppose that Tn arises as the sum of n inde-
pendent and identically distributed observations from the curved exponential family
(224) nested within a full exponential family. Let τ1(θ) and Σ1(θ) be the mean
and variance functions for each summand. Then An = B(θ̂n)(Tn − nτ1(θ̂n))/

√
n.

One might consider how far An is from being exactly ancillary. Note that

An = B(θ)(Tn − nτ1(θ))/
√

n + (B(θ̂n) − B(θ))(Tn − nτ1(θ))/
√

n

+
√

n(B(θ̂n) − B(θ))(τ (θ) − τ (θ̂n)) +
√

nB(θ)(τ1(θ) − τ1(θ̂n))].

The first term on the right has a distribution independent of θ, with zero mean and
unit variance, to order Op(1/

√
n). The remaining terms are all of size Op(1/

√
n).

Furthermore, under weak regularity conditions the moments of An will be differen-
tiable functions of θ, and hence for changes in θ of order 1/

√
n the mean, variance,

and third cumulant will be constant to order O(n−3/2), O(n−2), and O(n−5/2). Cox
(1980) refers to this property as second order local ancillarity.

As will be proved below, the general formula for expansions of statistics condi-
tional on the ancillary vector A of (227) is

f(θ̂|a; θ) = (2π)−k/2 det
[
ĵ
]−1

2 (L(θ; t)/L(θ̂; t)){1 + O(1/n)}.

In the case of full exponential (k, k) families, with the canonical parameterization
(224) with d = k and η(θ) = θ, this result is proved above as (221). Here the
ancillary A is of length 0, and no effective conditioning happens.
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Example of trivial curved exponential family.
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Fig. 21a.
Example of normal correlation curved exponential family.
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When k > d ancillarity really has teeth; conditioning on the ancillary is a
requirement, not just an option, since a one-to-one map is needed to transform
to the maximum likelihood estimator, and an approximate ancillary is the logical
choice.

As an example of a curved exponential family, consider inference on a normal
correlation presented by Barndorff–Nielsen (1980). Suppose that (Xi, Ui)� are in-

dependent and identically distributed with distribution N
(
0,
(

1 θ
θ 1

))
. Then T =

(1
2
∑

i(X2
i + U2

i ),
∑

i XiUi) is sufficient, and

fX,U(x,u; θ) = (2π)−n/2(1 − θ2)−n/2 exp(θt2 − t1/(1 − θ)).

Straight forward calculations show that

E [T ] = n
(

1
θ

)
, Var [T ] = n

(
1 + θ2 3θ

3θ 1 + 2θ2

)
.

Hence ∂τ/∂θ = (0, n), and so we can take (∂τ/∂θ)⊥ = (1, 0), yielding an ancillary
statistic A = (1 + θ2)−1/2(T 1 − n)/

√
n that is an affine function of T 1.

The ancillary A is not uniquely determined by (227), because of the lack of
uniqueness in the definition of perpendicular compliments used above. This non-
uniqueness is a general drawback of inference conditional on ancillary statistics.
Furthermore, calculation of any particular choice of A might prove troublesome.
These problems might be avoided by constructing a statistic S such that (S, A) are
sufficient statistics and such that S and A are approximately independent at some
parameter value of interest. McCullagh (1984) shows that such a S is uniquely
defined in one-dimensional problems, and is easily calculated from the likelihood
ratio statistic. This work results in a more general proof of Barndorff–Nielsen’s
formula. The construction and proof crucially uses multivariate tensor notation
beyond the scope of this work. McCullagh (1987) provides details.

8.6. Barndorff–Nielsen’s Formula

This section presents the argument of Barndorff–Nielsen (1980) that Barndorff–
Nielsen’s formula holds for certain approximately ancillary statistics. First a lemma:

Lemma 8.6.1: If A is constructed as in (227), then the Jacobian det
[
∂T/∂(θ̂, A)

]
is given by

det
[
j(θ̂)

]
det

[
i(θ̂)

]−1/2
det

[
Σ(θ̂)

]1/2
.

Proof: The maximum likelihood estimator θ̂(t) satisfies t�(∂η/∂θ) − H′(θ̂) = 0.
Since H′(θ) = H∗′(η(θ))(∂η/∂θ) = τ (θ)(∂η/∂θ), the expression relating T to θ̂
and A is

(T − τ )�
(

∂η

∂θ

∂τ

∂θ

⊥)( I 0
0 [(∂τ/∂θ)⊥�Σ(∂τ/∂θ)⊥]−

1
2

)
= (0, A�),
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with all functions of θ evaluated at θ̂. The quantity (∂τ/∂θ)⊥ is the result of taking
the derivative of the mean function τ , and constructing a matrix perpendicular to

it. Letting A∗ = A[(∂τ/∂θ)⊥�Σ(∂τ/∂θ)⊥]
1
2 ,

(T − τ )�
(

∂η

∂θ

∂τ

∂θ

⊥)
= (0, A∗).

Differentiating these relations with respect to θ̂ and A∗, we find that(
∂T

∂(θ̂, A∗)
− ( ∂τ/∂θ 0 )

)� (
∂η

∂θ

∂τ

∂θ

⊥)
+
∑
j

(T j − τ j)
(

∂2ηj

∂θ�∂θ
∗

0 0

)
=
(

0 0
0 I

)
.

The quantity ∗ above is the result of differentiating row j of (∂τ/∂θ)⊥ with respect
to θ. Then

∂T

∂(θ̂, A∗)

�(∂η

∂θ

∂τ

∂θ

⊥)
=
(

0 0
0 I

)
+
(

∂τ

∂θ
0

)�
(

∂η

∂θ

∂τ

∂θ

⊥)
−
∑
j

(T j−τ j)
(

∂2ηj

∂θ�∂θ
∗

0 0

)

=
(

0 0
0 I

)
+
(

(∂τ/∂θ)�(∂η/∂θ) ∗
0 0

)�
+
(

j(θ̂) − i(θ̂) ∗
0 0

)

=
(

j(θ̂) ∗
0 I

)
, (229)

by (226). Here ∗ marks parts of the matrix that can be ignored when taking its
determinant since the corresponding lower block is 0. The determinant of (229) is
det

[
j(θ̂)

]
, and hence the determinant of (∂T /∂(θ̂, A∗)) is det

[
j(θ̂)

]
det

[
Σ(θ̂)

]
×

det
[
i(θ̂)

]−1
. The Jacobian of the transformation from A∗ to A is det

[
i(θ̂)

]1/2
×

det
[
Σ(θ̂)

]−1/2
, and hence the Jacobian of the transformation from t to (θ̂, A) is

det
[
j(θ̂)

]
det

[
i(θ̂)

]−1/2
det

[
Σ(θ̂)

]1/2
.

Q.E.D
The next lemma expresses the exact joint distribution of the maximum like-

lihood estimator θ̂ and an associated statistic U such that (θ̂, U ) are minimally
sufficient, as the product of Barndorff–Nielsen’s formula and an error term.

Lemma 8.6.2: Suppose that (θ̂, U ) are minimally sufficient for the model (224),
and A is a function of U , possibly depending on θ̂ as well. Let

H(θ̂, U ) = det
[
∂T /∂(θ̂, U )

]√
(2π)d/ det

[
j(θ̂)

]
exp(t�η(θ̂) − H(θ̂) − G(t))

Then fΘ̂,A(θ̂, a; θ)=(2π)−d/2[H(θ̂, U )/(∂U/∂A)](θ̂, a)det
[
j(θ̂)

]1/2
L(θ; t)/L(θ̂; t).

Proof: This holds from a straight-forward application of the usual change of vari-
ables theorem.
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Q.E.D
Applying this to the affine ancillary calculated earlier:

Theorem 8.6.3: If T arises as the mean of n independent and identically dis-
tributed observations from the curved exponential family (224) nested within a full
exponential family, and if A is constructed as in (227), then the expansion holds:

fΘ̂|A(θ̂|a; θ) = (2π)−d/2 det
[
j(θ̂)

]1/2
L(θ; t)/L(θ̂; t)(1 + Op(n−1)). (230)

Proof: By Lemma 8.6.2, with A constructed as before and U = A, it suffices to
show that H(θ̂, A) = 1 + Op(n−1). The quantity G(t) is approximated by reference
to the saddlepoint expansion for the full exponential family model fT (t; η), which
shows

exp(t�η − H∗(η) − G(t)) = c det
[
H∗′′(η̃)

]−1/2
exp(t�(η − η̃) − H∗(η) + H∗(η̃))×{

1 + b(η̃)/[2n] + O(n−2)
}

where η̃ satisfies H∗′(η̃) = t. Then

exp(−G(t)) = c det
[
H∗′′(η̃)

]−1
2 exp(−t�η̃ + H∗(η̃)){1 + b(η̃)/[2n] + O(n−2)}.

Hence by Lemma 8.6.1,

H(θ̂, A) =

⎡
⎣ det

[
Σ(θ̂)

]
det

[
j(θ̂)

]
det [H∗′′(η̃)] det

[
i(θ̂)

]
⎤
⎦

1
2

exp(t�η(θ̂) − H(θ̂) − t�η̃ + H∗(η̃))×
{
1 + b(η̃)/[2n] + O(n−2)

}
(231)

If T is the mean of independent and identically distributed random vectors from
(224), then the matrix Σ in the definition of B has a factor of n−1, and the functions
(∂τ/∂θ)⊥ are unchanged. Then T can be expressed as an invertible function of θ̂
and A/

√
n near (θ, 0) with no other dependence on n. Since

√
n(T − τ ) converges

in distribution, or in other words T − τ = Op(1/
√

n), then A = Op(1). Expanding
the quantity in large brackets in (231) about (θ̂, 0) we determine an expansion
of the form 1 + n−1/2 ∑

l A
lcl(θ̂, 0) + O(‖A‖2 /n), where cl are continuous in both

arguments, and A = (A1, . . . , Ak−d). Since θ̂ = θ + Op(1/
√

n), as will be shown in
the section on the Bartlett’s correction, θ̂ can be replaced by θ, incurring an error
no larger than Op(1/n). A similar treatment shows that the final factor in large
brackets is of the form c(A) + Op(1/n).

Q.E.D
Formula (230) is known as Barndorff–Nielsen’s formula. One might ask whether

this formula might hold exactly. Consider the case of (k, d) curved exponential
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families in which d = k − 1. Barndorff–Nielsen (1984) explores the applicability
of this formula for other ancillary statistics, and notes that exactness holds for
approximate ancillary statistics V satisfying H(θ̂, V ) = ∂U/∂V , and presents an
example in which this differential equation can be solved to yield an ancillary for
which Barndorff–Nielsen’s formula holds exactly.

More generally when d = k−1 Barndorff–Nielsen (1984) constructs an ancillary
for which this formula holds to O(n−3/2). This might be constructed in the above
proof by multiplying the factors containing the errors, {1 + n−1/2 ∑

l A
lcl(θ̂, 0) +

O(‖A‖2 /n)}{1 + b(η̃)/[2n] + O(n−2)}, extracting the next order term in n, and
constructing an ancillary that sets this term to zero. This may be achieved as a
linear combination of components of components of A, times a scalar function of
A, because of the presence of the term

∑
l A

lcl(θ̂, 0) in the error. Barndorff–Nielsen
(1984) suggests using a directed log likelihood ratio statistic formed by multiplying
the log likelihood ratio statistic by the unit vector in the direction of the affine
ancillary. Specifically, let Ω̂ =

√
2n[T �(η̃ − η̂) − H(θ̂) + H∗(η̃)], with the sign

given by the sign of η̂1. Define the directed log likelihood ratio statistic to be∣∣∣Ω̂∣∣∣A/ ‖A‖ . (232)

The appropriateness in the case of a one-dimensional affine ancillary is demonstrated
in the following theorem. In this case a careful analysis of the above-mentioned lin-
ear combination is avoided by transforming to the density of the maximum likelihood
estimator and the directed log likelihood ratio statistic immediately, and exploit-
ing the occurrence of the likelihood ratio statistic in the exponent of the term in
brackets in (231).

Theorem 8.6.4: If T arises as the sum of n independent and identically dis-
tributed observations from the (k, k−1) curved exponential family (224) nested within
a full exponential family, and Ω̂ is given as above, then there exists an additive
correction to Ω̂ depending on θ̂ yielding Ω̂† such that Ω̂† has a marginal normal
density to O(n−1), and such that

fΘ̂|Ω̂†(θ̂|ω̂†; θ) = (2π)−d/2 det
[
j(θ̂)

]1/2
L(θ; t)/L(θ̂; t) + Op(n−3/2).

Proof: In this theorem A is scalar, since the parameter vector has one fewer
component than has the sufficient statistic. Again this theorem will be verified by
examining H(θ̂, Ω̂/

√
n). Then ∂(Ω̂/

√
n)/∂T = [η̃ − η(θ̂)]/(Ω̂/

√
n) when Ω̂ 	= 0.

Since Ω̂ 	= 0 and A 	= 0 if η̃ − η(θ̂) 	= 0, and since θ̂ and η̃ − η(θ̂) are differentiable
functions of T , the derivative is defined even when Ω̂ = 0. Furthermore, as a
consequence of (229),

∂(θ̂, A)/∂T =
(

j−1(θ̂) 0
∗ I

)(
∂η

∂θ

∂τ

∂θ

⊥)�

,
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and hence ∂θ̂/∂T = j−1(θ̂)(∂η/∂θ)�. Here i and j are expected and observed
information for a sample of size 1, evaluated at T . Therefore

∂(θ̂, Ω̂/
√

n)/∂T =
(

j−1(θ̂)(∂η/∂θ)�

[η̃ − η̂]�/(Ω̂/
√

n)

)
=
(

j(θ̂) 0
0 (Ω̂/

√
n)

)−1 (
(∂η/∂θ)�

[η̃ − η̂]�
)

,

and

H(θ̂, (Ω̂/
√

n))=det
[(

(∂η/∂θ)�
√

n(η̃ − η̂)�/Ω̂

)]−1

det
[
j(θ̂)

]1/2
φ(Ω̂)

{
1+

b(η̃)
2n

+ O(n−2)
}

.

The ratio (η̃ − η(θ̂))/(Ω̂/
√

n) must be expanded as a function of Ω̂/
√

n and
θ̂. Only the lead term will be used. Differentiability of the function will first
be demonstrated, and need only be demonstrated at Ω̂ = 0. Since T = H∗′(η̃),
T is a differentiable function of η̃, having a differentiable inverse. Hence η̂ is a
differentiable function of η̃. Since

Ω̂2/n = −H∗′(η̃)�(η̂ − η̃) − H∗(η̃) − H∗(η̂) = 1
2(η̃ − η̂)�H∗′′(η̂)(η̃ − η̂)

+ O(‖η̃ − η̂‖3),

then Ω̂/
√

n has a power series expansion in η̃− η̂ near any η̂ ∈ η(H), and when η̂ =
η̃ then Ω̂ = 0. Hence det

[
∂T /∂(θ̂, Ω̂/

√
n)
]
has a power series representation as Ω̂ →

0. The lead term in this series will now be calculated. Choose any θ̂ ∈ H. By the
definition of η̂, [H∗′(η̃)−H∗′(η̂)](dη/dθ) = 0, and hence (η̃− η̂)�H∗′′(η̂)(dη/dθ) =
O(‖η̃ − η̂‖2). Then

det

⎡
⎢⎣
⎛
⎜⎝
(

∂η

∂θ

)�

[η̃ − η̂]�

⎞
⎟⎠Σ

(
∂η

∂θ
η̃ − η̂

)⎤⎥⎦=det

⎡
⎢⎣
⎛
⎜⎝ i(θ̂) O(‖η̃ − η̂‖2)

O(‖η̃ − η̂‖2)
Ω̂2

n
(1 + O(‖η̃ − η̂‖)

⎞
⎟⎠
⎤
⎥⎦ ,

and at Ω̂ = 0,

det
[(

(∂η/∂θ)�

(η̃ − η̂)�/(Ω̂/
√

n)

)]−1

= det [Σ]1/2 / det
[
i(θ̂)

]1/2
,

so from (231), H(θ̂, Ω̂/
√

n) = φ(Ω̂)
(
1 + c1(θ̂)Ω̂/

√
n + c2(θ̂)Ω̂2/n + O(1/n

√
n)
)
, for

some functions c1(θ̂) and c2(θ̂). Letting Ω̂† = Ω̂ − c1(θ̂)/
√

n, and applying Lemma
8.6.2, there exists a function c3(θ̂) such that

fΘ̂,Ω̂†(θ̂, ω̂†; θ) = (2π)−d/2[L(θ; t)/L(θ̂; t)]φ(ω̂†){1 + c3(θ̂, ω̂†/
√

n)/n + O(n−3/2)} .

The additional cross terms added into the exponent of φ(ω̂†) is exactly that nec-
essary to remove the term c1(θ̂)ω̂/

√
n. The theorem is completed by noting that

c3(θ̂, ω̂†/
√

n) = c3(θ, ω̂†/
√

n) + O(1/
√

n).
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Q.E.D
When d < k − 1 this construction may be applied sequentially to produce a

multivariate ancillary with the same properties.
Barndorff–Nielsen (1986) applies these techniques to general statistical models

represented by submanifolds of larger models. Barndorff–Nielsen (1990b) derives
conditional cumulative distribution function approximations for the maximum like-
lihood estimator. Approximate integration techniques like those of §5.7 are used
to integrate (230). The ancillary to be conditioned on is the directed likelihood
ratio (232) for testing the the adequacy of (224) within the ambient full exponential
family. The result is an approximation similar to (109):

Corollary 8.6.5: Suppose that the conditions of Theorem 8.6.3 hold, and sup-
pose that k = 1; that is, suppose that θ is scalar. Let �̄(θ; θ̂, a) = log(L(θ; θ̂, a))/n.
Then F̄Θ̂|A(θ̂|a; θ) = [Φ̄(

√
nω̂) + φ(

√
nω̂)[1/ž − 1/ω̂]/

√
n][1 + Op(n−1)], with ž =

[�̄;1(θ̂; θ̂, a) − �̄;1(θ; θ̂, a)]/
√

j(θ̂), and the superscripts ; 1 on �̄;1 represent differenti-
ation of the likelihood with respect to θ̂, after expressing t in terms of θ̂ and a.

Proof: Let g(θ̂) = �̄(θ̂; θ̂, a) − �̄(θ; θ̂, a), and let G(θ̂) =
∣∣∣j(θ̂)∣∣∣1/2

. The data

represented in �̄ have been reexpressed in terms of θ̂ and a. Clearly g(θ) = 0. Also,

g′(θ̂) = �̄;1(θ̂; θ̂, a) − �̄;1(θ; θ̂, a) + �̄1;(θ̂; θ̂, a) = �̄;1(θ̂; θ̂, a) − �̄;1(θ; θ̂, a),

where superscripts of the form r; on �̄ refer to derivatives with respect to θr and of
form ; r refer to derivatives with respect to θ̂r. In this scalar case, r may only take
the value 1. Hence g′(0) = 0. Now differentiate �̄1;(θ̂; θ̂, a) = 0 with respect to θ̂ to
obtain �̄1;1(θ̂; θ̂, a) = −�̄11;(θ̂; θ̂, a). Furthermore,

g′′(θ̂) = �̄1;1(θ̂; θ̂, a) + �̄;11(θ̂; θ̂, a) − �̄;11(θ; θ̂, a) = j(θ̂) + �̄;11(θ̂; θ̂, a) − �̄;11(θ; θ̂, a),

Hence g′′(θ) = j(θ). For θ̂ sufficiently close to θ, g′′(θ̂) > 0. Apply Corollary 5.5.2.
Q.E.D

See §5.6 for an alternative rescaled signed root of the likelihood ratio statistic,
derived from the r∗ approximation.

8.7. Transformation Families

Consider the example presented by Reid (1988), citing Fisher (1934), in which
X1, . . . , Xn are generated independently with density f((x−µ)/σ)/σ; here f is pre-
sumed known but the location and scale parameters µ and σ are to be estimated.
The family of distributions generated as the unknown parameters are allowed to vary
is not necessarily an exponential family. Such families are in general known as trans-
formation families (Barndorff–Nielsen, 1978, Barndorff–Nielsen, 1983). In the case
of transformation families Barndorff–Nielsen’s formula also holds, as this example
will illustrate. Once µ̂ and σ̂ are determined, A =

(
(X(1) − µ̂)/σ̂, . . . , (X(n) − µ̂)/σ̂

)
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are treated as ancillary. The transformation (µ̂, σ̂, a1, ..., ak−2) → x has a Jacobian
of the form σ̂n−2 times a function of a. Hence the joint density of (µ̂, σ̂, A1, ..., Ak−2)
is g(a)σ̂n−2σ−n ∏

i f((aiσ̂+ µ̂−µ)/σ). Integrating with respect to µ̂ removes depen-
dence on µ and also removes one factor of σ; integrating with respect to σ̂ removes
the remaining factors of σ, resulting in a distribution of A free of unknown pa-
rameters and justifying treating A as ancillary. Since L(µ̂, σ̂; x) = σ̂−n ∏

i f(ai),
and L(µ, σ; x) =

∏
i f((aiσ̂ + µ̂ − µ)/σ, then the density of (µ̂, σ̂) conditional on A

can be written as c(a) det [j(µ̂, σ̂)]−1 L(µ, σ; x)/L(µ̂, σ̂; x), thus verifying Barndorff–
Nielsen’s formula in this case.

The data Xi have the cumulative distribution function F (gµ,σ(x)), with F
known, the function gµ,σ(x) = (x − µ)/σ, and the parameters µ and σ unknown.
Define an operation ◦ on G = {gµ,σ : µ ∈ R, σ > 0} to be composition. Then

(gµ2,σ2 ◦ gµ1,σ1)(x) = gµ2,σ2((x − µ1)/σ1) = (x − µ1 − σ1µ2)/σ1σ2 = gµ1+σ1µ2,σ1σ2(x)

Hence G has the following 4 properties.
a. gµ2,σ2 ◦ gµ1,σ1 ∈ G.

b. g0,1 ◦ gµ,σ = gµ,σ.

c. g−µ/σ,1/σ ◦ gµ,σ = g0,1.

d. (gµ3,σ3 ◦ gµ2,σ2) ◦ gµ1,σ1 = gµ3,σ3 ◦ (gµ2,σ2 ◦ gµ1,σ1).
A structure (G, ◦) with these four properties is called a group; a group which is

a set of functions on another space where the operation is composition is said to be
a group acting on the other space. The general model, then, has Xi distributed in-
dependently with common cumulative distribution function F (g−1(x)) for a known
cumulative distribution function F on a sample space X and an unknown g ∈ G

for the group G acting on X. Equivalently, Xi = g(Yi) with Yi drawn from F . The
objective is to draw inference on which element g ∈ G is involved. Generally, the
group G and cumulative distribution function F are said to comprise a transforma-
tion family. Fraser (1968, 1979) provides a fuller exposition. Barndorff–Nielsen’s
formula for all such models is exact. If F (g(x)) is different for each distinct g ∈ G,
or equivalently, if g(Yi) has a different distribution for each g ∈ G, and one can find
ĝ ∈ G maximizing the likelihood, then the ancillary quantity is A with components
Ai = ĝ−1(Xi). Barndorff–Nielsen (1980) treats the more general case when g(y) is
a distinct function of y for each g ∈ G, and Barndorff–Nielsen (1983) treats the still
more general case when this assumption is dropped.

8.8. Exercises

1. Consider the logistic regression model of question 2 of §7.9. Sketch contours for
the density of the maximum likelihood estimator assuming the true regression
parameters are the observed value of the maximum likelihood estimator.

2. Give an expression for the distribution of the maximum likelihood estimator in
a Poisson regression model, similar to the above but with y a Poisson variable
whose mean is the exponential of linear covariates.
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Other Topics

This chapter contains miscellaneous material applying saddlepoint and other dis-
tribution function approximations to statistical inference. An approximation for
the root of an estimating equation is presented. Series approximation methods in
Bayesian inference and resampling will also be discussed.

9.1. Applications to Estimating Equations

Many statistical estimates are constructed by finding the root of a function depend-
ing on the value of a parameter and the unknown data. For instance, maximum
likelihood estimators are found by equating the sum of the derivatives of the log like-
lihood contributions for the various items sampled to zero. Daniels (1983) provides
saddlepoint approximations to the distributions of roots of estimating equations.

Suppose Xj are independent and identically distributed according to a distri-
bution indexed by a scalar parameter θ, for j = 1, ..., n. Let M(x, θ) be a function
such that E [M(X, θ)] = 0 for all θ, and such that M is decreasing in θ. Then
estimate θ as the root θ̂ of

∑n
j=1 M(Xj, θ̂) = 0. The estimator θ̂ is known as an

M-estimate. Serfling (1980) discusses the asymptotic properties of these estimators.
Under general conditions, one can, for instance, demonstrate asymptotic normality.

Define M̄n(a) =
∑n

j=1 M(Xj, a)/n; then by the monotonicity of M ,

P
[
θ̂ > a

]
= P

[
M̄(a) > 0

]
,

and the problem of tail areas for θ̂ reduces to finding probabilities that M̄n(a) > 0
as a varies. The question of uniformity of error bounds is more difficult in this
case than in the case of cumulative distribution function approximation, since as a
varies the distribution whose cumulative distribution function at 0 is approximated
changes. Uniformity properties in this case are not as widely studied as they are in
the case of tail probabilities from one distribution.

Let K(β; a) be the cumulant generating function of M̄1. This may be difficult
to calculate. Then

P
[
θ̂ > a

]
= P

[
M̄ > 0

]
=

1
2πi

∫
C

exp(nK(β; a))β−1 dβ, (233)

189
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where the path C is chosen to have a positive real part at each point. Taking the
derivative with respect to a, the density of θ̂ is −(n/2πi)

∫
C exp(nK(β; a))K2(β; a)×

β−1 dβ. Here K2(β; a) represents the derivative of K with respect to a. Since
K(0; a) = 0 for all a, the singularity at zero is removable. Approximating this
integral using steepest descent methods gives the density approximation

−
√

n

2πK11(β̂; a)
K2(β̂; a)β̂−1 exp(nK(β̂; a)). (234)

Here K11(β; a) represents the second derivative of K with respect to a. Alternatively,
the Robinson and Lugannani and Rice approximations may be used directly on (233)
to calculate tail probabilities.

These methods may be applied to maximum likelihood estimators, giving ap-
proximations to the unconditional distribution of the estimator; recall that the
Barndorff–Nielsen’s formula in general gives an approximation to distribution of
the maximum likelihood estimator conditional on an approximate ancillary statis-
tic.

As a second example, consider the problem of drawing inference on the ratio ρ of
two means from the ratio of the observations. If X and Y are exponential random
variables with means µ and µρ, then the joint likelihood is −X/µ − Y/(µρ) −
2 log(µ) − log(ρ). The maximum likelihood estimator ρ̂ of ρ is Y/X, and hence
satisfies M(X,Y, ρ̂) = Y − ρ̂X = 0; note that E [M(X,Y, ρ)] = 0. Then
K(β, ρ̂) = − log(1 + ρ̂βµ) − log(1 − ρβµ). Partial derivatives with respect to β are

K1(β, ρ̂) =
µ(ρ − ρ̂ + 2ρρ̂βµ)

(1 + ρ̂βµ)(1 − βµρ)
,

and

K11(β, ρ̂) =
µ2 (ρ2 + 2 ρ̂ β µ ρ2 + ρ̂2 (1 − 2 β µ ρ + 2 β2 µ2 ρ2))

(1 + ρ̂ β µ)2 (1 − β µ ρ)2 .

Then β̂ = (ρ̂ − ρ)/(2ρ̂µρ), and so K11(β̂, ρ̂) = 8 ρ̂2 µ2 ρ2 (ρ̂ + ρ)−2. Also, K2(β, ρ̂) =
−β µ/(1 + ρ̂ β µ), and K2(β̂, ρ̂) = (ρ − ρ̂)ρ̂−1 (ρ̂ + ρ)−1. Substituting into (234), the
approximation to the density of ρ̂ is

2−1+2 n

(
ρ̂ ρ

(ρ̂ + ρ)2

)n √
n/(ρ̂

√
π)

Field and Ronchetti (1990) discuss saddlepoint approximations for estimating equa-
tions in detail and provide many additional references.
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9.2. Applications to Bayesian Methods

Consider the Bayesian paradigm in which π is a prior distribution on a parameter
space P ⊂ Rk. Data represented by the random vector T is generated according
to a density fT (t, θ) depending on θ ∈ P. Let �(θ; t) = log(fT (t, θ)) be the
corresponding likelihood. The posterior density for θ conditional on T is then

exp(�(θ; t))π(θ)∫
P exp(�(θ; t))π(θ) dθ

.

An approximation to posterior moments
∫

P
g(θ)exp(�(θ; t))π(θ) dθ/

∫
P

exp(�(θ; t))π(θ) dθ (235)

for a function g(θ) is desired. For example, g might represent the value of one
component of θ when a marginal posterior distribution is desired. Tier-
ney and Kadane (1986) apply Laplace’s method to the problem of approximating
moments of a function g of the parameter. This involves approximating two in-
tegrals of the form (146), with the functions B(θ) = − log(π(θ)) − �(θ, T ) and
B∗(θ) = − log(g(θ)) − log(π(θ)) − �(θ, T ). The function in (146) multiplying the
exponential is taken to be uniformly 1. This moment is approximated as the ratio of
the Laplace approximation (146) to the two integrals in (235). If θ̂ minimizes B and

θ̃ minimizes B∗, the approximation is exp(B(θ̂) −B∗(θ̃))
√

det
[
B′′(θ̂)

]
/ det

[
B∗′′(θ̃)

]
.

Asymptotics come into play when the distribution of T depends on a parameter
n indexing sample size, and when n increases; fortunately the Laplace approximation
works well for moderate values of n. As n increases, �n becomes the dominant term
in both B and B∗. Formal asymptotic treatments of these integrals rest on the fact
that �n(θ, T ) = Op(n) and can be expressed as n�(θ) + hn(θ) − log(π(θ)). By the
weak law of large numbers, this holds if the likelihood arises from independent and
identically distributed random variables.

Using an analogue to the method of steepest descent, these methods can be
demonstrated accurate to O(n−2); see Kass, Tierney, and Kadane (1990).

When these methods are applied to deriving the marginal posterior of θ1, the
first component of θ, one proceeds as follows: First, fix a value for θ1 at which to
evaluate the posterior. Let θ̃(θ1) solve

�′
n(θ̃) + π′(θ̃)/π(θ̃) = 0 (236)

where differentiation is with respect to all but the first components of θ, and the first
component is fixed. Let θ̂ solve (236) for all first order derivatives without θ1 fixed.
The posterior approximation is the ratio of the appropriate integral approximation,
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and can be expressed as

(2π)−1/2 det
[
�(−)′′
n (θ̃(θ1))

]−1/2
exp(�n(θ̃(θ1)) + log(π(θ̃(θ1)))

det
[
�′′
n(θ̂)

]−1/2
exp(�n(θ̂) + log(π(θ̂))

,

where �(−)′′
n denotes the Hessian matrix with entries corresponding to the first com-

ponent removed. When simplified this yields

(2π)−1/2
(
det

[
�

′′
n(θ̂)

]
/ det

[
�(−)′′
n (θ̃(θ1))

])1/2
exp(�n(θ̃(θ1)) − �n(θ̂))

π(θ̃(θ1)
π(θ̂)

. (237)

Note the parallels between this and the double saddlepoint conditional density ap-
proximation (180).

Davison (1986) uses similar methods to approximate the unmarginalized poste-
rior

π(θ|T ) =
fT (T ; θ)π(θ)∫
fT (T ; θ)π(θ) dθ

.

Laplace’s methods are again used to approximate the denominator as:

(2π)k/2 det
[
�

′′
n(θ̂)

]−1/2
exp(�n(θ̂) + log(π(θ̂)),

where θ̂ solves (236), and ratio is approximated as

(2π)−k/2 det
[
�

′′
n(θ̂)

]1/2
exp(�n(θ) − �n(θ̂))

π(θ)
π(θ̂)

(1 + O(n−1)).

Note the formal equivalence to Barndorff–Nielsen’s formula (221); in this case, how-
ever, it is θ and not θ̂ that is random. Wong and Li (1992) apply asymptotic meth-
ods to the problem of generating marginal distributions for marginal distributions
of a non–linear function of the parameter vector.

As an example, Tierney and Kadane (1986) consider the analysis of a survival
model for the Stanford heart transplant data; following Turnbull, Brown, and Hu
(1974), they divide patients into groups i = 1 if they receive a transplant and i = 2
if they receive no transplant and model the survival time without transplant Tij for
individual j in group i as exponential with parameter φij, and for those in group 1,
the survival times after replacement Zj as exponential θφij. Of particular interest is
the posterior distribution for θ. Tierney and Kadane (1986) apply a uniform prior
to this data, and compare the results of the approximation (237) to the values given
by 60 point Gaussian quadrature and the normal approximation. They find close
agreement between (237) and quadrature, and substantial disagreement between
these and the normal approximation.
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9.3. Applications to Resampling Methods

Suppose that {Xi} are independent and identically distributed with unknown cu-
mulative distribution function F . One desires to estimate a characteristic θ of F ; for
example, θ(F ) might be the mean

∫
x dF . Often times one uses as an estimate θ(F̂ ),

the corresponding characteristic of F̂ , the empirical cumulative distribution func-
tion; F̂ (x) = 1

n
#{Xi ≤ x}. The cumulative distribution function of the difference of

the resulting estimate from the true value is given by G(y) = PF

[
θ(F̂ ) − θ(F ) ≤ y

]
and inference on θ(F ) would ideally be done using G(y). Usually G(y) is unavailable,
and the estimated cumulative distribution function Ĝ(y) = PF̂

[
θ(F̂ ) − θ(F ) ≤ y

]
is

used in its place. Calculating quantities depending on Ĝ(y) exactly is often imprac-
tical; integrals with respect to d Ĝ(y) are often approximated using sampling tech-
niques. Davison and Hinkley (1988) suggest instead using saddlepoint methods. The
cumulant generating function associated with F̂ is K̂(β) = log(

∑n
i=1 exp(βXi)/n).

Confidence intervals for θ(F ) might be constructed as follows: Ideally one desires
statistics U(X) and L(X) such that

PF

[
θ(F̂ ) − θ(F ) ≤ L(X)

]
= α1, PF

[
θ(F̂ ) − θ(F ) ≥ U(X)

]
= α2

for all F under consideration; this implies that (θ(F̂ ) + L(X), θ(F̂ ) + U(X)) forms
a 1 − α1 − α2 confidence interval. As an approximation to this method, one might
use L and U such that

PF̂

[
θ(F̂ ) − θ(F ) ≤ L

]
= α1, PF̂

[
θ(F̂ ) − θ(F ) ≥ U

]
= α2. (238)

The construction (238) may exhibit poor coverage properties, since L and U are
chosen for one possible cumulative distribution function, the empirical one, rather
than for all distribution functions under consideration. One solution, proposed by
Efron (1982) for estimating the mean, is to embed F̂ in the exponential family
F̂ (x, θ) putting mass exp(Xiη)/

∑
j exp(Xjη) on Xi. Here η(θ) is chosen so that

∑
j

Xj exp(Xjη(θ))/
∑
j

exp(Xjη(θ)) = θ.

The resulting likelihood is called the exponential empirical likelihood; Jing and
Wood (1996) discuss its properties with respect to Bartlett’s correction. Here then,
θ(F̂ ) = X̄. Within this exponential family, the sample mean is sufficient for θ, and
1 − α1 − α2 confidence intervals for θ can be taken as those θ such that

PF (.,θ)

[
θ(F̂ ) ≥ t

]
= α1, PF (.,θ)

[
θ(F̂ ) ≤ t

]
= α2. (239)

Here t is the observed characteristic value. One might calculate these probabilities
under the distribution F̂ (.; θ) rather than F ; Davison and Hinkley (1988) suggest
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approximating these quantities using saddlepoint methods. The cumulant generat-
ing function associated with F̂ (.; θ) is

K̂(β; θ) = log(
∑

exp[(β + η(θ))Xi]) − log(
∑

exp[η(θ)Xi])

and
K̂′(β; θ) =

∑
Xi exp[(β + η(θ))Xi]/

∑
exp[(β + η(θ))Xi].

The saddlepoint β̂ is defined by K̂′(β̂; θ) = X̄. Hence β̂ + η(θ) = 0. The Lugannani
and Rice approximation (109) can then be used to approximate tail areas and hence
approximate L and U in (239). Tail areas then have the form 1−Φ(ω̂)+φ(ω̂)[1/ẑ−
1/ω̂]; here ẑ = −η(θ)

√∑
(Xi − X̄)2 and ω̂ =

√
2n[log(

∑
exp(Xiη(θ)/n)) − η(θ)X̄],

with ω̂ given the same sign as ẑ.
A quantity more nearly pivotal may be created by removing the effect of prop-

erties of the underlying distribution of higher order than the mean is approximate
studentization. Suppose H is the cumulative distribution function of θ(F̂ ) − θ(F ).
Then H−1(θ(F̂ ) − θ(F )) is distributed uniformly on the unit interval. Confidence
intervals might then be generated by comparing Ĥ−1(θ(F̂ )−θ(F )) to a uniform dis-
tribution, where Ĥ denotes the cumulative distribution function of θ(F̂ )−θ(F ). Al-
though in general H would be analytically intractable even if F̂ were not, in practice
both are intractable, and Ĥ might be approximated through a two-step sampling
scheme known as double-bootstrapping. Davison and Hinkley (1988) suggest using
saddlepoint methodology here too to avoid sampling. Theoretical justifications for
much of this is found in Wang (1990a).

Similarly, Davison and Hinkley (1988) suggest using the empirical cumulant
generating function K̂ to do non-parametric inference on M-estimates.

Related are non-parametric permutation tests. Suppose that X1, ..., Xn ∼ F (x),
and one wishes to test whether F is symmetric about θ0. The test is usually per-
formed conditional on the size of deviations from the proposed symmetry point.
Let

ai = (Xi − θ0)/
√∑

j

(Xi − θ0)2 and T =
∑

ai. (240)

The distribution of T conditional on the absolute values of the ai is now that of∑
Vi |ai|, where the Vi take the values of positive and negative 1 with probability

half each. Asymptotic techniques can then be used to construct tests and generate
p-values. Construction of the cumulant generating function is straight forward.

Suppose that
X1, ..., XnB

∼ F (x − θ1)

XnB+1, ..., XnB+nA
∼ F (x − θ2)

and we wish to test whether θ1−θ2 = δ0. Here set ak = (Yk−Ȳ )/
√∑nB+nA

i=1 (Yi − Ȳ )2

where Yk = Xk − δ0 if k ≤ nB and Xk otherwise. Inference is conditional on
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the ak; here the test statistic is
∑nB

k=1 ak whose conditional distribution is that of∑nB
k=1 aSk

where Sj are nB random selections without replacement from 1, ..., nB+nA.
Robinson (1982) gives an approximation to the cumulant generating function and
shows that the tail approximation (98) works well here.

Here the cumulative distribution function has jumps of regular size, since the
underlying distribution has atoms all equally likely. Unfortunately the spacing
between atoms is non-uniform, and in general the limit distribution will be a singular
distribution but not a lattice distribution. The most straight-forward continuity
correction is half the distance to the neighboring atom. Because finding the next
larger atom might be quite difficult, Robinson suggests an approximate continuity
correction using the average atom separation and the constant size of cumulative
distribution function jumps.

9.4. Applications to Efficiency

In this section I present expansions of the form (1) for efficiencies of a method
of inference. Suppose that two statistical procedures are considered, and that kn

observations are required to give the second procedure the same precision as is
realized with n observations from the first procedure; then the relative efficiency of
these two procedures defined to be kn/n, and the asymptotic relative efficiency and
the asymptotic deficiency are defined to be the first–order and second–order terms
respectively in the expansion of kn/n:

kn/n = ARE + ADEF/n + o(n−1). (241)

Here equality of precision may refer to equality of mean square errors of two es-
timates, or powers of two tests for a similar alternative. The first procedure is
preferable if ARE > 1, and the second procedure is preferable if ARE < 1. Fisher
(1925) considered discrimination between estimation procedures when the asymp-
totic relative efficiency is unity. In this case the first procedure is preferable if
ADEF > 0, and the second procedure is preferable if ADEF < 0. Relation (241)
implies that ADEF = limn→∞ kn − n. Hodges and Lehmann (1970) define the defi-
ciency of the two procedures to be kn − n; the asymptotic deficiency of the second
procedure relative to the first is then ADEF, when this limit exists. For further
details and references, see Kolassa (1996c). Consider assessing an asymptotically
normal and asymptotically unbiased estimator of a parameter. Take as a definition
of the efficiency of this estimator to be the ratio of the Cramér–Rao lower bound
for its variance to the actual achieved variance. Kolassa (1996c) provides alternate
definitions and examples. Estimates with efficiency closer to one are preferable to
those with lower efficiency. Estimators whose asymptotic efficiency is unity are
called first–order efficient.

One might also define the efficiency of one estimator relative to another to be
the inverse of the ratio of their variances, and the asymptotic relative efficiency to
be the limit of this inverse ratio. When the two estimators have variances approx-
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imately proportional to n in large samples, this definition of asymptotic relative
efficiency coincides with the definition in terms of relative sample sizes needed to
give equivalent precision.

As a simple example, consider the problem of estimating a mean of a population
with finite variance, using a sample of n independent observations. If one procedure
estimates the mean as the sample mean, and the second procedure estimates the
mean as the sample mean with the first observation ignored, then kn = n + 1, the
relative efficiency is (n + 1)/n, and the asymptotic relative efficiency is 1. The
deficiency is then 1 for all values of n, and so the asymptotic deficiency is also 1.

Fisher (1925) argues heuristically that maximum likelihood estimators are first–
order efficient, with variances, to first order, given by the Fisher information in the
whole sample, and that loss in efficiency incurred by other estimators might be
measured by the correlation of these other estimators to the maximum likelihood
estimator, or alternately by the differences between the whole sample information
and the information in the sampling distribution of the estimator. Other authors
have made these claims rigorous, and some of these results will be reviewed below.
Wong (1992) presents a more thorough rigorous review. Rao (1962, 1963) uses
the correlation between estimators to build a definition for second order efficiency
which is equivalent to the Fisher information difference, under certain regularity
conditions.

Higher–order asymptotic expansions for the mean squared error for the maxi-
mum likelihood estimator can be generated. Since expansions for the mean squared
error are related to expansions for the information content of the maximum likeli-
hood estimator, and the information expansion is simpler, the information expansion
will be considered first. Efron (1975) uses methods from differential geometry to
define the statistical curvature γθ of an inference problem, at a potential parameter

value θ0, to be rate of change in b(θ) =
(
1 − Cor

[
l̇(θ, X), l̇(θ0, X)

]2)1/2
per unit

change in the arc length, evaluated at θ = θ0. The arc length between θ0 and θ is
defined by (Eθ [U(θ0, X)] − Eθ0 [U(θ0, X)])/Varθ0 [U(θ0, X)]1/2. The quantity b(θ)
has the interpretation as the unexplained fraction of standard deviation of U(θ, X)
given U(θ0, X). This curvature is related to the loss of efficiency when inference
procedures designed for local alternatives are applied globally. Consider a family
of distributions on a sample space T parameterized by θ taking values in P ⊂ R,
and suppose that X ∈ Tn is a vector of n independent and identically distributed
variables Xj. Let �n(θ; X) be the log likelihood for X. Let �̈n(θ, X) be the second
derivative of the log likelihood with respect to θ. Let in(θ) = −Eθ

[
�̈n(θ, X)

]
be

the Fisher information in the sample X, let iθ̂n(θ) be Fisher’s information for the
sampling distribution of θ̂, the maximum likelihood estimator for θ, and let i1(θ)
be the Fisher information for X1. If γ1

θ is the curvature defined for the distribution
of a random variable X1, and γn

θ is the curvature calculated for the distribution
of X, then γ1

θ = γn
θ /

√
n. One may show that limn→∞(in(θ) − iθ̂n(θ)) = i1(θ)(γ1

θ )
2,
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and hence iθ̂n(θ)/n = i1(θ) − i1(θ)γ1
θ/n + o(n−1), giving an asymptotic expansion

for the average information is contained in a maximum likelihood estimator. Efron
(1975) also produced an asymptotic expansion for the variance of the maximum
likelihood estimator at a parameter value θ0, which contains the statistical curva-
ture and additional terms involving the curvature of the bias of the result of one
scoring iteration, and the bias of the maximum likelihood estimator at θ0. These
terms are all of size O(n−2), and the error is of size o(n−2). Asymptotic comparisons
of powers of families of tests having exactly or approximately the same significance
level have been examined by many authors. Generally these investigations have
considered the problem of testing a null hypothesis that a statistical parameter θ
takes a null value, of the from H0 : θ = θ0, using two competing tests T 1

n and T 2
n ,

indexed by a parameter n generally indicating sample size. Their critical values t1n
and t2n satisfy

P
[
T i

n ≥ tin; H0

]
= α for i = 1, 2. (242)

Single–number measures of efficiency often times compare powers of tests whose
sizes, exactly or approximately, are fixed and identical. For consistent tests, and a
fixed alternative hypothesis, distribution functions for the test statistics, or asymp-
totic approximations to these distribution functions, indicate an identical first–order
asymptotic power of unity. Distinguishing between such tests, then, requires a local
measure of relative efficiency such as Pitman efficiency, which is the ratio of sample
sizes necessary to give the same power against a local alternative. That is, alterna-
tives of the from HA : θ = θ0 + ε/cn, where cn → ∞, are considered, and the limit
limn(kn/n) is desired, where

P
[
T 1

n ≥ t1n; HA

]
= P

[
T 2

kn
≥ t2n; HA

]
. (243)

Hodges and Lehmann (1970) apply their concept of deficiency to the problem of
comparing tests in cases in which sizes can be calculated exactly and in which the
asymptotic relative efficiency is unity.

Often times exact expressions for the probabilities in (242) and (243) are un-
available. In such cases the critical value, as well as the power, usually must be
approximated. Pfanzagl (1980) notes that asymptotic comparisons of power are
only interesting when significance levels of the tests agree to the same asymptotic
order, and achieves this equality of size through a process of studentization, in the
presence of nuisance parameters. Such equality of size might be obtained using a
Cornish–Fisher expansion to calculate the critical value for the test. Albers, Bickel,
and van Zwet (1976) apply Edgeworth series to calculate the powers of nonpara-
metric tests. The primary difficulty in such cases arises from the discrete nature
of the distributions to be approximated. Pfaff and Pfanzagl (1985) present appli-
cations of Edgeworth and saddlepoint expansions to the problem of approximating
power functions for test statistics with continuous distributions; they find that the
Edgeworth series is more useful for analytic comparisons of power, while the saddle-
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point methods give more accurate numerical results. Kolassa (1996c) gives further
references.

Asymptotic expansions of cumulative distribution functions can also be used
to calculate asymptotic relative efficiencies and deficiencies. Those applications
discussed here are under local alternatives. First–order approximations are gen-
erally sufficient to calculate asymptotic relative efficiencies; deficiency calculations
generally require that second order terms be included as well. Taniguchi (1991)
calculates these powers to examine cases when the deficiency is zero and a third–
order counterpart of (241) is required; comparisons may then be based on the final
coefficient.

9.5. Exercises

1. Calculate the tail probability approximations for the root of an estimating equa-
tion by approximating the inversion integral (233) using
a. The method of Robinson (§5.2).
b. The method of Lugannani and Rice (§5.3).

2. Consider the following changes in systolic blood pressure after administration
of a drug: -9, -4, -21, -3, -20, -31, -17, -26, -26, -10, -23, -33, -19, -19, -23 (Cox
and Snell, 1981, p. 72). Assume that these observations come from a symmetric
distribution with point of symmetry θ.
a. Approximate the 5% and 95% points tL and tU of the null distribution of

the statistic T in (240), assuming θ = θ0, using perhaps (109).
b. Invert the statement P [tL ≤ T (θ) ≤ tU ] = 90% to generate a 90% confidence

interval for θ.
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Computational Aids

This chapter contains code for doing some of the calculations presented here using
the computer algebra package Mathematica. Lines surrounded by parenthesis star
are comments. Material here is generally in the same order as it appears in the
text, except that generally lattice material in the text was at the end of chapters;
here it follows more naturally immediately after the continuous analogues. Code
presented here is the minimal code necessary to perform many of the calculations
in the text. Andrews and Stafford (1993) and Stafford and Andrews (1993) present
more sophisticated Mathematica code.
(* Stirling’s Expansion of §1.2.*)
gn[n_]=Normal[Series[Gamma[n],{n,Infinity,30}]]

uu=Series[Simplify[(gn[n] nˆ-n Exp[n] nˆ(1/2))],{n,Infinity,30}]

cl=CoefficientList[Normal[uu/Sqrt[2 Pi]]/.n->1/oon,oon]

n=1

approx=cl

pn=1

Do[pn=pn*n;approx[[i]]=cl[[i]]/pn+approx[[i-1]],{i,2,Length[approx]}]

error=approx-Gamma[n] nˆ-n Exp[n] nˆ(1/2)/Sqrt[2 Pi]

(* Define and exponentiate the MGF and CGF expansion of §2.1 for a

standardized sum. Note rn is 1/sqrt(n). Give conversions between

moments and cumulants. Give sample Fortran output.*)

K[x_]=Series[Sum[k[i]*xˆi*rnˆ(i-2)/i!,{i,2,6}],{x,0,6}]

expK[x_]=Exp[K[x]]

M[x_]=Series[1+Sum[m[i]*xˆi*rnˆ(i-2)/i!,{i,2,6}],{x,0,6}]

momentrule=Simplify[Solve[Simplify[LogicalExpand[M[x]==expK[x]]],

{m[2],m[3],m[4],m[5],m[6]}]]

cumulantrule=Simplify[Solve[Simplify[LogicalExpand[M[x]==expK[x]]],

{k[2],k[3],k[4],k[5],k[6]}]]

FortranForm[cumulantrule]

199
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(* Define pseudocumulant g.f. of §3.4 and exponentiate to get

pseudomoments. We need series to order 18 in x since we need powers of x

to order three times power in rn.*)

PK[x_]=Sum[k[i]*xˆi*rnˆ(i-2)/i!,{i,3,18}]

PMlist=CoefficientList[Expand[Normal[Series[Exp[PK[x]],{x,0,18}]]],{x}]

(* Do the same thing to get the pseudomoments for the Edgeworth series

with Sheppard-corrected cumulants of §3.15.*)
PE[x_]=Sum[e[2*i]*xˆ(2*i)*rnˆ(2*i)/(2*i)!,{i,1,5}]

PMSlist=CoefficientList[,{x}]nd[Normal[Series[Exp[PK[x]+PE[x]],{x,0,12}]]]

(* Write Edgeworth Series without expanding phi, from §3.1.*)
Remove[phi]

hermitepolys=Table[h[i-1],{i,1,10}]

edgeworthseries=phi[x]*Series[Sum[PMlist[[i]]

*hermitepolys[[i]],{i,1,Length[hermitepolys]}],{rn,0,6}]

Edgeworthseries=Phi[x]-phi[x]*Series[Sum[PMlist[[i]]

*hermitepolys[[i-1]],{i,2,10}],{rn,0,3}]

TeXForm[Edgeworthseries]

(* Calculate Hermite Polynomials of §3.4 by constructing an empty list,

assigning phi to the first element, then recursively differentiating.*)

phipr=Table[NULL,{i,1,20}]

phi[x_]=Exp[-xˆ2/2]/Sqrt[2*Pi]

phipr[[1]]=phi[x]

Do[phipr[[i+1]]=D[phipr[[i]],x],{i,1,Length[phipr]-1}]

hermitepolys=Simplify[phipr/phi[x]]* ((-1)ˆ(1+Range[Length[phipr]]))

(* Construct the Cornish--Fisher expansion of §3.12 by expanding the

Edgeworth Series about the normal approximation quantile and inverting.

Leave Hermite polynomials unexpanded (except for the first); express the

difference between the Edgeworth inverse and the Normal inverse as a

power series in rn.*)

Clear[phi]; Clear[z]; Clear[Phi]

ES[z_]=(Normal[Phi[z]-Series[Sum[PMlist[[i+1]]*(-1)ˆ(i-1)

*Derivative[i][Phi][z],{i,2,10}],{rn,0,2}]])

ESS=Simplify[(Expand[Normal[Series[ES[z+a]-Phi[a],{z,0,2}]]//.

{Derivative[k_][Phi][z_]->Derivative[k-1][phi][z],

Derivative[k_][phi][z_]->phi[z]*h[k]*(-1)ˆk,h[0]->1}])/phi[a]]

z=Sum[b[i]*rnˆi,{i,1,3}]

ESSS=Expand[Series[ESS,{rn,0,2}]]

cfeqn=Simplify[ESSS==0]

cfrule=Solve[Simplify[LogicalExpand[cfeqn]],{b[1],b[2]}]

Do[cfrule=Simplify[cfrule/.h[i]->hermitepolys[[i+1]]],{i,0,7}]

CFapprox=x+z/.Join[cfrule[[1]],{b[3]->0}]

Clear[z]
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(* Construct the saddlepoint expansion relative error in terms of invariants

by, as in §4.1, evaluating the Edgeworth series at 0 and adjusting the

coefficients for non-unit variance. The coefficients beta are invariants.*)

spre=Simplify[edgeworthseries/.{x->0,k[r_]->beta[that,r] }]

(* Calculations for the proof that no distributions other than only

normal, inverse Gaussian, and gamma distributions have saddlepoint

approximations exact up to a constant of proportionality, from §4.8.*)
f[x]=(a x+b)ˆ(-3/2)

3*D[D[f[x],x],x]-5 D[f[x],x]ˆ2/f[x]

alphas=Expand[CoefficientList[spre,rn]]

dbetarule=Derivative[1,0][beta][that,r_]->Sqrt[K’’[that]]*(

beta[that,r+1]- (r/2)*beta[that,3]*beta[that,r])

eq={Expand[24*(D[alphas[[3]],that]/.dbetarule)/Sqrt[K’’[that]]],

Expand[(D[eq1,that]/.dbetarule)/Sqrt[K’’[that]]],

Expand[(24*alphas[[3]])ˆ2],

Expand[3*384*alphas[[5]]]}

TeXForm[eq/.beta[that,r_]->beta[r]]

coefs={20*beta[that,3]/3,8,23/9,1}

TeXForm[coefs/.beta[that,r_]->beta[r]]

TeXForm[Simplify[Sum[coefs[[i]]*eq[[i]],{i,1,4}]]/.beta[that,r_]->beta[r]]

(* Calculations for the Bahadur and Ranga Rao and the Lugannani and Rice

expansions of §5.1 and §5.3. nt is the number of terms; nt=2

indicates the nˆ(-3/2) term as well as the nˆ(-1/2) term.*)

nt=2

w[beta_]=Sqrt[2*(K[beta]-beta K’[betahat]-K[betahat]+betahat K’[betahat])]+what

bb=(Simplify[InverseSeries[Series[w[beta],{beta,betahat,2*nt-1}],w]/.

Derivative[k_][K][betahat]:>r[k] Derivative[2][K][betahat]ˆ(k/2)/;k>2])//.

{K’’[betahat]->sigmaˆ2,Sqrt[K’’[betahat]]->sigma,betahat->zhat/sigma,

(sigmaˆa_)ˆb_->sigmaˆ(a b)}/.sigma->Sqrt[K’’[betahat]]

brr=Ndens[rtn what]*Sum[Simplify[(-1)ˆ(jj-1)*

SeriesCoefficient[Simplify[D[bb,w]/bb],2*(jj-1)]]*rtnˆ(1-2*jj),{jj,1,nt}]

landr=1-Ncdf[rtn what]+Ndens[rtn what]*Sum[(-1)ˆ(jj-1)*Simplify[

SeriesCoefficient[Simplify[D[bb,w]/bb-1/w],2*(jj-1)]]*rtnˆ(1-2*jj),{jj,1,nt}]

(* Commands to calculate terms in Robinson’s expansion of §5.2. I calculate

integrals that are the upper half of the Laplace transform of the normal density

times Hermite polynomials, both using recursion and from first principles.*)

II[j_]=If[j>0,(hermitepolys[[j]]/.x->0)/Sqrt[2 Pi]-rtn hz II[j-1],

Ncdfbar[rtn hz]/(Ndens[rtn hz] Sqrt[2 Pi])]

III[j_,uh_]:=Simplify[Integrate[Exp[-uˆ2/2]uˆj Iˆj/(2 Pi(I u+uh)),

{u,-Infinity,Infinity}, GenerateConditions->False

]//.{(rtnˆc_ hzˆa_)ˆb_->hzˆ(a b) rtnˆ(c b),Erf[x_]->1-2*Ncdfbar[x*Sqrt[2]],

Exp[hzˆ2 rtnˆ2/2]->1/(Sqrt[2 Pi] Ndens[hz rtn]) }]

robinson=Sqrt[2 Pi]Ndens[rtn hatw] (II[0]+rtnˆ(-1) rho[3] II[3]/6)
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(* Commands to calculate Robinson’s approximation via inversion.*)

AA[j_]=If[j>1,(j-1) AA[j-2],If[j==0,1,0]]

JJ[j_]=If[j>0,(-1)ˆ((j-1)/2)rtnˆ(-j)Exp[-rtnˆ2 hzˆ2/2]AA[j-1]/Sqrt[2 Pi]-

hz JJ[j-1], Ncdfbar[rtn hz]]

poly=(1+rtnˆ2 rho[3]*sigmaˆ3*gammaˆ3/6)

cl=CoefficientList[poly,gamma]

Doapprox[cl_]:=Module[{},

Sqrt[2 Pi]Ndens[rtn hw]* Sum[

cl[[i]]*JJ[i-1]*Exp[rtnˆ2 hzˆ2/2]/(sigma)ˆ(i-1),{i,1,Length[cl]}]

//.{

Exp[a_ˆ2/2]->1/(Sqrt[2 Pi]Ndens[a]), Exp[-a_ˆ2/2]->Sqrt[2 Pi]Ndens[a]}]

robinson2=Doapprox[cl]/.Exp[hzˆ2 rtnˆ2/2]->1/(Ndens[hz rtn] Sqrt[2 Pi])

(* Check that these coincide.*)

Simplify[robinson1-robinson2]

(* Commands to calculate Robinson’s approximation via inversion, lattice case.*)

ncl=CoefficientList[Series[poly*Normal[Series[

(beta+gamma)/(2 Sinh[(beta+gamma)/2]),{gamma,0,1}]] ,{gamma,0,3}],gamma]

lapprox=(ncl[[1]]*Apart[Doapprox[Simplify[ncl/ncl[[1]]]]])//.{

rtnˆ2->n,beta sigma->hz}

(* Commands to calculate the Skates (1993) expansion of §5.7.*)
P[x_]=Series[Sum[p[i]*xˆi/i!,{i,2,7}],{x,0,7}]

Pp[x_]=D[P[x],x]

p[2]=1

Q[x_]=Series[Sum[q[i]*xˆi/i!,{i,0,5}],{x,0,5}]

q[0]=1

X[y_]=Simplify[InverseSeries[Simplify[Sqrt[2*P[y]]]]]/.x->y

g[y_]=Simplify[Q[X[y]] y/Pp[X[y]]]

(* Calculate the discrete analogues of §5.8. Some care must be taken in the

treatment of Sinh, since otherwise the expansion won’t simplify usefully.

Introduce new symbols for hyperbolic sine and cosine that Mathematica won’t try

to expand except according to the derivative rules below. These calculations

require definition of nt and tt[x] from above.*)

Derivative[i_][Ss][x_]:=Cc[x]/;OddQ[i]

Derivative[i_][Cc][x_]:=Ss[x]/;OddQ[i]

Derivative[i_][Ss][x_]:=Ss[x]/;EvenQ[i]

Derivative[i_][Cc][x_]:=Cc[x]/;EvenQ[i]

inside=Ss[Times[Rational[1,2],zhat,Power[Derivative[2][K][betahat],

Rational[-1, 2]]]]-> 2 zhat/(Sqrt[Derivative[2][K][betahat]])

brr=Ndens[rtn what]*Sum[Simplify[(-1)ˆ(jj-1)*rtnˆ(1-2*jj)*

SeriesCoefficient[Simplify[D[bb,w]/(Ss[bb/2]/2)],2*(jj-1)]],{jj,1,nt}

]//.inside

landr=1-Ncdf[rtn what]+Ndens[rtn what]*Sum[(-1)ˆ(jj-1)*Simplify[

SeriesCoefficient[Simplify[D[bb,w]/(Ss[bb/2]/2)-1/w],2*(jj-1)]

]*rtnˆ(1-2*jj),{jj,1,nt}]//.inside
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(* Commands for the example of §7.2.*)
exppsi[theta1_rtheta2_]=1-theta1-2 theta2+theta2(theta1+theta2)

Psi[theta1_,theta2_]=-Log[exppsi[theta1,theta2]]

tr=Simplify[Solve[D[Psi[theta1,theta2],theta2]==t2,theta2]][[1]]

lr={Log[a_*b_]->Log[a]+Log[b], Log[a_/c_]->Log[a]+-Log[c],

Log[c_.*Power[a_,b_]]->b Log[a]+Log[c]}

var=Simplify[D[D[Psi[theta1,theta2], theta2],theta2]]

lvar=Log[var] //.lr

ep=Simplify[exppsi[theta1,theta2]/.tr]

K[theta1_]=Simplify[Simplify[(-theta2 t2-Log[ep]-(1/2) Log[var])/.tr]//.lr]

trans=( K[theta1]/.Times[Power[theta1, 2], Power[t2, 2]]->wˆ2-4)/.Sqrt[wˆ2]->w

Simplify[Simplify[trans]/.lr]

(* Commands for Reid’s Gamma distribution ex. of §8.3.*)
L=(nu/mu)ˆ(n*nu)*Exp[slx*(nu-1)]*Exp[-sx*nu/mu]/(Gamma[nu]ˆn)

l[mu_,nu_]=n(nu*Log[nu]-nu*Log[mu]+(nu-1)*T2-nu*T1/mu-Log[Gamma[nu]])

Simplify[{D[l[mu,nu],nu],D[l[mu,nu],mu]}]

Simplify[{ {D[D[l[mu,nu],nu],nu],D[D[l[mu,nu],mu],nu]},

{D[D[l[mu,nu],nu],mu],D[D[l[mu,nu],mu],mu]}} ]

(* Calculate expected value of log(x).*)

eT2=Integrate[Simplify[Log[x]*L/.{n->1,sx->x,slx->Log[x]}],

{x,0,Infinity}]

MLEdef={D[l[muhat,nuhat],nuhat]==0,D[l[muhat,nuhat],muhat]==0}

MLErules=Simplify[Solve[MLEdef, {T1,T2}]]

obsinfmat={{D[D[l[mu,nu],mu],mu],D[D[l[mu,nu],nu],mu]},

{D[D[l[mu,nu],nu],mu],D[D[l[mu,nu],nu],nu]}}

det=Simplify[obsinfmat[[1,1]]*obsinfmat[[2,2]]-obsinfmat[[1,2]]ˆ2]/.

{mu->muhat,nu->nuhat}

sqrtdet=Sqrt[Simplify[det/.MLErules]][[1]]

exponent=Simplify[((l[mu,nu]-l[muhat,nuhat])/.MLErules)/n][[1]]

TeXForm[Simplify[Exp[n*exponent]*sqrtdet]]

(* Commands to calculate the exact correction factor for the mean of

the Gamma likelihood ratio statistic with fixed shape, from §8.2.*)
Llk[x_,n_]=(tau*n)ˆ(n*alpha)*xˆ(n*alpha-1)*Exp[-tau x*n]/Gamma[alpha*n]

lrules={

Log[a_/b_]->Log[a]-Log[b], Log[a_*c_]->Log[a]+Log[c],

Log[a_*c_/b_]->Log[a]+Log[c]-Log[b], Log[a_ˆb_]->b*Log[a]}

grules={Gamma[1+x_]->x*Gamma[x],PolyGamma[0,x_]->psi[x]}

llk[x_,n_]=Simplify[Log[Llk[x,n]]]//.lrules

tauhat=Solve[D[llk[x,n],tau]==0,tau]

lrs=Simplify[-2*(llk[x,n]-(llk[x,n]/.tauhat[[1]]))/.lrules]

ex=Integrate[x*Llk[x,n],{x,0,Infinity}]/.grules

elx=Integrate[Log[x]*Llk[x,n],{x,0,Infinity}]

Elrs=Simplify[(lrs/.Log[x]->elx)/.x->ex/.lrules]/.grules
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(* Perform calculations for the distribution of the ratio of means from Daniels

(1983) of §9.1. The first three lines calculate maximum likelihood estim-

ates. Moment and Cumulant generating functions and derivatives are defined,

the saddlepoint is calculated, and three factors for the approximation are

defined.*)

l=-x/mux-y/muy-Log[mux]-Log[muy]
newl:=l/.muy->mux*rho
Solve[{D[newl,mux]==0,D[newl,rho]==0},{mux,rho}]
Kr[t_,rho_]=-Log[1-mux*t]-Log[1+mux*rho*t]
M[t_,rho_]=1/((1-mux*t)*(1+mux*rho*t))
Kr1[t_,rho_]=D[Kr[t,rho],t]
Kr11[t_,rho_]=D[Kr1[t,rho],t]
Kr2[t_,rho_]=D[Kr[t,rho],rho]
rl=Simplify[Solve[D[Kr[t,rho],t]==0,t]][[1]]
FirstSq=Simplify[n/(2*pi*Kr11[t,rho])/.rl]
Secnd=Simplify[-((1/t)*Kr2[t,rho])/.rl]
Third=Simplify[(M[t,rho]ˆn)/.rl]
that=t/.rl
approx=Expand[Sqrt[FirstSq]*Secnd*Third]//.

{Sqrt[a_ˆ2*b_.]->a*Sqrt[b],Sqrt[b_./(c_.*a_ˆ2)]->Sqrt[b/c]/a,
Sqrt[a_ˆ(-2)*b_]->Sqrt[b]/a}

TeXForm[approx]
Remove[that]
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